9.0

Developing Applications for IBM MQ

.||I




Note

Before using this information and the product it supports, read the information in “Notices” on page
1247.

This edition applies to version 9 release 0 of IBM® MQ and to all subsequent releases and modifications until otherwise
indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2007, 2025.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.



Contents

Developing applications......cccccieiiiiniieiiiiiiiieiieiieiieiiiiiisiesiestesiessacescssssssssssasses D

Application developmMENT CONCEPES.....iiiiiii ettt e eee e eree e e rtee e e rbee e e bee e s beeesbaeesabeeesasaeennseas 6
Actions that your applications Can PerforMi.... ...t eree e esrae e sraeeeans 8
Application programs Using the MQL..........ueiiiiieeiiieccee ettt ste e e e e e ae e s saaeessaeeenaeeenaeean 10
Object-oriented apPliCATIONS......uii it et e e be e e e e e e e bee e s abae e e abee e nreeeeaes 10
IBM MO MBS SAZES. . uuttttiieititiieeiiiittttteeeeeeeesssesiurrtrtaeeeesessssssssssrerttateeesssessssssssssesstaeseesessssssssssssssaeseeeees 13
Preparing and running Microsoft Transaction Server appliCations........cccceeevieeeecieeecceeeccee e eeiee s 43
Using IBM MQ with WebSphere AppliCation SEIVET ... icieieciieccteeectee e 43

Design considerations for IBM MQ appliCationS......c.ueeccuieeeciiieeiieecciieeccttee ettt evre e e vre e sveeesvaeeeans a4
Choosing to use IBM MQ classes for Java or IBM MQ classes for IMS........cccvveeeeieeeccieecccieeeciee e 46
Design tEChNIQUES fOr MESSAZES. . uuiiiiiieeciieeeieeecteeectee e rtee e ste e et e e e e ssabeeesbeesestaeesssesessseeesnsesennseeas a7
Selectors aNd MESSAZE PrOPEItIES...uiiiiieecieeiitieectteerteeereees e e s reeesbeeesbaesebeeessbeeesseeesnseessseesensees 48
Application design and performance consSiderations.........cceeeecieeievieeceiiee e e e 48
Design techniques for advanced appliCatioNS.......ccueccieeeiieeieiee e vee e vee e 50
Design and performance considerations for IBM i appliCations.......ccceecueeeiieeecieeeiieeccieeeciee e 52
Linux on POWER Systems - Little Endian applicationS......c..ceccveeeiiieeiieeciieecceeeccie e 53
Design and performance considerations for z/OS applications........cccccueeeeieeeciieeciee e 53
IMS and IMS bridge applications on IBM MQ fOr Z/OS......uuvieiiieecieeceeeete et 57

Developing IMS and Java appliCatioNS.......eiciiiieciieeeieeeceeee ettt et e e e e ra e e e re e e e aae s 69
Using IBM MQ ClasSeS fOr IMS... ..ttt ettt ettt e e e te e e s te e s s ba e e s tae e eabaeesataeeensaeesnsaeenns 69
Using IBM MQ ClasSeS fOr JAVA.....uiiccuiieiiiieeiieieiteeete ettt e eee e e ste e e s stae e etaeessaeeesaeessaeesnsaeenn 282
Using the IBM MQ reSOUICE A0aPter....cccuiiiciieeeieeieieeeetee et e s teeesteeesteessbeeesaseeesaseeesasaeesnseesnnseens 349
Using IBM MQ and WebSphere Application Server together.......ceeceeeecieeciieiccieeeceeeceee e 405
Using the IBM MQ Headers PACKAZE. ....cccviieiiieeiieectee ettt et et e etee e s tee e e te e e e reessaae s nsaeesnnaeas 422
Setting up IBM MQ on IBM i with Java and IMS ...ttt 425

DeVveloping CH+ apPliCATIONS...ciiiiiieecierie ettt ettt ettt e ste e be e st e e baesabesbeesasesbeesanesnseenes 432
CH SAMPLE PrOZGIAMS. ceivieeieeiteerteeiieestesireestestessseessessseesssessseessaessseessesssseesseesssesssessssessesssessssesssens 435
CH++ [anguage CONSIAEIAtIONS. ....ccccieeccieecee ettt e e e e e e e e e tee e ebae e etee e eabeeesaaaesensaeeensaeenees 439
Y- Fed o= T O TSR 443
BUilding IBM MQ CH+4 PrOSIamMS.....uueeccuieeecieeeeiteeeeieeesiteeesiseeesssseessseessssasssssesssssesssssesssssssssssesssssesssnses 449

[BISIVZCT o] o1 o T N1 = M- o] o] L ToF=Y o T3 -3 R 460
Getting started with IBM MQ Classes fOr INET.....ccccuiiiiiieiciieecie ettt eevee e etee s teeesvaeesvae e 461
Writing and deploying IBM MQ .NET PrOSramsS........cccceeeeceeeeieeeeiieeeeireeesiseeesiseeessneesseesssseesssessnnnes 474

Using the Component Object Model Interface (IBM MQ Automation Classes for ActiveX).................. 506
Designing and programming using IBM MQ Automation Classes for ACtiveX.......cccovevvvveereerivennnenn 507
IBM MQ Automation Classes for ACHIVEX refErENCE......uuiviii ittt e e e e s e 512
Tracing IBM MQ Automation Classes for ACHIVEX ... it 579
ActiveX interface to the MOAL.....eeeeeeeeee et e e e e e e e s e s s sabaareeeeeeeeesesesnes 584
About the IBM MQ Automation Classes for ActiveX Starter samples.......cccccveeeeveeecceeeeceeceiee e, 592

Developing AMOP client appliCatioNS......ccuveieciiieie et este e eeee e e aae e e ate e e aae e e naeeenes 596
MQ Light and AMQP (Advanced Message Queuing Protocol) .....ccccecceeeeceeeecieeccieeeceeecee e 598
AMOP L0 SUPPOI . ctttiieiiitiiiieiiiitreteee et e e e e s ssssrirrreeteeeeessesssssssrrraeteeeesessssssssssssssaasaeeeessesssssssssrsseeaeeeeees 598
Mapping AMQP and IBM MQ MesSage fIelds......couiiiiiiiiiciieccieeeetee et ettt 599
Message delivery reliability With AMOP.........oi e e aae e 606
Topologies for AMQP clients With IBM MQ....cc.uiiiiiiiiciiecciee ettt e tee e tee e ete e s e teeesateeenes 608

Developing REST applications With IBM MQ........cuuiiiiieiiiieeiee ettt e tee e ree s ree e aee e s vee e s vae e ans 612
Messaging USING the REST APL........ui it ccee et etee e tee e etee e s tee e sbaeesataessabaeasnsaeeenseeeensaesnees 614
Developing web services with IBM MQ bridge for HTTP......ccociiiciiieceeeeee ettt 618

Developing MQI applications With IBM MQ.......ccccoueiiiiiiiiieeciieeccite e eee e etee e etee e svee e s ree s evae s s aae e s nraeeenes 627
IBM MO data definition fileS.....uiiiiiiiiieeeeeeeeee et e e e e e e e s e s s asaba e e e e eeeeeesesnnns 628
Writing a procedural application for QUEUING.........icciei ettt et eearee s 631
Writing client procedural appliCatioNS........eiccieeeiiieeiieccee ettt ra e e 816



User exits, API exits, and IBM MQ installable SErviCeS....u et 839

Building a procedural appliCatioN....c..ciicieiecieiecieeccieeete ettt sbe e e sbe e e s ba e e sraeesane 901
Handling procedural ProSram EITOIS. . .. it iierriterrieessieessreessreessreessseessseessseesssseesssseesssseessssens 947
MULLICAST PrOZIAMMING..eieuiiirieiteritieeeiieerite e st e s sttt e s steeessaeesssaeessseeessssaesassaesssseesnsseesssseessseesssseessnnes 952
(070 To 1137 =T o 1 G2 OO PO PP PUP U PRUPURRPPPRIOt 958
CodiNG IN VISUAL BASIC..uuiiiciiiiiiiieeiiieeiieeect sttt ste e st essaae e s sabe e s abe e sssbeessabeesssbaesssseessaseessnnes 961
(07aTo 107 =T a1 60 ] =16 1 OSSR 961
Coding in System/390 assembler language (Message queue interface)......cccovceeveerceeneesceeeseennnns 962
Coding IBM MQ programs in RPG (IBM i ONLY)...cccuieciriieeiersieeieeseeeieesteeseeeveesseesseesseessesseesneeas 965
(0o Te T aT= T oI ] I 4053 12117 R 965
Using the IBM MQ sample procedural ProgramsS......cceiieereieernieernieessieesssseessseesssseesssseesssseessssees 966
Developing applications for MQ TElEMETIY....ccuiiiriiiirieiiee ettt sre e s see e s see e ssaeaeenes 1123
IBM MQ Telemetry Transport SAmMPLe PrOSramS......ccueerieeirrieernrieeenireessreessieessseeesssseessseeesseeessnees 1123
MQTT client Programming CONCEPLS. . ciiiviiiiriie ittt ittt et e seteeseteesseeesseeessreeessreeessseesssseessseessnnes 1124
Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ........ 1145
Introduction to the use of IBM MQ custom channel for WCF with .NET 3.....ccccceveiieeeiiiiiiiinnnnnnes 1145
Using IBM MQ custom channels fOr WECF.........uiiiiiiiiieiieesiee sttt st s e e s essreessvaeeas 1151
USING the WCF SAMIPLES.....iiiiiiiiiiieeeciee sttt ste et ite e st e e siee s st e s s bee e sbeeesbaeessbaessssaessasaesnnses 1169
Problem determination on the WCF custom channel for IBM MOQ........ccuvviiiiiiiieciiinrreeeeeeeeeeeeeennns 1175
Developing web services With IBM MO.....c.uiiiiiiiiiiiiiiieniieessree st sste st e ssae e sste e sseeesssreessaseessaseesas 1182
Developing web services with IBM MQ transport for SOAP.......ccoviiiriieiniierreeeeeecsiee e 1183

1 o7 o= OO 1.7
Programming interface iNfOrmMation. ... e see s et sbee s 1248
BIE= (e (=10 =T OO U STOSTSRRTSRRP 1248



Developing applications for IBM MQ

You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ supports applications written in many different languages and frameworks.

To learn about developing applications for IBM MQ, visit IBM Developer:

« LearnMQ (learn the basics, run a demo, code an app, take more advanced tutorials)
« MQ developer downloads (including free developer editions and trial versions)

You might also find it easier to develop your applications if you are familiar with the concepts described in
the following sections:

- “Application development concepts” on page 6

 “Design considerations for IBM MQ applications” on page 44

Support for object oriented languages and frameworks

IBM MQ provides core support for applications developed in the following languages and frameworks:
- IMs
- Java
£ Cr+
« .NET

« ActiveX (deprecated; use .NET)

See also “Object-oriented applications” on page 10.

.NET supports applications developed in many languages. To illustrate using the IBM MQ classes for .NET
to access IBM MQ queues, the IBM MQ product documentation contains information for the following
languages:

« C# (example code)
e C++

« Visual Basic

See “Writing and deploying IBM MQ .NET programs” on page 474.

MIBM MQ also supports the MQ Light API, which implements the OASIS AMQP 1.0 protocol.
There are messaging APIs for the following languages:

« Node.js

* Ruby

« Java

« Python

Maven (skeleton project; uses the Java api)

Gradle (skeleton project; uses the Java api)

See also “Developing AMQP client applications” on page 596.

The following language bindings are provided as-is:
- a Go binding
« a JavaScript API implementation that works with Node.js applications

© Copyright IBM Corp. 2007, 2025 5


https://ibm.biz/learn-mq
https://developer.ibm.com/articles/mq-downloads/
https://github.com/mqlight/nodejs-mqlight
https://github.com/mqlight/ruby-mqlight
https://github.com/mqlight/java-mqlight
https://github.com/mqlight/python-mqlight
https://github.com/mqlight/java-mqlight-maven-skeleton
https://github.com/mqlight/java-mqlight-gradle-skeleton
https://github.com/ibm-messaging/mq-golang
https://github.com/ibm-messaging/mq-mqi-nodejs

Support for programmatic REST APIs

IBM MQ provides support for the following programmatic REST APIs to send and receive messages:

. BEXEMN 5 M MO messaging REST API
. WIBM z/0OS Connect EE

- IBM Integration Bus

- IBM DataPower® Gateway

See “Developing REST applications with IBM MQ” on page 612, and also the tutorial Get started with the
IBM MQ messaging REST API in the IBM MQ area of IBM Developer. This tutorial includes examples in the
following languages, provided as-is, for use with the IBM MQ messaging REST API:

- Go example that uses the IBM MQ messaging REST API
» Node.js example using HTTPS module

« Node.js example with Promise module

Support for procedural programming languages

IBM MQ provides support for applications developed in the following procedural programming languages:
- C

. Visual Basic (Windows systems only)

- COBOL

. mAssembler (IBM MQ for z/OS only)
. mRPG (IBM MQ for IBM i only)
. BETTEN /1 (18M MO for 2/0S only)

These languages use the message queue interface (MQI) to access message queuing services. See
“Developing MQI applications with IBM MQ” on page 627. Note that the IBM MQ Object Model, used by
the object oriented languages and frameworks, provides additional functions that are not available to the
procedural languages using the MQL.

Related concepts

“Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ” on page
1145

The Microsoft Windows Communication Foundation (WCF) custom channel for IBM MQ sends and
receives messages between WCF clients and services.

IBM Message Service Client for .NET

Related tasks

“Developing applications for MQ Telemetry” on page 1123

Application development concepts

You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.

Before you start to design and write your IBM MQ applications, familiarize yourself with the basic IBM
MQ concepts, see the topics in Technical overview. For information about the types of application you can
write for IBM MQ, see “Developing applications for IBM MQ” on page 5.

Use the following links to find out about IBM MQ concepts specific to application development:

Related concepts
“Using the MQI in a client application” on page 817

6 Developing Applications for IBM MQ


https://developer.ibm.com/tutorials/mq-develop-mq-rest-api/
https://developer.ibm.com/tutorials/mq-develop-mq-rest-api/

This collection of topics considers the differences between writing your IBM MQ application to run in
a message queue interface (MQI) client environment and to run in the full IBM MQ queue manager
environment.

“Channel-exit programs for messaging channels” on page 864
This collection of topics contains information about IBM MQ channel-exit programs for messaging
channels.

“Design considerations for IBM MQ applications” on page 44
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.

“Writing a procedural application for queuing” on page 631
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
gueue manager, publish/subscribe, and opening and closing objects.

“Writing client procedural applications” on page 816
What you need to know to write client applications on IBM MQ using a procedural language.

“Developing MQI applications with IBM MQ” on page 627
IBM MQ provides support for C, Visual Basic, COBOL, Assembler, RPG, pTAL, and PL/I. These procedural
languages use the message queue interface (MQI) to access message queuing services.

“Object-oriented applications” on page 10

IBM MQ provides support for .NET, ActiveX, C++, Java, and JMS. These languages and frameworks use
the IBM MQ Object Model, which provides classes that provide the same functionality as IBM MQ calls
and structures. Some of the languages and frameworks that use the IBM MQ Object Model provide
additional functions that are not available when you use procedural languages with the message queue
interface (MQI).

“Using IBM MQ classes for IMS” on page 69

IBM MQ classes for Java Message Service (IBM MQ classes for IMS) is the JMS provider that is supplied
with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM MQ classes
for JMS provides two sets of extensions to the JMS API.

“Using the Component Object Model Interface (IBM MQ Automation Classes for ActiveX)” on page 506
The IBM MQ Automation Classes for ActiveX (MQAX) are ActiveX components that provide classes that
you can use in your application to access IBM MQ.

“Using IBM MQ classes for Java” on page 282
Use IBM MQ in a Java environment. IBM MQ classes for Java allow a Java application to connect to IBM
MQ as an IBM MQ client, or connect directly to an IBM MQ queue manager.

“Developing .NET applications” on page 460
IBM MQ classes for .NET allow a program written in the .NET programming framework to connect to IBM
MQ as an IBM MQ MQI client or to connect directly to an IBM MQ server.

“Developing C++ applications” on page 432
IBM MQ provides C++ classes equivalent to IBM MQ objects and some additional classes equivalent to
the array data types. It provides a number of features not available through the MQI.

“Building a procedural application” on page 901
You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.

Related tasks

“Developing web services with IBM MQ” on page 1182
You can develop IBM MQ applications for web services using the IBM MQ transport for SOAP.

“Using the IBM MQ sample procedural programs” on page 966
These sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.

Related reference
Transactional support scenarios

Developing applications for IBM MQ 7



Actions that your applications can perform

You can develop applications to send and receive messages that you need to support your business
processes. You can also develop applications to manage your queue managers and related resources.

Actions that your applications can perform on IBM MQ for Multiplatforms

On Multiplatforms, you can write applications that perform the following actions:

- Send messages to other applications running under the same operating systems. The applications can
be on either the same or another system.

« Send messages to applications that run on other IBM MQ platforms.

« Use message queuing from within CICS® for - EMi BT i, TXSeries® for AIX®, HP-UX, Solaris, and
Windows systems.

« Use message queuing from within Encina for AIX, HP-UX, Solaris, and Windows systems.

« Use message queuing from within Tuxedo for AIX, AT&T, HP-UX, Solaris, and Windows systems.

- Use IBM MQ as a transaction manager, coordinating updates made by external resource managers
within IBM MQ units of work. The following external resource managers are supported and comply with
the X/OPEN XA interface

— Db2°
Informix®

Oracle

Sybase
» Process several messages together as a single unit of work that can be committed or backed out.
« Run from a full IBM MQ environment, or run from an IBM MQ client environment.

Actions that your applications can perform on IBM MQ for z/0S
On z/0S, you can write applications that perform the following actions:

« Use message queuing within CICS or IMS.

- Send messages between batch, CICS, and IMS applications, selecting the most appropriate
environment for each function.

« Send messages to applications that run on other IBM MQ platforms.

« Process several messages together as a single unit of work that can be committed or backed out.
- Send messages to, and interact with, IMS applications by means of the IMS bridge.

« Participate in units of work coordinated by RRS.

Each environment within z/OS has its own characteristics, advantages, and disadvantages. The advantage
of IBM MQ for z/0S is that applications are not tied to any one environment, but can be distributed to
take advantage of the benefits of each environment. For example, you can develop end-user interfaces
using TSO or CICS, you can run processing-intensive modules in z/OS batch, and you can run database
applications in IMS or CICS. In all cases, the various parts of the application can communicate using
messages and queues.

Designers of IBM MQ applications must be aware of the differences and limitations imposed by these
environments. For example:

- IBM MQ provides facilities that allow intercommunication between queue managers (this is known as
distributed queuing).

« Methods of committing and backing out changes differ between the batch and CICS environments.

8 Developing Applications for IBM MQ



- IBM MQ for z/OS provides support in the IMS environment for online message processing programs
(MPPs), interactive fast path programs (IFPs), and batch message processing programs (BMPs). If you
are writing batch DL/I programs, follow the guidance given in topics such as “Building z/OS batch
applications” on page 934 and “z/0S batch considerations” on page 642 for z/OS batch programs.

« Although multiple instances of IBM MQ for z/OS can exist on a single z/OS system, a CICS region can
connect to only one queue manager at a time. However, more than one CICS region can be connected to
the same queue manager. In the IMS and z/OS batch environments, programs can connect to more than
one queue manager.

- IBM MQ for z/OS allows local queues to be shared by a group of queue managers, giving improved
throughput and availability. Such queues are called shared queues, and the queue managers form a
queue sharing group, which can process messages on the same shared queues. Batch applications can
connect to one of several queue managers within a queue sharing group by specifying the queue sharing
group name, instead of a particular queue manager name. This is known as group batch attach, or more
simply group attach. See Shared queues and queue sharing groups.

!E_The differences between the supported environments, and their limitations, are explained
further in “Using and writing applications on IBM MQ for z/OS” on page 793.

Related concepts

“Application development concepts” on page 6

You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.

“Design considerations for IBM MQ applications” on page 44
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.

“Writing a procedural application for queuing” on page 631
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.

“Writing client procedural applications” on page 816
What you need to know to write client applications on IBM MQ using a procedural language.

“Using IBM MQ classes for IMS” on page 69

IBM MQ classes for Java Message Service (IBM MQ classes for IMS) is the JMS provider that is supplied
with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM MQ classes
for JMS provides two sets of extensions to the JMS APL.

“Using the Component Object Model Interface (IBM MQ Automation Classes for ActiveX)” on page 506
The IBM MQ Automation Classes for ActiveX (MQAX) are ActiveX components that provide classes that
you can use in your application to access IBM MQ.

“Using IBM MQ classes for Java” on page 282
Use IBM MQ in a Java environment. IBM MQ classes for Java allow a Java application to connect to IBM
MQ as an IBM MQ client, or connect directly to an IBM MQ queue manager.

“Developing .NET applications” on page 460
IBM MQ classes for .NET allow a program written in the .NET programming framework to connect to IBM
MQ as an IBM MQ MQI client or to connect directly to an IBM MQ server.

“Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ” on page
1145

The Microsoft Windows Communication Foundation (WCF) custom channel for IBM MQ sends and
receives messages between WCF clients and services.

“Developing C++ applications” on page 432
IBM MQ provides C++ classes equivalent to IBM MQ objects and some additional classes equivalent to
the array data types. It provides a number of features not available through the MQI.

“Building a procedural application” on page 901

Developing applications for IBM MQ 9



You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.
Related tasks

“Using the IBM MQ sample procedural programs” on page 966
These sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.

Securing

Application programs using the MQI
IBM MQ application programs need certain objects before they can run successfully.

Figure 1 on page 10 shows an application that removes messages from a queue, processes them, and
then sends some results to another queue on the same queue manager.

Queue Manager
Application
get ] B put Fromother
< 1 < ' applications
put ] — get
: ~ . ~ To Dtlher_
applications

Figure 1. Queues, messages, and applications

Whereas applications can put messages onto local or remote queues (using MQPUT ), they can only get
messages directly from local queues (using MQGET ).

Before this application can run, the following conditions must be satisfied:

« The queue manager must exist and be running,.
- The first application queue, from which the messages are to be removed, must be defined.
« The second queue, on which the application puts the messages, must also be defined.

- The application must be able to connect to the queue manager. To do this it must be linked to IBM MQ.
See “Building a procedural application” on page 901.

- The applications that put the messages on the first queue must also connect to a queue manager. If
they are remote, they must also be set up with transmission queues and channels. This part of the
system is not shown in Figure 1 on page 10.

Object-oriented applications

IBM MQ provides support for .NET, ActiveX, C++, Java, and IJMS. These languages and frameworks use
the IBM MQ Object Model, which provides classes that provide the same functionality as IBM MQ calls
and structures. Some of the languages and frameworks that use the IBM MQ Object Model provide
additional functions that are not available when you use procedural languages with the message queue
interface (MQI).

For details of the classes, methods and properties provided by this model, see “The IBM MQ Object
Model” on page 11.

10 Developing Applications for IBM MQ



.NET
See Developing .NET applications for information about coding .NET programs using the IBM MQ .NET
classes. Message Service Clients for C/C++ and .NET provide an application programming Interface
(API) called XMS that has the same set of interfaces as the Java Message Service (JMS) API.

ActiveX
The IBM MQ ActiveX is commonly known as the MQAX. The MQAX is included as part of IBM MQ
for Windows. Support for ActiveX has been stabilized at the IBM WebSphere® MQ 6.0 level. For
information about coding programs using the IBM MQ Object Model in ActiveX Using the Component
Object Model Interface (WebSphere MQ Automation Classes for ActiveX).

From IBM MQ 9.0, support for Microsoft Active X is deprecated. IBM MQ classes
for .NET are the recommended replacement technology. For more information, see Developing .NET
applications.

C++
IBM MQ provides C++ classes equivalent to IBM MQ objects and some additional classes equivalent
to the array data types. It provides a number of features not available through the MQI. See Using
C++ for information about coding programs using the IBM MQ Object Model in C++. Message Service
Clients for C/C++ and .NET provide an application programming Interface (API) called XMS that has
the same set of interfaces as the Java Message Service (JMS) API.

Java
See Using IBM MQ classes for Java for information about coding programs using the IBM MQ Object
Model in Java. IBM will make no further enhancements to the IBM MQ classes for Java and they
are functionally stabilized at the level shipped in IBM MQ 8.0. For information about the differences
between the IBM MQ classes for Java and the IBM MQ classes for JMS to help you decide which to
use, see “Choosing to use IBM MQ classes for Java or IBM MQ classes for JMS” on page 46.

IMS
IBM MQ also provides classes that implement the Java Message Service (JMS) specification. For
details of the IBM MQ classes for JMS, see Using IBM MQ classes for JMS. For information about the
differences between IBM MQ classes for Java and IBM MQ classes for JMS to help you decide which
to use, see “Choosing to use IBM MQ classes for Java or IBM MQ classes for JIMS” on page 46.

IBM Message Service Client for C/C++ and IBM Message Service Client for .NET provide an application
programming interface (API) called XMS that has the same set of interfaces as the Java Message
Service (JMS) API. For more information, see Introduction to the IBM Message Service Client for .NET.

Related concepts

“Developing MQI applications with IBM MQ” on page 627
IBM MQ provides support for C, Visual Basic, COBOL, Assembler, RPG, pTAL, and PL/I. These procedural
languages use the message queue interface (MQI) to access message queuing services.

Technical overview

“Application development concepts” on page 6

You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.

Related reference
Application development reference

The IBM MQ Object Model
The IBM MQ Object Model consists of classes, methods and properties.
The IBM MQ Object Model consists of:

« Classes representing familiar IBM MQ concepts such as queue managers, queues, and messages.
« Methods on each class corresponding to MQI calls.
« Properties on each class corresponding to attributes of IBM MQ objects.

Developing applications for IBM MQ 11



When creating an IBM MQ application using the IBM MQ Object Model, you create instances of these
classes in the application. An instance of a class in object-oriented programming is called an object. When
an object has been created, you interact with the object by examining or setting the values of the object's
properties (the equivalent of issuing an MQINQ or MQSET call), and by making method calls against the
object (the equivalent of issuing the other MQI calls).

Classes
The IBM MQ Object Model provides the following base set of classes.

The actual implementation of the model varies slightly between the different supported object-oriented
environments.

MQQueueManager
An object of the MQQueueManager class represents a connection to a queue manager. It has methods
to Connect(), Disconnect(), Commit(), and Backout() (the equivalent of MOCONN or MQCONNX,
MQDISC, MQCMIT, and MQBACK). It has properties corresponding to the attributes of a queue
manager. Accessing a queue manager attribute property implicitly connects to the queue manager if
not already connected. Destroying an MQQueueManager object implicitly disconnects from the queue
manager.

MQQueue
An object of the MQQueue class represents a queue. It has methods to Put() and Get() messages
to and from the queue (the equivalent of MQPUT and MQGET). It has properties corresponding to
the attributes of a queue. Accessing a queue attribute property, or issuing a Put() or Get() method
call, implicitly opens the queue (the equivalent of MOQOPEN). Destroying an MQQueue object implicitly
closes the queue (the equivalent of MQCLOSE).

MQTopic
An object of the MQTopic class represents a topic. It has methods to Put() (publish) and Get()
(receive or subscribe) messages to and from the topic (the equivalent of MQPUT and MQGET). It has
properties corresponding to the attributes of a topic. An MQTopic object can only be accessed for
publication or subscription, not both simultaneously. When used for receiving messages the MQTopic
object can be created with an unmanaged or managed subscription and as a durable or non-durable
subscriber - multiple overloaded constructors are provided for these differing scenarios.

MQMessage
An object of the MQMessage class represents a message to be put on a queue or got from a queue. It
contains a buffer, and encapsulates both application data and MQMD. It has properties corresponding
to MQMD fields, and methods that allow you to write and read user data of different types (for
example, strings, long integers, short integers, single bytes) to and from the buffer.

MQPutMessageOptions
An object of the MQPutMessageOptions class represents the MQPMO structure. It has properties
corresponding to MQPMO fields.

MQGetMessageOptions
An object of the MQGetMessageOptions class represents the MQGMO structure. It has properties
corresponding to MQGMO fields.

MQProcess

An object of the MQProcess class represents a process definition (used with triggering). It has
properties that represent the attributes of a process definition.

mMQDistributionList

An object of the MQDistributionList class represents a distribution list (used to send multiple
messages with a single MQPUT). It contains a list of MQDistributionListItem objects.

mMQDistributionListItem

An object of the MQDistributionListItem class represents a single distribution list destination. It
encapsulates the MQOR, MQRR, and MQPMR structures, and has properties corresponding to the
fields of these structures.

12 Developing Applications for IBM MQ



Object references

In an IBM MQ program that uses the MQI, IBM MQ returns connection handles and object handles to the
program.

These handles must be passed as parameters on subsequent IBM MQ calls. With the IBM MQ Object
Model, these handles are hidden from the application program. Instead, the creation of an object from a
class results in an object reference being returned to the application program. It is this object reference
that is used when making method calls and property accesses against the object.

Return codes
Issuing a method call or setting a property value results in return codes being set.

These return codes are a completion code and a reason code, and are themselves properties of the
object. The values of completion code and reason code are the same as those defined for the MQI, with
some extra values specific to the object-oriented environment.

IBM MQ messages

An IBM MQ message consists of message properties and application data. The message queuing message
descriptor (MQMD) contains the control information that accompanies the application data when a
message travels between the sending and receiving applications.

Parts of a message
IBM MQ messages consist of two parts:

« Message properties
- Application data

Figure 2 on page 13 represents a message and shows how it is logically divided into message properties
and application data.

Message properties Application data
A A
|l \l/ -\-\-\l
Message description

B (MDY}

TTTTT T T T T T T T T T T T T T T T TTT] TTTTTTTTT] TTTTT [ TTTTTTTTITT
o > > > Ly | >
N T T I T e | L1 I | I 1 Y N

Message ID ARM correlator Addrozs

Parsistence ... Customer number Claim details ...

Figure 2. Representation of a message

The application data that is carried in an IBM MQ message is not changed by a queue manager unless
data conversion is carried out on it. Also, IBM MQ does not put any restrictions on the content of this data.
The length of the data in each message cannot exceed the value of the MaxMsgLength attribute of both
the queue and queue manager.

-!l'.'._m UNIX, Linux®, and Windows, the MaxMsgLength attribute of the queue manager and the
queue defaults to 4 MB (4 194 304 bytes) which you can change up to a maximum of 100 MB (104 857
600 bytes) if required.

mOn IBM i, the MaxMsgLength attribute of the queue manager and the queue defaults to 4
MB (4 194 304 bytes) which you can change up to a maximum of 200 MB (104 857 600 bytes) if required.

Developing applications for IBM MQ 13



If you are intending to use IBM MQ messages greater than 15 MB on IBM i, see “Building your procedural
application on IBMi” on page 918.

mOn z/0S, the MaxMsgLength attribute of the queue manager is fixed at 100 MB and the
MaxMsgLength attribute of the queue defaults to 4 MB (4 194 304 bytes) which you can change up to a
maximum of 100 MB if required.

Make your messages slightly shorter than the value of the MaxMsgLength attribute in some
circumstances. For more information, see “The data in your message” on page 669.

You create a message when you use the MQPUT or MQPUT1 MQI calls. As input to these calls, you supply
the control information (such as the priority of the message and the name of a reply queue) and your data,
and the call then puts the message on a queue. See MQPUT and MQPUT1 for more information about
these calls.

Message descriptor

You can access message control information by using the MQMD structure, which defines the message
descriptor.

For a full description of the MQMD structure, see MQMD - Message descriptor.

For a description of how to use the fields within the MQMD that contain information about the origin of the
message, see “Message context” on page 41.

There are different versions of the message descriptor. Additional information for grouping and
segmenting messages (see “Message groups” on page 38) is provided in Version 2 of the message
descriptor (or the MQMDE). This is the same as the Version 1 message descriptor but has extra fields.
These fields are described in the MQMDE - Message descriptor extension.

Types of message
There are four types of messages defined by IBM MQ.

These four messages are:

« Datagram
« Request messages

« Reply messages

* Report messages

— Types of report message

- Report message options

Applications can use the first three types of messages to pass information between themselves. The
fourth type, report, is for applications and queue managers to use to report information about events such
as the occurrence of an error.

Each type of message is identified by an MOMT_* value. You can also define your own types of message.
For the range of values you can use, see MsgType.

Datagrams

Use a datagram when you do not require a reply from the application that receives the message (that is,
gets the message from the queue).

An example of an application that might use datagrams is one that displays flight information in an airport
lounge. A message might contain the data for a whole screen of flight information. Such an application is
unlikely to request an acknowledgment for a message because it probably does not matter if a message is
not delivered. The application sends an update message after a short time.

14 Developing Applications for IBM MQ



Request messages
Use a request message when you want a reply from the application that receives the message.

An example of an application that could use request messages is one that displays the balance of a
checking account. The request message could contain the number of the account, and the reply message
would contain the account balance.

If you want to link your reply message with your request message, there are two options:

- Make the application that handles the request message responsible for ensuring that it puts information
into the reply message that relates to the request message.

« Use the report field in the message descriptor of your request message to specify the content of the
MsgId and Correlld fields of the reply message:

— You can request that either the MsgId or the CorrelId of the original message is to be copied into
the Correlld field of the reply message (the default action is to copy MsgId).

— You can request that either a new MsgId is generated for the reply message, or that the MsgId of the
original message is to be copied into the MsgId field of the reply message (the default action is to
generate a new message identifier).

Reply messages
Use a reply message when you reply to another message.

When you create a reply message, respect any options that were set in the message descriptor of the
message to which you are replying. Report options specify the content of the message identifier (MsgId)
and correlation identifier (CorrelId) fields. These fields allow the application that receives the reply to
correlate the reply with its original request.

Report messages

Report messages inform applications about events such as the occurrence of an error when processing a
message.

They can be generated by:

« A queue manager,

« A message channel agent (for example, if they cannot deliver the message), or
« An application (for example, if it cannot use the data in the message).

Report messages can be generated at any time, and might arrive on a queue when your application is not
expecting them.

Types of report message
When you put a message on a queue, you can select to receive:

« An exception report message. This is sent in response to a message with the exceptions flag set. It is
generated by the message channel agent (MCA) or the application.

= An expiry report message. This indicates that an application attempted to retrieve a message that
had reached its expiry threshold; the message is marked to be discarded. This type of report is
generated by the queue manager.

A confirmation of arrival (COA) report message. This indicates that the message has reached its
target queue. It is generated by the queue manager.

A confirmation of delivery (COD) report message. This indicates that the message has been retrieved
by a receiving application. It is generated by the queue manager.

« A positive action notification (PAN) report message. This indicates that a request has been
successfully serviced (that is, the action requested in the message has been performed
successfully). This type of report is generated by the application.

Developing applications for IBM MQ 15



« A negative action notification (NAN) report message. This indicates that a request has not been
successfully serviced (that is, the action requested in the message has not been performed
successfully). This type of report is generated by the application.

Note: Each type of report message contains one of the following:

- The entire original message
» The first 100 bytes of data in the original message
« No data from the original message

You can request more than one type of report message when you put a message on a queue. If you
select the delivery confirmation report message and the exception report message options, if the
message fails to be delivered, you receive an exception report message. However, if you select only
the delivery confirmation report message option and the message fails to be delivered, you do not get
an exception report message.

The report messages that you request, when the criteria for generating a particular message are met,
are the only ones that you receive.

Report message options

You can discard a message after an exception has arisen. If you select the discard option, and
have requested an exception report message, the report message goes to the ReplyToQ and
ReplyToQMgr, and the original message is discarded.

Note: A benefit of this is that you can reduce the number of messages going to the dead-letter queue.
However, it does mean that your application, unless it sends only datagram messages, has to deal
with returned messages. When an exception report message is generated, it inherits the persistence
of the original message.

If a report message cannot be delivered (if the queue is full, for instance), the report message is
placed on the dead-letter queue.

If you want to receive a report message, specify the name of your reply-to queue in
the ReplyToQ field; otherwise the MQPUT or MQPUT1 of your original message fails with
MQRC_MISSING_REPLY_TO_Q.

You can use other report options in the message descriptor (MQMD) of a message to specify the
content of the MsgId and CorrelId fields of any report messages that are created for the message:

« You can request that either the MsgId or the CorrelId of the original message is to be copied into
the CorrelId field of the report message. The default action is to copy the message identifier. Use
MQRO_COPY_MSG_ID_TO_CORRELID because it enables the sender of a message to correlate the
reply or report message with the original message. The correlation identifier of the reply or report
message is identical to the message identifier of the original message.

 You can request that either a new MsgId is generated for the report message, or that the MsgId of
the original message is to be copied into the MsgId field of the report message. The default action
is to generate a new message identifier. Use MOQRO_NEW_MSG_ID because it ensures that each
message in the system has a different message identifier, and can be distinguished unambiguously
from all other messages in the system.

« Specialized applications might need to use MQRO_PASS_MSG_ID or MQRO_PASS_CORREL_ID.
However, you need to design the application that reads the messages from the queue to ensure
that it works correctly when, for example, the queue contains multiple messages with the same
message identifier.

Server applications must check the settings of these flags in the request message, and set the
MsgIdand CorrelId fields inthe reply or report message appropriately.

Applications that act as intermediaries between a requester application and a server application
do not need to check the settings of these flags. This is because these applications typically need
to forward the message to the server application with the MsgId, CorrelId, and Report fields
unchanged. This allows the server application to copy the MsgId from the original message in the
CorrelId field of the reply message.

16 Developing Applications for IBM MQ



When generating a report about a message, server applications must test to see if any of these
options have been set.

For more information about how to use report messages, see Report.

To indicate the nature of the report, queue managers use a range of feedback codes. They put these
codes in the Feedback field of the message descriptor of a report message. Queue managers can
also return MQI reason codes in the Feedback field. IBM MQ defines a range of feedback codes for
applications to use.

For more information about feedback and reason codes, see Feedback.

An example of a program that could use a feedback code is one that monitors the workloads of other
programs serving a queue. If there is more than one instance of a program serving a queue, and the
number of messages arriving on the queue no longer justifies this, such a program can send a report
message (with the feedback code MQFB_QUIT) to one of the serving programs to indicate that the
program should terminate its activity. (A monitoring program could use the MQINQ call to find out how
many programs are serving a queue.)

SNLTER S Reports and segmented messages

Not supported on IBM MQ for z/OS.

If a message is segmented and you ask for reports to be generated, you might receive more reports than
you would have done had the message not been segmented.

For a description of segmented messages, see “Message segmentation” on page 701.

For reports generated by IBM MQ

If you segment your messages or allow the queue manager to do so, there is only one case in which you
can expect to receive a single report for the entire message. This is when you have requested only COD
reports, and you have specified MOQGMO_COMPLETE_MSG on the getting application.

In other cases your application must be prepared to deal with several reports; usually one for each
segment.

Note: If you segment your messages, and you need only the first 100 bytes of the original message
data to be returned, change the setting of the report options to ask for reports with no data for
segments that have an offset of 200 or more. If you do not do this, and you leave the setting so that
each segment requests 100 bytes of data, and you retrieve the report messages with a single MQGET
specifying MQGMO_COMPLETE_MSG, the reports assemble into a large message containing 100 bytes
of read data at each appropriate offset. If this happens, you need a large buffer or you need to specify
MQGMO_ACCEPT_TRUNCATED_MSG.

For reports generated by applications

If your application generates reports, always copy the IBM MQ headers that are present at the start of the
original message data to the report message data.

Then add none, 100 bytes, or all of the original message data (or whatever other amount you would
usually include) to the report message data.

You can recognize the IBM MQ headers that must be copied by looking at the successive Format names,
starting with the MQMD and continuing through any headers present. The following Format names
indicate these IBM MQ headers:

- MQMDE
« MQDLH
- MOXOQH
« MOQIIH
« MQH*

Developing applications for IBM MQ 17



MQH* means any name that starts with the characters MQH.

The Format name occurs at specific positions for MQDLH and MQXQH, but for the other IBM MQ headers
it occurs at the same position. The length of the header is contained in a field that also occurs at the same
position for MOMDE, MQIMS, and all MQH* headers.

If you are using a Version 1 MQMD, and you are reporting on a segment, or a message in a group,

or a message for which segmentation is allowed, the report data must start with an MOQMDE. Set the
Originallength field to the length of the original message data excluding the lengths of any IBM MQ
headers that you find.

Retrieving reports

If you ask for COA or COD reports, you can ask for them to be reassembled for you with
MQGMO_COMPLETE_MSG.

An MQGET with MQGMO_COMPLETE_MSG is satisfied when enough report messages (of a single type, for
example COA, and with the same GroupId) are present on the queue to represent one complete original
message. This is true even if the report messages themselves do not contain the complete original data;
the OriginalLength field in each report message gives the length of original data represented by that
report message, even if the data itself is not present.

You can use this technique even if there are several different report types present on the queue (for
example, both COA and COD), because an MQGET with MOQGMO_COMPLETE_MSG reassembles report
messages only if they have the same Feedback code. However, you cannot usually use this technique for
exception reports, because, in general, these have different Feedback codes.

You can use this technique to get a positive indication that the entire message has arrived.

However, in most circumstances you need to cater for the possibility that some segments arrive
while others might generate an exception (or expiry, if you have allowed this). You cannot use
MQGMO_COMPLETE_MSG in this case, because, in general, you might get different Feedback codes
for different segments and, you might get more than one report for a segment. You can, however, use
MQGMO_ALL_SEGMENTS_AVAILABLE.

To allow for this you might need to retrieve reports as they arrive, and build up a picture in your
application of what happened to the original message. You can use the GroupId field in the report
message to correlate reports with the GroupId of the original message, and the Feedback field to
identify the type of each report message. The way in which you do this depends on your application
requirements.

One approach is as follows:

« Ask for COD reports and exception reports.

- After a specific time, check whether a complete set of COD reports has been received using
MQGMO_COMPLETE_MSG. If so, your application knows that the entire message has been processed.

« If not, and exception reports relating to this message are present, handle the problem as for
unsegmented messages, but ensure that you clean up orphan segments at some point.

« If there are segments for which there are no reports of any kind, the original segments (or the reports)
might be waiting for a channel to be reconnected, or the network might be overloaded at some point.
If no exception reports at all have been received (or if you think that the ones you have might be
temporary only), you might decide to let your application wait a little longer.

As before, this is similar to the considerations you have when dealing with unsegmented messages,
except that you must also consider the possibility of cleaning up orphan segments.

If the original message is not critical (for example, if it is a query, or a message that can be repeated later),
set an expiry time to ensure that orphan segments are removed.

Back-level queue managers

When a report is generated by a queue manager that supports segmentation, but is received on a queue
manager that does not support segmentation, the MQMDE structure (which identifies the Offset and

18 Developing Applications for IBM MQ



OriginallLength represented by the report) is always included in the report data, in addition to zero,
100 bytes, or all of the original data in the message.

However, if a segment of a message passes through a queue manager that does not support
segmentation, if a report is generated there, the MQMDE structure in the original message is treated
purely as data. It is not therefore included in the report data if zero bytes of the original data have been
requested. Without the MQMDE, the report message might not be useful.

Request at least 100 bytes of data in reports if there is a possibility that the message might travel through
a back-level queue manager.

Format of message control information and message data

The queue manager is only interested in the format of the control information within a message, whereas
applications that handle the message are interested in the format of both the control information and the
data.

Format of message control information

Control information in the character-string fields of the message descriptor must be in the character set
used by the queue manager.

The CodedChaxSetId attribute of the queue manager object defines this character set. Control
information must be in this character set because, when applications pass messages from one queue
manager to another, message channel agents that transmit the messages use the value of this attribute to
determine what data conversion to perform.

Format of message data
You can specify any of the following things:

« The format of the application data
« The character set of the character data
« The format of numeric data

To do this, use these fields:

Format
This indicates to the receiver of a message the format of the application data in the message.

When the queue manager creates a message, in some circumstances it uses the Format field to
identify the format of that message. For example, when a queue manager cannot deliver a message,
it puts the message on a dead-letter (undelivered message) queue. It adds a header (containing more
control information) to the message, and changes the Format field to show this.

The queue manager has a number of built-in formats with names beginning MQ, for example
MQFMT_STRING. If these do not meet your needs, you can define your own formats ( user-defined
formats ), but you must not use names beginning with MQ for these.

When you create and use your own formats, you must write a data-conversion exit to support a
program getting the message using MOGMO_CONVERT.

CodedCharSetId
This defines the character set of character data in the message. If you want to set this character
set to that of the queue manager, you can set this field to the constant MQCCSI_Q_MGR or
MQCCSI_INHERIT.

When you get a message from a queue, compare the value of the CodedCharSetId field with the
value that your application is expecting. If the two values differ, you might need to convert any
character data in the message or use a data-conversion message exit if one is available.

Developing applications for IBM MQ 19



Encoding
This describes the format of numeric message data that contains binary integers, packed-decimal
integers, and floating point numbers. It is typically encoded according to the particular machine on
which the queue manager is running.

When you put a message on a queue, you typically specify the constant MQENC_NATIVE in the
Encoding field. This means that the encoding of your message data is the same as that of the
machine on which your application is running.

When you get a message from a queue, compare the value of the Encoding field in the message
descriptor with the value of the constant MQENC_NATIVE on your machine. If the two values differ,
you might need to convert any numeric data in the message or use a data-conversion message exit if
one is available.

Application data conversion
Application data might need to be converted to the character set and the encoding required by another
application where different platforms are concerned.

It can be converted at the sending queue manager, or at the receiving queue manager. If the library of
built-in formats does not meet your needs, you can define your own. The type of conversion depends on
the message format that is specified in the format field of the message descriptor, MOQMD.

Note: Messages with MOFMT_NONE specified are not converted.

Conversion at the sending queue manager

Set the CONVERT channel attribute to YES if you need the sending message channel agent (MCA) to
convert the application data.

The conversion is performed at the sending queue manager for certain built-in formats and for user-
defined formats if a suitable user exit is supplied.

Built-in formats
These include:
» Messages that are all characters (using the format name MQFMT_STRING)
« IBM MQ defined messages, for example Programmable Command Formats

IBM MQ uses Programmable Command Format messages for administration messages and events
(the format name used is MQFMT_ADMIN in this case). You can use the same format (using

the format name MQFMT_PCF) for your own messages, and take advantage of the built-in data
conversion.

The queue manager built-in formats all have names beginning with MQFMT. They are listed and
described in Format.

Application-defined formats

For user-defined formats, application data conversion must be performed by a data-conversion exit
program (for more information, see “Writing data-conversion exits” on page 885 ). In a client-server
environment, the exit is loaded at the server and conversion takes place there.

Conversion at the receiving queue manager

Application message data can be converted by the receiving queue manager for both built-in and user-
defined formats.

The conversion is performed during the processing of an MQGET call if you specify the MQGMO_CONVERT
option. For details, see the Options

Coded character sets
IBM MQ products support the coded character sets that are provided by the underlying operating system.

20 Developing Applications for IBM MQ



When you create a queue manager, the queue manager coded character set ID (CCSID) used is based on
that of the underlying environment. If this is a mixed code page, IBM MQ uses the SBCS part of the mixed
code page as the queue manager CCSID.

For general data conversion, if the underlying operating system supports DBCS code pages, IBM MQ can
use it.

See the documentation for your operating system for details of the coded character sets that it supports.

You need to consider application data conversion, format names, and user exits when writing applications
that span multiple platforms. See “Writing data-conversion exits” on page 885 for information about
invoking and writing data-conversion exits.

Message priorities

You can either set the priority of message to a numeric value, or let the message take the default priority
of the queue.

You set the priority of a message (in the Priority field of the MQMD structure) when you put the
message on a queue. You can set a numeric value for the priority, or you can let the message take the
default priority of the queue.

The MsgDeliverySequence attribute of the queue determines whether messages on the queue are
stored in FIFO (first in, first out) sequence, or in FIFO within priority sequence. If this attribute is set

to MQMDS_PRIORITY, messages are enqueued with the priority specified in the Priority field of their
message descriptors; but if it is set to MQMDS_FIFO, messages are enqueued with the default priority of
the queue. Messages of equal priority are stored on the queue in order of arrival.

The DefPriority attribute of a queue sets the default priority value for messages being put on that
queue. This value is set when the queue is created, but it can be changed afterward. Alias queues, and
local definitions of remote queues, can have different default priorities from the base queues to which
they resolve. If there is more than one queue definition in the resolution path (see “Name resolution”
on page 656 ), the default priority is taken from the value (at the time of the put operation) of the
DefPrioxity attribute of the queue specified in the open command.

The value of the MaxPriority attribute of the queue manager is the maximum priority that you can
assign to a message processed by that queue manager. You cannot change the value of this attribute. In
IBM MQ, the attribute has the value 9; you can create messages having priorities between 0 (the lowest)
and 9 (the highest).

Message properties

Use message properties to allow an application to select messages to process, or to retrieve information
about a message without accessing MQMD or MQRFH2 headers. They also facilitate communication
between IBM MQ and JMS applications.

A message property is data associated with a message, consisting of a textual name and a value of a
particular type. Message properties are used by message selectors to filter publications to topics or to
selectively get messages from queues. Message properties can be used to include business data or state
information without having to store it in the application data. Applications do not have to access data in
the MQ Message Descriptor (MQMD) or MQRFH2 headers because fields in these data structures can be
accessed as message properties using Message Queue Interface (MQI) function calls.

The use of message properties in IBM MQ mimics the use of properties in JIMS. This means that you

can set properties in a JMS application and retrieve them in a procedural IBM MQ application, or

the other way round. To make a property available to a IMS application, assign it the prefix "usr";

it is then available (without the prefix) as a IMS message user property. For example, the IBM MQ
property usr.myproperty (a character string) is accessible to a IMS application using the JMS call
message.getStringProperty ('myproperty'). Note that IMS applications are unable to access
properties with the prefix "usr" if they contain two or more U+002E (".") characters. A property with no
prefix and no U+002E (".") character is treated as if it had the prefix "usr". Conversely, a user property set
in a JMS application can be accessed in an IBM MQ application by adding the "usr." prefix to the property
name inquired on in an MQINQMP call.

Developing applications for IBM MQ 21



Message properties and message length
Use the queue manager attribute MaxPropertiesLength to control the size of the properties that can flow
with any message in an IBM MQ queue manager.

In general, when you use MQSETMP to set properties, the size of a property is the length of the property
name in bytes, plus the length of the property value in bytes as passed into the MQSETMP call. It is
possible for the character set of the property name and the property value to change during transmission
of the message to its destination because these can be converted into Unicode; in this case the size of the
property might change.

On an MQPUT or MQPUT1 call, properties of the message do not count toward the length of the message
for the queue and the queue manager, but they do count toward the length of the properties as perceived
by the queue manager (whether they were set using the message property MQI calls or not).

If the size of the properties exceeds the maximum properties length, the message is rejected with
MQRC_PROPERTIES_TOO_BIG. Because the size of the properties is dependent on its representation, you
should set the maximum properties length at a gross level.

It is possible for an application to successfully put a message with a buffer that is larger than the value

of MaxMsgLength, if the buffer includes properties. This is because, even when represented as MQRFH2
elements, message properties do not count toward the length of the message. The MQRFH2 header fields
add to the properties length only if one or more folders are contained and every folder in the header
contains properties. If one or more folders are contained in the MQRFH2 header and any folder does not
contain properties, the MQRFH2 header fields count toward the message length instead.

On an MQGET call, properties of the message do not count toward the length of the message as far as the
queue and the queue manager are concerned. However, because the properties are counted separately

it is possible that the buffer returned by an MQGET call is larger than the value of the MaxMsgLength
attribute.

Do not have your applications query the value of MaxMsgLength and then allocate a buffer of this size
before calling MQGET; instead, allocate a buffer you consider large enough. If the MQGET fails, allocate a
buffer guided by the size of the Datalength parameter.

The Datalength parameter of the MQGET call returns the length in bytes of the application data and any
properties returned in the buffer you have provided, if a message handle is not specified in the MQGMO
structure.

The Buffer parameter of the MQPUT call contains the application message data to be sent and any
properties represented in the message data.

When flowing to a queue manager that is earlier than IBM WebSphere MQ 7.0, properties of the message,
except those in the message descriptor, count toward the length of the message. Therefore, you should
either raise the value of the MaxMsgLength attribute of channels going to a system earlier than IBM
WebSphere MQ 7.0 as necessary, to compensate for the fact that more data might be sent for each
message. Alternatively, you can lower the queue or queue manager MaxMsgLength, so that the overall
level of data being sent around the system remains the same.

There is a length limit of 200 MB for message properties, excluding the message descriptor or extension
for each message.

The size of a property in its internal representation is the length of the name, plus the size of its value,
plus some control data for the property. There is also some control data for the set of properties after one
property is added to the message.

Property names
A property name is a character string. Certain restrictions apply to its length and the set of characters that
can be used.

A property name is a case-sensitive character string, limited to +4095 characters unless otherwise
restricted by the context. This limit is contained in the MQ_MAX_PROPERTY_NAME_LENGTH constant.

If you exceed this maximum length when using a message property MQI call, the call fails with reason
code MQRC_PROPERTY_NAME_LENGTH_ERR.

22 Developing Applications for IBM MQ



Because there is no maximum property name length in JMS, it is possible for a JMS application to set a
valid JMS property name that is not a valid IBM MQ property name when stored in an MQRFH2 structure.

In this case, when parsed, only the first 4095 characters of the property name are used; the following
characters are truncated. This could cause an application using selectors to fail to match a selection
string, or to match a string when not expecting to, since more than one property might truncate to the
same name. When a property name is truncated, WebSphereMQ issues an error log message.

All property names must follow the rules defined by the Java Language Specification for Java Identifiers,
with the exception that Unicode character U+002E (.) is permitted as part of the name - but not the start.
The rules for Java Identifiers equate to those contained in the JMS specification for property names.

White space characters and comparison operators are prohibited. Embedded nulls are allowed in

a property name but not recommended. If you use embedded nulls, this prevents the use of the
MQVS_NULL_TERMINATED constant when used with the MQCHARY structure to specify variable length
strings.

Keep property names simple because applications can select messages based on the property names and
the conversion between the character set of the name and of the selector might cause the selection to fail
unexpectedly.

IBM MQ property names use character U+002E (.) for logical grouping of properties. This divides up
the namespace for properties. Properties with the following prefixes, in any mixture of lowercase or
uppercase are reserved for use by the product:

- mcd

- jms

e uUST

.« mq

- sib

e wmq

* Root

» Body

e Properties

A good way to avoid name clashes is to ensure that all applications prefix their message properties
with their Internet domain name. For example, if you are developing an application using domain

name ourcompany .com you could name all properties with the prefix com.ourcompany. This naming
convention also allows for easy selection of properties; for example, an application can inquire on all
message properties starting com.ouxrcompany .%.

See Property name restrictions for further information about the use of property names.

Property name restrictions
When you name a property, you must observe certain rules.

The following restrictions apply to property names:
1. A property must not begin with the following strings:

« "JMS" - reserved for use by IBM MQ classes for JIMS.
 "usr.JMS" - not valid.

The only exceptions are the following properties providing synonyms for JMS properties:

Property Synonym for

JMSCorrelationID Root .MQMD.Correlld or jms.Cid
JMSDeliveryMode Root .MQMD.Persistence or jms.Dlv
JMSDestination jms.Dst

Developing applications for IBM MQ 23



Property Synonym for

JMSExpiration Root .MQMD.Expiry or jms.Exp

JMSMessagelD Root .MQMD.Msgld

JMSPriority Root .MQMD.Priority or jms.Pri

JMSRedelivered Root .MQMD.BackoutCount

JMSReplyTo (a string Root .MQMD.ReplyToQ or Root .MQMD.ReplyToQMgr or jms.Rto
encoded as a URI)

JMSTimestamp Root .MQMD.PutDate or Root .MQMD.PutTime or jms.Tms
JMSType mcd.Type or mcd.Set or med.Fmt

JMSXAppID Root .MQMD.PutApplName

JMSXDeliveryCount Root .MQMD.BackoutCount

JMSXGroupID Root .MQMD.Groupld or jms.Gid

JMSXGroupSeq Root .MQMD.MsgSegNumber or jms.Seq

JMSXUserID Root .MQMD.UserIdentifier

These synonyms allow an MQI application to access JMS properties in a similar fashion to IBM MQ
classes for JMS client application. Of these properties, only IMSCorrelationID, JMSReplyTo, JMSType,
JMSXGroupID, and JIMSXGroupSeq can be set using the MQL.

Note that the IMS_IBM_* properties available from within IBM MQ classes for JMS are not available
using the MQI. The fields that the IMS_IBM_* properties reference can be accessed in other ways by
MOQI applications.

2. A property must not be called, in any mixture of lower or uppercase, "NULL", "TRUE", "FALSE", "NOT",
"AND", "OR", "BETWEEN", "LIKE", "IN", "IS" and "ESCAPE". These are the names of SQL keywords used
in selection strings.

3. A property name beginning " mq " in any mixture of lowercase or uppercase and not beginning

"mq_usr" can contain only one """ character (U+002E). Multiple """ characters are not allowed in
properties with those prefixes.

4. Two "" characters must contain other characters in between; you cannot have an empty point in the

hierarchy. Similarly a property name cannot end in a "." character.

5. If an application sets the property "a.b" and then the property "a.b.c", it is unclear whether in the
hierarchy "b" contains a value or another logical grouping . Such a hierarchy is "mixed content" and this
is not supported. Setting a property that causes mixed content is not allowed.

These restrictions are enforced by the validation mechanism as follows:

« Property names are validated when setting a property using the MQSETMP - Set message property call,
if validation was requested when the message handle was created . If an attempt to validate a property
is undertaken and fails due to an error in the specification of the property name, the completion code is
MQCC_FAILED with reason:

— MOQRC_PROPERTY_NAME_ERROR for reasons 1-4.
— MORC_MIXED_CONTENT_NOT_ALLOWED for reason 5.

« The names of properties specified directly as MQRFH2 elements are not guaranteed to be validated by
the MQPUT call.

24 Developing Applications for IBM MQ



Message descriptor fields as properties
Most message descriptor fields can be treated as properties. The property name is constructed by adding
a prefix to the message descriptor field's name.

If an MQI application wants to identify a message property contained in a message descriptor field, for
example, in a selector string or using the message property APIs, use the following syntax:

Property name Message descriptor field

Root.MQMD.Field Field

Specify Field with the same case as for the MQMD structure fields in the C language declaration. For
example, the property name Root.MQMD.AccountingToken accesses the AccountingToken field of
the message descriptor.

The StrucId and Version fields of the message descriptor are not accessible using the syntax shown.
Message descriptor fields are never represented in an MQRFH2 header as for other properties.

If the message data starts with an MQMDE that is honored by the queue manager, the MQMDE fields can
be accessed using the Root.MQMD. Field notation described. In this case the MQMDE fields are treated
as logically part of the MQMD from a properties perspective. See Overview of MQMDE.

Property data types and values
A property can be a boolean, a byte string, a character string, or a floating-point or integer number. The
property can store any valid value in the range of the data type unless otherwise restricted by the context.

The data type of a property value must be one of the following values:
- MQBOOL

« MOBYTE][]

« MQCHAR][ ]

« MQFLOAT32

« MQFLOAT64

« MQINT8

- MQINT16

« MOINT32

« MQINT64

A property can exist but have no defined value; it is a null property. A null property is different from a byte
property (MOBYTE[ ]) or character string property (MQCHAR[ ]) in that it has a defined but empty value,
that is, one with a zero-length value.

Byte string is not a valid property data type in JMS or XMS. You are advised not to use byte string
properties in the usr folder.

Selecting messages from queues
You can select messages from queues using the Msgld and Correlld fields on an MQGET call, or by using a
SelectionString on an MQOPEN or MQSUB call.

Selectors

A message selector is a variable-length string used by an application to register its interest in only those
messages that have properties that satisfy the Structured Query Language (SQL) query that the selection
string represents.

Selection using the MQSUB and MQOPEN function calls

You use the SelectionString, which is a structure of type MQCHARY, to make selections using the
MQSUB and MQOPEN calls.

Developing applications for IBM MQ 25



The SelectionString structure is used to pass a variable-length selection string to the queue manager.

The CCSID associated with the selector string is set via the VSCCSID field of the MQCHARYV structure. The
value used must be a CCSID that is supported for selector strings. See Code page conversion for a list of
supported code pages.

Specifying a CCSID for which there is no IBM MQ supported Unicode conversion, results in an error of
MQRC_SOURCE_CCSID_ERROR. This error is returned at the time that the selector is presented to the
gueue manager, that is, on the MQSUB, MQOPEN, or MQPUT1 call.

The default value for the VSCCSID field is MQCCSI_APPL, which indicates that the CCSID of the selection
string is equal to the queue manager CCSID, or the client CCSID if connected through a client. The
MQCCSI_APPL constant can however be overridden by an application redefining it before compiling.

If the MQCHARV selector represents a NULL string, no selection takes place for that message consumer
and messages are delivered as if a selector had not been used.

The maximum length of a selection string is limited only by what can be described by the MQCHARYV field
VSLength.

The SelectionString is returned on the output from an MQSUB call using the MQSO_RESUME subscribe
option, if you have provided a buffer and there is a positive buffer length in VSBufSize. If you do not
provide a buffer, only the length of the selection string is returned in the VSLength field of the MQCHARV.
If the buffer provided is smaller than the space required to return the field, only VSBufSize bytes are
returned in the provided buffer.

An application cannot alter a selection string without first closing either the handle to the queue (for
MQOPEN), or subscription (for MQSUB). A new selection string can then be specified on a subsequent
MQOPEN or MQSUB call.

MQOPEN
Use MQCLOSE to close the opened handle, then specify a new selection string on a subsequent
MQOPEN call.

MQSUB
Use MQCLOSE to close the returned subscription handle (hSub), then specify a new selection string on
a subsequent MQSUB call.

Figure 3 on page 27 shows the process of selection using the MQSUB call.

26 Developing Applications for IBM MQ



MQOPEN

(APP 1)
ObjectMame = "MyDestQ"
hObj MyDestQ
MQsuB
(APP 1)
SelectionString = "Sport = 'Football™
hObj —|_|_ ResultzTopic
TopicString = "ResulisTopic" MyDest
* DELIVERED ResulisTopic
League = ‘Premierzhip’
MyDestQ Sport = "Football
Message
NOT DELIVERED
® ResultzTopic
—Izr League = ‘Premierzhip’
MyDestQ Sport = "Cricket
Message
+ DELIVERED ResultsTopic
—H— League = "Div 2'
MyDestQ Sport = "Football
Message
MQGET
(APP 1} hObj
. DELIVERED
League = 'Premiership' H
Sport = 'Football' MyDestQ
Message
. DELIVERED
League = 'Div 2 g
Sport = 'Football' MyDestQ
Message

Figure 3. Selection using MQSUB call

A selector can be passed in on the call to MQSUB by using the SelectionString field in the MQSD
structure. The effect of passing in a selector on the MQSUB is that only those messages published to the
topic being subscribed to, that match a supplied selection string, are made available on the destination
queue.

Figure 4 on page 28 shows the process of selection using the MQOPEN call.

Developing applications for IBM MQ 27



MQOPEN
(APP 1)

SelectorString = "League = 'Premiership™
ObjectMame = "SportQ”

hObj SportQ
+ MQPUT Application 2
[ League = "Div 2' )
Sport = "Football
SportQ por ootbal
Message
-+ MQPLT Application 2
—lzr League = 'F’remiarship'J
Sport = "Football
SportQ por oothal
Message
MQGET
(AFF 1)  hObj

NOT DELIVERED
(X)
League = 'Div 2 ) —!Er

Sport = 'Football'
P e SportQ
Message
. DELIVERED
League = 'F"remiershiﬂ E[
Sport = 'Football SportQ
Message

MQRC_NO_MSG_AVAILABLE

X)

1=}

SportQ

Figure 4. Selection using MQOPEN call

A selector can be passed in on the call to MQOPEN by using the SelectionString field in the MQOD
structure. The effect of passing in a selector on the MQOPEN call is that only those messages on the
opened queue, that match a selector, are delivered to the message consumer.

The main use for the selector on the MQOPEN call is for the point-to-point case where an application can
elect to receive only those messages on a queue that match a selector. The previous example shows a
simple scenario where two messages are put to a queue opened by MQOPEN but only one is received by
the application getting it, as it is the only one that matches a selector.

Note that subsequent MQGET calls result in MQRC_NO_MSG_AVAILABLE as no further messages exist on
the queue that match the given selector.

Related concepts
“Selection string rules and restrictions” on page 35

28 Developing Applications for IBM MQ



Familiarize yourself with these rules about how selection strings are interpreted and character restrictions
to avoid potential problems when using selectors.

Selection behavior
Overview of IBM MQ selection behavior.

The fields in an MQMDE structure are considered to be the message properties for the corresponding
message descriptor properties if the MQMD:

« Has format MOFMT_MD_EXTENSION
« Is immediately followed by a valid MOMDE structure
« Is version one or contains the default version two fields only

Itis possible for a selection string to resolve to either TRUE or FALSE before any matching against
message properties takes place. For example, it might be the case if the selection string is set to "TRUE
<> FALSE". Such early evaluation is guaranteed to take place only when there are no message property
references in the selection string.

If a selection string resolves to TRUE before any message properties are considered, all messages
published to the topic subscribed to by the consumer are delivered. If a selection string resolves to FALSE
before any message properties are considered, a reason code of MQRC_SELECTOR_ALWAYS_FALSE, and
completion code MQCC_FAILED are returned on the function call that presented the selector.

Even if a message contains no message properties (other than header properties) then it can still be
eligible for selection. If a selection string references a message property that does not exist, this property
is assumed to have the value of NULL or 'Unknown'.

For example, a message might still satisfy a selection string like 'Color IS NULL', where 'Color'
does not exist as a message property in the message.

Selection can be performed only on the properties that are associated with a message, not the message
itself, unless an extended message selection provider is available. Selection can be performed on the
message payload only if an extended message selection provider is available.

Each message property has a type associated with it. When you perform a selection, you must ensure
that the values used in expressions to test message properties are of the correct type. If a type mismatch
occurs, the expression in question resolves to FALSE.

It is your responsibility to ensure that the selection string and message properties use compatible types.

Selection criteria continue to be applied on behalf of inactive durable subscribers, so that only messages
that match the selection string that was originally supplied are kept.

Selection strings are non-alterable when a durable subscription is resumed with alter (MQSO_ALTER).
If a different selection string is presented when a durable subscriber resumes activity, then
MQRC_SELECTOR_NOT_ALTERABLE is returned to the application.

Applications receive a return code of MQRC_NO_MSG_AVAILABLE if there is no message on a queue that
meets the selection criteria.

If an application has specified a selection string containing property values then only those messages
that contain matching properties are eligible for selection. For example, a subscriber specifies a selection
string of "a = 3" and a message is published containing no properties, or properties where 'a' does not
exist or is not equal to 3. The subscriber does not receive that message to its destination queue.

Messaging performance

Selecting messages from a queue requires IBM MQ to sequentially inspect each message on the queue.
Messages are inspected until a message is found that matches the selection criteria or there are no more
messages to examine. Therefore, messaging performance suffers if message selection is used on deep
queues.

To optimize message selection on deep queues when selection is based on JIMSCorrelationID or
JMSMessagelD, use a selection string of the form:

Developing applications for IBM MQ 29



« JMSCorrelationID ='ID:correlation_id'

« JMSMessagelD='ID:message_id'

where:

- correlation_id is a String containing a standard IBM MQ correlation identifier.
- message_id is a String containing a standard IBM MQ message identifier.

Note: The selector should only reference one of the properties. Using a selector that has one of these
formats offers a significant improvement in performance when selecting on JMSCorrelationID and offers a
marginal performance improvement for IMSMessagelD. For more information, see “Message selectors in
JMS” on page 121.

Using complex selectors
Selectors can contain many components, for example:
aandborcanddoreandforgandhoriandj...oryandz

Use of such complex selectors can have serious performance implications and excessive resource
requirements. As such, IBM MQ will protect the system by failing to process overly complex selectors
that could result in a system resource shortage. Protection can occur on selection strings that contain
more than 100 tests, or when IBM MQ detects that the limit on the size of the operating system stack is
being approached. You should thoroughly try and test the use of selection strings with many components,
on the appropriate platforms, to ensure that the protection limits are not reached.

The performance and complexity of selectors can be improved by simplifying them using additional
parenthesis to combine components. For example:

(aandborcandd)or(eandforgandh)or(iandj)..

Related concepts

“Selection string rules and restrictions” on page 35

Familiarize yourself with these rules about how selection strings are interpreted and character restrictions
to avoid potential problems when using selectors.

Message selector syntax
An IBM MQ message selector is a string with syntax that is based on a subset of the SQL92 conditional
expression syntax.

The order in which a message selector is evaluated is from left to right within a precedence level. You can
use parentheses to change this order. Predefined selector literals and operator names are written here in
uppercase; however, they are not case-sensitive.

If the selector is provided via the API, IBM MQ verifies the syntactic correctness of a message selector

at the time it is presented. If the syntax of the selection string is incorrect or a property name is not

valid, and an extended message selection provider is not available, MQRC_SELECTION_NOT_AVAILABLE
is returned to the application. If the syntax of the selection string is incorrect or a property name is not
valid when a subscription is resumed, a MQRC_SELECTOR_SYNTAX_ERROR is returned to the application.
If property name validation was disabled when the property was set (by setting MQCMHO_NONE instead of
MQCMHO_VALIDATE) and an application subsequently puts a message with in invalid property name, this
message is never selected.

No error is returned at the time the selector is presented if IBM MQ determines that an administratively
defined subscription selector is using extended message syntax, as indicated by the DISPLAY SUB
parameter SELTYPE having the value EXTENDED. In this case, the checking of the syntax of the selection
string is deferred until publish time (see MORC_SELECTION_NOT_AVAILABLE).

A selector can contain:

« Literals:

30 Developing Applications for IBM MQ



String literals are enclosed in single quotation marks. Two consecutive single quotation marks
represent a single quotation mark. Examples are 'literal' and 'literal"s". Like Java string literals, these
use the Unicode character encoding. You cannot use double quotation marks to enclose a string
literal. Any sequence of bytes can be used between the single quotation marks.

A byte string is one or more pair of hexadecimal characters enclosed in double quotation marks and
prefixed by Ox. Examples are "Ox2F1C" or "OXD43A". The length of a byte string must be at least
one byte. If a selector byte string is matched to a message property of type MQTYPE_BYTE_STRING,
no special action is taken on leading or trailing zero. The bytes are treated as another character.
Endianness is also not considered. The length of both selector and property byte strings must be
equal, and the sequence of bytes must be the same.

Examples of byte string selections (assume myBytes = OAFC23) which match are:
- "myBytes = "Ox0AFC23"" = TRUE

The following string selections do not match:

- "myBytes = "OxAFC23"" = MQRC_SELECTOR_SYNTAX_ERROR (because number of bytes is
not multiple of two)

- "myBytes = "OxOAFC2300"" = FALSE (because the trailing zero is significant in the
comparison)

- "myBytes = "OXx000AFC23"" = FALSE (because leading zero is significant in the comparison)

- "myBytes = "Ox23FCOA"" = FALSE (because endianness is not considered)

Hex numbers begin with a zero, followed by an uppercase or lowercase x. The remainder of the literal
contains one or more valid hex characters. Examples are OxA, OxAF, 0X2020.

A leading zero followed by one or more digits in the range 0-7 is always interpreted as being the start
of an octal number. You cannot represent a zero-prefixed decimal number like this, for example, 09
returns a syntax error because 9 is not a valid octal digit. Examples of octal numbers are 0177, 0713.

An exact numeric literal is a numeric value without a decimal point, such as 57, -957, and
+62. An exact numeric literal can have a trailing uppercase or lowercase L; this does not
affect how the number is stored or interpreted. IBM MQ supports exact numerals in the range
-9,223,372,036,854,775,808t09,223,372,036,854,775,807.

An approximate numeric literal is a numeric value in scientific notation, such as 7E3 or -57.9E2, or
a numeric value with a decimal, suchas 7., -95.7, or +6.2. IBM MQ supports numbers in the range
-1.797693134862315E+308t01.797693134862315E+308.

The significand should follow an optional sign character (+ or -). The significand should be either an
integer or a fraction. A fractional part of the significand need not have a leading digit.

An uppercase or lowercase E indicates the start of an optional exponent. The exponent has a decimal
radix and the number part of the exponent can be prefixed by an optional sign character.

Approximate numeric literals can be terminated by an F or a D character (not case-sensitive). This
syntax exists to support the cross-language method of tagging single or double precision numbers.
These characters are optional and do not affect how an approximate numeric literal is stored or
processed. These numbers are always stored and processed using double-precision.

The boolean literals TRUE and FALSE.

Note: Non-finite IEEE-754 representations such as NaN, +Infinity, -Infinity are not supported in
selection strings. It is therefore not possible to use these values as operands in an expression. Negative
zero is treated the same as positive zero for mathematical operations.

Identifiers:

An identifier is a variable-length character sequence that must begin with a valid identifier start
character, followed by zero or more valid identifier part characters. The rules for identifier names are
the same as those for message property names, see “Property names” on page 22 and “Property name
restrictions” on page 23 for more information.

Developing applications for IBM MQ 31



Note: Selection can be performed on the message payload only if an extended message selection
provider is available.

Identifiers are either header field references or property references. The type of a property value in a
message selector must correspond to the type used to set the property, although numeric promotion is
performed where possible. If a type mismatch occurs then the result of the expression is FALSE. If a
property that does not exist in a message is referenced, its value is NULL.

Type conversions that apply to the get methods for properties do not apply when a property is used
in @ message selector expression. For example, if you set a property as a string value and then use a
selector to query it as a numeric value, the expression returns FALSE.

JMS field and property names that map to property names or MQMD field names are also valid identifiers
in a selection string. IBM MQ maps the recognized JMS field and property names to the message
property values. See “Message selectors in IMS” on page 121 for more information. As an example, the
selection string "JMSPriority >=" selects onthe Pxri property found in the jms folder of the current
message.

« Overflow/underflow:
For both decimal and approximate numeric numbers, the following conditions are undefined:

— Specifying a number that is out of the defined range
— Specifying an arithmetic expression which would cause overflow or underflow

No checks are performed for these conditions.
« White space:

Defined as a space, form-feed, newline, carriage return, horizontal tab, or vertical tab. The following
Unicode characters are recognized as white space:

- \ub0e9 to \ubOOD
- \u0020

- \uoo1cC

- \u001D

- \UuO0O1E

- \UGO1F

- \ul680

- \ul80E

- \u2000 to \u200A
- \u2028

- \u2029

- \U202F

- \U205F

- \u3000

« Expressions:

— Aselector is a conditional expression. A selector that evaluates to true matches; a selector that
evaluates to false or unknown does not match.

— Arithmetic expressions are composed of themselves, arithmetic operations, identifiers (identifier
value is treated as a numeric literal), and numeric literals.

— Conditional expressions are composed of themselves, comparison operations, and logical operations.

Standard bracketing (), to set the order in which expressions are evaluated, is supported.

Logical operators in precedence order: NOT, AND, OR.
« Comparison operators: =, >, >=, <, <=, <> (not equal).

32 Developing Applications for IBM MQ



— Two byte strings are equal only if the strings are of the same length and the sequence of bytes is
equal.

— Only values of the same type can be compared. One exception is that it is valid to compare exact
numeric values and approximate numeric values, (the type conversion required is defined by the
rules of Java numeric promotion). If there is an attempt to compare different types, the selector is
always false.

— String and boolean comparison is restricted to = and <>. Two strings are equal only if they contain the
same sequence of characters.

« Arithmetic operators in precedence order:
— +, - unary.
— % multiplication, and / division.
— + addition, and - subtraction.

— Arithmetic operations on a NULL value are not supported. If they are attempted, the complete
selector is always false.

— Arithmetic operations must use Java numeric promotion.
« arithmetic-exprl [ NOT ] BETWEEN arithmetic-expr2 and arithmetic-expr3 comparison operator:

— Age BETWEEN 15 and 19isequivalenttoage>= 15 AND age <= 19.
— Age NOT BETWEEN 15 and 19isequivalenttoage < 15 OR age > 109.

— If any of the expressions of a BETWEEN operation are NULL, the value of the operation is false. If any
of the expressions of a NOT BETWEEN operation are NULL, the value of the operation is true.

« identifier [NOT] IN (string-literall, string-literal2,...) comparison operator where
identifier has a String or NULL value.
— Country IN ('UK', 'US', 'France') istruefor 'UK' and false for 'Peru'. It is equivalent to
the expression (Country = 'UK') OR (Country = 'US') OR (Country = 'France').

— Country NOT IN ('UK', 'US', 'France') isfalsefor 'UK' andtruefor 'Peru'.Itis
equivalent to the expression NOT ((Country = 'UK') OR (Country = 'US') OR (Country
= 'France')).

— If the identifier of an IN or NOT IN operation is NULL, the value of the operation is unknown.

« identifier [NOT] LIKE pattern-value [ESCAPE escape-character ] comparison
operator, where identifier has a string value. pattern-value is a string literal, where _ stands for
any single character and % stands for any sequence of characters (including the empty sequence). All
other characters stand for themselves. The optional escape-character is a single character string literal
that is used to escape the special meaning of the _ and % in pattern-value. The LIKE operator must be
used only to compare two string values.

phone LIKE '12%3"' istrue for 123 and 12993 and false for 1234.

word LIKE '1_se' istrue forlose and false for loose.

underscored LIKE '\_%' ESCAPE '\' istruefor _foo and false for bar.

phone NOT LIKE '12%3"' s false for123 and 12993 and true for 1234.

If the identifier of a LIKE or NOT LIKE operationis NULL, the value of the operation is unknown.

Note: The LIKE operator must be used to compare two string values. The value of
Root.MQMD.Correlld is a 24-byte byte array, not a character string. The selector string
Root.MQMD.CorrelId LIKE 'ABC%' isaccepted by the parser as syntactically valid, but it is
evaluated to false. When you are comparing a byte array with a character string, LIKE therefore cannot
be used.

« identifier IS NULL comparison operator tests for a NULL header field value, or a missing property
value.

e identifier IS NOT NULL comparison operator tests for the existence of a non-null header field
value or a property value.

Developing applications for IBM MQ 33



* Null values

The evaluation of selector expressions that contain NULL values is defined by SQL 92 NULL semantics,
in summary:

— SOL treats a NULL value as unknown.
— Comparison or arithmetic with an unknown value always yields an unknown value.
— The IS NULL and IS NOT NULL operators convert an unknown value into TRUE and FALSE values.

The boolean operators use three-valued logic ( T=TRUE, F=FALSE, U=UNKNOWN)

Table 1. Boolean operator outcome when logicis A AND B

Operator A Operator B Outcome (A AND B)
T F F
T u U
T T T
F T F
F u F
F F F
U T U
u u U
U F F

Table 2. Boolean operator outcome when logicisA OR B

Operator A Operator B Outcome (A OR B)
T F T
T U T
T T T
F T T
F u u
F F F
U T T
u U u
u F u

Table 3. Boolean operator outcome when logic is NOT A

Operator A Outcome (NOT A)
T F
F T
u u

The following message selector selects messages with a message type of car, color of blue, and weight
greater than 2500 lbs:

34 Developing Applications for IBM MQ



"JMSType = 'car' AND color = 'blue' AND weight > 2500"

Although SQL supports fixed decimal comparison and arithmetic, message selectors do not. This is why
exact numeric literals are restricted to those without a decimal. It is also why there are numerics with a
decimal as an alternative representation for an approximate numeric value.

SQL comments are not supported.

Related concepts

“Message properties” on page 21

Use message properties to allow an application to select messages to process, or to retrieve information
about a message without accessing MQMD or MQRFH2 headers. They also facilitate communication
between IBM MQ and JMS applications.

Related reference

MsgHandle
MQBUFMH - Convert buffer into message handle

Selection string rules and restrictions
Familiarize yourself with these rules about how selection strings are interpreted and character restrictions
to avoid potential problems when using selectors.

« Message selection for publish/subscribe messaging occurs on the message as sent by the publisher.
See Selection strings.

« Equivalence is tested using a single equals character; for example, a = bis correct, whereasa == bis
incorrect.

- An operator used by many programming languages to represent 'not equal to' is ! =. This representation
is not a valid synonym for <> ; for example, a <> bisvalid, whereasa != bis not valid.

« Single quotation marks are recognized only if the ' (U+0027) character is used. Similarly, double
quotation marks, valid only when used to enclose byte strings, must use the " (U+0022) character.

« The symbols &, &&, | and | | are not synonyms for logical conjunction/disjunction; for example, a && b
must be specifiedasa AND b.

« The wildcard characters * and ? are not synonyms for % and _.

« Selectors containing compound expressions such as 20 < b < 30 are not valid. The parser evaluates
operators that have the same precedence from left to right. The example would therefore become (20
< b) < 30, which does not make sense. Instead the expression must be writtenas (b > 20) AND
(b < 30).

 Byte strings must be enclosed in double quotation marks; if single quotation marks are used, the byte
string is taken to be a string literal. The number of characters (not the number that the characters
represent) following the O@x must be a multiple of two.

« The keyword IS is not a synonym for the equals character. Thus the selection stringsa IS 3andb IS
"red' are not valid. The IS keyword exists only to support IS NULL and IS NOT NULL cases.

Related concepts

Selection strings

“Selection behavior” on page 29
Overview of IBM MQ selection behavior.

UTF-8 and Unicode considerations when using message selectors

Characters, not enclosed in single quotation marks, that make up the reserved keywords of a selection
string must be entered in Basic Latin Unicode (ranging from character U+0000 to U+0007F). It is not valid
to use other code point representations of alphanumeric characters. For example, the number 1 must be
expressed as U+0031 in Unicode, it is not valid to use the Fullwidth Digit equivalent U+FF11 or the Arabic
equivalent U+0661.

Message property names can be specified using any valid sequence of Unicode characters. Message
property names contained within selection strings that are encoded in UTF-8 will be validated even if

Developing applications for IBM MQ 35



they contain multi-byte characters. Validation of multi-byte UTF-8 is strict and you must ensure that valid

UTF-8 sequences are used for message property names. mCharacters beyond the Unicode
Basic Multilingual Plane (those above U+FFFF), represented in UTF-16 by surrogate code points (X'D800'
through X'DFFF'), or four bytes in UTF-8, are not supported in message property names.

No extra processing is performed on property names or values when comparing for equality. This means
for example that no pre/de-composition takes place and ligatures are not given any special meaning. For
example, the pre-composed umlaut character U+00FC is not considered to be equivalent to U+0075 +
U+0308 and the character sequence ff is not considered to be equivalent to the Unicode U+FBOO (LATIN
SMALL LIGATURE FF)

Property data enclosed in single quotation marks can be represented by any sequence of bytes and is not
validated.

Selecting on the content of a message

It is possible to subscribe based on a selection of message payload content (also known as content
filtering), but the decision about which messages should be delivered to such a subscription cannot
be performed directly by IBM MQ; instead an extended message selection provider, for example IBM
Integration Bus, is required to process the messages.

When an application publishes on a topic string, where one or more subscribers have a selection string
selecting on the content of the message, IBM MQ will request that the extended message selection
provider parse the publication and inform IBM MQ whether the publication matches the selection criteria
specified by each subscriber with a content filter.

If the extended message selection provider determines that the publication matches the subscriber's
selection string, the message will continue to be delivered to the subscriber.

If the extended message selection provider determines that the publication does not match, the message
is not delivered to the subscriber. This might cause the MQPUT or MQPUT1 call to fail with reason

code MQRC_PUBLICATION_FAILURE. If the extended message selection provider is unable to parse the
publication, reason code MQRC_CONTENT_ERROR is returned and the MQPUT or MQPUT1 call fails.

If the extended message selection provider is unavailable or is unable to determine whether the
subscriber should receive the publication, reason code MOQRC_SELECTION_NOT_AVAILABLE is returned
and the MQPUT or MQPUT1 call fails.

When a subscription is being created with a content filter and the extended message selection provider
is not available, the MQSUB call fails with reason code MQRC_SELECTION_NOT_AVAILABLE. If a
subscription with a content filter is being resumed and the extended message selection provider is not
available, the MQSUB call returns a warning of MQRC_SELECTION_NOT_AVAILABLE, but the subscription
is allowed to be resumed.

Related concepts
Selection strings

Asynchronous consumption of IBM MQ messages

Asynchronous consumption uses a set of Message Queue Interface (MQI) extensions, the MQI calls MQCB
and MQCTL, which allow an MQI application to be written to consume messages from a set of queues.
Messages are delivered to the application by invoking a 'unit of code', identified by the application passing
either the message, or a token representing the message.

In the most straightforward of application environments, the unit of code is defined by a function pointer,
however in other environments the unit of code can be defined by a program or module name.

In asynchronous consumption of messages, the following terms are used:

Message consumer
A programming construct that allows you to define a program, or function, to be invoked with a
message when one which matches the applications requirement becomes available.

36 Developing Applications for IBM MQ



Event handler
A programming construct that allows you to define a program or function to invoke when an
asynchronous event, such as queue manager quiescing, occurs.

Callback
A generic term used to refer to either a Message Consumer or an Event Handler routine.

Asynchronous consumption can simplify the design and implementation of new applications, especially
those that process multiple input queues or subscriptions. However, if you are using more than one

input queue and you are processing messages in priority sequence, priority sequence is observed
independently within each queue: you might get low-priority messages from one queue ahead of high-
priority messages from another. Message order across multiple queues is not guaranteed. Also note that if
you use API exits, you might need to change them to include the MQCB and MQCTL calls.

The following illustrations give an example of how you can use this function.

Figure 5 on page 37 shows a multithreaded application consuming messages from two queues. The
example shows all of the messages being delivered to a single function.

-
( MOCOMM J

OPEM (QUEUE1, &hObj1)

OPEM (QUEUEZ, &hObj2)

MOCE{hOb]1, funct)

MQCB(hObj2, funct)

¥ - Func1{..)) '
MOQCTLICOMSUME_START) 4 J

¥

™ [ Process message J
M

-
T

Pause, perform non MO
function. or use a
different hConn. v

MQPUT1(md.ReplyQ, ...}

L)
l MOCTL{CONSUME_STOP) _,a—'—
T —l—F return j

f MQDISC

.,

Figure 5. Standard Message Driven application consuming from two queues

mOn z/0S, the main control thread must issue an MQDISC call before ending. This allows any
callback threads to end and release system resources.

Figure 6 on page 38 This sample flow shows a single threaded application consuming messages from
two queues. The example shows all of the messages being delivered to a single function.

The difference from the asynchronous case is that control does not return to the issuer of MQCTL until all
of the consumers have deactivated themselves; that is one consumer has issued an MQCTL STOP request
or the queue manager quiesces.

Developing applications for IBM MQ 37



[ MQCONN |

e -

OPEN (QUEUE1, &hObj1)

OPEN (QUEUE2, &hObj2)

t R Funci{...) J

MQCB(hObi1, func) o
T
MOCB(hOb2, funct) Frocess maessage
: I
‘ MOCTL{COMNSUME _START-WAIT) ’: MOPUT1(md.ReplyQ. ..}
¥ — 1

—_— : o
I\ "

Figure 6. Single Threaded Message Driven application consuming from two queues

Message groups
Messages can occur within groups to allow ordering of messages.

Message groups allow multiple messages to be marked as related to one another, and a logical order to
be applied to the group (see “Logical and physical ordering” on page 685). On Multiplatforms, message
segmentation enables large messages to be broken up into smaller segments. You cannot use grouped or
segmented messages when putting to a topic.

The hierarchy within a group is as follows:

Group
This is the highest level in the hierarchy and is identified by a GroupId. It consists of one or more
messages that contain the same GroupId. These messages can be stored anywhere on the queue.

Note: The term message is used here to denote one item on a queue, such as would be returned by a
single MQGET that does not specify MOGMO_COMPLETE_MSG.
Figure 7 on page 38 shows a group of logical messages:

Group

LOG MG LOoGMsG2 LOGMSG3

Figure 7. Group of logical messages

By opening a queue and specifying MQOO_BIND_ON_GROUP, you force all messages in a group that
are sent to this queue to be sent to the same instance of the queue. For more information on the
BIND_ON_GROUP option, see Handling message affinities.

Logical message
Logical messages within a group are identified by the GroupId and MsgSeqNumber fields. The
MsgSeqNumber starts at 1 for the first message within a group, and if a message is not in a group, the
value of the field is 1.

Use logical messages within a group to:

38 Developing Applications for IBM MQ



« Ensure ordering (if this is not guaranteed under the circumstances in which the message is
transmitted).

« Allow applications to group similar messages (for example, those that must all be processed by the
same server instance).

Each message within a group consists of one physical message, unless it is split into segments.

Each message is logically a separate message, and only the GroupId and MsgSeqNumber fields in
the MQMD need to bear any relationship to other messages in the group. Other fields in the MQMD
are independent; some might be identical for all messages in the group whereas others might be
different. For example, messages in a group can have different format names, CCSIDs, and encodings.

Segment
Segments are used to handle messages that are too large for either the putting or getting application
or the queue manager (including intervening queue managers through which the message passes).
For more information, see “Message segmentation” on page 701.

An individual message is broken down into smaller messages called segments. A segment of a
message is identified by the GroupId, MsgSeqNumber, and Offset fields. The Offset field starts at
zero for the first segment within a message.

Each segment consists of one physical message that might belong to a group ( Figure 8 on page

39 shows an example of messages within a group). A segment is logically part of a single message,

so only the MsgId, Offset, and MsgFlags fields in the MQMD should differ between separate
segments of the same message. If a segment fails to arrive, reason code MQRC_INCOMPLETE_GROUP
or MQRC_INCOMPLETE_MSG is returned as appropriate.

Figure 8 on page 39 shows a group of logical messages, some of which are segmented:
Group

|
|

LOGMSGE1 L2GMSG2 LOGMSGE3

BEGT SEG2 SEGH SEG2 SEG3

Figure 8. Segmented messages

IE_Segmentation is not supported on IBM MQ for z/0S.
You cannot use segmented or grouped messages with Publish/Subscribe.

Related concepts

“Message segmentation” on page 701

In certain circumstances, large messages (up to a maximum message size of 100 MB) can be sent more
successfully if they are segmented into several smaller chunks. Messages can be segmented by either the
application or the queue manager. This feature is not supported on IBM MQ for z/OS, or by applications
using IBM MQ classes for JMS, or by the IBM MQ messaging REST APL.

Related reference

“Logical and physical ordering” on page 685
Messages on queues can occur (within each priority level) in physical or logical order.

MQMD - Message descriptor

Message persistence

Persistent messages are written to logs and queue data files. If a queue manager is restarted after a
failure, it recovers these persistent messages as necessary from the logged data. Messages that are not

Developing applications for IBM MQ 39



persistent are discarded if a queue manager stops, whether the stoppage is as a result of an operator
command or because of the failure of some part of your system.

MNonpersistent messages stored in a coupling facility (CF) on z/OS are an exception to this.
They persist as long as the CF remains available.

When you create a message, if you initialize the message descriptor (MQMD) using the defaults, the
persistence for the message is taken from the DefPexsistence attribute of the queue specified in the
MQOPEN command. Alternatively, you can set the persistence of the message using the Persistence
field of the MQMD structure to define the message as persistent or nonpersistent.

The performance of your application is affected when you use persistent messages; the extent of the
effect depends on the performance characteristics of the machine's I/O subsystem and how you use the
sync point options on each platform:

« A persistent message, outside the current unit of work, is written to disk on every put and get operation.
See “Committing and backing out units of work” on page 760.

. ULwW ] For all platforms except IBM i, a persistent message within the current unit

of work is logged only when the unit of work is committed, and the unit of work can contain many queue
operations.

Nonpersistent messages can be used for fast messaging. See Safety of messages for further information
about fast messages.

Note: A combination of writing persistent messages within a unit of work, and writing persistent
messages outside a unit or work, can cause potentially severe performance problems for your
applications. This is particularly true when the same target queue is used for both operations.

Messages that fail to be delivered
When a queue manager cannot put a message on a queue, you have various options.
You can:

« Attempt to put the message on the queue again.
- Request that the message is returned to the sender.
e Put the message on the dead-letter queue.

See“Handling procedural program errors” on page 947for more information.

Messages that are backed out

When processing messages from a queue under the control of a unit of work, the unit of work can consist
of one or more messages. If a backout occurs, the messages that were retrieved from the queue are
reinstated on the queue, and they can be processed again in another unit of work. If the processing

of a particular message is causing the problem, the unit of work is backed out again. This can cause a
processing loop. Messages that were put to a queue are removed from the queue.

An application can detect messages that are caught up in such a loop by testing the BackoutCount field
of MQMD. The application can either correct the situation, or issue a warning to an operator.

mThe backout count always survives restarts of the queue manager. Any change to the
HaxdenGetBackout attribute is ignored.

mFor shared queues, the backout count always survives restarts of the queue manager. For all
other configurations on z/0S, to ensure that the backout count for private queues survives restarts of the
gueue manager, set the HardenGetBackout attribute to MQQA_BACKOUT_HARDENED; otherwise, if the
queue manager has to restart, it does not maintain an accurate backout count for each message. Setting
the attribute this way adds the cost of extra processing.

40 Developing Applications for IBM MQ



For more information on committing and backing out messages, see “Committing and backing out units of
work” on page 760.

Reply-to queue and queue manager

There are occasions when you might receive messages in response to a message you send:

« Areply message in response to a request message
« Areport message about an unexpected event or expiry
« Areport message about a COA (Confirmation Of Arrival) or a COD (Confirmation Of Delivery) event

« Areport message about a PAN (Positive Action Notification) or a NAN (Negative Action Notification)
event

Using the MQMD structure, specify the name of the queue to which you want reply and report messages
sent, in the ReplyToQ field. Specify the name of the queue manager that owns the reply-to queue in the
ReplyToQMgr field.

If you leave the ReplyToQMgr field blank, the queue manager sets the contents of the following fields in
the message descriptor on the queue:

ReplyToQ
If ReplyToQ is a local definition of a remote queue, the ReplyToQ field is set to the name of the
remote queue; otherwise this field is not changed.

ReplyToQMgr
If ReplyToQ is a local definition of a remote queue, the ReplyToQMgr field is set to the name of the
gueue manager that owns the remote queue; otherwise the ReplyToQMgr field is set to the name of
the queue manager to which your application is connected.

Note: You can request that a queue manager makes more than one attempt to deliver a message, and you
can request that the message is discarded if it fails. If the message, after failing to be delivered, is not

to be discarded, the remote queue manager puts the message on its dead-letter (undelivered message)
queue (see “Using the dead-letter (undelivered message) queue” on page 951 ).

Message context

Message context information allows the application that retrieves the message to find out about the
originator of the message.

The retrieving application might want to:

« Check that the sending application has the correct level of authority

« Perform some accounting function so that it can charge the sending application for any work that it has
to perform

- Keep an audit trail of all the messages that it has worked with

When you use the MQPUT or MQPUT1 call to put a message on a queue, you can specify that the queue
manager is to add some default context information to the message descriptor. Applications that have
the appropriate level of authority can add extra context information. For more information about how to
specify context information, see “Controlling message context information” on page 670.

The user context is used by the queue manager when generating the following types of report message:
« Confirm on delivery
« Expiry

When these report messages are generated, the user context is checked for +put and +passid authority
on the destination of the report. Where the user context has insufficient authority, the report message is
placed on the dead-letter queue if one has been defined. Where there is no dead-letter queue, the report
message is discarded.

Developing applications for IBM MQ 41



All context information is stored in the context fields of the message descriptor. The type of information
falls into identity, origin, and user context information.

Identity context

Identity context information identifies the user of the application that first put the message on a queue.
Suitably authorized applications can set the following fields:

« The queue manager fills the UserIdentifier field with a name that identifies the user; the way that
the queue manager can do this depends on the environment in which the application is running.

« The queue manager fills the AccountingToken field with a token or number that it determined from
the application that put the message.

« Applications can use the ApplIdentityData field for any extra information that they want to include
about the user (for example, an encrypted password).

A Windows systems security identifier (SID) is stored in the AccountingToken field when a message is
created under IBM MQ for Windows. The SID can be used to supplement the UserIdentifier field and
to establish the credentials of a user.

For information about how the queue manager fills the UserIdentifier and AccountingToken fields,
see the descriptions of these fields in Userldentifier and AccountingToken.

Applications that pass messages from one queue manager to another should also pass on the identity
context information so that other applications know the identity of the originator of the message.

Origin context

Origin context information describes the application that put the message on the queue on which the
message is currently stored. The message descriptor contains the following fields for origin context
information:

« PutApplType defines the type of application that put the message (for example, a CICS transaction).

« PutApplName defines the name of the application that put the message (for example, the name of a job
or transaction).

« PutDate defines the date on which the message was put on the queue.
« PutTime defines the time at which the message was put on the queue.

« ApplOTriginData defines any extra information that an application wants to include about the origin
of the message. For example, it could be set by suitably authorized applications to indicate whether the
identity data is trusted.

Origin context information is typically supplied by the queue manager. Greenwich Mean Time (GMT) is
used for the PutDate and PutTime fields. See the descriptions of these fields in PutDate and PutTime.

An application with enough authority can provide its own context. This allows accounting information to
be preserved when a single user has a different user ID on each of the systems that process a message
that they have originated.

IBM MQ objects

This information provides details on IBM MQ objects which include: queue managers, queue sharing
groups, queues, administrative topic objects, namelists, process definitions, authentication information
objects, channels, storage classes, listeners, and services.

Queue managers define the properties (known as attributes) of these objects. The values of these
attributes affect the way in which IBM MQ processes these objects. From your applications, you use

the Message Queue Interface (MQI) to control these objects. Objects are identified by an object descriptor
(MQOD) when addressed from a program.

When you use IBM MQ commands to define, alter, or delete objects, for example, the queue manager
checks that you have the required level of authority to perform these operations. Similarly, when an

42 Developing Applications for IBM MQ



application uses the MQOPEN call to open an object, the queue manager checks that the application has
the required level of authority before it allows access to that object. The checks are made on the name of
the object being opened.

Related concepts

“Controlling message context information” on page 670

When you use the MQPUT or MQPUT1 call to put a message on a queue, you can specify that the queue
manager is to add some default context information to the message descriptor. Applications that have
the appropriate level of authority can add extra context information. You can use the options field in the
MQPMO structure to control context information.

Related reference

“MQOPEN options relating to message context” on page 661

If you want to be able to associate context information with a message when you put it on a queue, you
must use one of the message context options when you open the queue.

Preparing and running Microsoft Transaction Server applications

To prepare an MTS application to run as an IBM MQ MQI client application, follow these instructions as
appropriate for your environment.

For general information about how to develop Microsoft Transaction Server (MTS) applications that access
IBM MQ resources, see the section on MTS in the IBM MQ Help Center.

To prepare an MTS application to run as an IBM MQ MQI client application, do one of the following for
each component of the application:

- If the component uses the C language bindings for the MQI, follow the instructions in “Preparing C
programs in Windows” on page 927 but link the component with the library mgicxa.lib instead of
mgqic.lib.

- If the component uses the IBM MQ C++ classes, follow the instructions in “Building C++ programs on
Windows” on page 456 but link the component with the library imgx23vn.lib instead of imgc23vn.lib.

- If the component uses the Visual Basic language bindings for the MQI, follow the instructions in the
“Preparing Visual Basic programs in Windows” on page 930 but when you define the Visual Basic
project, type MgType=3 in the Conditional Compilation Arguments field.

« If the component uses the IBM MQ Automation Classes for ActiveX (MQAX), define an environment
variable, GMQ_MQ_LIB, with the value mqic32xa.d11.

You can define the environment variable from within your application, or you can define it so that its
scope is system wide. However, defining it as system wide can cause any existing MQAX application,
that does not define the environment variable from within the application, to behave incorrectly.

Using IBM MQ with WebSphere Application Server
Use this topic to understand the use of IBM MQ with WebSphere Application Server.

Applications that are written in Java that are running under WebSphere Application Server can use the
Java Messaging Service (JMS) specification to perform messaging. Messaging in this environment can be
provided by an IBM MQ queue manager.

A benefit of using an IBM MQ queue manager is that connecting JMS applications can participate fully in
the functionality of an IBM MQ network, which allows the applications to exchange messages with queue
managers that are running on a multitude of platforms.

Applications can use either the client transport or bindings transport for the queue connection factory
object. For bindings transport, the queue manager must exist locally to the application that requires a
connection.

By default, IMS messages that are held on IBM MQ queues use an MQRFH2 header to hold some of the
JMS message header information. Many legacy IBM MQ applications cannot process messages with these
headers, and require their own characteristic headers, for example the MQCIH for CICS Bridge, or MQWIH

Developing applications for IBM MQ 43



for IBM MQ Workflow applications. For more information about these special considerations, see Mapping
JMS messages onto IBM MQ messages.

Design considerations for IBM MQ applications

When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.

When designing an IBM MQ application consider the following questions and options:

Type of application
What is the purpose of your application? See the following links for information about that different
types of application you can develop:

 Server

- Client

« Publish/subscribe

- Web services

- User exits, API exits, and installable services

Additionally, you can also write your own applications to automate administration of IBM MQ. For

more information, see The IBM MQ Administration Interface (MQAI) and Automating administration
tasks.

Programming language
IBM MQ supports a number of procedural and object-oriented programming languages for writing
applications. For more information see, “Developing applications for IBM MQ” on page 5.

Applications for more than one platform

Will your application run on more than one platform? Do you have a strategy to move to a different
platform from the one that you use today? If the answer to either of these questions is yes, ensure
that you code your programs for platform independence.

For example if you are using C, code in ANSI standard C. Use a standard C library function rather
than an equivalent platform-specific function even if the platform-specific function is faster or more
efficient. The exception is when efficiency in the code is paramount, when you should code for both
situations using #ifdef. For example:

#ifdef _AIX

AIX specific code
{#else

generic code
#endif

Types of queues
Do you want to create a queue each time that you need one, or do you want to use queues that have
already been set up? Do you want to delete a queue when you have finished using it, or is it going to
be used again? Do you want to use alias queues for application independence? To see what types of
queues are supported, refer to Queues.

mUsing shared queues, queue sharing groups, and queue sharing group clusters (IBM MQ
for z/0S only)
You might want to take advantage of the increased availability, scalability, and workload balancing
that are possible when you use shared queues with queue sharing groups. See Shared queues and
queue-sharing groups for more information.

You might also want to estimate the average and peak message flows and consider using queue
sharing group clusters to spread the workload. See Shared queues and queue-sharing groups for
more information.

44 Developing Applications for IBM MQ



Using queue manager clusters
You might want to take advantage of the simplified system administration, and increased availability,
scalability, and workload balancing that are possible when you use clusters.

Types of messages
You might want to use datagrams for simple messages, but request messages (for which you expect
replies) for other situations. You might want to assign different priorities to some of your messages.
For more information about designing messages, see “Design techniques for messages” on page 47.

Using publish/subscribe or point-to-point messaging
Using publish/subscribe messaging, a sending application sends the information that it wants to
share in an IBM MQ message to a standard destination managed by IBM MQ publish?subscribe,
and lets IBM MQ handle the distribution of that information. The target application does not have
to know anything about the source of the information it receives, it just registers an interest in one
or more topics and receives that information when it is available. For more information about publish/
subscribe messaging, see Publish/subscribe messaging.

Using point-to-point messaging, a sending application sends a message to a specific queue, from
where it knows a receiving application will retrieve it. A receiving application gets messages from a
specific queue and acts on their contents. An application will often function both as a sender and a
receiver, sending a query to another application and receiving a response.

Controlling your IBM MQ programs
You might want to start some programs automatically or make programs wait until a particular
message arrives on a queue (using the IBM MQ triggering feature, see “Starting IBM MQ applications
using triggers” on page 771). Alternatively, you might want to start another instance of an
application when the messages on a queue are not getting processed fast enough (using the IBM
MQ instrumentation events feature as described in Instrumentation events ).

Running your application on an IBM MQ client
The full MQI is supported in the client environment, and almost any IBM MQ application written in a
procedural language can be relinked to run on an IBM MQ MQI client. Link the application on the IBM

MQ MOI client to the MQIC library, rather than to the MQI library. mGet(signaD on z/0Sis
not supported.

Note: An application running on an IBM MQ client can connect to more than one queue manager
concurrently, or use a queue manager name with an asterisk (*) on an MQCONN or MQCONNX call.
Change the application if you want to link to the queue manager libraries instead of the client libraries,
as this function will not be available.

See “Running applications in the IBM MQ MQI client environment” on page 824 for more information.

Application performance
Design decisions can impact your application performance, for suggestions for enhancing
performance of IBM MQ applications, see “Application design and performance considerations” on

page 48 mand “Design and performance considerations for IBM i applications” on page
52.

Advanced IBM MQ techniques
For more advanced applications you might want to use some advanced IBM MQ techniques such as
correlating replies, and generating and sending IBM MQ context information. For more information,
see “Design techniques for advanced applications” on page 50.

Securing your data and maintaining its integrity
You can use the context information that is passed with a message to test that the message has been
sent from an acceptable source. You can use the syncpointing facilities provided by IBM MQ or your
operating system to ensure that your data remains consistent with other resources (see “Committing
and backing out units of work” on page 760 for further details). You can use the persistence feature of
IBM MQ messages to assure the delivery of important messages.

Testing IBM MQ applications

The application development environment for IBM MQ programs is no different from that for any other
application, so you can use the same development tools as well as the IBM MQ trace facilities.

Developing applications for IBM MQ 45



mWhen testing CICS applications with IBM MQ for z/0S, you can use the CICS Execution
Diagnostic Facility (CEDF). CEDF traps the entry and exit of every MQI call as well as calls to all
CICS services. Also, in the CICS environment, you can write an API-crossing exit program to provide
diagnostic information before and after every MQI call. For information about how to do this, see
“Using and writing applications on IBM MQ for z/OS” on page 793.

mWhen testing IBM i applications, you can use the standard Debugger. To start this, use
the STRDBG command.

Handling exceptions and errors
You need to consider how to process messages that cannot be delivered, and how to resolve error
situations that are reported to you by the queue manager. For some reports, you must set report
options on MQPUT.

Related concepts
IBM MQ technical overview

“Design and performance considerations for z/OS applications” on page 53
Application design is one of the most important factors affecting performance. Use this topic to
understand some of the design factors involved in performance.

“Developing applications for IBM MQ” on page 5
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ supports applications written in many different languages and frameworks.

“Application development concepts” on page 6
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.

“Writing a procedural application for queuing” on page 631
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
gueue manager, publish/subscribe, and opening and closing objects.

“Writing client procedural applications” on page 816
What you need to know to write client applications on IBM MQ using a procedural language.

“Developing .NET applications” on page 460
IBM MQ classes for .NET allow a program written in the .NET programming framework to connect to IBM
MQ as an IBM MQ MQI client or to connect directly to an IBM MQ server.

“Developing C++ applications” on page 432
IBM MQ provides C++ classes equivalent to IBM MQ objects and some additional classes equivalent to
the array data types. It provides a number of features not available through the MQI.

“Using IBM MQ classes for IMS” on page 69

IBM MQ classes for Java Message Service (IBM MQ classes for IMS) is the JMS provider that is supplied
with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM MQ classes
for JMS provides two sets of extensions to the JMS API.

“Using IBM MQ classes for Java” on page 282
Use IBM MQ in a Java environment. IBM MQ classes for Java allow a Java application to connect to IBM
MQ as an IBM MQ client, or connect directly to an IBM MQ queue manager.

“Using the Component Object Model Interface (IBM MQ Automation Classes for ActiveX)” on page 506
The IBM MQ Automation Classes for ActiveX (MQAX) are ActiveX components that provide classes that
you can use in your application to access IBM MQ.

Choosing to use IBM MQ classes for Java or IBM MQ classes for JMS

A Java application can use either IBM MQ classes for Java or IBM MQ classes for JIMS to access IBM MQ
resources. Each approach has its advantages.

Note: IBM will make no further enhancements to the IBM MQ classes for Java and they are functionally
stabilized at the level shipped in IBM MQ 8.0.

46 Developing Applications for IBM MQ



IBM MQ classes for Java encapsulates the Message Queue Interface (MQI), the native IBM MQ API,
and uses the same object model as other object-oriented interfaces, whereas IBM MQ classes for Java
Message Service implements Oracle's Java Message Service (JMS) interfaces.

If you are familiar with IBM MQ in environments other than Java, using either procedural or object-
oriented languages, you can transfer your existing knowledge to the Java environment by using IBM MQ
classes for Java. You can also exploit the full range of features of IBM MQ, not all of which are available in
IBM MQ classes for JMS.

If you are not familiar with IBM MQ, or already have JMS experience, you might find it easier to use

the familiar JMS API to access IBM MQ resources, by using IBM MQ classes for JMS. JMS is also an
integral part of the Java Platform, Enterprise Edition ( Java EE) platform. Java EE applications can use
message-driven beans (MDBs) to process messages asynchronously. JMS is also the standard mechanism
for Java EE to interact with asynchronous messaging systems such as IBM MQ. Every application server
that is Java EE compliant must include a JMS provider, therefore you can use JMS to communicate
between different application servers or you can port an application from one JMS provider to another
without any change to the application.

“Using IBM MQ classes for Java” on page 282
Use IBM MQ in a Java environment. IBM MQ classes for Java allow a Java application to connect to IBM
MQ as an IBM MQ client, or connect directly to an IBM MQ queue manager.

“Using IBM MQ classes for IMS” on page 69

IBM MQ classes for Java Message Service (IBM MQ classes for IMS) is the JMS provider that is supplied
with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM MQ classes
for JMS provides two sets of extensions to the JMS API.

Scenarios: WebSphere Application Server with IBM MQ
Scenarios: WebSphere Application Server Liberty profile with IBM MQ

Design techniques for messages
Consider the aspects given in this information to help you design messages.

You create a message when you use an MQI call to put the message on a queue. As input to the call, you
supply some control information in a message descriptor (MQMD) and the data that you want to send to
another program. But at the design stage, you need to consider the following, because they affect the way
that you create your messages:

Type of message to use
Are you designing a simple application in which you can send a message, then take no further action?
Or are you asking for a reply to a question? If you are asking a question, you might include in the
message descriptor the name of the queue on which you want to receive the reply.

Do you want your request and reply messages to be synchronous? This implies that you set a timeout
period for the reply to answer your request, and if you do not receive the reply within that period, it is
treated as an error.

Or would you prefer to work asynchronously, so that your processes do not have to depend upon the
occurrence of specific events, such as common timing signals?

Another consideration is whether you have all your messages inside a unit of work.

Assigning different priorities to messages
You can assign a priority value to each message, and define the queue so that it maintains its
messages in order of their priority. If you do this, when another program retrieves a message from
the queue, it always gets the message with the highest priority. If the queue does not maintain its
messages in priority order, a program that retrieves messages from the queue will retrieve them in the
order in which they were added to the queue.

Programs can also select a message using the identifier that the queue manager assigned when the
message was put on the queue. Alternatively, you can generate your own identifiers for each of your
messages.

Developing applications for IBM MQ 47



Effect of restarting queue manager on messages
The queue manager preserves all persistent messages, recovering them when necessary from the
IBM MQ log files, when it is restarted. Nonpersistent messages and temporary dynamic queues are
not preserved. Any messages that you do not want discarded must be defined as persistent when
they are created. When writing an application for IBM MQ for Windows or IBM MQ on UNIX and Linux
systems, make sure that you know how your system has been set up in respect of log file allocation to
reduce the risk of designing an application that will run to the log file limits.

mBecause messages on shared queues (only available on IBM MQ for z/OS ) are held in
the coupling facility (CF), nonpersistent messages are preserved across restarts of a queue manager
as long as the CF remains available. If the CF fails, nonpersistent messages are lost.

Giving information about yourself to the recipient of messages
Usually, the queue manager sets the user ID, but suitably authorized applications can also set this
field, so that you can include your own user ID and other information that the receiving program can
use for accounting or security purposes.

Amount of receiving queues
mlf a message might need to be put on several queues, you can publish to a topic or a
distribution list.

mlf a message might need to be put on several queues, you can publish to a topic.

Selectors and message properties

Messages can have metadata associated with them alongside the main message payload. These message
properties can be useful in supplying additional data.

There are two aspects to this additional data that it is important to know about:

« The properties are not subject to Advanced Message Security (AMS) protection. If you want to use AMS
to protect your data, then put it in the payload and not the message properties.

« The properties can be used to perform the selection of messages.

It is important to note that using selectors breaks the standard message convention of first in first out.
As the queue manager is optimized for this workload, providing complex selectors is not advised for
performance reasons. The queue manager does not store indexes of the message properties, therefore
searching for a message must be a linear search. The deeper the queue, the more complex the selector,
and the lower probability that the selector matching a message will adversely affect performance.

If complex selection is required, it is suggested to filter the messages by using any application or
processing engine, such as IBM Integration Bus, to different destinations. Alternatively, the use of a
topic hierarchy might be useful.

Note: IBM MQ classes for Java do not support the use of selectors, if you do wish to use selectors these
should be done via the JMS APL.

Application design and performance considerations

There are a number of ways in which poor program design can affect performance. These can be difficult
to detect because the program can appear to perform well itself, but affect the performance of other
tasks. Several problems specific to programs making IBM MQ calls are explained in this topic.

Here are a few ideas to help you to design efficient applications:
- Design your application so that processing goes on in parallel with a user's thinking time:

— Display a panel and allow the user to start typing while the application is still initializing.
— Get the data that you need in parallel from different servers.

- Keep connections and queues open if you are going to reuse them instead of repeatedly opening and
closing, connecting, and disconnecting.

- However, a server application that is putting only one message should use MQPUT1.

48 Developing Applications for IBM MQ



Queue managers are optimized for messages between 4 KB and 100 KB in size. Very large messages
are inefficient; it is probably better to send 100 messages of 1 MB each than a single 100 MB message.
Very small messages are also inefficient. The queue manager does the same amount of work for a
single-byte message as for a 4 KB message.

« Keep your messages within a unit of work so that they can be committed or backed out simultaneously.
« Use the nonpersistent option for messages that do not need to be recoverable.

If you need to send a message to a number of target queues, consider using a distribution list.

Effect of message length

The amount of data in a message can affect the performance of the application that processes the
message. To achieve the best performance from your application, send only the essential datain a
message. For example, in a request to debit a bank account, the only information that might need to be
passed from the client to the server application is the account number and the amount of the debit.

Effect of message persistence

Persistent messages are usually logged. Logging messages reduces the performance of your application,
so use persistent messages for essential data only. If the data in a message can be discarded if the queue
manager stops or fails, use a nonpersistent message.

MQPUT and MQGET operations for persistent messages will block when there is insufficient
recovery log space to record the operations. Such a condition is indicated in the queue manager job log

by messages CSQJ110E and CSQJ111A. Ensure monitoring processes are in place so that such conditions
are managed and avoided.

Searching for a particular message

The MQGET call usually retrieves the first message from a queue. If you use the message and correlation
identifiers (MsgId and CorrelId)inthe message descriptor to specify a particular message, the queue
manager has to search the queue until it finds that message. Using the MQGET call in this way affects the
performance of your application.

Queues that contain messages of different lengths

If your application cannot use messages of a fixed length, grow and shrink the buffers dynamically to
suit the typical message size. If the application issues an MQGET call that fails because the buffer is too
small, the size of the message data is returned. Add code to your application so that the buffer is resized
accordingly and the MQGET call is reissued.

Note: If you do not set the MaxMsgLength attribute explicitly, it defaults to 4 MB, which might be very
inefficient if this is used to influence the application buffer size.

Frequency of sync points

Programs that issue very large numbers of MQPUT or MQGET calls within sync point, without committing
them, can cause performance problems. Affected queues can fill up with messages that are currently
inaccessible, while other tasks might be waiting to get these messages. This has implications in terms of
storage, and in terms of threads that are tied up with tasks that are attempting to get messages.

Use of the MQPUT1 call

Use the MQPUT1 call only if you have a single message to put on a queue. If you want to put more than
one message, use the MQOPEN call, followed by a series of MQPUT calls and a single MQCLOSE call.

Developing applications for IBM MQ 49



Number of threads in use

MFor IBM MQ for Windows, an application might require a large number of threads. Each
gueue manager process is allocated a maximum allowable number of application threads.

Applications might use too many threads. Consider whether the application takes into account this
possibility and that it takes actions either to stop or to report this type of occurrence.

Put persistent messages under syncpoint

Persistent messages should be put and got under syncpoint. This is because when getting a persistent
message outside of syncpoint, if the get fails, there is no way for the application to know whether the
message has been got from the queue or not, and whether, if the message has been got, then it has

also been lost. When getting persistent messages under syncpoint, if anything fails, the transaction is
rolled back and the persistent message is not lost because it is still on the queue. Similarly, when

putting persistent messages, put them under syncpoint. Another reason for putting and getting persistent
messages under syncpoint is that the persistent message code in IBM MQ is heavily optimized for
syncpoint. So putting and getting persistent messages under syncpoint is faster than putting and getting
persistent messages outside of syncpoint.

However, it is faster to put and get non-persistent messages outside of syncpoint because the
nonpersistent code in IBM MQ is optimized for being outside of syncpoint. Putting and getting persistent
messages go at disk speeds because the persistent message is persisted to disk. However, putting and
getting non-persistent messages go at CPU speeds because there is no disk write involved, not even when
using syncpoint.

If an application is getting messages and does not know in advance whether they are persistent or not,
the GMO option MQGMO_SYNCPOINT_IF_PERSISTENT can be used.

Design techniques for advanced applications

When designing more advanced applications, there are some techniques that you might want to
consider such as waiting for messages, correlating replies, setting and using context information, starting
applications automatically, generating reports and removing message affinities when using clustering.

For a simple IBM MQ application, you need to decide which IBM MQ objects to use in your application,
and which types of message you want to use. For a more advanced application, you might want to use
some of the techniques introduced in the following sections.

Waiting for messages
A program that is serving a queue can await messages by:

« Waiting until either a message arrives, or a specified time interval expires (see “Waiting for messages”
on page 705).

. mOn IBM MQ for z/OS only, setting a signal so that the program is informed when a message
arrives. For more information, see “Signaling” on page 706.

- Establishing a callback exit to be driven when a message arrives; see “Asynchronous consumption of
IBM MQ messages” on page 36.

« Making periodic calls on the queue to see whether a message has arrived (polling). This is not typically
advisable because it can have performance implications.

Correlating replies

In IBM MQ applications, when a program receives a message that requests it to do some work, the
program typically sends one or more reply messages to the requester.

50 Developing Applications for IBM MQ



To help the requester to associate these replies with its original request, an application can set a
correlation identifier field in the descriptor of each message. Programs then copy the message identifier of
the request message into the correlation identifier field of their reply messages.

Setting and using context information

Context information is used for associating messages with the user who generated them, and for
identifying the application that generated the message. Such information is useful for security,
accounting, auditing, and problem determination.

When you create a message, you can specify an option that requests that the queue manager associates
default context information with your message.

For more information about using and setting context information, see “Message context” on page 41.

Starting IBM MQ programs automatically
Use IBM MQ triggering to start a program automatically when messages arrive on a queue.
You can set trigger conditions on a queue so that a program starts to process that queue:

 Every time that a message arrives on the queue

« When the first message arrives on the queue

« When the number of messages on the queue reaches a predefined number

For more information about triggering, see “Starting IBM MQ applications using triggers” on page 771.

Triggering is just one way of starting a program automatically. For example, you can start a program
automatically on a timer using non-IBM MQ facilities.

mOn Multiplatforms, IBM MQ can define service objects to start IBM MQ programs when the
gueue manager starts; see Service objects.

Generating IBM MQ reports

You can request the following reports within an application:
- Exception reports

« Expiry reports

« Confirm-on-arrival (COA) reports

« Confirm-on-delivery (COD) reports

« Positive action notification (PAN) reports

» Negative action notification (NAN) reports

These are described in “Report messages” on page 15.

Clusters and message affinities

Before starting to use clusters with multiple definitions for the same queue, examine your applications to
see whether there are any that require an exchange of related messages.

Within a cluster, a message can be routed to any queue manager that hosts an instance of the appropriate
qgueue. Therefore, the logic of applications with message affinities can be upset.

For example, you might have two applications that rely on a series of messages flowing between them

in the form of questions and answers. It might be important that all the questions are sent to the same
gueue manager and that all the answers are sent back to the other queue manager. In this situation, it is
important that the workload management routine does not send the messages to any queue manager that
just happens to host an instance of the appropriate queue.

Developing applications for IBM MQ 51



Where possible, remove the affinities. Removing message affinities improves the availability and
scalability of applications.

For more information, see Handling message affinities.

Design and performance considerations for IBM i applications
Use this information to understand how application design, threads, and storage, can affect performance.
This information is split into two sections:

« “Application design considerations” on page 52

 “Specific performance problems” on page 53

Application design considerations

There are a number of ways in which poor program design can affect performance. These problems can
be difficult to detect because the program can appear to perform well, while affecting the performance
of other tasks. Several problems specific to programs making IBM MQ for IBM i calls are explained in the
following sections.

For more information about application design, see “Design considerations for IBM MQ applications” on

page 44.

Effect of message length
Although IBM MQ for IBM i allows messages to hold up to 100 MB of data, the amount of data in
a message affects the performance of the application that processes the message. To achieve the
best performance from your application, send only the essential data in a message; for example, in a
request to debit a bank account, the only information that might need to be passed from the client to
the server application is the account number and the amount of the debit.

Effect of message persistence
Persistent messages are journaled. Journaling messages reduces the performance of your
application, so use persistent messages for essential data only. If the data in a message can be
discarded if the queue manager stops or fails, use a nonpersistent message.

Searching for a particular message
The MQGET call usually retrieves the first message from a queue. If you use the message and
correlation identifiers (MsgId and CorrelId) inthe message descriptor to specify a particular
message, the queue manager must search the queue until it finds that message. The use of the
MQGET call in this way affects the performance of your application.

Queues that contain messages of different lengths
If the messages on a queue are of different lengths, to determine the size of a message, your
application can use the MQGET call with the BufferLength field set to zero so that, even though the
call fails, it returns the size of the message data. The application can then repeat the call, specifying
the identifier of the message it measured in its first call and a buffer of the correct size. However,
if there are other applications serving the same queue, you might find that the performance of your
application is reduced because its second MQGET call spends time searching for a message that
another application has retrieved in the time between your two calls.

If your application cannot use messages of a fixed length, another solution to this problem is to use
the MQINQ call to find the maximum size of messages that the queue can accept, then use this value
in your MQGET call. The maximum size of messages for a queue is stored in the MaxMsgLen attribute
of the queue. This method might use large amounts of storage, however, because the value of this
queue attribute can be the maximum allowed by IBM MQ for IBM i, which might be greater than 2 GB.

Frequency of sync points
Programs that issue numerous MQPUT calls within sync point, without committing them, can cause
performance problems. Affected queues can fill up with messages that are currently unusable, while
other tasks might be waiting to get these messages. This problem has implications in terms of
storage, and in terms of threads tied up with tasks that are attempting to get messages.

52 Developing Applications for IBM MQ



Use of the MQPUT1 call
Use the MQPUTZ1 call only if you have a single message to put on a queue. If you want to put more
than one message, use the MQOPEN call, followed by a series of MQPUT calls and a single MQCLOSE
call.

Number of threads in use
An application might require many threads. Each queue manager process is allocated a maximum
allowable number of threads. If some applications are troublesome, it might be due to their design
using too many threads. Consider whether the application takes into account this possibility and that
it takes actions either to stop or to report this type of occurrence. The maximum number of threads
that IBMi allows is 4,095. However, the default is 64. IBM MQ makes available up to 63 threads to its
processes.

Specific performance problems
This section explains the problems of storage and poor performance.

Storage problems
If you receive the system message CPFQ907. Serious storage condition may existitis
possible that you are filling up the space associated with the IBM MQ for IBM i queue managers.

Is your application or IBM MQ for IBM i running slowly?
If your application is running slowly, it might indicate that it is in a loop, or waiting for a resource
that is not available. This slow running might also be caused by a performance problem. Perhaps it is
because your system is operating near the limits of its capacity. This type of problem is probably worst
at peak system load times, typically at mid-morning and mid-afternoon. (If your network extends
across more than one time zone, peak system load might seem to you to occur at some other time.)

If you find that performance degradation is not dependent on system loading, but happens sometimes
when the system is lightly loaded, a poorly designed application program is probably to blame. This
problem might manifest itself as a problem that only occurs when certain queues are accessed.

QTOTJIOB and QADLTOTJ are system values worth investigating.
The following symptoms might indicate that IBM MQ for IBM i is running slowly:

« If your system is slow to respond to MQSC commands.

- If repeated displays of the queue depth indicate that the queue is being processed slowly for an
application with which you would expect a large amount of queue activity.

- Is IBM MQ trace running?

ST Linux on POWER Systems - Little Endian applications

As Linux on POWER® Systems - Little Endian supports 64-bit applications only, there is no support
provided in IBM MQ for 32-bit applications.

Related concepts

“Design considerations for IBM MQ applications” on page 44

When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.

ST Design and performance considerations for z/0S applications

Application design is one of the most important factors affecting performance. Use this topic to
understand some of the design factors involved in performance.

There are a number of ways in which poor program design can affect performance. These problems can
be difficult to detect because the program can appear to perform well, while affecting the performance of
other tasks. Several problems specific to programs making MQI calls are demonstrated in the following
sections.

For more information about application design, see “Design considerations for IBM MQ applications” on
page 44.

Developing applications for IBM MQ 53



Effect of message length

Although IBM MQ for z/OS allows messages to hold up to 100 MB of data, the amount of datain a
message affects the performance of the application that processes the message. To achieve the best
performance from your application, send only the essential data in a message. For example, in a request
to debit a bank account, the only information that might need to be passed from the client to the server
application is the account number and the amount to debit.

Effect of message persistence

Persistent messages are logged. Logging messages reduces the performance of your application, so use
persistent messages for essential data only. If the data in a message can be discarded if the queue
manager stops or fails, use a nonpersistent message.

Data for persistent messages is written to log buffers. These buffers are written to the log data sets when:

« A commit occurs
- A message is got or put out of syncpoint
« WRTHRSH buffers are filled

Processing many messages in one unit of work can cause less input/output than if the messages were
processed one for each unit of work, or out of syncpoint.

Searching for a particular message

The MQGET call typically retrieves the first message from a queue. If you use the message and correlation
identifiers (MsgId and CoxrelId) in the message descriptor to specify a particular message, the queue
manager searches the queue until it finds that message. Using MQGET in this way affects the performance
of your application because, to find a particular message, IBM MQ might have to scan the entire queue.

You can use the IndexType queue attribute to specify that you want the queue manager to maintain

an index that can be used to increase the speed of MQGET operations on the queue. However, there is a
small performance reduction for maintaining an index, so only generate one if you need to use it. You can
choose to build an index of message identifiers or of correlation identifiers, or you can choose not to build
an index for queues where messages are retrieved sequentially. Try to have many different key values,

not lots with the same value. For example Balancel, Balance2, and Balance3, not three with Balance. For
shared queues, you must have the correct IndexType. For details of the IndexType queue attribute, see
IndexType.

To avoid affecting queue manager restart time by using indexed queues, use the QINDXBLD(NOWAIT)
parameter in the CSQ6SYSP macro. This allows the queue manager restart to complete without waiting
for queue index building to complete.

For a full description of the IndexType attribute, and other object attributes see Attributes of objects.

Queues that contain messages of different lengths

Get a message, using a buffer size matching the expected size of the message. If you receive the return
code indicating that the message is too long, get a bigger buffer. When the get fails in this way, the data
length returned is the size of the unconverted message data. If you specify MQGMO_CONVERT on the
MQGET call, and the data expands during conversion, it still might not fit in the buffer, in which case you
need to further increase the size of the buffer.

If you issue the MQGET with a buffer length of zero, it returns the size of the message and the application
can then get a buffer of this size and reissue the get. If you have multiple applications processing the
queue, another application might have already processed the message when the original application
reissued the get. If you occasionally have large messages, you might need to get a large buffer just for

54 Developing Applications for IBM MQ



these messages, and release it after the message has been processed. This should help reduce virtual
storage problems if all applications have large buffers.

If your application cannot use messages of a fixed length, another solution to this problem is to use the
MQINQ call to find the maximum size of messages that the queue can accept, then use this value in your
MQGET call. The maximum size of messages for a queue is stored in the MaxMsgL attribute of the queue.
This method could use large amounts of storage, however, because the value of MaxMsgL could be as high
as 100 MB, the maximum allowed by IBM MQ for z/0S.

Note: You can lower the MaxMsgL parameter after large messages have been put to the queue. For
example you can put a 100 MB message, then set MaxMsgL to 50 bytes. This means that it is still possible
to get bigger messages than the application expected.

Frequency of syncpoints

Programs that issue many MQPUT calls within syncpoint, without committing them, can cause
performance problems. Affected queues can fill up with messages that are currently unusable, while
other tasks might be waiting to get these messages. This has implications in terms of storage, and in
terms of threads tied up with tasks that are attempting to get messages.

As a rule if you have multiple applications processing a queue you typically get the best performance
when you have either

« 100 short messages (less than 1 KB), or
« One message for larger messages (100 KB)

for each syncpoint. If there is only one application processing the queue, you must have more messages
for each unit of work.

You can limit the number of messages that a task can get or put within a single unit of recovery with the
MAXUMSGS queue manager attribute. For information about this attribute, see the ALTER QMGR command
in Script (MQSC) Commands.

Advantages of the MQPUT1 call

Use the MQPUT1 call only if you have a single message to put on a queue. If you want to put more than one
message, use the MQOPEN call, followed by a series of MQPUT calls and a single MQCLOSE call.

How many messages can a queue manager contain

Local Queues

The number of local messages a queue manager can hold is basically the size of the page sets. You
can have up to 100 page sets (though it is recommended page set 0 and page set 1 are for system
related objects and queues). You can use a page set with extended format and increase the capacity
of a page set.

Shared Queues

The capacity for shared queues depends on the size of the coupling facility (CF). IBM MQ uses CF list
structures where fundamental storage units are entries and elements. Each message is stored as 1
entry and multiple elements containing the associated MQMD and other message data. The number of
elements consumed by a single message depends on the size of the message and, for CFLEVEL(5), the
offload rules in effect at MQPUT time. Fewer elements are needed when message data is offloaded

to either Db2 or SMDS. Message data access is slower when the message has been offloaded. See
Performance Supportpac MP1H for further comparison of performance and CPU overhead associated
with message offload.

Developing applications for IBM MQ 55



What affects performance

Performance can mean how fast messages can be processed, and it can also mean how much CPU is
needed per message.

What affects how fast messages can be processed

For persistent messages the biggest impact is the speed of the log data sets. The speed of the log
data sets depends on the DASD they are on. Therefore care should be taken to put log data set on low
used volumes to reduce contention. Striping the MQ logs improves the log performance when there
are multiple pages written per I/0. Z High Performance Fibre connection (zHPF) also has a significant
performance to I/0O response time when the I/O subsystem is busy.

When there is a request to get and put a message, access to the queue is locked during the request
to preserve integrity of the queue. For planning purposes consider the queue locked for the whole
request. So if the time for a put is 200 microseconds, and you have more than 10,000 requests a
second you might experience delays. You might achieve better than this in practice, but it is a good
general rule. You can use different queues to improve performance.

Possible reasons for this can be:

« use a common reply queue which every CICS transaction uses
« each CICS transaction is given a unique reply to queue
 areply to a queue for CICS region and all transactions in the CICS region use this queue.

The answer depends on the number of requests a second, and the response time of the requests.

If messages have to be read from a page set, they will be slower compared to when the messages are
in the buffer pool. If you have more messages than fit into a buffer pool, then they will spill to disk.

So you need to ensure that the buffer pool is big enough for your short lived messages. If you have
messages that you process many hours later, these are likely to spill to disk, so you should expect a
get for these messages to be slower than if they were in the buffer pool.

For a shared queue, the speed of the messages depends on the speed of the Coupling Facility. A CF
within the physical processor is likely to be faster than an external CF. The CF response time depends
on how busy the CF is. For example on the Hursley systems, when the CF was 17% busy the response
time was 14 microseconds. When the CF was 95% busy the response time was 45 microseconds.

If your MQ requests use a lot of CPU, this can affect how fast messages are processed. Because if the
Logical Partition (LPAR) is constrained for CPU, applications will be delayed waiting for CPU.

How much CPU per message
In general bigger messages use more CPU, so avoid large (x MB) messages if possible.

When getting specific messages from queues, the queue should be indexed so the queue manager
can go directly to the message (and so avoids potentially an entire scan of the queue). If the queue is
not indexed then the queue is scanned from the beginning looking for the message. If there are 1000
messages on the queue, it may have to scan all 2000 messages. The result is a lot of unnecessary CPU
usage.

Channels using TLS have an additional cost due to the encryption of the message.

In MQ V7 you can select messages by a selector string in addition to the CORRELID or MSGID. Every
message has to be looked in, so if there are many messages on the queue this is expensive.

It is more efficient for an application to do OPEN PUT PUT CLOSE than PUT1 PUT1.
Triggering in CICS

When the message arrival rate of messages for a triggered queue is low, it is efficient to use trigger
first. When the message arrival rate is more than 10 messages a second, it is more efficient to trigger
the first transaction, then have the transaction process a message and get the next message, and so
on. If a message has not arrived in a short period ( say between 0.1 and 1 second) the transaction
ends. At high throughput you might need multiple transactions running to process the messages and

56 Developing Applications for IBM MQ



to prevent a build up of messages. For every trigger message produced, this requires a put and a get of
a trigger message, which in effect doubles the cost of the message.

How many connections or concurrent users are supported

Each connection uses virtual storage within the queue manager, so the more concurrent users the
more storage used. If you need a very large buffer pool and large number of users, then you might be
constrained for virtual storage, and you might need to reduce the size of your buffer pools.

If security is being used, the queue manager caches information within the queue manager for a long
period. The amount of virtual storage that is used within the queue manager is affected.

The CHINIT can support up to about 10,000 connections. This is limited by virtual storage. If a
connection uses more storage, for example using by TLS, the storage per connection increases, which
therefore means the CHINIT can support less connections. If you are processing large messages,
these will require more storage for buffers in the CHINIT, so the CHINIT can support less messages.

Connections to a remote queue manager are more efficient than client connections. For example,
every MQ client requests requires two network flows (one for the request and one for the response).
With a channel to a remote queue manager, there may be 50 sends over the network before a
response comes back. If you are considering a large client network, it may be more efficient to use
a concentrator queue manager on a distributed box, and have one channel coming in and out of the
concentrator.

Other things affecting performance

Log data set should be at least 2000 cylinders in size. If the logs are smaller than this, checkpoint activity
may be too frequent. On a busy system a checkpoint typically should be every 15 minutes or longer,

at very high throughputs it may less than this. When a checkpoint occurs the buffer pools are scanned

and 'old' messages and changed pages are written to disk. If checkpoints are too frequent, this can
impact performance. The value of LOGLOAD can also affect checkpoint frequency. If the queue manager
abnormally ends, then at restart it may have to read back to 3 checkpoints. The best checkpoint interval is
a balance between the activity when a checkpoint is taken, and the amount of log data that may need to
be read when the queue manager restarts.

There is a significant overhead incurred when starting a channel. It is usually better to start a channel and
leave it connected, rather than frequent starts and stops of the channel.

Related information
MP1H: IBM MQ for z/OS 9.0 Performance Report

STEENIMS and IMS bridge applications on IBM MQ for z/0S

This information helps you to write IMS applications using IBM MQ.

 To use syncpoints and MQI calls in IMS applications, see “Writing IMS applications using IBM MQ” on
page 58.

« To write applications that use the IBM MQ - IMS bridge, see “Writing IMS bridge applications” on page
62.

Use the following links to find out more about IMS and IMS bridge applications on IBM MQ for z/0S:

« “Writing IMS applications using IBM MQ” on page 58
« “Writing IMS bridge applications” on page 62

Related concepts

“The Message Queue Interface overview” on page 632
Learn about the Message Queue Interface (MQI) components.

“Connecting to and disconnecting from a queue manager” on page 646

Developing applications for IBM MQ 57


https://www.ibm.com/support/docview.wss?uid=swg24042470

To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.

“Opening and closing objects” on page 654

This information provides an insight into opening and closing IBM MQ objects.

“Putting messages on a queue” on page 664
Use this information to learn how to put messages on a queue.

“Getting messages from a queue” on page 679
Use this information to learn about getting messages from a queue.

“Inquiring about and setting object attributes” on page 757
Attributes are the properties that define the characteristics of an IBM MQ object.

“Committing and backing out units of work” on page 760
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.

“Starting IBM MQ applications using triggers” on page 771
Learn about triggers and how to start IBM MQ applications using triggers.

“Working with the MQI and clusters” on page 789
There are special options on calls and return codes that relate to clustering.

“Using and writing applications on IBM MQ for z/OS” on page 793
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

Writing IMS applications using IBM MQ

There are further considerations when using IBM MQ in IMS applications These include which MQ API
calls can be used and the mechanism used for syncpoint.

Use the following links to find out more about writing IMS applications on IBM MQ for z/0S:
« “Syncpoints in IMS applications” on page 58

« “MQI calls in IMS applications” on page 59

Restrictions
There are restrictions on which IBM MQ API calls can used by an application using the IMS adapter.

The following IBM MQ API calls are not supported within an application using the IMS adapter:
- MQCB

« MQCB_FUNCTION

« MQCTL

Related concepts

“Writing IMS bridge applications” on page 62
This topic contains information about writing applications to use the IBM MQ - IMS bridge.

Syncpoints in IMS applications
In an IMS application, you establish a syncpoint by using IMS calls such as GU (get unique) to the IOPCB
and CHKP (checkpoint).

To back out all changes since the previous checkpoint, you can use the IMS ROLB (rollback) call. For more
information, see ROLB call in the IMS documentation.

The queue manager is a participant in a two-phase commit protocol; the IMS syncpoint manager is the
coordinator.

All open handles are closed by the IMS adapter at a syncpoint (except in a batch or non-message driven
BMP environment). This is because a different user could initiate the next unit of work and IBM MQ

58 Developing Applications for IBM MQ


https://www.ibm.com/docs/en/ims/15.4.0?topic=dcitss-rolb-call

security checking is performed when the MQCONN, MQCONNX, and MQOPEN calls are made, not when
the MQPUT or MQGET calls are made.

However, in a Wait-for-Input (WFI) or pseudo Wait-for-Input (PWFI) environment IMS does not notify
IBM MQ to close the handles until either the next message arrives or a QC status code is returned to the
application. If the application is waiting in the IMS region and any of these handles belong to triggered
queues, triggering will not occur because the queues are open. For this reason, applications running in
a WFI or PWFI environment should explicitly MOQCLOSE the queue handles before doing the GU to the
IOPCB for the next message.

If an IMS application (either a BMP or an MPP) issues the MQDISC call, open queues are closed but no
implicit syncpoint is taken. If the application ends normally, any open queues are closed and an implicit
commit occurs. If the application ends abnormally, any open queues are closed and an implicit backout
occurs.

MQI calls in IMS applications
Use this information to learn about the use of MQI calls on Server applications and Enquiry applications.
This section covers the use of MQI calls in the following types of IMS applications:

« “Server applications” on page 59

« “Inquiry applications” on page 61

Server applications

Here is an outline of the MQI server application model:

Initialize/Connect

bpen queue for input shared
éet message from IBM MQ queue
Do while Get does not fail

If expected message received
Process the message

Else

Process unexpected message
End if

Commit

éet next message from IBM MQ queue
End do

élose queue/Disconnect

END

Sample program CSQ4ICB3 shows the implementation, in C/370, of a BMP using this model. The program
establishes communication with IMS first, and then with IBM MQ:

main ()

Call InitIMS

If IMS initialization successful
Call InitMQM

If IBM MQ initialization successful
Call ProcessRequests

Call EndMQM

End-if

End-if

Return

Developing applications for IBM MQ 59



The IMS initialization determines whether the program has been called as a message-driven or a batch-
oriented BMP and controls IBM MQ queue manager connection and queue handles accordingly:

InitIMS
Get the IO, Alternate and Database PCBs
Set MessageOriented to true

Call ctdli to handle status codes rather than abend
If call is successful (status code is zero)
While status code is zero

Call ctdli to get next message from IMS message queue
If message received

Do nothing

Else if no IOPBC

Set MessageOriented to false

Initialize error message

Build 'Started as batch oriented BMP' message
Call ReportCallError to output the message
End-if

Else if response is not 'no message available'
Initialize error message

Build 'GU failed' message

Call ReportCallError to output the message
Set return code to error

End-if

End-if

End-while

Else

Initialize error message

Build 'INIT failed' message

Call ReportCallError to output the message
Set return code to error

End-if

Return to calling function

The IBM MQ initialization connects to the queue manager and opens the queues. In a message-driven
BMP this is called after each IMS syncpoint is taken; in a batch-oriented BMP, this is called only during
program startup:

InitMQM

Connect to the queue manager

If connect is successful

Initialize variables for the open call
Open the request queue

If open is not successful

Initialize error message

Build 'open failed' message

Call ReportCallError to output the message
Set return code to error

End-if

Else

Initialize error message

Build 'connect failed' message

Call ReportCallError to output the message
Set return code to error

End-if

Return to calling function
The implementation of the server model in an MPP is influenced by the fact that the MPP processes
a single unit of work per invocation. This is because, when a syncpoint (GU) is taken, the connection

and queue handles are closed and the next IMS message is delivered. This limitation can be partially
overcome by one of the following:

 Processing many messages within a single unit-of-work
This involves:

— Reading a message
— Processing the required updates
— Putting the reply

60 Developing Applications for IBM MQ



in a loop until all messages have been processed or until a set maximum number of messages has been
processed, at which time a syncpoint is taken.

Only certain types of application (for example, a simple database update or inquiry) can be approached
in this way. Although the MQI reply messages can be put with the authority of the originator of the MQI
message being handled, the security implications of any IMS resource updates need to be addressed
carefully.

 Processing one message per invocation of the MPP and ensuring multiple scheduling of the MPP to
process all available messages.

Use the IBM MQ IMS trigger monitor program (CSQQTRMN) to schedule the MPP transaction when there
are messages on the IBM MQ queue and no applications serving it.

If trigger monitor starts the MPP, the queue manager name and queue name are passed to the program,
as shown in the following COBOL code extract:

* Data definition extract
01 WS-INPUT-MSG.

05 IN-LL1 PIC S9(3) COMP.
05 IN-Z71 PIC S9(3) COMP.
05 WS-STRINGPARM PIC X(1000).

01 TRIGGER-MESSAGE.

COPY CMQTMC2L.

*

* Code extract

GU-IOPCB SECTION.

MOVE SPACES TO WS-STRINGPARM.
CALL 'CBLTDLI' USING GU,
I0PCB,

WS-INPUT-MSG.

IF IOPCB-STATUS = SPACES
MOVE WS-STRINGPARM TO MQTMC.
* ELSE handle error

*

* Now use the queue manager and queue names passed
DISPLAY 'MQTMC-QMGRNAME ="

MQTMC-QMGRNAME OF MQTMC '=".

DISPLAY 'MQTMC-QNAME ="'

MQTMC-QNAME OF MQTMC '='.

The server model, which is expected to be a long running task, is better supported in a batch processing
region, although the BMP cannot be triggered using CSQQTRMN.

Inquiry applications
A typical IBM MQ application initiating an inquiry or update works as follows:

- Gather data from the user

« Put one or more IBM MQ messages

» Get the reply messages (you might have to wait for them)
« Provide a response to the user

Because messages put on to IBM MQ queues do not hecome available to other IBM MQ applications until
they are committed, they must either be put out of syncpoint, or the IMS application must be split into
two transactions.

If the inquiry involves putting a single message, you can use the no syncpoint option; however, if the
inquiry is more complex, or resource updates are involved, you might get consistency problems if failure
occurs and you do not use syncpointing.

To overcome this, you can split IMS MPP transactions using MQI calls using a program-to-program
message switch; see IMS Intersystem Communication (ISC) for information about this. This allows an
inquiry program to be implemented in an MPP:

Initialize first program/Connect

épen queue for output

Developing applications for IBM MQ 61


https://www.ibm.com/docs/en/ims/15.4.0?topic=connections-intersystem-communication-isc

Put inquiry to IBM MQ queue

éwitch to second IBM MQ program, passing necessary data in save
pack area (this commits the put)

END

Initialize second program/Connect

dpen queue for input shared

Get results of inquiry from IBM MQ queue

Return results to originator

END

Writing IMS bridge applications

This topic contains information about writing applications to use the IBM MQ - IMS bridge.

For information about the IBM MQ - IMS bridge, see The IMS bridge.

Use the following links to find out more about writing IMS bridge applications on IBM MQ for z/0OS:

« “How the IMS bridge deals with messages” on page 62
« “Writing IMS transaction programs through IBM MQ” on page 814

Related concepts

“Writing IMS applications using IBM MQ” on page 58

There are further considerations when using IBM MQ in IMS applications These include which MQ API
calls can be used and the mechanism used for syncpoint.

How the IMS bridge deals with messages
When you use the IBM MQ - IMS bridge to send messages to an IMS application, you need to construct
your messages in a special format.

You must also put your messages on IBM MQ queues that have been defined with a storage class that
specifies the XCF group and member name of the target IMS system. These are known as MQ-IMS bridge
queues, or simply bridge queues.

The IBM MQ-IMS bridge requires exclusive input access (MQOO_INPUT_EXCLUSIVE) to the bridge queue
if it is defined with QSGDISP(QMGR), or if it is defined with QSGDISP(SHARED) together with the
NOSHARE option.

A user does not need to sign on to IMS before sending messages to an IMS application. The user ID in
the UserIdentifier field of the MQMD structure is used for security checking. The level of checking
is determined when IBM MQ connects to IMS, and is described in Application access control for the IMS
bridge. This enables a pseudo signon to be implemented.

The IBM MQ - IMS bridge accepts the following types of message:
» Messages containing IMS transaction data and an MQIIH structure (described in MQIIH ):

MQIIH LLZZ<trancode><data>[LLZZ<data>][LLZZ<data>]

Note:

1. The square brackets, [ ], represent optional multi-segments.
2. Set the Format field of the MOMD structure to MQFMT_IMS to use the MQIIH structure.
« Messages containing IMS transaction data but no MQIIH structure:

LLZZ<trancode><data> \
[LLZZ<data>] [LLZZ<data>]

62 Developing Applications for IBM MQ



IBM MQ validates the message data to ensure that the sum of the LL bytes plus the length of the MQIIH (if
it is present) is equal to the message length.

When the IBM MQ - IMS bridge gets messages from the bridge queues, it processes them as follows:

If the message contains an MQIIH structure, the bridge verifies the MQIIH (see MQIIH ), builds the
OTMA headers, and sends the message to IMS. The transaction code is specified in the input message.
If this is an LTERM, IMS replies with a DFS1288E message. If the transaction code represents a
command, IMS executes the command; otherwise the message is queued in IMS for the transaction.

If the message contains IMS transaction data, but no MQIIH structure, the IMS bridge makes the
following assumptions:

The transaction code is in bytes 5 through 12 of the user data
The transaction is in nonconversational mode

The transaction is in commit mode 0 (commit-then-send)
The Format in the MOMD is used as the MFSMapName (on input)
— The security mode is MQISS_CHECK

The reply message is also built without an MQIIH structure, taking the Format for the MQMD from the
MFSMapName of the IMS output.

The IBM MQ - IMS bridge uses one or two Tpipes for each IBM MQ queue:

A synchronized Tpipe is used for all messages using Commit mode 0 (COMMIT_THEN_SEND) (these
show with SYN in the status field of the IMS /DIS TMEMBER client TPIPE xxxx command)

A non-synchronized Tpipe is used for all messages using Commit mode 1 (SEND_THEN_COMMIT)

The Tpipes are created by IBM MQ when they are first used. A non-synchronized Tpipe exists until IMS is
restarted. Synchronized Tpipes exist until IMS is cold started. You cannot delete these Tpipes yourself.

See the following topics for more information about how the IBM MQ - IMS bridge deals with messages:

“Mapping IBM MQ messages to IMS transaction types” on page 64

“If the message cannot be put to the IMS queue” on page 64
“IMS bridge feedback codes” on page 65

“The MQMD fields in messages from the IMS bridge” on page 65
“The MQIIH fields in messages from the IMS bridge” on page 66
“Reply messages from IMS” on page 67

“Using alternate response PCBs in IMS transactions” on page 67

“Sending unsolicited messages from IMS” on page 67

“Message segmentation” on page 68

“Data conversion for messages to and from the IMS bridge” on page 68

Related concepts
“Writing IMS transaction programs through IBM MQ” on page 814

Developing applications for IBM MQ 63



The coding required to handle IMS transactions through IBM MQ depends on the message format
required by the IMS transaction and the range of responses it can return. However, there are several
points to consider when your application handles IMS screen formatting information.

Mapping IBM MQ messages to IMS transaction types
A table describing the mapping of IBM MQ messages to IMS transaction types.

Table 4. Mapping IBM MQ messages to IMS transaction types

IBM MQ message type Commit-then-send (mode 0) - Send-then-commit (mode 1)
uses synchronized IMS Tpipes - uses non-synchronized IMS
Tpipes
Persistent IBM MQ messages « Recoverable full function « Fastpath transactions

transactions Conversational transactions

« Unrecoverable transactions are
rejected by IMS

Full function transactions

Nonpersistent IBM MQ messages  |. ynrecoverable full function
transactions

Fastpath transactions

Conversational transactions

» Recoverable transactions are
permitted with IMS V8 and APAR
PQ61404 and all later versions of
IMS

« Full function transactions

Note: IMS commands cannot use persistent IBM MQ messages with commit mode 0. See Commit mode
(commitMode) for more information.

If the message cannot be put to the IMS queue
Learn about actions to take if the message cannot be put to the IMS queue.

If the message cannot be put to the IMS queue, the following action is taken by IBM MQ:

- If a message cannot be put to IMS because the message is invalid, the message is put to the dead-letter
queue, and a message is sent to the system console.

- If the message is valid, but is rejected by IMS, IBM MQ sends an error message to the system console,
the message includes the IMS sense code, and the IBM MQ message is put to the dead-letter queue. If
the IMS sense code is 001A, IMS sends an IBM MQ message containing the reason for the failure to the
reply-to queue.

Note: In the circumstances listed previously, if IBM MQ cannot put the message to the dead-letter
queue for any reason, the message is returned to the originating IBM MQ queue. An error message is
sent to the system console, and no further messages are sent from that queue.

To resend the messages, do one of the following:

Stop and restart the Tpipes in IMS corresponding to the queue
Alter the queue to GET(DISABLED), and again to GET(ENABLED)
Stop and restart IMS or the OTMA

Stop and restart your IBM MQ subsystem

- If the message is rejected by IMS for anything other than a message error, the IBM MQ message is
returned to the originating queue, IBM MQ stops processing the queue, and an error message is sent to
the system console.

If an exception report message is required, the bridge puts it to the reply-to queue with the authority of
the originator. If the message cannot be put to the queue, the report message is put to the dead-letter
queue with the authority of the bridge. If it cannot be put to the DLQ, it is discarded.

64 Developing Applications for IBM MQ


https://www.ibm.com/docs/en/ims/15.4.0?topic=properties-commit-mode-commitmode
https://www.ibm.com/docs/en/ims/15.4.0?topic=properties-commit-mode-commitmode

IMS bridge feedback codes

IMS sense codes are typically output in hexadecimal format in IBM MQ console messages such as
CSQ2001I (for example, sense code 0x001F). IBM MQ feedback codes as seen in the dead-letter header
of messages put to the dead-letter queue are decimal numbers.

The IMS bridge feedback codes are in the range 301 through 399, or 600 through 855 for NACK sense
code 0x001A. They are mapped from the IMS-OTMA sense codes as follows:

1. The IMS-OTMA sense code is converted from a hexadecimal number to a decimal number.
2. 300 is added to the number resulting from the calculation in 1, giving the IBM MQ Feedback code.

3. The IMS-OTMA sense code 0x001A, decimal 26 is a special case. A Feedback code in the range
600-855 is generated.

a. The IMS-OTMA reason code is converted from a hexadecimal number to a decimal number.
b. 600 is added to the number resulting from the calculation in a, giving the IBM MQ Feedback code.

For information about IMS-OTMA sense codes, see OTMA sense codes for NAK messages.

The MOMD fields in messages from the IMS bridge
Learn about the MQMD fields in messages from the IMS bridge.

The MQMD of the originating message is carried by IMS in the User Data section of the OTMA headers.
If the message originates in IMS, this is built by the IMS Destination Resolution Exit. The MQMD of a
message received from IMS is built as follows:

StrucID
IIMD n

Version
MQMD_VERSION_1

Report
MQRO_NONE
MsgType
MQMT_REPLY
Expiry
If MQIIH_PASS_EXPIRATION is set in the Flags field of the MQIIH, this field contains the remaining
expiry time, else it is set to MOQEI_UNLIMITED

Feedback
MQFB_NONE
Encoding
MQENC.Native (the encoding of the z/OS system)
CodedCharSetId
MQCCSI_Q_MGR (the CodedCharSetID of the z/0S system)
Format
MQFMT_IMS if the MQMD.Format of the input message is MOQFMT_IMS, otherwise IOPCB.MODNAME
Priority

MQMD.Priority of the input message

Persistence
Depends on commit mode: MQMD.Persistence of the input message if CM-1; persistence matches
recoverability of the IMS message if CM-0

Msgld
MQMD.MsgId if MQRO_PASS_MSG_ID, otherwise New Msgld (the default)

Correlld
MQMD.Correlld from the input message if MQRO_PASS_CORREL_ID, otherwise MQMD.Msgld from the
input message (the default)

Developing applications for IBM MQ 65


https://www.ibm.com/docs/en/ims/15.4.0?topic=codes-otma-sense-nak-messages

BackoutCount
0
ReplyToQ
Blanks
ReplyToQMgr
Blanks (set to local gmgr name by the queue manager during the MQPUT)
UserIdentifier
MQMD.Userldentifier of the input message

AccountingToken
MQMD.AccountingToken of the input message

ApplldentityData
MQMD.ApplldentityData of the input message

PutApplType
MQAT_XCEF if no error, otherwise MQAT_BRIDGE

PutApplName
<XCFgroupName><XCFmemberName> if no error, otherwise QMGR name

PutDate
Date when message was put

PutTime
Time when message was put

ApplOriginData
Blanks

The MQIIH fields in messages from the IMS bridge
Learn about the MQIIH fields in messages from the IMS bridge.

The MQIIH of a message received from IMS is built as follows:

Strucld
IIII H "

Version
1

StrucLength
84

Encoding
MQENC_NATIVE

CodedCharSetlId
MQCCSI_Q_MGR

Format
MQIIH.ReplyToFormat of the input message if MQIIH.ReplyToFormat is not blank, otherwise
IOPCB.MODNAME

Flags
0

LTermOverride
LTERM name (Tpipe) from OTMA header

MFSMapName

Map name from OTMA header
ReplyToFormat

Blanks

Authenticator
MQIIH.Authenticator of the input message if the reply message is being put to an MQ-IMS bridge
queue, otherwise blanks.

66 Developing Applications for IBM MQ



TranInstanceld
Conversation ID / Server Token from OTMA header if in conversation. In versions of IMS prior to V14,
this field is always nulls if not in conversation. From IMS V14 onwards, this field may be set by IMS
even if not in conversation.

TranState
"C" if in conversation, otherwise blank

CommitMode
Commit mode from OTMA header ("0" or "1")

SecurityScope
Blank

Reserved
Blank

Reply messages from IMS
When an IMS transaction ISRTs to its IOPCB, the message is routed back to the originating LTERM or
TPIPE.

These are seen in IBM MQ as reply messages. Reply messages from IMS are put onto the reply-to

qgueue specified in the original message. If the message cannot be put onto the reply-to queue, it is put
onto the dead-letter queue using the authority of the bridge. If the message cannot be put onto the
dead-letter queue, a negative acknowledgment is sent to IMS to say that the message cannot be received.
Responsibility for the message is then returned to IMS. If you are using commit mode 0, messages from
that Tpipe are not sent to the bridge, and remain on the IMS queue; that is, no further messages are sent
until restart. If you are using commit mode 1, other work can continue.

If the reply has an MQIIH structure, its format type is MOQFMT_IMS; if not, its format type is specified by
the IMS MOD name used when inserting the message.

Using alternate response PCBs in IMS transactions

When an IMS transaction uses alternate response PCBs (ISRTs to the ALTPCB, or issues a CHNG call to
a modifiable PCB), the pre-routing exit (DFSYPRXO) is invoked to determine if the message should be
rerouted.

If the message is to be rerouted, the destination resolution exit (DFSYDRUO) is invoked to confirm the
destination and prepare the header information See Using OTMA exits in IMS and The pre-routing exit
DFSYPRXO for information about these exit programs.

Unless action is taken in the exits, all output from IMS transactions initiated from an IBM MQ queue
manager, whether to the IOPCB or to an ALTPCB, will be returned to the same queue manager.

Sending unsolicited messages from IMS
To send messages from IMS to an IBM MQ queue, you need to invoke an IMS transaction that ISRTs to an
ALTPCB.

You need to write pre-routing and destination resolution exits to route unsolicited messages from IMS
and build the OTMA user data, so that the MQMD of the message can be built correctly. See The pre-
routing exit DFSYPRXO0 and The destination resolution user exit for information about these exit programs.

Note: The IBM MQ - IMS bridge does not know whether a message that it receives is a reply or an
unsolicited message. It handles the message the same way in each case, building the MOMD and MQIIH
of the reply based on the OTMA UserData that arrived with the message

Unsolicited messages can create new Tpipes. For example, if an existing IMS transaction switched to a
new LTERM (for example PRINTO1), but the implementation requires that the output be delivered through
OTMA, a new Tpipe (called PRINTO1 in this example) is created. By default, this is a non-synchronized
Tpipe. If the implementation requires the message to be recoverable, set the destination resolution exit
output flag. See the IMS Customization Guide for more information.

Developing applications for IBM MQ 67



Message segmentation
You can define IMS transactions as expecting single- or multi-segment input.

The originating IBM MQ application must construct the user input following the MQIIH structure as one
or more LLZZ-data segments. All segments of an IMS message must be contained in a single IBM MQ
message sent with a single MQPUT.

The maximum length of an LLZZ-data segment is defined by IMS/OTMA (32767 bytes). The total IBM MQ
message length is the sum of the LL bytes, plus the length of the MQIIH structure.

All the segments of the reply are contained in a single IBM MQ message.

There is a further restriction on the 32 KB limitation on messages with format MQFMT_IMS_VAR_STRING.
When the data in an ASCII-mixed CCSID message is converted to an EBCDIC-mixed CCSID message, a
shift-in byte or a shift-out byte is added every time that there is a transition between SBCS and DBCS
characters. The 32 KB restriction applies to the maximum size of the message. That is, because the LL
field in the message cannot exceed 32 KB, the message must not exceed 32 KB including all shift-in and
shift-out characters. The application building the message must allow for this.

Data conversion for messages to and from the IMS bridge

The data conversion is performed by either the distributed queuing facility (which may call any necessary
exits) or by the intra group queuing agent (which does not support the use of exits) when it puts

a message to a destination queue that has XCF information defined for its storage class. The data
conversion does not occur when a message is delivered to a queue by publish/subscribe.

Any exits needed must be available to the distributed queuing facility in the data set referenced by the
CSQXLIB DD statement. This means that you can send messages to an IMS application using the IBM MQ
- IMS bridge from any IBM MQ platform.

If there are conversion errors, the message is put to the queue unconverted; this results eventually in it
being treated as an error by the IBM MQ - IMS bridge, because the bridge cannot recognize the header
format. If a conversion error occurs, an error message is sent to the z/OS console.

See “Writing data-conversion exits” on page 885 for detailed information about data conversion in
general.

Sending messages to the IBM MQ - IMS bridge

To ensure that conversion is performed correctly, you must tell the queue manager what the format of the
message is.

If the message has an MQIIH structure, the Format in the MQMD must be set to the built-in format
MQFMT_IMS, and the Format in the MQIIH must be set to the name of the format that describes your
message data. If there is no MQIIH, set the Format in the MQMD to your format name.

If your data (other than the LLZZs) is all character data (MQCHAR), use as your format name (in the MQIIH
or MQMD, as appropriate) the built-in format MOFMT_IMS_VAR_STRING. Otherwise, use your own format
name, in which case you must also provide a data-conversion exit for your format. The exit must handle
the conversion of the LLZZs in your message, in addition to the data itself (but it does not have to handle
any MQIIH at the start of the message).

If your application uses MFSMapName, you can use messages with the MQFMT_IMS instead, and define
the map name passed to the IMS transaction in the MFSMapName field of the MQIIH.

Receiving messages from the IBM MQ - IMS bridge

If an MQIIH structure is present on the original message that you are sending to IMS, one is also present
on the reply message.

To ensure that your reply is converted correctly:

- If you have an MQIIH structure on your original message, specify the format that you want for your
reply message in the MQIIH ReplytoFormat field of the original message. This value is placed in the

68 Developing Applications for IBM MQ



MQIIH Format field of the reply message. This is particularly useful if all your output data is of the form
LLZZ<character data>.

« If you do not have an MQIIH structure on your original message, specify the format that you want for the
reply message as the MFS MOD name in the IMS application's ISRT to the IOPCB.

Developing JMS and Java applications

IBM MQ provides two Java language interfaces: IBM MQ classes for Java Message Service and IBM MQ
classes for Java.

Within IBM MQ there are two alternative APIs for use in Java applications:

IBM MQ classes for JIMS
IBM MQ classes for Java Message Service (JMS) is the JMS provider that is supplied with IBM MQ. The
Java Platform, Enterprise Edition Connector Architecture (JCA) provides a standard way of connecting
applications running in a Java EE environment to an Enterprise Information System (EIS) such as IBM
MQ or Db2.

IBM MQ classes for Java
IBM MQ classes for Java enable you to use IBM MQ in a Java environment. IBM MQ classes for Java
allow a Java application to connect to IBM MQ as an IBM MQ client, or connect directly to an IBM MQ
queue manager.

Note:

The IBM MQ classes for Java are functionally stabilized at the level shipped in IBM MQ 8.0. For more
information, see Stabilization of IBM MQ classes for Java.

The IBM MQ classes for Java are not supported in IMS.

The IBM MQ classes for Java are not supported in WebSphere Application Server Liberty. They must
not be used with either the IBM MQ Liberty messaging feature, or with the generic JCA support. For
more information, see Using WebSphere MQ Java Interfaces in J2EE/JEE Environments.

Using IBM MQ classes for IMS

IBM MQ classes for Java Message Service (IBM MQ classes for JIMS) is the IJMS provider that is supplied
with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM MQ classes
for IJMS provides two sets of extensions to the JMS API.

The IJMS specification defines a set of interfaces that applications can use to perform messaging
operations. The latest version of the specification is JMS 2.0. The javax.jms package defines the JMS
interfaces, and a JMS provider implements these interfaces for a specific messaging product. IBM MQ
classes for JMS is a JMS provider that implements the JMS interfaces for IBM MQ.

The IJMS specification expects ConnectionFactory and Destination objects to be administered objects. An
administrator creates and maintains administered objects in a central repository, and a JMS application
retrieves these objects using the Java Naming Directory Interface (JNDI). IBM MQ classes for IMS
supports the use of administered objects, and an administrator can use either the IBM MQ JMS
administration tool or IBM MQ Explorer to create and maintain administered objects.

IBM MQ classes for JMS also provides two sets of extensions to the JIMS API. The main focus of these
extensions concerns creating and configuring connection factories and destinations dynamically at run
time, but the extensions also provide function that is not directly related to messaging, such as function
for problem determination.

The IBM MQ IMS extensions
Previous releases of IBM MQ classes for JMS contain extensions that are implemented in objects
such as MQConnectionFactory, MQQueue, and MQTopic objects. These objects have properties and
methods that are specific to IBM MQ. The objects can be administered objects, or an application can
create the objects dynamically at run time. This release of IBM MQ classes for JIMS maintains these
extensions, which are now known as the IBM MQ JMS extensions. You can continue to use, without
change, any applications that use these extensions.

Developing applications for IBM MQ 69


https://www.ibm.com/support/pages/node/727251

The IBM JMS extensions
This release of IBM MQ classes for JMS provides a more generic set of extensions to the JMS API,
which are not specific to IBM MQ as the messaging system. These extensions are known as the IBM
JMS extensions and have the following broad objectives:

- To provide a greater level of consistency across IBM JMS providers
- To make it easier to write a bridge application between two IBM messaging systems
« To make it easier to port an application from one IBM JMS provider to another

The extensions provide function that is similar to that provided in IBM Message Service Client for
C/C++ and IBM Message Service Client for .NET.

From IBM MQ 8.0, the IBM MQ classes for IMS are built with Java 7. The Java 7 runtime environment
supports running earlier class file versions.

- ¥ 5.0.0.6 [V MQ 9.0.5 was the final Continuous Delivery release for IBM MQ 9.0. Therefore, from
IBM MQ 9.0.0 Fix Pack 6 onwards, the Javadoc information for the IBM MQ classes for JMS is updated
to reflect the behavior of the IBM MQ classes for JMS only for features available to Long Term Support
customers.

Related concepts

IBM MQ Java language interfaces

“The JMS model” on page 117

The IJMS model defines a set of interfaces that Java applications can use to perform messaging
operations. IBM MQ classes for JMS, as a JMS provider, defines how JMS objects are related to IBM
MQ concepts. The JMS specification expects certain JIMS objects to be administered objects. IMS 2.0
introduces a simplified API, while also retaining the classic API, from JMS 1.1.

“Using IJMS 2.0 functionality” on page 264
JMS 2.0 introduces several new areas of functionality to the IBM MQ classes for JMS.

Why should I use IBM MQ classes for JIMS?

Using IBM MQ classes for JMS has a number of advantages including being able to reuse any existing
JMS skills in your organization, and applications being more independent from the JMS provider and the
underlying IBM MQ configuration.

IBM MQ classes for JMS is one of two alternative APIs that Java applications can for use to access IBM
MQ resources. The other API is IBM MQ classes for Java. Although existing applications that use the IBM
MQ classes for Java continue to be fully supported, new applications should use the IBM MQ classes for
JIMS (see “Choice of API” on page 71).

Summary of advantages of using IBM MQ classes for JIMS

Using IBM MQ classes for JIMS allows you to reuse existing JMS skills and provide application
independence.

« You can reuse JMS skKills.

IBM MQ classes for IMS is a JMS provider that implements the JMS interfaces for IBM MQ as the
messaging system. If your organization is new to IBM MQ, but already has JMS application development
skills, you might find it easier to use the familiar IMS API to access IBM MQ resources rather than one of
the other APIs provided with IBM MQ.

« JMS is an integral part of Java Platform, Enterprise Edition (Java EE).

JMS is the natural API to use for messaging on the Java EE platform. Every application server that

is Java EE compliant must include a JMS provider. You can use JMS in application clients, servlets,
Java Server Pages (JSPs), enterprise Java beans (EJBs), and message driven beans (MDBs). Note in
particular that Java EE applications use MDBs to process messages asynchronously, and all messages
are delivered to MDBs as JMS messages.

70 Developing Applications for IBM MQ



« Connection factories and destinations can be stored as JMS administered objects in a central repository
rather than being hard-coded into an application.

An administrator can create and maintain JMS administered objects in a central repository, and IBM
MQ classes for JMS applications can retrieve these objects by using the Java Naming Directory
Interface (JNDI). JMS connection factories and destinations encapsulate IBM MQ-specific information
such as queue manager names, channel names, connection options, queue names, and topic names.
If connection factories and destinations are stored as administered objects, this information is not
hard-coded into an application. This arrangement therefore provides the application with a degree of
independence from the underlying IBM MQ configuration.

« JMS is an industry standard API that can provide application portability.

A JMS application can use IJNDI to retrieve connection factories and destinations that are stored as
administered objects, and use only the interfaces that are defined in the javax.jms package to perform
messaging operations. The application is then entirely independent of any JMS provider, such as IBM
MQ classes for JMS, and can be ported from one JMS provider to another without any change to the
application. If INDI is not available in a particular application environment, an IBM MQ classes for
JMS application can use extensions to the JMS API to create and configure connection factories and
destinations dynamically at run time. The application is then completely self-contained, but is tied to
IBM MQ classes for JMS as the JMS provider.

- Bridge applications might be easier to write by using JMS.

A bridge application is an application that receives messages from one messaging system and sends
them to another messaging system. Writing a bridge application can be complicated by using product-
specific APIs and message formats. Instead, you can write a bridge application by using two JMS
providers, one for each messaging system. The application then uses only one API, the JMS API, and
processes only JMS messages.

Deployable environments

To provide integration with a Java EE application server, the Java EE standards require messaging
providers to supply a resource adapter. Following the Java EE Connector Architecture (JCA) specification,
IBM MQ provides a resource adapter that uses JMS to provide messaging functions within any certified
Java EE environment.

While it has been possible to use the IBM MQ classes for Java inside Java EE, this API is not engineered
or optimized for this purpose. See the IBM technote Using WebSphere MQ Java Interfaces in J2EE/JEE
Environments for details of IBM MQ classes for Java considerations within Java EE.

Outside of the Java EE environment, OSGi and JAR files are provided, making it easier for you to obtain
just the IBM MQ classes for JIMS. These JAR files are now more readily deployable either stand-alone

or within software management frameworks such as Maven. For more information see the IBM technote
Obtaining the WebSphere MQ classes for JMS.

Choice of API
New applications should use the IBM MQ classes for JMS rather than IBM MQ classes for Java.

IBM MQ classes for JMS provide access to both the point-to-point and publish/subscribe messaging
features of IBM MQ. As well as sending JMS messages that provide support for the JMS standard
messaging model, applications can also send and receive messages without additional headers and so
can inter-operate with other IBM MQ applications, for example, C MQI applications. Full control of the
MQMD and MQ message payloads are available. Further IBM MQ features such as message streaming,
asynchronous put and report messages are also available. Using the supplied PCF helper classes, IBM
MQ PCF administration messages can be sent and received through the JMS API and can be used to
administer queue managers.

Features that have recently been added to IBM MQ, such as asynchronous consume and automatic
reconnection, are not available in the IBM MQ classes for Java, but are available in the IBM MQ classes for
JMS. Existing applications that use the IBM MQ classes for Java continue to be fully supported.

Developing applications for IBM MQ 71


https://www.ibm.com/support/docview.wss?uid=swg21266535
https://www.ibm.com/support/docview.wss?uid=swg21266535
https://www.ibm.com/support/docview.wss?uid=swg21683398

If you need access to IBM MQ features that are not available through the IBM MQ classes for JMS, you
can raise a Request for Enhancement (RFE). IBM can then advise whether the implementation is possible
in the IBM MQ classes for JMS implementation, or whether there is a best practice that can be followed.
For additional messaging features, as IBM is a contributor to the open standard, these features can be
raised as part of the JCP process.

Related tasks

Tracing IBM MQ classes for JMS applications

Java and JMS troubleshooting

Related information

IBM RFE Submission Process

JMS Java Specification Review Process

Using WebSphere MQ Java Interfaces in J2EE/JEE Environments
Obtaining the WebSphere MQ classes for JMS

Using IJMS to send PCF messages

Prerequisites for IBM MQ classes for IMS

This topic tells you what you need to know before using IBM MQ classes for JMS. To develop and run IBM
MQ classes for JMS applications, you need certain software components as prerequisites.

For information about the prerequisites for IBM MQ classes for JMS, see System Requirements for IBM
MQ.

To develop IBM MQ classes for IMS applications, you need a Java SE Software Development Kit (SDK). for
details of the JDKs supported by your operating system, see System Requirements for IBM MQ.

To run IBM MQ classes for JMS applications, you need the following software components:

« An IBM MQ queue manager.
« A Java runtime environment (JRE), for each system on which you run applications.

. mFor IBM i, Qshell, which is option 30 of the operating system.
. BT o /0, UNIX and Linux System Services (USS).

The IBM JSSE provider includes a FIPS certified cryptographic provider, so can be
programmatically configured for FIPS 140-2 compliance ready for immediate use. Therefore, FIPS 140-2
compliance can be supported directly from IBM MQ classes for Java and IBM MQ classes for IMS.

Oracle's JSSE provider can have a FIPS certified cryptographic provider that is configured
into it, but this is not ready for immediate use and is not available for programmatic configuration.
Therefore, in this case, IBM MQ classes for Java and IBM MQ classes for JMS cannot enable FIPS 140-2
compliance directly. You might be able to manually enable such compliance (again see the discussion at
FIPS 140 Compliant Mode for SunJSSE for some pointers) but IBM cannot currently provide guidance on
this.

You can use Internet Protocol Version 6 (IPv6) addresses in your IBM MQ classes for JIMS applications
if IPv6 addresses are supported by your Java virtual machine (JVM) and the TCP/IP implementation
on your operating system. The IBM MQ JMS administration tool (see Configuring JMS objects using the
administration tool ) also accepts IPv6 addresses.

The IBM MQ JMS administration tool and IBM MQ Explorer use the Java Naming Directory Interface
(INDI) to access a directory service, which stores administered objects. IBM MQ classes for IMS
applications can also use JNDI to retrieve administered objects from a directory service. A service
provider is code that provides access to a directory service by mapping JNDI calls to the directory service.
A file system service provider in the files £scontext.jar and providerutil. jaris supplied with IBM
MQ classes for JMS. The file system service provider provides access to a directory service based on the
local file system.

72 Developing Applications for IBM MQ


https://www.ibm.com/developerworks/rfe/execute?use_case=submitRfe
https://www.jcp.org/en/jsr/detail?id=368
https://www.ibm.com/support/docview.wss?uid=swg21266535
https://www.ibm.com/support/docview.wss?uid=swg21683398
https://www.ibm.com/developerworks/community/blogs/messaging/entry/using_pcf_with_mq_jms?lang=en
https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/FIPS.html

If you intend to use a directory service based on an LDAP server, you must install and configure an

LDAP server, or have access to an existing LDAP server. In particular, you must configure the LDAP server
to store Java objects. For information about how to install and configure your LDAP server, see the
documentation that is supplied with the server.

Installation and configuration of IBM MQ classes for JIMS

This section describes the directories and files that are created when you install IBM MQ classes for IMS
and tells you how to configure IBM MQ classes for JMS after installation.
Related concepts

“What is installed for IBM MQ classes for JIMS” on page 74

A number of files and directories are created when you install IBM MQ classes for IMS. On Windows,
some configuration is performed during installation by automatically setting environment variables. On
other platforms, and in certain Windows environments, you must set environment variables before you
can run IBM MQ classes for JIMS applications.

“Running IBM MQ classes for JMS applications under the Java security manager” on page 88

IBM MQ classes for JMS can run with the Java security manager enabled. To run applications successfully
with the Java security manager enabled, you must configure your Java virtual machine (JVM) with a
suitable policy configuration file.

“Using the IBM MQ resource adapter” on page 349
The resource adapter allows applications that are running in an application server to access IBM MQ
resources. It supports inbound and outbound communication.

“Post installation setup for IBM MQ classes for JIMS applications” on page 90

This topic tells you what authorities IBM MQ classes for JIMS applications need in order to access the
resources of a queue manager. It also introduces connection modes and describes how to configure a
gueue manager so that applications can connect in client mode.

“The point-to-point IVT for IBM MQ classes for JMS” on page 93

A point-to-point installation verification test (IVT) program is supplied with IBM MQ classes for JMS. The
program connects to a queue manager in either bindings or client mode, sends a message to the queue
called SYSTEM.DEFAULT.LOCAL.QUEUE, and then receives the message from the queue. The program can
create and configure all the objects that it requires dynamically at run time, or it can use JNDI to retrieve
administered objects from a directory service.

“The publish/subscribe IVT for IBM MQ classes for IMS” on page 97

A publish/subscribe installation verification test (IVT) program is supplied with IBM MQ classes for JMS.
The program connects to a queue manager in either bindings or client mode, subscribes to a topic,
publishes a message on the topic, and then receives the message that it has just published. The program
can create and configure all the objects that it requires dynamically at run time, or it can use JNDI to
retrieve administered objects from a directory service.

“Configuring the resource adapter for outbound communication” on page 379
To configure outbound communication, define the properties of a ConnectionFactory object and an
administered destination object.

“Support for OSGi” on page 104

OSGi provides a framework that supports the deployment of applications as bundles. Nine OSGi bundles
are supplied as part of the IBM MQ classes for JMS.

Related tasks

“Verifying the resource adapter installation” on page 397

The installation verification test (IVT) program for the IBM MQ resource adapter is supplied as an EAR file.
To use the program, you must deploy it and define some objects as JCA resources.

Troubleshooting IBM MQ classes for JMS problems

Problem determination for the IBM MQ resource adapter

Related reference

“Scripts provided with IBM MQ classes for IMS” on page 104

Developing applications for IBM MQ 73



A number of scripts are provided to assist with common tasks that need to be performed when using IBM
MQ classes for JMS.

What is installed for IBM MQ classes for IMS

A number of files and directories are created when you install IBM MQ classes for IMS. On Windows,
some configuration is performed during installation by automatically setting environment variables. On
other platforms, and in certain Windows environments, you must set environment variables before you
can run IBM MQ classes for JMS applications.

For most operating systems, the IBM MQ classes for JMS are installed as an optional component when
you install IBM MQ.

For more information about installing IBM MQ, see:

SR 1nstalling IBM MO
m Installing IBM MQ for z/OS

Important:

« Apart from the relocatable JAR files described in this topic, copying the IBM MQ classes for JMS JAR
files or native libraries to other machines, or to a different location on a machine where the IBM MQ
classes for JMS have been installed, is not supported.

« In addition, including the com.ibm.mqg.allclient. jax file, or the IBM MQ classes for IMS, within
application archives (such as enterprise application archives, or EAR files), is not supported.

You should therefore avoid bundling IBM MQ jar files in your applications (EAR files on WebSphere
Application Server), otherwise you might encounter unexpected issues associated with running back-
level, unpatched code.

Installation directories

Table 5 on page 74 shows where the IBM MQ classes for JMS files are installed on each platform.

Table 5. IBM MQ classes for IMS installation directories
Platform Directory
BT X and Linux MQ_INSTALLATION_PATH/java
Windows NV MQ_INSTALLATION_PATH\java
mIBMi /QIBM/ProdData/mgm/java
b 2/05 RS MQ_INSTALLATION_PATH/mqm/V9ROMO/java
MQ_INSTALLATION_PATH/opt/mgm/java

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
The installation directory includes the following content:

« The IBM MQ classes for JIMS JAR files, which are in the MQ_INSTALLATION_PATH\java\lib
directory.

- The IBM MQ native libraries, which are used by applications that use the Java Native Interface.

The 32-bit native libraries are installed into the MQ_INSTALLATION_PATH\java\lib directory and the
64-bit native libraries can be found in the MQ_INSTALLATION_PATH\java\lib64 directory.

For more information about the IBM MQ native libraries, see “Configuring the Java Native Interface
(INI) libraries” on page 79.

74 Developing Applications for IBM MQ



« Additional scripts that are described in “Scripts provided with IBM MQ classes for JIMS” on page 104.
These scripts are in the MQ_INSTALLATION_PATH\java\bin directory.

« The specifications of the IBM MQ classes for IMS API. The Javadoc tool has been used to generate the
HTML pages that contain the specifications of the API.

The HTML pages are in the MQ_INSTALLATION_PATH\java\doc\WMQIMSClasses directory:

- uLw On UNIX, Linux, and Windows, this subdirectory contains the individual HTML pages.
- mOn IBM i, the HTML pages are in a file called wmgjms_javadoc. jar.

- mOn z/0S, the HTML pages are in a file called wmgjms_javadoc. jar.

« Support for OGSi. OSGi bundles are installed in the java\1ib\0SGi directory and described in
“Support for OSGi” on page 104.

« The IBM MQ resource adapter, which can be deployed into any Java Platform, Enterprise Edition 7 ( Java
EE 7) compliant application server.

The IBM MQ resource adapter is in the MQ_INSTALLATION_PATH\java\lib\jca directory; for more
information, see “Using the IBM MQ resource adapter” on page 349

. On Windows, symbols that can be used for debugging are installed in the
MQ_INSTALLATION_PATH\java\lib\symbols directory.

The installation directory also includes some files that belong to other IBM MQ components:

- The IBM MQ transport for SOAP, which provides a IMS transport for SOAP, is installed into the
MQ_INSTALLATION_PATH\java\lib\soap directory. For further information on IBM MQ transport
for SOAP, see “Developing web services with IBM MQ transport for SOAP” on page 1183.

From IBM MQ 9.0, the IBM MQ transport for SOAP is deprecated.
LEATUER SR The JSON4J . jar file and com. ibm. msg.client.mqlight package are not

needed by the IBM MQ classes for Java and IBM MQ classes for JIMS. From IBM MQ 9.0.0 Fix Pack 3 and
IBM MQ 9.0.5, the following changes are therefore made to the com.ibm.mqg.allclient.jazr file:

« The reference to JSON4J . jar file is removed from the class path statement within the manifest file for
the com.ibm.mqg.allclient.jax file.

« The package com.ibm.msg.client.mglight is no longer included inside the
com.ibm.mg.allclient. jarz file.

Sample applications

Some sample applications are supplied with IBM MQ classes for JMS. Table 6 on page 75 shows where
the sample applications are installed on each platform.

Table 6. Samples directories

Platform Directory
mUNIX and Linux MQ_INSTALLATION_PATH/samp/jms
Windows [JYTEpa. MQ_INSTALLATION_PATH\tools\jms
mIBM i /QIBM/ProdData/mgm/java/samples/jms
mﬁﬁ-z/os MQ_INSTALLATION_PATH/mgm/V9ROMO/java/samples/jms
MQ_INSTALLATION_PATH/opt/mgm/samp/jms

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Developing applications for IBM MQ 75



After installation, you might need to perform some configuration tasks to compile and run applications.

“Setting environment variables for IBM MQ classes for IMS” on page 77 describes the classpath that is
required to run simple IBM MQ classes for JMS applications. This topic also describes additional JAR files
that need to be referenced in special circumstances and the environment variables that you must set to
run the scripts that are provided with IBM MQ classes for JMS.

To control properties, such as tracing and logging of an application, you need to provide a configuration
properties file. The IBM MQ classes for JMS configuration properties file is described in “The IBM MQ
classes for JMS configuration file” on page 81.

Relocatable JAR files

Within an enterprise, the following files can be moved to systems that need to run IBM MQ classes for
JMS:

e« -com.ibm.mg.allclient.jar

e -com.ibm.mq.traceControl.jar

e -jms.jar

- -fscontext. jar

e -providerutil.jar

« The Bouncy Castle security provider and CMS support JAR files

The £scontext.jar and providerutil. jar files are required if your application performs JNDI
lookups using a file system context.

The Bouncy Castle security provider and CMS support JAR files are required. For more information, see
Support for non-IBM JREs. The following JAR files are required:

« bcpkix-jdk150n.jar
e bcprov-jdkl5on. jar

o R I bcutil - jdk150n. jar

The file com.ibm.mqg.allclient. jar contains the IBM MQ classes for IMS, the IBM MQ classes for
Java, and the PCF and Headers Classes. If you move this file to a new location, make sure that you take
steps to keep this new location maintained with new IBM MQ Fix Packs. Also, make sure that the use of
this file is made known to IBM Support if you are getting an interim fix.

To determine the version of the file com.ibm.mq.allclient. jar, use the following command:
java -jar com.ibm.mqg.allclient.jar
The following example shows some sample output from this command:

C:\Program Files\IBM\MQ_1\java\lib>java -jar com.ibm.mqg.allclient.jar

Name : Java Message Service Client
Version: 9.0.0.0
Level: poeO-L140428.1

Build Type: Production
Location: file:/C:/Program Files/IBM/MQ_1/java/lib/com.ibm.mqg.allclient.jar

Name: WebSphere MQ classes for Java Message Service
Version: 9.0.0.0
Level: poee-L140428.1

Build Type: Production
Location: file:/C:/Program Files/IBM/MQ_1/java/lib/com.ibm.mqg.allclient.jar

Name: WebSphere MQ JMS Provider
Version: 9.0.0.0
Level: p000-L140428.1 mqjbnd=p000-1L140428.1

Build Type: Production
Location: file:/C:/Program Files/IBM/MQ_1/java/lib/com.ibm.mqg.allclient.jar

Name: Common Services for Java Platform, Standard Edition
Version: 9.0.0.0
Level: poee-L140428.1

76 Developing Applications for IBM MQ



Build Type: Production
Location: file:/C:/Program Files/IBM/MQ_1/java/lib/com.ibm.mqg.allclient.jar

The file com.ibm.mq.traceControl. jar is used to dynamically control trace for IBM MQ classes for
JMS applications. For more information, see Controlling trace in a running process by using IBM MQ
classes for Java and IBM MQ classes for IMS.

Related concepts
Problems in deploying the resource adapter

Setting environment variables for IBM MQ classes for IMS

Before you can compile and run IBM MQ classes for JMS applications, the setting for your CLASSPATH
environment variable must include the IBM MQ classes for JMS Java archive (JAR) file. Depending on your
requirements, you might need to add other JAR files to your class path. To run the scripts provided with
IBM MQ classes for JMS, other environment variables must be set.

About this task

Important: Setting the Java option -Xbootclasspath, to include the IBM MQ classes for IMS, is not
supported.

To compile and run IBM MQ classes for JIMS applications, use the CLASSPATH setting for your platform as
shown in Table 7 on page 77. The setting includes the samples directory, so that you can compile and

run the IBM MQ classes for JIMS sample applications. Alternatively, you can specify the class path on the
java command instead of using the environment variable.

Table 7. CLASSPATH setting to compile and run IBM MQ classes for IMS applications, including the
sample applications

Platform CLASSPATH setting

SEIN .« | CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mgjms.jar:
MQ_INSTALLATION_PATH/samp/jms/samples:

CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mgjms.jar:
MQ_INSTALLATION_PATH/samp/jms/samples:

m CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mgjms.jar:
MQ_INSTALLATION_PATH/samp/jms/samples:

[ HP-ux IS
UX, Linux, and
Solaris

BTN 5 i | CLASSPATH=/QIBM/ProdData/mgm/java/lib/com.ibm.majms.jar:
/QIBM/ProdData/mgm/java/samples/ims/samples:

CLASSPATH= MQ_INSTALLATION_PATH\java\lib\com.ibm.mgjms.jar;
Windows MQ_INSTALLATION_PATH\tools\jms\samples;

SN 05 | CLASSPATH= MQ_INSTALLATION PATH/mgm/VOROMO/javajlib/
com.ibm.mgjms.jar:
MQ_INSTALLATION_PATH/mgm/V9ROMO/java/samples/jms/samples:

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

The manifest of the JAR file com. ibm.mqjms. jar contains references to most of the other JAR files
required by IBM MQ classes for JMS applications, and so you do not need to add these JAR files to your

Developing applications for IBM MQ 77



class path. These JAR files include those required by applications that use the Java Naming Directory
Interface (JNDI) to retrieve administered objects from a directory service and by applications that use the
Java Transaction API (JTA).

However, you must include additional JAR files in your class path in the following circumstances:

- If you are using channel exit classes that implement the channel exit interfaces defined in the
com.ibm.mq package, instead of those defined in the com. ibm.mq.exits package, you must add
the IBM MQ classes for Java JAR file, com.ibm.mq. jar, to your class path.

- If your application uses JNDI to retrieve administered objects from a directory service, you must also
add the following JAR files to your class path:

- fscontext.jar
— providerutil.jar
« If your application uses the JTA, you must also add jta. jar to your class path.
Note: These additional JAR files are required only for compiling your applications, not for running them.

The scripts provided with IBM MQ classes for JMS use the following environment variables:

MQ_JAVA_DATA_PATH
This environment variable specifies the directory for log and trace output.

MQ_JAVA_INSTALL_PATH
This environment variable specifies the directory where IBM MQ classes for JMS is installed.

MQ_JAVA_LIB_PATH
This environment variable specifies the directory where the IBM MQ classes for IMS libraries are
stored, as shown in Table 8 on page 79.

Procedure

:

On Windows, after installing IBM MQ, run the command setmqgenv.

If you do not run this command first, the following error message might appear when you are issuing a
dspmqvexr command:

mAMQSSSL IBM MQ Java environment has not been configured
correctly, or the IBM MQ JRE feature has not been installed.

Note: mThis message is to be expected if you did not install the IBM MQ Java Runtime
Environment (JRE).

« Onany other platform, set the environment variables yourself:

- Linux - UNIX o set the environment variables if you are using a 32-bit JVM on UNIX,

or Linux systems, you can use the script setjmsenv.

- Linux - UNIX o0 set the environment variables if you are using a 64-bit JVM
on a UNIX or Linux system, you can use the script setjmsenv64. These scripts are in the
MQ_INSTALLATION_PATH/java/bin directory, where MQ_INSTALLATION_PATH represents the
high-level directory in which IBM MQ is installed.

You can use the setjmsenv or setjmsenvé64 script in a variety of ways: You can use it as a basis for
setting the required environment variables, as shown in the table, or add them to . profile using a
text editor. If you have a non-typical setup, edit the script contents as necessary. Alternatively, you
can run the script in every session from which JMS startup scripts are to be run. If you choose this
option you need to run the script in every shell window you start, during the JMS verification process
by typing . ./setjmsenvor. ./setjmsenv64d

mOn IBM i, you must set the environment variable QIBM_MULTI_THREADED to Y. You can
then run multithreaded applications in the same way that you run single threaded applications. See
Setting up IBM MQ with Java and JMS for more information.

78 Developing Applications for IBM MQ



Configuring the Java Native Interface (JNI) libraries

IBM MQ classes for JMS applications, that either connect to a queue manager using the bindings
transport, or that connect to a queue manager using the client transport and use channel exit programs
written in languages other than Java, need to be run in an environment that allows access to the Java
Native Interface (JNI) libraries.

About this task

To set up this environment, you must configure the environment's library path so that the Java virtual
machine (JVM) can load the mqgjbnd library before you start the IBM MQ classes for JMS application.

IBM MQ provides two Java Native Interface (INI) libraries:

mgqjbnd
This library is used by applications that connect to a queue manager using the bindings transport.
It provides the interface between the IBM MQ classes for JMS and the queue manager. The mgjbnd
library installed with IBM MQ 9.0 can be used to connect to any IBM MQ 9.0 (or earlier) queue
manager.

mgjexitstub02
The mgjexitstub02 library is loaded by the IBM MQ classes for IMS when an application connects to a
gueue manager using the client transport and uses a channel exit program written in a language other
than Java.

On certain platforms, IBM MQ installs 32-bit and 64-bit versions of these JNI libraries. The location of the
libraries for each platform is shown in Table 1.

Table 8. The location of the IBM MQ classes for IMS libraries for each platform

Platform Directory containing the IBM MQ classes for IMS
libraries
-EE-AIX MQ_INSTALLATION_PATH/java/lib (32-bit libraries)

HP-UYX MQ_INSTALLATION_PATH/java/lib64 (64-bit libraries)

: Linux Linux
(POWER, x86-64 and zSeries s390x platforms)

BT 0 o ris (x86-64 and SPARC

platforms)

[ Windows [PYISEIS MQ_INSTALLATION_PATH\java\lib (32-bit libraries)
MQ_INSTALLATION_PATH\java\lib64 (64-bit libraries)

b 205 HI MQ_INSTALLATION_PATH/mqm/V8ROMO/java/lib

(31-bit and 64-bit libraries)

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Note: mOn z/0S, you can use either a 31-bit or 64-bit Java virtual machine (JVM). You do not
have to specify which INI libraries to use; IBM MQ classes for JIMS can determine for itself which JNI
libraries to load.

Procedure
1. Configure the JVM's java.libxrary.path property, which can be done in two ways:

- By specifying the JVM argument as shown in the following example:

-Djava.library.path=path_to_library_directory

Developing applications for IBM MQ 79



For example, for a 64-bit JVM on Linux for a default location installation, specify:
-Djava.library.path=/opt/mgm/java/libé64

« By configuring the shell's environment such that the JVM will set up its own java.library.path.
This path varies by platform and by the location in which you installed IBM MQ. For example, for a
64-bit JVM and a default IBM MQ installation location, you can use the following settings:

m.export LIBPATH=/usxr/mgm/java/1ib64:$LIBPATH

S TS Sl 'V O -t LD L TBRARY_PATH=/opt/mqm/java/
1ib64:$LD_LIBRARY_PATH

LM ot PATH=C: \Program Files\IBM\MQ\java\lib64;%PATHS

An example of the exception stack that you see when the environment has not been configured
correctly is as follows:

Caused by: com.ibm.mq.jmgi.local.LocalMQ$4: CC=2;RC=2495;
AMQ8598: Failed to load the WebSphere MQ native INI library: 'mqjbnd'.
at com.ibm.mq.jmqgi.local.LocalMQ.loadLib(LocalMQ.java:1268)
at com.ibm.mq.jmgi.local.LocalMQ$1.run(LocalMQ.java:309)
at java.security.AccessController.doPrivileged(AccessController.java:400)
at com.ibm.mqg.jmgi.local.LocalMQ.initialise_inner(LocalMQ.java:259)
at com.ibm.mqg.jmgi.local.LocalMQ.initialise(LocalMQ.java:221)
at com.ibm.mq.jmqgi.local.LocalMQ.<init>(LocalMQ.java:1350)
at com.ibm.mq.jmgi.local.lLocalServer.<init>(LocalServer.java:230)
at sun.reflect.NativeConstructorAccessorImpl.newInstance@(Native Method)
at
sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:86)

at
sun.§ef1ect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.jav
a:58

at java.lang.reflect.Constructor.newInstance(Constructor.java:542)

at com.ibm.mq.jmqgi.JImgiEnvironment.getInstance(ImgiEnvironment.java:706)

at com.ibm.mq.jmqi.JImgiEnvironment.getMQI(ImgqiEnvironment.java:640)

at
com.ibm.msg.client.wmq.factories.WMQConnectionFactory.createV7ProviderConnection(WMQConnectionF
actory.java:8437)

... 7 more
Caused by: java.lang.UnsatisfiedLinkError: mqgjbnd (Not found in java.library.path)

at java.lang.Classloader.loadlLibraryWithPath(ClassLoader.java:1235)

at java.lang.Classloader.loadlLibraryWithClasslLoader(ClassLoader.java:1205)

at java.lang.System.loadlLibrary(System.java:534)

at com.ibm.mqg.jmgi.local.LocalMQ.loadlLib(LocalMQ.java:1240)

. 20 more

2. After either the 32-bit or 64-bit environment has been set up, start the IBM MQ classes for IMS
application using the command:

java application-name

where application-name is the name of the IBM MQ classes for JMS application to be run.

An exception containing IBM MQ Reason code 2495 (MQRC_MODULE_NOT_FOUND) is thrown by the
IBM MQ classes for JIMS if:

« The IBM MQ classes for JMS application is run in a 32-bit Java runtime environment, and a
64-bit environment has been set up for the IBM MQ classes for JMS, as the 32-bit Java runtime
environment is unable to load the 64-bit Java Native Library.

« The IBM MQ classes for JMS application is run in a 64-bit Java runtime environment, and a
32-bit environment has been set up for the IBM MQ classes for JMS, as the 64-bit Java runtime
environment is unable to load the 32-bit Java Native Library.

80 Developing Applications for IBM MQ



The IBM MQ classes for JIMS configuration file
An IBM MQ classes for JMS configuration file specifies properties that are used to configure IBM MQ
classes for JMS.

Note: The properties defined in configuration file can also be set as JVM system properties. If a property
is set both in the configuration file and as a system property, the system property takes precedence.
Therefore, if required, you can override any property in the configuration file by specifying it as a system
property on the java command.

The format of an IBM MQ classes for JMS configuration file is that of a standard Java properties file. A
sample configuration file called jms.config is supplied in the bin subdirectory of the IBM MQ classes
for JMS installation directory. This file documents all the supported properties and their default values.

You can choose the name and location of an IBM MQ classes for JMS configuration file. When you start
your application, use a java command with the following format:

java -Dcom.ibm.msg.client.config.location= config_file_url application_name

In the command, config_file urlis a uniform resource locator (URL) that specifies the name and location
of the IBM MQ classes for JMS configuration file. URLs of the following types are supported: http, file, ftp,
and jar.

Here is an example of a java command:
java -Dcom.ibm.msg.client.config.location=file:/D:/mydir/myjms.config MyAppClass

This command identifies the IBM MQ classes for JIMS configuration file as the file
D:\mydir\mjms.config on the local Windows system.

When an application starts, IBM MQ classes for JMS reads the contents of the configuration file and
stores the specified properties in an internal property store. If the java command does not identify a
configuration file, or if the configuration file cannot be found, IBM MQ classes for JMS uses the default
values for all the properties.

An IBM MQ classes for JMS configuration file can be used with any of the supported transports between
an application and a queue manager or broker.

Overriding properties specified in an IBM MQ MQI client configuration file

An IBM MQ MQI client configuration file can also specify properties that are used to configure IBM MQ
classes for JIMS. However, properties specified in an IBM MQ MQI client configuration file apply only when
an application connects to a queue manager in client mode.

If required, you can override any attribute in a IBM MQ MQI client configuration file by specifying it as a
property in a IBM MQ classes for JMS configuration file. To override an attribute in a IBM MQ MQI client
configuration file, use an entry with the following format in the IBM MQ classes for JIMS configuration file:

com.ibm.mq.cfg. stanza. propName = propValue

The variables in the entry have the following meanings:

stanza
The name of the stanza in the IBM MQ MQI client configuration file that contains the attribute

propName
The name of the attribute as specified in the IBM MQ MQI client configuration file

propValue
The value of the property that overrides the value of the attribute specified in the IBM MQ MQI client
configuration file

Alternatively, you can override an attribute in an IBM MQ MQI client configuration file by specifying the
property as a system property on the java command. Use the preceding format to specify the property as
a system property.

Developing applications for IBM MQ 81



Only the following attributes in an IBM MQ MQI client configuration file are relevant to IBM MQ classes
for IMS. If you specify or override other attributes, it has no effect. Specifically, please note that the
ChannelDefinitionFile and ChannelDefinitionDirectory in the CHANNELS stanza of the client
configuration file are not used. See “Using a client channel definition table with IBM MQ classes for JMS”

on page 227 for details of how to use the CCDT with the IBM MQ classes for JMS.

Table 9. Which stanza of the client configuration file contains which attribute

Stanza

Attribute

CHANNELS stanza of the client configuration file

PutlDefaultAlwaysSync

CHANNELS stanza of the client configuration file

DefRecon

CHANNELS stanza of the client configuration file

ReconDelay

CHANNELS stanza of the client configuration file

PasswordProtection

ClientExitPath stanza of the client configuration file

ExitsDefaultPath

ClientExitPath stanza of the client configuration file

ExitsDefaultPath64

ClientExitPath stanza of the client configuration file

JavaExitsClasspath

JMQI stanza of the client configuration file

useMQCSPauthentication

MessageBuffer stanza of the client configuration
file

MaximumSize

file

MessageBuffer stanza of the client configuration PurgeTime
file
MessageBuffer stanza of the client configuration UpdatePercentage

TCP stanza of the client configuration file

ClntRcvBufSize

TCP stanza of the client configuration file

ClntSndBufSize

TCP stanza of the client configuration file

Connect_Timeout

TCP stanza of the client configuration file

KeepAlive

For further details on the IBM MQ MQI client configuration see Configuring a client using a configuration

file

Java Standard Environment Trace stanza

Use the Java Standard Environment Trace Settings stanza to configure the IBM MQ classes for JMS trace

facility.

com.ibm.msg.client.commonsexrvices.trace.outputName = traceOutputName
traceOutputName is the directory and file name to which trace output is sent.

By default, trace information is written to a trace file in the current working directory of the
application. The name of the trace file depends upon the environment that the application is running

n:

« For IBM MQ classes for JMS for IBM MQ 9.0.0 Fix Pack 1 or earlier, trace is written to a file called

mqjms_%PID%.trc.

. MFrom IBM MQ 9.0.0 Fix Pack 2, if the application has loaded the IBM MQ classes for
JMS from the JAR file com.ibm.mqjms. jar, trace is written to a file called mgjava_%PID%.trc.

. MFrom IBM MQ 9.0.0 Fix Pack 2, if the application has loaded the IBM MQ classes for
JMS from the relocatable JAR file com.ibm.mqg.allclient. jaz, trace is written to a file called

mgjavaclient_%PID%.tzxc.

82 Developing Applications for IBM MQ




o AR From IBM MQ 9.0.0 Fix Pack 10, if the application has loaded the IBM MQ
classes for JIMS from the JAR file com.ibm.mgjms. jar, trace is written to a file called
mgjava_%PID%.cl%u.txc.

o ORI From IBM MQ 9.0.0 Fix Pack 10, if the application has loaded the IBM MQ classes for
JIMS from the relocatable JAR file com.ibm.mqg.allclient. jar, trace is written to a file called
mqgjavaclient_%PID%.cl%u.tzrc.

where %PID% is the process identifier of the application that is being traced, and %u is a unique
number to differentiate files between threads running trace under different Java classloaders.

If you specify an alternative directory, it must exist, and you must have write permission for this
directory. If you do not have write permission, the trace output is written to System.erxz.

com.ibm.msg.client.commonsexvices.trace.include = includelist
includelist is alist of packages and classes that are traced, or the special values ALL or NONE.

Separate package or class names with a semicolon, ;. includelList defaults to ALL, and traces all
packages and classes in IBM MQ classes for JMS.

Note: You can include a package but then exclude subpackages of that package. For example, if you
include package a.b and exclude package a.b.x, the trace includes everythingina.b.yanda.b.z,
butnota.b.xora.b.x.1.

com.ibm.msg.client.commonsexrvices.trace.exclude = excludelList
excludelist is alist of packages and classes that are not traced, or the special values ALL or NONE.

Separate package or class names with a semicolon, ;. excludelList defaults to NONE, and therefore
excludes no packages and classes in IBM MQ classes for JMS from being traced.

Note: You can exclude a package but then include subpackages of that package. For example, if
you exclude package a.b and include package a.b.x, the trace includes everythingina.b.x and
a.b.x.1,butnota.b.yora.b.z.

Any package or class that is specified, at the same level, as both included and excluded is included.

com.ibm.msg.client.commonsexrvices.trace.maxBytes = maxArrayBytes
maxArrayBytes is the maximum number of bytes that are traced from any byte arrays.

If maxArrayBytes is set to a positive integer, it limits the number of bytes in a byte-array that are
written out to the trace file. It truncates the byte array after writing maxArrayBytes out. Setting
maxArrayBytes reduces the size of the resulting trace file, and reduces the effect of tracing on the
performance of the application.

A value of O for this property means that none of the contents of any byte arrays are sent to the trace
file.

The default value is -1, which removes any limit on the number of bytes in a byte array that are sent to
the trace file.

com.ibm.msg.client.commonsexrvices.trace.limit = maxTraceBytes
maxTraceBytes is the maximum number of bytes that are written to a trace output file.

maxTraceBytes works with traceCycles. If the number of bytes of trace written is near to the
limit, the file is closed, and a new trace output file is started.

A value of @ means that a trace output file has zero length. The default value is -1, which means that
the amount of data to be written to a trace output file is unlimited.

com.ibm.msg.client.commonsexrvices.trace.count = traceCycles
traceCycles is the number of trace output files to cycle through.

If the current trace output file reaches the limit specified by maxTraceBytes, the file is closed.
Further trace output is written to the next trace output file in sequence. Each trace output file is
distinguished by a numeric suffix appended to the file name. The current or most recent trace output

Developing applications for IBM MQ 83



fileis mqjms.trc.0, the next most recent trace output file is mqjms.trc. 1. Older trace files follow
the same numbering pattern up to the limit.

The default value of traceCyclesis 1. If traceCycles is 1, when the current trace output file
reaches its maximum size, the file is closed and deleted. A new trace output file with the same name
is started. Therefore, only one trace output file exists at a time.

com.ibm.msg.client.commonsexrvices.trace.parameter = traceParameters
traceParameters controls whether method parameters and return values are included in the trace.

traceParameters defaults to TRUE. If traceParameters is set to FALSE, only method signatures
are traced.

com.ibm.msg.client.commonsexrvices.trace.startup = startup
There is an initialization phase of IBM MQ classes for JMS during which resources are allocated. The
main trace facility is initialized during the resource allocation phase.

If startup is set to TRUE, startup trace is used. Trace information is produced immediately and
includes the setup of all components, including the trace facility itself. Startup trace information
can be used to diagnose configuration problems. Startup trace information is always written to
System.err.

startup defaults to FALSE.

startup is checked before initialization is complete. For this reason, only specify the property on
the command line as a Java system property. Do not specify it in the IBM MQ classes for JMS
configuration file.

com.ibm.msg.client.commonsexrvices.trace.compress = compressedTrace
Set compressedTrace to TRUE to compress trace output.

The default value of compressedTrace is FALSE.

If compressedTrace is set to TRUE, trace output is compressed. The default trace output file

name has the extension . txrz. If compression is set to FALSE, the default value, the file has the
extension . trc toindicate it is uncompressed. However if the file name for the trace output has been
specified in traceOutputName that name is used instead; no suffix is applied to the file.

Compressed trace output is smaller than uncompressed. Because there is less I/0, it can be written
out faster than uncompressed trace. Compressed tracing has less effect on the performance of IBM
MQ classes for JMS than uncompressed tracing.

If maxTraceBytes and traceCycles are set, multiple compressed trace files are created in place of
multiple flat files.

If IBM MQ classes for JMS ends in an uncontrolled manner, a compressed trace file might not be valid.
For this reason, trace compression must only be used when IBM MQ classes for JIMS closes down in

a controlled manner. Only use trace compression if the problems being investigated do not cause the
JVM itself to stop unexpectedly. Do not use trace compression when diagnosing problems that can
result in System.Halt () shutdowns or abnormal, uncontrolled JVM terminations.

com.ibm.msg.client.commonsexrvices.trace.level = tracelevel
tracelevel specifies a filtering level for the trace. The defined trace levels are as follows:

« TRACE_NONE: 0

» TRACE_EXCEPTION: 1

« TRACE_WARNING: 3

« TRACE_INFO: 6

« TRACE_ENTRYEXIT: 8
TRACE_DATA: 9

TRACE_ALL: Integer.MAX_VALUE

84 Developing Applications for IBM MQ



Each trace level includes all lower levels. For example, if trace level is set at TRACE_INFO, then any
trace point with a defined level of TRACE_EXCEPTION, TRACE_WARNING, or TRACE_INFO is written to
the trace. All other trace points are excluded.

com.ibm.msg.client.commonsexrvices.trace.standalone = standaloneTrace

standaloneTrace controls whether the IBM MQ JMS client tracing service is used in a WebSphere
Application Server environment.

If standaloneTrace is set to TRUE, the IBM MQ IMS client tracing properties are used to determine
the trace configuration.

If standaloneTrace is set to FALSE, and the IBM MQ JMS client is running in an WebSphere
Application Server container, the WebSphere Application Server trace service is used. The trace
information that is generated depends upon the trace settings of the application server.

The default value of standaloneTrace is FALSE.

Logging stanza
Use the Logging stanza to configure the IBM MQ classes for IMS log facility.

The following properties can be included in the Logging stanza:

com.ibm.msg.client.commonservices.log.outputName =path
The name of the log file that is used by the IBM MQ classes for JMS log facility. The default value is
mgjms.log, which is written to the current working directory for the Java Runtime Environment that
the IBM MQ classes for JMS are running in.

The property can take one of the following values:
- asingle path name
« acomma-separated list of path names (all data is logged to all files)
Each path name can be an absolute or relative path name or:
"stderr" or "System.err"

Represents the standard error stream.
"stdout" or "System.out"

Represents the standard output stream.

com.ibm.msg.client.commonservices.log.maxBytes
The maximum number of bytes that are logged from any call to log message data.

Positive integer
Data is written up to that value of bytes per log call.

0
No data is written.
-1
Unlimited data is written (default).

com.ibm.msg.client.commonservices.log.limit
The maximum number of bytes that are written to any 1 log file (default is 262144).

Positive integer
Data is written up to that value of bytes per log file.

0
No data is written.
-1
Unlimited data is written.
com.ibm.msg.client.commonservices.log.count
The number of log files to cycle through. As each file reaches

com.ibm.msg.client.commonservices.trace.limit trace will beginin the next file, the
default is 3.

Developing applications for IBM MQ 85



Positive integer
Number of files to cycle through.

1]
A single file.

Java SE Specifics stanza
Use the Java SE Specifics stanza to configure properties that are used when the IBM MQ classes for JMS
are being used in a Java Standard Edition environment.

com.ibm.msg.client.commonsexrvices.j2se.produceJavaCoxre = TRUE|FALSE
Determines whether a JavaCore file is written immediately after the IBM MQ classes for JMS has
generated an FDC file. If this is set to TRUE a JavaCore file is produced in the working directory of the
Java Runtime Environment in which the IBM MQ classes for JMS are running.

TRUE
Generate JavaCore, subject to the Java Runtime Environment's ability to do so.

FALSE
Do not generate JavaCore; this is the default value.

IBM MQ Properties stanza
Use the IBM MQ Properties stanza to set properties that affect how the IBM MQ classes for JMS interact
with IBM MQ.

com.ibm.msg.client.wmq.compat.base.internal.MQQueue.smallMsgsBufferReductionThx
eshold
When an application that uses the IBM MQ classes for JMS is connecting to an IBM MQ queue
manager using IBM MQ messaging provider migration mode, the IBM MQ classes for JMS uses a
default buffer size of 4 KB when it is receives messages. If the message that the application is
trying to get is larger than 4 KB, the IBM MQ classes for JMS resizes the buffer to be large enough
to accommodate the message. The larger buffer size is then used when subsequent messages are
received.

This property controls when the buffer size is reduced back to 4 KB. By default, when ten consecutive
messages that are less than the larger buffer size are received, the buffer size is reduced back to 4 KB.
To reset the buffer size back to 4 KB every time a message is received, set the property to the value 0.

0
The buffer always resets to the default size.
10
This is the default value. The buffer will be resized after the tenth message.

com.ibm.msg.client.wmq.xreceiveConvexrsionCCSID
When an application that is using the IBM MQ classes for JMS is connecting to an IBM MQ queue
manager using IBM MQ messaging provider normal mode, the receiveConversionCCSID property
can be set to override the default CCSID value in the MQMD structure that is used to receive messages
from the queue manager. By default, the MQMD contains a CCSID field set to 1208, but this can be
changed if, for example, the queue manager is unable to convert messages to this code page.

Valid values are any valid CCSID number or one of the following values:

-1
Use the platform default.

1208
This is the default value.

86 Developing Applications for IBM MQ



Client-mode specifics stanza
Use the Client-mode specifics stanza to specify properties that are used when the IBM MQ classes for
JMS connect to a queue manager that is using the CLIENT transport.

com.ibm.mq.polling.RemoteRequestEntry
Specifies the polling interval that the IBM MQ classes for JMS uses to check for broken connections
when it is waiting for a response from a queue manager.

Positive integer
The number of milliseconds to wait before checking. The default value is 20000 or 10 seconds.
The minimum value is 3000, and lower values are treated in the same way as this minimum value.

Properties used to configure JMS client behavior
Use these properties to configure the behavior of the JMS client.

com.ibm.mq.jms.SupportMQExtensions TRUE|FALSE
The JMS 2.0 specification introduces changes to the way certain behaviors work. IBM MQ 8.0 includes
the property com.ibm.mq.jms.SupportMQExtensions, which can be set to TRUE, to revert these
changed behaviors back to previous implementations. Reverting the changed behaviors might be
necessary some for JMS 2.0 applications, and also for some applications that use the JMS 1.1 API but
run against the IBM MQ 8.0 IBM MQ classes for JMS.

TRUE
The following three areas of functionality are reverted by setting SupportMQExtensions to TRUE:

Message priority
Messages can be assigned a priority, 0 - 9. Before JMS 2.0, messages could also use the value
-1, indicating that a queue's default priority is used. JIMS 2.0 does not allow a message priority
of -1 to be set. Turning on SupportMQExtensions allows the value of -1 to be used.

Client id
The IJMS 2.0 specification requires that non-null client ids are checked for uniqueness when
they make a connection. Turning on SupportMQExtensions, means that this requirement is
disregarded, and that a client ID can be reused.

NoLocal
The IJMS 2.0 specification requires that when this constant is turned on, a consumer cannot
receive messages that are published by the same client ID. Before JMS 2.0, this attribute was

set on a subscriber to prevent it receiving messages that are published by its own connection.
Turning on SupportMQExtensions reverts this behavior to its previous implementation.

FALSE
The changes of behavior are retained.

com.ibm.msg.client. jms.ByteStreamReadOnlyAftexSend= TRUE|FALSE
From IBM MQ 8.0.0 Fix Pack 2, after an application has sent a Bytes or Stream message, IBM MQ
classes for JMS can set the state of the message that has just been sent to either read only, or write
only.

TRUE
The objects are set to read only after being sent. Setting this value maintains compatibility with
the JMS 2.0 specification

FALSE
The objects are set to write only after being sent. This is the default value.

Related concepts
“SupportMQExtensions property” on page 269

Developing applications for IBM MQ 87



The JMS 2.0 specification introduces changes to the way certain behaviors work. IBM MQ 8.0 and later
includes the property com.ibm.mq.jms.SupportMQExtensions, which can be set to TRUE, to revert
these changed behaviors back to previous implementations.

STEPLIB configuration for IBM MQ classes for IMS on z/0S
On z/0S, the STEPLIB used at run time must contain the IBM MQ SCSQAUTH and SCSQANLE libraries.
Specify these libraries in the startup JCL or using the . profile file.

From UNIX and Linux System Services, you can add these using a line in your . profile as shownin
the following code snippet, replacing thlqual with the high-level data set qualifier that you chose when
installing IBM MQ:

export STEPLIB=thlqual.SCSQAUTH:thlqual.SCSQANLE:$STEPLIB

In other environments, you typically need to edit the startup JCL to include SCSQAUTH and SCSQANLE on
the STEPLIB concatenation:

STEPLIB DD DSN=thlqual.SCSQAUTH, DISP=SHR
DD DSN=thlqual.SCSQANLE,DISP=SHR

IBM MQ classes for IMS and software management tools
Software management tools such as Apache Maven can be used with the IBM MQ classes for JMS.

Many large development organizations use these tools to centrally manage repositories of third-party
libraries.

The IBM MQ classes for JMS are composed of a number of JAR files. When you are developing Java
language applications by using this API, an installation of either an IBM MQ Server, IBM MQ Client, or IBM
MQ Client SupportPac is required on the machine where the application is being developed.

If you want to use such a tool and add the JAR files that make up the IBM MQ classes for IMS to a
centrally managed repository, the following points must be observed:

- Arepository or container must be made available only to developers within your organization. Any
distribution outside of the organization is not permitted.

- The repository needs to contain a complete and consistent set of JAR files from a single IBM MQ release
or Fix Pack.

« You are responsible for updating the repository with any maintenance provided by IBM Support.
From IBM MQ 8.0, the following JAR files need to be installed into the repository:

e com.ibm.mq.allclient.jar.

e jms.jar is required if you are using the IBM MQ classes for JMS.

- fscontext.jaris required if you are using the IBM MQ classes for JMS and accessing JIMS
administered objects that are stored in a file system JNDI context.

e providerutil.jar if you are using the IBM MQ classes for IMS and accessing JMS administered
objects that are stored in a file system JNDI context.

From IBM MQ 9.0, the Bouncy Castle security provider and CMS support JAR files are required. For more
information, see “What is installed for IBM MQ classes for JMS” on page 74 and Support for non-IBM
JREs.

Running IBM MQ classes for IMS applications under the Java security manager

IBM MQ classes for JMS can run with the Java security manager enabled. To run applications successfully
with the Java security manager enabled, you must configure your Java virtual machine (JVM) with a
suitable policy configuration file.

The simplest way to create a suitable policy definition file is to change the policy configuration file
supplied with your Java runtime environment (JRE). On most systems, this file is in the directory 1ib/
security/java.policy relative to your JRE directory. You can edit the policy configuration file either
by using your preferred editor or by using the policy tool program supplied with your JRE.

88 Developing Applications for IBM MQ



Important:

Wherever possible, the term allowlist has replaced the term whitelist. For IBM MQ 9.0 and later releases,
this includes the Java system property names mentioned in this topic (com. ibm.mq.jms.*). You do not
have to change any existing configuration. The previous system property names also continue to work.

If you use the Java security manager mechanism with your application, you must grant the following
permissions:

« FilePermission on any allowlist file that you use, with read permission for ENFORCEMENT mode, write
permission for DISCOVER mode.

« PropertyPermission (read) on the com.ibm.mq.jms.allowlist,
com.ibm.mq.jms.allowlist.discover, and com.ibm.mq.jms.allowlist.mode properties.

For Continuous Delivery, ClassName allowlisting is supported from IBM MQ 9.0.1. For more information,
see “Allowlisting concepts” on page 109.

mln the Long Term Support release, ClassName allowlisting is supported with APAR 1T14385,
and from IBM MQ 9.0.0 Fix Pack 1.

Example policy configuration file

Here is an example of a policy configuration file that allows IBM MQ classes for JMS to run successfully
under the default security manager. This file will need to be customized, to specify the locations of certain
files and directories: MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is
installed, MQ_DATA_DIRECTORY represents the location of the MQ data directory, and QM_NAME is the
name of the queue manager for which access is being configured.

grant codeBase "file:MQ_INSTALLATION_PATH/java/lib/*" §
//We need access to these properties, mainly for tracing
permission java.util.PropertyPermission "user.name", "read";
permission java.util.PropertyPermission "os.name","read";
permission java.util.PropertyPermission "user.dir","read";
permission java.util.PropertyPermission "line.separator", "read";
permission java.util.PropertyPermission "path.separator", "read";
permission java.util.PropertyPermission "file.separator", "read";
permission java.util.PropertyPermission "com.ibm.msg.client.commonservices.log.x",6 "read";
permission java.util.PropertyPermission "com.ibm.msg.client.commonservices.trace.x", "read";
permission java.util.PropertyPermission "Diagnostics.Java.Errors.Destination.Filename", "read";
permission java.util.PropertyPermission "com.ibm.mq.commonservices", "read";
permission java.util.PropertyPermission "com.ibm.mq.cfg.x", "read";

//Tracing - we need the ability to control java.util.logging

permission java.util.logging.lLoggingPermission "control";

// And access to create the trace file and read the log file - assumed to be in the current
directory

permission java.io.FilePermission

*", "read,write";

// We'd like to set up an mBean to control trace

permission javax.management.MBeanServerPermission "createMBeanServer";
permission javax.management.MBeanPermission "x",6"x";

// We need to be able to read manifests etc from the jar files in the installation directory
permission java.io.FilePermission "MQ_INSTALLATION_PATH/java/lib/-",6 "read";

//Required if mqclient.ini/mgs.ini configuration files are used
permission java.io.FilePermission "MQ_DATA_DIRECTORY/mqclient.ini", "read";
permission java.io.FilePermission "MQ_DATA_DIRECTORY/mgs.ini", "read";

//For the client transport type.
permission java.net.SocketPermission

*","connect,resolve";

//For the bindings transport type.
permission java.lang.RuntimePermission "loadlLibrary.x";

//For applications that use CCDT tables (access to the CCDT AMQCLCHL.TAB)
permission java.io.FilePermission "MQ_DATA_DIRECTORY/qmgrs/QM_NAME/@ipcc/AMQCLCHL.TAB", "read";

//For applications that use User Exits

permission java.io.FilePermission "MQ_DATA_DIRECTORY/exits/*", 6 "read";
permission java.io.FilePermission "MQ_DATA_DIRECTORY/exits64/x",6 "read";
permission java.lang.RuntimePermission "createClasslLoader";

Developing applications for IBM MQ 89


https://www.ibm.com/support/docview.wss?uid=swg21983457

//Required for the z/0S platform
permission java.util.PropertyPermission "com.ibm.vm.bitmode", "read";

// Used by the internal ConnectionFactory implementation
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

// Used for controlled class loading
permission java.lang.RuntimePermission "setContextClasslLoader";

// Used to default the Application name in Client mode connections
permission java.util.PropertyPermission "sun.java.command", "read";

// Used by the IBM JSSE classes
permission java.util.PropertyPermission "com.ibm.crypto.provider.AESNITrace", "read";

//Required to determine if an IBM Java Runtime is running in FIPS mode,

//and to modify the property values status as required.

permission java.util.PropertyPermission "com.ibm.jsse2.usefipsprovider", "read,write";
permission java.util.PropertyPermission "com.ibm.jsse2.JSSEFIPS","read,write";
//Required if an IBM FIPS provider is to be used for SSL communication.

permission java.security.SecurityPermission "insertProvider.IBMJCEFIPS";

// Required for non-IBM Java Runtimes that establish secure client

// transport mode connections using mutual TLS authentication

permission java.util.PropertyPermission "javax.net.ssl.keyStore","read";
permission java.util.PropertyPermission "javax.net.ssl.keyStorePassword", "read";

55

In the example, the grant statement contains the permissions required by IBM MQ classes for JMS. To
use these grant statements in your policy configuration file, you might need to modify the path names
depending on where you have installed IBM MQ classes for JMS and where you store your applications.

The sample applications supplied with IBM MQ classes for JIMS, and scripts to run them, do not enable
the security manager.

Post installation setup for IBM MQ classes for IMS applications

This topic tells you what authorities IBM MQ classes for JMS applications need in order to access the
resources of a queue manager. It also introduces connection modes and describes how to configure a
gueue manager so that applications can connect in client mode.

Remember to check the IBM MQ readme file. It might contain information that supersedes the
information in this topic.

Objects used by JMS that require authorization for non-privileged users
Non-privileged users need authorization granted to access the queues used by JMS. Every JMS
application needs authorization to the queue manager with which it works.

For details about access control in IBM MQ, see Setting up security.

IBM MQ classes for JIMS applications need connect and inq authority to the queue manager. You can set
appropriate authorizations using the setmqaut control command, for example:

setmgaut -m QM1 -t gmgr -g jmsappsgroup +connect +ing

For the point-to-point domain, the following authorities are required:

« Queues that are used by MessageProducer objects need put authority.

« Queues that are used by MessageConsumer and QueueBrowser objects need get, ing, and browse
authorities.

« The QueueSession.createTemporaryQueue() method needs access to the model queue specified by
the TEMPMODEL property of the QueueConnectionFactory object. By default this model queue is
SYSTEM.TEMP.MODEL.QUEUE.

If any of these queues are alias queues, their target queues require inquire authority. If the target queue is
a cluster queue it also requires browse authority.

For the publish/subscribe domain, the following queues are used if the IBM MQ classes for JMS are
connecting to an IBM MQ queue manager in IBM MQ messaging provider migration mode:

90 Developing Applications for IBM MQ



+ SYSTEM.JMS.ADMIN.QUEUE

» SYSTEM.JMS.REPORT.QUEUE

« SYSTEM.JMS.MODEL.QUEUE

+ SYSTEM.JMS.PS.STATUS.QUEUE

» SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

« SYSTEM.JMS.D.SUBSCRIBER.QUEUE

+ SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE
» SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE
« SYSTEM.BROKER.CONTROL.QUEUE

For further information on IBM MQ messaging provider migration mode, see Configuring the JIMS
PROVIDERVERSION property

Additionally, if the IBM MQ classes for JMS are connecting to a queue manager in this mode,
any application that publishes messages needs access to the stream queue specified by the
TopicConnectionFactory or topic object. By default, this queue is SYSTEM.BROKER.DEFAULT.STREAM.

If you use ConnectionConsumer, IBM MQ Resource Adapter, or the WebSphere Application Server IBM
MQ messaging provider, additional authorization might be needed.

Queues to be read by the ConnectionConsumer must have get, inqg, and browse authorities. The system
dead-letter queue, and any backout-requeue queue or report queue used by the ConnectionConsumer
must have put and passall authorities.

When an application uses IBM MQ messaging provider normal mode to perform publish/subscribe
messaging, the application makes use of the integrated publish/subscribe functionality provided by the
gueue manager. See Publish/subscribe security for information on securing the topics and queues that
are used.

Connection modes for IBM MQ classes for IMS

An IBM MQ classes for JMS application can connect to a queue manager in either client or bindings mode.
In client mode, IBM MQ classes for JMS connects to the queue manager over TCP/IP. In bindings mode,
IBM MQ classes for IMS connects directly to the queue manager using the Java Native Interface (INI).

An application running in WebSphere Application Server on z/OS can connect to a queue manager in
either bindings or client mode, but an application running in any other environment on z/OS can connect
to a queue manager only in bindings mode. An application running on any other platform can connect to a
gueue manager in either bindings or client mode.

You can use the current or any earlier supported version of IBM MQ classes for JMS with a current queue
manager, and you can use a current or earlier supported version of queue manager with the current
version of IBM MQ classes for JMS. If you mix different versions, function is limited to the level of the
earlier version.

The following sections describe each of the connection modes in more detail.

Client mode

To connect to a queue manager in client mode, an IBM MQ classes for JMS application can run on the
same system on which the queue manager is running, or on a different system. In each case, IBM MQ
classes for JMS connects to the queue manager over TCP/IP.

Bindings mode

To connect to a queue manager in bindings mode, an IBM MQ classes for JIMS application must run on the
same system on which the queue manager is running.

The IBM MQ classes for JMS connects directly to the queue manager using the Java Native Interface
(INI). To use the bindings transport, the IBM MQ classes for JIMS must be run in an environment that has

Developing applications for IBM MQ 91



access to the IBM MQ Java Native Interface libraries; see “Configuring the Java Native Interface (JNI)
libraries” on page 79 for further information.

The IBM MQ classes for JMS support the following values for ConnectOption:
« MQCNO_FASTPATH_BINDING

MQCNO_STANDARD_BINDING

MQCNO_SHARED_BINDING

MQCNO_ISOLATED_BINDING

« MQCNO_RESTRICT_CONN_TAG_QSG

« MQCNO_RESTRICT_CONN_TAG_Q_MGR

To change the connection options used by the IBM MQ classes for JMS, modify the Connection Factory
property CONNOPT.

For further information on connection options, see “Connecting to a queue manager using the MQCONNX
call” on page 648

To use the bindings transport, the Java Runtime Environment being used must support the Coded
Character Set Identifier (CCSID) of the queue manager that the IBM MQ classes for JMS are connecting to.

Details on how to determine what CCSIDs are supported by a Java Runtime Environment can be found
in IBM MQ FDC with Probe ID 21 generated when using the IBM MQ V7 classes for Java or IBM MQ V7
classes for JMS.

Configuring your queue manager so that IBM MQ classes for IMS applications can connect in client mode
To configure your queue manager so that IBM MQ classes for JMS applications can connect in client
mode, you must create a server connection channel definition and start a listener.

Creating a server connection channel definition

On all platforms, you can use the MQSC command DEFINE CHANNEL to create a server connection
channel definition. See the following example:

DEFINE CHANNEL (JAVA.CHANNEL) CHLTYPE(SVRCONN) TRPTYPE(TCP)

mOn IBM i, you can use the CL command CRTMQMCHL instead, as in the following example:

CRTMQMCHL CHLNAME (JAVA.CHANNEL) CHLTYPE (*SVRCN)
TRPTYPE (*TCP)
MQMNAME (QMGRNAME)

In this command, QMGRNAME is the name of your queue manager.

On Linux and Windows, you can also create a server connection channel
definition using IBM MQ Explorer.

lE_On z/0OS you can use the operations and control panels to create a server connection
channel definition .

The name of the channel (JAVA.CHANNEL in the previous examples) must be the same as the channel
name specified by the CHANNEL property of the connection factory that your application uses to connect
to the queue manager. The default value of the CHANNEL property is SYSTEM.DEF.SVRCONN.

Starting a listener

You must start a listener for your queue manager if one is not already started.

92 Developing Applications for IBM MQ


https://www.ibm.com/support/docview.wss?uid=swg21566441
https://www.ibm.com/support/docview.wss?uid=swg21566441

mOn Multiplatforms, you can use the MQSC command START LISTENER to start a listener
after first creating a listener object by using the MQSC command DEFINE LISTENER, as shown in the
following example:

DEFINE LISTENER(LISTENER.TCP) TRPTYPE(TCP) PORT(1414)
START LISTENER(LISTENER.TCP)

mOn z/0S, you use only the START LISTENER command, as in the following example, but note
that the channel initiator address space must be started before you can start a listener:

START LISTENER TRPTYPE(TCP) PORT(1414)

mOn IBM i, you can also use the CL command STRMQMLSR to start a listener, as in the
following example:

STRMQMLSR PORT(1414) MQMNAME (QMGRNAME)

In this command, QMGRNAME is the name of your queue manager.

-!l'.'._m UNIX, Linux, and Windows, you can also use the control command runmgqlsr to start a
listener, as in the following example:

runmglsr -t tcp -p 1414 -m QMgrName
In this command, QMgrName is the name of your queue manager.

On Linux and Windows, you can also start a listener using IBM MQ Explorer.

m0n z/0S, you can also use the operations and control panels to start a listener.

The number of the port on which the listener is listening must be the same as the port number specified
by the PORT property of the connection factory that your application uses to connect to the queue
manager. The default value of the PORT property is 1414.

The point-to-point IVT for IBM MQ classes for IMS

A point-to-point installation verification test (IVT) program is supplied with IBM MQ classes for JMS. The
program connects to a queue manager in either bindings or client mode, sends a message to the queue
called SYSTEM.DEFAULT.LOCAL.QUEUE, and then receives the message from the queue. The program can
create and configure all the objects that it requires dynamically at run time, or it can use JNDI to retrieve
administered objects from a directory service.

Run the installation verification test without using JNDI first because the test is self contained and does
not require the use of a directory service. For a description of administered objects, see Configuring JMS
objects using the administration tool.

The point-to-point installation verification test without using JNDI

In this test, the IVT program creates and configures all the objects that it requires dynamically at run time
and does not use JNDI.

A script is provided to run the IVT program. The script is called IVTRun on UNIX and Linux systems
and IVTRun.bat on Windows, and is in the bin subdirectory of the IBM MQ classes for JMS installation
directory.

To run the test in bindings mode, enter the following command:

IVTRun -nojndi [-m gmgr ] [-v providerVersion ] [-t]

To run the test in client mode, first set up the queue manager as described in “Configuring a queue
manager to accept client connections on Multiplatforms” on page 976. Note that the channel to be used

Developing applications for IBM MQ 93



defaults to SYSTEM.DEF . SVRCONN and the queue to be used is SYSTEM.DEFAULT . LOCAL . QUEUE, then
enter the following command:

IVTRun -nojndi -client -m gmgr -host hostname [-port port ] [-channel channel ]
[-v providerVersion ] [-ccsid ccsid ] [-t]

No equivalent script is provided on z/0S systems, but you can run the IVT in bindings mode by invoking
the Java class directly, using the following command:

java com.ibm.mq.jms.MQIMSIVT -nojndi [-m gmgr 1 [-v providerVersion ] [-t]

The classpath must contain com.ibm.mqgjms.jar.
The parameters on the commands have the following meanings:

-m gmgr
The name of the queue manager to which the IVT program connects. If you run the test in bindings
mode and omit this parameter, the IVT program connects to the default queue manager.

-host hostname
The host name or IP address of the system on which the queue manager is running.

-port port
The number of the port on which the listener of the queue manager is listening. The default value is
1414.

-channel channel
The name of the MQI channel that the IVT program uses to connect to the queue manager. The
default value is SYSTEM. DEF . SVRCONN.

-v providerVersion
The release level of the queue manager to which the IVT program expects to connect.

This parameter is used to set the PROVIDERVERSION property of an MQQueueConnectionFactory
object and has the same valid values as those of the PROVIDERVERSION property. For more
information about this parameter therefore, including its valid values, see JMS: changes to
PROVIDERVERSION property and the description of the PROVIDERVERSION property in Properties
of IBM MQ classes for JMS objects.

The default value is unspecified.

-ccsid ccsid
The identifier (CCSID) of the coded character set, or code page, to be used by the connection. The
default value is 819.

-t
Tracing is enabled. By default, tracing is disabled.

A successful test produces output similar to the following sample output:

5724-H72, 5655-R36, 5724-126, 5655-1L82 (c) Copyright IBM Corp. 2008, 2025. All
Rights Reserved.

WebSphere MQ classes for Java(tm) Message Service 7.0

Installation Verification Test

Creating a QueueConnectionFactory
Creating a Connection

Creating a Session

Creating a Queue

Creating a QueueSender

Creating a QueueReceiver

Creating a TextMessage
Sending the message to SYSTEM.DEFAULT.LOCAL.QUEUE
Reading the message back again

Got message

JMSMessage class: jms_text
IMSType: null
JMSDeliveryMode: 2

94 Developing Applications for IBM MQ



JMSExpiration: ©O

JMSPriority: 4

JMSMessageID: ID:414d5120514d5£6d627720202020202001edbh14620005e03
JMSTimestamp: 1187170264000
JIMSCorrelationID: null

JMSDestination: queue:///SYSTEM.DEFAULT.LOCAL.QUEUE
IMSReplyTo: null

JMSRedelivered: false

JMSXUserID: mwhite

JMS_IBM_Encoding: 273
IMS_IBM_PutApplType: 28

IMSXAppID: IBM MQ Client for Java
JMSXDeliveryCount: 1

JMS_IBM_PutDate: 20070815
IMS_IBM_PutTime: 09310400
JMS_IBM_Format: MQSTR

JMS_IBM_MsgType: 8

A simple text message from the MQIMSIVT
Reply string equals original string
Closing QueueReceiver

Closing QueueSender

Closing Session

Closing Connection

IVT completed OK

IVT finished

The point-to-point installation verification test using JNDI
In this test, the IVT program uses JNDI to retrieve administered objects from a directory service.

Before you can run the test, you must configure a directory service that is based on a Lightweight
Directory Access Protocol (LDAP) server or the local file system. You must also configure the IBM MQ
JMS administration tool so that it can use the directory service to store administered objects. For more
information about these prerequisites, see “Prerequisites for IBM MQ classes for JMS” on page 72.
For information about how to configure the IBM MQ JMS administration tool, see Configuring the JMS
administration tool.

The IVT program must be able to use JNDI to retrieve an MQQueueConnectionFactory object and an
MQQueue object from the directory service. A script is provided to create these administered objects for
you. The script is called IVTSetup on UNIX and Linux systems and IVTSetup.bat on Windows, and is in
the bin subdirectory of the IBM MQ classes for JMS installation directory. To run the script, enter the
following command:

IVTSetup

The script invokes the IBM MQ JMS administration tool to create the administered objects.

The MQQueueConnectionFactory object is bound with the name ivtQCF and is created with the default
values for all its properties, which means that the IVT program runs in bindings mode and connects to
the default queue manager. If you want the IVT program to run in client mode, or connect to a queue
manager other than the default queue manager, you must use the IBM MQ JMS administration tool or
IBM MQ Explorer to change the appropriate properties of the MQQueueConnectionFactory object. For
information about how to use the IBM MQ Explorer JMS administration tool, see Configuring JMS objects
using the administration tool. For information about how to use IBM MQ Explorer, see Introduction to IBM
MQ Explorer or the help provided with IBM MQ Explorer.

The MQQueue object is bound with the name ivtQ and is created with the default values for all its
properties, except for the QUEUE property, which has the value SYSTEM.DEFAULT.LOCAL.QUEUE.

When you have created the administered objects, you can run the IVT program. To run the test using
JINDI, enter the following command:

IVTRun -url "providerURL" [-icf initCtxFact ] [-t]

The parameters on the command have the following meanings:

Developing applications for IBM MQ 95



-url "providerURL"
The uniform resource locator (URL) of the directory service. The URL can have one of the following
formats:
« 1ldap://hostname/contextName ,for a directory service based on an LDAP server

-« file:/directoryPath ,foradirectory service based on the local file system

Note that you must enclose the URL in quotation marks (*).

-icf initCtxFact
The class name of the initial context factory, which must be one of the following values:

« com.sun.jndi.ldap.LdapCtxFactozry, for a directory service based on an LDAP server. This is
the default value.

« com.sun.jndi.fscontext.RefFSContextFactory, for a directory service based on the local
file system.

-t
Tracing is enabled. By default, tracing is disabled.
A successful test produces output similar to that for a successful test without using JNDI.

The main difference is that the output indicates that the test is using JNDI to retrieve an
MQQueueConnectionFactory object and an MQQueue object.

Although not strictly necessary, it is good practice to tidy up after the test by deleting the administered
objects created by the IVTSetup script. A script is provided for this purpose. The script is called IVTTidy
on UNIX and Linux systems and IVTTidy.bat on Windows, and is in the bin subdirectory of the IBM MQ
classes for JMS installation directory.

Problem determination for the point-to-point installation verification test
The installation verification test might fail for the following reasons:

- If the IVT program writes a message indicating that it cannot find a class, check that your class path is
set correctly, as described in “Setting environment variables for IBM MQ classes for IMS” on page 77.

« The test might fail with the following message:

Failed to connect to queue manager ' gmgr ' with connection mode
and host name ' hostname '

connMode

and an associated reason code of 2059. The variables in the message have the following meanings:
qgmgr
The name of the queue manager to which the IVT program is trying to connect. This message insert
is blank if the IVT program is trying to connect to the default queue manager in bindings mode.

connMode
The connection mode, which is either Bindings or Client.
hostname
The host name or IP address of the system on which the queue manager is running.

This message means that the queue manager to which the IVT program is trying to connect is not
available. Check that the queue manager is running and, if the IVT program is trying to connect to the
default queue manager, make sure that the queue manager is defined as the default queue manager for
your system.

« The test might fail with the following message:
Failed to open MQ queue 'SYSTEM.DEFAULT.LOCAL.QUEUE'

This message means that the queue SYSTEM.DEFAULT.LOCAL.QUEUE does not exist on the queue
manager to which the IVT program is connected. Alternatively, if the queue does exist, the IVT program
cannot open the queue because it is not enabled for putting and getting messages. Check that the
queue exists and that it is enabled for putting and getting messages.

96 Developing Applications for IBM MQ



 The test might fail with the following message:
Unable to bind to object

This message means that there is a connection to the LDAP server, but that the LDAP server is
not correctly configured. Either the LDAP server is not configured for storing Java objects, or the
permissions on the objects or the suffix are not correct. For more help in this situation, see the
documentation for your LDAP server.

« The test might fail with the following message:

The security authentication was not valid that was supplied for
QueueManager ' gmgr ' with connection mode 'Client' and host name ' hostname '

This message means that the queue manager is not correctly set up to accept a client connection from
your system. See “Configuring a queue manager to accept client connections on Multiplatforms” on
page 976 for details.

The publish/subscribe IVT for IBM MQ classes for IMS

A publish/subscribe installation verification test (IVT) program is supplied with IBM MQ classes for JMS.
The program connects to a queue manager in either bindings or client mode, subscribes to a topic,
publishes a message on the topic, and then receives the message that it has just published. The program
can create and configure all the objects that it requires dynamically at run time, or it can use JNDI to
retrieve administered objects from a directory service.

Run the installation verification test without using JNDI first because the test is self contained and does
not require the use of a directory service. For a description of administered objects, see Configuring JIMS
objects using the administration tool.

The publish/subscribe installation verification test without using JNDI

In this test, the IVT program creates and configures all the objects that it requires dynamically at run time
and does not use JNDI.

A script is provided to run the IVT program. The script is called PSIVTRun on UNIX and Linux systems
and PSIVTRun.bat on Windows, and is in the bin subdirectory of the IBM MQ classes for JMS installation
directory.

To run the test in bindings mode, enter the following command:

PSIVTRun -nojndi [-m gmgr ] [-bgm brokerQmgr 1 [-v providerVersion ] [-t]

To run the test in client mode, first set up the queue manager as described in “Configuring a queue
manager to accept client connections on Multiplatforms” on page 976 noting that the channel to be used
defaults to SYSTEM.DEF.SVRCONN, then enter the following command:

PSIVTRun -nojndi -client -m gmgr -host hostname [-port port ] [-channel channel ]
[-bgm brokerQmgr 1 [-v providerVersion ] [-ccsid ccsid ] [-t]

The parameters on the commands have the following meanings:

-m gmgr
The name of the queue manager to which the IVT program connects. If you run the test in bindings
mode and omit this parameter, the IVT program connects to the default queue manager.

-host hostname
The host name or IP address of the system on which the queue manager is running.

-port port
The number of the port on which the listener of the queue manager is listening. The default value is
1414.

-channel channel
The name of the MQI channel that the IVT program uses to connect to the queue manager. The
default value is SYSTEM.DEF . SVRCONN.

Developing applications for IBM MQ 97



-bqm brokerQmgr
The name of the queue manager on which the broker is running. The default value is the name of the
queue manager to which the IVT program connects.

This parameter is not relevant for queue manager version number v of 7, or greater.

-v providerVersion
The release level of the queue manager to which the IVT program expects to connect.

This parameter is used to set the PROVIDERVERSION property of an MQTopicConnectionFactory
object and has the same valid values as those of the PROVIDERVERSION property. For more
information about this parameter therefore, including its valid values, see the description of the
PROVIDERVERSION property in Properties of IBM MQ classes for JMS objects.

The default value is unspecified.

-ccsid ccsid
The identifier (CCSID) of the coded character set, or code page, to be used by the connection. The
default value is 819.

-t
Tracing is enabled. By default, tracing is disabled.

A successful test produces output similar to the following sample output:

5724-H72, 5655-R36, 5724-L26, 5655-L82 (c) Copyright IBM Corp. 2008, 2025. All
Rights Reserved.

IBM MQ classes for Java(tm) Message Service 7.0

Publish/Subscribe Installation Verification Test

Creating a TopicConnectionFactory
Creating a Connection

Creating a Session

Creating a Topic

Creating a TopicPublisher
Creating a TopicSubscriber

Creating a TextMessage

Adding text

Publishing the message to topic://MQJIMS/PSIVT/Information
Waiting for a message to arrive [5 secs max]...

Got message:

JMSMessage class: jms_text

JMSType: null

IMSDeliveryMode: 2

JMSExpiration: O

JMSPriority: 4

JMSMessageID: ID:414d5120514d5£6d627720202020202001edbh14620006706
IMSTimestamp: 1187182520203

JIMSCorrelationID: ID:414d5120514d5£6d627720202020202001edh14620006704
JMSDestination: topic://MQJIMS/PSIVT/Information

JMSReplyTo: null

JMSRedelivered: false

JMSXUserID: mwhite

JMS_IBM_Encoding: 273

JMS_IBM_PutApplType: 26

IMSXAppID: QM_mbw

JMSXDeliveryCount: 1

JMS_IBM_PutDate: 20070815

JMS_IBM_ConnectionID: 414D5143514D5F6D627720202020202001EDB14620006601
IMS_IBM_PutTime: 12552020

JMS_IBM_Format: MQSTR

JMS_IBM_MsgType: 8

A simple text message from the MQIMSPSIVT program

Reply string equals original string

Closing TopicSubscriber

Closing TopicPublisher

Closing Session

Closing Connection

PSIVT finished

98 Developing Applications for IBM MQ



The publish/subscribe installation verification test using JNDI
In this test, the IVT program uses JNDI to retrieve administered objects from a directory service.

Before you can run the test, you must configure a directory service that is based on a Lightweight
Directory Access Protocol (LDAP) server or the local file system. You must also configure the IBM MQ
JMS administration tool so that it can use the directory service to store administered objects. For more
information about these prerequisites, see “Prerequisites for IBM MQ classes for JIMS” on page 72.
For information about how to configure the IBM MQ JMS administration tool, see Configuring the JMS
administration tool.

The IVT program must be able to use JNDI to retrieve an MQTopicConnectionFactory object and an
MQTopic object from the directory service. A script is provided to create these administered objects for
you. The script is called IVTSetup on UNIX and Linux systems and IVTSetup.bat on Windows, and is in
the bin subdirectory of the IBM MQ classes for JMS installation directory. To run the script, enter the
following command:

IVTSetup

The script invokes the IBM MQ JMS administration tool to create the administered objects.

The MQTopicConnectionFactory object is bound with the name ivtTCF and is created with the default
values for all its properties, which means that the IVT program runs in bindings mode, connects to

the default queue manager, and uses the embedded publish/subscribe function. If you want the IVT
program to run in client mode, connect to a queue manager other than the default queue manager,

or use IBM Integration Bus instead of the embedded publish/subscribe function, you must use the

IBM MQ JMS administration tool or IBM MQ Explorer to change the appropriate properties of the
MQTopicConnectionFactory object. For information about how to use the IBM MQ JMS administration
tool, see Configuring JMS objects using the administration tool. For information about how to use IBM MQ
Explorer, see the help provided with IBM MQ Explorer.

The MQTopic object is bound with the name ivtT and is created with the default values for all its
properties, except for the TOPIC property, which has the value MQIMS/PSIVT/Information.

When you have created the administered objects, you can run the IVT program. To run the test using
JINDI, enter the following command:

PSIVTRun -url "providerURL" [-icf initCtxFact 1 [-t]

The parameters on the command have the following meanings:

-url "providerURL"
The uniform resource locator (URL) of the directory service. The URL can have one of the following
formats:

« 1dap://hostname/contextName , for a directory service based on an LDAP server
« file:/directoryPath ,for adirectory service based on the local file system

Note that you must enclose the URL in quotation marks ().
-icf initCtxFact
The class name of the initial context factory, which must be one of the following values:
« com.sun.jndi.ldap.LdapCtxFactozry, for adirectory service based on an LDAP server. This is
the default value.
e com.sun.jndi.fscontext.RefFSContextFactory, for a directory service based on the local
file system.
-t
Tracing is enabled. By default, tracing is disabled.
A successful test produces output similar to that for a successful test without using INDI. The main

difference is that the output indicates that the test is using JINDI to retrieve an MQTopicConnectionFactory
object and an MQTopic object.

Developing applications for IBM MQ 99



Although not strictly necessary, it is good practice to tidy up after the test by deleting the administered
objects created by the IVTSetup script. A script is provided for this purpose. The script is called IVTTidy
on UNIX and Linux systems and IVTTidy.bat on Windows, and is in the bin subdirectory of the IBM MQ
classes for JMS installation directory.

Problem determination for the publish/subscribe installation verification test
The installation verification test might fail for the following reasons:

- If the IVT program writes a message indicating that it cannot find a class, check that your class path is
set correctly, as described in “Setting environment variables for IBM MQ classes for IMS” on page 77.

« The test might fail with the following message:

Failed to connect to queue manager ' gmgr ' with
connection mode ' connMode ' and host name ' hostname '

and an associated reason code of 2059. The variables in the message have the following meanings:

qgmgr
The name of the queue manager to which the IVT program is trying to connect. This message insert
is blank if the IVT program is trying to connect to the default queue manager in bindings mode.

connMode
The connection mode, which is either Bindings or Client.

hostname
The host name or IP address of the system on which the queue manager is running.

This message means that the queue manager to which the IVT program is trying to connect is not
available. Check that the queue manager is running and, if the IVT program is trying to connect to the
default queue manager, make sure that the queue manager is defined as the default queue manager for
your system.

« The test might fail with the following message:
Unable to bind to object

This message means that there is a connection to the LDAP server, but that the LDAP server is
not correctly configured. Either the LDAP server is not configured for storing Java objects, or the
permissions on the objects or the suffix are not correct. For more help in this situation, see the
documentation for your LDAP server.

« The test might fail with the following message:

The security authentication was not valid that was supplied for
QueueManager ' gmgr ' with connection mode 'Client' and host name ' hostname

This message means that the queue manager is not set up correctly to accept a client connection from
your system. For more information, see “Configuring a queue manager to accept client connections on
Multiplatforms” on page 976.

Using the IBM MQ classes for IMS sample applications

The IBM MQ classes for IMS sample applications provide an overview of the common features of the JMS
API. You can use them to verify your installation and messaging server set up and to help you build your
own applications.

About this task

If you need help to create your own applications, you can use the sample applications as a starting point.
Both the source and a compiled version are provided for each application. Review the sample source
code and identify the key steps to create each required object for your application (ConnectionFactory,
Connection, Session, Destination, and a Producer, or a Consumer, or both), and to set any specific
properties that are needed to specify how you want your application to work. For more information,

100 Developing Applications for IBM MQ



see “Writing IBM MQ classes for JMS applications” on page 117. The samples might be subject to change

in future releases of IBM MQ.

Table 10 on page 101 shows where the IBM MQ classes for JIMS sample applications are installed on each

platform:

Table 10. Installation directories for the IBM MQ classes for IMS sample applications

Platform

Directory

: Linux

ST 1

MQ_INSTALLATION_PATH/samp/jms/samples

Linux

L Windows IR

MQ_INSTALLATION_PATH\tools\jms\samples

L_EM i JEIYE

/qibm/proddata/mgm/java/samples/jms/samples

b 205 HRY

MQ_INSTALLATION_PATH/java/samples/jms

Within this directory, there are subdirectories that contain one or more sample applications as shown in
Table 11 on page 101.

Table 11. IBM MQ classes for IMS sample applications

Name of Description
sample
JmsBrowser | A JMS queue browser application that looks at all available messages on the named
.java queue, without removing them, in the order they would be received by a consumer
application.
JmsConsum | A JMS queue browser application that looks at all available messages on the named
er.java queue, without removing them, in the order they would be received by a consumer
application, by looking up the connection factory instance and the destination instance
in an initial context (This sample supports file system context only).
JmsJIndiCon | A JMS consumer (receiver or subscriber) application that receives a message from the
sumer.java | named destination (queue or topic) by looking up the connection factory instance and the
destination instance in an initial context (This sample supports file system context only).
JmsJIndiPro | A IJMS producer (sender or publisher) application that sends a simple message to the
ducer.java named destination (queue or topic) by looking up the connection factory instance and the
destination instance in an initial context (This sample supports file system context only).
JImsProduce | A IMS producer (sender or publisher) application that sends a simple message to the
r.java named destination (queue or topic).

/interactive/

SampleCons
umerJava.ja
va

Receive message(s) from a topic/queue.

SampleProd
ucerJava.jav
a

Send message(s) to a topic/queue.

/interactive/

helper/

BaseOption

An abstract class that can be extended to provide user option(s) functionality.

s.java

Developing applications for IBM MQ 101



Table 11. IBM MQ classes for IMS sample applications (continued)

Name of Description

sample

IsValidType. | Abstract class for validity checker classes.

java

JmsApp.jav |An abstract class that can be extended to provide consumer/producer functionality.

a

Keys.java A set of keys that define options for the sample applications.

Literals.java | A set of constant literals.

MyContext.j | The context in which options are presented.

ava

Options.java | Provides functionality for user option(s).

OptionsPres | Context in which current options are presented.

enter.java

/simple/

SimpleAsyn | A simple application for point-to-point messaging; message is sent asynchronously (also

cPutPTP.jav | known as fire-and-forget messaging). No messages are received.

a

SimpleDura | A simple application that demonstrates durable subscription facility.

bleSub.java

SimpleINDI | A minimal and simple application that demonstrates lookup of JIMS objects using the

Lookup.java |initial context. No connection to the queue manager is made and no messages are sent or
received.

SimpleMQM | A simple application that demonstrates how a JMS application may avail MQ Message

DRead.java |Descriptor (MQMD) fields as IMS message properties. No messages are sent; it is
assumed that the queue in use is populated with some messages.

SimpleMQM | A simple application that demonstrates how a JMS application may write MQ Message

DWrite.java | Descriptor (MQMD) fields. No messages are received.

SimplePTP.j | A minimal and simple application for point-to-point messaging.

ava

SimplePubS | A minimal and simple application for publish-subscribe messaging.

ub.java

SimpleRead | A simple application for point-to-point messaging; messages are streamed from the

AheadPTP.ja | queue manager (also known as the read-ahead facility). No messages are sent; it is

va assumed that the queue in use is populated with some messages.

SimpleRequ | A simple application that uses a requestor to send a request message and then wait for,

estor.java and receive, the reply. Note: It is assumed that some other application will process the
request message and send the reply message.

SimpleResp | A simple application that listens on a destination for a message and then sends a reply

onder.java |tothe message's replyTo destination. The application is written to operate in conjunction
with the SimpleRequestor sample.

SimpleRetai | A simple application that demonstrates a retained publication. No messages are received.

nedPub.java

102 Developing Applications for IBM MQ




Table 11. IBM MQ classes for IMS sample applications (continued)

Name of Description

sample

SimpleWMQ [ A minimal and simple application for point-to-point messaging.
JMSPTP.jav

a

SimpleWMQ | A minimal and simple application for publish/subscribe messaging.
JMSPubSub
.java

The IBM MQ classes for IMS provide a script called runjms that can be used to run the sample
applications. This script sets up the IBM MQ environment to allow you to run the IBM MQ classes for
JIMS sample applications.

Table 12 on page 103 shows the location of the script on each platform:

Table 12. Location of the runjms script

Platform Directory

m MQ_INSTALLATION_PATH/java/bin/runjms
UNIX

Linux Linux

Windows [JYTREE MQ_INSTALLATION_PATH\java\bin\runjms.bat
mIBMi /qibm/proddata/mgm/java/bin/runjms
or

/qibm/proddata/mgm/java/bin/runjmsé4

mﬁﬁ-z/os MQ_INSTALLATION_PATHjava/bin/runjms

To use the runjms script to invoke a sample application, complete the following steps:

Procedure

1. Bring up a command prompt and navigate to the directory containing the sample application that you
want to run.

2. Enter the following command:
Path to the runjms script/runjms sample_application_name

The sample application displays a list of parameters that it needs.
3. Enter the following command to run the sample with these parameters:

Path to the runjms script/runjms sample_application_name parameters

Example

For example, to run the JmsBrowser sample on Linux, enter the following commands:

cd /opt/mgm/samp/jms/samples
/opt/mgm/java/bin/runjms JmsBrowser -m QM1 -d LQ1

Related concepts
“What is installed for IBM MQ classes for JIMS” on page 74

Developing applications for IBM MQ 103




A number of files and directories are created when you install IBM MQ classes for JMS. On Windows,
some configuration is performed during installation by automatically setting environment variables. On
other platforms, and in certain Windows environments, you must set environment variables before you
can run IBM MQ classes for JMS applications.

Scripts provided with IBM MQ classes for IMS
A number of scripts are provided to assist with common tasks that need to be performed when using IBM

MO classes for JMS.

Table 13 on page 104 lists all the scripts and their uses. The scripts are in the bin subdirectory of the IBM
MQ classes for JMS installation directory.

Table 13. Scripts provided with IBM MQ classes for IMS

Utility

Use

Cleanup1

This script is maintained for compatibility with previous releases but
performs no function. Manual cleanup of subscription information is
no longer necessary

DefaultConfiguration

Runs the default configuration application on platforms other than
Windows.

formatLog 1

This script is maintained for compatibility with previous releases but
performs no function. Log output is now produced in readable text.

Used in the point-to-point installation verification test, as described

IVTRun 1 h . : .

IVTSetup 1 in “The point-to-point IVT for IBM MQ classes for JMS” on page 93.
IVTTidy 1

IJMSAdmin1 Runs the IBM MQ JMS administration tool, as described in Starting

the administration tool.

JMSAdmin.config

The configuration file for the IBM MQ JMS administration tool, as
described in Configuring the JMS administration tool.

PSIVTRun 1

Runs the publish/subscribe installation verification test program, as
described in “The publish/subscribe IVT for IBM MQ classes for
JMS” on page 97.

PSReportDump.class

This class is maintained for compatibility with previous releases, but
performs no function.

setjmsenv

Sets the environment variables for running an IBM MQ classes for
JMS application in a 32-bit Java virtual machine (JVM) on UNIX and
Linux systems, as described in “Setting environment variables for
IBM MQ classes for JIMS” on page 77.

setjmsenvé4

Sets the environment variables for running an IBM MQ classes for
JMS application in a 64-bit JVM on UNIX and Linux systems, as
described in “Setting environment variables for IBM MQ classes for
JMS” on page 77.

Note:

1. On Windows, the file name has the extension .bat .

Support for OSGi

0OSGi provides a framework that supports the deployment of applications as bundles. Nine OSGi bundles
are supplied as part of the IBM MQ classes for IMS.

OSGi provides a general purpose, secure, and managed Java framework, which supports the deployment
of applications that come in the form of bundles. OSGi-compliant devices can download and install

104 Developing Applications for IBM MQ




bundles, and remove them when they are no longer required. The framework manages the installation
and update of bundles in a dynamic and scalable fashion.

The IBM MQ classes for JMS includes the following OSGi bundles.

com.ibm.msg.client.osgi.jmsversion_number.jar
The common layer of code in the IBM MQ classes for JMS. For information about the layered
architecture of IBM MQ classes for JMS, see IBM MQ classes for JIMS architecture.

com.ibm.msg.client.osgi.jms.prereq_version_number.jar
The prerequisite Java archive (JAR) files for the common layer.

com.ibm.msg.client.osgi.commonservices.j2se_version_number.jax
Common services for Java Platform, Standard Edition (Java SE) applications.

com.ibm.msg.client.osgi.nls_version_number.jax
Messages for the common layer.

com.ibm.msg.client.osgi.wmq_version_number.jax
The IBM MQ messaging provider in IBM MQ classes for JMS. For information about the layered
architecture of IBM MQ classes for JMS, see IBM MQ classes for JMS architecture.

com.ibm.msg.client.osgi.wmq.prexreq_version_number.jar
The prerequisite JAR files for the IBM MQ messaging provider.

com.ibm.msg.client.osgi.wmq.nls_version_number.jax
Messages for the IBM MQ messaging provider.

com.ibm.mq.osgi.allclient_version_number.jax
This JAR file allows applications to use both the IBM MQ classes for JIMS and the IBM MQ classes for
Java, and also includes the code to handle PCF messages.

com.ibm.mq.osgi.allclientprereqs_version_number.jax
This JAR file provides the prerequisites for com.ibm.mq.osgi.allclient_version_number.jar
where version_number is the version number of IBM MQ that is installed.

The bundles are installed into the java/1ib/0SGi subdirectory of your IBM MQ installation, or the
java\1lib\0SGi folder on Windows.

From IBM MQ 8.0, use the bundles com.ibm.mq.osgi.allclient_8.0.0.0.jar, and
com.ibm.mg.osgi.allclientprereqs_8.0.0.0.jaxr for any new applications. Using these bundles
removes the restriction of not being able to run both IBM MQ classes for JMS and the IBM MQ classes

for Java within the same OSGi framework, all other restrictions still apply however. For versions of the
product before IBM MQ 8.0, this restriction of using either IBM MQ classes for JMS or IBM MQ classes for
Java applies.

The bundle com.ibm.mq.o0sgi.javaversion_number.jazr, which is also installed into the
java/1ib/0SGi subdirectory of your IBM MQ installation, or the java\1ib\0SGi folder on Windows, is
part of the IBM MQ classes for Java. This bundle must not be loaded into an OSGi runtime environment
that has the IBM MQ classes for JMS loaded.

The OSGi bundles for the IBM MQ classes for JIMS have been written to the OSGi Release 4 specification.
They do not work in an OSGi Release 3 environment.

You must set your system path or library path correctly so that the OSGi runtime environment can find any
required DLL files or shared libraries.

If you use the OSGi bundles for the IBM MQ classes for JIMS, temporary topics do not work. In addition,
channel exit classes written in Java are not supported because of an inherent problem in loading classes
in a multiple class loader environment such as OSGi. A user bundle can be aware of the IBM MQ classes
for IMS bundles, but the IBM MQ classes for JMS bundles are not aware of any user bundle. As a result,
the class loader used in an IBM MQ classes for IMS bundle cannot load a channel exit class that isin a
user bundle.

For more information about OSGi, see the OSGi Alliance website.

Developing applications for IBM MQ 105


https://www.osgi.org

EETTENNENT SN IMS client connectivity to batch applications

running on z/0S

By using a client connection, an IBM MQ classes for JMS application on z/OS can connect to a queue
manager on z/0S that has the ADVCAP(ENABLED) attribute. Use of a client connection can simplify IBM
MQ topologies.

A value of ADVCAP (ENABLED) applies only to a z/OS queue manager, licensed as IBM MQ Advanced
for z/0S, Value Unit Edition (see IBM MQ product identifiers and export information) and running with
QMGRPROD set to ADVANCEDVUE.

See DISPLAY QMGR for more information on ADVCAP and START QMGR for more information on
QMGRPROD.

Note that batch is the only environment supported; there is no support for JMS for CICS or JMS for IMS.

An IBM MQ classes for JMS application on z/OS cannot use a client mode connection to connect
to a queue manager that is not running on z/0S, or to a queue manager that does not have the
ADVCAP (ENABLED) option set.

If an IBM MQ classes for JMS application on z/0OS attempts to connect using client mode, and is not
allowed to do so, exception message JIMSFMQOO0O05 is issued.

Advanced Message Security (AMS) support
ERE

From IBM MQ 9.0.5, IBM MQ classes for JMS client applications can use AMS when connecting to IBM MQ
Advanced for z/0S, Value Unit Edition queue managers on remote z/0S systems.

The Bouncy Castle jar files are shipped with the IBM MQ for z/OS IBM MQ classes for JMS package.
A new key store type, jceracfks, is supported in keystore.conf on z/OS only, where:

« The property name prefix is jceracfks and this name prefix is case insensitive.

« The key store is a RACF keyring.

- Passwords are not required, and will be ignored. This is because RACF keyrings do not use passwords.
« If you specify the provider, the provider must be IBMJCE.

When you use jceracfks with AMS, the key store must be in the form: safkeyring://user/
keyring, where:

- safkeyringis a literal and this name is case insensitive
- user is the RACF user id that owns the keyring
e keyring is the name of the RACF keyring and the name of the keyring is case sensitive

The following example uses the standard AMS keyring for user JOHNDOE:

jceractks.keystore=safkeyring://JOHNDOE/dxrq.ams.keyring

Obtaining the IBM MQ classes for JMS separately

The IBM MQ classes for JMS are available within a self-extracting JAR file that you can download from Fix
Central if you want to obtain just the IBM MQ classes for JIMS JAR files, for deployment into a software
management tool, or to use with stand-alone client applications.

Before you begin

Before starting this task, make sure that you have a Java runtime environment (JRE) installed on your
machine and that the JRE has been added to the system path.

106 Developing Applications for IBM MQ



The Java installer that is used in this installation process does not require running as root or any specific
user. The only requirement is that the user it is run as has access write to the directory that you want the
files to go in.

About this task

Before IBM MQ 8.0, the IBM WebSphere MQ classes for Java or IBM WebSphere MQ classes for IMS
are not available as a separate download. For IBM WebSphere MQ 7.5 or earlier, if you are developing
and running Java language applications that use either the IBM WebSphere MQ classes for Java or IBM
WebSphere MQ classes for JMS, you need to install them either by performing a full server installation
or by installing one of the client SupportPacs onto the system where the application is being developed
and the system where the application will run. This installation installs many more files than the IBM
WebSphere MQ classes for Java and IBM WebSphere MQ classes for JMS files.

However, from IBM MQ 8.0, the following files are available within a self-extracting JAR file, which
minimizes the size of the download and installation, and the time that is required to perform the
installation:

« The IBM MQ classes for IMS

« The IBM MQ classes for Java

« The IBM MQ resource adapter

« The IBM MQ OSGi bundles

When you run the executable JAR file, it displays the IBM MQ license agreement, which must be
accepted. It asks for a directory in which to install the IBM MQ classes for Java, IBM MQ classes for
JMS, the resource adapter, and OSGi bundles. If the selected installation directory does not exist, it is

created and the program files are installed. However, if the directory exists, an error is reported and no
files are installed.

Procedure

1. Download the IBM MQ Java JAR file from Fix Central.
To locate the latest version that is available for download, enter the phrase "Java" in the Text
Search box. The name of the file to be downloaded is in the format V.R.M.F-WS-MQ-Install-
Java-All.jaxr where V.R.M.Fis the product version number, for example 9.0.0.0.
If you cannot find the file, make sure that Product Selected is WebSphere MQ and Versionis 9.0.
2. Start the installation from the directory to which you downloaded the file.
To start the installation, enter a command in the following format:

java -jar V.R.M.F-WS-MQ-Install-Java-All.jar

where V. R. M. F is the product version number, for example 9.0.0.0,and V.R. M. F-WS-MQ-
Install-Java-All. jar is the name of the file that was downloaded from Fix Central.

For example, to install the IBM MQ classes for JIMS for IBM MQ 9.0.0.0, you would use the following
command:

java -jar 9.0.0.0-WS-MQ-Install-Java-All.jar

Note: To carry out this installation, you must have a JRE installed on your machine and added to the
system path.

When you enter the command, the following information is displayed:

Before you can use, extract, or install IBM MQ 9.0, you must accept

the terms of 1. IBM International License Agreement for Evaluation of
Programs 2. IBM International Program License Agreement and additional
license information. Please read the following license agreements carefully.

The license agreement is separately viewable using the
--viewLicenseAgreement option.

Developing applications for IBM MQ 107


https://www.ibm.com/support/fixcentral/

Press Enter to display the license terms now, or 'x' to skip.
3. Review and accept the license terms:
a) To display the license, press Enter.
Alternatively, pressing x skips the display of the license.
After the license is displayed, or immediately if you select x, the following message is displayed:

Additional license information is separately viewable using the
--viewLicenseInfo option.

Press Enter to display additional license information now, or 'x' to skip.
b) To display the additional license terms, press Enter.
Alternatively, pressing x skips the display of the additional license terms.
After the additional license terms are displayed, or immediately if you select X, the following
message is displayed:

By choosing the "I Agree" option below, you agree to the terms of the
license agreement and non-IBM terms, if applicable. If you do not
agree, select "I do not Agree".

Select [1] I Agree, or [2] I do not Agree:

¢) To accept the license agreement and continue with selecting the installation directory, select 1.
Alternatively, selecting 2 ends the installation immediately.
If you select 1, the following message appears:

Enter directory for product files or leave blank to accept the default value.
The default target directory is H:\WMQ

Target directory for product files?
4. Specify the installation directory for the resource adapter:

- Ifyou want to install the product files in the default location, press Enter without specifying a value.

- If you want to install the product files in a different location from the default, specify the name
of the directory in which you want to install the product files, and then press Enter to start the
installation.

The directory name that you specify must not already exist, otherwise, when you start the installation,
an error is reported and no files are installed.

Provided that it does not already exist, the selected installation directory is created and the program
files are installed in this directory. During the installation, a new directory with the name wmq is created
within the installation directory that you selected. Three subdirectories, JavaEE, JavaSE, and 0SG1i,
are created in the wmq directory with the following contents:

.\JavaEE:
wmg.jmsra.ivt.ear
wmq.jmsra.rar

.\JavaSE:

com.ibm.mqg.allclient.jar
com.ibm.mq.traceControl.jar

fscontext. jar

jms.jar

providerutil.jar

.\OSGi:
com.ibm.mq.osgi.allclient_V.R.M.F.jar
com.ibm.mqg.osgi.allclientprereqs_V.R.M.F.jar

where V.R.M.F is the Version, Release, Modification, and Fix Pack number.

Before IBM MQ 9.0.0 Fix Pack 3 and IBM MQ 9.0.5, the files that are
installed in the JavaSE directory include the JSON4J . jar file. However, this JAR file is not required,
and is therefore removed from the V.R. M. F-WS-MQ-Install-Java-All. jar file from IBM MQ
9.0.0 Fix Pack 3 and IBM MQ 9.0.5. Also, from IBM MQ 9.0.0 Fix Pack 3 and IBM MQ 9.0.5, there are
two changes to the com.ibm.mqg.allclient.jar file:

108 Developing Applications for IBM MQ



« The reference to JSON4J . jar file is removed from the class path statement within the manifest file
forthe com.ibm.mqg.allclient. jar file.

« The package com.ibm.msg.client.mglight is no longer included inside the
com.ibm.mqg.allclient.jax file.

When the installation is complete, a confirmation message is displayed as shown in the following
example:

Extracting files to H:\WMQ\wmq
Successfully extracted all product files.

BEXXEWAllowlisting in IBM MQ classes for IMS

Java object serialization and deserialization mechanism has been identified as a potential security risk.
Allowlisting in IBM MQ classes for JMS provides some protection against some serialization risks.

The Java object serialization and deserialization mechanism has been identified as a potential security
risk because deserialization instantiates arbitrary Java objects, where there is the potential for
maliciously sent data to cause various problems. One notable application of serialization is in Java
Message Service (JMS) ObjectMessages that use serialization to encapsulate and transfer arbitrary
objects.

Serialization allowlisting is a potential mitigation against some of the risks that serialization poses.
By explicitly specifying which classes can be encapsulated in, and extracted from, ObjectMessages,
allowlisting provides some protection against some serialization risks.

Allowlisting in IBM MQ classes for IMS
See:

- “Allowlisting concepts” on page 109 for an overview of allowlisting

« “Setting up and using a JMS allowlist” on page 112 for information on how you set up an allowlist

« “Allowlisting in WebSphere Application Server ” on page 114 for information on how you set up an
allowlist in WebSphere Application Server.

Related concepts

“Running IBM MQ classes for JMS applications under the Java security manager” on page 88

IBM MQ classes for JMS can run with the Java security manager enabled. To run applications successfully
with the Java security manager enabled, you must configure your Java virtual machine (JVM) with a
suitable policy configuration file.

BNEXXEWAllowlisting concepts

In IBM MQ classes for IMS, support for allowlisting of classes in the implementation of the JIMS
ObjectMessage interface provides a potential mitigation against some of the security risks that potentially
relate to the Java object serialization and deserialization mechanism.

Allowlisting in IBM MQ classes for IMS
Important:

Wherever possible, the term allowlist has replaced the term whitelist. For IBM MQ 9.0 and later releases,
this includes the Java system property names mentioned in this topic (com.ibm.mq.jms.*). You do not
have to change any existing configuration. The previous system property names also continue to work.

IBM MQ classes for IMS supports allowlisting of classes in the implementation of the JMS ObjectMessage
interface.

The allowlist defines which Java classes might be serialized with ObjectMessage.setObject() and
deserialized with ObjectMessage.getObject().

Developing applications for IBM MQ 109



Attempts to serialize or deserialize an instance of a class not included in the allowlist with ObjectMessage
cause a javax.jms.MessageFormatException to be thrown, with a java.io.InvalidClassException as its
cause.

Producing the allowlist

Important: IBM MQ classes for JMS cannot be distributed with an allowlist. The choice of classes to be
transferred by using ObjectMessages is an application design choice and IBM MQ cannot preempt that.

For this reason, the allowlisting mechanism allows for two modes of operation:

DISCOVERY
In this mode, the mechanism produces a listing of fully qualified class names, reporting all classes
that have been observed to be serialized or deserialized in ObjectMessages.

ENFORCEMENT
In this mode, the mechanism enforces allowlisting, rejecting attempts to serialize or deserialize
classes that are not in the allowlist.

If you want to use this mechanism, you must initially run in DISCOVERY mode to gather the list of
currently serialized and deserialized classes, review the list and use it as a basis for your allowlist. It might
even be appropriate to use the list unchanged, but the list must be reviewed first before you decide to do
this.

Controlling the allowlisting mechanism

Three system properties are available to control the allowlisting mechanism:

com.ibm.mgq.jms.allowlist
This property can be specified in either of the following ways:

« The path name of the file that contains the allowlist, in file URI format (that is, starting with £ile:).
In DISCOVERY mode, this file is written to by the allowlisting mechanism. The file must not exist. If
the file does exist, the mechanism throws an exception rather than overwrite it. In ENFORCEMENT
mode, this file is read by the allowlisting mechanism.

« A comma-separated of fully qualified class names that constitute the allowlist.
If this property is unset, the allowlist mechanism is inactive.

If you are using a Java security manager, you must ensure that the IBM MQ classes for JMS JAR files
have read and write access to this file.

com.ibm.mq.jms.allowlist.discover

« If this property is unset or set to false, the allowlist mechanism runs in ENFORCEMENT mode.

- If this property is set to true and the allowlist has been specified as a file URI, the allowlist
mechanism runs in DISCOVERY mode.

- If this property is set to true and the allowlist has been specified as a list of class names, the
allowlist mechanism throws a suitable exception.

- If this property is set to true and the allowlist has not been specified by using the
com.ibm.mg.jms.allowlist property, the allowlist mechanism is inactive.

- If this property is set to true and the allowlist file already exists, the allowlist mechanism throws a
java.io.InvalidClassException and entries are not added to the file.

com.ibm.mq.jms.allowlist.mode
This string property can be specified in any of three ways:

- If this property is set to SERIALIZE, then ENFORCEMENT mode performs allowlist validation only on
the ObjectMessage.setObject() method.

« If this property is set to DESERIALIZE, then ENFORCEMENT mode performs allowlist validation only
on the ObjectMessage.getObject() method.

110 Developing Applications for IBM MQ



« If this property is unset, or set to any other value, then ENFORCEMENT mode performs allowlist
validation on both the ObjectMessage.getObject() and the ObjectMessage.setObject() methods.

Format of the allowlist file

These are the main features of the format of the allowlist file:

The allowlist file is in default platform file encoding with platform-appropriate line-endings.

Note: If an allowlist file is being used, then that file is always written and read using the default file
encoding for the JVM.

This is fine if the allowlist file is generated in any of the following ways:

- MGenerated by a stand-alone application running on z/OS and used by other stand-alone
applications that are also running on z/0S.

— Generated by an application running inside of WebSphere Application Server on any platform, and
used by another instance of WebSphere Application Server.

- mGenerated by a stand-alone application running on IBM MQ for Multiplatforms, and
used by other stand-alone applications running on IBM MQ for Multiplatforms, or by applications
running inside of WebSphere Application Server on any platform.

However, as WebSphere Application Server uses ASCII, and a standalone JVM uses EBCDIC, there will
be file encoding issues if the allowlist file is generated in either of the following ways:

— Generated on z/0S, then used by standalone applications running on a platform other than z/OS or by
WebSphere Application Server.

— Generated by either WebSphere Application Server or a standalone application running on a platform
other than z/0S, then used by a stand-alone application on z/0S.

Each non-empty line contains a fully qualified class name. Empty lines are ignored.
Comments can be included - anything following a '#' character, to the end of the line, is ignored.
There is a very basic wildcarding mechanism:

— "' can be the last element of a class name.
— "*'matches a single element of a class name, that is, the class, but no part of the package.

So com.ibm.mq.* would match com.ibm.mq.MQMessage but not
com.ibm.mqg.jmgi.remote.api.RemoteFAP.

Wildcarding does not work for classes in the default package that is for classes without an explicit
package name, so a class name of "*" is rejected.

Badly formatted allowlist files, for example, files that contain an entry such as
com.ibm.mqg.*.Message, where the wildcard is not the last element, resultin a
java.lang.IllegalArgumentException being thrown.

An empty allowlist file has the effect of totally disabling the use of ObjectMessage.

Format of the allowlist as a comma-separated list

The same wildcarding mechanism is available for an allowlist as a comma-separated list.

The "*' can be expanded by the operating system if specified on a command line or in a shell script or
batch file, so it might need special handling.

The '#' comment character is only applicable when a file is specified. If the allowlist is specified as

a comma-separated list of class names, then assuming that the operating system or shell doesn't
process it, as it is the default comment character in many UNIX or Linux shells, it is treated as a normal
character.

Developing applications for IBM MQ 111



When does allowlisting happen?

Allowlisting is initiated when the application first runs an ObjectMessage setMessage() or getMessage()
method.

The system properties are evaluated, the allowlist file is opened and in ENFORCEMENT mode, the list of
allowlisted classes are loaded when the mechanism is initialized. At this point, an entry is written in to the
IBM MQ JMS log file for the application.

When the mechanism is initialized, its parameters might not be changed. As the time of initialization is
not easily predicted as it depends on application behavior. The system property settings and the allowlist
file contents should therefore be regarded as fixed from the time that the application is started. Do not
change the properties or the contents of the allowlist file while the application is running, as the results
are not guaranteed.

Points to consider

The best approach to mitigating the risks intrinsic to the Java serialization mechanism would be to
explore alternative approaches to data transfer such as using JSON instead of ObjectMessage. Using
Advanced Message Security (AMS) mechanisms can add further security by ensuring that messages come
from trusted sources.

If you use the Java security manager mechanism with your application, you must grant the following
permissions:

- FilePermission on any allowlist file that you use, with read permission for ENFORCEMENT mode, write
permission for DISCOVER mode.

« PropertyPermission (read) on the com.ibm.mq.jms.allowlist,
com.ibm.mq.jms.allowlist.discover, and com.ibm.mq.jms.allowlist.mode properties.

More information

See “Setting up and using a JMS allowlist” on page 112 and “Allowlisting in WebSphere Application
Server ” on page 114 for more information on allowlists.

Related concepts

“Running IBM MQ classes for JMS applications under the Java security manager” on page 88

IBM MQ classes for IMS can run with the Java security manager enabled. To run applications successfully
with the Java security manager enabled, you must configure your Java virtual machine (JVM) with a
suitable policy configuration file.

Metting up and using a JMS allowlist

This information tells you how an allowlist works, and how you set one up using the functionality
contained in the IBM MQ classes for JMS to generate an allowlist file, containing a list of the types of
ObjectMessages that an application can process.

Before you begin
Important:

Wherever possible, the term allowlist has replaced the term whitelist. For IBM MQ 9.0 and later releases,
this includes the Java system property names mentioned in this topic (com. ibm.mq.jms.*). You do not
have to change any existing configuration. The previous system property names also continue to work.

Before starting this task, make sure that you have read and understood “Allowlisting concepts” on page
109

112 Developing Applications for IBM MQ



About this task

When you have enabled the allowlisting functionality, the IBM MQ classes for JMS use that functionality in
the following ways:

- When an application wants to send an ObjectMessage, it can create it in one of two ways, by calling the:

— Session.createObjectMessage(Serializable) method, passing in the object that is to be contained
within the message.

— Session.createObjectMessage() method, to create an empty ObjectMessage, and then calling
ObjectMessage.setObject(Serializable) to store the object to be sent inside the ObjectMessage.

When either the Session.createObjectMessage(Serializable) or the
ObjectMessage.setObject(Serializable) methods are called, the classes for IMS check whether the
object passed in is of a type that is mentioned in the allowlist.

If it is of a type mentioned, the object is serialized and stored within the ObjectMessage. However, if
the object is of a type that is not in the allowlist, the IBM MQ classes for IMS throw a JMSException
containing the message:

JMSCCO052: An exception occurred while serializing the object:
'java.io.InvalidClassException: <object class>; The class may not be serialized
or deserialized as it has not been included in the allowlist '<allowlist>'.

back to the application.
Important: If the exception is thrown from the Session.createObjectMessage(Serializable) method,

the ObjectMessage will not be created. Similarly, if the IMSException is thrown from the
ObjectMessage.setObject(Serializable) method, the object will not be added to the ObjectMessage.

« If an application receives an ObjectMessage, it calls the method ObjectMessage.getObject() to get the
object contained within it. When this method is called, the IBM MQ classes for JIMS check the type of
object contained within the ObjectMessage, to see if that object is of a type specified in the allowlist.

If it is, the object is deserialized and returned to the application. However, if the object is of a type that
is not in the allowlist, the IBM MQ classes for JMS throw a JMSException containing the message:

JMSCCO053: An exception occurred while deserializing a message:
'java.io.InvalidClassException: <object class>; The class may not be
serialized or deserialized as it has not been included in the
allowlist '<allowlist>'."'.

back to the application.

For example, suppose your application contains the following code to send an ObjectMessage containing
an object of type java.net.URI:

java.net.URL testURL = new java.net.URL("https://www.ibm.com/");
ObjectMessage msg = session.createObjectMessage(testURL);
sender.send(msg) ;

As allowlisting is not enabled, the application is able to successfully put the message to the required
destination.

If you create a file called C: \allowlist.txt containing a single entry, java.net.URL, and you start
the application again with the Java system property set:

-Dcom.ibm.mqg.jms.allowlist=file:/C:/allowlist.txt

the allowlist functionality is enabled. The application is still able to create and send the ObjectMessage
containing an object of type java.net.URI, as that type is specified in the allowlist.

However, if you change the allowlist. txt file so that the file contains the single entry
java.util.Calendar, as the allowlist functionality is still enabled, when the application calls:

ObjectMessage msg = session.createObjectMessage(testURL);

the IBM MQ classes for JMS check the allowlist and find that it does not contain an entry for java.net.URI.

As a result, a IMSException containing the IMSCC0052 message is thrown.

Developing applications for IBM MQ 113



Similarly, suppose you have another application that receives ObjectMessages using this code:

ObjectMessage message = (ObjectMessage)receiver.receive(30000);
if (message != null) {

Object messageBody = objectMessage.getObject();

if (messageBody instanceof java.net.URI) {

If allowlisting is not enabled, the application is able to receive ObjectMessages that contain an object
of any type. The application then checks if the object is of type java.net.URL before performing the
appropriate processing.

If you now start the application with the Java system property:
-Dcom.ibm.mqg.jms.allowlist=java.net.URL
set, the allowlisting functionality is turned on. When the application calls:

Object messageBody = objectMessage.getObject();

the ObjectMessage.getObject() method only returns objects of type java.net.URL.

If the object contained within the ObjectMessage is not of this type, the ObjectMessage.getObject()
method throws a JMSException containing the IMSCC0053 message. The application then needs to
decide what do to with the message; for example, the message could be moved to the dead-letter queue
for that queue manager.

The application only returns normally if the object inside the ObjectMessage is of the type java.net.URL.

Procedure

1. Run the application which processes ObjectMessages, with the following Java system properties
specified:

-Dcom.ibm.mq.jms.allowlist.discover=true
-Dcom.ibm.mq.jms.allowlist=file:/<path to your allowlist file>

When the application runs, the IBM MQ classes for JMS create a file which contained the types of
objects that the application processed.

2. After the application has processed a representative sample of ObjectMessages over a period of time,
stop it.

The allowlist file now contains a list of all of the types of objects contained within the ObjectMessages
that the application processed while it was running.

If you have run the application for a sufficient time, this list includes all the possible types of objects
contained within ObjectMessages that the application is likely to handle.

3. Restart the application with the following system property set:
-Dcom.ibm.mqg.jms.allowlist=file:/<path to your allowlist file>

This enables allowlisting, and if the IBM MQ classes for JIMS detect an ObjectMessage of a type which
is not in the allowlist, a JMSException containing either the IMSCC0052 or JIMSCC0053 message is
thrown.

muowlisting in WebSphere Application Server
How you use IBM MQ classes for IMS allowlisting in WebSphere Application Server.

Important:

Wherever possible, the term allowlist has replaced the term whitelist. For IBM MQ 9.0 and later releases,
this includes the Java system property names mentioned in this topic (com.ibm.mq.jms.*). You do not
have to change any existing configuration. The previous system property names also continue to work.

114 Developing Applications for IBM MQ



You must ensure that your WebSphere Application Server installation includes a version of the IBM MQ
resource adapter that supports allowlisting. This functionality was added to the resource adapter as part
of APAR IT14385.

See “Using IBM MQ and WehSphere Application Server together” on page 405 for further information on
using the two products.

Once the application server has been updated, you can use the Java system properties:

« -Dcom.ibm.mq.jms.allowlist
e -Dcom.ibm.mq.jms.allowlist.discover

described in “Setting up and using a JMS allowlist” on page 112.

Note: You need to set the Java system properties as generic JVM arguments, on the Java virtual machine
used to run the application server, and the application server restarted for the changes to take effect.

See the section on Generic JVM arguments in Java virtual machine settings for more information.

To set the properties, go to the Java virtual machine window in Process definitions and enter the
appropriate argument.

The following setting:
-Dcom.ibm.mqg.jms.allowlist=<youruserId>_MyObject

causes the application server to use the allowlist youruserId_MyObject. Only objects of the type are
processed by the application server.

The following settings:

-Dcom.ibm.mqg.jms.allowlist.discover=true
-Dcom.ibm.mqg.jms.allowlist=file:C/:allowlist.txt

configure the application server to use Discover mode, and record details of the JMS ObjectMessages, that
the application server processes, to the file C: \allowlist.txt

The following setting:
-Dcom.ibm.mqg.jms.allowlist=file:C/:allowlist.txt

causes the application server to load the file C: /allowlist. txt, and use the information in that file to
determine the allowlist.

Related concepts

“Running IBM MQ classes for JMS applications under the Java security manager” on page 88

IBM MQ classes for JMS can run with the Java security manager enabled. To run applications successfully
with the Java security manager enabled, you must configure your Java virtual machine (JVM) with a
suitable policy configuration file.

Character string conversions in IBM MQ classes for JIMS

The IBM MQ classes for JMS use CharsetEncoders and CharsetDecoders directly for character string
conversion. The default behavior for character string conversion can be configured with two system
properties. The handling of messages that contain unmappable characters can be configured through
message properties for setting the UnmappableCharacterAction and the replacement bytes.

Before IBM MQ 8.0, string conversions in IBM MQ classes for JMS was done by calling
the java.nio.charset.Charset.decode (ByteBuffer) and Charset.encode(CharBuffer)
methods.

Using either of these methods results in a default replacement (REPLACE) of malformed or
untranslatable data. This behavior can obscure errors in applications, and lead to unexpected characters,
for example ?, in translated data.

Developing applications for IBM MQ 115


https://www.ibm.com/support/pages/node/279485
https://www.ibm.com/docs/SSEQTP_9.0.5/com.ibm.websphere.base.doc/ae/urun_rconfproc_jvm.html

From IBM MQ 8.0, to detect such issues earlier and more effectively, the IBM MQ classes for IMS
use CharsetEncoders and CharsetDecoders directly and configure the handling of malformed and
untranslatable data explicitly. The default behavior is to REPORT such issues by throwing a suitable
MQException.

Configuring

Translating from UTF-16 (the character representation used in Java) to a native character set, such as
UTF-8, is termed encoding, while translating in the opposite direction is termed decoding.

Currently, decoding takes the default behavior for CharsetDecoders, reporting errors by throwing an
exception.

One setting is used to specify a java.nio.charset.CodingErrorAction to control error handling on
both encoding and decoding. One other setting is used to control the replacement byte, or bytes, when
encoding. The default Java replacement String will be used in decoding operations.

UnmappableCharacterAction and replacement bytes settings in IBM MQ Classes for
JMS

From IBM MQ 8.0, the following two properties are available for setting the
UnmappableCharacterAction and the replacement bytes. The appropriate constant definitions are in
com.ibm.msg.client.wmq.WMQConstants

JMS_IBM_UNMAPPABLE_ACTION
Sets or gets the CodingErrorAction to apply when a character cannot be mapped in an encoding
or decoding operation.

You should set this as CodingErrorAction.{REPLACE |REPORT | IGNORE?.toString() as
follows:

public static final String JMS_IBM_UNMAPPABLE_ACTION = "JMS_IBM_Unmappable_Action";

JMS_IBM_UNMAPPABLE_REPLACEMENT
Sets or gets the replacement bytes to apply when a character cannot be mapped in an encoding
operation.

The default Java replacement String is used in decoding operations.

public static final String JMS_IBM_UNMAPPABLE_REPLACEMENT = "JMS_IBM_Unmappable_Replacement";

The JMS_IBM_UNMAPPABLE_ACTION and JMS_IBM_UNMAPPABLE_REPLACEMENT properties can be set
on destinations or messages. A value set on a message overrides the value set on the destination to which
the message is being sent.

Note that JMS_IBM_UNMAPPABLE_REPLACEMENT must be set as a single byte.

System properties for setting system defaults

From IBM MQ 8.0, the following two Java system properties are available to configure default behavior
regarding character string conversion.

com.ibm.mq.cfg.jmgi.UnmappableCharacterAction
Specifies the action to be taken for untranslatable data on encoding and decoding. The value can be
REPORT, REPLACE, or IGNORE.

com.ibm.mq.cfg.jmgi.UnmappableCharacterReplacement
Sets or gets the replacement bytes to apply when a character cannot be mapped in an encoding
operation The default Java replacement string is used in decoding operations.

To avoid confusion between Java character and native byte representations, you should specify
com.ibm.mg.cfg.jmgi.UnmappableCharacterReplacement as a decimal number representing the
replacement byte in the native character set.

116 Developing Applications for IBM MQ



For example, the decimal value of ?, as a native byte, is 63 if the native character set is ASCII-based, such
as IS0-8859-1, while it is 111 if the native character set is EBCDIC.

Note: Note that if an MQMD or MQMessage object has either the unmappableAction or
unMappableReplacement fields set, then the values of these fields take precedence over the Java
system properties. This allows the values specified by the Java system properties to be overridden for
each message if required.

Related concepts

“Character string conversions in IBM MQ classes for Java” on page 286

The IBM MQ classes for Java use CharsetEncoders and CharsetDecoders directly for character string
conversion. The default behavior for character string conversion can be configured with two system
properties. The handling of messages that contain unmappable characters can be configured through
com.ibm.mqg.MQMD.

Writing IBM MQ classes for JMS applications

After a brief introduction to the JMS model, this topic provides detailed guidance on how to write IBM MQ
classes for JMS applications.

The JMS model

The JMS model defines a set of interfaces that Java applications can use to perform messaging
operations. IBM MQ classes for JMS, as a JMS provider, defines how JMS objects are related to IBM
MQ concepts. The IJMS specification expects certain JMS objects to be administered objects. JMS 2.0
introduces a simplified API, while also retaining the classic API, from JMS 1.1.

The JMS specification and the javax.jms package define a set of interfaces that Java applications can use
to perform messaging operations.

From IBM MQ 8.0, the product supports the JMS 2.0 version of the JMS standard, which introduces a
simplified API, while also retaining the classic API, from JMS 1.1.

Simplified API

JMS 2.0 introduces the simplified API, while also retaining the domain specific and domain independent
interfaces from JMS 1.1. The simplified API reduces the number of objects that are needed to send and
receive messages and consists of the following interfaces:

ConnectionFactory
A ConnectionFactory is an administered object that is used by a JMS client to create a Connection.
This interface is also used in the classic APL.

JMSContext
This object combines the Connection and Session objects of the classic API. IMSContext objects can
be created from other JMSContext objects, with the underlying connection being duplicated.

JMSProducer
A IJMSProducer is created by a JIMSContext and is used to send messages to a queue or topic. The
JMSProducer object causes the creation of objects that are required to send the message.

JMSConsumer
A JMSConsumer is created by a IMSContext and is used to receive messages from a topic or a queue.

The simplified API has a number of effects:

- The JMSContext object always automatically starts the underlying connection.

« JMSProducers and JMSConsumers can now work directly with message bodies, without having to get
the whole message object, by using the Message's getBody method.

Developing applications for IBM MQ 117



- Message properties can be set on the JMSProducer object, using method chaining, before sending a
'body’, a messages content. The JMSProducer will handle the creation of all objects that are needed to
send the message. Using JMS 2.0, properties can be set, and a message sent as follows:

context.createProducer().
setProperty("foo", "bar").
setTimeTolLive (10000) .
setDeliveryMode (NON_PERSISTENT) .
setDisableMessageTimestamp (true).
send(dataQueue, body);

JMS 2.0 also introduces shared subscriptions where messages can be shared between multiple
consumers. All JIMS 1.1 subscriptions are treated as unshared subscriptions.

Classic API
The following list summarizes the main JMS interfaces of the classic API:

Destination
A destination is where an application sends messages, or it is a source from which an application
receives messages, or both.

ConnectionFactory
A ConnectionFactory object encapsulates a set of configuration properties for a connection. An
application uses a connection factory to create a connection.

Connection
A Connection object encapsulates an application's active connection to a messaging server. An
application uses a connection to create sessions.

Session
A session is a single threaded context for sending and receiving messages. An application uses
a session to create messages, message producers, and message consumers. A session is either
transacted or not transacted.

Message
A Message object encapsulates a message that an application sends or receives.

MessageProducer
An application uses a message producer to send messages to a destination.

MessageConsumer
An application uses a message consumer to receive messages sent to a destination.

Figure 9 on page 118 shows these objects and their relationships.

—
LFDnnacﬂnnFamuna

J} Creates

Connection

J-[ Creates
,.-"l

Cregles [ Craales

‘MessagaF‘r&ducer ‘:_:::I Session |:’l::.> MessageConsumer

{Sms o @ Creates [H‘ece.'res frawm

— —
E;stinati_cﬂ Message | Destinatiﬁrﬁ
e . e e

Figure 9. JMS objects and their relationships

118 Developing Applications for IBM MQ



A Destination, ConnectionFactory, or Connection object can be used concurrently by different threads

of a multithreaded application, but a Session, MessageProducer, or MessageConsumer object cannot be
used concurrently by different threads. The simplest way of ensuring that a Session, MessageProducer, or
MessageConsumer object is not used concurrently is to create a separate Session object for each thread.

JMS support two styles of messaging:

« Point-to-point messaging
« Publish/subscribe messaging

These styles of messaging are also referred to as messaging domains, and you can combine both styles
of messaging in an application. In the point-to-point domain, a destination is a queue and, in the publish/
subscribe domain, a destination is a topic.

With versions of JMS before JMS 1.1, programming for the point-to-point domain uses one set of
interfaces and methods, and programming for the publish/subscribe domain uses another set. The two
sets are similar, but separate. From JMS 1.1, you can use a common set of interfaces and methods
that support both messaging domains. The common interfaces provide a domain independent view of
each messaging domain. Table 14 on page 119 lists the JMS domain independent interfaces and their

corresponding domain specific interfaces.

Table 14. The IMS domain independent and domain specific interfaces

Domain independent interfaces

Domain specific interfaces for
the point-to-point domain

Domain specific interfaces for
the publish/subscribe domain

ConnectionFactory

QueueConnectionFactory

TopicConnectionFactory

QueueReceiver

Connection QueueConnection TopicConnection
Destination Queue Topic

Session QueueSession TopicSession
MessageProducer QueueSender TopicPublisher
MessageConsumer TopicSubscriber

QueueBrowser

JMS 2.0 retains all the domain specific interfaces, and so existing applications can still use these
interfaces. For new applications, however, consider using the domain independent interfaces of IMS 1.1
or the simplified API of JMS 2.0.

In IBM MQ classes for JIMS, JMS objects are related to IBM MQ concepts in the following ways:

« A Connection object has properties that are derived from the properties of the connection factory that
was used to create the connection. These properties control how an application connects to a queue
manager. Examples of these properties are the name of the queue manager and, for an application that
connects to the queue manager in client mode, the host name or IP address of the system on which the
queue manager is running.

« A Session object encapsulates an IBM MQ connection handle, which therefore defines the transactional
scope of the session.

« A MessageProducer object and a MessageConsumer object each encapsulates an IBM MQ object
handle.

When using IBM MQ classes for JMS, all the normal rules of IBM MQ apply. Note, in particular, that an
application can send a message to a remote queue but it can receive a message only from a queue that is
owned by the queue manager to which the application is connected.

The IJMS specification expects ConnectionFactory and Destination objects to be administered objects. An
administrator creates and maintains administered objects in a central repository, and a JMS application
retrieves these objects using the Java Naming and Directory Interface (JNDI).

Developing applications for IBM MQ 119



In IBM MQ classes for JMS, the implementation of the Destination interface is an abstract superclass

of Queue and Topic, and so an instance of Destination is either a Queue object or a Topic object. The
domain independent interfaces treat a queue or a topic as a destination. The messaging domain for a
MessageProducer or MessageConsumer object is determined by whether the destination is a queue or a
topic.

In IBM MQ classes for JMS therefore, objects of the following types can be administered objects:
« ConnectionFactory

« QueueConnectionFactory

« TopicConnectionFactory

* Queue

« Topic

« XAConnectionFactory

XAQueueConnectionFactory

XATopicConnectionFactory

Related concepts
IBM MQ Java language interfaces

“Using JMS 2.0 functionality” on page 264
JMS 2.0 introduces several new areas of functionality to the IBM MQ classes for JIMS.

JMS messages

JMS messages are composed of a header, properties, and a body. JMS defines five types of message
body.

JMS messages are composed of the following parts:

Header
All messages support the same set of header fields. Header fields contain values that are used by
both clients and providers to identify and route messages.

Properties
Each message contains a built-in facility to support application-defined property values. Properties
provide an efficient mechanism to filter application-defined messages.

Body
JMS defines five types of message body that cover the majority of messaging styles currently in use:

Stream
A stream of Java primitive values. It is filled and read sequentially.

Map
A set of name-value pairs, where names are strings and values are Java primitive types. The
entries can be accessed sequentially or randomly by name. The order of the entries is undefined.
Text
A message containing a java.lang.String.
Object
A message that contains a serializable Java object
Bytes
A stream of uninterpreted bytes. This message type is for literally encoding a body to match an
existing message format.

The JMSCorrelationID header field is used to link one message with another. It typically links a reply
message with its requesting message. IMSCorrelationID can hold a provider-specific message ID, an
application-specific String, or a provider-native byte[] value.

120 Developing Applications for IBM MQ



Message selectors in IMS
Messages can contain application-defined property values. An application can use message selectors to
have a JMS provider filter messages.

A message contains a built-in facility to support application-defined property values. In effect, this
provides a mechanism to add application-specific header fields to a message. Properties allow an
application, using message selectors, to have a JMS provider select or filter messages on its behalf,
using application-specific criteria. Application-defined properties must obey the following rules:

 Property names must obey the rules for a message selector identifier.

« Property values can be Boolean, byte, short, int, long, float, double, and String.

« The JIMSX and JMS_ name prefixes are reserved.

Property values are set before sending a message. When a client receives a message, the
message properties are read-only. If a client attempts to set properties at this point, a

MessageNotWriteableException is thrown. If clearProperties is called, the properties can now be both
read from, and written to.

A property value might duplicate a value in a message body. JMS does not define a policy for what might
be made into a property. However, application developers must be aware that JIMS providers probably
handle data in a message body more efficiently than data in message properties. For best performance,
applications must use message properties only when they need to customize a message header. The
primary reason for doing this is to support customized message selection.

A JMS message selector allows a client to specify the messages that it is interested in by using the
message header. Only messages with headers that match the selector are delivered.

Message selectors cannot refer to message body values.

A message selector matches a message when the selector evaluates to true when the message header
field and property values are substituted for their corresponding identifiers in the selector.

A message selector is a String, with syntax that is based on a subset of the SQL92 conditional expression
syntax. The order in which a message selector is evaluated is from left to right within a precedence level.
You can use parentheses to change this order. Predefined selector literals and operator names are written
here in uppercase; however, they are not case-sensitive.

Contents of a message selector
A message selector can contain:
- Literals

— Astring literal is enclosed in quotation marks. A doubled quotation mark represents a quotation
mark. Examples are 'literal' and 'literal"'s". Like Java string literals, these use the Unicode character
encoding.

— An exact numeric literal is a numeric value without a decimal point, such as 57, -957, and +62.
Numbers in the range of Java long are supported.

— An approximate numeric literal is a numeric value in scientific notation, such as 7E3 or -57.9E2, or
a numeric value with a decimal, such as 7., -95.7, or +6.2. Numbers in the range of Java double are
supported.

— The Boolean literals TRUE and FALSE.
« Identifiers:

— Anidentifier is an unlimited length sequence of Java letters and Java digits, the first of which must be
a Java letter. A letter is any character for which the method Character.isJavaletter returns true. This
includes _and $. A letter or digit is any character for which the method Character.isJavalLetterOrDigit
returns true.

— Identifiers cannot be the names NULL, TRUE, or FALSE.
— Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, or IS.

Developing applications for IBM MQ 121



— Identifiers are either header field references or property references.
— Identifiers are case sensitive.
— Message header field references are restricted to:

- JMSDeliveryMode
- JMSPriority

- JMSMessagelD

- JMSTimestamp

- JMSCorrelationID
- JMSType

JMSMessagelD, JIMSTimestamp, JMSCorrelationID, and JMSType values can be null, and if so, are
treated as a NULL value.

— Any name beginning with IMSX is a JMS-defined property name.
— Any name beginning with JMS_ is a provider-specific property name.

— Any name that does not begin with JMS is an application-specific property name. If there is a
reference to a property that does not exist in a message, its value is NULL. If it does exist, its value is
the corresponding property value.

« White space is the same as it is defined for Java: space, horizontal tab, form feed, and line terminator.
« Expressions:

— Aselector is a conditional expression. A selector that evaluates to true matches; a selector that
evaluates to false or unknown does not match.

— Arithmetic expressions are composed of themselves, arithmetic operations, identifiers (with a value
that is treated as a numeric literal), and numeric literals.

— Conditional expressions are composed of themselves, comparison operations, and logical operations.
« Standard bracketing (), to set the order in which expressions are evaluated, is supported.
« Logical operators in precedence order: NOT, AND, OR.
« Comparison operators: =, >, >=, <, <=, <> (not equal).
— Only values of the same type can be compared. One exception is that it is valid to compare exact
numeric values and approximate numeric values. (The type conversion required is defined by the

rules of Java numeric promotion.) If there is an attempt to compare different types, the selector is
always false.

— String and Boolean comparison is restricted to = and <>. Two strings are equal only if they contain the
same sequence of characters.

- Arithmetic operators in precedence order:

— +,-unary.

* [, multiplication, and division.

+, -, addition, and subtraction.

Arithmetic operations on a NULL value are not supported. If they are attempted, the complete
selector is always false.

Arithmetic operations must use Java numeric promotion.

« arithmetic-exprl [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3 comparison operator:
— Age BETWEEN 15 and 19 is equivalent to age >= 15 AND age <= 19.
— Age NOT BETWEEN 15 and 19 is equivalent to age < 15 OR age> 19.

— If any of the expressions of a BETWEEN operation are NULL, the value of the operation is false. If any
of the expressions of a NOT BETWEEN operation are NULL, the value of the operation is true.

« identifier [NOT] IN (string-literald, string-literal2,...) comparison operator where identifier has a String or
NULL value.

122 Developing Applications for IBM MQ



— Country IN ('UK!, 'US', 'France") is true for 'UK' and false for 'Peru’. It is equivalent to the expression
(Country ='UK") OR (Country = 'US") OR (Country = 'France').

— Country NOT IN ('UK/, 'US', 'France") is false for 'UK' and true for 'Peru’. It is equivalent to the
expression NOT ((Country = 'UK") OR (Country = 'US') OR (Country = 'France')).

— If the identifier of an IN or NOT IN operation is NULL, the value of the operation is unknown.

« identifier [NOT] LIKE pattern-value [ESCAPE escape-character] comparison operator, where identifier
has a string value. pattern-value is a string literal, where _ stands for any single character and %
stands for any sequence of characters (including the empty sequence). All other characters stand for
themselves. The optional escape-character is a single character string literal, with a character that is
used to escape the special meaning of the _ and % in pattern-value.

phone LIKE '12%3" is true for 123 and 12993 and false for 1234.

word LIKE 'l_se' is true for "lose" and false for "loose".

underscored LIKE '\_%' ESCAPE '\' is true for "_foo" and false for "bar".

phone NOT LIKE '12%3" is false for 123 and 12993 and true for 1234.

— If the identifier of a LIKE or NOT LIKE operation is NULL, the value of the operation is unknown.

« identifier IS NULL comparison operator tests for a null header field value, or a missing property value.

— prop_name IS NULL.

« identifier IS NOT NULL comparison operator tests for the existence of a non-null header field value or a
property value.

— prop_name IS NOT NULL.

Example of a message selector

The following message selector selects messages with a message type of car, color of blue, and weight
greater than 2500 Lbs:

"JMSType = 'car' AND color = 'blue' AND weight > 2500"

NULL property values

As noted in the preceding list, property values can be NULL. The evaluation of selector expressions that
contain NULL values is defined by SQL 92 NULL semantics. The following list gives a brief description of
these semantics:

« SQL treats a NULL value as unknown.

« Comparison or arithmetic with an unknown value always yields an unknown value.
« The IS NULL operator converts an unknown value into a TRUE value.

« The IS NOT NULL operator converts an unknown value into a FALSE value.

Special behavior of JMSMessagelID and JMSCorrelationID

The IBM MQ classes for JIMS contain optimizations when selecting messages from a queue based on
either JMSMessagelD or JMSCorrelationID.

If an application specifies a selector of the form:
JMSMessagelID="'ID:message_id'

where message_id is a String containing a standard IBM MQ message identifier, then the IBM MQ classes
for JIMS use the MatchOption MQMO_MATCH_MSG_ID to get the message with the specified message
identifier.

Developing applications for IBM MQ 123



For example, to get a message with the message identifier
414D51207061756C745639314C545320C57C1A5F25ECE602 from a queue, an application should use
the following message selector:

JMSMessageID="'ID:414D51207061756C745639314C545320C57C1A5F25ECE602"

Similarly, if the application specifies a selector that has the format:
JMSCorrelationID ='ID:correlation_id'

where correlation_id is a String containing a standard IBM MQ correlation identifier, the IBM MQ classes
for JIMS use the MatchOption MQMO_MATCH_CORREL_ID to get the message with the specified
correlation identifier from the queue.

In the following example, a message selector is used to get a message that has a correlation identifier of
414D51207061756C745639314C545320846E5B5F25B1CCO2:

JMSCorrelationID="'ID:414D51207061756C745639314C545320846E5B5F25B1CC0O2"

If a message selector contains a value of all zeros for either the message_id or correlation_id, then it
matches any message on the queue. For example, if an application is using the selector:

JMSMessageID="ID:000000000000000000000000000000000000000O0CCOOEOO0 "

then any message on the queue is considered a match and returned to the application.

For more information about the MOMO_MATCH_MSG_ID and MOMO_MATCH_CORREL_ID
MatchOptions, see MatchOptions (MQLONG).

Restrictions

Although SQL supports fixed decimal comparison and arithmetic, IMS message selectors do not. This is
why exact numeric literals are restricted to those without a decimal. It is also why there are numerics with
a decimal as an alternative representation for an approximate numeric value.

SQL comments are not supported.

Mapping JMS messages onto IBM MQ messages
IBM MQ messages are composed of a Message Descriptor, an optional MORFH2 header, and a body. The
contents of a JMS message are partly mapped and partly copied to an IBM MQ message.

This topic describes how the JMS message structure that is described in the first part of this section is
mapped onto an IBM MQ message. It is of interest to programmers who want to transmit messages
between JMS and traditional IBM MQ applications. It is also of interest to people who want to
manipulate messages transmitted between two JMS applications, for example, in an IBM Integration
Bus implementation.

This section does not apply if an application uses a real-time connection to a broker. When an application
uses a real-time connection, all communication is performed directly over TCP/IP; no IBM MQ queues or
messages are involved.

IBM MQ messages are composed of three components:

« The IBM MQ Message Descriptor (MQMD)
« An IBM MQ MQRFH2 header
« The message body.

The MQRFH2 is optional, and its inclusion in an outgoing message is governed by the TARGCLIENT flag
in the JMS Destination class. You can set this flag using the IBM MQ JMS administration tool. Because
the MQRFH2 carries JMS-specific information, always include it in the message when the sender knows
that the receiving destination is a JMS application. Normally, omit the MQRFH2 when sending a message
directly to a non-JMS application. This is because such an application does not expect an MQRFH2 in its
IBM MQ message.

124 Developing Applications for IBM MQ



If an incoming message does not have an MQRFH2 header, the Queue or Topic object derived from the
JMSReplyTo header field of the message, by default, has this flag set so that a reply message sent to the
queue or topic also does not have an MQRFH2 header. You can switch off this behavior of including an
MQRFH2 header in a reply message only if the original message has an MQRFH2 header, by setting the
TARGCLIENTMATCHING property of the connection factory to NO.

Figure 10 on page 125 shows how the structure of a JMS message is transformed to an IBM MQ message
and back again:

WebSphere MO
Message
JMS Application Ma-':'-ﬂ'i”-';_'__f..x"' MaMD : x__’ffp"'”.”g JMS Application
- -
. = A T T .
JMS Message ,---"""'f - Data \H“x ~ JMS Message
|~ - |
Header j',f - “=——t%  Header
|+ RFH2 L |
Properties B Propertias
Copying Copying .
Data Other Data Data

Figure 10. How messages are transformed between JMS and IBM MQ using the MORFH2 header

The structures are transformed in two ways:

Mapping
Where the MOMD includes a field that is equivalent to the IJMS field, the JMS field is mapped onto the
MQMD field. Additional MQMD fields are exposed as JMS properties, because a JMS application might
need to get or set these fields when communicating with a non-JMS application.

Copying
Where there is no MQMD equivalent, a JMS header field or property is passed, possibly transformed,
as a field inside the MORFH2.

The MORFH2 header and JMS

This collection of topics describes the MQRFH Version 2 header, which carries JMS-specific data that

is associated with the message content. The MQRFH Version 2 header is extensible, and can also carry
additional information that is not directly associated with JMS. However, this section covers only its use
by IJMS. For a full description see MQRFH2 - Rules and formatting header 2.

There are two parts of the header, a fixed portion and a variable portion.

Fixed portion
The fixed portion is modeled on the standard IBM MQ header pattern and consists of the following
fields:

StrucIld (MQCHAR4)
Structure identifier.

Must be MQRFH_STRUC_ID (value: "RFH ") (initial value).
MQRFH_STRUC_ID_ARRAY (value: "R", "F", "H"," ") is also defined.

Version (MQLONG)
Structure version number.

Must be MQRFH_VERSION_2 (value: 2) (initial value).

StrucLength (MQLONG)
Total length of MOQRFHZ2, including the NameValueData fields.

The value set into StrucLength must be a multiple of 4 (the data in the NameValueData fields can be
padded with space characters to achieve this).

Developing applications for IBM MQ 125



Encoding (MQLONG)
Data encoding.

Encoding of any numeric data in the portion of the message following the MQRFH2 (the next header,
or the message data following this header).

CodedCharSetld (MQLONG)
Coded character set identifier.

Representation of any character data in the portion of the message following the MQRFH2 (the next
header, or the message data following this header).

Format (MQCHARS)
Format name.

Format name for the portion of the message following the MQRFH2.

Flags (MQLONG)
Flags.

MQRFH_NO_FLAGS =0. No flags set.

NameValueCCSID (MQLONG)
The coded character set identifier (CCSID) for the NameValueData character strings contained in this
header. The NameValueData can be coded in a character set that differs from the other character
strings that are contained in the header (StrucID and Format).

If the NameValueCCSID is a 2 byte Unicode CCSID (1200, 13488, or 17584), the byte order of the
Unicode is the same as the byte ordering of the numeric fields in the MOQRFH2. (For example, Version,
StrucLength, and NameValueCCSID itself.)

Table 15. Possible values for NameValueCCSID field

CCsID Meaning

1200 UTF-16, most recent Unicode version supported

13488 UTF-16, Unicode version 2.0 subset

17584 UTF-16, Unicode version 3.0 subset (includes the
Euro symbol)

1208 UTF-8, most recent Unicode version supported

Variable portion
The variable portion follows the fixed portion. The variable portion contains a variable number of
MQRFH2 folders. Each folder contains a variable number of elements or properties. Folders group
related properties. The MQRFH2 headers created by JMS can contain any of the following folders:

The mcd folder

mcd contains properties that describe the format of the message. For example, the message service
domain Msd property identifies a JMS message as being JMSTextMessage, JMSBytesMessage,
JMSStreamMessage, JMSMapMessage, JMSObjectMessage, or null.

The mcd folder is always present in a JIMS message containing an MQRFH2.

It is always present in a message containing an MQRFH2 sent from IBM Integration Bus. It describes
the domain, format, type, and message set of a message.

126 Developing Applications for IBM MQ



Table 16. mcd property name, synonym, data type, and folder
Property Property Data
synonym name type Folder
mcd.Msd strin | <mcd><Msd>messageDomain</Msd></mcd>
g
mcd.Set strin | <mcd><Set>messageDomain</Set></mcd>
g
mcd.Type |strin |<mcd><Type>messageDomain</Type></mcd>
g
mcd.Fmt strin [<mcd><Fmt>messageDomain</Fmt></mcd>
g

Do not add your own properties in the mcd folder.
The jms folder

jms contains JMS header fields, and JMSX properties that cannot be fully expressed in the MQMD. The
jms folder is always present in a IMS MQRFH2.

The usz folder

usr contains application-defined JMS properties associated with the message. The usz folder is
present only if an application has set an application-defined property.

The mgext folder
mgext contains the following types of property:

 Properties that are used only by WebSphere Application Server.
 Properties relating to delayed delivery of messages.

The folder is present if the application has either set at least one of the IBM defined properties or
used delivery delay.

Table 17. mgext property name, synonym, data type, and folder

Property Data

Property synonym name type Folder

JMSArmCorrelator |mgext.Arm |string|<mgext><Arm>armCorrelator</Arm></
mgext>

JMSRMCorrelator mgext.Wrm |[string|<mgext><Wrm>wrmCorrelator</Wrm></
mgext>

JMSDeliveryTime |mgext.Dlt |i8 <mgext><Dlt>DeliveryTime</Dlt></mgext>

JMSDeliveryDelay |mgext.Dly |i8 <mgext><Dly>DeliveryTime</Dly></mgext>

Do not add your own properties in the mgext folder.
The mqps folder

mgps contains properties that are used only by IBM MQ publish/subscribe. The folder is present only
if the application has set at least one of the integrated publish/subscribe properties.

Developing applications for IBM MQ 127



Table 18. mqps property name, synonym, data type, and folder

Property Property Data
synonym name type Folder
MQTopicStr |mgps.Top |strin [<mgps><Top>topicString</Top></mgps>
ing g
MQSubUserD |[mgps.Sud |strin [<mgps><Sud>subscriberUserData</Sud></mqgps>
ata g
MQIsRetain |[mgps.Ret |boole [<mgps><Ret>isRetained</Ret></mqps>
ed an
MQPubOptio |mgps.Pub [i8 <mgps><Pub>publicationOptions</Pub></mqps>
ns
MQPubLevel |mgps.Pbl |i8 <mgps><Pbl>publicationLevel</Pbl></mqps>
MQPubTime |mgpse.Pts|strin [<mgps><Pts>publicationTime</Pts></mqps>
g
MQPubSegNu [mgpse.Seq|i8 <mgps><Seqg>publicationSequenceNumber</Seq></
m mgps>
MQPubStrIn |mgpse.Sid|strin [<mgps><Sid>publicationData</Sid></mqps>
tData g
MQPubForma |mgpse.Pfm|i8 <mgps><Pfmt>messageFormat</PEmt></mgps>
t t

Do not add your own properties in the mgps folder.

Table 19 on page 128 shows a full list of property names.

Table 19. MORFH?2 folders and properties used by IMS
JMS field name Java type MQRFH2 folder |Property name |Type/values
name
JMSDestination Destination jms Dst string
JMSExpiration long jms Exp i8
JMSPriority int jms Pri i4
JMSDeliveryMode int jms Dlv i4
JMSCorrelationID String jms Cid string
JMSReplyTo Destination jms Rto string
JMSTimestamp long jms Tms i8
JMSType String mcd Type, Set, Fmt string
JMSXGroupID String jms Gid string
JMSXGroupSeq int jms Seq i4
xxX (user defined) Any usr XXX any

128 Developing Applications for IBM MQ



Table 19. MQRFH2 folders and properties used by JMS (continued)
JMS field name Java type MQRFH2 folder |Property name |Type/values
name
mcd Msd jms_none
jms_text
jms_bytes
jms_map
jms_stream
jms_object

NameValueLength (MQLONG)
Length in bytes of the NameValueData string that immediately follows this length field (it does not
include its own length).

NameValueData (MQCHARnN)
A single character string, whose length in bytes is given by the preceding NameValueLength field.
It contains a folder holding a sequence of properties. Each property is a name/type/value triplet,
contained within an XML element whose name is the folder name, as follows:

<foldername>
tripletl triplet2 ..... tripletn </foldername>

The closing </foldername> tag can be followed by spaces as padding characters. Each triplet is
encoded using an XML-like syntax:

<name dt='datatype'>value</name>
The dt="datatype' elementis optional and is omitted for many properties, because the data type is
predefined. If it is included, one or more space characters must be included before the dt= tag.

name
is the name of the property; see Table 19 on page 128.

datatype
must match, after folding, one of the data types listed in Table 20 on page 129.

value
is a string representation of the value to be conveyed, using the definitions in Table 20 on page
129.

A null value is encoded using the following syntax:
<name dt='datatype' xsi:nil='true'></name>

Do notuse xsi:nil="'false"'.

Table 20. Property data types

Data type Definition

string Any sequence of characters excluding < and &

boolean The character O or 1 (0 = false, 1 = true)

bin.hex Hexadecimal digits representing octets

i1 A number, expressed using digits 0. . 9, with optional sign (no fractions or exponent).

Must lie in the range -128 to 127 inclusive

i2 A number, expressed using digits 0. . 9, with optional sign (no fractions or exponent).
Must lie in the range -32768 to 32767 inclusive

Developing applications for IBM MQ 129



Table 20. Property data types (continued)

Data type Definition

i4 A number, expressed using digits 0. . 9, with optional sign (no fractions or exponent).
Must lie in the range -2147483648 to 2147483647 inclusive

i8 A number, expressed using digits 0. .9, with optional sign (no fractions or exponent).
Must lie in the range -9223372036854775808 t0 92233720368547750807
inclusive

int A number, expressed using digits 0. .9, with optional sign (no fractions or exponent).
Must lie in the same range as i8. This can be used in place of one of the i* types if the
sender does not want to associate a particular precision with the property

rd Floating point number, magnitude <= 3.40282347E+38,>= 1.175E-37 expressed
using digits 0. .9, optional sign, optional fractional digits, optional exponent

r8 Floating point number, magnitude <= 1.7976931348623E+308,>= 2.225E-307
expressed using digits 0. . 9, optional sign, optional fractional digits, optional
exponent

A string value can contain spaces. You must use the following escape sequences in a string value:

« &amp; for the & character
« &1t; forthe < character

You can use the following escape sequences, but they are not required:

- &gt ; for the > character

« &apos; for the

character

« &quot; forthe " character

JMS fields and properties with corresponding MQMD fields
These tables show the MQMD fields equivalent to JMS header fields, JMS properties, and JMS provider-

specific properties.

Table 21 on page 130 lists the JMS header fields and Table 22 on page 131 lists the JMS properties that

are mapped directly to MOMD fields. Table 23 on page 131 lists the provider-specific properties and the
MQMD fields that they are mapped to.

Table 21. IMS header fields mapping to MOMD fields

JMS header field Java MQMD field C type
type
JMSDeliveryMode int Persistence MQLONG
JMSExpiration long Expiry MQLONG
JMSPriority int Priority MQLONG
JMSMessagelD String | MsgID MQBYTE24
JMSTimestamp long PutDate MOCHARS
PutTime MQCHARS
JMSCorrelationID String | Correlld MOBYTE24

130 Developing Applications for IBM MQ




Table 22. IMS properties mapping to MOMD fields

JMS property Java MQMD field C type
type
JMSXUserID String | Userldentifier MQCHAR12
JMSXAppID String | PutApplName MQCHAR28
JMSXDeliveryCount int BackoutCount MQLONG
JMSXGroupID String | Groupld MQBYTE24
JMSXGroupSeq int MsgSeqNumber MQLONG
Table 23. IMS provider-specific properties mapping to MOMD fields
JMS provider-specific property Java MQMD field C type
type
JMS_IBM_Report_Exception int Report MQLONG
JMS_IBM_Report_Expiration int Report MQLONG
JMS_IBM_Report_COA int Report MQLONG
JMS_IBM_Report_COD int Report MQLONG
JMS_IBM_Report_PAN int Report MQLONG
JMS_IBM_Report_NAN int Report MQLONG
JMS_IBM_Report_Pass_Msg_ID int Report MQLONG
JMS_IBM_Report_Pass_Correl_ID int Report MQLONG
JMS_IBM_Report_Discard_Msg int Report MQLONG
JMS_IBM_MsgType int MsgType MQLONG
JMS_IBM_Feedback int Feedback MOLONG
JMS_IBM_Format String Format “1”on page 131 MQCHARS8
JMS_IBM_PutApplType int PutApplType MQLONG
JMS_IBM_Encoding int Encoding MQLONG
JMS_IBM_Character_Set String | CodedCharacterSetId “2”°" | MQLONG
page 132
JMS_IBM_PutDate String | PutDate MQCHARS8
JMS_IBM_PutTime String | PutTime MQCHARS
JMS_IBM_Last_Msg_In_Group boolea |[MsgFlags MQLONG
n
Note:

1. JIMS_IBM_Format represents the format of the message body. This can be defined by the application
setting the JMS_IBM_Format property of the message (note that there is an 8 character limit), or
can default to the IBM MQ format of the message body appropriate to the JMS message type.
JMS_IBM_Format maps to the MQMD Format field only if the message contains no RFH or RFH2
sections. In a typical message, it maps to the Format field of the RFH2 immediately preceding the
message body.

Developing applications for IBM MQ 131



2. JMS_IBM_Character_Set property value is a String value that contains the Java character set
equivalent for the numeric CodedCharacterSetld value. MQMD field CodedCharacterSetld is a
numeric value that contains the equivalent of the Java character set string specified by the

JMS_IBM_Character_Set property.

Mapping JMS fields onto IBM MQ fields (outgoing messages)
These tables show how JMS header and property fields are mapped into MOMD and MQRFH2 fields at

send() or publish() time.

Table 24 on page 132 shows how the JMS header fields are mapped into MQMD/RFH2 fields at send() or
publish() time. Table 25 on page 132 shows how JMS properties are mapped into MQMD/RFH2 fields at

send() or publish() time. Table 26 on page 133 shows how JMS provider-specific properties are mapped

to MQMD fields at send() or publish() time,

For fields marked Set by Message Object, the value transmitted is the value held in the JMS message
immediately before the send() or publish() operation. The value in the JMS message is left unchanged by

the operation.

For fields marked Set by Send Method, a value is assigned when the send() or publish() is performed (any
value held in the JMS message is ignored). The value in the JMS message is updated to show the value

used.

Fields marked as Receive-only are not transmitted and are left unchanged in the message by send() or

publisho).

Table 24. Outgoing message field mapping

JMS header field name MQMD field used for Header Set by
transmission

JMSDestination MOQORFH2 Send Method
JMSDeliveryMode Persistence MQRFH2 Send Method
JMSExpiration Expiry MQRFH2 Send Method
JMSPriority Priority MQRFH2 Send Method
JMSMessagelD MsgID Send Method
JMSTimestamp PutDate/PutTime Send Method
JMSCorrelationID Correlld MQRFH2 Message Object
JMSReplyTo ReplyToQ/ReplyToQMgr MQRFH2 Message Object
JMSType MQRFH2 Message Object

JMSRedelivered

Receive-only

Note:

1. MOMD field CodedCharacterSetld is a numeric value that contains the equivalent of the Java character

set string specified by the JMS_IBM_Character_Set property.

Table 25. Outgoing message JMS property mapping

JMS property name MQMD field used for Header Set by
transmission

JMSXUserlID Userldentifier Send Method

JIJMSXAppID PutApplName Send Method

JMSXDeliveryCount Receive-only

JMSXGroupID Groupld MQRFH2 Message Object

132 Developing Applications for IBM MQ




Table 25. Outgoing message JMS property mapping (continued)

JMS property name MQMD field used for Header Set by
transmission
JMSXGroupSeq MsgSegNumber MQRFH2 Message Object

Table 26. Outgoing message JMS provider-specific property mapping

JMS provider-specific property name MQMD field used for Header Set by
transmission

JMS_IBM_Report_Exception Report Message Object
JMS_IBM_Report_Expiration Report Message Object
JMS_IBM_Report_COA/COD Report Message Object
JMS_IBM_Report_NAN/PAN Report Message Object
JMS_IBM_Report_Pass_Msg_ID Report Message Object
JMS_IBM_Report_Pass_Correl_ID Report Message Object
JMS_IBM_Report_Discard_Msg Report Message Object
JMS_IBM_MsgType MsgType Message Object
JMS_IBM_Feedback Feedback Message Object
JMS_IBM_Format Format Message Object
JMS_IBM_PutApplType PutApplType Send Method
JMS_IBM_Encoding Encoding Message Object
JMS_IBM_Character_Set CodedCharacterSetId Message Object
JMS_IBM_PutDate PutDate Send Method
JMS_IBM_PutTime PutTime Send Method
JMS_IBM_Last_Msg_In_Group MsgFlags Message Object

Mapping JMS header fields at send() or publish()
These notes relate to the mapping of IMS fields at send() or publish().

JMSDestination to MQRFH2
This is stored as a string that serializes the salient characteristics of the destination object, so that a
receiving JMS can reconstitute an equivalent destination object. The MQRFH2 field is encoded as URI
(see “Uniform resource identifiers (URIs)” on page 190 for details of the URI notation).

JMSReplyTo to MQMD.ReplyToQ, ReplyToQMgr, MQRFH2
The queue name is copied to the MQMD.ReplyToQ field, and the queue manager name is copied to
the ReplyToQMgr fields. The destination extension information (other useful details that are kept in
the destination object) is copied into the MQRFH2 field. The MQRFH2 field is encoded as a URI (see
“Uniform resource identifiers (URIs)” on page 190 for details of the URI notation).

JMSDeliveryMode to MQMD.Persistence
The JMSDeliveryMode value is set by the send() or publish() Method or MessageProducer, unless the
Destination Object overrides it. The JMSDeliveryMode value is mapped to the MQMD.Persistence field
as follows:

« JMS value PERSISTENT is equivalent to MQPER_PERSISTENT
« JMS value NON_PERSISTENT is equivalent to MOPER_NOT_PERSISTENT

Developing applications for IBM MQ 133



If the MQQueue persistence property is not set to WMQConstants.WMQ_PER_QDEF, the delivery
mode value is also encoded in the MQRFH2.

JMSExpiration to/from MQMD.Expiry, MQRFH2
JMSExpiration stores the time to expire (the sum of the current time and the time to live), whereas
MQMD stores the time to live. Also, IMSExpiration is in milliseconds, but MQMD.Expiry is in tenths of a
second.

« If the send() method sets an unlimited time to live, MQMD.Expiry is set to MQEI_UNLIMITED, and no
JMSExpiration is encoded in the MQRFH2.

« If the send() method sets a time to live that is less than 214748364.7 seconds (about 7 years), the
time to live is stored in MQMD.Expiry, and the expiration time (in milliseconds), is encoded as an i8
value in the MORFH2.

« If the send() method sets a time to live greater than 214748364.7 seconds, MQMD.Expiry is set
to MQEI_UNLIMITED. The true expiration time in milliseconds is encoded as an i8 value in the
MQRFH2.

JMSPriority to MQMD.Priority
Directly map JMSPriority value (0-9) onto MQMD priority value (0-9). If IMSPriority is set to a non-
default value, the priority level is also encoded in the MQRFH2.

JMSMessagelD from MQMD.MessagelD
All messages sent from JMS have unique message identifiers assigned by IBM MQ. The value
assigned is returned in the MQMD.Messageld field after the MQPUT call, and is passed back to the
application in the JMSMessagelD field. The IBM MQ messageld is a 24-byte binary value, whereas the
JMSMessagelD is a string. The IMSMessagelD is composed of the binary messageld value converted
to a sequence of 48 hexadecimal characters, prefixed with the characters ID:. JIMS provides a hint
that can be set to disable the production of message identifiers. This hint is ignored, and a unique
identifier is assigned in all cases. Any value that is set into the IMSMessagelD field before a send() is
overwritten.

If you do require the ability to specify the MQMD.MessagelD, you can do this with one of the IBM MQ
JMS extensions described in “Reading and writing the message descriptor from an IBM MQ classes for
JMS application” on page 206.

JMSTimestamp to MQRFH2
During a send, the JMSTimestamp field is set according to the JVM's clock. This value is set into the
MQRFH2. Any value that is set into the JIMSTimestamp field before a send() is overwritten. See also
the JMS_IBM_PutDate and JMS_IBM_PutTime properties.

JMSType to MQRFH2
This string is set into the MORFH2 mcd.Type field. If it is in URI format, it can also affect mcd.Set and
mcd.Fmt fields.

JMSCorrelationID to MQMD.Correlld, MQRFH2
The JMSCorrelationID can hold one of the following:

A provider specific message ID
This is a message identifier from a message previously sent or received, and so should be a
string of 48 lowercase hexadecimal digits that are prefixed with ID: The prefix is removed, the
remaining characters are converted into binary, and then they are set into the MQMD.Correlld
field. No Correlld value is encoded in the MORFH2.

A provider-native byte[] value
The value is copied into the MQMD.Correlld field - padded with nulls, or truncated to 24 bytes if
necessary. No Correlld value is encoded in the MQRFH2.

An application-specific string
The value is copied into the MQRFH2. The first 24 bytes of the string, in UTF8 format, are written
into the MQMD.CorrellD.

134 Developing Applications for IBM MQ



Mapping JMS property fields

These notes refer to the mapping of JMS property fields in IBM MQ messages.

JMSXUserID from MQMD Userldentifier

JMSXUserID is set on return from send call.

JMSXAppID from MQMD PutApplName

JSMXAppID is set on return from send call.

JMSXGroupID to MQRFH2 (point-to-point)

For point-to-point messages, the IMSXGrouplID is copied into the MQMD GroupID field. If the
JMSXGroupID starts with the prefix ID:, it is converted into binary. Otherwise, it is encoded
as a UTF8 string. The value is padded or truncated if necessary to a length of 24 bytes. The

MQMF_MSG_IN_GROUP flag is set.

JMSXGroupID to MQRFH2 (publish/subscribe)

For publish/subscribe messages, the IMSXGroupID is copied into the MQRFH2 as a string.

JMSXGroupSeq MQMD MsgSeqNumber (point-to-point)

For point-to-point messages, the IMSXGroupSeq is copied into the MQMD MsgSeqNumber field. The

MQMF_MSG_IN_GROUP flag is set.

JMSXGroupSeq MQMD MsgSeqNumber (publish/subscribe)

For publish/subscribe messages, the IMSXGroupSeq is copied into the MQRFH2 as an i4.

Mapping JMS provider-specific fields

The following notes refer to the mapping of JIMS provider-specific fields into IBM MQ messages.

JMS_IBM_Report_XXX to MQMD Report

A IMS application can set the MQMD Report options, using the following JMS_IBM_Report_XXX
properties. The single MQMD is mapped to several IMS_IBM_Report_XXX properties.

The JMS_IBM_Report_XXX constants are in com.ibm.msg.client.jakarta.wmq.WMQConstants

orcom.ibm.msg.client.wmq.WMQConstants.

JMS_IBM_Report_Exception

MQRO_EXCEPTION or
MQRO_EXCEPTION_WITH_DATA or

MORO_EXCEPTION_WITH_FULL_DATA

JMS_IBM_Report_Expiration

MORO_EXPIRATION or
MORO_EXPIRATION_WITH_DATA or

MORO_EXPIRATION WITH_FULL_DATA

JMS_IBM_Report_COA

MQRO_COA or
MQRO_COA_WITH_DATA or
MORO_COA_WITH_FULL_DATA

JMS_IBM_Report_COD

MQRO_COD or
MQRO_COD_WITH_DATA or
MQRO_COD_WITH_FULL_DATA

JMS_IBM_Report_PAN
MQRO_PAN

JMS_IBM_Report_NAN
MQRO_NAN

JMS_IBM_Report_Pass_Msg_ID
MQRO_PASS_MSG_ID

Developing applications for IBM MQ 135



JMS_IBM_Report_Pass_Correl_ID
MQRO_PASS_CORREL_ID

JMS_IBM_Report_Discard_Msg
MQRO_DISCARD_MSG

The MQRO values are in com.ibm.mqg.constants.CMQC.

JMS_IBM_MsgType to MQMD MsgType
Value maps directly onto MQMD MsgType. If the application has not set an explicit value of
JMS_IBM_MsgType, a default value is used. This default value is determined as follows:

« If IMSReplyTo is set to an IBM MQ queue destination, MSGType is set to the value MOMT_REQUEST

« If JMSReplyTo is not set, or is set to anything other than an IBM MQ queue destination, MsgType is
set to the value MOMT_DATAGRAM

JMS_IBM_Feedback to MQMD Feedback
Value maps directly onto MQMD Feedback.

JMS_IBM_Format to MQMD Format
Value maps directly onto MOMD Format.

JMS_IBM_Encoding to MQMD Encoding
If set, this property overrides the numeric encoding of the Destination Queue or Topic.

JMS_IBM_Character_Set to MQMD CodedCharacterSetId
If set, this property overrides the coded character set property of the Destination Queue or Topic.

JMS_IBM_PutDate from MQMD PutDate
The value of this property is set, during send, directly from the PutDate field in the MQMD. Any value
that is set into the JMS_IBM_PutDate property before a send is overwritten. This field is a String
of eight characters, in the IBM MQ Date format of YYYYMMDD. This property can be used with the
JMS_IBM_PutTime property to determine the time the message was put according to the queue
manager.

JMS_IBM_PutTime from MQMD PutTime
The value of this property is set, during send, directly from the PutTime field in the MQMD. Any
value that is set into the JMS_IBM_PutTime property before a send is overwritten. This field is a
String of eight characters, in the IBM MQ Time format of HHMMSSTH. This property can be used with
the JIMS_IBM_PutDate property to determine the time the message was put according to the queue
manager.

JMS_IBM_Last_Msg_In_Group to MQMD MsgFlags
For point-to-point messaging, this Boolean value maps to the MOMF_LAST_MSG_IN_GROUP flag in
the MQMD MsgFlags field. It is normally used with the IMSXGroupID and JMSXGroupSeq properties
to indicate to a legacy IBM MQ application that this message is the last in a group. This property is
ignored for publish/subscribe messaging.

Mapping IBM MQ fields onto JMS fields (incoming messages)
These tables show how JMS header and property fields are mapped into MQMD and MQRFH2 fields at
get() or receive() time.

Table 27 on page 136 shows how JMS header fields are mapped onto MOMD/MQRFH2 fields at get() or
receive() time. Table 28 on page 137 shows how JMS property fields are mapped onto MQMD/MQRFH2
fields at get() or receive() time. Table 29 on page 137 shows how IJMS provider-specific properties are
mapped.

Table 27. Incoming message JMS header field mapping

JMS header field name MQMD field retrieved from MQRFH2 field
retrieved from

JMSDestination jms.Dst or mgps.Top
“1” on page 137

IMSDeliveryMode Persistence 2" 0n page 137 jms.Dlv “2”on page 137

136 Developing Applications for IBM MQ



Table 27. Incoming message JMS header field mapping (continued)

JMS header field name

MQMD field retrieved from

MQRFH2 field
retrieved from

JMSExpiration jms.Exp
JMSPriority Priority
JMSMessagelD MsgID

JMSTimestamp

PutDate “2” on page 137
PutTime “2” on page 137

jms.Tms “2” on page 137

JMSCorrelationID

Correlld “2” on page 137

ij.Cid “2” on page 137

JMSReplyTo ReplyToQ “2”on page 137 jms.Rto 2" on page 137
ReplyToQMgr “2” on page 137
JMSType mcd.Type, mcd.Set,

mcd.Fmt

JMSRedelivered

BackoutCount

Note:

1. If both jms.Dst and mgps.Top are set, the value in jms.Dst is used.

2. For properties that can have values retrieved from the MORFH2 or the MQMD, if both are available, the

setting in the MQRFH2 is used.

3. JMS_IBM_Character_Set property value is a String value that contains the Java character set
equivalent for the numeric CodedCharacterSetld value.

Table 28. Incoming message property mapping

JMS property hame

MQMD field retrieved from

MQRFH2 field
retrieved from

JMSXUserID

UserlIdentifier

IMSXAppID

PutApplName

JMSXDeliveryCount

BackoutCount

IMSXGroupID Groupld “1"on page 137 jms.Gid “1”on page 137
IMSXGroupSeq MsgSeqNumber “1”on page 137 jms.Seq “1”onpage 137
Note:

1. For properties that can have values retrieved from the MQRFH2 or the MQMD, if both are available,
the setting in the MQRFH2 is used. The properties are set from the MQMD values only if the
MQMF_MSG_IN_GROUP or MQMF_LAST_MSG_IN_GROUP message flags are set.

Table 29. Incoming message provider-specific IMS property mapping

JMS property nhame

MQMD field retrieved from

MQRFH2 field
retrieved from

JMS_IBM_Report_Exception Report
JMS_IBM_Report_Expiration Report
JMS_IBM_Report_COA Report

Developing applications for IBM MQ 137




Table 29. Incoming message provider-specific IMS property mapping (continued)

JMS property name MQMD field retrieved from MQRFH2 field
retrieved from

JMS_IBM_Report_COD Report

JMS_IBM_Report_PAN Report

JMS_IBM_Report_NAN Report

JMS_IBM_Report_ Pass_Msg_ID Report

JMS_IBM_Report_Pass_Correl_ID Report

JMS_IBM_Report_Discard_Msg Report

JMS_IBM_MsgType MsgType

JMS_IBM_Feedback Feedback

JMS_IBM_Format Format

JMS_IBM_PutApplType PutApplType

IMS_IBM_Encoding “1”onpage 138 Encoding

JMS_IBM_Character_Set “1"onpage 138 [ codedCharacterSetld

JMS_IBM_PutDate PutDate

JMS_IBM_PutTime PutTime

JMS_IBM_Llast_Msg_In_Group MsgFlags

1. Only set if the incoming message is a Bytes Message.

Exchanging messages between a JMS application and a traditional IBM MQ application
This topic describes what happens when a JMS application exchanges messages with a traditional IBM
MQ application that cannot process the MQRFH2 header.

Figure 11 on page 139 shows the mapping.

The administrator indicates that the JMS application is communicating with a traditional IBM MQ
application by setting the TARGCLIENT property of the destination to MQ. This indicates that no MQRFH2
header is to be produced. If this is not done, the receiving application must be able to handle the MQRFH2
header.

The mapping from JMS to MQMD targeted at a traditional IBM MQ application is the same as mapping
from JMS to MOMD targeted at a JMS application. If IBM MQ classes for JIMS receives an IBM MQ
message with the MQMD Format field set to anything other than MQFMT_RFH2, data is being received
from a non-JMS application. If the format is MOQFMT_STRING, the message is received as a JMS text
message. Otherwise, it is received as a JMS bytes message. Because there is no MQRFH2, only those JMS
properties that are transmitted in the MQMD can be restored.

If IBM MQ classes for JMS receives a message that does not have an MQRFH2 header, the TARGCLIENT
property of the Queue or Topic object derived from the JMSReplyTo header field of the message is set

to MQ by default. This means that a reply message sent to the queue or topic also does not have an
MQRFH2 header. You can switch off this behavior of including an MQRFH2 header in a reply message only
if the original message has an MQRFH2 header, by setting the TARGCLIENTMATCHING property of the
connection factory to NO.

138 Developing Applications for IBM MQ



JWMS Application WebSphere MQ JMS Application
JMS Message Message JMS Message
Header Mapping Mapping Header
Mappin, MQMD Mappin,
Froperties paTg . oeng » Properties
Data Capying - Data Copying - Data

Traditional WebSphere MO Application

Figure 11. How JMS messages are transformed to IBM MQ messages with no MORFH2 header

The JMS message body
This topic contains information about the encoding of the message body itself. The encoding depends on
the type of JMS message.

ObjectMessage
An ObjectMessage is an object serialized by the Java Runtime in the normal way.

TextMessage
A TextMessage is an encoded string. For an outgoing message, the string is encoded in the character
set given by the destination object. This defaults to UTF8 encoding (the UTF8 encoding starts with the
first character of the message; there is no length field at the start). It is, however, possible to specify
any other character set supported by IBM MQ classes for IMS. Such character sets are used mainly
when you send a message to a non-JMS application.

If the character set is a double-byte set (including UTF16), the destination object's integer encoding
specification determines the order of the bytes.

An incoming message is interpreted using the character set and encoding that are specified in the
message itself. These specifications are in the last IBM MQ header (or MQMD if there are no headers).
For JMS messages, the last header is usually the MQRFH2.

BytesMessage
A BytesMessage is, by default, a sequence of bytes as defined by the JMS 1.0.2 specification and
associated Java documentation.

For an outgoing message that was assembled by the application itself, the destination object's
encoding property can be used to override the encodings of integer and floating point fields contained
in the message. For example, you can request that floating point values are stored in S/390 rather
than IEEE format).

An incoming message is interpreted using the numeric encoding specified in the message itself. This
specification is in the last IBM MQ header (or MQMD if there are no headers). For JIMS messages, the
last header is usually the MQRFH2.

If a BytesMessage is received, and is re-sent without modification, its body is transmitted byte

for byte, as it was received. The destination object's encoding property has no effect on the body.

The only string-like entity that can be sent explicitly in a BytesMessage is a UTF8 string. This is
encoded in Java UTF8 format, and starts with a 2-byte length field. The destination object's character
set property has no effect on the encoding of an outgoing BytesMessage. The character set value

in an incoming IBM MQ message has no effect on the interpretation of that message as a JMS
BytesMessage.

Non-Java applications are unlikely to recognize the Java UTF8 encoding. Therefore, for a IMS
application to send a BytesMessage that contains text data, the application itself must convert its
strings to byte arrays, and write these byte arrays into the BytesMessage.

MapMessage
A MapMessage is a string containing XML name/type/value triplets encoded as:

Developing applications for IBM MQ 139



<map>
<elt name="elementnamel" dt="datatypel">valuel</elt>
<elt name="elementname2" dt="datatype2">value2</elt>

</map>

where datatype is one of the data types listed in Table 20 on page 129. The default data type is
string, and so the attribute dt="string" is omitted for string elements.

The character set used to encode or interpret the XML string that forms the body of a map message is
determined according to the rules that apply to a text message.

Versions of IBM MQ classes for JMS earlier than 5.3 encoded the body of a map message in the
following format:

<map>
<elementnamel dt="datatypel">valuel</elementnamel>
<elementname2 dt="datatype2">value2</elementname2>

</map>

IBM MQ classes for JMS 5.3 and later can interpret either format, but versions of IBM MQ classes for
JMS earlier than 5.3 cannot interpret the current format.

If an application needs to send map messages to another application that is using a version of IBM
MQ classes for JMS earlier than 5.3, the sending application must call the connection factory method
setMapNameStyle (WMQConstants.WMQ_MAP_NAME_STYLE_COMPATIBLE) to specify that the
map messages are sent in the previous format. By default, all map messages are sent in the current
format.

StreamMessage
A StreamMessage is like a map message, but without element names:

<stream>
<elt dt="datatypel">valuel</elt>
<elt dt="datatype2">value2</elt>

</stream>

where datatype is one of the data types listed in Table 20 on page 129. The default data type is
string, and so the attribute dt="string" is omitted for string elements.

The character set used to encode or interpret the XML string that makes up the StreamMessage body
is determined following the rules that apply to a TextMessage.

The MOQRFH2.format field is set as follows:

MQFMT_NONE
for ObjectMessage, BytesMessage, or messages with no body.

MQFMT_STRING
for TextMessage, StreamMessage, or MapMessage.

JMS message conversion

Message data conversion in JMS is performed when sending and receiving messages. IBM MQ performs
most data conversion automatically. It converts text and numeric data when transferring a message
between JMS applications. Text is converted when exchanging a JMSTextMessage between a JIMS
application and an IBM MQ application.

If you are planning to do more complex message exchanges, the following topics are of interest you.
Complex message exchanges include:

 Transferring non-text messages between an IBM MQ application and a JMS application.
« Exchanging text data in byte format.
« Converting the text in your application.

140 Developing Applications for IBM MQ



JMS message data

Data conversion is necessary to exchange text and numeric data between applications, even between
two JMS applications. The internal representation of text and numbers must be encoded so they can

be transferred in a message. Encoding forces a decision about how numbers and text are represented.
IBM MQ manages the encoding of text and numbers in IMS messages, except for IMSObjectMessage,
see “JMSObjectMessage” on page 147. It uses three message attributes. The three attributes are
CodedCharacterSetId, Encoding, and Format.

These three message attributes are normally stored in the JMS header, MQRFH2, fields of a IMS message.
If the message type is an MQ, rather than JMS type of message, the attributes are stored in the message
descriptor, MQMD. The attributes are used to convert the JMS message data. JMS message data is
transferred in the message data part of an IBM MQ message.

JMS message properties

JMS message properties, such as IMS_IBM_CHARACTER_SET, are exchanged in the MQRFH2 header part
of a JIMS message, unless the message has been sent without an MQRFH2. Only JMSTextMessage and
JMSBytesMessage can be sent without an MQRFH2. If a IMS property is stored as an IBM MQ message
property in the message descriptor, MQMD, it is converted as part of the MQMD conversion. If a JMS
property is stored in the MQRFH2, it is stored in the character set specified by MOQRFH2 . NameValueCCSID.
When a message is sent or received, message properties are converted to and from their internal
representation in the JVM. The conversion is to and from the character set of the message descriptor

or MQRFH2 .NameValueCCSID. Numeric data is converted to text.

JMS message conversion

The following topics contain examples and tasks that are useful if you plan to exchange more complex
messages that require conversion.

JMS message conversion approaches

A number of data conversion approaches are open to JMS application designers. These approaches are
not exclusive; some applications are likely to use a combination of these approaches. If your application
is exchanging only text or is exchanging messages only with other JMS applications, you do not normally
consider data conversion. Data conversion is performed automatically for you, by IBM MQ.

You can ask a number of questions about how to approach message conversion:

Is it necessary to think about message conversion at all?
In some cases, such as JMS to JMS message transfers, and exchanging text messages with IBM MQ
programs, IBM MQ performs the necessary conversions for you, automatically. You might want to
control data conversion for performance reasons, or you might be exchanging complex messages that
have a predefined format. In cases such as these you must understand message conversion, and read
the following topics.

What kinds of conversion are there?
There are four main types of conversion, which are explained in the following sections:

1. “JMS client data conversion” on page 142

2. “Application data conversion” on page 142

3. “Queue manager data conversion” on page 143

4., “Message channel data conversion” on page 143

Where should conversion be performed?
The section, “Choosing an approach to message conversion: receiver makes good” on page 144,
describes the usual approach of "receiver makes good". "Receiver makes good" also applies to IMS
data conversion.

Developing applications for IBM MQ 141



JMS client data conversion

JMS client 1 data conversion is the conversion of Java primitives and objects into bytes in a IMS message
as it is sent to a destination, and conversion back again, when it is received. JMS client data conversion
uses the methods of the JMSMessage classes. The methods are listed by JMSMessage class type in Table

30 on page 145.

Conversion to and from the internal JVM representation of numbers and text is performed for read, get,
set, and write methods. The conversion is performed when the message is sent, and when any of the read
or get methods is called on a message that has been received.

The code page and numeric encoding used to write or set the contents of a message are defined

as attributes of the destination. The destination code page and numeric encoding can be changed
administratively. An application can also override the destination code page and encoding by setting
the message properties that control writing or setting message content.

If you want to convert number encoding when a JMSBytesMessage message is sent to a destination
that is not defined as Native encoding, you must set the message property JIMS_IBM_ENCODING before
sending the message. If you are following the "receiver makes good" pattern, or if you are exchanging
messages between JMS applications, the application does not need to set JIMS_IBM_ENCODING. In most
cases you can leave the Encoding property as Native.

For JMSStreamMessage, JMSMapMessage, and JMSTextMessage messages, the character set
identifier properties of the destination are used. Encoding is ignored on sending as numbers are written
out in text format. The JMS client application program does not have to set JIMS_IBM_CHARACTER_SET
before sending the message if the destination character set property to apply.

To get the data in a message an application calls the JMS message read or get methods. The methods
refer to the code page and encoding defined in the previous message header to create the Java primitives
and objects correctly.

JMS client data conversion meets the needs of most JMS applications that are exchanging messages
between one JMS client and another. You do not code any explicit data conversion. You do not

use the java.nio.charset.Charset class, which is typically used when writing text to a file. The
writeString and setString methods do the conversion for you.

For more details on JMS client data conversion, see “IJMS client message conversion and encoding” on
page 153.

Application data conversion

A IMS client application can perform explicit character data conversion by using the
java.nio.charset.Chaxrset class; see the examples in Figure 14 on page 146 and Figure 15 on page
146. String data is converted into bytes, using the getBytes method, and sent as bytes. The bytes are
converted back into text by using a String constructor that takes a byte array and a Charset. Character
data is converted using the encode and decode Charset methods. Typically the message is sent or
received as JMSBytesMessage, because the message part of a IMSBytesMessage does not contain
anything other than the data written by the application 2. You can also send and receive bytes using
IMSStreamMessage, JMSMapMessage, or JMSObjectMessage.

There are no Java methods to encode and decode bytes that contain numeric data represented
in different encoding formats. Numeric data is encoded and decoded automatically using the
numeric JMSMessage read and write methods. The read and write methods use the value of the
JMS_IBM_ENCODING attribute of the message data.

A typical use for application data conversion is if a JMS client sends or receives a formatted message
from a non-JMS application. A formatted message contains text, numeric, and bytes data organized
by the length of the data fields. Unless the non-JMS application has specified the message format as

1 "JMS Client" refers to the IBM MQ classes for IMS that implement the JMS interface, which runs either in
client or bindings mode.
2 One exception: Data written using writeUTF starts with a 2 byte length field

142 Developing Applications for IBM MQ



"MQSTR ", the message is constructed as a JMSBytesMessage. To receive formatted message data in

a JMSBytesMessage you must call a sequence of methods. The methods must be called in the same
order the fields were written into the message. If the fields are numeric, you must know the encoding and
length of the numeric data. If any of the fields contain byte or text data, you must know the length of any
byte data in the message. There are two ways to convert a formatted message into a Java object that is
easy to use.

1. Construct a Java class corresponding to the record, to encapsulate reading and writing the message.
Access to the data in the record is with get and set methods of the class.

2. Construct a Java class corresponding to the record by extending the com.ibm.mq.headers
class. Access to the data in the class is with type-specific accessors of the form,
getStringValue(fieldname) ;

See “Exchanging a formatted record with a non-JMS application” on page 160.

Queue manager data conversion

Code page conversion can be performed by the queue manager when a JMS client program gets a
message. The conversion is the same as the conversion performed for a C program. A C program

sets MQGMO_CONVERT as an MQGET GetMsgOpts parameter option; see Figure 13 on page 146. A

queue manager performs conversion for a JIMS client program that is receiving a message, if the
WMQ_RECEIVE_CONVERSION destination property is set to WMQ_RECEIVE_CONVERSION_QMGR, The JMS
client program can also set the destination property; see Figure 12 on page 143.

((MQDestination)destination).setIntProperty (
WMQConstants.WMQ_RECEIVE_CONVERSION,
WMQConstants.WMQ_RECEIVE_CONVERSION QMGR);

Or,

((MQDestination)destination) .setReceiveConversion
(WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR) ;

Figure 12. Enable queue manager data conversion

The main benefit of queue manager conversion comes when exchanging messages with non-JMS
applications. If the Format field in the message is defined, and the target character set, or encoding,

is different to the message, the queue manager performs data conversion for the target application, if
the application requests it. The queue manager converts message data formatted according to one of
the predefined IBM MQ message types, such as a CICS bridge header (MQCIH). If the Format field is
user-defined, the queue manager looks for a data conversion exit with the name provided in the Format
field.

Queue manager data conversion is used to best effect with the "receiver makes good" design pattern.
A sending JMS client does not need to perform conversion. A non-JMS receiving program relies on the
conversion exit to ensure that the message is delivered in the required code page and encoding. With a
sending JMS client, and non-JMS receiver, the example applies to IBM MQ.

You can create a data conversion exit, using the data conversion exit utility, cxrtmqcvx, to enable the
gueue manager to convert your own record formatted data. You can build your own record format, use the
com.ibm.mqg.headers to access it as a Java class, and use your own conversion exit to convert it. On
z/0S the utility is called CSQUCVX, and on IBM i, CVTMQMDTA. See “Exchanging a formatted record with a
non-JMS application” on page 160.

Message channel data conversion

IBM MQ Sender, Server, Cluster-receiver, and Cluster-sender channels have a message conversion
option, CONVERT. The contents of a message can optionally be converted when a message is sent.

Developing applications for IBM MQ 143



The conversion takes place at the sending end of the channel. The cluster-receiver definition is used to
auto-define the corresponding cluster-sender channel.

Data conversion by message channels is typically used if it is not possible to use other forms of
conversion.

Choosing an approach to message conversion: "receiver makes good"

The usual approach in IBM MQ application design for code conversion is "receiver makes good". "Receiver
makes good" reduces the number of message conversions. It also avoids the problem of unexpected
channel errors if message conversion fails on some intermediary queue manager during message transfer.
The "receiver makes good" rule is only broken if there is some reason why the receiver cannot make good.
The receiving platform might not have the right character set, for example.

"Receiver makes good" is also good general guidance for JMS client applications. But in specific cases,
conversion to the correct character set at source can be more efficient. Conversion from the JVM internal
representation must take place when a message containing text or numeric types is sent. Conversion to
the character set required by the receiver, if the receiver is not a JIMS client, might remove the need for
the non-JMS recipient to perform conversion. If the recipient is a IMS client, it is going to convert again,
anyway, to decode the message data and create Java primitives and objects.

The difference between JMS client applications, and applications written in a language such as C, is that
Java must perform data conversion. A Java application must convert numbers and text from their internal
representation to an encoded format used in messages.

By setting destination, or message properties, you can set the character set and encoding used by IBM
MQ to encode numbers and text in messages. Normally, you would leave the character set as 1208 and
encoding as Native.

IBM MQ does not convert byte arrays. To encode strings and character arrays into byte arrays use the
java.nio.chaxrset package. Charset specifies the character set used to convert a string or character
array into a byte array. You can also decode a byte array into a string or character array using a Charset.
It is not good practice to rely on java.nio.charset.Charset.defaultCodePage when encoding
strings and character arrays. The default Charset is typically windows-1252 on Windows, and UTF-8 on
UNIX. windows-1252 is a single-byte character set and UTF -8 is a multi-byte character set.

Generally leave the destination character set and encoding properties at their default values of

UTF-8 and Native when exchanging messages with other JMS applications. If you are exchanging
messages containing numbers or text with a JIMS application, choose one of the JMSTextMessage,
JMSStreamMessage, JMSMapMessage, or JMSObjectMessage message types that fit your purpose.
There are no other conversion tasks to do.

If you are exchanging messages with non-JMS applications that use a record format, it is more
complicated. Unless the entire record contains text and can be transferred as a JIMSTextMessage,

you must encode and decode text in the application. Set the destination message type to MQ, and

use JMSBytesMessage to avoid the IBM MQ classes for JIMS adding additional header and tagging
information to the message data. Use JMSBytesMessage methods to write numbers and bytes, and the
Charset class convert text into byte arrays explicitly. A number of factors might influence your choice of
character set:

Performance: Can you reduce the number of conversions by transforming text into a character set that is
used on the largest number of servers?

Uniformity: Transfer all messages in the same character set.

Richness: What character sets have all the code points that applications must use?

Simplicity: Single-byte character sets are simpler to use than variable length and multibyte character
sets.

See “Exchanging a formatted record with a non-JMS application” on page 160. for examples of converting
messages exchanged with non-JMS applications.

144 Developing Applications for IBM MQ



Examples

Table of message types and conversion types

Table 30. Message types and conversion types

Conversion type

Message type Text Numeric Other None
getObject
JMSObjectMessag setObject
e
getText
IJMSTextMessage setText
readUTF readDouble readBoolean | readByte
writeUTF readFloat readObject readUnsignedByte
readInt writeBoolean | readBytes
readlLong writeObject |[readChar
readShort writeByte
IMSBytesMessage ieadUn51gnedShor ai1EEEKZiS
writeDouble
writeFloat
writeInt
writelLong
writeShort
readString readDouble readBoolean | readByte
writeString |readFloat readObject readBytes
readInt writeBoolean | readChar
readlLong writeObject |[writeByte
readShort writeBytes
gMSStreamMessag writeDouble writeChazx
writeFloat
writeInt
writelLong
writeShort
getString getDouble getBoolean getByte
setString getFloat getObject getBytes
getInt setBoolean readChar
getlLong setObject setByte
getShort setBytes
JMSMapMessage setDouble setChar
setFloat
setInt
setlLong
setShort

Developing applications for IBM MQ 145




Calling data conversion from a C program

gmo.Options = MQGMO_WAIT /* wait for new messages */
| MQGMO_NO_SYNCPOINT /* no transaction */
| MQGMO_CONVERT; /* convert if necessary */

while (CompCode != MQCC_FAILED) {

buflen = sizeof(buffer) - 1; /x buffer size available for GET */
memcpy (md.MsgId, MQMI_NONE, sizeof(md.Msgld));

memcpy (md.CorrelId, MQCI_NONE, sizeof(md.Correlld));

md.Encoding = MQENC_NATIVE;

md.CodedChaxrSetId = MQCCSI_Q_MGR;

MQGET (Hcon, /* connection handle */
Hob7j, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
buffer, /* message buffer */
&messlen, /* message length */
&CompCode, /* completion code */
&Reason) ; /* reason code */

Figure 13. Code snippet from amgsget0.c

Sending and receiving text in a JMSBytesMessage

The code in Figure 14 on page 146 sends a string in a BytesMessage. For simplicity, the example sends a
single string, for which a JMSTextMessage is more appropriate. To receive a text string in bytes message
containing a mixture of types, you must know the length of the string in bytes, called TEXT_LENGTH

in Figure 15 on page 146. Even for a string with a fixed number of characters, the length of the byte
representation might be longer.

BytesMessage bytes = session.createBytesMessage();

String codePage = CCSID.getCodepage(((MQDestination) destination)
.getIntProperty (WMQConstants.WMQ_CCSID));

bytes.writeBytes("In the destination code page".getBytes(codePage));

producer.send(bytes);

Figure 14. Sending a String in a IMSBytesMessage

BytesMessage message = (BytesMessage)consumer.receive();

int TEXT_LENGTH = new Long(message.getBodylLength())).intValue();

byte[] textBytes = new byte[TEXT_LENGTH];

message.readBytes (textBytes, TEXT_LENGTH);

String codePage = message.getStringProperty (WMQConstants.JMS_IBM_CHARACTER_SET);
String textString = new String(textBytes, codePage);

Figure 15. Receiving a String from a IMSBytesMessage

Related concepts

JMS client message conversion and encoding

The methods you use to do IMS client message conversion and encoding are listed, with code examples
of each type of conversion.

Queue manager data conversion

Queue manager data conversion has always been available to non-JMS applications receiving messages
from JMS clients. JMS clients receiving messages also use queue manager data conversion, which is
optional.

Related tasks
Exchanging a formatted record with a non-JMS application

146 Developing Applications for IBM MQ



Follow the steps suggested in this task to design and build a data conversion exit, and a JMS client
application that can exchange messages with a non-JMS application using JMSBytesMessage. The
exchange of a formatted message with a non-JMS application can take place with or without calling a data
conversion exit.

Related reference

JMS message types and conversion

The choice of message type affects your approach to message conversion. The interaction of

message conversion and message type is described for the JIMS message types, JMSObjectMessage,
JMSTextMessage, JMSMapMessage, JMSStreamMessage, and JMSBytesMessage.

JMS message types and conversion

The choice of message type affects your approach to message conversion. The interaction of

message conversion and message type is described for the IMS message types, JMSObjectMessage,
IMSTextMessage, JMSMapMessage, JMSStreamMessage, and JMSBytesMessage.

JMSObjectMessage

JMSObjectMessage contains one object, and any objects that it references, serialized into a byte stream
by the JVM. Text is serialized into UTF -8, and limited to strings or character arrays of no more than 65534
bytes. An advantage of JMSObjectMessage is that applications are not involved in any data conversion
issues as long as they use only the methods and attributes of the object. IMSObjectMessage provides
data conversion for complex objects without the application programmer considering how to encode an
object in a message. The disadvantage of using IMSObjectMessage is it can be exchanged only with
other JMS applications. By choosing one of the other JIMS message types, it is possible to exchange JMS
messages with non-JMS applications.

“Sending and receiving a JIMSObjectMessage” on page 149 shows a String object being exchanged in a
message.

A IMS client application can receive a JMSObjectMessage only in a message that has a JMS-style body.
The destination must specify a IMS style body.

JMSTextMessage

IMSTextMessage contains a single text string. When a text message is sent, the text Format is

setto "MQSTR ", WMQConstants.MQFMT_STRING. The CodedCharacterSetId of the text is

set to the coded character set identifier defined for its destination. The text is encoded into the
CodedCharacterSetId by IBM MQ. The CodedCharacterSetId and Format fields are either set in
the message descriptor, MQMD, or into the JMS fields in an MQRFH2. If the message is defined as having an
WMQ_MESSAGE_BODY_MQ message body style, or the body style is unspecified, but the target destination
is WMQ_TARGET_DEST_MQ, then the message descriptor fields are set. Otherwise the message has a IMS
RFH2 and the fields are set in the fixed part of the MQRFH2.

An application can override the coded character set identifier defined for a destination. It must set the
message property JMS_IBM_CHARACTER_SET to a coded character set identifier; see the example in
“Sending and receiving a JMSTextmessage” on page 149.

When the JMS client calls the consumexr . receive method queue manager conversion is optional.
Queue manager conversion is enabled by setting the destination property WMQ_RECEIVE_CONVERSION
to WMQ_RECEIVE_CONVERSION_QMGR. The queue manager converts the text message from the
JMS_IBM_CHARACTER_SET specified for the message before transferring the message to the JMS

client. The character set of the converted message is 1208, UTF -8, unless the destination has

a different WMQ_RECEIVE_CCSID. The CodedCharacterSetId in the message that refers to the
IMSTextMessage is updated to the target character set ID. The text is decoded from the target character
set into Unicode by the getText method; see the example in “Sending and receiving a JMSTextmessage”

on page 149.
A JMSTextMessage can be sent in an MQ-style message body, without a IMS MQRFH2 header. The value

of the destination attributes, WMQ_MESSAGE_BODY and WMQ_TARGET_DEST determine the message body
style, unless overridden by the application. The application can override the values set on the destination

Developing applications for IBM MQ 147



by calling destination.setMessageBodyStyle (WMQConstants.WMQ_MESSAGE_BODY_MQ) or
destination.setTargetClient (WMQConstants.WMQ_TARGET_DEST_MQ).

If you send a JMSTextMessage with an MQ style body by sending it to a destination with
WMQ_MESSAGE_BODY set to WMQ_MESSAGE_BODY_MQ, you cannot receive it as a JMSTextMessage

from the same destination. All messages received from a destination with WMQ_MESSAGE_BODY set to
WMQ_MESSAGE_BODY_MQ are received as a JMSBytesMessage. If you try to receive the message as a
JMSTextMessage it causes an exception, ClassCastException: com.ibm.jms.JMSBytesMessage
cannot be cast to javax.jms.TextMessage.

Note: Text in a JMSBytesMessage is not converted by the JMS client. The client can only receive the
text in the message as a byte array. If queue manager conversion is enabled, the text is converted by the
queue manager, but the JMS client must still receive it as a byte array in a JMSBytesMessage.

Itis generally better to use the WMQ_TARGET_DEST property to control whether a JMSTextMessage is
sent with an MQ or JMS body style. You can then receive the message from a destination that has either
WMQ_TARGET_DEST set to WMQ_TARGET_DEST_MQ or WMQ_TARGET_DEST_JMS. WMQ_TARGET_DEST has
no effect on the receiver.

JMSMapMessage and JMSStreamMessage

These two JMS message types are similar. You can read and write primitive types to the messages using
methods based on the DataInputStreamand DataOutputStream interfaces; see “Table of message
types and conversion types” on page 152. The details are described in “IJMS client message conversion

and encoding” on page 153. Each primitive is tagged; see “The JMS message body” on page 139.

Numeric data is read and written to the message encoded as XML text. No reference is made

to the destination property, JIMS_IBM_ENCODING. Text data is treated the same way as text in a
IMSTextMessage. If you were to look at the message contents created by the example in Figure 20
on page 150, all the message data would be in EBCDIC as it was sent with a character set value of 37.

You can send multiple items in a JMSMapMessage or JMSStreamMessage.

You can retrieve the individual items of data by name from a JMSMapMessage, or by position

from a JMSStreamMessage. Each item is decoded when a get or read method is called using the
CodedCharacterSetId value stored in the message. If the method used to retrieve the item returns
a different type to the type that was sent, the type is converted. If the type cannot be converted,

an exception is thrown. See Class JMSStreamMessage for details. The example in “Sending data in

a JMSStreamMessage and JMSMapMessage” on page 150 illustrates type conversion, and getting the
JMSMapMessage contents out of sequence.

The MQRFH2 . format field for the JMSMapMessage and JMSStreamMessage is set to "MQSTR "

If the destination property WMQ_RECEIVE_CONVERSION is set to WMQ_RECEIVE_CONVERSION_QMGR,
the message data is converted by the queue manager before being sent to the IMS

client. The MQRFH2 . CodedCharacterSetId of the message is the WMQ_RECEIVE_CCSID

of the destination. The MQRFH2.Encoding is Native. If WMQ_RECEIVE_CONVERSION is
WMQ_RECEIVE_CONVERSION_CLIENT_MSG the CodedCharacterSetId and Encoding of the MQRFH2
is the value set by the sender.

A IMS client application can receive a JMSMapMessage or JMSStreamMessage only in a message that
has a JMS-style body, and from a destination that does not specify an MQ style body.

JMSBytesMessage

A JMSBytesMessage can contain multiple primitive types. You can read and write primitive types to

the messages using methods based on the DataInputStreamand DataOutputStream interfaces; see
“Table of message types and conversion types” on page 152. The details are described in “JMS message
types and conversion” on page 147.

The encoding of numeric data in the message is controlled by the value of JMS_IBM_ENCODING that is set
before writing numeric data to the JMSBytesMessage. An application can override the default Native
encoding defined for JMSBytesMessage by setting the message property JMS_IBM_ENCODING.

148 Developing Applications for IBM MQ



Text data can be read and written in UTF-8 using the readUTF and writeUTF, or in Unicode using

the readChar and writeChaxr methods. There are no methods that use CodedCharacterSetId.
Alternatively, the JMS client can encode and decode text into bytes using the Charset class. It transfers
the bytes between the JVM and message without the IBM MQ classes for JMS performing any conversion;
see “Sending and receiving text in a JMSBytesMessage” on page 150.

A JMSBytesMessage sent to an MQ application is typically sent in an MQ-style message body, without a
JMS MQRFH2 header. If it is sent to a JMS application, the message body style is typically IMS. The value
of the destination attributes, WMQ_MESSAGE_BODY and WMQ_TARGET_DEST determine the message body
style, unless overridden by the application. The application can override the values set on the destination
by calling destination.setMessageBodyStyle (WMQConstants.WMQ_MESSAGE_BODY_MQ) or
destination.setTargetClient (WMQConstants.WMQ_TARGET_DEST_MQ).

If you send a JMSBytesMessage with an MQ style body, you can receive the message from a destination
that defines either an MQ or a JMS message body style. If you send a JMSBytesMessage with a JMS
style body, then you must receive the message from a destination that defines a JMS message body style.
If you do not, the MQRFH2 is treated as part of the user message data, which might not be what you are
expecting.

Whether a message has an MQ or a JMS body style, the way it is received is not affected by setting
WMQ_TARGET_DEST.

The message might be transformed later, by the queue manager, if a Format is supplied for the message
data, and queue manager data conversion is enabled. Do not use the format field for anything other than
specifying the format of the message data, or leave it blank, MQConstants.MQFMT_NONE

You can send multiple items in a JMSBytesMessage. Each numeric item is converted when the message
is sent using the encoding defined for the message.

You can retrieve the individual items of data from JMSBytesMessage. Call read methods in the same
order as the write methods were called to create the message. Each numeric item is converted when the
message is called using the Encoding value stored in the message.

Unlike JMSMapMessage and JMSStreamMessage, JMSBytesMessage contains only data written by
the application. No additional data is stored in the message data, such as the XML tags used to define
the items in a JMSMapMessage and JMSStreamMessage. For this reason, use JMSBytesMessage to
transfer messages formatted for other applications.

Converting between JMSBytesMessage and DataInputStreamand DataOutputStreamis usefulin
some applications. Code based on the example, “Reading and writing messages using DatalnputStream
and DataOutputStream” on page 151, is necessary to use the com. ibm.mq.header package with JMS.

Examples

Sending and receiving a JMSObjectMessage

ObjectMessage omo = session.createObjectMessage();
omo.setObject(new String("A string"));
producer.send(omo) ;

éﬁjectMessage omi = (ObjectMessage)consumer.receive();
System.out.println((String)omi.getObject());

A.étring

Figure 16. Sending and receiving a IMSObjectMessage

Sending and receiving a JMSTextmessage

A text message cannot contain text in different character sets. The example shows text in different
character sets, sent in two different messages.

Developing applications for IBM MQ 149



TextMessage tmo = session.createTextMessage();
tmo.setText("Sent in the character set defined for the destination");
producer.send(tmo) ;

Figure 17. Send text message in the character set defined by the destination

TextMessage tmo = session.createTextMessage();
tmo.setIntProperty (WMQConstants.JIMS_IBM_CHARACTER_SET, 37);
tmo.setText("Sent in EBCDIC character set 37");
producer.send(tmo) ;

Figure 18. Send text message in ccsid 37

TextMessage tmi = (TextMessage)consumer.receive();
System.out.println(tmi.getText());

ééﬁt in the character set defined for the destination

Figure 19. Receive text message

Sending data in a IMSStreamMessage and JMSMapMessage

StreamMessage smo = session.createStreamMessage();
smo.writeString("256");

smo.writeInt(512);

smo.setIntProperty (WMQConstants.JMS_IBM_CHARACTER_SET, 37);
producer.send(smo) ;

MapMessage mmo = session.createMapMessage();
mmo.setString("First", "256");

mmo.setInt("Second", 512);

mmo .setIntProperty (WMQConstants.JMS_IBM_CHARACTER_SET, 37);
producer.send(mmo) ;

éfieamMessage smi = (StreamMessage)consumer.receive();
System.out.println("Stream: First as float " + smi.readFloat() +
" Second as String " + smi.readString());
é%ieam: First as float: 256.0, Second as String: 512
MééMessage mmi = (MapMessage)consumer.receive();
System.out.println("Map: Second as String " + mmi.getString("Second") +
" First as double " + mmi.getDouble("First"));

Méb: Second as String: 512, First as double: 256.0

Figure 20. Send data in IMSStreamMessage and JMSMapMessage

Sending and receiving text in a JMSBytesMessage

The code in Figure 21 on page 151 sends a string in a BytesMessage. For simplicity, the example sends a
single string, for which a JMSTextMessage is more appropriate. To receive a text string in bytes message
containing a mixture of types, you must know the length of the string in bytes, called TEXT_LENGTH

in Figure 22 on page 151. Even for a string with a fixed number of characters, the length of the byte
representation might be longer.

150 Developing Applications for IBM MQ



BytesMessage bytes = session.createBytesMessage();

String codePage = CCSID.getCodepage(((MQDestination) destination)
.getIntProperty (WMQConstants.WMQ_CCSID));

bytes.writeBytes("In the destination code page".getBytes(codePage));

producer.send(bytes);

Figure 21. Sending a String in a IMSBytesMessage

BytesMessage message = (BytesMessage)consumer.receive();

int TEXT_LENGTH = new Long(message.getBodylLength())).intValue();

byte[] textBytes = new byte[TEXT_LENGTH];

message.readBytes (textBytes, TEXT_LENGTH);

String codePage = message.getStringProperty (WMQConstants.JMS_IBM_CHARACTER_SET);
String textString = new String(textBytes, codePage);

Figure 22. Receiving a String from a JMSBytesMessage

Reading and writing messages using DataInputStream and DataOutputStream

The code in Figure 23 on page 151 creates a JMSBytesMessage using a DataOutputStream.

ByteArrayOutputStream bout = new ByteArrayOutputStream();

DataOutputStream dout = new DataOutputStream(bout);

BytesMessage messageOut = prod.session.createBytesMessage();

// messageOut.setIntProperty (WMQConstants.JMS_IBM_ENCODING,

// ((MQDestination) (prod.destination)).getIntProperty
// (WMQConstants.WMQ_ENCODING)) ;

int ccsidOut = (((MQDestination)prod.destination).getIntProperty (WMQConstants.WMQ_CCSID));
String codePageOut = CCSID.getCodepage(ccsidOut);

dout.writeInt(ccsidOut);

dout.write(codePageOut.getBytes(codePagelOut));
messageOut.writeBytes(bout.toByteArray());

producer.send(messageOut) ;

Figure 23. Send a JMSBytesMessage using a DataOutputStream

The statement that sets the JMS_IBM_ENCODING property is commented out. The statement is valid,
if writing directly to a IMSBytesMessage, but has no effect when writing to DataOutputStream.
Numbers that are written to the DataOutputStreamare encoded in Native encoding. Setting
JMS_IBM_ENCODING has no effect.

The code in Figure 24 on page 151 receives a JMSBytesMessage using a DataInputStream.

static final int ccsidIn_SIZE = (Integer.SIZE)/8;

connection.start();

BytesMessage messageIn = (BytesMessage) consumer.receive();

int messagelength = new Long(messageln.getBodylLength()).intValue();

byte [] bin = new byte[messagelength];

messageln.readBytes(bin, messagelength);

DataInputStream din = new DataInputStream(new ByteArrayInputStream(bin));

int ccsidIn = din.readInt();

byte [] codePageByte = new byte[messagelLength - ccsidIn_SIZE];

din.read(codePageByte, 0, codePageByte.length);

System.out.println("CCSID " + ccsidIn + " code page " + new String(codePageByte,
messageln.getStringProperty (WMQConstants.JMS_IBM_CHARACTER_SET)));

Figure 24. Receive a JMSBytesMessage using a DataInputStream

Developing applications for IBM MQ 151



The code page is printed out using the code page property of the input message data,
JMS_IBM_CHARACTER_SET. On input JMS_IBM_CHARACTER_SET is a Java code page and not a numeric
coded character set identifier.

Table of message types and conversion types

Table 31. Message types and conversion types

Conversion type

Message type Text Numeric Other None
getObject
JMSObjectMessag setObject
e
getText
JMSTextMessage cetText
readUTF readDouble readBoolean | readByte
writeUTF readFloat readObject readUnsignedByte
readInt writeBoolean | readBytes
readlLong writeObject |readChar
readShort writeByte
IMSBytesMessage ieadUn51gnedShor xiiiggzzis
writeDouble
writeFloat
writeInt
writelLong
writeShort
readString readDouble readBoolean | readByte
writeString |readFloat readObject readBytes
readInt writeBoolean |readChar
readLong writeObject [writeByte
readShort writeBytes
gMSStreamMessag writeDouble writeChar
writeFloat
writeInt
writelLong
writeShort
getString getDouble getBoolean getByte
setString getFloat getObject getBytes
getInt setBoolean readChar
getlong setObject setByte
getShort setBytes
JMSMapMessage setDouble setChar
setFloat
setInt
setlLong
setShort

Related concepts

JMS message conversion approaches

152 Developing Applications for IBM MQ




A number of data conversion approaches are open to JMS application designers. These approaches are
not exclusive; some applications are likely to use a combination of these approaches. If your application
is exchanging only text or is exchanging messages only with other JMS applications, you do not normally
consider data conversion. Data conversion is performed automatically for you, by IBM MQ.

JMS client message conversion and encoding
The methods you use to do JMS client message conversion and encoding are listed, with code examples
of each type of conversion.

Queue manager data conversion

Queue manager data conversion has always been available to non-JMS applications receiving messages
from JMS clients. JMS clients receiving messages also use queue manager data conversion, which is
optional.

Related tasks

Exchanging a formatted record with a non-JMS application

Follow the steps suggested in this task to design and build a data conversion exit, and a JMS client
application that can exchange messages with a non-JMS application using JMSBytesMessage. The
exchange of a formatted message with a non-JMS application can take place with or without calling a data
conversion exit.

JMS client message conversion and encoding
The methods you use to do JMS client message conversion and encoding are listed, with code examples
of each type of conversion.

Conversion and encoding occur when Java primitives or objects are read or written to and from JMS
messages. The conversion is called JMS client data conversion to distinguish it from queue manager data
conversion and application data conversion. The conversion takes place strictly when data is read from
or written to a JIMS message. Text is converted to and from the internal 16 bit Unicode representation 3
to the character set used for text in messages. Numeric data is converted to and Java primitive numeric
types to the encoding defined for the message. Whether conversion is performed, and what type of
conversion is performed, depends on the JIMS message type and the read or write operation.

Table 32 on page 153 categorizes the read and write methods for different IMS message types by the
type of conversion performed. The conversions types are described in the text following the table.

Table 32. Message types and conversion types
Conversion type
Message type Text Numeric Other None
getObject

JMSObjectMessag setObject
e

getText
JMSTextMessage cetText

3 Some Unicode representation requires more than 16 bits. See a Java SE reference.

Developing applications for IBM MQ 153



Table 32. Message types and conversion types (continued)
Conversion type
Message type Text Numeric Other None
readUTF readDouble readBoolean | readByte
writeUTF readFloat readObject readUnsignedByte
readInt writeBoolean | readBytes
readlLong writeObject |readChar
readShort writeByte
readUnsignedShor writeBytes
JMSBytesMessage T writeChar
writeDouble
writeFloat
writeInt
writelLong
writeShort
readString readDouble readBoolean | readByte
writeString |readFloat readObject readBytes
readInt writeBoolean | readChar
readLong writeObject [writeByte
readShort writeBytes
gMSStreamMessag writeDouble writeChar
writeFloat
writeInt
writelLong
writeShort
getString getDouble getBoolean getByte
setString getFloat getObject getBytes
getInt setBoolean readChar
getlong setObject setByte
getShort setBytes
JMSMapMessage setDouble setChar
setFloat
setInt
setlLong
setShort
Text

The default CodedCharacterSetId for a destination is 1208, UTF-8. By default, text is converted
from Unicode and sent as a UTF -8 text string. On receive, the text is converted from the coded
character set in the message received by the client, into Unicode.

The setText and writeString methods convert text from Unicode into the character set defined
for the destination. An application can override the destination character set by setting the message
property JMS_IBM_CHARACTER_SET. JMS_IBM_CHARACTER_SET, when sending a message must be
a numeric coded character set identifier 4.

The code snippets in “Sending and receiving a IMSTextmessage” on page 157 send two messages.
One is sent in the character set defined for the destination and the other in character set 37, defined
by the application

4 When receiving a message JMS_IBM_CHARACTER_SET is a Java Charset code page name.

154 Developing Applications for IBM MQ



The getText and readString methods convert the text in the message from the

character set defined in the message into Unicode. The methods use the code page

defined in the message property, JMS_IBM_CHARACTER_SET. The code page is mapped from
MQRFH2.CodedCharacterSetId unless the message is an MQ-type message and has no MQRFH2.
If the message is a MQ-type message, with no MQRFH2, the code page is mapped from
MQMD.CodedCharacterSetId.

The code snippet in Figure 29 on page 157 receives the message that was sent to the destination. The
text in the message is converted from code page IBM037 back into Unicode.

Note: A simple way to check that the text is converted to coded character set 37 is to use IBM MQ
Explorer. Browse the queue and show the properties of the message before it is retrieved.

Contrast the code snippet in Figure 28 on page 157 with the incorrect code snippet in Figure 25 on
page 155. In the incorrect snippet the text string is converted twice, once by the application, and
again by IBM MQ.

TextMessage tmo = session.createTextMessage();

tmo.setIntProperty (WMQConstants.JIMS_IBM_CHARACTER_SET, 37);

tmo.setText(new String("Sent in EBCDIC character set 37".getBytes(CCSID.getCodepage(37))));
producer.send(tmo) ;

Figure 25. Incorrect code page conversion

The writeUTF method converts text from Unicode to 1208, UTF -8. The text string is prefaced with a
2 byte length. The maximum length of the text string is 65534 bytes. The readUTF method reads an
item in a message written by the writeUTF method. It reads exactly the number of bytes written by
the writeUTF method.

Numeric

The default numeric encoding for a destination is Native. The Native encoding constant for Java
has the value 273, x ' 00000111 "', which is the same for all platforms. On receive, the numbers in
the message are correctly transformed into numeric Java primitives. The transformation uses the
encoding defined in the message and the type returned by the read method.

The send method converts numbers that are added to a message by the set and write into the
numeric encoding defined for the destination. The destination encoding can be overridden for a
message by an application setting the message property, JIMS_IBM_ENCODING ; for example:

message.setIntProperty (WMQConstants.JMS_IBM_ENCODING,
WMQConstants.WMQ_ENCODING_INTEGER_REVERSED) ;

The get and read numeric methods convert numbers in the message from the numeric

encoding defined in the message. They convert the numbers to the type that is specified by the
read or get method; see The ENCODING property. The methods use the encoding defined in
JMS_IBM_ENCODING. The encoding is mapped from MQRFH2.Encoding unless the message is an
MQ-type message and has no MQRFH2. If the message is a MQ-type message, with no MQRFH2, then
the methods use the encoding defined in MQMD . Encoding.

The example in Figure 30 on page 157 shows an application encoding a number in the destination
format and sending it in a IMSStreamMessage. Compare the example in Figure 30 on page 157 to
the example in Figure 31 on page 157. The difference is that JMS_IBM_ENCODING must be setin a
JMSBytesMessage.

Note: A simple way to check that the number is encoded correctly is to use IBM MQ Explorer. Browse
the queue and show the properties of the message before it is consumed.

Other

The boolean methods encode true and falseas x'01' and x'00"' in a JMSByteMessage,
IJMSStreamMessage, and JMSMapMessage.

Developing applications for IBM MQ 155



The UTF methods encode and decode Unicode into UTF -8 text strings. The strings are limited to less
than 65536 characters, and are preceded by the 2 byte length field.

The Object methods wrap primitive types as objects. Numeric and text types are encoded or
converted as if the primitive types had been read or written using the numeric and text methods.

None

The readByte, readBytes, readUnsignedByte, writeByte, and writeBytes methods get or
put single bytes, or arrays of bytes, between the application and the message without conversion. The
readChar and writeChar methods get and put 2 byte Unicode characters between the application
and the message without conversion.

Using the readBytes and writeBytes methods, the application can perform its own code point
conversion, as in “Sending and receiving text in a JMSBytesMessage” on page 158.

IBM MQ does not perform any code page conversion in the client as the message is a
JMSBytesMessage, and because the readBytes and writeBytes methods are used. Nonetheless,
if the bytes represent text, make sure that code page used by the application matches the coded
character set of the destination. The message might be converted again by a queue manager
conversion exit. Another possibility is that the receiving JMS client program might follow the
convention of converting any byte arrays representing text in the message into strings or characters
using the JMS_IBM_CHARACTER_SET property in the message.

In this example the client uses the destination coded character set for its conversion:

bytes.writeBytes("In the destination code page".getBytes(
CCSID.getCodepage(((MQDestination) destination)
.getIntProperty (WMQConstants.WMQ_CCSID))));

Alternatively, the client might have chosen a code page and then set the corresponding coded
character set in the JMS_IBM_CHARACTER_SET property of the message. The IBM MQ classes for
Java use JMS_IBM_CHARACTER_SET to set the CodedCharacterSetId field in the JMS properties
in the MQRFH2, or in the message descriptor, MQMD:

String codePage = CCSID.getCodepage(37);
?essage.setIntPIoperty(WMQConstants.JMS_IBM_CHARACTER_SET, codePage) ;

If a byte array is written into a IMSStringMessage or JMSMapMessage, IBM MQ classes for IMS
does not perform data conversion, as the bytes are typed as hexadecimal data not as text in the
JMSStringMessage and JMSMapMessage.

If the bytes represent characters in your application, you must take into account what code points to
read and write to the message. The code in Figure 26 on page 156 follows the convention of using
the destination coded character set. If you create the string using the default character set for the
JVM, the byte contents depend on the platform. A JVM on Windows typically has a default Charset
of windows-1252, and UNIX, UTF-8. Interchange between Windows and UNIX does require that you
select an explicit code page for exchanging text as bytes.

StreamMessage smo = producer.session.createStreamMessage();
smo.writeBytes("123".getBytes(CCSID.getCodepage (((MQDestination) destination)
.getIntProperty (WMQConstants.WMQ_CCSID))));

Figure 26. Writing bytes representing a string in a IMSStreamMessage using the destination character
set

Examples

5 SetStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET, codePage) currently
accepts only numeric character set identifiers.

156 Developing Applications for IBM MQ



Sending and receiving a JMSTextmessage

A text message cannot contain text in different character sets. The example shows text in different
character sets, sent in two different messages.

TextMessage tmo = session.createTextMessage();
tmo.setText("Sent in the character set defined for the destination");
producer.send(tmo) ;

Figure 27. Send text message in the character set defined by the destination

TextMessage tmo = session.createTextMessage();
tmo.setIntProperty (WMQConstants.JIMS_IBM_CHARACTER_SET, 37);
tmo.setText("Sent in EBCDIC character set 37");
producer.send(tmo) ;

Figure 28. Send text message in ccsid 37

TextMessage tmi = (TextMessage)consumer.receive();
System.out.println(tmi.getText());

ééﬁt in the character set defined for the destination

Figure 29. Receive text message

Encoding examples

Examples showing a number being sent in the encoding defines for a destination. Notice that you must set
the JMS_IBM_ENCODING property of a JMSBytesMessage to the value specified for the destination.

StreamMessage smo = session.createStreamMessage();
smo.writeInt(256);
producer.send(smo) ;

éfieamMessage smi = (StreamMessage)consumer.receive();
System.out.println(smi.readInt());

256

Figure 30. Sending a number using the destination encoding in a IMSStreamMessage

BytesMessage bmo = session.createBytesMessage();

bmo.writeInt(256);

int encoding = ((MQDestination) (destination)).getIntProperty
(WMQConstants.WMQ_ENCODING)

bmo.setIntProperty (WMQConstants.JMS_IBM_ENCODING, encoding);

producer.send(bmo) ;

é&%esMessage bmi = (BytesMessage)consumer.receive();
System.out.println(bmi.readInt());

256

Figure 31. Sending a number using the destination encoding in a IMSBytesMessage

Developing applications for IBM MQ 157



Sending and receiving text in a JMSBytesMessage

The code in Figure 32 on page 158 sends a string in a BytesMessage. For simplicity, the example sends a
single string, for which a JMSTextMessage is more appropriate. To receive a text string in bytes message
containing a mixture of types, you must know the length of the string in bytes, called TEXT_LENGTH

in Figure 33 on page 158. Even for a string with a fixed number of characters, the length of the byte
representation might be longer.

BytesMessage bytes = session.createBytesMessage();

String codePage = CCSID.getCodepage(((MQDestination) destination)
.getIntProperty (WMQConstants.WMQ_CCSID));

bytes.writeBytes("In the destination code page".getBytes(codePage));

producer.send (bytes);

Figure 32. Sending a String in a IMSBytesMessage

BytesMessage message = (BytesMessage)consumer.receive();

int TEXT_LENGTH = new Long(message.getBodylLength())).intValue();

byte[] textBytes = new byte[TEXT_LENGTH];

message.readBytes (textBytes, TEXT_LENGTH);

String codePage = message.getStringProperty (WMQConstants.JMS_IBM_CHARACTER_SET);
String textString = new String(textBytes, codePage);

Figure 33. Receiving a String from a JMSBytesMessage

Related concepts

JMS message conversion approaches

A number of data conversion approaches are open to JMS application designers. These approaches are
not exclusive; some applications are likely to use a combination of these approaches. If your application
is exchanging only text or is exchanging messages only with other JMS applications, you do not normally
consider data conversion. Data conversion is performed automatically for you, by IBM MQ.

Queue manager data conversion

Queue manager data conversion has always been available to non-JMS applications receiving messages
from JMS clients. JMS clients receiving messages also use queue manager data conversion, which is
optional.

Related tasks

Exchanging a formatted record with a non-JMS application

Follow the steps suggested in this task to design and build a data conversion exit, and a JMS client
application that can exchange messages with a non-JMS application using JMSBytesMessage. The
exchange of a formatted message with a non-JMS application can take place with or without calling a data
conversion exit.

Related reference

JMS message types and conversion

The choice of message type affects your approach to message conversion. The interaction of

message conversion and message type is described for the JIMS message types, JMSObjectMessage,
IMSTextMessage, JMSMapMessage, JMSStreamMessage, and JMSBytesMessage.

Queue manager data conversion

Queue manager data conversion has always been available to non-JMS applications receiving messages
from JMS clients. JMS clients receiving messages also use queue manager data conversion, which is
optional.

The queue manager can convert character and numeric data in message data using the values of
CodedCharacterSetlId, Encoding, and Format set for the message data. For non-JMS applications
the conversion capability has always been available by setting the GetMessageOption, GMO_CONVERT.

158 Developing Applications for IBM MQ



The queue manager is able to convert messages that are sent to JIMS clients. Queue manager

conversion is controlled by setting the destination property, NMQ_RECEIVE_CONVERSION, to
WMQ_RECEIVE_CONVERSION_QMGR, or WMQ_RECEIVE_CONVERSION_CLIENT_MSG. The application can
change the destination setting:

((MQDestination)destination).setIntProperty (
WMQConstants.WMQ_RECEIVE_CONVERSION,
WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR) ;

Or,

((MQDestination)destination) .setReceiveConversion
(WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR) ;

Figure 34. Enable queue manager data conversion

Queue manager data conversion for a JMS client takes place when the client calls a consumer.receive
method. Text data is transformed into UTF-8 (1208) by default. Subsequent read and get methods decode
text in the received data from UTF-8, creating Java text primitives in their internal Unicode encoding.
UTF-8 is not the only target character set from queue manager data conversion. You can choose a
different CCSID by setting the WMQ_RECEIVE_CCSID destination property.

An application can also change the destination setting, for example setting it to 437, DOS-US:

((MQDestination)destination).setIntProperty
(WMQConstants.WMQ_RECEIVE_CCSID, 437);

Or,
((MQDestination)destination).setReceiveCCSID (437);

Figure 35. Set target coded character set for queue manager conversion

The reason for changing WMQ_RECEIVE_CCSID is specialized; the chosen CCSID makes no difference to
the text objects created in the JVM. However, some JVMs, on some platforms, might not be able to handle
conversion from the CCSID of text in the message into Unicode. The option gives you a choice of CCSID
for any text delivered to the client in the message. Some IMS client platforms have had problems with
message text being delivered in UTF-8.

The JMS code is equivalent to the bold text in the C code in Figure 36 on page 160,

Developing applications for IBM MQ 159



gmo.Options = MQGMO_WAIT /* wait for new messages */
| MQGMO_NO_SYNCPOINT /* no transaction */
| MQGMO_CONVERT; /* convert if necessary */

while (CompCode != MQCC_FAILED) {

buflen = sizeof(buffer) - 1; /x buffer size available for GET */
memcpy (md.MsgId, MQMI_NONE, sizeof(md.Msgld));

memcpy (md.CorrelId, MQCI_NONE, sizeof(md.Correlld));

md.Encoding = MQENC_NATIVE;

md.CodedChaxSetId = MQCCSI_Q_MGR;

MQGET (Hcon, /* connection handle */
Hob7j, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
buffer, /* message buffer */
&messlen, /* message length */
&CompCode, /* completion code */
&Reason) ; /* reason code */

Figure 36. Code snippet from amgsget0.c

Note:

Queue manager conversion is only performed on the message data that has a known IBM MQ format.
MQSTR, or MQCIH are examples of known formats that are predefined. A known format can also be
user-defined format, as long as you have supplied a data-conversion exit.

Messages constructed as JMSTextMessage, JMSMapMessage and JMSStreamMessage, have a MQSTR
format, and can be converted by the queue manager.

Related concepts

JMS message conversion approaches

A number of data conversion approaches are open to JMS application designers. These approaches are
not exclusive; some applications are likely to use a combination of these approaches. If your application
is exchanging only text or is exchanging messages only with other JMS applications, you do not normally
consider data conversion. Data conversion is performed automatically for you, by IBM MQ.

JMS client message conversion and encoding
The methods you use to do IMS client message conversion and encoding are listed, with code examples
of each type of conversion.

“Invoking the data-conversion exit” on page 886
A data-conversion exit is a user-written exit that receives control during the processing of an MQGET call.

Related tasks

Exchanging a formatted record with a non-JMS application

Follow the steps suggested in this task to design and build a data conversion exit, and a JMS client
application that can exchange messages with a non-JMS application using JMSBytesMessage. The
exchange of a formatted message with a non-JMS application can take place with or without calling a data
conversion exit.

Related reference

JMS message types and conversion

The choice of message type affects your approach to message conversion. The interaction of

message conversion and message type is described for the JIMS message types, JMSObjectMessage,
IMSTextMessage, JMSMapMessage, JMSStreamMessage, and JMSBytesMessage.

Exchanging a formatted record with a non-JMS application
Follow the steps suggested in this task to design and build a data conversion exit, and a JIMS client
application that can exchange messages with a non-JMS application using JMSBytesMessage. The

160 Developing Applications for IBM MQ



exchange of a formatted message with a non-JMS application can take place with or without calling a data
conversion exit.

Before you begin
You might be able to design a simpler solution to exchanging messages with a non-JMS application using
a JMSTextMessage. Eliminate that possibility before following the steps in this task.

About this task

A IMS client is easier to write if it is not involved in the details of formatting IMS messages

exchanged with other JMS clients. As long as the message type is JMSTextMessage, JMSMapMessage,
JMSStreamMessage, or JMSObjectMessage, IBM MQ looks after the details of formatting the message.
IBM MQ deals with differences in code pages and numeric encoding on different platforms.

You can use these message types to exchange messages with non-JMS applications. To do so, you must
understand how these messages are constructed by IBM MQ classes for JMS. You might be able to
modify the non-JMS application to interpret the messages; see “Mapping JMS messages onto IBM MQ
messages” on page 124.

An advantage of using one of these message types is the JMS client programming does not depend on
the type of application that it is exchanging messages with. A disadvantage is that it might require a
modification to another program, and you might not be able to change the other program.

An alternative approach is to write a JMS client application that can deal with existing message formats.
Often existing messages are fixed format and contain a mixture of unformatted data, text, and numbers.
Use the steps in this task, and the example JMS client in “Writing classes to encapsulate a record layout
in a JMSBytesMessage” on page 164, as a starting point for building a IMS client that can exchange
formatted records with non-JMS applications.

Procedure
1. Define the record layout, or use one of the predefined IBM MQ header classes.

For handling predefined IBM MQ headers, see Handling IBM MQ message headers.

Figure 37 on page 162 is an example of a user defined, fixed-length record layout, which can be
processed by the data conversion utility.

2. Create the data conversion exit.

Follow the instructions in Writing a data-conversion exit program to write a data conversion exit.

To try out the example in “Writing classes to encapsulate a record layout in a JMSBytesMessage” on
page 164, name the data conversion exit MYRECORD.

3. Write Java classes to encapsulate the record layout, and sending and receiving record. Two
approaches you might take are:

« Write a class to that reads and writes the JMSBytesMessage that contains the record; see “Writing
classes to encapsulate a record layout in a IMSBytesMessage” on page 164.

- Write a class extending com. ibm.mq.header.Header to define the data structure of the record;
see Creating classes for new header types.

4. Decide what coded character set to exchange messages in.

See Choosing an approach to message conversion: receiver makes good.
5. Configure the destination to exchange MQ-type messages, without a JMS MQRFH2 header.

Both the sending and receiving destination must be configured to exchange MQ-type messages. You
can use the same destination for both sending and receiving.

The application can override the destination message body property:

((MQDestination)destination) .setMessageBodyStyle (WMQConstants.WMQ_MESSAGE_BODY_MQ) ;

Developing applications for IBM MQ 161



The example in “Writing classes to encapsulate a record layout in a IMSBytesMessage” on page 164
overrides the destination message body property, ensuring an MQ-style message is sent.

6. Test the solution with IMS and non-JMS applications

Useful tools to test a data conversion exit are:

- The amgsgetcO.c sample program is useful to test receiving a message sent by a IMS client.
See the suggested modifications to use the example header, RECORD. h, in Figure 38 on page
163. With the modifications, amgsgetc0. c receives a message sent by the example JMS client,
TryMyRecozrd. java ; see “Writing classes to encapsulate a record layout in a JMSBytesMessage”
on page 164.

« The sample IBM MQ browse program, amgsbcg0. c, is useful to inspect the contents of the message
header, the JMS header, MQRFH2, and the message contents.

« The xrfhutil program, previously available in SupportPac IH03, allows test messages to be
captured and stored in files, and then used to drive Message Flows. Output messages can also be
read and displayed in a variety of formats. The formats include two types of XML as well as matching
against a COBOL copybook. The data can be in EBCDIC or ASCII. An RFH2 header can be added to
the message before the message is sent.

If you try to receive messages using the modified amqsgetc0. c sample program, and get an error
with reason code 2080, check whether the message has an MQRFH2. The modifications assume that
the message has been sent to a destination that specifies no MQRFH2.

Examples

struct RECORD { MQCHAR StrucID[4];
MQLONG Version;
MQLONG StructlLength;
MQLONG Encoding;
MQLONG CodeCharSetId;
MQCHAR Format[8];
MQLONG Flags;
MQCHAR RecordDatal[32];
i

Figure 37. RECORD.h

162 Developing Applications for IBM MQ


https://github.com/ibm-messaging/mq-rfhutil

« Declare the RECORD. h data structure

struct tagRECORD {

MQCHAR4 Strucld;
MQLONG Version;
MQLONG StruclLength;
MQLONG Encoding;
MQLONG CCSID;
MQCHARS8 Format;
MQLONG Flags;
MQCHAR32 RecordData;

i
typedef struct tagRECORD RECORD;
typedef RECORD MQPOINTER PRECORD;
RECORD record;
PRECORD pRecord = &(record);

« Modify the MQGET call to use RECORD,

1. Before modification:

MQGET (Hcon, /* connection handle */
Hob7j, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options %/
buflen, /* buffer length */
buffer, /* message buffer */
&messlen, /* message length */
&CompCode, /* completion code */
&Reason) ; /* reason code */
2. After modification:
MQGET (Hcon, /* connection handle */
Hob7j, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options  */
sizeof (RECORD), /* buffer length */
pRecord, /* message buffer */
&messlen, /* message length */
&CompCode, /* completion code */
&Reason) ; /* reason code */

« Change the print statement,

1. From:
buffer[messlen] = '\0'; /* add terminator */
printf("message <¥%s>\n", buffer);

2. To:
/* buffer[messlen] = '\0'; add terminator */

printf("ccsid <%d>, flags <%d>, message <%32.32s>\n \0",
md.CodedCharSetId, record.Flags, record.RecordData);

Figure 38. Modify amgsget0.c

Related concepts

JMS message conversion approaches

A number of data conversion approaches are open to JMS application designers. These approaches are
not exclusive; some applications are likely to use a combination of these approaches. If your application
is exchanging only text or is exchanging messages only with other JMS applications, you do not normally
consider data conversion. Data conversion is performed automatically for you, by IBM MQ.

JMS client message conversion and encoding
The methods you use to do JMS client message conversion and encoding are listed, with code examples
of each type of conversion.

Queue manager data conversion

Developing applications for IBM MQ 163



Queue manager data conversion has always been available to non-JMS applications receiving messages
from JMS clients. JMS clients receiving messages also use queue manager data conversion, which is
optional.

Related reference

JMS message types and conversion

The choice of message type affects your approach to message conversion. The interaction of

message conversion and message type is described for the JMS message types, JMSObjectMessage,
JMSTextMessage, JMSMapMessage, JMSStreamMessage, and JMSBytesMessage.

Utility for creating conversion-exit code

Writing classes to encapsulate a record layout in a IMSBytesMessage

The purpose of this task is to explore, by example, how to combine data conversion and a fixed record
layout in a IMSBytesMessage. In the task, you create some Java classes to exchange an example record
structure in a JMSBytesMessage. You can modify the example to write classes to exchange other record
structures.

A IJMSBytesMessage is the best choice of IMS message type to exchange mixed data type records with
non-JMS programs. It has no additional data inserted into the message body by the JMS provider. It is
therefore the best choice of message type to use if a IMS client program interoperates with an existing
IBM MQ program. The main challenge in using a IMSBytesMessage comes with matching the encoding
and character set expected by the other program. A solution is to create a class that encapsulates the
record. A class that encapsulates reading and writing a JMSBytesMessage, for a specific record type,
makes it easier to send and receive fixed-format records in a IMS program. By capturing the generic
aspects of the interface in an abstract class, much of the solution can be reused for different record
formats. Different record formats can be implemented in classes that extend the abstract generic class.

An alternative approach is to extend the com. ibm.mq.headers.Header class. The Header class has
methods, such as addMQLONG, to build a record format in a more declarative way. A disadvantage of using
the Header class is getting and setting attributes uses a more complicated interpretative interface. Both
approaches result in much the same amount of application code.

A IJMSBytesMessage can encapsulate only a single format, in addition to an MQRFH2, in one message,
unless each record uses the same format, coded character set, and encoding. The format, encoding, and
character set of a JMSBytesMessage are properties of all of the message following the MQRFH2. The
example is written on the assumption that a IMSBytesMessage contains only one user record.

Before you begin

1. Your skill level: you must be familiar with Java programming and JMS. No instructions are provided
about setting up the Java development environment. It is advantageous to have written a program
to exchange a JMSTextMessage, JMSStreamMessage, or JMSMapMessage. You can then see the
differences in exchanging a message using a JMSBytesMessage.

2. The example requires IBM WebSphere MQ 7.0.

3. The example was created using the Java perspective of the Eclipse workbench. It requires JRE 6.0
or higher. You can use the Java perspective in IBM MQ Explorer to develop and run the Java classes.
Alternatively, use your own Java development environment.

4. Using IBM MQ Explorer makes setting up the test environment, and debugging, simpler than using
command-line utilities.

About this task

You are guided through creating two classes: RECORD and MyRecoxrd. Together these two classes
encapsulate a fixed-format record. They have methods to get and set attributes. The get method reads
the record from a JMSBytesMessage and the put method writes a record to a JMSBytesMessage.

The purpose of the task is not to create a production quality class that you can reuse. You might
choose to use the examples in the task to get started on your own classes. The purpose of the task
is to provide you with guidance notes, primarily about using character sets, formats, and encoding,

164 Developing Applications for IBM MQ



when using a JMSBytesMessage. Each step in creating the classes is explained, and aspects of using
JMSBytesMessage, which are sometimes overlooked, are described.

The RECORD class is abstract and defines some common fields for a user record. The common fields are
modeled on the standard IBM MQ header layout of having an eye catcher, a version, and a length field.
The encoding, character set, and format fields, found in many IBM MQ headers, are omitted. Another
header cannot follow a user-defined format. The MyRecoxd class, which extends the RECORD class, does
so by literally extending the record with additional user fields. A JMSBytesMessage, created by the
classes, can be processed by the queue manager data conversion exit.

“Classes used to run example” on page 171 includes a full listing of RECORD and MyRecoxd. It also
includes listings of the extra "scaffolding" classes to test the RECORD and MyRecozxd. The extra classes
are:

TryMyRecoxd
The main program to test RECORD and MyRecozxd.

EndPoint
An abstract class that encapsulates the JMS connection, destination, and session in a single class. Its
interface just meets the needs of testing the RECORD and MyRecoxrd classes. It is not an established
design pattern for writing JMS applications.

Note: The Endpoint class includes this line of code after creating a destination:

((MQDestination)destination) .setReceiveConversion
(WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR) ;

In 7.0, from 7.0.1.5, it is necessary to turn on queue manager conversion. It is disabled by default.
In 7.0, up to 7.0.1.4 queue manager conversion is enabled by default, and this line of code causes an
error.

MyProducexr and MyConsumex
Classes that extend EndPoint, and create a MessageConsumer and MessageProducer, connected
and ready to accept requests.

Together all the classes make up a complete application you can build and experiment with, to
understand how to use data conversion in a JMSBytesMessage.

Procedure

1. Create an abstract class to encapsulate the standard fields in an IBM MQ header, with a default
constructor. Later, you extend the class to tailor the header to your requirements.

public abstract class RECORD implements Serializable {
private static final long serialVersionUID = -1616617232750561712L;
protected final static int UTF8 = 1208;
protected final static int MQLONG_LENGTH = 4;
protected final static int RECORD_STRUCT_ID_LENGTH = 4;
protected final static int RECORD_VERSION_1 = 1;
protected final String RECORD_STRUCT_ID = "BLNK";
protected final String RECORD_TYPE = "BLANK "
private String structID = RECORD_STRUCT_ID;
private int version = RECORD_VERSION_1;
private int structlLength = RECORD_STRUCT_ID_LENGTH + MQLONG_LENGTH *x 2;
private int headerEncoding = WMQConstants.WMQ_ENCODING_NATIVE;
private String headerCharset = "UTF-8";
private String headerFormat = RECORD_TYPE;

public RECORD() {
supex();

Note:

a. The attributes, structID to nextFormat, are listed in the order they are laid out in a standard
IBM MQ message header.

Developing applications for IBM MQ 165



b. The attributes, format, messageEncoding, and messageCharset, describe the header itself,
and are not part of the header.

c. You must decide whether to store the coded character set identifier or character set of the record.
Java uses character sets and IBM MQ messages use coded character set identifiers. The example
code uses character sets.

d. int is serialized to MOLONG by IBM MQ. MQLONG is 4 bytes.
2. Create the getters and setters for the private attributes.
a) Create or generate the getters:

public String getHeaderFormat() { return headerFormat; %
public int getHeaderEncoding() { return headerEncoding; t
public String getMessageCharset() { return headerCharset; %
public int getMessageEncoding() i return headerEncoding; %
public String getStructID() { return structID; %

public int getStructlLength() { return structlLength; %

public int getVersion() { return version; %

b) Create or generate the setters:

public void setHeaderCharset(String charset) {

this.headexrCharset = charset; %

public void setHeaderEncoding(int encoding) %
this.headerEncoding = encoding; %

public void setHeaderFormat(String headerFormat) {
this.headerFormat = headerFormat; ?%

public void setStructID(String structID) f{
this.structID = structID; %

public void setStructLength(int structlLength) {
this.structlLength = structLength; %

public void setVersion(int version) f{
this.version = version; %

k
3. Create a constructor to create a RECORD instance from a JMSBytesMessage.

public RECORD(BytesMessage message) throws JIMSException, IOException,
MQDataException {
super();
setHeaderCharset(message.getStringProperty (WMQConstants.JMS_IBM_CHARACTER_SET));
setHeaderEncoding(message.getIntProperty (WMQConstants.JMS_IBM_ENCODING));
byte[] structID = new byte[RECORD_STRUCT_ID_LENGTH];
message.readBytes(structID, RECORD_STRUCT_ID_LENGTH);
setStructID(new String(structID, getMessageCharset()));
setVersion(message.readInt());
setStructLength(message.readInt());

Note:

a. The messageCharset and messageEncoding, are captured from the message properties,
as they override the values set for the destination. format is not updated. The example
does no error checking. If the Record (BytesMessage) constructor is called, it is assumed
that the JMSBytesMessage is a RECORD type message. The line "setStructID(new
String(structID, getMessageCharset()))" setsthe eye catcher.

b. The lines of code that complete the method deserialize fields in the message, in order, updating
the default values set in the RECORD instance.

4. Create a put method to write the header fields to a JMSBytesMessage.

protected BytesMessage put(MyProducer myProducer) throws IOException,
JIMSException, UnsupportedEncodingException {

setHeaderEncoding(myProducer.getEncoding());
setHeaderCharset (myProducer.getCharset());
myProducer.setMQClient (true);
BytesMessage bytes = myProducer.session.createBytesMessage();
bytes.setStringProperty (WMQConstants.JMS_IBM_FORMAT, getHeaderFormat());
bytes.setIntProperty (WMQConstants.JMS_IBM_ENCODING, getHeaderEncoding());
bytes.setIntProperty (WMQConstants.JMS_IBM_CHARACTER_SET,

166 Developing Applications for IBM MQ



myProducer.getCCSID());
bytes.writeBytes(String.format("%1$-" + RECORD_STRUCT_ID_LENGTH + "."
+ RECORD_STRUCT_ID_LENGTH + "s", getStructID())
.getBytes(getMessageCharset()), 0, RECORD_STRUCT_ID_LENGTH) ;
bytes.writeInt(getVersion());
bytes.writeInt(getStructLength());
return bytes;

Note:

a. MyProducer encapsulates the JIMS Connection, Destination, Session, and
MessageProducer in a single class. MyConsumer, used later on, encapsulates the JMS
Connection, Destination, Session, and MessageConsumer in a single class.

b. For a JMSBytesMessage, if the encoding is other than Native, the encoding must be
set in the message. The destination encoding is copied to the message encoding attribute,
JMS_IBM_CHARACTER_SET, and saved as an attribute of the RECORD class.

i) "setMessageEncoding (myProducer.getEncoding()) ;" calls"(((MQDestination)
destination) .getIntProperty (WMQConstants.WMQ_ENCODING)) ;" to get the
destination encoding.

i) "Bytes.setIntProperty (WMQConstants.JMS_IBM_ENCODING,
getMessageEncoding()) ;" sets the message encoding.

c. The character set used to transform text into bytes is obtained from the destination, and saved as
an attribute of the RECORD class. It is not set in the message, because it is not used by the IBM
MQ classes for JMS when writing a JMSBytesMessage.

"messageCharset = myProducer.getCharset();"calls

public String getCharset() throws UnsupportedEncodingException,
JMSException %
return CCSID.getCodepage(getCCSID());
¥

It gets the Java character set from a coded character set identifier.

"CCSID.getCodepage(ccsid) "isinthe package com.ibm.mq.headers. The ccsidis
obtained from another method in MyProducer, which queries the destination:

public int getCCSID() throws JMSException {
return (((MQDestination) destination)
.getIntProperty (WMQConstants.WMQ_CCSID));
%

d. "myProducer.setMQClient (true) ;" overrides the destination setting for the client type,
forcing it to an IBM MQ MQI client. You might prefer to omit this line of code, as it obscures
an administrative configuration error.

"myProducer.setMQClient (true) ;" calls:

((MQDestination) destination).setTargetClient (WMQConstants.WMQ_TARGET_DEST_MQ); %
if (!getMQDest()) setMQBody();

The code has the side-effect of setting the IBM MQ body style to unspecified, if it must override a
setting of JMS.

Note:

The IBM MQ classes for JMS write the format, encoding, and character set identifier of the
message into the message descriptor, MQMD, or into the JMS header, MQRFH2. It depends on
whether the message has an IBM MQ style body. Do not set the MQMD fields manually.

Developing applications for IBM MQ 167



A method exists to set the message descriptor properties manually. It uses the JMS_IBM_MQMD_x*
properties. You must set the destination property, WMQ_MQMD_WRITE_ENABLED to set the
JMS_IBM_MQMD_x* properties:

((MQDestination)destination) .setMQMDWriteEnabled (true);

You must set the destination property, WMQ_MQMD_READ_ENABLED, to read the properties.

Use the JIMS_IBM_MQMD_=* only if you take full control over the whole message payload. Unlike
the JMS_IBM_* properties, the JMS_IBM_MQMD_x* properties do not control how IBM MQ classes
for JMS construct a IMS message. It is possible to create message descriptor properties that
conflict with the properties of the JMS message.

e. The lines of code that completes the method serialize the attributes in class as fields in the
message.

The string attributes are padded with blanks. The strings are converted to bytes using the
character set defined for the record, and truncated to the length of the message fields.

5. Complete the class by adding the imports.

package com.ibm.mq.id;

import java.io.IOException;

import java.io.Serializable;

import java.io.UnsupportedEncodingException;
import javax.jms.BytesMessage;

import javax.jms.JMSException;

import com.ibm.mq.constants.MQConstants;
import com.ibm.mq.headers.MQDataException;
import com.ibm.msg.client.wmq.WMQConstants;

6. Create a class to extend the RECORD class to include additional fields. Include a default constructor.

public class MyRecord extends RECORD {
private static final long serialVersionUID = -370551723162299429L;
private final static int FLAGS = 1;
private final static String STRUCT_ID = "MYRD";
private final static int DATA_LENGTH = 32;
private final static String FORMAT = "MYRECORD";
private int flags = FLAGS;
private String recordData = "ABCDEFGHIJKLMNOPQRSTUVWXYZ012345";

public MyRecord() %
super();
super.setStructID(STRUCT_ID);
super.setHeaderFormat (FORMAT) ;
super.setStructlLength(super.getStructlLength() + MQLONG_LENGTH
+ DATA_LENGTH);

Note:

a. The RECORD subclass, MyRecord, customizes the eye catcher, format, and length of the header.
7. Create or generate the getters and setters.
a) Create the getters:

public int getFlags() { return flags; %
public String getRecordData() { return recordData; % .

b) Create the setters:

public void setFlags(int flags) 1{
this.flags = flags; %

public void setRecordData(String recordData) %
this.recordData = recordData; %

k

8. Create a constructor to create a MyRecoxrd instance from a JMSBytesMessage.

168 Developing Applications for IBM MQ



public MyRecord(BytesMessage message) throws JIMSException, IOException,
MQDataException {
super (message) ;
setFlags(message.readInt());
byte[] recordData = new byte[DATA_LENGTH];
message.readBytes(recordData, DATA_LENGTH);
setRecordData(new String(recordData, super.getMessageCharset()));

Note:

a. The fields that make up the standard message template are read first by the RECORD class.
b. The recordData text is converted to String using the character set property of the message.
9. Create a static method to get a message from a consumer and create a new MyRecoxrd instance.

public static MyRecord get(MyConsumer myConsumer) throws JMSException,
MQDataException, IOException %
BytesMessage message = (BytesMessage) myConsumer.receive();
return new MyRecord(message);

Note:

a. In the example, for brevity, the MyRecord (BytesMessage) constructor is called from the static
get method. Typically, you might separate receiving the message from creating a new MyRecoxrd
instance.

10. Create a put method to append the customer fields to a JMSBytesMessage containing a message
header.

public BytesMessage put(MyProducer myProducer) throws JIMSException,
I0Exception %

BytesMessage bytes = super.put(myProducer);

bytes.writeInt(getFlags());

bytes.writeBytes(String.format ("%1$-" + DATA_LENGTH + "."
+ DATA_LENGTH + "s",getRecordData())
.getBytes(super.getMessageCharset()), ©, DATA_LENGTH);

myProducer.send(bytes);

return bytes;

Note:

a. The method calls in the code serialize the attributes in the MyRecord class as fields in the
message.

e The recordData String attribute is padded with blanks, converted to bytes using the
character set defined for the record, and truncated to the length of the RecordData fields.

11. Complete the class by adding the include statements.

package com.ibm.mq.id;

import java.io.IOException;

import javax.jms.BytesMessage;

import javax.jms.JMSException;

import com.ibm.mq.headers.MQDataException;

Results
Results:
e The results from running the TryMyRecozrd class:

— Sending message in coded character set 37, and using a queue manager conversion exit:

Developing applications for IBM MQ 169



Out flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 546 CCSID 37 MQ true
Out flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 546 CCSID 37 MQ true
In flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 273 CCSID UTF-8

— Sending message in coded character set 37, and not using a queue manager conversion exit:

Out flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 546 CCSID 37 MQ true
Out flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 546 CCSID 37 MQ true
In flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 546 CCSID IBM037

« The results from modifying the TryMyRecozxd class not to receive the message, and instead receiving it
using the modified amgsget0. c sample. The modified sample accepts a formatted record; see Figure
38 on page 163 in “Exchanging a formatted record with a non-JMS application” on page 160.

— Sending message in coded character set 37, and using a queue manager conversion exit:

Sample AMQSGETO start

ccsid <850>, flags <1>, message <ABCDEFGHIJKLMNOPQRSTUVWXYZ012345>
no more messages

Sample AMQSGETO end

— Sending message in coded character set 37, and not using a queue manager conversion exit:

Sample AMQSGETO start

MQGET ended with reason code 2110 - e ,

ccsid <37>, flags <1>, message <--+-+3A++DEEEiDID+0066upbPU-+=3:98>
no more messages

Sample AMQSGETO end

To try out the example and experiment with different code pages and a data conversion exit. Create the
Java classes, configure IBM MQ, and run the main program, TryMyRecord ; see Figure 39 on page 171.

1. Configure IBM MQ and JMS to run the example. The instructions are for running the example on
Windows.

a. Create a queue manager

crtmgm -sa -u SYSTEM.DEAD.LETTER.QUEUE QM1
strmgm QM1

b. Create a queue
echo DEFINE QL('Q1') REPLACE | runmgsc QM1
c. Create a JNDI directory

cd c:\
md JINDI-Directory

d. Switch to the IJMS bin directory

The JMS Administration program must be run from here. The path is
MQ_INSTALLATION_PATH\java\bin.

e. Create the following JMS definitions in a file called IMSQM1Q1.txt

DEF CF(QM1) PROVIDERVERSION(7) QMANAGER(QM1)

DEF Q(Q1) CCSID(37) ENCODING(RRR) MSGBODY(MQ) QMANAGER(QM1) QUEUE(Q1) TARGCLIENT(MQ)
VERSION(7)
END

f. Run the JIMSAdmin program to create the JMS resources
JMSAdmin < JMSQM1Q1.txt

2. You can create, alter, and browse the definitions you have created using IBM MQ Explorer.
3. Run TryMyRecoxd.

170 Developing Applications for IBM MQ



Classes used to run example

The classes listed in figures Figure 39 on page 171 to Figure 44 on page 175 are also available in a
compressed file; download jm25529_.zip or jm25529_.tar.gz.

package com.ibm.mq.id;
public class TryMyRecord {
public static void main(String[] args) throws Exception {
MyProducer producer = new MyProducer();
MyRecord outrec = new MyRecord();
System.out.println("Out flags " + outrec.getFlags() + " text "
+ outrec.getRecordData() + " Encoding "
+ producer.getEncoding() + " CCSID " + producer.getCCSID()
+ " MQ " + producer.getMQDest());
outrec.put(producer);
System.out.println("Out flags " + outrec.getFlags() + " text "
+ outrec.getRecordData() + " Encoding "
+ producer.getEncoding() + " CCSID " + producer.getCCSID()
+ " MQ " + producer.getMQDest());
MyRecord inrec = MyRecord.get(new MyConsumer());
System.out.println("In flags " + inrec.getFlags() + " text "
+ inrec.getRecordData() + " Encoding "
+ inrec.getMessageEncoding() + " CCSID "
+ inrec.getMessageCharset());

3

Figure 39. TryMyRecord

Developing applications for IBM MQ 171



package com.ibm.mq.id;

import java.io.IOException;

import java.io.Serializable;

import java.io.UnsupportedEncodingException;
import javax.jms.BytesMessage;

import javax.jms.JIMSException;

import com.ibm.mq.constants.MQConstants;
import com.ibm.mq.headers.MQDataException;
import com.ibm.msg.client.wmq.WMQConstants;

public abstract class RECORD implements Serializable {
private static final long serialVersionUID = -1616617232750561712L;
protected final static int UTF8 = 1208;
protected final static int MQLONG_LENGTH = 4;
protected final static int RECORD_STRUCT_ID_LENGTH = 4;
protected final static int RECORD_VERSION_1 = 1;
protected final String RECORD_STRUCT_ID = "BLNK";
protected final String RECORD_TYPE = "BLANK "
private String structID = RECORD_STRUCT_ID;
private int version = RECORD_VERSION_1;
private int structLength = RECORD_STRUCT_ID_LENGTH + MQLONG_LENGTH * 2;
private int headerEncoding = WMQConstants.WMQ_ENCODING_NATIVE;
private String headerCharset = "UTF-8";
private String headerFormat = RECORD_TYPE;

public RECORD() %
supez();

public RECORD(BytesMessage message) throws JMSException, IOException,
MQDataException {
super();
setHeaderCharset (message.getStringProperty (WMQConstants.JMS_IBM_CHARACTER_SET));
setHeaderEncoding (message.getIntProperty (WMQConstants.JMS_IBM_ENCODING)) ;
byte[] structID = new byte[RECORD_STRUCT_ID_LENGTH];
message.readBytes(structID, RECORD_STRUCT_ID_LENGTH);
setStructID(new String(structID, getMessageCharset()));
setVersion(message.readInt());
setStructlLength(message.readInt());

§
public String getHeaderFormat() { return headerFormat; }
public int getHeaderEncoding() { return headerEncoding; 1

public String getMessageCharset() { return headerCharset; %
public int getMessageEncoding() { return headerEncoding; %
public String getStructID() § return structID;

public int getStructlLength() { return structLength; %
public int getVersion() { return version; %

protected BytesMessage put(MyProducer myProducer) throws IOException,
JIMSException, UnsupportedEncodingException {
setHeaderEncoding (myProducer.getEncoding());
setHeaderCharset (myProducer.getCharset());
myProducer.setMQClient (true);
BytesMessage bytes = myProducer.session.createBytesMessage();
bytes.setStringProperty (WMQConstants.JMS_IBM_FORMAT, getHeaderFormat());
bytes.setIntProperty (WMQConstants.JIMS_IBM_ENCODING, getHeaderEncoding());
bytes.setIntProperty (WMQConstants.JMS_IBM_CHARACTER_SET,
myProducer.getCCSID());
bytes.writeBytes(String.format("%1$-" + RECORD_STRUCT_ID_LENGTH + "."
+ RECORD_STRUCT_ID_LENGTH + "s", getStructID())
.getBytes(getMessageCharset()), ©, RECORD_STRUCT_ID_LENGTH);
bytes.writeInt(getVersion());
bytes.writeInt(getStructLength());
return bytes;

3

public void setHeaderCharset(String charset) {
this.headerCharset = charset;

public void setHeaderEncoding(int encoding) {
this.headerEncoding = encoding;

public void setHeaderFormat(String headerFormat) {
this.headerFormat = headerFormat; %

public void setStructID(String structID) {
this.structID = structID; %

public void setStructLength(int structLength) {
this.structlLength = structLength; %

public void setVersion(int version) {
this.version = version; %

Figure 40. RECORD

172 Developing Applications for IBM MQ



package com.ibm.mq.id;

import java.io.IOException;

import javax.jms.BytesMessage;

import javax.jms.JMSException;

import com.ibm.mq.headers.MQDataException;

public class MyRecord extends RECORD {
private static final long serialVersionUID = -370551723162299429L;
private final static int FLAGS = 1;
private final static String STRUCT_ID = "MYRD";
private final static int DATA_LENGTH = 32;
private final static String FORMAT = "MYRECORD";
private int flags = FLAGS;
private String recordData = "ABCDEFGHIJKLMNOPQRSTUVWXYZ012345";

public MyRecord() {
super();
super.setStructID(STRUCT_ID);
super.setHeaderFormat (FORMAT) ;
super.setStructlLength(super.getStructLength() + MQLONG_LENGTH
+ DATA_LENGTH) ;
b

public MyRecord(BytesMessage message) throws JMSException, IOException,

MQDataException {
super(message) ;
setFlags(message.readInt());
byte[] recordData = new byte[DATA_LENGTH];
message.readBytes(recordData, DATA_LENGTH);

setRecordData(new String(recordData, super.getMessageCharset()));

3

public static MyRecord get(MyConsumer myConsumer) throws JIMSException,

MQDataException, IOException {
BytesMessage message = (BytesMessage) myConsumer.receive();
return new MyRecord(message);

public int getFlags() { return flags; %
public String getRecordData() { return recordData; %

public BytesMessage put(MyProducer myProducer) throws JMSException,
IOException {
BytesMessage bytes = super.put(myProducer);
bytes.writeInt(getFlags());
bytes.writeBytes(String.format ("%1$-" + DATA_LENGTH + "."
+ DATA_LENGTH + "s",getRecordData())

.getBytes(super.getMessageCharset()), O, DATA_LENGTH);

myProducer.send(bytes);
return bytes;

3

public void setFlags(int flags) {
this.flags = flags;

public void setRecordData(String recordData) {
this.recordData = recordData;

Figure 41. MyRecord

Developing applications for IBM MQ 173



package com.ibm.mq.id;
import java.io.UnsupportedEncodingException;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.Destination;
import javax.jms.JIMSException;
import javax.jms.Session;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import com.ibm.mq.headers.CCSID;
import com.ibm.mq.jms.MQDestination;
import com.ibm.msg.client.wmq.WMQConstants;
public abstract class EndPoint {
public Context ctx;
public ConnectionFactory cf;
public Connection connection;
public Destination destination;
public Session session;
protected EndPoint() throws NamingException, JMSException {
System.setProperty("java.naming.provider.url", "file:/C:/JINDI-Directory");
System.setProperty("java.naming.factory.initial",
"com.sun.jndi.fscontext.RefFSContextFactory");
ctx = new InitialContext();
cf = (ConnectionFactory) ctx.lookup("QM1");
connection = cf.createConnection();
destination = (Destination) ctx.lookup("Q1");
((MQDestination)destination).setReceiveConversion
(WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR) ;
session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); }
protected EndPoint(String cFactory, String dest) throws NamingException,
JMSException {
System.setProperty("java.naming.provider.url", "file:/C:/JINDI-Directory");
System.setProperty("java.naming.factory.initial",
"com.sun.jndi.fscontext.RefFSContextFactory");
ctx = new InitialContext();
cf = (ConnectionFactory) ctx.lookup(cFactory);
connection = cf.createConnection();
destination = (Destination) ctx.lookup(dest);
((MQDestination)destination).setReceiveConversion
(WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR) ;
session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); }
public int getCCSID() throws JMSException {
return (((MQDestination) destination)
.getIntProperty (WMQConstants.WMQ_CCSID));
public String getCharset() throws UnsupportedEncodingException,
JMSException §
return CCSID.getCodepage(getCCSID()); ¥
public int getEncoding() throws JMSException {
return (((MQDestination) destination)
.getIntProperty (WMQConstants.WMQ_ENCODING)); %
public boolean getMQDest() throws JIMSException {
if ((((MQDestination) destination).getMessageBodyStyle()
== WMQConstants.WMQ_MESSAGE_BODY_MQ)
|| ((((MQDestination) destination).getMessageBodyStyle()
== WMQConstants.WMQ_MESSAGE_BODY_UNSPECIFIED)
&& (((MQDestination) destination).getTargetClient()
== WMQConstants.WMQ_TARGET_DEST_MQ)))
return true;
else
return false; }
public void setCCSID(int ccsid) throws JMSException {
((MQDestination) destination).setIntProperty(WMQConstants.WMQ_CCSID,
ccsid); ¥
public void setEncoding(int encoding) throws JIMSException {
((MQDestination) destination).setIntProperty(WMQConstants.WMQ_ENCODING,
encoding); %
public void setMQBody() throws IMSException {
((MQDestination) destination)
.setMessageBodyStyle (WMQConstants.WMQ_MESSAGE_BODY_UNSPECIFIED); }
public void setMQBody(boolean mgbody) throws JMSException {
if (mgbody) ((MQDestination) destination)
.setMessageBodyStyle (WMQConstants.WMQ_MESSAGE_BODY_MQ) ;
else ((MQDestination) destination)
.setMessageBodyStyle (WMQConstants.WMQ_MESSAGE_BODY_JMS); %
public void setMQClient(boolean mgclient) throws JMSException §
if (mgclient){
((MQDestination) destination).setTargetClient (WMQConstants.WMQ_TARGET_DEST_MQ);
if (!getMQDest()) setMQBody();

e
((MQDestination) destination).setTargetClient(WMQConstants.WMQ_TARGET_DEST_JMS); %

Figure 42. EndPoint

174 Developing Applications for IBM MQ



package com.ibm.mq.id;
import javax.jms.JIMSException;
import javax.jms.Message;
import javax.jms.MessageProducer;
import javax.naming.NamingException;
public class MyProducer extends EndPoint {
public MessageProducer producer;
public MyProducer() throws NamingException, JMSException §
super();
producer = session.createProducer(destination); %
public MyProducer(String cFactory, String dest) throws NamingException,
JIMSException {
super(cFactory, dest);
producer = session.createProducer(destination); %
public void send(Message message) throws JMSException §
producer.send(message); }

3

Figure 43. MyProducer

package com.ibm.mq.id;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.naming.NamingException;
public class MyConsumer extends EndPoint {
public MessageConsumer consumer;
public MyConsumexr() throws NamingException, JMSException {
supex();
consumer = session.createConsumer(destination);
connection.start();
public MyConsumer(String cFactory, String dest) throws NamingException,
IMSException {
super(cFactory, dest);
consumer = session.createConsumer(destination);
connection.start(); %
public Message receive() throws JMSException {
return consumer.receive();

3

Figure 44. MyConsumer

Creating and configuring connection factories and destinations in an IBM MQ classes
for IMS application

An IBM MQ classes for JMS application can create connection factories and destinations by retrieving
them as administered objects from a Java Naming and Directory Interface (JNDI) namespace, by using
the IBM JMS extensions, or by using the IBM MQ JMS extensions. An application can also use the IBM
JMS extensions or IBM MQ JMS extensions to set the properties of connection factories and destinations.

Connection factories and destinations are starting points in the flow of logic of a JMS application. An
application uses a ConnectionFactory object to create a connection to a messaging server, and uses a
Queue or Topic object as a target to send messages to or a source from which to receive messages.

An application therefore needs to create at least one connection factory and one or more destinations.
Having created a connection factory or destination, the application might then need to configure the
object by setting one or more of its properties.

In summary, an application can create and configure connection factories and destinations in the
following ways:

Using JNDI to retrieve administered objects
An administrator can use the IBM MQ JMS administration tool as described in Configuring objects
using the JMS administration tool, or IBM MQ Explorer as described in Configuring JMS objects using
IBM MQ Explorer, to create and configure connection factories and destinations as administered
objects in a INDI namespace. An application can then retrieve the administered objects from the
JNDI namespace. Having retrieved an administered object, the application can, if required, set or
change one or more of its properties by using either the IBM JMS extensions or the IBM MQ JMS
extensions.

Using the IBM JMS extensions
An application can use the IBM JMS extensions to create connection factories and destinations
dynamically at run time. The application first creates a ImsFactoryFactory object, and then uses

Developing applications for IBM MQ 175



methods of this object to create connection factories and destinations. Having created a connection
factory or destination, the application can use methods inherited from the JmsPropertyContext
interface to set its properties. Alternatively, the application can use a uniform resource identifier
(URI) to specify one or more properties of a destination when it creates the destination.

Using the IBM MQ JMS extensions
An application can also use the IBM MQ JMS extensions to create connection factories and
destinations dynamically at run time. The application uses the supplied constructors to create
connection factories and destinations. Having created a connection factory or destination, the
application can use methods of the object to set its properties. Alternatively, the application can
use a URI to specify one or more properties of a destination when it creates the destination.

Related tasks
Configuring JMS resources

Using JNDI to retrieve administered objects in a JIMS application
To retrieve administered objects from a Java Naming and Directory Interface (JNDI) namespace, a JMS
application must create an initial context and then use the lookup() method to retrieve the objects.

Before an application can retrieve administered objects from a INDI namespace, an administrator must
first create the administered objects. The administrator can use the IBM MQ JMS administration tool

or IBM MQ Explorer to create and maintain administered objects in a INDI namespace. For more
information, see Configuring connection factories and destinations in a INDI hamespace.

An application server, typically provides its own repository for administered objects and its own tools for
creating and maintaining the objects.

To retrieve administered objects from a INDI namespace, an application must first create an initial
context, as shown in the following example:

import javax.jms.x;
import javax.naming.x;
import javax.naming.directory.x;

étring url = "ldap://server.company.com/o=company_us,c=us";
String icf = "com.sun.jndi.ldap.LdapCtxFactory";

ﬁava.util.Hashtable environment = new java.util.Hashtable();
environment.put(Context.PROVIDER_URL, url);

environment.put(Context.INITIAL_CONTEXT_FACTORY, icf);
Context ctx = new InitialDirContext(environment);

In this code, the String variables url and icf have the following meanings:

url

The uniform resource locator (URL) of the directory service. The URL can have one of the following
formats:

« 1ldap://hostname/contextName , for a directory service based on an LDAP server
« file:/directoryPath ,for adirectory service based on the local file system

icf
The class name of the initial context factory, which can be one of the following values:

e com.sun.jndi.ldap.LdapCtxFactory, fora directory service based on an LDAP server

« com.sun.jndi.fscontext.RefFSContextFactory, for a directory service based on the local
file system

Note that some combinations of a INDI package and a Lightweight Directory Access Protocol (LDAP)
service provider can cause LDAP error 84 to occur. To resolve this problem, insert the following line of
code before the call to InitialDirContext():

environment.put(Context.REFERRAL, "throw");

176 Developing Applications for IBM MQ



After an initial context is obtained, the application can retrieve administered objects from the JNDI
namespace by using the lookup() method, as shown in the following example:

ConnectionFactory factory;
Queue queue;
Topic topic;

factory = (ConnectionFactory)ctx.lookup("cn=myCF");
queue = (Queue)ctx.lookup("cn=myQ");
topic = (Topic)ctx.lookup("cn=myT");

This code retrieves the following objects from an LDAP based namespace:

« A ConnectionFactory object bound with the name myCF
« A Queue object bound with the name myQ
« A Topic object bound with the name myT

For more information about using JNDI, see the INDI documentation provided by Oracle Corporation.

Related tasks

Configuring JMS objects using IBM MQ Explorer

Configuring JMS objects using the administration tool
Configuring JMS resources in WebSphere Application Server

Using the IBM JMS extensions

IBM MQ classes for JMS contains a set of extensions to the JMS API called the IBM JMS extensions. An
application can use these extensions to create connection factories and destinations dynamically at run
time, and to set the properties of IBM MQ classes for JMS objects. The extensions can be used with any
messaging provider.

The IBM JMS extensions are a set of interfaces and classes in the following packages:

e com.ibm.msg.client.jms

« com.ibm.msg.client.services

The packages can be found in com. ibm.mgjms. jar which is located in MQ_INSTALLATION_PATH/
java/lib.

These extensions provide the following function:

« Afactory-based mechanism for creating connection factories and destinations dynamically at run time,
instead of retrieving them as administered objects from a Java Naming and Directory Interface (JNDI)
namespace

« A set of methods for setting the properties of IBM MQ classes for JMS objects

- A set of exception classes with methods for obtaining detailed information about a problem
A set of methods for controlling tracing

« A set of methods for obtaining version information about IBM MQ classes for JMS

With regard to creating connection factories and destinations dynamically at run time, and setting and
getting their properties, the IBM JMS extensions provide an alternative set of interfaces to the IBM MQ
JMS extensions. However, whereas the IBM MQ JMS extensions are specific to the IBM MQ messaging
provider, the IBM JMS extensions are not specific to IBM MQ and can be used with any messaging
provider within the layered architecture described in IBM MQ classes for JMS architecture.

The interface com.ibm.msg.client.wmg.WMQConstants contains the definitions of constants, which an
application can use when setting the properties of IBM MQ classes for JMS objects using the IBM JMS
extensions. The interface contains constants for the IBM MQ messaging provider and JMS constants that
are independent of any messaging provider.

The examples of code that follow assume that the following import statements have been run:

Developing applications for IBM MQ 177



import com.ibm.msg.client.jms.x*;
import com.ibm.msg.client.services.x;
import com.ibm.msg.client.wmq.WMQConstants;

Creating connection factories and destinations

Before an application can create connection factories and destinations using the IBM JMS extensions, it
must first create a JImsFactoryFactory object. To create a JmsFactoryFactory object, the application calls
the getInstance() method of the JImsFactoryFactory class, as shown in the following example:

JmsFactoryFactory ff = ImsFactoryFactory.getInstance(JImsConstants.WMQ_PROVIDER);

The parameter on the getInstance() call is a constant that identifies the IBM MQ messaging provider
as the chosen messaging provider. The application can then use the JmsFactoryFactory object to create
connection factories and destinations.

To create a connection factory, the application calls the createConnectionFactory() method of the
JmsFactoryFactory object, as shown in the following example:

JmsConnectionFactory factory = ff.createConnectionFactory();

This statement creates a ImsConnectionFactory object with the default values for all its properties, which
means that the application connects to the default queue manager in bindings mode. If you want an
application to connect in client mode, or connect to a queue manager other than the default queue
manager, the application must set the appropriate properties of the JImsConnectionFactory object before
creating the connection. For information about how to do this, see “Setting the properties of IBM MQ
classes for JMS objects” on page 179.

The JmsFactoryFactory class also contains methods to create connection factories of the following types:

« JmsQueueConnectionFactory

JmsTopicConnectionFactory

« JmsXAConnectionFactory

« JmsXAQueueConnectionFactory
« JmsXATopicConnectionFactory

To create a Queue object, the application calls the createQueue() method of the ImsFactoryFactory
object, as shown in the following example:

JmsQueue ql = ff.createQueue("Q1");

This statement creates an ImsQueue object with the default values for all its properties. The object
represents an IBM MQ queue called Q1 that belongs to the local queue manager. This queue can be a
local queue, an alias queue, or a remote queue definition.

The createQueue() method can also accept a queue uniform resource identifier (URI) as a parameter.

A queue URI is a string that specifies the name of an IBM MQ queue and, optionally, the name of the
gueue manager that owns the queue, and one or more properties of the JmsQueue object. The following
statement contains an example of a queue URI:

JmsQueue q2 = ff.createQueue("queue://QM2/Q2?persistence=2&priority=5");

The JmsQueue object created by this statement represents an IBM MQ queue called Q2 that is owned
by queue manager QM2, and all messages sent to this destination are persistent and have a priority of

5. For more information about queue URIs, see “Uniform resource identifiers (URIs)” on page 190. For
an alternative way of setting the properties of a JImsQueue object, see “Setting the properties of IBM MQ
classes for JMS objects” on page 179.

To create a Topic object, an application can use the createTopic() method of the JmsFactoryFactory
object, as shown in the following example:

178 Developing Applications for IBM MQ



JImsTopic t1 = ff.createTopic("Sport/Football/Results");

This statement creates a ImsTopic object with the default values for all its properties. The object
represents a topic called Sport/Football/Results.

The createTopic() method can also accept a topic URI as a parameter. A topic URI is a string that
specifies the name of a topic and, optionally, one or more properties of the JImsTopic object. The following
statements contain an example of a topic URI:

String sl = "topic://Sport/Tennis/Results?persistence=1&priority=0";
JImsTopic t2 = ff.createTopic(sl);

The IJmsTopic object created by these statements represents a topic called Sport/Tennis/Results, and all
messages sent to this destination are nonpersistent and have a priority of 0. For more information about
topic URIs, see “Uniform resource identifiers (URIs)” on page 190. For an alternative way of setting the
properties of a JImsTopic object, see “Setting the properties of IBM MQ classes for JMS objects” on page
179.

After an application has created a connection factory or destination, that object can be used only with the
selected messaging provider.

Setting the properties of IBM MQ classes for JMS objects

To set the properties of IBM MQ classes for JMS objects using the IBM JMS extensions, an application
uses the methods of the com.ibm.msg.client.JmsPropertyContext interface.

For each Java data type, the JImsPropertyContext interface contains a method to set the value of a
property with that data type, and a method to get the value of a property with that data type. For example,
an application calls the setIntProperty() method to set a property with an integer value, and calls the
getIntProperty() method to get a property with an integer value.

Instances of classes in the com.ibm.mq.jms package also inherit the methods of the JImsPropertyContext
interface. An application can therefore use these methods to set the properties of MQConnectionFactory,
MQQueue, and MQTopic objects.

When an application creates an IBM MQ classes for JMS object, any properties with default values are
set automatically. When an application sets a property, the new value replaces any previous value the
property had. After a property has been set, it cannot be deleted, but its value can be changed.

If an application attempts to set a property to a value that is not valid value for the property, IBM MQ
classes for JMS throws a JMSException exception. If an application attempts to get a property that has
not been set, the behavior is as described in the JMS specification. IBM MQ classes for JIMS throws a
NumberFormatException exception for primitive data types and returns null for referenced data types.

In addition to the predefined properties of an IBM MQ classes for JMS object, an application can set its
own properties. These application defined properties are ignored by IBM MQ classes for JMS.

For more information about the properties of IBM MQ classes for JMS objects, see Properties of IBM MQ
classes for JMS objects.

The following code is an example of how to set properties using the IBM JMS extensions. The code sets
five properties of a connection factory.

factory.setIntProperty (WMQConstants.WMQ_CONNECTION_MODE,
WMQConstants.WMQ_CM_CLIENT);

factory.setStringProperty (WMQConstants.WMQ_QUEUE_MANAGER, "QM1");
factory.setStringProperty (WMQConstants.WMQ_HOST_NAME, "HOST1");
factory.setIntProperty (WMQConstants.WMQ_PORT, 1415);

factory.setStringProperty (WMQConstants.WMQ_CHANNEL, "QM1.SVR");
factory.setStringProperty (WMQConstants.WMQ_APPLICATIONNAME, "My Application");

The effect of setting these properties is that the application connects to queue manager QM1 in client
mode, using an MQI channel called QM1.SVR. The queue manager is running on a system with host
name HOST1, and the listener for the queue manager is listening in port number 1415. This connection

Developing applications for IBM MQ 179



and other queue manager connections associated with sessions under it, have the application name "My
Application" associated with them.

Note: Queue managers running on z/0S platforms do not support setting application names, and this
setting is therefore ignored.

The IJmsPropertyContext interface also contains the setObjectProperty() method, which an application
can use to set properties. The second parameter of the method is an object that encapsulates the value
of the property. For example, the following code creates an Integer object that encapsulates the integer
1415, and then calls setObjectProperty() to set the PORT property of a connection factory to the value
1415:

Integer port = new Integer(1415);
factory.setObjectProperty (WMQConstants.WMQ_PORT, port);

This code is therefore equivalent to the following statement:

factory.setIntProperty (WMQConstants.WMQ_PORT, 1415);

Conversely, the getObjectProperty() method returns an object that encapsulates the value of a property.

Implicit conversion of a property value from one data type to another

When an application uses a method of the JmsPropertyContext interface to set or get the property of an
IBM MQ classes for JMS object, the value of the property can be implicitly converted from one data type
to another.

For example, the following statement sets the PRIORITY property of the JImsQueue object q1:
ql.setStringProperty (WMQConstants.WMQ_PRIORITY, "5");

The PRIORITY property has an integer value, and so the setStringProperty() call implicitly converts the
string "5" (the source value) to the integer 5 (the target value), which then becomes the value of the
PRIORITY property.

Conversely, the following statement gets the PRIORITY property of the JImsQueue object ql:
String sl = gl.getStringProperty(WMQConstants.WMQ_PRIORITY);

The integer 5 (the source value), which is the value of the PRIORITY property, is implicitly converted to
the string "5" (the target value) by the getStringProperty() call.

The conversions supported by IBM MQ classes for JMS are shown in Table 33 on page 180.

Table 33. Supported conversions from one data type to another
Source data type Supported target data types
boolean String

byte int, long, short, String

char String

double String

float double, String

int long, String

long String

short int, long, String

String boolean, byte, double, float, int, long, short

180 Developing Applications for IBM MQ



The general rules governing the supported conversions are as follows:

Numeric values can be converted from one data type to another provided no data is lost during the
conversion. For example, a value with data type int can be converted into a value with data type long,
but cannot be converted into a value with data type short.

A value of any data type can be converted into a string.

A string can be converted to a value of any other data type (except char ) provided the string is in the
correct format for the conversion. If an application attempts to convert a string that is not in the correct
format, IBM MQ classes for JIMS throws a NumberFormatException exception.

If an application attempts a conversion that is not supported, IBM MQ classes for JMS throws a
MessageFormatException exception.

The specific rules for converting a value from one data type to another are as follows:

When converting a boolean value to a string, the value true is converted to the string "true", and the
value false is converted to the string "false".

When converting a string to a boolean value, the string "true" (not case-sensitive) is converted to true,
and the string "false" (not case-sensitive) is converted to false. Any other string is converted to false.

When converting a string to a value with data type byte, int, long, or short, the string must have the
following format:

[ blanks ][ sign ] digits
The meanings of the components of the string are as follows:

blanks
Optional leading blank characters.
sign
An optional plus sign (+) or minus sign (-).
digits
A contiguous sequence of digits (0-9). At least one digit must be present.
After the sequence of digits, the string can contain other characters that are not digits, but the

conversion stops as soon as the first of these characters is reached. The string is assumed to represent
a decimal integer.

If the string is not in the correct format, IBM MQ classes for JIMS throws a NumberFormatException
exception.
When converting a string to a value with data type double or float, the string must have the following
format:

[ blanks ][ sign ] digits [ e_char [ e_sign ] e_digits ]
The meanings of the components of the string are as follows:

blanks
Optional leading blank characters.
sign
An optional plus sign (+) or minus sign (-).
digits
A contiguous sequence of digits (0-9). At least one digit must be present.
e_char
An exponent character, which is either E or e.
e_sign
An optional plus sign (+) or minus sign (-) for the exponent.
e_digits
A contiguous sequence of digits (0-9) for the exponent. At least one digit must be present if the
string contains an exponent character.

Developing applications for IBM MQ 181



After the sequence of digits, or the optional characters representing an exponent, the string can contain
other characters that are not digits, but the conversion stops as soon as the first of these characters is
reached. The string is assumed to represent a decimal floating point number with an exponent that is a
power of 10.

If the string is not in the correct format, IBM MQ classes for JMS throws a NumberFormatException
exception.

« When converting a numeric value (including a value with data type byte ) to a string, the value is
converted to the string representation of the value as a decimal number, not the string containing the
ASCII character for that value. For example, the integer 65 is converted to the string 65", not the string
IIAII.

Setting more than one property in a single call

The IJmsPropertyContext interface also contains the setBatchProperties() method, which an application
can use to set more than one property in a single call. The parameter of the method is a Map object that
encapsulates a set of property name-value pairs.

For example, the following code uses the setBatchProperties() method to set the same five properties of a
connection factory as shown in “Setting the properties of IBM MQ classes for JMS objects” on page 179.
The code creates an instance of the HashMap class, which implements the Map interface.

HashMap batchProperties = new HashMap();
batchProperties.put(WMQConstants.WMQ_CONNECTION_MODE,

new Integer(WMQConstants.WMQ_CM_CLIENT));
batchProperties.put(WMQConstants.WMQ_QUEUE_MANAGER, "QM1");
batchProperties.put(WMQConstants.WMQ_WMQ_HOST_NAME, "HOST1");
batchProperties.put(WMQConstants.WMQ_PORT, "1414");
batchProperties.put(WMQConstants.WMQ_CHANNEL, "QM1.SVR");
factory.setBatchProperties(batchProperties);

Note that the second parameter of the Map.put() method must be an object. Therefore a property value
with a primitive data type must be encapsulated within an object or represented by a string, as shown in
the example.

The setBatchProperties() method validates each property. If the setBatchProperties() method cannot set
a property because, for example, its value is not valid, none of the specified properties are set.

Property names and values

If an application uses the methods of the JImsPropertyContext interface to set and get the properties of
IBM MQ classes for JMS objects, the application can specify the names and values of properties in any of
the following ways. Each of the accompanying examples shows how to set the PRIORITY property of the
JImsQueue object g1 so that a message sent to the queue has the priority specified on the send() call.

Using the property names and values that are defined as constants in the
com.ibm.msg.client.wmq.WMQConstants interface
The following statement is an example of how to specify the names and values of properties in this
way:

gl.setIntProperty (WMQConstants.WMQ_PRIORITY, WMQConstants.WMQ_PRI_APP);

Using the property names and values that can be used in queue and topic uniform resource
identifiers (URIs)
The following statement is an example of how to specify the names and values of properties in this
way:

gl.setIntProperty("priority", -2);

Only the names and values of properties of destinations can be specified in this way.

182 Developing Applications for IBM MQ



Using the property names and values that are recognized by the IBM MQ JMS administration tool
The following statement is an example of how to specify the names and values of properties in this
way:

gql.setStringProperty ("PRIORITY", "APP");

The short form of the property name is also acceptable, as shown in the following statement:

gql.setStringProperty ("PRI", "APP");

When an application gets a property, the value returned depends on the way in which the
application specifies the name of the property. For example, if an application specifies the constant
WMQConstants.WMQ_PRIORITY as the property name, the value returned is the integer -2:

int nl1 = getIntProperty(WMQConstants.WMQ_PRIORITY);

The same value is returned if the application specifies the string "priority" as the property name:
int n2 = getIntProperty("priority");

However, if the application specifies the string "PRIORITY" or "PRI" as the property name, the value
returned is the string "APP":

String sl = getStringProperty("PRI");

Internally, IBM MQ classes for JMS stores property names and values as the literal values defined in

the com.ibm.msg.client.wmg.WMQConstants interface. This is the defined canonical format for property
names and values. As a general rule, if an application sets properties using one of the other two ways

of specifying property names and values, IBM MQ classes for JMS has to convert the names and values
from the specified input format into the canonical format. Similarly, if an application gets properties
using one of the other two ways of specifying property names and values, IBM MQ classes for IMS must
convert the names from the specified input format into the canonical format, and convert the values from
the canonical format into the required output format. Having to perform these conversions might have
implications for performance.

Property names and values returned by exceptions, in trace files, or in the IBM MQ classes for JMS log are
always in the canonical format.

Using the Map interface

The JmsPropertyContext interface extends the java.util.Map interface. An application can therefore use
the methods of the Map interface to access the properties of an IBM MQ classes for JMS object.

For example, the following code prints out the names and values of all the properties of a connection
factory. The code uses only the methods of the Map interface to get the names and values of the
properties.

// Get the names of all the properties
Set propNames = factory.keySet();

// Loop round all the property names and get the property values
Iterator iterator = propNames.iterator();
while (iterator.hasNext()){

String pName = (String)iterator.next();

System.out.println(pName+"="+factory.get(pName));

Using the methods of the Map interface does not bypass any property validations or conversions.

Developing applications for IBM MQ 183



Using the IBM MQ JMS extensions

IBM MQ classes for JMS contains a set of extensions to the JMS API called the IBM MQ JMS extensions.
An application can use these extensions to create connection factories and destinations dynamically at
run time, and to set the properties of connection factories and destinations.

IBM MQ classes for JMS contains a set of classes in the packages com.ibm.jms and com.ibm.mgq.jms.
These classes implement the JMS interfaces and contain the IBM MQ JMS extensions. The examples of
code that follow assume that these packages have been imported by the following statements:

import com.ibm.jms.x*;
import com.ibm.mq.jms.x%;
import com.ibm.msg.client.wmqg.WMQConstants;

An application can use the IBM MQ JMS extensions to perform the following functions:

- Create connection factories and destinations dynamically at run time, instead of retrieving them as
administered objects from a Java Naming and Directory Interface (JNDI) nhamespace

« Set the properties of connection factories and destinations

Creating connection factories

To create a connection factory, an application can use the MQConnectionFactory constructor, as shown in
the following example:

MQConnectionFactory factory = new MQConnectionFactory();

This statement creates an MQConnectionFactory object with the default values for all its properties,
which means that the application connects to the default queue manager in bindings mode. If you want
an application to connect in client mode, or connect to a queue manager other than the default queue
manager, the application must set the appropriate properties of the MQConnectionFactory object before
creating the connection. For information about how to do this, see “Setting the properties of connection
factories” on page 184.

An application can create connection factories of the following types in a similar way:

« MQQueueConnectionFactory

« MQTopicConnectionFactory

« MQXAConnectionFactory

« MQXAQueueConnectionFactory
« MQXATopicConnectionFactory

Setting the properties of connection factories

An application can set the properties of a connection factory by calling the appropriate methods of the
connection factory. The connection factory can either be an administered object or an object created
dynamically at run time.

Consider the following code, for example:

MQConnectionFactory factory = new MQConnectionFactory();

factory.setTransportType (WMQConstants.WMQ_CM_CLIENT);
factory.setQueueManager ("QM1");

factory.setHostName ("HOST1") ;

factory.setPort(1415);

factory.setChannel ("QM1.SVR");

This code creates an MQConnectionFactory object and then sets five properties of the object. The effect
of setting these properties is that the application connects to queue manager QM1 in client mode using an
MQI channel called QM1.SVR. The queue manager is running on a system with host name HOST1, and the
listener for the queue manager is listening in port number 1415.

For a real-time connection to a broker, an application can use the following code:

184 Developing Applications for IBM MQ



MQConnectionFactory factory = new MQConnectionFactory();

factory.setTransportType(WMQConstants.WMQ_CM_DIRECT);
factory.setHostName ("HOST2");
factory.setPort(1507);

This code assumes that the broker is running on a system with host name HOST2 and listening on port
number 1507.

An application that uses a real-time connection to a broker can use only the publish/subscribe style of
messaging. It cannot use the point-to-point style of messaging.

Only certain combinations of properties of a connection factory are valid. For information about which
combinations are valid, see Dependencies between properties of IBM MQ classes for JMS objects.

For more information about the properties of a connection factory, and the methods used to set its
properties, see Properties of IBM MQ classes for JMS objects.

Creating destinations

To create a Queue object, an application can use the MQQueue constructor, as shown in the following
example:

MQQueue g1 = new MQQueue("Q1");

This statement creates an MQQueue object with the default values for all its properties. The object
represents an IBM MQ queue called Q1 that belongs to the local queue manager. This queue can be a
local queue, an alias queue, or a remote queue definition.

An alternative form of the MQQueue constructor has two parameters, as shown in the following example:
MQQueue g2 = new MQQueue("QM2", "Q2");

The MQQueue object created by this statement represents an IBM MQ queue called Q2 that is owned
by queue manager QM2. The queue manager identified in this way can be the local queue manager or a
remote queue manager. If it is a remote queue manager, IBM MQ must be configured so that, when the
application sends a message to this destination, WebSphere MQ can route the message from the local
queue manager to the remote queue manager.

The MQQueue constructor can also accept a queue uniform resource identifier (URI) as a single
parameter. A queue URI is a string that specifies the name of an IBM MQ queue and, optionally, the
name of the queue manager that owns the queue, and one or more properties of the MQQueue object.
The following statement contains an example of a queue URI:

MQQueue g3 = new MQQueue("queue://QM3/Q3?persistence=2&priority=5");

The MQQueue object created by this statement represents an IBM MQ queue called Q3 that is owned
by queue manager QM3, and all messages sent to this destination are persistent and have a priority
of 5. For more information about queue URIs, see “Uniform resource identifiers (URIs)” on page 190.
For an alternative way of setting the properties of an MQQueue object, see “Setting the properties of
destinations” on page 186.

To create a Topic object, an application can use the MQTopic constructor, as shown in the following
example:

MQTopic t1 = new MQTopic("Sport/Football/Results");

This statement creates an MQTopic object with the default values for all its properties. The object
represents a topic called Sport/Football/Results.

The MQTopic constructor can also accept a topic URI as a parameter. A topic URI is a string that
specifies the name of a topic and, optionally, one or more properties of the MQTopic object. The following
statement contains an example of a topic URI:

Developing applications for IBM MQ 185



MQTopic t2 = new MQTopic("topic://Sport/Tennis/Results?persistence=1&priority=0");

The MQTopic object created by this statement represents a topic called Sport/Tennis/Results, and all
messages sent to this destination are nonpersistent and have a priority of 0. For more information about
topic URIs, see “Uniform resource identifiers (URIs)” on page 190. For an alternative way of setting the
properties of an MQTopic object, see “Setting the properties of destinations” on page 186.

Setting the properties of destinations

An application can set the properties of a destination by calling the appropriate methods of the
destination. The destination can either be an administered object or an object created dynamically at
run time.

Consider the following code, for example:

MQQueue gl = new MQQueue("Q1");

dl.setPersistence(WMQConstants.WMQ_PER_PER);
ql.setPriority(5);

This code creates an MQQueue object and then sets two properties of the object. The effect of setting
these properties is that all messages sent to the destination are persistent and have a priority of 5.

An application can set the properties of MQTopic object in a similar way, as shown in the following
example:

MQTopic t1 = new MQTopic("Sport/Football/Results");

fl.setPersistence(WMQConstants.WMQ_PER_NON);
t1.setPriority(0);

This code creates an MQTopic object and then sets two properties of the object. The effect of setting
these properties is that all messages sent to the destination are nonpersistent and have a priority of 0.

For more information about the properties of a destination, and the methods used to set its properties,
see Properties of IBM MQ classes for JMS objects.

Building a connection in a JMS application
To build a connection, a IMS application uses a ConnectionFactory object to create a Connection object
and then starts the connection.

To create a Connection object, an application uses the createConnection() method of a ConnectionFactory
object, as shown in the following example:

ConnectionFactory factory;

Connection connection;

connection = factory.createConnection();

When a IMS connection is created, the IBM MQ classes for JIMS creates a connection handle (Hconn) and
starts a conversation with the queue manager.

The QueueConnectionFactory interface and the TopicConnectionFactory interface each inherits
the createConnection() method from the ConnectionFactory interface. You can therefore use the
createConnection() method to create a domain specific object, as shown in the following example:

QueueConnectionFactory qcf;
Connection connection;

connection = qcf.createConnection();

186 Developing Applications for IBM MQ



This fragment of code creates a QueueConnection object. An application can now perform a domain
independent operation on this object, or an operation that is applicable only to the point-to-point domain.
However, if the application attempts to perform an operation that is applicable only to the publish/
subscribe domain, an IllegalStateException exception is thrown with the following message:

JMSMQ1112: Operation for a domain specific object was not valid.
Operation createProducer() is not valid for type com.ibm.mq.jms.MQTopic

This is because the connection was created from a domain specific connection factory.

Note: Note that the application process ID is used as the default user identity to be passed to the
gueue manager. If the application is running in client transport mode then this process ID must exist,
with the relevant authorizations, on the server. If you want a different identity to be used, then use the
createConnection(username, password) method.

The JMS specification states that a connection is created in the stopped state. Until a connection starts,
a message consumer that is associated with the connection cannot receive any messages. To start a
connection, an application uses the start() method of a Connection object, as shown in the following
example:

connection.start();

Creating a session in a JMS application
To create a session, a JIMS application uses the createSession() method of a Connection object.

The createSession() method has two parameters:

1. A parameter that specifies whether the session is transacted or not transacted
2. A parameter that specifies the acknowledgment mode for the session

For example, the following code creates a session that is not transacted and has an acknowledgment
mode of AUTO_ACKNOWLEDGE:

Session session;

Boolean transacted = false;
session = connection.createSession(transacted, Session.AUTO_ACKNOWLEDGE) ;

When a JMS session is created, the IBM MQ classes for JIMS creates a connection handle (Hconn) and
starts a conversation with the queue manager.

A Session object, and any MessageProducer or MessageConsumer object created from it, cannot be used
concurrently by different threads of a multithreaded application. The simplest way of ensuring that these
objects are not used concurrently is to create a separate Session object for each thread.

Transacted sessions in JMS applications
JMS applications can run local transactions by first creating a transacted session. An application can
commit or roll back a transaction.

JMS applications can run local transactions. A local transaction is a transaction that involves changes only
to the resources of the queue manager to which the application is connected. To run local transactions, an
application must first create a transacted session by calling the createSession() method of a Connection
object, specifying as a parameter that the session is transacted. Subsequently, all messages sent and
received within the session are grouped into a sequence of transactions. A transaction ends when the
application commits or rolls back the messages it has sent and received since the transaction began.

To commit a transaction, an application calls the commit() method of the Session object. When a
transaction is committed, all messages sent within the transaction become available for delivery to other
applications, and all messages received within the transaction are acknowledged so that the messaging
server does not attempt to deliver them to the application again. In the point-to-point domain, the
messaging server also removes the received messages from their queues.

To roll back a transaction, an application calls the rollback() method of the Session object. When a
transaction is rolled back, all messages sent within the transaction are discarded by the messaging

Developing applications for IBM MQ 187



server, and all messages received within the transaction become available for delivery again. In the
point-to-point domain, the messages that were received are put back on their queues and become visible
to other applications again.

A new transaction starts automatically when an application creates a transacted session or calls the
commit() or rollback() method. Therefore, a transacted session always has an active transaction.

When an application closes a transacted session, an implicit rollback occurs. When an application closes a
connection, an implicit rollback occurs for all the connection's transacted sessions.

If an application ends without closing a connection, an implicit rollback also occurs for all the
connection's transacted sessions.

A transaction is wholly contained within a transacted session. A transaction cannot span sessions. This
means that it is not possible for an application to send and receive messages in two or more transacted
sessions and then commit or roll back all these actions as a single transaction.

Acknowledgment modes of IMS sessions

Every session that is not transacted has an acknowledgment mode that determines how messages
received by the application are acknowledged. Three acknowledgment modes are available, and the
choice of acknowledgment mode affects the design of the application.

If a session is not transacted, the way that messages received by the application are acknowledged
is determined by the acknowledgment mode of the session. The three acknowledgment modes are
described in the following paragraphs:

AUTO_ACKNOWLEDGE
The session automatically acknowledges each message received by the application.

If messages are delivered synchronously to the application, the session acknowledges receipt of a
message every time a Receive call completes successfully. If messages are delivered asynchronously,
the session acknowledges receipt of a message every time a call to the onMessage() method of a
message listener completes successfully.

If the application receives a message successfully, but a failure prevents acknowledgment from
occurring, the message becomes available for delivery again. The application must therefore be able
to handle a message that is re-delivered.

DUPS_OK_ACKNOWLEDGE
The session acknowledges the messages received by the application at times it selects.

Using this acknowledgment mode reduces the amount of work the session must do, but a failure that
prevents message acknowledgment might result in more than one message becoming available for
delivery again. The application must therefore be able to handle messages that are re-delivered.

Restriction: In AUTO_ACKNOWLEDGE and DUPS_OK_ACKNOWLEDGE modes, JMS does not support
an application throwing an unhandled exception in a message listener. This means that messages
are always acknowledged when the message listener returns, regardless of whether it was processed
successfully (provided any failures are non-fatal and do not prevent the application from continuing).
If you require finer control of message acknowledgment, use the CLIENT_ACKNOWLEDGE or
transacted modes, which give the application full control of the acknowledgment functions.

CLIENT_ACKNOWLEDGE

The application acknowledges the messages it receives by calling the Acknowledge method of the
Message class.

The application can acknowledge the receipt of each message individually, or it can receive a batch
of messages and call the Acknowledge method only for the last message it receives. When the
Acknowledge method is called all messages received since the last time the method was called are
acknowledged.

In conjunction with any of these acknowledgment modes, an application can stop and restart the delivery
of messages in a session by calling the Recover method of the Session class. Messages received but

188 Developing Applications for IBM MQ



previously unacknowledged are re-delivered. However, they might not be delivered in the same sequence
in which they were previously delivered. In the meantime, higher priority messages might have arrived,
and some of the original messages might have expired. In the point-to-point domain, some of the original
messages might have been consumed by another application.

An application can determine whether a message is being re-delivered by examining the contents of the
JMSRedelivered header field of the message. The application does this by calling the getJMSRedelivered()
method of the Message class.

Creating destinations in a JIMS application

Instead of retrieving destinations as administered objects from a Java Naming and Directory Interface
(INDI) namespace, a JMS application can use a session to create destinations dynamically at run time.
An application can use a uniform resource identifier (URI) to identify an IBM MQ queue or a topic and,
optionally, to specify one or more properties of a Queue or Topic object.

Using a session to create Queue objects

To create a Queue object, an application can use the createQueue() method of a Session object, as shown
in the following example:

Session session;

éueue ql = session.createQueue("Q1");

This code creates a Queue object with the default values for all its properties. The object represents an
IBM MQ queue called Q1 that belongs to the local queue manager. This queue can be a local queue, an
alias queue, or a remote queue definition.

The createQueue() method also accepts a queue URI as a parameter. A queue URI is a string that
specifies the name of an IBM MQ queue and, optionally, the name of the queue manager that owns the
gueue and one or more properties of the Queue object. The following statement contains an example of a
queue URI:

Queue g2 = session.createQueue('"queue://QM2/Q2?persistence=2&priority=5");

The Queue object created by this statement represents an IBM MQ queue called Q2 that is owned by a
queue manager called QM2, and all messages sent to this destination are persistent and have a priority of
5. The queue manager identified in this way can be the local queue manager or a remote queue manager.
If it is a remote queue manager, IBM MQ must be configured so that, when the application sends a
message to this destination, WebSphere MQ can route the message from the local queue manager to
gueue manager QM2. For more information about URIs, see “Uniform resource identifiers (URIs)” on page
190.

Note that the parameter on the createQueue() method contains provider specific information. Therefore,
using the createQueue() method to create a Queue object, instead of retrieving a Queue object as an
administered object from a INDI namespace, might make your application less portable.

An application can create a TemporaryQueue object by using the createTemporaryQueue() method of a
Session object, as shown in the following example:

TemporaryQueue g3 = session.createTemporaryQueue();

Although a session is used to create a temporary queue, the scope of a temporary queue is the connection
that was used to create the session. Any of the connection's sessions can create message producers and
message consumers for the temporary queue. The temporary queue remains until the connection ends

or the application explicitly deletes the temporary queue by using the TemporaryQueue.delete() method,
whichever is the sooner.

When an application creates a temporary queue, IBM MQ classes for JMS creates a dynamic queue in
the queue manager to which the application is connected. The TEMPMODEL property of the connection
factory specifies the name of the model queue that is used to create the dynamic queue, and the

Developing applications for IBM MQ 189



TEMPQPREFIX property of the connection factory specifies the prefix that is used to form the name of the
dynamic queue.

Using a session to create Topic objects

To create a Topic object, an application can use the createTopic() method of a Session object, as shown in
the following example:

Session session;

%opic t1 = session.createTopic("Sport/Football/Results");

This code creates an Topic object with the default values for all its properties. The object represents a
topic called Sport/Football/Results.

The createTopic() method also accepts a topic URI as a parameter. A topic URI is a string that specifies
the name of a topic and, optionally, one or more properties of the Topic object. The following code
contains an example of a topic URI:

String uri = "topic://Sport/Tennis/Results?persistence=1&priority=0";
Topic t2 = session.createTopic(uri);

The Topic object created by this code represents a topic called Sport/Tennis/Results, and all messages
sent to this destination are nonpersistent and have a priority of 0. For more information about topic URIs,
see “Uniform resource identifiers (URIs)” on page 190.

Note that the parameter on the createTopic() method contains provider specific information. Therefore,
using the createTopic() method to create a Topic object, instead of retrieving a Topic object as an
administered object from a INDI namespace, might make your application less portable.

An application can create a TemporaryTopic object by using the createTemporaryTopic() method of a
Session object, as shown in the following example:

TemporaryTopic t3 = session.createTemporaryTopic();

Although a session is used to create a temporary topic, the scope of a temporary topic is the connection
that was used to create the session. Any of the connection's sessions can create message producers

and message consumers for the temporary topic. The temporary topic remains until the connection ends
or the application explicitly deletes the temporary topic by using the TemporaryTopic.delete() method,
whichever is the sooner.

When an application creates a temporary topic, IBM MQ classes for JMS creates a topic with a name
that commences with the characters TEMP/tempTopicPrefix, where tempTopicPrefix is the value of the
TEMPTOPICPREFIX property of the connection factory.

Uniform resource identifiers (URIs)

A queue URI is a string that specifies the name of an IBM MQ queue and, optionally, the name of
the queue manager that owns the queue and one or more properties of the Queue object created by
the application. A topic URL is a string that specifies the name of a topic and, optionally, one or more
properties of the Topic object created by the application.

A queue URI has the following format:
queue://[ gMgrName ]/gName [? propertyNamel = propertyValuel
& propertyName2 = propertyValue2
&...]
A topic URI has the following format:
topic://topicName [? propertyNamel = propertyValuel
& propertyName2 = propertyValue2
&...]

The variables in these formats have the following meanings:

190 Developing Applications for IBM MQ



qMgrName

The name of the queue manager that owns the queue identified by the URI.

The queue manager can the local queue manager or a remote queue manager. If it is a remote queue
manager, IBM MQ must be configured so that, when an application sends a message to the queue,
WebSphere MQ can route the message from the local queue manager to the remote queue manager.

If no name is specified, the local queue manager is assumed.

qgName

The name of the IBM MQ queue.

The queue can be a local queue, an alias queue, or a remote queue definition.

For the rules for creating queue names, see Rules for naming IBM MQ objects.

topicName

The name of the topic.

For the rules for creating topic names, see Rules for naming IBM MQ objects. Avoid the use of the
wildcard characters +, #, *, and ? in topic names. Topic hames containing these characters can cause
unexpected results when you subscribe to them. See Using topic strings.

propertyNamel, propertyName2, ...
The names of the properties of the Queue or Topic object created by the application. Table 34 on page

191 lists the valid property names that can be used in a URL.

If no properties are specified, the Queue or Topic object has the default values for all its properties.

propertyValuel, propertyValue2, ...
The values of the properties of the Queue or Topic object created by the application. Table 34 on page

191 lists the valid property values that can be used in a URL.

Brackets ([]) denotes an optional component, and the ellipsis (...) means that the list of property name-
value pairs, if present, can contain one or more name-value pairs.

Table 34 on page 191 lists the valid property names and valid values that can be used in queue and topic

URIs. Although the IBM MQ JMS administration tool uses symbolic constants for the values of properties,
URIs cannot contain symbolic constants.

Table 34. Property names and valid values for use in queue and topic URIs

Property name

Description

Valid values

CCSID

How the character data in the body of a
message is represented when IBM MQ
classes for JMS forwards the message to
the destination

» Any coded character set identifier
supported by IBM MQ.

encoding How the numeric data in the body of a - Any valid value for the Encoding field
message is represented when IBM MQ in an IBM MO message descriptor.
classes for JMS forwards the message to
the destination

expiry The time to live for messages senttothe |. o - As specified on the send() call

destination

or, if not specified on the send() call,
the default time to live of the message
producer.

« 0 - A message sent to the destination
never expires.

« A positive integer specifying the time
to live in milliseconds.

Developing applications for IBM MQ 191



Table 34. Property names and valid values for use in queue and topic URIs (continued)

Property name

Description

Valid values

multicast

The multicast setting for a topic when
using a real-time connection to a broker

The following list contains the valid
values. Associated with each value is the
corresponding value of the MULTICAST
property as used in the IBM MQ JMS
administration tool. For a description

of the MULTICAST property and its

valid values, see Properties of IBM MQ
classes for JMS objects.

» -1-ASCF

» 0 - DISABLED
« 3-NOTR

» 5-RELIABLE
» 7 - ENABLED

persistence

The persistence of messages sent to the
destination

» -2 - As specified on the send() call
or, if not specified on the send() call,
the default persistence of the message
producer.

« -1 - As specified by the DefPersistence
attribute of the IBM MQ queue or
topic.

» 1 - Nonpersistent.
» 2 - Persistent.

« 3 - Equivalent to the value HIGH for
the PERSISTENCE property as used in
the IBM MQ JMS administration tool.
For an explanation of this value, see
“JMS persistent messages” on page
215.

priority

The priority of messages sent to the
destination

« -2 - As specified on the send() call
or, if not specified on the send() call,
the default priority of the message
producer.

» -1 - As specified by the DefPriority
attribute of the IBM MQ queue or
topic.

« Aninteger in the range 0-9 specifying
the priority of messages sent to the
destination.

targetClient

Whether messages sent to the
destination contain an MQRFH2 header

« 0 - Messages contain an MQRFH2
header.

- 1 - Messages do not contain an
MQRFH2 header.

192 Developing Applications for IBM MQ




For example, the following URI identifies an IBM MQ queue called Q1 that is owned by the local queue
manager. A Queue object created using this URI has the default values for all its properties.

queue:///0Q1

The following URI identifies an IBM MQ queue called Q2 that is owned by a queue manager called QM2.
All messages sent to this destination have a priority of 6. The remaining properties of the Queue object
created using this URI have their default values.

queue://QM2/Q2?priority=6

The following URI identifies a topic called Sport/Athletics/Results. All messages sent to this destination
are nonpersistent and have a priority of 0. The remaining properties of the Topic object created using this
URI have their default values.

topic://Sport/Athletics/Results?persistence=1&priority=0

Sending messages in a JIMS application

Before a JMS application can send messages to a destination, it must first create a MessageProducer
object for the destination. To send a message to the destination, the application creates a Message object
and then calls the send() method of the MessageProducer object.

An application uses a MessageProducer object to send messages. An application normally creates a
MessageProducer object for a specific destination, which can be a queue or a topic, so that all messages
sent using the message producer are sent to the same destination. Therefore, before an application can
create a MessageProducer object, it must first create a Queue or Topic object. For information about how
to create a Queue or Topic object, see the following topics:

« “Using JNDI to retrieve administered objects in a JMS application” on page 176

- “Using the IBM JMS extensions” on page 177

« “Using the IBM MQ JMS extensions” on page 184

 “Creating destinations in a JMS application” on page 189

To create a MessageProducer object, an application uses the createProducer() method of a Session
object, as shown in the following example:

MessageProducer producer = session.createProducer(destination);

The parameter destination is a Queue or Topic object that the application has created previously.

Before an application can send a message, it must create a Message object. The body of a message
contains the application data, and JMS defines five types of message body:

« Bytes
« Map

« Object
« Stream
« Text

Each type of message body has its own JMS interface, which is a sub-interface of the Message interface,
and a method in the Session interface for creating a message with that type of body. For example, the
interface for a text message is called TextMessage, and an application uses the createTextMessage()
method of a Session object to create a text message, as shown in the following statement:

TextMessage outMessage = session.createTextMessage(outString);

For more information about messages and message bodies, see “JMS messages” on page 120.

To send a message, an application uses the send() method of a MessageProducer object, as shown in the
following example:

Developing applications for IBM MQ 193



producer.send(outMessage) ;

An application can use the send() method to send messages in either messaging domain. The nature of
the destination determines which messaging domain is used. However, TopicPublisher, the sub-interface
of MessageProducer that is specific to the publish/subscribe domain, also has a publish() method, which
can be used instead of the send() method. The two methods are functionally the same.

An application can create a MessageProducer object with no specified destination. In this case, the
application must specify the destination when calling the send() method.

If an application sends a message within a transaction, the message is not delivered to its destination
until the transaction is committed. This means that an application cannot send a message and receive a
reply to the message within the same transaction.

A destination can be configured so that when an application sends messages to it, IBM MQ classes for
JMS forwards the message and returns control back to the application without determining whether the
gueue manager has received the message safely. This is sometimes referred to as asynchronous put. For
more information, see “Putting messages asynchronously in IBM MQ classes for JIMS” on page 261.

Receiving messages in a JMS application

An application uses a message consumer to receive messages. A durable topic subscriber is a message
consumer that receives all messages sent to a destination, including those sent while the consumer is
inactive. An application can select which messages it wants to receive by using a message selector, and
can receive messages asynchronously by using a message listener.

An application uses a MessageConsumer object to receive messages. An application creates a
MessageConsumer object for a specific destination, which can be a queue or a topic, so that all messages
received using the message consumer are received from the same destination. Therefore, before an
application can create a MessageConsumer object, it must first create a Queue or Topic object. For
information about how to create a Queue or Topic object, see the following topics:

“Using INDI to retrieve administered objects in a JMS application” on page 176
“Using the IBM JMS extensions” on page 177

“Using the IBM MQ JMS extensions” on page 184

“Creating destinations in a JMS application” on page 189

To create a MessageConsumer object, an application uses the createConsumer() method of a Session
object, as shown in the following example:

MessageConsumer consumer = session.createConsumer(destination);

The parameter destination is a Queue or Topic object that the application has created previously.

The application then uses the receive() method of the MessageConsumer object to receive a message
from the destination, as shown in the following example:

Message inMessage = consumer.receive(1000);

The parameter on the receive() call specifies how long in milliseconds the method waits for a suitable
message to arrive if no message is available immediately. If you omit this parameter, the call blocks
indefinitely until a suitable message arrives. If you do not want the application to wait for a message, use
the receiveNoWait() method instead.

The receive() method returns a message of a specific type. For example, when an application receives a
text message, the object returned by the receive() call is a TextMessage object.

However, the declared type of object returned by a receive() call is a Message object. Therefore, in order
to extract the data from the body of a message that has just been received, the application must cast
from the Message class to the more specific subclass, such as TextMessage. If the type of the message
is not known, the application can use the instanceof operator to determine the type. It is always
good practice for an application to determine the type of a message before casting so that errors can be
handled gracefully.

194 Developing Applications for IBM MQ



The following code uses the instanceof operator and shows how to extract the data from the body of a
text message:

if (inMessage instanceof TextMessage) 1
String replyString = ((TextMessage) inMessage).getText();

I3 else 1
// Print error message if Message was not a TextMessage.
System.out.println("Reply message was not a TextMessage");

If an application sends a message within a transaction, the message is not delivered to its destination
until the transaction is committed. This means that an application cannot send a message and receive a
reply to the message within the same transaction.

If a message consumer receives messages from a destination that is configured for read ahead, any
nonpersistent messages that are in the read ahead buffer when the application ends are discarded.

In the publish/subscribe domain, JMS identifies two types of message consumer, nondurable topic
subscriber and durable topic subscriber, which are described in the following two sections.

Nondurable topic subscribers

A nondurable topic subscriber receives only those messages that are published while the subscriber

is active. A nondurable subscription starts when an application creates a nondurable topic subscriber
and ends when the application closes the subscriber, or when the subscriber falls out of scope. As an
extension in IBM MQ classes for JMS, a nondurable topic subscriber also receives retained publications.

To create a nondurable topic subscriber, an application can use the domain independent
createConsumer() method, specifying a Topic object as the destination. Alternatively, an application can
use the domain specific createSubscriber() method, as shown in the following example:

TopicSubscriber subscriber = session.createSubscriber(topic);

The parameter topic is a Topic object that the application has created previously.

Durable topic subscribers

Restriction: An application cannot create durable topic subscribers when using a real-time connection to
a broker.

A durable topic subscriber receives all messages that are published during the life of a durable
subscription. These messages include all those that are published while the subscriber is not active.
As an extension in IBM MQ classes for JMS, a durable topic subscriber also receives retained publications.

To create a durable topic subscriber, an application uses the createDurableSubscriber() method of a
Session object, as shown in the following example:

TopicSubscriber subscriber = session.createDurableSubscriber(topic, "D_SUB_000001");

On the createDurableSubscriber() call, the first parameter is a Topic object that the application has
created previously, and the second parameter is a name that is used to identify the durable subscription.

The session used to create a durable topic subscriber must have an associated client identifier. The
client identifier associated with a session is the same as the client identifier for the connection that is
used to create the session. The client identifier can be specified by setting the CLIENTID property of
the ConnectionFactory object. Alternatively, an application can specify the client identifier by calling the
setClientID() method of the Connection object.

The name that is used to identify a durable subscription must be unique only within the client identifier,
and therefore the client identifier forms part of the full, unique identifier of a durable subscription. To
continue using a durable subscription that was created previously, an application must create a durable

Developing applications for IBM MQ 195


