
9.0

IBM MQ Configuration Reference

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
179.

This edition applies to version 9 release 0 of IBM® MQ and to all subsequent releases and modifications until otherwise
indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 2007, 2025.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Configuration reference... 5
Example IBM MQ configuration for all platforms..5

How to use the communication examples...7
Multiple thread support - pipelining.. 8
Example IBM MQ configuration on AIX... 9
Example IBM MQ configuration for HP-UX..15
Example MQ configuration for IBM i.. 21
Example MQ configuration for Linux..37
Example MQ configuration for Solaris... 43
Example IBM MQ configuration for Windows..49
Example MQ configuration for z/OS...55
Example MQ configuration for z/OS using QSGs... 60
Example MQ configuration for z/OS using intra-group queuing..67

IBM MQ file system permissions applied to /var/mqm... 74
IBM MQ file permissions in /opt/mqm with setuid for mqm..78

IBM MQ file system permissions on Windows.. 79
Naming restrictions for queues... 80
Naming restrictions for other objects..82
Queue name resolution... 83

What is queue name resolution?..85
System and default objects... 85

Windows default configuration objects... 88
SYSTEM.BASE.TOPIC... 90
System and default objects for IBM i...91

Stanza information...94
Configuration file stanzas for distributed queuing.. 97

Channel attributes... 98
Channel attributes and channel types...98
Channel attributes in alphabetical order...102

IBM MQ cluster commands... 134
Queue manager definition commands.. 135
Channel definition commands... 136
Queue definition commands..139
DISPLAY CLUSQMGR...141
SUSPEND QMGR, RESUME QMGR and clusters.. 143
REFRESH CLUSTER.. 144
RESET CLUSTER: Forcibly removing a queue manager from a cluster...145
Workload balancing in clusters..146
Asynchronous behavior of CLUSTER commands on z/OS...154

Channel programs... 155
Intercommunication jobs.. 155
Channel states on IBM i...156
Message channel planning example for UNIX, Linux, and Windows... 156

What the example for UNIX, Linux, and Windows shows... 156
Running the example for UNIX, Linux, and Windows... 159

Message channel planning example for IBM i.. 160
What the example for IBM i shows..160
Running the example for IBM i.. 164
Expanding the example for IBM i...164

Message channel planning example for z/OS... 164
What the example for z/OS shows...164
Running the example for z/OS... 167

 iii

Expanding the example for z/OS... 168
Message channel planning example for z/OS using queue sharing groups...168

What the queue sharing group example for z/OS shows.. 168
Queue sharing group definitions..170
Queue manager QM3 example for z/OS.. 170
Running the queue sharing group example for z/OS...171

Using an alias to refer to an MQ library... 171
mqzOSConnectService element... 172

HTTP headers that can be used with the MQ Service Provider.. 176

Notices..179
Programming interface information..180
Trademarks.. 180

iv

Configuration reference

Use the reference information in this section to help you configure IBM MQ.

The configuration reference information is provided in the following subtopics:

Related tasks
Configuring

Configuring z/OS

Example IBM MQ configuration for all platforms
The configuration examples describe tasks performed to establish a working IBM MQ network. The tasks
are to establish IBM MQ sender and receiver channels to enable bidirectional message flow between the
platforms over all supported protocols.

To use channel types other than sender-receiver, see the DEFINE CHANNEL command.

Figure 1 on page 5 is a conceptual representation of a single channel and the IBM MQ objects
associated with it.

Figure 1. IBM MQ channel to be set up in the example configuration

This example is a simple one, intended to introduce only the basic elements of the IBM MQ network. It
does not demonstrate the use of triggering which is described in Triggering channels.

The objects in this network are:

• A remote queue
• A transmission queue
• A local queue
• A sender channel
• A receiver channel

Appl1 and Appl2 are both application programs; Appl1 is putting messages and Appl2 is receiving them.

© Copyright IBM Corp. 2007, 2025 5

Appl1 puts messages to a remote queue. The definition for this remote queue specifies the name of a
target queue manager, a local queue on that queue manager, and a transmission queue on this local
queue manager.

When the queue manager receives the request from Appl1 to put a message to the remote queue, the
queue manager determines from the queue definition that the destination is remote. It therefore puts
the message, along with a transmission header, straight onto the transmission queue specified in the
definition. The message remains on the transmission queue until the channel becomes available, which
might happen immediately.

A sender channel has in its definition a reference to one, and one only, transmission queue. When a
channel is started, and at other times during its normal operation, it looks at this transmission queue and
send any messages on it to the target system. The message has in its transmission header details of the
destination queue and queue manager.

The intercommunication examples describe in detail the creation of each of the preceding objects
described, for various platform combinations.

On the target queue manager, definitions are required for the local queue and the receiver side of the
channel. These objects operate independently of each other and so can be created in any sequence.

On the local queue manager, definitions are required for the remote queue, the transmission queue, and
the sender side of the channel. Since both the remote queue definition and the channel definition refer to
the transmission queue name, it is advisable to create the transmission queue first.

Network infrastructure in the example
The configuration examples assume that particular network infrastructures are in place for particular
platforms:

• z/OS communicates by using a 3745 network controller (or equivalent) that is attached to
a token ring

• Solaris is on an adjacent local area network (LAN) also attached to a 3745 network
controller (or equivalent)

• All other platforms are connected to a token-ring network

It is also assumed that, for SNA, all the required definitions in VTAM and network control program (NCP)
are in place and activated for the LAN-attached platforms to communicate over the wide area network
(WAN).

Similarly, for TCP, it is assumed that name server function is available, either by using a domain name
server or by using locally held tables (for example a host file).

Communications software in the example
Working configurations are given in the examples for the following network software products:

• SNA

– IBM Personal Communications for Windows 5.9
– IBM Communications Server for AIX® 6.3
– Hewlett-Packard SNAplus2
– IBM i
– Data Connection SNAP-IX Version 7 or later
– OS/390® 2.4

• TCP

– Microsoft Windows
– AIX 4.1.4

6 IBM MQ Configuration Reference

– HP-UX 10.2 or later
– Sun Solaris 2.4 or later
– IBM i
– TCP for z/OS
– HP Tru64 UNIX

• NetBIOS
• SPX

Related tasks
Configuring distributed queuing
Setting up communications with other queue managers on z/OS

How to use the communication examples
The example-configurations describe the tasks that are carried out on a single platform to set up
communication to another of the platforms. Then they describe the tasks to establish a working channel
to that platform.

Wherever possible, the intention is to make the information as generic as possible. Thus, to connect any
two queue managers on different platforms, you need to refer to only the relevant two sections. Any
deviations or special cases are highlighted as such. You can also connect two queue managers running on
the same platform (on different machines or on the same machine). In this case, all the information can
be derived from the one section.

On UNIX, Linux®, and Windows, before you begin to follow the instructions for your platform
you must set various environment variables. Do this by entering one of the following commands:

• On Windows:

 MQ_INSTALLATION_PATH/bin/setmqenv

where MQ_INSTALLATION_PATH refers to the location where IBM MQ is installed.

• On UNIX and Linux systems:

. MQ_INSTALLATION_PATH/bin/setmqenv

where MQ_INSTALLATION_PATH refers to the location where IBM MQ is installed. This command sets
the environment variables for the shell you are currently working in. If you open another shell, you must
enter the command again.

There are examples in which you can find the parameters used in the sample configurations. There is a
short description of each parameter and some guidance on where to find the equivalent values in your
system. When you have a set of values of your own, make sure that you use those values when working
through the examples in this section.

The examples do not cover how to set up communications where clustering is being used. For information
about setting up communications while using clustering, see Configuring a queue manager cluster. The
communication configuration values given here still apply.

There are example configurations for the following platforms:

• “Example IBM MQ configuration on AIX” on page 9

• “Example IBM MQ configuration for HP-UX” on page 15

• “Example MQ configuration for IBM i” on page 21

• “Example MQ configuration for Linux” on page 37

Configuration reference 7

• “Example MQ configuration for Solaris” on page 43

• “Example IBM MQ configuration for Windows” on page 49

• “Example MQ configuration for z/OS” on page 55

• “Example MQ configuration for z/OS using QSGs” on page 60

• “Example MQ configuration for z/OS using intra-group queuing” on page 67

IT responsibilities
To understand the terminology used in the examples, consider the following guidelines as a starting point.

• System administrator: The person (or group of people) who installs and configures the software for a
specific platform.

• Network administrator: The person who controls LAN connectivity, LAN address assignments, network
naming conventions, and other network tasks. This person can be in a separate group or can be part of
the system administration group.

In most z/OS installations, there is a group responsible for updating the ACF/VTAM, ACF/NCP, and
TCP/IP software to support the network configuration. The people in this group are the main source of
information needed when connecting any IBM MQ platform to IBM MQ for z/OS. They can also influence
or mandate network naming conventions on LANs and you must verify their span of control before
creating your definitions.

• A specific type of administrator, for example CICS® administrator, is indicated in cases where we can
more clearly describe the responsibilities of the person.

The example-configuration sections do not attempt to indicate who is responsible for and able to set each
parameter. In general, several different people might be involved.

Related concepts
“Example IBM MQ configuration for all platforms” on page 5
The configuration examples describe tasks performed to establish a working IBM MQ network. The tasks
are to establish IBM MQ sender and receiver channels to enable bidirectional message flow between the
platforms over all supported protocols.
Related reference
setmqenv

Multiple thread support - pipelining
You can optionally allow a message channel agent (MCA) to transfer messages using multiple threads.
This process, called pipelining, enables the MCA to transfer messages more efficiently, with fewer wait
states, which improves channel performance. Each MCA is limited to a maximum of two threads.

You control pipelining with the PipeLineLength parameter in the qm.ini file. This parameter is added to the
CHANNELS stanza:
PipeLineLength= 1 | number

This attribute specifies the maximum number of concurrent threads a channel uses. The default is 1.
Any value greater than 1 is treated as 2.

Note: Pipelining is effective only for TCP/IP channels.

When you use pipelining, the queue managers at both ends of the channel must be configured to have a
PipeLineLength greater than 1.

Channel exit considerations
Pipelining can cause some exit programs to fail, because:

8 IBM MQ Configuration Reference

• Exits might not be called serially.
• Exits might be called alternately from different threads.

Check the design of your exit programs before you use pipelining:

• Exits must be reentrant at all stages of their execution.
• When you use MQI calls, remember that you cannot use the same MQI handle when the exit is invoked

from different threads.

Consider a message exit that opens a queue and uses its handle for MQPUT calls on all subsequent
invocations of the exit. This fails in pipelining mode because the exit is called from different threads. To
avoid this failure, keep a queue handle for each thread and check the thread identifier each time the exit
is invoked.

Example IBM MQ configuration on AIX
This section gives an example of how to set up communication links from IBM MQ for AIX to IBM MQ
products.

The following platforms are covered in the examples:

• Windows

• HP Tru64 UNIX

• HP-UX

• Solaris

• Linux

• IBM i

• z/OS
• VSE/ESA

See “Example IBM MQ configuration for all platforms” on page 5 for background information about this
section and how to use it.

Establishing an LU 6.2 connection
Describes the parameters needed for an LU 6.2 connection.

For the latest information about configuring SNA over TCP/IP, refer to the following online IBM
documentation: Communications Server for AIX .

Establishing a TCP connection
The listener must be started explicitly before any channels are started. It enables receiving channels to
start automatically in response to a request from an inbound sending channel.

The IBM MQ command used to start the IBM MQ for TCP listener is:

runmqlsr -t tcp

Alternatively, if you want to use the UNIX supplied TCP/IP listener, complete the following steps:

1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or root. If you do not have the
following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

Configuration reference 9

https://www.ibm.com/software/network/commserver/aix/library/index.html

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add it as shown, replacing
MQ_INSTALLATION_PATH with the high-level directory in which IBM MQ is installed:

MQSeries stream tcp nowait root MQ_INSTALLATION_PATH/bin/amqcrsta amqcrsta
[-m queue.manager.name]

3. Enter the command refresh -s inetd.

Note: You must add root to the mqm group. You need not have the primary group set to mqm. As long as
mqm is in the set of groups, you can use the commands. If you are running only applications that use the
queue manager you do not need mqm group authority.

What next?
The connection is now established. You are ready to complete the configuration. Go to “IBM MQ for AIX
configuration” on page 10.

IBM MQ for AIX configuration
Defining channels to complete the configuration.

Note:

1. Before beginning the installation process ensure that you have first created the mqm user and group,
and set the password.

2. If installation fails as a result of insufficient space in the file system you can increase the size as
follows, using the command smit C sna. (Use df to display the status of the file system. This
indicates the logical volume that is full.)

-- Physical and Logical Storage
 -- File Systems
 -- Add / Change / Show / Delete File Systems
 -- Journaled File Systems
 -- Change/Show Characteristics of a Journaled File System

3. Start any channel using the command:

runmqchl -c channel.name

4. Sample programs are installed in MQ_INSTALLATION_PATH/samp, where MQ_INSTALLATION_PATH
represents the high-level directory in which IBM MQ is installed.

5. Error logs are stored in /var/mqm/qmgrs/ qmgrname /errors.
6. On AIX, you can start a trace of the IBM MQ components by using standard IBM MQ trace commands,

or using AIX system trace. See Using trace for more information about IBM MQ Trace and AIX system
trace.

7. When you are using the command interpreter runmqsc to enter administration commands, a + at the
end of a line indicates that the next line is a continuation. Ensure that there is a space between the last
parameter and the continuation character.

Basic configuration
1. Create the queue manager from the AIX command line using the command:

crtmqm -u dlqname -q aix

where:
aix

Is the name of the queue manager
-q

Indicates that this is to become the default queue manager

10 IBM MQ Configuration Reference

-u dlqname
Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects.
2. Start the queue manager from the AIX command line using the command:

strmqm aix

where aix is the name given to the queue manager when it was created.
3. Start runmqsc from the AIX command line and use it to create the undeliverable message queue by

entering the command:

def ql (dlqname)

where dlqname is the name given to the undeliverable message queue when the queue manager was
created.

Channel configuration for AIX
Includes information about configuring a queue manager for a given channel and platform.

The following section details the configuration to be performed on the AIX queue manager to implement
the channel described in “Example IBM MQ configuration for all platforms” on page 5.

In each case the MQSC command is shown. Either start runmqsc from an AIX command line and enter
each command in turn, or build the commands into a command file.

Examples are given for connecting IBM MQ for AIX and IBM MQ for Windows. To connect to IBM MQ on
another platform use the appropriate set of values from the table in place of those for Windows.

Note: The words in bold are suggested values and reflect the names of IBM MQ objects used throughout
these examples. You can change them in your product installation but, if you do, make sure that you use
your own values when working through the examples in this section

Table 1. Configuration examples for IBM MQ for AIX

ID Parameter Name Refere
nce

Example Used

Definition for local node

A Queue Manager Name AIX

B Local queue name AIX.LOCALQ

 Connection to IBM MQ for Windows

The values in this section of the table must match those used in “Channel configuration for Windows” on page
52, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name AIX.WINNT.SNA

H Sender (TCP/IP) channel name AIX.WINNT.TCP

I Receiver (SNA) channel name G WINNT.AIX.SNA

J Receiver (TCP) channel name H WINNT.AIX.TCP

Configuration reference 11

Table 1. Configuration examples for IBM MQ for AIX (continued)

ID Parameter Name Refere
nce

Example Used

 Connection to IBM MQ for HP-UX

The values in this section of the table must match those used in “Channel configuration for HP-UX” on page
17, as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name AIX.HPUX.SNA

H Sender (TCP) channel name AIX.HPUX.TCP

I Receiver (SNA) channel name G HPUX.AIX.SNA

J Receiver (TCP) channel name H HPUX.AIX.TCP

 Connection to IBM MQ for Solaris

The values in this section of the table must match those used in “Channel configuration for Solaris” on page
45, as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ

E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name SOLARIS

G Sender (SNA) channel name AIX.SOLARIS.SNA

H Sender (TCP/IP) channel name AIX.SOLARIS.TCP

I Receiver (SNA) channel name G SOLARIS.AIX.SNA

J Receiver (TCP/IP) channel name H SOLARIS.AIX.TCP

 Connection to IBM MQ for Linux

The values in this section of the table must match those used in “Channel configuration for Linux” on page 40,
as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name AIX.LINUX.SNA

H Sender (TCP/IP) channel name AIX.LINUX.TCP

I Receiver (SNA) channel name G LINUX.AIX.SNA

J Receiver (TCP/IP) channel name H LINUX.AIX.TCP

12 IBM MQ Configuration Reference

Table 1. Configuration examples for IBM MQ for AIX (continued)

ID Parameter Name Refere
nce

Example Used

 Connection to IBM MQ for IBM i

The values in this section of the table must match those used in “Channel configuration for IBM i” on page 33,
as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name AIX.AS400.SNA

H Sender (TCP) channel name AIX.AS400.TCP

I Receiver (SNA) channel name G AS400.AIX.SNA

J Receiver (TCP) channel name H AS400.AIX.TCP

 Connection to IBM MQ for z/OS

The values in this section of the table must match those used in “Channel configuration for z/OS” on page 57,
as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name AIX.MVS.SNA

H Sender (TCP) channel name AIX.MVS.TCP

I Receiver (SNA) channel name G MVS.AIX.SNA

J Receiver (TCP) channel name H MVS.AIX.TCP

 Connection to IBM MQ for z/OS using queue sharing groups

The values in this section of the table must match those used in “Shared channel configuration example” on
page 65, as indicated.

C Remote queue manager name A QSG

D Remote queue name QSG.REMOTEQ

E Queue name at remote system B QSG.SHAREDQ

F Transmission queue name QSG

G Sender (SNA) channel name AIX.QSG.SNA

H Sender (TCP) channel name AIX.QSG.TCP

I Receiver (SNA) channel name G QSG.AIX.SNA

J Receiver (TCP) channel name H QSG.AIX.TCP

Configuration reference 13

IBM MQ for AIX sender-channel definitions using SNA
Example commands.

def ql (WINNT) + F
 usage(xmitq) +
 replace

def qr (WINNT.REMOTEQ) + D
 rname(WINNT.LOCALQ) + E
 rqmname(WINNT) + C
 xmitq(WINNT) + F
 replace

def chl (AIX.WINNT.SNA) chltype(sdr) + G
 trptype(lu62) +
 conname('WINNTCPIC') + 17
 xmitq(WINNT) + F
 replace

IBM MQ for AIX receiver-channel definitions using SNA
Example commands.

def ql (AIX.LOCALQ) replace B

def chl (WINNT.AIX.SNA) chltype(rcvr) + I
 trptype(lu62) +
 replace

IBM MQ for AIX TPN setup
Alternative ways of ensuring that SNA receiver channels activate correctly when a sender channel initiates
a conversation.

During the AIX Communications Server configuration process, an LU 6.2 TPN profile was created, which
contained the full path to a TP executable program. In the example, the file was called u/interops/
AIX.crs6a. You can choose a name, but consider including the name of your queue manager in it. The
contents of the executable file must be:

#!/bin/sh
MQ_INSTALLATION_PATH/bin/amqcrs6a -m aix

where aix is the queue manager name (A) and MQ_INSTALLATION_PATH is the high-level directory in
which IBM MQ is installed. After creating this file, enable it for execution by running the command:

chmod 755 /u/interops/AIX.crs6a

As an alternative to creating an executable file, you can specify the path on the Add LU 6.2 TPN Profile
panel, using command-line parameters.

Specifying a path in one of these two ways ensures that SNA receiver channels activate correctly when a
sender channel initiates a conversation.

IBM MQ for AIX sender-channel definitions using TCP
Example commands.

def ql (WINNT) + F
 usage(xmitq) +
 replace

def qr (WINNT.REMOTEQ) + D
 rname(WINNT.LOCALQ) + E
 rqmname(WINNT) + C
 xmitq(WINNT) + F
 replace

def chl (AIX.WINNT.TCP) chltype(sdr) + H
 trptype(tcp) +
 conname(remote_tcpip_hostname) +

14 IBM MQ Configuration Reference

 xmitq(WINNT) + F
 replace

IBM MQ for AIX receiver-channel definitions using TCP
Example commands.

def ql (AIX.LOCALQ) replace B

def chl (WINNT.AIX.TCP) chltype(rcvr) + J
 trptype(tcp) +
 replace

Example IBM MQ configuration for HP-UX
This section gives an example of how to set up communication links from IBM MQ for HP-UX to IBM MQ
products.

The following platforms are included:

• Windows
• AIX
• HP Tru64 UNIX
• Solaris
• Linux
• IBM i
• z/OS
• VSE/ESA

See “Example IBM MQ configuration for all platforms” on page 5 for background information about this
section and how to use it.

Establishing an LU 6.2 connection
Describes the parameters needed for an LU 6.2 connection

For the latest information about configuring SNA over TCP/IP, refer to the following online IBM
documentation: Communications Server, and the following online HP documentation: HP-UX SNAplus2
Installation Guide.

Establishing a TCP connection
Alternative ways of establishing a connection and next steps.

The listener must be started explicitly before any channels are started. It enables receiving channels to
start automatically in response to a request from an inbound sending channel.

Alternatively, if you want to use the UNIX supplied TCP/IP listener, complete the following steps:

1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or root. If you do not have the
following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add it as shown, replacing
MQ_INSTALLATION_PATH with the high-level directory in which IBM MQ is installed.

MQSeries stream tcp nowait root MQ_INSTALLATION_PATH/bin/amqcrsta amqcrsta
[-m queue.manager.name]

3. Find the process ID of the inetd with the command:

Configuration reference 15

https://www.ibm.com/software/network/commserver/library/index.html
https://docs.hp.com/en/j2740-90001/index.html
https://docs.hp.com/en/j2740-90001/index.html

ps -ef | grep inetd

4. Run the command:

kill -1 inetd processid

Note: You must add root to the mqm group. You do not need not have the primary group set to mqm. As
long as mqm is in the set of groups, you can use the commands. If you are running only applications that
use the queue manager you do not need to have mqm group authority.

What next?
The connection is now established. You are ready to complete the configuration. Go to “IBM MQ for
HP-UX configuration” on page 16.

IBM MQ for HP-UX configuration
Describes defining the channels to complete the configuration.

Before beginning the installation process ensure that you have first created the mqm user and group, and
set the password.

Start any channel using the command:

runmqchl -c channel.name

Note:

1. Sample programs are installed in MQ_INSTALLATION_PATH/samp, where MQ_INSTALLATION_PATH
represents the high-level directory in which IBM MQ is installed.

2. Error logs are stored in /var/mqm/qmgrs/ qmgrname /errors.
3. When you are using the command interpreter runmqsc to enter administration commands, a + at the

end of a line indicates that the next line is a continuation. Ensure that there is a space between the last
parameter and the continuation character.

Basic configuration
1. Create the queue manager from the UNIX prompt using the command:

crtmqm -u dlqname -q hpux

where:
hpux

Is the name of the queue manager
-q

Indicates that this is to become the default queue manager
-u dlqname

Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects. It sets the DEADQ attribute of
the queue manager but does not create the undeliverable message queue.

2. Start the queue manager from the UNIX prompt using the command:

strmqm hpux

where hpux is the name given to the queue manager when it was created.

16 IBM MQ Configuration Reference

Channel configuration for HP-UX
Includes information about configuring a queue manager for a given channel and platform.

The following section details the configuration to be performed on the HP-UX queue manager to
implement the channel described in “Example IBM MQ configuration for all platforms” on page 5.

In each case the MQSC command is shown. Either start runmqsc from a UNIX prompt and enter each
command in turn, or build the commands into a command file.

Examples are given for connecting IBM MQ for HP-UX and IBM MQ for Windows. To connect to IBM MQ on
another platform use the appropriate set of values from the table in place of those for Windows.

Note: The words in bold are user-specified and reflect the names of IBM MQ objects used throughout
these examples. If you change the names used here, ensure that you also change the other references
made to these objects throughout this section. All others are keywords and should be entered as shown.

Table 2. Configuration worksheet for IBM MQ for HP-UX

ID Parameter Name Ref
ere
nce

Example Used User Value

Definition for local node

A Queue Manager Name HPUX

B Local queue name HPUX.LOCALQ

Connection to IBM MQ for Windows

The values in this section of the table must match those used in “Channel configuration for Windows” on page
52, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name HPUX.WINNT.SNA

H Sender (TCP/IP) channel name HPUX.WINNT.TCP

I Receiver (SNA) channel name G WINNT.HPUX.SNA

J Receiver (TCP) channel name H WINNT.HPUX.TCP

Connection to IBM MQ for AIX

The values in this section of the table must match those used in Table 1 on page 11, as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name HPUX.AIX.SNA

H Sender (TCP) channel name HPUX.AIX.TCP

I Receiver (SNA) channel name G AIX.HPUX.SNA

J Receiver (TCP) channel name H AIX.HPUX.TCP

Configuration reference 17

Table 2. Configuration worksheet for IBM MQ for HP-UX (continued)

ID Parameter Name Ref
ere
nce

Example Used User Value

Connection to IBM MQ for HP Tru64 UNIX

The values in this section of the table must match those used in your HP Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ

E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.HPUX.TCP

J Receiver (TCP) channel name H HPUX.DECUX.TCP

Connection to IBM MQ for Solaris

The values in this section of the table must match those used in Table 6 on page 45, as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ

E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name SOLARIS

G Sender (SNA) channel name HPUX.SOLARIS.SNA

H Sender (TCP/IP) channel name HPUX.SOLARIS.TCP

I Receiver (SNA) channel name G SOLARIS.HPUX.SNA

J Receiver (TCP/IP) channel name H SOLARIS.HPUX.TCP

Connection to IBM MQ for Linux

The values in this section of the table must match those used in Table 5 on page 40, as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name HPUX.LINUX.SNA

H Sender (TCP/IP) channel name HPUX.LINUX.TCP

I Receiver (SNA) channel name G LINUX.HPUX.SNA

J Receiver (TCP/IP) channel name H LINUX.HPUX.TCP

 Connection to IBM MQ for IBM i

The values in this section of the table must match those used in Table 4 on page 33, as
indicated.

C Remote queue manager name A AS400

18 IBM MQ Configuration Reference

Table 2. Configuration worksheet for IBM MQ for HP-UX (continued)

ID Parameter Name Ref
ere
nce

Example Used User Value

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name HPUX.AS400.SNA

H Sender (TCP/IP) channel name HPUX.AS400.TCP

I Receiver (SNA) channel name G AS400.HPUX.SNA

J

Receiver (TCP) channel name H AS400.HPUX.TCP

 Connection to IBM MQ for z/OS

The values in this section of the table must match those used in Table 8 on page 57, as
indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name HPUX.MVS.SNA

H Sender (TCP) channel name HPUX.MVS.TCP

I Receiver (SNA) channel name G MVS.HPUX.SNA

J

Receiver (TCP) channel name H MVS.HPUX.TCP

Connection to MQSeries® for VSE/ESA

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ

E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name HPUX.VSE.SNA

I Receiver channel name G VSE.HPUX.SNA

IBM MQ for HP-UX sender-channel definitions using SNA
Example commands.

def ql (WINNT) + F
 usage(xmitq) +
 replace

Configuration reference 19

def qr (WINNT.REMOTEQ) + D
 rname(WINNT.LOCALQ) + E
 rqmname(WINNT) + C
 xmitq(WINNT) + F
 replace

def chl (HPUX.WINNT.SNA) chltype(sdr) + G
 trptype(lu62) +
 conname('WINNTCPIC') + 16
 xmitq(WINNT) + F
 replace

IBM MQ for HP-UX receiver-channel definitions using SNA
Example commands.

def ql (HPUX.LOCALQ) replace B

def chl (WINNT.HPUX.SNA) chltype(rcvr) + I
 trptype(lu62) +
 replace

IBM MQ for HP-UX invokable TP setup
Ensuring that SNA receiver channels activate correctly when a sender channel initiates a conversation.

This is not required for HP SNAplus2 Release 6.

During the HP SNAplus2 configuration process, you created an invokable TP definition, which points to an
executable file. In the example, the file was called /users/interops/HPUX.crs6a. You can choose what you
call this file, but consider including the name of your queue manager in the name. The contents of the
executable file must be:

#!/bin/sh
MQ_INSTALLATION_PATH/bin/amqcrs6a -m hpux

where hpux is the name of your queue manager A and MQ_INSTALLATION_PATH is the high-level
directory in which IBM MQ is installed.

This ensures that SNA receiver channels activate correctly when a sender channel initiates a
conversation.

IBM MQ for HP-UX sender-channel definitions using TCP
Example commands.

def ql (WINNT) + F
 usage(xmitq) +
 replace

def qr (WINNT.REMOTEQ) + D
 rname(WINNT.LOCALQ) + E
 rqmname(WINNT) + C
 xmitq(WINNT) + F
 replace

def chl (HPUX.WINNT.TCP) chltype(sdr) + H
 trptype(tcp) +
 conname(remote_tcpip_hostname) +
 xmitq(WINNT) + F
 replace

IBM MQ for HP-UX receiver-channel definitions using TCP/IP
Example commands.

def ql (HPUX.LOCALQ) replace B

def chl (WINNT.HPUX.TCP) chltype(rcvr) + J
 trptype(tcp) +
 replace

20 IBM MQ Configuration Reference

Example MQ configuration for IBM i
This section gives an example of how to set up communication links from IBM MQ for IBM i to IBM MQ
products on other platforms.

Other platforms covered are the following platforms:

• Windows
• AIX
• Compaq Tru64 UNIX
• HP-UX
• Solaris
• Linux
• z/OS or MVS
• VSE/ESA

See “Example IBM MQ configuration for all platforms” on page 5 for background information about this
section and how to use it.

Configuration parameters for an LU 6.2 connection
The following worksheet lists all the parameters needed to set up communication from IBM i system to
one of the other IBM MQ platforms. The worksheet shows examples of the parameters, which have been
tested in a working environment, and leaves space for you to enter your own values.

Use the worksheet in this section to record the values for this configuration. Use the worksheet with the
worksheet in the section for the platform to which you are connecting.

Where numbers appear in the Reference column they indicate that the value must match that in the
appropriate worksheet elsewhere in this section. The examples that follow in this section refer to the
values in the ID column of this table.

The entries in the Parameter Name column are explained in “Explanation of terms” on page 24.

Table 3. Configuration worksheet for SNA on an IBM i system

ID Parameter Name Reference Example Used User Value

Definition for local node

1 Local network ID NETID

2 Local control point name AS400PU

3 LU name AS400LU

4 LAN destination address 10005A5962EF

5 Subsystem description QCMN

6 Line description TOKENRINGL

7 Resource name LIN041

8 Local Transaction Program name MQSERIES

Connection to a Windows system

9 Network ID 2 NETID

10 Control point name 3 WINNTCP

11 LU name 5 WINNTLU

Configuration reference 21

Table 3. Configuration worksheet for SNA on an IBM i system (continued)

ID Parameter Name Reference Example Used User Value

12 Controller description WINNTCP

13 Device WINNTLU

14 Side information NTCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 9 08005AA5FAB9

17 Mode 17 #INTER

Connection to an AIX system

9 Network ID 1 NETID

10 Control point name 2 AIXPU

11 LU name 4 AIXLU

12 Controller description AIXPU

13 Device AIXLU

14 Side information AIXCPIC

15 Transaction Program 6 MQSERIES

16 LAN adapter address 8 123456789012

17 Mode 14 #INTER

Connection to an HP-UX system

9 Network ID 4 NETID

10 Control point name 2 HPUXPU

11 LU name 5 HPUXLU

12 Controller description HPUXPU

13 Device HPUXLU

14 Side information HPUXCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 8 100090DC2C7C

17 Mode 17 #INTER

Connection to a Solaris system

9 Network ID 2 NETID

10 Control point name 3 SOLARPU

11 LU name 7 SOLARLU

12 Controller description SOLARPU

13 Device SOLARLU

14 Side information SOLCPIC

15 Transaction Program 8 MQSERIES

22 IBM MQ Configuration Reference

Table 3. Configuration worksheet for SNA on an IBM i system (continued)

ID Parameter Name Reference Example Used User Value

16 LAN adapter address 5 08002071CC8A

17 Mode 17 #INTER

Connection to a Linux (x86 platform) system

9 Network ID 4 NETID

10 Control point name 2 LINUXPU

11 LU name 5 LINUXLU

12 Controller description LINUXPU

13 Device LINUXLU

14 Side information LXCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 8 08005AC6DF33

17 Mode 6 #INTER

Connection to an z/OS system

9 Network ID 2 NETID

10 Control point name 3 MVSPU

11 LU name 4 MVSLU

12 Controller description MVSPU

13 Device MVSLU

14 Side information MVSCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 8 400074511092

17 Mode 6 #INTER

Connection to a VSE/ESA system ed

9 Network ID 1 NETID

10 Control point name 2 VSEPU

11 LU name 3 VSELU

12 Controller description VSEPU

13 Device VSELU

14 Side information VSECPIC

15 Transaction Program 4 MQ01 MQ01

16 LAN adapter address 5 400074511092

17 Mode #INTER

Configuration reference 23

Explanation of terms
An explanation of the terms used in the configuration worksheet.

1 2 3
See “How to find network attributes” on page 24 for the details of how to find the configured values.

4 LAN destination address
The hardware address of the IBM i system token-ring adapter. You can find the value using the
command DSPLIND Line description (6).

5 Subsystem description
This parameter is the name of any IBM i subsystem that is active while using the queue manager. The
name QCMN has been used because it is the IBM i communications subsystem.

6 Line description
If this parameter has been specified it is indicated in the Description field of the resource Resource
name. See “How to find the value of Resource name” on page 25 for details. If the value is not
specified you need to create a line description.

7 Resource name
See “How to find the value of Resource name” on page 25 for details of how to find the configured
value.

8 Local Transaction Program name
IBM MQ applications trying to converse with this workstation specify a symbolic name for the program
to be run at the receiving end. This name is defined on the channel definition at the sender. For
simplicity, wherever possible use a transaction program name of MQSERIES, or in the case of a
connection to VSE/ESA, where the length is limited to 4 bytes, use MQTP.

See Settings on the local IBM i system for a remote queue manager platform for more information.

12 Controller description
This parameter is an alias for the Control Point name (or Node name) of the partner system. For
convenience, we have used the actual name of the partner in this example.

13 Device
This parameter is an alias for the LU of the partner system. For convenience, we have used the LU
name of the partner in this example.

14 Side information
This parameter is the name given to the CPI-C side information profile. You specify your own 8-
character name.

How to find network attributes
The local node has been partially configured as part of the IBM i installation. To display the current
network attributes enter the command DSPNETA.

If you need to change these values use the command CHGNETA. An IPL might be required to apply your
changes.

24 IBM MQ Configuration Reference

Display Network Attributes
System: AS400PU
Current system name : AS400PU
Pending system name :
Local network ID : NETID
Local control point name : AS400PU
Default local location : AS400LU
Default mode : BLANK
APPN node type : *ENDNODE
Data compression : *NONE
Intermediate data compression : *NONE
Maximum number of intermediate sessions : 200
Route addition resistance : 128
Server network ID/control point name : NETID NETCP

More...
Press Enter to continue.

F3=Exit F12=Cancel

Check that the values for Local network ID (1), Local control point name (2), and Default local location
(3), correspond to the values on your worksheet.

How to find the value of Resource name
To find the value of resource name, type WRKHDWRSC TYPE(*CMN) and press enter.

The Work with Communication Resources panel is displayed. The value for Resource name is found as
the token-ring Port. It is LIN041 in this example.

Work with Communication Resources
System: AS400PU
Type options, press Enter.
2=Edit 4=Remove 5=Work with configuration description
7=Add configuration description ...

Configuration
Opt Resource Description Type Description
CC02 2636 Comm Processor
LIN04 2636 LAN Adapter
LIN041 TOKEN-RING 2636 Token-ring Port

Bottom
F3=Exit F5=Refresh F6=Print F11=Display resource addresses/statuses
F12=Cancel F23=More options

Configuration reference 25

Establishing an LU 6.2 connection
This section describes how to establish an LU 6.2 connection.

Local node configuration
To configure the local node you need to create a line description and add a routing entry.

Creating a line description
1. If the line description has not already been created use the command CRTLINTRN.
2. Specify values for Line description (6) and Resource name (7).

Create Line Desc (token-ring) (CRTLINTRN)

Type choices, press Enter.

Line description TOKENRINGL Name
Resource name LIN041 Name, *NWID
NWI type *FR *FR, *ATM
Online at IPL *YES *YES, *NO
Vary on wait *NOWAIT *NOWAIT, 15-180 (1 second)
Maximum controllers 40 1-256
Attached NWI *NONE Name, *NONE

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter LIND required. +

Adding a routing entry
1. Type the command ADDRTGE and press enter.

Add Routing Entry (ADDRTGE)

Type choices, press Enter.

Subsystem description QCMN Name
Library *LIBL Name, *LIBL, *CURLIB
Routing entry sequence number . 1 1-9999
Comparison data:
Compare value 'MQSERIES'

Starting position 37 1-80
Program to call AMQCRC6B Name, *RTGDTA
Library QMAS400 Name, * LI BL, *CURLIB
Class *SBSD Name, *SBSD
Library *LIBL Name, *LIBL, *CURLIB
Maximum active routing steps . . *NOMAX 0-1000, *NOMAX
Storage pool identifier 1 1-10

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter SBSD required. +

2. Specify your value for Subsystem description (5), and the values shown here for Routing entry
sequence number, Compare value (8), Starting position, Program to call, and the Library containing
the program to call.

3. Type the command STRSBS subsystem description (5) and press enter.

26 IBM MQ Configuration Reference

Connection to partner node
To connect to a partner node, you need to: create a controller description, create a device description,
create CPI-C side information, add a communications entry for APPC, and add a configuration list entry.

This example is for a connection to a Windows system, but the steps are the same for other nodes.

Creating a controller description
1. At a command-line, type CRTCTLAPPC and press enter.

Create Ctl Desc (APPC) (CRTCTLAPPC)

Type choices, press Enter.

Controller description WINNTCP Name
Link type *LAN *FAX, *FR, *IDLC,
*LAN...
Online at IPL *NO *YES, *NO

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter CTLD required. +

2. Specify a value for Controller description (12), set Link type to *LAN, and set Online at IPL to *NO.
3. Press enter twice, followed by F10.

Create Ctl Desc (APPC) (CRTCTLAPPC)

Type choices, press Enter.

Controller description > WINNTCP Name
Link type > *LAN *FAX, *FR, *IDLC, *LAN...
Online at IPL > *NO *YES, *NO
APPN-capable *YES *YES, *NO
Switched line list TOKENRINGL Name
+ for more values
Maximum frame size *LINKTYPE 265-16393, 256, 265, 512...
Remote network identifier . . . NETID Name, *NETATR, *NONE, *ANY
Remote control point WINNTCP Name, *ANY
Exchange identifier 00000000-FFFFFFFF
Initial connection *DIAL *DIAL, *ANS
Dial initiation *LINKTYPE *LINKTYPE, *IMMED, *DELAY
LAN remote adapter address . . . 10005AFC5D83 000000000001-FFFFFFFFFFFF
APPN CP session support *YES *YES, *NO
APPN node type *ENDNODE *ENDNODE, *LENNODE...
APPN transmission group number 1 1-20, *CALC
More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

4. Specify values for Switched line list (6), Remote network identifier (9), Remote control point (10),
and LAN remote adapter address (16).

5. Press enter.

Creating a device description
1. Type the command CRTDEVAPPC and press enter.

Configuration reference 27

Create Device Desc (APPC) (CRTDEVAPPC)

Type choices, press Enter.

Device description WINNTLU Name
Remote location WINNTLU Name
Online at IPL *YES *YES, *NO
Local location AS400LU Name, *NETATR
Remote network identifier . . . NETID Name, *NETATR, *NONE
Attached controller WINNTCP Name
Mode *NETATR Name, *NETATR
+ for more values
Message queue QSYSOPR Name, QSYSOPR
Library *LIBL Name, *LIBL, *CURLIB
APPN-capable *YES *YES, *NO
Single session:
Single session capable *NO *NO, *YES
Number of conversations . . . 1-512

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter DEVD required. +

2. Specify values for Device description (13), Remote location (11), Local location (3), Remote network
identifier (9), and Attached controller (12).

Note: You can avoid having to create controller and device descriptions manually by taking advantage of
the IBM i auto-configuration service. Consult the IBM i documentation for details.

Creating CPI-C side information
1. Type CRTCSI and press F10.

Create Comm Side Information (CRTCSI)

Type choices, press Enter.

Side information NTCPIC Name
Library *CURLIB Name, *CURLIB
Remote location WINNTLU Name
Transaction program MQSERIES

Text 'description' *BLANK

Additional Parameters

Device *LOC Name, *LOC
Local location AS400LU Name, *LOC, *NETATR
Mode #INTER Name, *NETATR
Remote network identifier . . . NETID Name, *LOC, *NETATR, *NONE
Authority *LIBCRTAUT Name, *LIBCRTAUT, *CHANGE...

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter CSI required.

2. Specify values for Side information (14), Remote location (11), Transaction program (15), Local
location (3), Mode, and Remote network identifier (9).

3. Press enter.

Adding a communications entry for APPC
1. At a command-line, type ADDCMNE and press enter.

28 IBM MQ Configuration Reference

Add Communications Entry (ADDCMNE)

Type choices, press Enter.

Subsystem description QCMN Name
Library *LIBL Name, *LIBL, *CURLIB
Device WINNTLU Name, generic*, *ALL...
Remote location Name
Job description *USRPRF Name, *USRPRF, *SBSD
Library Name, *LIBL, *CURLIB
Default user profile *NONE Name, *NONE, *SYS
Mode *ANY Name, *ANY
Maximum active jobs *NOMAX 0-1000, *NOMAX

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter SBSD required.

2. Specify values for Subsystem description (5) and Device (13), and press enter.

Adding a configuration list entry
1. Type ADDCFGLE *APPNRMT and press F4.

Add Configuration List Entries (ADDCFGLE)

Type choices, press Enter.

Configuration list type > *APPNRMT *APPNLCL, *APPNRMT...
APPN remote location entry:
Remote location name WINNTLU Name, generic*, *ANY
Remote network identifier . . NETID Name, *NETATR, *NONE
Local location name AS400LU Name, *NETATR
Remote control point WINNTCP Name, *NONE
Control point net ID NETID Name, *NETATR, *NONE
Location password *NONE
Secure location *NO *YES, *NO
Single session *NO *YES, *NO
Locally controlled session . . *NO *YES, *NO
Pre-established session . . . *NO *YES, *NO
Entry 'description' *BLANK
Number of conversations . . . 10 1-512
+ for more values

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

2. Specify values for Remote location name (11), Remote network identifier (9), Local location name
(3), Remote control point (10), and Control point net ID (9).

3. Press enter.

What next?
The LU 6.2 connection is now established. You are ready to complete the configuration.

Go to “IBM MQ for IBM i configuration” on page 31.

Configuration reference 29

Establishing a TCP connection
If TCP is already configured there are no extra configuration tasks. If TCP/IP is not configured you need to:
add a TCP/IP interface, add a TCP/IP loopback interface, and add a default route.

Adding a TCP/IP interface
1. At a command-line, type ADDTCPIFC and press enter.

Add TCP/IP Interface (ADDTCPIFC)

Type choices, press Enter.

Internet address 19.22.11.55
Line description TOKENRINGL Name, *LOOPBACK
Subnet mask 255.255.0.0
Type of service *NORMAL *MINDELAY, *MAXTHRPUT..
Maximum transmission unit . . . *LIND 576-16388, *LIND
Autostart *YES *YES, *NO
PVC logical channel identifier 001-FFF
+ for more values
X.25 idle circuit timeout . . . 60 1-600
X.25 maximum virtual circuits . 64 0-64
X.25 DDN interface *NO *YES, *NO
TRLAN bit sequencing *MSB *MSB, *LSB

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

2. Specify the IP address and Line description, and a Subnet mask of the machine.
3. Press enter.

Adding a TCP/IP loopback interface
1. At a command-line, type ADDTCPIFC and press enter.

Add TCP Interface (ADDTCPIFC)

Type choices, press Enter.

Internet address 127.0.0.1
Line description *LOOPBACK Name, *LOOPBACK
Subnet mask 255.0.0.0
Type of service *NORMAL *MINDELAY, *MAXTHRPUT..
Maximum transmission unit . . . *LIND 576-16388, *LIND
Autostart *YES *YES, *NO
PVC logical channel identifier 001-FFF
+ for more values
X.25 idle circuit timeout . . . 60 1-600
X.25 maximum virtual circuits . 64 0-64
X.25 DDN interface *NO *YES, *NO
TRLAN bit sequencing *MSB *MSB, *LSB

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

2. Specify the values for IP address, Line description, and Subnet mask.

30 IBM MQ Configuration Reference

Adding a default route
1. At a command-line, type ADDTCPRTE and press enter.

Add TCP Route (ADDTCPRTE)

Type choices, press Enter.

Route destination *DFTROUTE
Subnet mask *NONE
Type of service *NORMAL *MINDELAY, *MAXTHRPUT.
Next hop 19.2.3.4
Maximum transmission unit . . . 576 576-16388, *IFC

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Command prompting ended when user pressed F12.

2. Enter values appropriate to your network and press enter to create a default route entry.

What next?
The TCP connection is now established. You are ready to complete the configuration. Go to “IBM MQ for
IBM i configuration” on page 31.

IBM MQ for IBM i configuration
To configure IBM MQ for IBM i, use the WRKMQMQ command to display the configuration menu.

Start the TCP channel listener using the command STRMQMLSR.

Start any sender channel using the command STRMQMCHL CHLNAME(channel_name).

Use the WRKMQMQ command to display the IBM MQ configuration menu.

Note: AMQ* errors are placed in the log relating to the job that found the error. Use the WRKACTJOB
command to display the list of jobs. Under the subsystem name QSYSWRK, locate the job and enter 5
against it to work with that job. IBM MQ logs are prefixed AMQ.

Creating a queue manager
Use the following steps to set up the basic configuration queue manager.

1. First you need to create a queue manager. Type CRTMQM and press enter.

Configuration reference 31

 Create Message Queue Manager (CRTMQM)

 Type choices, press Enter.

 Message Queue Manager name . . .

 Text 'description' *BLANK

 Trigger interval 999999999 0-999999999
 Undelivered message queue . . . *NONE

 Default transmission queue . . . *NONE

 Maximum handle limit 256 1-999999999
 Maximum uncommitted messages . . 1000 1-10000
 Default Queue manager *NO *YES, *NO

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

2. In the Message Queue Manager name field, type AS400. In the Undelivered message queue field,
type DEAD.LETTER.QUEUE.

3. Press enter.
4. Now start the queue manager by entering STRMQM MQMNAME(AS400).
5. Create the undelivered message queue using the following parameters. (For details and an example

refer to “Defining a queue” on page 32.)

 Local Queue
 Queue name : DEAD.LETTER.QUEUE
 Queue type : *LCL

Defining a queue
You can define a queue using the CRTMQMQ command.

Type CRTMQMQ on the command line.

Create MQM Queue (CRTMQMQ)

Type choices, press Enter.

Queue name

Queue type *ALS, *LCL, *RMT

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter QNAME required.

32 IBM MQ Configuration Reference

Complete the two fields of this panel and press enter. Another panel is shown, with entry fields for the
other parameters you have. Defaults can be taken for all other queue attributes.

Defining a channel on IBM i
On IBM i, you can define a channel using the CRTMQMCHL command.

Type CRTMQMCHL on the command line.

Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Channel name
Channel type *RCVR, *SDR, *SVR, *RQSTR

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter CHLNAME required.

Complete the two fields of this panel and press enter. Another panel is displayed on which you can specify
the values for the other parameters given earlier. Defaults can be taken for all other channel attributes.

Channel configuration for IBM i
You need to configure your channels to implement the example configuration channels.

This section details the configuration to be performed on the IBM i queue manager to implement the
channel described in “Example IBM MQ configuration for all platforms” on page 5.

Examples are given for connecting IBM MQ for IBM i and IBM MQ for Windows. To connect to IBM MQ on
another platform, use the appropriate values from the table in place of those values for Windows

Note:

1. The words in bold are suggested values and reflect the names of IBM MQ objects used throughout
these examples. You can change them in your product installation but, if you do, make sure that you
use your own values when working through the examples in this section.

2. The IBM MQ channel ping command (PNGMQMCHL) runs interactively, whereas starting a channel
causes a batch job to be submitted. If a channel ping completes successfully but the channel does not
start, the network and IBM MQ definitions are probably correct, but that the IBM i environment for the
batch job is not. For example, make sure that QSYS2 is included in the system portion of the library list
and not just your personal library list.

For details and examples of how to create the objects listed refer to “Defining a queue” on page 32 and
“Defining a channel on IBM i” on page 33.

Table 4. Configuration examples for IBM i

ID Parameter Name Reference Example Used

Definition for local node

Configuration reference 33

Table 4. Configuration examples for IBM i (continued)

ID Parameter Name Reference Example Used

A Queue Manager Name AS400

B Local queue name AS400.LOCALQ

 Connection to IBM MQ for Windows

The values in this section of the table must match the values used in “Channel configuration for Windows” on
page 52, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name AS400.WINNT.SNA

H Sender (TCP/IP) channel name AS400.WINNT.TCP

I Receiver (SNA) channel name G WINNT.AS400.SNA

J Receiver (TCP/IP) channel name H WINNT.AS400.TCP

 Connection to IBM MQ for AIX

The values in this section of the table must match the values used in “Channel configuration for AIX” on page
11, as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name AS400.AIX.SNA

H Sender (TCP/IP) channel name AS400.AIX.TCP

I Receiver (SNA) channel name G AIX.AS400.SNA

J Receiver (TCP) channel name H AIX.AS400.TCP

 Connection to IBM MQ for HP-UX

The values in this section of the table must match the values used in “Channel configuration for HP-UX” on
page 17, as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name AS400.HPUX.SNA

H Sender (TCP) channel name AS400.HPUX.TCP

I Receiver (SNA) channel name G HPUX.AS400.SNA

34 IBM MQ Configuration Reference

Table 4. Configuration examples for IBM i (continued)

ID Parameter Name Reference Example Used

J Receiver (TCP) channel name H HPUX.AS400.TCP

 Connection to IBM MQ for Solaris

The values in this section of the table must match the values used in “Channel configuration for Solaris” on
page 45, as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ

E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name SOLARIS

G Sender (SNA) channel name AS400.SOLARIS.SNA

H Sender (TCP/IP) channel name AS400.SOLARIS.TCP

I Receiver (SNA) channel name G SOLARIS.AS400.SNA

J Receiver (TCP/IP) channel name H SOLARIS.AS400.TCP

 Connection to IBM MQ for Linux

The values in this section of the table must match the values used in “Channel configuration for Linux” on page
40, as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name AS400.LINUX.SNA

H Sender (TCP/IP) channel name AS400.LINUX.TCP

I Receiver (SNA) channel name G LINUX.AS400.SNA

J Receiver (TCP/IP) channel name H LINUX.AS400.TCP

 Connection to IBM MQ for z/OS

The values in this section of the table must match the values used in “Channel configuration for z/OS” on page
57, as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name AS400.MVS.SNA

H Sender (TCP) channel name AS400.MVS.TCP

I Receiver (SNA) channel name G MVS.AS400.SNA

J Receiver (TCP) channel name H MVS.AS400.TCP

Configuration reference 35

Table 4. Configuration examples for IBM i (continued)

ID Parameter Name Reference Example Used

Connection to MQSeries for VSE/ESA

The values in this section of the table must match the values used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ

E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name AS400.VSE.SNA

I Receiver channel name G VSE.AS400.SNA

Sender-channel definitions for IBM i
Example sender-channel definitions for SNA and TCP.

Using SNA
 Local Queue
 Queue name : WINNT F
 Queue type : *LCL
 Usage : *TMQ

 Remote Queue
 Queue name : WINNT.REMOTEQ D
 Queue type : *RMT
 Remote queue : WINNT.LOCALQ E
 Remote Queue Manager : WINNT C
 Transmission queue : WINNT F

 Sender Channel
 Channel Name : AS400.WINNT.SNA G
 Channel Type : *SDR
 Transport type : *LU62
 Connection name : WINNTCPIC 14
 Transmission queue : WINNT F

Using TCP
 Local Queue
 Queue name : WINNT F
 Queue type : *LCL
 Usage : *TMQ

 Remote Queue
 Queue name : WINNT.REMOTEQ D
 Queue type : *RMT
 Remote queue : WINNT.LOCALQ E
 Remote Queue Manager : WINNT C
 Transmission queue : WINNT F

 Sender Channel
 Channel Name : AS400.WINNT.TCP H
 Channel Type : *SDR
 Transport type : *TCP
 Connection name : WINNT.tcpip.hostname
 Transmission queue : WINNT F

36 IBM MQ Configuration Reference

Receiver-channel definitions for IBM i
Example receiver-channel definitions for SNA and TCP

Using SNA
 Local Queue
 Queue name : AS400.LOCALQ B
 Queue type : *LCL

 Receiver Channel
 Channel Name : WINNT.AS400.SNA I
 Channel Type : *RCVR
 Transport type : *LU62

Using TCP
 Local Queue
 Queue name : AS400.LOCALQ B
 Queue type : *LCL

 Receiver Channel
 Channel Name : WINNT.AS400.TCP J
 Channel Type : *RCVR
 Transport type : *TCP

Example MQ configuration for Linux
This section gives an example of how to set up communication links from IBM MQ for Linux to IBM MQ
products.

The examples given are on the following platforms:

• Windows
• AIX
• Compaq Tru64 UNIX
• HP-UX
• Solaris
• IBM i
• z/OS
• VSE/ESA

See “Example IBM MQ configuration for all platforms” on page 5 for background information about this
section and how to use it.

Establishing an LU 6.2 connection
Use this worksheet to record the values you use for your configuration.

Note: The information in this section applies only to IBM MQ for Linux (x86 platform). It does not apply
to IBM MQ for Linux (x86-64 platform), IBM MQ for Linux (zSeries s390x platform), or IBM MQ for Linux
(Power platform).

For the latest information about configuring SNA over TCP/IP, refer to the the Administration Guide for
your version of Linux from the following documentation: Communications Server for Linux library.

Configuration reference 37

https://www.ibm.com/support/docview.wss?uid=swg27005371

Establishing a TCP connection on Linux
Some Linux distributions now use the extended inet daemon (XINETD) instead of the inet daemon
(INETD). The following instructions tell you how to establish a TCP connection using either the inet
daemon or the extended inet daemon.

Using the inet daemon (INETD)
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

To establish a TCP connection, follow these steps.

1. Edit the file /etc/services. If you do not have the following line in the file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

Note: To edit this file, you must be logged in as a superuser or root.
2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add it as shown:

MQSeries stream tcp nowait mqm MQ_INSTALLATION_PATH/bin/amqcrsta amqcrsta
[-m queue.manager.name]

3. Find the process ID of the inetd with the command:

ps -ef | grep inetd

4. Run the command:

kill -1 inetd processid

If you have more than one queue manager on your system, and therefore require more than one service,
you must add a line for each additional queue manager to both /etc/services and inetd.conf.

For example:

MQSeries1 1414/tcp
MQSeries2 1822/tcp

MQSeries1 stream tcp nowait mqm MQ_INSTALLATION_PATH/bin/amqcrsta amqcrsta -m QM1
MQSeries2 stream tcp nowait mqm MQ_INSTALLATION_PATH/bin/amqcrsta amqcrsta -m QM2

This avoids error messages being generated if there is a limitation on the number of outstanding
connection requests queued at a single TCP port. For information about the number of outstanding
connection requests, see Using the TCP listener backlog option.

The inetd process on Linux can limit the rate of inbound connections on a TCP port. The default is 40
connections in a 60 second interval. If you need a higher rate, specify a new limit on the number of
inbound connections in a 60 second interval by appending a period (.) followed by the new limit to the
nowait parameter of the appropriate service in inetd.conf. For example, for a limit of 500 connections in a
60 second interval use:

MQSeries stream tcp nowait.500 mqm / MQ_INSTALLATION_PATH/bin/amqcrsta amqcrsta -m QM1

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Using the extended inet daemon (XINETD)
The following instructions describe how the extended inet daemon is implemented on Red Hat Linux. If
you are using a different Linux distribution, you might have to adapt these instructions.

To establish a TCP connection, follow these steps.

1. Edit the file /etc/services. If you do not have the following line in the file, add it as shown:

38 IBM MQ Configuration Reference

MQSeries 1414/tcp # MQSeries channel listener

Note: To edit this file, you must be logged in as a superuser or root.
2. Create a file called IBM MQ in the XINETD configuration directory, /etc/xinetd.d. Add the following

stanza to the file:

IBM MQ service for XINETD
service MQSeries
{
 disable = no
 flags = REUSE
 socket_type = stream
 wait = no
 user = mqm
 server = MQ_INSTALLATION_PATH/bin/amqcrsta
 server_args = -m queue.manager.name
 log_on_failure += USERID
}

3. Restart the extended inet daemon by issuing the following command:

/etc/rc.d/init.d/xinetd restart

If you have more than one queue manager on your system, and therefore require more than one service,
you must add a line to /etc/services for each additional queue manager. You can create a file in the /etc/
xinetd.d directory for each service, or you can add additional stanzas to the IBM MQ file you created
previously.

The xinetd process on Linux can limit the rate of inbound connections on a TCP port. The default is 50
connections in a 10 second interval. If you need a higher rate, specify a new limit on the rate of inbound
connections by specifying the 'cps' attribute in the xinetd configuration file. For example, for a limit of 500
connections in a 60 second interval use:

cps = 500 60

What next?
The TCP/IP connection is now established. You are ready to complete the configuration. Go to “IBM MQ
for Linux configuration” on page 39.

IBM MQ for Linux configuration
Before beginning the installation process ensure that you have first created the mqm user ID and the
mqm group, and set the password.

Start any channel using the command:

runmqchl -c channel.name

Note:

1. Sample programs are installed in MQ_INSTALLATION_PATH/samp, where MQ_INSTALLATION_PATH
represents the high-level directory in which IBM MQ is installed.

2. Error logs are stored in /var/mqm/qmgrs/ qmgrname /errors.
3. When you are using the command interpreter runmqsc to enter administration commands, a + at the

end of a line indicates that the next line is a continuation. Ensure that there is a space between the last
parameter and the continuation character.

Configuration reference 39

Basic configuration
1. Create the queue manager from the UNIX prompt using the command:

crtmqm -u dlqname -q linux

where:
linux

Is the name of the queue manager
-q

Indicates that this is to become the default queue manager
-u dlqname

Specifies the name of the dead letter queue

This command creates a queue manager and a set of default objects.
2. Start the queue manager from the UNIX prompt using the command:

strmqm linux

where linux is the name given to the queue manager when it was created.

Channel configuration for Linux
The following section details the configuration to be performed on the Linux queue manager to implement
the channel described in “Example IBM MQ configuration for all platforms” on page 5.

The MQSC command to create each object is shown. Either start runmqsc from a UNIX prompt and enter
each command in turn, or build the commands into a command file.

Examples are given for connecting IBM MQ for Linux and IBM MQ for HP-UX. To connect to IBM MQ on
another platform use the appropriate set of values from the table in place of those for HP-UX.

Note: The words in bold are suggested values and reflect the names of IBM MQ objects used throughout
these examples. You can change them in your product installation but, if you do, make sure that you use
your own values when working through the examples in this section

Table 5. Configuration examples for IBM MQ for Linux

ID Parameter Name Refer
ence

Example Used

Definition for local node

A Queue Manager Name LINUX

B Local queue name LINUX.LOCALQ

 Connection to IBM MQ for Windows

The values in this section of the table must match those used in “Channel configuration for Windows” on page
52, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name LINUX.WINNT.SNA

H Sender (TCP/IP) channel name LINUX.WINNT.TCP

40 IBM MQ Configuration Reference

Table 5. Configuration examples for IBM MQ for Linux (continued)

ID Parameter Name Refer
ence

Example Used

I Receiver (SNA) channel name G WINNT.LINUX.SNA

J Receiver (TCP) channel name H WINNT.LINUX.TCP

 Connection to IBM MQ for AIX

The values in this section of the table must match those used in “Channel configuration for AIX” on page 11, as
indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name LINUX.AIX.SNA

H Sender (TCP) channel name LINUX.AIX.TCP

I Receiver (SNA) channel name G AIX.LINUX.SNA

J Receiver (TCP) channel name H AIX.LINUX.TCP

 Connection to IBM MQ for HP-UX

The values in this section of the table must match those used in Table 2 on page 17, as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name LINUX.HPUX.SNA

H Sender (TCP) channel name LINUX.HPUX.TCP

I Receiver (SNA) channel name G HPUX.LINUX.SNA

J Receiver (TCP/IP) channel name H HPUX.LINUX.TCP

 Connection to IBM MQ for Solaris

The values in this section of the table must match those used in Table 6 on page 45, as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ

E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name GIS

G Sender (SNA) channel name LINUX.SOLARIS.SNA

H Sender (TCP/IP) channel name LINUX.SOLARIS.TCP

I Receiver (SNA) channel name G SOLARIS.LINUX.SNA

J Receiver (TCP/IP) channel name H SOLARIS.LINUX.TCP

Configuration reference 41

Table 5. Configuration examples for IBM MQ for Linux (continued)

ID Parameter Name Refer
ence

Example Used

 Connection to IBM MQ for IBM i

The values in this section of the table must match those used in Table 4 on page 33, as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name LINUX.AS400.SNA

H Sender (TCP) channel name LINUX.AS400.TCP

I Receiver (SNA) channel name G AS400.LINUX.SNA

J Receiver (TCP) channel name H AS400.LINUX.TCP

 Connection to IBM MQ for z/OS

The values in this section of the table must match those used in Table 8 on page 57, as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name LINUX.MVS.SNA

H Sender (TCP) channel name LINUX.MVS.TCP

I Receiver (SNA) channel name G MVS.LINUX.SNA

IBM MQ for Linux (x86 platform) sender-channel definitions using SNA
Example coding.

def ql (HPUX) + F
 usage(xmitq) +
 replace

def qr (HPUX.REMOTEQ) + D
 rname(HPUX.LOCALQ) + E
 rqmname(HPUX) + C
 xmitq(HPUX) + F
 replace

def chl (LINUX.HPUX.SNA) chltype(sdr) + G
 trptype(lu62) +
 conname('HPUXCPIC') + 14
 xmitq(HPUX) + F
 replace

IBM MQ for Linux (x86 platform) receiver-channel definitions using SNA
Example coding.

def ql (LINUX.LOCALQ) replace B

def chl (HPUX.LINUX.SNA) chltype(rcvr) + I

42 IBM MQ Configuration Reference

 trptype(lu62) +
 replace

IBM MQ for Linux sender-channel definitions using TCP
Example coding.

def ql (HPUX) + F
 usage(xmitq) +
 replace

def qr (HPUX.REMOTEQ) + D
 rname(HPUX.LOCALQ) + E
 rqmname(HPUX) + C
 xmitq(HPUX) + F
 replace

def chl (LINUX.HPUX.TCP) chltype(sdr) + H
 trptype(tcp) +
 conname(remote_tcpip_hostname) +
 xmitq(HPUX) + F
 replace

IBM MQ for Linux receiver-channel definitions using TCP/IP
Example coding.

def ql (LINUX.LOCALQ) replace B

def chl (HPUX.LINUX.TCP) chltype(rcvr) + J
 trptype(tcp) +
 replace

Example MQ configuration for Solaris
This section gives an example of how to set up communication links from IBM MQ for Solaris to IBM MQ
products.

Examples are given on the following platforms:

• Windows
• AIX
• HP Tru64 UNIX
• HP-UX
• Linux
• IBM i
• z/OS
• VSE/ESA

See “Example IBM MQ configuration for all platforms” on page 5 for background information about this
section and how to use it.

Establishing an LU 6.2 connection using SNAP-IX
Parameters for configuring an LU 6.2 connection using SNAP-IX.

For the latest information about configuring SNA over TCP/IP, refer to the following online IBM
documentation: Communications Server, the following online MetaSwitch documentation: SNAP-
IX Administration Guide, and the following online Sun documentation: Configuring Intersystem
Communications (ISC).

Configuration reference 43

https://www.ibm.com/software/network/commserver/library/index.html
https://docs.metaswitch.com/snapix/admin.htm
https://docs.metaswitch.com/snapix/admin.htm
https://docs.oracle.com/cd/E19065-01/servers.12k/816-5328-11/cfgcomms.html
https://docs.oracle.com/cd/E19065-01/servers.12k/816-5328-11/cfgcomms.html

Establishing a TCP connection
Information about configuring a TCP connection and next steps.

To establish a TCP connection, follow these steps.

1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or root. If you do not have the
following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add it as shown:

MQSeries stream tcp nowait mqm MQ_INSTALLATION_PATH/bin/amqcrsta amqcrsta
[-m queue.manager.name]

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
3. Find the process ID of the inetd with the command:

ps -ef | grep inetd

4. Run the appropriate command, as follows:

• For Solaris 9:

kill -1 inetd processid

• For Solaris 10 or later:

inetconv

What next?
The TCP/IP connection is now established. You are ready to complete the configuration. Go to “IBM MQ
for Solaris configuration” on page 44.

IBM MQ for Solaris configuration
Describes channels to be defined to complete the configuration.

Before beginning the installation process ensure that you have first created the mqm user and group, and
set the password.

Start any channel using the command:

runmqchl -c channel.name

Note:

1. Sample programs are installed in MQ_INSTALLATION_PATH/samp.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
2. Error logs are stored in /var/mqm/qmgrs/ qmgrname /errors.
3. When you are using the command interpreter runmqsc to enter administration commands, a + at the

end of a line indicates that the next line is a continuation. Ensure that there is a space between the last
parameter and the continuation character.

4. For an SNA or LU6.2 channel, if you experience an error when you try to load the communications
library, probably file liblu62.so cannot be found. A likely solution to this problem is to add its location,
which is probably /opt/SUNWlu62, to LD_LIBRARY_PATH.

44 IBM MQ Configuration Reference

Basic configuration
1. Create the queue manager from the UNIX prompt using the command:

crtmqm -u dlqname -q solaris

where:
solaris

Is the name of the queue manager
-q

Indicates that this is to become the default queue manager
-u dlqname

Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects.
2. Start the queue manager from the UNIX prompt using the command:

strmqm solaris

where solaris is the name given to the queue manager when it was created.

Channel configuration for Solaris
The following section details the configuration to be performed on the Solaris queue manager to
implement a channel.

The configuration described is to implement the channel described in Figure 1 on page 5.

The MQSC command to create each object is shown. Either start runmqsc from a UNIX prompt and enter
each command in turn, or build the commands into a command file.

Examples are given for connecting IBM MQ for Solaris and IBM MQ for Windows. To connect to IBM MQ on
another platform use the appropriate set of values from the table in place of those for Windows.

Note: The words in bold are user-specified and reflect the names of IBM MQ objects used throughout
these examples. If you change the names used here, ensure that you also change the other references
made to these objects throughout this section. All others are keywords and should be entered as shown.

Table 6. Configuration worksheet for IBM MQ for Solaris

ID Parameter Name Refe
renc
e

Example Used User Value

Definition for local node

A Queue Manager Name SOLARIS

B Local queue name SOLARIS.LOCALQ

Connection to IBM MQ for Windows

The values in this section of the table must match those used in Table 7 on page 52, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name SOLARIS.WINNT.SNA

H Sender (TCP/IP) channel name SOLARIS.WINNT.TCP

Configuration reference 45

Table 6. Configuration worksheet for IBM MQ for Solaris (continued)

ID Parameter Name Refe
renc
e

Example Used User Value

I Receiver (SNA) channel name G WINNT.SOLARIS.SNA

J Receiver (TCP) channel name H WINNT.SOLARIS.TCP

Connection to IBM MQ for AIX

The values in this section of the table must match those used in Table 1 on page 11, as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name SOLARIS.AIX.SNA

H Sender (TCP) channel name SOLARIS.AIX.TCP

I Receiver (SNA) channel name G AIX.SOLARIS.SNA

J Receiver (TCP) channel name H AIX.SOLARIS.TCP

Connection to MQSeries for Compaq Tru64 Unix

The values in this section of the table must match those used in your Compaq Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ

E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.SOLARIS.TCP

J Receiver (TCP) channel name H SOLARIS.DECUX.TCP

Connection to IBM MQ for HP-UX

The values in this section of the table must match those used in Table 2 on page 17, as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name SOLARIS.HPUX.SNA

H Sender (TCP) channel name SOLARIS.HPUX.TCP

I Receiver (SNA) channel name G HPUX.SOLARIS.SNA

J Receiver (TCP/IP) channel name H HPUX.SOLARIS.TCP

Connection to IBM MQ for Linux

The values in this section of the table must match those used in Table 5 on page 40, as indicated.

46 IBM MQ Configuration Reference

Table 6. Configuration worksheet for IBM MQ for Solaris (continued)

ID Parameter Name Refe
renc
e

Example Used User Value

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name SOLARIS.LINUX.SNA

H Sender (TCP/IP) channel name SOLARIS.LINUX.TCP

I Receiver (SNA) channel name G LINUX.SOLARIS.SNA

J Receiver (TCP/IP) channel name H LINUX.SOLARIS.TCP

 Connection to IBM MQ for IBM i

The values in this section of the table must match those used in Table 4 on page 33, as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name SOLARIS.AS400.SNA

H Sender (TCP) channel name SOLARIS.AS400.TCP

I Receiver (SNA) channel name G AS400.SOLARIS.SNA

J

Receiver (TCP) channel name H AS400.SOLARIS.TCP

 Connection to IBM MQ for z/OS

The values in this section of the table must match those used in Table 8 on page 57, as
indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name SOLARIS.MVS.SNA

H Sender (TCP) channel name SOLARIS.MVS.TCP

I Receiver (SNA) channel name G MVS.SOLARIS.SNA

J

Receiver (TCP) channel name H MVS.SOLARIS.TCP

Configuration reference 47

Table 6. Configuration worksheet for IBM MQ for Solaris (continued)

ID Parameter Name Refe
renc
e

Example Used User Value

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ

E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name SOLARIS.VSE.SNA

I Receiver channel name G VSE.SOLARIS.SNA

IBM MQ for Solaris sender-channel definitions using SNAP-IX SNA
Example coding.

def ql (WINNT) + F
 usage(xmitq) +
 replace

def qr (WINNT.REMOTEQ) + D
 rname(WINNT.LOCALQ) + E
 rqmname(WINNT) + C
 xmitq(WINNT) + F
 replace

def chl (SOLARIS.WINNT.SNA) chltype(sdr) + G
 trptype(lu62) +
 conname('NTCPIC') + 14
 xmitq(WINNT) + F
 replace

IBM MQ for Solaris receiver-channel definitions using SNA
Example coding.

def ql (SOLARIS.LOCALQ) replace B

def chl (WINNT.SOLARIS.SNA) chltype(rcvr) + I
 trptype(lu62) +
 replace

IBM MQ for Solaris sender-channel definitions using TCP
Example coding.

def ql (WINNT) + F
 usage(xmitq) +
 replace

def qr (WINNT.REMOTEQ) + D
 rname(WINNT.LOCALQ) + E
 rqmname(WINNT) + C
 xmitq(WINNT) + F
 replace

def chl (SOLARIS.WINNT.TCP) chltype(sdr) + H
 trptype(tcp) +
 conname(remote_tcpip_hostname) +
 xmitq(WINNT) + F
 replace

48 IBM MQ Configuration Reference

IBM MQ for Solaris receiver-channel definitions using TCP/IP
Example coding.

def ql (SOLARIS.LOCALQ) replace B

def chl (WINNT.SOLARIS.TCP) chltype(rcvr) + J
 trptype(tcp) +
 replace

Example IBM MQ configuration for Windows
This section gives an example of how to set up communication links from IBM MQ for Windows to IBM MQ
products on other platforms.

Setup of communication links is shown on the following platforms:

• AIX
• HP Tru64 UNIX
• HP-UX
• Solaris
• Linux
• IBM i
• z/OS
• VSE/ESA

When the connection is established, you must define some channels to complete the configuration.
Example programs and commands for configuration are described in “IBM MQ for Windows configuration”
on page 51.

See “Example IBM MQ configuration for all platforms” on page 5 for background information about this
section and how to use it.

Establishing an LU 6.2 connection
Reference to information about configuring AnyNet® SNA over TCP/IP.

For the latest information about configuring AnyNet SNA over TCP/IP, see the following online IBM
documentation: AnyNet SNA over TCP/IP, SNA Node Operations, and Communications Server for
Windows

Establishing a TCP connection
The TCP stack that is shipped with Windows systems does not include an inet daemon or equivalent.

The IBM MQ command used to start the IBM MQ for TCP listener is:

runmqlsr -t tcp

The listener must be started explicitly before any channels are started. It enables receiving channels to
start automatically in response to a request from an inbound sending channel.

What next?
When the TCP/IP connection is established, you are ready to complete the configuration. Go to “IBM MQ
for Windows configuration” on page 51.

Configuration reference 49

https://www.ibm.com/software/network/commserver/windows/library/index.html
https://www.ibm.com/software/network/commserver/windows/library/index.html

Establishing a NetBIOS connection
A NetBIOS connection is initiated from a queue manager that uses the ConnectionName parameter on its
channel definition to connect to a target listener.

To set up a NetBIOS connection, follow these steps:

1. At each end of the channel specify the local NetBIOS name to be used by the IBM MQ channel
processes in the queue manager configuration file qm.ini. For example, the NETBIOS stanza in
Windows at the sending end might look like the following:

NETBIOS:
 LocalName=WNTNETB1

and at the receiving end:

NETBIOS:
 LocalName=WNTNETB2

Each IBM MQ process must use a different local NetBIOS name. Do not use your system name as the
NetBIOS name because Windows already uses it.

2. At each end of the channel, verify the LAN adapter number being used on your system. The IBM MQ for
Windows default for logical adapter number 0 is NetBIOS running over an Internet Protocol network.
To use native NetBIOS you must select logical adapter number 1. See Establishing the LAN adapter
number.

Specify the correct LAN adapter number in the NETBIOS stanza of the Windows registry. For example:

NETBIOS:
 AdapterNum=1

3. So that sender channel initiation works, specify the local NetBIOS name by the MQNAME environment
variable:

 SET MQNAME=WNTNETB1I

This name must be unique.
4. At the sending end, define a channel specifying the NetBIOS name being used at the other end of the

channel. For example:

DEFINE CHANNEL (WINNT.OS2.NET) CHLTYPE(SDR) +
 TRPTYPE(NETBIOS) +
 CONNAME(WNTNETB2) +
 XMITQ(OS2) +
 MCATYPE(THREAD) +
 REPLACE

You must specify the option MCATYPE(THREAD) because, on Windows, sender channels must be run
as threads.

5. At the receiving end, define the corresponding receiver channel. For example:

DEFINE CHANNEL (WINNT.OS2.NET) CHLTYPE(RCVR) +
 TRPTYPE(NETBIOS) +
 REPLACE

6. Start the channel initiator because each new channel is started as a thread rather than as a new
process.

runmqchi

7. At the receiving end, start the IBM MQ listener:

runmqlsr -t netbios

50 IBM MQ Configuration Reference

Optionally you can specify values for the queue manager name, NetBIOS local name, number of
sessions, number of names, and number of commands. See Defining a NetBIOS connection on
Windows for more information about setting up NetBIOS connections.

IBM MQ for Windows configuration
Example programs and commands for configuration.

Note:

1. You can use the sample program, AMQSBCG, to show the contents and headers of all the messages in
a queue. For example:

AMQSBCG q_name qmgr_name

shows the contents of the queue q_name defined in queue manager qmgr_name.

Alternatively, you can use the message browser in the IBM MQ Explorer.
2. You can start any channel from the command prompt using the command

runmqchl -c channel.name

3. Error logs can be found in the directories MQ_INSTALLATION_PATH\qmgrs\ qmgrname \errors and
MQ_INSTALLATION_PATH\qmgrs\@system\errors. In both cases, the most recent messages are at
the end of amqerr01.log.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
4. When you are using the command interpreter runmqsc to enter administration commands, a + at the

end of a line indicates that the next line is a continuation. Ensure that there is a space between the last
parameter and the continuation character.

Default configuration
You can create a default configuration by using the IBM MQ Postcard application to guide you through the
process.

For information about using the Postcard application, see Verify the installation using the Postcard
application for the platform that your enterprise uses.

Basic configuration
You can create and start a queue manager from the IBM MQ Explorer or from the command prompt.

.If you choose the command prompt:

1. Create the queue manager using the command:

crtmqm -u dlqname -q winnt

where:
winnt

Is the name of the queue manager
-q

Indicates that this is to become the default queue manager
-u dlqname

Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects.
2. Start the queue manager using the command:

strmqm winnt

where winnt is the name given to the queue manager when it was created.

Configuration reference 51

Channel configuration for Windows
Example configuration to be performed on the Windows queue manager to implement a given channel.

The following sections detail the configuration to be performed on the Windows queue manager to
implement the channel described in “Example IBM MQ configuration for all platforms” on page 5.

In each case the MQSC command is shown. Either start runmqsc from a command prompt and enter each
command in turn, or build the commands into a command file.

Examples are given for connecting IBM MQ for Windows and IBM MQ for AIX. To connect to IBM MQ on
another platform use the appropriate set of values from the table in place of those for Windows.

Note: The words in bold are suggested values and reflect the names of IBM MQ objects used throughout
these examples. You can change them in your product installation but, if you do, make sure that you use
your own values when working through the examples in this section.

Table 7. Configuration examples for IBM MQ for Windows

Parameter Name Reference Example Used

Definition for local node

A Queue Manager Name WINNT

B Local queue name WINNT.LOCALQ

 Connection to IBM MQ for AIX

The values in this section of the table must match those used in “Channel configuration for AIX” on page 11, as
indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name WINNT.AIX.SNA

H Sender (TCP) channel name WINNT.AIX.TCP

I Receiver (SNA) channel name G AIX.WINNT.SNA

J Receiver (TCP) channel name H AIX.WINNT.TCP

 Connection to IBM MQ for HP-UX

The values in this section of the table must match those used in “Channel configuration for HP-UX” on page 17,
as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name WINNT.HPUX.SNA

H Sender (TCP) channel name WINNT.HPUX.TCP

I Receiver (SNA) channel name G HPUX.WINNT.SNA

J Receiver (TCP/IP) channel name H HPUX.WINNT.TCP

52 IBM MQ Configuration Reference

Table 7. Configuration examples for IBM MQ for Windows (continued)

Parameter Name Reference Example Used

 Connection to IBM MQ for Solaris

The values in this section of the table must match those used in “Channel configuration for Solaris” on page 45,
as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ

E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name SOLARIS

G Sender (SNA) channel name WINNT.SOLARIS.SNA

H Sender (TCP) channel name WINNT.SOLARIS.TCP

I Receiver (SNA) channel name G SOLARIS.WINNT.SNA

J Receiver (TCP) channel name H SOLARIS.WINNT.TCP

 Connection to IBM MQ for Linux

The values in this section of the table must match those used in “Channel configuration for Linux” on page 40,
as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name WINNT.LINUX.SNA

H Sender (TCP) channel name WINNT.LINUX.TCP

I Receiver (SNA) channel name G LINUX.WINNT.SNA

J Receiver (TCP) channel name H LINUX.WINNT.TCP

 Connection to IBM MQ for IBM i

The values in this section of the table must match those used in “Channel configuration for IBM i” on page 33,
as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name WINNT.AS400.SNA

H Sender (TCP) channel name WINNT.AS400.TCP

I Receiver (SNA) channel name G AS400.WINNT.SNA

J Receiver (TCP) channel name H AS400.WINNT.TCP

Configuration reference 53

Table 7. Configuration examples for IBM MQ for Windows (continued)

Parameter Name Reference Example Used

 Connection to IBM MQ for z/OS

The values in this section of the table must match those used in “Channel configuration for z/OS” on page 57,
as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name WINNT.MVS.SNA

H Sender (TCP) channel name WINNT.MVS.TCP

I Receiver (SNA) channel name G MVS.WINNT.SNA

J Receiver (TCP/IP) channel name H MVS.WINNT.TCP

 Connection to IBM MQ for z/OS using queue sharing groups

The values in this section of the table must match those used in “Shared channel configuration example” on
page 65, as indicated.

C Remote queue manager name A QSG

D Remote queue name QSG.REMOTEQ

E Queue name at remote system B QSG.SHAREDQ

F Transmission queue name QSG

G Sender (SNA) channel name WINNT.QSG.SNA

H Sender (TCP) channel name WINNT.QSG.TCP

I Receiver (SNA) channel name G QSG.WINNT.SNA

J Receiver (TCP/IP) channel name H QSG.WINNT.TCP

IBM MQ for Windows sender-channel definitions using SNA
A code sample.

def ql (AIX) + F
 usage(xmitq) +
 replace

def qr (AIX.REMOTEQ) + D
 rname(AIX.LOCALQ) + E
 rqmname(AIX) + C
 xmitq(AIX) + F
 replace

def chl (WINNT.AIX.SNA) chltype(sdr) + G
 trptype(lu62) +
 conname(AIXCPIC) + 18
 xmitq(AIX) + F
 replace

54 IBM MQ Configuration Reference

IBM MQ for Windows receiver-channel definitions using SNA
A code sample.

def ql (WINNT.LOCALQ) replace B

def chl (AIX.WINNT.SNA) chltype(rcvr) + I
 trptype(lu62) +
 replace

IBM MQ for Windows sender-channel definitions using TCP/IP
A code sample.

def ql (AIX) + F
 usage(xmitq) +
 replace

def qr (AIX.REMOTEQ) + D
 rname(AIX.LOCALQ) + E
 rqmname(AIX) + C
 xmitq(AIX) + F
 replace

def chl (WINNT.AIX.TCP) chltype(sdr) + H
 trptype(tcp) +
 conname(remote_tcpip_hostname) +
 xmitq(AIX) + F
 replace

IBM MQ for Windows receiver-channel definitions using TCP
A code sample.

def ql (WINNT.LOCALQ) replace B

def chl (AIX.WINNT.TCP) chltype(rcvr) + J
 trptype(tcp) +
 replace

Automatic startup
IBM MQ for Windows allows you to automate the startup of a queue manager and its channel initiator,
channels, listeners, and command servers.

Use the IBM MQ Services snap-in to define the services for the queue manager. When you have
successfully completed testing of your communications setup, set the relevant services to automatic
within the snap-in. This file can be read by the supplied IBM MQ service when the system is started.

For more information, see Administering IBM MQ .

Running channels as processes or threads
IBM MQ for Windows provides the flexibility to run sending channels as Windows processes or Windows
threads. This is specified in the MCATYPE parameter on the sender channel definition.

Most installations run their sending channels as threads, because the virtual and real memory required
to support many concurrent channel connections is reduced. However, a NetBIOS connection needs a
separate process for the sending Message Channel Agent.

Example MQ configuration for z/OS
This section gives an example of how to set up communication links from IBM MQ for z/OS to IBM MQ
products on other platforms.

These are the other platforms covered by this example:

• Windows
• AIX

Configuration reference 55

• Compaq Tru64 UNIX
• HP-UX
• Solaris
• Linux
• IBM i
• VSE/ESA

You can also connect any of the following:

• z/OS to z/OS
• z/OS to MVS
• MVS to MVS

See “Example IBM MQ configuration for all platforms” on page 5 for background information about this
section and how to use it.

Establishing a connection
To establish a connection there are a number of things to configure.

Establishing an LU 6.2 connection
For the latest information about configuring SNA over TCP/IP, refer to the following online IBM
documentation: Communications Server for z/OS .

Establishing a TCP connection
Alter the queue manager object to use the correct distributed queuing parameters using the following
command. You must add the name of the TCP address space to the TCPNAME queue manager attribute.

ALTER QMGR TCPNAME(TCPIP)

The TCP connection is now established. You are ready to complete the configuration.

IBM MQ for z/OS configuration
The following steps outline how to configure IBM MQ; starting and configuring channels and listeners.

1. Start the channel initiator using the command:

/cpf START CHINIT 1

2. Start an LU 6.2 listener using the command:

/cpf START LSTR LUNAME(M1) TRPTYPE(LU62)

The LUNAME of M1 refers to the symbolic name you gave your LU (5). You must specify
TRPTYPE(LU62), otherwise the listener assumes that you want TCP.

3. Start a TCP listener using the command:

/cpf START LSTR

If you want to use a port other than 1414 (the default IBM MQ port), use the command:

/cpf START LSTR PORT(1555)

IBM MQ channels do not initialize successfully if the channel negotiation detects that the message
sequence number is different at each end. You might need to reset these channels manually.

56 IBM MQ Configuration Reference

https://www.ibm.com/software/network/commserver/zos/library/

Channel configuration for z/OS
To implement the example channels, there is some configuration necessary on the z/OS queue manager.

The following sections detail the configuration to be performed on the z/OS queue manager to implement
the channel described in “Example IBM MQ configuration for all platforms” on page 5.

Examples are given for connecting IBM MQ for z/OS and IBM MQ for Windows. To connect to IBM MQ on
another platform use the appropriate set of values from the table in place of the values for Windows.

Note: The words in bold are suggested values and reflect the names of IBM MQ objects used throughout
these examples. You can change them in your product installation but, if you do, make sure that you use
your own values when working through the examples in this section

Table 8. Configuration examples for IBM MQ for z/OS

ID Parameter Name Reference Example Used

Definition for local node

A Queue Manager Name MVS

B Local queue name MVS.LOCALQ

 Connection to IBM MQ for Windows

The values in this section of the table must match the values used in “Channel configuration for Windows” on
page 52, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (LU 6.2) channel name MVS.WINNT.SNA

H Sender (TCP) channel name MVS.WINNT.TCP

I Receiver (LU 6.2) channel name G WINNT.MVS.SNA

J Receiver (TCP/IP) channel name H WINNT.MVS.TCP

 Connection to IBM MQ for AIX

The values in this section of the table must match the values used in “Channel configuration for AIX” on page
11, as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (LU 6.2) channel name MVS.AIX.SNA

H Sender (TCP/IP) channel name MVS.AIX.TCP

I Receiver (LU 6.2) channel name G AIX.MVS.SNA

J Receiver (TCP/IP) channel name H AIX.MVS.TCP

Configuration reference 57

Table 8. Configuration examples for IBM MQ for z/OS (continued)

ID Parameter Name Reference Example Used

 Connection to IBM MQ for HP-UX

The values in this section of the table must match the values used in “Channel configuration for HP-UX” on
page 17, as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (LU 6.2) channel name MVS.HPUX.SNA

H Sender (TCP) channel name MVS.HPUX.TCP

I Receiver (LU 6.2) channel name G HPUX.MVS.SNA

J Receiver (TCP) channel name H HPUX.MVS.TCP

 Connection to IBM MQ for Solaris

The values in this section of the table must match the values used in “Channel configuration for Solaris” on
page 45, as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ

E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name SOLARIS

G Sender (LU 6.2) channel name MVS.SOLARIS.SNA

H Sender (TCP) channel name MVS.SOLARIS.TCP

I Receiver (LU 6.2) channel name G SOLARIS.MVS.SNA

J Receiver (TCP/IP) channel name H SOLARIS.MVS.TCP

 Connection to IBM MQ for Linux

The values in this section of the table must match the values used in “Channel configuration for Linux” on page
40, as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (LU 6.2) channel name MVS.LINUX.SNA

H Sender (TCP) channel name MVS.LINUX.TCP

I Receiver (LU 6.2) channel name G LINUX.MVS.SNA

J Receiver (TCP/IP) channel name H LINUX.MVS.TCP

58 IBM MQ Configuration Reference

Table 8. Configuration examples for IBM MQ for z/OS (continued)

ID Parameter Name Reference Example Used

 Connection to IBM MQ for IBM i

The values in this section of the table must match the values used in “Channel configuration for IBM i” on page
33, as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (LU 6.2) channel name MVS.AS400.SNA

H Sender (TCP/IP) channel name MVS.AS400.TCP

I Receiver (LU 6.2) channel name G AS400.MVS.SNA

J Receiver (TCP/IP) channel name H AS400.MVS.TCP

IBM MQ for z/OS sender-channel definitions
This topic details the sender-channel definitions required to configure IBM MQ for z/OS using LU 6.2 or
TCP.

For LU 6.2:

 Local Queue
 Object type : QLOCAL
 Name : WINNT F
 Usage : X (XmitQ)

 Remote Queue
 Object type : QREMOTE
 Name : WINNT.REMOTEQ D
 Name on remote system : WINNT.LOCALQ E
 Remote system name : WINNT C
 Transmission queue : WINNT F

 Sender Channel
 Channel name : MVS.WINNT.SNA G
 Transport type : L (LU6.2)
Transmission queue name : WINNT F
 Connection name : M3 13

For TCP:

 Local Queue
 Object type : QLOCAL
 Name : WINNT F
 Usage : X (XmitQ)

 Remote Queue
 Object type : QREMOTE
 Name : WINNT.REMOTEQ D
 Name on remote system : WINNT.LOCALQ E
 Remote system name : WINNT C
 Transmission queue : WINNT F

 Sender Channel
 Channel name : MVS.WINNT.TCP H
 Transport type : T (TCP)
Transmission queue name : WINNT F
 Connection name : winnt.tcpip.hostname

Configuration reference 59

IBM MQ for z/OS receiver-channel definitions
This topic details the receiver-channel definitions required to configure IBM MQ for z/OS using LU6.2 or
TCP.

For LU 6.2:

 Local Queue
 Object type : QLOCAL
 Name : MVS.LOCALQ B
 Usage : N (Normal)

 Receiver Channel
 Channel name : WINNT.MVS.SNA I

For TCP:

 Local Queue
 Object type : QLOCAL
 Name : MVS.LOCALQ B
 Usage : N (Normal)

 Receiver Channel
 Channel name : WINNT.MVS.TCP J

Example MQ configuration for z/OS using QSGs
This section gives an example of how to set up communication links to a queue-sharing group (QSG) from
IBM MQ products on Windows and AIX. You can also connect from z/OS to z/OS.

Setting up communication links from a queue sharing group to a platform other than z/OS is the same as
described in “Example MQ configuration for z/OS” on page 55. There are examples to other platforms in
that section.

When the connection is established, you must define some channels to complete the configuration. This
process is described in “IBM MQ for z/OS shared channel configuration” on page 64.

See “Example IBM MQ configuration for all platforms” on page 5 for background information about this
section and how to use it.

Configuration parameters for an LU 6.2 connection
The following worksheet lists all the parameters required to set up communication from a z/OS system to
one of the other IBM MQ platforms. The worksheet shows examples of the parameters, which have been
tested in a working environment, and leaves space for you to enter your own values.

The steps required to set up an LU 6.2 connection are described in “Establishing an LU 6.2 connection into
a queue sharing group” on page 62, with numbered cross-references to the parameters in the example.

Numbers in the Reference column indicate that the value must match that in the appropriate example
elsewhere in this section. The examples that follow in this section refer to the values in the ID column.
The entries in the Parameter Name column are explained in “Explanation of terms” on page 61.

Table 9. Configuration examples for z/OS using LU 6.2

ID Parameter Name Reference Example Used

Definition for local node using generic resources

1 Command prefix /cpf

2 Network ID NETID

3 Node name MVSPU

6 Modename #INTER

7 Local Transaction Program name MQSERIES

60 IBM MQ Configuration Reference

Table 9. Configuration examples for z/OS using LU 6.2 (continued)

ID Parameter Name Reference Example Used

8 LAN destination address 400074511092

9 Local LU name MVSLU1

10 Generic resource name MVSGR

11 Symbolic destination G1

12 Symbolic destination for generic resource name G2

 Connection to a Windows system

13 Symbolic destination M3

14 Modename 21 #INTER

15 Remote Transaction Program name 7 MQSERIES

16 Partner LU name 5 WINNTLU

21 Remote node ID 4 05D 30F65

 Connection to an AIX system

13 Symbolic Destination M4

14 Modename 18 #INTER

15 Remote Transaction Program name 6 MQSERIES

16 Partner LU name 4 AIXLU

Explanation of terms
An explanation of the terms used in the configuration worksheet.

1 Command prefix
This term is the unique command prefix of your IBM MQ for z/OS queue manager subsystem. The z/OS
system programmer defines this value at installation time, in SYS1.PARMLIB(IEFSSNss), and can tell
you the value.

2 Network ID
The VTAM startup procedure in your installation is partly customized by the ATCSTRxx member of the
data set referenced by the DDNAME VTAMLST. The Network ID is the value specified for the NETID
parameter in this member. For Network ID, you must specify the name of the NETID that owns the
IBM MQ communications subsystem. Your network administrator can tell you the value.

3 Node name
VTAM, being a low-entry network node, does not have a Control Point name for Advanced Peer-
to-Peer Networking (APPN) use. It does however have a system services control point name
(SSCPNAME). For node name, you must specify the name of the SSCP that owns the IBM MQ
communications subsystem. This value is defined in the same ATCSTRxx member as the Network
ID. Your network administrator can tell you the value.

9 Local LU name
A logical unit (LU) is software that serves as an interface or translator between a transaction program
and the network. It manages the exchange of data between transaction programs. The local LU name
is the unique VTAM APPLID of this IBM MQ subsystem. Your network administrator can tell you this
value.

11 12 13 Symbolic destination
This term is the name you give to the CPI-C side information profile. You need a side information entry
for each LU 6.2 listener.

Configuration reference 61

6 14 Modename
This term is the name given to the set of parameters that control the LU 6.2 conversation. An entry
with this name and similar attributes must be defined at each end of the session. In VTAM, this
corresponds to a mode table entry. You network administrator can assign this table entry to you.

7 15 Transaction Program name
IBM MQ applications trying to converse with this queue manager specify a symbolic name for the
program to be run at the receiving end. This has been specified in the TPNAME attribute on the
channel definition at the sender. For simplicity, wherever possible use a transaction program name
of MQSERIES, or in the case of a connection to VSE/ESA, where the length is limited to 4 bytes, use
MQTP.

See Defining an LU6.2 connection for z/OS using APPC/MVS for more information.

8 LAN destination address
This term is the LAN destination address that your partner nodes use to communicate with this host.
When you are using a 3745 network controller, it is the value specified in the LOCADD parameter
for the line definition to which your partner is physically connected. If your partner nodes use other
devices such as 317X or 6611 devices, the address is set during the customization of those devices.
Your network administrator can tell you this value.

10 Generic resource name
A generic resource name is a unique name assigned to a group of LU names used by the channel
initiators in a queue sharing group.

16 Partner LU name
This term is the LU name of the IBM MQ queue manager on the system with which you are setting up
communication. This value is specified in the side information entry for the remote partner.

21 Remote node ID
For a connection to Windows, this ID is the ID of the local node on the Windows system with which
you are setting up communication.

Establishing an LU 6.2 connection into a queue sharing group
There are two steps to establish an LU 6.2 connection. Defining yourself to the network and defining a
connection to the partner.

Defining yourself to the network using generic resources
You can use VTAM Generic Resources to have one connection name to connect to the queue sharing
group.

1. SYS1.PARMLIB(APPCPMxx) contains the start-up parameters for APPC. You must add a line to this file
to tell APPC where to locate the sideinfo. This line must be of the form:

SIDEINFO
 DATASET(APPC.APPCSI)

2. Add another line to SYS1.PARMLIB(APPCPMxx) to define the local LU name you intend to use for the
IBM MQ LU 6.2 group listener. The line you add must take the form

LUADD ACBNAME(mvslu1)
 NOSCHED
 TPDATA(csq.appctp)
 GRNAME(mvsgr)

Specify values for ACBNAME (9), TPDATA and GRNAME(10).

The NOSCHED parameter tells APPC that our new LU is not using the LU 6.2 scheduler (ASCH), but has
one of its own. TPDATA refers to the Transaction Program data set in which LU 6.2 stores information
about transaction programs. Again, IBM MQ does not use this parameter, but it is required by the
syntax of the LUADD command.

3. Start the APPC subsystem with the command:

62 IBM MQ Configuration Reference

START APPC,SUB=MSTR,APPC=xx

where xx is the suffix of the PARMLIB member in which you added the LU in step 1.

Note: If APPC is already running, it can be refreshed with the command:

SET APPC=xx

The effect of this is cumulative, that is, APPC does not lose its knowledge of objects already defined to
it in this member or another PARMLIB member.

4. Add the new LU to a suitable VTAM major node definition. These are typically in SYS1.VTAMLST. The
APPL definition will look like the sample shown.

 MVSLU APPL ACBNAME=MVSLU1, 9
 APPXC=YES,
 AUTOSES=0,
 DDRAINL=NALLOW,
 DLOGMOD=#INTER, 6
 DMINWML=10,
 DMINWNR=10,
 DRESPL=NALLOW,
 DSESLIM=60,
 LMDENT=19,
 MODETAB=MTCICS,
 PARSESS=YES,
 VERIFY=NONE,
 SECACPT=ALREADYV,
 SRBEXIT=YES

5. Activate the major node. This activation can be done with the command:

V,NET,ACT,majornode

6. Add entries defining your LU and generic resource name to the CPI-C side information data set. Use
the APPC utility program ATBSDFMU to do so. Sample JCL is in thlqual.SCSQPROC(CSQ4SIDE) (where
thlqual is the target library high-level qualifier for IBM MQ data sets in your installation.)

The entries you add will look like this example:

 SIADD
 DESTNAME(G1) 11
 MODENAME(#INTER)
 TPNAME(MQSERIES)
 PARTNER_LU(MVSLU1) 9
 SIADD
 DESTNAME(G2) 12
 MODENAME(#INTER)
 TPNAME(MQSERIES)
 PARTNER_LU(MVSGR) 10

7. Alter the queue manager object to use the correct distributed queuing parameters using the following
command. You must specify the local LU (9) assigned to your queue manager in the LUGROUP attribute
of the queue manager.

ALTER QMGR LUGROUP(MVSLU1)

Defining a connection to a partner
You can define a connection to a partner by adding an entry to the CPI-C side information data set.

Note: This example is for a connection to a Windows system but the task is the same for other platforms.

Add an entry to the CPI-C side information data set to define the connection. Sample JCL to do this
definition is in thlqual.SCSQPROC(CSQ4SIDE).

The entry you add will look like this:

 SIADD
 DESTNAME(M3) 13
 MODENAME(#INTER) 14

Configuration reference 63

 TPNAME(MQSERIES) 15
 PARTNER_LU(WINNTLU) 16

What next?
The connection is now established. You are ready to complete the configuration.

Go to “IBM MQ for z/OS shared channel configuration” on page 64.

Establishing a TCP connection Using Sysplex Distributor
You can set up Sysplex distributor to use one connection name to connect to the queue sharing group.

1. Define a Distributed DVIPA address as follows:

a. Add a DYNAMICXCF statement to the IPCONFIG. This statement is used for inter-image
connectivity using dynamically created XCF TCP/IP links.

b. Use the VIPADYNAMIC block on each image in the Sysplex.

i) On the owning image, code a VIPADEFINE statement to create the DVIPA Then code a
VIPADISTRIBUTE statement to distribute it to all other or selected images.

ii) On the backup image, code a VIPABACKUP statement for the DVIPA address.
2. If more than one channel initiator will be started on any LPAR in the sysplex then add the SHAREPORT

option for the port to be shared in the PORT reservation list in the PROFILE data set.

See PORT statement in the z/OS Communications Server: IP Configuration Reference for more information.

Sysplex Distributor balances the inbound connections between each LPAR. If there is more than one
channel initiator on an LPAR, then the use of SHAREPORT passes that inbound connection to the listener
port with the smallest number of connections.

When you have completed these steps, the TCP connection is established. You are ready to complete the
configuration.

Go to “IBM MQ for z/OS shared channel configuration” on page 64.

IBM MQ for z/OS shared channel configuration
Configure the shared channel by starting the channel initiator and issuing appropriate commands for your
configuration.

1. Start the channel initiator using the command:

/cpf START CHINIT

2. Start an LU6.2 group listener using the command:

/cpf START LSTR TRPTYPE(LU62) LUNAME(G1) INDISP(GROUP)

The LUNAME of G1 refers to the symbolic name you gave your LU (11).
3. If you are using Virtual IP Addressing using Sysplex Distributor and want to listen on a specific

address, use the command:

/cpf START LSTR TRPTYPE(TCP) PORT(1555) IPADDR(mvsvipa) INDISP(GROUP)

There can be only one instance of the shared channel running at a time. If you try to start a second
instance of the channel it fails (the error message varies depending on other factors). The shared
synchronization queue tracks the channel status.

IBM MQ channels do not initialize successfully if the channel negotiation detects that the message
sequence number is different at each end. You might need to reset this manually.

64 IBM MQ Configuration Reference

https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-port-statement

Shared channel configuration example
To configure a shared channel, a number of steps must be completed.

The subsequent topics detail the configuration to be performed on the z/OS queue manager to implement
the channel described in “Example IBM MQ configuration for all platforms” on page 5.

Examples are given for connecting IBM MQ for z/OS and Windows. To connect to IBM MQ on another
platform use the appropriate set of values from the table in place of the values for Windows.

Note: The words in bold are suggested values and reflect the names of IBM MQ objects used throughout
these examples. You can change them in your product installation but, if you do, make sure that you use
your own values when working through the examples in this section.

Table 10. Configuration examples for IBM MQ for z/OS using queue sharing groups

ID Parameter Name Reference Example Used

Definition for local node

A Queue Manager Name QSG

B Local queue name QSG.SHAREDQ

 Connection to IBM MQ for Windows

The values in this section of the table must match the values used in “Channel configuration for Windows” on
page 52, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (LU 6.2) channel name QSG.WINNT.SNA

H Sender (TCP) channel name QSG.WINNT.TCP

I Receiver (LU 6.2) channel name G WINNT.QSG.SNA

J Receiver (TCP/IP) channel name H WINNT.QSG.TCP

 Connection to IBM MQ for AIX

The values in this section of the table must match the values used in “Channel configuration for AIX” on page
11, as indicated.

C Remote queue manager name AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (LU 6.2) channel name QSG.AIX.SNA

H Sender (TCP/IP) channel name QSG.AIX.TCP

I Receiver (LU 6.2) channel name G AIX.QSG.SNA

J Receiver (TCP/IP) channel name H AIX.QSG.TCP

Configuration reference 65

IBM MQ for z/OS shared sender-channel definitions
An example definition of shared sender-channels for LU 6.2 and TCP.

Using LU 6.2
Local Queue
 Object type : QLOCAL
 Name : WINNT F
 Usage : X (XmitQ)
 Disposition : SHARED

 Remote Queue
 Object type : QREMOTE
 Name : WINNT.REMOTEQ D
 Name on remote system : WINNT.LOCALQ E
 Remote system name : WINNT C
 Transmission queue : WINNT F
 Disposition : GROUP

 Sender Channel
 Channel name : MVS.WINNT.SNA G
 Transport type : L (LU6.2)
Transmission queue name : WINNT F
 Connection name : M3 13
 Disposition : GROUP

Using TCP
 Local Queue
 Object type : QLOCAL
 Name : WINNT F
 Usage : X (XmitQ)
 Disposition : SHARED

 Remote Queue
 Object type : QREMOTE
 Name : WINNT.REMOTEQ D
 Name on remote system : WINNT.LOCALQ E
 Remote system name : WINNT C
 Transmission queue : WINNT F
 Disposition : GROUP

 Sender Channel
 Channel name : QSG.WINNT.TCP H
 Transport type : T (TCP)
Transmission queue name : WINNT F
 Connection name : winnt.tcpip.hostname
 Disposition : GROUP

IBM MQ for z/OS shared receiver-channel definitions
An example definition of shared receiver-channels for LU 6.2 and TCP.

Using LU 6.2
 Local Queue
 Object type : QLOCAL
 Name : QSG.SHAREDQ B
 Usage : N (Normal)
 Disposition : SHARED

 Receiver Channel
 Channel name : WINNT.QSG.SNA I
 Disposition : GROUP

Using TCP
 Local Queue
 Object type : QLOCAL
 Name : QSG.SHAREDQ B

66 IBM MQ Configuration Reference

 Usage : N (Normal)
 Disposition : SHARED

 Receiver Channel
 Channel name : WINNT.QSG.TCP J
 Disposition : GROUP

Example MQ configuration for z/OS using intra-group queuing
This section describes how a typical payroll query application, that currently uses distributed queuing to
transfer small messages between queue managers, could be migrated to use queue sharing groups and
shared queues.

Three configurations are described to illustrate the use of distributed queuing, intra-group queuing with
shared queues, and shared queues. The associated diagrams show only the flow of data in one direction,
that is, from queue manager QMG1 to queue manager QMG3.

Configuration 1
Configuration 1 describes how distributed queuing is currently used to transfer messages between queue
managers QMG1 and QMG3.

Configuration 1 shows a distributed queuing system that is used to transfer messages received by queue
manager QMG1 from the payroll query to queue manager QMG2 and then finally on to queue manager
QMG3, to be sent to the payroll server.

Figure 2. Configuration 1: z/OS using intra-group queuing

The flow of operations is as follows:

1. A query is entered using the payroll request application connected to queue manager QMG1.
2. The payroll request application puts the query on to remote queue PAYROLL.QUERY. As queue

PAYROLL.QUERY resolves to transmission queue QMG2, the query is put on to transmission queue
QMG2.

3. Sender channel (S) on queue manager QMG1 delivers the query to the partner receiver channel (R) on
queue manager QMG2.

4. Receiver channel (R) on queue manager QMG2 puts the query on to queue PAYROLL on queue
manager QMG3. As queue PAYROLL on QMG3 resolves to transmission queue QMG3, the query is
put on to transmission queue QMG3.

5. Sender channel (S) on queue manager QMG2 delivers the query to the partner receiver channel (R) on
queue manager QMG3.

6. Receiver channel (R) on queue manager QMG3 puts the query on to local queue PAYROLL.
7. The payroll server application connected to queue manager QMG3 retrieves the query from local

queue PAYROLL, processes it, and generates a suitable reply.

Configuration reference 67

Configuration 1 definitions
The definitions required for Configuration 1 are as follows (note that the definitions do not take into
account triggering, and that only channel definitions for communication using TCP/IP are provided).

On QMG1
Remote queue definition:

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QMG3') REPLACE +
PUT(ENABLED) RNAME(PAYROLL) RQMNAME(QMG3) XMITQ(QMG2)

Transmission queue definition:

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG2') XMITQ(QMG2) CONNAME('MVSQMG2(1415)')

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2')

Reply-to queue definition:

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to payroll queries sent to QMG3')

On QMG2
Transmission queue definition:

DEFINE QLOCAL(QMG1) DESCR('Transmission queue to QMG1') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

DEFINE QLOCAL(QMG3) DESCR('Transmission queue to QMG3') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definitions (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG1') XMITQ(QMG1) CONNAME('WINTQMG1(1414)')

Here you replace WINTQMG1(1414) with your queue manager connection name and port.

DEFINE CHANNEL(QMG2.TO.QMG3) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG3') XMITQ(QMG3) CONNAME('MVSQMG3(1416)')

Here you replace MVSQMG3(1416) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG1')

DEFINE CHANNEL(QMG3.TO.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG3')

68 IBM MQ Configuration Reference

On QMG3
Local queue definition:

DEFINE QLOCAL(PAYROLL) DESCR('Payroll query request queue') REPLACE +
PUT(ENABLED) USAGE(NORMAL) GET(ENABLED) SHARE

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definitions (for TCP/IP):

DEFINE CHANNEL(QMG3.TO.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG2) XMITQ(QMG2) CONNAME('MVSQMG2(1415)')

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG3) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2)

Configuration 2
Configuration 2 describes how queue sharing groups and intra-group queuing can be used, with no effect
on the back-end payroll server application, to transfer messages between queue managers QMG1 and
QMG3.

Configuration 2 shows a distributed queuing system that uses queue sharing groups and intra-group
queuing to transfer messages from the payroll request application to the payroll server. This configuration
removes the need for channel definitions between queue managers QMG2 and QMG3 because intra-
group queuing is used to transfer messages between these two queue managers.

Figure 3. Configuration 2

The flow of operations is as follows:

1. A query is entered using the payroll request application connected to queue manager QMG1.
2. The payroll request application puts the query on to remote queue PAYROLL.QUERY. As queue

PAYROLL.QUERY resolves to transmission queue QMG2, the query is put on to transmission queue
QMG2.

3. Sender channel (S) on queue manager QMG1 delivers the query to the partner receiver channel (R) on
queue manager QMG2.

4. Receiver channel (R) on queue manager QMG2 puts the query on to queue PAYROLL
on queue manager QMG3. As queue PAYROLL on QMG3 resolves to shared transmission
queue SYSTEM.QSG.TRANSMIT.QUEUE, the query is put on to shared transmission queue
SYSTEM.QSG.TRANSMIT.QUEUE.

Configuration reference 69

5. IGQ agent on queue manager QMG3 retrieves the query from shared transmission queue
SYSTEM.QSG.TRANSMIT.QUEUE, and puts it on to local queue PAYROLL on queue manager QMG3.

6. The payroll server application connected to queue manager QMG3 retrieves the query from local
queue PAYROLL, processes it, and generates a suitable reply.

Note: The payroll query example transfers small messages only. If you need to transfer both persistent
and non-persistent messages, a combination of Configuration 1 and Configuration 2 can be established,
so that large messages can be transferred using the distributed queuing route, while small messages can
be transferred using the potentially faster intra-group queuing route.

Configuration 2 definitions
The definitions required for Configuration 2 are as follows (note that the definitions do not take into
account triggering, and that only channel definitions for communication using TCP/IP are provided).

It is assumed that queue managers QMG2 and QMG3 are already configured to be members of the same
queue sharing group.

On QMG1
Remote queue definition:

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QMG3') REPLACE +
PUT(ENABLED) RNAME(PAYROLL) RQMNAME(QMG3) XMITQ(QMG2)

Transmission queue definition:

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG2') XMITQ(QMG2) CONNAME('MVSQMG2(1415)')

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2')

Reply-to queue definition:

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to payroll queries sent to QMG3')

On QMG2
Transmission queue definition:

DEFINE QLOCAL(QMG1) DESCR('Transmission queue to QMG1') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

DEFINE QLOCAL(SYSTEM.QSG.TRANSMIT.QUEUE) QSGDISP(SHARED) +
DESCR('IGQ Transmission queue') REPLACE PUT(ENABLED) USAGE(XMITQ) +
GET(ENABLED) INDXTYPE(CORRELID) CFSTRUCT('APPLICATION1') +
DEFSOPT(SHARED) DEFPSIST(NO)

Here you replace APPLICATION1 with your defined CF structure name. Also note that this queue, being a
shared queue, need only be defined on one of the queue managers in the queue sharing group.

70 IBM MQ Configuration Reference

Sender channel definitions (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG1') XMITQ(QMG1) CONNAME('WINTQMG1(1414)')

Here you replace WINTQMG1(1414) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG1')

Queue Manager definition:

ALTER QMGR IGQ(ENABLED)

On QMG3
Local queue definition:

DEFINE QLOCAL(PAYROLL) DESCR('Payroll query request queue') REPLACE +
PUT(ENABLED) USAGE(NORMAL) GET(ENABLED) SHARE

Queue Manager definition:

ALTER QMGR IGQ(ENABLED)

Configuration 3
Configuration 3 describes how queue sharing groups and shared queues can be used, with no effect
on the back-end payroll server application, to transfer messages between queue managers QMG1 and
QMG3.

Configuration 3 shows a distributed queuing system that uses queue sharing groups and shared queues to
transfer messages between queue manager QMG1 and queue manager QMG3.

Figure 4. Configuration 3

The flow of operations is:

1. A query is entered using the payroll request application connected to queue manager QMG1.
2. The payroll request application puts the query on to remote queue PAYROLL.QUERY. As queue

PAYROLL.QUERY resolves to transmission queue QMG2, the query is put on to transmission queue
QMG2.

3. Sender channel (S) on queue manager QMG1 delivers the query to the partner receiver channel (R) on
queue manager QMG2.

4. Receiver channel (R) on queue manager QMG2 puts the query on to shared queue PAYROLL.

Configuration reference 71

5. The payroll server application connected to queue manager QMG3 retrieves the query from shared
queue PAYROLL, processes it, and generates a suitable reply.

This configuration is certainly the simplest to configure. However, distributed queuing or intra-group
queuing would need to be configured to transfer replies (generated by the payroll server application
connected to queue manager QMG3) from queue manager QMG3 to queue manager QMG2, and then on
to queue manager QMG1. (See “What the queue sharing group example for z/OS shows” on page 168 for
the configuration used to transfer replies back to the payroll request application.)

No definitions are required on QMG3.

Configuration 3 definitions
The definitions required for Configuration 3 are as follows (note that the definitions do not take into
account triggering, and that only channel definitions for communication using TCP/IP are provided).

It is assumed that queue managers QMG2 and QMG3 are already configured to be members of the same
queue sharing group.

On QMG1
Remote queue definition:

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QMG3') REPLACE +
PUT(ENABLED) RNAME(PAYROLL) RQMNAME(QMG3) XMITQ(QMG2)

Transmission queue definition:

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QMG2') XMITQ(QMG2) CONNAME('MVSQMG2(1415)')

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2')

Reply-to queue definition:

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to payroll queries sent to QMG3')

On QMG2
Transmission queue definition:

DEFINE QLOCAL(QMG1) DESCR('Transmission queue to QMG1') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definitions (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QMG1') XMITQ(QMG1) CONNAME('WINTQMG1(1414)')

Here you replace WINTQMG1(1414) with your queue manager connection name and port.

72 IBM MQ Configuration Reference

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG1')

Local queue definition:

DEFINE QLOCAL(PAYROLL) QSGDISP(SHARED) DESCR('Payroll query request queue') +
REPLACE PUT(ENABLED) USAGE(NORMAL) GET(ENABLED) SHARE +
DEFSOPT(SHARED) DEFPSIST(NO) CFSTRUCT(APPLICATION1)

Here you replace APPLICATION1 with your defined CF structure name. Also note that this queue, being a
shared queue, need only be defined on one of the queue managers in the queue sharing group.

On QMG3
No definitions are required on QMG3.

Running the example
After setting up the sample, you can run the sample.

For Configuration 1:

1. Start queue managers QMG1, QMG2, and QMG3.
2. Start channel initiators for QMG2 and QMG3.
3. Start the listeners on QMG1 to listen to port 1414, QMG2 to listen on port 1415, and QMG3 to listen on

port 1416.
4. Start sender channels on QMG1, QMG2, and QMG3.
5. Start the payroll query requesting application connected to QMG1.
6. Start the payroll server application connected to QMG3.
7. Submit a payroll query request to QMG3 and wait for the payroll reply.

For Configuration 2:

1. Start queue managers QMG1, QMG2, and QMG3.
2. Start the channel initiator for QMG2.
3. Start the listeners on QMG1 to listen on port 1414, and QMG2 to listen on port 1415.
4. Start the sender channel on QMG1 and QMG2.
5. Start the payroll query requesting application connected to QMG1.
6. Start the payroll server application connected to QMG3.
7. Submit a payroll query request to QMG3 and wait for the payroll reply.

For Configuration 3:

1. Start queue managers QMG1, QMG2, and QMG3.
2. Start the channel initiator for QMG2.
3. Start the listeners on QMG1 to listen on port 1414, and QMG2 to listen on port 1415.
4. Start sender channels on QMG1 and QMG2.
5. Start the payroll query requesting application connected to QMG1.
6. Start the payroll server application connected to QMG3.
7. Submit a payroll query request to QMG3 and wait for the payroll reply.

Configuration reference 73

Expanding the example
The example can be expanded in a number of ways.

The example can be:

• Expanded to use channel triggering as well as application (PAYROLL and PAYROLL.REPLY queue)
triggering.

• Configured for communication using LU6.2.
• Expanded to configure more queue managers to the queue sharing group. Then the server application

can be cloned to run on other queue manager instances to provide multiple servers for the PAYROLL
query queue.

• Expanded to increase the number of instances of the payroll query requesting application to
demonstrate the processing of requests from multiple clients.

• Expanded to use security (IGQAUT and IGQUSER).

IBM MQ file system permissions applied
to /var/mqm

The following information describes the security applied to the files and directories under /var/mqm/
and why the file-system permissions are set as they are. In order to ensure the correct operation of IBM
MQ you should not alter the file system permissions as set by IBM MQ

crtmqdir command
From IBM MQ 9.0.3, if your enterprise has changed any of the /var/mqm file permissions, for whatever
reason, you can update the permissions, or add directories, by using the crtmqdir command

IBM MQ file system Security on UNIX, Linux, and IBM i
The files under the IBM MQ data directory (/var/mqm) are used to store:

• IBM MQ configuration data
• Application data (IBM MQ objects and the data contained within IBM MQ messages)
• Run-time control information
• Monitoring information (messages and FFST files)

Access to this data is controlled using file system permissions with some of the data being accessible
to all users while other data is restricted only to members of the IBM MQ Administrator group 'mqm' (or
QMQM on IBM i).

Access is granted in the following three categories:

mqm group only
The files and directories in this category are only accessible to IBM MQ Administrators (members of the
'mqm' group) and the IBM MQ queue manager processes.

The file permissions for these files and directories are:

 -rwxrwx--- mqm:mqm (UNIX and Linux)
 -rwxrwx--- QMQMADM:QMQM (IBM i)

An example of the files and directories in this category is:

 /var/mqm/qmgrs/QMGR/qm.ini
 /var/mqm/qmgrs/QMGR/channel/
 /var/mqm/qmgrs/QMGR/channel/SYSTEM!DEF!SCRVONN
 /var/mqm/qmgrs/QMGR/queues/
 /var/mqm/qmgrs/QMGR/queues/SYSTEM!DEFAULT!LOCAL!QUEUES/

74 IBM MQ Configuration Reference

 /var/mqm/qmgrs/QMGR/errors/
 /var/mqm/qmgrs/QMGR/errors/AMQERR01.LOG
 /var/mqm/qmgrs/QMGR/ssl/
 /var/mqm/qmgrs/QMGR/@qmgr/
 /var/mqm/qmgrs/QMGR/@qmpersist/
 ...

All users read access - mqm group members read and write access
The files and directories in this category can be read by all users, but only members of the 'mqm' group can
modify these files and manipulate these directories.

The file permissions for these files and directories are:

 -rwxrwxr-x mqm:mqm (UNIX and Linux)
 -rwxrwxr-x QMQMADM:QMQM (IBM i)

An example of the files and directories in this category is:

/var/mqm/mqs.ini
/var/mqm/exits/
/var/mqm/qmgrs/
/var/mqm/qmgrs/QMGR/
/var/mqm/qmgrs/QMGR/@app/
/var/mqm/qmgrs/QMGR/@ipcc/

Attention: You should only set execute permissions on executable files and scripts. For example,
on Linux when the crtmqm command runs, the following file permissions are set:

-rw-rw---- mqm mqm /var/mqm/qmgrs/QMGR/qm.ini
-rw-rw---- mqm mqm /var/mqm/qmgrs/QMGR/channel/SYSTEM!DEF!SCRVONN
-rw-rw---- mqm mqm /var/mqm/qmgrs/QMGR/errors/AMQERR01.LOG
-rw-rw-r-- mqm mqm /var/mqm/mqs.ini

IBM MQ 8.0:

/var/mqm/sockets/@SYSTEM
/var/mqm/sockets/QMGR/@app/hostname
/var/mqm/sockets/QMGR/@ipcc/hostname

All users read and write access
Files that have read and write access for all users

IBM MQ has no regular files that have world writable file permissions (777). However there are a number
of special files that appear as having world writable file permissions.

These special files provide no security exposure. Although the permissions are shown as 777, they are not
regular files and you cannot write directly to them.

These special files are:
Symbolic links

Symbolic links are identified by the 'l' character at the start of their permissions. The permissions on
the symbolic link have no effect on who is able to access the target file, as access to the command is
controlled by the permissions on the target of the symbolic link.
On most UNIX and Linux systems it is not possible to change the permissions on symbolic links, so
they always appear as lrwxrwxrwx.

Socket files
Socket files are special files created by the operating system, as a result of a process creating a UNIX
domain socket. These files can be identified by the 's' at the start of the file permissions, that is
srwxrwxrwx.
The permissions on the file do not grant access to the file itself, but define who can connect to the
UNIX domain socket.

Configuration reference 75

IBM MQ uses a number of these socket files and the permissions are always set according to who is
allowed to communicate with the socket.
The following directories contain socket files that have read/write permissions for all users
(srwxrwxrwx).
IBM MQ 8.0:

/var/mqm/sockets/QMGR/zsocketEC/hostname/Zsocket_*

Socket files used by applications that connect to IBM MQ using isolated bindings.

/var/mqm/sockets/QMGR/@ipcc/ssem/hostname/*

Directories that have read and write access for all users

There are times when IBM MQ applications need to create files under the IBM MQ data directory.
To ensure that applications are able to create files when they are required, a number of directories
are granted world write access, which means that any user on the system can create files within that
directory.

With the exception of the errors logs files, that can be written to by any member of the 'mqm' group, all
files created in these directories are created with restricted permissions that allows only the file creator
write access. This allows the system administrator to track the user ID of all data written to files in these
directories.
/var/mqm/errors/

This directory contains the system error log files and FFST files. The permission of this directory is
'drwxrwsrwt' meaning that all users on the system can create files in this directory.
The SetGroupId bit 's' indicates that all files created in this directory have the group ownership of
'mqm'.
The 't' sticky bit is not set by default on this directory, but an IBM MQ administrator can set this
explicitly, to allow users to delete only the files that they create.

Note: This feature is not available on IBM i.

AMQERR0*.LOG
These error log files can only be written to directly by members of the group but any user can
read the messages written to these files (permission: -rw-rw-r--).

AMQnnnnn.*.FDC
These files contain FFST information written when an error occurs in the queue manager or in an
application written by a user. These files are created with the permissions -rw-r-----.

/var/mqm/trace/
Trace files are written to this directory when IBM MQ trace is enabled. IBM MQ trace is written by all
process associated with a queue manager for which trace is enabled.
The permissions of this directory are 'drwxrwsrwt' meaning that all users on the system can create
files in this directory.
The SetGroupId bit 's' indicates that all files created in this directory have the group ownership of
'mqm'.
The 't' sticky bit is not set by default on this directory, but an IBM MQ administrator can set this
explicitly, to allow users to delete only the files that they create.

Note: This feature is not available on IBM i.

AMQnnnnn.*.TRC
These files contain the trace data written by each process which is tracing and are created with
permissions -rw-r-----
The permissions on this directory are drwxrwsrwt and the permissions of the socket files created
in this directory are srwx------.

76 IBM MQ Configuration Reference

IBM MQ 8.0:

/var/mqm/sockets/QMGR/zsocketapp/hostname/

This directory is used by applications that connect to the IBM MQ queue manager using isolated
bindings. During connect processing a socket file is created by the connecting application in this
directory. The socket file is removed after the connection is made to the queue manager.
The permissions on this directory are drwxrwsrwt and the permissions of the socket files created
in this directory are srwx------.
The SetGroupId bit 's' on this directory ensures that all files created in this directory have the
group ownership of 'mqm'.
On all platforms except IBM i, this directories also has the 't' sticky bit set which prevents a
user from deleting any files except the ones for which they are the owner. This prevents an
unauthorized user from deleting files that they do not own.

/var/mqm/sockets/QMGR/@ipcc/ssem/hostname/
/var/mqm/sockets/QMGR/@app/ssem/hostname/

For processes that connect to IBM MQ using shared bindings then UNIX domain
sockets might be used to synchronize between the application and the queue manager. When
UNIX domain sockets are being used then the associated socket file is created in these
directories.
The permissions on these directories are drwxrwsrwt and the permissions of the socket files
created in these directories are srwxrwxrwx.
The SetGroupId bit 's' on these directories ensures that all files created in these directories have
the group ownership of 'mqm'.
On all platforms except IBM i, these directories also have the 't' sticky bit set which prevents
a user from deleting any files except the ones for which they are the owner. This prevents an
unauthorized user from deleting files that they do not own.

Use of System V IPC resources by IBM MQ

IBM MQ uses System V shared memory and semaphores for inter-process communication. These
resources are grouped according to how they are used with each group having appropriate ownership
and access permissions.

To verify which of the System V IPC resources on a system belong to IBM MQ you can:

• Check the ownership.

The owning user of IBM MQ System V IPC resources is always the 'mqm' user on UNIX platforms and
Linux. On IBM i the owning user is 'QMQM'.

• IBM MQ 8.0 and later, use the amqspdbg utility.

The amqspdbg utility which is shipped with IBM MQ can be used to display the shared memory and
semaphore id's for a given queue manager.

You must issue the command once for the 'system' group of System V resources created by IBM MQ

amqspbg -z -I

and then four times for each queue manager on the system to get the complete list of System V
resources used by IBM MQ. Assume a queue manager name of QMGR1 in the following examples:.

amqspdbg -i QMGR1 -I
amqspdbg -q QMGR1 -I
amqspdbg -p QMGR1 -I
amqspdbg -a QMGR1 -I

Configuration reference 77

The access permissions on the System V resources created by IBM MQ are set to grant only the correct
level of access to the permitted users. A number of the System V IPC resources created by IBM MQ are
accessible to all users on the machine and have permissions of -rw-rw-rw-.

The -g ApplicationGroup parameter on the crtmqm command can be used to restrict access to a
queue manager to membership of a specific operating system group. The use of this restricted group
functionality restricts the permissions granted on the System V IPC resources further.

IBM MQ file permissions in /opt/mqm with setuid for mqm
The following information covers the situation where your security team has flagged some of the
executable IBM MQ files in the directory tree $MQ_INSTALLATION_PATH, in violation of local security
policies. The default location in AIX is /usr/mqm and for the other UNIX operating systems is /opt/mqm.
If you have installed IBM MQ in a non-default directory, such as /opt/mqm90, or if you have multiple
installations, the details in this topic still apply.

Cause of the problem
Your security team has identified the following areas of concern under $MQ_INSTALLATION_PATH:

1. Files in /opt/mqm/bin directory are setuid for the owner of the directory tree where they reside. For
example:

dr-xr-xr-x mqm mqm ${MQ_INSTALLATION_PATH}/bin
-r-sr-s--- mqm mqm ${MQ_INSTALLATION_PATH}/bin/addmqinf
-r-sr-s--- mqm mqm ${MQ_INSTALLATION_PATH}/bin/amqcrsta
-r-sr-s--- mqm mqm ${MQ_INSTALLATION_PATH}/bin/amqfcxba
...

2. Practically all the directories and files are owned by "mqm:mqm" except for the following, which are
owned by root:

dr-xr-x--- root mqm ${MQ_INSTALLATION_PATH}/bin/security
-r-sr-x--- root mqm ${MQ_INSTALLATION_PATH}/bin/security/amqoamax
-r-sr-x--- root mqm ${MQ_INSTALLATION_PATH}/bin/security/amqoampx

This subdirectory needs to be owned by root, because these are the executable files that interact with
the operating system when the user from an IBM MQ client specifies a password, and this password is
passed by the IBM MQ queue manager to the operating system to confirm if the password is valid or is
not valid.

3. User does not own files in /opt/mqm/lib/iconv directory (this directory does not exist on AIX). For
example:

dr-xr-xr-x mqm mqm ${MQ_INSTALLATION_PATH}/lib/iconv
-r--r--r-- bin bin ${MQ_INSTALLATION_PATH}/lib/iconv/002501B5.tbl
-r--r--r-- bin bin ${MQ_INSTALLATION_PATH}/lib/iconv/002501F4.tbl
-r--r--r-- bin bin ${MQ_INSTALLATION_PATH}/lib/iconv/00250333.tbl
...

4. The fix pack maintenance directory on RPM-based Linux systems. When fix packs are installed, the
existing files are saved under this directory in a structure similar to that shown in the following
example, except that in this example V.R represents the IBM MQ version and release number and the
subdirectories that appear depend on the fix packs that have been installed:

drwx------ root root ${MQ_INSTALLATION_PATH}/maintenance
drwxr-xr-x root root ${MQ_INSTALLATION_PATH}/maintenance/V.R.0.1
drwxr-xr-x root root ${MQ_INSTALLATION_PATH}/maintenance/V.R.0.3
drwxr-xr-x root root ${MQ_INSTALLATION_PATH}/maintenance/V.R.0.4
...

Resolving the problem
One of the concerns on UNIX systems with respect to setuid programs was that the system security could
be compromised by manipulating environment variables such as LD* (LD_LIBRARY_PATH, LIBPATH on

78 IBM MQ Configuration Reference

AIX, and so on). This is no longer a concern, as various UNIX operating systems now ignore these LD*
environment variables when loading setuid programs.

1. Why some of the IBM MQ programs are mqm-setuid or mqm-setgid.

In IBM MQ, the user id "mqm" and any ID which is a part of the "mqm" group are the IBM MQ
administrative users.

IBM MQ queue manager resources are protected by authenticating against this user. Since the queue
manager processes use and modify these queue manager resources, the queue manager processes
require "mqm" authority to access the resources. Therefore, IBM MQ queue manager support processes
are designed to run with the effective user-id of "mqm".

To help non-administrative users accessing IBM MQ objects, IBM MQ provides an Object Authority
Manager (OAM) facility, whereby authorities can be granted and revoked on the need of the application
run by the non-administrative user.

With the ability to grant different levels of authentications for users and the fact that setuid and
setgid programs ignore LD* variables, the IBM MQ binary and library files do not compromise the
security of your system in any way.

2. It is not possible to change the permissions to satisfy the security policy of your enterprise without
jeopardizing IBM MQ functionality.

You must not change the permissions and ownerships of any of the IBM MQ binaries and libraries. IBM
MQ functionality can suffer due to this kind of change, such that queue manager processes might fail
to access some of the resources.

Note that the permissions and ownerships do not pose any security threat to the system.

Linux hard drives/disks where IBM MQ is installed or where IBM MQ data is located must not be
mounted with the nosuid option. This configuration might inhibit IBM MQ functionality.

For more information see “IBM MQ file system permissions applied to /var/mqm” on page 74.

Related concepts
Filesystem

IBM MQ file system permissions on Windows
The following information describes the security applied to the files and directories on Windows. In order
to ensure the correct operation of IBM MQ you should not alter the file system permissions as set by IBM
MQ.

Data directory
Note: The permissions that are set on the root of this directory, are inherited downwards throughout the
directory structure.

The directories under the data directory (DATADIR) are set with the following permissions, apart from the
exceptions detailed in the following text.
Administrators

Full control
mqm group

Full control
SYSTEM

Full control
Everyone

Read and execute

The exceptions are:

Configuration reference 79

DATADIR\errors
Everyone full control

DATADIR\trace
Everyone full control

DATADIR\log
Administrators

Full control
mqm group

Full control
SYSTEM

Full control
Everyone

Read

DATADIR\log\<qmgrname>\active
Administrators

Full control
mqm group

Full control
SYSTEM

Full control
No access granted to Everyone.

Earlier releases of the product
In releases of the product prior to IBM MQ 8.0, the default program and default data directories were
co-located.

In any installation that was originally installed before IBM MQ 8.0. and which was installed to the
default locations, and then upgraded from that, the data and program directories remain co-located (in
C:\Program Files\IBM\WebSphere MQ.

In the case of co-located data and program directories, the preceding information applies only to the
directories that belong to the data directory, and not those that are part of the program directory.

Naming restrictions for queues
There are restrictions on the length of queue names. Some queue names are reserved for queues defined
by the queue manager.

Restrictions on name lengths
Queues can have names up to 48 characters long.

Reserved queue names
Names that start with "SYSTEM." are reserved for queues defined by the queue manager. You can use the
ALTER or DEFINE REPLACE commands to change these queue definitions to suit your installation. The
following names are defined for IBM MQ:

Queue Name Description

SYSTEM.ADMIN.ACTIVITY.QUEUE Queue for activity reports

SYSTEM.ADMIN.CHANNEL.EVENT Queue for channel events

80 IBM MQ Configuration Reference

Queue Name Description

SYSTEM.ADMIN.COMMAND.EVENT Queue for command events

SYSTEM.ADMIN.COMMAND.QUEUE Queue to which PCF command messages are sent

SYSTEM.ADMIN.CONFIG.EVENT Queue for configuration events

SYSTEM.ADMIN.PERFM.EVENT Queue for performance events

SYSTEM.ADMIN.PUBSUB.EVENT System publish/subscribe related event queue

SYSTEM.ADMIN.QMGR.EVENT Queue for queue manager events

SYSTEM.ADMIN.TRACE.ROUTE.QUEUE Queue for trace-route reply messages

SYSTEM.AUTH.DATA.QUEUE The queue that holds access control lists for the queue
manager. (Not for z/OS)

SYSTEM.CHANNEL.INITQ Initiation queue for channels

SYSTEM.CHANNEL.SYNCQ The queue that holds the synchronization data for
channels

SYSTEM.CHLAUTH.DATA.QUEUE IBM MQ channel authentication data queue

SYSTEM.CICS.INITIATION.QUEUE Queue used for triggering (not for z/OS)

SYSTEM.CLUSTER.COMMAND.QUEUE Queue used to communicate repository changes between
queue managers

SYSTEM.CLUSTER.HISTORY.QUEUE The queue is used to store the history of cluster state
information for service purposes.

SYSTEM.CLUSTER.REPOSITORY.QUEUE Queue used to hold information about the repository

SYSTEM.CLUSTER.TRANSMIT.MODEL.QUE
UE

The queue is used to create individual transmit queues
for each cluster-sender channel.

SYSTEM.CLUSTER.TRANSMIT.QUEUE Transmission queue for all destinations managed by
cluster support

SYSTEM.COMMAND.INPUT Queue to which command messages are sent on z/OS

SYSTEM.COMMAND.REPLY.MODEL Model queue definition for command replies (for z/OS)

SYSTEM.DEAD.LETTER.QUEUE Dead-letter queue (not for z/OS)

SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue definition

SYSTEM.DEFAULT.INITIATION.QUEUE Queue used to trigger a specified process (not for z/OS)

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue definition

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue definition

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue definition

SYSTEM.DURABLE.SUBSCRIBER.QUEUE A local queue used to hold a persistent copy of the
durable subscriptions in the queue manager

SYSTEM.HIERARCHY.STATE Queue used to hold information about the state of
inter-queue manager relationships in a publish/subscribe
hierarchy

SYSTEM.JMS.TEMPQ.MODEL Model for JMS temporary queues

SYSTEM.INTERNAL.REPLY.QUEUE IBM MQ internal reply queue (not for z/OS)

Configuration reference 81

Queue Name Description

SYSTEM.INTER.QMGR.CONTROL Queue used in a publish/subscribe hierarchy to receive
requests from a remote queue manager to create a proxy
subscription

SYSTEM.INTER.QMGR.PUBS Queue used in a publish/subscribe hierarchy to receive
publications from a remote queue manager

SYSTEM.INTER.QMGR.FANREQ Queue used in a publish/subscribe hierarchy to process
requests to create a proxy subscription on a remote
queue manager

SYSTEM.MQEXPLORER.REPLY.MODEL Model queue definition for replies for IBM MQ Explorer

SYSTEM.MQSC.REPLY.QUEUE Model queue definition for MQSC command replies (not
for z/OS)

SYSTEM.QSG.CHANNEL.SYNCQ Shared local queue used for storing messages that
contain the synchronization information for shared
channels (z/OS only)

SYSTEM.QSG.TRANSMIT.QUEUE Shared local queue used by the intra-group queuing
agent when transmitting messages between queue
managers in the same queue sharing group (z/OS only)

SYSTEM.RETAINED.PUB.QUEUE A local queue used to hold a copy of each retained
publication in the queue manager.

SYSTEM.SELECTION.EVALUATION.QUEUE IBM MQ internal selection evaluation queue (not for
z/OS)

SYSTEM.SELECTION.VALIDATION.QUEUE IBM MQ internal selection validation queue (not for z/OS)

Naming restrictions for other objects
There are restrictions on the length of object names. Some object names are reserved for objects defined
by the queue manager.

Restrictions on name length
Processes, namelists, clusters, topics, services, and authentication information objects can have names
up to 48 characters long.

Channels can have names up to 20 characters long.

Storage classes can have names up to 8 characters long.

CF structures can have names up to 12 characters long.

Reserved object names
Names that start with SYSTEM. are reserved for objects defined by the queue manager. You can use the
ALTER or DEFINE REPLACE commands to change these object definitions to suit your installation. The
following names are defined for IBM MQ:

Object Name Description

SYSTEM.ADMIN.SVRCONN Server-connection channel used for remote
administration of a queue manager

SYSTEM.AUTO.RECEIVER Default receiver channel for auto definition (UNIX, Linux,
and Windows systems only)

82 IBM MQ Configuration Reference

Object Name Description

SYSTEM.AUTO.SVRCONN Default server-connection channel for auto definition
(Multiplatforms only)

SYSTEM.BASE.TOPIC Base topic for ASPARENT resolution. If a particular
administrative topic object has no parent administrative
topic objects, any ASPARENT attributes are inherited
from this object

SYSTEM.DEF.CLNTCONN Default client-connection channel definition

SYSTEM.DEF.CLUSRCVR Default cluster-receiver channel definition

SYSTEM.DEF.CLUSSDR Default cluster-sender channel definition

SYSTEM.DEF.RECEIVER Default receiver channel definition

SYSTEM.DEF.REQUESTER Default requester channel definition

SYSTEM.DEF.SENDER Default sender channel definition

SYSTEM.DEF.SERVER Default server channel definition

SYSTEM.DEF.SVRCONN Default server-connection channel definition

SYSTEM.DEFAULT.AUTHINFO.CRLLDAP Default authentication information object definition for
defining authentication information objects of type
CRLLDAP

SYSTEM.DEFAULT.AUTHINFO.OCSP Default authentication information object definition for
defining authentication information objects of type OCSP

SYSTEM.DEFAULT.LISTENER.LU62 Default SNA listener (Windows only)

SYSTEM.DEFAULT.LISTENER.NETBIOS Default NetBIOS listener (Windows only)

SYSTEM.DEFAULT.LISTENER.SPX Default SPX listener (Windows only)

SYSTEM.DEFAULT.LISTENER.TCP Default TCP/IP listener (Multiplatforms only)

SYSTEM.DEFAULT.NAMELIST Default namelist definition

SYSTEM.DEFAULT.PROCESS Default process definition

SYSTEM.DEFAULT.SEVICE Default service (Multiplatforms only)

SYSTEM.DEFAULT.TOPIC Default topic definition

SYSTEM.QPUBSUB.QUEUE.NAMELIST A list of queues for the Queued Publish/Subscribe
interface to monitor

SYSTEMST Default storage class definition (z/OS only)

Queue name resolution
This topic contains information about queue name resolution as performed by queue managers at both
sending and receiving ends of a channel.

In larger networks, the use of queue managers has a number of advantages over other forms of
communication. These advantages derive from the name resolution function in DQM and the main
benefits are:

• Applications do not need to make routing decisions
• Applications do not need to know the network structure
• Network links are created by systems administrators

Configuration reference 83

• Network structure is controlled by network planners
• Multiple channels can be used between nodes to partition traffic

The following figure shows an example of queue name resolution. The figure shows two machines
in a network, one running a put application, the other running a get application. The applications
communicate with each other through the IBM MQ channel, controlled by the MCAs.

Figure 5. Name resolution

Referring to Figure 5 on page 84, the basic mechanism for putting messages on a remote queue, as far as
the application is concerned, is the same as for putting messages on a local queue:

• The application putting the message issues MQOPEN and MQPUT calls to put messages on the target
queue.

• The application getting the messages issues MQOPEN and MQGET calls to get the messages from the
target queue.

If both applications are connected to the same queue manager then no inter-queue manager
communication is required, and the target queue is described as local to both applications.

However, if the applications are connected to different queue managers, two MCAs and their associated
network connection are involved in the transfer, as shown in the figure. In this case, the target queue is
considered to be a remote queue to the putting application.

The sequence of events is as follows:

1. The putting application issues MQOPEN and MQPUT calls to put messages to the target queue.
2. During the MQOPEN call, the name resolution function detects that the target queue is not local, and

decides which transmission queue is appropriate. Thereafter, on the MQPUT calls associated with the
MQOPEN call, all messages are placed on this transmission queue.

3. The sending MCA gets the messages from the transmission queue and passes them to the receiving
MCA at the remote computer.

4. The receiving MCA puts the messages on the target queue, or queues.
5. The getting application issues MQOPEN and MQGET calls to get the messages from the target queue.

84 IBM MQ Configuration Reference

Note: Only step 1 and step 5 involve application code; steps 2 through 4 are performed by the local queue
managers and the MCA programs. The putting application is unaware of the location of the target queue,
which could be in the same processor, or in another processor on another continent.

The combination of sending MCA, the network connection, and the receiving MCA, is called a message
channel, and is inherently a unidirectional device. Normally, it is necessary to move messages in both
directions, and two channels are set up for this movement, one in each direction.

What is queue name resolution?
Queue name resolution is vital to DQM. It removes the need for applications to be concerned with the
physical location of queues, and insulates them against the details of networks.

A systems administrator can move queues from one queue manager to another, and change the routing
between queue managers without applications needing to know anything about it.

In order to uncouple from the application design the exact path over which the data travels, it is
necessary to introduce a level of indirection between the name used by the application when it refers
to the target queue, and the naming of the channel over which the flow occurs. This indirection is achieved
using the queue name resolution mechanism.

In essence, when an application refers to a queue name, the name is mapped by the resolution
mechanism either to a transmission queue or to a local queue that is not a transmission queue. For
mapping to a transmission queue, a second name resolution is needed at the destination, and the
received message is placed on the target queue as intended by the application designer. The application
remains unaware of the transmission queue and channel used for moving the message.

Note: The definition of the queue and channel is a system management responsibility and can be changed
by an operator or a system management utility, without the need to change applications.

An important requirement for the system management of message flows is that alternative paths need to
be provided between queue managers. For example, business requirements might dictate that different
classes of service are sent over different channels to the same destination. This decision is a system
management decision and the queue name resolution mechanism provides a flexible way to achieve it.
The Application Programming Guide describes this in detail, but the basic idea is to use queue name
resolution at the sending queue manager to map the queue name supplied by the application to the
appropriate transmission queue for the type of traffic involved. Similarly at the receiving end, queue name
resolution maps the name in the message descriptor to a local (not a transmission) queue or again to an
appropriate transmission queue.

Not only is it possible for the forward path from one queue manager to another to be partitioned
into different types of traffic, but the return message that is sent to the reply-to queue definition in
the outbound message can also use the same traffic partitioning. Queue name resolution satisfies this
requirement and the application designer need not be involved in these traffic partitioning decisions.

The point that the mapping is carried out at both the sending and receiving queue managers is an
important aspect of the way name resolution works. This mapping allows the queue name supplied by the
putting application to be mapped to a local queue or a transmission queue at the sending queue manager,
and again remapped to a local queue or a transmission queue at the receiving queue manager.

Reply messages from receiving applications or MCAs have the name resolution carried out in the same
way, allowing return routing over specific paths with queue definitions at all the queue managers on route.

System and default objects
Lists the system and default objects created by the crtmqm command.

When you create a queue manager using the crtmqm control command, the system objects and the
default objects are created automatically.

• The system objects are those IBM MQ objects needed to operate a queue manager or channel.
• The default objects define all the attributes of an object. When you create an object, such as a local

queue, any attributes that you do not specify explicitly are inherited from the default object.

Configuration reference 85

The following tables list the system and default objects created by crtmqm:

• Table 11 on page 86 lists the system and default queue objects.
• Table 12 on page 87 lists the system and default topic objects.
• Table 13 on page 87 lists the system and default channel objects.
• Table 14 on page 88 lists the system and default authentication information objects.
• Table 15 on page 88 lists the system and default listener objects.
• Table 16 on page 88 lists the system and default namelist objects.
• Table 17 on page 88 lists the system and default process objects.
• Table 18 on page 88 lists the system and default service objects.

Table 11. System and default objects: queues

Object name Description

SYSTEM.ADMIN.ACCOUNTING.QUEUE The queue that holds accounting monitoring data.

SYSTEM.ADMIN.ACTIVITY.QUEUE The queue that holds returned activity reports.

SYSTEM.ADMIN.CHANNEL.EVENT Event queue for channels.

SYSTEM.ADMIN.COMMAND.EVENT Event queue for command events.

SYSTEM.ADMIN.COMMAND.QUEUE Administration command queue. Used for remote
MQSC commands and PCF commands.

SYSTEM.ADMIN.CONFIG.EVENT Event queue for configuration events.

SYSTEM.ADMIN.PERFM.EVENT Event queue for performance events.

SYSTEM.ADMIN.PUBSUB.EVENT System publish/subscribe related event queue

SYSTEM.ADMIN.QMGR.EVENT Event queue for queue manager events.

SYSTEM.ADMIN.STATISTICS.QUEUE The queue that holds statistics monitoring data.

SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE The queue that displays trace activity.

SYSTEM.ADMIN.TRACE.ROUTE.QUEUE The queue that holds returned trace-route reply
messages.

SYSTEM.AUTH.DATA.QUEUE The queue that holds access control lists for the
queue manager.

SYSTEM.CHANNEL.INITQ Channel initiation queue.

SYSTEM.CHANNEL.SYNCQ The queue that holds the synchronization data for
channels.

SYSTEM.CHLAUTH.DATA.QUEUE IBM MQ channel authentication data queue

SYSTEM.CICS.INITIATION.QUEUE Default CICS initiation queue.

SYSTEM.CLUSTER.COMMAND.QUEUE The queue used to carry messages to the repository
queue manager.

SYSTEM.CLUSTER.HISTORY.QUEUE The queue is used to store the history of cluster state
information for service purposes.

SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE The queue is used to create individual transmit
queues for each cluster-sender channel.

SYSTEM.CLUSTER.REPOSITORY.QUEUE The queue used to store all repository information.

86 IBM MQ Configuration Reference

Table 11. System and default objects: queues (continued)

Object name Description

SYSTEM.CLUSTER.TRANSMIT.QUEUE The transmission queue for all messages to all
clusters.

SYSTEM.DEAD.LETTER.QUEUE Dead-letter (undelivered-message) queue.

SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue.

SYSTEM.DEFAULT.INITIATION.QUEUE Default initiation queue.

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue.

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue.

SYSTEM.JMS.TEMPQ.MODEL Model for JMS temporary queues

SYSTEM.MQEXPLORER.REPLY.MODEL The IBM MQ Explorer reply-to queue. This is a model
queue that creates a temporary dynamic queue for
replies to the IBM MQ Explorer.

SYSTEM.MQSC.REPLY.QUEUE MQSC command reply-to queue. This is a model
queue that creates a temporary dynamic queue for
replies to remote MQSC commands.

SYSTEM.PENDING.DATA.QUEUE Support deferred messages in JMS.

Table 12. System and default objects: topics

Object name Description

SYSTEM.BASE.TOPIC Base topic for ASPARENT resolution. If a particular
topic has no parent administrative topic objects,
or those parent objects also have ASPARENT, any
remaining ASPARENT attributes are inherited from this
object.

SYSTEM.DEFAULT.TOPIC Default topic definition.

Table 13. System and default objects: channels

Object name Description

SYSTEM.AUTO.RECEIVER Dynamic receiver channel.

SYSTEM.AUTO.SVRCONN Dynamic server-connection channel.

SYSTEM.DEF.CLUSRCVR Default receiver channel for the cluster, used to supply
default values for any attributes not specified when a
CLUSRCVR channel is created on a queue manager in
the cluster.

SYSTEM.DEF.CLUSSDR Default sender channel for the cluster, used to supply
default values for any attributes not specified when a
CLUSSDR channel is created on a queue manager in the
cluster.

SYSTEM.DEF.RECEIVER Default receiver channel.

SYSTEM.DEF.REQUESTER Default requester channel.

SYSTEM.DEF.SENDER Default sender channel.

Configuration reference 87

Table 13. System and default objects: channels (continued)

Object name Description

SYSTEM.DEF.SERVER Default server channel.

SYSTEM.DEF.SVRCONN Default server-connection channel.

SYSTEM.DEF.CLNTCONN Default client-connection channel.

SYSTEM.DEF.AMQP Default AMQP channel.

Table 14. System and default objects: authentication information objects

Object name Description

SYSTEM.DEFAULT.AUTHINFO.CRLLDAP Default authentication information object for defining
authentication information objects of type CRLLDAP.

SYSTEM.DEFAULT.AUTHINFO.OCSP Default authentication information object for defining
authentication information objects of type OCSP.

Table 15. System and default objects: listeners

Object name Description

SYSTEM.DEFAULT.LISTENER.TCP Default TCP listener.

SYSTEM.DEFAULT.LISTENER.LU62 1 Default LU62 listener.

SYSTEM.DEFAULT.LISTENER.NETBIOS 1 Default NETBIOS listener.

SYSTEM.DEFAULT.LISTENER.SPX 1 Default SPX listener.

1. Windows only

Table 16. System and default objects: namelists

Object name Description

SYSTEM.DEFAULT.NAMELIST Default namelist.

Table 17. System and default objects: processes

Object name Description

SYSTEM.DEFAULT.PROCESS Default process definition.

Table 18. System and default objects: services

Object name Description

SYSTEM.DEFAULT.SERVICE Default service.

SYSTEM.BROKER Publish/subscribe broker

Windows default configuration objects
On Windows systems, you can set up a default configuration using the IBM MQ Postcard application.

Note: You cannot set up a default configuration if other queue managers exist on your computer.

Many of the names used for the Windows default configuration objects involve the use of a short TCP/IP
name. This is the TCP/IP name of the computer, without the domain part; for example the short TCP/IP

88 IBM MQ Configuration Reference

name for the computer mycomputer.hursley.ibm.com is mycomputer. In all cases, where this name
has to be truncated, if the last character is a period (.), it is removed.

Any characters within the short TCP/IP name that are not valid for IBM MQ object names (for example,
hyphens) are replaced by an underscore character.

Valid characters for IBM MQ object names are: a to z, A to Z, 0 to 9, and the four special characters / % .
and _.

The cluster name for the Windows default configuration is DEFAULT_CLUSTER.

If the queue manager is not a repository queue manager, the objects listed in Table 19 on page 89 are
created.

Table 19. Objects created by the Windows default configuration application

Object Name

Queue manager The short TCP/IP name prefixed with the characters QM_. The
maximum length of the queue manager name is 48 characters.
Names exceeding this limit are truncated at 48 characters. If the last
character of the name is a period (.), this is replaced by a space ().

The queue manager has a command server, a channel listener, and
channel initiator associated with it. The channel listener listens on the
standard IBM MQ port, port number 1414. Any other queue managers
created on this machine must not use port 1414 while the default
configuration queue manager still exists.

Generic cluster receiver channel The short TCP/IP name prefixed with the characters TO_QM_.
The maximum length of the generic cluster receiver name is
20 characters. Names exceeding this limit are truncated at 20
characters. If the last character of the name is a period (.), this is
replaced by a space ().

Cluster sender channel The cluster sender channel is initially created with the name
TO_+QMNAME+. When IBM MQ has established a connection to the
repository queue manager for the default configuration cluster, this
name is replaced with the name of the repository queue manager
for the default configuration cluster, prefixed with the characters
TO_. The maximum length of the cluster sender channel name
is 20 characters. Names exceeding this limit are truncated at 20
characters. If the last character of the name is a period (.), this is
replaced by a space ().

Local message queue The local message queue is called default.

Local message queue for use
by the IBM MQ Postcard
application

The local message queue for use by the IBM MQ Postcard application
is called postcard.

Server connection channel The server connection channel allows clients to connect to the queue
manager. Its name is the short TCP/IP name, prefixed with the
characters S_. The maximum length of the server connection channel
name is 20 characters. Names exceeding this limit are truncated at
20 characters. If the last character of the name is a period (.), this is
replaced by a space ().

If the queue manager is a repository queue manager, the default configuration is similar to that described
in Table 19 on page 89, but with the following differences:

• The queue manager is defined as a repository queue manager for the default configuration cluster.
• There is no cluster-sender channel defined.

Configuration reference 89

• A local cluster queue that is the short TCP/IP name prefixed with the characters clq_default_ is created.
The maximum length of this name is 48 characters. Names exceeding this length are truncated at 48
characters.

If you request remote administration facilities, the server connection channel, SYSTEM.ADMIN.SVRCONN
is also created.

SYSTEM.BASE.TOPIC
Base topic for ASPARENT resolution. If a particular topic has no parent administrative topic objects, or
those parent objects also have ASPARENT, any remaining ASPARENT attributes are inherited from this
object.

Table 20. Default values of SYSTEM.BASE.TOPIC

Parameter Value

TOPICSTR "

CLROUTE DIRECT

CLUSTER The default value is an empty string.

COMMINFO SYSTEM.DEFAULT.COMMINFO.MULTICAST

DEFPRESP SYNC

DEFPRTY 0

DEFPSIST NO

DESCR 'Base topic for resolving attributes'

DURSUB YES

MCAST DISABLED

MDURMDL SYSTEM.DURABLE.MODEL.QUEUE

MNDURMDL SYSTEM.NDURABLE.MODEL.QUEUE

NPMSGDLV ALLAVAIL

PMSGDLV ALLDUR

PROXYSUB FIRSTUSE

PUB ENABLED

PUBSCOPE ALL

 QSGDISP
(z/OS platform only)

QMGR

SUB ENABLED

SUBSCOPE ALL

USEDLQ YES

WILDCARD PASSTHRU

If this object does not exist, its default values are still used by IBM MQ for ASPARENT attributes that are
not resolved by parent topics further up the topic tree.

Setting the PUB or SUB attributes of SYSTEM.BASE.TOPIC to DISABLED prevents applications publishing
or subscribing to topics in the topic tree, with two exceptions:

90 IBM MQ Configuration Reference

1. Any topic objects in the topic tree that have PUB or SUB explicitly set to ENABLE. Applications can
publish or subscribe to those topics, and their children.

2. Publication and subscription to SYSTEM.BROKER.ADMIN.STREAM is not disabled by the setting the
PUB or SUB attributes of SYSTEM.BASE.TOPIC to DISABLED.

See also Special handling for the PUB parameter.

System and default objects for IBM i
When you create a queue manager using the CRTMQM command, the system objects and the default
objects are created automatically.

• The system objects are those IBM MQ objects required for the operation of a queue manager or
channel.

• The default objects define all the attributes of an object. When you create an object, such as a local
queue, any attributes that you do not specify explicitly are inherited from the default object.

The following tables list the system and default objects created by CRTMQM:

• Table 21 on page 91 lists the system and default queue objects.
• Table 22 on page 93 lists the system and default channel objects.
• Table 23 on page 93 gives the system and default authentication information objects.
• Table 24 on page 93 gives the system and default listener object.
• Table 25 on page 94 gives the system and default namelist object.
• Table 26 on page 94 gives the system and default process object.
• Table 27 on page 94 gives the system and default service object.

Table 21. System and default objects: queues

Object name Description

SYSTEM.ADMIN.ACCOUNTING.QUEUE Accounting message data generated when an
application disconnects from the queue manager.

SYSTEM.ADMIN.ACTIVITY.QUEUE Activity report message data.

SYSTEM.ADMIN.CHANNEL.EVENT Event queue for channels.

SYSTEM.ADMIN.COMMAND.QUEUE Administration command queue. Used for remote
MQSC commands and PCF commands.

SYSTEM.ADMIN.LOGGER.EVENT Logger event (journal receiver) message data.

SYSTEM.ADMIN.PERFM.EVENT Event queue for performance events.

SYSTEM.ADMIN.PUBSUB.EVENT System publish/subscribe related event queue

SYSTEM.ADMIN.QMGR.EVENT Event queue for queue manager events.

SYSTEM.ADMIN.STATISTICS.QUEUE MQI, queue and channel statistics message data
queue.

SYSTEM.ADMIN.TRACE.ROUTE.QUEUE Trace-route reply message data queue.

SYSTEM.AUTH.DATA.QUEUE Used by the object authority manager (OAM).

SYSTEM.BROKER.ADMIN.STREAM Admin stream used by the queued publish/
subscribe interface.

SYSTEM.BROKER.CONTROL.QUEUE Publish/subscribe interface control queue.

SYSTEM.BROKER.DEFAULT.STREAM The default stream used by the queued publish/
subscribe interface.

Configuration reference 91

Table 21. System and default objects: queues (continued)

Object name Description

SYSTEM.BROKER.INTER.BROKER.COMMUNICATI
ONS

Broker to broker communications queue.

SYSTEM.CHANNEL.INITQ Channel initiation queue.

SYSTEM.CHANNEL.SYNCQ The queue that holds the synchronization data for
channels.

SYSTEM.CHLAUTH.DATA.QUEUE IBM MQ channel authentication data queue

SYSTEM.DURABLE.MODEL.QUEUE A queue used as a model for managed durable
subscriptions.

SYSTEM.DURABLE.SUBSCRIBER.QUEUE A queue used to hold a persistent copy of the
durable subscriptions in the queue manager.

SYSTEM.CICS.INITIATION.QUEUE Default CICS initiation queue.

SYSTEM.CLUSTER.COMMAND.QUEUE The queue used to carry messages to the
repository queue manager.

SYSTEM.CLUSTER.HISTORY.QUEUE The queue is used to store the history of cluster
state information for service purposes.

SYSTEM.CLUSTER.REPOSITORY.QUEUE The queue used to store all repository information.

SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE The queue is used to create individual transmit
queues for each cluster-sender channel.

SYSTEM.CLUSTER.TRANSMIT.QUEUE The transmission queue for all messages to all
clusters.

SYSTEM.DEAD.LETTER.QUEUE Dead-letter (undelivered message) queue.

SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue.

SYSTEM.DEFAULT.AUTHINFO.CRLLDAP Default authentication information definition.

SYSTEM.DEFAULT.INITIATION.QUEUE Default initiation queue.

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue.

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue.

SYSTEM.JMS.TEMPQ.MODEL Model for JMS temporary queues

SYSTEM.HIERARCHY.STATE IBM MQ distributed publish/subscribe hierarchy
relationship state.

SYSTEM.INTER.QMGR.CONTROL IBM MQ distributed publish/subscribe control
queue.

SYSTEM.INTER.QMGR.FANREQ IBM MQ distributed publish/subscribe internal
proxy subscription fan-out process input queue.

SYSTEM.INTER.QMGR.PUBS IBM MQ distributed publish/subscribe
publications.

SYSTEM.MQEXPLORER.REPLY.MODEL IBM MQ Explorer reply-to queue. This is a model
queue that creates a temporary dynamic queue for
replies to the IBM MQ Explorer.

92 IBM MQ Configuration Reference

Table 21. System and default objects: queues (continued)

Object name Description

SYSTEM.MQSC.REPLY.QUEUE MQSC command reply-to queue. This is a model
queue that creates a temporary dynamic queue for
replies to remote MQSC commands.

SYSTEM.NDURABLE.MODEL.QUEUE A queue used as a model for managed non durable
subscriptions.

SYSTEM.PENDING.DATA.QUEUE Support deferred messages in JMS.

SYSTEM.RETAINED.PUB.QUEUE A queue used to hold a copy of each retained
publication in the queue manager.

Table 22. System and default objects: channels

Object name Description

SYSTEM.AUTO.RECEIVER Dynamic receiver channel.

SYSTEM.AUTO.SVRCONN Dynamic server-connection channel.

SYSTEM.DEF.CLNTCONN Default client connection channel, used to supply
default values for any attributes not specified
when a CLNTCONN channel is created on a queue
manager.

SYSTEM.DEF.CLUSRCVR Default receiver channel for the cluster used
to supply default values for any attributes not
specified when a CLUSRCVR channel is created on
a queue manager in the cluster.

SYSTEM.DEF.CLUSSDR Default sender channel for the cluster used
to supply default values for any attributes not
specified when a CLUSSDR channel is created on
a queue manager in the cluster.

SYSTEM.DEF.RECEIVER Default receiver channel.

SYSTEM.DEF.REQUESTER Default requester channel.

SYSTEM.DEF.SENDER Default sender channel.

SYSTEM.DEF.SERVER Default server channel.

SYSTEM.DEF.SVRCONN Default server-connection channel.

Table 23. System and default objects: authentication information objects

Object name Description

SYSTEM.DEFAULT.AUTHINFO.CRLLDAP Default authentication information object for
authentication type CRLLDAP.

SYSTEM.DEFAULT.AUTHINFO.OCSP Default authentication information object for
authentication type OCSP.

Table 24. System and default objects: listeners

Object name Description

SYSTEM.DEFAULT.LISTENER.TCP Default listener for TCP transport.

Configuration reference 93

Table 25. System and default objects: namelists

Object name Description

SYSTEM.DEFAULT.NAMELIST Default namelist definition.

SYSTEM.QPUBSUB.QUEUE.NAMELIST A list of queue names monitored by the queued
publish/subscribe interface.

SYSTEM.QPUBSUB.SUBPOINT.NAMELIST A list of topic objects used by the queued publish/
subscribe interface to match topic objects to
subscription points.

Table 26. System and default objects: processes

Object name Description

SYSTEM.DEFAULT.PROCESS Default process definition.

Table 27. System and default objects: services

Object name Description

SYSTEM.DEFAULT.SERVICE Default service.

Stanza information
The following information helps you configure the information within stanzas, and lists the contents of the
mqs.ini, qm.ini, and mqclient.ini files.

Configuring stanzas

CAUTION: The Windows Registry contains critical information, including file
locations, drivers, and start-up processes. IBM MQ relies on these specific registry settings to
function correctly. Changing these settings without proper information can cause the IBM MQ
application to become unusable or fail completely as incorrect changes can disrupt its essential
functions.

Use the links to help you configure the system, or systems, in your enterprise:

• Changing IBM MQ configuration information helps you configure the:

– AllQueueManagers stanza
– DefaultQueueManager stanza
– ExitProperties stanza
– LogDefaults stanza
– Security stanza in the qm.ini file

• Changing queue manager configuration information helps you configure the:

– AccessMode stanza (Windows only)
– Service stanza - for Installable services
– Log stanza

– RestrictedMode stanza (UNIX and Linux systems only)
– XAResourceManager stanza
– TCP, LU62, and NETBIOS stanzas
– ExitPath stanza

94 IBM MQ Configuration Reference

– QMErrorLog stanza
– SSL stanza
– ExitPropertiesLocal stanza

• Configuring services and components helps you configure the:

– Service stanza
– ServiceComponent stanza

and contains links to how they are used for different services on UNIX and Linux, and Windows
platforms.

• Configuring API exits helps you configure the:

– AllActivityTrace stanza
– AppplicationTrace stanza

• Configuring activity trace behavior helps you configure the:

– ApiExitCommon stanza
– ApiExitTemplate stanza
– ApiExitLocal stanza

• Configuration information for clients helps you configure the:

– CHANNELS stanza
– ClientExitPath stanza

– LU62, NETBIOS and SPX stanza (Windows only)
– MessageBuffer stanza
– SSL stanza
– TCP stanza

• “Configuration file stanzas for distributed queuing” on page 97 helps you configure the:

– CHANNELS stanza
– TCP stanza
– LU62 stanza
– NETBIOS
– ExitPath stanza

• Setting queued publish/subscribe message attributes helps you configure the:

– PersistentPublishRetry attribute
– NonPersistentPublishRetry attribute
– PublishBatchSize attribute
– PublishRetryInterval attribute

in the Broker stanza.

Attention: You must create a Broker stanza if you need one.

Configuration files
See:

• mqs.ini file
• qm.ini file
• mqclient.ini file

Configuration reference 95

for a list of the possible stanzas in each configuration file.
mqs.ini file

Example of an IBM MQ configuration file for UNIX and Linux systems shows an example mqs.ini file.

An mqs.ini file can contain the following stanzas:

• AllQueueManagers
• DefaultQueueManager
• ExitProperties
• LogDefaults

In addition, there is one QueueManager stanza for each queue manager.

qm.ini file

Example queue manager configuration file for IBM MQ for UNIX and Linux systems shows an example
qm.ini file.

A qm.ini file can contain the following stanzas:

• ExitPath
• Log
• QMErrorLog
• QueueManager
• Security
• ServiceComponent

To configure InstallableServices use the Service and ServiceComponent stanzas.
• Connection for DefaultBindType

Attention: You must create a Connection stanza if you need one.

• SSL and TLS
• TCP, LU62, and NETBIOS
• XAResourceManager

In addition, you can change the:

• AccessMode (Windows only)

• RestrictedMode (UNIX and Linux systems only)

by using the crtmqm command.

mqclient.ini file

An mqclient.ini file can contain the following stanzas:

• CHANNELS
• ClientExitPath
• LU62, NETBIOS, and SPX
• MessageBuffer
• SSL
• TCP

In addition, you might need a PreConnect stanza to configure a preconnect exit.

96 IBM MQ Configuration Reference

Configuration file stanzas for distributed queuing
A description of the stanzas of the queue manager configuration file, qm.ini, related to distributed
queuing.

This topic shows the stanzas in the queue manager configuration file that relate to distributed queuing. It
applies to the queue manager configuration file for IBM MQ for Multiplatforms. The file is called qm.ini
on all platforms.

The stanzas that relate to distributed queuing are:

• CHANNELS
• TCP
• LU62
• NETBIOS
• EXITPATH

Figure 6 on page 97 shows the values that you can set using these stanzas. When you are defining one
of these stanzas, you do not need to start each item on a new line. You can use either a semicolon (;) or a
hash character (#) to indicate a comment.

CHANNELS:
 MAXCHANNELS=n ; Maximum number of channels allowed, the
 ; default value is 100.
 MAXACTIVECHANNELS=n ; Maximum number of channels allowed to be active at
 ; any time, the default is the value of MaxChannels.
 MAXINITIATORS=n ; Maximum number of initiators allowed, the default
 ; and maximum value is 3.
 MQIBINDTYPE=type ; Whether the binding for applications is to be
 ; "fastpath" or "standard".
 ; The default is "standard".
 PIPELINELENGTH=n ; The maximum number of concurrent threads a channel will use.
 ; The default is 1. Any value greater than 1 is treated as 2.
 ADOPTNEWMCA=chltype ; Stops previous process if channel fails to start.
 ; The default is "NO".
 ADOPTNEWMCATIMEOUT=n ; Specifies the amount of time that the new
 ; process should wait for the old process to end.
 ; The default is 60.
 ADOPTNEWMCACHECK= ; Specifies the type checking required.
 typecheck ; The default is "NAME","ADDRESS", and "QM".
 CHLAUTHEARLYADOPT=Y/N ; The order in which connection authentication and channel
authentication rules are
 ; processed. If not present in the qm.ini file the default is "N".
From MQ9.0.4 all
 ; queue managers are created with a defa\ult of "Y"
 PASSWORDPROTECTION= ; From MQ8.0,set protected passwords in the MQCSP structure, rather
than using TLS.
 options ; The options are "compatible", "always", "optional" and "warn"
 ; The default is "compatible".
 CHLAUTHISSUEWARN=Y ; If you want message AMQ9787 to be generated when you set theWARN=YES
attribute
 ; on the SET CHLAUTH command.
TCP: ; TCP entries
 PORT=n ; Port number, the default is 1414
 KEEPALIVE=Yes ; Switch TCP/IP KeepAlive on
LU62:
 LIBRARY2=DLLName2 ; Used if code is in two libraries
EXITPATH:1 Location of user exits
 EXITPATHS= ; String of directory paths.

Figure 6. qm.ini stanzas for distributed queuing

Notes:

1. EXITPATH applies only to the following platforms:

• AIX

• HP-UX

• Solaris

Configuration reference 97

• Windows

Related tasks
Configuring

Configuring z/OS
Changing configuration information on Windows, UNIX, and Linux systems

Changing configuration information on IBM i

Channel attributes
This section describes the channel attributes held in the channel definitions.

You choose the attributes of a channel to be optimal for a particular set of circumstances for each
channel. However, when the channel is running, the actual values might have changed during startup
negotiations. See Preparing channels.

Many attributes have default values, and you can use these values for most channels. However, in those
circumstances where the defaults are not optimal, see this section for guidance in selecting the correct
values.

For cluster channels, you specify the cluster channel attributes on the cluster-receiver channels at the
target queue managers. Any attributes you specify on the matching cluster-sender channels are likely to
be ignored. See Cluster channels.

Note: In IBM MQ for IBM i, most attributes can be specified as *SYSDFTCHL, which means that the value
is taken from the system default channel in your system.

Channel attributes and channel types
Different types of channel support different channel attributes.

The channel types for IBM MQ channel attributes are listed in the following table.

Note: For cluster channels (the CLUSSDR and CLUSRCVR columns in the table), if an attribute can be set
on both channels, set it on both and ensure that the settings are identical. If there is any discrepancy
between the settings, those that you specify on the CLUSRCVR channel are likely to be used. This is
explained in Cluster channels.

Table 28. Channel attributes for the channel types

Attribute field MQSC
command
paramete

r

SDR SVR RCV
R

RQST
R

CLNT-
CONN

SVR-
CONN

CLUS
- SDR

CLUS-
RCVR AM

QP

Alter date ALTDATE Yes Yes Yes Yes Yes Yes Yes Yes
Yes

Alter time ALTTIME Yes Yes Yes Yes Yes Yes Yes Yes
Yes

AMQP keep alive

AMQPKA
Yes

Batch heartbeat
interval

BATCHHB Yes Yes Yes Yes

98 IBM MQ Configuration Reference

Table 28. Channel attributes for the channel types (continued)

Attribute field MQSC
command
paramete

r

SDR SVR RCV
R

RQST
R

CLNT-
CONN

SVR-
CONN

CLUS
- SDR

CLUS-
RCVR AM

QP

Batch interval BATCHINT Yes Yes Yes Yes

Batch limit BATCHLIM Yes Yes Yes Yes

Batch size BATCHSZ Yes Yes Yes Yes Yes Yes

Certificate label CERTLABL Yes Yes Yes Yes Yes Yes Yes
“1” on
page
102

Yes
Yes

Channel name CHANNEL Yes Yes Yes Yes Yes Yes Yes Yes
Yes

Channel statistics STATCHL Yes Yes Yes Yes Yes Yes

Channel type CHLTYPE Yes Yes Yes Yes Yes Yes Yes Yes
Yes

Client channel
weight

CLNTWGH
T

Yes

Cluster CLUSTER Yes Yes

Cluster namelist CLUSNL Yes Yes

Cluster workload
priority

CLWLPRT
Y

Yes Yes

Cluster workload
rank

CLWLRAN
K

Yes Yes

Cluster workload
weight

CLWLWGH
T

Yes Yes

Connection
affinity

AFFINITY Yes

Connection name CONNAME Yes Yes Yes Yes Yes Yes

Convert message CONVERT Yes Yes Yes Yes

Data compression COMPMSG Yes Yes Yes Yes Yes Yes Yes Yes

Description DESCR Yes Yes Yes Yes Yes Yes Yes Yes
Yes

Disconnect
interval

DISCINT Yes Yes Yes “2”
on page

102

Yes Yes

Disposition “2” on
page 102

QSGDISP Yes Yes Yes Yes Yes Yes Yes Yes

Header
compression

COMPHDR Yes Yes Yes Yes Yes Yes Yes Yes

Heartbeat interval HBINT Yes Yes Yes Yes Yes Yes Yes Yes

Keepalive interval KAINT Yes Yes Yes Yes Yes Yes Yes Yes

Configuration reference 99

Table 28. Channel attributes for the channel types (continued)

Attribute field MQSC
command
paramete

r

SDR SVR RCV
R

RQST
R

CLNT-
CONN

SVR-
CONN

CLUS
- SDR

CLUS-
RCVR AM

QP

Local address LOCLADD
R

Yes Yes Yes Yes Yes Yes
Yes

Long retry count LONGRTY Yes Yes Yes Yes

Long retry interval LONGTMR Yes Yes Yes Yes

LU 6.2 mode
name

MODENA
ME

Yes Yes Yes Yes Yes Yes

LU 6.2 transaction
program name

TPNAME Yes Yes Yes Yes Yes Yes

Maximum
instances

MAXINST Yes
Yes

Maximum
instances per
client

MAXINST
C

Yes

Maximum
message length

MAXMSGL Yes Yes Yes Yes Yes Yes Yes Yes
Yes

Message channel
agent name

MCANAME Yes Yes Yes Yes Yes

Message channel
agent type

MCATYPE Yes Yes Yes Yes Yes

Message channel
agent user

MCAUSER Yes Yes Yes Yes Yes Yes Yes
Yes

Message exit
name

MSGEXIT Yes Yes Yes Yes Yes Yes

Message exit user
data

MSGDATA Yes Yes Yes Yes Yes Yes

Message-retry exit
name

MREXIT Yes Yes Yes

Message-retry exit
user data

MRDATA Yes Yes Yes

Message retry
count

MRRTY Yes Yes Yes

Message retry
interval

MRTMR Yes Yes Yes

Monitoring MONCHL Yes Yes Yes Yes Yes Yes Yes

Network-
connection
priority

NETPRTY Yes

Nonpersistent
message speed

NPMSPEE
D

Yes Yes Yes Yes Yes Yes

100 IBM MQ Configuration Reference

Table 28. Channel attributes for the channel types (continued)

Attribute field MQSC
command
paramete

r

SDR SVR RCV
R

RQST
R

CLNT-
CONN

SVR-
CONN

CLUS
- SDR

CLUS-
RCVR AM

QP

Password PASSWOR
D

Yes Yes Yes Yes Yes

Port
number

PORT
Yes

Property control PROPCTL Yes Yes Yes Yes

PUT authority PUTAUT Yes Yes Yes “2”
on page

102

Yes

Queue manager
name

QMNAME Yes

Receive exit name RCVEXIT Yes Yes Yes Yes Yes Yes Yes Yes

Receive exit user
data

RCVDATA Yes Yes Yes Yes Yes Yes Yes Yes

Security exit name SCYEXIT Yes Yes Yes Yes Yes Yes Yes Yes

Security exit user
data

SCYDATA Yes Yes Yes Yes Yes Yes Yes Yes

Send exit name SENDEXIT Yes Yes Yes Yes Yes Yes Yes Yes

Send exit user
data

SENDDAT
A

Yes Yes Yes Yes Yes Yes Yes Yes

Sequence number
wrap

SEQWRAP Yes Yes Yes Yes Yes Yes

Shared
connections

SHARECN
V

Yes Yes

Short retry count SHORTRT
Y

Yes Yes Yes Yes

Short retry
interval

SHORTTM
R

Yes Yes Yes Yes

SSL Cipher
Specification

SSLCIPH Yes Yes Yes Yes Yes Yes Yes Yes
Yes

SSL Client
Authentication

SSLCAUTH Yes Yes Yes Yes Yes
Yes

SSL Peer SSLPEER Yes Yes Yes Yes Yes Yes Yes Yes
Yes

Topic root

TPROOT
Yes

Configuration reference 101

Table 28. Channel attributes for the channel types (continued)

Attribute field MQSC
command
paramete

r

SDR SVR RCV
R

RQST
R

CLNT-
CONN

SVR-
CONN

CLUS
- SDR

CLUS-
RCVR AM

QP

Transmission
queue name

XMITQ Yes Yes

Transport type TRPTYPE Yes Yes Yes Yes Yes Yes Yes Yes

Use
client ID

USECLTID
Yes

Use Dead-Letter
Queue

USEDLQ Yes Yes Yes Yes Yes Yes

User ID USERID Yes Yes Yes Yes Yes

Notes:

1. None of the administrative interfaces allow this attribute to be inquired or set for CLUSSDR channels.
You will receive an MQRCCF_WRONG_CHANNEL_TYPE message. However, the attribute is present in
CLUSSDR channel objects (including MQCD structures) and a CHAD exit can set it programmatically if
required.

2. Valid on z/OS only.

Related concepts
“Channel attributes in alphabetical order” on page 102
This section describes each attribute of a channel object, with its valid values and notes on its use where
appropriate.
Related reference
MQSC reference

Channel attributes in alphabetical order
This section describes each attribute of a channel object, with its valid values and notes on its use where
appropriate.

IBM MQ for some platforms might not implement all the attributes shown in this section. Exceptions and
platform differences are mentioned in the individual attribute descriptions, where relevant.

The keyword that you can specify in MQSC is shown in brackets for each attribute.

The attributes are arranged in alphabetical order.

Alter date (ALTDATE)
This attribute is the date on which the definition was last altered, in the form yyyy-mm-dd.

This attribute is valid for all channel types.

Alter time (ALTTIME)
This attribute is the time at which the definition was last altered, in the form hh:mm:ss.

This attribute is valid for all channel types.

102 IBM MQ Configuration Reference

AMQP keep alive (AMQPKA)
Use the AMQPKA attribute to specify a keep alive time for the AMQP client connection. If the AMQP client
has not sent any frames within the keep alive interval, then the connection is closed.

The AMQPKA attribute determines the value of the idle-timeout attribute sent from IBM MQ to an AMQP
client. The attribute is a period of time in milliseconds.

If AMQPKA is set to a value > 0, then IBM MQ flows half that value as the idle-timeout attribute. For
example, a value of 10000 causes the queue manager to send an idle-timeout value of 5000. The client
should ensure that data is sent to IBM MQ at least every 10000 milliseconds. If data is not received
by IBM MQ in that time, IBM MQ assumes that the client has lost its connection and forcibly closes the
connection with an amqp:resource-limit-exceeded error condition.

A value of AUTO or 0 means the IBM MQ does not flow an idle-timeout attribute to the AMQP client.

An AMQP client can still flow an idle-timeout value of its own. If it does, IBM MQ flows data (or an empty
AMQP frame) at least that frequently to inform the client that it is available.

Batch Heartbeat Interval (BATCHHB)
This attribute allows a sending channel to verify that the receiving channel is still active just before
committing a batch of messages.

The batch heartbeat interval thus allows the batch to be backed out rather than becoming in-doubt if the
receiving channel is not active. By backing out the batch, the messages remain available for processing so
they could, for example, be redirected to another channel.

If the sending channel has had a communication from the receiving channel within the batch heartbeat
interval, the receiving channel is assumed to be still active, otherwise a 'heartbeat' is sent to the receiving
channel to check. The sending channel waits for a response from the receiving end of the channel for an
interval, based on the number of seconds specified in the channel Heartbeat Interval (HBINT) attribute.

The value is in milliseconds and must be in the range zero through 999999. A value of zero indicates that
batch heart beating is not used.

This attribute is valid for channel types of:

• Sender
• Server
• Cluster sender
• Cluster receiver

Batch interval (BATCHINT)
This attribute is a period, in milliseconds, during which the channel keeps a batch open even if there are
no messages on the transmission queue.

You can specify any number of milliseconds, from zero through 999 999 999. The default value is zero.

If you do not specify a batch interval, the batch closes when one of the following conditions is met:

• The number of messages specified in BATCHSZ have been sent.
• The number of bytes specified in BATCHLIM have been sent.
• The transmission queue is empty.

On channels with a light load, where the transmission queue frequently becomes empty, the effective
batch size might be much smaller than BATCHSZ.

You can use the BATCHINT attribute to make your channels more efficient by reducing the number of
short batches. Be aware, however, that you can slow down the response time, because batches last
longer and messages remain uncommitted for longer.

If you specify a BATCHINT, batches close only when one of the following conditions is met:

Configuration reference 103

• The number of messages specified in BATCHSZ have been sent.
• The number of bytes specified in BATCHLIM have been sent.
• There are no more messages on the transmission queue and a time interval of BATCHINT has elapsed

while waiting for messages (since the first message of the batch was retrieved).

Note: BATCHINT specifies the total amount of time that is spent waiting for messages. It does not include
the time spent retrieving messages that are already available on the transmission queue, or the time
spent transferring messages.

This attribute is valid for channel types of:

• Sender
• Server
• Cluster sender
• Cluster receiver

Batch limit (BATCHLIM)
This attribute is the limit, in kilobytes, of the amount of data that can be sent through a channel before
taking a sync point.

A sync point is taken after the message that caused the limit to be reached has flowed across the channel.

The value must be in the range 0 - 999999. The default value is 5000.

A value of zero in this attribute means that no data limit is applied to batches over this channel.

The batch is terminated when one of the following conditions is met:

• BATCHSZ messages have been sent.
• BATCHLIM bytes have been sent.
• The transmission queue is empty and BATCHINT is exceeded.

This attribute is valid for channel types of:

• Sender
• Server
• Cluster sender
• Cluster receiver

This parameter is supported on all platforms.

Batch size (BATCHSZ)
This attribute is the maximum number of messages to be sent before a sync point is taken.

The batch size does not affect the way the channel transfers messages; messages are always transferred
individually, but are committed or backed out as a batch.

To improve performance, you can set a batch size to define the maximum number of messages to be
transferred between two sync points. The batch size to be used is negotiated when a channel starts, and
the lower of the two channel definitions is taken. On some implementations, the batch size is calculated
from the lowest of the two channel definitions and the two queue manager MAXUMSGS values. The actual
size of a batch can be less; for example, a batch completes when there are no messages left on the
transmission queue or the batch interval expires.

A large value for the batch size increases throughput, but recovery times are increased because there are
more messages to back out and send again. The default BATCHSZ is 50, and you are advised to try that
value first. You might choose a lower value for BATCHSZ if your communications are unreliable, making
the need to recover more likely.

104 IBM MQ Configuration Reference

Sync point procedure needs a unique logical unit of work identifier to be exchanged across the link every
time a sync point is taken, to coordinate batch commit procedures.

If the synchronized batch commit procedure is interrupted, an in-doubt situation might arise. In-doubt
situations are resolved automatically when a message channel starts. If this resolution is not successful,
manual intervention might be necessary, using the RESOLVE command.

Some considerations when choosing the number for batch size:

• If the number is too large, the amount of queue space taken up on both ends of the link becomes
excessive. Messages take up queue space when they are not committed, and cannot be removed from
queues until they are committed.

• If there is likely to be a steady flow of messages, you can improve the performance of a channel by
increasing the batch size because fewer confirm flows are needed to transfer the same quantity of
bytes.

• If message flow characteristics indicate that messages arrive intermittently, a batch size of 1 with a
relatively large disconnect time interval might provide a better performance.

• The number can be in the range 1 through 9999.
• Even though nonpersistent messages on a fast channel do not wait for a sync point, they do contribute

to the batch-size count.

This attribute is valid for channel types of:

• Sender
• Server
• Receiver
• Requester
• Cluster sender
• Cluster receiver

Certificate label (CERTLABL)
This attribute specifies the certificate label of the channel definition.

The label identifies which personal certificate in the key repository is sent to the remote peer. The
certificate is defined as described in Digital certificate labels.

Inbound channels (including RCVR, RQSTR, CLUSRCVR, unqualified SERVER, and SVRCONN channels) will
only send the configured certificate if the IBM MQ version of the remote peer fully supports certificate
label configuration and the channel is using a TLS CipherSpec. If that is not the case, the queue manager
CERTLABL attribute determines the certificate sent. This restriction is because the certificate label
selection mechanism for inbound channels depends upon a TLS protocol extension that is not supported
in all cases. In particular, Java clients and JMS clients, do not support the required protocol extension and
will only ever receive the certificate configured by the queue manager CERTLABL attribute, regardless of
the channel-specific label setting.

An unqualified server channel is one that does not have the CONNAME field set.

None of the administrative interfaces allow this attribute to be inquired or set for CLUSSDR channels. You
will receive an MQRCCF_WRONG_CHANNEL_TYPE message. However, the attribute is present in CLUSSDR
channel objects (including MQCD structures) and a CHAD exit can set it programmatically if required.

For more information about what the certificate label can contain, see Digital certificate labels,
understanding the requirements.

This attribute is valid for all channel types.

Note: For SSL/TLS, the CERTLABL must be defined on the QMGR definition. You can, optionally, set a
CERTLABL on the CHANNEL definition, however, channels continue to use the queue manager default
CERTLABL even if you have defined CERTLABL as a channel attribute.

Configuration reference 105

The queue manager CERTLABL is checked and must be a valid personal certificate, even if you are setting
a CERTLABL on the CHANNEL definition.

Channels continue to use the queue manager default CERTLABL, even if you have specified OPMODE in
the CSQ6SYSP module.

Channel name (CHANNEL)
This attribute specifies the name of the channel definition.

The name can contain up to 20 characters, although as both ends of a message channel must have
the same name, and other implementations might have restrictions on the size, the actual number of
characters might have to be smaller.

Where possible, channel names are unique to one channel between any two queue managers in a
network of interconnected queue managers.

The name must contain characters from the following list:

Alphabetic (A-Z, a-z; note that uppercase and lowercase are significant)

Numerics (0-9)

Period (.)

Forward slash (/)

Underscore (_)

Percentage sign (%)

Note:

1. Embedded blanks are not allowed, and leading blanks are ignored.
2. On systems using EBCDIC Katakana, you cannot use lowercase characters.

This attribute is valid for all channel types.

Channel statistics (STATCHL) on Multiplatforms
On Multiplatforms, this attribute controls the collection of statistics data for channels.

The possible values are:
QMGR

Statistics data collection for this channel is based upon the setting of the queue manager attribute
STATCHL. This value is the default value.

OFF
Statistics data collection for this channel is disabled.

LOW
Statistics data collection for this channel is enabled with a low ratio of data collection.

MEDIUM
Statistics data collection for this channel is enabled with a moderate ratio of data collection.

HIGH
Statistics data collection for this channel is enabled with a high ratio of data collection.

For more information about channel statistics, see Monitoring reference.

On z/OS systems, enabling this parameter simply turns on statistics data collection,
regardless of the value you select. Specifying LOW, MEDIUM, or HIGH makes no difference to your results.
This parameter must be enabled in order to collect channel accounting records.

This attribute is valid for channel types of:

• Sender

106 IBM MQ Configuration Reference

• Server
• Receiver
• Requester
• Cluster sender
• Cluster receiver

Channel type (CHLTYPE)
This attribute specifies the type of the channel being defined.

The possible channel types are:
Message channel types:

• Sender
• Server
• Receiver
• Requester
• Cluster-sender
• Cluster-receiver

MQI channel types:

• Client-connection (Windows and UNIX only)

Note: Client-connection channels can also be defined on z/OS for use on other platforms.
• Server-connection
• AMQP

The two ends of a channel must have the same name and have compatible types:

• Sender with receiver
• Requester with server
• Requester with sender (for callback)
• Server with receiver (server is used as a sender)
• Client-connection with server-connection
• Cluster-sender with cluster-receiver
• AMQP with AMQP

Client channel weight (CLNTWGHT)
This attribute specifies a weighting to influence which client-connection channel definition is used.

The client channel weighting attribute is used so that client channel definitions can be selected at random
based on their weighting when more than one suitable definition is available.

When a client issues an MQCONN requesting connection to a queue manager group, by specifying a queue
manager name starting with an asterisk, which enables client weight balancing across several queue
managers, and more than one suitable channel definition is available in the client channel definition
table (CCDT), the definition to use is randomly selected based on the weighting, with any applicable
CLNTWGHT(0) definitions selected first in alphabetical order.

Specify a value in the range 0 - 99. The default is 0.

A value of 0 indicates that no load balancing is performed and applicable definitions are selected in
alphabetical order. To enable load balancing choose a value in the range 1 - 99 where 1 is the lowest
weighting and 99 is the highest. The distribution of connections between two or more channels with
non-zero weightings is proportional to the ratio of those weightings. For example, three channels with

Configuration reference 107

CLNTWGHT values of 2, 4, and 14 are selected approximately 10%, 20%, and 70% of the time. This
distribution is not guaranteed. If the AFFINITY attribute of the connection is set to PREFERRED, the first
connection chooses a channel definition according to client weightings, and then subsequent connections
continue to use the same channel definition.

This attribute is valid for the client-connection channel type only.

Cluster (CLUSTER)
This attribute is the name of the cluster to which the channel belongs.

The maximum length is 48 characters conforming to the rules for naming IBM MQ objects.

Up to one of the resultant values of CLUSTER or CLUSNL can be non-blank. If one of the values is
non-blank, the other must be blank.

This attribute is valid for channel types of:

• Cluster sender
• Cluster receiver

Cluster namelist (CLUSNL)
This attribute is the name of the namelist that specifies a list of clusters to which the channel belongs.

Up to one of the resultant values of CLUSTER or CLUSNL can be nonblank. If one of the values is nonblank,
the other must be blank.

This attribute is valid for channel types of:

• Cluster sender
• Cluster receiver

CLWLPRTY channel attribute
The CLWLPRTY channel attribute specifies the priority order for channels for cluster workload distribution.
The value must be in the range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the CLWLPRTY channel attribute to set a priority order for the available cluster destinations. IBM
MQ selects the destinations with the highest priority before selecting destinations with the lowest cluster
destination priority. If there are multiple destinations with the same priority, it selects the least recently
used destination.

If there are two possible destinations, you can use this attribute to allow failover. Messages go to the
queue manager with the highest priority channel. If it becomes unavailable then messages go to the next
highest priority queue manager. Lower priority queue managers act as reserves.

IBM MQ checks channel status before prioritizing the channels. Only available queue managers are
candidates for selection.

Notes:

• Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

• The availability of a remote queue manager is based on the status of the channel to that queue
manager. When channels start, their state changes several times, with some of the states being less
preferential to the cluster workload management algorithm. In practice this means that lower priority
(backup) destinations can be chosen while the channels to higher priority (primary) destinations are
starting.

• If you need to ensure that no messages go to a backup destination, do not use CLWLPRTY. Consider
using separate queues, or CLWLRANK with a manual switch over from the primary to back up.

108 IBM MQ Configuration Reference

CLWLRANK channel attribute
The CLWLRANK channel attribute specifies the rank of channels for cluster workload distribution. The
value must be in the range 0-9, where 0 is the lowest rank and 9 is the highest.

Use the CLWLRANK channel attribute if you want control over the final destination for messages sent to
a queue manager in another cluster. Control the choice of final destination by setting the rank of the
channels connecting a queue manager to the gateway queue managers at the intersection of the clusters.

When you set CLWLRANK, messages take a specified route through the interconnected clusters towards a
higher ranked destination. For example, messages arrive at a gateway queue manager that can send them
to either of two queue managers using channels ranked 1 and 2. They are automatically sent to the queue
manager connected by a channel with the highest rank, in this case the channel to the queue manager
ranked 2.

IBM MQ gets the rank of channels before checking channel status. Getting the rank before checking
channel status means that even non-accessible channels are available for selection. It allows messages
to be routed through the network even if the final destination is unavailable.

Notes:

• Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

• If you also used the priority attribute CLWLPRTY, IBM MQ selects between available destinations.
If a channel is not available to the destination with the highest rank, the message is held on the
transmission queue. It is released when the channel becomes available. The message does not get sent
to the next available destination in the rank order.

CLWLWGHT channel attribute
The CLWLWGHT channel attribute specifies the weight applied to CLUSSDR and CLUSRCVR channels for
cluster workload distribution. The value must be in the range 1-99, where 1 is the lowest weight and 99 is
the highest.

Use CLWLWGHT to send servers with more processing power more messages. The higher the channel
weight, the more messages are sent over that channel.

Notes:

• Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

• When CLWLWGHT is modified from the default of 50 on any channel, workload balancing becomes
dependent on the total number of times each channel was chosen for a message sent to any clustered
queue. For more information, see “The cluster workload management algorithm” on page 151.

Connection affinity (AFFINITY)
This attribute specifies whether client applications that connect multiple times using the same queue
manager name, use the same client channel.

Use this attribute when multiple applicable channel definitions are available.

The possible values are:
PREFERRED

The first connection in a process reading a client channel definition table (CCDT) creates a list of
applicable definitions based on the client channel weight, with any definitions having a weight of
0 first and in alphabetical order. Each connection in the process attempts to connect using the
first definition in the list. If a connection is unsuccessful the next definition is used. Unsuccessful
definitions with client channel weight values other than 0 are moved to the end of the list. Definitions
with a client channel weight of 0 remain at the start of the list and are selected first for each
connection.

Each client process with the same host name always creates the same list.

Configuration reference 109

For client applications written in C, C++, or the .NET programming framework (including fully
managed .NET), and for applications that use the IBM MQ classes for Java and IBM MQ classes
for JMS, the list is updated if the CCDT has been modified since the list was created.

This value is the default value.

NONE
The first connection in a process reading a CCDT creates a list of applicable definitions. All
connections in a process select an applicable definition based on the client channel weight, with
any definitions having a weight of 0 selected first in alphabetical order.

For client applications written in C, C++, or the .NET programming framework (including fully
managed .NET), and for applications that use the IBM MQ classes for Java and IBM MQ classes
for JMS, the list is updated if the CCDT has been modified since the list was created.

This attribute is valid for the client-connection channel type only.

Connection name (CONNAME)
This attribute is the communications connection identifier. It specifies the particular communications
links to be used by this channel.

It is optional for server channels, unless the server channel is triggered, in which case it must specify a
connection name.

Specify CONNAME as a comma-separated list of names of machines for the stated TRPTYPE. Typically
only one machine name is required. You can provide multiple machine names to configure multiple
connections with the same properties. The connections are usually tried in the order they are specified
in the connection list until a connection is successfully established. The order is modified for clients if
the CLNTWGHT attribute is provided. If no connection is successful, the channel attempts the connection
again, as determined by the attributes of the channel. With client channels, a connection-list provides an
alternative to using queue manager groups to configure multiple connections. With message channels, a
connection list is used to configure connections to the alternative addresses of a multi-instance queue
manager.

Providing multiple connection names in a list was first supported in IBM WebSphere® MQ 7.0.1. It
changes the syntax of the CONNAME parameter. Earlier clients and queue managers connect using the first
connection name in the list, and do not read the rest of the connection names in the list. In order for the
earlier clients and queue managers to parse the new syntax, you must specify a port number on the first
connection name in the list. Specifying a port number avoids problems when connecting to the channel
from a client or queue manager that is running at a level earlier than IBM WebSphere MQ 7.0.1.

On Multiplatforms, the TCP/IP connection name parameter of a cluster-receiver channel
is optional. If you leave the connection name blank, IBM MQ generates a connection name for you,
assuming the default port and using the current IP address of the system. You can override the default
port number, but still use the current IP address of the system. For each connection name leave the IP
name blank, and provide the port number in parentheses; for example:

(1415)

The generated CONNAME is always in the dotted decimal (IPv4) or hexadecimal (IPv6) form, rather than in
the form of an alphanumeric DNS host name.

The maximum name length depends on the platform:

• 264 characters.

• 48 characters (see note 1).

If the transport type is TCP
CONNAME is either the host name or the network address of the remote machine
(or the local machine for cluster-receiver channels). For example, (ABC.EXAMPLE.COM),

110 IBM MQ Configuration Reference

(2001:DB8:0:0:0:0:0:0) or (127.0.0.1). It can include the port number, for example
(MACHINE(123)).

It can include the IP_name of a dynamic DNS group or a Network Dispatcher input port.
If you use an IPv6 address in a network that only supports IPv4, the connection name is not resolved.
In a network which uses both IPv4 and IPv6, the connection name interacts with the local address
to determine which IP stack is used. See “Local Address (LOCLADDR)” on page 116 for further
information.

If the transport type is LU 6.2
If the TPNAME and MODENAME are specified, give the fully-

qualified name of the partner LU.

If the TPNAME and MODENAME are blank, give the CPI-C side information object name
for your specific platform.

There are two forms in which to specify the value:

• Logical unit name

The logical unit information for the queue manager, comprising the logical unit name, TP name, and
optional mode name. This name can be specified in one of three forms:

Form Example

luname IGY12355

luname/TPname IGY12345/APING

luname/TPname/modename IGY12345/APINGD/#INTER

For the first form, the TP name and mode name must be specified for the TPNAME and MODENAME
attributes; otherwise these attributes must be blank. For client-connection channels, only the first
form is allowed.

• Symbolic name

The symbolic destination name for the logical unit information for the queue manager, as defined in
the side information data set. The TPNAME and MODENAME attributes must be blank. Note that, for
cluster-receiver channels, the side information is on the other queue managers in the cluster. In this
case it can be a name that a channel auto-definition exit can resolve into the appropriate logical unit
information for the local queue manager.

The specified or implied LU name can be that of a VTAM generic resources group.
If the transmission protocol is NetBIOS

CONNAME is the NetBIOS name defined on the remote machine.
If the transmission protocol is SPX

CONNAME is an SPX-style address consisting of a 4 byte network address, a 6 byte node address and
a 2 byte socket number. Enter these values in hexadecimal, with the network and node addresses
separated by a period and the socket number in brackets. For example:

CONNAME('0a0b0c0d.804abcde23a1(5e86)')

If the socket number is omitted, the default IBM MQ SPX socket number is used. The default is
X'5E86'.

This attribute is valid for channel types of:

• Sender
• Server
• Requester
• Client connection

Configuration reference 111

• Cluster sender
• Cluster receiver

It is optional for server channels, unless the server channel is triggered, in which case it must specify a
connection name.

Note:

1. For name lengths, you can work around the 48 character limit in either of the following ways:

• Set up your DNS servers so that you use, for example, host name of "myserver" instead of
"myserver.location.company.com", ensuring you can use the short host name.

• Use IP addresses.
2. The definition of transmission protocol is contained in “Transport type (TRPTYPE)” on page 133.

Convert message (CONVERT)
This attribute specifies that the message must be converted into the format required by the receiving
system before transmission.

Application message data is typically converted by the receiving application. However, if the remote
queue manager is on a platform that does not support data conversion, use this channel attribute to
specify that the message must be converted into the format required by the receiving system before
transmission.

The possible values are yes and no. If you specify yes, the application data in the message is converted
before sending if you have specified one of the built-in format names, or a data conversion exit is available
for a user-defined format (See Writing data-conversion exits). If you specify no, the application data in
the message is not converted before sending.

This attribute is valid for channel types of:

• Sender
• Server
• Cluster sender
• Cluster receiver

Data compression (COMPMSG)
This attribute is a list of message data compression techniques supported by the channel.

For sender, server, cluster-sender, cluster-receiver, and client-connection channels the values specified
are in order of preference. The first compression technique supported by the remote end of the
channel is used. The channels' mutually supported compression techniques are passed to the sending
channel's message exit where the compression technique used can be altered on a per message basis.
Compression alters the data passed to send and receive exits. See “Header compression (COMPHDR)” on
page 114 for compression of the message header.

The possible values are:
NONE

No message data compression is performed. This value is the default value.
RLE

Message data compression is performed using run-length encoding.
ZLIBFAST

Message data compression is performed using the zlib compression technique. A fast compression
time is preferred.

ZLIBFAST can optionally be offloaded to the zEnterprise® Data Compression facility. See zEDC Express
facility for further information.

112 IBM MQ Configuration Reference

ZLIBHIGH
Message data compression is performed using the zlib compression technique. A high level of
compression is preferred.

ANY
Allows the channel to support any compression technique that the queue manager supports. Only
supported for Receiver, Requester and Server-Connection channels.

This attribute is valid for all channel types.

Default reconnection (DEFRECON)
Specifies whether a client connection automatically reconnects a client application if its connection
breaks.

The possible values are:
NO (default)

Unless overridden by MQCONNX, the client is not reconnected automatically.
YES

Unless overridden by MQCONNX, the client reconnects automatically.
QMGR

Unless overridden by MQCONNX, the client reconnects automatically, but only to the same queue
manager. The QMGR option has the same effect as MQCNO_RECONNECT_Q_MGR.

DISABLED
Reconnection is disabled, even if requested by the client program using the MQCONNX MQI call.

This attribute is valid only for client connection channels.

Description (DESCR)
This attribute describes the channel definition and contains up to 64 bytes of text.

Note: The maximum number of characters is reduced if the system is using a double byte character set
(DBCS).

Use characters from the character set identified by the coded character set identifier (CCSID) for the
queue manager to ensure that the text is translated correctly if it is sent to another queue manager.

This attribute is valid for all channel types.

Disconnect interval (DISCINT)
This attribute is the length of time after which a channel closes down, if no message arrives during that
period.

This attribute is a time-out attribute, specified in seconds, for the server, cluster-sender, sender, and
cluster-receiver channels. The interval is measured from the point at which a batch ends, that is when
the batch size is reached or when the batch interval expires and the transmission queue becomes empty.
If no messages arrive on the transmission queue during the specified time interval, the channel closes
down. (The time is approximate.)

The close-down exchange of control data between the two ends of the channel includes an indication of
the reason for closing. This ensures that the corresponding end of the channel remains available to start
again.

You can specify any number of seconds from zero through 999 999 where a value of zero means no
disconnect; wait indefinitely.

For server-connection channels using the TCP protocol, the interval represents the client inactivity
disconnect value, specified in seconds. If a server-connection has received no communication from its
partner client for this duration, it terminates the connection.

The server-connection inactivity interval applies between IBM MQ API calls from a client.

Configuration reference 113

Note: A potentially long-running MQGET with wait call is not classified as inactivity and, therefore, never
times out as a result of DISCINT expiring.

This attribute is valid for channel types of:

• Sender
• Server
• Server connection
• Cluster sender
• Cluster receiver

This attribute is not applicable for server-connection channels using protocols other than TCP.

Note: Performance is affected by the value specified for the disconnect interval.

A low value (for example a few seconds) can be detrimental to system performance by constantly starting
the channel. A large value (more than an hour) might mean that system resources are needlessly held
up. You can also specify a heartbeat interval, so that when there are no messages on the transmission
queue, the sending MCA sends a heartbeat flow to the receiving MCA, thus giving the receiving MCA
an opportunity to quiesce the channel without waiting for the disconnect interval to expire. For these
two values to work together effectively, the heartbeat interval value must be significantly lower than the
disconnect interval value.

The default DISCINT value is set to 100 minutes. However, a value of a few minutes is often a reasonable
value to use without impacting performance or keeping channels running for unnecessarily long periods of
time. If it is appropriate for your environment you can change this value, either on each individual channel
or through changing the value in the default channel definitions, for example SYSTEM.DEF.SENDER.

For more information, see Stopping and quiescing channels.

Disposition (QSGDISP)
This attribute specifies the disposition of the channel in a queue sharing group. It is valid on z/OS only.

Values are:
QMGR

The channel is defined on the page set of the queue manager that executes the command. This value
is the default.

GROUP
The channel is defined in the shared repository. This value is allowed only if there is a shared queue
manager environment. When a channel is defined with QSGDISP(GROUP), the command DEFINE
CHANNEL(name) NOREPLACE QSGDISP(COPY) is generated automatically and sent to all active
queue managers to cause them to make local copies on page set 0. For queue managers which
are not active, or which join the queue sharing group at a later date, the command is generated when
the queue manager starts.

COPY
The channel is defined on the page set of the queue manager that executes the command, copying its
definition from the QSGDISP(GROUP) channel of the same name. This value is allowed only if there is
a shared queue manager environment.

This attribute is valid for all channel types.

Header compression (COMPHDR)
This attribute is a list of header data compression techniques supported by the channel.

For sender, server, cluster-sender, cluster-receiver, and client-connection channels the values specified
are in order of preference with the first compression technique supported by the remote end of the
channel being used. The channels' mutually supported compression techniques are passed to the sending
channel's message exit where the compression technique used can be altered on a per message basis.
Compression alters the data passed to send and receive exits.

114 IBM MQ Configuration Reference

Possible values are:
NONE

No header data compression is performed. This value is the default value.
SYSTEM

Header data compression is performed.

This attribute is valid for all channel types.

Heartbeat interval (HBINT)
This attribute specifies the approximate time between heartbeat flows that are to be passed from a
sending message channel agent (MCA) when there are no messages on the transmission queue.

Heartbeat flows unblock the receiving MCA, which is waiting for messages to arrive or for the disconnect
interval to expire. When the receiving MCA is unblocked, it can disconnect the channel without waiting for
the disconnect interval to expire. Heartbeat flows also free any storage buffers that have been allocated
for large messages and close any queues that have been left open at the receiving end of the channel.

The value is in seconds and must be in the range 0 - 999 999. A value of zero means that no heartbeat
flows are to be sent. The default value is 300. To be most useful, the value must be significantly less than
the disconnect interval value.

With applications that use IBM MQ classes for Java, JMS or .NET APIs, the HBINT value is determined in
one of the following ways:

• Either by the value on the SVRCONN channel that is used by the application.
• Or by the value on the CLNTCONN channel, if the application has been configured to use a CCDT.

For server-connection and client-connection channels, heartbeats can flow from both the server side as
well as the client side independently. If no data has been transferred across the channel for the heartbeat
interval, the client-connection MQI agent sends a heartbeat flow and the server-connection MQI agent
responds to it with another heartbeat flow. This happens irrespective of the state of the channel, for
example, irrespective of whether it is inactive while making an API call, or is inactive waiting for client
user input. The server-connection MQI agent is also capable of initiating a heartbeat to the client, again
irrespective of the state of the channel. To prevent both server-connection and client-connection MQI
agents heart beating to each other at the same time, the server heartbeat is flowed after no data has been
transferred across the channel for the heartbeat interval plus 5 seconds.

For server-connection and client-connection channels working in the channel mode before IBM
WebSphere MQ 7.0, heartbeats flow only when a server MCA is waiting for an MQGET command with
the WAIT option specified, which it has issued on behalf of a client application.

For more information about making MQI channels work in the two modes, see SharingConversations
(MQLONG).

Related reference
DEFINE CHANNEL
ALTER CHANNEL

Keepalive Interval (KAINT)
This attribute is used to specify a timeout value for a channel.

The Keepalive Interval attribute is a value passed to the communications stack specifying the Keepalive
timing for the channel. It allows you to specify a different keepalive value for each channel.

You can set the Keepalive Interval (KAINT) attribute for channels on a per-channel basis.

On Multiplatforms, you can access and modify the parameter, but it is only stored and
forwarded; there is no functional implementation of the parameter. If you need the functionality provided
by the KAINT parameter, use the Heartbeat Interval (HBINT) parameter, as described in “Heartbeat
interval (HBINT)” on page 115.

Configuration reference 115

For this attribute to have any effect, TCP/IP keepalive must be enabled. On z/OS, you do enable keepalive
by issuing the ALTER QMGR TCPKEEP(YES) MQSC command. On Multiplatforms, it occurs when the
KEEPALIVE=YES parameter is specified in the TCP stanza in the distributed queuing configuration file,
qm.ini, or through the IBM MQ Explorer. Keepalive must also be enabled within TCP/IP itself, using the
TCP profile configuration data set.

The value indicates a time, in seconds, and must be in the range 0 - 99999. A Keepalive Interval value
of 0 indicates that channel-specific Keepalive is not enabled for the channel and only the system-wide
Keepalive value set in TCP/IP is used. You can also set KAINT to a value of AUTO (this value is the default).
If KAINT is set to AUTO, the Keepalive value is based on the value of the negotiated heartbeat interval
(HBINT) as follows:

Table 29. Negotiated HBINT value and the corresponding KAINT value.

The table has two columns. The first column lists the negotiated HBINT values and the second column
lists the corresponding KAINT value for each negotiated HBINT.

Negotiated HBINT KAINT

>0 Negotiated HBINT + 60 seconds

0 0

This attribute is valid for all channel types.

The value is ignored for all channels that have a TransportType (TRPTYPE) other than TCP or SPX

Local Address (LOCLADDR)
This attribute specifies the local communications address for the channel.

Note: AMQP channels do not support the same format of LOCLADDR as other IBM MQ channels. For more
information, see “LOCLADDR for AMQP channels” on page 118.

LOCLADDR for all channels except AMQP channels
This attribute only applies if the transport type (TRPTYPE) is TCP/IP. For all other transport types, it is
ignored.

When a LOCLADDR value is specified, a channel that is stopped and then restarted continues to use the
TCP/IP address specified in LOCLADDR. In recovery scenarios, this attribute might be useful when the
channel is communicating through a firewall. It is useful because it removes problems caused by the
channel restarting with the IP address of the TCP/IP stack to which it is connected. LOCLADDR can also
force a channel to use an IPv4 or IPv6 stack on a dual stack system, or a dual-mode stack on a single
stack system.

This attribute is valid for channel types of:

• Sender
• Server
• Requester
• Client connection
• Cluster sender
• Cluster receiver

When LOCLADDR includes a network address, the address must be a network addresses belonging to a
network interface on the system where the channel is run. For example, when defining a sender channel
on queue manager ALPHA to queue manager BETA with the following MSQC command:

DEFINE CHANNEL(TO.BETA) CHLTYPE(SDR) CONNAME(192.0.2.0) XMITQ(BETA) LOCLADDR(192.0.2.1)

116 IBM MQ Configuration Reference

The LOCLADDR address is the IPv4 address 192.0.2.1. This sender channel runs on the system of
queue manager ALPHA, so the IPv4 address must belong to one of the network interfaces its system.

The value is the optional IP address, and optional port or port range used for outbound TCP/IP
communications. The format for this information is as follows:

LOCLADDR([ip-addr][(low-port[,high-port])][,[ip-addr][(low-port[,high-port])]])

The maximum length of LOCLADDR, including multiple addresses, is MQ_LOCAL_ADDRESS_LENGTH.

If you omit LOCLADDR, a local address is automatically allocated.

Note, that you can set LOCLADDR for a C client using the Client Channel Definition Table (CCDT).

All the parameters are optional. Omitting the ip-addr part of the address is useful to enable the
configuration of a fixed port number for an IP firewall. Omitting the port number is useful to select a
particular network adapter without having the identify a unique local port number. The TCP/IP stack
generates a unique port number.

Specify [,[ip-addr][(low-port[,high-port])]] multiple times for each additional local address.
Use multiple local addresses if you want to specify a specific subset of local network adapters. You can
also use [,[ip-addr][(low-port[,high-port])]] to represent a particular local network address
on different servers that are part of a multi-instance queue manager configuration.

ip-addr
ip-addr is specified in one of three forms:
IPv4 dotted decimal

For example, 192.0.2.1
IPv6 hexadecimal notation

For example, 2001:DB8:0:0:0:0:0:0
Alphanumeric host name form

For example WWW.EXAMPLE.COM
low-port and high-port

low-port and high-port are port numbers enclosed in parentheses.
The following table shows how the LOCLADDR parameter can be used:

Table 30. Examples of how the LOCLADDR parameter can be used

LOCLADDR Meaning

9.20.4.98 Channel binds to this address locally

9.20.4.98, 9.20.4.99 Channel binds to either IP address. The address might be two network
adapters on one server, or a different network adapter on two different
servers in a multi-instance configuration.

9.20.4.98(1000) Channel binds to this address and port 1000 locally

9.20.4.98(1000,2000) Channel binds to this address and uses a port in the range 1000 - 2000
locally

(1000) Channel binds to port 1000 locally

(1000,2000) Channel binds to port in range 1000 - 2000 locally

When a channel is started the values specified for connection name (CONNAME) and local address
(LOCLADDR) determine which IP stack is used for communication. The IP stack used is determined as
follows:

• If the system has only an IPv4 stack configured, the IPv4 stack is always used. If a local address
(LOCLADDR) or connection name (CONNAME) is specified as an IPv6 network address, an error is
generated and the channel fails to start.

Configuration reference 117

• If the system has only an IPv6 stack configured, the IPv6 stack is always used. If a local address
(LOCLADDR) is specified as an IPv4 network address, an error is generated and the channel fails to start.
On platforms supporting IPv6 mapped addressing, if a connection name (CONNAME) is specified as an
IPv4 network address, the address is mapped to an IPv6 address. For example, xxx.xxx.xxx.xxx
is mapped to ::ffff:xxx.xxx.xxx.xxx. The use of mapped addresses might require protocol
translators. Avoid the use of mapped addresses where possible.

• If a local address (LOCLADDR) is specified as an IP address for a channel, the stack for that IP address
is used. If the local address (LOCLADDR) is specified as a host name resolving to both IPv4 and IPv6
addresses, the connection name (CONNAME) determines which of the stacks is used. If both the local
address (LOCLADDR) and connection name (CONNAME) are specified as host names resolving to both
IPv4 and IPv6 addresses, the stack used is determined by the queue manager attribute IPADDRV.

• If the system has dual IPv4 and IPv6 stacks configured and a local address (LOCLADDR) is not specified
for a channel, the connection name (CONNAME) specified for the channel determines which IP stack to
use. If the connection name (CONNAME) is specified as a host name resolving to both IPv4 and IPv6
addresses, the stack used is determined by the queue manager attribute IPADDRV.

On Multiplatforms, you can set a default local address value that is used for all sender
channels that do not have a local address defined. The default value is defined by setting the
MQ_LCLADDR environment variable prior to starting the queue manager. The format of the value matches
that of MQSC attribute LOCLADDR.

Local addresses with cluster sender channels
Cluster sender channels always inherit the configuration of the corresponding cluster receiver channel as
defined on the target queue manager. This is true even if there is a locally defined cluster sender channel
of the same name, in which case the manual definition is only used for initial communication.

For this reason, it is not possible to depend on the LOCLADDR defined in the cluster receiver channel as
it is likely that the IP address is not owned by the system where the cluster senders are created. For this
reason, the LOCLADDR on the cluster receiver should not be used unless there is a reason to restrict only
the ports but not the IP address for all potential cluster senders, and it is known that those ports are
available on all systems where a cluster sender channel may be created.

If a cluster must use LOCLADDR to get the outbound communication channels to bind to a specific IP
address, either use a Channel Auto-Definition Exit, or use the default LOCLADDR for the queue manager
when possible. When using a channel exit, it forces the LOCLADDR value from the exit into any of the
automatically defined CLUSSDR channels.

If using a non-default LOCLADDR for cluster sender channels through the use of an exit or a default value,
any matching manually defined cluster sender channel, for example to a full repository queue manager,
must also have the LOCLADDR value set to enable initial communication over the channel.

Note: If the operating system returns a bind error for the port supplied in LOCLADDR (or all ports, if a port
range is supplied), the channel does not start; the system issues an error message.

LOCLADDR for AMQP channels
AMQP channels support a different format of LOCLADDR than other IBM MQ channels:

LOCLADDR (ip-addr)

LOCLADDR is the local communications address for the channel. Use this parameter if you want to
force the client to use a particular IP address. LOCLADDR is also useful to force a channel to use an
IPv4 or IPv6 address if a choice is available, or to use a particular network adapter on a system with
multiple network adapters.

The maximum length of LOCLADDR is MQ_LOCAL_ADDRESS_LENGTH.

If you omit LOCLADDR, a local address is automatically allocated.

ip-addr
ip-addr is a single network address, specified in one of three forms:

118 IBM MQ Configuration Reference

IPv4 dotted decimal
For example 192.0.2.1

IPv6 hexadecimal notation
For example 2001:DB8:0:0:0:0:0:0

Alphanumeric host name form
For example WWW.EXAMPLE.COM

If an IP address is entered, only the address format is validated. The IP address itself is not validated.

Related concepts
Working with auto-defined cluster-sender channels

Long retry count (LONGRTY)
This attribute specifies the maximum number of times that the channel is to try allocating a session to its
partner.

The long retry count attribute can be set from zero through 999 999 999.

This attribute is valid for the following channel types:

• Sender
• Server
• Cluster sender
• Cluster receiver

If the initial allocation attempt fails, the short retry count number is decremented and the channel
retries the remaining number of times. If it still fails, it retries a long retry count number of times
with an interval of long retry interval between each try. If it is still unsuccessful, the channel
closes down. The channel must then be restarted with a command; it is not started automatically by the
channel initiator.

On z/OS, a channel cannot enter retry if the maximum number of channels (MAXCHL) has been exceeded.

On IBM i, UNIX, and Windows systems, in order for retry to be attempted a channel initiator must be
running. The channel initiator must be monitoring the initiation queue specified in the definition of the
transmission queue that the channel is using.

If the channel initiator (on z/OS) or the channel (on Multiplatforms) is stopped while the channel is
retrying, the short retry count and long retry count are reset when the channel initiator or the channel is
restarted, or when a message is successfully put at the sender channel. However, if the channel initiator
(on z/OS) or queue manager (on Multiplatforms) is shut down and restarted, the short retry count and
long retry count are not reset. The channel retains the retry count values it had before the queue manager
restart or the message being put.

For IBM i, UNIX, and Windows systems:

1. When a channel goes from RETRYING state to RUNNING state, the short retry count and long retry
count are not reset immediately. They are reset only when the first message flows across the channel
successfully after the channel went into RUNNING state, that is; when the local channel confirms the
number of messages sent to the other end.

2. The short retry count and long retry count are reset when the channel is restarted.

Long retry interval (LONGTMR)
This attribute is the approximate interval in seconds that the channel is to wait before retrying to establish
connection, during the long retry mode.

The interval between retries can be extended if the channel has to wait to become active.

The channel tries to connect long retry count number of times at this long interval, after trying the
short retry count number of times at the short retry interval.

Configuration reference 119

This attribute can be set from zero through 999 999.

This attribute is valid for channel types of:

• Sender
• Server
• Cluster sender
• Cluster receiver

LU 6.2 mode name (MODENAME)
This attribute is for use with LU 6.2 connections. It gives extra definition for the session characteristics of
the connection when a communication session allocation is performed.

When using side information for SNA communications, the mode name is defined in the CPI-C
Communications Side Object or APPC side information, and this attribute must be left blank; otherwise, it
must be set to the SNA mode name.

The name must be one to eight alphanumeric characters long.

This attribute is valid for channel types of:

• Sender
• Server
• Requester
• Client connection
• Cluster sender
• Cluster receiver

It is not valid for receiver or server-connection channels.

LU 6.2 transaction program name (TPNAME)
This attribute is for use with LU 6.2 connections. It is the name, or generic name, of the transaction
program (MCA) to be run at the far end of the link.

When using side information for SNA communications, the transaction program name is defined in the
CPI-C Communications Side Object or APPC side information and this attribute must be left blank.
Otherwise, this name is required by sender channels and requester channels.

The name can be up to 64 characters long.

The name must be set to the SNA transaction program name, unless the CONNAME contains a side-
object name in which case it must be set to blanks. The actual name is taken instead from the CPI-C
Communications Side Object, or the APPC side information data set.

This information is set in different ways on different platforms; see Configuring distributed queuing for
more information about setting up communication for your platform.

This attribute is valid for channel types of:

• Sender
• Server
• Requester
• Client connection
• Cluster sender
• Cluster receiver

120 IBM MQ Configuration Reference

Maximum instances (MAXINST)
This attribute specifies the maximum number of simultaneous instances of a server-connection channel
or AMQP channel that can be started.

See the child topics for information on how the attribute is used for each channel type.

Related concepts
Server-connection channel limits
Related reference
DEFINE CHANNEL

Maximum instances of server-connection channel connections
This attribute specifies the maximum number of simultaneous instances of a sever-connection channel
that can be started.

This attribute can be set from zero through 999 999 999. A value of zero indicates that no client
connections are allowed on this channel. The default value is 999 999 999.

If the value is reduced so that it is less than the number of instances of the server-connection channel
that are currently running, then the running channels are not affected. However, new instances are not
able to start until sufficient existing ones have ceased to run.

Maximum instances of AMQP channel connections
This attribute specifies the maximum number of simultaneous instances of an AMQP channel that can be
started.

This attribute can be set from zero through 999 999 999. A value of zero indicates that no client
connections are allowed on this channel. The default value is 999 999 999.

If a client attempts to connect, and the number of connected clients has reached MAXINST, the channel
closes the connection with a close frame. The close frame contains the following message:

amqp:resource-limit-exceeded

If a client connects with an ID that is already connected (that is, it performs a client-takeover) the
takeover will succeed regardless of whether the number of connected clients has reached MAXINST.

Maximum instances per client (MAXINSTC)
This attribute specifies the maximum number of simultaneous instances of a server-connection channel
that can be started from a single client.

This attribute can be set from zero through 999 999 999. A value of zero indicates that no client
connections are allowed on this channel. The default value is 999 999 999.

If the value is reduced so that it is less than the number of instances of the server-connection channel
that are currently running from individual clients, then the running channels are not affected. However,
new instances from those clients are not able to start until sufficient existing ones have ceased to run.

This attribute is valid for server-connection channels only.

Related concepts
Server-connection channel limits
Related reference
DEFINE CHANNEL

Configuration reference 121

Maximum message length (MAXMSGL)
This attribute specifies the maximum length of a message that can be transmitted on the channel.

On IBM MQ for IBM i, UNIX, and Windows systems, specify a value greater than or equal to
zero, and less than or equal to the maximum message length for the queue manager. See the MAXMSGL
parameter of the ALTER QMGR command in ALTER QMGR for more information.

On IBM MQ for z/OS, specify a value greater than or equal to zero, and less than or equal to
104 857 600 bytes (that is, 100 MB).

Because various implementations of IBM MQ systems exist on different platforms, the size available for
message processing might be limited in some applications. This number must reflect a size that your
system can handle without stress. When a channel starts, the lower of the two numbers at each end of the
channel is taken.

By adding the digital signature and key to the message, Advanced Message Security increases the length
of the message.

Note: You can use a maximum message size of 0 for the channel, which is taken to mean that the size is to
be set to the local queue manager maximum value.

This attribute is valid for all channel types.

Message channel agent name (MCANAME)
This attribute is reserved and if specified must only be set to blanks.

Its maximum length is 20 characters.

Message channel agent type (MCATYPE)
This attribute can specify the message channel agent as a process or a thread.

On IBM MQ for z/OS, it is supported only for channels with a channel type of cluster-receiver.

Advantages of running as a process include:

• Isolation for each channel providing greater integrity
• Job authority specific for each channel
• Control over job scheduling

Advantages of threads include:

• Much reduced use of storage
• Easier configuration by typing on the command line
• Faster execution - it is quicker to start a thread than to instruct the operating system to start a process

For channel types of sender, server, and requester, the default is process. For channel types of cluster-
sender and cluster-receiver, the default is thread. These defaults can change during your installation.

If you specify process on the channel definition, a RUNMQCHL process is started. If you specify thread,
the MCA runs on a thread of the AMQRMPPA process, or of the RUNMQCHI process if MQNOREMPOOL
is specified. On the machine that receives the inbound allocates, the MCA runs as a thread if you use
RUNMQLSR. It runs as a process if you use inetd.

On IBM MQ for z/OS, this attribute is supported only for channels with a channel type of cluster-receiver.
On other platforms, it is valid for channel types of:

• Sender
• Server
• Requester
• Cluster sender

122 IBM MQ Configuration Reference

• Cluster receiver

Message channel agent user identifier (MCAUSER)
This attribute is the user identifier (a string) to be used by the MCA for authorization to access IBM MQ
resources.

Note: An alternative way of providing a user ID for a channel to run under is to use channel authentication
records. With channel authentication records, different connections can use the same channel while using
different credentials. If both MCAUSER on the channel is set and channel authentication records are used
to apply to the same channel, the channel authentication records take precedence. The MCAUSER on the
channel definition is only used if the channel authentication record uses USERSRC(CHANNEL).

This authorization includes (if PUT authority is DEF) putting the message to the destination queue for
receiver or requester channels.

On IBM MQ for Windows, the user identifier can be domain-qualified by using the format, user@domain,
where the domain must be either the Windows systems domain of the local system, or a trusted domain.

If this attribute is blank, the MCA uses its default user identifier. For more information, see DEFINE
CHANNEL.

This attribute is valid for channel types of:

• Receiver
• Requester
• Server connection
• Cluster receiver

Related concepts
Channel authentication records

Message exit name (MSGEXIT)
This attribute specifies the name of the user exit program to be run by the channel message exit.

This attribute can be a list of names of programs that are to be run in succession. Leave blank, if no
channel message exit is in effect.

The format and maximum length of this attribute depend on the platform, as for “Receive exit name
(RCVEXIT)” on page 128.

This attribute is valid for channel types of:

• Sender
• Server
• Receiver
• Requester
• Cluster sender
• Cluster receiver

Message exit user data (MSGDATA)
This attribute specifies user data that is passed to the channel message exits.

You can run a sequence of message exits. The limitations on the user data length and an example of
how to specify MSGDATA for more than one exit are as shown for RCVDATA. See “Receive exit user data
(RCVDATA)” on page 129.

This attribute is valid for channel types of:

• Sender

Configuration reference 123

• Server
• Receiver
• Requester
• Cluster sender
• Cluster receiver

Message-retry exit name (MREXIT)
This attribute specifies the name of the user exit program to be run by the message-retry user exit.

Leave blank if no message-retry exit program is in effect.

The format and maximum length of the name depend on the platform, as for “Receive exit name
(RCVEXIT)” on page 128. However, there can only be one message-retry exit specified

This attribute is valid for channel types of:

• Receiver
• Requester
• Cluster receiver

Message-retry exit user data (MRDATA)
This attribute specifies data passed to the channel message-retry exit when it is called.

This attribute is valid for channel types of:

• Receiver
• Requester
• Cluster receiver

Message retry count (MRRTY)
This attribute specifies the number of times the channel tries to redeliver the message.

This attribute controls the action of the MCA only if the message-retry exit name is blank. If the exit
name is not blank, the value of MRRTY is passed to the exit, but the number of attempts made (if any) is
controlled by the exit, and not by this attribute.

The value must be in the range 0 - 999 999 999. A value of zero means that no additional attempts are
made. The default is 10.

This attribute is valid for channel types of:

• Receiver
• Requester
• Cluster receiver

Message retry interval (MRTMR)
This attribute specifies the minimum interval of time that must pass before the channel can retry the
MQPUT operation.

This time interval is in milliseconds.

This attribute controls the action of the MCA only if the message-retry exit name is blank. If the exit
name is not blank, the value of MRTMR is passed to the exit for use by the exit, but the retry interval is
controlled by the exit, and not by this attribute.

The value must be in the range 0 - 999 999 999. A value of zero means that the retry is performed as soon
as possible (if the value of MRRTY is greater than zero). The default is 1000.

124 IBM MQ Configuration Reference

This attribute is valid for the following channel types:

• Receiver
• Requester
• Cluster receiver

Monitoring (MONCHL)
This attribute controls the collection of online Monitoring data.

Possible values are:
QMGR

The collection of Online Monitoring Data is inherited from the setting of the MONCHL attribute in the
queue manager object. This value is the default value.

OFF
Online Monitoring Data collection for this channel is disabled.

LOW
A low ratio of data collection with a minimal effect on performance. However, the monitoring results
shown might not be up to date.

MEDIUM
A moderate ratio of data collection with limited effect on the performance of the system.

HIGH
A high ratio of data collection with the possibility of an effect on performance. However, the
monitoring results shown are the most current.

This attribute is valid for channel types of:

• Sender
• Server
• Receiver
• Requester
• Server connection
• Cluster sender
• Cluster receiver

For more information about monitoring data, see Displaying queue and channel monitoring data.

NETPRTY channel attribute
The NETPRTY channel attribute specifies the priority for a CLUSRCVR channel. The value must be in the
range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the NETPRTY attribute to make one network the primary network, and another network the backup
network. Given a set of equally ranked channels, clustering chooses the path with the highest priority
when multiple paths are available.

A typical example of using the NETPRTY channel attribute is to differentiate between networks that have
different costs or speeds and connect the same destinations.

Note: Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing
you specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

Nonpersistent message speed (NPMSPEED)
This attribute specifies the speed at which nonpersistent messages are to be sent.

Possible values are:

Configuration reference 125

NORMAL
Nonpersistent messages on a channel are transferred within transactions.

FAST
Nonpersistent messages on a channel are not transferred within transactions.

The default is FAST. The advantage of this is that nonpersistent messages become available for retrieval
far more quickly. The disadvantage is that because they are not part of a transaction, messages might be
lost if there is a transmission failure or if the channel stops when the messages are in transit. See Safety
of messages.

Notes:

1. If the active recovery logs for IBM MQ for z/OS are switching and archiving more frequently
than expected, given that the messages being sent across a channel are non-persistent, setting
NPMSPEED(FAST) on both the sending and receiving ends of the channel can minimize the
SYSTEM.CHANNEL.SYNCQ updates.

2. If you are seeing high CPU usage relating to updates to the SYSTEM.CHANNEL.SYNCQ, setting
NPMSPEED(FAST) can significantly reduce the CPU usage.

This attribute is valid for channel types of:

• Sender
• Server
• Receiver
• Requester
• Cluster sender
• Cluster receiver

Password (PASSWORD)
This attribute specifies a password that can be used by the MCA when attempting to initiate a secure LU
6.2 session with a remote MCA.

You can specify a password of maximum length 12 characters, although only the first 10 characters are
used.

It is valid for channel types of sender, server, requester, or client-connection.

On IBM MQ for z/OS, this attribute is valid only for client connection channels. On other platforms, it is
valid for channel types of:

• Sender
• Server
• Requester
• Client connection
• Cluster sender

Port number (PORT)
Specify the port number that is used to connect the AMQP client.

The default port for AMQP 1.0 connections is 5672. If you are already using port 5672, you can specify a
different port.

PUT authority (PUTAUT)
This attribute specifies the type of security processing to be carried out by the MCA.

This attribute is valid for channel types of:

• Receiver

126 IBM MQ Configuration Reference

• Requester
• Server connection (z/OS only)
• Cluster receiver

Use this attribute to choose the type of security processing to be carried out by the MCA when executing:

• An MQPUT command to the destination queue (for message channels), or
• An MQI call (for MQI channels).

On z/OS, the user IDs that are checked, and how many user IDs are checked, depends on
the setting of the MQADMIN RACF® class hlq.RESLEVEL profile. Depending on the level of access the user
ID of the channel initiator has to hlq.RESLEVEL, zero, one or two user IDs are checked. To see how many
user IDs are checked, see RESLEVEL and channel initiator connections. For more information about which
user IDs are checked, see User IDs used by the channel initiator.

You can choose one of the following:
Process security, also called default authority (DEF)

The default user ID is used.

On platforms other than z/OS, the user ID used to check open authority on the queue is that of the
process or user running the MCA at the receiving end of the message channel.

On z/OS, both the user ID received from the network, and the user ID derived from MCAUSER might
be used, depending on the number of user IDs that are to be checked.

The queues are opened with this user ID and the open option MQOO_SET_ALL_CONTEXT.

Context security (CTX)
The user ID from the context information associated with the message is used as an alternate user ID.

The UserIdentifier in the message descriptor is moved into the AlternateUserId field in
the object descriptor. The queue is opened with the open options MQOO_SET_ALL_CONTEXT and
MQOO_ALTERNATE_USER_AUTHORITY.

On platforms other than z/OS, the user ID used to check open authority on the queue for
MQOO_SET_ALL_CONTEXT and MQOO_ALTERNATE_USER_AUTHORITY is that of the process or user
running the MCA at the receiving end of the message channel. The user ID used to check open
authority on the queue for MQOO_OUTPUT is the UserIdentifier in the message descriptor.

On z/OS, the user ID received from the network or that derived from MCAUSER might be used, as well
as the user ID from the context information in the message descriptor, depending on the number of
user IDs that are to be checked.

Context security (CTX) is not supported on server-connection channels.

Only Message Channel Agent security (ONLYMCA)
The user ID derived from MCAUSER is used.

Queues are opened with the open option MQOO_SET_ALL_CONTEXT.

This value only applies to z/OS.

Alternate Message Channel Agent security (ALTMCA)
The user ID from the context information (the UserIdentifier field) in the message descriptor
might be used, as well as the user ID derived from MCAUSER, depending on the number of user IDs
that are to be checked.

This value only applies to z/OS.

Further details about context fields and open options can be found in Controlling context information.

More information about security can be found here:

• Securing

Configuration reference 127

• Setting up security on UNIX, Linux, and Windows

• Setting up security on IBM i

• Setting up security on z/OS

Queue manager name (QMNAME)
This attribute specifies the name of the queue manager or queue manager group to which an IBM MQ MQI
client application can request connection.

This attribute is valid for channel types of:

• Client connection

Receive exit name (RCVEXIT)
This attribute specifies the name of the user exit program to be run by the channel receive user exit.

This attribute can be a list of names of programs that are to be run in succession. Leave blank, if no
channel receive user exit is in effect.

The format and maximum length of this attribute depend on the platform:

• On z/OS it is a load module name, maximum length 8 characters, except for client-connection channels
where the maximum length is 128 characters.

• On IBM i, it is of the form:

libname/progname

when specified in CL commands.

When specified in IBM MQ Commands (MQSC) it has the form:

progname libname

where progname occupies the first 10 characters, and libname the second 10 characters (both
blank-padded to the right if necessary). The maximum length of the string is 20 characters.

• On Windows, it is of the form:

dllname(functionname)

where dllname is specified without the suffix .DLL. The maximum length of the string is 40 characters.
• On UNIX, it is of the form:

libraryname(functionname)

The maximum length of the string is 40 characters.

During cluster sender channel auto-definition on z/OS, channel exit names are converted to z/OS format.
If you want to control how exit names are converted, you can write a channel auto-definition exit. For
more information, see Channel auto-definition exit program.

You can specify a list of receive, send, or message exit program names. The names must be separated by
a comma, a space, or both. For example:

RCVEXIT(exit1 exit2)
MSGEXIT(exit1,exit2)
SENDEXIT(exit1, exit2)

The total length of the string of exit names and strings of user data for a particular type of exit is limited to
500 characters. In IBM MQ for IBM i, you can list up to 10 exit names. In IBM MQ for z/OS, you can list up
to eight exit names.

This attribute is valid for all channel types.

128 IBM MQ Configuration Reference

Receive exit user data (RCVDATA)
This attribute specifies user data that is passed to the receive exit.

You can run a sequence of receive exits. The string of user data for a series of exits must be separated by
a comma, spaces, or both. For example:

RCVDATA(exit1_data exit2_data)
MSGDATA(exit1_data,exit2_data)
SENDDATA(exit1_data, exit2_data)

In IBM MQ for UNIX systems, and Windows systems, the length of the string of exit names and strings of
user data is limited to 500 characters. In IBM MQ for IBM i, you can specify up to 10 exit names and the
length of user data for each is limited to 32 characters. In IBM MQ for z/OS, you can specify up to eight
strings of user data each of length 32 characters.

This attribute is valid for all channel types.

Security exit name (SCYEXIT)
This attribute specifies the name of the exit program to be run by the channel security exit.

Leave blank if no channel security exit is in effect.

The format and maximum length of the name depend on the platform, as for “Receive exit name
(RCVEXIT)” on page 128. However, you can only specify one security exit.

This attribute is valid for all channel types.

Security exit user data (SCYDATA)
This attribute specifies user data that is passed to the security exit.

The maximum length is 32 characters.

This attribute is valid for all channel types.

Send exit name (SENDEXIT)
This attribute specifies the name of the exit program to be run by the channel send exit.

This attribute can be a list of names of programs that are to be run in sequence. Leave blank if no channel
send exit is in effect.

The format and maximum length of this attribute depend on the platform, as for “Receive exit name
(RCVEXIT)” on page 128.

This attribute is valid for all channel types.

Send exit user data (SENDDATA)
This attribute specifies user data that is passed to the send exit.

You can run a sequence of send exits. The limitations on the user data length and an example of how
to specify SENDDATA for more than one exit, are as shown for RCVDATA. See “Receive exit user data
(RCVDATA)” on page 129.

This attribute is valid for all channel types.

Sequence number wrap (SEQWRAP)
This attribute specifies the highest number the message sequence number reaches before it restarts at 1.

The value of the number must be high enough to avoid a number being reissued while it is still being used
by an earlier message. The two ends of a channel must have the same sequence number wrap value when
a channel starts; otherwise, an error occurs.

Configuration reference 129

The value can be set from 100 through 999 999 999.

This attribute is valid for channel types of:

• Sender
• Server
• Receiver
• Requester
• Cluster sender
• Cluster receiver

Short retry count (SHORTRTY)
This attribute specifies the maximum number of times that the channel is to try allocating a session to its
partner.

The short retry count attribute can be set from zero through 999 999 999.

This attribute is valid for the following channel types:

• Sender
• Server
• Cluster sender
• Cluster receiver

If multiple IP addresses have been defined within the channel and reconnection is necessary, IBM MQ
evaluates the channel definition and attempts to connect to each IP address in the order it is defined until
either a successful connection is established or all addresses have been attempted.

In this case, SHORTRTY relates to how many total attempts the overall channel tries to reconnect, and not
the individual IP addresses

If the initial allocation attempt fails, the short retry count is decremented and the channel retries
the remaining number of times with an interval, defined in the short retry interval attribute,
between each attempt. If it still fails, it retries long retry count number of times with an interval of
long retry interval between each attempt. If it is still unsuccessful, the channel closes down.

On z/OS, a channel cannot enter retry if the maximum number of channels (MAXCHL) has been exceeded.

On IBM i, UNIX, and Windows systems, in order for retry to be attempted a channel initiator must be
running. The channel initiator must be monitoring the initiation queue specified in the definition of the
transmission queue that the channel is using.

If the channel initiator (on z/OS) or the channel (on Multiplatforms) is stopped while the channel is
retrying, the short retry count and long retry count are reset when the channel initiator or the channel is
restarted, or when a message is successfully put at the sender channel. However, if the channel initiator
(on z/OS) or queue manager (on Multiplatforms) is shut down and restarted, the short retry count and
long retry count are not reset. The channel retains the retry count values it had before the queue manager
restart or the message being put.

For IBM i, UNIX, and Windows systems:

1. When a channel goes from RETRYING state to RUNNING state, the short retry count and long retry
count are not reset immediately. They are reset only when the first message flows across the channel
successfully after the channel went into RUNNING state, that is; when the local channel confirms the
number of messages sent to the other end.

2. The short retry count and long retry count are reset when the channel is restarted.

130 IBM MQ Configuration Reference

Short retry interval (SHORTTMR)
This attribute specifies the approximate interval in seconds that the channel is to wait before retrying to
establish connection, during the short retry mode.

The interval between retries might be extended if the channel has to wait to become active.

This attribute can be set from zero through 999 999.

This attribute is valid for channel types of:

• Sender
• Server
• Cluster sender
• Cluster receiver

If multiple IP addresses have been defined within the channel and reconnection is necessary, IBM MQ
evaluates the channel definition and attempts to connect to each IP address in the order it is defined until
either a successful connection is established or all addresses have been attempted.

In this case, SHORTTMR relates to how long the overall channel waits to restart the connection process,
and not the individual IP addresses.

SSL Cipher Specification (SSLCIPH)
This attribute specifies a single CipherSpec for a TLS connection.

Every IBM MQ channel definition includes the SSLCIPH attribute. The value is a string with a maximum
length of 32 characters.

Note the following:

• The SSLCIPH attribute can contain a blank value, meaning that you are not using TLS. If one end of the
channel has a blank SSLCIPH attribute, the other end of the channel must also have a blank SSLCIPH
attribute.

• Alternatively, if SSLCIPH contains a nonblank value, the channel attempts to use the specified cipher to
use TLS. Again, in this case, both ends of the channel must specify the same SSLCIPH value.

• The only exception to the rule that SSLCIPH must be the same at both ends of a channel, is that a
fully-managed .NET client can specify the special value *NEGOTIATE. This option allows the channel to
select the most recent protocol version supported by the .NET framework, and negotiate a CipherSpec
that the server supports.

It is valid only for channels with a transport type (TRPTYPE) of TCP. If the TRPTYPE is not TCP, the data is
ignored and no error message is issued.

For more information about SSLCIPH, see DEFINE CHANNEL and Specifying CipherSpecs.

SSL Client Authentication (SSLCAUTH)
This attribute specifies whether the channel needs to receive and authenticate a TLS certificate from a
TLS client.

Possible values are:
OPTIONAL

If the peer TLS client sends a certificate, the certificate is processed as normal but authentication
does not fail if no certificate is sent.

REQUIRED
If the TLS client does not send a certificate, authentication fails.

The default value is REQUIRED.

You can specify a value for SSLCAUTH on a non-TLS channel definition. That is, a channel definition on
which the SSLCIPH attribute is missing or blank.

Configuration reference 131

SSLCAUTH is an optional attribute.

This attribute is valid on all channel types that can ever receive a channel initiation flow, except for sender
channels.

This attribute is valid for channel types of:

• Server
• Receiver
• Requester
• Server connection
• Cluster receiver

For more information about SSLCAUTH, see DEFINE CHANNEL (MQTT) and Securing.

SSL Peer (SSLPEER)
This attribute is used to check the Distinguished Name (DN) of the certificate from the peer queue
manager or client at the other end of an IBM MQ channel.

Note: An alternative way of restricting connections into channels by matching against the TLS Subject
Distinguished Name, is to use channel authentication records. With channel authentication records,
different TLS Subject Distinguished Name patterns can be applied to the same channel. If both SSLPEER
on the channel and a channel authentication record are used to apply to the same channel, the inbound
certificate must match both patterns in order to connect.

If the DN received from the peer does not match the SSLPEER value, the channel does not start.

SSLPEER is an optional attribute. If a value is not specified, the peer DN is not checked when the channel
is started.

On z/OS, the maximum length of the attribute is 256 bytes. On all other platforms, it is 1024 bytes.
Channel authentication records provide greater flexibility when using SSLPEER and support 1024 bytes
on all platforms.

On z/OS, the attribute values used are not checked. If you enter incorrect values, the channel fails at
startup, and error messages are written to the error log at both ends of the channel. A Channel SSL Error
event is also generated at both ends of the channel. On platforms that support SSLPEER, other than z/OS,
the validity of the string is checked when it is first entered.

You can specify a value for SSLPEER on a non-TLS channel definition, one on which SSLCIPH is missing or
blank. You can use this to temporarily disable TLS for debugging without having to clear and later re-input
the TLS parameters.

For more information about using SSLPEER, see SET CHLAUTH and Securing.

This attribute is valid for all channel types.

Related concepts
Channel authentication records

Topic root (TPROOT)
This attribute specifies the topic root for an AMQP channel.

You can use the TPROOT attribute to specify a topic root for an AMQP channel. Using this attribute
ensures that an MQ Light application, when deployed to a queue manager, does not publish or subscribe
to messages to or from areas of the topic tree that are being used by other applications.

The default value for TPROOT is SYSTEM.BASE.TOPIC. With this value, the topic string an AMQP client
uses to publish or subscribe has no prefix, and the client can exchange messages with other MQ pub/sub
applications. To have AMQP clients publish and subscribe under a topic prefix, first create an MQ topic
object with a topic string set to the prefix you want, then change the value of the AMQP channel TPROOT

132 IBM MQ Configuration Reference

attribute to the name of the MQ topic object you created. The following example shows the topic root
being set to APPGROUP1.BASE.TOPIC for AMQP channel MYAMQP:

DEFINE CHANNEL(MYAMQP) CHLTYPE(AMQP) TPROOT(APPGROUP1.BASE.TOPIC) PORT(5673)

Note: If the TPROOT attribute value, or the topic string that underpins it, is changed, existing AMQP topics
and their messages might be orphaned.

Transmission queue name (XMITQ)
This attribute specifies the name of the transmission queue from which messages are retrieved.

This attribute is required for channels of type sender or server, it is not valid for other channel types.

Provide the name of the transmission queue to be associated with this sender or server channel, that
corresponds to the queue manager at the far side of the channel. You can give the transmission queue the
same name as the queue manager at the remote end.

This attribute is valid for channel types of:

• Sender
• Server

Transport type (TRPTYPE)
This attribute specifies the transport type to be used.

The possible values are:

LU62 LU 6.2

TCP TCP/IP

NETBIOS NetBIOS (“1” on page 133)

SPX SPX (“1” on page 133)

Notes:

1. For use on Windows. Can also be used on z/OS for defining client-connection channels for use on
Windows.

This attribute is valid for all channel types, but is ignored by responding message channel agents.

Use client ID (USECLTID)
Use client ID for connection to AMQP channel.

Specify whether the client ID is used for connection on an AMQP channel. Set to Yes or No.

Use Dead-Letter Queue (USEDLQ)
This attribute determines whether the dead-letter queue (or undelivered message queue) is used when
messages cannot be delivered by channels.

Possible values are:
NO

Messages that cannot be delivered by a channel are treated as a failure. The channel either discards
these messages, or the channel ends, in accordance with the setting of NPMSPEED.

YES (default)
If the queue manager DEADQ attribute provides the name of a dead-letter queue, then it is used,
otherwise the behavior is as for NO.

Configuration reference 133

User ID (USERID)
This attribute specifies the user ID to be used by the MCA when attempting to initiate a secure SNA
session with a remote MCA.

You can specify a task user identifier of 20 characters.

It is valid for channel types of sender, server, requester, or client-connection.

This attribute does not apply to IBM MQ for z/OS except for client-connection channels.

On the receiving end, if passwords are kept in encrypted format and the LU 6.2 software is using a
different encryption method, an attempt to start the channel fails with invalid security details. You can
avoid this failure by modifying the receiving SNA configuration to either:

• Turn off password substitution, or
• Define a security user ID and password.

On IBM MQ for z/OS, this attribute is valid only for client connection channels. On other platforms, it is
valid for channel types of:

• Sender
• Server
• Requester
• Client connection
• Cluster sender

IBM MQ cluster commands
The IBM MQ Script commands runmqsc commands have special attributes and parameters that apply to
clusters. There are other administrative interfaces you can use to manager clusters.

The MQSC commands are shown as they would be entered by the system administrator at the command
console. Remember that you do not have to issue the commands in this way. There are a number of other
methods, depending on your platform; for example:

• On IBM MQ for IBM i, you run MQSC commands interactively from option 26 of WRKMQM. You can also
use CL commands or you can store MQSC commands in a file and use the STRMQMMQSC CL command.

• On z/OS you can use the COMMAND function of the CSQUTIL utility, the operations and
control panels or you can use the z/OS console.

• On all other platforms, you can store the commands in a file and use runmqsc.

In a MQSC command, a cluster name, specified using the CLUSTER attribute, can be up to 48 characters
long.

A list of cluster names, specified using the CLUSNL attribute, can contain up to 256 names. To create a
cluster namelist, use the DEFINE NAMELIST command.

IBM MQ Explorer
The IBM MQ Explorer GUI can administer a cluster with repository queue managers on IBM WebSphere
MQ for z/OS 6 or later. You do not need to nominate an additional repository on a separate system. For
earlier versions of IBM MQ for z/OS, the IBM MQ Explorer cannot administer a cluster with repository
queue managers. You must therefore nominate an additional repository on a system that the IBM MQ
Explorer can administer.

On IBM MQ for Windows and IBM MQ for Linux, you can also use IBM MQ Explorer to work with clusters.
You can also use the stand-alone IBM MQ Explorer client.

134 IBM MQ Configuration Reference

Using the IBM MQ Explorer, you can view cluster queues and inquire about the status of cluster-sender
and cluster-receiver channels. IBM MQ Explorer includes two wizards, which you can use to guide you
through the following tasks:

• Create a cluster
• Join an independent queue manager to a cluster

Programmable command formats (PCF)
Table 31. PCF equivalents of MQSC commands specifically to work with clusters

runmqsc command PCF equivalent

DISPLAY CLUSQMGR MQCMD_INQUIRE_CLUSTER_Q_MGR

SUSPEND QMGR MQCMD_SUSPEND_Q_MGR_CLUSTER

RESUME QMGR MQCMD_RESUME_Q_MGR_CLUSTER

REFRESH CLUSTER MQCMD_REFRESH_CLUSTER

RESET CLUSTER MQCMD_RESET_CLUSTER

Related information
Clustering: Using REFRESH CLUSTER best practices

Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.

To specify that a queue manager holds a full repository for a cluster, use the ALTER QMGR command
specifying the attribute REPOS(clustername). To specify a list of several cluster names, define a
cluster namelist and then use the attribute REPOSNL(namelist) on the ALTER QMGR command:

DEFINE NAMELIST(CLUSTERLIST)
 DESCR('List of clusters whose repositories I host')
 NAMES(CLUS1, CLUS2, CLUS3)
 ALTER QMGR REPOSNL(CLUSTERLIST)

You can provide additional cluster attributes on the ALTER QMGR command

CLWLEXIT(name)
Specifies the name of a user exit to be called when a message is put to a cluster queue.

CLWLDATA(data)
Specifies the data to be passed to the cluster workload user exit.

CLWLLEN(length)
Specifies the maximum amount of message data to be passed to the cluster workload user exit

CLWLMRUC(channels)
Specifies the maximum number of outbound cluster channels.
CLWLMRUC is a local queue manager attribute that is not propagated around the cluster. It is made
available to cluster workload exits and the cluster workload algorithm that chooses the destination for
messages.

CLWLUSEQ(LOCAL|ANY)
Specifies the behavior of MQPUT when the target queue has both a local instance and at least one
remote cluster instance. If the put originates from a cluster channel, this attribute does not apply. It is
possible to specify CLWLUSEQ as both a queue attribute and a queue manager attribute.
If you specify ANY, both the local queue and the remote queues are possible targets of the MQPUT.
If you specify LOCAL, the local queue is the only target of the MQPUT.

The equivalent PCFs are MQCMD_CHANGE_Q_MGR and MQCMD_INQUIRE_Q_MGR.

Configuration reference 135

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related reference
Channel definition commands
Cluster attributes that can be specified on channel definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER: Forcibly removing a queue manager from a cluster
Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.

Channel definition commands
Cluster attributes that can be specified on channel definition commands.

The DEFINE CHANNEL, ALTER CHANNEL, and DISPLAY CHANNEL commands have two specific
CHLTYPE parameters for clusters: CLUSRCVR and CLUSSDR. To define a cluster-receiver channel you use
the DEFINE CHANNEL command, specifying CHLTYPE(CLUSRCVR). Many attributes on a cluster-receiver
channel definition are the same as the attributes on a receiver or sender-channel definition. To define a
cluster-sender channel you use the DEFINE CHANNEL command, specifying CHLTYPE(CLUSSDR), and
many of the same attributes as you use to define a sender-channel.

It is no longer necessary to specify the name of the full repository queue manager when you define
a cluster-sender channel. If you know the naming convention used for channels in your cluster, you
can make a CLUSSDR definition using the +QMNAME+ construction. The +QMNAME+ construction is not
supported on z/OS. After connection, IBM MQ changes the name of the channel and substitutes the
correct full repository queue manager name in place of +QMNAME+. The resulting channel name is
truncated to 20 characters.

For more information on naming conventions, see Cluster naming conventions.

The technique works only if your convention for naming channels includes the name of the
queue manager. For example, you define a full repository queue manager called QM1 in a cluster
called CLUSTER1 with a cluster-receiver channel called CLUSTER1.QM1.ALPHA. Every other queue
manager can define a cluster-sender channel to this queue manager using the channel name,
CLUSTER1.+QMNAME+.ALPHA.

If you use the same naming convention for all your channels, be aware that only one +QMNAME+ definition
can exist at one time.

The following attributes on the DEFINE CHANNEL and ALTER CHANNEL commands are specific to cluster
channels:

136 IBM MQ Configuration Reference

CLUSTER
The CLUSTER attribute specifies the name of the cluster with which this channel is associated.
Alternatively use the CLUSNL attribute.

CLUSNL
The CLUSNL attribute specifies a namelist of cluster names.

NETPRTY
Cluster-receivers only.
The NETPRTY attribute specifies a network priority for the channel. NETPRTY helps the workload
management routines. If there is more than one possible route to a destination, the workload
management routine selects the one with the highest priority.

CLWLPRTY
The CLWLPRTY parameter applies a priority factor to channels to the same destination for workload
management purposes. This parameter specifies the priority of the channel for the purposes of cluster
workload distribution. The value must be in the range zero through 9, where zero is the lowest priority
and 9 is the highest.

CLWLRANK
The CLWLRANK parameter applies a ranking factor to a channel for workload management purposes.
This parameter specifies the rank of a channel for the purposes of cluster workload distribution. The
value must be in the range zero through 9, where zero is the lowest rank and 9 is the highest.

CLWLWGHT
The CLWLWGHT parameter applies a weighting factor to a channel for workload management
purposes. CLWLWGHT weights the channel so that the proportion of messages sent down that channel
can be controlled. The cluster workload algorithm uses CLWLWGHT to bias the destination choice so
that more messages can be sent over a particular channel. By default all channel weight attributes
are the same default value. The weight attribute allows you to allocate a channel on a powerful
UNIX machine a larger weight than another channel on small desktop PC. The greater weight means
that the cluster workload algorithm selects the UNIX machine more frequently than the PC as the
destination for messages.

CONNAME
The CONNAME specified on a cluster-receiver channel definition is used throughout the cluster to
identify the network address of the queue manager. Take care to select a value for the CONNAME
parameter that resolves throughout your IBM MQ cluster. Do not use a generic name. Remember that
the value specified on the cluster-receiver channel takes precedence over any value specified in a
corresponding cluster-sender channel.

These attributes on the DEFINE CHANNEL command and ALTER CHANNEL command also apply to the
DISPLAY CHANNEL command.

Note: Auto-defined cluster-sender channels take their attributes from the corresponding cluster-receiver
channel definition on the receiving queue manager. Even if there is a manually defined cluster-sender
channel, its attributes are automatically modified to ensure that they match the attributes on the
corresponding cluster-receiver definition. Beware that you can, for example, define a CLUSRCVR without
specifying a port number in the CONNAME parameter, while manually defining a CLUSSDR that does specify
a port number. When the auto-defined CLUSSDR replaces the manually defined one, the port number
(taken from the CLUSRCVR) becomes blank. The default port number would be used and the channel
would fail.

Note: The DISPLAY CHANNEL command does not display auto-defined channels. However, you can use
the DISPLAY CLUSQMGR command to examine the attributes of auto-defined cluster-sender channels.

Use the DISPLAY CHSTATUS command to display the status of a cluster-sender or cluster-receiver
channel. This command gives the status of both manually defined channels and auto-defined channels.

The equivalent PCFs are MQCMD_CHANGE_CHANNEL, MQCMD_COPY_CHANNEL, MQCMD_CREATE_CHANNEL,
and MQCMD_INQUIRE_CHANNEL.

Configuration reference 137

Omitting the CONNAME value on a CLUSRCVR definition
In some circumstances you can omit the CONNAME value on a CLUSRCVR definition. You must not omit the
CONNAME value on z/OS.

On Multiplatforms, the TCP/IP connection name parameter of a cluster-receiver channel
is optional. If you leave the connection name blank, IBM MQ generates a connection name for you,
assuming the default port and using the current IP address of the system. You can override the default
port number, but still use the current IP address of the system. For each connection name leave the IP
name blank, and provide the port number in parentheses; for example:

(1415)

The generated CONNAME is always in the dotted decimal (IPv4) or hexadecimal (IPv6) form, rather than in
the form of an alphanumeric DNS host name.

This facility is useful when you have machines using Dynamic Host Configuration Protocol (DHCP). If you
do not supply a value for the CONNAME on a CLUSRCVR channel, you do not need to change the CLUSRCVR
definition. DHCP allocates you a new IP address.

If you specify a blank for the CONNAME on the CLUSRCVR definition, IBM MQ generates a CONNAME from
the IP address of the system. Only the generated CONNAME is stored in the repositories. Other queue
managers in the cluster do not know that the CONNAME was originally blank.

If you issue the DISPLAY CLUSQMGR command you see the generated CONNAME. However, if you issue
the DISPLAY CHANNEL command from the local queue manager, you see that the CONNAME is blank.

If the queue manager is stopped and restarted with a different IP address, because of DHCP, IBM MQ
regenerates the CONNAME and updates the repositories accordingly.

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER: Forcibly removing a queue manager from a cluster

138 IBM MQ Configuration Reference

Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.

Queue definition commands
Cluster attributes that can be specified on the queue definition commands.

The DEFINE QLOCAL, DEFINE QREMOTE, and DEFINE QALIAS commands
The cluster attributes on the DEFINE QLOCAL, DEFINE QREMOTE, and DEFINE QALIAS commands, and
the three equivalent ALTER commands, are:
CLUSTER

Specifies the name of the cluster to which the queue belongs.
CLUSNL

Specifies a namelist of cluster names.
DEFBIND

Specifies the binding to be used when an application specifies MQOO_BIND_AS_Q_DEF on the MQOPEN
call. The options for this attribute are:

• Specify DEFBIND(OPEN) to bind the queue handle to a specific instance of the cluster queue when
the queue is opened. DEFBIND(OPEN) is the default for this attribute.

• Specify DEFBIND(NOTFIXED) so that the queue handle is not bound to any instance of the cluster
queue.

• Specify DEFBIND(GROUP) to allow an application to request that a group of messages are all
allocated to the same destination instance.

When multiple queues with the same name are advertised in a Queue Manager Cluster,
applications can choose whether to send all messages from this application to a single instance
(MQOO_BIND_ON_OPEN), to allow the workload management algorithm to select the most
suitable destination on a per message basis (MQOO_BIND_NOT_FIXED), or allow an application
to request that a 'group' of messages be all allocated to the same destination instance
(MQOO_BIND_ON_GROUP). The workload balancing is re-driven between groups of messages
(without requiring an MQCLOSE and MQOPEN of the queue).
When you specify DEFBIND on a queue definition, the queue is defined with one of the
attributes, MQBND_BIND_ON_OPEN, MQBND_BIND_NOT_FIXED, or MQBND_BIND_ON_GROUP. Either
MQBND_BIND_ON_OPEN or MQBND_BIND_ON_GROUP must be specified when using groups with
clusters.
We recommend that you set the DEFBIND attribute to the same value on all instances of the same
cluster queue. Because MQOO_BIND_ON_GROUP is new in IBM WebSphere MQ 7.1, it must not be
used if any of the applications opening this queue are connecting to IBM WebSphere MQ 7.0.1 or
earlier queue managers.

CLWLRANK
Applies a ranking factor to a queue for workload management purposes. CLWLRANK parameter is not
supported on model queues. The cluster workload algorithm selects a destination queue with the
highest rank. By default CLWLRANK for all queues is set to zero.
If the final destination is a queue manager on a different cluster, you can set the rank of
any intermediate gateway queue managers at the intersection of neighboring clusters. With the
intermediate queue managers ranked, the cluster workload algorithm correctly selects a destination
queue manager nearer the final destination.
The same logic applies to alias queues. The rank selection is made before the channel status is
checked, and therefore even non-accessible queue managers are available for selection. This has the
effect of allowing a message to be routed through a network, rather than having it select between two
possible destinations (as the priority would). So, if a channel is not started to the place where the rank
has indicated, the message is not routed to the next highest rank, but waits until a channel is available
to that destination (the message is held on the transmit queue).

Configuration reference 139

CLWLPRTY
Applies a priority factor to a queue for workload management purposes. The cluster workload
algorithm selects a destination queue with the highest priority. By default priority for all queues is
set to zero.
If there are two possible destination queues, you can use this attribute to make one destination
failover to the other destination. The priority selection is made after the channel status is checked.
All messages are sent to the queue with the highest priority unless the status of the channel to that
destination is not as favorable as the status of channels to other destinations. This means that only
the most accessible destinations are available for selection. This has the effect of prioritizing between
multiple destinations that are all available.

CLWLUSEQ
Specifies the behavior of an MQPUT operation for a queue. This parameter specifies the behavior of an
MQPUT operation when the target queue has a local instance and at least one remote cluster instance
(except where the MQPUT originates from a cluster channel). This parameter is only valid for local
queues.
Possible values are: QMGR (the behavior is as specified by the CLWLUSEQ parameter of the queue
manager definition), ANY (the queue manager treats the local queue as another instance of the cluster
queue, for the purposes of workload distribution), LOCAL (the local queue is the only target of the
MQPUT operation, providing the local queue is put enabled). The MQPUT behavior depends upon the
cluster workload management algorithm.

The DISPLAY QUEUE and DISPLAY QCLUSTER commands
The attributes on the DEFINE QLOCAL, DEFINE QREMOTE, and DEFINE QALIAS commands also apply
to the DISPLAY QUEUE command.

To display information about cluster queues, specify a queue type of QCLUSTER or the keyword
CLUSINFO on the DISPLAY QUEUE command, or use the command DISPLAY QCLUSTER.

The DISPLAY QUEUE or DISPLAY QCLUSTER command returns the name of the queue manager that
hosts the queue (or the names of all queue managers if there is more than one instance of the queue). It
also returns the system name for each queue manager that hosts the queue, the queue type represented,
and the date and time at which the definition became available to the local queue manager. This
information is returned using the CLUSQMGR, QMID, CLUSQT, CLUSDATE, and CLUSTIME attributes.

The system name for the queue manager (QMID), is a unique, system-generated name for the queue
manager.

You can define a cluster queue that is also a shared queue. For example. on z/OS you can define:

DEFINE QLOCAL(MYQUEUE) CLUSTER(MYCLUSTER) QSGDISP(SHARED) CFSTRUCT(STRUCTURE)

The equivalent PCFs are MQCMD_CHANGE_Q, MQCMD_COPY_Q, MQCMD_CREATE_Q, and
MQCMD_INQUIRE_Q.

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Channel definition commands

140 IBM MQ Configuration Reference

Cluster attributes that can be specified on channel definition commands.
DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER: Forcibly removing a queue manager from a cluster
Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.

DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.

If you issue this command from a queue manager with a full repository, the information returned applies
to every queue manager in the cluster. Otherwise the information returned applies only to the queue
managers in which it has an interest. That is, every queue manager to which it has tried to send a message
and every queue manager that holds a full repository.

The information includes most channel attributes that apply to cluster-sender and cluster-receiver
channels. In addition, the following attributes can be displayed:

CHANNEL
The cluster-receiver channel name for the queue manager.

CLUSDATE
The date at which the definition became available to the local queue manager.

CLUSTER
What clusters the queue manager is in.

CLUSTIME
The time at which the definition became available to the local queue manager.

DEFTYPE
How the queue manager was defined. DEFTYPE can be one of the following values:
CLUSSDR

A cluster sender-channel has been administratively defined on the local queue manager but not
yet recognized by the target queue manager. To be in this state the local queue manager has
defined a manual cluster-sender channel but the receiving queue manager has not accepted
the cluster information. This may be due to the channel never having been established due to
availability or to an error in the cluster-sender configuration, for example a mismatch in the
CLUSTER property between the sender and receiver definitions. This is a transitory condition or
error state and should be investigated.

CLUSSDRA
This value represents an automatically discovered cluster queue manager, no cluster-sender
channel is defined locally. This is the DEFTYPE for cluster queue managers for which the local
queue manager has no local configuration but has been informed of. For example

• If the local queue manager is a full repository queue manager it should be the DEFTYPE value
for all partial repository queue managers in the cluster.

• If the local queue manager is a partial repository, this could be the host of a cluster queue that is
being used from this local queue manager or from a second full repository queue manager that
this queue manager has been told to work with.

Configuration reference 141

If the DEFTYPE value is CLUSSDRA and the local and remote queue managers are both full
repositories for the named cluster, the configuration is not correct as a locally defined cluster-
sender channel must be defined to convert this to a DEFTYPE of CLUSSDRB.

CLUSSDRB
A cluster sender-channel has been administratively defined on the local queue manager and
accepted as a valid cluster channel by the target queue manager. This is the expected DEFTYPE of
a partial repository queue manager's manually configured full repository queue manager. It should
also be the DEFTYPE of any CLUSQMGR from one full repository to another full repository in the
cluster. Manual cluster-sender channels should not be configured to partial repositories or from a
partial repository queue manager to more than one full repository. If a DEFTYPE of CLUSSDRB is
seen in either of these situations it should be investigated and corrected.

CLUSRCVR
Administratively defined as a cluster-receiver channel on the local queue manager. This
represents the local queue manager in the cluster.

Note: To identify which CLUSQMGRs are full repository queue managers for the cluster, see the
QMTYPE property.

For more information on defining cluster channels, see Cluster channels.

QMTYPE
Whether it holds a full repository or only a partial repository.

STATUS
The status of the cluster-sender channel for this queue manager.

SUSPEND
Whether the queue manager is suspended.

VERSION
The version of the IBM MQ installation that the cluster queue manager is associated with.

The version has the format VVRRMMFF:

• VV: Version
• RR: Release
• MM: Maintenance level
• FF: Fix level

XMITQ
The cluster transmission queue used by the queue manager.

See also the DISPLAY QCLUSTER command. This is briefly described in DISPLAY QUEUE and in the
DISPLAY QUEUE and DISPLAY QCLUSTER commands section of “Queue definition commands” on page
139. For examples of using DISPLAY QCLUSTER, search the information set for "DISPLAY QCLUSTER"
and "DIS QCLUSTER".

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Channel definition commands

142 IBM MQ Configuration Reference

Cluster attributes that can be specified on channel definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER: Forcibly removing a queue manager from a cluster
Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.
MQSC command DISPLAY CLUSQMGR

SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.

While a queue manager is suspended from a cluster, it does not receive messages on cluster queues that
it hosts if there is an available queue of the same name on an alternative queue manager in the cluster.
However, messages that are explicitly targeted at this queue manager, or where the target queue is only
available on this queue manager, are still directed to this queue manager.

Receiving further inbound messages while the queue manager is suspended can be prevented by
stopping the cluster receiver channels for this cluster. To stop the cluster receiver channels for a cluster,
use the FORCE mode of the SUSPEND QMGR command.

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related tasks
Maintaining a queue manager
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Channel definition commands
Cluster attributes that can be specified on channel definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER: Forcibly removing a queue manager from a cluster

Configuration reference 143

Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.
SUSPEND QMGR
RESUME QMGR

REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.

There are three forms of this command:

REFRESH CLUSTER(clustername) REPOS(NO)
The default. The queue manager retains knowledge of all locally defined cluster queue manager and
cluster queues and all cluster queue managers that are full repositories. In addition, if the queue
manager is a full repository for the cluster it also retains knowledge of the other cluster queue
managers in the cluster. Everything else is removed from the local copy of the repository and rebuilt
from the other full repositories in the cluster. Cluster channels are not stopped if REPOS(NO) is used.
A full repository uses its CLUSSDR channels to inform the rest of the cluster that it has completed its
refresh.

REFRESH CLUSTER(clustername) REPOS(YES)
In addition to the default behavior, objects representing full repository cluster queue managers are
also refreshed. It is not valid to use this option if the queue manager is a full repository, if used
the command will fail with an error AMQ9406/CSQX406E logged. If it is a full repository, you must
first alter it so that it is not a full repository for the cluster in question. The full repository location
is recovered from the manually defined CLUSSDR definitions. After refreshing with REPOS(YES) has
been issued the queue manager can be altered so that it is once again a full repository, if required.

REFRESH CLUSTER(*)
Refreshes the queue manager in all the clusters it is a member of. If used with REPOS(YES) REFRESH
CLUSTER(*) has the additional effect of forcing the queue manager to restart its search for full
repositories from the information in the local CLUSSDR definitions. The search takes place even if the
CLUSSDR channel connects the queue manager to several clusters.

Note: For large clusters, use of the REFRESH CLUSTER command can be disruptive to the cluster while it
is in progress, and again at 27 day intervals thereafter when the cluster objects automatically send status
updates to all interested queue managers. See Refreshing in a large cluster can affect performance and
availability of the cluster.

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Channel definition commands
Cluster attributes that can be specified on channel definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
DISPLAY CLUSQMGR

144 IBM MQ Configuration Reference

Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
RESET CLUSTER: Forcibly removing a queue manager from a cluster
Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.
Related information
Clustering: Using REFRESH CLUSTER best practices

RESET CLUSTER: Forcibly removing a queue manager from a cluster
Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.

You are unlikely to need to use this command, except in exceptional circumstances.

You can issue the RESET CLUSTER command only from full repository queue managers. The command
takes two forms, depending on whether you reference the queue manager by name or identifier.

1. RESET CLUSTER(clustername) QMNAME(qmname) ACTION(FORCEREMOVE) QUEUES(NO)

2. RESET CLUSTER(clustername) QMID(qmid) ACTION(FORCEREMOVE) QUEUES(NO)

You cannot specify both QMNAME and QMID. If you use QMNAME, and there is more than one queue
manager in the cluster with that name, the command is not run. Use QMID instead of QMNAME to ensure
the RESET CLUSTER command is run.

Specifying QUEUES(NO) on a RESET CLUSTER command is the default. Specifying QUEUES(YES)
removes references to cluster queues owned by the queue manager from the cluster. The references
are removed in addition to removing the queue manager from the cluster itself.

The references are removed even if the cluster queue manager is not visible in the cluster; perhaps
because it was previously forcibly removed, without the QUEUES option.

You might use the RESET CLUSTER command if, for example, a queue manager has been deleted but
still has cluster-receiver channels defined to the cluster. Instead of waiting for IBM MQ to remove these
definitions (which it does automatically) you can issue the RESET CLUSTER command to tidy up sooner.
All other queue managers in the cluster are then informed that the queue manager is no longer available.

If a queue manager is temporarily damaged, you might want to tell the other queue managers in the
cluster before they try to send it messages. RESET CLUSTER removes the damaged queue manager.
Later, when the damaged queue manager is working again, use the REFRESH CLUSTER command
to reverse the effect of RESET CLUSTER and return the queue manager to the cluster.If the queue
manager is in a publish/subscribe cluster, you then need to reinstate any required proxy subscriptions.
See REFRESH CLUSTER considerations for publish/subscribe clusters.

Note: For large clusters, use of the REFRESH CLUSTER command can be disruptive to the cluster while it
is in progress, and again at 27 day intervals thereafter when the cluster objects automatically send status
updates to all interested queue managers. See Refreshing in a large cluster can affect performance and
availability of the cluster.

Using the RESET CLUSTER command is the only way to delete auto-defined cluster-sender channels.

Important: If the auto-defined channel to be removed is in-doubt, RESET CLUSTER does not immediately
remove that channel. In this situation you need to issue a RESOLVE CHANNEL command, prior to the
RESET CLUSTER command.

You are unlikely to need this command in normal circumstances. The IBM Support Center might advise
you to issue the command to tidy up the cluster information held by cluster queue managers. Do not use

Configuration reference 145

this command as a short cut to removing a queue manager from a cluster. The correct way to remove a
queue manager from a cluster is described in Removing a queue manager from a cluster.

Because repositories retain information for only 90 days, after that time a queue manager that was
forcibly removed can reconnect to a cluster. It reconnects automatically, unless it has been deleted. If
you want to prevent a queue manager from rejoining a cluster, you need to take appropriate security
measures.

All cluster commands, except DISPLAY CLUSQMGR, work asynchronously. Commands that change
object attributes involving clustering update the object and send a request to the repository processor.
Commands for working with clusters are checked for syntax, and a request is sent to the repository
processor.

The requests sent to the repository processor are processed asynchronously, along with cluster requests
received from other members of the cluster. Processing might take a considerable time if they have to be
propagated around the whole cluster to determine if they are successful or not.

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Channel definition commands
Cluster attributes that can be specified on channel definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER (reset a cluster)

Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Suitable destinations are chosen, by the cluster workload management algorithm, based on the
availability of the queue manager and queue, and on a number of cluster workload-specific attributes
associated with queue managers, queues, and channels. These attributes are described in the subtopics.

Note: Specify the cluster workload channel attributes on the cluster-receiver channels at the target queue
managers. Any balancing you specify on the matching cluster-sender channels is likely to be ignored. See
Cluster channels.

146 IBM MQ Configuration Reference

After you configure the cluster workload-specific attributes, if the configuration does not behave as you
expected, explore the details of how the algorithm chooses a queue manager. See “The cluster workload
management algorithm” on page 151. If the results of this algorithm do not meet your needs, you can
write a cluster workload user exit program, and use this exit to route messages to the queue of your
choice in the cluster. See Writing and compiling cluster workload exits.

Related concepts

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Channel definition commands
Cluster attributes that can be specified on channel definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER: Forcibly removing a queue manager from a cluster
Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.

Cluster workload balancing - channel attributes
An alphabetical list of the channel attributes used in cluster workload balancing.

CLWLPRTY (Cluster workload priority)
The CLWLPRTY channel attribute specifies the priority order for channels for cluster workload distribution.
The value must be in the range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the CLWLPRTY channel attribute to set a priority order for the available cluster destinations. IBM
MQ selects the destinations with the highest priority before selecting destinations with the lowest cluster
destination priority. If there are multiple destinations with the same priority, it selects the least recently
used destination.

If there are two possible destinations, you can use this attribute to allow failover. Messages go to the
queue manager with the highest priority channel. If it becomes unavailable then messages go to the next
highest priority queue manager. Lower priority queue managers act as reserves.

IBM MQ checks channel status before prioritizing the channels. Only available queue managers are
candidates for selection.

Notes:

• Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

Configuration reference 147

• The availability of a remote queue manager is based on the status of the channel to that queue
manager. When channels start, their state changes several times, with some of the states being less
preferential to the cluster workload management algorithm. In practice this means that lower priority
(backup) destinations can be chosen while the channels to higher priority (primary) destinations are
starting.

• If you need to ensure that no messages go to a backup destination, do not use CLWLPRTY. Consider
using separate queues, or CLWLRANK with a manual switch over from the primary to back up.

CLWLRANK (Cluster workload rank)
The CLWLRANK channel attribute specifies the rank of channels for cluster workload distribution. The
value must be in the range 0-9, where 0 is the lowest rank and 9 is the highest.

Use the CLWLRANK channel attribute if you want control over the final destination for messages sent to
a queue manager in another cluster. Control the choice of final destination by setting the rank of the
channels connecting a queue manager to the gateway queue managers at the intersection of the clusters.

When you set CLWLRANK, messages take a specified route through the interconnected clusters towards a
higher ranked destination. For example, messages arrive at a gateway queue manager that can send them
to either of two queue managers using channels ranked 1 and 2. They are automatically sent to the queue
manager connected by a channel with the highest rank, in this case the channel to the queue manager
ranked 2.

IBM MQ gets the rank of channels before checking channel status. Getting the rank before checking
channel status means that even non-accessible channels are available for selection. It allows messages
to be routed through the network even if the final destination is unavailable.

Notes:

• Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

• If you also used the priority attribute CLWLPRTY, IBM MQ selects between available destinations.
If a channel is not available to the destination with the highest rank, the message is held on the
transmission queue. It is released when the channel becomes available. The message does not get sent
to the next available destination in the rank order.

CLWLWGHT (Cluster workload weight)
The CLWLWGHT channel attribute specifies the weight applied to CLUSSDR and CLUSRCVR channels for
cluster workload distribution. The value must be in the range 1-99, where 1 is the lowest weight and 99 is
the highest.

Use CLWLWGHT to send servers with more processing power more messages. The higher the channel
weight, the more messages are sent over that channel.

Notes:

• Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

• When CLWLWGHT is modified from the default of 50 on any channel, workload balancing becomes
dependent on the total number of times each channel was chosen for a message sent to any clustered
queue. For more information, see “The cluster workload management algorithm” on page 151.

NETPRTY (Network-connection priority)
The NETPRTY channel attribute specifies the priority for a CLUSRCVR channel. The value must be in the
range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the NETPRTY attribute to make one network the primary network, and another network the backup
network. Given a set of equally ranked channels, clustering chooses the path with the highest priority
when multiple paths are available.

148 IBM MQ Configuration Reference

A typical example of using the NETPRTY channel attribute is to differentiate between networks that have
different costs or speeds and connect the same destinations.

Note: Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing
you specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

Related concepts
The cluster workload management algorithm
The workload management algorithm uses workload balancing attributes and many rules to select the
final destination for messages being put onto cluster queues.
Related reference
Cluster workload balancing - queue attributes
An alphabetical list of queue attributes used in cluster workload balancing.
Cluster workload balancing - queue manager attributes
An alphabetical list of queue manager attributes used in cluster workload balancing.

Cluster workload balancing - queue attributes
An alphabetical list of queue attributes used in cluster workload balancing.

CLWLPRTY
The CLWLPRTY queue attribute specifies the priority of local, remote, or alias queues for cluster workload
distribution. The value must be in the range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the CLWLPRTY queue attribute to set a preference for destination queues. IBM MQ selects the
destinations with the highest priority before selecting destinations with the lowest cluster destination
priority. If there are multiple destinations with the same priority, it selects the least recently used
destination.

IBM MQ obtains the priority of queue managers after checking channel status. Only available queue
managers are candidates for selection.

Note:

The availability of a remote queue manager is based on the status of the channel to that queue manager.
When channels start, their state changes several times, with some of the states being less preferential
to the cluster workload management algorithm. In practice this means that lower priority (backup)
destinations can be chosen while the channels to higher priority (primary) destinations are starting.

If you need to ensure that no messages go to a backup destination, do not use CLWLPRTY. Consider using
separate queues, or CLWLRANK with a manual switch over from the primary to back up.

If there are two possible destinations, you can use this attribute to allow failover. The highest priority
queue manager receives requests, lower priority queue managers act as reserves. If the highest priority
queue manager fails, then the next highest priority queue manager that is available, takes over.

CLWLRANK
The CLWLRANK queue attribute specifies the rank of a local, remote, or alias queue for cluster workload
distribution. The value must be in the range 0-9, where 0 is the lowest rank and 9 is the highest.

Use the CLWLRANK queue attribute if you want control over the final destination for messages sent to a
queue manager in another cluster. When you set CLWLRANK, messages take a specified route through the
interconnected clusters towards a higher ranked destination.

For example, you might have defined two identically configured gateway queue managers to improve the
availability of a gateway. Suppose you have defined cluster alias queues at the gateways for a local queue
defined in the cluster. If the local queue becomes unavailable, you intend the message to be held at one
of the gateways pending the queue becoming available again. To hold the queue at a gateway, you must
define the local queue with a higher rank than the cluster alias queues at the gateway.

Configuration reference 149

If you define the local queue with the same rank as the queue aliases and the local queue is unavailable,
the message travels between the gateways. On finding the local queue unavailable the first gateway
queue manager routes the message to the other gateway. The other gateway tries to deliver the message
to the target local queue again. If the local queue is still unavailable, it routes the message back to the
first gateway. The message keeps being moved back and forth between the gateways until the target local
queue became available again. By giving the local queue a higher rank, even if the queue is unavailable,
the message is not rerouted to a destination of lower rank.

IBM MQ obtains the rank of queues before checking channel status. Obtaining the rank before checking
channel status means that even non-accessible queues are available for selection. It allows messages to
be routed through the network even if the final destination is unavailable.

If you used the priority attribute IBM MQ selects between available destinations. If a channel is not
available to the destination with the highest rank, the message is held on the transmission queue. It
is released when the channel becomes available. The message does not get sent to the next available
destination in the rank order.

CLWLUSEQ
The CLWLUSEQ queue attribute specifies whether a local instance of a queue is given preference as a
destination over other instances in a cluster.

The CLWLUSEQ queue attribute is valid only for local queues. It only applies if the message is put by an
application, or a channel that is not a cluster channel.
LOCAL

The local queue is the only target of MQPUT, providing the local queue is put enabled. MQPUT behavior
depends upon the cluster workload management.

QMGR
The behavior is as specified by the CLWLUSEQ queue manager attribute.

ANY
MQPUT treats the local queue the same as any other instance of the queue in the cluster for workload
distribution.

Related concepts
The cluster workload management algorithm
The workload management algorithm uses workload balancing attributes and many rules to select the
final destination for messages being put onto cluster queues.
Related reference
Cluster workload balancing - channel attributes
An alphabetical list of the channel attributes used in cluster workload balancing.
Cluster workload balancing - queue manager attributes
An alphabetical list of queue manager attributes used in cluster workload balancing.

Cluster workload balancing - queue manager attributes
An alphabetical list of queue manager attributes used in cluster workload balancing.

CLWLMRUC
The CLWLMRUC queue manager attribute sets the number of most recently chosen channels. The cluster
workload management algorithm uses CLWLMRUC to restrict the number of active outbound cluster
channels. The value must be in the range 1 - 999 999 999.

The initial default value is 999 999 999.

150 IBM MQ Configuration Reference

CLWLUSEQ
The CLWLUSEQ queue manager attribute specifies whether a local instance of a queue is given preference
as a destination over other instances of the queue in a cluster. The attribute applies if the CLWLUSEQ
queue attribute is set to QMGR.

The CLWLUSEQ queue attribute is valid only for local queues. It only applies if the message is put by an
application, or a channel that is not a cluster channel.
LOCAL

The local queue is the only target of MQPUT. LOCAL is the default.
ANY

MQPUT treats the local queue the same as any other instance of the queue in the cluster for workload
distribution.

Related concepts
The cluster workload management algorithm
The workload management algorithm uses workload balancing attributes and many rules to select the
final destination for messages being put onto cluster queues.
Related reference
Cluster workload balancing - channel attributes
An alphabetical list of the channel attributes used in cluster workload balancing.
Cluster workload balancing - queue attributes
An alphabetical list of queue attributes used in cluster workload balancing.

The cluster workload management algorithm
The workload management algorithm uses workload balancing attributes and many rules to select the
final destination for messages being put onto cluster queues.

The workload management algorithm is exercised every time a choice of destination is required:

• It is used at the point a cluster queue is opened, by using the MQOO_BIND_ON_OPEN option.
• It is used each time a message is put to a cluster queue when it is opened with
MQOO_BIND_NOT_FIXED.

• It is used each time a new message group is started when MQOO_BIND_ON_GROUP is used to open a
cluster queue.

• For topic host routing, it is used each time a message is published to a clustered topic. If the local queue
manager is not a host for this topic, the algorithm is used to choose a host queue manager to route the
message through.

The following section describes the workload management algorithm used when determining the final
destination for messages being put onto cluster queues. These rules are influenced by the settings
applied to the following attributes for queues, queue managers, and channels:

Table 32. Attributes for cluster workload management

Queues Queue managers Channels

• CLWLPRTY 1

• CLWLRANK 1

• CLWLUSEQ 1

• PUT / PUB

• CLWLUSEQ 1

• CLWLMRUC
• CLWLPRTY
• CLWLRANK
• CLWLWGHT
• NETPRTY

Initially, the queue manager builds a list of possible destinations from two procedures:

1 This attribute applies only when choosing a clustered queue, not when choosing a topic.

Configuration reference 151

• Matching the target ObjectName and ObjectQmgrName with queue manager alias definitions that are
shared in the same clusters as the queue manager.

• Finding unique routes (that is, channels) to a queue manager that hosts a queue with the name
ObjectName and is in one of the clusters that the queue manager is a member of.

The algorithm steps through the following rules to eliminate destinations from the list of possible
destinations.

1. Remote instances of queues or topics or remote CLUSRCVR channels that do not share a cluster with
the local queue manager are eliminated.

2. If a queue or topic name is specified, remote CLUSRCVR channels that are not in the same cluster as
the queue or topic are eliminated.

Note: All remaining queues, topics and channels at this stage are made available to the cluster
workload exit, if it is configured.

3. All channels to queue managers or queue manager aliases that have a CLWLRANK less than the
maximum rank of all remaining channels or queue manager aliases are eliminated.

4. All queues (not queue manager aliases) with a CLWLRANK less than the maximum rank of all
remaining queues are eliminated.

5. If more than one instance of a queue, topic, or queue manager alias remains, and if any are pub put
enabled, all those that are put disabled are eliminated.

Note: If only put disabled instances remain then only inquire operations will succeed, all other
operations will fail with MQRC_CLUSTER_PUT_INHIBITED.

6. When choosing a queue, if the resulting set of queues contains the local instance of the queue,
the local instance is typically used. The local instance of the queue is used if one of the following
conditions are true:

• The use-queue attribute of the queue, CLWLUSEQ, is set to LOCAL.
• Both the following statements are true:

– The use-queue attribute of the queue, CLWLUSEQ, is set to QMGR.
– The use-queue attribute of the queue manager, CLWLUSEQ, is set to LOCAL.

• The message is received over a cluster channel rather than by being put by a local application.
• For locally defined queues that are defined with CLWLUSEQ(ANY), or which inherit that same

setting from the queue manager, the following points are true, within the wider set of conditions
that apply:

– The local queue is chosen, based on the status of the locally-defined CLUSRCVR channels in
the same cluster as the queue. This status is compared to the status of the CLUSSDR channels
that would take the message to remotely defined queues of the same name.

For example, there is one CLUSRCVR in the same cluster as the queue. That CLUSRCVR has
STOPPING status, whereas the other queues of the same name in the cluster have RUNNING
or INACTIVE status. In this case the remote channels will be chosen, and the local CLUSSDR
channels are not used.

– The local queue is chosen based on the number of CLUSRCVR channels, in any comparison with
CLUSSDR channels of the same status, that would take the message to remotely defined queues
of the same name.

For example, there are four CLUSRCVR channels in the same cluster as the queue, and one
CLUSSDR channel. All the channels have the same status of either INACTIVE or RUNNING.
Therefore, there are five channels to choose from, and two instances of the queue. Four-fifths
(80 percent) of the messages go to the local queue.

7. If more than one queue manager remains, if any are not suspended then all those that are suspended
are eliminated.

8. If more than one remote instance of a queue or topic remains, all channels that are inactive or
running are included. The state constants are listed:

152 IBM MQ Configuration Reference

• MQCHS_INACTIVE
• MQCHS_RUNNING

9. If no remote instance of a queue or topic remains, all channels that are in binding, initializing,
starting, or stopping state are included. The state constants are listed:

• MQCHS_BINDING
• MQCHS_INITIALIZING
• MQCHS_STARTING
• MQCHS_STOPPING

10. If no remote instance of a queue or topic remains, all channels that are being tried again are included.
The state constant is listed:

• MQCHS_RETRYING
11. If no remote instance of a queue or topic remains, all channels in requesting, paused, or stopped

state are included. The state constants are listed:

• MQCHS_REQUESTING
• MQCHS_PAUSED
• MQCHS_STOPPED
• MQCHS_SWITCHING

12. If more than one remote instance of a queue or topic on any queue manager remains, channels with
the highest NETPRTY value for each queue manager are chosen.

13. All remaining channels and queue manager aliases other than channels and aliases with the highest
priority, CLWLPRTY, are eliminated. If any queue manager aliases remain, channels to the queue
manager are kept.

14. If a queue is being chosen:

• All queues other than queues with the highest priority, CLWLPRTY, are eliminated, and channels are
kept.

15. The remaining channels are then reduced to no more than the maximum allowed number of
most recently-used channels, CLWLMRUC, by eliminating the channels with the lowest values of
MQWDR.DestSeqNumber.

Note: Internal cluster control messages are sent using the same cluster workload algorithm where
appropriate.

After the list of valid destinations has been calculated, messages are workload balanced across them,
using the following logic:

• When more than one remote instance of a destination remains and all channels to that destination
have CLWLWGHT set to the default setting of 50, the least recently used channel is chosen. This
approximately equates to a round-robin style of workload balancing when multiple remote instances
exist.

• When more than one remote instance of a destination remains and one or more of the channels to those
queues has CLWLWGHT set to a non-default setting (even if they all have a matching non-default value),
then routing becomes dependent on the relative weightings of each channel and the total number of
times each channel has previously been chosen when sending messages.

• When observing the distribution of messages for a single clustered queue with multiple instances, this
can appear to lead to an unbalanced distribution across a subset of queue instances. This is because it
is the historic use of each cluster sender channel from this queue manager that is being balanced, not
just the message traffic for that queue. If this behavior is not desirable, complete one of the following
steps:

– Set CLWLWGHT to 50 on all cluster receiver channels if even distribution is required.

Configuration reference 153

– Or, if certain queue instances need to be weighted differently from others, define those queues in a
dedicated cluster, with defined dedicated cluster receiver channels. This action isolates the workload
balancing of these queues from others in the cluster.

• The historic data that is used to balance the channels is reset if any cluster workload attributes of
available cluster receiver channels are altered or the status of a cluster receiver channel becomes
available. Modification to the workload attributes of manually defined cluster sender channels does not
reset the historic data.

• When you are considering cluster workload exit logic, the chosen channel is the one with the lowest
MQWDR.DestSeqFactor. Each time a channel is chosen, this value is increased by approximately 1000/
CLWLWGHT. If there is more than one channel with the lowest value, one of the channels with the
lowest MQWDR.DestSeqNumber value is chosen.

The distribution of user messages is not always exact because administration and maintenance of the
cluster causes messages to flow across channels. The result is an uneven distribution of user messages
that can take some time to stabilize. Because of the mixture of administration and user messages, place
no reliance on the exact distribution of messages during workload balancing.

Related reference
Cluster workload balancing - channel attributes
An alphabetical list of the channel attributes used in cluster workload balancing.
Cluster workload balancing - queue attributes
An alphabetical list of queue attributes used in cluster workload balancing.
Cluster workload balancing - queue manager attributes
An alphabetical list of queue manager attributes used in cluster workload balancing.

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.

For both REFRESH CLUSTER and RESET CLUSTER, message CSQM130I is sent to the command issuer
indicating that a request has been sent. This message is followed by message CSQ9022I to indicate that
the command has completed successfully, in that a request has been sent. It does not indicate that the
cluster request has been completed successfully.

Any errors are reported to the z/OS console on the system where the channel initiator is running, they are
not sent to the command issuer.

The asynchronous behavior is in contrast to CHANNEL commands. A message indicating that a channel
command has been accepted is issued immediately. At some later time, when the command has been
completed, a message indicating either normal or abnormal completion is sent to the command issuer.

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.
Related tasks
Checking that async commands for distributed networks have finished
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Channel definition commands
Cluster attributes that can be specified on channel definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
DISPLAY CLUSQMGR

154 IBM MQ Configuration Reference

Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER: Forcibly removing a queue manager from a cluster
Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.

Channel programs
This section looks at the different types of channel programs (MCAs) available for use at the channels.

The names of the MCAs are shown in the following tables.

Table 33. Channel programs for Windows, UNIX and Linux systems

Program name Direction of connection Communication

amqrmppa Any

runmqlsr Inbound Any

amqcrs6a Inbound LU 6.2

amqcrsta Inbound TCP

runmqchl Outbound Any

runmqchi Outbound Any

runmqlsr (Run IBM MQ listener), runmqchl (Run IBM MQ channel), and runmqchi (Run IBM MQ channel
initiator) are control commands that you can enter at the command line.

amqcrsta is invoked for TCP channels on UNIX and Linux systems using inetd, where no listener is started.

amqcrs6a is invoked as a transaction program when using LU6.2

Intercommunication jobs
The following jobs are associated with Intercommunication on IBM i. The names are contained in the
following table.

Table 34. Job names

Job name Description

AMQCLMAA Non-threaded Listener

AMQCRSTA Non-threaded Responder Job

AMQRMPPA Channel Pool Job

RUNMQCHI Channel Initiator

RUNMQCHL Channel Job

RUNMQLSR Threaded Listener

Configuration reference 155

Channel states on IBM i
Channel states are displayed on the Work with Channels panel

Table 35. Channel states on IBM i

State name Meaning

STARTING Channel is ready to begin negotiation with target MCA

BINDING Establishing a session and initial data exchange

REQUESTING Requester channel initiating a connection

RUNNING Transferring or ready to transfer

PAUSED Waiting for message-retry interval

STOPPING Establishing whether to retry or stop

RETRYING Waiting until next retry attempt

STOPPED Channel stopped because of an error or because an end-channel command is
issued

INACTIVE Channel ended processing normally or channel never started

*None No state (for server-connection channels only)

Message channel planning example for UNIX, Linux, and
Windows

This section provides a detailed example of how to connect two queue managers together so that
messages can be sent between them.

The example illustrates the preparations required to enable an application using queue manager QM1
to put messages on a queue at queue manager QM2. An application running on QM2 can retrieve these
messages, and send responses to a reply queue on QM1.

The example illustrates the use of TCP/IP connections. The example assumes that channels are to be
triggered to start when the first message arrives on the transmission queue they are servicing. You must
start the channel initiator in order for triggering to work.

This example uses SYSTEM.CHANNEL.INITQ as the initiation queue. This queue is already defined by IBM
MQ. You can use a different initiation queue, but you must define it yourself and specify the name of the
queue when you start the channel initiator.

What the example for UNIX, Linux, and Windows shows
The example shows the IBM MQ commands (MQSC) that you can use.

In all the examples, the MQSC commands are shown as they would appear in a file of commands, and as
they would be typed at the command line. The two methods look identical, but, to issue a command at the
command line, you must first type runmqsc, for the default queue manager, or runmqsc qmname where
qmname is the name of the required queue manager. Then type any number of commands, as shown in the
examples.

An alternative method is to create a file containing these commands. Any errors in the commands are
then easy to correct. If you called your file mqsc.in then to run it on queue manager QMNAME use:

runmqsc QMNAME < mqsc.in > mqsc.out

You could verify the commands in your file before running it using:

156 IBM MQ Configuration Reference

runmqsc -v QMNAME < mqsc.in > mqsc.out

For portability, you should restrict the line length of your commands to 72 characters. Use a
concatenation character to continue over more than one line. On Windows use Ctrl-z to end the input
at the command line. On UNIX and Linux systems use Ctrl-d. Alternatively, use the end command.

Figure 7 on page 157 shows the example scenario.

Figure 7. The message channel example for UNIX, Linux, and Windows systems

The example involves a payroll query application connected to queue manager QM1 that sends payroll
query messages to a payroll processing application running on queue manager QM2. The payroll query
application needs the replies to its queries sent back to QM1. The payroll query messages are sent from
QM1 to QM2 on a sender-receiver channel called QM1.TO.QM2, and the reply messages are sent back
from QM2 to QM1 on another sender-receiver channel called QM2.TO.QM1. Both of these channels are
triggered to start as soon as they have a message to send to the other queue manager.

The payroll query application puts a query message to the remote queue "PAYROLL.QUERY" defined on
QM1. This remote queue definition resolves to the local queue "PAYROLL" on QM2. In addition, the payroll
query application specifies that the reply to the query is sent to the local queue "PAYROLL.REPLY" on
QM1. The payroll processing application gets messages from the local queue "PAYROLL" on QM2, and
sends the replies to wherever they are required; in this case, local queue "PAYROLL.REPLY" on QM1.

In the example definitions for TCP/IP, QM1 has a host address of 192.0.2.0 and is listening on port 1411,
and QM2 has a host address of 192.0.2.1 and is listening on port 1412. The example assumes that these
are already defined on your system and available for use.

The object definitions that need to be created on QM1 are:

• Remote queue definition, PAYROLL.QUERY
• Transmission queue definition, QM2 (default=remote queue manager name)
• Sender channel definition, QM1.TO.QM2
• Receiver channel definition, QM2.TO.QM1
• Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

• Local queue definition, PAYROLL
• Transmission queue definition, QM1 (default=remote queue manager name)
• Sender channel definition, QM2.TO.QM1
• Receiver channel definition, QM1.TO.QM2

The connection details are supplied in the CONNAME attribute of the sender channel definitions.

You can see a diagram of the arrangement in Figure 7 on page 157.

Configuration reference 157

Queue manager QM1 example for UNIX, Linux, and Windows
These object definitions allow applications connected to queue manager QM1 to send request messages
to a queue called PAYROLL on QM2, and to receive replies on a queue called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the DESCR and REPLACE attributes. The other
attributes supplied are the minimum required to make the example work. The attributes that are not
supplied take the default values for queue manager QM1.

Run the following commands on queue manager QM1.
Remote queue definition

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QM2') REPLACE +
PUT(ENABLED) XMITQ(QM2) RNAME(PAYROLL) RQMNAME(QM2)

Note: The remote queue definition is not a physical queue, but a means of directing messages to the
transmission queue, QM2, so that they can be sent to queue manager QM2.

Transmission queue definition

DEFINE QLOCAL(QM2) DESCR('Transmission queue to QM2') REPLACE +
USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM1.TO.QM2.PROCESS)

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the named process.

Sender channel definition

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +
CONNAME('192.0.2.1(1412)')

Receiver channel definition

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM2')

Reply-to queue definition

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to query messages sent to QM2')

The reply-to queue is defined as PUT(ENABLED). This ensures that reply messages can be put to the
queue. If the replies cannot be put to the reply-to queue, they are sent to the dead-letter queue on
QM1 or, if this queue is not available, remain on transmission queue QM1 on queue manager QM2.
The queue has been defined as GET(ENABLED) to allow the reply messages to be retrieved.

Queue manager QM2 example for UNIX, Linux, and Windows
The following object definitions allow applications connected to queue manager QM2 to retrieve request
messages from a local queue called PAYROLL, and to put replies to these request messages to a queue
called PAYROLL.REPLY on queue manager QM1.

You do not need to provide a remote queue definition to enable the replies to be returned to QM1.
The message descriptor of the message retrieved from local queue PAYROLL contains both the reply-to
queue and the reply-to queue manager names. Therefore, as long as QM2 can resolve the reply-to queue
manager name to that of a transmission queue on queue manager QM2, the reply message can be

158 IBM MQ Configuration Reference

sent. In this example, the reply-to queue manager name is QM1 and so queue manager QM2 requires a
transmission queue of the same name.

All the object definitions have been provided with the DESCR and REPLACE attributes and are the
minimum required to make the example work. The attributes that are not supplied take the default values
for queue manager QM2.

Run the following commands on queue manager QM2.
Local queue definition

DEFINE QLOCAL(PAYROLL) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Local queue for QM1 payroll details')

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same reason as the reply-to
queue definition on queue manager QM1.

Transmission queue definition

DEFINE QLOCAL(QM1) DESCR('Transmission queue to QM1') REPLACE +
USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM2.TO.QM1.PROCESS)

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the named process.

Sender channel definition

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +
CONNAME('192.0.2.0(1411)')

Receiver channel definition

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM1')

Running the example for UNIX, Linux, and Windows
Information about starting the channel initiator and listener and suggestions for expanding on this
scenario.

Once these definitions have been created, you need to:

• Start the channel initiator on each queue manager.
• Start the listener for each queue manager.

For information about starting the channel initiator and listener, see Setting up communication for
Windows and Setting up communication on UNIX and Linux systems.

Expanding this example
This simple example could be expanded with:

• The use of LU 6.2 communications for interconnection with CICS systems, and transaction processing.
• Adding more queue, process, and channel definitions to allow other applications to send messages

between the two queue managers.
• Adding user-exit programs on the channels to allow for link encryption, security checking, or additional

message processing.

Configuration reference 159

• Using queue manager aliases and reply-to queue aliases to understand more about how these can be
used in the organization of your queue manager network.

Message channel planning example for IBM i
This section provides a detailed example of how to connect two IBM i queue managers together so that
messages can be sent between them.

The example illustrates the preparations needed to allow an application using queue manager QM1 to
put messages on a queue at queue manager QM2. An application running on QM2 can retrieve these
messages, and send responses to a reply queue on QM1.

The example illustrates the use of TCP/IP connections. The example assumes that channels are to be
triggered to start when the first message arrives on the transmission queue they are servicing.

This example uses SYSTEM.CHANNEL.INITQ as the initiation queue. This queue is already defined by IBM
MQ. You can use a different initiation queue, but you have to define it yourself, start a new instance of the
channel initiator using the STRMQMCHLI command, and provide it with the name of your initiation queue.
For more information about triggering channels, see Triggering channels.

What the example for IBM i shows
This example involves a payroll query application connected to queue manager QM1 that sends payroll
query messages to a payroll processing application running on queue manager QM2. The payroll query
application needs the replies to its queries sent back to QM1.

Figure 8. The message channel example for IBM MQ for IBM i

The payroll query messages are sent from QM1 to QM2 on a sender-receiver channel called QM1.TO.QM2,
and the reply messages are sent back from QM2 to QM1 on another sender-receiver channel called
QM2.TO.QM1. Both of these channels are triggered to start as soon as they have a message to send to the
other queue manager.

The payroll query application puts a query message to the remote queue "PAYROLL.QUERY" defined on
QM1. This remote queue definition resolves to the local queue "PAYROLL" on QM2. In addition, the payroll
query application specifies that the reply to the query is sent to the local queue "PAYROLL.REPLY" on
QM1. The payroll processing application gets messages from the local queue "PAYROLL" on QM2, and
sends the replies to wherever they are required; in this case, local queue "PAYROLL.REPLY" on QM1.

Both queue managers are assumed to be running on IBM i. In the example definitions, QM1 has a host
address of 192.0.2.0 and is listening on port 1411. QM2 has a host address of 192.0.2.1 and is listening
on port 1412. The example assumes that these queue managers are already defined on your IBM i
system, and are available for use.

The object definitions that need to be created on QM1 are:

• Remote queue definition, PAYROLL.QUERY
• Transmission queue definition, QM2 (default=remote queue manager name)
• Sender channel definition, QM1.TO.QM2

160 IBM MQ Configuration Reference

• Receiver channel definition, QM2.TO.QM1
• Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

• Local queue definition, PAYROLL
• Transmission queue definition, QM1 (default=remote queue manager name)
• Sender channel definition, QM2.TO.QM1
• Receiver channel definition, QM1.TO.QM2

The connection details are supplied in the CONNAME attribute of the sender channel definitions.

You can see a diagram of the arrangement in Figure 8 on page 160.

Queue manager QM1 example for IBM i
The following object definitions allow applications connected to queue manager QM1 to send request
messages to a queue called PAYROLL on QM2, and to receive replies on a queue called PAYROLL.REPLY
on QM1.

All the object definitions have been provided with the TEXT attributes. The other attributes supplied are
the minimum required to make the example work. The attributes that are not supplied take the default
values for queue manager QM1.

Run the following commands on queue manager QM1:
Remote queue definition

The CRTMQMQ command with the following attributes:

QNAME 'PAYROLL.QUERY'

QTYPE *RMT

TEXT 'Remote queue for QM2'

PUTENBL *YES

TMQNAME 'QM2' (default = remote queue manager name)

RMTQNAME 'PAYROLL'

RMTMQMNAME 'QM2'

Note: The remote queue definition is not a physical queue, but a means of directing messages to the
transmission queue, QM2, so that they can be sent to queue manager QM2.

Transmission queue definition
The CRTMQMQ command with the following attributes:

QNAME QM2

QTYPE *LCL

TEXT 'Transmission queue to QM2'

USAGE *TMQ

PUTENBL *YES

GETENBL *YES

TRGENBL *YES

TRGTYPE *FIRST

INITQNAME SYSTEM.CHANNEL.INITQ

TRIGDATA QM1.TO.QM2

Configuration reference 161

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the named process.

Sender channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QM1.TO.QM2

CHLTYPE *SDR

TRPTYPE *TCP

TEXT 'Sender channel to QM2'

TMQNAME QM2

CONNAME '192.0.2.1(1412)'

Receiver channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QM2.TO.QM1

CHLTYPE *RCVR

TRPTYPE *TCP

TEXT 'Receiver channel from QM2'

Reply-to queue definition
The CRTMQMQ command with the following attributes:

QNAME PAYROLL.REPLY

QTYPE *LCL

TEXT 'Reply queue for replies to query messages sent to QM2'

PUTENBL *YES

GETENBL *YES

The reply-to queue is defined as PUT(ENABLED). This definition ensures that reply messages can be
put to the queue. If the replies cannot be put to the reply-to queue, they are sent to the dead-letter
queue on QM1 or, if this queue is not available, remain on transmission queue QM1 on queue manager
QM2. The queue has been defined as GET(ENABLED) to allow the reply messages to be retrieved.

Queue manager QM2 example for IBM i
The following object definitions allow applications connected to queue manager QM2 to retrieve request
messages from a local queue called PAYROLL, and to put replies to these request messages to a queue
called PAYROLL.REPLY on queue manager QM1.

You do not need to provide a remote queue definition to enable the replies to be returned to QM1.
The message descriptor of the message retrieved from local queue PAYROLL contains both the reply-to
queue and the reply-to queue manager names. Therefore, as long as QM2 can resolve the reply-to queue
manager name to that of a transmission queue on queue manager QM2, the reply message can be
sent. In this example, the reply-to queue manager name is QM1 and so queue manager QM2 requires a
transmission queue of the same name.

All the object definitions have been provided with the TEXT attribute and are the minimum required to
make the example work. The attributes that are not supplied take the default values for queue manager
QM2.

Run the following commands on queue manager QM2:

162 IBM MQ Configuration Reference

Local queue definition
The CRTMQMQ command with the following attributes:

QNAME PAYROLL

QTYPE *LCL

TEXT 'Local queue for QM1 payroll details'

PUTENBL *YES

GETENBL *YES

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same reason as the reply-to
queue definition on queue manager QM1.

Transmission queue definition
The CRTMQMQ command with the following attributes:

QNAME QM1

QTYPE *LCL

TEXT 'Transmission queue to QM1'

USAGE *TMQ

PUTENBL *YES

GETENBL *YES

TRGENBL *YES

TRGTYPE *FIRST

INITQNAME SYSTEM.CHANNEL.INITQ

TRIGDATA QM2.TO.QM1

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the trigger data.

Sender channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QM2.TO.QM1

CHLTYPE *SDR

TRPTYPE *TCP

TEXT 'Sender channel to QM1'

TMQNAME QM1

CONNAME '192.0.2.0(1411)'

Receiver channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QM1.TO.QM2

CHLTYPE *RCVR

TRPTYPE *TCP

TEXT 'Receiver channel from QM1'

Configuration reference 163

Running the example for IBM i
When you have created the required objects you must start the channel initiators and listeners for both
queue managers.

The applications can then send messages to each other. The channels are triggered to start by the first
message arriving on each transmission queue, so you do not need to issue the STRMQMCHL command.

For details about starting a channel initiator and a listener, see Monitoring and controlling channels on
IBM i .

Expanding the example for IBM i
The example can be expanded in a number of ways.

This example can be expanded by:

• Adding more queue and channel definitions to allow other applications to send messages between the
two queue managers.

• Adding user exit programs on the channels to allow for link encryption, security checking, or additional
message processing.

• Using queue manager aliases and reply-to queue aliases to understand more about how these objects
can be used in the organization of your queue manager network.

For a version of this example that uses MQSC commands, see “Message channel planning example for
z/OS” on page 164.

Message channel planning example for z/OS
This section provides a detailed example of how to connect z/OS or MVS queue managers together so that
messages can be sent between them.

The example illustrates the preparations needed to allow an application using queue manager QM1 to
put messages on a queue at queue manager QM2. An application running on QM2 can retrieve these
messages, and send responses to a reply queue on QM1.

The example illustrates the use of both TCP/IP and LU 6.2 connections. The example assumes that
channels are to be triggered to start when the first message arrives on the transmission queue they are
servicing.

What the example for z/OS shows
This example involves a payroll query application connected to queue manager QM1 that sends payroll
query messages to a payroll processing application running on queue manager QM2. The payroll query
application needs the replies to its queries sent back to QM1.

Figure 9. The first example for IBM MQ for z/OS

164 IBM MQ Configuration Reference

The payroll query messages are sent from QM1 to QM2 on a sender-receiver channel called QM1.TO.QM2,
and the reply messages are sent back from QM2 to QM1 on another sender-receiver channel called
QM2.TO.QM1. Both of these channels are triggered to start as soon as they have a message to send to the
other queue manager.

The payroll query application puts a query message to the remote queue "PAYROLL.QUERY" defined on
QM1. This remote queue definition resolves to the local queue "PAYROLL" on QM2. In addition, the payroll
query application specifies that the reply to the query is sent to the local queue "PAYROLL.REPLY" on
QM1. The payroll processing application gets messages from the local queue "PAYROLL" on QM2, and
sends the replies to wherever they are required; in this case, local queue "PAYROLL.REPLY" on QM1.

Both queue managers are assumed to be running on z/OS. In the example definitions for TCP/IP, QM1
has a host address of 192.0.2.0 and is listening on port 1411, and QM2 has a host address of 192.0.2.1
and is listening on port 1412. In the definitions for LU 6.2, QM1 is listening on a symbolic luname called
LUNAME1 and QM2 is listening on a symbolic luname called LUNAME2. The example assumes that these
lunames are already defined on your z/OS system and available for use. To define them, see “Example MQ
configuration for z/OS” on page 55.

The object definitions that need to be created on QM1 are:

• Remote queue definition, PAYROLL.QUERY
• Transmission queue definition, QM2 (default=remote queue manager name)
• Sender channel definition, QM1.TO.QM2
• Receiver channel definition, QM2.TO.QM1
• Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

• Local queue definition, PAYROLL
• Transmission queue definition, QM1 (default=remote queue manager name)
• Sender channel definition, QM2.TO.QM1
• Receiver channel definition, QM1.TO.QM2

The example assumes that all the SYSTEM.COMMAND.* and SYSTEM.CHANNEL.* queues required to run
DQM have been defined as shown in the supplied sample definitions, CSQ4INSG and CSQ4INSX.

The connection details are supplied in the CONNAME attribute of the sender channel definitions.

You can see a diagram of the arrangement in Figure 9 on page 164.

Queue manager QM1 example for z/OS
The following object definitions allow applications connected to queue manager QM1 to send request
messages to a queue called PAYROLL on QM2. It also allows applications to receive replies on a queue
called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the DESCR and REPLACE attributes. The other
attributes supplied are the minimum required to make the example work. The attributes that are not
supplied take the default values for queue manager QM1.

Run the following commands on queue manager QM1.

Remote queue definition
DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QM2') REPLACE +
PUT(ENABLED) XMITQ(QM2) RNAME(PAYROLL) RQMNAME(QM2)

Note: The remote queue definition is not a physical queue, but a means of directing messages to the
transmission queue, QM2, so that they can be sent to queue manager QM2.

Configuration reference 165

Transmission queue definition
DEFINE QLOCAL(QM2) DESCR('Transmission queue to QM2') REPLACE +
USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QM1.TO.QM2) INITQ(SYSTEM.CHANNEL.INITQ)

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the trigger data. The channel initiator can only get trigger messages from
the SYSTEM.CHANNEL.INITQ queue, so do not use any other queue as the initiation queue.

Sender channel definition
For a TCP/IP connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +
CONNAME('192.0.2.1(1412)')

For an LU 6.2 connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +
CONNAME('LUNAME2')

Receiver channel definition
For a TCP/IP connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM2')

For an LU 6.2 connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QM2')

Reply-to queue definition
DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to query messages sent to QM2')

The reply-to queue is defined as PUT(ENABLED) which ensures that reply messages can be put to the
queue. If the replies cannot be put to the reply-to queue, they are sent to the dead-letter queue on QM1
or, if this queue is not available, remain on transmission queue QM1 on queue manager QM2. The queue
has been defined as GET(ENABLED) to allow the reply messages to be retrieved.

Queue manager QM2 example for z/OS
The following object definitions allow applications connected to queue manager QM2 to retrieve request
messages from a local queue called PAYROLL and to put replies to these request messages to a queue
called PAYROLL.REPLY on queue manager QM1.

You do not need to provide a remote queue definition to enable the replies to be returned to QM1.
The message descriptor of the message retrieved from local queue PAYROLL contains both the reply-to
queue and the reply-to queue manager names. Therefore, as long as QM2 can resolve the reply-to queue
manager name to that of a transmission queue on queue manager QM2, the reply message can be
sent. In this example, the reply-to queue manager name is QM1 and so queue manager QM2 requires a
transmission queue of the same name.

166 IBM MQ Configuration Reference

All the object definitions have been provided with the DESCR and REPLACE attributes and are the
minimum required to make the example work. The attributes that are not supplied take the default values
for queue manager QM2.

Run the following commands on queue manager QM2.

Local queue definition
DEFINE QLOCAL(PAYROLL) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Local queue for QM1 payroll details')

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same reason as the reply-to queue
definition on queue manager QM1.

Transmission queue definition
DEFINE QLOCAL(QM1) DESCR('Transmission queue to QM1') REPLACE +
USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QM2.TO.QM1) INITQ(SYSTEM.CHANNEL.INITQ)

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the trigger data. The channel initiator can only get trigger messages from
SYSTEM.CHANNEL.INITQ so do not use any other queue as the initiation queue.

Sender channel definition
For a TCP/IP connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +
CONNAME('192.0.2.0(1411)')

For an LU 6.2 connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +
CONNAME('LUNAME1')

Receiver channel definition
For a TCP/IP connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM1')

For an LU 6.2 connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QM1')

Running the example for z/OS
When you have created the required objects, you must start the channel initiators and listeners for both
queue managers.

The applications can then send messages to each other. Because the channels are triggered to start by
the arrival of the first message on each transmission queue, you do not need to issue the START CHANNEL
MQSC command.

For details about starting a channel initiator see Starting a channel initiator, and for details about starting
a listener see Starting a channel listener.

Configuration reference 167

Expanding the example for z/OS
The example can be expanded in a number of ways.

The example can be expanded by:

• Adding more queue, and channel definitions to allow other applications to send messages between the
two queue managers.

• Adding user exit programs on the channels to allow for link encryption, security checking, or additional
message processing.

• Using queue manager aliases and reply-to queue aliases to understand more about how these aliases
can be used in the organization of your queue manager network.

Message channel planning example for z/OS using queue
sharing groups

This example illustrates the preparations needed to allow an application using queue manager QM3 to put
a message on a queue in a queue sharing group that has queue members QM4 and QM5.

Ensure you are familiar with the example in “Message channel planning example for z/OS” on page 164
before trying this example.

What the queue sharing group example for z/OS shows
This example shows the IBM MQ commands (MQSC) that you can use in IBM MQ for z/OS for distributed
queuing with queue sharing groups.

This example expands the payroll query scenario of the example in “Message channel planning example
for z/OS” on page 164 to show how to add higher availability of query processing by adding more serving
applications to serve a shared queue.

The payroll query application is now connected to queue manager QM3 and puts a query to the remote
queue 'PAYROLL QUERY' defined on QM3. This remote queue definition resolves to the shared queue
'PAYROLL' hosted by the queue managers in the queue sharing group QSG1. The payroll processing
application now has two instances running, one connected to QM4 and one connected to QM5.

168 IBM MQ Configuration Reference

Figure 10. Message channel planning example for IBM MQ for z/OS using queue sharing groups

All three queue managers are assumed to be running on z/OS. In the example definitions for TCP/IP,
QM4 has a VIPA address of MVSIP01 and QM5 has a VIPA address of MVSIP02. Both queue managers
are listening on port 1414. The generic address that Sysplex Distributor provides for this group is
QSG1.MVSIP. QM3 has a host address of 192.0.2.0 and is listening on port 1411.

In the example definitions for LU6.2, QM3 is listening on a symbolic luname called LUNAME1. The name
of the generic resource defined for VTAM for the lunames listened on by QM4 and QM5 is LUQSG1. The
example assumes that they are already defined on your z/OS system and are available for use. To define
them see “Defining yourself to the network using generic resources” on page 62.

In this example QSG1 is the name of a queue sharing group, and queue managers QM4 and QM5 are the
names of members of the group.

Configuration reference 169

Queue sharing group definitions
Producing the following object definitions for one member of the queue sharing group makes them
available to all the other members.

Queue managers QM4 and QM5 are members of the queue sharing group. The definitions produced for
QM4 are also available for QM5.

It is assumed that the coupling facility list structure is called 'APPLICATION1'. If it is not called
'APPLICATION1', you must use your own coupling facility list structure name for the example.

Shared objects
The shared object definitions are stored in Db2® and their associated messages are stored within the
coupling facility.

DEFINE QLOCAL(PAYROLL) QSGDISP(SHARED) REPLACE PUT(ENABLED) GET(ENABLED) +
CFSTRUCT(APPLICATION1) +
DESCR('Shared queue for payroll details')

DEFINE QLOCAL(QM3) QSGDISP(SHARED) REPLACE USAGE(XMITQ) PUT(ENABLED) +
CFSTRUCT(APPLICATION1) +
DESCR('Transmission queue to QM3') TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QSG1.TO.QM3) GET(ENABLED) INITQ(SYSTEM.CHANNEL.INITQ)

Group objects
The group object definitions are stored in Db2, and each queue manager in the queue sharing group
creates a local copy of the defined object.

Sender channel definition for a TCP/IP connection:

DEFINE CHANNEL(QSG1.TO.QM3) CHLTYPE(SDR) QSGDISP(GROUP) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM3') XMITQ(QM3) +
CONNAME('192.0.2.0(1411)')

Sender channel definition for an LU 6.2 connection:

DEFINE CHANNEL(QSG1.TO.QM3) CHLTYPE(SDR) QSGDISP(GROUP) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QM3') XMITQ(QM3) +
CONNAME('LUNAME1')

Receiver channel definition for a TCP/IP connection:

DEFINE CHANNEL(QM3.TO.QSG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM3') QSGDISP(GROUP)

Receiver channel definition for an LU 6.2 connection:

DEFINE CHANNEL(QM3.TO.QSG1) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QM3') QSGDISP(GROUP)

Related reference
“Disposition (QSGDISP)” on page 114
This attribute specifies the disposition of the channel in a queue sharing group. It is valid on z/OS only.

Queue manager QM3 example for z/OS
QM3 is not a member of the queue sharing group. The following object definitions allow it to put
messages to a queue in the queue sharing group.

The CONNAME for this channel is the generic address of the queue sharing group, which varies according
to transport type.

For a TCP/IP connection:

170 IBM MQ Configuration Reference

DEFINE CHANNEL(QM3.TO.QSG1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QSG1') XMITQ(QSG1) +
CONNAME('QSG1.MVSIP(1414)')

For an LU 6.2 connection:

DEFINE CHANNEL(QM3.TO.QSG1) CHLTYPE(SDR) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QSG1') XMITQ(QSG1) +
CONNAME('LUQSG1') TPNAME('MQSERIES') MODENAME('#INTER')

Other definitions
These definitions are required for the same purposes as the definitions in the first example.

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QSG1') REPLACE +
PUT(ENABLED) XMITQ(QSG1) RNAME(APPL) RQMNAME(QSG1)

DEFINE QLOCAL(QSG1) DESCR('Transmission queue to QSG1') REPLACE +
USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QM3.TO.QSG1) INITQ(SYSTEM.CHANNEL.INITQ)

DEFINE CHANNEL(QSG1.TO.QM3) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QSG1')

DEFINE CHANNEL(QSG1.TO.QM3) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QSG1')

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to query messages sent to QSG1')

Running the queue sharing group example for z/OS
When you have created the required objects you need to start the channel initiators for all three queue
managers. You also need to start the listeners for both queue managers in the queue sharing group.

For a TCP/IP connection, each member of the group must have a group listener started that is listening on
port 1414.

STA LSTR PORT(1414) IPADDR(MVSIP01) INDISP(GROUP)

The previous entry starts the listener on QM4, for example.

For an LU6.2 connection, each member of the group must have a group listener started that is listening on
a symbolic luname. This luname must correspond to the generic resource LUQSG1.

• Start the listener on QM3

STA LSTR PORT(1411)

Using an alias to refer to an MQ library
You can define an alias to refer to an MQ library in your JCL, rather than use the name of the MQ library
directly. Then, if the name of the MQ library changes, you have only to delete and redefine the alias.

Example

The following example defines an alias MQM.SCSQANLE to refer to the MQ library MQM.V600.SCSQANLE:

//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DELETE (MQM.SCSQANLE)
DEFINE ALIAS (NAME(MQM.SCSQANLE) RELATE(MQM.V600.SCSQANLE))
/*

Then, to refer to the MQM.V600.SCSQANLE library in your JCL, use the alias MQM.SCSQANLE.

Configuration reference 171

Note: The library and alias names must be in the same catalog, so use the same high level qualifier for
both; in this example, the high level qualifier is MQM.

 mqzOSConnectService element
The MQ Service Provider is provided as a standard Liberty feature and so is configured using server.xml.
Each one or two-way service is defined in an mqzOSConnectService element. This element and all of its
attributes apply to both z/OS Connect V1 and z/OS Connect EE.

Important: An mqzOSConnectService element needs to be referenced by a zOSConnectService
element before it can be used.

An example mqzOSConnectService element with some attributes specified is shown below.

<mqzOSConnectService id="twoWay "
 connectionFactory="jms/cf1"
 destination="jms/requestQueue"
 replyDestination="jms/replyQueue"
 expiry="-1"
 waitInterval="10000"
 replySelection="msgIDToCorrelID"
 selector=""
 persistence="false"/>

Attention: Depending on how the MQ Service Provider has been installed, the
mqzOSConnectService element might be prefixed with a string followed by an underscore, for
example usr_mqzOSConnectService.

This is described in Installing the MQ Service Provider into WLP for z/OS Connect V1 and Installing
the MQ Service Provider into IBM z/OS Connect EE for z/OS Connect EE.

The format shown in the following example is where the MQ Service Provider has been installed
into the WLP kernel (as described in option 1 of Installing the MQ Service Provider into WLP

Table 36. Attributes of an mqzOSConnectService element

Attribute name Type Default value Description

id string “id” on page 173

connectionFactory A JNDI name
(string).

“connectionFactory” on
page 173

destination A JNDI name
(string).

“destination” on page 173

replyDestination A JNDI name
(string).

“replyDestination” on page
173

expiry integer -1 “expiry” on page 173

waitInterval integer “waitInterval” on page 174

replySelection string msgIDToCorrelID “replySelection” on page
174

selector string “selector” on page 174

persistence boolean false “persistence” on page 175

mqmdFormat string “mqmdFormat” on page
175

userName string “userName” on page 175

password string “password” on page 175

172 IBM MQ Configuration Reference

Table 36. Attributes of an mqzOSConnectService element (continued)

Attribute name Type Default value Description

useCallerPrincipal boolean false “useCallerPrincipal” on
page 176

receiveTextCCSID integer 37 “receiveTextCCSID” on page
176

id
id is a required attribute and must be unique across all elements in server.xml. id is used by the
zosConnectService element to refer to a target service provider instance.

connectionFactory
connectionFactory specifies the JNDI name of an IBM MQ messaging provider connection factory.
The MQ Service Provider uses the connection factory to connect to IBM MQ.

connectionFactory is a required attribute. For more information on connection factories, see JMS
Connection Factory.

You should specify transportType="BINDINGS" for the connection factory.

destination
destination specifies the JNDI name of an IBM MQ messaging provider destination.

destination is a required attribute.

For more information on configuring a:

• Queue in WLP, see JMS Queue.
• Topic in WLP, see JMS Topic.

For a one-way service, destination is used as the target for HTTP POST, HTTP GET, and HTTP DELETE
requests.

Note that queue destinations are supported for all three request types whereas topic destinations are
supported only with HTTP POST requests.

For a two-way service, destination must be a queue destination which represents the request queue
used by the back end service.

Two-way services support only HTTP POST requests.

replyDestination
replyDestination specifies the JNDI name of an IBM MQ messaging provider queue.

replyDestination is an optional attribute.

For more information on configuring a queue in WLP, see JMS Queue.

If replyDestination is not specified, the service is a one-way service. If replyDestination is
specified, the service is a two-way service.

This queue is the reply destination where the back end service sends reply messages to.

expiry
expiry specifies how long messages sent by the MQ Service Provider are valid for, in thousandths of a
second, from the time they were sent. The message becomes eligible to be discarded if it has not been
removed from the destination queue before this period of time elapses.

Configuration reference 173

https://www.ibm.com/docs/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_config_jmsConnectionFactory.html
https://www.ibm.com/docs/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_config_jmsConnectionFactory.html
https://www.ibm.com/docs/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_config_jmsQueue.html
https://www.ibm.com/docs/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_config_jmsTopic.html
https://www.ibm.com/docs/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_config_jmsQueue.html

expiry is an optional attribute, and is equivalent to setting the MQMD Expiry field.

Negative values means that messages never expire. The default value of expiry is -1.

REST clients can override expiry by specifying an ibm-mq-md-expiry HTTP header with a valid 64-bit
integer.

waitInterval
For HTTP DELETE requests to one-way services, waitInterval specifies the number of milliseconds
that the service waits for a matching message on the queue, specified by the destination attribute.

For HTTP POST requests to two-way services, waitInterval specifies the number of milliseconds that
the service waits for a matching message on the queue, specified by the replydestination attribute.

waitInterval is an optional attribute for one-way services, a required attribute for two-way services,
and is equivalent to setting the MQMD WaitInterval field.

waitInterval is not supported with HTTP GET requests.

If waitInterval is:

• Zero, the service does not wait.

A waitInterval of zero is not supported with two-way services.
• Negative, the service waits for ever until a message is available.

REST clients can override this value by specifying an ibm-mq-gmo-waitInterval HTTP header with a
valid 64 bit integer.

Note: Specifying a large, or negative waitInterval, is likely to result in transaction timeouts and
asynchronous service request timeouts. If either, or both, of these events occur, increase the timeout,
reduce the wait interval, or do both.

replySelection
replySelection describes the mechanism used to match reply messages with request messages.

replySelection is optional and used only used with two-way services. If replySelection is used
with a one-way service, it is ignored.

The value is one of the following:
msgIDToCorrelID

Reply messages are assumed to be generated with the correlation ID set to the value of the message
ID from the request message. The service generates a suitable message selector based on this
information. This is the default value.

none
No mechanism is used to correlate reply messages with request messages. The service gets the first
available message on the reply queue.

correlIDToCorrelID
Reply messages are assumed to be generated with the correlation ID set to the value of the
correlation ID from the request message. The service generates a suitable message selector based on
this information. If the request message does not have a correlation ID specified (see “ibm-mq-md-
correlID” on page 176) the service generates a random correlation ID for the request message.

selector
selector must be a valid JMS message selector as described by the JMS specification.

selector is only used with one-way services and is optional. If selector is specified on a two-way
service it is ignored. For more information on selectors, see Message selectors in JMS.

174 IBM MQ Configuration Reference

selector is used on HTTP GET and HTTP DELETE requests to select which message is returned. If
the “ibm-mq-md-msgID” on page 176 or “ibm-mq-md-correlID” on page 176 headers are specified,
selector is ignored.

Some selector characters need to be encoded in order to be embedded in server.xml. You can do this
using standard mechanisms as follows:

" becomes "
' becomes '
< becomes <
> becomes >

persistence
persistence specifies the persistence of messages sent by a service.

persistence is optional, and is equivalent to setting the MQMD Persistence field.

The value is one of the following:
false

Means messages are non-persistent. This is the default value.
true

Means messages are persistent.

You can override persistence by using an ibm-mq-md-persistence HTTP header which takes the
same values.

mqmdFormat
This attribute is used to set the value of the MQMD format field in messages that are sent by the MQ
Service Provider. However, it is only used when the MQ Service Provider has been configured to use z/OS
Connect data transformations, otherwise it is ignored.

If you do not specify this attribute, and data transformations are used, messages are sent with the MQMD
format field set to blanks. The value of this attribute must be less than, or equal to, eight characters in
length.

userName
The user name that the MQ Service Provider presents to IBM MQ for authentication and authorization
purposes.

If you do not specify this attribute, the userName attribute in the connection factory referred to by the
connectionFactory attribute is used.

If a userName attribute is specified, both on the referenced connection factory and on the MQ Service
Provider, the MQ Service Provider value is used.

If you specify this attribute, you must specify the password attribute.

password
The password that the MQ Service Provider presents to IBM MQ for authentication and authorization
purposes.

You can specify the password in plain text, although you should not do so. Instead, you should encode the
password using the securityUtility tool provided with z/OS Connect, using the encode option. For
more information see Liberty: securityUtility command.

If you do not specify this attribute, the password attribute in the connection factory referred to by the
connectionFactory attribute is used.

Configuration reference 175

https://www.ibm.com/docs/SSAW57_9.0.0/com.ibm.websphere.wlp.nd.doc/ae/rwlp_command_securityutil.html

If a password attribute is specified both on the referenced connection factory and on the MQ Service
Provider the MQ Service Provider value is used.

If you specify this attribute, you must also specify the userName attribute.

useCallerPrincipal
When a request is made to z/OS Connect the caller authenticates with z/OS Connect. The name of the
authenticated principle can be passed onto IBM MQ for authentication and authorization purposes.

To do this, set the value of useCallerPrincipal to true.

The name of the principal, but no password, is used when connecting to IBM MQ. Any values specified in
the password and userName attributes are ignored.

receiveTextCCSID
The CCSID that is used when a data transformation is received and a javax.jms.TextMessage is being
consumed (that is, an HTTP GET or HTTP DELETE with a one-way service, or on retrieving a response
message for a two-way service).

The text in the message is converted into the CCSID specified by receiveTextCCSID.

HTTP headers that can be used with the MQ Service
Provider

The only time the MQ Service Provider expects specific HTTP headers, is when an HTTP POST is issued.

In that case the Content-Type header must be set to "application/json". If you specify a character set
as part of this header, its value must be utf-8.

For example Content-Type=application/json;charset=utf-8.

Other HTTP headers can be specified on the HTTP request to change the behavior of the MQ Service
Provider; these are detailed in the following sections. Any other HTTP headers are ignored.

ibm-mq-md-msgID
This header can be specified when issuing HTTP GET or HTTP DELETE requests to one-way services.

The value of this header is used to generate a message selector to select a message with the specified
message ID. If an “ibm-mq-md-correlID” on page 176 header is also specified, a message selector that
matches both IDs will be generated.

See msgId: HTTP x-msg-msgId entity-header for details of the value of the format of this header.

ibm-mq-md-correlID
This header can be specified when issuing an HTTP POST, in which case it is used to set the MQMD
CorrelID field of the message that gets sent.

This header can also be specified when issuing HTTP GET or DELETE requests to one-way services.
The value of this header is used to generate a message selector to select a message with the specified
correlation ID. If an “ibm-mq-md-msgID” on page 176 header is also specified, a message selector that
matches both will be generated.

See correlId: HTTP x-msg-correlId entity-header for details of the value of the format of this
header.

176 IBM MQ Configuration Reference

ibm-mq-pmo-retain
You can specify this header with a value of TRUE when issuing an HTTP POST request to a one-way
service backed by a topic. This results in a retained publication being generated. For more information,
see Retained publications.

ibm-mq-usr
You can use this header to provide message properties on the IBM MQ messages sent as a result of HTTP
POST requests to both one-way and two-way services.

For details of the value of the format of this header, see usr: HTTP x-msg-usr entity-header.

Although the name used by the MQ Service Provider is different, see require-headers: HTTP x-msg-
require-headers request-header for details of the value of the format of this header.

Configuration reference 177

178 IBM MQ Configuration Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2007, 2025 179

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of WebSphere MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information"www.ibm.com/legal/copytrade.shtml. Other product and service names might be trademarks
of IBM or other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

180 Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

This product includes software developed by the Eclipse Project (http://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 181

182 IBM MQ Configuration Reference

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Configuration reference
	Example IBM MQ configuration for all platforms
	How to use the communication examples
	Multiple thread support - pipelining
	Example IBM MQ configuration on AIX
	Establishing an LU 6.2 connection
	Establishing a TCP connection
	IBM MQ for AIX configuration
	Channel configuration for AIX
	IBM MQ for AIX sender-channel definitions using SNA
	IBM MQ for AIX receiver-channel definitions using SNA
	IBM MQ for AIX TPN setup
	IBM MQ for AIX sender-channel definitions using TCP
	IBM MQ for AIX receiver-channel definitions using TCP

	Example IBM MQ configuration for HP-UX
	Establishing an LU 6.2 connection
	Establishing a TCP connection
	IBM MQ for HP-UX configuration
	Channel configuration for HP-UX
	IBM MQ for HP-UX sender-channel definitions using SNA
	IBM MQ for HP-UX receiver-channel definitions using SNA
	IBM MQ for HP-UX invokable TP setup
	IBM MQ for HP-UX sender-channel definitions using TCP
	IBM MQ for HP-UX receiver-channel definitions using TCP/IP

	Example MQ configuration for IBM i
	Configuration parameters for an LU 6.2 connection
	Explanation of terms
	How to find network attributes
	How to find the value of Resource name

	Establishing an LU 6.2 connection
	Local node configuration
	Connection to partner node
	What next?

	Establishing a TCP connection
	IBM MQ for IBM i configuration
	Creating a queue manager
	Defining a queue
	Defining a channel on IBM i
	Channel configuration for IBM i
	Sender-channel definitions for IBM i
	Receiver-channel definitions for IBM i

	Example MQ configuration for Linux
	Establishing an LU 6.2 connection
	Establishing a TCP connection on Linux
	IBM MQ for Linux configuration
	Channel configuration for Linux
	IBM MQ for Linux (x86 platform) sender-channel definitions using SNA
	IBM MQ for Linux (x86 platform) receiver-channel definitions using SNA
	IBM MQ for Linux sender-channel definitions using TCP
	IBM MQ for Linux receiver-channel definitions using TCP/IP

	Example MQ configuration for Solaris
	Establishing an LU 6.2 connection using SNAP-IX
	Establishing a TCP connection
	IBM MQ for Solaris configuration
	Channel configuration for Solaris
	IBM MQ for Solaris sender-channel definitions using SNAP-IX SNA
	IBM MQ for Solaris receiver-channel definitions using SNA
	IBM MQ for Solaris sender-channel definitions using TCP
	IBM MQ for Solaris receiver-channel definitions using TCP/IP

	Example IBM MQ configuration for Windows
	Establishing an LU 6.2 connection
	Establishing a TCP connection
	Establishing a NetBIOS connection
	IBM MQ for Windows configuration
	Default configuration
	Basic configuration
	Channel configuration for Windows
	IBM MQ for Windows sender-channel definitions using SNA
	IBM MQ for Windows receiver-channel definitions using SNA
	IBM MQ for Windows sender-channel definitions using TCP/IP
	IBM MQ for Windows receiver-channel definitions using TCP

	Automatic startup
	Running channels as processes or threads

	Example MQ configuration for z/OS
	Establishing a connection
	IBM MQ for z/OS configuration
	Channel configuration for z/OS
	IBM MQ for z/OS sender-channel definitions
	IBM MQ for z/OS receiver-channel definitions

	Example MQ configuration for z/OS using QSGs
	Configuration parameters for an LU 6.2 connection
	Explanation of terms

	Establishing an LU 6.2 connection into a queue sharing group
	Defining yourself to the network using generic resources
	Defining a connection to a partner
	What next?

	Establishing a TCP connection Using Sysplex Distributor
	IBM MQ for z/OS shared channel configuration
	Shared channel configuration example
	IBM MQ for z/OS shared sender-channel definitions
	IBM MQ for z/OS shared receiver-channel definitions

	Example MQ configuration for z/OS using intra-group queuing
	Configuration 1
	Configuration 1 definitions

	Configuration 2
	Configuration 2 definitions

	Configuration 3
	Configuration 3 definitions

	Running the example
	Expanding the example

	IBM MQ file system permissions applied to /var/mqm
	IBM MQ file permissions in /opt/mqm with setuid for mqm

	IBM MQ file system permissions on Windows
	Naming restrictions for queues
	Naming restrictions for other objects
	Queue name resolution
	What is queue name resolution?

	System and default objects
	Windows default configuration objects
	SYSTEM.BASE.TOPIC
	System and default objects for IBM i

	Stanza information
	Configuration file stanzas for distributed queuing

	Channel attributes
	Channel attributes and channel types
	Channel attributes in alphabetical order
	Alter date (ALTDATE)
	Alter time (ALTTIME)
	AMQP keep alive (AMQPKA)
	Batch Heartbeat Interval (BATCHHB)
	Batch interval (BATCHINT)
	Batch limit (BATCHLIM)
	Batch size (BATCHSZ)
	Certificate label (CERTLABL)
	Channel name (CHANNEL)
	Channel statistics (STATCHL) on Multiplatforms
	Channel type (CHLTYPE)
	Client channel weight (CLNTWGHT)
	Cluster (CLUSTER)
	Cluster namelist (CLUSNL)
	CLWLPRTY channel attribute
	CLWLRANK channel attribute
	CLWLWGHT channel attribute
	Connection affinity (AFFINITY)
	Connection name (CONNAME)
	Convert message (CONVERT)
	Data compression (COMPMSG)
	Default reconnection (DEFRECON)
	Description (DESCR)
	Disconnect interval (DISCINT)
	Disposition (QSGDISP)
	Header compression (COMPHDR)
	Heartbeat interval (HBINT)
	Keepalive Interval (KAINT)
	Local Address (LOCLADDR)
	Long retry count (LONGRTY)
	Long retry interval (LONGTMR)
	LU 6.2 mode name (MODENAME)
	LU 6.2 transaction program name (TPNAME)
	Maximum instances (MAXINST)
	Maximum instances of server-connection channel connections
	Maximum instances of AMQP channel connections

	Maximum instances per client (MAXINSTC)
	Maximum message length (MAXMSGL)
	Message channel agent name (MCANAME)
	Message channel agent type (MCATYPE)
	Message channel agent user identifier (MCAUSER)
	Message exit name (MSGEXIT)
	Message exit user data (MSGDATA)
	Message-retry exit name (MREXIT)
	Message-retry exit user data (MRDATA)
	Message retry count (MRRTY)
	Message retry interval (MRTMR)
	Monitoring (MONCHL)
	NETPRTY channel attribute
	Nonpersistent message speed (NPMSPEED)
	Password (PASSWORD)
	Port number (PORT)
	PUT authority (PUTAUT)
	Queue manager name (QMNAME)
	Receive exit name (RCVEXIT)
	Receive exit user data (RCVDATA)
	Security exit name (SCYEXIT)
	Security exit user data (SCYDATA)
	Send exit name (SENDEXIT)
	Send exit user data (SENDDATA)
	Sequence number wrap (SEQWRAP)
	Short retry count (SHORTRTY)
	Short retry interval (SHORTTMR)
	SSL Cipher Specification (SSLCIPH)
	SSL Client Authentication (SSLCAUTH)
	SSL Peer (SSLPEER)
	Topic root (TPROOT)
	Transmission queue name (XMITQ)
	Transport type (TRPTYPE)
	Use client ID (USECLTID)
	Use Dead-Letter Queue (USEDLQ)
	User ID (USERID)

	IBM MQ cluster commands
	Queue manager definition commands
	Channel definition commands
	Queue definition commands
	DISPLAY CLUSQMGR
	SUSPEND QMGR, RESUME QMGR and clusters
	REFRESH CLUSTER
	RESET CLUSTER: Forcibly removing a queue manager from a cluster
	Workload balancing in clusters
	Cluster workload balancing - channel attributes
	Cluster workload balancing - queue attributes
	Cluster workload balancing - queue manager attributes
	The cluster workload management algorithm

	Asynchronous behavior of CLUSTER commands on z/OS

	Channel programs
	Intercommunication jobs
	Channel states on IBM i
	Message channel planning example for UNIX, Linux, and Windows
	What the example for UNIX, Linux, and Windows shows
	Queue manager QM1 example for UNIX, Linux, and Windows
	Queue manager QM2 example for UNIX, Linux, and Windows

	Running the example for UNIX, Linux, and Windows

	Message channel planning example for IBM i
	What the example for IBM i shows
	Queue manager QM1 example for IBM i
	Queue manager QM2 example for IBM i

	Running the example for IBM i
	Expanding the example for IBM i

	Message channel planning example for z/OS
	What the example for z/OS shows
	Queue manager QM1 example for z/OS
	Queue manager QM2 example for z/OS

	Running the example for z/OS
	Expanding the example for z/OS

	Message channel planning example for z/OS using queue sharing groups
	What the queue sharing group example for z/OS shows
	Queue sharing group definitions
	Queue manager QM3 example for z/OS
	Running the queue sharing group example for z/OS

	Using an alias to refer to an MQ library
	mqzOSConnectService element
	HTTP headers that can be used with the MQ Service Provider

	Notices
	Programming interface information
	Trademarks

