
8.0

Monitoring and Performance for IBM MQ

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
339.

This edition applies to version 8 release 0 of IBM® MQ and to all subsequent releases and modifications until otherwise
indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 2007, 2025.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Monitoring and performance.. 5
Monitoring your IBM MQ network..5

Event monitoring.. 5
Message monitoring... 54
Accounting and statistics messages..130
Application activity trace... 194
Real-time monitoring... 272
Monitoring clusters.. 284
Monitoring performance and resource usage... 287

Tuning your IBM MQ network..327
Tuning client and server connection channels..327
Tuning distributed publish/subscribe networks..328
Reducing the number of unwanted topics in the topic tree..336

Notices..339
Programming interface information..340
Trademarks.. 340

 iii

iv

Monitoring and performance

Use the monitoring information and guidance in this section, and the specific tuning tips, to help improve
the performance of your queue manager network.

Depending on the size and complexity of your queue manager network, you can obtain a range of
information from monitoring the network. You can use that information, along with the information
provided in specific tuning tips, to help you tune your network performance.

Monitoring your IBM MQ network
A number of monitoring techniques are available in IBM MQ to obtain statistics and other specific
information about how your queue manager network is running. Use the monitoring information and
guidance in this section to help improve the performance of your queue manager network.

The following list provides examples of reasons for monitoring your queue manager network:

• Detect problems in your queue manager network.
• Assist in determining the causes of problems in your queue manager network.
• Improve the efficiency of your queue manager network.
• Familiarize yourself with the running of your queue manager network.
• Confirm that your queue manager network is running correctly.
• Generate messages when certain events occur.
• Record message activity.
• Determine the last known location of a message.
• Check various statistics of a queue manager network in real time.
• Generate an audit trail.
• Account for application resource usage.
• Capacity planning.

Event monitoring
Event monitoring is the process of detecting occurrences of instrumentation events in a queue manager
network. An instrumentation event is a logical combination of conditions that is detected by a queue
manager or channel instance. Such an event causes the queue manager or channel instance to put a
special message, called an event message, on an event queue.

IBM MQ instrumentation events provide information about errors, warnings, and other significant
occurrences in a queue manager. Use these events to monitor the operation of the queue managers
in your queue manager network to achieve the following goals:

• Detect problems in your queue manager network.
• Assist in determining the causes of problems in your queue manager network.
• Generate an audit trail.
• React to queue manager state changes

Related reference
Event message reference
“Event types” on page 8
Use this page to view the types of instrumentation event that a queue manager or channel instance can
report
Event message format

© Copyright IBM Corp. 2007, 2025 5

Instrumentation events
An instrumentation event is a logical combination of conditions that a queue manager or channel instance
detects and puts a special message, called an event message, on an event queue.

IBM MQ instrumentation events provide information about errors, warnings, and other significant
occurrences in a queue manager. You can use these events to monitor the operation of queue managers
(with other methods such as Tivoli® NetView for z/OS®).

Figure 1 on page 7 illustrates the concept of instrumentation events.

6 Monitoring and Performance for IBM MQ

Figure 1. Understanding instrumentation events

Event monitoring applications
Applications that use events to monitor queue managers must include the following provisions:

1. Set up channels between the queue managers in your network.

Monitoring and performance 7

2. Implement the required data conversions. The normal rules of data conversion apply. For example, if
you are monitoring events on a UNIX system queue manager from a z/OS queue manager, ensure that
you convert EBCDIC to ASCII.

Event notification through event queues
When an event occurs, the queue manager puts an event message on the appropriate event queue,
if defined. The event message contains information about the event that you can retrieve by writing a
suitable MQI application program that performs the following steps:

• Get the message from the queue.
• Process the message to extract the event data.

The related information describes the format of event messages.

Conditions that cause events
The following list gives examples of conditions that can cause instrumentation events:

• A threshold limit for the number of messages on a queue is reached.
• A channel instance is started or stopped.
• A queue manager becomes active, or is requested to stop.
• An application tries to open a queue specifying a user ID that is not authorized on IBM MQ for IBM i,

Windows, UNIX and Linux® systems.
• Objects are created, deleted, changed, or refreshed.
• An MQSC or PCF command runs successfully.
• A queue manager starts writing to a new log extent.
• Putting a message on the dead-letter queue, if the event conditions are met.

Related concepts
“Performance events” on page 19
Performance events relate to conditions that can affect the performance of applications that use a
specified queue. The scope of performance events is the queue. MQPUT calls and MQGET calls on one
queue do not affect the generation of performance events on another queue.
“Sample program to monitor instrumentation events” on page 51

amqsevt formats the instrumentation events that a queue manager can create, and is
supplied with IBM MQ. The program reads messages from event queues, and formats them into readable
strings.

Event types
Use this page to view the types of instrumentation event that a queue manager or channel instance can
report

IBM MQ instrumentation events have the following types:

• Queue manager events
• Channel and bridge events
• Performance events
• Configuration events
• Command events
• Logger events
• Local events

For each queue manager, each category of event has its own event queue. All events in that category
result in an event message being put onto the same queue.

8 Monitoring and Performance for IBM MQ

This event queue: Contains messages from:

SYSTEM.ADMIN.QMGR.EVENT Queue manager events

SYSTEM.ADMIN.CHANNEL.EVENT Channel events

SYSTEM.ADMIN.PERFM.EVENT Performance events

SYSTEM.ADMIN.CONFIG.EVENT Configuration events

SYSTEM.ADMIN.COMMAND.EVENT Command events

SYSTEM.ADMIN.LOGGER.EVENT Logger events

SYSTEM.ADMIN.PUBSUB.EVENT Gets events related to Publish/Subscribe. Only
used with Multicast. For more information see,
Multicast application monitoring.

By incorporating instrumentation events into your own system management application, you can monitor
the activities across many queue managers, across many different nodes, and for multiple IBM MQ
applications. In particular, you can monitor all the nodes in your system from a single node (for those
nodes that support IBM MQ events) as shown inFigure 2 on page 9.

Instrumentation events can be reported through a user-written reporting mechanism to an administration
application that can present the events to an operator.

Figure 2. Monitoring queue managers across different platforms, on a single node

Instrumentation events also enable applications acting as agents for other administration networks, for
example Tivoli NetView for z/OS, to monitor reports and create the appropriate alerts.

Monitoring and performance 9

Queue manager events
Queue manager events are related to the use of resources within queue managers. For example, a queue
manager event is generated if an application tries to put a message on a queue that does not exist.

The following examples are conditions that can cause a queue manager event:

• An application issues an MQI call that fails. The reason code from the call is the same as the reason
code in the event message.

A similar condition can occur during the internal operation of a queue manager; for example, when
generating a report message. The reason code in an event message might match an MQI reason code,
even though it is not associated with any application. Do not assume that, because an event message
reason code looks like an MQI reason code, the event was necessarily caused by an unsuccessful MQI
call from an application.

• A command is issued to a queue manager and processing this command causes an event. For example:

– A queue manager is stopped or started.
– A command is issued where the associated user ID is not authorized for that command.

IBM MQ puts messages for queue manager events on the SYSTEM.ADMIN.QMGR.EVENT queue, and
supports the following queue manager event types:

Authority (on Windows, and UNIX systems only)
Authority events report an authorization, such as an application trying to open a queue for which it
does not have the required authority, or a command being issued from a user ID that does not have
the required authority. The authority event message can contain the following event data:

• Not Authorized (type 1)
• Not Authorized (type 2)
• Not Authorized (type 3)
• Not Authorized (type 4)
• Not Authorized (type 5)
• Not Authorized (type 6)

All authority events are valid on Windows, and UNIX systems only.

Inhibit
Inhibit events indicate that an MQPUT or MQGET operation has been attempted against a queue
where the queue is inhibited for puts or gets, or against a topic where the topic is inhibited for
publishes. The inhibit event message can contain the following event data:

• Get Inhibited
• Put Inhibited

Local
Local events indicate that an application (or the queue manager) has not been able to access a local
queue or other local object. For example, an application might try to access an object that has not
been defined. The local event message can contain the following event data:

• Alias Base Queue Type Error
• Unknown Alias Base Queue
• Unknown Object Name

Remote
Remote events indicate that an application or the queue manager cannot access a remote queue
on another queue manager. For example, the transmission queue to be used might not be correctly
defined. The remote event message can contain the following event data:

• Default Transmission Queue Type Error
• Default Transmission Queue Usage Error
• Queue Type Error

10 Monitoring and Performance for IBM MQ

• Remote Queue Name Error
• Transmission Queue Type Error
• Transmission Queue Usage Error
• Unknown Default Transmission Queue
• Unknown Remote Queue Manager
• Unknown Transmission Queue

Start and stop
Start and stop events indicate that a queue manager has been started or has been requested to stop
or quiesce.

z/OS supports only start events.

Stop events are not recorded unless the default message-persistence of the
SYSTEM.ADMIN.QMGR.EVENT queue is defined as persistent. The start and stop event message can
contain the following event data:

• Queue Manager Active
• Queue Manager Not Active

For each event type in this list, you can set a queue manager attribute to enable or disable the event type.

Channel and bridge events
Channels report these events as a result of conditions detected during their operation. For example, when
a channel instance is stopped.

Channel events are generated in the following circumstances:

• When a command starts or stops a channel.
• When a channel instance starts or stops.
• When a channel receives a conversion error warning when getting a message.
• When an attempt is made to create a channel automatically; the event is generated whether the attempt

succeeds or fails.

Note: Client connections do not cause Channel Started or Channel Stopped events.

When a command is used to start a channel, an event is generated. Another event is generated when the
channel instance starts. However, starting a channel by a listener, the runmqchl command, or a queue
manager trigger message does not generate an event. In these cases, an event is generated only when the
channel instance starts.

A successful start or stop channel command generates at least two events. These events are generated
for both queue managers connected by the channel (providing they support events).

If a channel event is put on an event queue, an error condition causes the queue manager to create an
event.

The event messages for channel and bridge events are put on the SYSTEM.ADMIN.CHANNEL.EVENT
queue.

The channel event messages can contain the following event data:

• Channel Activated
• Channel Auto-definition Error
• Channel Auto-definition OK
• Channel Blocked
• Channel Conversion Error
• Channel Not Activated
• Channel Not Available

Monitoring and performance 11

• Channel Started
• Channel Stopped
• Channel Stopped By User

IMS bridge events (z/OS only)

These events are reported when an IMS bridge starts or stops.

The IMS bridge event messages can contain the following event data:

• Bridge Started
• Bridge Stopped

SSL events
The only Secure Sockets Layer (SSL or TLS) event is the Channel SSL Error event. This event is reported
when a channel using SSL or TLS fails to establish an SSL connection.

The SSL event messages can contain the following event data:

• Channel SSL Error
• Channel SSL Warning

Performance events
Performance events are notifications that a resource has reached a threshold condition. For example, a
queue depth limit has been reached.

Performance events relate to conditions that can affect the performance of applications that use a
specified queue. They are not generated for the event queues themselves.

The event type is returned in the command identifier field in the message data.

If a queue manager tries to put a queue manager event or performance event message on an event queue
and an error that would typically create an event is detected, another event is not created and no action is
taken.

MQGET and MQPUT calls within a unit of work can generate performance events regardless of whether
the unit of work is committed or backed out.

The event messages for performance events are put on the SYSTEM.ADMIN.PERFM.EVENT queue.

There are two types of performance event:

Queue depth events
Queue depth events relate to the number of messages on a queue; that is, how full or empty the
queue is. These events are supported for shared queues. The queue depth event messages can
contain the following event data:

• Queue Depth High
• Queue Depth Low
• Queue Full

Queue service interval events
Queue service interval events relate to whether messages are processed within a user-specified time
interval. These events are not supported for shared queues.

 IBM MQ for z/OS supports queue depth events for QSGDISP (SHARED) queues, but not
service interval events. Queue manager and channel events remain unaffected by shared queues. The
queue service event messages can contain the following event data:

• Queue Service Interval High

12 Monitoring and Performance for IBM MQ

• Queue Service Interval OK

Configuration events
Configuration events are generated when a configuration event is requested explicitly, or automatically
when an object is created, modified, or deleted.

A configuration event message contains information about the attributes of an object. For example, a
configuration event message is generated if a namelist object is created, and contains information about
the attributes of the namelist object.

The event messages for configuration events are put on the SYSTEM.ADMIN.CONFIG.EVENT queue.

There are four types of configuration event:

Create object events
Create object events are generated when an object is created. The event message contains the
following event data: Create object.

Change object events
Change object events are generated when an object is changed. The event message contains the
following event data: Change object.

Delete object events
Delete object events are generated when an object is deleted. The event message contains the
following event data: Delete object.

Refresh object events
Refresh object events are generated by an explicit request to refresh. The event message contains the
following event data: Refresh object.

Command events
Command events are reported when an MQSC or PCF command runs successfully.

A command event message contains information about the origin, context, and content of a command.
For example, a command event message is generated with such information if the MQSC command,
ALTER QLOCAL, runs successfully.

The event messages for command events are put on the SYSTEM.ADMIN.COMMAND.EVENT queue.

Command events contain the following event data: Command.

Logger events
Logger events are reported when a queue manager that uses linear logging starts writing log records to

a new log extent or, on IBM i, to a new journal receiver. Logger events are not
available with IBM MQ for z/OS.

A logger event message contains information specifying the log extents required by the queue manager to
restart the queue manager, or for media recovery.

The event messages for logger events are put on the SYSTEM.ADMIN.LOGGER.EVENT queue.

The logger event message contains the following event data: Logger.

Event message data summary
Use this summary to obtain information about the event data that each type of event message can
contain.

Monitoring and performance 13

Event type See these topics

Authority events Not Authorized (type 1)

Not Authorized (type 2)

Not Authorized (type 3)

Not Authorized (type 4)

Not Authorized (type 5)

Not Authorized (type 6)

Channel events Channel Activated

Channel Auto-definition Error

Channel Auto-definition OK

Channel Blocked

Channel Conversion Error

Channel Not Activated

Channel Started

Channel Stopped

Channel Stopped By User

Command events Command

Configuration events Create object

Change object

Delete object

Refresh object

IMS bridge events Bridge Started

Bridge Stopped

Inhibit events Get Inhibited

Put Inhibited

Local events Alias Base Queue Type Error

Unknown Alias Base Queue

Unknown Object Name

Logger events Logger

Performance events Queue Depth High

Queue Depth Low

Queue Full

Queue Service Interval High

Queue Service Interval OK

14 Monitoring and Performance for IBM MQ

Event type See these topics

Remote events Default Transmission Queue Type Error

Default Transmission Queue Usage Error

Queue Type Error

Remote Queue Name Error

Transmission Queue Type Error

Transmission Queue Usage Error

Unknown Default Transmission Queue

Unknown Remote Queue Manager

Unknown Transmission Queue

SSL events Channel SSL Error

Start and stop events Queue Manager Active

Queue Manager Not Active

Controlling events
You enable and disable events by specifying the appropriate values for queue manager, queue attributes,
or both, depending on the type of event.

You must enable each instrumentation event that you want to be generated. For example, the conditions
causing a Queue Full event are:

• Queue Full events are enabled for a specified queue, and
• An application issues an MQPUT request to put a message on that queue, but the request fails because

the queue is full.

Enable and disable events by using any of the following techniques:

• IBM MQ script commands (MQSC).
• The corresponding IBM MQ PCF commands.

• The operations and control panels for queue managers on z/OS.
• The IBM MQ Explorer.

Note: You can set attributes related to events for both queues and queue managers only by command.
The MQI call MQSET does not support attributes related to events.

Related concepts
“Instrumentation events” on page 6
An instrumentation event is a logical combination of conditions that a queue manager or channel instance
detects and puts a special message, called an event message, on an event queue.
Introducing the operations and control panels
Related tasks
Automating administration tasks
Using Programmable Command Formats
Related reference
“Event types” on page 8
Use this page to view the types of instrumentation event that a queue manager or channel instance can
report
The MQSC commands

Monitoring and performance 15

Controlling queue manager events
You control queue manager events by using queue manager attributes. To enable queue manager events,
set the appropriate queue manager attribute to ENABLED. To disable queue manager events, set the
appropriate queue manager attribute to DISABLED.

To enable or disable queue manager events, use the MQSC command ALTER QMGR, specifying the
appropriate queue manager attribute. Table 1 on page 16 summarizes how to enable queue manager
events. To disable a queue manager event, set the appropriate parameter to DISABLED.

Table 1. Enabling queue manager events using MQSC commands

Event ALTER QMGR parameter

Authority
Inhibit
Local
Remote
Start and Stop

AUTHOREV (ENABLED)
INHIBTEV (ENABLED)
LOCALEV (ENABLED)
REMOTEEV (ENABLED)
STRSTPEV (ENABLED)

Controlling channel and bridge events
You control channel events by using queue manager attributes. To enable channel events, set the
appropriate queue manager attribute to ENABLED. To disable channel events, set the appropriate queue
manager attribute to DISABLED.

To enable or disable channels events use the MQSC command ALTER QMGR, specifying the appropriate
queue manager attribute. Table 2 on page 16 summarizes how you enable channel and bridge events. To
disable a queue manager event, set the appropriate parameter to DISABLED.

Restriction: Channel auto-definition events are not available on IBM MQ for z/OS.

Table 2. Enabling channel and bridge events using MQSC commands

Event ALTER QMGR parameter

Channel
Related to channel errors only
IMS bridge
SSL
Channel auto-definition

CHLEV (ENABLED)
CHLEV (EXCEPTION)
BRIDGEEV (ENABLED)
SSLEV (ENABLED)
CHADEV(ENABLED)

With CHLEV set to exception, the following return codes, and corresponding reason qualifiers are
generated:

• MQRC_CHANNEL_ACTIVATED
• MQRC_CHANNEL_CONV_ERROR
• MQRC_CHANNEL_NOT_ACTIVATED
• MQRC_CHANNEL_STOPPED

– with the following ReasonQualifiers:

- MQRQ_CHANNEL_STOPPED_ERROR
- MQRQ_CHANNEL_STOPPED_RETRY
- MQRQ_CHANNEL_STOPPED_DISABLED

• MQRC_CHANNEL_STOPPED_BY_USER
• MQRC_CHANNEL_BLOCKED

– with the following ReasonQualifiers:

- MQRQ_CHANNEL_BLOCKED_NOACCESS

16 Monitoring and Performance for IBM MQ

- MQRQ_CHANNEL_BLOCKED_USERID
- MQRQ_CHANNEL_BLOCKED_ADDRESS

Controlling performance events
You control performance events using the PERFMEV queue manager attribute. To enable performance
events, set PERFMEV to ENABLED. To disable performance events, set the PERFMEV queue manager
attribute to DISABLED.

To set the PERFMEV queue manager attribute to ENABLED, use the following MQSC command:

ALTER QMGR PERFMEV (ENABLED)

To enable specific performance events, set the appropriate queue attribute. Also, specify the conditions
that cause the event.

Queue depth events
By default, all queue depth events are disabled. To configure a queue for any of the queue depth
events:

1. Enable performance events on the queue manager.
2. Enable the event on the required queue.
3. Set the limits, if required, to the appropriate levels, expressed as a percentage of the maximum

queue depth.

Queue service interval events
To configure a queue for queue service interval events you must:

1. Enable performance events on the queue manager.
2. Set the control attribute for a Queue Service Interval High or OK event on the queue as required.
3. Specify the service interval time by setting the QSVCINT attribute for the queue to the appropriate

length of time.

Note: When enabled, a queue service interval event can be generated at any appropriate time, not
necessarily waiting until an MQI call for the queue is issued. However, if an MQI call is used on a
queue to put or remove a message, any applicable performance event is generated at that time. The
event is not generated when the elapsed time becomes equal to the service interval time.

Controlling configuration, command, and logger events
You control configuration, command, and logger events by using the queue manager attributes
CONFIGEV, CMDEV, and LOGGEREV. To enable these events, set the appropriate queue manager attribute
to ENABLED. To disable these events, set the appropriate queue manager attribute to DISABLED.
Configuration events

To enable configuration events, set CONFIGEV to ENABLED. To disable configuration events, set
CONFIGEV to DISABLED. For example, you can enable configuration events by using the following
MQSC command:

ALTER QMGR CONFIGEV (ENABLED)

Command events
To enable command events, set CMDEV to ENABLED. To enable command events for commands
except DISPLAY MQSC commands and Inquire PCF commands, set the CMDEV to NODISPLAY. To
disable command events, set CMDEV to DISABLED. For example, you can enable command events by
using the following MQSC command:

ALTER QMGR CMDEV (ENABLED)

Monitoring and performance 17

Logger events
To enable logger events, set LOGGEREV to ENABLED. To disable logger events, set LOGGEREV to
DISABLED. For example, you can enable logger events by using the following MQSC command:

ALTER QMGR LOGGEREV(ENABLED)

Event queues
When an event occurs, the queue manager puts an event message on the defined event queue. The event
message contains information about the event.

You can define event queues, either as:

• Local queues
• Alias queues
• Local definitions of remote queues, or as
• Remote cluster queues

If you define all your event queues as local definitions of the same remote queue on one queue manager,
you can centralize your monitoring activities.

You must not define event queues as transmission queues, because event messages have formats that
are incompatible with the message format that is required for transmission queues.

Shared event queues are local queues defined with the QSGDISP(SHARED) value.

For more information about defining shared queues on z/OS, see Application programming with shared
queues.

When an event queue is unavailable
If an event occurs when the event queue is not available, the event message is lost. For example, if you do
not define an event queue for a category of event, all event messages for that category are lost. The event
messages are not, for example, saved on the dead-letter (undelivered-message) queue.

However, you can define the event queue as a remote queue. Then, if there is a problem on the remote
system putting messages to the resolved queue, the event message arrives on the dead-letter queue of
the remote system.

An event queue might be unavailable for many different reasons including:

• The queue has not been defined.
• The queue has been deleted.
• The queue is full.
• The queue has been put-inhibited.

The absence of an event queue does not prevent the event from occurring. For example, after a
performance event, the queue manager changes the queue attributes and resets the queue statistics.
This change happens whether the event message is put on the performance event queue or not. The same
is true in the case of configuration and command events.

Using triggered event queues
You can set up the event queues with triggers so that when an event is generated, the event message
being put onto the event queue starts a user-written monitoring application. This application can
process the event messages and take appropriate action. For example, certain events might require an
operator to be informed, other events might start an application that performs some administration tasks
automatically.

Event queues can have trigger actions associated with them and can create trigger messages. However,
if these trigger messages in turn cause conditions that would normally generate an event, no event is
generated. not generating an event in this instance ensures that looping does not occur.

18 Monitoring and Performance for IBM MQ

Related concepts
“Controlling events” on page 15
You enable and disable events by specifying the appropriate values for queue manager, queue attributes,
or both, depending on the type of event.
“Format of event messages” on page 19
Event messages contain information about an event and its cause. Like other IBM MQ messages, an event
message has two parts: a message descriptor and the message data.
Application programming with shared queues
Conditions for a trigger event
Related reference
QSGDisp (MQLONG)

Format of event messages
Event messages contain information about an event and its cause. Like other IBM MQ messages, an event
message has two parts: a message descriptor and the message data.

• The message descriptor is based on the MQMD structure.
• The message data consists of an event header and the event data. The event header contains the reason

code that identifies the event type. Putting the event message, and any subsequent action, does not
affect the reason code returned by the MQI call that caused the event. The event data provides further
information about the event.

Typically, you process event messages with a system management application tailored to meet the
requirements of the enterprise at which it runs.

When the queue managers in a queue sharing group detect the conditions for generating an event
message, several queue managers can generate an event message for the shared queue, resulting in
several event messages. To ensure that a system can correlate multiple event messages from different
queue managers, these event messages have a unique correlation identifier (CorrelId) set in the message
descriptor (MQMD).

Related reference
“Activity report MQMD (message descriptor)” on page 94
Use this page to view the values contained by the MQMD structure for an activity report
“Activity report MQEPH (Embedded PCF header)” on page 98
Use this page to view the values contained by the MQEPH structure for an activity report
“Activity report MQCFH (PCF header)” on page 99
Use this page to view the PCF values contained by the MQCFH structure for an activity report
Event message reference
Event message format
Event message MQMD (message descriptor)
Event message MQCFH (PCF header)
Event message descriptions

Performance events
Performance events relate to conditions that can affect the performance of applications that use a
specified queue. The scope of performance events is the queue. MQPUT calls and MQGET calls on one
queue do not affect the generation of performance events on another queue.

Performance event messages can be generated at any appropriate time, not necessarily waiting until an
MQI call for the queue is issued. However, if you use an MQI call on a queue to put or remove a message,
any appropriate performance events are generated at that time.

Every performance event message that is generated is placed on the queue,
SYSTEM.ADMIN.PERFM.EVENT.

Monitoring and performance 19

The event data contains a reason code that identifies the cause of the event, a set of performance event
statistics, and other data. The types of event data that can be returned in performance event messages
are described in the following list:

• Queue Depth High
• Queue Depth Low
• Queue Full
• Queue Service Interval High
• Queue Service Interval OK

Examples that illustrate the use of performance events assume that you set queue attributes by using the
appropriate IBM MQ commands (MQSC). On z/OS, you can also set queue attributes using the operations
and controls panels for queue managers.

Related reference
“Event types” on page 8
Use this page to view the types of instrumentation event that a queue manager or channel instance can
report

Performance event statistics
The performance event data in the event message contains statistics about the event. Use the statistics to
analyze the behavior of a specified queue.

The event data in the event message contains information about the event for system management
programs. For all performance events, the event data contains the names of the queue manager and the
queue associated with the event. The event data also contains statistics related to the event. Table 3 on
page 20 summarizes the event statistics that you can use to analyze the behavior of a queue. All the
statistics refer to what has happened since the last time the statistics were reset.

Table 3. Performance event statistics

Parameter Description

TimeSinceReset The elapsed time since the statistics were last reset.

HighQDepth The maximum number of messages on the queue since the statistics
were last reset.

MsgEnqCount The number of messages enqueued (the number of MQPUT calls to
the queue), since the statistics were last reset.

MsgDeqCount The number of messages dequeued (the number of MQGET calls to
the queue), since the statistics were last reset.

Performance event statistics are reset when any of the following changes occur:

• A performance event occurs (statistics are reset on all active queue managers).
• A queue manager stops and restarts.
• The PCF command, Reset Queue Statistics, is issued from an application program.

• On z/OS only, the RESET QSTATS command is issued at the console.

Related concepts
“Performance events” on page 19
Performance events relate to conditions that can affect the performance of applications that use a
specified queue. The scope of performance events is the queue. MQPUT calls and MQGET calls on one
queue do not affect the generation of performance events on another queue.
“The service timer” on page 22

20 Monitoring and Performance for IBM MQ

Queue service interval events use an internal timer, called the service timer, which is controlled by the
queue manager. The service timer is used only if a queue service interval event is enabled.
“Rules for queue service interval events” on page 23
Formal rules control when the service timer is set and queue service interval events are generated.
Related tasks
“Enabling queue service interval events” on page 23
To configure a queue for queue service interval events you set the appropriate queue manager and queue
attributes.
Related reference
Queue Depth High
Reset Queue Statistics
RESET QSTATS

Queue service interval events
Queue service interval events indicate whether an operation was performed on a queue within a user-
defined time interval called the service interval. Depending on your installation, you can use queue service
interval events to monitor whether messages are being taken off queues quickly enough.

Queue service interval events are not supported on shared queues.

The following types of queue service interval events can occur, where the term get operation refers to
an MQGET call or an activity that removes a messages from a queue, such as using the CLEAR QLOCAL
command:

Queue Service Interval OK
Indicates that after one of the following operations:

• An MQPUT call
• A get operation that leaves a non-empty queue

a get operation was performed within a user-defined time period, known as the service interval.

Only a get operation can cause the Queue Service Interval OK event message. Queue Service Interval
OK events are sometimes described as OK events.

Queue Service Interval High
Indicates that after one of the following operations:

• An MQPUT call
• A get operation that leaves a non-empty queue

a get operation was not performed within a user-defined service interval.

Either a get operation or an MQPUT call can cause the Queue Service Interval High event message.
Queue Service Interval High events are sometimes described as High events.

To enable both Queue Service Interval OK and Queue Service Interval High events, set the
QServiceIntervalEvent control attribute to High. Queue Service Interval OK events are automatically
enabled when a Queue Service Interval High event is generated. You do not need to enable Queue Service
Interval OK events independently.

OK and High events are mutually exclusive, so if one is enabled the other is disabled. However, both
events can be simultaneously disabled.

Figure 3 on page 22 shows a graph of queue depth against time. At time P1, an application issues an
MQPUT, to put a message on the queue. At time G1, another application issues an MQGET to remove the
message from the queue.

Monitoring and performance 21

Figure 3. Understanding queue service interval events

The possible outcomes of queue service interval events are as follows:

• If the elapsed time between the put and the get is less than or equal to the service interval:

– A Queue Service Interval OK event is generated at time G1, if queue service interval events are
enabled

• If the elapsed time between the put and get is greater than the service interval:

– A Queue Service Interval High event is generated at time G1, if queue service interval events are
enabled.

The algorithm for starting the service timer and generating events is described in “Rules for queue service
interval events” on page 23.

Related reference
Queue Service Interval OK
Queue Service Interval High
QServiceIntervalEvent (MQLONG)
QServiceIntervalEvent (10-digit signed integer)
ServiceIntervalEvent property

The service timer
Queue service interval events use an internal timer, called the service timer, which is controlled by the
queue manager. The service timer is used only if a queue service interval event is enabled.
What precisely does the service timer measure?

The service timer measures the elapsed time between an MQPUT call to an empty queue or a
get operation, and the next put or get, provided the queue depth is nonzero between these two
operations.

When is the service timer active?
The service timer is always active (running), if the queue has messages on it (depth is nonzero) and a
queue service interval event is enabled. If the queue becomes empty (queue depth zero), the timer is
put into an OFF state, to be restarted on the next put.

When is the service timer reset?
The service timer is always reset after a get operation . It is also reset by an MQPUT call to an empty
queue. However, it is not necessarily reset on a queue service interval event.

How is the service timer used?
Following a get operation or an MQPUT call, the queue manager compares the elapsed time as
measured by the service timer, with the user-defined service interval. The result of this comparison is
that:

• An OK event is generated if there is a get operation and the elapsed time is less than or equal to the
service interval, AND this event is enabled.

22 Monitoring and Performance for IBM MQ

• A high event is generated if the elapsed time is greater than the service interval, AND this event is
enabled.

Can applications read the service timer?
No, the service timer is an internal timer that is not available to applications.

What about the TimeSinceReset parameter?
The TimeSinceReset parameter is returned as part of the event statistics in the event data. It specifies
the time between successive queue service interval events, unless the event statistics are reset.

Rules for queue service interval events
Formal rules control when the service timer is set and queue service interval events are generated.

Rules for the service timer

The service timer is reset to zero and restarted as follows:

• After an MQPUT call to an empty queue.
• After an MQGET call, if the queue is not empty after the MQGET call.

The resetting of the timer does not depend on whether an event has been generated.

At queue manager startup the service timer is set to startup time if the queue depth is greater than zero.

If the queue is empty following a get operation, the timer is put into an OFF state.

Queue Service Interval High events

The Queue Service Interval event must be enabled (set to HIGH).

Queue Service Interval High events are automatically enabled when a Queue Service Interval OK event is
generated.

If the service time is greater than the service interval, an event is generated on, or before, the next
MQPUT or get operation.

Queue Service Interval OK events

Queue Service Interval OK events are automatically enabled when a Queue Service Interval High event is
generated.

If the service time (elapsed time) is less than or equal to the service interval, an event is generated on, or
before, the next get operation.

Related tasks
“Enabling queue service interval events” on page 23
To configure a queue for queue service interval events you set the appropriate queue manager and queue
attributes.

Enabling queue service interval events
To configure a queue for queue service interval events you set the appropriate queue manager and queue
attributes.

About this task
The high and OK events are mutually exclusive; that is, when one is enabled, the other is automatically
disabled:

• When a high event is generated on a queue, the queue manager automatically disables high events and
enables OK events for that queue.

Monitoring and performance 23

• When an OK event is generated on a queue, the queue manager automatically disables OK events and
enables high events for that queue.

Table 4. Enabling queue service interval events using MQSC

Queue service interval event Queue attributes

Queue Service Interval High
Queue Service Interval OK
No queue service interval events

QSVCIEV (HIGH)
QSVCIEV (OK)
QSVCIEV (NONE)

Service interval QSVCINT (tt
) where tt is the service
interval time in milliseconds.

Perform the following steps to enable queue service interval events:

Procedure
1. Set the queue manager attribute PERFMEV to ENABLED.

Performance events are enabled on the queue manager.
2. Set the control attribute, QSVCIEV, for a Queue Service Interval High or OK event on the queue, as

required.
3. Set the QSVCINT attribute for the queue to specify the appropriate service interval time.

Example
To enable Queue Service Interval High events with a service interval time of 10 seconds (10 000
milliseconds) use the following MQSC commands:

 ALTER QMGR PERFMEV(ENABLED)

 ALTER QLOCAL('MYQUEUE') QSVCINT(10000) QSVCIEV(HIGH)

.

Queue service interval events examples
Use the examples in this section to understand the information that you can obtain from queue service
interval events.

The three subtopic examples provide progressively more complex illustrations of the use of queue service
interval events.

The figures accompanying the examples in each subtopic have the same structure:

• Figure 1 is a graph of queue depth against time, showing individual MQGET calls and MQPUT calls.
• The Commentary section shows a comparison of the time constraints. There are three time periods that

you must consider:

– The user-defined service interval.
– The time measured by the service timer.
– The time since event statistics were last reset (TimeSinceReset in the event data).

• The Event statistics summary section shows which events are enabled at any instant and what events
are generated.

The examples illustrate the following aspects of queue service interval events:

• How the queue depth varies over time.
• How the elapsed time as measured by the service timer compares with the service interval.

24 Monitoring and Performance for IBM MQ

• Which event is enabled.
• Which events are generated.

Remember: Example 1 shows a simple case where the messages are intermittent and each message is
removed from the queue before the next one arrives. From the event data, you know that the maximum
number of messages on the queue was one. You can, therefore, work out how long each message was on
the queue.

However, in the general case, where there is more than one message on the queue and the sequence
of MQGET calls and MQPUT calls is not predictable, you cannot use queue service interval events to
calculate how long an individual message remains on a queue. The TimeSinceReset parameter, which is
returned in the event data, can include a proportion of time when there are no messages on the queue.
Therefore any results you derive from these statistics are implicitly averaged to include these times.

Related concepts
“Queue service interval events” on page 21
Queue service interval events indicate whether an operation was performed on a queue within a user-
defined time interval called the service interval. Depending on your installation, you can use queue service
interval events to monitor whether messages are being taken off queues quickly enough.
“The service timer” on page 22

Monitoring and performance 25

Queue service interval events use an internal timer, called the service timer, which is controlled by the
queue manager. The service timer is used only if a queue service interval event is enabled.

Queue service interval events: example 1
A basic sequence of MQGET calls and MQPUT calls, where the queue depth is always one or zero.

Figure 4. Queue service interval events - example 1

Commentary
1. At P1, an application puts a message onto an empty queue. This starts the service timer.

Note that T0 might be queue manager startup time.
2. At G1, another application gets the message from the queue. Because the elapsed time between P1

and G1 is greater than the service interval, a Queue Service Interval High event is generated on the
MQGET call at G1. When the high event is generated, the queue manager resets the event control
attribute so that:

a. The OK event is automatically enabled.
b. The high event is disabled.

Because the queue is now empty, the service timer is switched to an OFF state.
3. At P2, a second message is put onto the queue. This restarts the service timer.

26 Monitoring and Performance for IBM MQ

4. At G2, the message is removed from the queue. However, because the elapsed time between P2 and
G2 is less than the service interval, a Queue Service Interval OK event is generated on the MQGET call
at G2. When the OK event is generated, the queue manager resets the control attribute so that:

a. The high event is automatically enabled.
b. The OK event is disabled.

Because the queue is empty, the service timer is again switched to an OFF state.

Event statistics summary

Table 5 on page 27 summarizes the event statistics for this example.

Table 5. Event statistics summary for example 1

Event 1 Event 2

Time of event T(G1) T(G2)

Type of event High OK

TimeSinceReset T(G1) - T(0) T(G2) - T(G1)

HighQDepth 1 1

MsgEnqCount 1 1

MsgDeqCount 1 1

The middle part of Figure 4 on page 26 shows the elapsed time as measured by the service timer
compared to the service interval for that queue. To see whether a queue service interval event might
occur, compare the length of the horizontal line representing the service timer (with arrow) to that of the
line representing the service interval. If the service timer line is longer, and the Queue Service Interval
High event is enabled, a Queue Service Interval High event occurs on the next get. If the timer line is
shorter, and the Queue Service Interval OK event is enabled, a Queue Service Interval OK event occurs on
the next get.

Queue service interval events: example 2
A sequence of MQPUT calls and MQGET calls, where the queue depth is not always one or zero.

This example also shows instances of the timer being reset without events being generated, for example,
at time P2.

Monitoring and performance 27

Figure 5. Queue service interval events - example 2

Commentary
In this example, OK events are enabled initially and queue statistics were reset at time T0.

1. At P1, the first put starts the service timer.
2. At P2, the second put does not generate an event because a put cannot cause an OK event.
3. At G1, the service interval has now been exceeded and therefore an OK event is not generated.

However, the MQGET call causes the service timer to be reset.
4. At G2, the second get occurs within the service interval and this time an OK event is generated. The

queue manager resets the event control attribute so that:

a. The high event is automatically enabled.
b. The OK event is disabled.

Because the queue is now empty, the service timer is switched to an OFF state.

28 Monitoring and Performance for IBM MQ

Event statistics summary

Table 6 on page 29 summarizes the event statistics for this example.

Table 6. Event statistics summary for example 2

Event 2

Time of event T(G2)

Type of event OK

TimeSinceReset T(G2) - T(0)

HighQDepth 2

MsgEnqCount 2

MsgDeqCount 2

Queue service interval events: example 3
A sequence of MQGET calls and MQPUT calls that is more sporadic than the previous examples.

Figure 6. Queue service interval events - example 3

Monitoring and performance 29

Commentary
1. At time T(0), the queue statistics are reset and Queue Service Interval High events are enabled.
2. At P1, the first put starts the service timer.
3. At P2, the second put increases the queue depth to two. A high event is not generated here because

the service interval time has not been exceeded.
4. At P3, the third put causes a high event to be generated. (The timer has exceeded the service interval.)

The timer is not reset because the queue depth was not zero before the put. However, OK events are
enabled.

5. At G1, the MQGET call does not generate an event because the service interval has been exceeded and
OK events are enabled. The MQGET call does, however, reset the service timer.

6. At G2, the MQGET call does not generate an event because the service interval has been exceeded and
OK events are enabled. Again, the MQGET call resets the service timer.

7. At G3, the third get empties the queue and the service timer is equal to the service interval. Therefore
an OK event is generated. The service timer is reset and high events are enabled. The MQGET call
empties the queue, and this puts the timer in the OFF state.

Event statistics summary
Table 7 on page 30 summarizes the event statistics for this example.

Table 7. Event statistics summary for example 3

Event 1 Event 2

Time of event T(P3) T(G3)

Type of event High OK

TimeSinceReset T(P3) - T(0) T(G3) - T(P3)

HighQDepth 3 3

MsgEnqCount 3 0

MsgDeqCount 0 3

Queue depth events
Queue depth events are related to the queue depth, that is, the number of messages on the queue.

In IBM MQ applications, queues must not become full. If they do, applications can no longer put
messages on the queue that they specify. Although the message is not lost if this occurs, a full queue
can cause considerable inconvenience. The number of messages can build up on a queue if the messages
are being put onto the queue faster than the applications that process them can take them off.

The solution to this problem depends on the particular circumstances, but might involve:

• Diverting some messages to another queue.
• Starting new applications to take more messages off the queue.
• Stopping nonessential message traffic.
• Increasing the queue depth to overcome a transient maximum.

Advance warning that problems might be on their way makes it easier to take preventive action. For this
purpose, IBM MQ provides the following queue depth events:

Queue Depth High events
Indicate that the queue depth has increased to a predefined threshold called the Queue Depth High
limit.

30 Monitoring and Performance for IBM MQ

Queue Depth Low events
Indicate that the queue depth has decreased to a predefined threshold called the Queue Depth Low
limit.

Queue Full events
Indicate that the queue has reached its maximum depth, that is, the queue is full.

A Queue Full Event is generated when an application attempts to put a message on a queue that has
reached its maximum depth. Queue Depth High events give advance warning that a queue is filling up.
This means that having received this event, the system administrator needs to take some preventive
action. You can configure the queue manager such that, if the preventive action is successful and the
queue depth drops to a safer level, the queue manager generates a Queue Depth Low event.

The first queue depth event example illustrates the effect of presumed action preventing the queue
becoming full.

Related concepts
“Queue depth events examples” on page 34
Use these examples to understand the information that you can obtain from queue depth events
Related reference
Queue Full
Queue Depth High
Queue Depth Low

Enabling queue depth events
To configure a queue for any of the queue depth events you set the appropriate queue manager and
queue attributes.

About this task
By default, all queue depth events are disabled. When enabled, queue depth events are generated as
follows:

• A Queue Depth High event is generated when a message is put on the queue, causing the queue depth
to be greater than or equal to the value set for QDepthHighLimit.

– A Queue Depth High event is automatically enabled by a Queue Depth Low event on the same queue.
– A Queue Depth High event automatically enables both a Queue Depth Low and a Queue Full event on

the same queue.

• A Queue Depth Low event is generated when a message is removed from a queue by a
GET operation, causing the queue depth to be less than or equal to the value set for QDepthLowLimit.

A Queue Depth Low event is generated when a message is removed from a queue by a
GET operation, or would have been removed but has since expired, causing the queue depth to be less
than or equal to the value set for QDepthLowLimit.

– A Queue Depth Low event is automatically enabled by a Queue Depth High event or a Queue Full
event on the same queue.

– A Queue Depth Low event automatically enables both a Queue Depth High and a Queue Full event on
the same queue.

• A Queue Full event is generated when an application is unable to put a message onto a queue because
the queue is full.

– A Queue Full event is automatically enabled by a Queue Depth High or a Queue Depth Low event on
the same queue.

– A Queue Full event automatically enables a Queue Depth Low event on the same queue.

Perform the following steps to configure a queue for any of the queue depth events:

Monitoring and performance 31

Procedure
1. Enable performance events on the queue manager, using the queue manager attribute PERFMEV.

The events go to the SYSTEM.ADMIN.PERFM.EVENT queue.
2. Set one of the following attributes to enable the event on the required queue:

• QDepthHighEvent (QDPHIEV in MQSC)
• QDepthLowEvent (QDPLOEV in MQSC)
• QDepthMaxEvent (QDPMAXEV in MQSC)

3. Optional: To set the limits, assign the following attributes, as a percentage of the maximum queue
depth:

• QDepthHighLimit (QDEPTHHI in MQSC)
• QDepthLowLimit (QDEPTHLO in MQSC)

Restriction: QDEPTHHI must not be less than QDEPTHLO.

If QDEPTHHI equals QDEPTHLO an event message is generated every time the queue depth passes the
value in either direction, because the high threshold is enabled when the queue depth is below the
value and the low threshold is enabled when the depth is above the value.

Results
Note:

A Queue Depth Low event is not generated when expired messages are removed from
a queue by a GET operation causing the queue depth to be less than, or equal to, the value set for
QDepthLowLimit. IBM MQ generates the queue depth low event message only during a successful GET
operation. Therefore, when the expired messages are removed from the queue, no queue depth low
event message is generated. Additionally, after the removal of these expired messages from the queue,
QDepthHighEvent and QDepthLowEvent are not reset.

IBM MQ generates the queue depth low event message during either a successful
destructive GET operation, or a destructive GET operation that would have succeeded had a matching
message not expired. Otherwise, when expired messages are removed from a queue during general
background processing, no queue depth low event message is generated. Additionally, after the
removal of expired messages from a queue during general background processing, QDepthHighEvent and
QDepthLowEvent are not reset. For more information on expired message processing, see Tuning your
queue manager on IBM MQ for z/OS.

Example

To enable Queue Depth High events on the queue MYQUEUE with a limit set at 80%, use the following
MQSC commands:

 ALTER QMGR PERFMEV(ENABLED)
 ALTER QLOCAL('MYQUEUE') QDEPTHHI(80) QDPHIEV(ENABLED)

To enable Queue Depth Low events on the queue MYQUEUE with a limit set at 20%, use the following
MQSC commands:

 ALTER QMGR PERFMEV(ENABLED)
 ALTER QLOCAL('MYQUEUE') QDEPTHLO(20) QDPLOEV(ENABLED)

To enable Queue Full events on the queue MYQUEUE, use the following MQSC commands:

 ALTER QMGR PERFMEV(ENABLED)
 ALTER QLOCAL('MYQUEUE') QDPMAXEV(ENABLED)

32 Monitoring and Performance for IBM MQ

Shared queues and queue depth events (IBM MQ for z/OS)
Event monitoring is more straightforward for an application that uses shared queues if all the queue
managers in the queue-sharing group have the same setting for the PERFMEV attribute.

When a queue depth event occurs on a shared queue, and the queue manager attribute PERFMEV
is set to ENABLED, the queue managers in the queue-sharing group produce an event message. If
PERFMEV is set to DISABLED on some of the queue managers, event messages are not produced by those
queue managers, making event monitoring from an application more difficult. For more straightforward
monitoring, give each queue manager the same setting for the PERFMEV attribute.

This event message that each queue manager generates represents its individual usage of the shared
queue. If a queue manager performs no activity on the shared queue, various values in the event message
are null or zero. You can use null event messages as follows:

• Ensure that each active queue manager in a queue-sharing group generates one event message
• Highlight cases of no activity on a shared queue for the queue manager that produced the event

message

Coordinating queue manager

When a queue manager issues a queue depth event, it updates the shared queue object definition to
toggle the active performance event attributes. For example, depending on the definition of the queue
attributes, a Queue Depth High event enables a Queue Depth Low and a Queue Full event. After updating
the shared queue object successfully, the queue manager that detected the performance event initially
becomes the coordinating queue manager.

If enabled for performance events, the coordinating queue manager performs the following actions:

1. Issues an event message that captures all shared queue performance data it has gathered since the
last time an event message was created, or since the queue statistics were last reset. The message
descriptor (MQMD) of this message contains a unique correlation identifier (CorrelId) created by the
coordinating queue manager.

2. Broadcasts to all other active queue managers in the same queue-sharing group to request the
production of an event message for the shared queue. The broadcast contains the correlation identifier
created by the coordinating queue manager for the set of event messages.

Having received a request from the coordinating queue manager, if there is an active queue manager in
the queue-sharing group that is enabled for performance events , that active queue manager issues an
event message for the shared queue. The event message that is issued contains information about all the
operations performed by the receiving (active) queue manager since the last time an event message was
created, or since the statistics were last reset. The message descriptor (MQMD) of this event message
contains the unique correlation identifier (CorrelId) specified by the coordinating queue manager.

When performance events occur on a shared queue, n event messages are produced, where n is a number
from 1 to the number of active queue managers in the queue-sharing group. Each event message contains
data that relates to the shared queue activity for the queue manager that generated the event message.

Differences between shared and nonshared queues
Enabling queue depth events on shared queues differs from enabling them on nonshared queues. A key
difference is that events are switched on for shared queues even if PERFMEV is DISABLED on the queue
manager. This is not the case for nonshared queues.

Consider the following example, which illustrates this difference:

• QM1 is a queue manager with PerformanceEvent (PERFMEV in MQSC) set to DISABLED.
• SQ1 is a shared queue with QSGDISP set to (SHARED) QLOCAL in MQSC.
• LQ1 is a nonshared queue with QSGDISP set to (QMGR) QLOCAL in MQSC.

Monitoring and performance 33

Both queues have the following attributes set on their definitions:

• QDPHIEV (ENABLED)
• QDPLOEV (DISABLED)
• QDPMAXEV (DISABLED)

If messages are placed on both queues so that the depth meets or exceeds the QDEPTHHI threshold, the
QDPHIEV value on SQ1 switches to DISABLED. Also, QDPLOEV and QDPMAXEV are switched to ENABLED.
SQ1's attributes are automatically switched for each performance event at the time the event criteria are
met.

In contrast the attributes for LQ1 remain unchanged until PERFMEV on the queue manager is ENABLED.
This means that if the queue manager's PERFMEV attribute is ENABLED, DISABLED and then re-ENABLED
for example, the performance event settings on shared queues might not be consistent with those of
nonshared queues, even though they might have initially been the same.

Queue depth events examples
Use these examples to understand the information that you can obtain from queue depth events

The first example provides a basic illustration of queue depth events. The second example is more
extensive, but the principles are the same as for the first example. Both examples use the same queue
definition, as follows:

The queue, MYQUEUE1, has a maximum depth of 1000 messages. The high queue depth limit is 80% and
the low queue depth limit is 20%. Initially, Queue Depth High events are enabled, while the other queue
depth events are disabled.

The IBM MQ commands (MQSC) to configure this queue are:

ALTER QMGR PERFMEV(ENABLED)

DEFINE QLOCAL('MYQUEUE1') MAXDEPTH(1000) QDPMAXEV(DISABLED) QDEPTHHI(80)
QDPHIEV(ENABLED) QDEPTHLO(20) QDPLOEV(DISABLED)

Related concepts
“Queue depth events” on page 30
Queue depth events are related to the queue depth, that is, the number of messages on the queue.
Related tasks
“Enabling queue depth events” on page 31
To configure a queue for any of the queue depth events you set the appropriate queue manager and
queue attributes.
Related reference
The MQSC commands

Queue depth events: example 1
A basic sequence of queue depth events.

Figure 7 on page 35 shows the variation of queue depth over time.

34 Monitoring and Performance for IBM MQ

Figure 7. Queue depth events (1)

Commentary
1. At T(1), the queue depth is increasing (more MQPUT calls than MQGET calls) and crosses the Queue

Depth Low limit. No event is generated at this time.
2. The queue depth continues to increase until T(2), when the depth high limit (80%) is reached and a

Queue Depth High event is generated.

This enables both Queue Full and Queue Depth Low events.
3. The (presumed) preventive actions instigated by the event prevent the queue from becoming full. By

time T(3), the Queue Depth High limit has been reached again, this time from above. No event is
generated at this time.

4. The queue depth continues to fall until T(4), when it reaches the depth low limit (20%) and a Queue
Depth Low event is generated.

This enables both Queue Full and Queue Depth High events.

Event statistics summary
Table 8 on page 36 summarizes the queue event statistics and Table 9 on page 36 summarizes which
events are enabled.

Monitoring and performance 35

Table 8. Event statistics summary for queue depth events (example 1)

Event 2 Event 4

Time of event T(2) T(4)

Type of event Queue Depth High Queue Depth Low

TimeSinceReset T(2) - T(0) T(4) - T(2)

HighQDepth (Maximum queue depth since
reset)

800 900

MsgEnqCount 1157 1220

MsgDeqCount 357 1820

Table 9. Summary showing which events are enabled

Time period Queue Depth High
event

Queue Depth Low event Queue Full event

Before T(1) ENABLED - -

T(1) to T(2) ENABLED - -

T(2) to T(3) - ENABLED ENABLED

T(3) to T(4) - ENABLED ENABLED

After T(4) ENABLED - ENABLED

Queue depth events: example 2
A more extensive sequence of queue depth events.

Figure 8 on page 37 shows the variation of queue depth over time.

36 Monitoring and Performance for IBM MQ

Figure 8. Queue depth events (2)

Commentary
1. No Queue Depth Low event is generated at the following times:

• T(1) (Queue depth increasing, and not enabled)
• T(2) (Not enabled)
• T(3) (Queue depth increasing, and not enabled)

2. At T(4) a Queue Depth High event occurs. This enables both Queue Full and Queue Depth Low events.
3. At T(9) a Queue Full event occurs after the first message that cannot be put on the queue because the

queue is full.
4. At T(12) a Queue Depth Low event occurs.

Monitoring and performance 37

Event statistics summary
Table 10 on page 38 summarizes the queue event statistics and Table 11 on page 38 summarizes
which events are enabled at different times for this example.

Table 10. Event statistics summary for queue depth events (example 2)

Event 4 Event 6 Event 8 Event 9 Event 12

Time of event T(4) T(6) T(8) T(9) T(12)

Type of event Queue Depth
High

Queue Depth
Low

Queue Depth
High

Queue Full Queue
Depth Low

TimeSinceReset T(4) - T(0) T(6) - T(4) T(8) - T(6) T(9) - T(8) T(12) - T(9)

HighQDepth 800 855 800 1000 1000

MsgEnqCount 1645 311 1377 324 221

MsgDeqCount 845 911 777 124 1021

Table 11. Summary showing which events are enabled

Time period Queue Depth High
event

Queue Depth Low event Queue Full event

T(0) to T(4) ENABLED - -

T(4) to T(6) - ENABLED ENABLED

T(6) to T(8) ENABLED - ENABLED

T(8) to T(9) - ENABLED ENABLED

T(9) to T(12) - ENABLED -

After T(12) ENABLED - ENABLED

Note: Events are out of syncpoint. Therefore you could have an empty queue, then fill it up causing
an event, then roll back all of the messages under the control of a syncpoint manager. However, event
enabling has been automatically set, so that the next time the queue fills up, no event is generated.

Configuration events
Configuration events are notifications that are generated when an object is created, changed, or deleted,
and can also be generated by explicit requests.

Configuration events notify you about changes to the attributes of an object. There are four types of
configuration events:

• Create object events
• Change object events
• Delete object events
• Refresh object events

The event data contains the following information:

Origin information
comprises the queue manager from where the change was made, the ID of the user that made the
change, and how the change came about, for example by a console command.

Context information
a replica of the context information in the message data from the command message.

38 Monitoring and Performance for IBM MQ

Context information is included in the event data only when the command was entered as a message
on the SYSTEM.COMMAND.INPUT queue.

Object identity
comprises the name, type and disposition of the object.

Object attributes
comprises the values of all the attributes in the object.

In the case of change object events, two messages are generated, one with the information before the
change, the other with the information after.

Every configuration event message that is generated is placed on the queue
SYSTEM.ADMIN.CONFIG.EVENT.

Related concepts
“Configuration events” on page 13
Configuration events are generated when a configuration event is requested explicitly, or automatically
when an object is created, modified, or deleted.
Related reference
Create object
Change object
Delete object
Refresh object
“Event types” on page 8
Use this page to view the types of instrumentation event that a queue manager or channel instance can
report

Configuration event generation
Use this page to view the commands that cause configuration events to be generated and to understand
the circumstances in which configuration events are not generated

A configuration event message is put to the configuration event queue when the CONFIGEV queue
manager attribute is ENABLED and

• any of the following commands, or their PCF equivalent, are issued:

– DELETE AUTHINFO
– DELETE CFSTRUCT
– DELETE CHANNEL
– DELETE NAMELIST
– DELETE PROCESS
– DELETE QMODEL/QALIAS/QREMOTE
– DELETE STGCLASS
– DELETE TOPIC
– REFRESH QMGR

• any of the following commands, or their PCF equivalent, are issued even if there is no change to the
object:

– DEFINE/ALTER AUTHINFO
– DEFINE/ALTER CFSTRUCT
– DEFINE/ALTER CHANNEL
– DEFINE/ALTER NAMELIST
– DEFINE/ALTER PROCESS
– DEFINE/ALTER QMODEL/QALIAS/QREMOTE
– DEFINE/ALTER STGCLASS

Monitoring and performance 39

– DEFINE/ALTER TOPIC
– DEFINE MAXSMSGS
– SET CHLAUTH
– ALTER QMGR, unless the CONFIGEV attribute is DISABLED and is not changed to ENABLED

• any of the following commands, or their PCF equivalent, are issued for a local queue that is not
temporary dynamic, even if there is no change to the queue.

– DELETE QLOCAL
– DEFINE/ALTER QLOCAL

• an MQSET call is issued, other than for a temporary dynamic queue, even if there is no change to the
object.

When configuration events are not generated
Configuration events messages are not generated in the following circumstances:

• When a command or an MQSET call fails
• When a queue manager encounters an error trying to put a configuration event on the event queue, in

which case the command or MQSET call completes, but no event message is generated
• For a temporary dynamic queue
• When internal changes are made to the TRIGGER queue attribute
• For the configuration event queue SYSTEM.ADMIN.CONFIG.EVENT, except by the REFRESH QMGR

command
• For REFRESH/RESET CLUSTER and RESUME/SUSPEND QMGR commands that cause clustering changes
• When Creating or deleting a queue manager

Related concepts
Introduction to Programmable Command Formats
“Configuration events” on page 38
Configuration events are notifications that are generated when an object is created, changed, or deleted,
and can also be generated by explicit requests.
Related reference
The MQSC commands
MQSET - Set object attributes
MQSET - Set object attributes

Configuration event usage
Use this page to view how you can use configuration events to obtain information about your system, and
to understand the factors, such as CMDSCOPE, that can affect your use of configuration events.

You can use configuration events for the following purposes:

1. To produce and maintain a central configuration repository, from which reports can be produced and
information about the structure of the system can be generated.

2. To generate an audit trail. For example, if an object is changed unexpectedly, information regarding
who made the alteration and when it was done can be stored.

This can be particularly useful when command events are also enabled. If an MQSC or PCF command
causes a configuration event and a command event to be generated, both event messages will share
the same correlation identifier in their message descriptor.

For an MQSET call or any of the following commands:

• DEFINE object
• ALTER object
• DELETE object

40 Monitoring and Performance for IBM MQ

if the queue manager attribute CONFIGEV is enabled, but the configuration event message cannot be put
on the configuration event queue, for example the event queue has not been defined, the command or
MQSET call is executed regardless.

Effects of CMDSCOPE
For commands where CMDSCOPE is used, the configuration event message or messages will be
generated on the queue manager or queue managers where the command is executed, not where the
command is entered. However, all the origin and context information in the event data will relate to the
original command as entered, even where the command using CMDSCOPE is one that has been generated
by the source queue manager.

Where a queue sharing group includes queue managers that are not at the current version, events will be
generated for any command that is executed by means of CMDSCOPE on a queue manager that is at the
current version, but not on those that are at a previous version. This happens even if the queue manager
where the command is entered is at the previous version, although in such a case no context information
is included in the event data.

Related concepts
Introduction to Programmable Command Formats
“Configuration events” on page 38
Configuration events are notifications that are generated when an object is created, changed, or deleted,
and can also be generated by explicit requests.
Related reference
MQSET - Set object attributes
MQSET - Set object attributes

Refresh Object configuration event
The Refresh Object configuration event is different from the other configuration events, because it occurs
only when explicitly requested.

The create, change, and delete events are generated by an MQSET call or by a command to change
an object but the refresh object event occurs only when explicitly requested by the MQSC command,
REFRESH QMGR, or its PCF equivalent.

The REFRESH QMGR command is different from all the other commands that generate configuration
events. All the other commands apply to a particular object and generate a single configuration event for
that object. The REFRESH QMGR command can produce many configuration event messages potentially
representing every object definition stored by a queue manager. One event message is generated for each
object that is selected.

The REFRESH QMGR command uses a combination of three selection criteria to filter the number of
objects involved:

• Object Name
• Object Type
• Refresh Interval

If you specify none of the selection criteria on the REFRESH QMGR command, the default values are
used for each selection criteria and a refresh configuration event message is generated for every object
definition stored by the queue manager. This might cause unacceptable processing times and event
message generation. Consider specifying some selection criteria.

The REFRESH QMGR command that generates the refresh events can be used in the following situations:

• When configuration data is wanted about all or some of the objects in a system regardless of whether
the objects have been recently manipulated, for example, when configuration events are first enabled.

Consider using several commands, each with a different selection of objects, but such that all are
included.

Monitoring and performance 41

• If there has been an error in the SYSTEM.ADMIN.CONFIG.EVENT queue. In this circumstance, no
configuration event messages are generated for Create, Change, or Delete events. When the error on
the queue has been corrected, the Refresh Queue Manager command can be used to request the
generation of event messages, which were lost while there was an error in the queue. In this situation
consider setting the refresh interval to the time for which the queue was unavailable.

Related concepts
“Configuration events” on page 38
Configuration events are notifications that are generated when an object is created, changed, or deleted,
and can also be generated by explicit requests.
Related reference
REFRESH QMGR
Refresh Queue Manager

Command events
Command events are notifications that an MQSC, or PCF command has run successfully.

The event data contains the following information:

Origin information
comprises the queue manager from where the command was issued, the ID of the user that issued
the command, and how the command was issued, for example by a console command.

Context information
a replica of the context information in the message data from the command message. If a command is
not entered using a message, context information is omitted.

Context information is included in the event data only when the command was entered as a message
on the SYSTEM.COMMAND.INPUT queue.

Command information
the type of command that was issued.

Command data

• for PCF commands, a replica of the command data
• for MQSC commands, the command text

The command data format does not necessarily match the format of the original command. For
example, on distributed platforms the command data format is always in PCF format, even if the
original request was an MQSC command.

Every command event message that is generated is placed on the command event queue,
SYSTEM.ADMIN.COMMAND.EVENT.

Related reference
Command
“Event types” on page 8
Use this page to view the types of instrumentation event that a queue manager or channel instance can
report

Command event generation
Use this page to view the situations that cause command events to be generated and to understand the
circumstances in which command events are not generated

A command event message is generated in the following situations:

• When the CMDEV queue manager attribute is specified as ENABLED and an MQSC or PCF command
runs successfully.

• When the CMDEV queue manager attribute is specified as NODISPLAY and any command runs
successfully, with the exception of DISPLAY commands (MQSC), and Inquire commands (PCF).

42 Monitoring and Performance for IBM MQ

• When you run the MQSC command, ALTER QMGR, or the PCF command, Change Queue Manager, and
the CMDEV queue manager attribute meets either of the following conditions:

– CMDEV is not specified as DISABLED after the change
– CMDEV was not specified as DISABLED before the change

If a command runs against the command event queue, SYSTEM.ADMIN.COMMAND.EVENT, a command
event is generated if the queue still exists and it is not put-inhibited.

When command events are not generated
A command event message is not generated in the following circumstances:

• When a command fails
• When a queue manager encounters an error trying to put a command event on the event queue, in

which case the command runs regardless, but no event message is generated
• For the MQSC command REFRESH QMGR TYPE (EARLY)
• For the MQSC command START QMGR MQSC
• For the MQSC command SUSPEND QMGR, if the parameter LOG is specified
• For the MQSC command RESUME QMGR, if the parameter LOG is specified

Related concepts
“Command events” on page 42
Command events are notifications that an MQSC, or PCF command has run successfully.
Related reference
REFRESH QMGR
START QMGR
SUSPEND QMGR
RESUME QMGR
SUSPEND QMGR, RESUME QMGR and clusters

Command event usage
Use this page to view how you can use command events to generate an audit trail of the commands that
have run

For example, if an object is changed unexpectedly, information regarding who made the alteration
and when it was done can be stored. This can be particularly useful when configuration events are
also enabled. If an MQSC or PCF command causes a command event and a configuration event to be
generated, both event messages will share the same correlation identifier in their message descriptor.

If a command event message is generated, but cannot be put on the command event queue, for example
if the command event queue has not been defined, the command for which the command event was
generated still runs regardless.

Effects of CMDSCOPE
For commands where CMDSCOPE is used, the command event message or messages will be generated
on the queue manager or queue managers where the command runs, not where the command is entered.
However, all the origin and context information in the event data will relate to the original command as
entered, even where the command using CMDSCOPE is one that has been generated by the source queue
manager.

Related concepts
“Command events” on page 42
Command events are notifications that an MQSC, or PCF command has run successfully.
“Command event generation” on page 42

Monitoring and performance 43

Use this page to view the situations that cause command events to be generated and to understand the
circumstances in which command events are not generated
Related reference
The MQSC commands
PCF commands and responses in groups

Logger events

Logger events are notifications that a queue manager has started writing to a new log extent

or, on IBM i, a journal receiver. Logger event messages are not available with IBM MQ for
z/OS.

The event data contains the following information:

• The name of the current log extent.
• The name of the earliest log extent needed for restart recovery.
• The name of the earliest log extent needed for media recovery.
• The directory in which the log extents are located.

Every logger event message that is generated is placed on the logger event queue,
SYSTEM.ADMIN.LOGGER.EVENT.

Related reference
Logger
“Event types” on page 8
Use this page to view the types of instrumentation event that a queue manager or channel instance can
report

Logger event generation
Use this page to view the situations that cause logger events to be generated and to understand the
circumstances in which logger events are not generated

A logger event message is generated in the following situations:

• When the LOGGEREV queue manager attribute is specified as ENABLED and the queue manager starts
writing to a new log extent or, on IBM i, a journal receiver.

• When the LOGGEREV queue manager attribute is specified as ENABLED and the queue manager starts.
• When the LOGGEREV queue manager attribute is changed from DISABLED to ENABLED.

Tip: You can use the RESET QMGR MQSC command to request a queue manager to start writing to a new
log extent.

When logger events are not generated
A logger event message is not generated in the following circumstances:

• When a queue manager is configured to use circular logging.

In this case, the LOGGEREV queue manager attribute is set as DISABLED and cannot be altered.
• When a queue manager encounters an error trying to put a logger event on the event queue, in which

case the action that caused the event completes, but no event message is generated.

Related concepts
“Logger events” on page 44

44 Monitoring and Performance for IBM MQ

Logger events are notifications that a queue manager has started writing to a new log extent

or, on IBM i, a journal receiver. Logger event messages are not available with IBM MQ for
z/OS.
Related reference
LoggerEvent (MQLONG)
LoggerEvent (10-digit signed integer)
RESET QMGR

Logger event usage
Use this page to view how you can use logger events to determine the log extents that are no longer
required for queue manager restart, or media recovery.

You can archive superfluous log extents to a medium such as tape for disaster recovery before removing
them from the active log directory. Regular removal of superfluous log extents keeps disk space usage to
a minimum.

If the LOGGEREV queue manager attribute is enabled, but a logger event message cannot be put on the
logger event queue, for example because the event queue has not been defined, the action that caused
the event continues regardless.

Related concepts
“Logger events” on page 44

Logger events are notifications that a queue manager has started writing to a new log extent

or, on IBM i, a journal receiver. Logger event messages are not available with IBM MQ for
z/OS.
Related reference
LoggerEvent (MQLONG)
LoggerEvent (10-digit signed integer)
“Logger event generation” on page 44
Use this page to view the situations that cause logger events to be generated and to understand the
circumstances in which logger events are not generated

Sample program to monitor the logger event queue
Use this page to view a sample C program that monitors the logger event queue for new event messages,
reads those messages, and puts the contents of the message to stdout.

/**/
/* */
/* Program name: AMQSLOG0.C */
/* */
/* Description: Sample C program to monitor the logger event queue and output*/
/* a message to stdout when a logger event occurs */
/* <N_OCO_COPYRIGHT> */
/* Licensed Materials - Property of IBM */
/* */
/* 63H9336 */
/* (c) Copyright IBM Corp. 2005, 2025. All Rights Reserved. */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with */
/* IBM Corp. */
/* <NOC_COPYRIGHT> */
/**/
/* */
/* Function: AMQSLOG is a sample program which monitors the logger event */
/* queue for new event messages, reads those messages, and puts the contents */
/* of the message to stdout. */
/* */
/**/
/* */
/* AMQSLOG has 1 parameter - the queue manager name (optional, if not */
/* specified then the default queue manager is implied) */
/* */

Monitoring and performance 45

/**/

/**/
/* Includes */
/**/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <cmqc.h> /* MQI constants*/
#include <cmqcfc.h> /* PCF constants*/

/**/
/* Constants */
/**/

#define MAX_MESSAGE_LENGTH 8000

typedef struct _ParmTableEntry
{
 MQLONG ConstVal;
 PMQCHAR Desc;
} ParmTableEntry;

ParmTableEntry ParmTable[] =
{
 0 ,"",
 MQCA_Q_MGR_NAME ,"Queue Manager Name",
 MQCMD_LOGGER_EVENT ,"Logger Event Command",
 MQRC_LOGGER_STATUS ,"Logger Status",
 MQCACF_CURRENT_LOG_EXTENT_NAME,"Current Log Extent",
 MQCACF_RESTART_LOG_EXTENT_NAME,"Restart Log Extent",
 MQCACF_MEDIA_LOG_EXTENT_NAME ,"Media Log Extent",
 MQCACF_LOG_PATH ,"Log Path"};

/**/
/* Function prototypes */
/**/

static void ProcessPCF(MQHCONN hConn,
 MQHOBJ hEventQueue,
 PMQCHAR pBuffer);

static PMQCHAR ParmToString(MQLONG Parameter);

/**/
/* Function: main */
/**/
int main(int argc, char * argv[])
{
 MQLONG CompCode;
 MQLONG Reason;
 MQHCONN hConn = MQHC_UNUSABLE_HCONN;
 MQOD ObjDesc = { MQOD_DEFAULT };
 MQCHAR QMName[MQ_Q_MGR_NAME_LENGTH+1] = "";
 MQCHAR LogEvQ[MQ_Q_NAME_LENGTH] = "SYSTEM.ADMIN.LOGGER.EVENT";
 MQHOBJ hEventQueue;
 PMQCHAR pBuffer = NULL;

 printf("\n/*************************************/\n");
 printf("/* Sample Logger Event Monitor start */\n");
 printf("/*************************************/\n");

 /**/
 /* Parse any command line options */
 /**/

 if (argc > 1)
 strncpy(QMName, argv[1], (size_t)MQ_Q_MGR_NAME_LENGTH);

 pBuffer = (char *)malloc(MAX_MESSAGE_LENGTH);
 if (!pBuffer)
 {
 printf("Can't allocate %d bytes\n",MAX_MESSAGE_LENGTH);
 goto MOD_EXIT;
 }

 /**/
 /* Connect to the specified (or default) queue manager */
 /**/

 MQCONN(QMName,

46 Monitoring and Performance for IBM MQ

 &hConn,
 &CompCode,
 &Reason);

 if (Reason != MQCC_OK)
 {
 printf("Error in call to MQCONN, Reason %d, CompCode %d\n", Reason,
 CompCode);
 goto MOD_EXIT;
 }

 /* Open the logger event queue for input */

 strncpy(ObjDesc.ObjectQMgrName,QMName, MQ_Q_MGR_NAME_LENGTH);
 strncpy(ObjDesc.ObjectName, LogEvQ, MQ_Q_NAME_LENGTH);

 MQOPEN(hConn,
 &ObjDesc,
 MQOO_INPUT_EXCLUSIVE,
 &hEventQueue,
 &CompCode,
 &Reason);
 if (Reason)
 {
 printf("MQOPEN failed for queue manager %.48s Queue %.48s Reason: %d\n",
 ObjDesc.ObjectQMgrName,
 ObjDesc.ObjectName,
 Reason);
 goto MOD_EXIT;
 }
 else
 {
 ProcessPCF(hConn, hEventQueue, pBuffer);
 }

 MOD_EXIT:

 if (pBuffer != NULL) {
 free(pBuffer);
 }

 /**/
 /* Disconnect */
 /**/
 if (hConn != MQHC_UNUSABLE_HCONN) {
 MQDISC(&hConn, &CompCode, &Reason);
 }

 return 0;
}

/**/
/* Function: ProcessPCF */
/**/
/* */
/* Input Parameters: Handle to queue manager connection */
/* Handle to the opened logger event queue object */
/* Pointer to a memory buffer to store the incoming PCF msg*/
/* */
/* Output Parameters: None */
/* */
/* Logic: Wait for messages to appear on the logger event queue and display */
/* their contents. */
/* */
/**/

static void ProcessPCF(MQHCONN hConn,
 MQHOBJ hEventQueue,
 PMQCHAR pBuffer)
{
 MQCFH * pCfh;
 MQCFST * pCfst;
 MQGMO Gmo = { MQGMO_DEFAULT };
 MQMD Mqmd = { MQMD_DEFAULT };
 PMQCHAR pPCFCmd;
 MQLONG Reason = 0;
 MQLONG CompCode;
 MQLONG MsgLen;
 PMQCHAR Parm = NULL;
 /* Set timeout value */
 Gmo.Options |= MQGMO_WAIT;
 Gmo.Options |= MQGMO_CONVERT;

Monitoring and performance 47

 Gmo.WaitInterval = MQWI_UNLIMITED;
 /**/
 /* Process response Queue */
 /**/
 while (Reason == MQCC_OK)
 {
 memcpy(&Mqmd.MsgId; , MQMI_NONE, sizeof(Mqmd.MsgId));
 memset(&Mqmd.CorrelId, 0, sizeof(Mqmd.CorrelId));

 MQGET(hConn,
 hEventQueue,
 &Mqmd,
 &Gmo,
 MAX_MESSAGE_LENGTH,
 pBuffer,
 &MsgLen,
 &CompCode,
 &Reason);
 if (Reason != MQCC_OK)
 {
 switch(Reason)
 {
 case MQRC_NO_MSG_AVAILABLE:
 printf("Timed out");
 break;

 default:
 printf("MQGET failed RC(%d)\n", Reason);
 break;
 }
 goto MOD_EXIT;
 }

 /**/
 /* Only expect PCF event messages on this queue */
 /**/
 if (memcmp(Mqmd.Format, MQFMT_EVENT, sizeof(Mqmd.Format)))
 {
 printf("Unexpected message format '%8.8s' received\n",Mqmd.Format);
 continue;
 }

 /***/
 /* Build the output by parsing the received PCF message, first the */
 /* header, then each of the parameters */
 /***/

 pCfh = (MQCFH *)pBuffer;

 if (pCfh -> Reason)
 {
 printf("---\n");
 printf("Event Message Received\n");

 Parm = ParmToString(pCfh->Command);
 if (Parm != NULL) {
 printf("Command :%s \n",Parm);
 }
 else
 {
 printf("Command :%d \n",pCfh->Command);
 }

 printf("CompCode :%d\n" ,pCfh->CompCode);

 Parm = ParmToString(pCfh->Reason);
 if (Parm != NULL) {
 printf("Reason :%s \n",Parm);
 }
 else
 {
 printf("Reason :%d \n",pCfh->Reason);
 }
 }

 pPCFCmd = (char *) (pCfh+1);
 printf("---\n");
 while(pCfh -> ParameterCount--)
 {
 pCfst = (MQCFST *) pPCFCmd;
 switch(pCfst -> Type)

48 Monitoring and Performance for IBM MQ

 {
 case MQCFT_STRING:
 Parm = ParmToString(pCfst -> Parameter);
 if (Parm != NULL) {
 printf("%-32s",Parm);
 }
 else
 {
 printf("%-32d",pCfst -> Parameter);
 }

 fwrite(pCfst -> String, pCfst -> StringLength, 1, stdout);
 pPCFCmd += pCfst -> StrucLength;
 break;
 default:
 printf("Unrecoginised datatype %d returned\n",pCfst->Type);
 goto MOD_EXIT;
 }
 putchar('\n');
 }
 printf("---\n");
 }
MOD_EXIT:

 return;
}

/**/
/* Function: ParmToString */
/**/
/* */
/* Input Parameters: Parameter for which to get string description */
/* */
/* Output Parameters: None */
/* */
/* Logic: Takes a parameter as input and returns a pointer to a string */
/* description for that parameter, or NULL if the parameter does not */
/* have an associated string description */
/**/

static PMQCHAR ParmToString(MQLONG Parameter){
 long i;
 for (i=0 ; i< sizeof(ParmTable)/sizeof(ParmTableEntry); i++)
 {
 if (ParmTable[i].ConstVal == Parameter ParmTable[i].Desc)
 return ParmTable[i].Desc;
 }
 return NULL;
}

Sample output
This application produces the following form of output:

/*************************************/
/* Sample Logger Event Monitor start */
/*************************************/

Event Message Received
Command :Logger Event Command
CompCode :0
Reason :Logger Status

Queue Manager Name CSIM

Current Log Extent AMQA000001
Restart Log Extent AMQA000001
Media Log Extent AMQA000001
Log Path QMCSIM

Related concepts
“Logger event usage” on page 45

Monitoring and performance 49

Use this page to view how you can use logger events to determine the log extents that are no longer
required for queue manager restart, or media recovery.
“Command event usage” on page 43
Use this page to view how you can use command events to generate an audit trail of the commands that
have run
Related reference
“Logger event generation” on page 44
Use this page to view the situations that cause logger events to be generated and to understand the
circumstances in which logger events are not generated

Authority configuration events
Authority configuration events are output when a change is made from any of the security control
operations through the command line, MQSC, PCF, or corresponding iSeries commands.

The event data contains the following information:

Origin information
comprises the queue manager from where the change was made, the ID of the user that made the
change, and how the change came about, for example by a console command.

Context information
a replica of the context information in the message data from the command message.

Context information is included in the event data when the command was entered as a message on
the SYSTEM.ADMIN.COMMAND.QUEUE queue.

Authority Record identity
comprises the profile name, and object type of the authority record.

Object attributes
comprises the values of all the attributes in the authority record.

In the case of change authority record events, two messages are generated, one with the information
before the change, the other with the information after the change.

Every event message that is generated is placed on the SYSTEM.ADMIN.CONFIG.EVENT queue.

Related reference
“Event types” on page 8
Use this page to view the types of instrumentation event that a queue manager or channel instance can
report

Authority configuration event generation
Use this page to view the situations that cause authority configuration events to be generated, and to
understand the circumstances in which authority configuration events are not generated.

Authority configuration events notify you about changes to the attributes of an authority record. There are
three types of authority configuration event:

• Change Authority Record
• Delete Authority Record
• Refresh Authority Record

An authority event message is put to the configuration event queue, when the CONFIGEV queue manager
attribute is set to ENABLED and any of the following commands, or their MQSC equivalent, are issued,
even if there is no actual change to the authority record:

• Delete Authority Record PCF command
• Set Authority Record PCF command
• setmqaut control command

50 Monitoring and Performance for IBM MQ

• RVKMQMAUT CL command
• GRTMQMAUT CL command

When authority configuration events are not generated
The authority configuration event messages are not generated in the following circumstances:

• When a command fails
• When a queue manager encounters an error trying to put a message on the event queue, in which case

the command completes, but no event message is generated
• When creating or deleting a queue manager
• When an object is deleted regardless of the AUTHREC option on the delete command. The

corresponding command event shows that operation, which does not apply to the authority record
for individual users.

Related concepts
“Command events” on page 42
Command events are notifications that an MQSC, or PCF command has run successfully.
Related reference
REFRESH QMGR

Sample program to monitor instrumentation events

amqsevt formats the instrumentation events that a queue manager can create, and is
supplied with IBM MQ. The program reads messages from event queues, and formats them into readable
strings.

As a sample program, both source and binary are provided. The sample is provided on all the distributed
platforms, including IBM i.

The single binary file amqsevt (or amqsevt.exe) is shipped in the samples fileset and is installed in the
samples bin (tools\c\samples\bin or bin64) directory.

The source files amqsevta.c is also shipped in the samples fileset, and is installed in the samples
directory, that is, tools\c\samples on Windows.

Note that the program can read from multiple event queues, and subscribe to multiple topics, by using
MQCB to retrieve the messages.

When running as a client, the sample can connect to any queue manager including z/OS.

Attention: You can use the program without specifying any parameters, in which case the program
attempts to connect to the default queue manager and read messages from the standard set of
event queues (SYSTEM.ADMIN.*.EVENT).

In this situation, the program waits forever for messages, until you press the Enter key to end the
program.

However, you are more likely to use the program with the various options described.

Syntax

Monitoring and performance 51

amqsevt

 -m QMgrName

 -r Reconnection Options
1

d Reconnect Disabled

r Reconnect

m Reconnect Queue manager

 -b Browse Messages -c Connect as Client

 -d Print Definitions without formatting -u User ID

 -w Wait Time -t Topic

2

 -q Queue

2

Notes:
1 Available only when being used as a client
2 Queues and topics can have multiple entries

Optional parameters

-m QueueManagerName
Specify a specific queue manager for reading events.

-r Reconnection Options
Auto reconnection options when used as a client. The possible values are:
d

Reconnect the client disabled
r

Reconnect the client
m

Reconnect the queue manager
-b

Browse records only, rather than destructively reading the messages
-c

Selects connection as a client.
-d

Selects the printing mode used in the second example. The MQI constants are printed exactly as they
appear in the header files.

-u User ID
Specify a specific user and causes a prompt to appear requesting a password

-w Wait
Causes the program to exit if no event messages have arrived within the number of seconds specified.

Note that, if you do not specify a time, the program only ends normally when you press the Enter key.

-t Topic and
-q Queue

Both the -q and -t options can be given multiple times on the command line.

52 Monitoring and Performance for IBM MQ

Therefore, it is possible to read from some standard queues and also from topics (if events are being
sent to them) from a single run of the program.

If no queues or topics are named on the command line, the default event queues are opened.

Note: The program detects if it has connected to a z/OS queue manager as a client, and changes the
default set of event queues appropriately, as z/OS does not have the SYSTEM.ADMIN.LOGGER.EVENT
queue.

When topics are used, the program uses a non-durable subscription with a managed queue so that
everything gets cleaned out when it exits.

Sample output

The following two examples show the output from the program.

The first example uses the default formatting option where the program takes the MQI definition of a field
and formats the output to make the output more readable.

**** Message (320 Bytes) on Queue SYSTEM.ADMIN.QMGR.EVENT ****
Event Type : Queue Mgr Event
Reason : Unknown Alias Base Queue
Event created : 2015/06/17 13:47:07.02 GMT
 Queue Mgr Name : V8003_A
 Queue Name : EVT.NO.BASE.QUEUE
 Base Object Name : EVT.NOT.DEFINED
 Appl Type : Unix
 Appl Name : amqsput
 Base Type : Queue

The second example shows the alternative formatting, using the -d option, that does not try to translate
MQI constants. This might be preferable for some scripting tools that look for specific MQI values.

**** Message (320 Bytes) on Queue SYSTEM.ADMIN.QMGR.EVENT ****
Event Type : MQCMD_Q_MGR_EVENT
Reason : MQRC_UNKNOWN_ALIAS_BASE_Q
Event created : 2015/06/17 13:52:48.18 GMT
 MQCA_Q_MGR_NAME : V8003_A
 MQCA_Q_NAME : EVT.NO.BASE.QUEUE
 MQCA_BASE_OBJECT_NAME : EVT.NOT.DEFINED
 MQIA_APPL_TYPE : MQAT_UNIX
 MQCACF_APPL_NAME : amqsput
 MQIA_BASE_TYPE : MQOT_Q

Example usage

The following example shows you how to use more than one queue:

amqsevt -m QM1 -q SYSTEM.ADMIN.QMGR.EVENT -q SYSTEM.ADMIN.PERM.EVENT -w 1

Related concepts
“Event monitoring” on page 5
Event monitoring is the process of detecting occurrences of instrumentation events in a queue manager
network. An instrumentation event is a logical combination of conditions that is detected by a queue
manager or channel instance. Such an event causes the queue manager or channel instance to put a
special message, called an event message, on an event queue.
“Instrumentation events” on page 6

Monitoring and performance 53

An instrumentation event is a logical combination of conditions that a queue manager or channel instance
detects and puts a special message, called an event message, on an event queue.
Related reference
C programming
“Sample program to monitor the logger event queue” on page 45
Use this page to view a sample C program that monitors the logger event queue for new event messages,
reads those messages, and puts the contents of the message to stdout.

Message monitoring
Message monitoring is the process of identifying the route a message has taken through a queue manager
network. By identifying the types of activities, and the sequence of activities performed on behalf of a
message, the message route can be determined.

As a message passes through a queue manager network, various processes perform activities on behalf of
the message. Use one of the following techniques to determine a message route:

• The IBM MQ display route application (dspmqrte)
• Activity recording
• Trace-route messaging

These techniques all generate special messages that contain information about the activities performed
on the message as it passed through a queue manager network. Use the information returned in these
special messages to achieve the following objectives:

• Record message activity.
• Determine the last known location of a message.
• Detect routing problems in your queue manager network.
• Assist in determining the causes of routing problems in your queue manager network.
• Confirm that your queue manager network is running correctly.
• Familiarize yourself with the running of your queue manager network.
• Trace published messages.

Related concepts
Types of message

Activities and operations
Activities are discrete actions that an application performs on behalf of a message. Activities consist of
operations, which are single pieces of work that an application performs.

The following actions are examples of activities:

• A message channel agent (MCA) sends a message from a transmission queue down a channel
• An MCA receives a message from a channel and puts it on its target queue
• An application getting a message from a queue, and putting a reply message in response.
• The IBM MQ publish/subscribe engine processes a message.

Activities consist of one or more operations. Operations are single pieces of work that an application
performs. For example, the activity of an MCA sending a message from a transmission queue down a
channel consists of the following operations:

1. Getting a message from a transmission queue (a Get operation).
2. Sending the message down a channel (a Send operation).

In a publish/subscribe network, the activity of the IBM MQ publish/subscribe engine processing a
message can consist of the following multiple operations:

1. Putting a message to a topic string (a Put operation).

54 Monitoring and Performance for IBM MQ

2. Zero or more operations for each of the subscribers that are considered for receipt of the message (a
Publish operation, a Discarded Publish operation or an Excluded Publish operation).

Information from activities
You can identify the sequence of activities performed on a message by recording information as the
message is routed through a queue manager network. You can determine the route of a message through
the queue manager network from the sequence of activities performed on the message, and can obtain
the following information:

The last known location of a message
If a message does not reach its intended destination, you can determine the last known location of
the message from a complete or partial message route.

Configuration issues with a queue manager network
When studying the route of a message through a queue manager network, you might see that the
message has not gone where expected. There are many reasons why this can occur, for example, if a
channel is inactive, the message might take an alternative route.

For a publish/subscribe application, you can also determine the route of a message being published
to a topic and any messages that flow in a queue manager network as a result of being published to
subscribers.

In such situations, a system administrator can determine whether there are any problems in the
queue manager network, and if appropriate, correct them.

Message routes
Depending on your reason for determining a message route, you can use the following general
approaches:

Using activity information recorded for a trace-route message
Trace-route messages record activity information for a specific purpose. You can use them to
determine configuration issues with a queue manager network, or to determine the last known
location of a message. If a trace-route message is generated to determine the last known location
of a message that did not reach its intended destination, it can mimic the original message. This gives
the trace-route message the greatest chance of following the route taken by the original message.

The IBM MQ display route application can generate trace-route messages.

Using activity information recorded for the original message
You can enable any message for activity recording and have activity information recorded on its
behalf. If a message does not reach its intended destination, you can use the recorded activity
information to determine the last known location of the message. By using activity information from
the original message, the most accurate possible message route can be determined, leading to the
last known location. To use this approach, the original message must be enabled for activity recording.

Warning: Avoid enabling all messages in a queue manager network for activity recording. Messages
enabled for activity recording can have many activity reports generated on their behalf. If every
message in a queue manager network is enabled for activity recording, the queue manager network
traffic can increase to an unacceptable level.

Related concepts
“Message monitoring” on page 54
Message monitoring is the process of identifying the route a message has taken through a queue manager
network. By identifying the types of activities, and the sequence of activities performed on behalf of a
message, the message route can be determined.
“Message route techniques” on page 56
Activity recording and trace-route messaging are techniques that allow you to record activity information
for a message as it is routed through a queue manager network.
“Trace-route messaging” on page 62

Monitoring and performance 55

Trace-route messaging is a technique that uses trace-route messages to record activity information for a
message. Trace-route messaging involves sending a trace-route message into a queue manager network.
Related tasks
Writing your own message channel agents

Message route techniques
Activity recording and trace-route messaging are techniques that allow you to record activity information
for a message as it is routed through a queue manager network.
Activity recording

If a message has the appropriate report option specified, it requests that applications generate
activity reports as it is routed through a queue manager network. When an application performs an
activity on behalf of a message, an activity report can be generated, and delivered to an appropriate
location. An activity report contains information about the activity that was performed on the
message.

The activity information collected using activity reports must be arranged in order before a message
route can be determined.

Trace-route messaging
Trace-route messaging is a technique that involves sending a trace-route message into a queue
manager network. When an application performs an activity on behalf of the trace-route message,
activity information can be accumulated in the message data of the trace-route message, or activity
reports can be generated. If activity information is accumulated in the message data of the trace-
route message, when it reaches its target queue a trace-route reply message containing all the
information from the trace-route message can be generated and delivered to an appropriate location.

Because a trace-route message is dedicated to recording the sequence of activities performed on its
behalf, there are more processing options available compared with normal messages that request
activity reports.

Comparison of activity recording and trace-route messaging
Both activity recording and trace-route messaging can provide activity information to determine the route
a message has taken through a queue manager network. Both methods have their own advantages.

Benefit Activity
recording

Trace-route
messaging

Can determine the last known location of a message Yes Yes

Can determine configuration issues with a queue manager network Yes Yes

Can be requested by any message
(is not restricted to use with trace-route messages)

Yes No

Message data is left unmodified Yes No

Message processed normally Yes No

Activity information can be accumulated in the message data No Yes

Optional message delivery to target queue No Yes

If a message is caught in an infinite loop, it can be detected and
dealt with

No Yes

Activity information can be put in order reliably No Yes

Application provided to display the activity information No Yes

56 Monitoring and Performance for IBM MQ

Message route completeness
In some cases it is not possible to identify the full sequence of activities performed on behalf of a
message, so only a partial message route can be determined. The completeness of a message route
is directly influenced by the queue manager network that the messages are routed through. The
completeness of a message route depends on the level of the queue managers in the queue manager
network, as follows:

Queue managers at IBM WebSphere® MQ 6.0 and subsequent releases
MCAs and user-written applications connected to queue managers at IBM WebSphere MQ 6.0
or subsequent releases can record information related to the activities performed on behalf of
a message. The recording of activity information is controlled by the queue manager attributes
ACTIVREC and ROUTEREC. If a queue manager network consists of queue managers at IBM
WebSphere MQ 6.0 or subsequent releases only, complete message routes can be determined.

IBM MQ queue managers before Version 6.0
Applications connected to IBM MQ queue managers before Version 6.0 do not record the activities
that they have performed on behalf of a message. If a queue manager network contains any IBM MQ
queue manager prior to Version 6.0, only a partial message route can be determined.

How activity information is stored
IBM MQ stores activity information in activity reports, trace-route messages, or trace-route reply
messages. In each case the information is stored in a structure called the Activity PCF group. A trace-
route message or trace-route reply message can contain many Activity PCF groups, depending on the
number of activities performed on the message. Activity reports contain one Activity PCF group because a
separate activity report is generated for every recorded activity.

With trace-route messaging, additional information can be recorded. This additional information is stored
in a structure called the TraceRoute PCF group. The TraceRoute PCF group contains a number of PCF
structures that are used to store additional activity information, and to specify options that determine
how the trace-route message is handled as it is routed through a queue manager network.

Related concepts
“Activity recording” on page 57
Activity recording is a technique for determining the routes that messages take through a queue manager
network. To determine the route that a message has taken, the activities performed on behalf of the
message are recorded.
“Trace-route messaging” on page 62
Trace-route messaging is a technique that uses trace-route messages to record activity information for a
message. Trace-route messaging involves sending a trace-route message into a queue manager network.
Related reference
“The TraceRoute PCF group” on page 67
Attributes in the TraceRoute PCF group control the behavior of a trace-route message. The TraceRoute PCF
group is in the message data of every trace-route message.
“Activity report message data” on page 100
Use this page to view the parameters contained by the Activity PCF group in an activity report message.
Some parameters are returned only when specific operations have been performed.

Activity recording
Activity recording is a technique for determining the routes that messages take through a queue manager
network. To determine the route that a message has taken, the activities performed on behalf of the
message are recorded.

When using activity recording, each activity performed on behalf of a message can be recorded in an
activity report. An activity report is a type of report message. Each activity report contains information
about the application that performed the activity on behalf of the message, when the activity took place,
and information about the operations that were performed as part of the activity. Activity reports are

Monitoring and performance 57

typically delivered to a reply-to queue where they are collected together. By studying the activity reports
related to a message, you can determine the route that the message took through the queue manager
network.

Activity report usage
When messages are routed through a queue manager network, activity reports can be generated. You can
use activity report information in the following ways:
Determine the last known location of a message

If a message that is enabled for activity recording does not reach its intended destination, activity
reports generated for the message as it was routed through a queue manager network can be studied
to determine the last known location of the message.

Determine configuration issues with a queue manager network
A number of messages enabled for activity recording can be sent into a queue manager network. By
studying the activity reports related to each message it can become apparent that they have not taken
the expected route. There are many reasons why this can occur, for example, a channel could have
stopped, forcing the message to take an alternative route. In these situations, a system administrator
can determine whether there are any problems in the queue manager network, and if there are,
correct them.

Note: You can use activity recording in conjunction with trace-route messages by using the IBM MQ
display route application.

Activity report format
Activity reports are PCF messages generated by applications that have performed an activity on behalf of
a message. Activity reports are standard IBM MQ report messages containing a message descriptor and
message data, as follows:

The message descriptor

• An MQMD structure

Message data

• An embedded PCF header (MQEPH)
• Activity report message data

Activity report message data consists of the Activity PCF group, and if generated for a trace-route
message, the TraceRoute PCF group.

Related reference
MQMD - Message descriptor
MQEPH - Embedded PCF header

Controlling activity recording
Enable activity recording at the queue manager level. To enable an entire queue manager network,
individually enable every queue manager in the network for activity recording. If you enable more queue
managers, more activity reports are generated.

About this task
To generate activity reports for a message as it is routed through a queue manager: define the message
to request activity reports; enable the queue manager for activity recording; and ensure that applications
performing activities on the message are capable of generating activity reports.

If you do not want activity reports to be generated for a message as it is routed through a queue manager,
disable the queue manager for activity recording.

58 Monitoring and Performance for IBM MQ

Procedure
1. Request activity reports for a message

a) In the message descriptor of the message, specify MQRO_ACTIVITY in the Report field.
b) In the message descriptor of the message, specify the name of a reply-to queue in the ReplyToQ

field.

Warning: Avoid enabling all messages in a queue manager network for activity recording. Messages
enabled for activity recording can have many activity reports generated on their behalf. If every
message in a queue manager network is enabled for activity recording, the queue manager network
traffic can increase to an unacceptable level.

2. Enable or disable the queue manager for activity recording.
Use the MQSC command ALTER QMGR, specifying the parameter ACTIVREC, to change the value of
the queue manager attribute. The value can be:
MSG

The queue manager is enabled for activity recording. Any activity reports generated are delivered
to the reply-to queue specified in the message descriptor of the message. This is the default value.

QUEUE
The queue manager is enabled for activity recording. Any activity reports generated are delivered
to the local system queue SYSTEM.ADMIN.ACTIVITY.QUEUE. The system queue can also be used
to forward activity reports to a common queue.

DISABLED
The queue manager is disabled for activity recording. No activity reports are generated while in the
scope of this queue manager.

For example, to enable a queue manager for activity recording and specify that any activity
reports generated are delivered to the local system queue SYSTEM.ADMIN.ACTIVITY.QUEUE, use the
following MQSC command:

ALTER QMGR ACTIVREC(QUEUE)

Remember: When you modify the ACTIVREC queue manager attribute, a running MCA does not detect
the change until the channel is restarted.

3. Ensure that your application uses the same algorithm as MCAs use to determine whether to generate
an activity report for a message:
a) Verify that the message has requested activity reports to be generated
b) Verify that the queue manager where the message currently resides is enabled for activity recording
c) Put the activity report on the queue determined by the ACTIVREC queue manager attribute

Setting up a common queue for activity reports
To determine the locations of the activity reports related to a specific message when the reports are
delivered to the local system queue, it is more efficient to use a common queue on a single node

Before you begin
Set the ACTIVREC parameter to enable the queue manager for activity recording and to specify that any
activity reports generated are delivered to the local system queue SYSTEM.ADMIN.ACTIVITY.QUEUE.

About this task
If a number of queue managers in a queue manager network are set to deliver activity reports to the local
system queue, it can be time consuming to determine the locations of the activity reports related to a
specific message. Alternatively, use a single node, which is a queue manager that hosts a common queue.
All the queue managers in a queue manager network can deliver activity reports to this common queue.
The benefit of using a common queue is that queue managers do not have to deliver activity reports to the
reply-to queue specified in a message and, when determining the locations of the activity reports related
to a message, you query one queue only.

Monitoring and performance 59

To set up a common queue, perform the following steps:

Procedure
1. Select or define a queue manager as the single node
2. On the single node, select or define a queue for use as the common queue
3. On all queue managers where activity reports are to be delivered to the common queue, redefine the

local system queue SYSTEM.ADMIN.ACTIVITY.QUEUE as a remote queue definition:
a) Specify the name of the single node as the remote queue manager name
b) Specify the name of the common queue as the remote queue name

Determining message route information
To determine a message route, obtain the information from the activity reports collected. Determine
whether enough activity reports are on the reply-to queue to enable you to determine the required
information and arrange the activity reports in order.

About this task
The order that activity reports are put on the reply-to queue does not necessarily correlate to the order in
which the activities were performed. You must order activity reports manually, unless they are generated
for a trace-route message, in which case you can use the IBM MQ display route application to order the
activity reports.

Determine whether enough activity reports are on the reply-to queue for you to obtain the necessary
information:

Procedure
1. Identify all related activity reports on the reply-to queue by comparing identifiers of the activity reports

and the original message. Ensure you set the report option of the original message such that the
activity reports can be correlated with the original message.

2. Order the identified activity reports from the reply-to queue.
You can use the following parameters from the activity report:

OperationType

The types of operations performed might enable you to determine the activity report that was
generated directly before, or after, the current activity report.

For example, an activity report details that an MCA sent a message from a transmission queue
down a channel. The last operation detailed in the activity report has an OperationType of send
and details that the message was sent using the channel, CH1, to the destination queue manager,
QM1. This means that the next activity performed on the message will have occurred on queue
manager, QM1, and that it will have begun with a receive operation from channel, CH1. By using
this information you can identify the next activity report, providing it exists and has been acquired.

OperationDate and OperationTime

You can determine the general order of the activities from the dates and times of the operations in
each activity report.

Warning: Unless every queue manager in the queue manager network has their system clocks
synchronized, ordering by date and time does not guarantee that the activity reports are in the
correct sequence. You must establish the order manually.

The order of the activity reports represents the route, or partial route, that the message took through
the queue manager network.

3. Obtain the information you need from the activity information in the ordered activity reports.

60 Monitoring and Performance for IBM MQ

If you have insufficient information about the message, you might be able to acquire further activity
reports.

Retrieving further activity reports
To determine a message route, sufficient information must be available from the activity reports
collected. If you retrieve the activity reports related to a message from the reply-to queue that the
message specified, but you not have the necessary information, look for further activity reports.

About this task
To determine the locations of any further activity reports, perform the following steps:

Procedure
1. For any queue managers in the queue manager network that deliver activity reports to a common

queue, retrieve activity reports from the common queue that have a CorrelId that matches the MsgId of
the original message.

2. For any queue managers in the queue manager network that do not deliver activity reports to a
common queue, retrieve activity reports as follows:
a) Examine the existing activity reports to identify queue managers through which the message was

routed.
b) For these queue managers, identify the queue managers that are enabled for activity recording.
c) For these queue managers, identify any that did not return activity reports to the specified reply-to

queue.
d) For each of the queue managers that you identify, check the system queue

SYSTEM.ADMIN.ACTIVITY.QUEUE and retrieve any activity reports that have a CorrelId that
matches the MsgId of the original message.

e) If you find no activity reports on the system queue, check the queue manager dead letter queue, if
one exists.
An activity report can only be delivered to a dead letter queue if the report option,
MQRO_DEAD_LETTER_Q, is set.

3. Arrange all the acquired activity reports in order.
The order of the activity reports then represents the route, or partial route, that the message took.

4. Obtain the information you need from the activity information in the ordered activity reports.
In some circumstances, recorded activity information cannot reach the specified reply-to queue, a
common queue, or a system queue.

Circumstances where activity information is not acquired
To determine the complete sequence of activities performed on behalf of a message, information related
to every activity must be acquired. If the information relating to any activity has not been recorded, or has
not been acquired, you can determine only a partial sequence of activities.

Activity information is not recorded in the following circumstances:

• The message is processed by an IBM MQ queue manager earlier than Version 6.0.
• The message is processed by a queue manager that is not enabled for activity recording.
• The application that expected to process the message is not running.

Recorded activity information is unable to reach the specified reply-to queue in the following
circumstances:

• There is no channel defined to route activity reports to the reply-to queue.
• The channel to route activity reports to the reply-to queue is not running.
• The remote queue definition to route activity reports back to the queue manager where the reply-to

queue resides (the queue manager alias), is not defined.

Monitoring and performance 61

• The user that generated the original message does not have open, or put, authority to the queue
manager alias.

• The user that generated the original message does not have open, or put, authority to the reply-to
queue.

• The reply-to queue is put inhibited.

Recorded activity information is unable to reach the system queue, or a common queue, in the following
circumstances:

• If a common queue is to be used and there is no channel defined to route activity reports to the
common queue.

• If a common queue is to be used and the channel to route activity reports to the common queue is not
running.

• If a common queue is to be used and the system queue is incorrectly defined.
• The user that generated the original message does not have open, or put, authority to the system queue.
• The system queue is put inhibited.
• If a common queue is to be used and the user that generated the original message does not have open,

or put, authority to the common queue.
• If a common queue is to be used and the common queue is put inhibited.

In these circumstances, providing the activity report does not have the report option
MQRO_DISCARD_MSG specified, the activity report can be retrieved from a dead letter queue if one
was defined on the queue manager where the activity report was rejected. An activity report will only have
this report option specified if the original message, from which the activity report was generated, had
both MQRO_PASS_DISCARD_AND_EXPIRY and MQRO_DISCARD_MSG specified in the Report field of the
message descriptor.

Trace-route messaging
Trace-route messaging is a technique that uses trace-route messages to record activity information for a
message. Trace-route messaging involves sending a trace-route message into a queue manager network.

As the trace-route message is routed through the queue manager network, activity information is
recorded. This activity information includes information about the applications that performed the
activities, when they were performed, and the operations that were performed as part of the activities.
You can use the information recorded using trace-route messaging for the following purposes:

To determine the last known location of a message
If a message does not reach its intended destination, you can use the activity information recorded for
a trace-route message to determine the last known location of the message. A trace-route message
is sent into a queue manager network with the same target destination as the original message,
intending that it follows the same route. Activity information can be accumulated in the message data
of the trace-route message, or recorded using activity reports. To increase the probability that the
trace-route message follows the same route as the original message, you can modify the trace-route
message to mimic the original message.

To determine configuration issues with a queue manager network
Trace-route messages are sent into a queue manager network and activity information is recorded.
By studying the activity information recorded for a trace-route message, it can become apparent that
the trace-route message did not follow the expected route. There are many reasons why this can
occur, for example, a channel might be inactive, forcing the message to take an alternative route. In
these situations, a system administrator can determine whether there are any problems in the queue
manager network, and if there are, correct them.

You can use the IBM MQ display route application to configure, generate, and put trace-route messages
into a queue manager network.

Warning: If you put a trace-route message to a distribution list, the results are undefined.

62 Monitoring and Performance for IBM MQ

Related concepts
“Trace-route message reference” on page 118
Use this page to obtain an overview of the trace-route message format. The trace-route message data
includes parameters that describe the activities that the trace-route message has caused

How activity information is recorded
With trace-route messaging, you can record activity information in the message data of the trace-route
message, or use activity reports. Alternatively, you can use both techniques.

Accumulating activity information in the message data of the trace-route message
As a trace-route message is routed through a queue manager network, information about the activities
performed on behalf of the trace-route message can be accumulated in the message data of the trace-
route message. The activity information is stored in Activity PCF groups. For every activity performed on
behalf of the trace-route message, an Activity PCF group is written to the end of the PCF block in the
message data of the trace-route message.

Additional activity information is recorded in trace-route messaging, in a PCF group called the TraceRoute
PCF group. The additional activity information is stored in this PCF group, and can be used to help
determine the sequence of recorded activities. This technique is controlled by the Accumulate parameter
in the TraceRoute PCF group.

Recording activity information using activity reports
As a trace-route message is routed through a queue manager network, an activity report can be generated
for every activity that was performed on behalf of the trace-route message. The activity information is
stored in the Activity PCF group. For every activity performed on behalf of a trace-route message, an
activity report is generated containing an Activity PCF group. Activity recording for trace-route messages
works in the same way as for any other message.

Activity reports generated for trace-route messages contain additional activity information compared to
the those generated for any other message. The additional information is returned in a TraceRoute PCF
group. The information contained in the TraceRoute PCF group is accurate only from the time the activity
report was generated. You can use the additional information to help determine the sequence of activities
performed on behalf of the trace-route message.

Acquiring recorded activity information
When a trace-route message has reached its intended destination, or is discarded, the method that you
use to acquire the activity information depends on how that information was recorded.

Before you begin
If you are unfamiliar with activity information, refer to “How activity information is recorded” on page 63.

About this task
Use the following methods to acquire the activity information after the trace-route message has reached
its intended destination, or is discarded:

Procedure
• Retrieve the trace-route message.

The Deliver parameter, in the TraceRoute PCF group, controls whether a trace-route message is placed
on the target queue on arrival, or whether it is discarded. If the trace-route message is delivered to the
target queue, you can retrieve the trace-route message from this queue. Then, you can use the IBM
MQ display route application to display the activity information.

To request that activity information is accumulated in the message data of a trace-route message, set
the Accumulate parameter in the TraceRoute PCF group to MQROUTE_ACCUMULATE_IN_MSG.

• Use a trace-route reply message.

Monitoring and performance 63

When a trace-route message reaches its intended destination, or the trace-route message cannot
be routed any further in a queue manager network, a trace-route reply message can be generated.
A trace-route reply message contains a duplicate of all the activity information from the trace-
route message, and is either delivered to a specified reply-to queue, or the system queue
SYSTEM.ADMIN.TRACE.ROUTE.QUEUE. You can use the IBM MQ display route application to display
the activity information.

To request a trace-route reply message, set the Accumulate parameter in the TraceRoute PCF group to
MQROUTE_ACCUMULATE_AND_REPLY.

• Use activity reports.
If activity reports are generated for a trace-route message, you must locate the activity reports before
you can acquire the activity information. Then, to determine the sequence of activities, you must order
the activity reports.

Controlling trace-route messaging
Enable trace-route messaging at the queue manager level, so that applications in the scope of that queue
manager can write activity information to a trace-route message. To enable an entire queue manager
network, individually enable every queue manager in the network for trace-route messaging. If you
enable more queue managers, more activity reports are generated.

Before you begin
If you are using activity reports to record activity information for a trace-route message, refer to
“Controlling activity recording” on page 58.

About this task
To record activity information for a trace-route message as it is routed through a queue manager, perform
the following steps:

Procedure
• Define how activity information is to be recorded for the trace-route message.

Refer to “Generating and configuring a trace-route message” on page 66
• If you want to accumulate activity information in the trace-route message, ensure that the queue

manager is enabled for trace-route messaging
• If you want to accumulate activity information in the trace-route message, ensure that applications

performing activities on the trace-route message are capable of writing activity information to the
message data of the trace-route message

Related concepts
“Generating and configuring a trace-route message” on page 66
A trace-route message comprises specific message descriptor and message data parts. To generate a
trace-route message, either create the message manually or use the IBM MQ display route application.
Related tasks
“Controlling activity recording” on page 58
Enable activity recording at the queue manager level. To enable an entire queue manager network,
individually enable every queue manager in the network for activity recording. If you enable more queue
managers, more activity reports are generated.

Enabling queue managers for trace-route messaging
To control whether queue managers are enabled or disabled for trace-route messaging use the queue
manager attribute ROUTEREC.

Use the MQSC command ALTER QMGR, specifying the parameter ROUTEREC to change the value of the
queue manager attribute. The value can be any of the following values:

64 Monitoring and Performance for IBM MQ

MSG
The queue manager is enabled for trace-route messaging. Applications within the scope of the queue
manager can write activity information to the trace-route message.

If the Accumulate parameter in the TraceRoute PCF group is set as
MQROUTE_ACCUMULATE_AND_REPLY, and the next activity to be performed on the trace-route
message:

• is a discard
• is a put to a local queue (target queue or dead-letter queue)
• will cause the total number of activities performed on the trace-route message to exceed the value

of parameter the MaxActivities, in the TraceRoute PCF group .

a trace-route reply message is generated, and delivered to the reply-to queue specified in the
message descriptor of the trace-route message.

QUEUE
The queue manager is enabled for trace-route messaging. Applications within the scope of the queue
manager can write activity information to the trace-route message.

If the Accumulate parameter in the TraceRoute PCF group is set as
MQROUTE_ACCUMULATE_AND_REPLY, and the next activity to be performed on the trace-route
message:

• is a discard
• is a put to a local queue (target queue or dead-letter queue)
• will cause the total number of activities performed on the trace-route message to exceed the value

of parameter the MaxActivities, in the TraceRoute PCF group .

a trace-route reply message is generated, and delivered to the local system queue
SYSTEM.ADMIN.TRACE.ROUTE.QUEUE.

DISABLED
The queue manager is disabled for trace-route messaging. Activity information is not accumulated in
the the trace-route message, however the TraceRoute PCF group can be updated while in the scope of
this queue manager.

For example, to disable a queue manager for trace-route messaging, use the following MQSC command:

ALTER QMGR ROUTEREC(DISABLED)

Remember: When you modify the ROUTEREC queue manager attribute, a running MCA does not detect
the change until the channel is restarted.

Enabling applications for trace-route messaging
To enable trace-route messaging for a user application, base your algorithm on the algorithm used by
message channel agents (MCAs)

Before you begin
If you are not familiar with the format of a trace-route message, see “Trace-route message reference” on
page 118.

About this task
Message channel agents (MCAs) are enabled for trace-route messaging. To enable a user application for
trace-route messaging, use the following steps from the algorithm that MCAs use:

Procedure
1. Determine whether the message being processed is a trace-route message.

Monitoring and performance 65

If the message does not conform to the format of a trace-route message, the message is not
processed as a trace-route message.

2. Determine whether activity information is to be recorded.
If the detail level of the performed activity is not less than the level of detail specified by the
Detail parameter, activity information is recorded under specific circumstances. This information is
only recorded if the trace-route message requests accumulation, and the queue manager is enabled
for trace-route messaging, or if the trace-route message requests an activity report and the queue
manager is enabled for activity recording.

• If activity information is to be recorded, increment the RecordedActivities parameter.
• If activity information is not to be recorded, increment the UnrecordedActivities parameter.

3. Determine whether the total number of activities performed on the trace-route message exceeds the
value of the MaxActivities parameter.

The total number of activities is the sum of RecordedActivities, UnrecordedActivities, and
DiscontinuityCount.

If the total number of activities exceeds MaxActivities, reject the message with feedback
MQFB_MAX_ACTIVITIES.

4. If value of Accumulate is set as MQROUTE_ACCUMULATE_IN_MSG or
MQROUTE_ACCUMULATE_AND_REPLY, and the queue manager is enabled for trace-route messaging,
write an Activity PCF group to the end of the PCF block in the message data of a trace-route message.

5. Deliver the trace-route message to a local queue.

• If the parameter, Deliver, is specified as MQROUTE_DELIVER_NO, reject the trace-route message
with feedback MQFB_NOT_DELIVERED.

• If the parameter, Deliver, is specified as MQROUTE_DELIVER_YES, deliver the trace-route message
to the local queue.

6. Generate a trace-route reply message if all the following conditions are true:

• The trace-route message was delivered to a local queue or rejected
• The value of the parameter, Accumulate, is MQROUTE_ACCUMULATE_AND_REPLY
• The queue manager is enabled for trace-route messaging

The trace-route reply message is put on the queue determined by the ROUTEREC queue manager
attribute.

7. If the trace-route message requested an activity report and the queue manager is enabled for activity
recording, generate an activity report.
The activity report is put on the queue determined by the ACTIVREC queue manager attribute.

Generating and configuring a trace-route message
A trace-route message comprises specific message descriptor and message data parts. To generate a
trace-route message, either create the message manually or use the IBM MQ display route application.

A trace-route message consists of the following parts:
Message descriptor

An MQMD structure, with the Format field set to MQFMT_ADMIN or MQFMT_EMBEDDED_PCF.
Message data

One of the following combinations:

• A PCF header (MQCFH) and trace-route message data, if Format is set to MQFMT_ADMIN
• An embedded PCF header (MQEPH), trace-route message data, and additional user-specified

message data, if Format is set to MQFMT_EMBEDDED_PCF

The trace-route message data consists of the TraceRoute PCF group and one or more Activity PCF groups.

66 Monitoring and Performance for IBM MQ

Manual generation
When generating a trace-route message manually, an Activity PCF group is not required. Activity PCF
groups are written to the message data of the trace-route message when an MCA or user-written
application performs an activity on its behalf.

The IBM MQ display route application
Use the IBM MQ display route application, dspmqrte , to configure, generate and put a trace-route
message into a queue manager network. Set the Format parameter in the message descriptor to
MQFMT_ADMIN. You cannot add user data to the trace-route message generated by the IBM MQ display
route application.

Restriction: dspmqrte cannot be issued on queue managers before IBM WebSphere MQ 6.0 or on IBM
MQ for z/OS queue managers. If you want the first queue manager the trace-route message is routed
through to be a queue manager of this type, connect to the queue manager as a IBM WebSphere MQ 6.0
or later client using the optional parameter -c.

Mimicking the original message
When using a trace-route message to determine the route another message has taken through a queue
manager network, the more closely a trace-route message mimics the original message, the greater the
chance that the trace-route message will follow the same route as the original message.

The following message characteristics can affect where a message is forwarded to within a queue
manager network:

Priority
The priority can be specified in the message descriptor of the message.

Persistence
The persistence can be specified in the message descriptor of the message.

Expiration
The expiration can be specified in the message descriptor of the message.

Report options
Report options can be specified in the message descriptor of the message.

Message size
To mimic the size of a message, additional data can be written to the message data of the message.
For this purpose, additional message data can be meaningless.

Tip: The IBM MQ display route application cannot specify message size.

Message data
Some queue manager networks use content based routing to determine where messages are
forwarded. In these cases the message data of the trace-route message needs to be written to mimic
the message data of the original message.

Tip: The IBM MQ display route application cannot specify message data.

The TraceRoute PCF group
Attributes in the TraceRoute PCF group control the behavior of a trace-route message. The TraceRoute PCF
group is in the message data of every trace-route message.

The following table lists the parameters in the TraceRoute group that an MCA recognizes. Further
parameters can be added if user-written applications are written to recognize them, as described in
“Additional activity information” on page 72.

Monitoring and performance 67

Table 12. TraceRoute PCF group

Parameter Type

TraceRoute
Detail
RecordedActivities
UnrecordedActivities
DiscontinuityCount
MaxActivities
Accumulate
Forward
Deliver

MQCFGR
MQCFIN
MQCFIN
MQCFIN
MQCFIN
MQCFIN
MQCFIN
MQCFIN
MQCFIN

Descriptions of each parameter in the TraceRoute PCF group follows:
Detail

Specifies the detail level of activity information that is to be recorded. The value can be any of the
following values:
MQROUTE_DETAIL_LOW

Only activities performed by user application are recorded.
MQROUTE_DETAIL_MEDIUM

Activities specified in MQROUTE_DETAIL_LOW should be recorded. Additionally, activities
performed by MCAs are recorded.

MQROUTE_DETAIL_HIGH
Activities specified in MQROUTE_DETAIL_LOW, and MQROUTE_DETAIL_MEDIUM should be
recorded. MCAs do not record any further activity information at this level of detail. This option is
only available to user applications that are to record further activity information. For example,
if a user application determines the route a message takes by considering certain message
characteristics, the information about the routing logic could be included with this level of detail.

RecordedActivities
Specifies the number of recorded activities performed on behalf of the trace-route message. An
activity is considered to be recorded if information about it has been written to the trace-route
message, or if an activity report has been generated. For every recorded activity, RecordedActivities
increments by one.

UnrecordedActivities
Specifies the number of unrecorded activities performed on behalf of the trace-route message. An
activity is considered to be unrecorded if an application that is enabled for trace-route messaging
neither accumulates, nor writes the related activity information to an activity report.

An activity performed on behalf of a trace-route message is unrecorded in the following
circumstances:

• The detail level of the performed activity is less than the level of detail specified by the parameter
Detail.

• The trace-route message requests an activity report but not accumulation, and the queue manager
is not enabled for activity recording.

• The trace-route message requests accumulation but not an activity report, and the queue manager
is not enabled for trace-route messaging.

• The trace-route message requests both accumulation and an activity report, and the queue
manager is not enabled for activity recording and trace route messaging.

• The trace-route message requests neither accumulation nor an activity report.

For every unrecorded activity the parameter, UnrecordedActivities, increments by one.

68 Monitoring and Performance for IBM MQ

DiscontinuityCount
Specifies the number of times the trace-route message has been routed through a queue manager
with applications that were not enabled for trace-route messaging. This value is incremented by the
queue manager. If this value is greater than 0, only a partial message route can be determined.

MaxActivities
Specifies the maximum number of activities that can be performed on behalf of the trace-route
message.

The total number of activities is the sum of RecordedActivities, UnrecordedActivities, and
DiscontinuityCount. The total number of activities must not exceed the value of MaxActivities.

The value of MaxActivities can be:
A positive integer

The maximum number of activities.

If the maximum number of activities is exceeded, the trace-route message is rejected with
feedback MQFB_MAX_ACTIVITIES. This can prevent the trace-route message from being
forwarded indefinitely if caught in an infinite loop.

MQROUTE_UNLIMITED_ACTIVITIES
An unlimited number of activities can be performed on behalf of the trace-route message.

Accumulate
Specifies the method used to accumulate activity information. The value can be any of the following
values:
MQROUTE_ACCUMULATE_IN_MSG

If the queue manager is enabled for trace-route messaging, activity information is accumulated in
the message data of the trace-route message.

If this value is specified, the trace-route message data consists of the following:

• The TraceRoute PCF group.
• Zero or more Activity PCF groups.

MQROUTE_ACCUMULATE_AND_REPLY
If the queue manager is enabled for trace-route messaging, activity information is accumulated in
the message data of the trace-route message, and a trace-route reply message is generated if any
of the following occur:

• The trace-route message is discarded by an IBM MQ Version 6 (or later) queue manager.
• The trace-route message is put to a local queue (target queue or dead-letter queue) by an IBM

MQ Version 6 (or later) queue manager.
• The number of activities performed on the trace-route message exceeds the value of

MaxActivities.

If this value is specified, the trace-route message data consists of the following:

• The TraceRoute PCF group.
• Zero or more Activity PCF groups.

MQROUTE_ACCUMULATE_NONE
Activity information is not accumulated in the message data of the trace-route message.

If this value is specified, the trace-route message data consists of the following:

• The TraceRoute PCF group.

Forward
Specifies where a trace-route message can be forwarded to. The value can be:
MQROUTE_FORWARD_IF_SUPPORTED

The trace-route message is only forwarded to queue managers that will honor the value of the
Deliver parameter from the TraceRoute group.

Monitoring and performance 69

MQROUTE_FORWARD_ALL
The trace-route message is forwarded to any queue manager, regardless of whether the value of
the Deliver parameter will be honored.

Queue managers use the following algorithm when determining whether to forward a trace-route
message to a remote queue manager:

1. Determine whether the remote queue manager is capable of supporting trace-route messaging.

• If the remote queue manager is capable of supporting trace-route messaging, the algorithm
continues to step “4” on page 70.

• If the remote queue manager is not capable of supporting trace-route messaging, the algorithm
continues to step “2” on page 70

2. Determine whether the Deliver parameter from the TraceRoute group contains any unrecognized
delivery options in the MQROUTE_DELIVER_REJ_UNSUP_MASK bit mask.

• If any unrecognized delivery options are found, the trace-route message is rejected with
feedback MQFB_UNSUPPORTED_DELIVERY.

• If no unrecognized delivery options are found, the algorithm continues to step “3” on page 70.
3. Determine the value of the parameter Deliver from the TraceRoute PCF group in the trace-route

message.

• If Deliver is specified as MQROUTE_DELIVER_YES, the trace-route message is forwarded to the
remote queue manager.

• If Deliver is specified as MQROUTE_DELIVER_NO, the algorithm continues to step “4” on page
70.

4. Determine whether the Forward parameter from the TraceRoute group contains any unrecognized
forwarding options in the MQROUTE_FORWARDING_REJ_UNSUP_MASK bit mask.

• If any unrecognized forwarding options are found, the trace-route message is rejected with
feedback MQFB_UNSUPPORTED_FORWARDING.

• If no unrecognized forwarding options are found, the algorithm continues to step “5” on page
70.

5. Determine the value of the parameter Forward from the TraceRoute PCF group in the trace-route
message.

• If Forward is specified as MQROUTE_FORWARD_IF_SUPPORTED, the trace-route message is
rejected with feedback MQFB_NOT_FORWARDED.

• If Forward is specified as MQROUTE_FORWARD_ALL, trace-route message can be forwarded to
the remote queue manager.

Deliver
Specifies the action to be taken if the trace-route message reaches its intended destination. User-
written applications must check this attribute before placing a trace-route message on its target
queue. The value can be any of the following values:
MQROUTE_DELIVER_YES

On arrival, the trace-route message is put on the target queue. Any application performing a get
operation on the target queue can retrieve the trace-route message.

MQROUTE_DELIVER_NO
On arrival, the trace-route message is not delivered to the target queue. The message is
processed according to its report options.

70 Monitoring and Performance for IBM MQ

Setting up a common queue for trace-route reply messages
To determine the locations of the trace-route reply messages related to a specific message when the
reports are delivered to the local system queue, it is more efficient to use a common queue on a single
node

Before you begin
Set the ROUTEREC parameter to enable the queue manager for trace-route messaging and to
specify that any trace-route reply messages generated are delivered to the local system queue
SYSTEM.ADMIN.TRACE.ROUTE.QUEUE.

About this task
If a number of queue managers in a queue manager network are set to deliver trace-route reply messages
to the local system queue, it can be time consuming to determine the locations of the trace-route reply
messages related to a specific message. Alternatively, use a single node, which is a queue manager that
hosts a common queue. All the queue managers in a queue manager network can deliver trace-route
reply messages to this common queue. The benefit of using a common queue is that queue managers do
not have to deliver trace-route reply messages to the reply-to queue specified in a message and, when
determining the locations of the trace-route reply messages related to a message, you query one queue
only.

To set up a common queue, perform the following steps:

Procedure
1. Select or define a queue manager as the single node
2. On the single node, select or define a queue for use as the common queue
3. On all queue managers that forward trace-route reply messages to the common queue, redefine the

local system queue SYSTEM.ADMIN.TRACE.ROUTE.QUEUE as a remote queue definition
a) Specify the name of the single node as the remote queue manager name
b) Specify the name of the common queue as the remote queue name

Acquiring and using recorded information
Use any of the following techniques to acquire recorded activity information for a trace-route message

Note that the circumstances in which activity information is not acquired apply also to trace-route reply
messages.

Activity information is not recorded when a trace-route message is processed by a queue manager that is
disabled for both activity recording and trace-route messaging.

Acquiring information from trace-route reply messages
To acquire activity information you locate the trace-route reply message. Then you retrieve the message
and analyze the activity information.

About this task
You can acquire activity information from a trace-route reply message only if you know the location of the
trace-route reply message. Locate the message and process the activity information as follows:

Procedure
1. Check the reply-to queue that was specified in the message descriptor of the trace-route message. If

the trace-route reply message is not on the reply-to queue, check the following locations:

• The local system queue, SYSTEM.ADMIN.TRACE.ROUTE.QUEUE, on the target queue manager of
the trace-route message

• The common queue, if you have set up a common queue for trace-route reply messages

Monitoring and performance 71

• The local system queue, SYSTEM.ADMIN.TRACE.ROUTE.QUEUE, on any other queue manager in the
queue manager network, which can occur if the trace-route message has been put to a dead-letter
queue, or the maximum number of activities was exceeded

2. Retrieve the trace-route reply message
3. Use the IBM MQ display route application to display the recorded activity information
4. Study the activity information and obtain the information that you need

Acquiring information from trace-route messages
To acquire activity information you locate the trace-route message, which must have the appropriate
parameters in the TraceRoute PCF group. Then you retrieve the message and analyze the activity
information.

About this task
You can acquire activity information from a trace-route message only if you know the location of the
trace-route message and it has the parameter Accumulate in the TraceRoute PCF group specified as either
MQROUTE_ACCUMULATE_IN_MSG or MQROUTE_ACCUMULATE_AND_REPLY.

For the trace-route message to be delivered to the target queue the Deliver parameter in the TraceRoute
PCF group must be specified as MQROUTE_DELIVER_YES.

Procedure
1. Check the target queue. If the trace-route message is not on the target queue, you can try to locate the

trace-route message using a trace-route message enabled for activity recording. With the generated
activity reports try to determine the last known location of the trace-route message.

2. Retrieve the trace-route message
3. Use the IBM MQ display route application to display the recorded activity information
4. Study the activity information and obtain the information that you need

Acquiring information from activity reports
To acquire activity information you locate the activity report, which must have the report option specified
in the message descriptor. Then you retrieve the activity report and analyze the activity information.

About this task
You can acquire activity information from an activity report only if you know the location of the activity
report and the report option MQRO_ACTIVITY was specified in the message descriptor of the trace-route
message.

Procedure
1. Locate and order the activity reports generated for a trace-route message.

When you have located the activity reports, you can order them manually or use the IBM MQ display
route application to order and display the activity information automatically.

2. Study the activity information and obtain the information that you need

Additional activity information
As a trace-route message is routed through a queue manager network, user applications can record
additional information by including one or more additional PCF parameters when writing the Activity group
to the message data of the trace-route message or activity report.

Additional activity information can help system administrators to identify the route taken by a trace-route
message took, or why that route was taken.

If you use the IBM MQ display route application to display the recorded information for a trace-route
message, any additional PCF parameters can only be displayed with a numeric identifier, unless the
parameter identifier of each parameter is recognized by the IBM MQ display route application. To

72 Monitoring and Performance for IBM MQ

recognize a parameter identifier, additional information must be recorded using the following PCF
parameters. Include these PCF parameters in an appropriate place in the Activity PCF group.
GroupName

Table 13. Group name

Description Grouped parameters specifying the additional information.

Identifier MQGACF_VALUE_NAMING.

Data type MQCFGR

Parameters in
group

ParameterName
ParameterValue

ParameterName

Table 14. Parameter name

Description Contains the name to be displayed by the IBM MQ display route application,
which puts the value of ParameterValue into context.

Identifier MQCA_VALUE_NAME.

Data type MQCFST

Included in PCF
group:

GroupName.

Value: The name to be displayed.

ParameterValue

Table 15. Parameter value

Description Contains the value to be displayed by the IBM MQ display route application.

Identifier: The PCF structure identifier for the additional information.

Data type: The PCF structure data type for the additional information.

Included in PCF
group:

GroupName.

Value: The value to be displayed.

Examples of recording additional activity information
The following examples illustrate how a user application can record additional information when
performing an activity on behalf of a trace-route message. In both examples, the IBM MQ display route
application is used to generate a trace-route message, and display the activity information returned to it.

Example 1
Additional activity information is recorded by a user application in a format where the parameter identifier
is not recognized by the IBM MQ display route application.

1. The IBM MQ display route application is used to generate and put a trace-route message into a queue
manager network. The necessary options are set to request the following:

• Activity information is accumulated in the message data of the trace-route message.
• On arrival at the target queue the trace-route message is discarded, and a trace-route reply message

is generated and delivered to a specified reply-to queue.
• On receipt of the trace-route reply message, the IBM MQ display route application displays the

accumulated activity information.

Monitoring and performance 73

The trace-route message is put into the queue manager network.
2. As the trace-route message is routed through the queue manager network a user application, that is

enabled for trace-route messaging, performs a low detail activity on behalf of the message. In addition
to writing the standard activity information to the trace-route message, the user application writes the
following PCF parameter to the end of the Activity group:
ColorValue

Identifier
65536

Data type
MQCFST

Value
'Red'

This additional PCF parameter gives further information about the activity that was performed,
however it is written in a format where the parameter identifier is not recognized by the IBM MQ
display route application.

3. The trace-route messages reaches the target queue and a trace-route reply message is returned to the
IBM MQ display route application. The additional activity information is displayed as follows:

65536: 'Red'

The IBM MQ display route application does not recognize the parameter identifier of the PCF
parameter and displays it as a numeric value. The context of the additional information is not clear.

For an example of when the IBM MQ display route application does recognize the parameter identifier
of the PCF parameter, see “Example 2” on page 74.

Example 2
Additional activity information is recorded by a user application in a format where the parameter identifier
is recognized by the IBM MQ display route application.

1. The IBM MQ display route application is used to generate and put a trace-route message into a queue
manager network in the same fashion as in “Example 1” on page 73.

2. As the trace-route message is routed through the queue manager network a user application, that is
enabled for trace-route messaging, performs a low detail activity on behalf of the message. In addition
to writing the standard activity information to the trace-route message, the user application writes the
following PCF parameters to the end of the Activity group:
ColorInfo

Table 16. Color information

Description Grouped parameters specifying information about a color.

Identifier: MQGACF_VALUE_NAMING.

Data type: MQCFGR.

Parameters in
group:

ColorName
ColorValue

ColorName

Table 17. Color name

Description Contains the name to be displayed by the IBM MQ display route
application which puts the value of ColorValue into context.

Identifier: MQCA_VALUE_NAME.

74 Monitoring and Performance for IBM MQ

Table 17. Color name (continued)

Description Contains the name to be displayed by the IBM MQ display route
application which puts the value of ColorValue into context.

Data type: MQCFST.

Included in PCF
group:

ColorInfo.

Value: 'Color'

ColorValue

Table 18. Color value

Description Contains the value to be displayed by the IBM MQ display route
application.

Identifier: 65536.

Data type: MQCFST.

Included in PCF
group:

ColorInfo .

Value: 'Red'

These additional PCF parameters gives further information about the activity that was performed.
These PCF parameters are written in a format where the parameter identifier is recognized by the IBM
MQ display route application.

3. The trace-route messages reaches the target queue and a trace-route reply message is returned to the
IBM MQ display route application. The additional activity information is displayed as follows:

Color: 'Red'

The IBM MQ display route application recognizes that the parameter identifier of the PCF
structure containing the value of the additional activity information has a corresponding name. The
corresponding name is displayed instead of the numeric value.

IBM MQ display route application
Use the IBM MQ display route application (dspmqrte) to work with trace-route messages and activity

information related to a trace-route message, using a command-line interface. The IBM MQ
display route application is not available for IBM MQ for z/OS queue managers.

You can use the IBM MQ display route application for the following purposes:

• To configure, generate, and put a trace-route message into a queue manager network.

By putting a trace-route message into a queue manager network, activity information can be collected
and used to determine the route that the trace-route message took. You can specify the characteristics
of the trace-route messages as follows:

– The destination of the trace-route message.
– How the trace-route message mimics another message.
– How the trace-route message should be handled as it is routed through a queue manager network.
– Whether activity recording or trace-route messaging are used to record activity information.

• To order and display activity information related to a trace-route message.

If the IBM MQ display route application has put a trace-route message into a queue manager network,
after the related activity information has been returned, the information can be ordered and displayed

Monitoring and performance 75

immediately. Alternatively, the IBM MQ display route application can be used to order, and display,
activity information related to a trace-route message that was previously generated.

Related reference
dspmqrte

Parameters for trace-route messages
Use this page to obtain an overview of the parameters provided by the IBM MQ display route application,
dspmqrte, to determine the characteristics of a trace-route message, including how it is treated as it is
routed through a queue manager network.
Related reference
dspmqrte

Queue manager connection
Use this page to specify the queue manager that the IBM MQ display route application connects to

-c
Specifies that the IBM MQ display route application connects as a client application.

If you do not specify this parameter, the IBM MQ display route application does not connect as a client
application.

-m QMgrName
The name of the queue manager to which the IBM MQ display route application connects. The name
can contain up to 48 characters.

If you do not specify this parameter, the default queue manager is used.

The target destination
Use this page to specify the target destination of a trace-route message

-q TargetQName
If the IBM MQ display route application is being used to send a trace-route message into a queue
manager network, TargetQName specifies the name of the target queue.

-ts TargetTopicString
Specifies the topic string.

-qm TargetQMgr
Qualifies the target destination; normal queue manager name resolution will then apply. The target
destination is specified with -q TargetQName or -ts TargetTopicString .

If you do not specify this parameter, the queue manager to which the IBM MQ display route
application is connected is used as the target queue manager.

-o
Specifies that the target destination is not bound to a specific destination. Typically this parameter is
used when the trace-route message is to be put across a cluster. The target destination is opened with
option MQOO_BIND_NOT_FIXED.

If you do not specify this parameter, the target destination is bound to a specific destination.

The publication topic
For publish/subscribe applications, use this page to specify the topic string of a trace-route message for
the IBM MQ display route application to publish

-ts TopicName
Specifies a topic string to which the IBM MQ display route application is to publish a trace-route
message, and puts this application into topic mode. In this mode, the application traces all of the
messages that result from the publish request.

You can also use the IBM MQ display route application to display the results from an activity report that
was generated for publish messages.

76 Monitoring and Performance for IBM MQ

Message mimicking
Use this page to configure a trace-route message to mimic a message, for example when the original
message did not reach its intended destination

One use of trace-route messaging is to help determine the last known location of a message that did not
reach its intended destination. The IBM MQ display route application provides parameters that can help
configure a trace-route message to mimic the original message. When mimicking a message, you can use
the following parameters:
-l Persistence

Specifies the persistence of the generated trace-route message. Possible values for Persistence are:
yes

The generated trace-route message is persistent. (MQPER_PERSISTENT).
no

The generated trace-route message is not persistent. (MQPER_NOT_PERSISTENT).
q

The generated trace-route message inherits its persistence value from the destination specified
by -q TargetQName or -ts TargetTopicString. (MQPER_PERSISTENCE_AS_Q_DEF).

A trace-route reply message, or any report messages, returned will share the same persistence value
as the original trace-route message.

If Persistence is specified as yes, you must specify the parameter -rq ReplyToQ. The reply-to queue
must not resolve to a temporary dynamic queue.

If you do not specify this parameter, the generated trace-route message is not persistent.

-p Priority
Specifies the priority of the trace-route message. The value of Priority is either greater than or equal
to 0, or MQPRI_PRIORITY_AS_Q_DEF. MQPRI_PRIORITY_AS_Q_DEF specifies that the priority value
is taken from the destination specified by -q TargetQName or -ts TargetTopicString.

If you do not specify this parameter, the priority value is taken from the destination specified by -q
TargetQName or -ts TargetTopicString.

-xs Expiry
Specifies the expiry time for the trace-route message, in seconds.

If you do not specify this parameter, the expiry time is specified as 60 seconds.

-ro none | ReportOption
none

Specifies no report options are set.
ReportOption

Specifies report options for the trace-route message. Multiple report options can be specified
using a comma as a separator. Possible values for ReportOption are:
activity

The report option MQRO_ACTIVITY is set.
coa

The report option MQRO_COA_WITH_FULL_DATA is set.
cod

The report option MQRO_COD_WITH_FULL_DATA is set.
exception

The report option MQRO_EXCEPTION_WITH_FULL_DATA is set.
expiration

The report option MQRO_EXPIRATION_WITH_FULL_DATA is set.
discard

The report option MQRO_DISCARD_MSG is set.

Monitoring and performance 77

If neither -ro ReportOption nor -ro none are specified, then the MQRO_ACTIVITY and
MQRO_DISCARD_MSG report options are specified.

The IBM MQ display route application does not allow you to add user data to the trace-route message. If
you require user data to be added to the trace-route message you must generate the trace-route message
manually.

Recorded activity information
Use this page to specify the method used to return recorded activity information, which you can then use
to determine the route that a trace-route message has taken

Recorded activity information can be returned as follows:

• In activity reports
• In a trace-route reply message
• In the trace-route message itself (having been put on the target queue)

When using dspmqrte, the method used to return recorded activity information is determined using the
following parameters:
-ro activity

Specifies that activity information is returned using activity reports. By default activity recording is
enabled.

-ac -ar
Specifies that activity information is accumulated in the trace-route message, and that a trace-route
reply message is to be generated.
-ac

Specifies that activity information is to be accumulated within the trace-route message.

If you do not specify this parameter, activity information is not accumulated within the trace-route
message.

-ar
Requests that a trace-route reply message containing all accumulated activity information is
generated in the following circumstances:

• The trace-route message is discarded by an IBM MQ queue manager.
• The trace-route message is put to a local queue (target queue or dead-letter queue) by an IBM

MQ queue manager.
• The number of activities performed on the trace-route message exceeds the value of specified in

-s Activities.

-ac -d yes
Specifies that activity information is accumulated in the trace-route message, and that on arrival, the
trace-route message will be put on the target queue.
-ac

Specifies that activity information is to be accumulated within the trace-route message.

If you do not specify this parameter, activity information is not accumulated within the trace-route
message.

-d yes
On arrival, the trace-route message is put to the target queue, even if the queue manager does not
support trace-route messaging.

If you do not specify this parameter, the trace-route message is not put to the target queue.

The trace-route message can then be retrieved from the target queue, and the recorded activity
information acquired.

You can combine these methods as required.

78 Monitoring and Performance for IBM MQ

Additionally, the detail level of the recorded activity information can be specified using the following
parameter:
-t Detail

Specifies the activities that are recorded. The possible values for Detail are:
low

Activities performed by user-defined application are recorded only.
medium

Activities specified in low are recorded. Additionally, publish activities and activities performed
by MCAs are recorded.

high

Activities specified in low, and medium are recorded. MCAs do not expose any further activity
information at this level of detail. This option is available to user-defined applications that are
to expose further activity information only. For example, if a user-defined application determines
the route a message takes by considering certain message characteristics, the routing logic could
be included with this level of detail.

If you do not specify this parameter, medium level activities are recorded.

By default the IBM MQ display route application uses a temporary dynamic queue to store the returned
messages. When the IBM MQ display route application ends, the temporary dynamic queue is closed,
and any messages are purged. If the returned messages are required beyond the current execution of the
IBM MQ display route application ends, then a permanent queue must be specified using the following
parameters:
-rq ReplyToQ

Specifies the name of the reply-to queue that all responses to the trace-route message are sent to.
If the trace-route message is persistent, or if the -n parameter is specified, a reply-to queue must be
specified that is not a temporary dynamic queue.

If you do not specify this parameter then a dynamic reply-to queue is created using the system default
model queue, SYSTEM.DEFAULT.MODEL.QUEUE.

-rqm ReplyToQMgr
Specifies the name of the queue manager where the reply-to queue resides. The name can contain up
to 48 characters.

If you do not specify this parameter, the queue manager to which the IBM MQ display route
application is connected is used as the reply-to queue manager.

How the trace-route message is handled
Use this page to control how a trace-route message is handled as it is routed through a queue manager
network.

The following parameters can restrict where the trace-route message can be routed in the queue
manager network:

-d Deliver
Specifies whether the trace-route message is to be delivered to the target queue on arrival. Possible
values for Deliver are:

yes On arrival, the trace-route message is put to the target queue, even
if the queue manager does not support trace-route messaging.

no On arrival, the trace-route message is not put to the target queue.

If you do not specify this parameter, the trace-route message is not put to the target queue.

Monitoring and performance 79

-f Forward
Specifies the type of queue manager that the trace-route message can be forwarded to. For details
of the algorithm that queue managers use to determine whether to forward a message to a remote
queue manager, refer to “The TraceRoute PCF group” on page 67. The possible values for Forward are:
all

The trace-route message is forwarded to any queue manager.

Warning: If forwarded to an IBM MQ queue manager earlier than Version 6.0, the trace-route
message will not be recognized and can be delivered to a local queue despite the value of the -d
Deliver parameter.

supported
The trace-route message is only forwarded to a queue manager that will honor the Deliver
parameter from the TraceRoute PCF group

If you do not specify this parameter, the trace-route message will only be forwarded to a queue
manager that will honor the Deliver parameter.

The following parameters can prevent a trace-route message from remaining in a queue manager network
indefinitely:

-s Activities
Specifies the maximum number of recorded activities that can be performed on behalf of the trace-
route message before it is discarded. This prevents the trace-route message from being forwarded
indefinitely if caught in an infinite loop. The value of Activities is either greater than or equal to 1, or
MQROUTE_UNLIMITED_ACTIVITIES. MQROUTE_UNLIMITED_ACTIVITIES specifies that an unlimited
number of activities can be performed on behalf of the trace-route message.

If you do not specify this parameter, an unlimited number of activities can be performed on behalf of
the trace-route message.

-xs Expiry
Specifies the expiry time for the trace-route message, in seconds.

If you do not specify this parameter, the expiry time is specified as 60 seconds.

-xp PassExpiry
Specifies whether the expiry time from the trace-route message is passed on to a trace-route reply
message. Possible values for PassExpiry are:
yes

The report option MQRO_PASS_DISCARD_AND_EXPIRY is specified in the message descriptor of
the trace-route message.

If a trace-route reply message, or activity reports, are generated for the trace-route message, the
MQRO_DISCARD report option (if specified), and the remaining expiry time are passed on.

This is the default value.

no
The report option MQRO_PASS_DISCARD_AND_EXPIRY is not specified.

If a trace-route reply message is generated for the trace-route message, the discard option and
expiry time from the trace-route message are not passed on.

If you do not specify this parameter, MQRO_PASS_DISCARD_AND_EXPIRY is not specified.
-ro discard

Specifies the MQRO_DISCARD_MSG report option. This can prevent the trace-route message
remaining in the queue manager network indefinitely.

Display of activity information
The IBM MQ display route application can display activity information for a trace-route message that
it has just put into a queue manager network, or it can display activity information for a previously

80 Monitoring and Performance for IBM MQ

generated trace-route message. It can also display additional information recorded by user-written
applications.

To specify whether activity information returned for a trace-route message is displayed, specify the
following parameter:
-n

Specifies that activity information returned for the trace-route message is not to be displayed.

If this parameter is accompanied by a request for a trace-route reply message, (-ar), or any of the
report generating options from (-ro ReportOption), then a specific (non-model) reply-to queue
must be specified using -rq ReplyToQ . By default, only activity report messages are requested.

After the trace-route message is put to the specified target queue, a 48 character hexadecimal string
is displayed containing the message identifier of the trace-route message. The message identifier can
be used by the IBM MQ display route application to display the activity information for the trace-route
message at a later time, using the -i CorrelId parameter.

If you do not specify this parameter, activity information returned for the trace-route message is
displayed in the form specified by the -v parameter.

When displaying activity information for a trace-route message that has just been put into a queue
manager network, the following parameter can be specified:
-w WaitTime

Specifies the time, in seconds, that the IBM MQ display route application will wait for activity reports,
or a trace-route reply message, to return to the specified reply-to queue.

If you do not specify this parameter, the wait time is specified as the expiry time of the trace-route
message, plus 60 seconds.

When displaying previously accumulated activity information the following parameters must be set:
-q TargetQName

If the IBM MQ display route application is being used to view previously gathered activity information,
TargetQName specifies the name of the queue where the activity information is stored.

-i CorrelId
This parameter is used when the IBM MQ display route application is used to display previously
accumulated activity information only. There can be many activity reports and trace-route reply
messages on the queue specified by -q TargetQName. CorrelId is used to identify the activity reports,
or a trace-route reply message, related to a trace-route message. Specify the message identifier of the
original trace-route message in CorrelId.

The format of CorrelId is a 48 character hexadecimal string.

The following parameters can be used when displaying previously accumulated activity information, or
when displaying current activity information for a trace-route message:
-b

Specifies that the IBM MQ display route application will only browse activity reports or a trace-route
reply message related to a message. This allows activity information to be displayed again at a later
time.

If you do not specify this parameter, the IBM MQ display route application will destructively get
activity reports or a trace-route reply message related to a message.

-v summary | all | none | outline DisplayOption
summary

The queues that the trace-route message was routed through are displayed.
all

All available information is displayed.
none

No information is displayed.

Monitoring and performance 81

outline DisplayOption
Specifies display options for the trace-route message. Multiple display options can be specified
using a comma as a separator.

If no values are supplied the following is displayed:

• The application name
• The type of each operation
• Any operation specific parameters

Possible values for DisplayOption are:
activity

All non-PCF group parameters in Activity PCF groups are displayed.
identifiers

Values with parameter identifiers MQBACF_MSG_ID or MQBACF_CORREL_ID are displayed.
This overrides msgdelta.

message
All non-PCF group parameters in Message PCF groups are displayed. When this value is
specified, you cannot specify msgdelta.

msgdelta
All non-PCF group parameters in Message PCF groups, that have changed since the last
operation, are displayed. When this value is specified, you cannot specify message.

operation
All non-PCF group parameters in Operation PCF groups are displayed.

traceroute
All non-PCF group parameters in TraceRoute PCF groups are displayed.

If you do not specify this parameter, a summary of the message route is displayed.

Display of additional information
As a trace-route message is routed through a queue manager network, user-written applications can
record additional information by writing one or more additional PCF parameters to the message data
of the trace-route message or to the message data of an activity report. For the IBM MQ display route
application to display additional information in a readable form it must be recorded in a specific format, as
described in “Additional activity information” on page 72.

IBM MQ display route application examples
The following examples show how you can use the IBM MQ display route application. In each
example, two queue managers (QM1 and QM2) are inter-connected by two channels (QM2.TO.QM1 and
QM1.TO.QM2).

Example 1 - Requesting activity reports
Display activity information from a trace-route message delivered to the target queue

In this example the IBM MQ display route application connects to queue manager, QM1, and is used to
generate and deliver a trace-route message to the target queue, TARGET.Q, on remote queue manager,
QM2. The necessary report option is specified so that activity reports are requested as the trace-route
reply message is routed. On arrival at the target queue the trace-route message is discarded. Activity
information returned to the IBM MQ display route application using activity reports is put in order and
displayed.

82 Monitoring and Performance for IBM MQ

Figure 9. Requesting activity reports, Diagram 1

• The ACTIVREC attribute of each queue manager (QM1 and QM2) is set to MSG.
• The following command is issued:

dspmqrte -m QM1 -q TARG.AT.QM2 -rq ACTIV.REPLY.Q

QM1 is the name of the queue manager to which the IBM MQ display route application connects,
TARG.AT.QM2 is the name of the target queue, and ACTIV.REPLY.Q is the name of the queue to which it
is requested that all responses to the trace-route message are sent.

Default values are assumed for all options that are not specified, but note in particular the -f option
(the trace-route message is forwarded only to a queue manager that honors the Deliver parameter of
the TraceRoute PCF group), the -d option (on arrival, the trace-route message is not put on the target
queue), the -ro option (MQRO_ACTIVITY and MQRO_DISCARD_MSG report options are specified), and
the -t option (medium detail level activity is recorded).

• DSPMQRTE generates the trace-route message and puts it on the remote queue TARG.AT.QM2.
• DSPMQRTE then looks at the value of the ACTIVREC attribute of queue manager QM1. The value is MSG,

therefore DSPMQRTE generates an activity report and puts it on the reply queue ACTIV.REPLY.Q.

Monitoring and performance 83

Figure 10. Requesting activity reports, Diagram 2

• The sending message channel agent (MCA) gets the trace-route message from the transmission queue.
The message is a trace-route message, therefore the MCA begins to record the activity information.

• The ACTIVREC attribute of the queue manager (QM1) is MSG, and the MQRO_ACTIVITY option is
specified in the Report field of the message descriptor, therefore the MCA will later generate an activity
report. The RecordedActivities parameter value in the TraceRoute PCF group is incremented by 1.

• The MCA checks that the MaxActivities value in the TraceRoute PCF group has not been exceeded.
• Before the message is forwarded to QM2 the MCA follows the algorithm that is described in Forwarding

(steps “1” on page 70, “4” on page 70, and “5” on page 70) and the MCA chooses to send the message.
• The MCA then generates an activity report and puts it on the reply queue (ACTIV.REPLY.Q).

Figure 11. Requesting activity reports, Diagram 3

• The receiving MCA receives the trace-route message from the channel. The message is a trace-route
message, therefore the MCA begins to record the information about the activity.

84 Monitoring and Performance for IBM MQ

• If the queue manager that the trace-route message has come from is Version 5.3.1 or earlier, the MCA
increments the DiscontinuityCount parameter of the TraceRoute PCF by 1. This is not the case here.

• The ACTIVREC attribute of the queue manager (QM2) is MSG, and the MQRO_ACTIVITY option is
specified, therefore the MCA will generate an activity report. The RecordedActivities parameter value is
incremented by 1.

• The target queue is a local queue, therefore the message is discarded with feedback
MQFB_NOT_DELIVERED, in accordance with the Deliver parameter value in the TraceRoute PCF group.

• The MCA then generates the final activity report and puts it on the reply queue. This resolves to the
transmission queue that is associated with queue manager QM1 and the activity report is returned to
queue manager QM1 (ACTIV.REPLY.Q).

Figure 12. Requesting activity reports, Diagram 4

• Meanwhile, DSPMQRTE has been continually performing MQGETs on the reply queue (ACTIV.REPLY.Q),
waiting for activity reports. It will wait for up to 120 seconds (60 seconds longer than the expiry time of
the trace-route message) since -w was not specified when DSPMQRTE was started.

• DSPMQRTE gets the 3 activity reports off the reply queue.
• The activity reports are ordered using the RecordedActivities, UnrecordedActivities, and

DiscontinuityCount parameters in the TraceRoute PCF group for each of the activities. The only value
that is non-zero in this example is RecordedActivities, therefore this is the only parameter that is
actually used.

• The program ends as soon as the discard operation is displayed. Even though the final operation was a
discard, it is treated as though a put took place because the feedback is MQFB_NOT_DELIVERED.

The output that is displayed follows:

AMQ8653: DSPMQRTE command started with options '-m QM1 -q TARG.AT.QM2
 -rq ACTIV.REPLY.Q'.
AMQ8659: DSPMQRTE command successfully put a message on queue 'QM2',
 queue manager 'QM1'.
AMQ8674: DSPMQRTE command is now waiting for information to display.
AMQ8666: Queue 'QM2' on queue manager 'QM1'.
AMQ8666: Queue 'TARGET.Q' on queue manager 'QM2'.
AMQ8652: DSPMQRTE command has finished.

Example 2 - Requesting a trace-route reply message
Generate and deliver a trace-route message to the target queue

In this example the IBM MQ display route application connects to queue manager, QM1, and is used to
generate and deliver a trace-route message to the target queue, TARGET.Q, on remote queue manager,
QM2. The necessary option is specified so that activity information is accumulated in the trace-route

Monitoring and performance 85

message. On arrival at the target queue a trace-route reply message is requested, and the trace-route
message is discarded.

Figure 13. Requesting a trace-route reply message, Diagram 1

• The ROUTEREC attribute of each queue manager (QM1 and QM2) is set to MSG.
• The following command is issued:

dspmqrte -m QM1 -q TARG.AT.QM2 -rq TR.REPLY.Q -ac -ar -ro discard

QM1 is the name of the queue manager to which the IBM MQ display route application connects,
TARG.AT.QM2 is the name of the target queue, and ACTIV.REPLY.Q is the name of the queue to
which it is requested that all responses to the trace-route message are sent. The -ac option specifies
that activity information is accumulated in the trace-route message, the -ar option specifies that
all accumulated activity is sent to the reply-to queue that is specified by the -rq option (that is,
TR.REPLY.Q). The -ro option specifies that report option MQRO_DISCARD_MSG is set which means that
activity reports are not generated in this example.

• DSPMQRTE accumulates activity information in the trace-route message before the message is put on
the target route. The queue manager attribute ROUTEREC must not be DISABLED for this to happen.

86 Monitoring and Performance for IBM MQ

Figure 14. Requesting a trace-route reply message, Diagram 2

• The message is a trace-route message, therefore the sending MCA begins to record information about
the activity.

• The queue manager attribute ROUTEREC on QM1 is not DISABLED, therefore the MCA accumulates the
activity information within the message, before the message is forwarded to queue manager QM2.

Figure 15. Requesting a trace-route reply message, Diagram 3

• The message is a trace-route message, therefore the receiving MCA begins to record information about
the activity.

• The queue manager attribute ROUTEREC on QM2 is not DISABLED, therefore the MCA accumulates the
information within the message.

• The target queue is a local queue, therefore the message is discarded with feedback
MQFB_NOT_DELIVERED, in accordance with the Deliver parameter value in the TraceRoute PCF group.

Monitoring and performance 87

• This is the last activity that will take place on the message, and because the queue manager attribute
ROUTEREC on QM1 is not DISABLED, the MCA generates a trace-route reply message in accordance
with the Accumulate value. The value of ROUTEREC is MSG, therefore the reply message is put on the
reply queue. The reply message contains all the accumulated activity information from the trace-route
message.

Figure 16. Requesting a trace-route reply message, Diagram 4

• Meanwhile DSPMQRTE is waiting for the trace-route reply message to return to the reply queue. When it
returns, DSPMQRTE parses each activity that it contains and prints it out. The final operation is a discard
operation. DSPMQRTE ends after it has been printed.

The output that is displayed follows:

AMQ8653: DSPMQRTE command started with options '-m QM1 -q TARG.AT.QM2 -rq
 TR.REPLY.Q'.
AMQ8659: DSPMQRTE command successfully put a message on queue 'QM2', queue
 manager 'QM1'.
AMQ8674: DSPMQRTE command is now waiting for information to display.
AMQ8666: Queue 'QM2' on queue manager 'QM1'.
AMQ8666: Queue 'TARGET.Q' on queue manager 'QM2'.
AMQ8652: DSPMQRTE command has finished.

Example 3 - Delivering activity reports to the system queue
Detect when activity reports are delivered to queues other than the reply-to queue and use the IBM MQ
display route application to read activity reports from the other queue.

This example is the same as “Example 1 - Requesting activity reports” on page 82, except that QM2 now
has the value of the ACTIVREC queue manage attribute set to QUEUE. Channel QM1.TO.QM2 must have
been restarted for this to take effect.

This example demonstrates how to detect when activity reports are delivered to queues other than the
reply-to queue. Once detected, the IBM MQ display route application is used to read activity reports from
another queue.

88 Monitoring and Performance for IBM MQ

Figure 17. Delivering activity reports to the system queue, Diagram 1

• The message is a trace-route message, therefore the receiving MCA begins to record information about
the activity.

• The value of the ACTIVREC queue manager attribute on QM2 is now QUEUE, therefore the MCA
generates an activity report, but puts it on the system queue (SYSTEM.ADMIN.ACTIVITY.QUEUE) and
not on the reply queue (ACTIV.REPLY.Q).

Figure 18. Delivering activity reports to the system queue, Diagram 2
• Meanwhile DSPMQRTE has been waiting for activity reports to arrive on ACTIV.REPLY.Q. Only two arrive.

DSPMQRTE continues waiting for 120 seconds because it seems that the route is not yet complete.

The output that is displayed follows:

Monitoring and performance 89

AMQ8653: DSPMQRTE command started with options '-m QM1 -q TARG.AT.QM2 -rq
 ACTIV.REPLY.Q -v outline identifiers'.
AMQ8659: DSPMQRTE command successfully put a message on queue 'QM2', queue
 manager 'QM1'.
AMQ8674: DSPMQRTE command is now waiting for information to display.
--
Activity:
 ApplName: 'cann\output\bin\dspmqrte.exe'

 Operation:
 OperationType: Put

 Message:

 MQMD:
 MsgId: X'414D51204C4152474551202020202020A3C9154220001502'
 CorrelId: X'414D51204C4152474551202020202020A3C9154220001503'
 QMgrName: 'QM1 '
 QName: 'TARG.AT.QM2 '
 ResolvedQName: 'QM2 '
 RemoteQName: 'TARGET.Q '
 RemoteQMgrName: 'QM2 '
--
Activity:
 ApplName: 'cann\output\bin\runmqchl.EXE'

 Operation:
 OperationType: Get

 Message:

 MQMD:
 MsgId: X'414D51204C4152474551202020202020A3C9154220001505'
 CorrelId: X'414D51204C4152474551202020202020A3C9154220001502'

 EmbeddedMQMD:
 MsgId: X'414D51204C4152474551202020202020A3C9154220001502'
 CorrelId: X'414D51204C4152474551202020202020A3C9154220001503'
 QMgrName: 'QM1 '
 QName: 'QM2 '
 ResolvedQName: 'QM2 '

 Operation:
 OperationType: Send

 Message:

 MQMD:
 MsgId: X'414D51204C4152474551202020202020A3C9154220001502'
 CorrelId: X'414D51204C4152474551202020202020A3C9154220001503'
 QMgrName: 'QM1 '
 RemoteQMgrName: 'QM2 '
 ChannelName: 'QM1.TO.QM2 '
 ChannelType: Sender
 XmitQName: 'QM2 '
--
AMQ8652: DSPMQRTE command has finished.

• The last operation that DSPMQRTE observed was a Send, therefore the channel is running. Now we
must work out why we did not receive any more activity reports from queue manager QM2 (as identified
in RemoteQMgrName).

• To check whether there is any activity information on the system queue, start DSPMQRTE on QM2 to try
and collect more activity reports. Use the following command to start DSPMQRTE:

dspmqrte -m QM2 -q SYSTEM.ADMIN.ACTIVITY.QUEUE
 -i 414D51204C4152474551202020202020A3C9154220001502 -v outline

where 414D51204C4152474551202020202020A3C9154220001502 is the MsgId of the trace-route
message that was put.

• DSPMQRTE then performs a sequence of MQGETs again, waiting for responses on the system activity
queue related to the trace-route message with the specified identifier.

• DSPMQRTE gets one more activity report, which it displays. DSPMQRTE determines that the preceding
activity reports are missing, and displays a message saying this. We already know about this part of the
route, however.

90 Monitoring and Performance for IBM MQ

The output that is displayed follows:

AMQ8653: DSPMQRTE command started with options '-m QM2
 -q SYSTEM.ADMIN.ACTIVITY.QUEUE
 -i 414D51204C4152474551202020202020A3C915420001502 -v outline'.
AMQ8674: DSPMQRTE command is now waiting for information to display.
--

Activity:
 Activity information unavailable.

--
Activity:
 ApplName: 'cann\output\bin\AMQRMPPA.EXE'

 Operation:
 OperationType: Receive
 QMgrName: 'QM2 '
 RemoteQMgrName: 'QM1 '
 ChannelName: 'QM1.TO.QM2 '
 ChannelType: Receiver

 Operation:
 OperationType: Discard
 QMgrName: 'QM2 '
 QName: 'TARGET.Q '
 Feedback: NotDelivered

--
AMQ8652: DSPMQRTE command has finished.

• This activity report indicates that the route information is now complete. No problem occurred.
• Just because route information is unavailable, or because DSPMQRTE cannot display all of the route,

this does not mean that the message was not delivered. For example, the queue manager attributes of
different queue managers might be different, or a reply queue might not be defined to get the response
back.

Example 4 - Diagnosing a channel problem
Diagnose a problem in which the trace-route message does not reach the target queue

In this example the IBM MQ display route application connects to queue manager, QM1, generates
a trace-route message, then attempts to deliver it to the target queue, TARGET.Q, on remote queue
manager, QM2. In this example the trace-route message does not reach the target queue. The available
activity report is used to diagnose the problem.

Figure 19. Diagnosing a channel problem

Monitoring and performance 91

• In this example, the channel QM1.TO.QM2 is not running.
• DSPMQRTE puts a trace-route message (as in example 1) to the target queue and generates an activity

report.
• There is no MCA to get the message from the transmission queue (QM2), therefore this is the only

activity report that DSPMQRTE gets back from the reply queue. This time the fact that the route is
not complete does indicate a problem. The administrator can use the transmission queue found in
ResolvedQName to investigate why the transmission queue is not being serviced.

The output that is displayed follows:

AMQ8653: DSPMQRTE command started with options '-m QM1 -q TARG.AT.QM2
 -rq ACTIV.REPLY.Q -v outline'.
AMQ8659: DSPMQRTE command successfully put a message on queue 'QM2',
 queue manager 'QM1'.
AMQ8674: DSPMQRTE command is now waiting for information to display.
--
Activity:
 ApplName: 'cann\output\bin\dspmqrte.exe'

 Operation:
 OperationType: Put
 QMgrName: 'QM1 '
 QName: 'TARG.AT.QM2 '
 ResolvedQName: 'QM2 '
 RemoteQName: 'TARGET.Q '
 RemoteQMgrName: 'QM2 '

--
 AMQ8652: DSPMQRTE command has finished.

Activity report reference
Use this page to obtain an overview of the activity report message format. The activity report message
data contains the parameters that describe the activity.

Activity report format
Activity reports are standard IBM MQ report messages containing a message descriptor and message
data. Activity reports are PCF messages generated by applications that have performed an activity on
behalf of a message as it has been routed through a queue manager network.

Activity reports contain the following information:
A message descriptor

An MQMD structure
Message data

Consists of the following:

• An embedded PCF header (MQEPH).
• Activity report message data.

Activity report message data consists of the Activity PCF group and, if generated for a trace-route
message, the TraceRoute PCF group.

Table 19 on page 93 shows the structure of these reports, including parameters that are returned only
under certain conditions.

92 Monitoring and Performance for IBM MQ

Table 19. Activity report format

MQMD structure Embedded PCF header
MQEPH structure

Activity report message data

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback
Encoding
Coded character set ID
Message format
Priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name
Put date
Put time
Application origin data
Group identifier
Message sequence number
Offset
Message flags
Original length

Structure identifier
Structure version
Structure length
Encoding
Coded character set ID
Message format
Flags
PCF header (MQCFH)
Structure type
Structure length
Structure version
Command identifier
Message sequence number
Control options
Completion code
Reason code
Parameter count

Activity
Activity application name
Activity application type
Activity description
Operation
Operation type
Operation date
Operation time
Message
Message length
MQMD 8

EmbeddedMQMD
Queue manager name
Queue sharing group name
Queue name 1
2 3
7

Resolved queue name 1
3
7

Remote queue name 3
7

Remote queue manager name 2
3 4
5
7

Subscription level 9

Subscription identifier
9

Feedback 2
10

Channel name 4
5

Channel type 4
5

Transmission queue name 5

TraceRoute 6

Detail
Recorded activities
Unrecorded activities
Discontinuity count
Max activities
Accumulate
Deliver

Notes:

1. Returned for Get and Browse operations.
2. Returned for Discard operations.
3. Returned for Put, Put Reply, and Put Report operations.
4. Returned for Receive operations.

Monitoring and performance 93

5. Returned for Send operations.
6. Returned for trace-route messages.
7. Not returned for Put operations to a topic, contained within Publish activities.
8. Not returned for Excluded Publish operations. For Publish and Discarded Publish operations, returned

containing a subset of parameters.
9. Returned for Publish, Discarded Publish, and Excluded Publish operations.

10. Returned for Discarded Publish and Excluded Publish operations.

Activity report MQMD (message descriptor)
Use this page to view the values contained by the MQMD structure for an activity report

StrucId
Structure identifier:
Data type

MQCHAR4
Value

MQMD_STRUC_ID.
Version

Structure version number
Data type

MQLONG
Values

Copied from the original message descriptor. Possible values are:
MQMD_VERSION_1

Version-1 message descriptor structure, supported in all environments.
MQMD_VERSION_2

Version-2 message descriptor structure, supported on AIX®, HP-UX, z/OS, IBM i, Solaris, Linux,
Windows, and all IBM MQ MQI clients connected to these systems.

Report
Options for further report messages
Data type

MQLONG
Value

If MQRO_PASS_DISCARD_AND_EXPIRY or MQRO_DISCARD_MSG were specified in the Report
field of the original message descriptor:
MQRO_DISCARD

The report is discarded if it cannot be delivered to the destination queue.
Otherwise:
MQRO_NONE

No reports required.
MsgType

Indicates type of message
Data type

MQLONG
Value

MQMT_REPORT
Expiry

Report message lifetime

94 Monitoring and Performance for IBM MQ

Data type
MQLONG

Value
If the Report field in the original message descriptor is specified as
MQRO_PASS_DISCARD_AND_EXPIRY, the remaining expiry time from the original message is
used.

Otherwise:
MQEI_UNLIMITED

The report does not have an expiry time.

Feedback

Description: Feedback or reason code.

Data type: MQLONG.

Value: MQFB_ACTIVITY
Activity report.

Encoding

Description: Numeric encoding of report message data.

Data type: MQLONG.

Value: MQENC_NATIVE.

CodedCharSetId

Description: Character set identifier of report message data.

Data type: MQLONG.

Value: Set as appropriate.

Format

Description: Format name of report message data

Data type: MQCHAR8.

Value: MQFMT_EMBEDDED_PCF
Embedded PCF message.

Priority

Description: Report message priority.

Data type: MQLONG.

Value: Copied from the original message descriptor.

Persistence

Description: Report message persistence.

Data type: MQLONG.

Value: Copied from the original message descriptor.

MsgId

Description: Message identifier.

Monitoring and performance 95

Data type: MQBYTE24.

Values: If the Report field in the original message descriptor is specified as
MQRO_PASS_MSG_ID, the message identifier from the original message is used.

Otherwise, a unique value will be generated by the queue manager.

CorrelId

Description: Correlation identifier.

Data type: MQBYTE24.

Value: If the Report field in the original message descriptor is specified as
MQRO_PASS_CORREL_ID, the correlation identifier from the original message
is used.

Otherwise, the message identifier is copied from the original message.

BackoutCount

Description: Backout counter.

Data type: MQLONG.

Value: 0.

ReplyToQ

Description: Name of reply queue.

Data type: MQCHAR48.

Values: Blank.

ReplyToQMgr

Description: Name of reply queue manager.

Data type: MQCHAR48.

Value: The queue manager name that generated the report message.

UserIdentifier

Description: The user identifier of the application that generated the report message.

Data type: MQCHAR12.

Value: Copied from the original message descriptor.

AccountingToken

Description: Accounting token that allows an application to charge for work done as a result
of the message.

Data type: MQBYTE32.

Value: Copied from the original message descriptor.

ApplIdentityData

Description: Application data relating to identity.

Data type: MQCHAR32.

Values: Copied from the original message descriptor.

96 Monitoring and Performance for IBM MQ

PutApplType

Description: Type of application that put the report message.

Data type: MQLONG.

Value: MQAT_QMGR
Queue manager generated message.

PutApplName

Description: Name of application that put the report message.

Data type: MQCHAR28.

Value: Either the first 28 bytes of the queue manager name, or the name of the MCA
that generated the report message.

PutDate

Description: Date when message was put.

Data type: MQCHAR8.

Value: As generated by the queue manager.

PutTime

Description: Time when message was put.

Data type: MQCHAR8.

Value: As generated by the queue manager.

ApplOriginData

Description: Application data relating to origin.

Data type: MQCHAR4.

Value: Blank.

If Version is MQMD_VERSION_2, the following additional fields are present:
GroupId

Description: Identifies to which message group or logical message the physical message
belongs.

Data type: MQBYTE24.

Value: Copied from the original message descriptor.

MsgSeqNumber

Description: Sequence number of logical message within group.

Data type: MQLONG.

Value: Copied from the original message descriptor.

Offset

Description: Offset of data in physical message from start of logical message.

Data type: MQLONG.

Value: Copied from the original message descriptor.

Monitoring and performance 97

MsgFlags

Description: Message flags that specify attributes of the message or control its processing.

Data type: MQLONG.

Value: Copied from the original message descriptor.

OriginalLength

Description: Length of original message.

Data type: MQLONG.

Value: Copied from the original message descriptor.

Activity report MQEPH (Embedded PCF header)
Use this page to view the values contained by the MQEPH structure for an activity report

The MQEPH structure contains a description of both the PCF information that accompanies the message
data of an activity report, and the application message data that follows it.

For an activity report, the MQEPH structure contains the following values:
StrucId

Description: Structure identifier.

Data type: MQCHAR4.

Value: MQEPH_STRUC_ID.

Version

Description: Structure version number.

Data type: MQLONG.

Values: MQEPH_VERSION_1.

StrucLength

Description: Structure length.

Data type: MQLONG.

Value: Total length of the structure including the PCF parameter structures that follow
it.

Encoding

Description: Numeric encoding of the message data that follows the last PCF parameter
structure.

Data type: MQLONG.

Value: If any data from the original application message data is included in the report
message, the value will be copied from the Encoding field of the original
message descriptor.

Otherwise, 0.

CodedCharSetId

Description: Character set identifier of the message data that follows the last PCF parameter
structure.

98 Monitoring and Performance for IBM MQ

Data type: MQLONG.

Value: If any data from the original application message data is included in the report
message, the value will be copied from the CodedCharSetId field of the original
message descriptor.

Otherwise, MQCCSI_UNDEFINED.

Format

Description: Format name of message data that follows the last PCF parameter structure.

Data type: MQCHAR8.

Value: If any data from the original application message data is included in the report
message, the value will be copied from the Format field of the original message
descriptor.

Otherwise, MQFMT_NONE.

Flags

Description: Flags that specify attributes of the structure or control its processing.

Data type: MQLONG.

Value: MQEPH_CCSID_EMBEDDED
Specifies that the character set of the parameters containing character data
is specified individually within the CodedCharSetId field in each structure.

PCFHeader

Description: Programmable Command Format Header

Data type: MQCFH.

Value: See “Activity report MQCFH (PCF header)” on page 99.

Activity report MQCFH (PCF header)
Use this page to view the PCF values contained by the MQCFH structure for an activity report

For an activity report, the MQCFH structure contains the following values:
Type

Description: Structure type that identifies the content of the report message.

Data type: MQLONG.

Value: MQCFT_REPORT
Message is a report.

StrucLength

Description: Structure length.

Data type: MQLONG.

Value: MQCFH_STRUC_LENGTH
Length in bytes of MQCFH structure.

Version

Description: Structure version number.

Monitoring and performance 99

Data type: MQLONG.

Values: MQCFH_VERSION_3

Command

Description: Command identifier. This identifies the category of the message.

Data type: MQLONG.

Values: MQCMD_ACTIVITY_MSG
Message activity.

MsgSeqNumber

Description: Message sequence number. This is the sequence number of the message within
a group of related messages.

Data type: MQLONG.

Values: 1.

Control

Description: Control options.

Data type: MQLONG.

Values: MQCFC_LAST.

CompCode

Description: Completion code.

Data type: MQLONG.

Values: MQCC_OK.

Reason

Description: Reason code qualifying completion code.

Data type: MQLONG.

Values: MQRC_NONE.

ParameterCount

Description: Count of parameter structures. This is the number of parameter structures that
follow the MQCFH structure. A group structure (MQCFGR), and its included
parameter structures, are counted as one structure only.

Data type: MQLONG.

Values: 1 or greater.

Activity report message data
Use this page to view the parameters contained by the Activity PCF group in an activity report message.
Some parameters are returned only when specific operations have been performed.

Activity report message data consists of the Activity PCF group and, if generated for a trace-route
message, the TraceRoute PCF group. The Activity PCF group is detailed in this topic.

Some parameters, which are described as Operation-specific activity report message data, are returned
only when specific operations have been performed.

100 Monitoring and Performance for IBM MQ

For an activity report, the activity report message data contains the following parameters:
Activity

Description: Grouped parameters describing the activity.

Identifier: MQGACF_ACTIVITY.

Data type: MQCFGR.

Included in PCF
group:

None.

Parameters in PCF
group:

ActivityApplName
ActivityApplType
ActivityDescription
Operation
TraceRoute

Returned: Always.

ActivityApplName

Description: Name of application that performed the activity.

Identifier: MQCACF_APPL_NAME.

Data type: MQCFST.

Included in PCF
group:

Activity.

Maximum length: MQ_APPL_NAME_LENGTH.

Returned: Always.

ActivityApplType

Description: Type of application that performed the activity.

Identifier: MQIA_APPL_TYPE.

Data type: MQCFIN.

Included in PCF
group:

Activity.

Returned: Always.

ActivityDescription

Description: Description of activity performed by the application.

Identifier: MQCACF_ACTIVITY_DESCRIPTION.

Data type: MQCFST.

Included in PCF
group:

Activity.

Maximum length: 64

Returned: Always.

Operation

Description: Grouped parameters describing an operation of the activity.

Monitoring and performance 101

Identifier: MQGACF_OPERATION.

Data type: MQCFGR.

Included in PCF
group:

Activity.

Parameters in PCF
group:

OperationType
OperationDate
OperationTime
Message
QMgrName
QSGName

Note: Additional parameters are returned in this group depending on the
operation type. These additional parameters are described as Operation-
specific activity report message data.

Returned: One Operation PCF group per operation in the activity.

OperationType

Description: Type of operation performed.

Identifier: MQIACF_OPERATION_TYPE.

Data type: MQCFIN.

Included in PCF
group:

Operation.

Values: MQOPER_*.

Returned: Always.

OperationDate

Description: Date when the operation was performed.

Identifier: MQCACF_OPERATION_DATE.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_DATE_LENGTH.

Returned: Always.

OperationTime

Description: Time when the operation was performed.

Identifier: MQCACF_OPERATION_TIME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_TIME_LENGTH.

Returned: Always.

102 Monitoring and Performance for IBM MQ

Message

Description: Grouped parameters describing the message that caused the activity.

Identifier: MQGACF_MESSAGE.

Data type: MQCFGR.

Included in PCF
group:

Operation.

Parameters in
group:

MsgLength
MQMD
EmbeddedMQMD

Returned: Always, except for Excluded Publish operations.

MsgLength

Description: Length of the message that caused the activity, before the activity occurred.

Identifier: MQIACF_MSG_LENGTH.

Data type: MQCFIN.

Included in PCF
group:

Message.

Returned: Always.

MQMD

Description: Grouped parameters related to the message descriptor of the message that
caused the activity.

Identifier: MQGACF_MQMD.

Data type: MQCFGR.

Included in PCF
group:

Message.

Monitoring and performance 103

Parameters in
group:

StrucId
Version
Report
MsgType
Expiry
Feedback
Encoding
CodedCharSetId
Format
Priority
Persistence
MsgId
CorrelId
BackoutCount
ReplyToQ
ReplyToQMgr
UserIdentifier
AccountingToken
ApplIdentityData
PutApplType
PutApplName
PutDate
PutTime
ApplOriginData
GroupId
MsgSeqNumber
Offset
MsgFlags
OriginalLength

Returned: Always, except for Excluded Publish operations.

EmbeddedMQMD

Description: Grouped parameters describing the message descriptor embedded within a
message on a transmission queue.

Identifier: MQGACF_EMBEDDDED_MQMD.

Data type: MQCFGR.

Included in PCF
group:

Message.

104 Monitoring and Performance for IBM MQ

Parameters in
group:

StrucId
Version
Report
MsgType
Expiry
Feedback
Encoding
CodedCharSetId
Format
Priority
Persistence
MsgId
CorrelId
BackoutCount
ReplyToQ
ReplyToQMgr
UserIdentifier
AccountingToken
ApplIdentityData
PutApplType
PutApplName
PutDate
PutTime
ApplOriginData
GroupId
MsgSeqNumber
Offset
MsgFlags
OriginalLength

Returned: For Get operations where the queue resolves to a transmission queue.

StrucId

Description: Structure identifier

Identifier: MQCACF_STRUC_ID.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: 4.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

Version

Description: Structure version number.

Identifier: MQIACF_VERSION.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Monitoring and performance 105

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

Report

Description: Options for report messages.

Identifier: MQIACF_REPORT.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

MsgType

Description: Indicates type of message.

Identifier: MQIACF_MSG_TYPE.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

Expiry

Description: Message lifetime.

Identifier: MQIACF_EXPIRY.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

Feedback

Description: Feedback or reason code.

Identifier: MQIACF_FEEDBACK.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

Encoding

Description: Numeric encoding of message data.

Identifier: MQIACF_ENCODING.

Data type: MQCFIN.

106 Monitoring and Performance for IBM MQ

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

CodedCharSetId

Description: Character set identifier of message data.

Identifier: MQIA_CODED_CHAR_SET_ID.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

Format

Description: Format name of message data

Identifier: MQCACH_FORMAT_NAME.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_FORMAT_LENGTH.

Returned: Always, except for Excluded Publish operations.

Priority

Description: Message priority.

Identifier: MQIACF_PRIORITY.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations.

Persistence

Description: Message persistence.

Identifier: MQIACF_PERSISTENCE.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations.

MsgId

Description: Message identifier.

Identifier: MQBACF_MSG_ID.

Data type: MQCFBS.

Monitoring and performance 107

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_MSG_ID_LENGTH.

Returned: Always, except for Excluded Publish operations.

CorrelId

Description: Correlation identifier.

Identifier: MQBACF_CORREL_ID.

Data type: MQCFBS.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_CORREL_ID_LENGTH.

Returned: Always, except for Excluded Publish operations.

BackoutCount

Description: Backout counter.

Identifier: MQIACF_BACKOUT_COUNT.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

ReplyToQ

Description: Name of reply queue.

Identifier: MQCACF_REPLY_TO_Q.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_Q_NAME_LENGTH.

Returned: Always, except for Excluded Publish Operations and in MQMD for Publish and
Discarded Publish operations.

ReplyToQMgr

Description: Name of reply queue manager.

Identifier: MQCACF_REPLY_TO_Q_MGR.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_Q_MGR_NAME_LENGTH.

Returned: Always, except for Excluded Publish Operations and in MQMD for Publish and
Discarded Publish Operations.

108 Monitoring and Performance for IBM MQ

UserIdentifier

Description: The user identifier of the application that originated the message.

Identifier: MQCACF_USER_IDENTIFIER.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_USER_ID_LENGTH.

Returned: Always, except for Excluded Publish Operations.

AccountingToken

Description: Accounting token that allows an application to charge for work done as a result
of the message.

Identifier: MQBACF_ACCOUNTING_TOKEN.

Data type: MQCFBS.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_ACCOUNTING_TOKEN_LENGTH.

Returned: Always, except for Excluded Publish Operations.

ApplIdentityData

Description: Application data relating to identity.

Identifier: MQCACF_APPL_IDENTITY_DATA.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_APPL_IDENTITY_DATA_LENGTH.

Returned: Always, except for Excluded Publish Operations.

PutApplType

Description: Type of application that put the message.

Identifier: MQIA_APPL_TYPE.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish Operations and in MQMD for Publish and
Discarded Publish Operations.

PutApplName

Description: Name of application that put the message.

Identifier: MQCACF_APPL_NAME.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Monitoring and performance 109

Maximum length: MQ_APPL_NAME_LENGTH.

Returned: Always, except for Excluded Publish Operations and in MQMD for Publish and
Discarded Publish Operations.

PutDate

Description: Date when message was put.

Identifier: MQCACF_PUT_DATE.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_PUT_DATE_LENGTH.

Returned: Always, except for Excluded Publish Operations and in MQMD for Publish and
Discarded Publish Operations.

PutTime

Description: Time when message was put.

Identifier: MQCACF_PUT_TIME.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_PUT_TIME_LENGTH.

Returned: Always, except for Excluded Publish Operations and in MQMD for Publish and
Discarded Publish Operations.

ApplOriginData

Description: Application data relating to origin.

Identifier: MQCACF_APPL_ORIGIN_DATA.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_APPL_ORIGIN_DATA_LENGTH.

Returned: Always, except for Excluded Publish Operations and in MQMD for Publish and
Discarded Publish Operations.

GroupId

Description: Identifies to which message group or logical message the physical message
belongs.

Identifier: MQBACF_GROUP_ID.

Data type: MQCFBS.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_GROUP_ID_LENGTH.

Returned: If the Version is specified as MQMD_VERSION_2. Not returned in Excluded
Publish Operations and in MQMD for Publish and Discarded Publish Operations.

110 Monitoring and Performance for IBM MQ

MsgSeqNumber

Description: Sequence number of logical message within group.

Identifier: MQIACH_MSG_SEQUENCE_NUMBER.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: If Version is specified as MQMD_VERSION_2. Not returned in Excluded Publish
Operations and in MQMD for Publish and Discarded Publish Operations.

Offset

Description: Offset of data in physical message from start of logical message.

Identifier: MQIACF_OFFSET.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: If Version is specified as MQMD_VERSION_2. Not returned in Excluded Publish
Operations and in MQMD for Publish and Discarded Publish Operations.

MsgFlags

Description: Message flags that specify attributes of the message or control its processing.

Identifier: MQIACF_MSG_FLAGS.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: If Version is specified as MQMD_VERSION_2. Not returned in Excluded Publish
Operations and in MQMD for Publish and Discarded Publish Operations.

OriginalLength

Description: Length of original message.

Identifier: MQIACF_ORIGINAL_LENGTH.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: If Version is specified as MQMD_VERSION_2. Not returned in Excluded Publish
Operations and in MQMD for Publish and Discarded Publish Operations.

QMgrName

Description: Name of the queue manager where the activity was performed.

Identifier: MQCA_Q_MGR_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_MGR_NAME_LENGTH

Monitoring and performance 111

Returned: Always.

QSGName

Description: Name of the queue sharing group to which the queue manager where the
activity was performed belongs.

Identifier: MQCA_QSG_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_QSG_NAME_LENGTH

Returned: If the activity was performed on an IBM MQ for z/OS queue manager.

TraceRoute

Description: Grouped parameters specifying attributes of the trace-route message.

Identifier: MQGACF_TRACE_ROUTE.

Data type: MQCFGR.

Contained in PCF
group:

Activity.

Parameters in
group:

Detail
RecordedActivities
UnrecordedActivities
DiscontinuityCount
MaxActivities
Accumulate
Forward
Deliver

Returned: If the activity was performed on behalf of the trace-route message.

The values of the parameters in the TraceRoute PCF group are those from the trace-route message at
the time the activity report was generated.

Operation-specific activity report message data
Use this page to view the additional PCF parameters that might be returned in the PCF group Operation in
an activity report, depending on the value of the OperationType parameter

The additional parameters vary depending on the following operation types:

Get/Browse (MQOPER_GET/MQOPER_BROWSE)
The additional activity report message data parameters that are returned in the PCF group Operation for
the Get/Browse (MQOPER_GET/MQOPER_BROWSE) operation type (a message on a queue was got, or
browsed).

QName

Description: The name of the queue that was opened.

Identifier: MQCA_Q_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

112 Monitoring and Performance for IBM MQ

Maximum length: MQ_Q_NAME_LENGTH

Returned: Always.

ResolvedQName

Description: The name that the opened queue resolves to.

Identifier: MQCACF_RESOLVED_Q_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH

Returned: Always.

Discard (MQOPER_DISCARD)
The additional activity report message data parameters that are returned in the PCF group Operation for
the Discard (MQOPER_DISCARD) operation type (a message was discarded).

Feedback

Description: The reason for the message being discarded.

Identifier: MQIACF_FEEDBACK.

Data type: MQCFIN.

Included in PCF
group:

Operation.

Returned: Always.

QName

Description: The name of the queue that was opened.

Identifier: MQCA_Q_NAME.

Data type: MQCFST.

Maximum length: MQ_Q_NAME_LENGTH

Included in PCF
group:

Operation.

Returned: If the message was discarded because it was unsuccessfully put to a queue.

RemoteQMgrName

Description: The name of the queue manager to which the message was destined.

Identifier: MQCA_REMOTE_Q_MGR_NAME.

Data type: MQCFST.

Maximum length: MQ_Q_MGR_NAME_LENGTH

Included in PCF
group:

Operation.

Returned: If the value of Feedback is MQFB_NOT_FORWARDED.

Monitoring and performance 113

Publish/Discarded Publish/Excluded Publish (MQOPER_PUBLISH/MQOPER_DISCARDED_PUBLISH/
MQOPER_EXCLUDED_PUBLISH)
The additional activity report message data parameters that are returned in the PCF group Operation for
the Publish/Discarded Publish/Excluded Publish (MQOPER_PUBLISH/MQOPER_DISCARDED_PUBLISH/
MQOPER_EXCLUDED_PUBLISH) operation type (a publish/subscribe message was delivered, discarded,
or excluded).

SubId

Description: The subscription identifier.

Identifier: MQBACF_SUB_ID.

Data type: MQCFBS.

Included in PCF
group:

Operation.

Returned: Always.

SubLevel

Description: The subscription level.

Identifier: MQIACF_SUB_LEVEL.

Data type: MQCFIN.

Included in PCF
group:

Operation.

Returned: Always.

Feedback

Description: The reason for discarding the message.

Identifier: MQIACF_FEEDBACK.

Data type: MQCFIN.

Included in PCF
group:

Operation.

Returned: If the message was discarded because it was not delivered to a subscriber, or
the message was not delivered because the subscriber was excluded.

The Publish operation MQOPER_PUBLISH provides information about a message delivered to a particular
subscriber. This operation describes the elements of the onward message that might have changed from
the message described in the associated Put operation. Similarly to a Put operation, it contains a message
group MQGACF_MESSAGE and, inside that, an MQMD group MQGACF_MQMD. However, this MQMD group
contains only the following fields, which can be overridden by a subscriber: Format, Priority, Persistence,
MsgId, CorrelId, UserIdentifier, AccountingToken, ApplIdentityData.

The SubId and SubLevel of the subscriber are included in the operation information. You can use the
SubID with the MQCMD_INQUIRE_SUBSCRIBER PCF command to retrieve all other attributes for a
subscriber.

The Discarded Publish operation MQOPER_DISCARDED_PUBLISH is analogous to the Discard operation
that is used when a message is not delivered in point-to-point messaging. A message is not delivered to
a subscriber if the message was explicitly requested not to be delivered to a local destination and this
subscriber specifies a local destination. A message is also considered not delivered if there is a problem
getting the message to the destination queue, for example, because the queue is full.

114 Monitoring and Performance for IBM MQ

The information in a Discarded Publish operation is the same as for a Publish operation, with the addition
of a Feedback field that gives the reasons why the message was not delivered. This feedback field
contains MQFB_* or MQRC_* values that are common with the MQOPER_DISCARD operation. The reason
for discarding a publish, as opposed to excluding it, are the same as the reasons for discarding a put.

The Excluded Publish operation MQOPER_EXCLUDED_PUBLISH provides information about a subscriber
that was considered for delivery of the message, because the topic on which the subscriber is subscribing
matches that of the associated Put operation, but the message was not delivered to the subscriber
because other selection criteria do not match with the message that is being put to the topic. As
with a Discarded Publish operation, the Feedback field provides information about the reason why
this subscription was excluded. However, unlike the Discarded Publish operation, no message-related
information is provided because no message was generated for this subscriber.

Put/Put Reply/Put Report (MQOPER_PUT/MQOPER_PUT_REPLY/MQOPER_PUT_REPORT)
The additional activity report message data parameters that are returned in the PCF group Operation for
the Put/Put Reply/Put Report (MQOPER_PUT/MQOPER_PUT_REPLY/MQOPER_PUT_REPORT) operation
type (a message, reply message, or report message was put to a queue).

QName

Description: The name of the queue that was opened.

Identifier: MQCA_Q_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH

Returned: Always, apart from one exception: not returned if the Put operation is to a topic,
contained within a publish activity.

ResolvedQName

Description: The name that the opened queue resolves to.

Identifier: MQCACF_RESOLVED_Q_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH

Returned: When the opened queue could be resolved. Not returned if the Put operation is
to a topic, contained within a publish activity.

RemoteQName

Description: The name of the opened queue, as it is known on the remote queue manager.

Identifier: MQCA_REMOTE_Q_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH

Returned: If the opened queue is a remote queue. Not returned if the Put operation is to a
topic, contained within a publish activity.

Monitoring and performance 115

RemoteQMgrName

Description: The name of the remote queue manager on which the remote queue is defined.

Identifier: MQCA_REMOTE_Q_MGR_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: If the opened queue is a remote queue. Not returned if the Put operation is to a
topic, contained within a publish activity.

TopicString

Description: The full topic string to which the message is being put.

Identifier: MQCA_TOPIC_STRING.

Data type: MQCFST.

Included in PCF
group:

Operation.

Returned: If the Put operation is to a topic, contained within a publish activity.

Feedback

Description: The reason for the message being put on the dead-letter queue.

Identifier: MQIACF_FEEDBACK.

Data type: MQCFIN.

Included in PCF
group:

Operation.

Returned: If the message was put on the dead-letter queue.

Receive (MQOPER_RECEIVE)
The additional activity report message data parameters that are returned in the PCF group Operation for
the Receive (MQOPER_RECEIVE) operation type (a message was received on a channel).

ChannelName

Description: The name of the channel on which the message was received.

Identifier: MQCACH_CHANNEL_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_CHANNEL_NAME_LENGTH

Returned: Always.

ChannelType

Description: The type of channel on which the message was received.

Identifier: MQIACH_CHANNEL_TYPE.

Data type: MQCFIN.

116 Monitoring and Performance for IBM MQ

Included in PCF
group:

Operation.

Returned: Always.

RemoteQMgrName

Description: The name of the queue manager from which the message was received.

Identifier: MQCA_REMOTE_Q_MGR_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: Always.

Send (MQOPER_SEND)
The additional activity report message data parameters that are returned in the PCF group Operation for
the Send (MQOPER_SEND) operation type (a message was sent on a channel).

ChannelName

Description: The name of the channel where the message was sent.

Identifier: MQCACH_CHANNEL_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_CHANNEL_NAME_LENGTH.

Returned: Always.

ChannelType

Description: The type of channel where the message was sent.

Identifier: MQIACH_CHANNEL_TYPE.

Data type: MQCFIN.

Included in PCF
group:

Operation.

Returned: Always.

XmitQName

Description: The transmission queue from which the message was retrieved.

Identifier: MQCACH_XMIT_Q_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH.

Returned: Always.

Monitoring and performance 117

RemoteQMgrName

Description: The name of the remote queue manager to which the message was sent.

Identifier: MQCA_REMOTE_Q_MGR_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: Always.

Trace-route message reference
Use this page to obtain an overview of the trace-route message format. The trace-route message data
includes parameters that describe the activities that the trace-route message has caused

Trace-route message format
Trace-route messages are standard IBM MQ messages containing a message descriptor and message
data. The message data contains information about the activities performed on a trace-route message as
it has been routed through a queue manager network.

Trace-route messages contain the following information:
A message descriptor

An MQMD structure, with the Format field set to MQFMT_ADMIN or MQFMT_EMBEDDED_PCF.
Message data

Consists of either:

• A PCF header (MQCFH) and trace-route message data, if Format is set to MQFMT_ADMIN, or
• An embedded PCF header (MQEPH), trace-route message data, and additional user-specified

message data, if Format is set to MQFMT_EMBEDDED_PCF.

When using the IBM MQ display route application to generate a trace-route message, Format is set to
MQFMT_ADMIN.

The content of the trace-route message data is determined by the Accumulate parameter from the
TraceRoute PCF group, as follows:

• If Accumulate is set to MQROUTE_ACCUMULATE_NONE, the trace-route message data contains the
TraceRoute PCF group.

• If Accumulate is set to either MQROUTE_ACCUMULATE_IN_MSG or
MQROUTE_ACCUMULATE_AND_REPLY, the trace-route message data contains the TraceRoute PCF
group and zero or more Activity PCF groups.

Table 20 on page 119 shows the structure of a trace-route message.

118 Monitoring and Performance for IBM MQ

Table 20. Trace-route message format

MQMD structure Embedded PCF header MQEPH
structure

Trace-route message data

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback
Encoding
Coded character set ID
Message format
Priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name
Put date
Put time
Application origin data
Group identifier
Message sequence number
Offset
Message flags
Original length

Structure identifier
Structure version
Structure length
Encoding
Coded character set ID
Message format
Flags
PCF header (MQCFH)
Structure type
Structure length
Structure version
Command identifier
Message sequence number
Control options
Completion code
Reason code
Parameter count

TraceRoute
Detail
Recorded activities
Unrecorded activities
Discontinuity count
Max activities
Accumulate
Deliver

Trace-route message MQMD (message descriptor)
Use this page to view the values contained by the MQMD structure for a trace-route message

StrucId

Description: Structure identifier.

Data type: MQCHAR4.

Value: MQMD_STRUC_ID.

Version

Description: Structure version number.

Data type: MQLONG.

Values: MQMD_VERSION_1.

Report

Description: Options for report messages.

Data type: MQLONG.

Monitoring and performance 119

Value: Set according to requirements. Common report options follow:
MQRO_DISCARD_MSG

The message is discarded on arrival to a local queue.
MQRO_PASS_DISCARD_AND_EXPIRY

Every response (activity reports or trace-route reply message) will have the
report option MQRO_DISCARD_MSG set, and the remaining expiry passed
on. This ensures that responses do not remain in the queue manager
network indefinitely.

MsgType

Description: Type of message.

Data type: MQLONG.

Value: If the Accumulate parameter in the TraceRoute group is specified as
MQROUTE_ACCUMULATE_AND_REPLY, then message type is MQMT_REQUEST

Otherwise:
MQMT_DATAGRAM.

Expiry

Description: Message lifetime.

Data type: MQLONG.

Value: Set according to requirements. This parameter can be used to ensure trace-
route messages are not left in a queue manager network indefinitely.

Feedback

Description: Feedback or reason code.

Data type: MQLONG.

Value: MQFB_NONE.

Encoding

Description: Numeric encoding of message data.

Data type: MQLONG.

Value: Set as appropriate.

CodedCharSetId

Description: Character set identifier of message data.

Data type: MQLONG.

Value: Set as appropriate.

Format

Description: Format name of message data

Data type: MQCHAR8.

120 Monitoring and Performance for IBM MQ

Value: MQFMT_ADMIN
Admin message. No user data follows the TraceRoute PCF group.

MQFMT_EMBEDDED_PCF
Embedded PCF message. User data follows the TraceRoute PCF group.

Priority

Description: Message priority.

Data type: MQLONG.

Value: Set according to requirements.

Persistence

Description: Message persistence.

Data type: MQLONG.

Value: Set according to requirements.

MsgId

Description: Message identifier.

Data type: MQBYTE24.

Value: Set according to requirements.

CorrelId

Description: Correlation identifier.

Data type: MQBYTE24.

Value: Set according to requirements.

BackoutCount

Description: Backout counter.

Data type: MQLONG.

Value: 0.

ReplyToQ

Description: Name of reply queue.

Data type: MQCHAR48.

Values: Set according to requirements.

If MsgType is set to MQMT_REQUEST or if Report has any report generating
options set, then this parameter must be non-blank.

ReplyToQMgr

Description: Name of reply queue manager.

Data type: MQCHAR48.

Value: Set according to requirements.

Monitoring and performance 121

UserIdentifier

Description: The user identifier of the application that originated the message.

Data type: MQCHAR12.

Value: Set as normal.

AccountingToken

Description: Accounting token that allows an application to charge for work done as a result
of the message.

Data type: MQBYTE32.

Value: Set as normal.

ApplIdentityData

Description: Application data relating to identity.

Data type: MQCHAR32.

Values: Set as normal.

PutApplType

Description: Type of application that put the message.

Data type: MQLONG.

Value: Set as normal.

PutApplName

Description: Name of application that put the message.

Data type: MQCHAR28.

Value: Set as normal.

PutDate

Description: Date when message was put.

Data type: MQCHAR8.

Value: Set as normal.

PutTime

Description: Time when message was put.

Data type: MQCHAR8.

Value: Set as normal.

ApplOriginData

Description: Application data relating to origin.

Data type: MQCHAR4.

Value: Set as normal..

122 Monitoring and Performance for IBM MQ

Trace-route message MQEPH (Embedded PCF header)
Use this page to view the values contained by the MQEPH structure for a trace-route message

The MQEPH structure contains a description of both the PCF information that accompanies the message
data of a trace-route message, and the application message data that follows it. An MQEPH structure is
used only if additional user message data follows the TraceRoute PCF group.

For a trace-route message, the MQEPH structure contains the following values:
StrucId

Description: Structure identifier.

Data type: MQCHAR4.

Value: MQEPH_STRUC_ID.

Version

Description: Structure version number.

Data type: MQLONG.

Values: MQEPH_VERSION_1.

StrucLength

Description: Structure length.

Data type: MQLONG.

Value: Total length of the structure including the PCF parameter structures that follow
it.

Encoding

Description: Numeric encoding of the message data that follows the last PCF parameter
structure.

Data type: MQLONG.

Value: The encoding of the message data.

CodedCharSetId

Description: Character set identifier of the message data that follows the last PCF parameter
structure.

Data type: MQLONG.

Value: The character set of the message data.

Format

Description: Format name of the message data that follows the last PCF parameter structure.

Data type: MQCHAR8.

Value: The format name of the message data.

Flags

Description: Flags that specify attributes of the structure or control its processing.

Data type: MQLONG.

Monitoring and performance 123

Value: MQEPH_NONE
No flags specified.

MQEPH_CCSID_EMBEDDED
Specifies that the character set of the parameters containing character data
is specified individually within the CodedCharSetId field in each structure.

PCFHeader

Description: Programmable Command Format Header

Data type: MQCFH.

Value: See “Trace-route message MQCFH (PCF header)” on page 124.

Trace-route message MQCFH (PCF header)
Use this page to view the PCF values contained by the MQCFH structure for a trace-route message

For a trace-route message, the MQCFH structure contains the following values:
Type

Description: Structure type that identifies the content of the message.

Data type: MQLONG.

Value: MQCFT_TRACE_ROUTE
Message is a trace-route message.

StrucLength

Description: Structure length.

Data type: MQLONG.

Value: MQCFH_STRUC_LENGTH
Length in bytes of MQCFH structure.

Version

Description: Structure version number.

Data type: MQLONG.

Values: MQCFH_VERSION_3

Command

Description: Command identifier. This identifies the category of the message.

Data type: MQLONG.

Values: MQCMD_TRACE_ROUTE
Trace-route message.

MsgSeqNumber

Description: Message sequence number. This is the sequence number of the message within
a group of related messages.

Data type: MQLONG.

Values: 1.

124 Monitoring and Performance for IBM MQ

Control

Description: Control options.

Data type: MQLONG.

Values: MQCFC_LAST.

CompCode

Description: Completion code.

Data type: MQLONG.

Values: MQCC_OK.

Reason

Description: Reason code qualifying completion code.

Data type: MQLONG.

Values: MQRC_NONE.

ParameterCount

Description: Count of parameter structures. This is the number of parameter structures that
follow the MQCFH structure. A group structure (MQCFGR), and its included
parameter structures, are counted as one structure only.

Data type: MQLONG.

Values: 1 or greater.

Trace-route message data
Use this page to view the parameters that make up the TraceRoute PCF group part of trace-route message
data

The content of trace-route message data depends on the Accumulate parameter from the TraceRoute PCF
group. Trace-route message data consists of the TraceRoute PCF group, and zero or more Activity PCF
groups. The TraceRoute PCF group is detailed in this topic. Refer to the related information for details of
the Activity PCF group.

Trace-route message data contains the following parameters:

TraceRoute

Description: Grouped parameters specifying attributes of the trace-route message. For a
trace-route message, some of these parameters can be altered to control how it
is processed.

Identifier: MQGACF_TRACE_ROUTE.

Data type: MQCFGR.

Contained in PCF
group:

None.

Monitoring and performance 125

Parameters in
group:

Detail
RecordedActivities
UnrecordedActivities
DiscontinuityCount
MaxActivities
Accumulate
Forward
Deliver

Detail

Description: The detail level that will be recorded for the activity.

Identifier: MQIACF_ROUTE_DETAIL.

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

Values: MQROUTE_DETAIL_LOW
Activities performed by user-written application are recorded.

MQROUTE_DETAIL_MEDIUM
Activities specified in MQROUTE_DETAIL_LOW are recorded. Additionally,
activities performed by MCAs are recorded.

MQROUTE_DETAIL_HIGH
Activities specified in MQROUTE_DETAIL_LOW, and
MQROUTE_DETAIL_MEDIUM are recorded. MCAs do not record any further
activity information at this level of detail. This option is only available to
user-written applications that are to record further activity information.

RecordedActivities

Description: The number of activities that the trace-route message has caused, where
information was recorded.

Identifier: MQIACF_RECORDED_ACTIVITIES.

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

UnrecordedActivities

Description: The number of activities that the trace-route message has caused, where
information was not recorded.

Identifier: MQIACF_UNRECORDED_ACTIVITIES.

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

DiscontinuityCount

Description: The number of times a trace-route message has been received from a queue
manager that does not support trace-route messaging.

Identifier: MQIACF_DISCONTINUITY_COUNT.

126 Monitoring and Performance for IBM MQ

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

MaxActivities

Description: The maximum number of activities the trace-route message can be involved in
before it stops being processed.

Identifier: MQIACF_MAX_ACTIVITIES.

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

Value: A positive integer
The maximum number of activities.

MQROUTE_UNLIMITED_ACTIVITIES
An unlimited number of activities.

Accumulate

Description: Specifies whether activity information is accumulated within the trace-route
message, and whether a reply message containing the accumulated activity
information is generated before the trace-route message is discarded or is put
on a non-transmission queue.

Identifier: MQIACF_ROUTE_ACCUMULATION.

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

Value: MQROUTE_ACCUMULATE_NONE
Activity information is not accumulated in the message data of the trace-
route message.

MQROUTE_ACCUMULATE_IN_MSG
Activity information is accumulated in the message data of the trace-route
message.

MQROUTE_ACCUMULATE_AND_REPLY
Activity information is accumulated in the message data of the trace-route
message, and a trace-route reply message will be generated.

Forward

Description: Specifies queue managers that the trace-route message can be forwarded to.
When determining whether to forward a message to a remote queue manager,
queue managers use the algorithm that is described in Forwarding.

Identifier: MQIACF_ROUTE_FORWARDING.

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

Monitoring and performance 127

Value: MQROUTE_FORWARD_IF_SUPPORTED
The trace-route message is only forwarded to queue managers that will
honor the value of the Deliver parameter from the TraceRoute group.

MQROUTE_FORWARD_ALL
The trace-route message is forwarded to any queue manager, regardless of
whether the value of the Deliver parameter will be honored.

Deliver

Description: Specifies the action to be taken if the trace-route message arrives at the
destination queue successfully.

Identifier: MQIACF_ROUTE_DELIVERY.

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

Value: MQROUTE_DELIVER_YES
On arrival, the trace-route message is put on the target queue. Any
application performing a destructive get on the target queue can receive
the trace-route message.

MQROUTE_DELIVER_NO
On arrival, the trace-route message is discarded.

Trace-route reply message reference
Use this page to obtain an overview of the trace-route reply message format. The trace-route reply
message data is a duplicate of the trace-route message data from the trace-route message for which it
was generated

Trace-route reply message format
Trace-route reply messages are standard IBM MQ messages containing a message descriptor and
message data. The message data contains information about the activities performed on a trace-route
message as it has been routed through a queue manager network.

Trace-route reply messages contain the following information:
A message descriptor

An MQMD structure
Message data

A PCF header (MQCFH) and trace-route reply message data
Trace-route reply message data consists of one or more Activity PCF groups.

When a trace-route message reaches its target queue, a trace-route reply message can be generated that
contains a copy of the activity information from the trace-route message. The trace-route reply message
will be delivered to a reply-to queue or to a system queue.

Table 21 on page 129 shows the structure of a trace-route reply message, including parameters that are
only returned under certain conditions.

128 Monitoring and Performance for IBM MQ

Table 21. Trace-route reply message format

MQMD structure PCF header MQCFH structure Trace-route reply message data

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback
Encoding
Coded character set ID
Message format
Priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name
Put date
Put time
Application origin data
Group identifier
Message sequence number
Offset
Message flags
Original length

PCF header (MQCFH)
Structure type
Structure length
Structure version
Command identifier
Message sequence number
Control options
Completion code
Reason code
Parameter count

Activity
Activity application name
Activity application type
Activity description
Operation
Operation type
Operation date
Operation time
Message
Message length
MQMD
EmbeddedMQMD
Queue manager name
Queue sharing group name
Queue name 1 2 3
Resolved queue name 1 3
Remote queue name 3
Remote queue manager-
name 2 3 4 5
Feedback 2
Channel name 4 5
Channel type 4 5
Transmission queue name 5
TraceRoute
Detail
Recorded activities
Unrecorded activities
Discontinuity count
Max activities
Accumulate
Deliver

Note:

1. Returned for Get and Browse operations.
2. Returned for Discard operations.
3. Returned for Put, Put Reply, and Put Report operations.
4. Returned for Receive operations.
5. Returned for Send operations.

Trace-route reply message MQMD (message descriptor)
Use this page to view the values contained by the MQMD structure for a trace-route reply message

For a trace-route reply message, the MQMD structure contains the parameters described in Activity report
message descriptor. Some of the parameter values in a trace-route reply message descriptor are different
from those in an activity report message descriptor, as follows:
MsgType

Description: Type of message.

Data type: MQLONG.

Monitoring and performance 129

Value: MQMT_REPLY

Feedback

Description: Feedback or reason code.

Data type: MQLONG.

Value: MQFB_NONE

Encoding

Description: Numeric encoding of message data.

Data type: MQLONG.

Value: Copied from trace-route message descriptor.

CodedCharSetId

Description: Character set identifier of message data.

Data type: MQLONG.

Value: Copied from trace-route message descriptor.

Format

Description: Format name of message data

Data type: MQCHAR8.

Value: MQFMT_ADMIN
Admin message.

Trace-route reply message MQCFH (PCF header)
Use this page to view the PCF values contained by the MQCFH structure for a trace-route reply message

The PCF header (MQCFH) for a trace-route reply message is the same as for a trace-route message.

Trace-route reply message data
The trace-route reply message data is a duplicate of the trace-route message data from the trace-route
message for which it was generated

The trace-route reply message data contains one or more Activity groups. The parameters are described
in “Activity report message data” on page 100.

Accounting and statistics messages
Queue managers generate accounting and statistics messages to record information about the MQI
operations performed by IBM MQ applications, or to record information about the activities occurring in
an IBM MQ system.
Accounting messages

Accounting messages are used to record information about the MQI operations performed by IBM MQ
applications, see “Accounting messages” on page 131.

Statistics messages
Statistics messages are used to record information about the activities occurring in an IBM MQ
system, see “Statistics messages” on page 134. Some activity recorded in statistics messages relates
to internal queue manager operations.

130 Monitoring and Performance for IBM MQ

Accounting messages and statistics messages as described here are not available on IBM
MQ for z/OS, but equivalent functionality is available through the System Management Facility (SMF).

Accounting and statistics messages are delivered to one of two system queues. User applications can
retrieve the messages from these system queues and use the recorded information for various purposes:

• Account for application resource use.
• Record application activity.
• Capacity planning.
• Detect problems in your queue manager network.
• Assist in determining the causes of problems in your queue manager network.
• Improve the efficiency of your queue manager network.
• Familiarize yourself with the running of your queue manager network.
• Confirm that your queue manager network is running correctly.

Related concepts
“Using System Management Facility” on page 291
You can use SMF to collect statistics and accounting information. To use SMF, certain parameters must be
set in z/OS and in IBM MQ.

Accounting messages
Accounting messages record information about the MQI operations performed by IBM MQ applications.
An accounting message is a PCF message that contains a number of PCF structures.

When an application disconnects from a queue manager, an accounting message is generated and
delivered to the system accounting queue (SYSTEM.ADMIN.ACCOUNTING.QUEUE). For long running IBM
MQ applications, intermediate accounting messages are generated as follows:

• When the time since the connection was established exceeds the configured interval.
• When the time since the last intermediate accounting message exceeds the configured interval.

Accounting messages are in the following categories:

MQI accounting messages
MQI accounting messages contain information relating to the number of MQI calls made using a
connection to a queue manager.

Queue accounting messages
Queue accounting messages contain information relating to the number of MQI calls made using
connections to a queue manager, grouped by queue.

Each queue accounting message can contain up to 100 records, with every record relating to an
activity performed by the application with respect to a specific queue.

Accounting messages are recorded only for local queues. If an application makes an MQI call against
an alias queue, the accounting data is recorded against the base queue, and, for a remote queue, the
accounting data is recorded against the transmission queue.

Related reference
“MQI accounting message data” on page 149
Use this page to view the structure of an MQI accounting message
“Queue accounting message data” on page 160

Monitoring and performance 131

Use this page to view the structure of a queue accounting message

Accounting message format
Accounting messages comprise a set of PCF fields that consist of a message descriptor and message
data.
Message descriptor

• An accounting message MQMD (message descriptor)

Accounting message data

• An accounting message MQCFH (PCF header)
• Accounting message data that is always returned
• Accounting message data that is returned if available

The accounting message MQCFH (PCF header) contains information about the application, and the
interval for which the accounting data was recorded.

Accounting message data comprises PCF parameters that store the accounting information. The content
of accounting messages depends on the message category as follows:

MQI accounting message
MQI accounting message data consists of a number of PCF parameters, but no PCF groups.

Queue accounting message
Queue accounting message data consists of a number of PCF parameters, and in the range 1 through
100 QAccountingData PCF groups.

There is one QAccountingData PCF group for every queue that had accounting data collected. If
an application accesses more than 100 queues, multiple accounting messages are generated. Each
message has the SeqNumber in the MQCFH (PCF header) updated accordingly, and the last message
in the sequence has the Control parameter in the MQCFH specified as MQCFC_LAST.

Accounting information collection
Use queue and queue manager attributes to control the collection of accounting information. You can also
use MQCONNX options to control collection at the connection level.

MQI accounting information
Use the queue manager attribute ACCTMQI to control the collection of MQI accounting information

To change the value of this attribute, use the MQSC command, ALTER QMGR, and specify the parameter
ACCTMQI. Accounting messages are generated only for connections that begin after accounting is
enabled. The ACCTMQI parameter can have the following values:

ON
MQI accounting information is collected for every connection to the queue manager.

OFF
MQI accounting information is not collected. This is the default value.

For example, to enable MQI accounting information collection use the following MQSC command:

ALTER QMGR ACCTMQI(ON)

Queue accounting information
Use the queue attribute ACCTQ and the queue manager attribute ACCTQ to control the collection of queue
accounting information.

To change the value of the queue attribute, use the MQSC command, ALTER QLOCAL, and specify the
parameter ACCTQ. Accounting messages are generated only for connections that begin after accounting
is enabled. Note that changes to this value are only effective for connections to the queue manager that
occur after the change to the attribute.

The queue attribute ACCTQ can have the following values:

132 Monitoring and Performance for IBM MQ

ON
Queue accounting information for this queue is collected for every connection to the queue manager
that opens the queue.

OFF
Queue accounting information for this queue is not collected.

QMGR
The collection of queue accounting information for this queue is controlled according to the value of
the queue manager attribute ACCTQ. This is the default value.

To change the value of the queue manager attribute, use the MQSC command, ALTER QMGR and specify
the parameter ACCTQ. The queue manager attribute ACCTQ can have the following values:

ON
Queue accounting information is collected for queues that have the queue attribute ACCTQ set as
QMGR.

OFF
Queue accounting information is not collected for queues that have the queue attribute ACCTQ set as
QMGR. This is the default value.

NONE
The collection of queue accounting information is disabled for all queues, regardless of the queue
attribute ACCTQ.

If the queue manager attribute, ACCTQ, is set to NONE, the collection of queue accounting information is
disabled for all queues, regardless of the queue attribute ACCTQ.

For example, to enable accounting information collection for the queue, Q1, use the following MQSC
command:

ALTER QLOCAL(Q1) ACCTQ(ON)

To enable accounting information collection for all queues that specify the queue attribute ACCTQ as
QMGR, use the following MQSC command:

ALTER QMGR ACCTQ(ON)

MQCONNX options
Use the ConnectOpts parameter on the MQCONNX call to modify the collection of both MQI and queue
accounting information at the connection level by overriding the effective values of the queue manager
attributes ACCTMQI and ACCTQ

The ConnectOpts parameter can have the following values:

MQCNO_ACCOUNTING_MQI_ENABLED
If the value of the queue manager attribute ACCTMQI is specified as OFF, MQI accounting is enabled
for this connection. This is equivalent of the queue manager attribute ACCTMQI being specified as ON.

If the value of the queue manager attribute ACCTMQI is not specified as OFF, this attribute has no
effect.

MQCNO_ACCOUNTING_MQI_DISABLED
If the value of the queue manager attribute ACCTMQI is specified as ON, MQI accounting is disabled
for this connection. This is equivalent of the queue manager attribute ACCTMQI being specified as
OFF.

If the value of the queue manager attribute ACCTMQI is not specified as ON, this attribute has no
effect.

MQCNO_ACCOUNTING_Q_ENABLED
If the value of the queue manager attribute ACCTQ is specified as OFF, queue accounting is enabled
for this connection. All queues with ACCTQ specified as QMGR, are enabled for queue accounting. This
is equivalent of the queue manager attribute ACCTQ being specified as ON.

Monitoring and performance 133

If the value of the queue manager attribute ACCTQ is not specified as OFF, this attribute has no effect.

MQCNO_ACCOUNTING_Q_DISABLED
If the value of the queue manager attribute ACCTQ is specified as ON, queue accounting is disabled
for this connection. This is equivalent of the queue manager attribute ACCTQ being specified as OFF.

If the value of the queue manager attribute ACCTQ is not specified as ON, this attribute has no effect.

These overrides are by disabled by default. To enable them, set the queue manager attribute ACCTCONO
to ENABLED. To enable accounting overrides for individual connections use the following MQSC
command:

ALTER QMGR ACCTCONO(ENABLED)

Accounting message generation
Accounting messages are generated when an application disconnects from the queue manager.
Intermediate accounting messages are also written for long running IBM MQ applications.

Accounting messages are generated in either of the following ways when an application disconnects:

• The application issues an MQDISC call
• The queue manager recognises that the application has terminated

Intermediate accounting messages are written for long running IBM MQ applications when the interval
since the connection was established or since the last intermediate accounting message that was
written exceeds the configured interval. The queue manager attribute, ACCTINT, specifies the time,
in seconds, after which intermediate accounting messages can be automatically written. Accounting
messages are generated only when the application interacts with the queue manager, so applications
that remain connected to the queue manager for long periods without executing MQI requests do not
generate accounting messages until the execution of the first MQI request following the completion of the
accounting interval.

The default accounting interval is 1800 seconds (30 minutes). For example, to change the accounting
interval to 900 seconds (15 minutes) use the following MQSC command:

ALTER QMGR ACCTINT(900)

Statistics messages
Statistics messages record information about the activities occurring in an IBM MQ system. An statistics
messages is a PCF message that contains a number of PCF structures.

Statistics messages are delivered to the system queue (SYSTEM.ADMIN.STATISTICS.QUEUE) at
configured intervals, whenever there is some activity.

Statistics messages are in the following categories:

MQI statistics messages
MQI statistics messages contain information relating to the number of MQI calls made during a
configured interval. For example, the information can include the number of MQI calls issued by a
queue manager.

Queue statistics messages
Queue statistics messages contain information relating to the activity of a queue during a configured
interval. The information includes the number of messages put on, and retrieved from, the queue, and
the total number of bytes processed by a queue.

Each queue statistics message can contain up to 100 records, with each record relating to the activity
per queue for which statistics were collected.

Statistics messages are recorded only for local queues. If an application makes an MQI call against
an alias queue, the statistics data is recorded against the base queue, and, for a remote queue, the
statistics data is recorded against the transmission queue.

134 Monitoring and Performance for IBM MQ

Channel statistics messages
Channel statistics messages contain information relating to the activity of a channel during a
configured interval. For example the information might be the number of messages transferred by
the channel, or the number of bytes transferred by the channel.

Each channel statistics message contains up to 100 records, with each record relating to the activity
per channel for which statistics were collected.

Related reference
“MQI statistics information” on page 136
Use the queue manager attribute STATMQI to control the collection of MQI statistics information
“Queue statistics information” on page 136
Use the queue attribute STATQ and the queue manager attribute STATQ to control the collection of queue
statistics information
“Channel statistics information” on page 137
Use the channel attribute STATCHL to control the collection of channel statistics information. You can also
set queue manager attributes to control information collection.

Statistics messages format
Statistics messages comprise a set of PCF fields that consist of a message descriptor and message data.
Message descriptor

• A statistics message MQMD (message descriptor)

Accounting message data

• A statistics message MQCFH (PCF header)
• Statistics message data that is always returned
• Statistics message data that is returned if available

The statistics message MQCFH (PCF header) contains information about the interval for which the
statistics data was recorded.

Statistics message data comprises PCF parameters that store the statistics information. The content of
statistics messages depends on the message category as follows:

MQI statistics message
MQI statistics message data consists of a number of PCF parameters, but no PCF groups.

Queue statistics message
Queue statistics message data consists of a number of PCF parameters, and in the range 1 through
100 QStatisticsData PCF groups.

There is one QStatisticsData PCF group for every queue was active in the interval. If more than 100
queues were active in the interval, multiple statistics messages are generated. Each message has the
SeqNumber in the MQCFH (PCF header) updated accordingly, and the last message in the sequence
has the Control parameter in the MQCFH specified as MQCFC_LAST.

Channel statistics message
Channel statistics message data consists of a number of PCF parameters, and in the range 1 through
100 ChlStatisticsData PCF groups.

There is one ChlStatisticsData PCF group for every channel that was active in the interval. If more than
100 channels were active in the interval, multiple statistics messages are generated. Each message
has the SeqNumber in the MQCFH (PCF header) updated accordingly, and the last message in the
sequence has the Control parameter in the MQCFH specified as MQCFC_LAST.

Monitoring and performance 135

Statistics information collection
Use queue, queue manager, and channel attributes to control the collection of statistics information

MQI statistics information
Use the queue manager attribute STATMQI to control the collection of MQI statistics information

To change the value of this attribute, use the MQSC command, ALTER QMGR and specify the parameter
STATMQI. Statistics messages are generated only for queues that are opened after statistics collection
has been enabled. The STATMQI parameter can have the following values:

ON
MQI statistics information is collected for every connection to the queue manager.

OFF
MQI statistics information is not collected. This is the default value.

For example, to enable MQI statistics information collection use the following MQSC command:

ALTER QMGR STATMQI(ON)

Queue statistics information
Use the queue attribute STATQ and the queue manager attribute STATQ to control the collection of queue
statistics information

You can enable or disable queue statistics information collection for individual queues or for multiple
queues. To control individual queues, set the queue attribute STATQ. You enable or disable queue
statistics information collection at the queue manager level by using the queue manager attribute STATQ.
For all queues that have the queue attribute STATQ specified with the value QMGR, queue statistics
information collection is controlled at the queue manager level.

Queue statistics are incremented only for operations using IBM MQ MQI Object Handles that were opened
after statistics collection has been enabled.

Queue Statistics messages are generated only for queues for which statistics data has been collected in
the previous time period.

The same queue can have several put operations and get operations through several Object Handles.
Some Object Handles might have been opened before statistics collection was enabled, but others were
opened afterwards. Therefore, it is possible for the queue statistics to record the activity of some put
operations and get operations, and not all.

To ensure that the Queue Statistics are recording the activity of all applications, you must close and
reopen new Object Handles on the queue, or queues, that you are monitoring. The best way to achieve
this, is to end and restart all applications after enabling statistics collection.

To change the value of the queue attribute STATQ, use the MQSC command, ALTER QLOCAL and specify
the parameter STATQ. The queue attribute STATQ can have the following values:

ON
Queue statistics information is collected for every connection to the queue manager that opens the
queue.

OFF
Queue statistics information for this queue is not collected.

QMGR
The collection of queue statistics information for this queue is controlled according to the value of the
queue manager attribute, STATQ. This is the default value.

To change the value of the queue manager attribute STATQ, use the MQSC command, ALTER QMGR and
specify the parameter STATQ. The queue manager attribute STATQ can have the following values:
ON

Queue statistics information is collected for queues that have the queue attribute STATQ set as QMGR

136 Monitoring and Performance for IBM MQ

OFF
Queue statistics information is not collected for queues that have the queue attribute STATQ set as
QMGR. This is the default value.

NONE
The collection of queue statistics information is disabled for all queues, regardless of the queue
attribute STATQ.

If the queue manager attribute STATQ is set to NONE, the collection of queue statistics information is
disabled for all queues, regardless of the queue attribute STATQ.

For example, to enable statistics information collection for the queue, Q1, use the following MQSC
command:

ALTER QLOCAL(Q1) STATQ(ON)

To enable statistics information collection for all queues that specify the queue attribute STATQ as QMGR,
use the following MQSC command:

ALTER QMGR STATQ(ON)

Channel statistics information
Use the channel attribute STATCHL to control the collection of channel statistics information. You can also
set queue manager attributes to control information collection.

You can enable or disable channel statistics information collection for individual channels, or for multiple
channels. To control individual channels, you must set the channel attribute STATCHL to enable or disable
channel statistic information collection. To control many channels together, you enable or disable channel
accounting information collection at the queue manager level by using the queue manager attribute
STATCHL. For all channels that have the channel attribute STATCHL specified with the value QMGR,
channel accounting information collection is controlled at the queue manager level.

Automatically defined cluster-sender channels are not IBM MQ objects, so do not have attributes in the
same way as channel objects. To control automatically defined cluster-sender channels, use the queue
manager attribute STATACLS. This attribute determines whether automatically defined cluster-sender
channels within a queue manager are enabled or disabled for channel statistics information collection.

You can set channel statistics information collection to one of the three monitoring levels: low, medium or
high. You can set the monitoring level at either object level or at the queue manager level. The choice of
which level to use is dependent on your system. Collecting statistics information data might require some
instructions that are relatively expensive computationally, so to reduce the impact of channel statistics
information collection, the medium and low monitoring options measure a sample of the data at regular
intervals rather than collecting data all the time. Table 22 on page 137 summarizes the levels available
with channel statistics information collection:

Table 22. Detail level of channel statistics information collection

Level Description Usage

Low Measure a small sample of the data, at
regular intervals.

For objects that process a high volume of
messages.

Medium Measure a sample of the data, at regular
intervals.

For most objects.

High Measure all data, at regular intervals. For objects that process only a few messages
per second, on which the most current
information is important.

To change the value of the channel attribute STATCHL, use the MQSC command, ALTER CHANNEL and
specify the parameter STATCHL.

Monitoring and performance 137

To change the value of the queue manager attribute STATCHL, use the MQSC command, ALTER QMGR and
specify the parameter STATCHL.

To change the value of the queue manager attribute STATACLS, use the MQSC command, ALTER QMGR
and specify the parameter STATACLS.

The channel attribute, STATCHL, can have the following values:
LOW

Channel statistics information is collected with a low level of detail.
MEDIUM

Channel statistics information is collected with a medium level of detail.
HIGH

Channel statistics information is collected with a high level of detail.
OFF

Channel statistics information is not collected for this channel.
QMGR

The channel attribute is set as QMGR. The collection of statistics information for this channel is
controlled by the value of the queue manager attribute, STATCHL.

This is the default value.

On z/OS, this parameter simply turns on statistics data collection, regardless of the value you select.
Specifying LOW, MEDIUM, or HIGH makes no difference to your results.

The queue manager attribute, STATCHL, can have the following values:
LOW

Channel statistics information is collected with a low level of detail, for all channels that have the
channel attribute STATCHL set as QMGR.

MEDIUM
Channel statistics information is collected with a medium level of detail, for all channels that have the
channel attribute STATCHL set as QMGR.

HIGH
Channel statistics information is collected with a high level of detail, for all channels that have the
channel attribute STATCHL set as QMGR.

OFF
Channel statistics information is not collected for all channels that have the channel attribute
STATCHL set as QMGR.

This is the default value.

NONE
The collection of channel statistics information is disabled for all channel, regardless of the channel
attribute STATCHL.

On z/OS, this parameter simply turns on statistics data collection, regardless of the value you select.
Specifying LOW, MEDIUM, or HIGH makes no difference to your results.

The queue manager attribute, STATACLS, can have the following values:
LOW

Statistics information is collected with a low level of detail for automatically defined cluster-sender
channels.

MEDIUM
Statistics information is collected with a medium level of detail for automatically defined cluster-
sender channels.

HIGH
Statistics information is collected with a high level of detail for automatically defined cluster-sender
channels.

138 Monitoring and Performance for IBM MQ

OFF
Statistics information is not collected for automatically defined cluster-sender channels.

QMGR
The collection of statistics information for automatically defined cluster-sender channels is controlled
by the value of the queue manager attribute, STATCHL.

This is the default value.

On z/OS, this parameter simply turns on statistics data collection, regardless of the value you select.
Specifying LOW, MEDIUM, or HIGH makes no difference to your results.

For example, to enable statistics information collection, with a medium level of detail, for the sender
channel QM1.TO.QM2, use the following MQSC command:

ALTER CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) STATCHL(MEDIUM)

To enable statistics information collection, at a medium level of detail, for all channels that specify the
channel attribute STATCHL as QMGR, use the following MQSC command:

ALTER QMGR STATCHL(MEDIUM)

To enable statistics information collection, at a medium level of detail, for all automatically defined
cluster-sender channels, use the following MQSC command:

ALTER QMGR STATACLS(MEDIUM)

Statistics message generation
Statistics messages are generated at configured intervals, and when a queue manager shuts down in a
controlled fashion.

The configured interval is controlled by the STATINT queue manager attribute, which specifies the
interval, in seconds, between the generation of statistics messages. The default statistics interval is
1800 seconds (30 minutes). To change the statistics interval, use the MQSC command ALTER QMGR
and specify the STATINT parameter. For example, to change the statistics interval to 900 seconds (15
minutes) use the following MQSC command:

ALTER QMGR STATINT(900)

To write the currently collected statistics data to the statistics queue before the statistics collection
interval is due to expire, use the MQSC command RESET QMGR TYPE(STATISTICS). Issuing this
command causes the collected statistics data to be written to the statistics queue and a new statistics
data collection interval to begin.

Displaying accounting and statistics information
To use the information recorded in accounting and statistics messages, run an application such as the
amqsmon sample program to transform the recorded information into a suitable format

Accounting and statistics messages are written to the system accounting and statistics queues. amqsmon
is a sample program supplied with IBM MQ that processes messages from the accounting and statistics
queues and displays the information to the screen in a readable form.

Because amqsmon is a sample program, you can use the supplied source code as template for writing
your own application to process accounting or statistics messages, or modify the amqsmon source code to
meet your own particular requirements.

amqsmon (Display formatted monitoring information)
Use the amqsmon sample program to display in a readable format the information contained within
accounting and statistics messages. The amqsmon program reads accounting messages from the

Monitoring and performance 139

accounting queue, SYSTEM.ADMIN.ACCOUNTING.QUEUE. and reads statistics messages from the
statistics queue, SYSTEM.ADMIN.STATISTICS.QUEUE.

Syntax

amqsmon

 -m QMgrName

 -t Type
 -a

 -i ConnectionId

 -c

ChannelName

 -q

QueueName

 -b -d Depth -w TimeOut -s StartTime

 -e EndTime

 -l

,

Parameter

Required parameters
-t Type

The type of messages to process. Specify Type as one of the following:
accounting

Accounting records are processed. Messages are read from the system queue,
SYSTEM.ADMIN.ACCOUNTING.QUEUE.

statistics
Statistics records are processed. Messages are read from the system queue,
SYSTEM.ADMIN.STATISTICS.QUEUE.

Optional Parameters
-m QMgrName

The name of the queue manager from which accounting or statistics messages are to be processed.

If you do not specify this parameter, the default queue manager is used.

-a
Process messages containing MQI records only.

Only display MQI records. Messages not containing MQI records will always be left on the queue they
were read from.

-q QueueName
QueueName is an optional parameter.

If QueueName is not supplied: Displays queue accounting and queue statistics records
only.

140 Monitoring and Performance for IBM MQ

If QueueName is supplied: Displays queue accounting and queue statistics records
for the queue specified by QueueName only.

If -b is not specified then the accounting and statistics
messages from which the records came are discarded.
Since accounting and statistics messages can also
contain records from other queues, if -b is not specified
then unseen records can be discarded.

-c ChannelName
ChannelName is an optional parameter.

If ChannelName is not supplied: Displays channel statistics records only.

If ChannelName is supplied: Displays channel statistics records for the channel
specified by ChannelName only.

If -b is not specified then the statistics messages from
which the records came are discarded. Since statistics
messages can also contain records from other channels,
if -b is not specified then unseen records can be
discarded.

This parameter is available when displaying statistics messages only, (-t statistics).

-i ConnectionId
Displays records related to the connection identifier specified by ConnectionId only.

This parameter is available when displaying accounting messages only, (-t accounting).

If -b is not specified then the statistics messages from which the records came are discarded. Since
statistics messages can also contain records from other channels, if -b is not specified then unseen
records can be discarded.

-b
Browse messages.

Messages are retrieved non-destructively.

-d Depth
The maximum number of messages that can be processed.

If you do not specify this parameter, then an unlimited number of messages can be processed.

-w TimeOut
Time maximum number of seconds to wait for a message to become available.

If you do not specify this parameter, amqsmon will end once there are no more messages to process.

-s StartTime
Process messages put after the specified StartTime only.

StartTime is specified in the format yyyy-mm-dd hh.mm.ss. If a date is specified without a time,
then the time will default to 00.00.00 on the date specified. Times are in GMT.

For the effect of not specifying this parameter, see Note 1.

-e EndTime
Process messages put before the specified EndTime only.

The EndTime is specified in the format yyyy-mm-dd hh.mm.ss. If a date is specified without a time,
then the time will default to 23.59.59 on the date specified. Times are in GMT.

For the effect of not specifying this parameter, see Note 1.

Monitoring and performance 141

-l Parameter
Only display the selected fields from the records processed. Parameter is a comma-separated list
of integer values, with each integer value mapping to the numeric constant of a field, see amqsmon
example 5.

If you do not specify this parameter, then all available fields are displayed.

Note:

1. If you do not specify -s StartTime or -e EndTime, the messages that can be processed are not restricted
by put time.

amqsmon (Display formatted monitoring information) examples
Use this page to view examples of running the amqsmon (Display formatted monitoring information)
sample program

1. See “Queue statistics message data” on page 182 for an explanation of the attributes.

The following command displays all MQI statistics messages from queue manager
saturn.queue.manager:

amqsmon -m saturn.queue.manager -t statistics -a

The output from this command follows:

 RecordType: MQIStatistics
 QueueManager: 'saturn.queue.manager'
 IntervalStartDate: '2005-04-30'
 IntervalStartTime: '15.09.02'
 IntervalEndDate: '2005-04-30'
 IntervalEndTime: '15.39.02'
 CommandLevel: 600
 ConnCount: 23
 ConnFailCount: 0
 ConnsMax: 8
 DiscCount: [17, 0, 0]
 OpenCount: [0, 80, 1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0]
 OpenFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 CloseCount: [0, 73, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
 CloseFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 InqCount: [4, 2102, 0, 0, 0, 46, 0, 0, 0, 0, 0, 0, 0]
 InqFailCount: [0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 SetCount: [0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
 SetFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 PutCount: [26, 1]
 PutFailCount: 0
 Put1Count: [40, 0]
 Put1FailCount: 0
 PutBytes: [57064, 12320]
 GetCount: [18, 1]
 GetBytes: [52, 12320]
 GetFailCount: 2254
 BrowseCount: [18, 60]
 BrowseBytes: [23784, 30760]
 BrowseFailCount: 9
 CommitCount: 0
 CommitFailCount: 0
 BackCount: 0
 ExpiredMsgCount: 0
 PurgeCount: 0

2. The following command displays all queue statistics messages for queue LOCALQ on queue manager
saturn.queue.manager:

amqsmon -m saturn.queue.manager -t statistics -q LOCALQ

The output from this command follows:

 RecordType: QueueStatistics
 QueueManager: 'saturn.queue.manager'
 IntervalStartDate: '2005-04-30'
 IntervalStartTime: '15.09.02'
 IntervalEndDate: '2005-04-30'

142 Monitoring and Performance for IBM MQ

 IntervalEndTime: '15.39.02'
 CommandLevel: 600
 ObjectCount: 3
 QueueStatistics:
 QueueName: 'LOCALQ'
 CreateDate: '2005-03-08'
 CreateTime: '17.07.02'
 QueueType: Predefined
 QueueDefinitionType: Local
 QMinDepth: 0
 QMaxDepth: 18
 AverageQueueTime: [29827281, 0]
 PutCount: [26, 0]
 PutFailCount: 0
 Put1Count: [0, 0]
 Put1FailCount: 0
 PutBytes: [88, 0]
 GetCount: [18, 0]
 GetBytes: [52, 0]
 GetFailCount: 0
 BrowseCount: [0, 0]
 BrowseBytes: [0, 0]
 BrowseFailCount: 1
 NonQueuedMsgCount: 0
 ExpiredMsgCount: 0
 PurgedMsgCount: 0

3. The following command displays all of the statistics messages recorded since 15:30 on 30 April 2005
from queue manager saturn.queue.manager.

amqsmon -m saturn.queue.manager -t statistics -s "2005-04-30 15.30.00"

The output from this command follows:

 RecordType: MQIStatistics
 QueueManager: 'saturn.queue.manager'
 IntervalStartDate: '2005-04-30'
 IntervalStartTime: '15.09.02'
 IntervalEndDate: '2005-04-30'
 IntervalEndTime: '15.39.02'
 CommandLevel: 600
 ConnCount: 23
 ConnFailCount: 0
 ConnsMax: 8
 DiscCount: [17, 0, 0]
 OpenCount: [0, 80, 1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0]
 ...
 RecordType: QueueStatistics
 QueueManager: 'saturn.queue.manager'
 IntervalStartDate: '2005-04-30'
 IntervalStartTime: '15.09.02'
 IntervalEndDate: '2005-04-30'
 IntervalEndTime: '15.39.02'
 CommandLevel: 600
 ObjectCount: 3
 QueueStatistics: 0
 QueueName: 'LOCALQ'
 CreateDate: '2005-03-08'
 CreateTime: '17.07.02'
 QueueType: Predefined
 ...
 QueueStatistics: 1
 QueueName: 'SAMPLEQ'
 CreateDate: '2005-03-08'
 CreateTime: '17.07.02'
 QueueType: Predefined
 ...

4. See “Queue accounting message data” on page 160 for an explanation of the attributes.

The following command displays all accounting messages recorded on 30 April 2005 from queue
manager saturn.queue.manager:

amqsmon -m saturn.queue.manager -t accounting -s "2005-04-30" -e "2005-04-30"

The output from this command follows:

Monitoring and performance 143

 RecordType: MQIAccounting
 QueueManager: 'saturn.queue.manager'
 IntervalStartDate: '2005-04-30'
 IntervalStartTime: '15.09.29'
 IntervalEndDate: '2005-04-30'
 IntervalEndTime: '15.09.30'
 CommandLevel: 600
 ConnectionId: x'414d51435452455631202020202020208d0b3742010a0020'
 SeqNumber: 0
 ApplicationName: 'amqsput'
 ApplicationPid: 8572
 ApplicationTid: 1
 UserId: 'admin'
 ConnDate: '2005-03-16'
 ConnTime: '15.09.29'
 DiscDate: '2005-03-16'
 DiscTime: '15.09.30'
 DiscType: Normal
 OpenCount: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 OpenFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 CloseCount: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 CloseFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 PutCount: [1, 0]
 PutFailCount: 0
 PutBytes: [4, 0]
 GetCount: [0, 0]
 GetFailCount: 0
 GetBytes: [0, 0]
 BrowseCount: [0, 0]
 BrowseFailCount: 0
 BrowseBytes: [0, 0]
 CommitCount: 0
 CommitFailCount: 0
 BackCount: 0
 InqCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 InqFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 SetCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 SetFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 RecordType: MQIAccounting
 QueueManager: 'saturn.queue.manager'
 IntervalStartDate: '2005-03-16'
 IntervalStartTime: '15.16.22'
 IntervalEndDate: '2005-03-16'
 IntervalEndTime: '15.16.22'
 CommandLevel: 600
 ConnectionId: x'414d51435452455631202020202020208d0b3742010c0020'
 SeqNumber: 0
 ApplicationName: 'runmqsc'
 ApplicationPid: 8615
 ApplicationTid: 1
 ...

5. The following command browses the accounting queue and displays the application name and
connection identifier of every application for which MQI accounting information is available:

amqsmon -m saturn.queue.manager -t accounting -b -l 7006,3024

The output from this command follows:

MonitoringType: QueueAccounting
ConnectionId: x'414d5143514d39303520202020202020fcf1855e01e80322'
ApplicationName: 'WebSphere MQ\bin\amqsput.exe'
QueueAccounting: 0

MonitoringType: QueueAccounting
ConnectionId: x'414d5143514d39303520202020202020fcf1855e01ea0322'
ApplicationName: 'BM\MQ_4\bin64\MQExplorer.exe'
QueueAccounting: 0
QueueAccounting: 1
QueueAccounting: 2
QueueAccounting: 3
QueueAccounting: 4
QueueAccounting: 5
QueueAccounting: 6
QueueAccounting: 7
QueueAccounting: 8
QueueAccounting: 9

144 Monitoring and Performance for IBM MQ

MonitoringType: QueueAccounting
ConnectionId: x'414d5143514d39303520202020202020fcf1855e01e90322'
ApplicationName: 's\IBM\MQ_4\bin64\amqsput.exe'
QueueAccounting: 0

MonitoringType: QueueAccounting
ConnectionId: x'414d5143514d39303520202020202020fcf1855e01ef0322'
ApplicationName: 'BM\MQ_4\bin64\MQExplorer.exe'
QueueAccounting: 0
QueueAccounting: 1
QueueAccounting: 2
QueueAccounting: 3
QueueAccounting: 4
QueueAccounting: 5
QueueAccounting: 6
QueueAccounting: 7
QueueAccounting: 8
QueueAccounting: 9

MonitoringType: QueueAccounting
ConnectionId: x'414d5143514d39303520202020202020fcf1855e01e60322'
ApplicationName: 's\IBM\MQ_4\bin64\runmqsc.exe'
QueueAccounting: 0

5 Records Processed

See “Finding the mapping for ApplicationName (3024) and ConnectionId (7006)” on page 145 for details
on how you locate the variables used in this topic.

See “Finding the mapping for AvgTimeOnQ (703) and QmaxDepth (739)” on page 145 for details on how
you locate variables if you selected statistics for the Type parameter in the amqsmon command.

Finding the mapping for ApplicationName (3024) and ConnectionId (7006)
Use this topic to explain how the variables used in the example are found, for monitoring accounting data.

Summary:

• 3024 means MQCACF_APPL_NAME which is the ApplicationName
• 7006 means MQBACF_CONNECTION_ID which is the ConnectionId

To find out the mapping you need to carry out two procedures:

1. Visit “Queue accounting message data” on page 160 for an explanation of the attributes
“ApplicationName” on page 161 and “ConnectionId” on page 161 as you selected accounting for
the Type parameter in the amqsmon command.

In each case, look for the attribute Identifier.

The Identifier for ApplicationName is MQCACF_APPL_NAME, and for ConnectionId is
MQBACF_CONNECTION_ID

2. Search for the identifiers you found in Step “1” on page 145.

Go to the Constants section and scroll down until you find the MQCACF_* (Command format Character
Parameter Types) list. Locate MQCACF_APPL_NAME and you see the value 3024.

Similarly, find the MQBACF_* (Command format Byte Parameter Types)list. Locate
MQBACF_CONNECTION_ID and you see the value 7006.

Finding the mapping for AvgTimeOnQ (703) and QmaxDepth (739)
Use this topic to explain how the variables used in the example are found for monitoring statistics data.

Summary:

• 703 means MQIAMO64_AVG_Q_TIME which is the AvgTimeOnQ
• 739 means MQIAMO_Q_MAX_DEPTH which is the QMaxDepth

To find out the mapping you need to carry out two procedures:

Monitoring and performance 145

1. Visit “Queue statistics message data” on page 182 for an explanation of the attributes “AvgTimeOnQ”
on page 185 and “QMaxDepth” on page 185 as you selected statistics for the Type parameter in the
amqsmon command.

In each case, look for the attribute Identifier.

The Identifier for AvgTimeOnQ is MQIAMO64_AVG_Q_TIME and for . QMaxDepth is
MQIAMO_Q_MAX_DEPTH.

2. Search for the identifiers you found in Step “1” on page 146.

Go to the Constants section and scroll down until you find the MQIAMO_* (Command format Integer
Monitoring Parameter Types) list. Locate MQIAMO_Q_MAX_DEPTH and you see the value 739.

Similarly, find the MQIAMO64_* (Command format 64-bit Integer Monitoring Parameter Types) list.
Locate MQIAMO64_AVG_Q_TIME and you see the value 703.

Accounting and statistics message reference
Use this page to obtain an overview of the format of accounting and statistics messages and the
information returned in these messages

Accounting and statistics message messages are standard IBM MQ messages containing a message
descriptor and message data. The message data contains information about the MQI operations
performed by IBM MQ applications, or information about the activities occurring in an IBM MQ system.

Message descriptor

• An MQMD structure

Message data

• A PCF header (MQCFH)
• Accounting or statistics message data that is always returned
• Accounting or statistics message data that is returned if available

146 Monitoring and Performance for IBM MQ

Accounting and statistics message format
Use this page as an example of the structure of an MQI accounting message

Table 23. MQI accounting message structure

MQMD structure Accounting message header
MQCFH structure

MQI accounting message data 1

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback code
Encoding
Coded character set ID
Message format
Message priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name
Put date
Put time
Application origin data
Group identifier
Message sequence number
Offset
Message flags
Original length

Structure type
Structure length
Structure version
Command identifier
Message sequence number
Control options
Completion code
Reason code
Parameter count

Queue manager
Interval start date
Interval start time
Interval end date
Interval end time
Command level
Connection identifier
Sequence number
Application name
Application process identifier
Application thread identifier
User identifier
Connection date
Connection time
Connection name
Channel name
Disconnect date
Disconnect time
Disconnect type
Open count
Open fail count
Close count
Close fail count
Put count
Put fail count
Put1 count
Put1 fail count
Put bytes
Get count
Get fail count
Get bytes
Browse count
Browse fail count
Browse bytes
Commit count
Commit fail count
Backout count
Inquire count
Inquire fail count
Set count
Set fail count

Note:

1. The parameters shown are those returned for an MQI accounting message. The actual accounting or
statistics message data depends on the message category.

Monitoring and performance 147

Accounting and statistics message MQMD (message descriptor)
Use this page to understand the differences between the message descriptor of accounting and statistics
messages and the message descriptor of event messages

The parameters and values in the message descriptor of accounting and statistics message are the same
as in the message descriptor of event messages, with the following exception:
Format

Description: Format name of message data.

Data type: MQCHAR8.

Value: MQFMT_ADMIN
Admin message.

Some of the parameters contained in the message descriptor of accounting and statistics message
contain fixed data supplied by the queue manager that generated the message.

The MQMD also specifies the name of the queue manager (truncated to 28 characters) that put the
message, and the date and time when the message was put on the accounting, or statistics, queue.

Message data in accounting and statistics messages
The message data in accounting and statistics messages is based on the programmable command format
(PCF), which is used in PCF command inquiries and responses. The message data in accounting and
statistics messages consists of a PCF header (MQCFH) and an accounting or statistics report.

Accounting and statistics message MQCFH (PCF header)
The message header of accounting and statistics messages is an MQCFH structure. The parameters and
values in the message header of accounting and statistics message are the same as in the message
header of event messages, with the following exceptions:
Command

Description: Command identifier. This identifies the accounting or statistics message
category.

Data type: MQLONG.

Values: MQCMD_ACCOUNTING_MQI
MQI accounting message.

MQCMD_ACCOUNTING_Q
Queue accounting message.

MQCMD_STATISTICS_MQI
MQI statistics message.

MQCMD_STATISTICS_Q
Queue statistics message.

MQCMD_STATISTICS_CHANNEL
Channel statistics message.

Version

Description: Structure version number.

Data type: MQLONG.

Value: MQCFH_VERSION_3
Version-3 for accounting and statistics messages.

148 Monitoring and Performance for IBM MQ

Accounting and statistics message data
The content of accounting and statistics message data is dependent on the category of the accounting or
statistics message, as follows:
MQI accounting message

MQI accounting message data consists of a number of PCF parameters, but no PCF groups.
Queue accounting message

Queue accounting message data consists of a number of PCF parameters, and in the range 1 through
100 QAccountingData PCF groups.

MQI statistics message
MQI statistics message data consists of a number of PCF parameters, but no PCF groups.

Queue statistics message
Queue statistics message data consists of a number of PCF parameters, and in the range 1 through
100 QStatisticsData PCF groups.

Channel statistics message
Channel statistics message data consists of a number of PCF parameters, and in the range 1 through
100 ChlStatisticsData PCF groups.

MQI accounting message data
Use this page to view the structure of an MQI accounting message

Message name: MQI accounting message.

Platforms: All, except IBM MQ for z/OS.

System queue: SYSTEM.ADMIN.ACCOUNTING.QUEUE.

QueueManager

Description: The name of the queue manager

Identifier: MQCA_Q_MGR_NAME

Data type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: Always

IntervalStartDate

Description: The date of the start of the monitoring period

Identifier: MQCAMO_START_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

Returned: Always

IntervalStartTime

Description: The time of the start of the monitoring period

Identifier: MQCAMO_START_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: Always

Monitoring and performance 149

IntervalEndDate

Description: The date of the end of the monitoring period

Identifier: MQCAMO_END_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

Returned: Always

IntervalEndTime

Description: The time of the end of the monitoring period

Identifier: MQCAMO_END_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: Always

CommandLevel

Description: The queue manager command level

Identifier: MQIA_COMMAND_LEVEL

Data type: MQCFIN

Returned: Always

ConnectionId

Description: The connection identifier for the IBM MQ connection

Identifier: MQBACF_CONNECTION_ID

Data type: MQCFBS

Maximum length: MQ_CONNECTION_ID_LENGTH

Returned: Always

SeqNumber

Description: The sequence number. This value is incremented for each subsequent record for
long running connections.

Identifier: MQIACF_SEQUENCE_NUMBER

Data type: MQCFIN

Returned: Always

ApplicationName

Description: The name of the application. The contents of this field are equivalent to the
contents of the PutApplName field in the message descriptor.

Identifier: MQCACF_APPL_NAME

Data type: MQCFST

Maximum length: MQ_APPL_NAME_LENGTH

Returned: Always

150 Monitoring and Performance for IBM MQ

ApplicationPid

Description: The operating system process identifier of the application

Identifier: MQIACF_PROCESS_ID

Data type: MQCFIN

Returned: Always

ApplicationTid

Description: The IBM MQ thread identifier of the connection in the application

Identifier: MQIACF_THREAD_ID

Data type: MQCFIN

Returned: Always

UserId

Description: The user identifier context of the application

Identifier: MQCACF_USER_IDENTIFIER

Data type: MQCFST

Maximum length: MQ_USER_ID_LENGTH

Returned: Always

ConnDate

Description: Date of MQCONN operation

Identifier: MQCAMO_CONN_DATE

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: When available

ConnTime

Description: Time of MQCONN operation

Identifier: MQCAMO_CONN_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: When available

ConnName

Description: Connection name for client connection

Identifier: MQCACH_CONNECTION_NAME

Data type: MQCFST

Maximum length: MQ_CONN_NAME_LENGTH

Returned: When available

Monitoring and performance 151

ChannelName

Description: Channel name for client connection

Identifier: MQCACH_CHANNEL_NAME

Data type: MQCFST

Maximum length: MQ_CHANNEL_NAME_LENGTH

Returned: When available

DiscDate

Description: Date of MQDISC operation

Identifier: MQCAMO_DISC_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

Returned: When available

DiscTime

Description: Time of MQDISC operation

Identifier: MQCAMO_DISC_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: When available

DiscType

Description: Type of disconnect

Identifier: MQIAMO_DISC_TYPE

Data type: MQCFIN

Values: The possible values are:
MQDISCONNECT_NORMAL

Requested by application
MQDISCONNECT_IMPLICIT

Abnormal application termination
MQDISCONNECT_Q_MGR

Connection broken by queue manager

Returned: When available

OpenCount

Description: The number of objects successfully opened, either by directly issuing a call to
MQOPEN or by using the MQPUT1 verb. This parameter is an integer list indexed
by object type, see Reference note 1.

Identifier: MQIAMO_OPENS

Data type: MQCFIL

Returned: When available

152 Monitoring and Performance for IBM MQ

OpenFailCount

Description: The number of unsuccessful attempts to open an object. This parameter is an
integer list indexed by object type, see Reference note 1.

Identifier: MQIAMO_OPENS_FAILED

Data type: MQCFIL

Returned: When available

CloseCount

Description: The number of objects closed. This parameter is an integer list indexed by
object type, see Reference note 1.

Identifier: MQIAMO_CLOSES

Data type: MQCFIL

Returned: When available

CloseFailCount

Description: The number of unsuccessful attempts to close an object. This parameter is an
integer list indexed by object type, see Reference note 1.

Identifier: MQIAMO_CLOSES_FAILED

Data type: MQCFIL

Returned: When available

PutCount

Description: The number persistent and nonpersistent messages successfully put to a queue,
with the exception of messages put using the MQPUT1 call. This parameter is an
integer list indexed by persistence value, see Reference note 2.

Identifier: MQIAMO_PUTS

Data type: MQCFIL

Returned: When available

PutFailCount

Description: The number of unsuccessful attempts to put a message

Identifier: MQIAMO_PUTS_FAILED

Data type: MQCFIN

Returned: When available

Put1Count

Description: The number of persistent and nonpersistent messages successfully put to
the queue using MQPUT1 calls. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Identifier: MQIAMO_PUT1S

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Monitoring and performance 153

Returned: When available

Put1FailCount

Description: The number of unsuccessful attempts to put a message using MQPUT1 calls

Identifier: MQIAMO_PUT1S_FAILED

Data type: MQCFIN

Included in PCF
group:

QAccountingData

Returned: When available

PutBytes

Description: The number bytes written using put calls for persistent and nonpersistent
messages. This parameter is an integer list indexed by persistence value, see
Reference note 2.

Identifier: MQIAMO64_PUT_BYTES

Data type: MQCFIL64

Returned: When available

GetCount

Description: The number of successful destructive MQGET calls for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Identifier: MQIAMO_GETS

Data type: MQCFIL

Returned: When available

GetFailCount

Description: The number of failed destructive MQGET calls

Identifier: MQIAMO_GETS_FAILED

Data type: MQCFIN

Returned: When available

GetBytes

Description: Total number of bytes retrieved for persistent and nonpersistent messages. This
parameter is an integer list indexed by persistence value, see Reference note 2.

Identifier: MQIAMO64_GET_BYTES

Data type: MQCFIL64

Returned: When available

BrowseCount

Description: The number of successful non-destructive MQGET calls for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Identifier: MQIAMO_BROWSES

154 Monitoring and Performance for IBM MQ

Data type: MQCFIL

Returned: When available

BrowseFailCount

Description: The number of unsuccessful non-destructive MQGET calls

Identifier: MQIAMO_BROWSES_FAILED

Data type: MQCFIN

Returned: When available

BrowseBytes

Description: Total number of bytes browsed for persistent and nonpersistent messages. This
parameter is an integer list indexed by persistence value, see Reference note 2.

Identifier: MQIAMO64_BROWSE_BYTES

Data type: MQCFIL64

Returned: When available

CommitCount

Description: The number of successful transactions. This number includes those
transactions committed implicitly by the connected application. Commit
requests where there is no outstanding work are included in this count.

Identifier: MQIAMO_COMMITS

Data type: MQCFIN

Returned: When available

CommitFailCount

Description: The number of unsuccessful attempts to complete a transaction

Identifier: MQIAMO_COMMITS_FAILED

Data type: MQCFIN

Returned: When available

BackCount

Description: The number of backouts processed, including implicit backouts due to abnormal
disconnection

Identifier: MQIAMO_BACKOUTS

Data type: MQCFIN

Returned: When available

InqCount

Description: The number of successful objects inquired upon. This parameter is an integer
list indexed by object type, see Reference note 1.

Identifier: MQIAMO_INQS

Data type: MQCFIL

Returned: When available

Monitoring and performance 155

InqFailCount

Description: The number of unsuccessful object inquire attempts. This parameter is an
integer list indexed by object type, see Reference note 1.

Identifier: MQIAMO_INQS_FAILED

Data type: MQCFIL

Returned: When available

SetCount

Description: The number of successful MQSET calls. This parameter is an integer list indexed
by object type, see Reference note 1.

Identifier: MQIAMO_SETS

Data type: MQCFIL

Returned: When available

SetFailCount

Description: The number of unsuccessful MQSET calls. This parameter is an integer list
indexed by object type, see Reference note 1.

Identifier: MQIAMO_SETS_FAILED

Data type: MQCFIL

Returned: When available

SubCountDur

Description: The number of succesful subscribe requests which created, altered or resumed
durable subscriptions. This is an array of values indexed by the type of operation

0 = The number of subscriptions created

1 = The number of subscriptions altered

2 = The number of subscriptions resumed

Identifier: MQIAMO_SUBS_DUR

Data type: MQCFIL

Returned: When available.

SubCountNDur

Description: The number of succesful subscribe requests which created, altered or resumed
non-durable subscriptions. This is an array of values indexed by the type of
operation

0 = The number of subscriptions created

1 = The number of subscriptions altered

2 = The number of subscriptions resumed

Identifier: MQIAMO_SUBS_NDUR

Data type: MQCFIL

Returned: When available.

156 Monitoring and Performance for IBM MQ

SubFailCount

Description: The number of unsuccessful Subscribe requests.

Identifier: MQIAMO_SUBS_FAILED

Data type: MQCFIN

Returned: When available.

UnsubCountDur

Description: The number of succesful unsubscribe requests for durable subscriptions. This is
an array of values indexed by the type of operation

0 - The subscription was closed but not removed

1 - The subscription was closed and removed

Identifier: MQIAMO_UNSUBS_DUR

Data type: MQCFIL

Returned: When available.

UnsubCountNDur

Description: The number of succesful unsubscribe requests for durable subscriptions. This is
an array of values indexed by the type of operation

0 - The subscription was closed but not removed

1 - The subscription was closed and removed

Identifier: MQIAMO_UNSUBS_NDUR

Data type: MQCFIL

Returned: When available.

UnsubFailCount

Description: The number of unsuccessful unsubscribe requests.

Identifier: MQIAMO_UNSUBS_FAILED

Data type: MQCFIN

Returned: When available.

SubRqCount

Description: The number of successful MQSUBRQ requests.

Identifier: MQIAMO_SUBRQS

Data type: MQCFIN

Returned: When available.

SubRqFailCount

Description: The number of unsuccessful MQSUB requests.

Identifier: MQIAMO_SUBRQS_FAILED

Data type: MQCFIN

Returned: When available.

Monitoring and performance 157

CBCount

Description: The number of successful MQCB requests. This is an array of values indexed by
the type of operation

0 - A callback was created or altered

1 - A callback was removed

2 - A callback was resumed

3 - A callback was suspended

Identifier: MQIAMO_CBS

Data type: MQCFIN

Returned: When available.

CBFailCount

Description: The number of unsuccessful MQCB requests.

Identifier: MQIAMO_CBS_FAILED

Data type: MQCFIN

Returned: When available.

CtlCount

Description: The number of successful MQCTL requests. This is an array of values indexed by
the type of operation

0 - The connection was started

1 - The connection was stopped

2 - The connection was resumed

3 - The connection was suspended

Identifier: MQIAMO_CTLS

Data type: MQCFIL

Returned: When available.

CtlFailCount

Description: The number of unsuccessful MQCTL requests.

Identifier: MQIAMO_CTLS_FAILED

Data type: MQCFIN

Returned: When available.

StatCount

Description: The number of successful MQSTAT requests.

Identifier: MQIAMO_STATS.

Data type: MQCFIN

Returned: When available.

158 Monitoring and Performance for IBM MQ

StatFailCount

Description: The number of unsuccessful MQSTAT requests.

Identifier: MQIAMO_STATS_FAILED

Data type: MQCFIN

Returned: When available.

PutTopicCount

Description: The number persistent and nonpersistent messages successfully put to a topic,
with the exception of messages put using the MQPUT1 call. This parameter is an
integer list indexed by persistence value, see Reference note 2.

Note: Messages put using a queue alias which resolve to a topic are included in
this value.

Identifier: MQIAMO_TOPIC_PUTS

Data type: MQCFIL

Returned: When available.

PutTopicFailCount

Description: The number of unsuccessful attempts to put a message to a topic.

Identifier: MQIAMO_TOPIC_PUTS_FAILED

Data type: MQCFIN

Returned: When available.

Put1TopicCount

Description: The number of persistent and nonpersistent messages successfully put to
a topic using MQPUT1 calls. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Note: Messages put using a queue alias which resolve to a topic are included in
this value.

Identifier: MQIAMO_TOPIC_PUT1S

Data type: MQCFIL

Returned: When available.

Put1TopicFailCount

Description: The number of unsuccessful attempts to put a message to a topic using
MQPUT1 calls.

Identifier: MQIAMO_TOPIC_PUT1S_FAILED

Data type: MQCFIN

Returned: When available.

Monitoring and performance 159

PutTopicBytes

Description: The number bytes written using put calls for persistent and nonpersistent
messages which resolve to a publish operation. This is number of bytes put by
the application and not the resultant number of bytes delivered to subscribers.
This parameter is an integer list indexed by persistence value, see Reference
note 2.

Identifier: MQIAMO64_TOPIC_PUT_BYTES

Data type: MQCFIL64

Returned: When available.

Queue accounting message data
Use this page to view the structure of a queue accounting message

Message name: Queue accounting message.

Platforms: All, except IBM MQ for z/OS.

System queue: SYSTEM.ADMIN.ACCOUNTING.QUEUE.

QueueManager

Description: The name of the queue manager

Identifier: MQCA_Q_MGR_NAME

Data type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: Always

IntervalStartDate

Description: The date of the start of the monitoring period

Identifier: MQCAMO_START_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

Returned: Always

IntervalStartTime

Description: The time of the start of the monitoring period

Identifier: MQCAMO_START_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: Always

IntervalEndDate

Description: The date of the end of the monitoring period

Identifier: MQCAMO_END_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

160 Monitoring and Performance for IBM MQ

Returned: Always

IntervalEndTime

Description: The time of the end of the monitoring period

Identifier: MQCAMO_END_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: Always

CommandLevel

Description: The queue manager command level

Identifier: MQIA_COMMAND_LEVEL

Data type: MQCFIN

Returned: Always

ConnectionId

Description: The connection identifier for the IBM MQ connection

Identifier: MQBACF_CONNECTION_ID

Data type: MQCFBS

Maximum length: MQ_CONNECTION_ID_LENGTH

Returned: Always

SeqNumber

Description: The sequence number. This value is incremented for each subsequent record for
long running connections.

Identifier: MQIACF_SEQUENCE_NUMBER

Data type: MQCFIN

Returned: Always

ApplicationName

Description: The name of the application. The contents of this field are equivalent to the
contents of the PutApplName field in the message descriptor.

Identifier: MQCACF_APPL_NAME

Data type: MQCFST

Maximum length: MQ_APPL_NAME_LENGTH

Returned: Always

ApplicationPid

Description: The operating system process identifier of the application

Identifier: MQIACF_PROCESS_ID

Data type: MQCFIN

Returned: Always

Monitoring and performance 161

ApplicationTid

Description: The IBM MQ thread identifier of the connection in the application

Identifier: MQIACF_THREAD_ID

Data type: MQCFIN

Returned: Always

UserId

Description: The user identifier context of the application

Identifier: MQCACF_USER_IDENTIFIER

Data type: MQCFST

Maximum length: MQ_USER_ID_LENGTH

Returned: Always

ObjectCount

Description: The number of queues accessed in the interval for which accounting data has
been recorded. This value is set to the number of QAccountingData PCF groups
contained in the message.

Identifier: MQIAMO_OBJECT_COUNT

Data type: MQCFIN

Returned: Always

QAccountingData

Description: Grouped parameters specifying accounting details for a queue

Identifier: MQGACF_Q_ACCOUNTING_DATA

Data type: MQCFGR

162 Monitoring and Performance for IBM MQ

Parameters in
group:

QName
CreateDate
CreateTime
QType
QDefinitionType
OpenCount
OpenDate
OpenTime
CloseDate
CloseTime
PutCount
PutFailCount
Put1Count
Put1FailCount
PutBytes
PutMinBytes
PutMaxBytes
GetCount
GetFailCount
GetBytes
GetMinBytes
GetMaxBytes
BrowseCount
BrowseFailCount
BrowseBytes
BrowseMinBytes
BrowseMaxBytes
TimeOnQMin
TimeOnQAvg
TimeOnQMax

Returned: Always

QName

Description: The name of the queue

Identifier: MQCA_Q_NAME

Data type: MQCFST

Included in PCF
group:

QAccountingData

Maximum length: MQ_Q_NAME_LENGTH

Returned: When available

CreateDate

Description: The date the queue was created

Identifier: MQCA_CREATION_DATE

Data type: MQCFST

Included in PCF
group:

QAccountingData

Monitoring and performance 163

Maximum length: MQ_DATE_LENGTH

Returned: When available

CreateTime

Description: The time the queue was created

Identifier: MQCA_CREATION_TIME

Data type: MQCFST

Included in PCF
group:

QAccountingData

Maximum length: MQ_TIME_LENGTH

Returned: When available

QType

Description: The type of the queue

Identifier: MQIA_Q_TYPE

Data type: MQCFIN

Included in PCF
group:

QAccountingData

Value: MQQT_LOCAL

Returned: When available

QDefinitionType

Description: The queue definition type

Identifier: MQIA_DEFINITION_TYPE

Data type: MQCFIN

Included in PCF
group:

QAccountingData

Values: Possible values are:
MQQDT_PREDEFINED
MQQDT_PERMANENT_DYNAMIC
MQQDT_TEMPORARY_DYNAMIC

Returned: When available

OpenCount

Description: The number of times this queue was opened by the application in this interval,
either by directly issuing a call to MQOPEN or by using the MQPUT1 verb.

Identifier: MQIAMO_OPENS

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

164 Monitoring and Performance for IBM MQ

OpenDate

Description: The date the queue was first opened in this recording interval. If the queue was
already open at the start of this interval, this value reflects the date the queue
was originally opened.

Identifier: MQCAMO_OPEN_DATE

Data type: MQCFST

Included in PCF
group:

QAccountingData

Returned: When available

OpenTime

Description: The time the queue was first opened in this recording interval. If the queue was
already open at the start of this interval, this value reflects the time the queue
was originally opened.

Identifier: MQCAMO_OPEN_TIME

Data type: MQCFST

Included in PCF
group:

QAccountingData

Returned: When available

CloseDate

Description: The date of the final close of the queue in this recording interval. If the queue is
still open then the value is not returned.

Identifier: MQCAMO_CLOSE_DATE

Data type: MQCFST

Included in PCF
group:

QAccountingData

Returned: When available

CloseTime

Description: The time of final close of the queue in this recording interval. If the queue is still
open then the value is not returned.

Identifier: MQCAMO_CLOSE_TIME

Data type: MQCFST

Included in PCF
group:

QAccountingData

Returned: When available

PutCount

Description: The number of persistent and nonpersistent messages successfully put to the
queue, with the exception of MQPUT1 calls. This parameter is an integer list
indexed by persistence value, see Reference note 2.

Identifier: MQIAMO_PUTS

Data type: MQCFIL

Monitoring and performance 165

Included in PCF
group:

QAccountingData

Returned: When available

PutFailCount

Description: The number of unsuccessful attempts to put a message, with the exception of
MQPUT1 calls

Identifier: MQIAMO_PUTS_FAILED

Data type: MQCFIN

Included in PCF
group:

QAccountingData

Returned: When available

Put1Count

Description: The number of persistent and nonpersistent messages successfully put to
the queue using MQPUT1 calls. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Identifier: MQIAMO_PUT1S

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

Put1FailCount

Description: The number of unsuccessful attempts to put a message using MQPUT1 calls

Identifier: MQIAMO_PUT1S_FAILED

Data type: MQCFIN

Included in PCF
group:

QAccountingData

Returned: When available

PutBytes

Description: The total number of bytes put for persistent and nonpersistent messages. This
parameter is an integer list indexed by persistence value, see Reference note 2.

Identifier: MQIAMO64_PUT_BYTES

Data type: MQCFIL64

Included in PCF
group:

QAccountingData

Returned: When available

PutMinBytes

Description: The smallest persistent and nonpersistent message size placed on the queue.
This parameter is an integer list indexed by persistence value, see Reference
note 2.

166 Monitoring and Performance for IBM MQ

Identifier: MQIAMO_PUT_MIN_BYTES

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

PutMaxBytes

Description: The largest persistent and nonpersistent message size placed on the queue.
This parameter is an integer list indexed by persistence value, see Reference
note 2.

Identifier: MQIAMO_PUT_MAX_BYTES

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

GeneratedMsgCount

Description: The number of generated messages. Generated messages are

• Queue Depth Hi Events
• Queue Depth Low Events

Identifier: MQIAMO_GENERATED_MSGS

Data type: MQCFIN

Included in PCF
group:

QAccountingData

Returned: When available

GetCount

Description: The number of successful destructive MQGET calls for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Identifier: MQIAMO_GETS

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

GetFailCount

Description: The number of failed destructive MQGET calls

Identifier: MQIAMO_GETS_FAILED

Data type: MQCFIN

Included in PCF
group:

QAccountingData

Returned: When available

Monitoring and performance 167

GetBytes

Description: The number of bytes read in destructive MQGET calls for persistent and
nonpersistent messages. This parameter is an integer list indexed by persistence
value, see Reference note 2.

Identifier: MQIAMO64_GET_BYTES

Data type: MQCFIL64

Included in PCF
group:

QAccountingData

Returned: When available

GetMinBytes

Description: The size of the smallest persistent and nonpersistent message retrieved rom
the queue. This parameter is an integer list indexed by persistence value, see
Reference note 2.

Identifier: MQIAMO_GET_MIN_BYTES

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

GetMaxBytes

Description: The size of the largest persistent and nonpersistent message retrieved rom
the queue. This parameter is an integer list indexed by persistence value, see
Reference note 2.

Identifier: MQIAMO_GET_MAX_BYTES

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

BrowseCount

Description: The number of successful non-destructive MQGET calls for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Identifier: MQIAMO_BROWSES

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

BrowseFailCount

Description: The number of unsuccessful non-destructive MQGET calls

Identifier: MQIAMO_BROWSES_FAILED

Data type: MQCFIN

168 Monitoring and Performance for IBM MQ

Included in PCF
group:

QAccountingData

Returned: When available

BrowseBytes

Description: The number of bytes read in non-destructive MQGET calls that returned
persistent messages

Identifier: MQIAMO64_BROWSE_BYTES

Data type: MQCFIL64

Included in PCF
group:

QAccountingData

Returned: When available

BrowseMinBytes

Description: The size of the smallest persistent and nonpersistent message browsed from
the queue. This parameter is an integer list indexed by persistence value, see
Reference note 2.

Identifier: MQIAMO_BROWSE_MIN_BYTES

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

BrowseMaxBytes

Description: The size of the largest persistent and nonpersistent message browsed from
the queue. This parameter is an integer list indexed by persistence value, see
Reference note 2.

Identifier: MQIAMO_BROWSE_MAX_BYTES

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

TimeOnQMin

Description: The shortest time a persistent and nonpersistent message remained on the
queue before being destructively retrieved, in microseconds. For messages
retrieved under syncpoint this value does not included the time before the get
operation is committed. This parameter is an integer list indexed by persistence
value, see Reference note 2.

Identifier: MQIAMO64_Q_TIME_MIN

Data type: MQCFIL64

Included in PCF
group:

QAccountingData

Returned: When available

Monitoring and performance 169

TimeOnQAvg

Description: The average time a persistent and nonpersistent message remained on the
queue before being destructively retrieved, in microseconds. For messages
retrieved under syncpoint this value does not included the time before the get
operation is committed. This parameter is an integer list indexed by persistence
value, see Reference note 2.

Identifier: MQIAMO64_Q_TIME_AVG

Data type: MQCFIL64

Included in PCF
group:

QAccountingData

Returned: When available

TimeOnQMax

Description: The longest time a persistent and nonpersistent message remained on the
queue before being destructively retrieved, in microseconds. For messages
retrieved under syncpoint this value does not included the time before the get
operation is committed. This parameter is an integer list indexed by persistence
value, see Reference note 2.

Identifier: MQIAMO64_Q_TIME_MAX

Data type: MQCFIL64

Included in PCF
group:

QAccountingData

Returned: When available

CBCount

Description: The number of successful MQCB requests. This is an array of values indexed by
the type of operation

0 - A callback was created or altered

1 - A callback was removed

2 - A callback was resumed

3 - A callback was suspended

Identifier: MQIAMO_CBS

Data type: MQCFIN

Returned: When available.

CBFailCount

Description: The number of unsuccessful MQCB requests.

Identifier: MQIAMO_CBS_FAILED

Data type: MQCFIN

Returned: When available.

MQI statistics message data
Use this page to view the structure of an MQI statistics message

Message name: MQI statistics message.

170 Monitoring and Performance for IBM MQ

Platforms: All, except IBM MQ for z/OS.

System queue: SYSTEM.ADMIN.STATISTICS.QUEUE.

QueueManager

Description: Name of the queue manager.

Identifier: MQCA_Q_MGR_NAME.

Data type: MQCFST.

Maximum length: MQ_Q_MGR_NAME_LENGTH.

Returned: Always.

IntervalStartDate

Description: The date at the start of the monitoring period.

Identifier: MQCAMO_START_DATE.

Data type: MQCFST.

Maximum length: MQ_DATE_LENGTH

Returned: Always.

IntervalStartTime

Description: The time at the start of the monitoring period.

Identifier: MQCAMO_START_TIME.

Data type: MQCFST.

Maximum length: MQ_TIME_LENGTH

Returned: Always.

IntervalEndDate

Description: The date at the end of the monitoring period.

Identifier: MQCAMO_END_DATE.

Data type: MQCFST.

Maximum length: MQ_DATE_LENGTH

Returned: Always.

IntervalEndTime

Description: The time at the end of the monitoring period.

Identifier: MQCAMO_END_TIME.

Data type: MQCFST.

Maximum length: MQ_TIME_LENGTH

Returned: Always.

CommandLevel

Description: The queue manager command level.

Identifier: MQIA_COMMAND_LEVEL.

Monitoring and performance 171

Data type: MQCFIN.

Returned: Always.

ConnCount

Description: The number of successful connections to the queue manager.

Identifier: MQIAMO_CONNS.

Data type: MQCFIN.

Returned: When available.

ConnFailCount

Description: The number of unsuccessful connection attempts.

Identifier: MQIAMO_CONNS_FAILED.

Data type: MQCFIN.

Returned: When available.

ConnsMax

Description: The maximum number of concurrent connections in the recording interval.

Identifier: MQIAMO_CONNS_MAX.

Data type: MQCFIN.

Returned: When available.

DiscCount

Description: The number of disconnects from the queue manager. This is an integer array,
indexed by the following constants:

• MQDISCONNECT_NORMAL
• MQDISCONNECT_IMPLICIT
• MQDISCONNECT_Q_MGR

Identifier: MQIAMO_DISCS.

Data type: MQCFIL.

Returned: When available.

OpenCount

Description: The number of objects successfully opened, either by directly issuing a call to
MQOPEN or by using the MQPUT1 verb. This parameter is an integer list indexed
by object type, see Reference note 1.

Identifier: MQIAMO_OPENS.

Data type: MQCFIL.

Returned: When available.

OpenFailCount

Description: The number of unsuccessful open object attempts. This parameter is an integer
list indexed by object type, see Reference note 1.

Identifier: MQIAMO_OPENS_FAILED.

172 Monitoring and Performance for IBM MQ

Data type: MQCFIL.

Returned: When available.

CloseCount

Description: The number of objects successfully closed. This parameter is an integer list
indexed by object type, see Reference note 1.

Identifier: MQIAMO_CLOSES.

Data type: MQCFIL.

Returned: When available.

CloseFailCount

Description: The number of unsuccessful close object attempts. This parameter is an integer
list indexed by object type, see Reference note 1.

Identifier: MQIAMO_CLOSES_FAILED.

Data type: MQCFIL.

Returned: When available.

InqCount

Description: The number of objects successfully inquired upon. This parameter is an integer
list indexed by object type, see Reference note 1.

Identifier: MQIAMO_INQS.

Data type: MQCFIL.

Returned: When available.

InqFailCount

Description: The number of unsuccessful object inquire attempts. This parameter is an
integer list indexed by object type, see Reference note 1.

Identifier: MQIAMO_INQS_FAILED.

Data type: MQCFIL.

Returned: When available.

SetCount

Description: The number of objects successfully updated (SET). This parameter is an integer
list indexed by object type, see Reference note 1.

Identifier: MQIAMO_SETS.

Data type: MQCFIL.

Returned: When available.

SetFailCount

Description: The number of unsuccessful SET attempts. This parameter is an integer list
indexed by object type, see Reference note 1.

Identifier: MQIAMO_SETS_FAILED.

Data type: MQCFIL.

Monitoring and performance 173

Returned: When available.

PutCount

Description: The number of persistent and nonpersistent messages successfully put to a
queue, with the exception of MQPUT1 requests. This parameter is an integer list
indexed by persistence value, see Reference note 2.

Identifier: MQIAMO_PUTS.

Data type: MQCFIL.

Returned: When available.

PutFailCount

Description: The number of unsuccessful put message attempts.

Identifier: MQIAMO_PUTS_FAILED.

Data type: MQCFIN.

Returned: When available.

Put1Count

Description: The number of persistent and nonpersistent messages successfully put to a
queue using MQPUT1 requests. This parameter is an integer list indexed by
persistence value, see Reference note 2

Identifier: MQIAMO_PUT1S.

Data type: MQCFIL.

Returned: When available.

Put1FailCount

Description: The number of unsuccessful attempts to put a persistent and nonpersistent
message to a queue using MQPUT1 requests. This parameter is an integer list
indexed by persistence value, see Reference note 2

Identifier: MQIAMO_PUT1S_FAILED.

Data type: MQCFIL.

Returned: When available.

PutBytes

Description: The number bytes for persistent and nonpersistent messages written in using
put requests. This parameter is an integer list indexed by persistence value, see
Reference note 2

Identifier: MQIAMO64_PUT_BYTES.

Data type: MQCFIL64.

Returned: When available.

GetCount

Description: The number of successful destructive get requests for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2

Identifier: MQIAMO_GETS.

174 Monitoring and Performance for IBM MQ

Data type: MQCFIL.

Returned: When available.

GetFailCount

Description: The number of unsuccessful destructive get requests.

Identifier: MQIAMO_GETS_FAILED.

Data type: MQCFIN.

Returned: When available.

GetBytes

Description: The number of bytes read in destructive gets requests for persistent
and nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2

Identifier: MQIAMO64_GET_BYTES.

Data type: MQCFIL64.

Returned: When available.

BrowseCount

Description: The number of successful non-destructive get requests for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2

Identifier: MQIAMO_BROWSES.

Data type: MQCFIL.

Returned: When available.

BrowseFailCount

Description: The number of unsuccessful non-destructive get requests.

Identifier: MQIAMO_BROWSES_FAILED.

Data type: MQCFIN.

Returned: When available.

BrowseBytes

Description: The number of bytes read in non-destructive get requests for persistent
and nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2

Identifier: MQIAMO64_BROWSE_BYTES.

Data type: MQCFIL64.

Returned: When available.

CommitCount

Description: The number of transactions successfully completed. This number includes
transactions committed implicitly by the application disconnecting, and commit
requests where there is no outstanding work.

Identifier: MQIAMO_COMMITS.

Monitoring and performance 175

Data type: MQCFIN.

Returned: When available.

CommitFailCount

Description: The number of unsuccessful attempts to complete a transaction.

Identifier: MQIAMO_COMMITS_FAILED.

Data type: MQCFIN.

Returned: When available.

BackCount

Description: The number of backouts processed, including implicit backout upon abnormal
disconnect.

Identifier: MQIAMO_BACKOUTS.

Data type: MQCFIN.

Returned: When available.

ExpiredMsgCount

Description: The number of persistent and nonpersistent messages that were discarded
because they had expired, before they could be retrieved.

Identifier: MQIAMO_MSGS_EXPIRED.

Data type: MQCFIN.

Returned: When available.

PurgeCount

Description: The number of times the queue has been cleared.

Identifier: MQIAMO_MSGS_PURGED.

Data type: MQCFIN.

Returned: When available.

SubCountDur

Description: The number of successful Subscribe requests which created, altered or
resumed durable subscriptions. This is an array of values indexed by the type of
operation

0 = The number of subscriptions created

1 = The number of subscriptions altered

2 = The number of subscriptions resumed

Identifier: MQIAMO_SUBS_DUR.

Data type: MQCFIL

Returned: When available.

176 Monitoring and Performance for IBM MQ

SubCountNDur

Description: The number of successful Subscribe requests which created, altered or
resumed non-durable subscriptions. This is an array of values indexed by the
type of operation

0 = The number of subscriptions created

1 = The number of subscriptions altered

2 = The number of subscriptions resumed

Identifier: MQIAMO_SUBS_NDUR.

Data type: MQCFIL.

Returned: When available.

SubFailCount

Description: The number of unsuccessful Subscribe requests.

Identifier: MQIAMO_SUBS_FAILED.

Data type: MQCFIN.

Returned: When available.

UnsubCountDur

Description: The number of succesful unsubscribe requests for durable subscriptions. This is
an array of values indexed by the type of operation

0 - The subscription was closed but not removed

1 - The subscription was closed and removed

Identifier: MQIAMO_UNSUBS_DUR.

Data type: MQCFIL.

Returned: When available.

UnsubCountNDur

Description: The number of succesful unsubscribe requests for non-durable subscriptions.
This is an array of values indexed by the type of operation

0 - The subscription was closed but not removed

1 - The subscription was closed and removed

Identifier: MQIAMO_UNSUBS_NDUR.

Data type: MQCFIL.

Returned: When available.

UnsubFailCount

Description: The number of failed unsubscribe requests.

Identifier: MQIAMO_UNSUBS_FAILED.

Data type: MQCFIN.

Returned: When available.

Monitoring and performance 177

SubRqCount

Description: The number of successful MQSUBRQ requests.

Identifier: MQIAMO_SUBRQS

Data type: MQCFIN

Returned: When available.

SubRqFailCount

Description: The number of unsuccessful MQSUBRQ requests.

Identifier: MQIAMO_SUBRQS_FAILED.

Data type: MQCFIN.

Returned: When available.

CBCount

Description: The number of successful MQCB requests. This is an array of values indexed by
the type of operation

0 - A callback was created or altered

1 - A callback was removed

2 - A callback was resumed

3 - A callback was suspended

Identifier: MQIAMO_CBS.

Data type: MQCFIL.

Returned: When available.

CBFailCount

Description: The number of unsuccessful MQCB requests.

Identifier: MQIAMO_CBS_FAILED.

Data type: MQCFIN.

Returned: When available.

CtlCount

Description: The number of successful MQCTL requests. This is an array of values indexed by
the type of operation :

0 - The connection was started

1 - The connection was stopped

2 - The connection was resumed

3 - The connection was suspended

Identifier: MQIAMO_CTLS.

Data type: MQCFIL.

Returned: When available.

178 Monitoring and Performance for IBM MQ

CtlFailCount

Description: The number of unsuccessful MQCTL requests.

Identifier: MQIAMO_CTLS_FAILED.

Data type: MQCFIN.

Returned: When available.

StatCount

Description: The number of successful MQSTAT requests.

Identifier: MQIAMO_STATS.

Data type: MQCFIN.

Returned: When available.

StatFailCount

Description: The number of unsuccessful MQSTAT requests.

Identifier: MQIAMO_STATS_FAILED.

Data type: MQCFIN.

Returned: When available.

SubCountDurHighWater

Description: The high-water mark on the number of durable subscriptions during the time
interval. This is an array of values indexed by SUBTYPE

0 - The high-water mark for all durable subscriptions in the system

1 - The high-water mark for durable application subscriptions
(MQSUBTYPE_API)

2 - The high-water mark for durable admin subscription (MQSUBTYPE_ADMIN)

3 - The high-water mark for durable proxy subscriptions (MQSUBTYPE_PROXY)

Identifier: MQIAMO_SUB_DUR_HIGHWATER

Data type: MQCFIL.

Returned: When available.

SubCountDurLowWater

Description: The low-water mark on the number of durable subscriptions during the time
interval. This is an array of values indexed by SUBTYPE.

0 - The low-water mark for all durable subscriptions in the system

1 - The low-water mark for durable application subscriptions
(MQSUBTYPE_API)

2 - The low-water mark for durable admin subscriptions (MQSUBTYPE_ADMIN)

3 - The low-water mark for durable proxy subscriptions (MQSUBTYPE_PROXY)

Identifier: MQIAMO_SUB_DUR_LOWWATER

Data type: MQCFIL.

Returned: When available.

Monitoring and performance 179

SubCountNDurHighWater

Description: The high-water mark on the number of non-durable subscriptions during the
time interval. This is an array of values indexed by SUBTYPE

0 - The high-water mark for all non-durable subscriptions in the system

1 - The high-water mark for non-durable application subscriptions
(MQSUBTYPE_API)

2 - The high-water mark for non-durable admin subscription
(MQSUBTYPE_ADMIN)

3 - The high-water mark for non-durable proxy subscriptions
(MQSUBTYPE_PROXY)

Identifier: MQIAMO_SUB_NDUR_HIGHWATER

Data type: MQCFIL.

Returned: When available.

SubCountNDurLowWater

Description: The low-water mark on the number of non-durable subscriptions during the
time interval. This is an array of values indexed by SUBTYPE.

0 - The low-water mark for all non-durable subscriptions in the system

1 - The low-water mark for non-durable application subscriptions
(MQSUBTYPE_API)

2 - The low-water mark for non-durable admin subscriptions
(MQSUBTYPE_ADMIN)

3 - The low-water mark for non-durable proxy subscriptions
(MQSUBTYPE_PROXY)

Identifier: MQIAMO_SUB_NDUR_LOWWATER

Data type: MQCFIL.

Returned: When available.

PutTopicCount

Description: The number persistent and nonpersistent messages successfully put to a topic,
with the exception of messages put using the MQPUT1 call. This parameter is an
integer list indexed by persistence value, see Reference note 2.

Note: Messages put using a queue alias which resolve to a topic are included in
this value.

Identifier: MQIAMO_TOPIC_PUTS.

Data type: MQCFIL.

Returned: When available.

PutTopicFailCount

Description: The number of unsuccessful attempts to put a message to a topic.

Identifier: MQIAMO_TOPIC_PUTS_FAILED.

Data type: MQCFIN.

Returned: When available.

180 Monitoring and Performance for IBM MQ

Put1TopicCount

Description: The number of persistent and nonpersistent messages successfully put to
a topic using MQPUT1 calls. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Note: Messages put using a queue alias which resolve to a topic are included in
this value.

Identifier: MQIAMO_TOPIC_PUT1S.

Data type: MQCFIL.

Returned: When available.

Put1TopicFailCount

Description: The number of unsuccessful attempts to put a message to a topic using
MQPUT1 calls.

Identifier: MQIAMO_TOPIC_PUT1S_FAILED.

Data type: MQCFIN.

Returned: When available.

PutTopicBytes

Description: The number bytes written using put calls for persistent and nonpersistent
messages which resolve to a publish operation. This is number of bytes put by
the application and not the resultant number of bytes delivered to subscribers,
see PublishMsgBytes for this value. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Identifier: MQIAMO64_TOPIC_PUT_BYTES.

Data type: MQCFIL64.

Returned: When available.

PublishMsgCount

Description: The number of messages delivered to subscriptions in the time interval. This
parameter is an integer list indexed by persistence value, see Reference note 2.

Identifier: MQIAMO64_PUBLISH_MSG_COUNT

Data type: MQCFIL.

Returned: When available.

PublishMsgBytes

Description: The number of bytes delivered to subscriptions in the time interval. This
parameter is an integer list indexed by persistence value, see Reference note
2.

Identifier: MQIAMO64_PUBLISH_MSG_BYTES

Data type: MQCFIL64.

Returned: When available.

Monitoring and performance 181

Queue statistics message data
Use this page to view the structure of a queue statistics message

Message name: Queue statistics message.

Platforms: All, except IBM MQ for z/OS.

System queue: SYSTEM.ADMIN.STATISTICS.QUEUE.

QueueManager

Description: Name of the queue manager

Identifier: MQCA_Q_MGR_NAME

Data type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: Always

IntervalStartDate

Description: The date at the start of the monitoring period

Identifier: MQCAMO_START_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

Returned: Always

IntervalStartTime

Description: The time at the start of the monitoring period

Identifier: MQCAMO_START_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: Always

IntervalEndDate

Description: The date at the end of the monitoring period

Identifier: MQCAMO_END_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

Returned: Always

IntervalEndTime

Description: The time at the end of the monitoring period

Identifier: MQCAMO_END_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: Always

182 Monitoring and Performance for IBM MQ

CommandLevel

Description: The queue manager command level

Identifier: MQIA_COMMAND_LEVEL

Data type: MQCFIN

Returned: Always

ObjectCount

Description: The number of queue objects accessed in the interval for which statistics data
has been recorded. This value is set to the number of QStatisticsData PCF
groups contained in the message.

Identifier: MQIAMO_OBJECT_COUNT

Data type: MQCFIN

Returned: Always

QStatisticsData

Description: Grouped parameters specifying statistics details for a queue

Identifier: MQGACF_Q_STATISTICS_DATA

Data type: MQCFGR

Parameters in
group:

QName
CreateDate
CreateTime
QType
QDefinitionType
QMinDepth
QMaxDepth
AvgTimeOnQ
PutCount
PutFailCount
Put1Count
Put1FailCount
PutBytes
GetCount
GetFailCount
GetBytes
BrowseCount
BrowseFailCount
BrowseBytes
NonQueuedMsgCount
ExpiredMsgCount
PurgeCount

Returned: Always

QName

Description: The name of the queue

Identifier: MQCA_Q_NAME

Monitoring and performance 183

Data type: MQCFST

Maximum length: MQ_Q_NAME_LENGTH

Returned: Always

CreateDate

Description: The date when the queue was created

Identifier: MQCA_CREATION_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

Returned: Always

CreateTime

Description: The time when the queue was created

Identifier: MQCA_CREATION_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: Always

QType

Description: The type of the queue

Identifier: MQIA_Q_TYPE

Data type: MQCFIN

Value: MQOT_LOCAL

Returned: Always

QDefinitionType

Description: The queue definition type

Identifier: MQIA_DEFINITION_TYPE

Data type: MQCFIN

Values: Possible values are

• MQQDT_PREDEFINED
• MQQDT_PERMANENT_DYNAMIC
• MQQDT_TEMPORARY_DYNAMIC

Returned: When available

QMinDepth

Description: The minimum queue depth during the monitoring period

Identifier: MQIAMO_Q_MIN_DEPTH

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

184 Monitoring and Performance for IBM MQ

Returned: When available

QMaxDepth

Description: The maximum queue depth during the monitoring period

Identifier: MQIAMO_Q_MAX_DEPTH

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

AvgTimeOnQ

Description: The average latency, in microseconds, of messages destructively retrieved from
the queue during the monitoring period. This parameter is an integer list indexed
by persistence value, see Reference note 2.

Identifier: MQIAMO64_AVG_Q_TIME

Data type: MQCFIL64

Included in PCF
group:

QStatisticsData

Returned: When available

PutCount

Description: The number of persistent and nonpersistent messages successfully put to the
queue, with exception of MQPUT1 requests. This parameter is an integer list
indexed by persistence value. See Reference note 2.

Identifier: MQIAMO_PUTS

Data type: MQCFIL

Included in PCF
group:

QStatisticsData

Returned: When available

PutFailCount

Description: The number of unsuccessful attempts to put a message to the queue

Identifier: MQIAMO_PUTS_FAILED

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

Put1Count

Description: The number of persistent and nonpersistent messages successfully put to
the queue using MQPUT1 calls. This parameter is an integer list indexed by
persistence value. See Reference note 2.

Identifier: MQIAMO_PUT1S

Data type: MQCFIL

Monitoring and performance 185

Included in PCF
group:

QStatisticsData

Returned: When available

Put1FailCount

Description: The number of unsuccessful attempts to put a message using MQPUT1 calls

Identifier: MQIAMO_PUT1S_FAILED

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

PutBytes

Description: The number of bytes written in put requests to the queue

Identifier: MQIAMO64_PUT_BYTES

Data type: MQCFIL64

Included in PCF
group:

QStatisticsData

Returned: When available

GetCount

Description: The number of successful destructive get requests for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value. See Reference note 2.

Identifier: MQIAMO_GETS

Data type: MQCFIL

Included in PCF
group:

QStatisticsData

Returned: When available

GetFailCount

Description: The number of unsuccessful destructive get requests

Identifier: MQIAMO_GETS_FAILED

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

GetBytes

Description: The number of bytes read in destructive put requests for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value. See Reference note 2.

Identifier: MQIAMO64_GET_BYTES

Data type: MQCFIL64

186 Monitoring and Performance for IBM MQ

Included in PCF
group:

QStatisticsData

Returned: When available

BrowseCount

Description: The number of successful non-destructive get requests for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value. See Reference note 2.

Identifier: MQIAMO_BROWSES

Data type: MQCFIL

Included in PCF
group:

QStatisticsData

Returned: When available

BrowseFailCount

Description: The number of unsuccessful non-destructive get requests

Identifier: MQIAMO_BROWSES_FAILED

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

BrowseBytes

Description: The number of bytes read in non-destructive get requests for persistent
and nonpersistent messages. This parameter is an integer list indexed by
persistence value. See Reference note 2.

Identifier: MQIAMO64_BROWSE_BYTES

Data type: MQCFIL64

Included in PCF
group:

QStatisticsData

Returned: When available

NonQueuedMsgCount

Description: The number of messages that bypassed the queue and were transferred directly
to a waiting application.

Bypassing a queue can only occur in certain circumstances. This number
represents how many times IBM MQ was able to bypass the queue, and not
the number of times an application was waiting.

Identifier: MQIAMO_MSGS_NOT_QUEUED

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

Monitoring and performance 187

ExpiredMsgCount

Description: The number of persistent and nonpersistent messages that were discarded
because they had expired before they could be retrieved.

Identifier: MQIAMO_MSGS_EXPIRED

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

PurgeCount

Description: The number of messages purged.

Identifier: MQIAMO_MSGS_PURGED

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

Channel statistics message data
Use this page to view the structure of a channel statistics message

Message name: Channel statistics message.

Platforms: All, except IBM MQ for z/OS.

System queue: SYSTEM.ADMIN.STATISTICS.QUEUE.

QueueManager

Description: The name of the queue manager.

Identifier: MQCA_Q_MGR_NAME.

Data type: MQCFST.

Maximum length: MQ_Q_MGR_NAME_LENGTH.

Returned: Always.

IntervalStartDate

Description: The date at the start of the monitoring period.

Identifier: MQCAMO_START_DATE.

Data type: MQCFST.

Maximum length: MQ_DATE_LENGTH.

Returned: Always.

IntervalStartTime

Description: The time at the start of the monitoring period.

Identifier: MQCAMO_START_TIME.

Data type: MQCFST.

Maximum length: MQ_TIME_LENGTH.

188 Monitoring and Performance for IBM MQ

Returned: Always.

IntervalEndDate

Description: The date at the end of the monitoring period

Identifier: MQCAMO_END_DATE.

Data type: MQCFST.

Maximum length: MQ_DATE_LENGTH.

Returned: Always.

IntervalEndTime

Description: The time at the end of the monitoring period

Identifier: MQCAMO_END_TIME.

Data type: MQCFST.

Maximum length: MQ_TIME_LENGTH

Returned: Always.

CommandLevel

Description: The queue manager command level.

Identifier: MQIA_COMMAND_LEVEL.

Data type: MQCFIN.

Returned: Always.

ObjectCount

Description: The number of Channel objects accessed in the interval for which statistics data
has been recorded. This value is set to the number of ChlStatisticsData PCF
groups contained in the message.

Identifier: MQIAMO_OBJECT_COUNT

Data type: MQCFIN.

Returned: Always.

ChlStatisticsData

Description: Grouped parameters specifying statistics details for a channel.

Identifier: MQGACF_CHL_STATISTICS_DATA.

Data type: MQCFGR.

Monitoring and performance 189

Parameters in
group:

ChannelName
ChannelType
RemoteQmgr
ConnectionName
MsgCount
TotalBytes
NetTimeMin
NetTimeAvg
NetTimeMax
ExitTimeMin
ExitTimeAvg
ExitTimeMax
FullBatchCount
IncmplBatchCount
AverageBatchSize
PutRetryCount

Returned: Always.

ChannelName

Description: The name of the channel.

Identifier: MQCACH_CHANNEL_NAME.

Data type: MQCFST.

Maximum length: MQ_CHANNEL_NAME_LENGTH.

Returned: Always.

ChannelType

Description: The channel type.

Identifier: MQIACH_CHANNEL_TYPE.

Data type: MQCFIN.

Values: Possible values are:
MQCHT_SENDER

Sender channel.
MQCHT_SERVER

Server channel.
MQCHT_RECEIVER

Receiver channel.
MQCHT_REQUESTER

Requester channel.
MQCHT_CLUSRCVR

Cluster receiver channel.
MQCHT_CLUSSDR

Cluster sender channel.

Returned: Always.

RemoteQmgr

Description: The name of the remote queue manager.

190 Monitoring and Performance for IBM MQ

Identifier: MQCA_REMOTE_Q_MGR_NAME.

Data type: MQCFST.

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: When available.

ConnectionName

Description: Connection name of remote queue manager.

Identifier: MQCACH_CONNECTION_NAME.

Data type: MQCFST

Maximum length: MQ_CONN_NAME_LENGTH

Returned: When available.

MsgCount

Description: The number of persistent and nonpersistent messages sent or received.

Identifier: MQIAMO_MSGS.

Data type: MQCFIN

Returned: When available.

TotalBytes

Description: The number of bytes sent or received for persistent and nonpersistent
messages.

Identifier: MQIAMO64_BYTES.

Data type: MQCFIN64.

Returned: When available.

NetTimeMin

Description: The shortest recorded channel round trip measured in the recording interval, in
microseconds.

Identifier: MQIAMO_NET_TIME_MIN.

Data type: MQCFIN.

Returned: When available.

NetTimeAvg

Description: The average recorded channel round trip measured in the recording interval, in
microseconds.

Identifier: MQIAMO_NET_TIME_AVG.

Data type: MQCFIN.

Returned: When available.

NetTimeMax

Description: The longest recorded channel round trip measured in the recording interval, in
microseconds.

Identifier: MQIAMO_NET_TIME_MAX.

Monitoring and performance 191

Data type: MQCFIN.

Returned: When available.

ExitTimeMin

Description: The shortest recorded time, in microseconds, spent executing a user exit in the
recording interval,

Identifier: MQIAMO_EXIT_TIME_MIN.

Data type: MQCFIN.

Returned: When available.

ExitTimeAvg

Description: The average recorded time, in microseconds, spent executing a user exit in the
recording interval. Measured in microseconds.

Identifier: MQIAMO_EXIT_TIME_AVG.

Data type: MQCFIN.

Returned: When available.

ExitTimeMax

Description: The longest recorded time, in microseconds, spent executing a user exit in the
recording interval. Measured in microseconds.

Identifier: MQIAMO_EXIT_TIME_MAX.

Data type: MQCFIN.

Returned: When available.

FullBatchCount

Description: The number of batches processed by the channel that were sent because the
value of the channel attributes BATCHSZ or BATCHLIM was reached.

Identifier: MQIAMO_FULL_BATCHES.

Data type: MQCFIN.

Returned: When available.

IncmplBatchCount

Description: The number of batches processed by the channel, that were sent without the
value of the channel attribute BATCHSZ being reached.

Identifier: MQIAMO_INCOMPLETE_BATCHES.

Data type: MQCFIN.

Returned: When available.

AverageBatchSize

Description: The average batch size of batches processed by the channel.

Identifier: MQIAMO_AVG_BATCH_SIZE.

Data type: MQCFIN.

Returned: When available.

192 Monitoring and Performance for IBM MQ

PutRetryCount

Description: The number of times in the time interval that a message failed to be put, and
entered a retry loop.

Identifier: MQIAMO_PUT_RETRIES.

Data type: MQCFIN.

Returned: When available.

Reference notes
Use this page to view the notes to which descriptions of the structure of accounting and statistics
messages refer

The following message data descriptions refer to these notes:

• “MQI accounting message data” on page 149
• “Queue accounting message data” on page 160
• “MQI statistics message data” on page 170
• “Queue statistics message data” on page 182
• “Channel statistics message data” on page 188

1. This parameter relates to IBM MQ objects. This parameter is an array of values (MQCFIL or MQCFIL64)
indexed by the following constants:

Table 24. Array indexed by object type

Object type Value context

MQOT_Q (1) Contains the value relating to queue objects.

MQOT_NAMELIST (2) Contains the value relating to namelist objects.

MQOT_PROCESS (3) Contains the value relating to process objects.

MQOT_Q_MGR (5) Contains the value relating to queue manager
objects.

MQOT_CHANNEL (6) Contains the value relating to channel objects.

MQOT_AUTH_INFO (7) Contains the value relating to authentication
information objects.

MQOT_TOPIC (8) Contains the value relating to topic objects.

Note: An array of 13 MQCFIL or MQCFIL64 values are returned but only those listed are meaningful.
2. This parameter relates to IBM MQ messages. This parameter is an array of values (MQCFIL or

MQCFIL64) indexed by the following constants:

Table 25. Array indexed by persistence value

Constant Value

1 Contains the value for nonpersistent messages.

2 Contains the value for persistent messages.

Note: The index for each of these arrays starts at zero, so an index of 1 refers to the second row of the
array. Elements of these arrays not listed in these tables contain no accounting or statistics information.

Monitoring and performance 193

Application activity trace
Application activity trace produces detailed information about the behavior of applications connected to
a queue manager. It traces the behavior of an application and provides a detailed view of the parameters
used by an application as it interacts with IBM MQ resources. It also shows the sequence of MQI calls
issued by an application.

Use Application activity trace when you require more information than is provided by Event monitoring,
Message monitoring, Accounting and statistics messages, and Real-time monitoring.

Note that activity trace is not supported by IBM MQ for z/OS.

Collecting application activity trace information
An application activity trace message is a PCF message. You configure activity trace using a configuration
file. To collect application activity trace information you set the ACTVTRC queue manager attribute. You
can override this setting at connection level using MQCONNX options, or at application stanza level using
the activity trace configuration file.

About this task
Activity trace messages are composed of an MQMD structure: a PCF (MQCFH) header structure, followed
by a number of PCF parameters. A sequence of ApplicationTraceData PCF groups follows the PCF
parameters. These PCF groups collect information about the MQI operations that an application performs
while connected to a queue manager. You configure activity trace using a configuration file called
mqat.ini.

To control whether or not application activity trace information is collected, you configure one or more of
the following settings:

1. The ACTVTRC queue manager attribute.
2. The ACTVCONO settings (in the MQCNO structure passed in MQCONNX).
3. The matching stanza for the application in the activity trace configuration file mqat.ini.

The previous sequence is significant. The ACTVTRC attribute is overridden by the ACTVCONO settings,
which are overridden by the settings in the mqat.ini file.

Trace entries are written after each operation has completed, unless otherwise stated. These entries are
first written to the system queue SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE, then written to application
activity trace messages when the application disconnects from the queue manager. For long running
applications, intermediate messages are written if any of the following events occurs:

• The lifetime of the connection reaches a defined timeout value.
• The number of operations reaches a specified number.
• The amount of data collected in memory reaches the maximum message length allowed for the queue.

You set the timeout value using the ActivityInterval parameter. You set the number of operations
using the ActivityCount parameter. Both parameters are specified in the activity trace configuration
file mqat.ini.

Enabling application activity trace can affect performance. The overhead can be reduced by tuning
the ActivityCount and the ActivityInterval settings. See “Tuning the performance impact of
application activity trace” on page 201.

The simplest way to view the contents of application activity trace messages is to use the “amqsact
sample program” on page 202.

Procedure
1. “Setting ACTVTRC to control collection of activity trace information” on page 195.
2. “Setting MQCONNX options to control collection of activity trace information” on page 195.

194 Monitoring and Performance for IBM MQ

3. “Configuring activity trace behavior using mqat.ini” on page 196.
4. “Tuning the performance impact of application activity trace” on page 201.

Setting ACTVTRC to control collection of activity trace information
Use the queue manager attribute ACTVTRC to control the collection of MQI application activity trace
information

About this task
Application activity trace messages are generated only for connections that begin after application activity
trace is enabled. The ACTVTRC parameter can have the following values:
ON

API activity trace collection is switched on
OFF

API activity trace collection is switched off

Note: The ACTVTRC setting can be overridden by the queue manager ACTVCONO parameter. If you set the
ACTVCONO parameter to ENABLED, then the ACTVTRC setting can be overridden for a given connection
using the Options field in the MQCNO structure. See“Setting MQCONNX options to control collection of
activity trace information” on page 195.

Example

To change the value of the ACTVTRC parameter, you use the MQSC command ALTER QMGR. For example,
to enable MQI application activity trace information collection use the following MQSC command:

ALTER QMGR ACTVTRC(ON)

What to do next
The simplest way to view the contents of application activity trace messages is to use the “amqsact
sample program” on page 202.

Enabling application activity trace can affect performance. The overhead can be reduced by tuning
the ActivityCount and the ActivityInterval settings. See “Tuning the performance impact of
application activity trace” on page 201.

Setting MQCONNX options to control collection of activity trace information
If the queue manager attribute ACTVCONO is set to ENABLED, you can use the ConnectOpts parameter
on the MQCONNX call to enable or disable application activity reports on a per connection basis. These
options override the activity trace behavior defined by the queue manager attribute ACTVTRC, and can be
overridden by settings in the activity trace configuration file mqat.ini.

Procedure
1. Set the queue manager attribute ACTVCONO to ENABLED.

Note: If an application attempts to modify the accounting behavior of an application using the
ConnectOpts parameter, and the QMGR attribute ACTVCONO is set to DISABLED, then no error is
returned to the application, and activity trace collection is defined by the queue manager attributes or
the activity trace configuration file mqat.ini.

2. Set the ConnectOpts parameter on the MQCONNX call to MQCNO_ ACTIVITY_ TRACE_ENABLED.

The ConnectOpts parameter on the MQCONNX call can have the following values:

MQCNO_ACTIVITY_ TRACE_DISABLED
Activity trace is switched off for the connection.

MQCNO_ ACTIVITY_ TRACE_ENABLED
Activity trace is switched on for the connection.

Monitoring and performance 195

Note: If an application selects both MQCNO_ ACTIVITY_ TRACE_ENABLED and MQCNO_ACTIVITY_
TRACE_DISABLED for MQCONNX, the call fails with a reason code of MQRC_OPTIONS_ERROR.

3. Check that these activity trace settings are not being overridden by settings in the activity trace
configuration file mqat.ini.

See“Configuring activity trace behavior using mqat.ini” on page 196.

What to do next
The simplest way to view the contents of application activity trace messages is to use the “amqsact
sample program” on page 202.

Enabling application activity trace can affect performance. The overhead can be reduced by tuning
the ActivityCount and the ActivityInterval settings. See “Tuning the performance impact of
application activity trace” on page 201.

Configuring activity trace behavior using mqat.ini
Activity trace behavior is configured using a configuration file called mqat.ini. This file is used to define
the level and frequency of reporting activity trace data. The file also provides a way to define rules to
enable and disable activity trace based on the name of an application.

About this task

On UNIX and Linux systems, mqat.ini is located in the queue manager data
directory, which is the same location as the qm.ini file.

On Windows systems, mqat.ini is located in the queue manager data directory
C:\Program Files\IBM\WebSphere MQ\qmgrs\queue_manager_name. Users running applications
to be traced need permission to read this file.

Note: Queue managers migrated from IBM WebSphere MQ 7.1 or earlier will have the mqat.ini file
missing. In such cases, the mqat.ini file needs to be created manually and 660 permissions need to be
set on the file.

When the mqat.ini file is modified, newly created IBM MQ connections will be processed according
to the modified version. Existing connections will continue to use the previous version unless the queue
manager parameters are altered, for example following an ALTER QMGR command.

This file follows the same stanza key and parameter-value pair format as the mqs.ini and qm.ini files.
It is located in the queue manager data directory, this is, the same location as the qm.ini file for the
queue manager.

The file consists of a single stanza, AllActivityTrace, to configure the level and frequency of reporting
activity trace data by default for all activity trace.

The file can also contain multiple ApplicationTrace stanzas. Each one of these, defines a rule for the trace
behavior for one or more connections, based on matching the application name of the connections to the
rule.

AllActivityTrace stanza

A single AllActivityTrace stanza defines settings for the activity trace that is applied to all IBM MQ
connections, unless overridden.

Individual values in the AllActivityTrace stanza can be overridden by more specific information in an
ApplicationTrace stanza stanza.

If more than one AllActivityTrace stanza is specified then the values in the last stanza is used.
Parameters missing from the chosen AllActivityTrace take default values. Parameters and values from
previous AllActivityTrace stanzas are ignored.

The following parameters can be specified under the AllActivityTrace stanza:

196 Monitoring and Performance for IBM MQ

Table 26. Parameter/value pairs that can be used in the activity trace configuration file

Name Values (default in bold type) Description

ActivityInterval 0-99999999 (1) Approximate time interval in seconds between
trace messages. All activity performed by a
connection in that interval will be written
in a single message. If this value is 0, the
trace message is written when the connection
disconnects (or when the activity count is
reached).

ActivityCount 0-99999999 (100) Number of MQI or XA operations between
trace messages. If this value is 0, the trace
message is written when the connection
disconnects (or when the activity interval has
elapsed).

TraceLevel LOW / MEDIUM / HIGH Amount of parameter detail traced for
each operation. The description of individual
operations details which parameters are
included for each trace level.

TraceMessageData 0 - 104 857 600 (maximum
100 MB)

Amount of message data traced in bytes
for MQGET, MQPUT, MQPUT1, and Callback
operations

StopOnGetTraceMsg ON / OFF Using activity trace, to trace applications that
are also processing activity trace messages,
is not advisable due to possible looping
occurring.

ApplicationTrace stanza

An ApplicationTrace stanza contains a rule which defines which IBM MQ connections will be traced or
not trace based on the application name. Optionally, the default behaviour defined under the Allsettings
which override the global trace level and frequency settings.

This stanza can include ApplName, ApplFunction and ApplClass parameters which are used according to
the matching rules defined in Connection Matching Rules to determine whether the stanza applies to a
particular connection or not.

The stanza must include the Trace parameter to determine if this rule turns activity trace on or off for
matching connections.

An off rule can be used to explicitly disable trace for more specific application names and to override the
ACTVTRC setting of the queue manager or activity trace connection options.

The following parameters can be specified under the ApplicationTrace stanza:

Table 27. Parameter/value pairs that can be used in the application trace configuration file

Name Values (default in bold type) Description

Trace ON / OFF (Required parameter
- no default value)

Activity trace switch. This switch can be used
in the application-specific stanza to determine
whether activity trace is active for the scope
of the current application stanza. Note that
this value overrides ACTVTRC and ACTVCONO
settings for the queue manager.

Monitoring and performance 197

Table 27. Parameter/value pairs that can be used in the application trace configuration file (continued)

Name Values (default in bold type) Description

ApplName Character string (Required
parameter - no default)

This value is used to determine which
applications the ApplicationTrace stanza
applies to. It is matched to the
ApplName value from the API exit context
structure (which is equivalent to the
MQMD.PutApplName). The content of the
ApplName value varies according to the
application environment.

For platforms other than z/OS, only the
filename portion of the MQAXC.ApplName is
matched to the value in the stanza. Characters
to the left of the rightmost path separator are
ignored when the comparison is made.

For z/OS applications, the entire
MQAXC.ApplName is matched to the value in
the stanza.

A single wildcard character (*) can be used
at the end of the ApplName value to match
any number of characters after that point.
If the ApplName value is set to a single
wildcard character (*) then the ApplName
value matches all applications.

ApplFunction

Character string (default value
*)

This value is used to qualify which application
programs the ApplicationTrace stanza and
ApplName value applies to.

The stanza is optional, but is only valid for IBM
i queue managers. A single wildcard character
(*) can be used at the end of the ApplName
value to match any number of characters.

For example, an ApplicationTrace stanza
specifying ApplName = * and ApplFunction
= AMQSPUT0 applies to all invocations of the
AMQSPUT0 program from any job.

ApplClass USER / MCA / ALL The class of application. See the following
table for an explanation of how the AppType
values correspond to IBM MQ connections.

The following table shows how the AppClass values correspond to the APICallerType and
APIEnvironment fields in the connection API exit context structure.

Table 28. Appclass values and how they correspond to the APICallerType and APIEnvironment fields

APPLCLASS API Caller Type: API Environment: Description

USER MQXACT_EXTERNAL MQXE_OTHER Only user applications are traced

MCA (Any value) MQXE_MCA
MQXE_MCA_CLNTCONN
MQXE_MCA_SVRCONN

Clients and channels (amqrmppa)

ALL (Any value) (Any value) All connections are traced

198 Monitoring and Performance for IBM MQ

Attention: You must use an APPLCLASS of MCA for client user applications, as a class of USER
does not match these.

For example, to trace the amqsputc sample application, you could use the following code:

ApplicationTrace:
ApplClass=MCA # Application type
 # Values: (USER | MCA | INTERNAL | ALL)
 # Default: USER
ApplName=amqsputc # Application name (may be wildcarded)
 # (matched to app name without path)
 # Default: *
Trace=ON # Activity trace switch for application
 # Values: (ON | OFF)
 # Default: OFF
ActivityInterval=30 # Time interval between trace messages
 # Values: 0-99999999 (0=off)
 # Default: 0
ActivityCount=1 # Number of operations between trace msgs
 # Values: 0-99999999 (0=off)
 # Default: 0
TraceLevel=MEDIUM # Amount of data traced for each operation
 # Values: LOW | MEDIUM | HIGH
 # Default: MEDIUM
TraceMessageData=1000 # Amount of message data traced
 # Values: 0-100000000
 # Default: 0

The default mqat.ini generated when a queue manager is created, contains a single rule to explicitly
disable activity trace for the supplied activity trace sample, amqsact.

Connection Matching Rules

The queue manager applies the following rules to determine which stanzas settings to use for a
connection.

1. A value specified in the AllActivityTrace stanza is used for the connection unless the value also occurs
in an ApplicationTrace stanza and the stanza fulfills the matching criteria for the connection described
in points 2, 3, and 4.

2. The ApplClass is matched against the type of the IBM MQ connection. If the ApplClass does not
match the connection type then the stanza is ignored for this connection.

3. The ApplName value in the stanza is matched against the file name portion of the ApplName field from
the API exit context structure (MQAXC) for the connection.

The file name portion is derived from the characters to the right of the final path separator (/ or
\) character. If the stanza ApplName includes a wildcard (*) then only the characters to the left
of the wildcard are compared with the equivalent number of characters from the ApplName of the
connection.

For example, if a stanza value of "FRE*" is specified then only the first three characters are used in
the comparison, so "path/FREEDOM" and "path\FREDDY" match, but "path/FRIEND" does not. If the
ApplName value of the stanza does not match the connection ApplName, the stanza is ignored for this
connection.

4. If more than one stanza matches the ApplName and ApplClass of the connection, then the stanza
with the most specific ApplName is used.

The most specific ApplName is defined as the one that uses the most characters to match the
ApplName of the connection.

For example, if the ini file contains a stanza with ApplName = "FRE*" and another stanza with
ApplName = "FREE*" then the stanza with ApplName = "FREE*" is chosen as the best match
for a connection with ApplName = "path/FREEDOM" because it matches four characters (whereas
ApplName = "FRE*" matches only three).

5. If after applying the rules in points 2, 3, and 4, there is more than one stanza that matches the
connections ApplName and ApplClass of the connection, the values from the last matching will be
used and all other stanzas will be ignored.

Monitoring and performance 199

Overriding default settings for each rule

Optionally, the global trace level and frequency settings under the AllActivityTrace stanza can be
overridden for those connections matching an ApplicationTrace stanza.

The following parameters can be set under an ApplicationTrace stanza. If they are not set, the value is
inherited from the AllActivityTrace stanza settings:

• ActivityInterval
• ActivityCount
• TraceLevel
• TraceMessageData
• StopOnTraceMsg

mqat.ini syntax

The syntax rules for the format of the mqat.ini file are:

• Text beginning with a hash or semicolon is considered to be a comment that extends to the end of the
line.

• The first significant (non-comment) line must be a stanza key.
• A stanza key consists of the name of the stanza followed by a colon.
• A parameter-value pair consists of the name of a parameter followed by an equals sign and then the

value.
• Only a single parameter-value pair can appear on a line. (A parameter-value must not wrap onto another

line).
• Leading and trailing whitespace is ignored. There is no limit on the amount of white space between

stanza names, parameter names and values, or parameter/value pairs. Line breaks are significant and
not ignored

• The maximum length for any line is 2048 characters
• The stanza keys, parameter names, and constant parameter values are not case-sensitive, but the

variable parameter values (ApplName and DebugPath) are case-sensitive.

Application Activity Trace File Example

The following example shows how the configuration data is specified in the Activity Trace ini file.

AllActivityTrace:
ActivityInterval=1
ActivityCount=100
TraceLevel=MEDIUM
TraceMessageData=0
StopOnGetTraceMsg=ON

ApplicationTrace:
ApplName=amqs*
Trace=ON
TraceLevel=HIGH
TraceMessageData=1000

ApplicationTrace:
ApplName=amqsact*
Trace=OFF

The above AllActivityTrace stanza defines how activity trace will perform by default when enabled, either
through ApplicationTrace rules or through the queue manager ACTVTRC attribute or programmatically
enabled by an application.

The first ApplicationTrace stanza defines a rule that will result in any MQI activity by an application
whose name starts with "amqs" being traced. Trace generated for these applications will be of high
detail and include up to 1000 bytes of message data. The activity interval and count parameters will be
inherited

200 Monitoring and Performance for IBM MQ

The second ApplicationTrace stanza defines a rule that turns trace off for applications with names
starting "amqsact" (the activity trace sample). This rule will override the earlier 'on' rule for the amqsact
application, resulting in no trace for that application.

An example is also shipped as a sample called mqat.ini in the C samples directory (the same directory
as the amqsact.c file). This file can be copied to the queue manager data directory, for queue managers
that have been migrated from an earlier release of IBM MQ.

What to do next
Enabling application activity trace can affect performance. The overhead can be reduced by tuning
the ActivityCount and the ActivityInterval settings. See “Tuning the performance impact of
application activity trace” on page 201.

Tuning the performance impact of application activity trace
Enabling application activity trace can incur a performance penalty. This can be reduced by only tracing
the applications that you need, by increasing the number of applications draining the queue, and by
tuning ActivityInterval, ActivityCount and TraceLevel in mqat.ini.

About this task
Enabling application activity trace selectively for an application or for all queue manager applications
can result in additional messaging activity, and in the queue manager requiring additional storage space.
In environments where messaging performance is critical, for example, in high workload applications
or where a service level agreement (SLA) requires a minimum response time from the messaging
provider, it might not be appropriate to collect application activity trace or it might be necessary to
adjust the detail or frequency of trace activity messages that are produced. The preset values of
ActivityInterval, ActivityCount and TraceLevel in the mqat.ini file give a default balance
of detail and performance. However, you can tune these values to meet the precise functional and
performance requirements of your system.

Procedure
• Only trace the applications that you need.

Do this by creating an ApplicationTrace application-specific stanza in mqat.ini, or by changing the
application to specify MQCNO_ACTIVITY_TRACE_ENABLED in the options field on the MQCNO structure
on an MQCONNX call. See“Configuring activity trace behavior using mqat.ini” on page 196and“Setting
MQCONNX options to control collection of activity trace information” on page 195.

• Before starting trace, check that at least one application is running and is ready to retrieve the activity
trace message data from the SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE.

• Keep the queue depth as low as possible, by increasing the number of applications draining the queue.
• Set the TraceLevel value in the mqat.ini file to collect the minimum amount of data required.

TraceLevel=LOW has the lowest impact to messaging performance. See“Configuring activity trace
behavior using mqat.ini” on page 196.

• Tune the ActivityCount and ActivityInterval values in mqat.ini, to adjust how often activity
trace messages are generated.

If you are tracing multiple applications, the activity trace messages might be being produced faster
than they can be removed from the SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE. However, when you
reduce how often activity trace messages are generated, you are also increasing the storage space
required by the queue manager and the size of the messages when they are written to the queue.

What to do next
The simplest way to view the contents of application activity trace messages is to use the “amqsact
sample program” on page 202.

Monitoring and performance 201

amqsact sample program
amqsact formats Application Activity Trace messages for you and is provided with IBM MQ.

The compiled program is located in the samples directory:

• On Linux and UNIX platforms MQ_INSTALLATION_PATH/samp/bin
• On Windows MQ_INSTALLATION_PATH\tools\c\Samples\Bin

Display mode
By default, amqsact in display mode processes messages on SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE.
You can override this behavior by specifying a queue name or topic string.

You can also control the trace period displayed and specify whether the activity trace messages are
removed or retained after display.

amqsact -m QMgrName

 -q QName -t TopicString

 -b Browse -v Verbose

 -d Depth -w Timeout -s

StartTime -e EndTime

Required parameters for display mode
-m QMgrName

Name of the queue manager.
-d Depth

Number of records to display.
-w Timeout

Time to wait, in seconds. If no trace messages appear in the specified period, amqsact exits.
-s StartTime

Start time of record to process.
-e EndTime

End time of record to process.

Optional parameters for display mode
-q QName

Specify a specific queue to override the default queue name
-t TopicString

Subscribe to an event topic
-b

Browse records only
-v

Verbose output

Example output for display mode
Use amqsact on queue manager TESTQM, with verbose output, on an MQCONN API call:

amqsact -m TESTQM -v

202 Monitoring and Performance for IBM MQ

The preceding command gives the following example output:

MonitoringType: MQI Activity Trace
Correl_id:
00000000: 414D 5143 5445 5354 514D 2020 2020 2020 'AMQCTESTQM '
00000010: B5F6 4251 2000 E601 ' '
QueueManager: 'TESTQM'
Host Name: 'ADMINIB-1VTJ6N1'
IntervalStartDate: '2014-03-15'
IntervalStartTime: '12:08:10'
IntervalEndDate: '2014-03-15'
IntervalEndTime: '12:08:10'
CommandLevel: 750
SeqNumber: 0
ApplicationName: 'IBM MQ_1\bin\amqsput.exe'
Application Type: MQAT_WINDOWS_7
ApplicationPid: 14076
UserId: 'Emma_Bushby'
API Caller Type: MQXACT_EXTERNAL
API Environment: MQXE_OTHER
Application Function: ''
Appl Function Type: MQFUN_TYPE_UNKNOWN
Trace Detail Level: 2
Trace Data Length: 0
Pointer size: 4
Platform: MQPL_WINDOWS_7
MQI Operation: 0
Operation Id: MQXF_CONN
ApplicationTid: 1
OperationDate: '2014-03-15'
OperationTime: '12:08:10'
ConnectionId:
00000000: 414D 5143 5445 5354 514D 2020 2020 2020 'AMQCTESTQM '
00000010: FFFFFFB5FFFFFFF6 4251 2000 FFFFFFE601 ' '
QueueManager: 'TESTQM'
Completion Code: MQCC_OK
Reason Code: 0

Dynamic mode

Dynamic mode applies only when using IBM MQ Appliance.

You enable dynamic mode by specifying an application name, a channel name, or a connection identifier
as an argument to amqsact. Note that you can use wildcard characters in the name.

In dynamic mode, activity trace data is enabled at the start of the sample by use of a nondurable
subscription to a system topic. Collecting activity trace data stops when amqsact stops. You must specify
a timeout for amqsact in dynamic mode. You can run multiple copies of amqsact concurrently, with each
instance receiving a copy of any activity trace data.

amqsact -m QMgrName -w Timeout

 -a Application name

 -c Channel name -i Connection ID -v Verbose

Required parameters for dynamic mode

-m QMgrName
Name of the queue manager.

-w Timeout
Time to wait, in seconds. If no trace messages appear in the specified period, amqsact exits.

Monitoring and performance 203

Optional parameters for dynamic mode

-a Application name
Specify an application name to collect messages for

-c Channel name
Specify a channel to collect messages for

-i Connection ID
Specify a connection to collect messages for.

-v
Verbose output

Example output for dynamic mode

The following command generates and displays activity trace messages for any connections made by
applications that start with the text "amqs". After 30 seconds of inactivity, the amqsact program ends,
and no new activity trace data is generated.

amqsactc -m QMGR1 -w 30 -a amqs*

The following command generates and displays activity trace messages for any activity on the
QMGR1.TO.QMGR2 channel. After 10 seconds of inactivity, the amqsact program ends, and no new
activity trace data is generated.

amqsactc -m QMGR1 -w 10 -c QMGR1.TO.QMGR2

The following command generates and displays verbose activity trace messages for any activity on
the existing IBM MQ connection that has a CONN of "6B576B5420000701", and an EXTCONN of
"414D5143514D47523120202020202020". After a minute of inactivity, the amqsact program ends,
and no new activity trace data is generated.

amqsactc -m QMGR1 -w 60 -i 414D5143514D475231202020202020206B576B5420000701 -v

Application activity trace message reference
Use this page to obtain an overview of the format of application activity trace messages and the
information returned in these messages

Application activity trace messages are standard IBM MQ messages containing a message descriptor and
message data. The message data contains information about the MQI operations performed by IBM MQ
applications, or information about the activities occurring in an IBM MQ system.

Message descriptor

• An MQMD structure

Message data

• A PCF header (MQCFH)
• Application activity trace message data that is always returned
• Application activity trace message data that is operation-specific

Application activity trace message MQMD (message descriptor)
Use this page to understand the differences between the message descriptor of application activity trace
messages and the message descriptor of event messages

The parameters and values in the message descriptor of application activity trace message are the same
as in the message descriptor of event messages, with the following exception:

204 Monitoring and Performance for IBM MQ

Format

Description: Format name of message data.

Value: MQFMT_ADMIN
Admin message.

CorrelId

Description: Correlation identifier.

Value: Initialized with the ConnectionId of the application

MQCFH (PCF Header)
Use this page to view the PCF values contained by the MQCFH structure for an activity trace message

For an activity trace message, the MQCFH structure contains the following values:
Type

Description: Structure type that identifies the content of the message.

Data type: MQLONG.

Value: MQCFT_APP_ACTIVITY

StrucLength

Description: Length in bytes of MQCFH structure.

Data type: MQLONG.

Value: MQCFH_STRUC_LENGTH

Version

Description: Structure version number.

Data type: MQLONG.

Values: MQCFH_VERSION_3

Command

Description: Command identifier. This field identifies the category of the message.

Data type: MQLONG.

Values: MQCMD_ACTIVITY_TRACE

MsgSeqNumber

Description: Message sequence number. This field is the sequence number of the message
within a group of related messages.

Data type: MQLONG.

Values: 1

Control

Description: Control options.

Data type: MQLONG.

Values: MQCFC_LAST.

Monitoring and performance 205

CompCode

Description: Completion code.

Data type: MQLONG.

Values: MQCC_OK.

Reason

Description: Reason code qualifying completion code.

Data type: MQLONG.

Values: MQRC_NONE.

ParameterCount

Description: Count of parameter structures. This field is the number of parameter structures
that follow the MQCFH structure. A group structure (MQCFGR), and its included
parameter structures, are counted as one structure only.

Data type: MQLONG.

Values: 1 or greater

Application activity trace message data
Immediately following the PCF header is a set of parameters describing the time interval for the activity
trace. These parameters also indicate the sequence of messages in the event of messages being written.
The order and number of fields following the header is not guaranteed, allowing additional information to
be added in the future.

Message name: Activity trace message.

System queue: SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE.

QueueManager

Description: The name of the queue manager

Identifier: MQCA_Q_MGR_NAME

Data type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

QSGName

Description: The name of QSG that the Queue Manager is a member of (z/OS only)

Identifier: MQCA_QSG_NAME

Data type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

HostName

Description: The host name of the machine the Queue Manager is running on

Identifier: MQCACF_HOST_NAME

Data type: MQCFST

206 Monitoring and Performance for IBM MQ

IntervalStartDate

Description: The date of the start of the monitoring period

Identifier: MQCAMO_START_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

IntervalStartTime

Description: The time of the start of the monitoring period

Identifier: MQCAMO_START_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

IntervalEndDate

Description: The date of the end of the monitoring period

Identifier: MQCAMO_END_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

IntervalEndTime

Description: The time of the end of the monitoring period

Identifier: MQCAMO_END_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

CommandLevel

Description: The IBM MQ command level

Identifier: MQIA_COMMAND_LEVEL

Data type: MQCFIN

SeqNumber

Description: The sequence number normally zero. This value is incremented for each
subsequent record for long running connections.

Identifier: MQIACF_SEQUENCE_NUMBER

Data type: MQCFIN

ApplicationName

Description: The name of the application. (program name)

Identifier: MQCACF_APPL_NAME

Data type: MQCFST

Maximum length: MQ_APPL_NAME_LENGTH

Monitoring and performance 207

ApplClass

Description: Type of application that performed the activity. Possible values: MQAT_*

Identifier: MQIA_APPL_TYPE

Data type: MQCFIN

ApplicationPid

Description: The operating system Process ID of the application.

Identifier: MQIACF_PROCESS_ID

Data type: MQCFIN

UserId

Description: The user identifier context of the application

Identifier: MQCACF_USER_IDENTIFIER

Data type: MQCFST

Maximum length: MQ_USER_ID_LENGTH

APICallerType

Description: The type of the application. Possible values: MQXACT_EXTERNAL or
MQXACT_INTERNAL

Identifier: MQIACF_API_CALLER_TYPE

Data type: MQCFIN

Environment

Description: The runtime environment of the application. Possible values: MQXE_OTHER
MQXE_MCA MQXE_MCA_SVRCONN MQXE_COMMAND_SERVER MQXE_MQSC

Identifier: MQIACF_API_ENVIRONMENT

Data type: MQCFIN

Detail

Description: The detail level that is recorded for the connection. Possible values: 1=LOW
2=MEDIUM 3=HIGH

Identifier: MQIACF_TRACE_DETAIL

Data type: MQCFIN

TraceDataLength

Description: The length of message data (in bytes) that is traced for this connection.

Identifier: MQIACF_TRACE_DATA_LENGTH

Data type: MQCFIN

Pointer Size

Description: The length (in bytes) of pointers on the platform the application is running (to
assist in interpretation of binary structures)

Identifier: MQIACF_POINTER_SIZE

208 Monitoring and Performance for IBM MQ

Data type: MQCFIN

Platform

Description: The platform on which the queue manager is running. Value is one of the
MQPL_* values.

Identifier: MQIA_PLATFORM

Data type: MQCFIN

Variable parameters for application activity MQI operations
The application activity data MQCFGR structure is followed by the set of PCF parameters which
corresponds to the operation being performed . The parameters for each operation are defined in the
following section.

The trace level indicates the level of trace granularity that is required for the parameters to be included in
the trace. The possible trace level values are:

1. Low

The parameter is included when "low", "medium" or "high" activity tracing is configured for an
application. This setting means that a parameter is always included in the AppActivityData group
for the operation. This set of parameters is sufficient to trace the MQI calls an application makes, and
to see if they are successful.

2. Medium

The parameter is only included in the AppActivityData group for the operation when "medium" or
"high" activity tracing is configured for an application. This set of parameters adds information about
the resources, for example, queue and topic names used by the application.

3. High

The parameter is only included in the AppActivityData group for the operation when "high"
activity tracing is configured for an application. This set of parameters includes memory dumps of
the structures passed to the MQI and XA functions. For this reason, it contains more information about
the parameters used in MQI and XA calls. The structure memory dumps are shallow copies of the
structures. To avoid erroneous attempts to dereference pointers, the pointer values in the structures
are set to NULL.

Note: The version of the structure that is dumped is not necessarily identical to the version used by
an application. The structure can be modified by an API crossing exit, by the activity trace code, or by
the queue manager. A queue manager can modify a structure to a later version, but the queue manager
never changes it to an earlier version of the structure. To do so, would risk losing data.

MQBACK
Application has started the MQBACK MQI function

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Monitoring and performance 209

Type MQCFIN

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

Type MQCFIN64

MQBEGIN
Application has started the MQBEGIN MQI function

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type MQCFIN

MQBO

Description: The MQBEGIN options structure. This parameter is not included if a NULL
pointer is used on the MQBEGIN call.

PCF Parameter: MQBACF_MQBO_STRUCT

Trace level: 3

Type MQCFBS

Length: The length in bytes of the MQBO structure.

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

210 Monitoring and Performance for IBM MQ

Type MQCFIN64

MQCALLBACK
Application has started the MQCALLBACK function

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type MQCFIN

CallType

Description: Why function has been called. One of the MQCBCT_* values

PCF Parameter: MQIACF_CALL_TYPE

Trace level: 1

Type MQCFIN

MsgBuffer

Description: Message data.

PCF Parameter: MQBACF_MESSAGE_DATA

Trace level: 1

Type MQCFBS

Length: Length is governed by the TRACEDATA() parameter set in the APPTRACE
configuration. If TRACEDATA=NONE then this parameter is omitted.

MsgLength

Description: Length of the message. (Taken from the DataLength field in the MQCBC
structure).

PCF Parameter: MQIACF_MSG_LENGTH

Trace level: 1

Type MQCFIN

HighResTime

Description: Time of operation in microseconds since midnight, January 1st 1970 (UTC)

Note: The accuracy of this timer varies according to platform support for high a
resolution timer

PCF Parameter: MQIAMO64_HIGHRES_TIME

Trace level: 2

Type MQCFIN64

ReportOptions

Description: Options for report messages

PCF Parameter: MQIACF_REPORT

Monitoring and performance 211

Trace level: 2

Type MQCFIN

MsgType

Description: Type of message

PCF Parameter: MQIACF_MSG_TYPE

Trace level: 2

Type MQCFIN

Expiry

Description: Message lifetime

PCF Parameter: MQIACF_EXPIRY

Trace level: 2

Type MQCFIN

Format

Description: Format name of message data

PCF Parameter: MQCACH_FORMAT_NAME

Trace level: 2

Type MQCFST

Length: MQ_FORMAT_LENGTH

Priority

Description: Message priority

PCF Parameter: MQIACF_PRIORITY

Trace level: 2

Type MQCFIN

Persistence

Description: Message persistence

PCF Parameter: MQIACF_PERSISTENCE

Trace level: 2

Type MQCFIN

MsgId

Description: Message identifier

PCF Parameter: MQBACF_MSG_ID

Trace level: 2

Type MQCFBS

Length: MQ_MSG_ID_LENGTH

212 Monitoring and Performance for IBM MQ

CorrelId

Description: Correlation identifier

PCF Parameter: MQBACF_CORREL_ID

Trace level: 2

Type MQCFBS

Length: MQ_CORREL_ID_LENGTH

ObjectName

Description: The name of the opened object.

PCF Parameter: MQCACF_OBJECT_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH

ResolvedQName

Description: The local name of the queue from which the message was retrieved.

PCF Parameter: MQCACF_RESOLVED_Q_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH

ReplyToQueue

Description: MQ_Q_NAME_LENGTH

PCF Parameter: MQCACF_REPLY_TO_Q

Trace level: 2

Type MQCFST

ReplyToQMgr

Description: MQ_Q_MGR_NAME_LENGTH

PCF Parameter: MQCACF_REPLY_TO_Q_MGR

Trace level: 2

Type MQCFST

CodedCharSetId

Description: Character set identifier of message data

PCF Parameter: MQIA_CODED_CHAR_SET_ID

Trace level: 2

Type MQCFIN

Encoding

Description: Numeric encoding of message data.

Monitoring and performance 213

PCF Parameter: MQIACF_ENCODING

Trace level: 2

Type MQCFIN

PutDate

Description: MQ_PUT_DATE_LENGTH

PCF Parameter: MQCACF_PUT_DATE

Trace level: 2

Type MQCFST

PutTime

Description: MQ_PUT_TIME_LENGTH

PCF Parameter: MQCACF_PUT_TIME

Trace level: 2

Type MQCFST

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_LOCAL _Q_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH.

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type MQCFST

Length: Length varies.

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type MQCFIN

PolicyName

Description: The policy name that was applied to this message.

Note: AMS protected messages only

214 Monitoring and Performance for IBM MQ

PCF Parameter: MQCA_POLICY_NAME

Trace level: 2

Type MQCFST

Length: MQ_OBJECT_NAME_LENGTH

XmitqMsgId

Description: The message ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_MSG_ID

Trace level: 2

Type MQCFBS

Length: MQ_MSG_ID_LENGTH

XmitqCorrelId

Description: The correlation ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_CORREL_ID

Trace level: 2

Type MQCFBS

Length: MQ_CORREL_ID_LENGTH

XmitqPutTime

Description: The put time of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_TIME

Trace level: 2

Type MQCFST

Length: MQ_PUT_TIME_LENGTH

XmitqPutDate

Description: The put date of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_DATE

Trace level: 2

Type MQCFST

Length: MQ_PUT_DATE_LENGTH

XmitqRemoteQName

Description: The remote queue destination of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

Monitoring and performance 215

PCF Parameter: MQCACF_XQH_REMOTE_Q_Name

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH

XmitqRemoteQMgr

Description: The message ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_REMOTE_Q_MGR

Trace level: 2

Type MQCFST

Length: MQ_MSG_ID_LENGTH

MsgDescStructure

Description: The MQMD structure. This parameter is omitted if a version 4 MQGMO was used
to request that a Message Handle be returned instead of an MQMD

PCF Parameter: MQBACF_MQMD_STRUCT

Trace level: 3

Type MQCFBS

Length: The length in bytes of the MQMD structure (actual size is dependent on
structure version)

GetMsgOptsStructure

Description: The MQGMO structure.

PCF Parameter: MQBACF_MQGMO_STRUCT

Trace level: 3

Type MQCFBS

Length: The length in bytes of the MQGMO structure (actual size is dependent on
structure version)

MQCBContextStructure

Description: The MQCBC structure.

PCF Parameter: MQBACF_MQCBC_STRUCT

Trace level: 3

Type MQCFBS

Length: The length in bytes of the MQCBC structure (actual size is dependent on
structure version)

216 Monitoring and Performance for IBM MQ

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

Type MQCFIN64

MQCB
Application has started the manage callback MQI function

CallbackOperation

Description: The manage callback function operation. Set to one of the MQOP_* values

PCF Parameter: MQIACF_MQCB_OPERATION

Trace level: 1

Type MQCFIN

CallbackType

Description: The type of the callback function (CallbackType field from the MQCBD
structure). Set to one of the MQCBT_* values

PCF Parameter: MQIACF_MQCB_TYPE

Trace level: 1

Type MQCFIN

CallbackOptions

Description: The callback options. Set to one of the MQCBDO_* values

PCF Parameter: MQIACF_MQCB_OPTIONS

Trace level: 1

Type MQCFIN

CallbackFunction

Description: The pointer to the callback function if started as a function call.

PCF Parameter: MQBACF_MQCB_FUNCTION

Trace level: 1

Type MQCFBS

Length: Size of MQPTR

CallbackName

Description: The name of the callback function if started as a dynamically linked program.

PCF Parameter: MQCACF_MQCB_NAME

Trace level: 1

Monitoring and performance 217

Type MQCFST

Length: Size of MQCHAR128

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type MQCFIN

MaxMsgLength

Description: Maximum message length. Set to an integer, or the special value
MQCBD_FULL_MSG_LENGTH

PCF Parameter: MQIACH_MAX_MSG_LENGTH

Trace level: 2

Type MQCFIN

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type MQCFIN

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH.

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type MQCFST

218 Monitoring and Performance for IBM MQ

Length: Length varies.

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type MQCFIN

CallBack DescriptorStructure

Description: The MQCBD structure. This parameter is omitted if a NULL MQCBC value is
passed to the MQCB call.

PCF Parameter: MQBACF_MQCBD_STRUCT

Trace level: 3

Type MQCFBS

Length: The length in bytes of the MQCBC structure

MsgDescStructure

Description: The MQMD structure. The MsgDescStructure parameter is omitted if a NULL
MQMD value is passed to the MQCB call.

PCF Parameter: MQBACF_MQMD_STRUCT

Trace level: 3

Type MQCFBS

Length: The length in bytes of the MQMD structure (actual size depends on structure
version)

GetMsgOptsStructure

Description: The MQGMO structure. This parameter is omitted if a NULL MQGMO value is
passed to the MQCB call.

PCF Parameter: MQBACF_MQGMO_STRUCT

Trace level: 3

Type MQCFBS

Length: The length in bytes of the MQGMO structure (actual size depends on structure
version)

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

Monitoring and performance 219

Type MQCFIN64

MQCLOSE
Application has started the MQCLOSE MQI function

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type MQCFIN

CloseOptions

Description: Close options

PCF Parameter: MQIACF_CLOSE_OPTIONS

Trace level: 1

Type MQCFIN

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type MQCFIN

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH.

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type MQCFST

220 Monitoring and Performance for IBM MQ

Length: Length varies.

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type MQCFIN

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

Type MQCFIN64

MQCMIT
Application has started the MQCMIT MQI function

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type MQCFIN

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

Type MQCFIN64

Monitoring and performance 221

MQCONN and MQCONNX
Application has started the MQCONN or MQCONNX MQI function

ConnectionId

Description: The Connection ID if available or MQCONNID_NONE if not

PCF Parameter: MQBACF_CONNECTION_ID

Trace level: 1

Type: MQCFBS

Maximum length: MQ_CONNECTION_ID_LENGTH

QueueManagerName

Description: The (unresolved) name of the queue manager used in the MQCONN(X) call

PCF Parameter: MQCA_Q_MGR_NAME

Trace level: 1

Type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

ConnectOptions

Description: Connect Options Derived from MQCNO_* values

Note: MQCONNX only

PCF Parameter: MQIACF_CONNECT_OPTIONS

Trace level: 2

Type: MQCFIN

ConnectionOptionsStructure

Description: The MQCNO structure.

Note: MQCONNX only)

PCF Parameter: MQBACF_MQCNO_STRUCT

Trace level: 3

Type: MQCFBS

222 Monitoring and Performance for IBM MQ

Maximum length: The length in bytes of the MQCNO structure (actual size depends on structure
version)

ChannelDefinitionStructure

Description: The MQCD structure.

Note: Client connections only

PCF Parameter: MQBACF_MQCD_STRUCT

Trace level: 3

Type: MQCFBS

Maximum length: The length in bytes of the MQCD structure (actual size depends on structure
version)

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

Type MQCFIN64

MQCTL
Application has started the MQCTL MQI function

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

CtlOperation

Description: One of MQOP_* values

PCF Parameter: MQIACF_CTL_OPERATION

Trace level: 1

Type: MQCFIN

Monitoring and performance 223

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

Type MQCFIN64

MQDISC
Application has started the MQDISC MQI function

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

MQGET
Application has started the MQGET MQI function

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type: MQCFIN

GetOptions

Description: The get options from MQGMO.Options

PCF Parameter: MQIACF_GET_OPTIONS

Trace level: 1

Type: MQCFIN

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

224 Monitoring and Performance for IBM MQ

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

MsgBuffer

Description: Message data. If TRACEDATA=NONE then this parameter is omitted

PCF Parameter: MQBACF_MESSAGE_DATA

Trace level: 1

Type: MQCFBS

Maximum length: Length is governed by the TRACEDATA() parameter set in the
APPTRACE configuration. (Included in the trace message as
MQIACF_TRACE_DATA_LENGTH).

MsgLength

Description: Length of the message.

PCF Parameter: MQIACF_MSG_LENGTH

Trace level: 1

Type: MQCFIN

HighResTime

Description: Time of operation in microseconds since midnight, January 1 1970 (UTC)

Note: The accuracy of this timer varies according to platform support for high a
resolution timer

PCF Parameter: MQIAMO64_HIGHRES_TIME

Trace level: 2

Type: MQCFIN64

BufferLength

Description: Length of the buffer provided by the application

PCF Parameter: MQIACF_BUFFER_LENGTH

Trace level: 2

Type: MQCFIN

ObjectName

Description: The name of the opened object

PCF Parameter: MQCACF_OBJECT_NAME

Trace level: 2

Type: MQCFST

Monitoring and performance 225

Length: MQ_Q_NAME_LENGTH

ResolvedQName

Description: The local name of the queue from which the message was retrieved.

PCF Parameter: MQCACF_RESOLVED_Q_NAME

Trace level: 2

Type: MQCFST

Maximum length: MQ_Q_NAME_LENGTH

ReportOptions

Description: Message report options

PCF Parameter: MQIACF_REPORT

Trace level: 2

Type: MQCFIN

MsgType

Description: Type of message

PCF Parameter: MQIACF_MSG_TYPE

Trace level: 2

Type: MQCFIN

Expiry

Description: Message lifetime

PCF Parameter: MQIACF_EXPIRY

Trace level: 2

Type: MQCFIN

Format

Description: Format name of message data

PCF Parameter: MQCACH_FORMAT_NAME

Trace level: 2

Type: MQCFST

Maximum length: MQ_FORMAT_LENGTH

Priority

Description: Message priority

PCF Parameter: MQIACF_PRIORITY

Trace level: 2

Type: MQCFIN

Persistence

Description: Message persistence

226 Monitoring and Performance for IBM MQ

PCF Parameter: MQIACF_PERSISTENCE

Trace level: 2

Type: MQCFIN

MsgId

Description: Message identifier

PCF Parameter: MQBACF_MSG_ID

Trace level: 2

Type: MQCFBS

Maximum length: MQ_MSG_ID_LENGTH

CorrelId

Description: Correlation identifier

PCF Parameter: MQBACF_CORREL_ID

Trace level: 2

Type: MQCFBS

Maximum length: MQ_CORREL_ID_LENGTH

ReplyToQueue

Description:

PCF Parameter: MQCACF_REPLY_TO_Q

Trace level: 2

Type: MQCFST

Maximum length: MQ_Q_NAME_LENGTH

ReplyToQMgr

Description:

PCF Parameter: MQCACF_REPLY_TO_Q_MGR

Trace level: 2

Type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

CodedCharSetId

Description: Character set identifier of message data

PCF Parameter: MQIA_CODED_CHAR_SET_ID

Trace level: 2

Type: MQCFIN

Encoding

Description: Numeric encoding of message data.

PCF Parameter: MQIACF_ENCODING

Monitoring and performance 227

Trace level: 2

Type: MQCFIN

PutDate

Description:

PCF Parameter: MQCACF_PUT_DATE

Trace level: 2

Type: MQCFST

Maximum length: MQ_PUT_DATE_LENGTH

PutTime

Description:

PCF Parameter: MQCACF_PUT_TIME

Trace level: 2

Type: MQCFST

Maximum length: MQ_PUT_TIME_LENGTH

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH.

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type MQCFST

Length: Length varies.

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type MQCFIN

228 Monitoring and Performance for IBM MQ

PolicyName

Description: The policy name that was applied to this message.

Note: AMS protected messages only

PCF Parameter: MQCA_POLICY_NAME

Trace level: 2

Type: MQCFST

Length: MQ_OBJECT_NAME_LENGTH

XmitqMsgId

Description: The message ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_MSG_ID

Trace level: 2

Type: MQCFBS

Length: MQ_MSG_ID_LENGTH

XmitqCorrelId

Description: The correlation ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_CORREL_ID

Trace level: 2

Type: MQCFBS

Length: MQ_CORREL_ID_LENGTH

XmitqPutTime

Description: The put time of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_TIME

Trace level: 2

Type: MQCFST

Length: MQ_PUT_TIME_LENGTH

XmitqPutDate

Description: The put date of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_DATE

Trace level: 2

Type: MQCFST

Length: MQ_PUT_DATE_LENGTH

Monitoring and performance 229

XmitqRemoteQName

Description: The remote queue destination of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_REMOTE_Q_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

XmitqRemoteQMgr

Description: The remote queue manager destination of the message in the transmission
queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_REMOTE_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

MsgDescStructure

Description: The MQMD structure.

PCF Parameter: MQBACF_MQMD_STRUCT

Trace level: 3

Type: MQCFBS

Maximum length: The length in bytes of the MQMD structure (actual size depends on structure
version)

GetMsgOptsStructure

Description: The MQGMO structure.

PCF Parameter: MQBACF_MQGMO_STRUCT

Trace level: 3

Type: MQCFBS

Maximum length: The length in bytes of the MQGMO structure (actual size depends on structure
version)

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

230 Monitoring and Performance for IBM MQ

Type MQCFIN64

MQINQ
Application has started the MQINQ MQI function

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type: MQCFIN

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

SelectorCount

Description: The count of selectors that are supplied in the Selectors array.

PCF Parameter: MQIACF_SELECTOR_COUNT

Trace level: 2

Type: MQCFIN

Selectors

Description: The list of attributes (integer or character) whose values must be returned by
MQINQ.

PCF Parameter: MQIACF_SELECTORS

Trace level: 2

Type: MQCFIL

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_Q_NAME

Trace level: 2

Type: MQCFST

Maximum length: MQ_Q_NAME_LENGTH

Monitoring and performance 231

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type: MQCFST

Maximum length: Length varies

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type: MQCFIN

IntAttrCount

Description: The number of integer attributes returned by the inquire operation

PCF Parameter: MQIACF_INTATTR_COUNT

Trace level: 3

Type: MQCFIN

IntAttrs

Description: The integer attribute values returned by the inquire operation. This parameter is
only present if IntAttrCount is > 0 when MQINQ returns.

PCF Parameter: MQIACF_INT_ATTRS

Trace level: 3

Type: MQCFIL

CharAttrs

Description: The character attributes returned by the inquire operation. The values are
concatenated together. This parameter is only included if CharAttrLength is >
0 when MQINQ returns.

PCF Parameter: MQCACF_CHAR_ATTRS

Trace level: 3

Type: MQCFST

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

232 Monitoring and Performance for IBM MQ

Trace level: 2

Type MQCFIN64

MQOPEN
Application has started the MQOPEN MQI function

ObjectType

Description: The object type passed in MQOT.ObjectType

PCF Parameter: MQIACF_OBJECT_TYPE

Trace level: 1

Type: MQCFIN

ObjectName

Description: The name of the object passed to the MQI call before any queue name
resolution is attempted.

PCF Parameter: MQCACF_OBJECT_NAME

Trace level: 1

Type: MQCFST

Maximum length: MQ_Q_NAME_LENGTH

ObjectQMgrName

Description: The name of the object queue manager passed to the MQI call before any queue
name resolution is attempted.

PCF Parameter: MQCACF_OBJECT_Q_MGR_NAME

Trace level: 1

Type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type: MQCFIN

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Monitoring and performance 233

Trace level: 1

Type: MQCFIN

OpenOptions

Description: Options used to open the object

PCF Parameter: MQIACF_OPEN_OPTIONS

Trace level: 1

Type: MQCFIN

AlternateUserId

Description: Only included if MQOO_ALTERNATE_USER_AUTHORITY is specified

PCF Parameter: MQCACF_ALTERNATE_USERID

Trace level: 2

Type: MQCFST

Maximum length: MQ_USER_ID_LENGTH

RecsPresent

Description: The number of object name records present. Only included if MQOD Version >=
MQOD_VERSION_2

PCF Parameter: MQIACF_RECS_PRESENT

Trace level: 1

Type: MQCFIN

KnownDestCount

Description: Number of local queues opened successfully Only included if MQOD Version >=
MQOD_VERSION_2

PCF Parameter: MQIACF_KNOWN_DEST_COUNT

Trace level: 1

Type: MQCFIN

UnknownDestCount

Description: Number of remote queues opened successfully Only included if MQOD Version
>= MQOD_VERSION_2

PCF Parameter: MQIACF_UNKNOWN_DEST_COUNT

Trace level: 1

Type: MQCFIN

InvalidDestCount

Description: Number of queues that failed to open Only included if MQOD Version >=
MQOD_VERSION_2

PCF Parameter: MQIACF_INVALID_DEST_COUNT

Trace level: 1

Type: MQCFIN

234 Monitoring and Performance for IBM MQ

DynamicQName

Description: The dynamic queue name passed as input to the MQOPEN call.

PCF Parameter: MQCACF_DYNAMIC_Q_NAME

Trace level: 2

Type: MQCFST

Maximum length: MQ_Q_NAME_LENGTH

ResolvedLocalQName 1 2

Description: Contains the local queue name after name resolution has been carried out. (e.g.
for remote queues this will be the name of the transmit queue)

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type: MQCFST

Range: If MQOD.Version is less than MQOD_VERSION_3 this contains the value of the
MQOD.ObjectName field after the MQOPEN call has completed. If MQOD.Version
is equal or greater than MQOD_VERSION_3 this contains the value in the MQOD.
ResolvedQName field.

Maximum length: MQ_Q_NAME_LENGTH

ResolvedLocalQMgrName 1 2

Description: The local queue manager name after name resolution has been performed.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_MGR

Trace level: 2

Type: MQCFST

Range: Only if MQOD.Version >= MQOD_VERSION_3

Maximum length: MQ_Q_MGR_NAME_LENGTH

ResolvedQName 1 2

Description: The queue name after name resolution has been carried out.

PCF Parameter: MQCACF_RESOLVED_Q_NAME

Trace level: 2

Type: MQCFST

Range: If MQOD.Version is less than MQOD_VERSION_3 this contains the value of the
MQOD.ObjectName field after the MQOPEN call has completed. If MQOD.Version
is equal or greater than MQOD_VERSION_3 this contains the value in the MQOD.
ResolvedQName field.

Maximum length: MQ_Q_NAME_LENGTH

ResolvedQMgrName 1 2

Description: Contains the queue manager name after name resolution has been carried
out. If MQOD.Version is less than MQOD_VERSION_3 this contains the value
of the MQOD. ObjectQMgrName field after the MQOPEN call has completed.
If MQOD.Version is equal or greater than MQOD_VERSION_3 this contains the
value in the MQOD. ResolvedQMgrName field.

Monitoring and performance 235

PCF Parameter: MQCACF_RESOLVED_Q_MGR

Trace level: 2

Type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

AlternateSecurityId

Description: Alternative security identifier. Only present if MQOD.Version is equal or greater
than MQOD_VERSION_3, MQOO_ALTERNATE_USER_AUTHORITY is specified,
and MQOD.AlternateSecurityId is not equal to MQSID_NONE.

PCF Parameter: MQBACF_ALTERNATE_SECURITYID

Trace level: 2

Type: MQCFBS

Maximum length: MQ_SECURITY_ID_LENGTH

ObjectString

Description: Long object name. Only included if MQOD.Version is equal or greater
than MQOD_VERSION_4 and the VSLength field of MQOD.ObjectString is
MQVS_NULL_TERMINATED or greater than zero.

PCF Parameter: MQCACF_OBJECT_STRING

Trace level: 2

Type: MQCFST

Maximum length: Length varies.

SelectionString

Description: Selection string. Only included if MQOD.Version is equal or greater than
MQOD_VERSION_4 and the VSLength field of MQOD. SelectionString is
MQVS_NULL_TERMINATED or greater than zero.

PCF Parameter: MQCACF_SELECTION_STRING

Trace level: 2

Type: MQCFST

Maximum length: Length varies.

ResObjectString

Description: The long object name after the queue manager resolves the name provided in
the ObjectName field. Only included for topics and queue aliases that reference
a topic object if MQOD.Version is equal or greater than MQOD_VERSION_4 and
VSLength is MQVS_NULL_TERMINATED or greater than zero.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type: MQCFST

Maximum length: Length varies.

236 Monitoring and Performance for IBM MQ

ResolvedType

Description: The type of the resolved (base) object being opened. Only included if
MQOD.Version is equal or greater than MQOD_VERSION_4. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type: MQCFIN

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

Type MQCFIN64

Application Activity Distribution List PCF Group Header Structure
If the MQOPEN function opens a distribution list, then the MQOPEN parameters includes one
AppActivityDistList PCF group for each of the queues in the distribution list up to the number of structures
numbered in RecsPresent. The Ap-pActivityDistList PCF group combines information from the MQOR, and
MQRR structures to identify the queue name, and indicate the result of the open operation on the queue.
An AppActivityDistList group always starts with the following MQCFGR structure:

Table 29. AppActivityDistList group MQCFGR structure

MQCFGR field Value Description

Type MQCFT_GROUP

StrucLength Length in bytes of the MQCFGR
structure

Parameter MQGACF_APP_DIST_LIST Distribution list group parameter

ParameterCount 4 The number of parameter
structures following the MQCFGR
structure that are contained
within this group.

ObjectName

Description: The name of a queue in the distribution list MQ_Q_NAME_LENGTH. Only
included if MQOR structures are provided.

PCF Parameter: MQCACF_OBJECT_NAME

Trace level: 2

1 This parameter is only included if the object being opened resolves to a queue, and the queue is opened for
MQOO_INPUT_*, MQOO_OUTPUT, or MQOO_BROWSE

2 The ResolvedLocalQName parameter is only included if it is different from the ResolvedQName parameter.

Monitoring and performance 237

Type: MQCFST

Length: MQ_Q_NAME_LENGTH. Only included if MQOR structures are provided.

ObjectQMgrName

Description: The name of the queue manager on which the queue named in ObjectName is
defined.

PCF Parameter: MQCACF_OBJECT_Q_MGR_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_MGR_NAME_LENGTH. Only included if MQOR structures are provided.

CompCode

Description: The completion code indicating the result of the open for this object. Only
included if MQRR structures are provided and the reason code for the MQOPEN
is MQRC_MULTIPLE_REASONS

PCF Parameter: MQIACF_COMP_CODE

Trace level: 2

Type: MQCFIN

Reason

Description: The reason code indicating the result of the open for this object. Only included
if MQRR structures are provided and the reason code for the MQOPEN is
MQRC_MULTIPLE_REASONS

PCF Parameter: MQIACF_REASON_CODE

Trace level: 2

Type: MQCFIN

MQPUT
Application has started the MQPUT MQI function.

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type: MQCFIN

PutOptions

Description: The put options from MQPMO.Options

PCF Parameter: MQIACF_PUT_OPTIONS

Trace level: 1

Type: MQCFIN

CompCode

Description: The completion code indicating the result of the operation

238 Monitoring and Performance for IBM MQ

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

MsgBuffer

Description: Message data.

PCF Parameter: MQBACF_MESSAGE_DATA

Trace level: 1

Type: MQCFBS

Length: Length is governed by the TRACEDATA() parameter set in the APPTRACE
configuration. If TRACEDATA=NONE then this parameter is omitted.

MsgLength

Description: Length of the message.

PCF Parameter: MQIACF_MSG_LENGTH

Trace level: 1

Type: MQCFIN

RecsPresent

Description: The number of put message records or response records present. Only included
if MQPMO Version >= MQPMO_VERSION_2

PCF Parameter: MQIACF_RECS_PRESENT

Trace level: 1

Type: MQCFIN

KnownDestCount

Description: Number of messages sent successfully to local queues

PCF Parameter: MQIACF_KNOWN_DEST_COUNT

Trace level: 1

Type: MQCFIN

UnknownDestCount

Description: Number of messages sent successfully to remote queues

PCF Parameter: MQIACF_UNKNOWN_DEST_COUNT

Trace level: 1

Type: MQCFIN

Monitoring and performance 239

InvalidDestCount

Description: Number of messages that could not be sent

PCF Parameter: MQIACF_INVALID_DEST_COUNT

Trace level: 1

Type: MQCFIN

HighResTime

Description: Time of operation in microseconds since midnight, January 1st 1970 (UTC)

Note: The accuracy of this timer varies according to platform support for high a
resolution timer.

PCF Parameter: MQIAMO64_HIGHRES_TIME

Trace level: 2

Type: MQCFIN64

ObjectName

Description: The name of the opened object.

PCF Parameter: MQCACF_OBJECT_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

ResolvedQName

Description: The name of the queue after queue name resolution has been performed.

PCF Parameter: MQCACF_RESOLVED_Q_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

ResolvedQMgrName

Description: The queue manager name after name resolution has been performed.

PCF Parameter: MQCACF_RESOLVED_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_MGR_NAME_LENGTH

ResolvedLocalQName 3

Description: Contains the local queue name after name resolution has been carried out.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type: MQCFST

240 Monitoring and Performance for IBM MQ

ResolvedLocalQMgrName 3

Description: Contains the local queue manager name after name resolution has been carried
out.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_MGR_NAME_LENGTH

ReportOptions

Description: Message report options

PCF Parameter: MQIACF_REPORT

Trace level: 2

Type: MQCFIN

MsgType

Description: Type of message

PCF Parameter: MQIACF_MSG_TYPE

Trace level: 2

Type: MQCFIN

Expiry

Description: Message lifetime

PCF Parameter: MQIACF_EXPIRY

Trace level: 2

Type: MQCFIN

Format

Description: Format name of message data

PCF Parameter: MQCACH_FORMAT_NAME

Trace level: 2

Type: MQCFST

Length: MQ_FORMAT_LENGTH

Priority

Description: Message priority

PCF Parameter: MQIACF_PRIORITY

Trace level: 2

Type: MQCFIN

Persistence

Description: Message persistence

PCF Parameter: MQIACF_PERSISTENCE

Monitoring and performance 241

Trace level: 2

Type: MQCFIN

MsgId

Description: Message identifier

PCF Parameter: MQBACF_MSG_ID

Trace level: 2

Type: MQCFBS

Length: MQ_MSG_ID_LENGTH

CorrelId

Description: Correlation identifier

PCF Parameter: MQBACF_CORREL_ID

Trace level: 2

Type: MQCFBS

Length: MQ_CORREL_ID_LENGTH

ReplyToQueue

Description:

PCF Parameter: MQCACF_REPLY_TO_Q

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

ReplyToQMgr

Description:

PCF Parameter: MQCACF_REPLY_TO_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_MGR_NAME_LENGTH

CodedCharSetId

Description: Character set identifier of message data

PCF Parameter: MQIA_CODED_CHAR_SET_ID

Trace level: 2

Type: MQCFIN

Encoding

Description: Numeric encoding of message data.

PCF Parameter: MQIACF_ENCODING

Trace level: 2

242 Monitoring and Performance for IBM MQ

Type: MQCFIN

PutDate

Description:

PCF Parameter: MQCACF_PUT_DATE

Trace level: 2

Type: MQCFST

Length: MQ_PUT_DATE_LENGTH

PutTime

Description:

PCF Parameter: MQCACF_PUT_TIME

Trace level: 2

Type: MQCFST

Length: MQ_PUT_TIME_LENGTH

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH.

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type: MQCFST

Length: Length varies.

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type: MQCFIN

PolicyName

Description: The policy name that was applied to this message.

Note: AMS protected messages only

Monitoring and performance 243

PCF Parameter: MQCA_POLICY_NAME

Trace level: 2

Type: MQCFST

Length: MQ_OBJECT_NAME_LENGTH

XmitqMsgId

Description: The message ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_MSG_ID

Trace level: 2

Type: MQCFBS

Length: MQ_MSG_ID_LENGTH

XmitqCorrelId

Description: The correlation ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_CORREL_ID

Trace level: 2

Type: MQCFBS

Length: MQ_CORREL_ID_LENGTH

XmitqPutTime

Description: The put time of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_TIME

Trace level: 2

Type: MQCFST

Length: MQ_PUT_TIME_LENGTH

XmitqPutDate

Description: The put date of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_DATE

Trace level: 2

Type: MQCFST

Length: MQ_PUT_DATE_LENGTH

XmitqRemoteQName

Description: The remote queue destination of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

244 Monitoring and Performance for IBM MQ

PCF Parameter: MQCACF_XQH_REMOTE_Q_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

XmitqRemoteQMgr

Description: The remote queue manager destination of the message in the transmission
queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_REMOTE_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

PutMsgOptsStructure

Description: The MQPMO structure.

PCF Parameter: MQBACF_MQPMO_STRUCT

Trace level: 3

Type: MQCFBS

Length: The length in bytes of the MQPMO structure (actual size depends on structure
version)

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

Type MQCFIN64

MQPUT Application Activity Distribution List PCF Group Header Structure

If the MQPUT function is putting to a distribution list, then the MQPUT parameters include one
AppActivityDistList PCF group. For each of the queues in the distribution list, see “Application Activity
Distribution List PCF Group Header Structure” on page 237. The AppActivityDistList PCF group combines
information from the MQPMR, and MQRR structures to identify the PUT parameters, and indicate the
result of the PUT operation on each queue. For MQPUT operations the AppActivityDistList group contains
some or all of the following parameters (the CompCode and Reason is present if the reason code is
MQRC_MULTIPLE_REASONS and the other parameters are determined by the MQPMO.PutMsgRecFields
field):

3 The ResolvedLocalQName parameter is only included if it is different from the ResolvedQName parameter.

Monitoring and performance 245

CompCode

Description: The completion code indicating the result of the operation. Only included
if MQRR structures are provided and the reason code for the MQPUT is
MQRC_MULTIPLE_REASONS

PCF Parameter: MQIACF_COMP_CODE

Trace level: 2

Type: MQCFIN

Reason

Description: The reason code indicating the result of the put for this object. Only included
if MQRR structures are provided and the reason code for the MQPUT is
MQRC_MULTIPLE_REASONS

PCF Parameter: MQIACF_REASON_CODE

Trace level: 2

Type: MQCFIN

MsgId

Description: Message identifier. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_MSG_ID

PCF Parameter: MQBACF_MSG_ID

Trace level: 2

Type: MQCFBS

Length: MQ_MSG_ID_LENGTH

CorrelId

Description: Correlation identifier. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_CORREL_ID

PCF Parameter: MQBACF_CORREL_ID

Trace level: 2

Type: MQCFBS

Length: MQ_CORREL_ID_LENGTH

GroupId

Description: Group identifier. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_GROUP_ID

PCF Parameter: MQBACF_GROUP_ID

Trace level: 2

Type: MQCFBS

Length: MQ_GROUP_ID_LENGTH

Feedback

Description: Feedback. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_FEEDBACK

246 Monitoring and Performance for IBM MQ

PCF Parameter: MQIACF_FEEDBACK

Trace level: 2

Type: MQCFIN

AccountingToken

Description: AccountingToken. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_ACCOUNTING_TOKEN

PCF Parameter: MQBACF_ACCOUNTING_TOKEN

Trace level: 2

Type: MQCFBS

Length: MQ_ACCOUNTING_TOKEN_LENGTH.

MQPUT1
Application has started the MQPUT1 MQI function

ObjectType

Description: The object type passed in MQOT.ObjectType

PCF Parameter: MQIACF_OBJECT_TYPE

Trace level: 1

Type: MQCFIN

ObjectName

Description: The name of the object passed to the MQI call before any queue name
resolution is attempted.

PCF Parameter: MQCACF_OBJECT_NAME

Trace level: 1

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

ObjectQMgrName

Description: The name of the object queue manager passed to the MQI call before any queue
name resolution is attempted.

PCF Parameter: MQCACF_OBJECT_Q_MGR_NAME

Trace level: 1

Type: MQCFST

Length: MQ_Q_MGR_NAME_LENGTH

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Monitoring and performance 247

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

PutOptions

Description: The put options from MQPMO.Options

PCF Parameter: MQIACF_PUT_OPTIONS

Trace level: 1

Type: MQCFIN

AlternateUserId

Description: Only included if MQPMO_ALTERNATE_USER_AUTHORITY is specified.

PCF Parameter: MQCACF_ALTERNATE_USERID

Trace level: 2

Type: MQCFST

Length: MQ_USER_ID_LENGTH

RecsPresent

Description: The number of object name records present

PCF Parameter: MQIACF_RECS_PRESENT

Trace level: 1

Type: MQCFIN

KnownDestCount

Description: Number of local queues opened successfully

PCF Parameter: MQIACF_KNOWN_DEST_COUNT

Trace level: 1

Type: MQCFIN

UnknownDestCount

Description: Number of remote queues opened successfully

PCF Parameter: MQIACF_UNKNOWN_DEST_COUNT

Trace level: 1

Type: MQCFIN

InvalidDestCount

Description: Number of queues that failed to open

PCF Parameter: MQIACF_INVALID_DEST_COUNT

Trace level: 1

248 Monitoring and Performance for IBM MQ

Type: MQCFIN

MsgBuffer

Description: Message data.

PCF Parameter: MQBACF_MESSAGE_DATA

Trace level: 1

Type: MQCFBS

Length: Length is governed by the TRACEDATA() parameter set in the APPTRACE
configuration. If TRACEDATA=NONE then this parameter is omitted.

MsgLength

Description: Length of the message.

PCF Parameter: MQIACF_MSG_LENGTH

Trace level: 1

Type: MQCFIN

HighResTime

Description: Time of operation in microseconds since midnight, January 1st 1970 (UTC)

Note: The accuracy of this timer will vary according to platform support for high
a resolution timer.

PCF Parameter: MQIAMO64_HIGHRES_TIME

Trace level: 2

Type: MQCFIN64

ResolvedQName

Description: The name of the queue after queue name resolution has been performed.

PCF Parameter: MQCACF_RESOLVED_Q_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

ResolvedQMgrName

Description: The queue manager name after name resolution has been performed.

PCF Parameter: MQCACF_RESOLVED_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_MGR_NAME_LENGTH

ResolvedLocalQName 4

Description: Contains the local queue name after name resolution has been carried out

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Monitoring and performance 249

Type: MQCFST

ResolvedLocalQMgrName 4

Description: Contains the local queue manager name after name resolution has been carried
out.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_MGR_NAME_LENGTH

AlternateSecurityId

Description: Alternate security identifier. Only present if MQOD.Version is equal or
greater than MQOD_VERSION_3 and MQOD.AlternateSecurityId is not equal to
MQSID_NONE.

PCF Parameter: MQBACF_ALTERNATE_SECURITYID

Trace level: 2

Type: MQCFBS

Length: MQ_SECURITY_ID_LENGTH

ObjectString

Description: Long object name. Only included if MQOD.Version is equal or greater
than MQOD_VERSION_4 and the VSLength field of MQOD.ObjectString is
MQVS_NULL_TERMINATED or greater than zero.

PCF Parameter: MQCACF_OBJECT_STRING

Trace level: 2

Type: MQCFST

Length: Length varies.

ResObjectString

Description: The long object name after the queue manager resolves the name provided in
the ObjectName field. Only included for topics and queue aliases that reference
a topic object if MQOD.Version is equal or greater than MQOD_VERSION_4 and
VSLength is MQVS_NULL_TERMINATED or greater than zero.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type: MQCFST

Length: Length varies.

ResolvedType

Description: The type of the resolved (base) object being opened. Only included if
MQOD.Version is equal or greater than MQOD_VERSION_4. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

250 Monitoring and Performance for IBM MQ

Type: MQCFIN

ReportOptions

Description: Message report options

PCF Parameter: MQIACF_REPORT

Trace level: 2

Type: MQCFIN

MsgType

Description: Type of message

PCF Parameter: MQIACF_MSG_TYPE

Trace level: 2

Type: MQCFIN

Expiry

Description: Message lifetime

PCF Parameter: MQIACF_EXPIRY

Trace level: 2

Type: MQCFIN

Format

Description: Format name of message data

PCF Parameter: MQCACH_FORMAT_NAME

Trace level: 2

Type: MQCFST

Length: MQ_FORMAT_LENGTH

Priority

Description: Message priority

PCF Parameter: MQIACF_PRIORITY

Trace level: 2

Type: MQCFIN

Persistence

Description: Message persistence

PCF Parameter: MQIACF_PERSISTENCE

Trace level: 2

Type: MQCFIN

MsgId

Description: Message identifier

PCF Parameter: MQBACF_MSG_ID

Monitoring and performance 251

Trace level: 2

Type: MQCFBS

Length: MQ_MSG_ID_LENGTH

CorrelId

PCF Parameter: Correlation identifier

Description: MQBACF_CORREL_ID

Trace level: 2

Type: MQCFBS

Length: MQ_CORREL_ID_LENGTH

ReplyToQueue

Description:

PCF Parameter: MQCACF_REPLY_TO_Q

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

ReplyToQMgr

Description:

PCF Parameter: MQCACF_REPLY_TO_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQCFST

CodedCharSetId

Description: Character set identifier of message data

PCF Parameter: MQIA_CODED_CHAR_SET_ID

Trace level: 2

Type: MQCFIN

Encoding

Description: Numeric encoding of message data.

PCF Parameter: MQIACF_ENCODING

Trace level: 2

Type: MQCFIN

PutDate

Description:

PCF Parameter: MQCACF_PUT_DATE

Trace level: 2

252 Monitoring and Performance for IBM MQ

Type: MQCFST

Length: MQ_PUT_DATE_LENGTH

PutTime

Description:

PCF Parameter: MQCACF_PUT_TIME

Trace level: 2

Type: MQCFST

Length: MQ_PUT_TIME_LENGTH

PolicyName

Description: The policy name that was applied to this message.

Note: AMS protected messages only

PCF Parameter: MQCA_POLICY_NAME

Trace level: 2

Type: MQCFST

Length: MQ_OBJECT_NAME_LENGTH

XmitqMsgId

Description: The message ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_MSG_ID

Trace level: 2

Type: MQCFBS

Length: MQ_MSG_ID_LENGTH

XmitqCorrelId

Description: The correlation ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_CORREL_ID

Trace level: 2

Type: MQCFBS

Length: MQ_CORREL_ID_LENGTH

XmitqPutTime

Description: The put time of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_TIME

Trace level: 2

Type: MQCFST

Monitoring and performance 253

Length: MQ_PUT_TIME_LENGTH

XmitqPutDate

Description: The put date of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_DATE

Trace level: 2

Type: MQCFST

Length: MQ_PUT_DATE_LENGTH

XmitqRemoteQName

Description: The remote queue destination of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_REMOTE_Q_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

XmitqRemoteQMgr

Description: The remote queue manager destination of the message in the transmission
queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_REMOTE_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

PutMsgOptsStructure

Description: The MQPMO structure.

PCF Parameter: MQBACF_MQPMO_STRUCT

Trace level: 3

Type: MQCFBS

Length: The length in bytes of the MQPMO structure (actual size depends on structure
version)

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

254 Monitoring and Performance for IBM MQ

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

Type MQCFIN64

MQPUT1 AppActivityDistList PCF Group Header Structure

If the MQPUT1 function is putting to a distribution list, then the variable parameters include one
AppActivityDistList PCF group. For each of the queues in the distribution list, see “Application Activity
Distribution List PCF Group Header Structure” on page 237. The AppActivityDistList PCF group combines
information from the MQOR, MQPMR, and MQRR structures to identify the objects, and the PUT
parameters , and indicate the result of the PUT operation on each queue. For MQPUT1 operations the
AppActivityDistList group contains some or all of the following parameters (the CompCode, Reason,
ObjectName, and ObjectQMgrName is present if the reason code is MQRC_MULTIPLE_REASONS and the
other parameters is determined by the MQPMO.PutMsgRecFields field):

CompCode

Description: The completion code indicating the result of the put for this object. Only
included if MQRR structures are provided and the reason code for the MQPUT1
is MQRC_MULTIPLE_REASONS

PCF Parameter: MQIACF_COMP_CODE

Trace level: 2

Type: MQCFIN

Reason

Description: The reason code indicating the result of the put for this object. Only included
if MQRR structures are provided and the reason code for the MQPUT1 is
MQRC_MULTIPLE_REASONS

PCF Parameter: MQIACF_REASON_CODE

Trace level: 2

Type: MQCFIN

ObjectName

Description: The name of a queue in the distribution list. Only included if MQOR structures
are provided.

PCF Parameter: MQCACF_OBJECT_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

MsgId

Description: Message identifier. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_MSG_ID

PCF Parameter: MQBACF_MSG_ID

Trace level: 2

4 The ResolvedLocalQName parameter is only included if it is different from the ResolvedQName parameter.

Monitoring and performance 255

Type: MQCFBS

Length: MQ_MSG_ID_LENGTH

CorrelId

Description: Correlation identifier. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_CORREL_ID

PCF Parameter: MQBACF_CORREL_ID

Trace level: 2

Type: MQCFBS

Length: MQ_CORREL_ID_LENGTH

GroupId

Description: Group identifier. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_GROUP_ID

PCF Parameter: MQBACF_GROUP_ID

Trace level: 2

Type: MQCFBS

Length: MQ_GROUP_ID_LENGTH

Feedback

Description: Feedback. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_FEEDBACK

PCF Parameter: MQIACF_FEEDBACK

Trace level: 2

Type: MQCFIN

AccountingToken

Description: AccountingToken. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_ACCOUNTING_TOKEN

PCF Parameter: MQBACF_ACCOUNTING_TOKEN

Trace level: 2

Type: MQCFBS

Length: MQ_ACCOUNTING_TOKEN_LENGTH.

MQSET
Application has started the MQSET MQI function

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type: MQCFIN

256 Monitoring and Performance for IBM MQ

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

SelectorCount

Description: The count of selectors that are supplied in the Selectors array.

PCF Parameter: MQIACF_SELECTOR_COUNT

Trace level: 2

Type: MQCFIN

Selectors

Description: The list of attributes (integer or character) whose values are being updated by
MQSET.

PCF Parameter: MQIACF_SELECTORS

Trace level: 2

Type: MQCFIL

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH.

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type MQCFST

Length: Length varies.

Monitoring and performance 257

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type MQCFIN

IntAttrCount

Description: The number of integer attributes to be updated by the set operation.

PCF Parameter: MQIACF_INTATTR_COUNT

Trace level: 3

Type: MQCFIN

IntAttrs

Description: The integer attribute values

PCF Parameter: MQIACF_INT_ATTRS

Trace level: 3

Type: MQCFIL

Range: This parameter is only present if IntAttrCount is > 0

CharAttrs

Description: The character attributes to be updated by the set operation. The values are
concatenated together.

PCF Parameter: MQCACF_CHAR_ATTRS

Trace level: 3

Type: MQCFST

Range: This parameter is only included if CharAttrLength is > 0

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

Type MQCFIN64

MQSUB
Application has started the MQSUB MQI function

CompCode

Description: The completion code indicating the result of the operation

258 Monitoring and Performance for IBM MQ

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

SubHandle

Description: The subscription handle

PCF Parameter: MQIACF_HSUB

Trace level: 1

Type: MQCFIN

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type: MQCFIN

Options

Description: Subscription options

PCF Parameter: MQIACF_SUB_OPTIONS

Trace level: 1

Type: MQCFIN

ObjectName

Description: The name of the object.

PCF Parameter: MQCACF_OBJECT_NAME

Trace level: 1

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

ObjectString

Description: Long object name.

PCF Parameter: MQCACF_OBJECT_STRING

Trace level: 1

Type: MQCFST

Range: Only included if the VSLength field of MQSD.ObjectString is greater than zero or
MQVS_NULL_TERMINATED.

Monitoring and performance 259

Length: Length varies.

AlternateUserId

Description:

PCF Parameter: MQCACF_ALTERNATE_USERID

Trace level: 2

Type: MQCFST

Range: Only included if MQSO_ALTERNATE_USER_AUTHORITY is specified.

Length: MQ_USER_ID_LENGTH

AlternateSecurityId

Description: Alternate security identifier.

PCF Parameter: MQBACF_ALTERNATE_SECURITYID

Trace level: 2

Type: MQCFBS

Range: Only present if MQSO_ALTERNATE_USER_AUTHORITY is specified and
MQSD.AlternateSecurityId is not equal to MQSID_NONE.

Length: MQ_SECURITY_ID_LENGTH

SubName

Description: Subscription Name

PCF Parameter: MQCACF_SUB_NAME

Trace level: 2

Type: MQCFST

Range: Only included if the VSLength field of MQSD.SubName is greater than zero or
MQVS_NULL_TERMINATED.

Length: Length varies.

SubUserData

Description: Subscription User Data

PCF Parameter: MQCACF_SUB_USER_DATA

Trace level: 2

Type: MQCFST

Range: Only included if the VSLength field of MQSD.SubName is greater than zero or
MQVS_NULL_TERMINATED.

Length: Length varies.

SubCorrelId

Description: Subscription Correlation identifier

PCF Parameter: MQBACF_SUB_CORREL_ID

Trace level: 2

Type: MQCFBS

260 Monitoring and Performance for IBM MQ

Length: MQ_CORREL_ID_LENGTH

SelectionString

Description: Selection string.

PCF Parameter: MQCACF_SELECTION_STRING

Trace level: 2

Type: MQCFST

Range: Only included if the VSLength field of MQSD. SelectionString is
MQVS_NULL_TERMINATED or greater than zero.

Length: Length varies.

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH.

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type MQCFST

Length: Length varies.

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type MQCFIN

SubDescriptorStructure

Description: The MQSD structure.

PCF Parameter: MQBACF_MQSD_STRUCT

Trace level: 3

Type: MQCFBS

Length: The length in bytes of the MQSD structure.

Monitoring and performance 261

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

Type MQCFIN64

MQSUBRQ
Application has started the MQSUBRQ MQI function

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

SubHandle

Description: The subscription handle

PCF Parameter: MQIACF_HSUB

Trace level: 1

Type: MQCFIN

SubOptions

Description: The sub options from MQSB.Options

PCF Parameter: MQIACF_SUBRQ_OPTIONS

Trace level: 2

Type: MQCFIN

Action

Description: The subscription request action (MQSR_*)

PCF Parameter: MQIACF_SUBRQ_ACTION

Trace level: 2

Type: MQCFIN

262 Monitoring and Performance for IBM MQ

NumPubs

Description: The number of publications sent as a result of this call (from MQSB.NumPubs)

PCF Parameter: MQIACF_NUM_PUBS

Trace level: 2

Type: MQCFIN

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

Type MQCFIN64

MQSTAT
Application has started the MQSTAT MQI function

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

Type

Description: Type of status information being requested

PCF Parameter: MQIACF_STATUS_TYPE

Trace level: 2

Type: MQCFIN

StatusStructure

Description: The MQSTS structure.

PCF Parameter: MQBACF_MQSTS_STRUCT

Trace level: 3

Type: MQCFBS

Monitoring and performance 263

Length: The length in bytes of the MQSTS structure (actual size depends on structure
version)

 QMgrOpDuration

Description: Approximate API call duration, in microseconds, within the queue manager.

The duration does not include the time spent outside of the queue manager. For
example, the time taken as an IBM MQ client.

Note: The accuracy of this timer varies according to the platform that your
enterprise uses.

PCF Parameter: MQIAMO64_QMGR_OP_DURATION

Trace level: 2

Type MQCFIN64

Variable Parameters for Application Activity XA Operations
XA operations are API calls that applications can make to enable MQ to participate in a transaction. The
parameters for each operation are defined in the following section.

The trace level indicates the level of trace granularity that is required for the parameters to be included in
the trace. The possible trace level values are:

1. Low

The parameter is included when "low", "medium" or "high" activity tracing is configured for an
application. This setting means that a parameter is always included in the AppActivityData group
for the operation. This set of parameters is sufficient to trace the MQI calls an application makes, and
to see if they are successful.

2. Medium

The parameter is only included in the AppActivityData group for the operation when "medium" or
"high" activity tracing is configured for an application. This set of parameters adds information about
the resources, for example, queue and topic names used by the application.

3. High

The parameter is only included in the AppActivityData group for the operation when "high"
activity tracing is configured for an application. This set of parameters includes memory dumps of
the structures passed to the MQI and XA functions. For this reason, it contains more information about
the parameters used in MQI and XA calls. The structure memory dumps are shallow copies of the
structures. To avoid erroneous attempts to dereference pointers, the pointer values in the structures
are set to NULL.

Note: The version of the structure that is dumped is not necessarily identical to the version used by
an application. The structure can be modified by an API crossing exit, by the activity trace code, or by
the queue manager. A queue manager can modify a structure to a later version, but the queue manager
never changes it to an earlier version of the structure. To do so, would risk losing data.

AXREG
Application has started the AXREG AX function

XID

Description: The XID structure

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

264 Monitoring and Performance for IBM MQ

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

AXUNREG
Application has started the AXUNREG AX function

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

Monitoring and performance 265

XACLOSE
Application has started the XACLOSE AX function

Xa_info

Description: Information used to initialize the resource manager.

PCF Parameter: MQCACF_XA_INFO

Trace level: 1

Type: MQCFST

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XACOMMIT
Application has started the XACOMMIT AX function

XID

Description: The XID structure

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

266 Monitoring and Performance for IBM MQ

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XACOMPLETE
Application has started the XACOMPLETE AX function

Handle

Description: Handle to async operation

PCF Parameter: MQIACF_XA_HANDLE

Trace level: 1

Type: MQCFIN

Retval

Description: Return value of the asynchronous function

PCF Parameter: MQIACF_XA_RETVAL

Trace level: 1

Type: MQCFINMQCFBS

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Monitoring and performance 267

Type: MQCFIN

XAEND
Application has started the XAEND AX function

XID

Description: The XID structure

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XAFORGET
Application has started the AXREG AX function

XID

Description: The XID structure

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

268 Monitoring and Performance for IBM MQ

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XAOPEN
Application has started the XAOPEN AX function

Xa_info

Description: Information used to initialize the resource manager.

PCF Parameter: MQCACF_XA_INFO

Trace level: 1

Type: MQCFST

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

Monitoring and performance 269

XAPREPARE
Application has started the XAPREPARE AX function

XID

Description: The XID structure

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XARECOVER
Application has started the XARECOVER AX function

Count

Description: Count of XIDs

PCF Parameter: MQIACF_XA_COUNT

Trace level: 1

Type: MQCFIN

XIDs

Description: The XID structures

Note: There are multiple instances of this PCF parameter - one for every XID
structure up to Count XIDs

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

270 Monitoring and Performance for IBM MQ

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XAROLLBACK
Application has started the XAROLLBACK AX function

XID

Description: The XID structure

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

Monitoring and performance 271

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XASTART
Application has started the XASTART AX function

XID

Description: The XID structure

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

Real-time monitoring
Real-time monitoring is a technique that allows you to determine the current state of queues and
channels within a queue manager. The information returned is accurate at the moment the command
was issued.

A number of commands are available that when issued return real-time information about queues and
channels. Information can be returned for one or more queues or channels and can vary in quantity.
Real-time monitoring can be used in the following tasks:

• Helping system administrators understand the steady state of their IBM MQ system. This helps with
problem diagnosis if a problem occurs in the system.

272 Monitoring and Performance for IBM MQ

• Determining the condition of your queue manager at any moment, even if no specific event or problem
has been detected.

• Assisting with determining the cause of a problem in your system.

With real-time monitoring, information can be returned for either queues or channels. The amount of
real-time information returned is controlled by queue manager, queue, and channel attributes.

• You monitor a queue by issuing commands to ensure that the queue is being serviced properly. Before
you can use some of the queue attributes, you must enable them for real-time monitoring.

• You monitor a channel by issuing commands to ensure that the channel is running properly. Before you
can use some of the channel attributes, you must enable them for real-time monitoring.

Real-time monitoring for queues and channels is in addition to, and separate from, performance and
channel event monitoring.

Attributes that control real-time monitoring
Some queue and channel status attributes hold monitoring information, if real-time monitoring is enabled.
If real-time monitoring is not enabled, no monitoring information is held in these monitoring attributes.
Examples demonstrate how you can use these queue and channel status attributes.

You can enable or disable real-time monitoring for individual queues or channels, or for multiple queues
or channels. To control individual queues or channels, set the queue attribute MONQ or the channel
attribute MONCHL, to enable or disable real-time monitoring. To control many queues or channels
together, enable or disable real-time monitoring at the queue manager level by using the queue manager
attributes MONQ and MONCHL. For all queue and channel objects with a monitoring attribute that is
specified with the default value, QMGR, real-time monitoring is controlled at the queue manager level.

Automatically defined cluster-sender channels are not IBM MQ objects, so do not have attributes in the
same way as channel objects. To control automatically defined cluster-sender channels, use the queue
manager attribute, MONACLS. This attribute determines whether automatically defined cluster-sender
channels within a queue manager are enabled or disabled for channel monitoring.

For real-time monitoring of channels, you can set the MONCHL attribute to one of the three monitoring
levels: low, medium, or high. You can set the monitoring level either at the object level or at the queue
manager level. The choice of level is dependent on your system. Collecting monitoring data might require
some instructions that are relatively expensive computationally, such as obtaining system time. To reduce
the effect of real-time monitoring, the medium and low monitoring options measure a sample of the
data at regular intervals rather than collecting data all the time. Table 30 on page 273 summarizes the
monitoring levels available for real-time monitoring of channels:

Table 30. Monitoring levels

Level Description Usage

Low Measure a small sample of the data, at
regular intervals.

For objects that process a high volume of
messages.

Medium Measure a sample of the data, at regular
intervals.

For most objects.

High Measure all data, at regular intervals. For objects that process only a few messages
per second, on which the most current
information is important.

For real-time monitoring of queues, you can set the MONQ attribute to one of the three monitoring levels,
low, medium or high. However, there is no distinction between these values. The values all enable data
collection, but do not affect the size of the sample.

Monitoring and performance 273

Examples
The following examples demonstrate how to set the necessary queue, channel, and queue manager
attributes to control the level of monitoring. For all of the examples, when monitoring is enabled, queue
and channel objects have a medium level of monitoring.

1. To enable both queue and channel monitoring for all queues and channels at the queue manager level,
use the following commands:

ALTER QMGR MONQ(MEDIUM) MONCHL(MEDIUM)
ALTER QL(Q1) MONQ(QMGR)
ALTER CHL(QM1.TO.QM2) CHLTYPE(SDR) MONCHL(QMGR)

2. To enable monitoring for all queues and channels, with the exception of local queue, Q1, and sender
channel, QM1.TO.QM2, use the following commands:

ALTER QMGR MONQ(MEDIUM) MONCHL(MEDIUM)
ALTER QL(Q1) MONQ(OFF)
ALTER CHL(QM1.TO.QM2) CHLTYPE(SDR) MONCHL(OFF)

3. To disable both queue and channel monitoring for all queues and channels, with the exception of local
queue, Q1, and sender channel, QM1.TO.QM2, use the following commands:

ALTER QMGR MONQ(OFF) MONCHL(OFF)
ALTER QL(Q1) MONQ(MEDIUM)
ALTER CHL(QM1.TO.QM2) CHLTYPE(SDR) MONCHL(MEDIUM)

4. To disable both queue and channel monitoring for all queues and channels, regardless of individual
object attributes, use the following command:

ALTER QMGR MONQ(NONE) MONCHL(NONE)

5. To control the monitoring capabilities of automatically defined cluster-sender channels use the
following command:

ALTER QMGR MONACLS(MEDIUM)

6. To specify that automatically defined cluster-sender channels are to use the queue manager setting for
channel monitoring, use the following command:

ALTER QMGR MONACLS(QMGR)

Related concepts
“Real-time monitoring” on page 272
Real-time monitoring is a technique that allows you to determine the current state of queues and
channels within a queue manager. The information returned is accurate at the moment the command
was issued.
“Using IBM MQ online monitoring” on page 290
You can collect monitoring data for queues and channels (including automatically defined cluster-server
channels) by setting the MONQ, MONCHL, and MONACLS attributes.
Working with queue managers
Related tasks
“Displaying queue and channel monitoring data” on page 275
To display real-time monitoring information for a queue or channel, use either the IBM MQ Explorer or the
appropriate MQSC command. Some monitoring fields display a comma-separated pair of indicator values,
which help you to monitor the operation of your queue manager. Examples demonstrate how you can
display monitoring data.
Monitoring (MONCHL)

274 Monitoring and Performance for IBM MQ

Displaying queue and channel monitoring data
To display real-time monitoring information for a queue or channel, use either the IBM MQ Explorer or the
appropriate MQSC command. Some monitoring fields display a comma-separated pair of indicator values,
which help you to monitor the operation of your queue manager. Examples demonstrate how you can
display monitoring data.

About this task
Monitoring fields that display a pair of values separated by a comma provide short term and long term
indicators for the time measured since monitoring was enabled for the object, or from when the queue
manager was started:

• The short term indicator is the first value in the pair and is calculated in a way such that more recent
measurements are given a higher weighting and will have a greater effect on this value. This gives an
indication of recent trend in measurements taken.

• The long term indicator in the second value in the pair and is calculated in a way such that more recent
measurements are not given such a high weighting. This gives an indication of the longer term activity
on performance of a resource.

These indicator values are most useful to detect changes in the operation of your queue manager. This
requires knowledge of the times these indicators show when in normal use, in order to detect increases in
these times. By collecting and checking these values regularly you can detect fluctuations in the operation
of your queue manager. This can indicate a change in performance.

Obtain real-time monitoring information as follows:

Procedure
1. To display real-time monitoring information for a queue, use either the IBM MQ Explorer or the MQSC

command DISPLAY QSTATUS, specifying the optional parameter MONITOR.
2. To display real-time monitoring information for a channel, use either the IBM MQ Explorer or the MQSC

command DISPLAY CHSTATUS, specifying the optional parameter MONITOR.

Example

The queue, Q1, has the attribute MONQ set to the default value, QMGR, and the queue manager that
owns the queue has the attribute MONQ set to MEDIUM. To display the monitoring fields collected for this
queue, use the following command:

DISPLAY QSTATUS(Q1) MONITOR

The monitoring fields and monitoring level of queue, Q1 are displayed as follows:

QSTATUS(Q1)
TYPE(QUEUE)
MONQ(MEDIUM)
QTIME(11892157,24052785)
MSGAGE(37)
LPUTDATE(2005-03-02)
LPUTTIME(09.52.13)
LGETDATE(2005-03-02)
LGETTIME(09.51.02)

The sender channel, QM1.TO.QM2, has the attribute MONCHL set to the default value, QMGR, and the
queue manager that owns the queue has the attribute MONCHL set to MEDIUM. To display the monitoring
fields collected for this sender channel, use the following command:

DISPLAY CHSTATUS(QM1.TO.QM2) MONITOR

The monitoring fields and monitoring level of sender channel, QM1.TO.QM2 are displayed as follows:

CHSTATUS(QM1.TO.QM2)
XMITQ(Q1)

Monitoring and performance 275

CONNAME(127.0.0.1)
CURRENT
CHLTYPE(SDR)
STATUS(RUNNING)
SUBSTATE(MQGET)
MONCHL(MEDIUM)
XQTIME(755394737,755199260)
NETTIME(13372,13372)
EXITTIME(0,0)
XBATCHSZ(50,50)
COMPTIME(0,0)
STOPREQ(NO)
RQMNAME(QM2)

Related concepts
“Real-time monitoring” on page 272
Real-time monitoring is a technique that allows you to determine the current state of queues and
channels within a queue manager. The information returned is accurate at the moment the command
was issued.
Related reference
DISPLAY QSTATUS

Monitoring queues
Use this page to view tasks that help you to resolve a problem with a queue and the application that
services that queue. Various monitoring options are available to determine the problem

Frequently, the first sign of a problem with a queue that is being serviced is that the number of messages
on the queue (CURDEPTH) increases. If you expect an increase at certain times of day or under certain
workloads, an increasing number of messages might not indicate a problem. However, if you have no
explanation for the increasing number of messages, you might want to investigate the cause.

You might have an application queue where there is a problem with the application, or a transmission
queue where there is a problem with the channel. Additional monitoring options are available when the
application that services the queue is a channel.

The following examples investigate problems with a particular queue, called Q1, and describe the fields
that you look at in the output of various commands:

Determining whether your application has the queue open
If you have a problem with a queue, check whether your application has the queue open

About this task
Perform the following steps to determine whether your application has the queue open:

Procedure
1. Ensure that the application that is running against the queue is the application that you expect. Issue

the following command for the queue in question:

DISPLAY QSTATUS(Q1) TYPE(HANDLE) ALL

In the output, look at the APPLTAG field, and check that the name of your application is shown. If the
name of your application is not shown, or if there is no output at all, start your application.

2. If the queue is a transmission queue, look in the output at the CHANNEL field.
If the channel name is not shown in the CHANNEL field, determine whether the channel is running.

3. Ensure that the application that is running against the queue has the queue open for input. Issue the
following command:

DISPLAY QSTATUS(Q1) TYPE(QUEUE) ALL

276 Monitoring and Performance for IBM MQ

In the output, look at the IPPROCS field to see if any application has the queue open for input. If the
value is 0 and this is a user application queue, make sure that the application opens the queue for
input to get the messages off the queue.

Checking that messages on the queue are available
If you have a large number of messages on the queue and your application is not processing any of those
messages, check whether the messages on the queue are available to your application

About this task
Perform the following steps to investigate why your application is not processing messages from the
queue:

Procedure
1. Ensure that your application is not asking for a specific message ID or correlation ID when it should be

processing all the messages on the queue.
2. Although the current depth of the queue might show that there is an increasing number of messages

on the queue, some messages on the queue might not be available to be got by an application,
because they are not committed; the current depth includes the number of uncommitted MQPUTs of
messages to the queue. Issue the following command:

DISPLAY QSTATUS(Q1) TYPE(QUEUE) ALL

In the output, look at the UNCOM field to see whether there are any uncommitted messages on the
queue.

3. If your application is attempting to get any messages from the queue, check whether the putting
application is committing the messages correctly. Issue the following command to find out the names
of applications that are putting messages to this queue:

DISPLAY QSTATUS(Q1) TYPE(HANDLE) OPENTYPE(OUTPUT)

4. Then issue the following command, inserting in <appltag> the APPLTAG value from the output of the
previous command:

DISPLAY CONN(*) WHERE(APPLTAG EQ <appltag>) UOWSTDA UOWSTTI

This shows when the unit of work was started and will help you discover whether the application
is creating a long running unit of work. If the putting application is a channel, you might want to
investigate why a batch is taking a long time to complete.

Checking whether your application is getting messages off the queue
If you have a problem with a queue and the application that services that queue, check whether your
application is getting messages off the queue

About this task
To check whether your application is getting messages off the queue, perform the following checks:

Procedure
1. Ensure that the application that is running against the queue is actually processing messages from the

queue. Issue the following command:

DISPLAY QSTATUS(Q1) TYPE(QUEUE) ALL

In the output, look at the LGETDATE and LGETTIME fields which show when the last get was done from
the queue.

2. If the last get from this queue was longer ago than expected, ensure that the application is processing
messages correctly.

Monitoring and performance 277

If the application is a channel, check whether messages are moving through that channel

Determining whether the application can process messages fast enough
If messages are building up on the queue, but your other checks have not found any processing problems,
check that the application can process messages fast enough. If the application is a channel, check that
the channel can process messages fast enough.

About this task
To determine whether the application is processing messages fast enough, perform the following tests:

Procedure
1. Issue the following command periodically to gather performance data about the queue:

DISPLAY QSTATUS(Q1) TYPE(QUEUE) ALL

If the values in the QTIME indicators are high, or are increasing over the period, and you have already
ruled out the possibility of long running Units of Work by checking that messages on the queue are
available, the getting application might not be keeping up with the putting applications.

2. If your getting application cannot keep up with the putting applications, consider adding another
getting application to process the queue.
Whether you can add another getting application depends on the design of the application and
whether the queue can be shared by more than one application. Features such as message grouping
or getting by correlation ID might help to ensure that two applications can process a queue
simultaneously.

Checking the queue when the current depth is not increasing
Even if the current depth of your queue is not increasing, it might still be useful to monitor the queue to
check whether your application is processing messages correctly.

About this task
To gather performance data about the queue: Issue the following command periodically:

Procedure
Issue the following command periodically:

DISPLAY QSTATUS(Q1) TYPE(QUEUE) MSGAGE QTIME

In the output, if the value in MSGAGE increases over the period of time, and your application is designed
to process all messages, this might indicate that some messages are not being processed at all.

Monitoring channels
Use this page to view tasks that help you to resolve a problem with a transmission queue and the channel
that services that queue. Various channel monitoring options are available to determine the problem.

Frequently, the first sign of a problem with a queue that is being serviced is that the number of messages
on the queue (CURDEPTH) increases. If you expect an increase at certain times of day or under certain
workloads, an increasing number of messages might not indicate a problem. However, if you have no
explanation for the increasing number of messages, you might want to investigate the cause.

You might have a problem with the channel that services a transmission queue. Various channel
monitoring options are available to help you to determine the problem.

The following examples investigate problems with a transmission queue called QM2 and a channel called
QM1.TO.QM2. This channel is used to send messages from queue manager, QM1, to queue manager,
QM2. The channel definition at queue manager QM1 is either a sender or server channel, and the channel
definition at queue manager, QM2, is either a receiver or requester channel.

278 Monitoring and Performance for IBM MQ

Determining whether the channel is running
If you have a problem with a transmission queue, check whether the channel is running.

About this task
Perform the following steps to check the status of the channel that is servicing the transmission queue:

Procedure
1. Issue the following command to find out which channel you expect to process the transmission queue

QM2:

DIS CHANNEL(*) WHERE(XMITQ EQ QM2)

In this example, the output of this command shows that the channel servicing the transmission queue
is QM1.TO.QM2

2. Issue the following command to determine the status of the channel, QM1.TO.QM2:

DIS CHSTATUS(QM1.TO.QM2) ALL

3. Inspect the STATUS field of the output from the CHSTATUS command:

• If the value of the STATUS field is RUNNING, check that the channel is moving messages
• If the output from the command shows no status, or the value of the STATUS field is STOPPED,

RETRY, BINDING, or REQUESTING, perform the appropriate step, as follows:
4. Optional: If the value of the STATUS field shows no status, the channel is inactive, so perform the

following steps:
a) If the channel should have been started automatically by a trigger, check that the messages on the

transmission queue are available.
If there are messages available on the transmission queue, check that the trigger settings on the
transmission queue are correct.

b) Issue the following command to start the channel again manually:

START CHANNEL(QM1.TO.QM2)

5. Optional: If the value of the STATUS field is STOPPED, perform the following steps:
a) Check the error logs to determine why the channel stopped. If the channel stopped owing to an

error, correct the problem.
Ensure also that the channel has values specified for the retry attributes: SHORTRTY and LONGRTY.
In the event of transient failures such as network errors, the channel will then attempt to restart
automatically.

b) Issue the following command to start the channel again manually:

START CHANNEL(QM1.TO.QM2)

On IBM MQ for z/OS, you can detect when a user stops a channel by using command
event messages.

6. Optional: If the value of the STATUS field is RETRY, perform the following steps:
a) Check the error logs to identify the error, then correct the problem.
b) Issue the following command to start the channel again manually:

START CHANNEL(QM1.TO.QM2)

or wait for the channel to connect successfully on its next retry.
7. Optional: If the value of the STATUS field is BINDING or REQUESTING, the channel has not yet

successfully connected to the partner. Perform the following steps:

Monitoring and performance 279

a) Issue the following command, at both ends of the channel, to determine the substate of the
channel:

DIS CHSTATUS(QM1.TO.QM2) ALL

Note:

i) In some cases there might be a substate at one end of the channel only.
ii) Many substates are transitory, so issue the command a few times to detect whether a channel is

stuck in a particular substate.
b) Check Table 31 on page 280 to determine what action to take:

Table 31. Substates seen with status binding or requesting

Initiating MCA
substate 1

Responding MCA
substate 2 Notes

NAMESERVER The initiating MCA is waiting for a name server request
to complete. Ensure that the correct host name has been
specified in the channel attribute, CONNAME, and that your
name servers are set up correctly.

SCYEXIT SCYEXIT The MCAs are currently in conversation through a security
exit. For more information, see “Determining whether the
channel can process messages fast enough” on page 282.

CHADEXIT The channel autodefinition exit is currently executing. For
more information, see “Determining whether the channel can
process messages fast enough” on page 282.

RCVEXIT
SENDEXIT
MSGEXIT
MREXIT

RCVEXIT
SENDEXIT
MSGEXIT
MREXIT

Exits are called at channel startup for MQXR_INIT. Review
the processing in this part of your exit if this takes a long time.
For more information, see “Determining whether the channel
can process messages fast enough” on page 282.

SERIALIZE SERIALIZE This substate only applies to channels with a disposition of
SHARED.

NETCONNECT This substate is shown if there is a delay in connecting due to
incorrect network configuration.

SSLHANDSHAKE SSLHANDSHAKE An SSL handshake consists of a number of sends and
receives. If network times are slow, or connection to lookup
CRLs are slow, this affects the time taken to do the
handshake.

On IBM MQ for z/OS this substate can also be
indicative of not having enough SSLTASKS.

Notes:

i) The initiating MCA is the end of the channel which started the conversation. This can be senders,
cluster-senders, fully-qualified servers and requesters. In a server-requester pair, it is the end
from which you started the channel.

ii) The responding MCA is the end of the channel which responded to the request to start the
conversation. This can be receivers, cluster-receivers, requesters (when the server or sender is
started), servers (when the requester is started) and senders (in a requester-sender call-back
pair of channels).

280 Monitoring and Performance for IBM MQ

Checking that the channel is moving messages
If you have a problem with a transmission queue, check that the channel is moving messages

Before you begin
Issue the command DIS CHSTATUS(QM1.TO.QM2) ALL. If the value of the STATUS field is RUNNING,
the channel has successfully connected to the partner system.

Check that there are no uncommitted messages on the transmission queue, as described in “Checking
that messages on the queue are available” on page 277.

About this task
If there are messages available for the channel to get and send, perform the following checks:

Procedure
1. In the output from the display channel status command, DIS CHSTATUS(QM1.TO.QM2) ALL, look at

the following fields:
MSGS

Number of messages sent or received (or, for server-connection channels, the number of MQI calls
handled) during this session (since the channel was started).

BUFSSENT
Number of transmission buffers sent. This includes transmissions to send control information only.

BYTSSENT
Number of bytes sent during this session (since the channel was started). This includes control
information sent by the message channel agent.

LSTMSGDA
Date when the last message was sent or MQI call was handled, see LSTMSGTI.

LSTMSGTI
Time when the last message was sent or MQI call was handled. For a sender or server, this is the
time the last message (the last part of it if it was split) was sent. For a requester or receiver, it is the
time the last message was put to its target queue. For a server-connection channel, it is the time
when the last MQI call completed.

CURMSGS
For a sending channel, this is the number of messages that have been sent in the current batch.
For a receiving channel, it is the number of messages that have been received in the current batch.
The value is reset to zero, for both sending and receiving channels, when the batch is committed.

STATUS
The status of the channel, which can be Starting, Binding, Initializing, Running,
Stopping, Retrying, Paused, Stopped, or Requesting.

SUBSTATE
The action that the channel is currently performing.

INDOUBT
Whether the channel is currently in doubt. This is only YES while the sending Message Channel
Agent is waiting for an acknowledgment that a batch of messages that it has sent has been
successfully received. It is NO at all other times, including the period during which messages are
being sent, but before an acknowledgment has been requested. For a receiving channel, the value
is always NO.

2. Determine whether the channel has sent any messages since it started. If any have been sent,
determine when the last message was sent.

3. The channel might have started a batch that has not yet completed, as indicated by a non-zero value in
CURMSGS. If INDOUBT is YES, the channel is waiting to receive acknowledgment that the other end of
the channel received the batch. Look at the SUBSTATE field in the output and refer to Table 32 on page
282:

Monitoring and performance 281

Table 32. Sender and receiver MCA substates

Sender SUBSTATE Receiver SUBSTATE Notes

MQGET RECEIVE Normal states of a channel at rest.

SEND RECEIVE SEND is usually a transitory state. If SEND is seen it indicates
that the communication protocol buffers have filled. This can
indicate a network problem.

RECEIVE If the sender is seen in RECEIVE substate for any length of
time, it is waiting on a response, either to a batch completion
or a heartbeat. You might want to check why a batch takes a
long time to complete.

Note: You might also want to determine whether the channel can process messages fast enough,
especially if the channel has a substate associated with exit processing.

Checking why a batch takes a long time to complete
Reasons why a batch can take a long time to complete include a slow network or a channel is using
message retry processing.

About this task
When a sender channel has sent a batch of messages it waits for confirmation of that batch from the
receiver, unless the channel is pipelined. The factors described in this task can affect how long the sender
channel waits.

Procedure
• Check whether the network is slow.

The NETTIME value is the amount of time, displayed in microseconds, taken to send an end of batch
request to the remote end of the channel and receive a response minus the time to process the end of
batch request. This value can be large for either of the following reasons:

– The network is slow. A slow network can affect the time it takes to complete a batch. The
measurements that result in the indicators for the NETTIME field are measured at the end of a
batch. However, the first batch affected by a slowdown in the network is not indicated with a change
in the NETTIME value because it is measured at the end of the batch.

– Requests are queued at the remote end, for example a channel can be retrying a put, or a put
request may be slow due to page set I/O. Once any queued requests have completed, the duration
of the end of batch request is measured. So if you get a large NETTIME value, check for unusual
processing at the remote end.

• Check whether the channel is using message retry.
If the receiver channel fails to put a message to a target queue, it might use message retry processing,
rather than put the message to a dead-letter queue immediately. Retry processing can cause the batch
to slow down. In between MQPUT attempts, the channel will have STATUS(PAUSED), indicating that it
is waiting for the message retry interval to pass.

Determining whether the channel can process messages fast enough
If there messages are building up on the transmission queue, but you have found no processing problems,
determine whether the channel can process messages fast enough.

Before you begin
Issue the following command repeatedly over a period of time to gather performance data about the
channel:

DIS CHSTATUS(QM1.TO.QM2) ALL

282 Monitoring and Performance for IBM MQ

About this task
Confirm that there are no uncommitted messages on the transmission queue, as described in “Checking
that messages on the queue are available” on page 277, then check the XQTIME field in the output from
the display channel status command. When the values of the XQTIME indicators are consistently high,
or increase over the measurement period, the indication is that the channel is not keeping pace with the
putting applications.

Perform the following tests:

Procedure
1. Check whether exits are processing.

If exits are used on the channel that is delivering these messages, they might add to the time spent
processing messages. To identify if this is the case, do the following checks:
a) In the output of the command DIS CHSTATUS(QM1.TO.QM2) ALL, check the EXITTIME field.

If the time spent in exits is higher than expected, review the processing in your exits for any
unnecessary loops or extra processing, especially in message, send, and receive exits. Such
processing affects all messages moved across the channel.

b) In the output of the command DIS CHSTATUS(QM1.TO.QM2) ALL, check the SUBSTATE field.
If the channel has of one of the following substates for a significant time, review the processing in
your exits:

• SCYEXIT
• RCVEXIT
• SENDEXIT
• MSGEXIT
• MREXIT

2. Check whether the network is slow.
If messages are not moving fast enough across a channel, it might be because the network is slow. To
identify if this is the case, do the following checks:
a) In the output of the command DIS CHSTATUS(QM1.TO.QM2) ALL, check the NETTIME field.

These indicators are measured when the sending channel asks its partner for a response. This
happens at the end of each batch and, when a channel is idle during heartbeating.

b) If this indicator shows that round trips are taking longer than expected, use other network
monitoring tools to investigate the performance of your network.

3. Check whether the channel is using compression.
If the channel is using compression, this adds to the time spent processing messages. If the channel is
using only one compression algorithm, do the following checks:
a) In the output of the command DIS CHSTATUS(QM1.TO.QM2) ALL, check the COMPTIME field.

These indicators show the time spent during compression or decompression.
b) If the chosen compression is not reducing the amount of data to send by the expected amount,

change the compression algorithm.
4. If the channel is using multiple compression algorithms, do the following checks:

a) In the output of the command DIS CHSTATUS(QM1.TO.QM2) ALL, check the COMPTIME,
COMPHDR, and COMPMSG fields.

b) Change the compression algorithms specified on the channel definition, or consider writing a
message exit to override the channel's choice of compression algorithm for particular messages
if the rate of compression, or choice of algorithm, is not providing the required compression or
performance.

Monitoring and performance 283

Solving problems with cluster channels
If you have a build up of messages on the SYSTEM.CLUSTER.TRANSMIT.QUEUE queue, the first step
in diagnosing the problem is discovering which channel, or channels, are having a problem delivering
messages.

About this task
To discover which channel, or channels, using the SYSTEM.CLUSTER.TRANSMIT.QUEUE are having a
problem delivering messages. Perform the following checks:

Procedure
1. Issue the following command:

DIS CHSTATUS(*) WHERE(XQMSGSA GT 1)

Note: If you have a busy cluster that has many messages moving, consider issuing this command with
a higher number to eliminate the channels that have only a few messages available to deliver.

2. Look through the output for the channel, or channels, that have large values in the field XQMSGSA.
Determine why the channel is not moving messages, or is not moving them fast enough. Use the tasks
outlined in “Monitoring channels” on page 278 to diagnose the problems with the channels found to
be causing the build up.

The Windows performance monitor
In IBM WebSphere MQ 7.0 and earlier versions, it was possible to monitor the performance of local
queues on Windows systems by using the Windows performance monitor. As of IBM WebSphere MQ 7.1,
this method of performance monitoring is no longer available.

You can monitor queues on all supported platforms by using methods described in “Real-time
monitoring” on page 272.

Monitoring clusters
Within a cluster you can monitor application messages, control messages, and logs. There are special
monitoring ocnsiderations when the cluster load balances between two or more instances of a queue.

Monitoring application messages in the cluster
Typically, all cluster messages that leave the queue manager pass through the
SYSTEM.CLUSTER.TRANSMIT.QUEUE, irrespective of which cluster sender channel is being used to
transmit the message. Each channel is draining messages targeted for that channel in parallel with all
other cluster sender channels. A growing build-up of messages on this queue can indicate a problem with
one or more channels and must be investigated:

• The depth of the queue must be monitored appropriately for the cluster design.
• The following command returns all channels that have more than one message that is waiting on the

transmit queue:

DIS CHSTATUS(*) WHERE(XQMSGSA GT 1)

With all cluster messages on a single queue, it is not always easy to see which channel has problems
when it begins to fill up. Using this command is an easy way to see which channel is responsible.

You can configure a cluster queue manager to have multiple transmission queues. If you change the
queue manager attribute DEFCLXQ to CHANNEL, every cluster-sender channel is associated with a
different cluster transmit queue. Alternatively you can configure separate transmission queues manually.

284 Monitoring and Performance for IBM MQ

To display all the cluster transmit queues that are associated with cluster-sender channels, run the
command:

DISPLAY CLUSQMGR (qmgrName) XMITQ

Define cluster transmission queues so that they follow the pattern of having the fixed stem of the queue
name on the left. You can then query the depth of all the cluster transmission queues returned by the
DISPLAY CLUSMGR command, by using a generic queue name:

DISPLAY QUEUE (qname *) CURDEPTH

Monitoring control messages in the cluster
The SYSTEM.CLUSTER.COMMAND.QUEUE queue is used for processing all cluster control messages for
a queue manager, either generated by the local queue manager or sent to this queue manager from
other queue managers in the cluster. When a queue manager is correctly maintaining its cluster state,
this queue tends toward zero. There are situations where the depth of messages on this queue can
temporarily grow however:

• Having lots of messages on the queue indicates churn in the cluster state.
• When making significant changes, allow the queue to settle in between those changes. For example,

when moving repositories, allow the queue to reach zero before moving the second repository.

While a backlog of messages exists on this queue, updates to the cluster state or cluster-related
commands are not processed. If messages are not being removed from this queue for a long time, further

investigation is required, initially through inspection of the queue manager error logs (or
CHINIT logs on z/OS) which might explain the process that is causing this situation.

The SYSTEM.CLUSTER.REPOSITORY.QUEUE holds the cluster repository cache information as a number
of messages. It is usual for messages to always exist on this queue, and more for larger clusters.
Therefore, the depth of messages on this queue is not an issue for concern.

Monitoring logs
Problems that occur in the cluster might not show external symptoms to applications for many days
(and even months) after the problem originally occurs due to the caching of information and the
distributed nature of clustering. However, the original problem is often reported in the IBM MQ error

logs (and CHINIT logs on z/OS). For this reason, it is vital to actively monitor these logs for
any messages written that relate to clustering. These messages must be read and understood, with any
action taken where necessary.

For example: A break in communications with a queue manager in a cluster can result in knowledge
of certain cluster resources that are being deleted due to the way that clusters regularly revalidate the
cluster resources by republishing the information. A warning of such an event potentially occurring is

reported by the message AMQ9465 or CSQX465I on z/OS systems. This message indicates
that the problem needs to be investigated.

Special considerations for load balancing
When the cluster load balances between two or more instances of a queue, consuming applications
must be processing messages on each of the instances. If one or more of those consuming applications
terminates or stops processing messages, it is possible that clustering might continue to send messages
to those instances of the queue. In this situation, those messages are not processed until the applications
are functioning correctly again. For this reason the monitoring of the applications is an important part of
the solution and action must be taken to reroute messages in that situation. An example of a mechanism
to automate such monitoring can be found in this sample: The Cluster Queue Monitoring sample program
(AMQSCLM).

Monitoring and performance 285

Related concepts
“Tuning distributed publish/subscribe networks” on page 328
Use the tuning tips in this section to help improve the performance of your IBM MQ distributed publish/
subscribe clusters and hierarchies.
“Balancing producers and consumers in publish/subscribe networks” on page 333
An important concept in asynchronous messaging performance is balance. Unless message consumers
are balanced with message producers, there is the danger that a backlog of unconsumed messages might
build up and seriously affect the performance of multiple applications.

Monitoring transmission queue switching
It is important that you monitor the process of cluster-sender channels switching transmission queues so
that the impact on your enterprise is minimized. For example, you should not attempt this process when
the workload is high or by switching many channels simultaneously.

The process of switching channels
The process used to switch channels is:

1. The channel opens the new transmission queue for input and starts getting messages from it (using
get by correlation ID)

2. A background process is initiated by the queue manager to move any messages queued for the
channel from its old transmission queue to its new transmission queue. While messages are being
moved any new messages for the channel are queued to the old transmission queue to preserve
sequencing. This process might take a while to complete if there are a large number of messages for
the channel on its old transmission queue, or new messages are rapidly arriving.

3. When no committed or uncommitted messages remain queued for the channel on its old transmission
queue then the switch is completed. New messages are now put directly to the new transmission
queue.

To avoid the eventuality of numerous channels switching simultaneously IBM MQ provides the ability to
switch the transmission queue of one or more channels that are not running. On:

• distributed platforms and IBM i the command is called runswchl
• IBM MQ for z/OS the CSQUTIL utility can be used to process a SWITCH CHANNEL command instead

Monitoring the status of switch operations
To understand the status of switch operations administrators can perform the following actions:

• Monitor the queue manager error log (AMQERR01.LOG) where messages are output to indicate the
following stages during the operation:

– The switch operation has started
– The moving of messages has started
– Periodic updates on how many messages are left to move (if the switch operation does not complete

quickly)
– The moving of messages has completed
– The switch operation has completed

On z/OS, these messages are output to the queue manager job log, not the channel initiator job log,
although a single message is output by a channel to the channel initiator job log if it initiates a switch
when starting.

• Use the DISPLAY CLUSQMGR command to query the transmission queue that each cluster-sender
channel is currently using.

• Run the runswchl command (or CSQUTIL on z/OS) in query mode to ascertain the switching status of
one or more channels. The output of this command identifies the following for each channel:

286 Monitoring and Performance for IBM MQ

– Whether the channel has a switch operation pending
– Which transmission queue the channel is switching from and to
– How many messages remain on the old transmission queue

Each command is really useful, because in one invocation you can determine the status of every
channel, the impact a configuration change has had and whether all switch operations have completed.

Potential issues that might occur
See Potential issues when switching transmission queues for a list of some issues that might be
encountered when switching transmission queue, their causes, and most likely solutions.

Related concepts
“Tuning distributed publish/subscribe networks” on page 328
Use the tuning tips in this section to help improve the performance of your IBM MQ distributed publish/
subscribe clusters and hierarchies.
“Balancing producers and consumers in publish/subscribe networks” on page 333
An important concept in asynchronous messaging performance is balance. Unless message consumers
are balanced with message producers, there is the danger that a backlog of unconsumed messages might
build up and seriously affect the performance of multiple applications.

Monitoring performance and resource usage
Use this topic to understand the facilities available to monitor the performance, and resource usage of
your IBM MQ for z/OS subsystems.
Related tasks
Configuring z/OS
Administering IBM MQ for z/OS

Introduction to monitoring
Use this topic as an overview of the monitoring facilities available for IBM MQ for z/OS. For example,
obtaining snapshots, using IBM MQ trace, online monitoring, and events.

This topic describes how to monitor the performance and resource usage of IBM MQ.

• It outlines some of the information that you can retrieve and briefly describes a general approach

to investigating performance problems. (You can find information about dealing with
performance problems in the Problem determination on z/OS .)

• It describes how you can collect statistics about the performance of IBM MQ by using SMF records.
• It describes how to gather accounting data to enable you to charge your customers for their use of your

IBM MQ systems.
• It describes how to use IBM MQ events (alerts) to monitor your systems.

Here are some of the tools you might use to monitor IBM MQ; they are described in the sections that
follow:

• Tools provided by IBM MQ:

– Using DISPLAY commands
– “Using CICS adapter statistics” on page 289
– “Using IBM MQ events” on page 291

• z/OS service aids:

– “Using System Management Facility” on page 291
• Other IBM licensed programs:

– Using the Resource Measurement Facility

Monitoring and performance 287

– Using Tivoli Decision Support for z/OS
– Using the CICS monitoring facility

Information about interpreting the data gathered by the performance statistics trace is given
in“Interpreting IBM MQ performance statistics” on page 294.

Information about interpreting the data gathered by the accounting trace is given in“Interpreting IBM MQ
accounting data” on page 316.

Getting snapshots of IBM MQ using the DISPLAY commands
IBM MQ provides the MQSC facility which can give a snapshot of the performance, and resource usage
using the DISPLAY commands.

You can get an idea of the current state of IBM MQ by using the DISPLAY commands and, for the CICS
adapter, the CICS adapter panels.

Using DISPLAY commands

You can use the IBM MQ MQSC DISPLAY or PCF Inquire commands to obtain information about the
current state of IBM MQ. They provide information about the status of the command server, process
definitions, queues, the queue manager, and its associated components. These commands are:

MQSC command PCF command

DISPLAY ARCHIVE Inquire Archive

DISPLAY AUTHINFO Inquire Authentication Information Object

DISPLAY CFSTATUS Inquire CF Structure Status

DISPLAY CFSTRUCT Inquire CF Structure

DISPLAY CHANNEL Inquire Channel

DISPLAY CHINIT Inquire Channel Initiator

DISPLAY CHSTATUS Inquire Channel Status

DISPLAY CMDSERV

DISPLAY CLUSQMGR Inquire Cluster Queue Manager

DISPLAY CONN Inquire Connection

DISPLAY GROUP Inquire Group

DISPLAY LOG Inquire Log

DISPLAY PROCESS Inquire Process

DISPLAY QMGR Inquire Queue Manager

DISPLAY QSTATUS Inquire Queue Status

DISPLAY QUEUE Inquire Queue

DISPLAY SECURITY Inquire Security

DISPLAY STGCLASS Inquire Storage Class

DISPLAY SYSTEM Inquire System

DISPLAY TRACE

DISPLAY USAGE Inquire Usage

For the detailed syntax of each command, see MQSC commands or PCF commands. All of the
functions of these commands (except DISPLAY CMDSERV and DISPLAY TRACE) are also available
through the operations and control panels.

288 Monitoring and Performance for IBM MQ

These commands provide a snapshot of the system only at the moment the command was processed.
If you want to examine trends in the system, you must start an IBM MQ trace and analyze the results
over a period of time.

Using CICS adapter statistics
If you are an authorized CICS user, you can use the CICS adapter control panels to display CICS adapter
statistics dynamically.

These statistics provide a snapshot of information related to CICS thread usage and situations when all
threads are busy. The display connection panel can be refreshed by pressing the Enter key. For more
information, see "The CICS-IBM MQ Adapter" section in the CICS Transaction Server for z/OS Version 4.1
product documentation at: CICS Transaction Server for z/OS Version 4.1, The CICS-IBM MQ adapter.

Using IBM MQ trace
You can record performance statistics and accounting data for IBM MQ by using the IBM MQ trace facility.
Use this topic to understand how to control IBM MQ trace.

The data generated by IBM MQ is sent to:

• The System Management Facility (SMF), specifically as SMF record type 115, subtypes 1 and 2 for the
performance statistics trace

• The SMF, specifically as SMF record type 116, subtypes zero, 1, and 2 for the accounting trace.

If you prefer, the data generated by the IBM MQ accounting trace can also be sent to the generalized trace
facility (GTF).

Starting IBM MQ trace
You can start the IBM MQ trace facility at any time by issuing the IBM MQ START TRACE command.

Accounting data can be lost if the accounting trace is started or stopped while applications are running. To
collect accounting data successfully, the following conditions must apply:

• The accounting trace must be active when an application starts, and it must still be active when the
application finishes.

• If the accounting trace is stopped, any accounting data collection that was active stops.

You can also start collecting some trace information automatically if you specify YES on the SMFSTAT

(SMF STATISTICS) and SMFACCT (SMF ACCOUNTING) parameters of the CSQ6SYSP macro.
These parameters are described in Using CSQ6SYSP.

You cannot use this method to start collecting class 3 accounting information (thread-level and queue-
level accounting). You must use the START TRACE command to collect such information. However, you
can include the command in your CSQINP2 input data set so that the trace is started automatically when
you start your queue manager.

Before starting an IBM MQ trace, read “Using System Management Facility” on page 291.

Controlling IBM MQ trace
To control the IBM MQ trace data collection at start-up, specify values for the parameters in the

CSQ6SYSP macro when you customize IBM MQ. See Using CSQ6SYSP for details.

You can control IBM MQ tracing when the queue manager is running with these commands:

• START TRACE
• ALTER TRACE
• STOP TRACE

You can choose the destination to which trace data is sent. Possible destinations are:

Monitoring and performance 289

SMF
System Management Facility

GTF
Generalized Trace Facility (accounting trace only)

SRV
Serviceability routine for diagnostic use by IBM service personnel

For daily monitoring, information is sent to SMF (the default destination). SMF data sets typically contain
information from other systems; this information is not available for reporting until the SMF data set is
dumped.

You can also send accounting trace information to the GTF. This information has an event identifier of 5EE.

The The MQI call and user parameter, and z/OS generalized trace facility (GTF) describes
how to deal with IBM MQ trace information sent to the GTF.

For information about IBM MQ commands, see MQSC commands.

Effect of trace on IBM MQ performance
Using the IBM MQ trace facility can have a significant effect on IBM MQ and transaction performance. For
example, if you start a global trace for class 1 or for all classes, it is likely to increase processor usage
and transaction response times by approximately 50%. However, if you start a global trace for classes
2 - 4 alone, the increase in processor usage and transaction response times is likely to be less than 1%
additional processor cost to the cost of IBM MQ calls. The same applies for a statistics or accounting
trace.

Using IBM MQ online monitoring
You can collect monitoring data for queues and channels (including automatically defined cluster-server
channels) by setting the MONQ, MONCHL, and MONACLS attributes.

Table 33 on page 290 summarizes the commands to set these attributes at different levels and to display
the monitoring information.

Table 33. Setting and displaying attributes to control online monitoring

Attribute Applicable at this level Set using command

Display monitoring
information using
command

MONQ Queue DEFINE QLOCAL

DEFINE QMODEL

ALTER QLOCAL

ALTER QMODEL

DISPLAY QSTATUS

Queue manager ALTER QMGR

MONCHL Channel DEFINE CHANNEL

ALTER CHANNEL

DISPLAY CHSTATUS

Queue manager ALTER QMGR

MONACLS Queue manager ALTER QMGR

For full details of these commands, see MQSC commands. For more information about online monitoring,
see “Monitoring your IBM MQ network” on page 5.

290 Monitoring and Performance for IBM MQ

Using IBM MQ events
IBM MQ instrumentation events provide information about errors, warnings, and other significant
occurrences in a queue manager. You can monitor the operation of all your queue managers by
incorporating these events into your own system management application.

IBM MQ instrumentation events fall into the following categories:
Queue manager events

These events are related to the definitions of resources within queue managers. For example, an
application attempts to put a message to a queue that does not exist.

Performance events
These events are notifications that a threshold condition has been reached by a resource. For
example, a queue depth limit has been reached, or the queue was not serviced within a predefined
time limit.

Channel events
These events are reported by channels as a result of conditions detected during their operation. For
example, a channel instance is stopped.

Configuration events
These events are notifications that an object has been created, changed, or deleted.

When an event occurs, the queue manager puts an event message on the appropriate event queue, if
defined. The event message contains information about the event that can be retrieved by a suitable IBM
MQ application.

IBM MQ events can be enabled using the IBM MQ commands or the operations and control panels.

See “Event types” on page 8 for information about the IBM MQ events that generate messages, and for
information about the format of these messages. See Event message reference for information about
enabling the events.

Using System Management Facility
You can use SMF to collect statistics and accounting information. To use SMF, certain parameters must be
set in z/OS and in IBM MQ.

System management facility (SMF) is a z/OS service aid used to collect information from various z/OS
subsystems. This information is dumped and reported periodically, for example, hourly. You can use SMF
with the IBM MQ trace facility to collect data from IBM MQ. In this way you can monitor trends, for
example, in system utilization and performance, and collect accounting information about each user ID
using IBM MQ.

To record performance statistics (record type 115) to SMF specify the following in the SMFPRMxx member
of SYS1.PARMLIB or with the SETSMF z/OS operator command.

SYS(TYPE(115))

To record accounting information (record type 116) to SMF specify the following in the SMFPRMxx
member of SYS1.PARMLIB or with the SETSMF z/OS operator command.

SYS(TYPE(116))

You can turn on or off the recording of accounting information at the queue or queue manager level
using the ACCTQ parameter of the DEFINE QLOCAL, DEFINE QMODEL, ALTER QLOCAL, ALTER QMODEL,
or ALTER QMGR commands. See MQSC commands for details of these commands.

To use the z/OS command SETSMF, either PROMPT(ALL) or PROMPT(LIST) must be specified in the
SMFPRM xx member. See the z/OS MVS Initialization and Tuning Reference and the z/OS MVS System
Management Facilities (SMF) manuals for more information.

Monitoring and performance 291

https://www.ibm.com/docs/en/zos/2.5.0?topic=mvs-zos-initialization-tuning-reference
https://www.ibm.com/docs/en/zos/2.5.0?topic=mvs-zos-system-management-facilities-smf
https://www.ibm.com/docs/en/zos/2.5.0?topic=mvs-zos-system-management-facilities-smf

You can start collecting some trace information automatically if you specify YES on the SMFSTAT (SMF
STATISTICS) and SMFACCT (SMF ACCOUNTING) parameters of the CSQ6SYSP macro; this is described in
Using CSQ6SYSP.

Specifying YES on the SMFSTAT and SMFACCT parameters enables you to collect trace information as a
queue manager starts.

You can also start collection of the data on a queue manager by specifying START TRACE(A) or START
TRACE(S).

You can specify the interval at which IBM MQ collects statistics and accounting data in one of two ways:

• You can collect statistics data and accounting data at the same interval by specifying a value for
STATIME in your system parameters (described in Using CSQ6SYSP).

• You can collect statistics data and accounting data at the SMF global accounting interval by specifying
zero for STATIME (described in the z/OS MVS Initialization and Tuning Reference).

SMF must be running before you can send data to it. For more information about SMF, see the z/OS MVS
System Management Facilities (SMF) manual.

For the statistics and accounting data to be reset, at least one MQI call must be issued during the
accounting interval.

Allocating additional SMF buffers

When you start a trace, you must ensure that you allocate adequate SMF buffers. Specify SMF buffering
on the VSAM BUFSP parameter of the access method services DEFINE CLUSTER statement. Specify
CISZ(4096) and BUFSP(81920) on the DEFINE CLUSTER statement for each SMF VSAM data set.

If an SMF buffer shortage occurs, SMF rejects any trace records sent to it. IBM MQ sends a CSQW133I
message to the z/OS console when this occurs. IBM MQ treats the error as temporary and remains
active even though SMF data can be lost. When the shortage has been alleviated and trace recording has
resumed, IBM MQ sends a CSQW123I message to the z/OS console.

Reporting data in SMF

You can use the SMF program IFASMFDP (or IFASMFDL if logstreams are being used) to dump SMF
records to a sequential data set so that they can be processed.

There are several ways to report on this data, for example:

• Write an application program to read and report information from the SMF data set. You can then tailor
the report to fit your exact needs.

• Use Performance Reporter to process the records. For more information, see “Using other products with
IBM MQ” on page 292.

Using other products with IBM MQ
You can use other products to help you to improve the presentation of, or to augment statistics related to,
performance and accounting. For example, Resource Measurement Facility, Tivoli Decision Support, and
CICS monitoring.

Using the Resource Measurement Facility
Resource Measurement Facility (RMF) is an IBM licensed program (program number 5685-029) that
provides system-wide information about processor utilization, I/O activity, storage, and paging. You can
use RMF to monitor the utilization of physical resources across the whole system dynamically. For more
information, see the MVS Resource Measurement Facility User's Guide.

292 Monitoring and Performance for IBM MQ

https://www.ibm.com/docs/en/zos/2.5.0?topic=mvs-zos-initialization-tuning-reference
https://www.ibm.com/docs/en/zos/2.5.0?topic=mvs-zos-system-management-facilities-smf
https://www.ibm.com/docs/en/zos/2.5.0?topic=mvs-zos-system-management-facilities-smf

Using Tivoli Decision Support for z/OS
You can use Tivoli Decision Support for z/OS to interpret RMF and SMF records.

Tivoli Decision Support for z/OS is an IBM licensed program (program number 5698-B06) that enables
you to manage the performance of your system by collecting performance data in a Db2® database and
presenting the data in various formats for use in systems management. Tivoli Decision Support for can
generate graphic and tabular reports using systems management data it stores in its Db2 database. It
includes an administration dialog, a reporting dialog, and a log collector, all of which interact with a
standard Db2 database.

This is described in the Tivoli Decision Support Administrator's Guide.

Using the CICS monitoring facility
The CICS monitoring facility provides performance information about each CICS transaction running.
It can be used to investigate the resources used and the time spent processing transactions. For
background information, see the CICS Performance Guide and the CICS Customization Guide.

Investigating performance problems
Performance problems can arise from various factors. For example, incorrect resource allocation, poor
application design, and I/O restraints. Use this topic to investigate some of the possible causes of
performance problems.

Performance can be adversely affected by:

• Buffer pools that are an incorrect size
• Lack of real storage
• I/O contention for page sets or logs
• Log buffer thresholds that are set incorrectly
• Incorrect setting of the number of log buffers
• Large messages
• Units of recovery that last a long time, incorporating many messages for each sync point
• Messages that remain on a queue for a long time
• RACF® auditing
• Unnecessary security checks
• Inefficient program design

When you analyze performance data, always start by looking at the overall system before you decide that
you have a specific IBM MQ problem. Remember that almost all symptoms of reduced performance are
magnified when there is contention. For example, if there is contention for DASD, transaction response
times can increase. Also, the more transactions there are in the system, the greater the processor usage
and greater the demand for both virtual and real storage.

In such situations, the system shows heavy use of all its resources. However, the system is actually
experiencing normal system stress, and this stress might be hiding the cause of a performance reduction.
To find the cause of such a loss of performance, you must consider all items that might be affecting your
active tasks.

Investigating the overall system
Within IBM MQ, the performance problem is either increased response time or an unexpected and
unexplained heavy use of resources. First check factors such as total processor usage, DASD activity,
and paging. An IBM tool for checking total processor usage is resource management facility (RMF). In
general, you must look at the system in some detail to see why tasks are progressing slowly, or why a
specific resource is being heavily used.

Monitoring and performance 293

Start by looking at general task activity, then focus on particular activities, such as specific tasks or a
specific time interval.

Another possibility is that the system has limited real storage; therefore, because of paging interrupts, the
tasks progress more slowly than expected.

Investigating individual tasks
You can use the accounting trace to gather information about IBM MQ tasks. These trace records tell you
a great deal about the activity that the task has performed, and about how much time the task spent
suspended, waiting for latches. The trace record also includes information about how much Db2 and
coupling facility activity were performed by the task.

Interpreting IBM MQ accounting data is described in “Interpreting IBM MQ accounting data” on page 316.

Long running units of work can be identified by the presence of message CSQR026I in the job log. This
message indicates that a task has existed for more than three queue manager checkpoints and its log

records have been shunted. For a description of log record shunting, see The log files.

Interpreting IBM MQ performance statistics
Use this topic as an index to the different SMF records created by IBM MQ for z/OS.

IBM MQ performance statistics are written as SMF type 115 records. Statistics records are produced
periodically at a time interval specified by the STATIME parameter of the CSQ6SYSP system parameter
module, or at the SMF global accounting interval if you specify zero for STATIME. The information provided
in the SMF records comes from the following components of IBM MQ:

Buffer manager Manages the buffer pools in virtual storage and the writing of pages to page sets
as the buffer pools become full. Also manages the reading of pages from page
sets.

Coupling facility
manager

Manages the interface with the coupling facility.

Data manager Manages the links between messages and queues. It calls the buffer manager to
process the pages with messages on them.

Db2 manager Manages the interface with the Db2 database that is used as the shared
repository.

Lock manager Manages locks for IBM MQ for z/OS.

Log manager Manages the writing of log records, which are essential for maintaining the
integrity of the system if there is a back out request, or for recovery, if there
is a system or media failure.

Message manager Processes all IBM MQ API requests.

Storage manager Manages storage for IBM MQ for z/OS, for example, storage pool allocation,
expansion, and deallocation.

Topic manager Manages the Topic and Subscription information for IBM MQ for z/OS.

Coupling facility
SMDS manager

Manages the shared message data sets (SMDS) for large messages stored in the
coupling facility.

IBM MQ statistics are written to SMF as SMF type 115 records. The following subtypes can be present:
1

System information, for example, related to the logs and storage.
2

Information about number of messages and paging information. Queue sharing group information
related to the coupling facility and Db2.

294 Monitoring and Performance for IBM MQ

5 and 6
Detailed information about internal storage usage in the queue manager address space. While you can
view this information, some of it is intended only for IBM use.

7
Storage manager summary information. While you can view this information, some of it is intended
only for IBM use.

215
Buffer pool information

231
System information for the channel initiator address space.

Note that:

• Subtype 1, 2, and 215 records are created with statistics trace class 1.
• Subtype 7 records are created with statistics trace class 2.
• Subtype 5 and 6 records are created with statistics trace class 3.
• Subtype 231 records are created with statistics trace class 4.

The subtype is specified in the SM115STF field (shown in Table 34 on page 295).

Layout of an SMF type 115 record
You can use this section as a reference for the format of an SMF type 115 record.

The standard layout for SMF records involves three parts:
SMF header

Provides format, identification, and time and date information about the record itself.
Self-defining section

Defines the location and size of the individual data records within the SMF record.
Data records

The actual data from IBM MQ that you want to analyze.
For more information about SMF record formats, see the MVS System Management Facilities (SMF)
manual.

Related reference
“The SMF header” on page 295
Use this topic as a reference for the format of the SMF header.
“Self-defining sections” on page 296
Use this topic as a reference for format of the self-defining sections of the SMF record.
“Examples of SMF statistics records” on page 297
Use this topic to understand some example SMF records.

The SMF header
Use this topic as a reference for the format of the SMF header.

Table 34 on page 295 shows the format of SMF record header (SM115).

Table 34. SMF record 115 header description

Offset:
Dec

Offset:
Hex

Type Len Name Description Example

0 0 Structure 28 SM115 SMF record header.

0 0 Integer 2 SM115LEN SMF record length. 14A0

2 2 2 Reserved.

4 4 Integer 1 SM115FLG System indicator. 5E

Monitoring and performance 295

Table 34. SMF record 115 header description (continued)

Offset:
Dec

Offset:
Hex

Type Len Name Description Example

5 5 Integer 1 SM115RTY Record type. The SMF record type, for IBM
MQ statistics records this is always 115
(X'73').

73

6 6 Integer 4 SM115TM
E

Time when SMF moved record. 00355575

10 A Integer 4 SM115DTE Date when SMF moved record. 0100223F

14 E Character 4 SM115SID z/OS subsystem ID. Defines the z/OS
subsystem on which the records were
collected.

D4E5F4F1
(MV41)

18 12 Character 4 SM115SSI IBM MQ subsystem ID. D4D8F0F7
(MQ07)

22 16 Integer 2 SM115STF Record subtype. 0002

24 18 Character 3 SM115REL IBM MQ version. F6F0F0 (600)

27 1B 1 Reserved

28 1C Character 0 SM115EN
D

End of SMF header and start of self-
defining section.

Self-defining sections
Use this topic as a reference for format of the self-defining sections of the SMF record.

A self-defining section of a type 115 SMF record tells you where to find a statistics record, how long it
is, and how many times that type of record is repeated (with different values). The self-defining sections
follow the header, at fixed offsets from the start of the SMF record. Each statistics record can be identified
by an eye-catcher string.

The following types of self-defining section are available to users for type 115 records. Each self-defining
section points to statistics data related to one of the IBM MQ components. Table 35 on page 296
summarizes the sources of the statistics, the eye-catcher strings, and the offsets of the self-defining
sections from the start of the SMF record header.

Table 35. Offsets to self-defining sections

Source of statistics Record subtype
(SM115STF)

Offset of self-defining
section

Eye-catcher
of data

Dec Hex

Storage manager 1 100 X'64' QSST

Log manager 1 116 X'74' QJST

Message manager 2 36 X'24' QMST

Data manager 2 44 X'2C' QIST

No longer used. The self-
defining section will be binary
zeros.

2 52 X'34'

Lock manager 2 60 X'3C' QLST

Db2 manager 2 68 X'44' Q5ST

296 Monitoring and Performance for IBM MQ

Table 35. Offsets to self-defining sections (continued)

Source of statistics Record subtype
(SM115STF)

Offset of self-defining
section

Eye-catcher
of data

Dec Hex

Coupling Facility manager 2 76 X'4C' QEST

Topic manager 2 84 X'54' QTST

SMDS usage 2 92 X'5C' QESD

Buffer manager - one for each
buffer pool

215 36 X'24' QPST

Channel initiator 231 QWSX

Storage manager 5 36 X'24' QSPH

Storage manager 6 36 X'24' QSGM

Storage manager 7 36 X'24' QSRS

Note: Some of the storage manager information in subtype 5, 6 and 7 records is intended only for IBM
use. Other self-defining sections that are not listed contain data for IBM use only.

Each self-defining section is two fullwords long and has this format:

ssssssssllllnnnn

where:

• ssssssss is a fullword containing the offset from the start of the SMF record.
• llll is a halfword giving the length of this data record.
• nnnn is a halfword giving the number of data records in this SMF record.

For more information see, “Examples of SMF statistics records” on page 297.

Note: Always use offsets in the self-defining sections to locate the statistics records.

Examples of SMF statistics records
Use this topic to understand some example SMF records.

Figure 20 on page 298 shows an example of part of the SMF record for subtype 1. Subtype 1 includes the
storage manager and log manager statistics records. The SMF record header is shown underlined.

The self-defining section at offset X'64' refers to storage manager statistics and the self-defining section
at offset X'74' refers to log manager statistics, both shown in bold.

The storage manager statistics record is located at offset X'0000011C' from the start of the header and is
X'48' bytes long. There is one set of storage manager statistics, identified by the eye-catcher string QSST.
The start of this statistics record is also shown in the example.

The log manager statistics record is located at offset X'00000164' from the start of the header and is
X'78' bytes long. There is one set of log manager statistics, identified by the eye-catcher string QJST.

Monitoring and performance 297

000000 02000000 5E730035 55750100 223FD4E5 *....;.........MV*
000010 F4F1D4D8 F0F70001 F6F0F000 000001DC *41MQ07..600.....*
000020 00240001 00000000 00000000 00000000 *................*
000030 00000000 00000000 00000000 0000007C *...............@*
000040 00400001 000000BC 00600001 00000000 *.-......*
000050 00000000 00000000 00000000 00000000 *................*
000060 00000000 0000011C 00480001 00000000 *................*
000070 00000000 00000164 00780001 00000000 *................*
000080 00000000 00000000 00000000 00000000 *................*
.
.
000110 00000000 00000000 00000000 003C0048 *................*
000120 D8E2E2E3 0000004F 00000003 00000002 *QSST...|........*

Figure 20. SMF record 115, subtype 1

Figure 21 on page 299 shows an example of part of the SMF record for subtype 2. Subtype 2 includes the
statistics records for the message, data, lock, coupling facility, topic, and Db2 managers. The SMF record
header is shown underlined; the self-defining sections are shown alternately bold and italic.

• The self-defining section at offset X'24' refers to message manager statistics. The message manager
statistics record is located at offset X'00000064' from the start of the header and is X'48' bytes long.
There is one set of these statistics, identified by the eye-catcher string QMST.

• The self-defining section at offset X'2C' refers to data manager statistics. The data manager statistics
record is located at offset X'000000AC' from the start of the header and is X'50' bytes long. There is one
set of these statistics, identified by the eye-catcher string QIST.

• The self-defining section at offset X'34' refers to buffer manager statistics. As this SMF record was
taken from a queue manager that has OPMODE(NEWFUNC,800) set in its system parameters, the buffer
manager self-defining section is set to zeros to indicate that there are no buffer manager statistics.
Instead, these statistics are in SMF 115 subtype 215 records.

• The self-defining section at offset X'3C' refers to lock manager statistics. The lock manager statistics
record is located at offset X'000000FC' from the start of the header and is X'20' bytes long. There is one
set of these statistics, identified by the eye-catcher string QLST.

• The self-defining section at offset X'44' refers to Db2 manager statistics. The Db2 manager statistics
record is located at offset X'0000011C' from the start of the header and is X'2A0' bytes long. There is
one set of these statistics, identified by the eye-catcher string Q5ST.

• The self-defining section at offset X'4C' refers to coupling facility manager statistics. The coupling
facility manager statistics record is located at offset X'000003BC' from the start of the header and is
X'1008' bytes long. There is one set of these statistics, identified by the eye-catcher string QEST.

• The self-defining section at offset X'54' refers to topic manager statistics. The topic manager statistics
record is located at offset X'000013C4' from the start of the header and is X'64' bytes long. There is one
set of these statistics, identified by the eye-catcher string QTST.

• The self-defining section at offset X'5C' is for SMDS statistics. This self defining section is set to zeros
indicating that SMDS is not being used.

298 Monitoring and Performance for IBM MQ

000000 09F40000 5E730033 4DBE0113 142FD4E5 *.4..;...(.....MV*
000010 F4F1D4D8 F2F10002 F8F0F000 00001428 *41MQ21..800.....*
000020 00240001 00000064 00480001 000000AC *................*
000030 00500001 00000000 00000000 000000FC *................*
000040 00200001 0000011C 02A00001 000003BC *................*
000050 10080001 000013C4 00640001 00000000 *.......D........*
000060 00000000 D40F0048 D8D4E2E3 00000000 *....M...QMST....*
000080 00000000 00000000 00000000 00000000 *................*
000090 00000000 00000000 00000000 00000000 *................*
0000A0 00000000 00000000 00000000 C90F0050 *............I..&*
0000B0 D8C9E2E3 00000000 00000000 00000000 *QIST............*
0000C0 00000000 00000000 00000000 00000000 *................*
0000D0 00000000 00000000 00000000 00000000 *................*
0000E0 00000000 00000000 00000000 00000000 *................*
0000F0 00000000 00000000 00000000 D30F0020 *............L...*
000100 D8D3E2E3 00000000 00000000 00000000 *QLST............*
000110 00000000 00000000 00000000 F50F02A0 *............5...*
000120 D8F5E2E3 00000008 00000000 00000000 *Q5ST............*
.
.

Figure 21. SMF record 115, subtype 2

Processing type 115 SMF records
Use this topic as a reference for processing type 115 SMF records.

You must process any data you collect from SMF to extract useful information. When you process the
data, verify that the records are from IBM MQ and that they are the records you are expecting.

Validate the values of the following fields:

• SM115RTY, the SMF record number, must be X'73' (115)
• SM115STF, the record subtype, must be 0001, 0002, 0005, 0006, 0007, 0215, or 0231

Reading from the active SMF data sets (or SMF logstreams) is not supported. You must use the SMF
program IFASMFDP (or IFASMFDL if logstreams are being used) to dump SMF records to a sequential data
set so that they can be processed. For more information see “Using System Management Facility” on page
291.

There is a C sample program called CSQ4SMFD which prints the contents of SMF type 115 and 116
records from the sequential data set. The program is provided as source in thlqual.SCSQC37S and in
executable format in thlqual.SCSQLOAD. Sample JCL is provided in thlqual.SCSQPROC(CSQ4SMFJ).

Storage manager data records
Use this topic as a reference for storage manager data records.

The format of the storage manager statistics record is described in assembler macro
thlqual.SCSQMACS(CSQDQSST).

The data contains information about the number of fixed and variable storage pools that the queue
manager has allocated, expanded, contracted, and deleted during the statistics interval, plus the number
of GETMAIN, FREEMAIN, and STORAGE requests to z/OS, including a count of those requests that
were unsuccessful. Additional information includes a count of the number of times the short-on-storage
condition was detected and a count of the number of abends that occurred as a result of that condition.

Additional data about storage usage in the queue manager is produced by class 2 and class 3 statistics
trace. While you can view this information, some of it is intended only for IBM use.

• The format of the storage manager pool header statistics record, which is present in subtype 5 records,
is described in assembler macro thlqual.SCSQMACS(CSQDQSPH).

• The format of the storage manager getmain statistics record, which is present in subtype 6 records, is
described in assembler macro thlqual.SCSQMACS(CSQDQSGM).

• The format of the storage manager region summary record, which is present in subtype 7 records, is
described in assembler macro thlqual.SCSQMACS(CSQDQSRS).

Monitoring and performance 299

Log manager data records
Use this topic as a reference for format of log manager data records.

The format of the log manager statistics record is described in assembler macro
thlqual.SCSQMACS(CSQDQJST).

In the statistics, these counts are important:

1. The total number of log write requests:

 Nlogwrite = QJSTWRNW + QJSTWRF

2. The total number of log read requests:

 Nlogread = QJSTRBUF + QJSTRACT + QJSTRARH

The problem symptoms that can be examined using log manager statistics are described in the following
table.

Symptom 1
QJSTWTB is nonzero.

Reason
Tasks are being suspended while the in-storage buffer is being written to the active log.

There might be problems writing to the active log.

The OUTBUFF parameter within CSQ6LOGP is too small.

Action
Investigate the problems writing to the active log.

Increase the value of the OUTBUFF parameter within CSQ6LOGP.

Symptom 2
The ratio: QJSTTVC/N logread is greater than 1%.

Reason
Log reads were initiated that had to read from an archive log, but IBM MQ could not allocate a data
set because MAXRTU data sets were already allocated.

Action
Increase MAXRTU.

Symptom 3
The ratio: QJSTRARH/N logread is larger than normal.

Reason
Most log read requests should come from the output buffer or the active log. To satisfy requests
for back out, unit-of-recovery records are read from the in-storage buffer, the active log, and the
archived logs.

A long-running unit of recovery, extending over a period of many minutes, might have log records
spread across many different logs. This degrades performance because extra work has to be done to
recover the log records.

Action
Change the application to reduce the length of a unit of recovery. Also, consider increasing the size
of the active log to reduce the possibility of a single unit of recovery being spread out over more than
one log.

Other pointers
The ratio N logread /N logwrite gives an indication of how much work has to be backed out.

300 Monitoring and Performance for IBM MQ

Symptom 4
QJSTLLCP is more than 10 an hour.

Reason
On a busy system, you would expect to see typically 10 checkpoints an hour. If the QJSTLLCP value
is larger than this, it indicates a problem in the setup of the queue manager.

The most likely reason for this is that the LOGLOAD parameter in CSQ6SYSP is too small. The other
event that causes a checkpoint is when an active log fills up and switches to the next active log
data set. If your logs are too small, this can cause frequent checkpoints. The QJSTLLCP counter is
not incremented for log switch induced checkpoints; you must look in the JES logs for the queue
managers to determine if the rate log files are switched.

Action
Increase the LOGLOAD parameter, or increase the size of your log data sets as required.

Symptom 5
QJSTCmpFail > 0 or QJSTCmpComp not much less than QJSTCmpUncmp

Reason

The queue manager is unable to significantly compress log records.

QJSTCmpFail is the number of times the queue manager was unable to achieve any reduction in
record length. You should compare the number to QJSTCmpReq (number of compression requests)
to see if the number of failures is significant.

QJSTCmpComp is the total of compressed bytes written to the log and QJSTCmpUncmp is the total
bytes before compression. Neither total contains bytes written for log records that were not eligible
for compression. If the numbers are similar then compression has achieved little benefit.

Action
Turn off log compression. Issue the SET LOG COMPLOG(NONE) command. See the SET LOG
command for details.

Note: In the first set of statistics produced after system startup, there might be significant log activity due
to the resolution of in-flight units of recovery.

Message manager data records
Use this topic as a reference for message manager data records.

The format of the message manager statistics record is described in assembler macro
thlqual.SCSQMACS(CSQDQMST).

The data gives you counts of different IBM MQ API requests.

Data manager data records
Use this topic as a reference for the format of the Data Manager data records.

The format of the data manager statistics record is described in assembler macro
thlqual.SCSQMACS(CSQDQIST).

The data gives you counts of different object requests.

Buffer manager data records
Use this topic as a reference for the format of buffer manager data records.

The format of the buffer manager statistics record is described in assembler macro
thlqual.SCSQMACS(CSQDQPST).

Note: Buffer manager statistics records will only be created for buffer pools that are defined. If a buffer
pool is defined but not used then no values will be set and its buffer manager statistics record will not
contain any data.

Monitoring and performance 301

For information about efficiently managing your buffer pools, see “Managing your buffer pools” on page
303.

When interpreting the statistics, you are recommended to consider the following factors because the
values of these fields can be used to improve the performance of your system:

1. If QPSTSOS, QPSTDMC, or QPSTIMW is greater than zero, you should either increase the size of the
buffer pool or reallocate the page sets to different buffer pools.

• QPSTSOS is the number of times that there were no buffers available for page get requests. If
QPSTSOS ever becomes nonzero, it shows that IBM MQ is under severe stress. The buffer pool size
should be increased. If increasing the buffer pool size does not make the value of QPSTSOS zero,
there might be I/O contention on the DASD page sets.

• QPSTDMC is the number of updates that were performed synchronously because there was either
more than 95% of the pages in the buffer pool waiting for write I/O, or there was less than 5% of the
buffer pool available for read requests. If this number is not zero, the buffer pool might be too small
and should be enlarged. If increasing the buffer pool size does not reduce QPSTDMC to zero, there
might be I/O contention on the DASD page sets.

• QPSTIMW is a count of the number of times pages were written out synchronously. If QPSTDMC is
zero, QPSTIMW is the number of times pages were found on the queue waiting for write I/O that had
been there for at least two checkpoints.

2. For buffer pool zero and buffer pools that contain short-lived messages:

• QPSTDWT should be zero, and the percentage QPSTCBSL/QPSTNBUF should be greater than 15%.

QPSTDWT is the number of times the asynchronous write processor was started because there was
either more than 85% of the pages in the buffer pool waiting for write I/O, or there was less than
15% of the buffer pool available for read requests. Increasing the buffer pool size should reduce this
value. If it does not, the pattern of access is one of long delays between puts and gets.

• QPSTTPW might be greater than zero due to checkpointing activity.
• QPSTRIO should be zero unless messages are being read from a page set after the queue manager is

restarted.

The ratio of QPSTRIO to QPSTGETP shows the efficiency of page retrieval within the buffer pool.
Increasing the buffer pool size should decrease this ratio and, therefore, increase the page retrieval
efficiency. If this does not happen, it indicates that pages are not being frequently reaccessed. This
implies a transaction pattern where there is a long delay between messages being put and then later
retrieved.

The ratio of QPSTGETN to QPSTGETP indicates the number of times an empty page, as opposed to a
non-empty page, has been requested. This ratio is more an indication of transaction pattern, than a
value that can be used to tune the system.

• If QPSTSTL has a value greater than zero, this indicates that pages that have not been used before
are now being used. This might be caused by an increased message rate, messages not being
processed as fast as they were previously (leading to a buildup of messages), or larger messages
being used.

QPSTSTL is a count of the number of times a page access request did not find the page already in
the buffer pool. Again, the lower the ratio of QPSTSTL to (QPSTGETP + QPSTGETN) is, the higher the
page retrieval efficiency. Increasing the buffer pool size should decrease this ratio but, if it does not,
it is an indication that there are long delays between puts and gets.

• You are recommended to have sufficient buffers to handle your peak message rate.
3. For buffer pools with long-lived messages, where there are more messages than can fit into the buffer

pool:

• (QPSTRIO+QPSTWIO)/Statistics interval is the I/O rate to page sets. If this value is high, you should
consider using multiple page sets on different volumes to allow I/O to be carried out in parallel.

• Over the period of time that the messages are processed (for example, if messages are written to
a queue during the day and processed overnight) the number of read I/Os (QPSTRIO) should be

302 Monitoring and Performance for IBM MQ

approximately the total number of pages written (QPSTTPW). This shows that one page is read for
every page written.

If QPSTRIO is much larger than QPSTTPW, this shows that pages are being read in multiple times.
This might be a result of the application using MQGET by MsgId or CorrelId when the queue is not
indexed, or browsing messages on the queue using get next.

The following actions might relieve this problem:

a. Increase the size of the buffer pool so that there are enough pages to hold the queue, in addition
to any changed pages.

b. Use the INDXTYPE queue attribute, which allows a queue to be indexed by MsgId or CorrelId
and eliminates the need for a sequential scan of the queue.

c. Change the design of the application to eliminate the use of MQGET with MsgId or CorrelId, or
the get next with browse option.

Note: Applications using long-lived messages typically process the first available message and do
not use MQGET with MsgId or CorrelId, and they might browse only the first available message.

d. Move page sets to a different buffer pool to reduce contention between messages from different
applications.

Managing your buffer pools
To manage your buffer pools efficiently, you must consider the factors that affect the buffer pool I/O
operations and also the statistics associated with the buffer pools.

The following factors affect buffer pool I/O operations.

• If a page containing the required data is not found in the buffer pool, it is read in synchronously to an
available buffer from its DASD page set.

• Whenever a page is updated, it is put on an internal queue of pages to be (potentially) written out to
DASD. This means that the buffer used by that page is unavailable for use by any other page until the
buffer has been written to DASD.

• If the number of pages queued to be written to DASD exceeds 85% of the total number of buffers in the
pool, an asynchronous write processor is started to put the buffers to DASD.

Similarly, if the number of buffers available for page get requests become less than 15% of the total
number of buffers in the pool, the asynchronous write processor is started to perform the write I/O
operations.

The write processor stops when the number of pages queued to be written to DASD has fallen to 75% of
the total number of buffers in the pool.

• If the number of pages queued for writing to DASD exceeds 95% of the total number of buffers in the
pool, all updates result in a synchronous write of the page to DASD.

Similarly, if the number of buffers available for page get requests becomes less than 5% of the total
number of buffers in the pool, all updates result in a synchronous write of the page to DASD.

• If the number of buffers available for page get requests ever reaches zero, a transaction that encounters
this condition is suspended until the asynchronous write processor has finished.

• If a page is frequently updated, the page spends most of its time on the queue of pages waiting to
be written to DASD. Because this queue is in least recently used order, it is possible that a frequently
updated page placed on this least recently used queue is never written out to DASD. For this reason, at
the time of update, if the page is found to have been waiting on the write operation to DASD queue for
at least two checkpoints, it is synchronously written to DASD. Updating occurs at checkpoint time and is
suspended until the asynchronous write processor has finished.

The aim of this algorithm is to maximize the time pages spend in buffer pool memory while allowing the
system to function if the system load puts the buffer pool usage under stress.

Monitoring and performance 303

Lock manager data records
Use this topic as a reference to the format of the lock manager data records.

The format of the lock manager statistics record is described in assembler macro
thlqual.SCSQMACS(CSQDQLST).

The records contain data about the following information:

• The number of lock get requests and lock release requests.
• The number of times a lock get request determined that the requested lock was already held.

Db2 manager data records
Use this topic as a reference to the format of the Db2 manager data records.

The format of the Db2 manager statistics record is described in the following table and in assembler
macro thlqual.SCSQMACS(CSQDQ5ST) and C header file thlqual.SCSQC370(CSQDSMFC). The field names
in C are all in lowercase, for example q5st, q5stid.

If the queue manager was not started as a member of a queue-sharing group, no data is recorded in this
record.

Table 36. Db2 statistics record (Q5ST)

Offset:
Dec

Offset:
Hex Type Len Name Description

0 0 Structure 668 Q5ST Db2 manager statistics

0 0 Bitstring 2 Q5STID Control block identifier

2 2 Integer 2 Q5STLL Control block length

4 4 Character 4 Q5STEYEC Control block eye catcher

8 8 Character 660 Q5STZERO QMST part cleared on occasion

8 8 Integer 4 NUMTASK Number of server tasks

12 C Integer 4 ACTTASK Number of active server tasks

16 10 Integer 4 CONNCNT Number of connect requests

20 14 Integer 4 DISCCNT Number of disconnect requests

24 18 Integer 4 DHIGMAX Max. request queue depth

28 1C Integer 4 ABNDCNT Number of Db2SRV task abends

32 20 Integer 4 REQUCNT Number of requests requeued

36 24 Integer 4 DEADCNT Number of deadlock timeouts

40 28 Integer 4 DELECNT Number of delete requests

44 2C Integer 4 LISTCNT Number of list requests

48 30 Integer 4 READCNT Number of read requests

52 34 Integer 4 UPDTCNT Number of update requests

56 38 Integer 4 WRITCNT Number of write requests

60 3C Integer 4 SCSSEL SCST (shared-channel-status) selects

64 40 Integer 4 SCSINS SCST inserts

68 44 Integer 4 SCSUPD SCST updates

304 Monitoring and Performance for IBM MQ

Table 36. Db2 statistics record (Q5ST) (continued)

Offset:
Dec

Offset:
Hex Type Len Name Description

72 48 Integer 4 SCSDEL SCST deletes

76 4C Integer 4 SSKSEL SSKT (shared-sync-key) selects

80 50 Integer 4 SSKINS SSKT inserts

84 54 Integer 4 SSKDEL SSKT deletes

88 58 Integer 4 SCSBFTS SCST number of times buffer too small

92 5C Integer 4 SCSMAXR SCST maximum rows on query

96 60 Integer 4 * (2) Reserved

104 68 Character 8 DELETCUW Cumulative STCK difference - Thread delete

112 70 Character 8 DELETMXW Maximum STCK difference - Thread delete

120 78 Character 8 DELESCUW Cumulative STCK difference - SQL delete

128 80 Character 8 DELESMXW Maximum STCK difference - SQL delete

136 88 Character 8 LISTTCUW Cumulative STCK difference - Thread list

144 90 Character 8 LISTTMXW Maximum STCK difference - Thread list

152 98 Character 8 LISTSCUW Cumulative STCK difference - SQL list

160 A0 Character 8 LISTSMXW Maximum STCK difference - SQL list

168 A8 Character 8 READTCUW Cumulative STCK difference - Thread read

17 6 B0 Character 8 READTMXW Maximum STCK difference - Thread read

184 B8 Character 8 READSCUW Cumulative STCK difference - SQL read

192 C0 Character 8 READSMXW Maximum STCK difference - SQL read

200 C8 Character 8 UPDTTCUW Cumulative STCK difference - Thread update

208 D0 Character 8 UPDTTMXW Maximum STCK difference - Thread update

216 D8 Character 8 UPDTSCUW Cumulative STCK difference - SQL update

224 E0 Character 8 UPDTSMXW Maximum STCK difference - SQL update

232 E8 Character 8 WRITTCUW Cumulative STCK difference - Thread write

240 F0 Character 8 WRITTMXW Maximum STCK difference - Thread write

248 F8 Character 8 WRITSCUW Cumulative STCK difference - SQL write

256 100 Character 8 WRITSMXW Maximum STCK difference - SQL write

264 108 Character 8 SCSSTCUW Cumulative STCK difference - Thread select

272 110 Character 8 SCSSTMXW Maximum STCK difference - Thread select

280 118 Character 8 SCSSSCUW Cumulative STCK difference - SQL select

288 120 Character 8 SCSSSMXW Maximum STCK difference - SQL select

296 128 Character 8 SCSITCUW Cumulative STCK difference - Thread insert

304 130 Character 8 SCSITMXW Maximum STCK difference - Thread insert

312 138 Character 8 SCSISCUW Cumulative STCK difference - SQL insert

Monitoring and performance 305

Table 36. Db2 statistics record (Q5ST) (continued)

Offset:
Dec

Offset:
Hex Type Len Name Description

320 140 Character 8 SCSISMXW Maximum STCK difference - SQL insert

328 148 Character 8 SCSUTCUW Cumulative STCK difference - Thread update

336 150 Character 8 SCSUTMXW Maximum STCK difference - Thread update

344 158 Character 8 SCSUSCUW Cumulative STCK difference - SQL update

352 160 Character 8 SCSUSMXW Maximum STCK difference - SQL update

360 168 Character 8 SCSDTCUW Cumulative STCK difference - Thread delete

368 170 Character 8 SCSDTMXW Maximum STCK difference - Thread delete

376 178 Character 8 SCSDSCUW Cumulative STCK difference - SQL delete

384 180 Character 8 SCSDSMXW Maximum STCK difference - SQL delete

392 188 Character 8 SSKSTCUW Cumulative STCK difference - Thread select

400 190 Character 8 SSKSTMXW Maximum STCK difference - Thread select

408 198 Character 8 SSKSSCUW Cumulative STCK difference - SQL select

416 1A0 Character 8 SSKSSMXW Maximum STCK difference - SQL select

424 1A8 Character 8 SSKITCUW Cumulative STCK difference - Thread insert

432 1B0 Character 8 SSKITMXW Maximum STCK difference - Thread insert

440 1B8 Character 8 SSKISCUW Cumulative STCK difference - SQL insert

448 1C0 Character 8 SSKISMXW Maximum STCK difference - SQL insert

456 1C8 Character 8 SSKDTCUW Cumulative STCK difference - Thread delete

464 1D0 Character 8 SSKDTMXW Maximum STCK difference - Thread delete

472 1D8 Character 8 SSKDSCUW Cumulative STCK difference - SQL delete

480 1E0 Character 8 SSKDSMXW Maximum STCK difference - SQL delete

488 1E8 Integer 4 LMSSEL Number of Db2 BLOB read requests

492 1EC Integer 4 LMSINS Number of Db2 BLOB insert requests

496 1F0 Integer 4 LMSUPD Number of Db2 BLOB update requests

500 1F4 Integer 4 LMSDEL Number of Db2 BLOB delete requests

504 1F8 Integer 4 LMSLIS Number of Db2 BLOB list requests

508 IFC 64 bit
integer

8 LMSSTCUW Total elapsed time for all thread read BLOB
requests

516 204 64 bit
integer

8 LMSSTMXW Maximum elapsed time for a thread read
BLOB request

524 20C 64 bit
integer

8 LMSSSCUW Total elapsed time for all SQL read BLOB
requests

532 214 64 bit
integer

8 LMSSSMXW Maximum elapsed time for an SQL read BLOB
request

306 Monitoring and Performance for IBM MQ

Table 36. Db2 statistics record (Q5ST) (continued)

Offset:
Dec

Offset:
Hex Type Len Name Description

540 21C 64 bit
integer

8 LMSITCUW Total elapsed time for all thread insert BLOB
requests

548 224 64 bit
integer

8 LMSITMXW Maximum elapsed time for a thread insert
BLOB request

556 22C 64 bit
integer

8 LMSISCUW Total elapsed time for all SQL insert BLOB
requests

564 234 64 bit
integer

8 LMSISMXW Maximum elapsed time for an SQL insert
BLOB request

572 23C 64 bit
integer

8 LMSUTCUW Total elapsed time for all thread update BLOB
requests

580 244 64 bit
integer

8 LMSUTMXW Maximum elapsed time for a thread update
BLOB request

588 24C 64 bit
integer

8 LMSUSCUW Total elapsed time for all SQL update BLOB
requests

596 254 64 bit
integer

8 LMSUSMXW Maximum elapsed time for an SQL update
BLOB request

604 25C 64 bit
integer

8 LMSDTCUW Total elapsed time for all thread delete BLOB
requests

612 264 64 bit
integer

8 LMSDTMXW Maximum elapsed time for a thread delete
BLOB request

620 26C 64 bit
integer

8 LMSDSCUW Total elapsed time for all SQL delete BLOB
requests

628 274 64 bit
integer

8 LMSDSMXW Maximum elapsed time for an SQL delete
BLOB request

636 27C 64 bit
integer

8 LMSLTCUW Total elapsed time for all thread list BLOB
requests

644 284 64 bit
integer

8 LMSLTMXW Maximum elapsed time for a thread list BLOB
request

652 28C 64 bit
integer

8 LMSLSCUW Total elapsed time for all SQL list BLOB
requests

660 294 64 bit
integer

8 LMSLSMXW Maximum elapsed time for an SQL list BLOB
request

The data contains counts for each request type that the Db2 resource manager supports. For these
request types, maximum and cumulative elapse times are kept for the following:

• The time spent in the Db2 resource manager as a whole (called the thread time).
• The time that was spent performing the RRSAF and SQL parts of the request (a subset of the thread

time called the SQL time).

Information is also provided for:

• The number of server tasks attached.
• The maximum overall request depth against any of the server tasks.
• The number of times any of the server task requests terminated abnormally.

Monitoring and performance 307

If the abnormal termination count is not zero, a requeue count is provided indicating the number of
queued requests that were requeued to other server tasks as a result of the abnormal termination.

If the average thread time is significantly greater that the average SQL time, this might indicate that
thread requests are spending an excessive amount of time waiting for a server task to process the SQL
part of the request. If this is the case, examine the DHIGMAX field and, if the value is greater than
one, consider increasing the number of Db2 server tasks specified in the QSGDATA parameter of the
CSQ6SYSP system parameter macro.

Coupling facility manager data records
Use this topic as a reference to the format of the coupling facility manager data records.

The format of the coupling facility manager statistics record is described in the following table and in
assembler macro thlqual. SCSQMACS(CSQDQEST) and C header file thlqual.SCSQC370(CSQDSMFC). The
field names in C are all in lowercase, for example qest, qestid.

If the queue manager was not started as a member of a queue-sharing group, no data is recorded in this
record.

Table 37. Coupling facility statistics record (QEST)

Offset: Dec Offset: Hex Type Len Name Description

0 0 Structure 4104 QEST CF manager statistics

0 0 Bitstring 2 QESTID Control block identifier

2 2 Integer 2 QESTLL Control block length

4 4 Character 4 QESTEYEC Control block eye catcher

8 8 Character 4096 QESTZERO QEST part cleared on occasion

8 8 Character 64 QESTSTUC
(0:63)

Array (one entry per structure)

8 8 Character 12 QESTSTR Structure name

20 14 Integer 4 QESTSTRN Structure number

24 18 Integer 4 QESTCSEC Number of IXLLSTE calls

28 1C Integer 4 QESTCMEC Number of IXLLSTM calls

32 20 Character 8 QESTSSTC Time spent doing IXLLSTE
calls

40 28 Character 8 QESTMSTC Time spent doing IXLLSTM
calls

48 30 Integer 4 QESTRSEC Number of IXLLSTE redrives

52 34 Integer 4 QESTRMEC Number of IXLLSTM redrives

56 38 Integer 4 QESTSFUL Number of structure fulls

60 3C Integer 4 QESTMNUS Maximum number of entries
in use

64 40 Integer 4 QESTMLUS Maximum number of
elements in use

68 44 Character 4 * Reserved

4104 1008 Character 0 * End of control block

308 Monitoring and Performance for IBM MQ

The data contains information for each coupling facility list structure, including the CSQ_ADMIN structure,
that the queue manager could connect to during the statistics interval. The information for each structure
includes the following:

• The number of and cumulative elapsed times for IXLLSTE and IXLLSTM requests.
• The number of times a request had to be retried because of a timeout.
• The number of times a 'structure full' condition occurred.

Topic manager data records
Use this topic as a reference to the format of the topic manager data records.

The format of the Topic manager statistics record is described in the following table and in assembler
macro thlqual.SCSQMACS(CSQDQTST) and C header file thlqual.SCSQC370(CSQDSMFC). The field names
in C are all in lowercase, for example qtst, qtstid.

Table 38. Topic manager statistics record (QTST)

Offset: Dec Offset: Hex Type Len Name Description

0 0 Structure 96 QTST Topic manager statistics

0 0 Bitstring 2 QTSTID Control block identifier

2 2 Integer 2 QTSTLL Control block length

4 4 Character 4 TESTEYEC Control block eye catcher

8 8 Character 88 QTSTZERO QTST part cleared on occasion

8 8 Integer 4 QTSTSTOT Total subscription requests

12 0C Integer 4 QTSTSDUR Durable subscription requests

16 10 Integer 4 QTSTSHIG (1:3) Subscription high water mark
array (API, ADMIN, PROXY)

28 1C Integer 4 QTSTSLOW (1:3) Subscription low water mark
array (API, ADMIN, PROXY)

40 28 Integer 4 QTSTSEXP Subscriptions expired

44 2C Integer 4 QTSTTMSG Total messages put to Sub
queue

48 30 Integer 4 QTSTSPHW Single publish subscriber high
water mark

52 34 Integer 4 QTSTPTOT (1:3) Total Publication requests
(API, ADMIN, PROXY)

64 40 Integer 4 QTSTPTHI Total publish high water mark

68 44 Integer 4 QTSTPTLO Total publish low water mark

72 48 Integer 4 QTSTPNOS Count of publishes to no
subscriber

76 4C Integer 4 * Reserved

80 50 Bitstring 8 QTSTETHW Elapse time HW on publish

88 58 Bitstring 8 QTSTETTO Elapse time total on publish

Monitoring and performance 309

Coupling facility manager SMDS data records
Use this topic as a reference to the format of the coupling facility manager shared message data set
(SMDS) data records.

The format of the coupling facility manager shared message data set (SMDS) statistics record is described
in assembler macro thlqual.SCSQMACS(CSQDQESD), C header file thlqual.SCSQC370(CSQDSMFC) and in
IBM MQ SupportPac MP1B.

The statistics provide information about the utilization of the owned shared message data set, I/O activity
for the group of shared message data sets, and SMDS buffer utilization.

If the queue manager was not started as a member of a queue-sharing group, no data is recorded in this
record.

Layout of SMF records for the channel initiator
The layouts of channel accounting data (SMF type 116, subtype 10) and channel initiator statistics data
(SMF type 115 , subtype 231 records) are described in this topic.

Processing the SMF data for the CHINIT
The data written to SMF is in the standard triplet format.

Accounting data SMF type 116, subtype 10
There is the standard SMF header.

The triplets are mapped by qws5 in csqdsmfc.h and csqdqws5.macro, and have the following layout:

4 bytes offset to the QWHS
2 bytes length of the QWHS
2 bytes count of the number of instances of QWHS
4 bytes offset to the QCST
2 bytes length of the QCST
2 bytes count of the number of instances of QCST

The QWHS mapped is mapped by csqdqwhs.macro and csqdsmfc.h, and has the following key fields:

• qwhsnsda 1 byte, count of the number of self defining section.
• qwhssmfc 1 bit. If this is on there are multiple SMF records containing information for this interval. If

this is off, this is the last or only record.
• Qwhstime 8 bytes in STCK format. The local time of the start of the interval.
• qwhsdurn 8 bytes in STCK format. The duration from the start of the interval to the end of the interval.
• Qwhsstck 8 bytes STCK format. The end of the interval in GMT.

The QCST is mapped by csqdsmfc.h and csqdqcst.macro.

Statistics data SMF type 115, subtype 231
There is the standard SMF header.

The triplets are mapped by qwsx in csqdsmfc.h and csqdqwsx.macro, and have the following layout:

4 bytes offset to the QWHS
2 bytes length of the QWHS
2 bytes count of the number of instances of QWHS

CHINIT Control Information, number of channels. and so on is mapped by csqdsmfc.h and
csqdqcct.macro:

4 bytes offset to the QCCT

310 Monitoring and Performance for IBM MQ

https://www.ibm.com/support/docview.wss?uid=swg24005907

2 bytes length of the QCCT
2 bytes count of the number of instances of the QCCT

Dispatcher tasks are mapped by csqdsmfc.h and the QCT_DSP structure in the CSQDQCTA macro:

4 bytes offset to the QCT_DSP
2 bytes length of the QCT_DSP
2 bytes count of the number of instances of the QCT_DSP

Adapter tasks are mapped by csqdsmfc.h and the QCT_ADP structure in the CSQDQCTA macro:

4 bytes offset to the QCT_ADP
2 bytes length of the QCT_ADP
2 bytes count of the number of instances of QCT_ADP

SSL tasks are mapped by csqdsmfc.h and the QCT_SSL structure in the CSQDQCTA macro:

4 bytes offset to the QCT_SSL
2 bytes length of the QCT_SSL
2 bytes count of the number of instances of QCT_SSL

DNS task is mapped by csqdsmfc.h and the QCT_DNS structure in the CSQDQCTA macro:

4 bytes offset to the QCT_DNS
2 bytes length of the QCT_DNS
2 bytes count of the number of instances of QCT_DNS

Typically one record contains all the data. If there are a large number of dispatchers, adapters, or SSL
tasks, the data is split over more than one record.

If this happens, the count of instances of the dispatchers can be zero, and information about a group of
TCBs can be spread across multiple records. For example the number of instances can look like this:

Table 39. Example data

Count First record Last record

QWHS 1 1

QCCT 1 0

QDSP 50 5

QADP 0 10

QSSL 0 3

QDNS 0 1

This example shows that there were 55 dispatcher TCBs within the SMF interval.

The field qwhs.qwhssmfc indicates a continuation. If this bit is on, there are multiple SMF records
containing information for this interval. If this bit is off, this is the last or only record.

Channel initiator statistics data records
Use this topic as a reference for channel initiator statistics data records.

The format of the channel initiator statistics data record contains two parts:

• The first part is the channel initiator control information block, described in assembler macro
thlqual.SCSQMACS(CSQDQCCT). For further information, see“Channel initiator control information
block” on page 312.

• The second part is the channel initiator task block, described in assembler macro
thlqual.SCSQMACS(CSQDQCTA).

Monitoring and performance 311

The channel initiator task block contains information about the four types of task within the CHINIT. For
further information, see:

– “Dispatcher tasks” on page 313
– “Adapter tasks” on page 314
– “Domain Name Server (DNS) task” on page 315
– “SSL tasks” on page 315

Each task includes:

– The elapsed time the task was active in the interval (qcteltm)
– How much CPU time was using in the interval (qctcptm)
– Total wait time of this task in the interval (qctwttm)
– The number of requests in the interval (qctreqn)

You can use this information to see how busy the task was, and determine whether you need to add
more tasks based on the analysis.

For SSL and DNS tasks, the duration of the longest request (qctlgdu, qctlsdu) and the time of day when
this occurred (qctlgdm, qctlsdm) are also included.

These can be useful to identify when channel requests took a long time. For example, a DNS lookup
request going to a server outside of your enterprise taking seconds rather than milliseconds.

The example accounting data in the following tasks has been formatted using IBM MQ SupportPac
MP1B.

Both of the parts are also described in the C programming language header file
thlqual.SCSQC370(CSQDSMFC). Note that the field names in C are all in lowercase, for example, qcct,
qct_adp.

Channel initiator control information block
Use this topic as a reference for the channel initiator control information block.

The channel initiator control information block contains basic information for this CHINIT, including:

• CHINIT job name (qcctjobn)
• QSG name if it is in a QSG (qcctqsgn)
• Peak number used of current channels (qcctnocc)
• Peak number used of active channels (qcctnoac)
• MAXCHL - maximum permitted current channels (qcctmxcc)
• ACTCHL - maximum permitted active channels (qcctmxac)
• TCPCHL - maximum permitted TCP/IP channels (qcctmxtp)
• LU62CHL - maximum permitted LU62 channels (qcctmxlu)
• Storage used by CHINIT in the extended private region (qcctstus). This information is also provided by

the CSQX004I message in the CHINIT job log.

You can use this information to see if the number of active channels is approaching the configured
maximum value. Note that the number of current and active channels are the values when the record was
created. So, between the two intervals there might have been more than this number of channels active.

Channel information from SMF data
Here is an example of channel information from SMF data:

MVCA,MQPV,2014/03/18,13:00:00,VRM:800,
From 2014/03/18,12:45:00.015222 to 2014/03/18,13:00:00.083630 duration 900.068408 seconds
Peak number used of current channels........... 1
Peak number used of active channels 1
MAXCHL. Max allowed current channels...........9999

312 Monitoring and Performance for IBM MQ

https://www.ibm.com/support/docview.wss?uid=swg24005907

ACTCHL. Max allowed active channels............9999
TCPCHL. Max allowed TCP/IP channels............9999
LU62CHL. Max allowed LU62 channels............. 200
Storage used by Chinit......................... 436MB

You can monitor the storage usage and see whether the value is trending upwards. If the total used is
approaching the total storage available, you might be running out of storage, and so might not be able to
support many more channels.

If the numbers of active current channels are tending towards the maximum number of channels, you
might need to increase the maximum number of channels.

Dispatcher tasks
Example data for the dispatcher tasks, and information about how to interpret the data.

Example data
Task, Type, Requests, Busy %, CPU used, CPU %, "avg CPU", "avg ET"
 , , , , Seconds, , uSeconds, uSeconds
 0, DISP, 26587, 0.4, 0.592463, 0.1, 22, 127
 1, DISP, 26963, 0.3, 0.588092, 0.1, 22, 112
 2, DISP, 864329, 2.7, 2.545668, 0.3, 3, 28
 3, DISP, 26875, 0.4, 0.590825, 0.1, 22, 120
 4, DISP, 26874, 0.4, 0.603285, 0.1, 22, 123
Summ, DISP, 971628, 0.8, 4.920332, 0.1, 5, 38

The example data shows that there were five dispatchers. A channel is associated with a dispatcher, and
the work is distributed across all the dispatchers. This example shows that one dispatcher is processing
more requests than other dispatchers. This is normal, as some channels might stop, so the dispatcher is
processing fewer channels, and some channels can be busier than others.

• 4.9 seconds of CPU were used by the dispatchers.
• The average request used 5 microseconds of CPU and took 38 microseconds elapsed time.
• A dispatcher is used to send and receive data over a communications network, and this is not usually

dependent on external events. The average elapsed time should, therefore, be close to the average
CPU time used. If the CHINIT is delayed due to lack of CPU, then the ratio of average Elapsed Time to
average CPU time is much larger, compared to when the CHINIT is not delayed for CPU.

• The average CPU used per request depends on the message traffic, for example, bigger messages use
more CPU than smaller messages.

The fields are calculated from:

• Duration: qwhs.qwhsdurn
• Requests : qctreqn
• Busy %: qcteltm and duration
• CPU used: qctcptm
• CPU %: qctcptm and duration
• Average CPU: qctcptm and qctreqn
• Average ET: qcteltm and qctreqn

Usually, the number of dispatchers should be less than, or equal to, the number of processors in the LPAR.
If you have more dispatchers than processors in the LPAR they might compete for CPU resources. For
more information about tuning your system, see SupportPac MP16.

Channels have an affinity to a dispatcher, so you might find that some dispatchers process many more
requests than another dispatcher.

You can use the ALTER QMGR CHIDISPS() command to change the number of dispatchers used. Any
change comes into effect the next time the CHINIT is started.

Monitoring and performance 313

https://www.ibm.com/support/docview.wss?uid=swg24007421

Adapter tasks
Example data for the adapter tasks, and information about how to interpret the data.

Example data
Task, Type, Requests, Busy %, CPU used, CPU %, "avg CPU", "avg ET"
 , , , , Seconds, , uSeconds, uSeconds
 0, ADAP, 470297, 10.2, 41.290670, 4.6, 88, 194
 1, ADAP, 13907, 0.6, 1.589428, 0.2, 114, 365
 2, ADAP, 2517, 0.2, 0.185325, 0.0, 74, 746
 3, ADAP, 1095, 0.1, 0.085774, 0.0, 78, 907
 4, ADAP, 535, 0.1, 0.040743, 0.0, 76, 947
 5, ADAP, 220, 0.0, 0.016228, 0.0, 74, 1175
 6, ADAP, 82, 0.0, 0.005521, 0.0, 67, 1786
 7, ADAP, 80, 0.0, 0.004248, 0.0, 53, 1160
Summ, ADAP, 488733, 1.4, 43.217938, 0.6, 88, 205

The fields are calculated from:

• Duration: qwhs.qwhsdurn
• Requests: qctreqn
• Busy %: qcteltm and duration
• CPU used: qctcptm
• CPU %: qctcptm and duration
• Average CPU: qctcptm and qctreqn average
• ET: qcteltm and qctreqn

This example shows that there were eight adapter tasks.
Adapter number 0

• Processed the majority of the requests (470297 out of 488733)
• Was busy 10.2% of the interval
• Used 41.3 seconds of CPU

Overall
The average CPU per request was 88 microseconds of CPU and took 205 microseconds

The adapters process IBM MQ requests. Some of these requests might wait, for example, for log I/O
during a commit, so the average Elapsed Time per request has little meaning.

When an IBM MQ request is made the first free adapter task is used.

• If there is at least one adapter that has been little used (less than 1%) busy, you have enough adapters.
• If at least one adapter was not used, you have enough adapters defined.
• If all the adapters were used, you might need to allocate more adapters.
• If all of the adapters were used, and they were all busy for most of the interval, you need to allocate

more adapters.

You can use the ALTER QMGR CHIADAPS() command to change the number of adapters used. Any
changes come into effect the next time the CHINIT is started.

Attention: If there are too many adapters acting on a small set of queues, you might get
contention within the queue manager.

Related reference
ALTER QMGR

314 Monitoring and Performance for IBM MQ

Domain Name Server (DNS) task
Example data for the DNS tasks, and information about how to interpret the data.

Task, Type, Requests, Busy %, CPU used, CPU %, "avg CPU", "avg ET", longest,
date, time
 , , , , Seconds, , uSeconds, uSeconds, uSeconds, ,
 0, DNS, 14002, 0.0, 0.122578, 0.0, 9, 11, 463, 2014/03/18,
12:56:33.987671
Summ, DNS, 14002, 0.0, 0.122578, 0.0, 9, 11, 463, 2014/03/18,
12:56:33.987671

The CHINIT uses a single DNS task. The example shows that the task processed 14002 requests and on
average the request used 9 microseconds of CPU and took 11 microseconds of elapsed time.

The longest DNS request took 463 microseconds elapsed time, and this occurred at 12:56:33 local time.

The fields are calculated from:

• Duration: qwhs.qwhsdurn
• Requests : qctreqn
• Busy %: qcteltm and duration
• CPU used: qctcptm
• CPU %: qctcptm and duration
• Average CPU: qctcptm and qctreqn
• Average ET: qcteltm and qctreqn
• Longest: qctlgdu
• Longest at: qctlgtm

The DNS task can go out of your enterprise to look up the IP address associated with a name. If the
average Elapsed time is significantly more than the average CPU time used, you might have some long
requests.

If the value of the longest request time is unacceptable you should work with your network team
to investigate why you are having long requests. It might be that you have an invalid name in your
connections.

If the DNS task is busy for 25% of the duration, consider investigating the cause further.

Note: There are requests to the DNS task that are not DNS lookups, so you might have the number of
requests being greater than zero - but no longest request information.

SSL tasks
Example data for the SSL tasks, and information about how to interpret the data.

Example data
Task, Type, Requests, Busy %, CPU used, CPU %, "avg CPU", "avg ET", longest,
date, time
 , , , , Seconds, , uSeconds, uSeconds, uSeconds, ,
 0, SSL, 3112, 1.2, 0.248538, 0.3, 80, 362, 8864, 2014/03/18,
12:46:40.237697
 1, SSL, 3070, 1.2, 0.245433, 0.3, 80, 359, 4714, 2014/03/18,
12:46:18.938022
 2, SSL, 3170, 1.2, 0.255557, 0.3, 81, 362, 7273, 2014/03/18,
12:46:35.358145
 3, SSL, 3060, 1.2, 0.246542, 0.3, 81, 365, 13164, 2014/03/18,
12:46:44.514045
 4, SSL, 3120, 1.3, 0.251927, 0.3, 81, 373, 22438, 2014/03/18,
12:46:22.134123
Summ, SSL, 15532, 1.2, 1.247998, 0.3, 80, 364, 22438, 2014/03/18,
12:46:22.134123

Monitoring and performance 315

This example data shows that the average request took 364 microseconds. The longest request was for
SSL task 4, took 22,438 microseconds, and occurred at 12:46:22.134123 local time.

The fields are calculated from:

• Duration: qwhs.qwhsdurn
• Requests : qctreqn
• Busy %: qcteltm and duration
• CPU used: qctcptm
• CPU %: qctcptm and duration
• Average CPU: qctcptm and qctreqn
• Average ET: qcteltm and qctreqn
• Longest: qctlsdu longest at: qctlstm

A running channel is associated with an SSL task, in a similar way that a channel is associated with a
dispatcher. The SSL tasks can use the cryptographic coprocessors available to the LPAR. So, the elapsed
time can include time spent on a coprocessor. You should monitor the average elapsed time throughout
the day. If this time increases significantly during peak periods you should work with your MVS systems
programmers, as your coprocessors might be over utilized.

If the SSL tasks are busy for a significant proportion of the interval, increasing the number of SSL tasks
might help. If the SSL tasks are waiting for external resources such as a coprocesor, increasing the
number of SSL tasks has little effect.

You can use the ALTER QMGR SSLTASKS() command to change the number of SSL tasks used. Any
changes come into effect the next time the CHINIT is started.

Related reference
ALTER QMGR

Interpreting IBM MQ accounting data
IBM MQ accounting data is written as SMF type 116 records. Use this topic as a reference to the different
types of accounting data records.

IBM MQ accounting information can be collected for the following subtypes:
0

Message manager accounting records (how much processor time was spent processing IBM MQ API
calls and the number of MQPUT and MQGET calls). This information is produced when a named task
disconnects from IBM MQ, and so the information contained within the record might cover many
hours.

1
Accounting data for each task, at thread and queue level.

2
Additional queue-level accounting data (if the task used more queues than could fit in the subtype 1
record).

10
Accounting data for channels.

Note: Accounting information for specific channels can be enabled or suppressed by the STATCHL
channel attribute, and the STATACLS queue manager attribute.

Note that:

• Subtype 0 is produced with trace class(1)
• Subtypes 1 and 2 are produced with trace class(3)
• Subtype 10 is produced with accounting trace class(4)

Subtype

316 Monitoring and Performance for IBM MQ

Layout of an SMF type 116 record
Use this topic as a reference to the format of an SMF type record.

The standard layout for SMF records involves three parts:
SMF header

Provides format, identification, and time and date information about the record itself.
Self-defining section

Defines the location and size of the individual data records within the SMF record.
Data records

The actual data from IBM MQ that you want to analyze.
For more information about SMF record formats, see the MVS System Management Facilities (SMF)
manual.

The SMF header

Table 40 on page 317 shows the format of SMF record header (SM116).

Table 40. SMF record header description

Offset
: Dec

Offset:
Hex

Type Len Name Description Example

0 0 Structure 28 SM116 SMF record header.

0 0 Integer 2 SM116LEN SMF record length. 01A4

2 2 2 Reserved.

4 4 Integer 1 SM116FLG System indicator. 5E

5 5 Integer 1 SM116RTY Record type. The SMF record type,
for IBM MQ accounting records this is
always 116 (X'74').

74

6 6 Integer 4 SM116TME Time when SMF moved record. 00356124

10 A Integer 4 SM116DTE Date when SMF moved record. 0100223F

14 E Character 4 SM116SID z/OS subsystem ID. Defines the z/OS
subsystem on which the records were
collected.

D4E5F4F1
(MV41)

18 12 Character 4 SM116SSI IBM MQ subsystem ID. D4D8F0F7
(MQ07)

22 16 Integer 2 SM116STF Record subtype. 0000

24 18 Character 3 SM116REL IBM MQ version. F6F0F0 (600)

27 1B 1 Reserved.

28 1C Character 0 SM116END End of SMF header and start of self-
defining section.

Note: The (hexadecimal) values in the right-hand column relate to Figure 22 on page 319.

Self-defining sections

Monitoring and performance 317

A self-defining section of an SMF record tells you where to find an accounting record, how long it is, and
how many times that type of record is repeated (with different values). The self-defining sections follow
the header, at a fixed offset from the start of the SMF record.

Each self-defining section points to accounting related data. Table 41 on page 318 summarizes the
offsets from the start of the SMF record header.

Table 41. Offsets to self-defining sections

Record subtype
(SMF116STF)

Source of accounting
data

Offset of self-defining section See...

Dec Hex

All Common header 28 X'1C' “Common IBM MQ
SMF header” on page
320

0 Message manager 44 X'2C' “Message manager
data records” on page
322

1 Thread identification
record

36 X'24' “Thread-level and
queue-level data
records” on page 322

1 Thread-level accounting 44 X'2C' “Thread-level and
queue-level data
records” on page 322

1 Queue-level accounting 52 X'34' “Thread-level and
queue-level data
records” on page
322. This section
is present only if
the WTASWQCT field
in the task-related
information (WTAS)
structure is non-zero.

2 Thread identification
record

36 X'24' “Thread-level and
queue-level data
records” on page 322

2 Queue-level accounting 44 X'2C' “Thread-level and
queue-level data
records” on page 322

10 Channel accounting “Channel accounting
data records” on page
325

Note: Other self-defining sections refer to data for IBM use only.

Each self-defining section is two fullwords long and has this format:

 ssssssssllllnnnn

where:
ssssssss

Fullword containing the offset from start of the SMF record.
llll

Halfword giving the length of this data record.

318 Monitoring and Performance for IBM MQ

nnnn
Halfword giving the number of data records in this SMF record.

Figure 22 on page 319 shows an example of part of an SMF type 116 record. The numbers in the left-hand
column represent the offset, in hexadecimal, from the start of the record. Each line corresponds to sixteen
bytes of data, where each byte is two hexadecimal characters, for example 0C. The characters in the
right-hand column represent the printable characters for each byte. Non-printable characters are shown
by a period (.) character.

In this example, alternate fields in the SMF header are underlined to help you to see them; refer to Table
40 on page 317 to identify them. The self defining section for one of the message manager accounting
data records (at the offset given in Table 41 on page 318) is shown in bold.

000000 01A40000 5E740035 61240100 223FD4E5 *....;.../.....MV*
000000 F4F1D4D8 F0F70000 F6F0F000 00000134 *41MQ07..600.....*
000000 00700001 00000054 00B00001 00000104 *................*
000000 00300001 00000000 00000000 00000000 *................*
000000 00000000 00000000 00000000 00000000 *................*

Figure 22. Part of an SMF record 116 showing the header and self-defining sections

The self-defining section for the type of message manager accounting data is located at offset X'2C' from
the start of the SMF record and contains this information:

• The offset of the message manager accounting data is located X'00000104' bytes from the start of the
SMF record.

• This message manager record is X'0030' bytes long.
• There is one record (X'0001').

Note: Always use offsets in the self-defining sections to locate the accounting records.

Processing type 116 SMF records
Use this topic as a reference to the format of the processing type accounting record.

Any accounting data you collect from SMF must be processed to extract useful information. When you
process the data, verify that the records are from IBM MQ and that they are the records you are expecting.

Validate the value of the following fields:

• SM116RTY, the SMF record number = X'74' (116)
• SM116STF, the record subtype, must be 0000, 0001, 0002, or 0010

Reading from the active SMF data sets (or SMF logstreams) is not supported. You must use the SMF
program IFASMFDP (or IFASMFDL if logstreams are being used) to dump SMF records to a sequential
data set so that they can be processed. For more information see “Using System Management Facility” on
page 291.

There is a C sample program called CSQ4SMFD which prints the contents of SMF type 115 and 116
records from the sequential data set. The program is provided as source in thlqual.SCSQC37S and in
executable format in thlqual.SCSQLOAD. Sample JCL is provided in thlqual.SCSQPROC(CSQ4SMFJ).

You need to update the SMFIN DD card with the name of the SMF data set. Use the z/OS command '/D
SMF' to show the name of the data set, and you need to update the DUMPOUT DD card with the name for
the output data set.

You also need to specify the START and END times that you require.

The following sample JCL extracts SMF records from SMF data sets and dumps them to the SMFOUT data
set:

//SMFDUMP EXEC PGM=IFASMFDP,REGION=0M
//SYSPRINT DD SYSOUT=
//SMFIN DD DSN=xxxxxx.MANA,DISP=SHR
//SMFOUT DD DSN=xxxxxx.SMFOUT,SPACE=(CYL,(1,1)),DISP=(NEW,CATLG)

Monitoring and performance 319

//SYSIN DD *
INDD(SMFIN,OPTIONS(DUMP))
OUTDD(SMFOUT,TYPE(116))
OUTDD(SMFOUT,TYPE(115))
START(1159) END(1210)
/*

The following sample JCL extracts SMF records from the SMF log stream named in LSNAME and dumps
them to the SMFOUT data set:

//SMFDUMP EXEC PGM=IFASMFDL,REGION=0M
//SYSPRINT DD SYSOUT=*
//SMFOUT DD DSN=xxxxxx.SMFOUT,SPACE=(CYL,(1,1)),DISP=(NEW,CATLG)
//SYSIN DD *
LSNAME(IFASMF.MQ,OPTIONS(DUMP))
OUTDD(SMFOUT,TYPE(116))
OUTDD(SMFOUT,TYPE(115))
START(1159) END(1210)
/*

Common IBM MQ SMF header
Use this topic as a reference to the common IBM MQ SMF header type accounting record.

The format of this record is described in Table 42 on page 320 and in assembler
macros thlqual.SCSQMACS(CSQDQWHS) and thlqual.SCSQMACS(CSQDQWHC), and C header file
thlqual.SCSQC370(CSQDSMFC). The field names in C are all in lowercase, for example qwhs, qwhsnsda.

Details of the structures and fields can be found in IBM MQ supportpac MP1B.

The QWHS data includes the subsystem name. For subtype 1 records, it also shows whether there are
queue-level accounting records present. If the QWHSNSDA field is 3 or less, there are not, and the
corresponding self-defining section (at offset X'34') is not set.

The QWHC data gives you information about the user (for example, the user ID (QWHCAID) and the type
of application (QWHCATYP)). The QWHC section is completed only for subtype 0 records. The equivalent
information is present in the thread identification record for subtype 1 and 2 records.

Table 42. Structure of the common IBM MQ SMF header record QWHS

Offset:
Dec

Offset
: Hex Type Length Name Description

0 0 Structure 128 QWHS

0 0 6 Reserved

6 6 Character 1 QWHSNSDA Number of self defining sections in the
SMF records

7 7 5 Reserved

12 C Character 4 QWHSSSID Subsystem name

16 10 24 Reserved

40 28 Character 8 QWHCAID User ID associated with the z/OS job

48 30 Character 12 QWHCCV Thread cross reference

60 3C Character 8 QWHCCN Connection name

68 44 8 Reserved

76 4C Character 8 QWHCOPID User ID associated with the transaction

84 54 Integer 4 QWHCATYP Type of connecting system (1=CICS,
2=Batch or TSO, 3=IMS control region,
4=IMS MPP or BMP, 5=Command server,
6=Channel initiator, 7=RRS Batch)

320 Monitoring and Performance for IBM MQ

https://www.ibm.com/support/docview.wss?uid=swg24005907

Table 42. Structure of the common IBM MQ SMF header record QWHS (continued)

Offset:
Dec

Offset
: Hex Type Length Name Description

88 58 Character 22 QWHCTOKN Accounting token set to the z/OS
accounting information for the user

110 6E Character 16 QWHCNID Network identifier

126 7E 2 Reserved

Combining CICS and IBM MQ performance data
Use this topic as a reference to the combination of IBM MQ and CICS performance data.

The common IBM MQ SMF header type accounting record section, QWHCTOKN, is used to correlate CICS
type 110 SMF records with IBM MQ type 116 SMF records.

CICS generates an LU6.2 unit-of-work token, for each CICS task. The token is used to generate an
accounting token that is written to QWHCTOKN in the correlation header of subtype zero records.

Details are also written to the WTIDACCT section in subtype 1 and 2 records. The accounting token
enables correlation between CICS and IBM MQ performance data for a transaction.

Thread cross reference data
Use this topic as a reference to the format of the thread cross reference type accounting record.

The interpretation of the data in the thread cross reference (QWHCCV) field varies. This depends on what
the data relates to:

• CICS connections (QWHCATYP=1) - see Table 43 on page 321
• IMS connections (QWHCATYP=3 or 4) - see Table 44 on page 321
• Batch connections (QWHCATYP=2 or 7) - this field consists of binary zeros
• Others - no meaningful data

Table 43. Structure of the thread cross reference for a CICS system

Offset: Dec Offset: Hex Type Length Description

48 30 Character 4 CICS thread number.

52 34 Character 4 CICS transaction name.

56 38 Integer 4 CICS task number.

Some entries contain blank characters. These apply to the task, rather than to a specific transaction.

Table 44. Structure of the thread cross reference for an IMS system

Offset: Dec Offset:
Hex

Type Length Description

48 30 Character 4 IMS partition specification table (PST)
region identifier.

52 34 Character 8 IMS program specification block (PSB)
name.

Monitoring and performance 321

Message manager data records
Use this topic as a reference to the format of the message manager accounting records.

The message manager is the component of IBM MQ that processes all API requests. The format of the
message manager accounting records is described in assembler macro thlqual.SCSQMACS(CSQDQMAC).

The QMAC data gives you information about the processor time spent processing IBM MQ calls, and
counts of the number of MQPUT and MQGET requests for messages of different sizes.

Note: A single IMS application might write two SMF records. In this case, add the figures from both
records to provide the correct totals for the IMS application.

Records containing zero processor time
Records are sometimes produced that contain zero processor time in the QMACCPUT field. These
records occur when long running tasks identified to IBM MQ either terminate or are prompted to output
accounting records by accounting trace being stopped. Such tasks exist in the CICS adapter and in the
channel initiator (for distributed queuing). The number of these tasks with zero processor time depends
upon how much activity there has been in the system:

• For the CICS adapter, this can result in up to nine records with zero processor time.
• For the channel initiator, the number of records with zero processor time can be up to the sum of
Adapters + Dispatchers + 6, as defined in the queue manager attributes.

These records reflect the amount of work done under the task, and can be ignored.

Sample subtype zero accounting record
Use this topic as a reference to the format of the subtype zero accounting records.

Figure 23 on page 322 shows a type 116, subtype zero SMF record. In this figure, the SMF record header
and the QMAC accounting data record are underlined. The self-defining sections are in bold.

000000 01A40000 5E740035 61240100 223FD4E5 *....;.../.....MV*
000010 F4F1D4D8 F0F70000 F6F0F000 00000134 *41MQ07..600.....*
000020 00700001 00000054 00B00001 00000104 *................*
000030 00300001 00000000 00000000 00000000 *................*
000040 00000000 00000000 00000000 00000000 *................*
000050 00000000 B478AB43 9C6C2280 B478AB47 *.........%......*
000060 9DB47E02 00000000 04C0F631 00000001 *..=......{6.....*
000070 9880E72D 00000000 014D9540 00000000 *..X......(.*
000080 08480C80 00000010 40404040 40404040 *........ *
000090 00000000 00000000 00000051 00000000 *................*
0000A0 00000000 00000000 00000000 00000000 *................*
0000B0 00000000 00000000 00000000 00000000 *................*
0000C0 00000000 00000000 00000000 00000000 *................*
0000D0 00000000 00000000 00000000 00000000 *................*
0000E0 00000000 00000000 00000000 00000000 *................*
0000F0 00000000 00000000 00000000 00000000 *................*
000100 00000000 D4140030 D8D4C1C3 00000000 *....M...QMAC....*
000110 689C738D 00000050 00000000 00000050 *.......&.......&*
000120 0000000A 00000000 00000000 00000000 *................*
000130 00000000 0024011A 00030710 02DAACF0 *...............0*

Figure 23. Example SMF type 116, subtype zero record

Thread-level and queue-level data records
Use this topic as a reference to the format of the thread-level and queue-level accounting records.

Thread level accounting records are collected for each task using IBM MQ. For each task, a thread-level
accounting data record is written to the SMF when the task finishes. For a long running task, data is
also written at the statistics interval set by the STATIME parameter of the CSQ6SYSP system parameter
macro (or by the system SMF statistics broadcast), provided that the task was running the previous
time statistics were gathered. In addition, accounting information is gathered about each queue that the

322 Monitoring and Performance for IBM MQ

task opens. A queue-level accounting record is written for each queue that the task has used since the
thread-level accounting record was last written.

Thread-level and queue-level accounting records are produced if you specify class 3 when you start the
accounting trace. For example, use the following command:

 START TRACE(ACCTG) DEST(SMF) CLASS(3)

The thread level accounting information is written to an SMF type 116, subtype 1 record, and is followed
by queue-level records. If the task opened many queues, further queue information is written to one or
more SMF type 116 subtype 2 records. A thread identification control block is included in each subtype
1 and 2 record to enable you to relate each record to the correct task. Typically, the maximum number of
queue-level records in each SMF record is about 45.

The format of the thread-level accounting record is described in assembler macro
thlqual.SCSQMACS(CSQDWTAS). The format of the queue-level accounting record is described in
assembler macro thlqual.SCSQMACS(CSQDWQ). The format of the thread identification record is
described in assembler macro thlqual.SCSQMACS(CSQDWTID). All these records are also described in
C header file thlqual.SCSQC370(CSQDSMFC). The field names in C are all in lowercase, for example wtas,
wtasshex.

Meaning of the channel names
Use this topic as a reference to the meaning of channel names.

The channel name in the WTID is constructed as shown in the following example. In this example a
sender channel exists from queue manager QM1 to queue manager QM2.

Table 45. Meaning of channel names

Field name Meaning Example

For queue manager QM1 the sender channel has the following fields set:

WTIDCCN The job name QM1CHIN

WTIDCHL The channel name QM1.QM2

WTIDCHLC This is defined in the CONNAME of the
channel

WINMVS2B(2162)

For queue manager QM2 the receiver channel has the following fields set:

WTIDCCN The job name QM2CHIN

WTIDCHL The channel name QM1.QM2

WTIDCHLC Where the channel came from 9.20.101.14

Sample subtype 1 and subtype 2 records
Use this topic as a reference to the format of the subtype 1 and subtype 2 accounting records.

Figure 24 on page 324 and Figure 25 on page 324 show examples of SMF type 116, subtype 1 and
subtype 2 records. These two accounting records were created for a batch job that opened 80 queues.
Because many queues were opened, a subtype 2 record was required to contain all the information
produced.

Monitoring and performance 323

000000 703C0000 5E74002D 983B0100 229FD4E5 *....;.........MV*
000010 F4F1D4D8 F0F70001 F6F0F000 00006FCC *41MQ07..600...?.*
000020 00700001 0000003C 00D00001 0000010C *.........}......*
000030 02C00001 000003CC 02400030 F70000D0 *.{....... ..7..}*
000040 E6E3C9C4 00000000 00000000 00000040 *WTID........... *
.
.
.
000100 00000000 00000000 7F4A4BB8 F70102C0 *........"...7..{*
000110 E6E3C1E2 B4802373 0BF07885 7F4AE718 *WTAS.....0..".X.*

Figure 24. Example SMF type 116, subtype 1 record

The first self-defining section starts at X'24' and is bold in the example; X'0000003C' is the offset to the
WTID data record, X'00D0' is the length of the WTID record, and X'0001' is the number of WTID records.

The second self-defining section starts at X'2C' and is in italic ; X'0000010C' is the offset to the WTAS
data record, X'02C0' is the length of the WTAS record, and X'0001' is the number of WTAS records.

The third self-defining section starts at X'34' and is bold in the example; X'000003CC' is the offset to the
first WQST data record, X'0240' is the length of the WQST record, and X'0030' is the number of WQST
records.

Figure 25 on page 324 shows an example of an SMF type 116, subtype 2 record.

000000 49740000 5E74002D 983B0100 229FD4E5 *....;.........MV*
000010 F4F1D4D8 F0F70002 F6F0F000 00004904 *41MQ07..600.....*
000020 00700001 00000034 00D00001 00000104 *.........}......*
000030 02400020 F70000D0 E6E3C9C4 00000002 *. ..7..}WTID....*
.
.
.
000100 7F4A4BB8 F7020240 E6D8E2E3 00000001 *"...7.. WQST....*

Figure 25. Example SMF type 116, subtype 2 record

The first self-defining section starts at X'24' and is bold in the example; X'00000034' is the offset to the
WTID data record, X'00D0' is the length of the WTID record, and X'0001' is the number of WTID records.

The second self-defining section starts at X'2C' and is in italic ; X'00000104' is the offset to the first WQST
data record, X'0240' is the length of the WQST record, and X'0020' is the number of WQST records.

Figure 26 on page 324 shows an example of an SMF type 116, subtype 1 record where no queues have
been opened and there are consequently no self-defining sections for WQST records..

000000 5E740039 4E9B0104 344FD4E5 * |MV*
000010 F4F1D4D8 F0F70001 F6F0F000 000003DC *41MQ07..600.....*
000020 00800001 00000034 00D00001 00000104 *................*
000030 02D80001 F70000D0 E6E3C9C4 00000002 *.Q..7...WTID....*
000040 C1F8C5C1 C4C5D740 C1F8C5C1 C4C54040 *A8EADEP A8EADE *
000050 40404040 40404040 00000000 00000000 * *
000060 40404040 40404040 4040 * *

Figure 26. Example SMF type 116, subtype 1 record with no WQST data records

The first self-defining section starts at X'24' and is bold in the example; X'00000034' is the offset to the
WTID data record, X'00D0' is the length of the WTID record, and X'0001' is the number of WTID records.

The second self-defining section starts at X'2C' and is in italic ; X'0000010C' is the offset to the WTAS
data record, X'02D8' is the length of the WTAS record, and X'0001' is the number of WTAS records.

324 Monitoring and Performance for IBM MQ

There is no self-defining section describing a WQST data record, equivalent to the third self-defining
section in Figure 24 on page 324.

Channel accounting data records
Use this topic as a reference for channel accounting data records.

The format of the channel accounting data record is described in assembler macro
thlqual.SCSQMACS(CSQDQCST). The format is also described in the C programming language header
file thlqual.SCSQC370(CSQDSMFC). Note that the field names in C are all in lowercase, for example,
qcst.

The channel accounting data gives you information about the status and statistics of each channel
instance, including:

• Average network time (qcstntav)
• Average time on exit (qcstetav)
• Channel batch data limit (qcstcbdl)
• Channel batch interval (qcstcbit)
• Channel batch size (qcstcbsz)
• Channel dispatcher number (qcstdspn)
• Channel disposition (qcstchdp)
• Channel name (qcstchnm)
• Channel state (qcstchst)
• Channel started time (qcststrt)
• Channel status collected time (qcstcltm)
• Channel stopped time (qcstludt)
• Channel type (qcstchty)
• Common name (CN) from SSLCERTI (qcstslcn)
• Compression rate (qcstcpra)
• Connection name (qcstcnnm)
• Current shared conversations (qcstcscv)
• DNS resolution time (qcstdnrt)
• Effective value of STATCHL parameter (qcststcl)
• Last message time (qcstlmst)
• Maximum network time (qcstntmx)
• Maximum time on exit (qcstetmx)
• Minimum network time (qcstntmn)
• Minimum time on exit (qcstetmn)
• Name of the remote queue manager or application (qcstrqmn)
• Number of batches (qcstbatc)
• Number of bytes for message data (qcstnbyt)
• Number of bytes for persistent message data (qcstnpby)
• Number of bytes received for both message data and control information (qcstbyrc)
• Number of bytes sent for both message data and control information (qcstbyst)
• Number of full batches (qcstfuba)
• Number of messages, or number of MQI calls (qcstnmsg)
• Number of persistent messages (qcstnpmg)
• Number of put retries (qcstptrc)

Monitoring and performance 325

• Number of transmission queue becoming empty (qcstqetc)
• Number of transmission buffers received (qcstbfrc)
• Number of transmission buffers sent (qcstbfst)
• Serial number from SSLPEER (qcstslsn)
• SSL CipherSpec (zero means SSL not used) (qcstslcs)
• The date and time of maximum network time (qcstntdt)
• The date and time of maximum time on exit (qcstetdt)

Note, that for the channel accounting field qcstetmn (Minimum time on exit) and qcstntmn (Minimum
network time) these two fields will be initialized to the hexadecimal value of 8FFFFFFF when unused.

You can use this information to see the throughput of a channel, if the actual batches are approaching the
limit, the latency of the network, information about the remote end, performance of user exit, and so on.

Here is an example of the channel accounting data which has been formatted with IBM MQ SupportPac
MP1B.

The fields available are based on the display channel status command (DIS CHS) and channel statistics by
IBM MQ on platforms except z/OS, with some additional fields.

The data and time of the start and end of the record in local time, and the duration
SMF interval start 2014/03/26,02:30:00
SMF interval end 2014/03/26,02:45:00
SMF interval duration 899.997759 seconds

Information about the channel

Connection name 9.20.4.159
Channel disp PRIVATE
Channel type RECEIVER
Channel status CLOSING
Channel STATCHL HIGH

Start date & time 2014/03/26,02:44:58
Channel status collect time 2014/03/26,02:45:00
Last status changed 1900/01/01,00:00:00
Last msg time 2014/03/26,02:44:59

Batch size 50
Messages/batch 3.3
Number of messages 1,102
Number of persistent messages 1,102
Number of batches 335
Number of full batches 0
Number of partial batches 335
Buffers sent 337
Buffers received 1,272
Message data 5,038,344 4 MB
Persistent message data 5,038,344 4 MB
Non persistent message data 0 0 B
Total bytes sent 9,852 9 KB
Total bytes received 5,043,520 4 MB
Bytes received/Batch 15,055 14 KB
Bytes sent/Batch 29 29 B
Batches/Second 1
Bytes received/message 4,576 4 KB
Bytes sent/message 8 8 B
Bytes received/second 28,019 27 KB/sec
Bytes sent/second 54 54 B/sec
Compression rate 0

The name of the queue manager at the remote end of the connection
Remote qmgr/app MQPH
Put retry count 0

326 Monitoring and Performance for IBM MQ

https://www.ibm.com/support/docview.wss?uid=swg24005907

Tuning your IBM MQ network
Use the tuning tips in this section to help improve the performance of your queue manager network.

Tuning client and server connection channels
The default settings for client and server connection channels changed in Version 7.0 to use shared
conversations. Performance enhancements for distributed severs were then introduced in Version 8.0.
To benefit from the new features that were introduced alongside shared conversations, without the
performance impact on the distributed server, set SHARECNV to 1 on your Version 8.0 server connection
channels.

From Version 7.0, each channel is defined by default to run up to 10 client conversations per channel
instance. Before Version 7.0, each conversation was allocated to a different channel instance. The
enhancements added in Version 7.0 also include the following features:

• Bi-directional heartbeats
• Administrator stop-quiesce
• Read-ahead
• Asynchronous-consume by client applications

For some configurations, using shared conversations brings significant benefits. However, for distributed
servers, processing messages on channels that use the default configuration of 10 shared conversations
is on average 15% slower than on channels that do not use shared conversations. On an MQI channel
instance that is sharing conversations, all of the conversations on a socket are received by the same
thread. If the conversations sharing a socket are all busy, the conversational threads contend with one
another to use the receiving thread. The contention causes delays, and in this situation using a smaller
number of shared conversations is better.

You use the SHARECNV parameter to specify the maximum number of conversations to be shared over a
particular TCP/IP client channel instance. For details of all possible values, and of the new features added
in Version 7.0, see MQI client: Default behavior of client-connection and server-connection. If you do not
need shared conversations, there are two settings that give best performance in Version 8.0:

• SHARECNV(1). Use this setting whenever possible. It eliminates contention to use the receiving thread,
and your client applications can take advantage of the new features added in Version 7.0. For this
setting, distributed server performance is significantly improved in Version 8.0. The performance
improvements apply to Version 8.0 client applications that issue non read ahead synchronous get
wait calls; for example C client MQGET wait calls. When these client applications are connected, the
distributed server uses less threads and less memory and the throughput is increased.

• SHARECNV(0). The channel instance behaves exactly as if it was a Version 6.0 server or client
connection channel, and you do not get the extra features such as bi-directional heartbeats that are
available when you set SHARECNV to 1 or greater. Use a value of 0 only if you have existing client
applications that do not run correctly when you set SHARECNV to 1 or greater.

Note: If a server has clients connected to it that are sharing conversations over a socket, and you
decrease the shared conversations setting from SHARECNV(10) to SHARECNV(1), this has the following
effects:

• Increased socket usage on the server.
• Increased channel instances on the server.

In this case, you might also choose to increase the settings for MaxChannels and MaxActiveChannels.

For consistency with previous releases the default SVRCONN channel has not been updated, so you need
explicitly to set SHARECNV to 1 or 0.

Related concepts
MQI client: Default behavior of client-connection and server-connection

Monitoring and performance 327

Tuning distributed publish/subscribe networks
Use the tuning tips in this section to help improve the performance of your IBM MQ distributed publish/
subscribe clusters and hierarchies.
Related concepts
“Monitoring clusters” on page 284
Within a cluster you can monitor application messages, control messages, and logs. There are special
monitoring ocnsiderations when the cluster load balances between two or more instances of a queue.

Direct routed publish/subscribe cluster performance
In direct routed publish/subscribe clusters, information such as clustered topics and proxy subscriptions
is pushed to all members of the cluster, irrespective of whether all cluster queue managers are actively
participating in publish/subscribe messaging. This process can create a significant additional load on the
system. To reduce the effect of cluster management on performance you can perform updates at off-peak
times, define a much smaller subset of queue managers involved in publish/subscribe and make that an
"overlapping" cluster, or switch to using topic host routing.

There are two sources of workload on a queue manager in a publish/subscribe cluster:

• Directly handling messages for application programs.
• Handling messages and channels needed to manage the cluster.

In a typical point-to-point cluster, the cluster system workload is largely limited to information explicitly
requested by members of the cluster as required. Therefore in anything other than a very large point-to-
point cluster, for example one which contains thousands of queue managers, you can largely discount
the performance effect of managing the cluster. However, in a direct routed publish/subscribe cluster,
information such as clustered topics, queue manager membership and proxy subscriptions is pushed to
all members of the cluster, irrespective of whether all cluster queue managers are actively participating in
publish/subscribe messaging. This can create a significant additional load on the system. Therefore you
need to consider the effect of cluster management on queue manager performance, both in its timing, and
its size.

Performance characteristics of direct routed clusters
Compare a point-to-point cluster with a direct routed publish/subscribe cluster in respect of the core
management tasks.

First, a point to point cluster:

1. When a new cluster queue is defined, the destination information is pushed to the full repository
queue managers, and only sent to other cluster members when they first reference a cluster queue
(for example, when an application attempts to open it). This information is then cached locally by
the queue manager to remove the need to remotely retrieve the information each time the queue is
accessed.

2. Adding a queue manager to a cluster does not directly affect the load on other queue managers.
Information about the new queue manager is pushed to the full repositories, but channels to the new
queue manager from other queue managers in the cluster are only created and started when traffic
begins to flow to or from the new queue manager.

In summary, the load on a queue manager in a point-to-point cluster is related to the message traffic it
handles for application programs and is not directly related to the size of the cluster.

Second, a direct routed publish/subscribe cluster:

1. When a new cluster topic is defined, the information is pushed to the full repository queue managers,
and from there directly to all members of the cluster, causing channels to be started to each member
of the cluster from the full repositories if not already started. If this is the first direct clustered topic,
each queue manager member is sent information about all other queue manager members in the
cluster.

328 Monitoring and Performance for IBM MQ

2. When a subscription is created to a cluster topic on a new topic string, the information is pushed
directly from that queue manager to all other members of the cluster immediately, causing channels to
be started to each member of the cluster from that queue manager if not already started.

3. When a new queue manager joins an existing cluster, information about all clustered topics (and all
queue manager members if a direct cluster topic is defined) is pushed to the new queue manager
from the full repository queue managers. The new queue manager then synchronizes knowledge of all
subscriptions to cluster topics in the cluster with all members of the cluster.

In summary, cluster management load at any queue manager in a direct routed publish/subscribe cluster
grows with the number of queue managers, clustered topics, and changes to subscriptions on different
topic strings within the cluster, irrespective of the local use of those cluster topics on each queue
manager.

In a large cluster, or one where the rate of change of subscriptions is high, this level of cluster
management can be a significant overhead across all queue managers.

Reducing the effect of direct routed publish/subscribe on performance
To reduce the effect of cluster management on the performance of a direct routed publish/subscribe
cluster, consider the following options:

• Perform cluster, topic, and subscription updates at off-peak times of the day.
• Define a much smaller subset of queue managers involved in publish/subscribe, and make that an

"overlapping" cluster. This cluster is then the cluster where cluster topics are defined. Although some
queue managers are now in two clusters, the overall effect of publish/subscribe is reduced:

– The size of the publish/subscribe cluster is smaller.
– Queue managers not in the publish/subscribe cluster are much less affected by cluster management

traffic.

If the previous options do not adequately resolve your performance issues, consider using a topic host
routed publish/subscribe cluster instead. For a detailed comparison of direct routing and topic host
routing in publish/subscribe clusters, see Designing publish/subscribe clusters.

Related concepts
Topic host routed publish/subscribe cluster performance
A topic host routed publish/subscribe cluster gives you precise control over which queue managers host
each topic. These topic hosts become the routing queue managers for that branch of the topic tree.
Moreover, queue managers without subscriptions or publishers have no need to connect with the topic
hosts. This configuration can significantly reduce the number of connections between queue managers in
the cluster, and the amount of information that is passed between queue managers.
Balancing producers and consumers in publish/subscribe networks
An important concept in asynchronous messaging performance is balance. Unless message consumers
are balanced with message producers, there is the danger that a backlog of unconsumed messages might
build up and seriously affect the performance of multiple applications.
Subscription performance in publish/subscribe networks
Distributed publish/subscribe in IBM MQ works by propagating knowledge of where subscriptions to
different topic strings have been created in the queue manager network. This enables the queue manager
on which a message is published to identify which other queue managers require a copy of the published
message, to match their subscriptions.

Topic host routed publish/subscribe cluster performance
A topic host routed publish/subscribe cluster gives you precise control over which queue managers host
each topic. These topic hosts become the routing queue managers for that branch of the topic tree.
Moreover, queue managers without subscriptions or publishers have no need to connect with the topic
hosts. This configuration can significantly reduce the number of connections between queue managers in
the cluster, and the amount of information that is passed between queue managers.

Monitoring and performance 329

A topic host routed publish/subscribe cluster behaves as follows:

• Topics are manually defined on individual topic host queue managers in the cluster.
• When a subscription is made on a cluster queue manager, proxy subscriptions are created only on the

topic hosts.
• When an application publishes information to a topic, the receiving queue manager forwards the

publication to a queue manager that hosts the topic. The topic host then sends the publication to
all queue managers in the cluster that have valid subscriptions to the topic.

For a more detailed introduction to topic host routing, see Topic host routing in clusters.

For many configurations, topic host routing is a more appropriate topology than direct routing because it
provides the following benefits:

• Improved scalability of larger clusters. Only the topic host queue managers need to be able to connect
to all other queue managers in the cluster. Therefore, there are fewer channels between queue
managers, and there is less inter-queue manager publish/subscribe administrative traffic than for direct
routing. When subscriptions change on a queue manager, only the topic host queue managers need to
be informed.

• More control over the physical configuration. With direct routing, all queue managers assume all roles,
and therefore all need to be equally capable. With topic host routing, you explicitly choose the topic
host queue managers. Therefore, you can ensure that those queue managers are running on adequate
equipment, and you can use less powerful systems for the other queue managers.

However, topic host routing also imposes certain constraints upon your system:

• System configuration and maintenance require more planning than for direct routing. You need to
decide which points to cluster in the topic tree, and the location of the topic definitions in the cluster.

• Just as for direct routed topics, when a new topic host routed topic is defined, the information is pushed
to the full repository queue managers, and from there direct to all members of the cluster. This event
causes channels to be started to each member of the cluster from the full repositories if not already
started.

• Publications are always sent to a host queue manager from a non-host queue manager, even if there are
no subscriptions in the cluster. Therefore, you should use routed topics when subscriptions are typically
expected to exist, or when the overhead of global connectivity and knowledge is greater than the risk of
extra publication traffic.

• Messages that are published on non-host queue managers do not go direct to the queue manager that
hosts the subscription, they are always routed through a topic host queue manager. This approach can
increase the total overhead to the cluster, and increase message latency and reduce performance.

Note: For certain configurations, you can usefully remove this constraint as described in Topic host
routing using centralized publishers or subscribers.

• Using a single topic host queue manager introduces a single point of failure for all messages that
are published to a topic. You can remove this single point of failure by defining multiple topic hosts.
However, having multiple hosts affects the order of published messages as received by subscriptions.

• Extra message load is incurred by topic host queue managers, because publication traffic from multiple
queue managers needs to be processed by them. This load can be lessened: Either use multiple topic
hosts for a single topic (in which case message ordering is not maintained), or use different queue
managers to host routed topics for different branches of the topic tree.

Topic host routing with centralized publishers or subscribers
To remove the extra "hop" incurred when publications are always routed to subscriptions through a topic
host queue manager, configure the publishers or the subscriptions on the same queue manager that hosts
the topic. This approach brings maximum performance benefits in the following two cases:

• Topics with many publishers and few subscriptions. In this case, host the subscriptions on the topic
host queue manager.

330 Monitoring and Performance for IBM MQ

• Topics with few publishers and many subscriptions. In this case, host the publishers on the topic host
queue manager.

The following figure shows a topic host queue manager that also hosts the subscriptions. This approach
removes the extra "hop" between the publisher and the subscriber, and reduces unnecessary sharing of
subscription knowledge across all members of the cluster:

Figure 27. Hosting subscriptions on a topic host queue manager

The following figure shows a topic host queue manager that also hosts the publishers. This approach
removes the extra "hop" between the publisher and the subscriber, and reduces unnecessary sharing of
subscription knowledge across all members of the cluster:

Monitoring and performance 331

Figure 28. Hosting publications on a topic host queue manager

Related concepts
Direct routed publish/subscribe cluster performance
In direct routed publish/subscribe clusters, information such as clustered topics and proxy subscriptions
is pushed to all members of the cluster, irrespective of whether all cluster queue managers are actively
participating in publish/subscribe messaging. This process can create a significant additional load on the
system. To reduce the effect of cluster management on performance you can perform updates at off-peak
times, define a much smaller subset of queue managers involved in publish/subscribe and make that an
"overlapping" cluster, or switch to using topic host routing.
Balancing producers and consumers in publish/subscribe networks
An important concept in asynchronous messaging performance is balance. Unless message consumers
are balanced with message producers, there is the danger that a backlog of unconsumed messages might
build up and seriously affect the performance of multiple applications.
Subscription performance in publish/subscribe networks
Distributed publish/subscribe in IBM MQ works by propagating knowledge of where subscriptions to
different topic strings have been created in the queue manager network. This enables the queue manager

332 Monitoring and Performance for IBM MQ

on which a message is published to identify which other queue managers require a copy of the published
message, to match their subscriptions.

Balancing producers and consumers in publish/subscribe networks
An important concept in asynchronous messaging performance is balance. Unless message consumers
are balanced with message producers, there is the danger that a backlog of unconsumed messages might
build up and seriously affect the performance of multiple applications.

In a point-to-point messaging topology, the relationship between message consumers and message
producers is readily understood. You can get estimates of message production and consumption, queue
by queue, channel by channel. If there is a lack of balance, the bottlenecks are readily identified and then
remedied.

It is harder to work out whether publishers and subscribers are balanced in a publish/subscribe topology.
Start from each subscription, and work back to the queue managers having publishers on the topic.
Calculate the number of publications flowing to each subscriber from each queue manager.

Each publication that matches a subscription on a remote queue manager (based on proxy subscriptions)
is put to a transmission queue. If multiple remote queue managers have proxy subscriptions for that
publication, multiple copies of the message are put to a transmission queue, each targeted for a different
sender channel.

In a publish/subscribe cluster, those publications are targeted at the SYSTEM.INTER.QMGR.PUBS
queue on the remote queue managers that host the subscriptions. In a hierarchy, each publication is
targeted at the SYSTEM.BROKER.DEFAULT.STREAM queue, or any other stream queues listed in the
SYSTEM.QPUBSUB.QUEUE.NAMELIST on the remote queue managers. Each queue manager processes
messages arriving on that queue and delivers them to the correct subscriptions on that queue manager.

For this reason, monitor the load at the following points where bottlenecks might arise:

• Monitor the load at the individual subscription queues.

– This bottleneck implies that the subscribing application is not consuming the publications as quick as
they are being published.

• Monitor the load at the SYSTEM.INTER.QMGR.PUBS queue or the stream queues.

– This bottleneck implies that the queue manager is receiving publications from one or more remote
queue managers faster than it can distribute them to the local subscriptions.

– When seen on a topic host queue manager when using topic host routing in a cluster, consider making
additional queue managers topic hosts, allowing the publication workload to be balanced across
them. However, this will affect the message ordering across publications. See Topic host routing using
multiple topic hosts for a single topic.

• Monitor the load at the channels between the publishing queue manager and the subscribing queue
managers, which are fed by the transmission queues on the publishing queue manager.

– This bottleneck implies that either one or more channels is not running, or messages are being
published to the local queue manager faster than the channels can deliver them to the remote queue
manager.

– When you use a publish/subscribe cluster, consider defining additional cluster receiver channels
on the target queue manager. This allows the publication workload to be balanced across
them. However, this affects the message ordering across publications. Also consider moving to a
multiple cluster transmission queue configuration, because this can improve performance in certain
circumstances.

• If the publishing application is using a queued publish/subscribe interface, monitor the load at
(a) the SYSTEM.BROKER.DEFAULT.STREAM queue, and any other stream queues listed in the
SYSTEM.QPUBSUB.QUEUE.NAMELIST ; and (b) the SYSTEM.BROKER.DEFAULT.SUBPOINT queue, and
any other subpoint queues listed in the SYSTEM.QPUBSUB.SUBPOINT.NAMELIST .

– This bottleneck implies that messages are being put by local publishing applications faster than the
local queue manager can process the messages.

Monitoring and performance 333

Related concepts
Direct routed publish/subscribe cluster performance
In direct routed publish/subscribe clusters, information such as clustered topics and proxy subscriptions
is pushed to all members of the cluster, irrespective of whether all cluster queue managers are actively
participating in publish/subscribe messaging. This process can create a significant additional load on the
system. To reduce the effect of cluster management on performance you can perform updates at off-peak
times, define a much smaller subset of queue managers involved in publish/subscribe and make that an
"overlapping" cluster, or switch to using topic host routing.
Topic host routed publish/subscribe cluster performance
A topic host routed publish/subscribe cluster gives you precise control over which queue managers host
each topic. These topic hosts become the routing queue managers for that branch of the topic tree.
Moreover, queue managers without subscriptions or publishers have no need to connect with the topic
hosts. This configuration can significantly reduce the number of connections between queue managers in
the cluster, and the amount of information that is passed between queue managers.
Subscription performance in publish/subscribe networks
Distributed publish/subscribe in IBM MQ works by propagating knowledge of where subscriptions to
different topic strings have been created in the queue manager network. This enables the queue manager
on which a message is published to identify which other queue managers require a copy of the published
message, to match their subscriptions.
“Monitoring clusters” on page 284
Within a cluster you can monitor application messages, control messages, and logs. There are special
monitoring ocnsiderations when the cluster load balances between two or more instances of a queue.

Subscription performance in publish/subscribe networks
Distributed publish/subscribe in IBM MQ works by propagating knowledge of where subscriptions to
different topic strings have been created in the queue manager network. This enables the queue manager
on which a message is published to identify which other queue managers require a copy of the published
message, to match their subscriptions.

This approach minimizes the sending of published messages to queue managers on which no matching
subscriptions exist. However, the propagation of the subscription knowledge can become a significant
overhead, when the number of topic strings being subscribed to is high and constantly changing through
frequent subscription creation and deletion.

You can affect performance by adjusting how publications and subscriptions are flowed around your
publish/subscribe network. If your network traffic has few publications, and rapid subscription creation,
deletion, or change, you can stop subscription information being flowed to all queue managers, and
instead forward all publications to all queue managers in the network. You can also restrict the flow of
proxy subscriptions and publications for a given topic between connected queue managers, restrict the
flow of proxy subscriptions containing wildcards, and reduce the number and transient nature of topic
strings.

Individual subscription propagation and publish everywhere
Publish everywhere is an alternative to individual subscription propagation. With individual propagation,
only publications that have a matching subscription on a queue manager are forwarded to that queue
manager. With publish everywhere, all publications are forwarded to all queue managers in the network.
The receiving queue managers then deliver those publications that match local subscriptions.

Individual subscription propagation
This mechanism results in the least amount of inter-queue manager publication traffic, because only
those publications that match subscriptions on a queue manager are sent.
However:

• For each individual topic string that is subscribed to, a proxy subscription is sent to other queue
managers in the publish/subscribe topology. The set of queue managers depends on the routing
model being used, as described in Planning your distributed publish/subscribe network.

334 Monitoring and Performance for IBM MQ

– This messaging overhead can be significant if there are many thousands of subscriptions to
create or delete (for example, recreating all non-durable subscriptions after a restart of a queue
manager), or if the set of subscriptions is changing rapidly, and each is to a different topic string.

– The number of queue managers to which the proxy subscription is propagated also affects the
scale of the overhead.

• Proxy subscriptions are flowed to other queue managers using asynchronous messaging. This has
the following effect:

– There is a delay between the creation of a subscription, and the creation, delivery, and processing
of the proxy subscription by the other queue managers.

– Messages that are published at those queue managers in that interval are not delivered to the
remote subscription.

Publish everywhere
With this mechanism there is no per topic string proxy subscription overhead on the system. This
means that rapid subscription creation, deletion, or change does not result in increased network load
and processing.
There is also no delay between creating a subscription and publications being flowed to a queue
manager, because all publications are flowed to all queue managers. Therefore there is no window in
which publications are not delivered to newly-created remote subscriptions.
However:

• Sending all publications to all queue managers in the publish/subscribe topology, can result in
excessive network traffic where publications do not have matching subscriptions on each queue
manager.

– The greater the number of queue managers in the topology, the greater the overhead.

You should consider using the publish everywhere mechanism when you expect a publication to be
subscribed to from a significant proportion of your queue managers, or where the proxy subscription
overheads are too great because of the frequency of subscription changes. You should use individual
proxy subscription forwarding in cases where you experience increased messaging traffic when
publications are sent to all queue managers, rather than to the queue managers with matching
subscriptions.

You can set publish everywhere behavior at any level within the topic tree. To enable publish everywhere,
you set the PROXYSUB parameter to FORCE for a high-level topic object. This results in a single wildcard
proxy subscription that matches all topics below this topic object in the topic tree. When set it on a
clustered topic object, the PROXYSUB(FORCE) attribute is propagated to every queue manager in the
network, not just the queue manager that the topic was defined on.

Note: When used in a hierarchy, you set PROXYSUB(FORCE) individually on each queue manager, so the
topology mechanism naturally limits the number of channels. However, when used in a cluster, many
additional channels might be started:

• In a topic host routed cluster, channels are started from each queue manager to each topic host queue
manager.

• In a direct routed cluster, channels are started from every queue manager to every other queue
manager.

The overhead of starting many channels is most pronounced in a direct routed cluster, and can cause
performance issues. See “Direct routed publish/subscribe cluster performance” on page 328.

Other ways of restricting the flow of proxy subscriptions and publications between
connected queue managers
Consolidate topic strings

The use of many distinct, transient, topic strings introduces some level of management overhead
on each queue manager in the system where publishers or subscriptions are attached. You should
periodically assess the use of topic strings to see whether they can be consolidated. Reducing the

Monitoring and performance 335

number and transient nature of topic strings, and therefore the publishers and subscriptions to them,
reduces the impact on the system.

Restrict publication and subscription scope
For a given topic, you can use the Publication scope and Subscription scope settings to keep
publications and subscriptions local to the queue manager on which they are defined.

Block subscriptions made to wildcarded topics
You can restrict the flow of proxy subscriptions containing wildcards by setting the Topic attribute
WILDCARD to BLOCK. See Wildcards in proxy subscriptions.

See also “Balancing producers and consumers in publish/subscribe networks” on page 333

Monitoring proxy subscription traffic in clusters
When considering the load on the system from the proxy subscription traffic, in addition to monitoring
the queues listed in“Balancing producers and consumers in publish/subscribe networks” on page 333,
monitor the following cluster queues:

• The SYSTEM.INTER.QMGR.FANREQ queue on the subscriber queue manager.
• The SYSTEM.INTER.QMGR.CONTROL queue on all other queue managers in the cluster.

Any significant message backlog on these queues implies that either the rate of subscription change is
too great for the system, or a queue manager is not correctly functioning in the cluster. If you suspect the
problem lies with a specific queue manager, check that publish/subscribe support is not disabled for that
queue manager. See PSMODE in ALTER QMGR.

Related concepts
Direct routed publish/subscribe cluster performance
In direct routed publish/subscribe clusters, information such as clustered topics and proxy subscriptions
is pushed to all members of the cluster, irrespective of whether all cluster queue managers are actively
participating in publish/subscribe messaging. This process can create a significant additional load on the
system. To reduce the effect of cluster management on performance you can perform updates at off-peak
times, define a much smaller subset of queue managers involved in publish/subscribe and make that an
"overlapping" cluster, or switch to using topic host routing.
Topic host routed publish/subscribe cluster performance
A topic host routed publish/subscribe cluster gives you precise control over which queue managers host
each topic. These topic hosts become the routing queue managers for that branch of the topic tree.
Moreover, queue managers without subscriptions or publishers have no need to connect with the topic
hosts. This configuration can significantly reduce the number of connections between queue managers in
the cluster, and the amount of information that is passed between queue managers.
Balancing producers and consumers in publish/subscribe networks
An important concept in asynchronous messaging performance is balance. Unless message consumers
are balanced with message producers, there is the danger that a backlog of unconsumed messages might
build up and seriously affect the performance of multiple applications.
Proxy subscriptions in a publish/subscribe network

Reducing the number of unwanted topics in the topic tree
The performance of a publish/subscribe system is improved by reducing the number of unwanted topics
in the topic tree. What is an unwanted topic and how do you remove them?

You can create large numbers of topics without affecting performance adversely. However, some ways
of using publish/subscribe result in continually expanding topic trees. An exceptionally large number
of topics are created once and never used again. The growing number of topics might become a
performance problem.

How can you avoid designs that lead to a large and growing number of unwanted topics? What can you do
to help the queue manager remove unwanted topics from the topic tree?

336 Monitoring and Performance for IBM MQ

The queue manager recognizes an unwanted topic because it has been unused for 30 minutes. The queue
manager removes unused topics from the topic tree for you. The 30 minute duration can be changed by
altering the queue manager attribute, TREELIFE. You can help the queue manager to remove unwanted
topics by making sure that the topic appears to the queue manager to be unused. The section, “What is an
unused topic?” on page 337 explains what an unused topic is.

A programmer, designing any application, and especially designing a long running application, considers
its resource usage: how much resource the program requires, are there any unbounded demands, and any
resource leaks? Topics are a resource that publish/subscribe programs use. Scrutinize the use of topics
just like any other resource a program uses.

What is an unused topic?
Before defining what an unused topic is, what exactly counts as a topic?

When a topic string, such as USA/Alabama/Auburn, is converted into a topic, the topic is added to the
topic tree. Additional topic nodes, and their corresponding topics, are created in the tree, if necessary. The
topic string USA/Alabama/Auburn is converted into a tree with three topics.

• USA
• USA/Alabama
• USA/Alabama/Auburn

To display all the topics in the topic tree, use the runmqsc command DISPLAY TPSTATUS('#')
TYPE(TOPIC).

An unused topic in the topic tree has the following properties.
It is not associated with a topic object

An administrative topic object has a topic string that associates it with a topic. When you define the
topic object Alabama, if the topic, USA/Alabama, it is to be associated with does not exist, the topic
is created from the topic string. If the topic does exist, the topic object and the topic are associated
together using the topic string.

It does not have a retained publication

A topic with a retained publication results from a publisher putting a message to a topic with the
option MQPMO_RETAIN.

Use the runmqsc command DISPLAY TPSTATUS('USA/Alabama') RETAINED to check if USA/
Alabama has a retained publication. The response is YES or NO.

Use the runmqsc command CLEAR TOPICSTR('USA/Alabama') CLTRTYPE(RETAINED) to
remove a retained publication from USA/Alabama.

It has no child topics

USA/Alabama/Auburn is a topic with no child topics. USA/Alabama/Auburn is the direct child topic
of USA/Alabama.

Display the direct children of USA/Alabama with the runmqsc command DISPLAY
TPSTATUS('USA/Alabama/+').

There are no active publishers to the node

An active publisher to a node is an application that has the topic open for output.

For example, an application opens the topic object named Alabama with open options MQOO_OUTPUT.

To display active publishers to USA/Alabama and all its children, use the runmqsc command
DISPLAY TPSTATUS('USA/Alabama/#') TYPE(PUB) ACTCONN.

There are no active subscribers to the node

An active subscriber can either be a durable subscription, or an application that has registered a
subscription to a topic with MQSUB, and not closed it.

Monitoring and performance 337

To display active subscriptions to USA/Alabama, use the runmqsc command DISPLAY
TPSTATUS('USA/Alabama') TYPE(SUB) ACTCONN.

To display active subscriptions to USA/Alabama and all its children, use the runmqsc command
DISPLAY TPSTATUS('USA/Alabama/#') TYPE(SUB) ACTCONN.

Managing the number of topics in a topic tree
In summary, there are a number of ways to manage the number of topics in a topic tree.
Display TPCOUNT

Use the runmqsc command DISPLAY PUBSUB ALL periodically to display the TPCOUNT property.
This is the number of topic nodes in the topic tree. If the number is growing it might indicate that a
shorter TREELIFE is required, or that a redesign of the topics themselves is required.

Modify TREELIFE
An unused topic has a lifetime of 30 minutes by default. You can make the lifetime of an unused topic
smaller.
For example, The runmqsc command, ALTER QMGR TREELIFE(900), reduces lifetime of an unused
topic from 30 minutes to 15 minutes.

Exceptionally, restart the queue manager
When the queue manager is restarted, the topic tree is reinitialized from topic objects, nodes with
retained publications, and durable subscriptions. Topics that had been created by the operation of
publisher and subscriber programs are eliminated.
As a last resort, if the growth in unwanted topics has been the cause of performance problems in the
past, restart the queue manager.

Related concepts
Topic trees

338 Monitoring and Performance for IBM MQ

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2007, 2025 339

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of WebSphere MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information"www.ibm.com/legal/copytrade.shtml. Other product and service names might be trademarks
of IBM or other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

340 Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

This product includes software developed by the Eclipse Project (http://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 341

342 Monitoring and Performance for IBM MQ

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Monitoring and performance
	Monitoring your IBM MQ network
	Event monitoring
	Instrumentation events
	Event types
	Queue manager events
	Channel and bridge events
	Performance events
	Configuration events
	Command events
	Logger events
	Event message data summary

	Controlling events
	Controlling queue manager events
	Controlling channel and bridge events
	Controlling performance events
	Controlling configuration, command, and logger events

	Event queues
	Format of event messages

	Performance events
	Performance event statistics
	Queue service interval events
	The service timer
	Rules for queue service interval events
	Enabling queue service interval events

	Queue service interval events examples
	Queue service interval events: example 1
	Queue service interval events: example 2
	Queue service interval events: example 3

	Queue depth events
	Enabling queue depth events
	Shared queues and queue depth events (IBM MQ for z/OS)

	Queue depth events examples
	Queue depth events: example 1
	Queue depth events: example 2

	Configuration events
	Configuration event generation
	Configuration event usage
	Refresh Object configuration event

	Command events
	Command event generation
	Command event usage

	Logger events
	Logger event generation
	Logger event usage
	Sample program to monitor the logger event queue

	Authority configuration events
	Authority configuration event generation

	Sample program to monitor instrumentation events

	Message monitoring
	Activities and operations
	Message route techniques
	Activity recording
	Controlling activity recording
	Setting up a common queue for activity reports
	Determining message route information
	Retrieving further activity reports
	Circumstances where activity information is not acquired

	Trace-route messaging
	How activity information is recorded
	Acquiring recorded activity information
	Controlling trace-route messaging
	Enabling queue managers for trace-route messaging
	Enabling applications for trace-route messaging

	Generating and configuring a trace-route message
	Mimicking the original message
	The TraceRoute PCF group

	Setting up a common queue for trace-route reply messages
	Acquiring and using recorded information
	Acquiring information from trace-route reply messages
	Acquiring information from trace-route messages
	Acquiring information from activity reports

	Additional activity information
	Example 1
	Example 2

	IBM MQ display route application
	Parameters for trace-route messages
	Queue manager connection
	The target destination
	The publication topic
	Message mimicking
	Recorded activity information
	How the trace-route message is handled

	Display of activity information
	IBM MQ display route application examples
	Example 1 - Requesting activity reports
	Example 2 - Requesting a trace-route reply message
	Example 3 - Delivering activity reports to the system queue
	Example 4 - Diagnosing a channel problem

	Activity report reference
	Activity report format
	Activity report MQMD (message descriptor)
	Activity report MQEPH (Embedded PCF header)
	Activity report MQCFH (PCF header)
	Activity report message data
	Operation-specific activity report message data
	Get/Browse (MQOPER_GET/MQOPER_BROWSE)
	Discard (MQOPER_DISCARD)
	Publish/Discarded Publish/Excluded Publish (MQOPER_PUBLISH/MQOPER_DISCARDED_PUBLISH/MQOPER_EXCLUDED_PUBLISH)
	Put/Put Reply/Put Report (MQOPER_PUT/MQOPER_PUT_REPLY/MQOPER_PUT_REPORT)
	Receive (MQOPER_RECEIVE)
	Send (MQOPER_SEND)

	Trace-route message reference
	Trace-route message format
	Trace-route message MQMD (message descriptor)
	Trace-route message MQEPH (Embedded PCF header)
	Trace-route message MQCFH (PCF header)
	Trace-route message data

	Trace-route reply message reference
	Trace-route reply message format
	Trace-route reply message MQMD (message descriptor)
	Trace-route reply message MQCFH (PCF header)
	Trace-route reply message data

	Accounting and statistics messages
	Accounting messages
	Accounting message format
	Accounting information collection
	MQI accounting information
	Queue accounting information
	MQCONNX options
	Accounting message generation

	Statistics messages
	Statistics messages format
	Statistics information collection
	MQI statistics information
	Queue statistics information
	Channel statistics information
	Statistics message generation

	Displaying accounting and statistics information
	amqsmon (Display formatted monitoring information)
	amqsmon (Display formatted monitoring information) examples
	Finding the mapping for ApplicationName (3024) and ConnectionId (7006)
	Finding the mapping for AvgTimeOnQ (703) and QmaxDepth (739)

	Accounting and statistics message reference
	Accounting and statistics message format
	Accounting and statistics message MQMD (message descriptor)
	Message data in accounting and statistics messages
	MQI accounting message data
	Queue accounting message data
	MQI statistics message data
	Queue statistics message data
	Channel statistics message data
	Reference notes

	Application activity trace
	Collecting application activity trace information
	Setting ACTVTRC to control collection of activity trace information
	Setting MQCONNX options to control collection of activity trace information
	Configuring activity trace behavior using mqat.ini
	Tuning the performance impact of application activity trace

	amqsact sample program
	Application activity trace message reference
	Application activity trace message MQMD (message descriptor)
	MQCFH (PCF Header)
	Application activity trace message data
	Variable parameters for application activity MQI operations
	MQBACK
	MQBEGIN
	MQCALLBACK
	MQCB
	MQCLOSE
	MQCMIT
	MQCONN and MQCONNX
	MQCTL
	MQDISC
	MQGET
	MQINQ
	MQOPEN
	Application Activity Distribution List PCF Group Header Structure

	MQPUT
	MQPUT Application Activity Distribution List PCF Group Header Structure

	MQPUT1
	MQPUT1 AppActivityDistList PCF Group Header Structure

	MQSET
	MQSUB
	MQSUBRQ
	MQSTAT

	Variable Parameters for Application Activity XA Operations
	AXREG
	AXUNREG
	XACLOSE
	XACOMMIT
	XACOMPLETE
	XAEND
	XAFORGET
	XAOPEN
	XAPREPARE
	XARECOVER
	XAROLLBACK
	XASTART

	Real-time monitoring
	Attributes that control real-time monitoring
	Displaying queue and channel monitoring data
	Monitoring queues
	Determining whether your application has the queue open
	Checking that messages on the queue are available
	Checking whether your application is getting messages off the queue
	Determining whether the application can process messages fast enough
	Checking the queue when the current depth is not increasing

	Monitoring channels
	Determining whether the channel is running
	Checking that the channel is moving messages
	Checking why a batch takes a long time to complete
	Determining whether the channel can process messages fast enough
	Solving problems with cluster channels

	The Windows performance monitor

	Monitoring clusters
	Monitoring transmission queue switching

	Monitoring performance and resource usage
	Introduction to monitoring
	Getting snapshots of IBM MQ using the DISPLAY commands
	Using CICS adapter statistics
	Using IBM MQ trace
	Using IBM MQ online monitoring
	Using IBM MQ events
	Using System Management Facility
	Using other products with IBM MQ
	Investigating performance problems

	Interpreting IBM MQ performance statistics
	Layout of an SMF type 115 record
	The SMF header
	Self-defining sections
	Examples of SMF statistics records
	Processing type 115 SMF records
	Storage manager data records
	Log manager data records
	Message manager data records
	Data manager data records
	Buffer manager data records
	Managing your buffer pools

	Lock manager data records
	Db2 manager data records
	Coupling facility manager data records
	Topic manager data records
	Coupling facility manager SMDS data records
	Layout of SMF records for the channel initiator
	Channel initiator statistics data records
	Channel initiator control information block
	Dispatcher tasks
	Adapter tasks
	Domain Name Server (DNS) task
	SSL tasks

	Interpreting IBM MQ accounting data
	Layout of an SMF type 116 record
	Processing type 116 SMF records
	Common IBM MQ SMF header
	Combining CICS and IBM MQ performance data
	Thread cross reference data
	Message manager data records
	Sample subtype zero accounting record
	Thread-level and queue-level data records
	Meaning of the channel names
	Sample subtype 1 and subtype 2 records

	Channel accounting data records

	Tuning your IBM MQ network
	Tuning client and server connection channels
	Tuning distributed publish/subscribe networks
	Direct routed publish/subscribe cluster performance
	Topic host routed publish/subscribe cluster performance
	Balancing producers and consumers in publish/subscribe networks
	Subscription performance in publish/subscribe networks

	Reducing the number of unwanted topics in the topic tree

	Notices
	Programming interface information
	Trademarks

