
Version 8 Release 1

IBM MQ for HPE NonStop V8.1

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
115.

This edition applies to version 8 release 1 modification 0 of IBM® MQ for HPE NonStop (product number 5724-A39) and
to all subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2017, 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Overview...7
Architecture.. 9
What's new... 11
What's new in previous releases... 13
Enhancements and limitations...15

OSS and Guardian support... 15
Bindings options.. 15
High availability features...16
Data storage...16
Application-initiated TMF transactions.. 16
IBM MQ logger...17
XA server support..17
Crypto hardware.. 17
Support for non-native applications...17
CPU assignment...18

Installing and upgrading... 19
Deliverables... 19
Planning..19
Installation procedure...19
Upgrade procedure..20
Restore procedure...21
Fixpacks... 22
iFix procedure..22
Troubleshooting installation..23
Guardian install subvolume inventory..23

Working with IBM MQ... 31
Creating a queue manager..31

Understanding IBM MQ file names...31
Planning disk space... 32
Environment variables and PATH..32
CPU considerations..33
Running crtmqm.. 33

Starting and ending queue managers.. 34
Starting a queue manager...35
Ending a queue manager...35
IBM MQ processes unique to IBM MQ for HPE NonStop V8.1.. 36

Compiling channel exit programs on HPE NonStop systems.. 38
Triggering Guardian programs and TACL scripts from IBM MQ...38

Administering IBM MQ.. 41
Enhancements to runmqsc.. 41
Specifying TCP/IP Transport for channels and listeners... 41
Enhancements to dspmq.. 43
EMS messages...43
Tuning agent processes.. 43

Configuring IBM MQ.. 45
Configuration methods..45

.ini files... 45
NonStop-specific tools inherited from WebSphere MQ for HP NonStop Server V5.3....................... 46
Environment variables... 46
runnscnf...46

 iii

Areas of NonStop-specific configuration..46
The runnscnf tool... 47

Using runnscnf.. 48
runnscnf command reference.. 49
Classes..54
Examples of using runnscnf... 60

altmqfls.. 62
dspmqfls.. 63
altmqusr... 65
dspmqusr... 66
Configuring NonStop for IBM MQ... 67

IBM MQ for HPE NonStop V8.1 TMF Configuration... 67
High availability (HANSQM)... 69

Configuring for high availability.. 70
CPU failures... 72

User name mapping.. 73
User identification... 73
The installation owner user ID... 74
User names in the MQM group...74
User names not in the MQM Group..74
User names for channels.. 75
User names in IBM MQ security exits..75

MQGET SET SIGNAL.. 77
Using MQGET SET_SIGNAL...77
Message format... 78
Active Checkpointing...79

Migrating between IBM MQ versions..81
Exporting a WebSphere MQ V5.3 queue manager by using exportmqm... 81
Importing a WebSphere V5.3 or IBM MQ V8 queue manager by using importmqm..............................82

Migrating between IBM MQ versions..85
Exporting a WebSphere MQ V5.3 queue manager by using exportmqm... 85
Exporting an IBM MQ V8 queue manager by using exportmqm.. 86
Importing a WebSphere MQ V5.3 or an IBM MQ V8 queue manager by using importmqm...................87
Importing IBM MQ V8 data back into WebSphere MQ V5.3 using mig/importmqm.............................88

Migrating to alter or partition queue files...89
Queue file migration overview..89
Using PREPARE MIGRATE...90
Offline migration..91
Online migration.. 91
Migration example... 91
Partitioning...92
Partitioning examples..93
Queue file migration limitations... 95

TNS non-native application support...97
Installing and building TNS non-native samples...97

JAVA Support..99
SSL/TLS Channels... 101

Queue manager SSL certificates.. 101
Cipherspecs... 102
Entropy daemon.. 103
Online Certificate Status Protocol.. 104

Sample programs.. 105
OSS environment and TACL scripts..105
Installing and building sample Programs.. 105

Problem handling.. 107

iv

EMS.. 107
Using a different collector.. 107
Messages... 108
sdcp tool... 108

Result of running sdcp... 109
Information collected by sdcp... 110

NonStop specific log messages..111

Notices..115
Programming interface information... 116
Trademarks.. 116

Sending your comments to IBM... 119

 v

vi

Overview

IBM MQ Version 8 functionality is now available on HPE NonStop platforms.

IBM MQ has been available on several HPE NonStop platforms up to Version 5.3.1 (with various fixpacks).
These releases are not supported on the HPE NonStop X platform. For HPE NonStop X, there is a release
available that is based on IBM MQ Version 8.0. This release is available for HPE NonStop servers with
Itanium processors (J-Series OS starting from J06.20) and x86 processors (L-Series OS starting from
L16.05). This new release of IBM MQ will eventually replace WebSphere MQ V5.3.1 on all supported HPE
NonStop platforms (although WebSphere MQ for HP NonStop Server V5.3.1 will continue to be supported
for some time).

IBM MQ V8 has many new features when compared with WebSphere MQ V5.3.1, most of which are
available in the NonStop release. While all MQI applications running on HPE NonStop using WebSphere
MQ V5.3.1 can run unchanged on IBM MQ for HPE NonStop V8.1, there are differences regarding
installation and administration of the product. This documentation covers these operational aspects of
IBM MQ for HPE NonStop V8.1.

IBM MQ for HPE NonStop V8.1 is similar to the product on Linux and UNIX platforms. Most of the tools
and options available on Linux and UNIX platforms work in exactly the same way on HPE NonStop. This
documentation covers only the differences between IBM MQ for HPE NonStop V8.1 compared to Linux
and UNIX platforms.

As many NonStop IBM MQ users are familiar with WebSphere MQ V5.3.1 on that platform, differences
between IBM MQ for HPE NonStop V8.1 and WebSphere MQ for HP NonStop Server V5.3.1 are explicitly
identified in this documentation.

© Copyright IBM Corp. 2017, 2019 7

8 IBM MQ for HPE NonStop V8.1

Architecture

© Copyright IBM Corp. 2017, 2019 9

10 IBM MQ for HPE NonStop V8.1

What's new

What's new in various releases of IBM MQ for HPE NonStop V8.1.

What's new for IBM MQ for HPE NonStop V8.1
Upgrading

A new option has been added when running the installer to upgrade IBM MQ for HPE NonStop. Use
the option to recreate mqprofile and mqcstm files during the upgrade. See “Upgrade procedure” on
page 20.

Disaster recovery

IBM MQ for HPE NonStop can now be configured to work on an active/passive disaster recovery (DR)
configuration based on audit trail replication. See Disaster recovery.

Contents of .ini files preserved
The contents of the configuration files (.ini files) are now copied to TMF-protected files and can be
restored automatically as required. See “.ini files” on page 45.

Native application support calls to different queue managers in single TMF transaction
IBM MQ for HPE NonStop V8.1 native applications now support multiple API calls against different
queue managers within a single TMF transaction.

CacheManager objects
Each CacheManager instance now runs as an HPE NonStop process pair. You can configure the
process name of the CacheManager process. See “Class CacheManager” on page 55.

SetSignalName process
You can now configure the name of the SetSignalName process, see “Class SetSignalManager” on
page 60.

Notification of expired messages on queues
You can now configure the number of expired messages on a queue that cause an EMS message to be
emitted. The number of expired messages are now reported for queues rather than queue managers.
See “Class QueueManager” on page 57.

Online Certificate Status Protocol (OCSP)
OCSP is now available on IBM MQ for HPE NonStop V8.1. OCSP is configured and operates in the
same way as OCSP on IBM MQ on other platforms. See “Online Certificate Status Protocol” on page
104.

SDCP tool
A new option has been added to the SDCP tool that enables the use of amqxdbg during gathering of
SDCP data. See “sdcp tool” on page 108.

Documentation for installing Fixpacks and iFixes
Topics have been added to the Knowledge Center explaining how to install Fixpacks and iFixes. See
“Fixpacks” on page 22 and “iFix procedure” on page 22.

© Copyright IBM Corp. 2017, 2019 11

12 IBM MQ for HPE NonStop V8.1

What's new in previous releases

What's new in previous releases of IBM MQ for HPE NonStop.

What's new for IBM MQ for HPE NonStop V8.0.1

IBM MQ for HPE NonStop V8.0.1 supports the following new features:

Enhanced migration utility
The import/export migration utility has been enhanced to support migration between IBM MQ for HPE
NonStop V8.1 queue managers (for example, for moving a queue manager from a J Series platform
to NonStop X). You can also move queue data from an IBM MQ for HPE NonStop V8.1 queue manager
back to an WebSphere MQ for HP NonStop Server V5.3.1 queue manager. This is meant to be used in
scenarios where a fallback from Version 8 to Version 5.3 is required. See “Migrating between IBM MQ
versions” on page 85 for details.

Partitioned queue files
IBM MQ for HPE NonStop V8.1 now supports partitioned queue files. Partitioning rules are set using
the enhanced runnscnf tool. (There is no support for using other platform-specific tools such as
FUP.) See “Migrating to alter or partition queue files” on page 89 for details.

Online queue file migration
Queue files can be moved to a different disk, partitioned, repartitioned, or resized while the queue
manager is running and while the queue is in active use. This includes system queues. Queue file
migration can be also done while the queue manager is down (offline migration). Usually migration is
started using the runnscnf tool, but altmqfls can also be used. See “Migrating to alter or partition
queue files” on page 89 for details.

Installer capable of upgrading existing IBM MQ for HPE NonStop V8.1 installation
The new installer introduced with IBM MQ for HPE NonStop V8.0.1 can be used to install a fresh
instance of the product, or to upgrade an existing installation. Upgrading an existing installation
preserves all queue manager configuration and data. See “Installing and upgrading” on page 19 for
details.

Tuning agent processes
You can edit the tuning stanza in a queue manager qm.ini file to control the agent processes used
by the queue manager. Information is now provided on the available attributes, see “Tuning agent
processes” on page 43 for details.

What's new for IBM MQ for HPE NonStop V8.0.3

IBM MQ for HPE NonStop V8.0.3 supports the following new features:

New SetSignalManager class for runnscnf
The SetSignalManager is a type of process used to provide the MQGMO_SETSIGNAL service. Multiple
SetSignalManager objects can be configured. See “Class SetSignalManager” on page 60.

Timeout feature for SetSignalManager
The InactivityTiimeout attribute of the SetSignalManager class can be configured to make the
behaviour of SET_SIGNAL similar to the version 5.3 equivalent. See “Class SetSignalManager” on
page 60.

What's new for IBM MQ for HPE NonStop V8.0.4

IBM MQ for HPE NonStop V8.0.4 supports the following new and changed features:

Publish/subscribe now supported
IBM MQ for HPE NonStop V8.0.4 now supports publish/subscribe messaging, as provided by
distributed platforms. See Publish/subscribe messaging.

© Copyright IBM Corp. 2017, 2019 13

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_8.0.0/com.ibm.mq.pro.doc/q004870_.dita

CERTVPOL attribute now supported
In IBM MQ for HPE NonStop V8.0.4 you can now set the CERTVPOL attribute for queue managers.
By default, the attribute is set to RFC5280 to apply only the RFC 5280 compliant certificate
validation policy. See https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_8.0.0/
com.ibm.mq.ref.adm.doc/q085320_.htm.

New EmitEMSforExpiry property for runnscnf QueueManager class
The EmitEMSforExpiry property controls whether to emit EMS messages about processed expired
messages. See “Class QueueManager” on page 57.

Can now install into existing OSS folder
You can now install IBM MQ into an existing, non-empty OSS folder. See “Installation procedure” on
page 19.

Can now suppress MQGET error 2208 after Cache Manager failure
A new class QueuePattern property, IgnoreNPMsgLossErrorOnMQGET, has been added. Set this
property to T to suppress the MQGET error 2208 after Cache Manager failure. See “IBM MQ processes
unique to IBM MQ for HPE NonStop V8.1” on page 36 and “Class QueuePattern” on page 58.

Restricted support now available in TNS non-native applications for MQOD structures with version
number greater than 1

In previous releases, TNS non-native applications could not have MQ object descriptor (MQOD)
structures in an MQOPEN call with a version greater than 1. IBM MQ for HPE NonStop V8.0.4 supports
MQOD structures with a version greater than 1, but does not accept MQOD structures containing any
MQ object records (MQORs/MQRRs). See MQOD - object descriptor.

14 IBM MQ for HPE NonStop V8.1

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_8.0.0/com.ibm.mq.ref.adm.doc/q085320_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_8.0.0/com.ibm.mq.ref.adm.doc/q085320_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_8.0.0/com.ibm.mq.ref.dev.doc/q098100_.htm

Enhancements and limitations

IBM MQ for HPE NonStop V8.1 is implemented with NonStop fundamentals in mind, while preserving as
many of the features of IBM MQ for distributed platforms as possible.

In addition to other features, the performance-related characteristics of the NonStop platform have been
considered. This results in a product that, from a feature and usability perspective, is close to the general
IBM MQ product, even though the internal engine is different. The consequences are documented in these
sections.

OSS and Guardian support
IBM MQ for HPE NonStop V8.1 is an OSS based product.

OSS stands for Open System Services, which is HPE NonStop's “UNIX personality”. Administration
and monitoring is achieved by using OSS based tools. All IBM MQ queue manager processes are OSS
processes. Error logs, FFST files (detailed error descriptions for problem analysis), traces, and so on. are
all located in the OSS file tree.

Applications that use IBM MQ API functions can run under OSS or Guardian without any functional
differences. Tools used to configure and monitor the product (runmqsc, strmqm, and so on) are delivered
both as Guardian and as OSS programs.

All dynamically changing queue manager data is located in TMF audited files in the Guardian file space.

Bindings options
IBM MQ for HPE NonStop V8.1 supports three different kinds of bindings.

Bindings are the means of communications between applications and the queue manager. The following
bindings are available:
Shared bindings

Shared bindings are only available when the application runs on the same CPU as the queue manager,
and internally use shared memory.

Isolated bindings
Isolated bindings use a socket-based communication mechanism between applications and queue
manager.

Guardian bindings
Guardian bindings use Guardian based interprocess messages (“$RECEIVE messages”) for
communication between application and queue manager. Guardian bindings are not available on any
other platform than NonStop.

The default binding mechanism for all user applications on NonStop is Guardian bindings. This
mechanism provides good performance and CPU independence for applications.

Using other types of binding does not allow the inheriting of application-initiated transactions by queue
managers. Any applications using BEGINTRANSACTION/ENDTRANSACTION explicitly, or applications
running as servers and inheriting TMF transactions from their clients, must use Guardian bindings to
connect to IBM MQ (see “Application-initiated TMF transactions” on page 16).

IBM MQ internal applications might use other kinds of bindings for internal reasons. These applications
are identified by their location in the bin directory of the installation tree (…/opt/mqm/bin). Under no
circumstances store any user applications in that directory. User applications started from that directory
are not supported.

© Copyright IBM Corp. 2017, 2019 15

High availability features
By default, IBM MQ for HPE NonStop V8.1 runs in fault tolerant mode.

Running in fault tolerant mode means that the central queue manager process, the execution controller
(EC), runs as a NonStop process pair. In the case of a CPU outage, the EC backup process initiates
a takeover and starts a new backup. Connected applications receive an error, but can immediately
reconnect. After a short takeover period, new connections are possible and applications can continue.
Transactions in progress might be aborted due to the takeover mechanism (depending on the transaction
activities underway at the time of the failure). For details see, “High availability (HANSQM)” on page 69.

Data storage
All queue data, and all implicit configuration data and metadata is stored in TMF-protected (audited)
Enscribe files.

Implicit configuration data is data generated internally by the queue manager when queue manager
objects, such as queues or channels, are created, deleted, or altered. All this information is TMF
protected. Explicit configuration data is configuration data given by the user in OSS based .ini files
(qm.ini, qmproc.ini). This data is copied to TMF-protected files and is restored automatically if
required.

For each IBM MQ queue there is exactly one Enscribe queue data file. Queue data files can be stored on
different Guardian volumes or subvolumes, based on queue name patterns. For details see “Configuring
IBM MQ” on page 45.

Queue data files can be partitioned. See “Partitioning” on page 92 for details.

In a replication environment, the qm.ini file must always be copied to the replicated site after a queue
manager is created or deleted (that is, crtmqm or dltmqm is executed).

Application-initiated TMF transactions
IBM MQ for HPE NonStop V8.1 supports application-initiated TMF transactions in the same way that
WebSphere MQ for HP NonStop Server V5.3 on NonStop does.

An MQPUT or MQGET operation with syncpoint option set, and called while a user-initiated TMF
transaction is active, results in the queue manager inheriting the application-initiated transaction.
All file operations to the queue data files are completed under the control of the application-initiated
transaction.

When no application-initiated transaction is active, IBM MQ implicitly starts a TMF transaction when
required. When functions like MQGET or MQPUT are called and the SYNCPOINT option is set, MQCMIT
or MQBACK must be called to terminate the implicitly started transaction. The rules are the same as
for IBM MQ on other platforms. At any point in time either an application-initiated transaction, or an
implicitly started MQ transaction might be active. Trying to mix those will result in an error with reason
code MQRC_UOW_MIX_NO_SUPPORTED (2355).

The general platform-specific rules are the same as for WebSphere MQ V5.3 on NonStop, so existing
applications using application-initiated TMF transactions will continue to work without change.

IBM MQ for HPE NonStop V8.1 native applications support multiple API calls against different queue
managers within a single TMF transaction.

16 IBM MQ for HPE NonStop V8.1

IBM MQ logger
There is no transactional logger in IBM MQ for HPE NonStop V8.1.

IBM MQ on distributed platforms like Linux, UNIX, and Windows, has its own internal transactional
engine, and its own transaction logging mechanism. On the HPE NonStop platform, the internal
transactional engine is replaced by a tight integration with the platform-specific transactional engine,
TMF by HPE. This replacement means that most configuration, and all queue data files, are protected by
TMF, and can be replicated by audit trail reading based replication products like RDF or Shadowbase. For
information on configuration files, see “Configuring IBM MQ” on page 45.

No options or features relating to the IBM MQ logger are supported on the HPE NonStop platform. This
exclusion includes options regarding size and location of logs, the difference between linear and circular
logging, and so on. Trying to use logger related options results in an error message.

The IBM MQ logger as a transactional logger must not be confused with the IBM MQ error logs. These are
present in the appropriate directories as usual.

XA server support
There is no XA server support in IBM MQ for HPE NonStop V8.1.

XA is a technology standard that enables heterogeneous transactions crossing platform boundaries.

The IBM MQ for HPE NonStop V8.1 server does not support XA transactions initiated by clients running on
other platforms. This limitation also applied to the WebSphere MQ for HP NonStop Server V5.3 version on
the platform.

IBM MQ for HPE NonStop V8.1 comes with an IBM MQ client environment. The IBM MQ client on HPE
NonStop integrates with TMF. The client is able to initiate XA transactions that communicate with an
IBM MQ server, which in turn supports the server side XA protocol. By using the IBM MQ client you can
write an application that starts a TMF transaction on the HPE NonStop platform, then calls IBM MQ
functions like MQPUT and MQGET via the client interface connected to an MQ server on platforms like
Linux and Windows. This approach provides transactional consistency between the TMF transaction and
the operations on queues on the remote server. Because the IBM MQ implementation on HPE NonStop
platforms does not support XA, this mode of operation is not possible when the MQ client on NonStop
connects to a queue manager running on a NonStop platform.

Crypto hardware
Crypto hardware is not supported on IBM MQ for HPE NonStop V8.1.

Because crypto hardware is not supported, the SSLCRYP property is not supported for HPE NonStop when
you use the DISPLAY QMGR command.

Support for non-native applications
IBM MQ for HPE NonStop V8.1 supports non-native (code 100) Guardian MQI applications.

Such applications must be re-linked, see “TNS non-native application support” on page 97 for details.
Code 100 applications can be re-linked even if source code for the application is not available. Support
for non-native applications is limited to the features and functions of the MQI offered by IBM MQ V5.3.
Existing MQI applications can continue to be used with IBM MQ for HPE NonStop V8.1 without the need to
migrate to native code.

Note that IBM MQ for HPE NonStop V8.1 does not support MQAI non-native applications.

Enhancements and limitations 17

CPU assignment
IBM MQ V8 makes substantial use of shared memory.

Shared memory on HPE NonStop platforms is only supported within one CPU. Therefore all processes of
a queue manager (with a few exceptions documented in “Configuring IBM MQ” on page 45) run in a
single CPU. This limitation is automatically enforced by the product.

If the default high availability configuration is used, a backup process of the execution controller (EC,
program amqzxma0) is started in a different CPU than the main queue manager. The backup EC also
prestarts a few other processes running in its CPU, see “High availability (HANSQM)” on page 69 for
details. The resource consumption of these processes in the backup CPU is extremely low. There is no
active checkpointing with the exception of the set signal manager. See the “MQGET SET SIGNAL” on page
77 for details.

Application programs can run in any CPU.

IBM MQ tools such as strmqm, crtmqm, and runmqsc can be started in any CPU. Be aware that some
of these programs might internally be restarted on the CPU of the queue manager, which is completely
transparent. It might, however, be important to know that if you run (for example) runmqsc explicitly
in CPU 2, and the queue manager runs in CPU 1, runmqsc will be moved from CPU 2 to CPU 1. If, for
example, in that scenario CPU 1 fails, the runmqsc instance also fails, although it was initially started on
CPU 2.

It is possible to create multiple queue managers from a single installation. These queue managers can be
configured to run on different CPUs. See “Configuring IBM MQ” on page 45 for details.

18 IBM MQ for HPE NonStop V8.1

Installing and upgrading

How to install IBM MQ for HPE NonStop V8.1How to install or upgrade IBM MQ for HPE NonStop V8.1.

Deliverables
IBM MQ for HPE NonStop V8.1 drivers are delivered as OSS executable programs.

The names of the files end in .run, for example:

• mqs-8.0-hpe-nsi64.run for J-Series OS
• mqs-8.0-hpe-nsx64.run for L-Series OS

The actual names of the files may vary depending on the exact version delivered.

In addition, there is a file with the same name but extension sha1. This file contains an sha1 checksum of
the deliverable and can be used to check the completeness and integrity of the deliverable.

Planning
Before installing the product, some planning is recommended.

The installation requires the following resources:

• About 2 GB of space in a single tree in the OSS file system; the files system should have capacity for
20,000 additional files. The 2 GB does not include space for errorlogs, FFST files, traces, and so on. The
potential size of that dynamic data cannot be determined in advance.

• About 1 GB of space on a Guardian subvolume on an audited (TMF protected) Guardian disk.
Installation on an SMF virtual volume is supported.

• Additional disk space for queue files, depending on the need and profile of your application.

IBM MQ can be installed multiple times on the same NonStop system. Each installation must have its own
OSS directory and Guardian sub-volume and needs the same amount of free storage space.

IBM MQ can be installed on a NonStop system that already has the WebSphere MQ for HP NonStop Server
V5.3 Server product, or the IBM MQ for HPE NonStop V8.1 client product installed.

You must check certain system parameters before installing or running IBM MQ for HPE NonStop V8.1.

The following TMF BEGINTRANS values should be set to at least these values or higher:

RecRMCOUNT 256

RMOpenPerCPU 1024

BranchesPerRM 512

IBM MQ might install with lower settings, but failures could occur in high load situations.

Installation procedure
To install IBM MQ for HPE NonStop V8.1, complete the following steps:

1. Login to OSS with a user id whose primary group is MQM. For example, MQM.USER or a Safeguard alias
of that user.

2. Load the IBM MQ installation program in an OSS directory and make it executable. For example:

chmod +x ./installer_name.run

© Copyright IBM Corp. 2017, 2019 19

Where installer_name is the name of the installation program, for example, ibm-mq-hpe-
nsx64-8.0.1.

3. Choose a new or empty OSS directory and an empty Guardian sub-volume for the new IBM MQ
installation. The Guardian sub-volume must be on an audited (TMF protected) disk. The OSS and
Guardian locations are passed to the IBM MQ installation program as shown in the next step.

4. Start the installation by running the IBM MQ installation program. The OSS and Guardian locations for
the new IBM MQ V8 installation are passed to the IBM MQ installation program using the -i and -g
options:

./installer_name.run -i OSS_directory -g Guardian_sub-volume

The Guardian sub-volume can be specified in various forms:

vol.subvol
vol/subvol
\$vol.subvol (Note: the $ must be escaped)
/G/vol/subvol

For example:

./mqs-8.0-hpe-nsi64.run -i /home/user/mqv8 -g vol.mqv8

This command installs IBM MQ for HPE NonStop V8.1 into the mqv8 OSS directory in the user's home
directory, and into the $VOL.MQV8 Guardian sub-volume.

Note:

1. If you want to install IBM MQ into an existing non-empty OSS directory, you can specify the command
line option -f. The existing directory that you specify must not contain opt or var directories.

2. Fixpacks and iFixes cannot be installed from the scratch. They can only be applied on existing IBM MQ
for HPE NonStop V8.1 installations. See “Upgrade procedure” on page 20.

The installation displays its progress as it runs. Depending on the power, size, and current workload of
your system, installation typically takes less than 10 minutes.

Upgrade procedure
You can upgrade existing IBM MQ for HPE NonStop V8.1 installations while preserving existing
configurations and data (including queue managers, queues, and queue data).

By default, the upgrade procedure creates a backup of any files that it is about to change. The backups
are located in the folder OSS_directory/opt/mqm/backup. The log files created while upgrading are
located in the folder OSS_directory and begin with the string mq_.

You must end all queue managers before running an upgrade.

Fixpacks can be applied and backed out with the upgrade and restore procedure.

To upgrade, enter the following command:

installer_name.run --upgrade -i OSS_directory [-d] [-b] [-p]

Where:

• installer_name is the name of the installation program, for example, ibm-mq-hpe-nsx64-8.0.1.
• OSS_directory is the path to the existing installation. The path can be absolute or relative to the current

working directory.
• You specify -d to delete the back up files of the current installation.
• You specify -b to skip making a backup of changed files during the upgrade.
• You specify -p to recreate mqprofile and mqcstm files during the upgrade.

20 IBM MQ for HPE NonStop V8.1

• The parameter --upgrade can also be specified as -upgrade. For Fixpacks and iFixes the parameter -
upgrade is optional as it is the default.

The upgrade can take 60 minutes or longer on busy machines. You can track the progress of the upgrade
by entering a command to tail the upgrade log file, for example:

tail -f ~/MQ8a/mq_8010-20170926-110637-upgrade.log

Where MQ8a is the OSS directory, and mq_8010-20170926-110637-upgrade.log is the most recent
log file.

By default, the upgrade process creates a backup of the currently installed release of the product. This
part of the upgrade procedure consumes about 80% of the upgrade time. You can skip the backup by
using the -b argument. Note that you cannot restore to previous versions without a backup created by
upgrade.

If you attempt to use upgrade to restore the current release (for example, you attempt to upgrade a
Version 8.1 installation to Version 8.1), the existing backup might act to prohibit the upgrade. In this case,
specify the -d parameter to delete the backup files.

The following example shows a successful upgrade procedure:

$ ibm-mq-hpe-nsx64-8.0.1.run -upgrade -i MQ8a
MQ version installed: 8000
installer version: 8010
Checking for opened files in /home/mqm.user/MQ8a/opt/mqm

#---
IBM MQ Server 8.0.1 for HPE NonStop X
#

Fixpack : 8.0.1.0
Architecture : nsx64
Build : p800-L170925-182855
#
MQ Install Path : /home/mqm.user/MQ8a
$MQAS.MQ8A (/G/mqas/mq8a)
#
MQ owner : MQM.USER 12,34
#
System Name : CS4
RVU : L16.05
UNAME : NONSTOP_KERNEL NSX-G
Default TCPIP : $ZTC0
Locale : C
#
Tue Sep 26 2017 11:06:37 MET DST
#---

Checking for opened files in /home/mqm.user/MQ8a/opt/mqm [OK]
Making backup. See log-file in the root directory for progress [OK]
Upgrading installation [OK]
Installing SSL libraries [OK]
Setting Guardian and OSS tree attributes [OK]
Generating message catalogs [OK]
MQ upgrade successful [12:25 elapsed] [OK]

Restore procedure
You can restore to a previous version of IBM MQ for HPE NonStop V8.1.

If you have previously upgraded IBM MQ for HPE NonStop V8.1 with a newer release or Fixpack, you can
restore to the previous version provided that you let the upgrade procedure create a backup. You must
use the same installer program that you used to upgrade.

iFixes cannot be backed out with the restore option. For uninstallation of iFixes see “iFix procedure” on
page 22.

Installing and upgrading 21

To restore, enter the following command:

installer_name.run --restore -i OSS_directory [-d]

Where:

• installer_name is the name of the installation program, for example, ibm-mq-hpe-nsx64-8.0.1.
• OSS_directory is the path to the existing installation. The path can be absolute or relative to the current

working directory.
• The --restore parameter can also be specified as -restore.
• You specify -d to delete the backup files after successful restoration.

Provided that you have not used any of the new feature installed by the upgrade, the restored system is
equivalent to a new installation of the previous version, with configurations and data of queue managers
and queues preserved.

Fixpacks
You can install Fixpacks on existing IBM MQ for HPE NonStop V8.1 installations.

A Fixpack is an installable package of fixes that are installed over an existing IBM MQ installation (see
“Upgrade procedure” on page 20). A Fixpack contains all the IBM MQ libraries and executables of its
base release, but a Fixpack cannot be used to create a new IBM MQ installation. Fixpacks are numbered
using the last digit of the VRMF (Version Release ModLevel FixLevel), for example:

• 8.0.1. The base release 8.0.1. Sometimes numbered 8.0.1.0
• 8.0.1.1 The first Fixpack that installs on 8.0.1
• 8.0.1.2 The second Fixpack that installs on 8.0.1
• 8.0.1.3 The third Fixpack that installs on 8.0.1

Fixpacks are cumulative, for example, Fixpack 8.0.1.3 contains all of the fixes contained in prior Fixpacks
8.0.1.2 and 8.0.1.1, and can be installed on any installation from 8.0.1(.0) through to 8.0.1.2. Fixpacks
cannot be used to upgrade from earlier releases, that is, you cannot install Fixpack 8.0.1.5 on 8.0.0.2.

CD (continuous delivery) releases can be applied on top of Fixpacks, for example, 8.0.3 can be installed
on top of 8.0.3.5, but 8.0.3 cannot be installed on top of 8.0.4.1. The same consideration applies to LTS
(Long-term support) releases.

The 8.1.0(.0) release can be applied on top of release 8.0.4.1.

You can back out of Fixpack installations using the restore procedure, see “Restore procedure” on page
21.

iFix procedure
You can install iFixes on existing IBM MQ for HPE NonStop V8.1 installations.

You can install an iFix over an existing IBM MQ for HPE NonStop V8.1 installation to clear one or more
specific problems in the installation, depending on the iFix. Usually, an iFix references an APAR and
contains a small number of patched executable files and libraries. There are strict rules concerning the
installation of iFixes:

• iFixes can only be installed on the base release they are built on.
• Usually, only one iFix can be installed at a time. Once installed, you can undo iFixes to install other

ones. There are exceptions to this rule, for example, clean OpenSSL iFixes; these iFixes can be installed
independently on other iFixes.

• Any FixPack or release upgrade overwrites iFixes in the installation.

You install iFixes by using the upgrade procedure, see “Upgrade procedure” on page 20.

22 IBM MQ for HPE NonStop V8.1

You can revert iFixes by reinstalling the base release over them (you cannot use the restore procedure to
revert iFixes). For example, if you have an installed iFix IT12345 on IBM MQ for HPE NonStop V8.1, you
can revert the iFix by installing IBM MQ for HPE NonStop V8.1 (or higher) over the iFix installation.

Troubleshooting installation
After the installation completes, the installation log is available in the OSS directory specified by the -i
option in the installation command.

Any problem observed during installation is documented in the log file. If the installation fails and
assistance is needed to resolve the issue, IBM Support might ask for the installation log to identify the
cause of the problem.

Guardian install subvolume inventory
The files that are installed in the Guardian subvolume.

IBM MQ application binding libraries

Filename File code Description

MQM 800 IBM MQ Application Library (Local)

MQIC 800 IBM MQ Application Library (Client)

MQMTNS 100 IBM MQ Non-native TNS Application Library (Local)

Table 1: IBM MQ application binding libraries

Miscellaneous files

Filename File code Description

MQCSTM 101 IBM MQ TACL obey file

PAKEMS 0 IBM MQ EMS templates

Table 2: Miscellaneous files

IBM MQ application header files

Filename File code Description

CMQBCH 101 IBM MQ C-language Header file

CMQCFCH 101 IBM MQ C-language Header file

CMQCH 101 IBM MQ C-language Header file

CMQECH 101 IBM MQ C-language Header file

CMQPSCH 101 IBM MQ C-language Header file

CMQXCH 101 IBM MQ C-language Header file

CMQZCH 101 IBM MQ C-language Header file

CMQCOBOL 101 IBM MQ COBOL Copybook

Table 3: IBM MQ application header files

Installing and upgrading 23

Filename File code Description

CMQBT 101 IBM MQ pTAL Header

CMQCFT 101 IBM MQ pTAL Header

CMQPST 101 IBM MQ pTAL Header

CMQT 101 IBM MQ pTAL Header

CMQXT 101 IBM MQ pTAL Header

IMQAIRH 101 IBM MQ C++ Classes Header

IMQBINH 101 IBM MQ C++ Classes Header

IMQCACH 101 IBM MQ C++ Classes Header

IMQCHLH 101 IBM MQ C++ Classes Header

IMQCIHH 101 IBM MQ C++ Classes Header

IMQDLHH 101 IBM MQ C++ Classes Header

IMQDSTH 101 IBM MQ C++ Classes Header

IMQERRH 101 IBM MQ C++ Classes Header

IMQGMOH 101 IBM MQ C++ Classes Header

IMQHDRH 101 IBM MQ C++ Classes Header

IMQIH 101 IBM MQ C++ Classes Header

IMQIIHH 101 IBM MQ C++ Classes Header

IMQITMH 101 IBM MQ C++ Classes Header

IMQMGRH 101 IBM MQ C++ Classes Header

IMQMSGH 101 IBM MQ C++ Classes Header

IMQMTRH 101 IBM MQ C++ Classes Header

IMQNMLH 101 IBM MQ C++ Classes Header

IMQOBJH 101 IBM MQ C++ Classes Header

IMQPMOH 101 IBM MQ C++ Classes Header

IMQPROH 101 IBM MQ C++ Classes Header

IMQQUEH 101 IBM MQ C++ Classes Header

IMQRFHH 101 IBM MQ C++ Classes Header

IMQSTRH 101 IBM MQ C++ Classes Header

IMQTRGH 101 IBM MQ C++ Classes Header

IMQTYPEH 101 IBM MQ C++ Classes Header

Table 3: IBM MQ application header files (continued)

Native sample programs (local qmgr bindings)

Source code in $MQINST/opt/mqm/samp

24 IBM MQ for HPE NonStop V8.1

Filename File code Description

AMQSACT 500/800 C-Language Native Sample Program (Local)

AMQSAEM 500/800 C-Language Native Sample Program (Local)

AMQSAPT 500/800 C-Language Native Sample Program (Local)

AMQSAXE 500/800 C-Language Native Sample Program (Local)

AMQSBCG 500/800 C-Language Native Sample Program (Local)

AMQSBLST 500/800 C-Language Native Sample Program (Local)

AMQSCBF 500/800 C-Language Native Sample Program (Local)

AMQSCLM 500/800 C-Language Native Sample Program (Local)

AMQSCNX 500/800 C-Language Native Sample Program (Local)

AMQSECH 500/800 C-Language Native Sample Program (Local)

AMQSFHA 500/800 C-Language Native Sample Program (Local)

AMQSGBR 500/800 C-Language Native Sample Program (Local)

AMQSGET 500/800 C-Language Native Sample Program (Local)

AMQSGHA 500/800 C-Language Native Sample Program (Local)

AMQSGRM 500/800 C-Language Native Sample Program (Local)

AMQSINQ 500/800 C-Language Native Sample Program (Local)

AMQSIQM 500/800 C-Language Native Sample Program (Local)

AMQSLOG 500/800 C-Language Native Sample Program (Local)

AMQSMHA 500/800 C-Language Native Sample Program (Local)

AMQSMON 500/800 C-Language Native Sample Program (Local)

AMQSPHA 500/800 C-Language Native Sample Program (Local)

AMQSPRM 500/800 C-Language Native Sample Program (Local)

AMQSPTL 500/800 C-Language Native Sample Program (Local)

AMQSPUB 500/800 C-Language Native Sample Program (Local)

AMQSPUT 500/800 C-Language Native Sample Program (Local)

AMQSQRM 500/800 C-Language Native Sample Program (Local)

AMQSREQ 500/800 C-Language Native Sample Program (Local)

AMQSSBX 500/800 C-Language Native Sample Program (Local)

AMQSSET 500/800 C-Language Native Sample Program (Local)

AMQSSSL 500/800 C-Language Native Sample Program (Local)

AMQSSTM 500/800 C-Language Native Sample Program (Local)

AMQSSTOP 500/800 C-Language Native Sample Program (Local)

AMQSSUB 500/800 C-Language Native Sample Program (Local)

AMQSTRG 500/800 C-Language Native Sample Program (Local)

Table 4: Native sample programs (local qmgr bindings)

Installing and upgrading 25

Filename File code Description

AMQSWLM 500/800 C-Language Native Sample Program (Local)

AMQSXRM 500/800 C-Language Native Sample Program (Local)

AMQBGBR 500/800 COBOL Native Sample Program (Local)

AMQBGET 500/800 COBOL Native Sample Program (Local)

AMQBPTL 500/800 COBOL Native Sample Program (Local)

AMQBPUB 500/800 COBOL Native Sample Program (Local)

AMQBPUT 500/800 COBOL Native Sample Program (Local)

AMQBREQ 500/800 COBOL Native Sample Program (Local)

AMQBSUB 500/800 COBOL Native Sample Program (Local)

AMQTECH 500/800 pTAL Native Sample Program (Local)

AMQTGET 500/800 pTAL Native Sample Program (Local)

AMQTPUB 500/800 pTAL Native Sample Program (Local)

AMQTPUT 500/800 pTAL Native Sample Program (Local)

AMQTSUB 500/800 pTAL Native Sample Program (Local)

IMQDPUT 500/800 C++ IMQI Classes Native Sample Program (Local)

IMQSGET 500/800 C++ IMQI Classes Native Sample Program (Local)

IMQSPUT 500/800 C++ IMQI Classes Native Sample Program (Local)

IMQWRLD 500/800 C++ IMQI Classes Native Sample Program (Local)

Table 4: Native sample programs (local qmgr bindings) (continued)

Native sample programs (client bindings)

Source code in $MQINST/opt/mqm/samp.

Filename File code Description

AMQSACTC 500/800 C-Language Native Sample Program (Client)

AMQSAEMC 500/800 C-Language Native Sample Program (Client)

AMQSAPTC 500/800 C-Language Native Sample Program (Client)

AMQSAXEC 500/800 C-Language Native Sample Program (Client)

AMQSBCGC 500/800 C-Language Native Sample Program (Client)

AMQSCBFC 500/800 C-Language Native Sample Program (Client)

AMQSCNXC 500/800 C-Language Native Sample Program (Client)

AMQSECHC 500/800 C-Language Native Sample Program (Client)

AMQSFHAC 500/800 C-Language Native Sample Program (Client)

AMQSGRMC 500/800 C-Language Native Sample Program (Client)

Table 5: Native sample programs (client bindings)

26 IBM MQ for HPE NonStop V8.1

Filename File code Description

AMQSINQC 500/800 C-Language Native Sample Program (Client)

AMQSIQMC 500/800 C-Language Native Sample Program (Client)

AMQSLOGC 500/800 C-Language Native Sample Program (Client)

AMQSMHAC 500/800 C-Language Native Sample Program (Client)

AMQSMONC 500/800 C-Language Native Sample Program (Client)

AMQSPHAC 500/800 C-Language Native Sample Program (Client)

AMQSPRMC 500/800 C-Language Native Sample Program (Client)

AMQSPTLC 500/800 C-Language Native Sample Program (Client)

AMQSPUBC 500/800 C-Language Native Sample Program (Client)

AMQSPUTC 500/800 C-Language Native Sample Program (Client)

AMQSREQC 500/800 C-Language Native Sample Program (Client)

AMQSSBXC 500/800 C-Language Native Sample Program (Client)

AMQSSETC 500/800 C-Language Native Sample Program (Client)

AMQSSSLC 500/800 C-Language Native Sample Program (Client)

AMQSSTMC 500/800 C-Language Native Sample Program (Client)

AMQSSUBC 500/800 C-Language Native Sample Program (Client)

AMQSTRGC 500/800 C-Language Native Sample Program (Client)

AMQBGBRC 500/800 COBOL Native Sample Program (Client)

AMQBGETC 500/800 COBOL Native Sample Program (Client)

AMQBPTLC 500/800 COBOL Native Sample Program (Client)

AMQBPUBC 500/800 COBOL Native Sample Program (Client)

AMQBPUTC 500/800 COBOL Native Sample Program (Client)

AMQBREQC 500/800 COBOL Native Sample Program (Client)

AMQBSUBC 500/800 COBOL Native Sample Program (Client)

AMQTECHC 500/800 pTAL Native Sample Program (Client)

AMQTGETC 500/800 pTAL Native Sample Program (Client)

AMQTPUBC 500/800 pTAL Native Sample Program (Client)

AMQTPUTC 500/800 pTAL Native Sample Program (Client)

AMQTSUBC 500/800 pTAL Native Sample Program (Client)

Table 5: Native sample programs (client bindings) (continued)

IBM MQ administration tooling

Filename File code Description

CRTMQM 500/800 crtmqm tool

Table 6: IBM MQadministration tooling

Installing and upgrading 27

Filename File code Description

DLTMQM 500/800 dltmqm tool

DSPMQ 500/800 dspmq tool

DSPMQVER 500/800 dspmqver tool

ENDMQM 500/800 endmqm tool

RUNMQSC 500/800 runmqsc tool

Table 6: IBM MQadministration tooling (continued)

IBM MQ system files

Filename File code Description

AMQZFU 500/800 IBM MQ Product DLL

AMQZIF 500/800 IBM MQ Product DLL

CRYPTO 500/800 IBM MQ Product DLL

MQCXA 500/800 IBM MQ Product DLL

MQDC 500/800 IBM MQ Product DLL

MQDS 500/800 IBM MQ Product DLL

MQE 500/800 IBM MQ Product DLL

MQECS 500/800 IBM MQ Product DLL

MQIZ 500/800 IBM MQ Product DLL

MQMALDA 500/800 IBM MQ Product DLL

MQMALDB 500/800 IBM MQ Product DLL

MQMAX 500/800 IBM MQ Product DLL

MQMCB 500/800 IBM MQ Product DLL

MQMCS 500/800 IBM MQ Product DLL

MQML 500/800 IBM MQ Product DLL

MQMR 500/800 IBM MQ Product DLL

MQMXA 500/800 IBM MQ Product DLL

MQMZ1 500/800 IBM MQ Product DLL

MQMZCG 500/800 IBM MQ Product DLL

MQMZF 500/800 IBM MQ Product DLL

MQMZSE 500/800 IBM MQ Product DLL

MQRC 500/800 IBM MQ Product DLL

MQUTL 500/800 IBM MQ Product DLL

MQXZU 500/800 IBM MQ Product DLL

MQZ 500/800 IBM MQ Product DLL

Table 7: IBM MQ system files

28 IBM MQ for HPE NonStop V8.1

Filename File code Description

MQZI 500/800 IBM MQ Product DLL

MQZSD 500/800 IBM MQ Product DLL

SSL 500/800 IBM MQ Product DLL

AMQDC 0 IBM MQ System File

AMQINST 0 IBM MQ System File

AMQPARMS 33A+ IBM MQ System File

AMQMQINS 34A IBM MQ System File

Table 7: IBM MQ system files (continued)

Installing and upgrading 29

30 IBM MQ for HPE NonStop V8.1

Working with IBM MQ

Working with IBM MQ includes creating queue managers and routine tasks such as stopping and starting
queue managers.

It also includes tasks such as compiling channel exit programs.

Creating a queue manager
Before creating a queue manager, you should understand requirements such as required disk space.

Understanding IBM MQ file names
When you create a queue manager, files are created in both the OSS file system and on Guardian disks.

OSS file system

When you create a queue manager, a directory is created in the OSS file system and an entry is created
in the mqs.ini file describing that directory. The path to the queue manager directory is made up of the
following elements:

• Installation directory. The OSS directory that was specified when IBM MQ was installed.
• Prefix. By default this is /var/mqm. The prefix is configured in the DefaultPrefix stanza of the
mqs.ini configuration file.

• Directory named QMGRS (this contains all the queue manager directories, it cannot be changed and so is
not included in the mqs.ini file)

• Directory name. The directory name is configured in the Directory stanza of the mqs.ini
configuration file. The directory name is derived from the queue manager name, but as the rules
governing queue manager names are different to the rules governing file and directory names, the
queue manager name might need transforming. The following rules govern any transformation:

– Period characters (".") are converted to exclamation marks ("!").
– Forward slash characters ("/") are converted to ampersand characters ("&")

For example, if IBM MQ was installed in the OSS directory /home/user/mqv8, a queue manager named
my.first.queue.manager would be located in the OSS directory /home/user/mqv8/var/mqm/QMGRS/
my!first!queue!manager.

Guardian disks

Queue data files and some configuration files are stored in a configurable Guardian subvolume. You can
specify the name of the subvolume when you create the queue manager by using the -ng option. For
example:

crtmqm -ng data09.myqmgr myqmgr

(See “Running crtmqm” on page 33 for more details about using the -ng option.)

If you do not specify the subvolume name, one is created automatically. The name is based on the queue
manager name, but as subvolume names are up to eight characters in length, and queue manager names
can be up to 48 characters, the following transformation rules are applied:

1. The first eight characters of the queue manger name are used.
2. Lowercase letters are converted to uppercase.
3. Any non-alphanumeric character is replaced by the letter X.
4. If the first character is numeric, it is replaced by the letter X.

© Copyright IBM Corp. 2017, 2019 31

For example, the queue manager name saturn.queue.manager is transformed to the subvolume name
SATURNXQ. If a transformed name cannot be used because a subvolume with that name already exists, a
name with the format QMGRnnnn is used, where nnnn is a numeric suffix starting at 0000.

Related concepts
“Planning disk space” on page 32
Queue managers require disk space in the OSS file system and on Guardian discs.
“Running crtmqm” on page 33
You run the command crtmqm to create a queue manager.

Planning disk space
Queue managers require disk space in the OSS file system and on Guardian discs.

Creating a queue manager creates directory entries in the OSS file system in the installation directory
within the var subdirectory. The initial amount of data stored there during creation of the queue manager
is small (about 1 MB). However this data can grow rapidly if severe problems occur. In that case the
AMQERRnn.LOG files grow and (potentially many and potentially large) FFST files might be created in
the appropriate error directories. So it is advisable to make sure there is enough space in the file system
(number of files and space on disk) before creating queue managers.

Queue data files and some configuration files are stored in a configurable Guardian subvolume. The
name of a queue data file is chosen by IBM MQ internally. The name always starts with the letter "Q".
The runnscnf configuration tool (see “Configuring IBM MQ” on page 45) has an option to show which
logical queue is represented by which physical file (you can also use the dspmqfls tool for this purpose).

Each queue is by default initially created with 512 primary extents, 5008 secondary extents, and
maxextents set to 50. This means the queue will initially use 1 MB of disk space. As soon as the file
grows beyond 1 MB, it is extended in steps of roughly 10 MB. When the maxextents limit of 50 (filesize
of roughly 51 MB) is reached, IBM MQ automatically tries to increase maxextents for the queue, so that
it can grow further. The actual space needed depends on the profile of your application.

In addition to the queue data files, several configuration files are stored in the Guardian subvolume of the
queue manager. These names start with letters "AMQ". The total disk space used by the configuration files
is less than 10 MB, even if thousands of queues are created.

By default, all queue files are created in the same Guardian subvolume specified when creating the queue
manager (see “Running crtmqm” on page 33). It is possible to configure IBM MQ for HPE NonStop
V8.1 to store sets of queue files (determined by a pattern of the logical name) on different volumes/
subvolumes. This configuration is done before the queues are actually created. First you decide which
queue files are supposed to go onto which disk, then define the appropriate rules (see the “Configuring
IBM MQ” on page 45 for details). Then you create the queue files, so they are located at the correct
place from the beginning.

It is also possible to define rules for primary/secondary/maxextents allocation on the basis of patterns for
logical queue names.

Partitioned queue files are not supported.

Partitioned queue files are supported in IBM MQ for HPE NonStop V8.0.1.

Environment variables and PATH
You might need to set up environment variables and add to the PATH before working with IBM MQ queue
managers.

All IBM MQ tools are located in the OSS directory install_dir/opt/mqm/bin, where install_dir
is the installation directory. Tool location can either be qualified to point to that directory, or the directory
can be included in the $PATH environment variable.

On Guardian, the IBM MQ tools are located in the IBM MQ installation subvolume.

32 IBM MQ for HPE NonStop V8.1

IBM MQ for HPE NonStop V8.1 does not (normally) require any environment variables to be defined for
IBM MQ administration tools or IBM MQ application programs to run (provided that application programs
have been linked with the IBM MQ V8 libraries).

When running application programs that were previously compiled and linked with WebSphere MQ for HP
NonStop Server V5.3, an _RLD_FIRST_LIB_PATH environment variable or define is required, as shown:

For OSS:

export _RLD_FIRST_LIB_PATH=install_dir/opt/mqm/lib: install_dir/opt/mqm/lib64

For Guardian:

add define =_RLD_FIRST_LIB_PATH,class search, subvol0 $vol.subvol

where $vol.subvol is the Guardian sub-volume chosen when IBM MQ was installed.

Environment variables used by WebSphere MQ for HP NonStop Server V5.3 (MQNSKOPTPATH and
MQNSKVARPATH) are ignored by IBM MQ for HPE NonStop V8.1.

CPU considerations
All IBM MQ processes of a queue manager are running in a single CPU with some exceptions.

Cache manager process (executable amqcache)
The cache manager process stores all non-persistent messages in main memory. So, if your
application profile makes heavy use of non-persistent messages, some scalability can be achieved
by configuring IBM MQ to run the cache manager process in a different CPU than the queue manager
itself. It is also possible to have multiple cache manager process instances for a single queue
manager. You can configure a cache manager process for a set of logical queues given by a queue
name pattern.

Set signal manager (executable amqssmgr)
The set signal manager process is involved when your application uses the MQGET SET SIGNAL
feature. So, if this feature is heavily used by the application, configuring the set signal manager to
run in a different CPU than the queue manager can potentially improve throughput. Like the cache
manager, the set signal manager is configured per logical queue name pattern. Note that the set
signal manager process can optionally be run in fault tolerant mode as a NonStop process pair. In that
case, checkpointing occurs and CPU usage of the backup process is in the same order of magnitude
as for the primary. Both CPUs for the set signal manager (primary and backup) can be configured
independently.

Running crtmqm
You run the command crtmqm to create a queue manager.

Note: As IBM MQ for HPE NonStop V8.1 uses TMF-enabled files for queue data storage, logger related
crtmqm options are not supported. These are the following options:

• -lc
• -ld
• -lf
• -ll
• -lp
• -ls

You specify the Guardian sub-volume by using the –ng option of the crtmqm command.

As with the previous WebSphere MQ for HP NonStop Server V5.3, crtmqm chooses a new (empty)
Guardian sub-volume if the -ng option is not specified on the command-line.

Working with IBM MQ 33

The Guardian sub-volume provided by -ng can be written in various forms:

vol.subvol
vol/subvol
\$vol.subvol (Note: the $ must be escaped)
/G/vol/subvol

Additionally, the -ng option accepts a trailing "+" wildcard in the sub-volume specification. When the
Guardian sub-volume contains this wildcard, it is treated as a sub-volume prefix. Specified this way, the
crtmqm command chooses an empty Guardian sub-volume with a name that begins with the specified
value. For example:

crtmqm -ng data09.myqmgr+ MYQMGR

This command causes the crtmqm command to choose an empty Guardian sub-volume with a name
starting with $DATA09.MYQMGR. The chosen sub-volume might be, for example, be $DATA09.MYQMGR0 if
that sub-volume was empty at the time the crtmqm command was run.

Note: The crtmqm option –x specifies the maximum number of uncommitted messages the queue
manager supports. This corresponds to the TMF locklimit per transaction. So make sure that the TMF limit
(which can be configured per disk) is at least as large as the limit used by IBM MQ. The default value for
–x for IBM MQ is 10000, while the default lock limit for TMF is 5000. So either increase the TMF limit
(this can be done online, no system interruption is required) or specify –x with a lower number than your
current TMF configuration. Please consult your system administration, HPE, or IBM if in doubt.

Starting and ending queue managers
You start queue managers by using the strmqm command and end queue managers by using the endmqm
command.

Because of the different implementation of IBM MQ for HPE NonStop V8.1, certain features of strmqm
and endmqm are not supported.

Unsupported strmqm options

The NonStop implementation is different to other IBM MQ implementations in the following areas:

High availability

Instead of a standby queue manager running on a different system (MIQM, multiple instance queue
manager), as with Windows or Linux, IBM MQ on NonStop implements the high availability NonStop
queue manager (HANSQM) concept. See “High availability (HANSQM)” on page 69 for details.
Since HANSQM administration is different from MIQM, certain strmqm parameters available for other
platforms are not supported on NonStop.

No logger
As IBM MQ for HPE NonStop V8.1 uses TMF enabled files for queue data storage, logger related
strmqm options are not supported.

Specifically, the following strmqm options are not supported on NonStop:

• -a (MIQM related option)
• -r (MIQM related option)
• -x (MIQM related option)

Unsupported endmqm options

The following options for endmqm are not supported on HPE NonStop servers:

• -s
• -x

34 IBM MQ for HPE NonStop V8.1

Both options are meant to be used in connection with Multi Instance Queue Managers, available on
distributed platforms. On the NonStop platform fault tolerance is achieved by the HANSQM feature. See
“High availability (HANSQM)” on page 69 for details.

Starting a queue manager
As on all other platforms, a queue manager is started using strmqm after it has been created with
crtmqm.

On NonStop platforms, the following extra considerations apply:

Backup process automatically started

If not configured otherwise (see “High availability (HANSQM)” on page 69 for details), a full
queue manager is started on one CPU, and the backup EC process plus several other queue manager
processes are started on another CPU.

CPU assignment

If not configured otherwise (see “High availability (HANSQM)” on page 69 for details), the primary
queue manager is started on the CPU where strmqm is run.

You can explicitly specify which CPU to start the primary queue manager by using the -cpu option
with strmqm. For example, if you want your primary queue manager QM1 to start on CPU 3, enter the
following command:

run –cpu=3 strmqm QM1

To show the current CPU assignment for all queue managers of a given installation, use the dspmq
command with option –x.

Ending a queue manager
On NonStop platforms, queue managers are ended by using the endmqm command as on all other
platforms.

The following special considerations apply:

• The endmqm command always ends the primary and the backup instance of the given queue manager,
regardless of the CPUs these are running on.

• Never try stopping a queue manager by using a kill -9 command on queue manager processes.
Because the EC process runs with a backup process, using the kill command can result in a takeover,
which then might start another backup in a yet different CPU.

• If a hard kill of a queue manager is required for some reason, first stop the EC process pair using
the TACL STOP command with the process name, as in STOP $QMAB. The process name of the EC is
shown by the dspmq –x command. (If dspmq -x does not work, look for the process started from
the executable amqzxma0). After stopping the EC process pair, usually all processes of that queue
manager on both CPUs should be finished. If that is not the case, you can then stop all process pairs
from executable amqssmgr (SET SIGNAL manager) and finally kill -9 all potentially remaining
processes.

Note: This procedure is an emergency mechanism, and under normal circumstances should never be
required.

• After ending a queue manager and looking at the process list (by using the ps command), you might
find one or more instances of the dspmq program remaining, at most one instance in each CPU. This
is normal and expected behavior. Since the dspmq program is common for the installation, and does
not depend on a specific queue manager, these programs might run in the background. They may go
away after a while, and will always go away when dltmqm is run. It is also safe to stop these instances
manually; if an instance is required by any queue manager function, it is automatically restarted.

Working with IBM MQ 35

IBM MQ processes unique to IBM MQ for HPE NonStop V8.1
Several new process types have been added to IBM MQ to provide NonStop specific functionality.

Cache Manager Supervisor: amqcchsv

The cache manager supervisor process (executable amqcchsv) has the following tasks:

1. On demand, start any of the other NonStop specific process types documented in this topic. If any of
these processes fails for whatever reason, the cache manager supervisor restarts it automatically.

2. At queue manager end, stop all potentially remaining processes. If certain processes of a queue
manager fail (for example, the execution controller EC), typically a takeover to the backup instance
running on a different CPU is initiated. To ensure consistency, it is important that no processes of the
previous primary instance are running at that point. The cache manager supervisor takes care of that.

CPU consumption of this process is usually extremely small.

Cache Manager: amqcache

The cache manager (executable amqcache) stores non-persistent messages in main memory. You can
configure multiple instances of this process with logical names, and can assign different queues to use
different instances of the cache manager for scalability. If there are large queues with non-persistent
messages, memory consumption of the cache manager can become large. If large memory consumption
of the cache manager is observed, use runmqsc to view the current depth of queues, to see which queues
might cause that. As the cache manager is a 64-bit process, its memory use can go up to 12 GB (the
default setting for 64-bit processes on NonStop).

Due to the nature of the amqcache process, resource consumption (CPU and memory) might be
significant.

Note:

If the cache manager fails, all non-persistent messages held by this instance are lost. Under general
IBM MQ rules, non-persistent messages are not guaranteed. When the cache manager is restarted
(which is done automatically), it immediately starts storing new non-persistent messages. At that
point, the queue manager still knows about the lost non-persistent messages. If the application tries
to retrieve one of those messages, for example, the first one on a queue, it receives an MQ error (2208
MQRC_FILE_SYSTEM_ERROR). The queue manager then forgets about that lost message. The application
must be prepared to receive as many of these errors as there are lost messages due to the amqcache
failure. After these errors have been received, the application will start receiving normal non-persistent
messages again. So a failure of the amqcache process from an application perspective will mean a certain
number of recognized errors and then continued business.

If required, you can suppress 2208 MQRC_FILE_SYSTEM_ERROR messages. You can specify that MQGET
does not return this error, but instead returns the next available message or a different error than 2208
(for example, 2033 MQRC_NO_MSG_AVAILABLE).

To suppress error 2208 on MQGET, set the property IgnoreNPMsgLossErrorOnMQGET in the tool
runnscnf:

class QueuePattern;
object myBigQueuePattern;
set pattern myBigQu*;
set IgnoreNPMsgLossErrorOnMQGET T;

where myBigQueuePattern is a name of a QueuePattern, and myBigQu* is a pattern matching queue
names.

Setting IgnoreNPMsgLossErrorOnMQGET to F restores the default behavior.

Any changes only take in effect after a queue manager restart.

36 IBM MQ for HPE NonStop V8.1

Config Manager: amqconfg

The amqconfg process keeps a cache of certain configuration settings made using runnscnf (see
“Configuring IBM MQ” on page 45 for details), and provides that to the queue manager. It is a
restartable process, so if it fails it will be restarted and rebuild the cache. No outage should be observed.

Setsignal Manager: amqssmgr

The setsignal manager process (executable amqssmgr) is involved in all activity regarding the MQGET SET
SIGNAL feature. You can configure multiple instances of this process with logical names and can assign
different queues to use different instances for scalability. The process can optionally be configured to run
as a process pair.

Note: An application using the MQGET SET SIGNAL feature typically waits for messages on $RECEIVE,
indicating that MQGET can be called and will get a message. If no interprocess message appears on
$RECEIVE, the application might wait forever. For this reason it is important to run amqssmgr as a
checkpointing NonStop process pair. Even if the primary instance fails (for example, due to a CPU outage)
the backup instance is still able to notify applications of the event, and so trigger continuation of business.
Depending on your application, you should in addition use application timeouts so that even in outage
situations applications never become completely unresponsive.

Due to the nature of the process, resource consumption (CPU and memory) might be significant.

Consistency Manager: amqcnmgr

The consistency manager, amqcnmgr, is started together with the queue manager, but is only used in
situations where a takeover from primary to backup occurs. In that case, amqcnmgr ensures that the
knowledge of the running queue manager regarding open interactions becomes consistent over time.

For example, assume that Application A starts a TMF transaction and then does an MQPUT operation that
completes without error, the TMF transaction is not yet ended. Application B (which might be a queue
manager internal application like a channel agent) has an MQGET for that queue outstanding. At that
point of time, the queue manager fails and the backup takes over. The MQGET of application B will fail,
application B will reconnect to the backup instance of the queue manager, reopen the queue, and reissue
the MQGET. Because the MQPUT transaction of application A is not yet finished, the backup instance does
not know anything about the message put by A, the corresponding records in the Enscribe file are still
locked by the transaction. When now A ends the transaction, the queue manager must get notification
about the MQPUT done by A, so that it can present the message to B. When B does the MQOPEN of the
queue, the amqcnmgr process is involved and its task is to inform the queue manager about the outcome
and the consequences of any outstanding transactions.

Technically, the amqcnmgr process could be started on a different CPU than the queue manager, but this
does not make much sense. In normal operations, the amqcnmgr process does not do any work at all, and
even in takeover situations it is only involved for a short time. Resource consumption is not an issue.

Guardian Bindings Agent: amqzlga0

Each application connecting to the queue manager also connects to an agent doing the queue manager
related work for that application. Depending on the kind of bindings used, different types of agents are
used. When using shared bindings, the agent used is amqzlaa0. A process of this kind is usually always
started with the queue manager, because this kind of connection is used by all internal components of the
queue manager.

For isolated bindings, the corresponding agent executable is amqzlsa0. As isolated bindings are not
recommended on NonStop, you will typically never see this process.

For Guardian bindings, the corresponding agent is amqzlga0. Since Guardian bindings are available only
on NonStop, this process is only available on NonStop. The amqzlga0 agent is always threaded; non-
threaded agents are not supported with IBM MQ V8 on NonStop.

Each amqzlga0 agent is able to handle up to 10 concurrent connections. If the application uses more
concurrent connections, IBM MQ automatically starts more instances of the amqzlga0 process. If your

Working with IBM MQ 37

application uses many concurrent IBM MQ connections, you will see many amqzlga0 instances. These
processes do the main IBM MQ work, so they use significant CPU resources.

All amqzlga0 instances must run on the queue manager CPU. Although applications communicate with
amqzlga0 using Guardian interprocess messages, and so can run on any CPU, the amqzlga0 instances
use shared memory with other IBM MQ processes, and so must run on the queue manager CPU only.

Compiling channel exit programs on HPE NonStop systems
You can compile channel exit programs for IBM MQ on your HPE NonStop system.

In the following examples, exit is the channel library name and ChannelExit is the function name.
These names are used by the channel definition to reference the exit program using the format described
in MQCD- channel definition.

Sample compiler and linker command for channel exits on HPE NonStop I (ia64)

$ c89 -Wshared -Wsystype=oss -Wlp64 -Wextensions -D_PUT_MODEL_ -I$MQINST/opt/mqm/inc
 -Weld="-export_all -set data_model lp64" -L$MQINST/opt/mqm/lib64 -lmqds64_r -lput
 -o $MQINST/var/mqm/exits64/exit_r exit.c

Sample compiler and linker command for channel exits on HPE NonStop X (x86)

$ c89 -Wshared -Wsystype=oss -Wlp64 -Wextensions -D_PUT_MODEL_ -I$MQINST/opt/mqm/inc
 -Wxld="-export_all -set data_model lp64" -L$MQINST/opt/mqm/lib64 -lmqds64_r -lput
 -o $MQINST/var/mqm/exits64/exit_r exit.c

Triggering Guardian programs and TACL scripts from IBM MQ
You can trigger Guardian programs and TACL commands or scripts from IBM MQ by using the mqtrig
script.

You reference the mqtrig script from the APPLICID parameter of an MQSC process definition (see http://
www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.ref.adm.doc/q085670_.html). The
APPLICID parameter specifies the type of object that is triggered using the following arguments:
-c $vol.subvol.command [args...]

Start a TACL command
-cv $vol.subvol.command [args...]

Start a TACL command with echo
-p /G/vol/subvol/program [args...]

Start a Guardian program
-5.1

Start TACL commands in IBM MQ 5.1 compatibility mode

mqtrig passes PARAM (environment) variables to the Guardian program or TACL command. These
PARAMs represent the values from the MQTMC2 structure generated by the Trigger Monitor. PARAM
variables are only generated for MQTMC members that contain data. The PARAMs that can be passed are
listed in the following table:

PARAM name MQSC Attribute MQTMC Member

TRIGVER - Version (currently always set to
2)

TRIGQNAME - Qname

Table 8: PARAM variables

38 IBM MQ for HPE NonStop V8.1

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.ref.dev.doc/q108210_.htm?view=kc
http://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.ref.adm.doc/q085670_.html
http://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.ref.adm.doc/q085670_.html

PARAM name MQSC Attribute MQTMC Member

TRIGPROCESS Queue PROCESS attribute ProcessName

TRIGDATA Queue TRIGGERDATA attribute TriggerData

TRIGAPPLID Process APPLICID attribute ApplId

TRIGENVDATA Process ENVRDATA attribute EnvData

TRIGUSERDATA Process USERDATA attribute UserData

TRIGQMGRNAME QMgrName

Table 8: PARAM variables (continued)

Guardian programs

Guardian programs are triggered by using the -p option of mqtrig.

mqtrig -p /G/vol/subvol/program [args ...]

No TACL shell is started when running mqtrig in this mode.

The Guardian program is given the TRIG PARAMS described in Table 1 and is also passed the MQTMC2
structure and ENVRDATA tokens as arguments, after any other program arguments.

When you specify the mqtrig command as the APPLICID parameter of the DEFINE PROCESS MQSC
command, the DISPLAY PROCESS for that process might return the following:

display process(myprocess)
AMQ8407: Display Process details.
DESCR()
APPLICID(mqtrig -p /G/vol/subvol/program arg1 arg2)
USERDATA(Hi there) ENVRDATA(my env data)
PROCESS(MYPROCESS) ALTDATE(2018-10-30)
ALTTIME(13.33.16) APPLTYPE(UNIX)

TACL commands

TACL commands can be Guardian programs, TACL routines or TACL macros. TACL commands can be
triggered using the -c or -cv option of mqtrig, and these commands run under control of a TACL shell
started by mqtrig:

mqtrig -c "\$vol.subvol.command [args ..]"

The TACL command is given the TRIG PARAMS described in Table 1, but is not passed the MQTMC2
structure and ENVRDATA tokens as arguments.

IBM MQ 5.1 compatibility mode

The MQ 5.1 trigger monitor passed the TMC to all TACL commands, but because of the TACL command
line limit, only a portion of the TMC was delivered to the TACL command. mqtrig provides all useful fields
within the TMC as PARAMs and does not pass the TMC at all on the TACL command line. If you want to
preserve the MQ 5.1 behavior, you can use the mqtrig -5.1 argument to force the TMC to be passed on
the command line.

Working with IBM MQ 39

40 IBM MQ for HPE NonStop V8.1

Administering IBM MQ

Enhancements have been made to IBM MQ to make administering IBM MQ for HPE NonStop V8.1 easier.

Enhancements to runmqsc
For IBM MQ for HPE NonStop V8.1, enhancements have been made to the runmqsc command.

FC command

Support for the FC (fix command) syntax has been added so that runmqsc includes command history
features that are similar to those offered by the TACL shell. You use the following runmqsc command:

FC [num | string]

Use the FC command to edit and re-submit a command from the command history. FC accepts an
optional command number or command string prefix argument. If neither argument is provided, FC
presents the most recent command for editing. FC has the same command editing features as the TACL
shell FC command:
! [num | string]

The ! command re-executes a command from the command history. The ! command accepts an
optional command number or command string prefix argument that can be used to select which
command should be re-executed. If neither argument is provided, the ! command re-executes the
most recent command.

H [num]

The H command displays commands from the command history. The display includes the command
numbers associated with each command. The command numbers can be used with either the FC or !
commands to select a particular command for processing.

The H command accepts an optional numeric argument that specifies how many commands should
be listed. If no numeric argument is provided, the H command displays the 10 most recent commands
from the command history.

Additional information displayed

runmqsc has been enhanced for IBM MQ for HPE NonStop V8.1 to show the following additional or
adapted information:

DIS QS(..) TYPE(HANDLE) ALL
This command shows the TMF transaction id as the UOW id.

Guardian process ids
Several commands show Guardian process ids (process name/CPU,PIN) in addition to, or instead of,
OSS pids.

Specifying TCP/IP Transport for channels and listeners
For IBM MQ for HPE NonStop V8.1, enhancements have been made that allow you to specify the TCP/IP
transport.

You can specify the TCP/IP transport process used by outgoing channels and by listeners in the channel
LOCLADDR attribute, the listener -i or -g options, or the queue manager qm.ini file.

© Copyright IBM Corp. 2017, 2019 41

LOCLADDR attribute

The Channel LOCLADDR attribute has been extended to support the optional specification of a TCP/IP
transport process name. To specify a TCP/IP transport name using LOCLADDR, append a /transport
argument to any existing LOCLADDR value, or specify /transport alone if there is no existing LOCLADDR
value.

For example:

• LOCLADDR(/ztc0)
• LOCLADDR(hostname/ztc0)
• LOCLADDR(2.45.60.20/ztc0)
• LOCLADDR((1234)/ztc0)
• LOCLADDR((2000,3000)/ztc0)

The transport name following the '/' character is case-insensitive and a leading $ is optional.

Listener switches

You can use switches to the run TCP/IP listener command, runmqlsr to specify a named TCP/IP
transport.

Use the -g switch to specify a TCP/IP transport name to be used by the listener when listening for new
incoming connections.

The transport name specified by -g is case-insensitive and a leading $ is optional. For example:

runmqlsr -t tcp -g ztc5 -p 2550
runmqlsr -t tcp -g \$ZTC0 p 2660
listener runmqlsr -i 2.45.60.20

You can also use the TCP/IP listener -i switch to specify a TCP/IP transport using the same syntax
described for the channel LOCLADDR attribute. Note that listeners ignore any port specifications in their -
i value because the listening port is provided by the -p switch. For example:

runmqlsr -t tcp -i 2.45.60.20/ztc0 -p 2550
runmqlsr -t tcp -i /ztc0 -p 2550

The transport name specified by -i is not case sensitive and a leading $ is optional.

qm.ini file

If the channel LOCLADDR attribute does not have a TCP/IP transport specified, then the channel uses the
TCP/IP transport specified by the qm.ini default transport value:

TCP:
 Transport=$ZTC0

You can edit the qm.ini file to specify a different transport, if required.

Precedence rules

Listeners choose their listening TCP/IP transport using the following order of precedence:

1. The value specified by the runmqlsr -i ipaddr command (or the IPADDR attribute value of the
MQSC LISTENER object).

2. The value specified by the runmqlsr -g transport command.
3. The Transport attribute value of the TCP stanza in the qm.ini file.

Inbound channels us the same TCP/IP transport as specified for the listener.

Outbound channels choose their TCP/IP transport using the following order of precedence:

42 IBM MQ for HPE NonStop V8.1

1. The value specified by the channel LOCLADDR attribute.
2. The Transport attribute value of the TCP stanza in the qm.ini file.

Enhancements to dspmq
For IBM MQ for HPE NonStop V8.1, enhancements have been made to the dspmq command.

The dspmq –x command has been changed on NonStop to show CPU and PIN for the primary and
backup EC of all running queue managers of that installation.

The dspmq -o g option has been added to display the Guardian Subvol of the queue manager.

EMS messages
For IBM MQ for HPE NonStop V8.1, additional diagnostic messages have been added.

EMS messages have been implemented in addition to the IBM MQ error log and FFST mechanisms to
display low level information (like Guardian file names and Guardian error codes) for failing Guardian API
calls. For experienced NonStop operators, these messages can provide required information faster than
FFST analysis. See “EMS” on page 107.

Tuning agent processes
You can edit the tuning stanza of a queue manager qm.ini file to control the agent processes used by the
queue manager.

You can configure the following attributes in the qm.ini file tuning stanza:
GuardianAgentCapacity=agentmaxthreadcount

The GuardianAgentCapacity attribute configures the maximum number of worker threads allowed
within each amqzlga0 agent process. Each IBM MQ application connection is serviced by a worker
thread within an amqzlga0 agent process, and the GuardianAgentCapacity attribute controls how
worker threads are distributed across agent processes.

The default value for GuardianAgentCapacity is 10 threads.

GuardianAgentsMax=agentmaxcount

The GuardianAgentsMax attribute configures the maximum number of amqzlga0 agent processes
that the queue manager can start. After the queue manager has started this number of agent
processes, any further connection requests requiring a new agent process are rejected.

The default value for GuardianAgentsMax is 100 agent processes.

GuardianAgentIdleTimeout=agentidleseconds

The GuardianAgentIdleTimeout attribute configures the amount of time, in seconds, that an idle
amqzlga0 agent process waits for more work before ending.

The default value for GuardianAgentIdleTimeout is 300 seconds.

Administering IBM MQ 43

44 IBM MQ for HPE NonStop V8.1

Configuring IBM MQ

The HPE NonStop version of IBM MQ is different from the product on other platforms. Several NonStop-
specific features have been added to the core product, while other features have been removed.

IBM MQ for HPE NonStop V8.1 is available for J-Series and L-Series HPE NonStop operating systems.

For HPE NonStop servers with J-Series operating system, WebSphere MQ Version 5.3 is also available.
Although the two versions of IBM MQ are different in many respects, applications written for WebSphere
MQ for HP NonStop Server V5.3 will run on IBM MQ for HPE NonStop V8.1. System management of IBM
MQ for HPE NonStop V8.1 is, however, different from system management of WebSphere MQ Version 5.3.

The following topics describe NonStop-specific configuration options for IBM MQ for HPE NonStop
V8.1, and how these options can be used. In some cases, where WebSphere MQ for HP NonStop Server
V5.3 provides tools for configuring NonStop-specific properties, tools with the same interface are also
available for IBM MQ for HPE NonStop V8.1. The new versions of the old tools have reduced functionality
in some areas, however, because certain parameters are no longer needed or available for IBM MQ for
HPE NonStop V8.1.

Most NonStop-specific parameters can be configured with a new program (runnscnf), which was not
available on NonStop with WebSphere MQ Version 5.3, and is also not available on any other platform.
Usage and options of runnscnf are described in this documentation. In some cases, runnscnf is an
alternative to the tools that are compatible with WebSphere MQ for HP NonStop Server V5.3.

Note that this documentation only describes tools and options that are specific to NonStop, and not
part of the general product. For tools that are part of IBM MQ V8 in general (like crtmqm or strmqm),
see IBM MQ Knowledge Center https://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/
com.ibm.mq.helphome.v80.doc/WelcomePagev8r0.htm. If there are significant differences between a
general tool and the NonStop version of that tool (for example, as for dspmqfls) these differences are
described in this document.

There are also some area where you can use HPE NonStop tools to configure the NonStop system to run
IBM MQ.

Configuration methods
There are several methods available to configure both general and platform-specific configuration
parameters, either generally for an IBM MQ installation, or for a specific queue manager.

Parameters or settings applicable to distributed platforms as well as NonStop are accessible on NonStop
in the same ways as for the other platforms. All general IBM MQ documentation that applies to both
NonStop and other platforms is valid for NonStop. There is no NonStop-specific documentation that
duplicates the general IBM MQ documents. This consideration applies to tools like runmqsc, crtmqm,
dltmqm, and so on.

.ini files
.ini files contains values that are used to initialize queue managers.

There are two .ini files used for queue manager configuration:
mqs.ini

This file is available in the directory var_installation_path/var/mqm. The file contains settings
applicable to the queue manager installation as a whole.

qm.ini

This file is available in the directory var_installation_path/var/mqm/
qmgrs/queue_manager_name. The file contains settings applicable to the specific queue manager.

© Copyright IBM Corp. 2017, 2019 45

https://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.helphome.v80.doc/WelcomePagev8r0.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.helphome.v80.doc/WelcomePagev8r0.htm

For example, the path and the name for a configuration file for a queue manager called QMNAME is:
var_installation_path/var/mqm/qmgrs/QMNAME/qm.ini.

The data in the .ini files is copied to audited enscribe files, and automatically restored if required.

All NonStop-specific settings in these .ini files can alternatively be configured by using runnscnf. If a
setting is in an .ini file and also set with runnscnf, the runnscnf setting takes precedence.

NonStop-specific tools inherited from WebSphere MQ for HP NonStop Server V5.3
For reasons of compatibility with WebSphere MQ for HP NonStop Server V5.3.x, certain tools used with
that release on NonStop servers are also available on IBM MQ for HPE NonStop V8.0.

These tools are altmqfls, dspmqfls, altmqusr, and dspmqusr. These tools are described in
specific topics (see “altmqfls” on page 62, “dspmqfls” on page 63, “altmqusr” on page 65, and
“dspmqusr” on page 66.

Compared to WebSphere MQ for HP NonStop Server V5.3, some of the existing tools have different or
limited functionality. Different functionality is explicitly documented where applicable.

Environment variables
Some IBM MQ settings have traditionally been configured by using environment variables.

For compatibility with WebSphere MQ for HP NonStop Server V5.3, some of these environment variables
are still supported by IBM MQ for HPE NonStop V8.1. However, all of these settings can also be configured
by using runnscnf. Using runnscnf has the additional advantage that spelling of names and range of
values are checked, so that the number of potential errors is reduced.

runnscnf
runnscnf is the new tool available with IBM MQ for HPE NonStop V8.1.

runnscnf is a command line utility similar to runmqsc or other prompting command line tools common
on the platform. See “The runnscnf tool” on page 47 for information about usage and features.

Areas of NonStop-specific configuration
Certain areas of configuration are specific to IBM MQ on HPE NonStop.

Location and size of Guardian data files

IBM MQ for HPE NonStop V8.1 stores all dynamic data in audited Enscribe files. The data includes
dynamically changing persistent queue data and object descriptions (such as channel definitions). The
Guardian subvolume of these files and (for queue data files) primary extents, secondary extents, and
maxextents can be configured by using runnscnf. See “The runnscnf tool” on page 47 for details.

Processes for non-persistent messages

Non-persistent queue messages are kept in main memory and managed by specific processes called
cache managers. You can configure multiple per-queue manager cache managers. Cache managers
can run on a different CPU than the queue manager, providing some scalability. Each cache manager is
responsible for storing non-persistent messages of a configurable set of IBM MQ queues. The relationship
between cache managers, IBM MQ queues, CPU, and so on, can be configured by using runnscnf.

Set signal settings

IBM MQ for HPE NonStop V8.1 supports the MQGET SET_SIGNAL feature in the same way as WebSphere
MQ for HP NonStop Server V5.3. The signal can be used from programs as for WebSphere MQ for HP
NonStop Server V5.3. As the implementation for Version 8 is different from Version 5.3, there are some
settings available from runnscnf. The MQGET SET_SIGNAL feature in IBM MQ V8 is implemented
using a new process class called SetSignalManager. Multiple SetSignalManager processes can be

46 IBM MQ for HPE NonStop V8.1

configured with one process doing the work for one queue. SetSignalManager processes can run on
different CPUs. SetSignalManager processes are configured by using runnscnf.

EMS subsystem

IBM MQ for HPE NonStop V8.1 can optionally issue more, and more detailed, EMS messages than
WebSphere MQ for HP NonStop Server V5.3. The extent of EMS messages issued and the collector used
can be configured by using runnscnf.

Queue manager global settings

There are certain NonStop-specific settings that are global to the queue manager. These settings include
the home terminal being used, the CPU, the priority of certain NonStop-specific processes, tuning
parameters, CPU set assignment for each queue manager, settings for fault tolerance, default TCP
transport, and so on. All these settings are available by using runnscnf.

User name mapping

User names within IBM MQ have a length limit of 12 characters per name. NonStop user names can be
up to 17 characters long. On NonStop, names consist of group name, a dot (‘.’), and a user name, like:
MYGROUP1.USER1. Group name and user name can each be up to 8 characters long, so the name of a
regular NonStop user can be up to 17 characters long and thus does not fit in the data structures used by
IBM MQ to store user identification.

WebSphere MQ for HP NonStop Server V5.3 provided the tools dspmqusr and altmqusr to create a
mapping between NonStop-specific user names and names used within IBM MQ. This mapping can be
used to establish a one-to-one relationship between IBM MQ internal names and NonStop user names.
These tools are available in IBM MQ for HPE NonStop V8.1, with similar syntax and functionality to the
WebSphere MQ for HP NonStop Server V5.3 tools. See “altmqusr” on page 65 and “dspmqusr” on page
66.

IBM MQ user names are sometimes referred to as Principal Names. The mapping described here is stored
in an internal database. The crtmqm command creates this database and adds an entry for the user who
ran the installation script (the installation owner). The principal created is always ‘mqm’, for compatibility
with other IBM MQ implementations.

After you have created a queue manager, you can create entries in the database for other users of the
queue manager.

You can use IBM MQ standard mechanisms to authorize NonStop users outside of the MQM group (which
is reserved for IBM MQ administration) to use certain features and/or resources of an IBM MQ queue
manager. For this authorization to be effective, the following conditions must be met:

• A mapping must be present in the internal database.
• Authorization must be explicitly granted to all resources accessed (see the setmqaut command).

NonStop users within the MQM group (other than the installation owner) can administer (create, start,
stop, secure, and so on) any queue manager within the installation. No user name mapping is required to
do so.

Applications require a mapping entry to use a queue manager (put, get, browse, and so on). If no mapping
entry is found, application access is refused. No explicit or additional authorization (via setmqaut) is
required, however.

The runnscnf tool
runnscnf is a tool that is used to change all kinds of different settings based on a common concept.

The tool uses the following terminology:

Configuring IBM MQ 47

class

The term “class” means a set of objects of the same kind that have a common set of properties.
By knowing the class of an object, runnscnf knows which changeable or viewable properties are
available for the object, so only valid properties for that object and only valid values for the properties
of an object can be entered. For supported classes and their properties see “Classes” on page 54.
Class names are not case sensitive, so you can enter a class name in lowercase, uppercase, or any
mixture of cases. Classes are defined by IBM MQ, you cannot introduce new classes or delete existing
classes.

object

An “object” within runnscnf is the name of a member of the appropriate class. Examples of objects
are instances of the CacheManager (a type of process that stores non-persistent messages in main
memory), named QueuePatterns (allowing rules for file size and file placement in the Guardian space),
and so on. Names of objects are typically chosen by the user. In general, names of objects are case
sensitive. For certain classes there is a fixed set of object names supported. See “Classes” on page
54.

Objects exist only as long as there is at least one configured or system maintained property for
this object. When you set a property for an object, this object exists in the database maintained by
runnscnf. When you delete the last property of an object, the object is also deleted.

If you want to use special characters in object names (like _, -, &, + and so on), the object name must
be quoted in runnscnf. Without quoting, object names can consist only of characters and digits.

property
Each object has a set of named properties that can be changed and viewed by using runnscnf.
A property of an object has a name and a value. For example, a property of the CacheManager
CacheMan1 object is the CPU where the process is supposed to run. In that example, the class of the
Object is “CacheManager”, the name of the object is “CacheMan1”, the name of the property is “CPU”,
and the value of the property is the CPU where the process is supposed to run. All objects of a given
class have the same set of available properties. The values of the properties always have a default,
which can be overwritten by using runnscnf. runnscnf only shows values that are explicitly set by
the user.

This concept allows a common, simple way of changing properties for different objects in a common,
unified way.

runnscnf has two different modes of operation, local and global. In global mode, properties are
set for all queue managers within a given installation. In local mode, a specific queue manager must
be specified, and settings apply only to that queue manager. If a setting is given for a specific queue
manager, it overwrites any potential global setting of the same property. The mode can be switched
between local and global at any time.

Settings made in runnscnf do not work on existing objects, the settings apply only to newly created
objects. So, for example, runnscnf cannot be used to change attributes of an existing queue file, it can
only be used to set parameters for a new queue file to be created. All settings made with runnscnf are
persisted in a file. Settings remain even after the queue manager is deleted, so if you recreate a queue
manager with a name known to runnscnf, the previous settings remain in effect. If you want to delete
the settings completely, you must use dltmqm with the –c option.

Using runnscnf
The runnscnf tool is used by IBM MQ administrators to set and view configuration properties.

runnscnf is implemented as a prompting command interpreter. When the tool is started, it shows a
banner and prompts, the user can then enter commands and view responses.

The tool can accept input files (I/O redirection), so it can be used in scripts. See “runnscnf command
reference” on page 49 for the syntax of the tool.

Commands and other keywords are not case sensitive. Object names (like queue names) are case
sensitive if, and only if, they are given as quoted strings.

48 IBM MQ for HPE NonStop V8.1

Class names and property names are stored and displayed in a case sensitive form for better readability.
However, you can specify them in any case on the command line.

The syntax descriptions use the following conventions:

[]

Indicates optional parameters. Parameters that are not enclosed in square brackets are required.

|

Indicates mutually exclusive parameters. You can use the parameter before or after the separator.
You cannot use all options.

{ }

Indicates a set of mutually exclusive parameters when a parameter is required.

runnscnf can be started with the following command line option:

runnscnf [queue_manager]

Where queue_manager specifies the queue manager to operate on. If the name has special characters
like spaces in it, it must be quoted. Specifying a queue manager is equivalent to giving the MODE LOCAL
command with the queue manager as specified on the command line, see “MODE” on page 51.

If no argument is given on the command line, runnscnf works on the default queue manager. If no
default queue manager is defined, a warning is issued, the mode is local, and no current queue manager is
set.

In addition to setting configuration properties, runnscnf can also display specific information about
queue managers. See “runnscnf command reference” on page 49, and “Examples of using runnscnf”
on page 60 for details.

Multiple commands can be given on one line, which makes scripting easier. Multiple commands on one
line can be separated by a semicolon (;) character for clarity. Line breaks within one command are not
allowed and cause a syntax error.

All objects and their properties are stored in an audited Enscribe database file (AMQPARMS). So when
replication tools like RDF or Shadowbase are used for replicating to a backup system, changed settings
are automatically replicated.

runnscnf command reference
Reference information for the runnscnf command is given in the following topics.

class
Set the class name to use.

Purpose

Set the class name to use. This setting stays valid until another class is set. So, if you set multiple
properties of an object of a class, the name of the class and the object only needs to be set once.

For the set of available classes, see “Classes” on page 54.

Syntax

CLASS ClassName

Example

runnscnf Command Interface
Version 1.10, 2017-01-18

Configuring IBM MQ 49

NSCNF>class QueuePattern
CLASS set to QueuePattern
NSCNF>

comment
You can add comments to scripts of runscnf commands.

Purpose

Any line starting with a star (*) character is treated as a comment.

Syntax

* any string

DEL
Delete the specified property of the current object.

Purpose

Note: An object only exists in the database as long as properties of the object are configured. So when
you delete the last property of an object, the object is also implicitly deleted.

Syntax

DEL PropertyName

Example

NSCNF>del PrimaryExtents
Property deleted successfully.

DIS
Display Enscribe file names.

Purpose

Display the Enscribe file names for all queues matching the given pattern.

Syntax

DIS QueueNamePattern

Example

The following example shows the Enscribe file names of all local queues within the currently selected
queue manager that start with the character “Q”:

NSCNF>dis Q*

Queue: Q1
Guardian file: $MQWA.MQ8W64Q0.QBZ8D4P3

50 IBM MQ for HPE NonStop V8.1

FC
Edit the previous command.

Purpose

This is the well-known FC (fix command) command used to edit and potentially execute the last command
again.

Syntax

FC

HELP
Give help for the runsncf commands.

Purpose

Show a syntax description of the available commands.

Syntax

HELP

LIST
List properties.

Purpose

List a set of properties as specified by the three (optional) parameters. Wildcard notation (“*” for any
substring and “?” for any single character) can be used. If Class, Object, or Property are omitted, this
is treated like a “*” wildcard. So LIST(,,) lists all properties for all objects in all classes in the currently
selected (local or global) parameter file. This is the same as LIST without the parenthesis.

If the option ALL is given, the command in addition shows the creation and modification timestamp of the
properties. It also gives the name, group, and user number of the user who last changed the property, and
the name of the program doing the change.

Syntax

LIST([Class],[Object], [Property]) [ALL]
LIST [ALL]

MODE
Sets the runscnf mode to local or global.

Purpose

Set the mode:

• GLOBAL for installation wide settings
• LOCAL for queue manager-specific settings applied to the queue manager specified by

QueueManagerName.

If runnscnf is started and no MODE command is given, local mode for the default queue manager is
assumed. If no default queue manager is defined, the mode is local with no queue manager set.

Note: The mode set is valid only for the current runnscnf session.

Configuring IBM MQ 51

Syntax

MODE { GLOBAL | LOCAL QueueManagerName }

OBEY
Executes the runnscnf commands in the specified file.

Purpose

Executes the runnscnf commands in the file specified by filename. filename must be the name of an
existing text file. Obey files can be nested for up to ten levels, that is, an obey file can contain an obey
command calling another file.

Syntax

O filename
OBEY filename

OBJECT
Set the object name to use.

Purpose

Set the object name to use. This setting stays valid until another object is set.

If the object name has special characters such as spaces in it, it must be quoted using double quote
characters (“).

Syntax

OBJECT ObjectName

PREPARE MIGRATE
Prepare an online or offline migration for a set of queues.

Purpose

The PREPARE MIGRATE command is used to calculate a set of queues that should be migrated to new
files, based on the runnscnf configured rules. The command is given a pattern for queue names. It then
checks for all queues in the current queue manager matching the given pattern (if the actual queue file
matches the configured parameters of the file).

The command checks the following parameters:
Subvolume

Is the physical file for that queue located in the configured subvolume?
Primary extent size

Does the queue file's primary extent size match the configured primary extent size?
Secondary extent size

Does the queue file's secondary extent size match the configured secondary extent size?
Number and location of partitions

Does the number and location of the files' actual partitions match the configured partition scheme?

If any of these checks results in a mismatch, the queue is a candidate for migration. The PREPARE
MIGRATE command lists the candidates as a preparation for the START MIGRATE command. PREPARE
MIGRATE only calculates and shows the list of candidates, it does not start any migration and does not
change any configuration. If the list of queues to be migrated is too long, and would result in too many

52 IBM MQ for HPE NonStop V8.1

concurrent migrations being started, the PREPARE MIGRATE command can be repeated using a different
pattern matching to produce a smaller list. Use this method to perform a number of smaller migrations.

Syntax

PREPARE MIGRATE QueueNamePattern

Example

The following example calculates the list of all local queues within the currently selected queue manager
that start with the character “Q” and need to be migrated based on the current runnscnf settings:

NSCNF>PREPARE MIGRATE Q*

SET
Set the value of the specified property.

Purpose

Sets the property given by Propertyname to the value given by Propertyvalue. Mode, class, and object
must have been set before. If the property could not be set, an error explaining the reason is shown.

Syntax

SET Propertyname Propertyvalue

SHOW
Show current settings.

Purpose

Shows the current settings of MODE, CLASS, and OBJECT. SHOW always displays the settings in the
internal case sensitive form.

Syntax

SHOW

START MIGRATE
Starts the migration of a set of queue files.

Purpose

The START MIGRATE command is used to start the process of changing location, partitioning, or extent
sizes of a set of queue files. The set of queue files affected is calculated by the runnscnf PREPARE
MIGRATE command. Before using START MIGRATE, you must run a PREPARE MIGRATE command first.

START MIGRATE starts a migration process (executable file amqoqmig) for each queue to migrate.
Existing queue files cannot be changed, but must be recreated and copied. This is done by amqoqmig.
Depending on the number of queues in the set of queues to migrate this can have a performance impact.

Syntax

START MIGRATE

Configuring IBM MQ 53

STATUS MIGRATE
Check the status of the migration of a set of queue files.

Purpose

Use the STATUS MIGRATE command to check the progress of migrations that you have started using
the PREPARE MIGRATE and START MIGRATE commands. For each migration in progress, the following
information is displayed:

• Name of the queue being migrated
• Old and new physical filenames
• Start time of migration
• Time migration was restarted (if it was interrupted)
• Process name of the migration process
• Number of records already moved
• Status of the migration

Syntax

STATUS MIGRATE

Classes
The following table lists supported classes.

Name Meaning Available globally?

CacheManager A CacheManager is a type of process used
to store non-persistent messages in main
memory. Multiple CacheManager objects can
be configured.

Each CacheManager instance runs as an HPE
NonStop process pair

N

CacheManagerSupervisor The CacheManagerSupervisor is a single
process starting and monitoring the
CacheManagers. It is automatically started
when the queue managers starts.

N

Processes Certain properties can be configured per
process.

N

Queue A Queue is represented by a physical
Enscribe file.

N

QueueManager The queue manager itself. The object name
in this case is always CurrentQMGR.

Y

Table 9: Classes

54 IBM MQ for HPE NonStop V8.1

Name Meaning Available globally?

QueuePattern A QueuePattern defines certain properties
available for all queues matching the
pattern.

Note: The name of the pattern is just a
name (for example, “LargeQueues” or
“TempQueues”), the value of the pattern
itself (usually having wildcard characters)
is specified using the property named
“Pattern”. See “Examples of using runnscnf”
on page 60 for examples.

Y

SetSignalManager A SetSignalManager is a type of process
used to provide the MQGMO_SETSIGNAL
service. Multiple SetSignalManager objects
can be configured.

N

Table 9: Classes (continued)

Class CacheManager
Class CacheManager has the properties listed in the following table.

Name Datatype Meaning

PrimaryCPU Number The CPU a CacheManager's
primary process is initially
started on.

BackupCPU Number The CPU a CacheManager's
backup process is initially started
on. A CacheManager will not run
as a NonStop process pair if this
is identical to the PrimaryCpu.

CPU Number Original V8.0.x property
preserved for compatibility. (If
set, PrimaryCPU takes priority.)

Priority Number Priority for cache manager
process.

ProcessName Processname Process name of CacheManager.
This is automatically set by the
system if no value is configured.

CheckpointData String Set to 'T' (for true) to checkpoint
non-persistent messages.

Table 10: CacheManager properties

Note the following points:

• CacheManager processes do not need to run on the same CPU as the IBM MQ kernel processes. This
gives at least a minimum of scalability.

• Any change to the CheckpointData property takes effect when the queue manager is restarted.
• When the CheckpointData property is set to 'T', it is not guaranteed that a failover of the primary

CacheManager process does not influence a running transaction under which non-persistent messages
are put or got.

Configuring IBM MQ 55

• If a process name is configured, there will be no attempts to start the process under a different name if
a different process under the configured name is already running. This might lead to unexpected FFSTs.

• Errors might occur if the ProcessName property is configured by hand but a process with that name is
already running.

Class CacheManagerSupervisor
Class CacheManagerSupervisor has the properties listed in the following table.

Name Dataype Meaning

CPU Number The CPU to run this
CacheManagerSupervisor on.

Priority Number Priority for cache manager
supervisor process.

ProcessName Processname Process name of
CacheManagerSupervisor. This
will automatically set by the
system and cannot be changed.

Table 11: CacheManagerSupervisor properties

Note: CacheManagerSupervisor processes do not need to run on the same CPU as the IBM MQ kernel
processes. However, because this process type uses only a small amount of resources, there is no benefit
in moving it to a different CPU from the IBM MQ kernel. When the IBM MQ kernel ends (because of shut
down or any kind of malfunction), the CacheManagerSupervisor and all CacheManagers also automatically
end.

Class Processes
Class Processes has the properties listed in the following table.

Name Datatype Meaning

PrimaryCPU CPU Preferred CPU of primary
process.

BackupCPU CPU Preferred CPU of backup process.

AllowedCPUs CPU list Comma-separated list of CPUs
that can be used to start a
process instance on.

ProcessName Processname Optional process name of the EC
process.

Table 12: processes properties

The only object of class Processes is EC, the execution controller process. By default, this process runs
as a NonStop process pair, with primary on the CPU given as PrimaryCPU, and backup on the CPU given
as BackupCPU. If any of these CPUs is not available, IBM MQ chooses another one of the AllowedCPUs. If
a CPU where either the primary or the backup instance runs fails, another primary or backup instance is
started automatically on an available CPU from the list of allowed CPUs.

If you do not want to run the EC as a process pair (not recommended), you can achieve this by setting
PrimaryCPU to the same CPU number as BackupCPU. In that case, the queue manager does not run in
fault tolerant mode. If the EC fails, or the CPU used by the EC fails, the queue manager is completely
unavailable.

56 IBM MQ for HPE NonStop V8.1

Class Queue
Class Queue has the properties listed in the following table.

Name Dataype Meaning

CacheManager String Logical name of the cache
manager for this queue.

SetSignalManager String Logical name of the
SetSignalManager for this queue.

Table 13: Queue properties

Note the following points:

• By using different CacheManagers for different queues, the administrator can distribute the load for
non-persistent message processing across CPUs.

• The settings for extents must be made before the queue is created, a subsequent change has no effect.
• The CacheManager must be set before the queue is used for the first time. When the queue file is open,

this parameter cannot be changed. Any change made comes into effect only after the queue is closed by
all applications.

• To set primary and secondary, and maxextents extents, use objects of class QueuePattern (see “Class
QueuePattern” on page 58).

• If the value of the SetSignalManager property for an existing queue of a running queue manager is
changed, the new value takes effect when the queue is opened by any IBM MQ process. Do not confuse
this with MQOPEN calls by applications. An MQPEN call might or might not result in a new (OS level)
open to the queue. The new setting of the SetSignalManager property is used when a new OS level open
to the queue occurs. All new settings take effect immediately when a queue manager is restarted. Due
to this rule, multiple set signal managers might be running for a single queue until the queue manager
is restarted if the property SetSignalManager for this queue was changed while the queue manager was
running.

• As the cache manager maintains non-persistent messages for queues in its process memory, changing
the CacheManager property for existing queues while the queue manager is running is not possible. So
the CacheManager property for a queue can be changed if the queue manager is in stopped state or the
queue does not yet exist.

Class QueueManager
Class QueueManager has the properties listed in the following table.

Name Datatype Meaning

EmitEMSforExpiry Bool Control whether to emit EMS
messages about processed
expired messages.

EMSCounterForExpiredMsgs Number Specify how many messages
have to expire for each EMS
message.

AuditRefreshInterval Number Specify how often to check for
changes to queue manager .ini
files or SSL files so changes can
be replicated to the passive
node in a disaster recovery
configuration. The interval is
given in seconds.

Table 14: QueueManager properties

Configuring IBM MQ 57

Name Datatype Meaning

RecoverSSLFiles Bool Set this to F to specify that
SSL files are not checked or
replicated to the passive node in
a disaster recovery configuration.

Table 14: QueueManager properties (continued)

Set the value of EmitEMSforExpiry to t to enable the EMS messages, set it to f to disable EMS
messages. Changing EmitEMSforExpiry takes effect after a queue manager restart. The EMS message
has the event number 5 and the unique id EMS_probeId_1050.

EMS messages can be generated to indicate there are expired messages on a specified queue. If EMS
messages are enabled, messages are emitted if one of the following conditions occur:

• At least one message has expired within the configured time interval.
• The configured number of messages have expired.

The time interval is configured by setting ExpiryInterval in stanza TuningParameters in the queue
manager-specific configuration file qm.ini. The value ExpiryInterval is also used for the expiry task.
The default time interval is 300 seconds.

The number of messages expired is configured by setting the EMSCounterForExpiredMsgs for this
class. The default number of messages is 10,000.

The settings are configured on a queue manager basis, but expired messages are reported per queue.

Class QueuePattern
Class QueuePattern has the properties listed in the following table.

Name Datatype Meaning

CacheManager String Logical name of the cache
manager for all queues matching
this pattern.

IgnoreNPMsgLossErrorOnMQGET Bool Suppresses MQGET error 2208
after Cache Manager failure. See
“IBM MQ processes unique to
IBM MQ for HPE NonStop V8.1”
on page 36.

Level Number Pattern matching starts with
patterns of the highest level
going down levels. When the first
match is found, matching ends.
The allowed range for levels is 0
to 999, gaps are allowed.

Maxextents Number Maxextents used when creating
a queue file for a queue matching
this pattern.

NumberPartition Number between 1 and 16 Number of partitions for queue
files matching this pattern

Pattern String Pattern a queue name needs to
match.

Table 15: QueuePattern properties

58 IBM MQ for HPE NonStop V8.1

Name Datatype Meaning

PrimaryExtents Number Number of primary extents
used when creating a queue file
matching this pattern.

SecondaryExtents Number Number of secondary extents
used when creating a queue file
matching this pattern.

SetSignalManager String Logical name of the
SetSignalManager for all queues
matching this pattern.

Subvolume Subvolume The subvolume a queue file
matching this pattern is created
on. The subvolume must be on an
audited disk.

VolumePartition2...
VolumePartition16

Volume Disk volume for the partition,
only allowed if NumberPartitions
is set to more than 1.

Table 15: QueuePattern properties (continued)

Note the following points:

• A pattern can consist of all characters allowed for MQ object names plus the meta characters * and ?. *
matches any substring, while ? matches a single character.

• Objects of class QueuePattern can be added or changed while the queue manager is running, but this
has an effect only on newly created queues.

• Any match for a local pattern prevents matching using global patterns.
• Adding a Pattern * in mode GLOBAL sets defaults for all queues in all queue managers created from this

installation.

It is important to understand that the name of an object of class QueuePattern is not the pattern itself, but
only a name. The following example should make the concept clearer.

Assume that your organization has a set of queues that you expect to become really large for application
reasons. These queues should get a secondary extent size of 8000. You decide that the names of these
queues will all start with letters QL, so a pattern matching the names of large queues is QL*. To use
runnscnf to configure IBM MQ, you create an object of class QueuePattern. The name of that object
might be LargeQueues. Set the following attributes of that object to achieve your goal:

Property Value

Pattern QL*

SecondaryExtents 8000

Table 16: Example properties

Partitions must be specified in increasing number sequence, that is, specify VolumePartition2 first,
then VolumePartition3, and so on. Volumes for all partitions must be different. The subvolume is
automatically set to the subvolume of the primary partition (given by the Subvolume parameter).

Deleting VolumePartitionN properties must be done in decreasing number sequence, starting
with the highest partition number for this pattern. For example, delete VolumePartition9, then
VolumePartion8 and so on. Deleting in decreasing number sequence ensures that there are no gaps in
the sequence of partition volumes.

For more details about partitioning, and changing existing queues, see “Migrating to alter or partition
queue files” on page 89.

Configuring IBM MQ 59

Class SetSignalManager
Class SetSignalManager has the properties listed in the following table.

Name Datatype Meaning

PrimaryCPU CPU The CPU where the primary
SetSignalManager process will be
started

BackupCPU CPU The CPU where the backup
SetSignalManager process will be
started. If set to the same CPU as
PrimaryCPU, SetSignalManager
runs as a single instance

Priority Number Priority for SetSignalManager
process

ProcessName Processname Process name of
SetSignalManager. This is
automatically set by the system if
no value is configured.

InactivityTimeout Number The number of minutes after
a message has been sent to a
process that SetSignalManager
waits before doing a cleanup.
The default is 1, the maximum
3000000 (approximately 6.5
years)

CloseOnTimeout Boolean By default the SetSignalManager
closes its FILEOPEN on a target
process after InactivityTimeout
minutes have passed, set to False
if processes should stay open

Table 17: SetSignalManager properties

Note:

• By default, SetSignalManager processes run as an HP NonStop process pair and do not need to run on
the same CPU as the IBM MQ kernel processes. This arrangement gives scalability and robustness.

• Setting CloseOnTimeout to False can increase the memory consumption of the process.
• Increasing the value for InactivityTimeout can result in a higher peak memory consumption of the

process.
• If a process name is configured, and that name is already used by another process that is running, there

will be no attempts to start the SetSignalManager process. This might lead to unexpected FFSTs.

Examples of using runnscnf
Use the examples to help you understand how to use runnscnf.

Setting maximum file size for a set of queues
You can use runnscnf to set a maximum file size for a set of queues.

Assume you have a set of potentially large queues in queue manager QM1 and you want the secondary
extents be set to 8000 when creating a queue. If the names of these large queues all start with QL, a

60 IBM MQ for HPE NonStop V8.1

pattern for that type of name is created and the parameters for that pattern specify a secondary extent of
8000. In the example the name of the pattern is LargeQueues. You use the following set of commands:

/home/ssd/mqm.alexi/mq8E64/opt/mqm/bin:runnscnf QM1
runnscnf Command Interface
Version 1.10, 2017-01-18

NSCNF>class QueuePattern
CLASS set to QueuePattern
NSCNF>object LargeQueues
OBJECT set to LargeQueues
NSCNF>set Pattern QL*
NSCNF>set SecondaryExtents 8000

To check that the command worked, enter the following command:

NSCNF> list (Que*,,)

This command lists all properties of all objects of all classes starting with “Que”:

Class: QueuePattern
Object: LargeQueues
Property: Pattern
Value: QL*

Class: QueuePattern
Object: LargeQueues
Property: SecondaryExtents
Value: 8000
NSCNF>

Showing Guardian file names of queues
You can use runnscnf to discover the Guardian file names for queues.

Assume you have queues Q1 and Q2 within queue manager QM1 and want to know the Guardian file
names of these queues:

/home/ssd/mqm.alexi/mq8E64/opt/mqm/bin:runnscnf QM1
runnscnf Command Interface
Version 1.10, 2017-01-18

NSCNF>dis Q*

Queue: Q1
Guardian file: $MQWA.MQ8W64Q0.QRIHR2AZ

Queue: Q2
Guardian file: $MQWA.MQ8W64Q0.QRILEB89
NSCNF>

Configuring Fault Tolerant EC
You can use runnscnf to configure a fault tolerant EC.

Assume you have created queue manager QM1 and want to start it in fault tolerant mode, with the
primary process running in CPU 1 and the backup process running in CPU 2. The following example shows
the runnscnf commands used to do that:

runnscnf QM1
runnscnf Command Interface
Version 1.12, 2017-03-08

*** Warning: Could not open ConfigManager (error = 14) - queue manager may not be started.
NSCNF>class processes
CLASS set to Processes
NSCNF>object EC
OBJECT set to EC
NSCNF>set PrimaryCPU 0
NSCNF>set BackupCPU 1
NSCNF>
runnscnf finished.

Configuring IBM MQ 61

The configuration is completed before the queue manager is started. Then the queue manager QM1 can
be started:

strmqm QM1
IBM MQ queue manager 'QM1' starting.
IBM MQ queue manager 'QM1' started using V8.0.0.3.

Use dspmq with –x to show the actual EC processes (primary and backup):

dspmq –x
QMNAME(QM1)
STATUS(Running)
 PROCESS($X4RM) PRIMARY(0,1105) INSTANCE(1)
 PROCESS($X4RM) BACKUP(1,5469) INSTANCE(2)

The instance numbers (1 and 2) are used internally by IBM MQ to distinguish the two instances. If the
CPU of the primary EC process fails, there is an automatic takeover and the old backup becomes the new
primary. So the role of an instance can change within the lifetime of the instance. The instance number
does not change over the lifetime of the instance. If instance 1 fails, instance 2 becomes the new primary
and a backup is started. The new backup then has instance number 1.

altmqfls
For reasons of compatibility with older versions of IBM MQ on NonStop, the altmqfls command is
supported on the platform.

Purpose

You use the altmqfls command to set those attributes of an IBM MQ object to be created that are
specific to IBM MQ for HPE NonStop.

Most of the parameters available for the WebSphere MQ for HP NonStop Server V5.3 version of the
command are not available in IBM MQ V8.

If you set a parameter for a queue with altmqfls in IBM MQ for HPE NonStop V8.1, internally an object
of class QueuePattern with the name of the queue is created. The Pattern property for that object is
also set to the name of the queue, so that the pattern applies only to that specific queue. Settings made
with altmqfls in IBM MQ for HPE NonStop V8.1 can be checked with runnscnf.

If you run altmqfls on existing queue files, a queue file migration is started, see “Queue file migration
overview” on page 89.

Note: The altmqfls command can be used in IBM MQ V8 when the queue manager is either running or
not running. When altmqfls is used while the queue manager is running, an online migration is started.
See “Online migration” on page 91 for details. When altmqfls is used on an existing queue while the
queue manager is not running, an offline migration is started. See “Offline migration” on page 91 for
details. altmqfls waits for the end of the migration and reports the result.

Note:

1. The altmqfls command can be used in IBM MQ V8 when the queue manager is either running or not
running. When altmqfls is used while the queue manager is running, an online migration is started.
See “Online migration” on page 91 for details. When altmqfls is used on an existing queue while
the queue manager is not running, an offline migration is started. See “Offline migration” on page
91 for details. altmqfls waits for the end of the migration and reports the result.

2. The altmqfls command creates a Class: QueuePattern with the Level property set to 1000
(see “Class QueuePattern” on page 58), which is a higher value than a user can set.

The Object name for the Class: QueuePattern is set to the value of the ObjectName parameter of
the altmqfls command.

The Class: QueuePattern properties the altmqfls command always sets are:

62 IBM MQ for HPE NonStop V8.1

• Pattern
• Level=1000
• NumberPartitions=0

Other Class: QueuePattern properties, like the partitioning of queue files appearing in lower
leveled QueuePattern classes are ignored. altmqfls resets the partitioning of queue files.

If altmqfls has run a queue file migration, it deletes the Class: QueuePattern properties again.

Syntax

altmqfls [--qmgr QMgrName] --type ObjectType [--volume VolName] [--qsize]
(..) ObjectName

Parameters
ObjectName

The name of the new IBM MQ object.

--type ObjectType

The type of the IBM MQ object, which can only be ql or qlocal.

--qmgr QMgrName
Optional. The name of the queue manager to which the IBM MQ object belongs. If no queue manager
name is specified, the default queue manager is used.

--volume VolumeName

Optional. The name of the volume where the file that is associated with the new local queue is to be
created. This parameter can be specified only with the ObjectName, --type ObjectType, and --qmgr
QMgrName parameters. It is not allowed in combination with any other parameters.

--qsize (QPriExt,QSecExt,QMaxExt,OPriExt,OSecExt,OMaxExt)

Optional. Properties of the file extents of the queue file associated with the local queue. You must
specify at least the first three properties whenever you use this parameter. The remaining three
properties have no meaning for IBM MQ for HPE NonStop V8.1 and are silently ignored. The size of an
extent is expressed in pages.

• QPriExt The size of the primary extent of the queue file
• QSecExt The size of a secondary extent for the queue file
• QMaxExt The maximum number of extents for the queue file

Return Code

• 0 - Command completed normally
• 10 - Command completed but not entirely as expected
• 20 - An error occurred during processing

dspmqfls
The dspmqfls command is provided for compatibility with WebSphere MQ V5.3. Due to the difference
in the storage of IBM MQ objects, the information displayed is of limited use in IBM MQ for HPE NonStop
V8.1.

Purpose

Use the dspmqfls command to display the real file system names for all IBM MQ objects that match a
specified criterion. You can use this command to identify the files associated with a particular object.

Configuring IBM MQ 63

In IBM MQ for HPE NonStop V8.1, all object descriptions are stored in the file AMQOBJMD located in the
Guardian installation directory (subvolume) of the specific queue manager.

Syntax

dspmqfls [-m QMgrName] [-t ObjType] GenericObjName

Parameters
GenericObjectName

The name of the object. The name is a string with no flag and is a required parameter. Omitting the
name returns an error.

This parameter supports a wild card character * at the end of the string.

Note that you must quote expressions containing wild card characters.

--type ObjectType

Optional. The object type. The following list shows the valid object types. The abbreviated name is
shown first followed by the full name.
* or all

All object types, which is the default.
q or queue

A queue.
ql or qlocal

A local queue.
qa or qalias

An alias queue.
qr or qremote

A remote queue.
qm or qmodel

A model queue.
qmgr

A queue manager object.
prcs or process

A process.
ctlg or catalog

An object catalog.
nl or namelist

A namelist.

--qmgr QMgrName
Optional. The name of the queue manager to examine files for. If you omit this name, the command
operates on the default queue manager. The object type. The following list shows the valid object
types. The abbreviated name is shown first followed by the full name.

Return Code

• 0 - Command completed normally

64 IBM MQ for HPE NonStop V8.1

altmqusr
Use the altmqusr command to create, alter, or delete an entry in the principal database of a queue
manager.

Purpose

Each entry in the principal database maps an IBM MQ principal to a NonStop OS user ID.

Syntax

altmqusr -m QMgrName -p principal [-u NonStopOSUserID] [-r]

Parameters
-m QMgrName

The name of the queue manager whose principal database is to be updated.

-p principal

The IBM MQ principal whose entry in the principal database is to be created, altered, or deleted.

-u NonStopOSUserID

Optional. A NonStop OS user ID or Safeguard alias. If the IBM MQ principal does not already have an
entry in the principal database, a new entry is created to map the principal to the specified NonStop
OS user ID, or to the NonStop OS user ID corresponding to the specified Safeguard alias. If the
principal already has an entry, the entry is altered so that the principal maps to the new NonStop OS
user ID.

Note that Safeguard aliases are not stored in the principal database. If you specify a Safeguard alias
for this parameter, only the corresponding NonStop OS user ID is stored in the principal database.

-r
Optional. The entry for the IBM MQ principal is deleted from the principal database.

Return Code

• 0 - Successful operation
• 36 - Invalid arguments supplied
• 69 - Storage not available
• 71 - Unexpected error

Examples

The following command maps the IBM MQ principal mquser1 to the NonStop OS user ID MQTEST.FRED:

altmqusr -m MT02 -p mquser1 -u MQTEST.FRED

The following command maps the IBM MQ principal mquser2 to the NonStop OS user ID for which user01
is a Safeguard alias:

altmqusr -m MT02 -p mquser2 -u user01

The following command deletes the entry for the IBM MQ principal mquser1 from the principal database:

altmqusr -m MT02 -p mquser1 -r

Configuring IBM MQ 65

Related commands

“dspmqusr” on page 66 - Display IBM MQ user information

dspmqusr
Use the dspmqusr command to display information about IBM MQ principals that have entries in the
principal database of a queue manager.

Purpose

You can use dspmqusr to display information about a specified principal, or to display information about
all the principals in the database.

For each IBM MQ principal, the command displays the following information:

• The principal itself
• The NonStop OS user ID to which the principal maps
• The user groups to which the NonStop OS user ID belongs

Syntax

dspmqusr -m QMgrName [-p principal]

Parameters
-m QMgrName

The name of the queue manager whose principal database is to be queried.

-p principal

Optional. The IBM MQ principal whose entry in the principal database is to be queried. If you omit
this parameter, the command displays information about all the principals that have entries in the
principal database of the queue manager.

Return Code

• 0 - Successful operation
• 36 - Invalid arguments supplied
• 69 - Storage not available
• 71 - Unexpected error

Examples

This example shows what dspmqusr displays for a newly created queue manager:

dspmqusr -m UNM
Principal Userid Username Alias GroupName GroupType
 0.1
mqm 47.11 MQM.MANAGER n MQM a
nobody 0.0

This example shows what dspmqusr displays after additional principals have been added to the principal
database using altmqusr:

dspmqusr -m UNM
Principal Userid Username Alias GroupName GroupType
 0.1
mqm 47.11 MQM.MANAGER n MQM a
mquser1 250.1 MQTEST.USER0001 n MQTEST a
 MQM s

66 IBM MQ for HPE NonStop V8.1

mquser2 251.1 GROUP.FRED n GROUP a
nobody 0.0

Principal mquser1, which maps to user ID MQTEST.USER0001, has been added. MQTEST.USER0001 is a
member of two user groups, MQTEST and MQM.

Principal mquser2, which maps to user ID GROUP.FRED, has also been added. GROUP.FRED is a member
of only one user group called GROUP.

Related commands

“altmqusr” on page 65 - Alter IBM MQ user information

Configuring NonStop for IBM MQ
There are some areas of HPE NonStop that you need to configure for IBM MQ.

IBM MQ for HPE NonStop V8.1 TMF Configuration
IBM MQ uses TMF resource managers (RMs) to coordinate transactions.

Within TMFCOM, there are two important configuration value that users of IBM MQ on NonStop need to
consider:

RMOPENSPERCPU
Limits the total number of TMF resource managers (RMs) that can be opened by all processes within a
single NonStop CPU.

BRANCHESPERRM
Limits the number of TMF transactions that can be exported to each TMF RM.

You must ensure that the RMOPENPERCPU and BRANCHESPERRM configuration parameters are set to
appropriate values for your configuration that are sufficiently large to accommodate the anticipated TMF
transaction traffic for MQ and other non-MQ uses of TMF.

The following table lists IBM MQ processes that will open TMF RMs:

MQ process type MQ program Number of TMF RMs CPU

Guardian Agent
processes

amqzlga0 n per process HOME CPU of qmgr

Shared Agent processes amqzlaa0 n per process HOME CPU of qmgr

Cache Manager
processes

amqcache 1 per process configurable using
runnscnf

Config Manager
processes

amqconfg 1 per process HOME CPU of qmgr

Table 18: Processes that open TMF RMs

Each IBM MQ agent process (amqzlga0 and amqzlaa0) open n RMs, where n is calculated as follows:

n = 1 + (1000 / BRANCHESPERRM) rounded up to a whole number

Within TMFCOM, BRANCHESPERRM defaults to 128, so a default TMF configuration would cause each IBM
MQ agent process to open 9 RMs in the queue manager's HOME CPU.

Within TMFCOM, RMOPENPERCPU defaults to 128.

The ALTER BEGINTRANS command of TMFCOM is used to change these configuration values. The default
values may be sufficient for a small deployment, but users should consider increasing these values
significantly for medium or large deployments.

Configuring IBM MQ 67

Usage notes

1. The number of agent processes (of either type) used by each queue manager is dynamic and depends
on the number of applications connected to the queue manager, as well as on the tuning parameters
specified in each queue manager's qm.ini file.

2. Agent processes run in the HOME CPU of each queue manager, and when multiple queue managers
use the same HOME CPU, their processes will share the configured value of RMOPENPERCPU.

3. Cache Manager processes run in the CPU configured by runnscnf, see “The runnscnf tool” on page
47.

68 IBM MQ for HPE NonStop V8.1

High availability (HANSQM)

One of the main features of the NonStop platform is high availability and tolerance of any kind of single
failure. Therefore the implementation of IBM MQ must also be able to tolerate failures.

Most failures in a NonStop system (like disks, controllers, power, and so on) are automatically and
transparently handled either by the hardware or by the operating system. However, failure of a CPU must
still be handled by mechanisms within applications. These topics describe how IBM MQ for HPE NonStop
V8.1 deals with these situations and what is different compared to IBM MQ 5.3 on NonStop.

A basic understanding of the difference between IBM MQ and an ordinary NonStop business application
is helpful. An ordinary NonStop business application (especially in the Pathway context) consists of a
number of context-free servers providing business logic and database access. Servers are typically single
threaded, so a CPU failure will bring down a subset of these servers; all transactions currently worked on
by any of the failed processes will fail and can be restarted. TMF guarantees the overall consistency of the
database.

IBM MQ behaves differently to ordinary applications. To provide the complex functionality and the
throughput required by applications, IBM MQ keeps a lot of fast changing information in memory. In a
standard implementation on a distributed platform like Linux or UNIX this information is kept in shared
memory, so that all components, even if running in different CPUs, have immediate access to that
information. In a “shared everything” environment this design works well.

As NonStop servers are built as a “shared nothing” architecture, sharing information across CPUs is not as
easy. NonStop provides a fast message system to transport information across CPU boundaries, but due
to the operating system overhead, this is several orders of magnitude slower than direct memory access.
An application using shared memory running transparently distributed in multiple NonStop CPUs would
need to transport each individual change across CPU boundaries using an IPC message. This is the classic
NonStop checkpointing process pair approach, as it was also implemented in IBM MQ 5.3 on NonStop.

With IBM MQ V8 there are several considerations:

• Implementing highly complex checkpointing process pairs is an extremely complex task and as such
implementation errors might have severe consequences. This is high risk.

• IBM MQ V8 makes more use of shared memory than IBM MQ 5.3, so there would be a lot more
checkpointing activity in turn reducing performance and costing CPU cycles in the passive instance.

• Implementing checkpointing process pairs within IBM MQ V8 would require major architectural
changes and so large differences compared to the sources on other platforms. Consequently, defect
repair by porting solutions from distributed platforms to NonStop would be difficult and result in more
risk and later delivery of fixes.

• In case of a CPU outage IBM MQ 5.3 still aborts some transactions and loses some connections.
Although the main queue server in IBM MQ 5.3 runs as a checkpointing process pair, the agents do not,
and a failing agent results in broken connections.

Based on these considerations a different design is implemented on IBM MQ for HPE NonStop V8.1.

If a CPU fails, applications must be able to reconnect immediately to a lost connection. A few retries
within a few seconds are tolerable. However, applications must see a consistent state of the queue
manager.

It is not required that each change in (shared) memory is immediately transported to the CPU of the
standby instance. What is important is that the standby instance can recover all information needed to
continue working as if there was no failure.

Based on that principle the following architecture is implemented:

• The execution controller (EC) runs as a process pair.
• At startup, the standby instance starts as many parts of the queue manager as it can which do not

require dynamically changing information.

© Copyright IBM Corp. 2017, 2019 69

• There is no active checkpointing of information from the primary EC to the backup EC, so that the
backup does not consume any resources.

• When a takeover occurs, the new primary recovers all information it needs from persistent files,
because of the use of TMF this recovered state is consistent with the application view of the database.
The new primary then completes the startup phase of the queue manager so that all components are
available and also starts a new backup. So fault tolerance is also restored.

• The recovery of information is done on a queue by queue basis. As soon as a queue is opened, the
required information for that queue is recovered. This recovery is the same mechanism that is used
when the queue is opened after startup.

The information recovery mechanism is more expensive in terms of resources than a checkpointing
backup, but it occurs only in case of a takeover. Under normal circumstances,resources are saved by not
checkpointing (compared to the rare event of a CPU outage). In case of a CPU outage, applications can
still continue working without human intervention.

When a queue manager is started, all standard queue manager processes are started in the EC primary
CPU and a selection of queue manager processes is started in the EC backup CPU. The only process pair
involved is for the EC itself, all other processes are not pairs in the NonStop sense, but are processes of
different instances of two queue managers with the same name. One instance is active, and the other
instance is passive (in standby mode).

The terminology used to describe that scenario is:

• Primary and backup for the EC processes (following standard NonStop terminology).
• Active and standby instance for the queue managers in the different CPUs (following standard MQ

terminology).

The following diagram shows the process hierarchy after normal startup.

As the EC is an OSS process pair, the primary instance is indicated by a –X and the backup instance by a –
Y.

Configuring for high availability
You can accept the default configuration for high availability, or specify some of the details yourself.

Default configuration

If no configuration is given, the following rule applies when you use strmqm to start a queue manager:

• The queue manager runs in fault tolerant mode, that is, with backup enabled.

70 IBM MQ for HPE NonStop V8.1

• The primary EC process is started in the CPU where strmqm was run.
• The backup EC process is run in a different CPU, chosen by the NonStop.

Configuring CPUs and EC process name

For configuring queue manager CPUs and the EC process name, four configurable properties are available.
All properties are configured using the runnscnf tool (see “The runnscnf tool” on page 47 for details). All
properties are for class “Processes” and object EC. The individual properties are:

PrimaryCPU

Set the EC primary CPU. This CPU is chosen for the primary EC process when the queue manager is
started, if that CPU is available at the time. All queue manager processes for the active instance run on
that CPU.

If that property is not set, or set to -1, the CPU where strmqm is run is used.

BackupCPU

Set the EC backup CPU. This CPU is chosen for the backup EC process when the queue manager is
started if that CPU is available at that time. All queue manager processes for the backup instance run
on that CPU.

If that property is not set, or set to -1, any available, and allowed, CPU is used.

AllowedCPUs
A comma-separated list of CPUs. If this property is configured, queue manager processes (active and
standby) are only be started in CPUs which are in this list. If configured, and >=0, the PrimaryCPU and
the BackupCPU are implicitly added to that list. By using the AllowedCPUs property, you can restrict
CPU usage for IBM MQ to a subset of all CPUs in the system.

ProcessName

The EC process name in the usual Guardian syntax ($...). If a process with that name is already
running on the system when strmqm is executed, strmqm fails with an error message, and the queue
manager is not started. If this property is not configured, a process name is chosen by the operating
system. The process name chosen by the system is displayed by the following command:

dspmq –x

Disabling high availability

You can disable high availability for IBM MQ by setting the PrimaryCPU and BackupCPU to the same value
in the configuration, even if both values are -1 (any CPU).

You can configure a non-fault-tolerant queue manager to run in a specific CPU by specifying:

PrimaryCPU=BackupCPU=CPU_to_run_queue_manager_in

You can configure a non-fault-tolerant queue manager to run in any available and allowed CPU by
specifying:

PrimaryCPU=BackupCPU=-1

There is a difference between setting primary and backup CPU both to any CPU (-1) and not configuring
primary and backup CPU. In the first case, a non-fault tolerant configuration is able to run in any allowed
CPU, in the second case a fault tolerant configuration is able to run in any allowed CPU.

High availability (HANSQM) 71

CPU failures
IBM MQ behaves differently according to which CPU fails.

Failure of primary MQ CPU

If the CPU running the primary EC (and all processes of the active MQ instances) fails, the following events
occur:

• All processes (except set signal managers) of the active instance of that queue manager exit, even if
they run on a different CPU.

• All non-persistent messages of that queue manager at that point in time are lost.
• All transactions started in that CPU are aborted by the system. This includes all transactions implicitly

started by the queue manager, and all transactions started by application processes running in the
failed CPU.

• A takeover sequence is initiated. The backup EC instance automatically becomes the new active
instance, completes its initialization work and starts the remaining queue manager processes.

• The now primary EC starts a backup in an available CPU (if there is any).
• After the now active instance is completely up and running, applications can reconnect. Applications

trying to reconnect before that point in time receive an error, but can retry after a short delay.

The time needed for that series of events depends on the type, size, workload, and so on, of your system.
Typical times are between 1.5 and 10 seconds.

Failure of back up CPU

If the CPU running the backup EC (and all processes of the standby MQ instances) fails, the following
events occur:

• All processes (except set signal managers of the standby instance of that queue manager) exit, even if
they are currently running on a different CPU.

• All transactions started in that CPU are aborted by the system.
• The primary EC gets notification of the failure of its backup and starts a new backup in another available

and allowed CPU (if possible). This instance initiates the standby queue manager.

Failure of other CPUs hosting IBM MQ processes

If a CPU fails where cache managers, or other IBM MQ processes, run, and which is not the main queue
manager CPU, the failing processes are automatically restarted in an available CPU by the queue manager.
If a cache manager was running on a failed CPU, all non-persistent messages for queues served by this
cache manager are lost.

Applications must be prepared to get error messages when trying to retrieve messages from a failed
cache manager. The application receives as many of these errors as messages were lost. Normal
processing then continues.

Reload of a CPU

If a CPU is reloaded and the queue manager is configured for fault tolerance, but is currently running in
non-fault-tolerant mode due to available/allowed CPUs, IBM MQ checks if a new backup in the reloaded
CPU can be started (that is, if the reloaded CPU is an allowed CPU). If that is the case, a backup EC
instance and a standby queue manager are started in the reloaded CPU.

72 IBM MQ for HPE NonStop V8.1

User name mapping

The implementation of IBM MQ on all platforms uses the concept of a principal to identify users.

A principal string can only be 12 characters long and is case-sensitive. The principal name is stored in
the message data header to identify the user. The principal name can be passed around to other queue
manager instances.

The HPE NonStop platform defines user names to be of the form GROUP.USER, where the maximum
length can be 17 characters. In the general case, such names are too long and must be mapped to a
principal to be handled internally.

The user name mapping feature of IBM MQ V8 allows the MQ administrator to set up mappings between
principals (that is IBM MQ format user name) and NonStop user names. The mapping is one-to-one and
unique; a principal can be mapped to one username only, and vice versa.

The feature provides two tools, called altmqusr and dspmqusr, for configuring these mappings. See
“altmqusr” on page 65 and “dspmqusr” on page 66 for details.

User name mappings are specific to the queue manager for which they are created; each queue manager
has its own mapping database. This database is allocated and filled with initial values when the queue
manager is created using the crtmqm command.

The predefined, initial principals are:

mqm
Mapped to the user executing the crtmqm command.

nobody
Mapped to the (numeric) user 0,0, which might or might not exist.

(12 space characters)
Mapped to the (numeric) user 0,1, which might or might not exist.

The principal nobody and (12 space characters) are not usable for applications, and are used as
placeholders if a user is rejected and/or not authorized.

User identification
During application and IBM MQ connect processing, the queue manager obtains from NonStop OS the
user ID under which the application is running.

The queue manager then queries the principal database to determine the corresponding principal,
and passes this principal to the OAM for all subsequent authority checks on behalf of the application.
These authority checks include checking whether the principal has the authority to connect to the queue
manager. If the user ID has no entry in the principal database, the queue manager assigns the principal
nobody to the user ID.

When an application sends a message, the queue manager sets the UserIdentifier field in the
message descriptor to the principal associated with the application. The principal therefore travels with
the message as the means of identifying the user who sent the message.

In general, all NonStop user names must get mapped to a principal in order to run applications. The
mapping for the installation owner and the principal mqm is created automatically; all other mappings
must be created manually.

© Copyright IBM Corp. 2017, 2019 73

The installation owner user ID
IBM MQ requires that a user group named MQM is defined. Any user in that group is allowed to install the
base product. All files created during installation show this user ID as the file owner.

All users in the MQM group are allowed to create a queue manager instance; it is not required to use the
user ID used for the initial installation. All dynamic files (queue files, configuration files and so on) are still
owned by the user ID used for the installation.

However, queue managers created by two different MQM group members will differ in the initial mapping of
the principal mqm; this entry will show the NonStop user name used to create this queue manager.

In this sense, the term "installation owner" refers to the creator of a particular queue manager and the
principal mqm found in its mapping database.

This principal and its associated user name has full control on this queue manager, including the
permission to run applications that connect to it.

User names in the MQM group
Users that are members of the MQM group are privileged users.

Users belonging to the MQM group can carry out all administrative work on all queue managers within the
installation. This work includes:

• Create any queue manager (crtmqm)
• Start any queue manager (strmqm)
• Stop any queue manager (endmqm)
• Delete any queue manager (dltmqm)
• Configure queue manager attributes (runmqsc, setmqaut, altmqusr and so on)

However, not all users are allowed to run applications against all existing queue managers; only the
“installation owner” can run applications initially.

To allow application processing by other MQM group members, you must create a mapping entry for each
user. The mapping is created using the altmqusr command. Such a mapping is enough to allow access;
no explicit authorization via the setmqaut command is required.

User names not in the MQM Group
All users outside the MQM group must be granted access to a queue manager explicitly.

At least three operations must be executed:

• Create a Principal by using the altmqusr command
• Allow access (connect authority) to the queue manager by using the setmqaut command
• Allow access (MQI operations) to entities of the queue manager by using the setmqaut command

For example, use the following commands to allow principal user1 access to the default queue manager
and the local queue Q3:

MQ8i517x >altmqusr -p user1 -u dummy.user0001

MQ8i517x >setmqaut -p user1 -t qmgr +connect
The setmqaut command completed successfully.

MQ8i517x >setmqaut -p user1 -t q -n Q3 +put +get
The setmqaut command completed successfully.

74 IBM MQ for HPE NonStop V8.1

User names for channels
When using channels between queue managers (server connects or client connects) a valid principal
name must be established during connect processing.

The final principal name is created by IBM MQ based on configuration options for channels (attribute
MCAUSER) and/or the CHLAUTH rules (attributes CLNTUSER and MCAUSER).

The final principal name is validated against the principal database and must be found in order to get a
connection established. If the principal maps to a NonStop user outside the MQM group, the following rules
must be met in addition:

• + connect authority for the queue manager
• +get +put (and so on) for any entities like queues

User names in IBM MQ security exits
The IBM MQ OAM security exits present principal names as part of the exit interface data structures. As
such, they are limited to the size of a principal (12 characters).

The exact content of several fields in the data structures depend on the User ID of the command
executed, and the content of the principal database.

For example, if the dspmqaut command is executed with the installation owner ID, the content is:

UserID: [mqm]
EffectiveUserID: [mqm]
UserIdentifier: [mqm]

The values are the principal name ‘mqm’ for the installation owner

If the dspmqaut command is executed with another member of the MQM group (mqm.usr100) without
principal mapping, the content is:

UserID: [MQM.USR100]
EffectiveUserID: [MQM.HUFF]
UserIdentifier: [MQM.USR100]

The values are the native user names on the NonStop OS.

If the dspmqaut command is executed with another member of the MQM group (mqm.usr100) with an
existing principal mapping, the content is:

UserID: [user-100]
EffectiveUserID: [MQM.HUFF]
UserIdentifier: [user-100]

The values are either the mapped principal (for user mqm.usr100) or the native user name for the IBM
MQ internal process.

User name mapping 75

76 IBM MQ for HPE NonStop V8.1

MQGET SET SIGNAL

The MQGMO_SET_SIGNAL option allows an application to request a notification from the queue manager
when a message is available to be read from a queue.

The notification is sent by the queue manager to the application in the form of an MQIPC message on the
application $RECEIVE queue.

The MQGMO_SET_SIGNAL option can be used against multiple queues concurrently and, when used this
way, an application can wait for messages to arrive on many queues at the same time.

This function is offered by the amqssmgr process class, which is a proxy process between the calling
application and the running queue manager. To guarantee high availability, this proxy is designed to run as
a NonStop process pair. The proxy notifies the application of any queue manager events that might relate
to MQGET calls with active MQGMO_SET_SIGNAL.

Using MQGET SET_SIGNAL
To use MQGET SET_SIGNAL, the application calls MQGET with a special option set in the MQGMO
structure

The option is set as follows:

MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
gmo.Options |= MQGMO_SET_SIGNAL;

MQGET(Hcon, /* connection handle */
 Hobj, /* object handle */
 &md, /* message descriptor */
 &gmo, /* get message options */
 buflen, /* buffer length */
 buffer, /* message buffer */
 &messlen, /* message length */
 &CompCode, /* completion code */
 &Reason); /* reason code */

If ((MQCC_OK == CompCode)
 && (MQRC_NONE == REASON))
{
 /* A message was already on the target queue and delivered */
 /* to the application. */
} else if ((MQCC_WARNING == CompCode)
 && (MQRC_SIGNAL_REQUEST_ACCEPTED == Reason))
{
 /* No message was available on the target queue and the */
 /* application will receive a notification on its $RECEIVE. */
} else if ((MQCC_FAILED == CompCode)
 && (MQRC_SIGNAL_OUTSTANDING == Reason))
{
 /* There is already a SET_SIGNAL request outstanding for */
 /* the used MQ Object Handle */
} else
{
 /* Warning or Error outside of MQGET with SET_SIGNAL scope */
 …
}

MQGET fails with reason MQRC_OPTIONS_ERROR if both MQGMO_SET_SIGNAL and MQGMO_WAIT are
set.

MQGET fails with reason MQRC_SIGNAL_OUTSTANDING if there still is an unserviced MQGET with
SET_SIGNAL call for the supplied IBM MQ Object Handle.

© Copyright IBM Corp. 2017, 2019 77

Message format
After the MQGET call returns with Completion Code MQCC_WARNING and Reason Code
MQRC_SIGNAL_REQUEST_ACCEPTED, an IBM MQ amqssmgr process sends a message on the calling
application $RECEIVE to notify it on events corresponding to the message descriptor used in its MQGET
call.

This message is of the type MQIPC (defined in cmqc.h) and is always 10 Bytes in size, independent of the
architecture (Itanium/x86, 32bit/64bit):

typedef struct tagMQIPC {
 short MsgCode;
 MQLONG ApplTag;
 MQLONG Status;
 } MQIPC;

The following table gives the meaning of the fields of the structure:

Field Meaning

MsgCode This field always has the value TRIGGER_RESPONSE defined in
cmqc.h.

ApplTag This field has same value as gmo.Signal1 of the issued MQGET
call, or 0 if the default value was used. This can be used to identify
specific MQGET calls.

ApplTag This field gives information about the event causing the message
to be sent to the application.

Table 19: structure field meaning

The status field can have the values given in the following table:

Value Meaning

MQRC_NONE A message conforming to the message descriptor
arrived at the target queue and is available to be
fetched. Since multiple MQGET calls can access the
same queue with the same message descriptor, it might
happen that the message that initiated the MQIPC
message is no longer on the queue when the application
tries to retrieve it.

MQRC_NO_MSG_AVAILABLE This status occurs if gmo.WaitInterval is not equal
to MQWI_UNLIMITED and no message conforming
with the issued message descriptor arrived within the
specified interval.

MQRC_GET_INHIBITED MQGET calls have been inhibited for the queue during
an outstanding MQGET call with set SET_SIGNAL option.

MQRC_Q_MGR_QUIESCING The queue manager is in the process of being gracefully
shut down while the MQGET call with SET_SIGNAL is
still outstanding.

MQRC_Q_MGR_STOPPING The queue manager is shutting down while MQGET call
with SET_SIGNAL is still outstanding.

Table 20: Status field meanings

78 IBM MQ for HPE NonStop V8.1

Value Meaning

MQRC_CONNECTION_BROKEN The amqssmgr process associated with the MQGET call
lost its connection to the queue manager, or its primary
process died. This might happen because of system
failures, like CPU-down events or IBM MQ internal
errors. This status requires the application to at least
reissue the MQGET call.

Table 20: Status field meanings(continued)

Active Checkpointing
Applications can wait indefinitely on their $RECEIVE for a notification from IBM MQ.

If the amqssmgr process dies unexpectedly, the application might never receive the notification. To
prevent this from happening, amqssmgr is designed to run as a NonStop process pair and so not let user
applications hanging.

On process start, the primary amqssmgr process spawns its backup process and checkpoints each
incoming MQGET with SET_SIGNAL request to the backup.

Should a disastrous event occur, such as death of the Execution Controller or of the amqssmgr process
itself (for example, due to CPU-down or IBM MQ internal errors), the backup process takes over, spawns
a new backup process, replicates all outstanding MQGET calls to it, and then send a MQIPC message for
each outstanding MQGET call with the Status field set to MQRC_CONNECTION_BROKEN. As such it can
happen that a single application might receive multiple messages with the same content.

Independent of the cause of failure, if the queue manager is in a state in which MQCONN calls would
succeed, new MQGET calls with SET_SIGNAL are accepted and handled.

MQGET SET SIGNAL 79

80 IBM MQ for HPE NonStop V8.1

Migrating between IBM MQ versions

You can migrate queue managers from WebSphere MQ V5.3 to IBM MQ Version 8You can migrate queue
managers and queue data between IBM MQ versions.

You can migrate queue managers from WebSphere MQ V5.3 to IBM MQ V8, from IBM MQ V8 to IBM MQ
V8. You can migrate queue data from IBM MQ V8 to WebSphere MQ V5.3.

There are two four OSS utilities provided for migration:
exportmqm

Exports all the information and data from a WebSphere MQ V5.3 queue manager.
importmqm

Creates and configures an IBM MQ V8 queue manager.
exportmqm_8

Exports all the information and data from an IBM MQ V8 queue manager.

mig/exportmqm
Exports all the information and data from a WebSphere MQ V5.3 queue manager.

importmqm
Creates and configures an IBM MQ V8 queue manager.

mig/importmqm_5.3
Imports queue data from an IBM MQ V8 queue manager back into a WebSphere MQ V5.3 queue
manager.

Exporting a WebSphere MQ V5.3 queue manager by using exportmqm
Use mig/exportmqmexportmqm to export a WebSphere MQ V5.3 queue manager.

The exportmqm utility exports all queue manager non-SYSTEM.* objects and their configurations,
Channel Synchronization records, user and object security settings, SSL files (if present) and, if selected,
all the messages on the application local queues.

The exportmqm utility has the following syntax:

exportmqm -m QueueManagerName

For example:

exportmqm -m QM1

Where QM1 is the name of the WebSphere MQ V5.3 queue manager being migrated.

The exportmqm utility uses four files located in the install_path/opt/mqm/bin/mig directory of
the IBM MQ V8 installation. If there is no IBM MQ installation on the system where the queue manager is
being exported from, these files must be copied to that system and the directory containing the files must
be added to the PATH environment variable. If it is not present in PATH, the directory should be added to
it, for example, export PATH=$PATH:dirname where dirname is the full path to the directory where
these files are located.

exportmqm can be run on any H or J-Series system and with any supported version of WebSphere MQ
V5.3.

To run exportmqm, you must source the IBM MQ wmqprofile file. This is because exportmqm requires
that the MQNSKOPTPATH, MQNSKVARPATH, and _RLD_LIB_PATH environment variables are set.

The WebSphere MQ V5.3 queue manager must be running and its command server must also be running.
The queue manager must be in a quiet state. This means that no application queues (that is, non

© Copyright IBM Corp. 2017, 2019 81

SYSTEM.* queues) can be open, and all channels must be either inactive or STOPPED. The exportmqm
utility checks for these conditions and does not continue if any of these conditions are not met.

The exportmqm utility also verifies that it has access to the \tmp directory on the system, and that it can
run the required commands (for example, mkdir, tar). If any of the required commands cannot be run,
exportmqm stops.

All checks and steps performed by exportmqm are recorded in a log file that is located in the local
directory.

You are asked if you want to export messages that are on their application local queues. If you answer
YES at the prompt, all messages in each queue are loaded into an individual file whose name contains the
name of the queue.

As exportmqm is running, details of what it is doing are displayed. All the steps are also recorded in the
log file.

exportmqm creates a compressed tarball file and a md5sum file in the directory from which
it was run, for example MQ5EXPORT.MQ1.20170329-083048-1778385097.tar.Z and
MQ5EXPORT.MQ1.20170329-083048-1778385097.tar.Z.md5 . Copy these two files to the location
where you plan to run the import utility. This location could be on another NonStop system or on the local
system, depending on where the IBM MQ V8 installation is.

Importing a WebSphere V5.3 or IBM MQ V8 queue manager by using
importmqm

Use importmqm to import configuration and queue data exported from a WebSphere MQ V5.3 or IBM MQ
V8 queue manager using exportmqmqmig/exportmqmq or exportmqmq_8.

The importmqm utility has the following syntax:

importmqm -f ExportedFileName [-m QueueManagerName]

Where ExportedFileName is the name of the file that you are importing from, and -m QueueManagerName
optionally specifies a new name for the imported queue manager.

For example:

importmqm -f MQ5EXPORT.MQ1.20170329-083048-1778385097.tar.Z -m newQM

importmqm imports object configuration, channel synchronization information, security settings, and,
if selected, the messages on the application local queues. The utility does not require any environment
variables and must not be run in an environment where WebSphere MQ V5.3 environment variables are
set.

Because importmqm uncompresses and untars the input file created by the exportmqm utility, and
creates a directory of the same name, it must not be run in the same directory as the exportmqm utility.

The importmqm utility verifies that it has access to the \tmp directory on the system, and also that it
can run the commands that are needed (for example, mkdir, tar). If any of these required commands
cannot be run, the utility stops.

All checks and steps performed by the importmqm utility are recorded in a log file which is located in the
local directory.

The importmqm utility uncompresses and untars the input tarball into a working directory located in the
same directory where the utility is run.

The utility then creates and starts a queue manager with the same name as the source queue manager, or
with the queue manager name specified by the -m argument. If the queue manager is imported under a
new name, the Channel Synchronization records are not migrated, and remote channels might have to be
reset.

82 IBM MQ for HPE NonStop V8.1

You are asked if you want to import messages that were on the application local queues of the source
queue manager. If you answer YES at the prompt, all messages in each queue file are loaded into the
queue whose name is determined from the name of the file containing the messages in the working
directory.

The utility creates all the non SYSTEM* objects that were in the source queue manager, creates principals
in the principal database, sets authorizations for users and objects, loads the channel synchronization
data records, and, if present, copies in the SSL files to the queue manager SSL directory. If a User Name
in the principal database on the source queue manager is not also a user on the system where the import
utility is being run, a message is displayed, and no attempt is made to add that user to the principal
database. The utility continues to run.

As the utility importmqm runs, details of what it is doing are displayed. All the steps are also recorded in
the log file.

After the importmqm utility has finished, the log file that is located in the same directory can be reviewed.

While cluster information of objects are migrated to the new queue manager, the queue manager’s role
within the cluster itself is not migrated. If the queue manager is to be a Full Repository it has to be altered
manually after migration.

Migrating between IBM MQ versions 83

84 IBM MQ for HPE NonStop V8.1

Migrating between IBM MQ versions

You can migrate queue managers and queue data between IBM MQ versions.

You can migrate queue managers from WebSphere MQ V5.3 to IBM MQ V8, from IBM MQ V8 to IBM MQ
V8. You can migrate queue data from IBM MQ V8 to WebSphere MQ V5.3.

There are four OSS utilities provided for migration:
exportmqm

Exports all the information and data from an IBM MQ V8 queue manager.

mig/exportmqm
Exports all the information and data from a WebSphere MQ V5.3 queue manager.

importmqm
Creates and configures an IBM MQ V8 queue manager.

mig/importmqm
Imports queue data from an IBM MQ V8 queue manager back into a WebSphere MQ V5.3 queue
manager.

Exporting a WebSphere MQ V5.3 queue manager by using exportmqm
Use mig/exportmqm to export a WebSphere MQ V5.3 queue manager.

The exportmqm utility exports all queue manager non-SYSTEM.* objects and their configurations,
Channel Synchronization records, user and object security settings, SSL files (if present) and, if selected,
all the messages on the application local queues.

The exportmqm utility has the following syntax:

exportmqm -m QueueManagerName

For example:

exportmqm -m QM1

Where QM1 is the name of the WebSphere MQ V5.3 queue manager being migrated.

The exportmqm utility uses four files located in the install_path/opt/mqm/bin/mig directory of
the IBM MQ V8 installation. If there is no IBM MQ installation on the system where the queue manager is
being exported from, these files must be copied to that system and the directory containing the files must
be added to the PATH environment variable. If it is not present in PATH, the directory should be added to
it, for example, export PATH=$PATH:dirname where dirname is the full path to the directory where
these files are located.

exportmqm can be run on any H or J-Series system and with any supported version of WebSphere MQ
V5.3.

To run exportmqm, you must source the IBM MQ wmqprofile file. This is because exportmqm requires
that the MQNSKOPTPATH, MQNSKVARPATH, and _RLD_LIB_PATH environment variables are set.

The WebSphere MQ V5.3 queue manager must be running and its command server must also be running.
The queue manager must be in a quiet state. This means that no application queues (that is, non
SYSTEM.* queues) can be open, and all channels must be either inactive or STOPPED. The exportmqm
utility checks for these conditions and does not continue if any of these conditions are not met.

The exportmqm utility also verifies that it has access to the \tmp directory on the system, and that it can
run the required commands (for example, mkdir, tar). If any of the required commands cannot be run,
exportmqm stops.

© Copyright IBM Corp. 2017, 2019 85

All checks and steps performed by exportmqm are recorded in a log file that is located in the local
directory.

You are asked if you want to export messages that are on their application local queues. If you answer
YES at the prompt, all messages in each queue are loaded into an individual file whose name contains the
name of the queue.

As exportmqm is running, details of what it is doing are displayed. All the steps are also recorded in the
log file.

exportmqm creates a compressed tarball file and a md5sum file in the directory from which
it was run, for example MQ5EXPORT.MQ1.20170329-083048-1778385097.tar.Z and
MQ5EXPORT.MQ1.20170329-083048-1778385097.tar.Z.md5 . Copy these two files to the location
where you plan to run the import utility. This location could be on another NonStop system or on the local
system, depending on where the IBM MQ V8 installation is.

Exporting an IBM MQ V8 queue manager by using exportmqm
Use exportmqm to export an IBM MQ V8 queue manager.

The exportmqm utility exports all queue manager non-SYSTEM.* objects and their configurations,
Channel Synchronization records, user and object security settings, SSL files (if present) and, if selected,
all the messages on the application local queues.

The exportmqm utility has the following syntax:

exportmqm -m QueueManagerName

For example:

exportmqm -m QM1

Where QM1 is the name of the IBM MQ V8 queue manager being migrated.

The exportmqm utility uses four files located in the install_path/opt/mqm/bin directory of the IBM
MQ V8 installation.

exportmqm can be run on any J or L-Series system and with any supported version of IBM MQ V8.

To run exportmqm, no additional changes have to be made to the environment, except that you must
source the IBM MQ wmqprofile file. This is because exportmqm requires that the MQINST environment
variable is set.

The IBM MQ V8 queue manager must be running and its command server must also be running. The
queue manager must be in a quiet state. This means that no application queues (that is, non SYSTEM.*
queues) can be open, and all channels must be either inactive or STOPPED. The exportmqm utility checks
for these conditions and does not continue if any of these conditions are not met.

The exportmqm utility also verifies that it has access to the \tmp directory on the system, and that it can
run the required commands (for example, mkdir, tar). If any of the required commands cannot be run,
exportmqm stops.

All checks and steps performed by exportmqm are recorded in a log file that is located in the local
directory.

You are asked if you want to export messages that are on their application local queues. If you answer
YES at the prompt, all messages in each queue are loaded into an individual file whose name contains the
name of the queue.

As exportmqm is running, details of what it is doing are displayed. All the steps are also recorded in the
log file.

exportmqm creates a compressed tarball file and a md5sum file in the directory from which
it was run, for example MQ8EXPORT.MQ1.20170329-083048-1778385097.tar.Z and

86 IBM MQ for HPE NonStop V8.1

MQ8EXPORT.MQ1.20170329-083048-1778385097.tar.Z.md5 . Copy these two files to the location
where you plan to run the import utility. This location could be on another NonStop system or on the local
system, depending on where the IBM MQ V8 installation is.

Importing a WebSphere MQ V5.3 or an IBM MQ V8 queue manager by using
importmqm

Use importmqm to import configuration and queue data exported from a WebSphere MQ V5.3 or IBM MQ
V8 queue manager using mig/exportmqm or exportmqm.

The importmqm utility has the following syntax:

importmqm -f ExportedFileName [-m QueueManagerName]

Where ExportedFileName is the name of the file that you are importing from, and -m QueueManagerName
optionally specifies a new name for the imported queue manager.

For example:

importmqm -f MQ5EXPORT.MQ1.20170329-083048-1778385097.tar.Z -m newQM

importmqm imports object configuration, channel synchronization information, security settings, and,
if selected, the messages on the application local queues. The utility does not require any environment
variables and must not be run in an environment where WebSphere MQ V5.3 environment variables are
set.

Because importmqm uncompresses and untars the input file created by the exportmqm utility, and
creates a directory of the same name, it must not be run in the same directory as the exportmqm utility.

The importmqm utility verifies that it has access to the \tmp directory on the system, and also that it
can run the commands that are needed (for example, mkdir, tar). If any of these required commands
cannot be run, the utility stops.

All checks and steps performed by the importmqm utility are recorded in a log file which is located in the
local directory.

The importmqm utility uncompresses and untars the input tarball into a working directory located in the
same directory where the utility is run.

The utility then creates and starts a queue manager with the same name as the source queue manager, or
with the queue manager name specified by the -m argument. If the queue manager is imported under a
new name, the Channel Synchronization records are not migrated, and remote channels might have to be
reset.

You are asked if you want to import messages that were on the application local queues of the source
queue manager. If you answer YES at the prompt, all messages in each queue file are loaded into the
queue whose name is determined from the name of the file containing the messages in the working
directory.

The utility creates all the non SYSTEM* objects that were in the source queue manager, creates principals
in the principal database, sets authorizations for users and objects, loads the channel synchronization
data records, and, if present, copies in the SSL files to the queue manager SSL directory. If a User Name
in the principal database on the source queue manager is not also a user on the system where the import
utility is being run, a message is displayed, and no attempt is made to add that user to the principal
database. The utility continues to run.

As the utility importmqm runs, details of what it is doing are displayed. All the steps are also recorded in
the log file.

After the importmqm utility has finished, the log file that is located in the same directory can be reviewed.

While cluster attributes for objects are preserved, the Full Repository status of the queue manager itself is
not and has to be manually preserved by using the runmqsc ALTER QMGR REPOS() command.

Migrating between IBM MQ versions 87

Cluster channels are not imported either, and have to be defined manually to integrate an imported
queue manager into a cluster. To speed up this process, importmqm generates a file named
queue_manager_cluster_channel_definitions.mqsc in the working directory it is called from.
This file contains the cluster channel definitions of the exported queue manager and can be used as input
for runmqsc.

Importing IBM MQ V8 data back into WebSphere MQ V5.3 using mig/
importmqm

Use mig/importmqm to import queue data back into a WebSphere MQ V5.3 queue manager.

You should ensure that back ups are available before you use the utility.

The importmqm utility imports all the messages on the application local queues.

The importmqm utility has the following syntax:

importmqm -f ExportedFileName -m QueueManagerName

Where ExportedFileName is the name of the file that you are importing from, and -m QueueManagerName
specifies a name for queue manager you are loading the data to.

For example:

importmqm -f MQ8EXPORT.MQ1.20170329-083048-1778385097.tar.Z -m newQM

The importmqm utility uses four files located in the install_path/opt/mqm/bin/mig directory of
the IBM MQ V8 installation. If there is no IBM MQ installation on the system where the queue manager is
being exported from, these files must be copied to that system and the directory containing the files must
be added to the PATH environment variable. If it is not present in PATH, the directory should be added to
it, for example, export PATH=$PATH:dirname where dirname is the full path to the directory where
these files are located.

importmqm can be run on any H or J-Series system and with any supported version of WebSphere MQ
V5.3.

To run importmqm, you must source the IBM MQ wmqprofile file. This is because importmqm requires
that the MQNSKOPTPATH, MQNSKVARPATH, and _RLD_LIB_PATH environment variables are set.

The WebSphere MQ V5.3 queue manager must be running and its command server must also be running.
The queue manager must be in a quiet state. This means that no application queues (that is, non
SYSTEM.* queues) can be open, and all channels must be either inactive or STOPPED. The importmqm
utility checks for these conditions and does not continue if any of these conditions are not met.

The importmqm utility also verifies that it has access to the directory on the system, and that it can run
the required commands (for example, mkdir, tar). If any of the required commands cannot be run,
importmqm stops.

All checks and steps performed by importmqm are recorded in a log file that is located in the local
directory.

You are asked if you want to import messages that are on their application local queues. If you answer
YES at the prompt, all messages in each queue are loaded from the archive to be imported.

As importmqm is running, details of what it is doing are displayed. All the steps are also recorded in the
log file.

Since importmqm only imports queue data, channels may have to be reset.

Queue data can only be migrated back to queue managers of the same name.

88 IBM MQ for HPE NonStop V8.1

Migrating to alter or partition queue files

You can use runnsncf MIGRATE commands to alter the attributes of a queue file or partition a queue
file.

On IBM MQ for HPE NonStop V8.1, queues are represented by Enscribe key sequenced files. For each
queue there is exactly one file representing the queue and containing persistent messages.

You might need to change attributes of a queue file. If, for example, a disk is too busy, you might want to
move a heavily-used queue file to a different disk. Because of disk space shortage or performance issues,
you might also want to use partitioned queue files. Moving existing queue files to a different volume,
partitioning, or de-partitioning existing queue files is called “queue file migration”. Queue file migration
can be done while the queue manager is up and running and the queue is in use (online migration) or
while the queue manager is stopped (offline migration). The migration is controlled either by runnscnf
or, as an alternative, by altmqfls (if only one single queue is to be migrated).

Queue file migration creates a new physical file for the queue, and copies the data from the old file to the
new file.

Queue file migration overview
When you use runnscnf to alter or partition a queue file, you define objects of type “pattern”.

Each named pattern has a property named Pattern. The value of the Pattern property is a string.
The string can include wildcard characters ‘*’ and ‘?’ (‘*’ matches any substring , ‘?’ matches a single
character). For each pattern, queue file attributes such as subvolume, partition scheme, extent sizes can
be defined. The pattern mechanism gives a set of rules for queue file attributes. Whenever a new queue
is created, the patterns are checked against the queue name. If the queue name matches a pattern,
the queue file attributes are set according the configuration for that pattern. So the rule set defined by
using runnscnf with Pattern objects is immediately applied to all new queues created with a matching
name.

The queue file migration feature also enables the application of the pattern-based rules to existing
queues in a queue manager. If there is a difference between the existing file attributes and the file
attributes as they should be according to the rules, the queue is a candidate for migration. The queue file
migration is a complex process involving creating a new physical queue file (potentially including several
partitions), moving queue messages from the old to the new file, and keeping track of the status. The old
queue file is removed when all messages have been moved and the old file is not in use anymore.

Complete the following steps when planning to change the attributes of existing queue files:

1. Set up the patterns and attributes for the change using runnscnf.
2. Calculate the set of queues that are now candidates for migration. This is done by using the PREPARE

MIGRATE command in runnscnf. The PREPARE MIGRATE command requires a pattern to potentially
limit the set of queues to consider. If you want a list of all queues as candidates for migration, use the *
pattern:

PREPARE MIGRATE “*”

The PREPARE MIGRATE command calculates the set of migration candidates for a subsequent START
MIGRATE command within the current runnscnf session.

3. Determine the set of queues that you want to migrate within one migration step. If the list of candidate
queues that results from the PREPARE MIGRATE command is long, you might consider using a more
restrictive pattern in PREPARE MIGRATE to get a smaller set of candidates.

4. Start the migration for the currently selected set by issuing the START MIGRATE command. For each
element of the set calculated by the previous PREPARE MIGRATE command, START MIGRATE starts

© Copyright IBM Corp. 2017, 2019 89

a migration process and sets several properties (use the runnscnf STATUS MIGRATE command to
view the properties).

5. Optionally monitor migration progress using the runnscnf STATUS MIGRATE command.

You can use runnscnf to migrate while the a queue manager is running (online migration), or while it is
stopped (offline migration).

You can alternatively use the altmqfls command to migrate queue files, but altmqfls has the
following limitations:

• altmqfls only processes a single queue file at a time.
• altmqfls cannot configure partitioned queues.
• altmqfls waits until the migration process has completed before returning to TACL or the OSS shell.

When the queue file migration is finished, and the old queue file is not used by the queue manager
anymore, the old queue file is deleted. The parameters indicating a migration that are visible using
runnscnf are also be deleted. So, if STATUS MIGRATE does not display anything, this means that all
previously started migrations have been successfully finished.

Changing the partitioning information of queue files is completed in the same way as any other queue file
migration.

Using PREPARE MIGRATE
You use the runnscnf PREPARE MIGRATE command to create a list of queue files to migrate.

About this task

The PREPARE MIGRATE command completes the following tasks:

• Walks through the list of all queues within the queue manager that is currently selected by runnscnf.
• For each queue matching the pattern given in the PREPARE MIGRATE command, it calculates the

attributes the queue file should have according to the runnscnf configuration. These parameters are:

– Location (subvolume) for the queue file
– Primary extent size
– Secondary extent size
– Number and location of partitions (if any)

If there is a mismatch between the configured values and the real values (for example if the
configuration was changed after the queue was created), the queue is put in the list of migration
candidates.

• The list of migration candidates, together with information about the reason why this queue is a
candidate, is displayed.

The PREPARE MIGRATE command does not change any persistent state in the system. Each new
PREPARE MIGRATE command calculates everything from scratch. So, if the list printed by PREPARE
MIGRATE has too many entries, or entries you do not want to migrate now, you can reissue the command
using a different pattern so that the result set matches your expectations.

The runnscnf session remembers the result of the PREPARE MIGRATE command for a subsequent
START MIGRATE command. START MIGRATE always works on the set of queues calculated by PREPARE
MIGRATE. This separation of the PREPARE MIGRATE and START MIGRATE commands has the following
advantages:

• Multiple migrations can be initiated and started in one step. If required, multiple queues can be
migrated with just two commands.

• You can control of the number of migration processes running in parallel, so that the I/O load does not
cause any system problems.

90 IBM MQ for HPE NonStop V8.1

Procedure

• To create the migrate list, enter the following command:

PREPARE MIGRATE QueueNamePattern

Offline migration
Queue files can be migrated while the queue manager is in the ended state. This is known as offline
migration.

runnscnf starts a migration process for each queue to be migrated. These migration processes run in
the background, even if runnscnf is ended. The status of active migrations can be checked using the
STATUS MIGRATE command in runnscnf. This command can be issued from any runnscnf session for
this queue manager.

If a queue manager is started while migrations are going on, the migration process is stopped and
restarted as an online migration by the queue manager. This is reflected in the “Time restarted”
information in the STATUS MIGRATE command output.

Online migration
Queue files can be migrated while the queue manager is running. This is known as online migration.

Online migrations are done in exactly the same way as offline migrations. During the migration the
queue manager knows that, temporarily, the queue being migrated is represented by two physical queue
files, potentially with a different number of partitions. All new messages go into the new queue file. Old
messages are looked for in the old file first, if not found (because they have already been moved by the
migration process) the queue manager looks for the message in the new queue file. Since all queue files
are TMF protected, no inconsistencies can arise.

The I/O load for a queue being migrated is significantly higher than under normal circumstances.
However, this should only be a concern if the queue to be migrated is very large (more than 10000
messages, or a large number of large messages). Queues with less than 10000 messages of size less than
25k are typically migrated within a few seconds.

If the queue manager is ended while online migrations are in process, the migrations are interrupted.
When the queue manager is started again, all migrations continue automatically.

While using online migration, the MQOPEN options MQOO_SET and MQOO_BROWSE must be allowed against
the migrating queues.

Migration example
The following example shows a complete runnscnf session for an online queue file migration.

In the first step a named pattern object “LargeQueues” is created. All queues matching the corresponding
pattern “QueueL*” will be located on subvolume $MQAS.IBMMQM, and the primary extent size for these
queues will be 600:

$ runnscnf QMb
runnscnf Command Interface
Version 1.12, 2017-03-08
NSCNF>class queuepattern
CLASS set to QueuePattern
NSCNF> object LargeQueues
OBJECT set to LargeQueues
NSCNF> set pattern QueueL*
Property Pattern set to QueueL*
NSCNF> set subvolume '$MQAS.IBMMQM'
Property Subvolume set to $MQAS.IBMMQM
NSCNF>set PrimaryExtents 600

Migrating to alter or partition queue files 91

Property PrimaryExtents set to 600

In the next step, all queues matching the pattern QueueL* are shown using the DIS command (so you can
see which queues will be migrated):

NSCNF>dis QueueL*
Queue: QueueL11
Guardian file: $MQAS.MQ8A1AQ1.Q2ZCQVCB

Queue: QueueL12
Guardian file: $MQAS.MQ8A1AQ1.Q2ZEUML4

Queue: QueueL21
Guardian file: $MQAS.MQ8A1AQ1.Q2ZH5FEF

There are currently three queues matching the pattern. None of the three queues currently resides on
the correct subvolume, $MQAS.IBMMQ. However, at this point only queues QueueL11 and QueueL12
are required to be migrated, so a pattern limiting the selection to these two queues is specified for the
PREPARE MIGRATE command:

NSCNF>prepare migrate QueueL1*
Queues to migrate:
QueueL11
$MQAS.MQ8A1AQ1.Q2ZCQVCB ->$MQAS.IBMMQM
QueueL12
$MQAS.MQ8A1AQ1.Q2ZEUML4 ->$MQAS.IBMMQM
NSCNF>

Based on the pattern QueueL1* runnscnf shows the required two migration candidates. Commands
START MIGRATE and STATUS MIGRATE are used to start the actual migration and show the status:

NSCNF>start migrate
NSCNF>status migrate

Migration of queue "QueueL11":
$MQAS.MQ8A1AQ1.Q2ZCQVCB -> $MQAS.IBMMQM.Q208GUIY
Started at: 2017-09-20 13:44:23.587
Migration process: \CS4.$X10F1:6411812041
Status: Initializing

Migration of queue "QueueL12":
$MQAS.MQ8A1AQ1.Q2ZEUML4 -> $MQAS.IBMMQM.Q208HMLP
Started at: 2017-09-20 13:44:23.624
Migration process: \CS4.$X10F2:6411812297
Status: Initializing...

After the migration is finished, the queues are correctly at the new location:

NSCNF>dis QueueL*

Queue: QueueL11
Guardian file: $MQAS.IBMMQM.Q208GUIY

Queue: QueueL12
Guardian file: $MQAS.IBMMQM.Q208HMLP

Queue: QueueL21
Guardian file: $MQAS.MQ8A1AQ1.Q2ZH5FEF
NSCNF>

Partitioning
You can use queue file migration to partition a queue file.

There are many reasons why you might want to partition queue files. For large queues, disk space could
be an issue. For very busy queues, distributing a queue over several disks can distribute CPU load to
multiple DP2 disk processes, and can also make use of larger disk cache for multiple drives.

92 IBM MQ for HPE NonStop V8.1

With IBM MQ for HPE NonStop V8.0.1 you only have to consider the disks you want the partitions to
reside on. You then configure a partitioning scheme together with a queue name pattern in the same way
as you would do for locating a queue on a different subvolume (see “Configuring IBM MQ” on page 45 for
details). When you create a queue where the name matches the pattern, IBM MQ will create the queue file
with the number of partitions and the location of the partitions as given by the rule.

Note that all volumes used in a partitioning scheme must be audited (TMF protected).

When a queue file is partitioned, IBM MQ will distribute new messages evenly across all partitions.

Partitioning examples

In the first step, a rule is set up for queues with three partitions:

NSCNF>class QueuePattern
CLASS set to QueuePattern
NSCNF>object LargeQueues
OBJECT set to LargeQueues
NSCNF>set VolumePartition2 $SSD2
Property VolumePartition2 set to $SSD2
NSCNF>set VolumePartition3 $SSD3
Property VolumePartition3 set to $SSD3
NSCNF>set VolumePartition4 $SMF01
Property VolumePartition4 set to $SMF01
NSCNF>list
.
.
.
Class: QueuePattern
Object: LargeQueues
Property: NumberPartitions
Value: 3

Class: QueuePattern
Object: LargeQueues
Property: VolumePartition2
Value: $SSD2

Class: QueuePattern
Object: LargeQueues
Property: VolumePartition3
Value: $SSD3

Class: QueuePattern
Object: LargeQueues
Property: VolumePartition4
Value: $SMF01

Next, a queue is created where the queue name matches the pattern configured for “LargeQueues”, the
queue file has three partitions (plus the master partition). The master partition is on the normal queue
file subvolume, additional partitions are on volumes $SSD2, $SSD3 and $SMF01. (If you want to delete
partitions from the configuration, remember to start with the last partition):

NSCNF>list
.
.
.
Class: QueuePattern
Object: LargeQueues
Property: NumberPartitions
Value: 3
--
Class: QueuePattern
Object: LargeQueues
Property: VolumePartition2
Value: $SSD2

Class: QueuePattern
Object: LargeQueues
Property: VolumePartition3
Value: $SMF02

Migrating to alter or partition queue files 93

Class: QueuePattern
Object: LargeQueues
Property: VolumePartition4
Value: $SMF01
.
.
.
NSCNF>del VolumePartition4
Property deleted successfully.
NSCNF>list
.
.
.
Class: QueuePattern
Object: LargeQueues
Property: NumberPartitions
Value: 2

Class: QueuePattern
Object: LargeQueues
Property: VolumePartition2
Value: $SSD2

Class: QueuePattern
Object: LargeQueues
Property: VolumePartition3
Value: $SMF02
.
.
.
NSCNF>del VolumePartition3
Property deleted successfully.
NSCNF>list
.
.
.
Class: QueuePattern
Object: LargeQueues
Property: NumberPartitions
Value: 1

Class: QueuePattern
Object: LargeQueues
Property: VolumePartition2
Value: $SSD2
.
.
.
NSCNF>del VolumePartition2
Property deleted successfully.

runnscnf reports any errors, for example:

NSCNF>set VolumePartition6 $SMF02
*** Error: Next partition number to be used is 5.
*** Error: $SMF02 is not an appropriate value for property
olumePartition6 of object in class QueuePattern
*** Explanation: Invalid partition number.

NSCNF>del VolumePartition3
*** Error: Delete is restricted to last partition VolumePartition4
*** Error: Property not deleted.
*** Explanation: Invalid partition number.

NSCNF>set VolumePartition5 $SSD2
*** Error: volume $SSD2 in use by partition 2.
*** Error: $SSD2 is not an appropriate value for property VolumePartition5 of object in class
 QueuePattern
*** Explanation: Volume already used as partition.

94 IBM MQ for HPE NonStop V8.1

Queue file migration limitations
There are some issues to consider when you use queue file migration.

When a queue file migration is finished, the old queue file must be deleted, and the migration status
information that can be viewed by using runnscnf must be removed from the system. This deletion is
done automatically by the migration mechanism. However, the old queue file can only be deleted when no
process has opened it. This is true even if all messages from the old file have already been moved to the
new file. As some of the IBM MQ processes might keep the old queue file open for an extended period of
time, it can happen that a migration status is reported as “Finished” in the runnscnf STATUS MIGRATE
display for a long time. This is normal, there is no activity on the old queue file, and it only contains one
record of data. Whenever the queue manager is restarted, the situation is cleaned up automatically.

You cannot revert back to IBM MQfor HPE NonStop V8.0.0 after you have partitioned queue files.

You cannot revert back to IBM MQfor HPE NonStop V8.0.0 while a queue file migration is in progress.

Migrating to alter or partition queue files 95

96 IBM MQ for HPE NonStop V8.1

TNS non-native application support

You can run TNS non-native applications with IBM MQ for HPE NonStop V8.1.

The support for TNS non-native applications is designed to allow legacy WebSphere MQ for HP NonStop
Server V5.3 TNS applications to run with IBM MQ V8.1. It is not designed to support the development of
new IBM MQ application programs.

The TNS non-native support in IBM MQ for HPE NonStop V8.1 is limited to the IBM MQ APIs and features
found in the WebSphere MQ for HP NonStop Server V5.3 product. New IBM MQ V8 API features are
not available in the non-native TNS environment. Note that non-native applications do not support
MQCONNX.

TNS non-native applications using IBM MQ for HPE NonStop V8.1 must run as Guardian processes. IBM
MQ V8 does not support OSS TNS non-native applications.

IBM MQ for HPE NonStop V8.1 supports C, COBOL, and TAL languages in the TNS non-native
environment.

Installing and building TNS non-native samples
The source files and build scripts for IBM MQ non-native TNS Sample programs are not installed with IBM
MQ for HPE NonStop V8.1 itself. You must install them separately.

Installing TNS non-native samples

The mqgsamptns script is provided to install the IBM MQ sample source files and the relevant TACL
scripts for building a non-native TNS MQ application. This script runs in OSS and installs the material in
the specified Guardian sub-volume.

The mqgsamptns script is located in opt/mqm/samp/bin. Run the script to copy the source code
and build scripts for the TNS non-native sample programs into a Guardian sub-volume. Complete the
following steps:

1. Source the mqprofile into the OSS shell. At an OSS login prompt, type the following command:

. mqinstall/var/mqm/mqprofile

2. Run the script:

mqgsamptns Sample_Guardian_sub-volume

where Sample_Guardian_sub-volume is an empty Guardian sub-volume that will contain the non-
native IBM MQ sample source code and build scripts.

The mqgsamptns script installs the following files:

File Description

AMQ0GBRB COBOL85 Browse Get sample

AMQ0GETB COBOL85 Get Sample

AMQ0PTLB COBOL85 Distribution List Sample

AMQ0PUTB COBOL85 Put Sample

AMQ0REQB COBOL85 Put Request Sample

Table 21: Files installed by mqgsamptns

© Copyright IBM Corp. 2017, 2019 97

File Description

AMQSBCGC C-Lang Browse Sample

AMQSGETC C-Lang Get Sample

AMQSINQC C-Lang Inquire Sample

AMQSPUTC C-Lang Put Sample

AMQSREQC C-Lang Put Request Sample

AMQSSETC C-Lang Set Sample

AMQTGETT TAL Get Sample

AMQTPUTT TAL Put Sample

BCOBSAMP COBOL85 TACL Build Routine

BCSAMP C-Lang TACL Build Routine

BTALSAMP TAL TACL Build Routine

CMQCH MQ Header for C-Lang

CMQCOBOL MQ Copybook for COBOL85

CMQTAL MQ Header for TAL

Table 21: Files installed by mqgsamptns(continued)

Building TNS non-native samples

To compile and bind the non-native Guardian executable versions of the IBM MQ sample programs, use
the supplied BCSAMP, BCOBSAMP, and BTALSAMP TACL routines.

• BCSAMP compiles and binds a C-language Non-native IBM MQ sample.
• BCOBSAMP compiles and binds a COBOL85 Non-native IBM MQ sample.
• BTALSAMP compiles and binds a TAL Non-native IBM MQ sample.

The Guardian MQCSTM must be obeyed in the TACL session before using these TACL routines.

For example, to use BCSAMP to compile and bind an IBM MQ sample:

volume Sample_Guardian_sub-volume
BCSAMP amqsputc

The BCSAMP TACL routine compiles and bind the sample into the same sub-volume.

98 IBM MQ for HPE NonStop V8.1

JAVA Support

IBM MQ classes for JMS

IBM MQ classes for Java™ Message Service (JMS) is the JMS provider that is supplied with IBM MQ. For
the HPE NonStop platform, JMS applications are typically run as standalone programs. The IBM MQ JMS
provider has the ability to run in a Java EE environment.

IBM MQ classes for JMS support bindings connections to a local queue manager, and client connections
to a local or remote queue manager.

An IBM MQ JMS sample program and installation verification test (IVT) is available in the following
directory:

mqinstall/opt/mqm/java/bin/IVTRun

For more information on how to run this test, see http://www-01.ibm.com/support/knowledgecenter/
SSFKSJ_8.0.0/com.ibm.mq.dev.doc/q031740_.htm in the IBM MQ Knowledge Center,

IBM MQ classes for Java

IBM MQ classes for Java allow a Java application to connect directly to an IBM MQ queue manager.

IBM MQ classes for Java support bindings connections to a local queue manager and client connections
to a local or remote queue manager.

An IBM MQ Java sample program and installation verification test (IVT) is available in the following
directory:

mqinstall/opt/mqm/samp/wmqjava/samples/MQIVP.class

For more information on how to run this test, see http://www-01.ibm.com/support/knowledgecenter/
SSFKSJ_8.0.0/com.ibm.mq.dev.doc/q030690_.htm in the IBM MQ Knowledge Center.

IBM MQ Java for HPE NonStop requires HPE NonStop Server for Java 7 or later.

© Copyright IBM Corp. 2017, 2019 99

http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.dev.doc/q031740_.htm
http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.dev.doc/q031740_.htm
http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.dev.doc/q030690_.htm
http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.dev.doc/q030690_.htm

100 IBM MQ for HPE NonStop V8.1

SSL/TLS Channels

You can secure channels using Transport Layer Security (TLS) and the Secure Sockets Layer (SSL)
protocols.

SSL channels are available with multiple certificate support enabled by using the IBM MQ V8 CERTLABL
channel attribute.

These protocols are supported by using an implementation of OpenSSL. OpenSSL requires a source of
random data for providing strong cryptographic operations and IBM MQ for HPE NonStop V8.1 uses an
entropy daemon for this purpose.

Queue manager SSL certificates
Each queue manager requires one or more certificate files and associated stash files.

Certificate files are in ASCII PEM format with a name that ends with .pem. A certificate file contains
an X509 personal certificate with its associated private key. A stash file contains a masked form of the
passphrase used to protect the certificate private key. Certificate files can be created using OpenSSL, the
IBM MQ ikeyman tool on Linux and Windows, or can be generated by a public certificate authority. Stash
files are created using the IBM MQ amqrsslc tool.

A queue manager stores its SSL related files in a directory that is specified by the queue manager
SSLKEYR attribute. The SSLKEYR attribute defaults to mqinstall/var/mqm/qmgrs/QMGRNAME/ssl.
A queue manager can store its SSL files in any directory by using runmqsc to alter the queue manager
SSLKEYR attribute.

A queue manager has a default certificate that is always named cert.pem. Its associated default stash
file is always named Stash.sth.

SSL Channels that do not have a CERTLABL specified, use the default queue manager certificate and stash
file, with the following full names:

SSKLEYR/cert.pem Default qmgr certificate and private key
SSLKEYR/Stash.sth Default qmgr stash file

SSL channels that have a CERTLABL specified use a certificate file and a stash file with the following
names:

SSKLEYR/CERTLABL.pem qmgr certificate and private key for label CERTLABL
SSLKEYR/CERTLABL.sth qmgr stash file for label CERTLABL

For example, a channel with a CERTLABL attribute of "MYLABEL" will use a certificate file and stash file
with the following names:

SSKLEYR/MYLABEL.pem
SSLKEYR/MYLABEL.sth

Each queue manager additionally needs a Certificate Authority file named trust.pem. This file contains
the public certificates of all the signing authorities used by the organization. The queue manager uses the
trust.pem file to verify any certificates presented by remote queue managers that are communicating
using SSL.

The trust.pem file has a fixed name of the form:

SSKLEYR/trust.pem

© Copyright IBM Corp. 2017, 2019 101

Each queue manager can optionally use a Certificate Revocation List (CRL) file that contains the latest list
of certificates that have been revoked by their signing authority. The CRL file has a fixed name of the form:

SSKLEYR/crl.pem

Cipherspecs
A cipherspec is a name used to select algorithms for signing, key exchange, and encryption.

The cipherspec that a channel uses is specified by its SSLCIPH channel attribute. Channels that do not
have a cipherspec in their SSLCIPH attribute are not SSL channels and send their message traffic in clear-
text over the network.

The following is a list of valid cipherspecs with their associated protocol version:

MQ Channel SSLCIPH Protocol FIPS/
SuiteB

Status

DES_SHA_EXPORT SSL v3 Deprecated

DES_SHA_EXPORT1024 SSL v3 Deprecated

NULL_MD5 SSL v3 Deprecated

NULL_SHA SSL v3 Deprecated

RC2_MD5_EXPORT SSL v3 Deprecated

RC4_56_SHA_EXPORT1024 SSL v3 Deprecated

RC4_MD5_EXPORT SSL v3 Deprecated

RC4_MD5_US SSL v3 Deprecated

RC4_SHA_US SSL v3 Deprecated

TRIPLE_DES_SHA_US SSL v3 Deprecated

TLS_RSA_WITH_DES_CBC_SHA TLS v1.0 Deprecated

TLS_RSA_WITH_AES_128_CBC_SHA TLS v1.0 FIPS

TLS_RSA_WITH_AES_256_CBC_SHA TLS v1.0 FIPS

TLS_RSA_WITH_3DES_EDE_CBC_SHA TLS v1.0 FIPS Deprecated

TLS_RSA_WITH_NULL_SHA256 TLS v1.0 Deprecated

TLS_RSA_WITH_AES_128_CBC_SHA256 TLS v1.0 FIPS

TLS_RSA_WITH_AES_128_GCM_SHA256 TLS v1.0 FIPS

TLS_RSA_WITH_AES_128_GCM_SHA256 TLS v1.0 FIPS

TLS_RSA_WITH_AES_256_GCM_SHA384 TLS v1.0 FIPS

ECDHE_RSA_AES_256_GCM_SHA384 TLS v1.2 FIPS

ECDHE_RSA_AES_128_CBC_SHA256 TLS v1.2 FIPS

ECDHE_RSA_AES_128_GCM_SHA256 TLS v1.2 FIPS

ECDHE_RSA_AES_256_CBC_SHA384 TLS v1.2 FIPS

Table 22: Valid cipherspecs

102 IBM MQ for HPE NonStop V8.1

MQ Channel SSLCIPH Protocol FIPS/
SuiteB

Status

ECDHE_ECDSA_AES_128_CBC_SHA256 TLS v1.2 FIPS

ECDHE_ECDSA_AES_256_CBC_SHA384 TLS v1.2 FIPS

ECDHE_ECDSA_AES_128_GCM_SHA256 TLS v1.2 FIPS SuiteB
128

ECDHE_ECDSA_AES_256_GCM_SHA384 TLS v1.2 FIPS SuiteB
192

Table 22: Valid cipherspecs(continued)

SSL v3 is now considered to be a weak protocol and cipherspecs that use it are disabled by default. To use
SSL v3 cipherspecs, you must either define an AMQ_SSL_V3_ENABLE environment variable or specify the
AllowSSLV3 attribute in the SSL stanza of the queue manager qm.ini file. For example:

export AMQ_SSL_V3_ENABLE=1

Alternatively, in the qm.ini file:

SSL:
 AllowSSLV3=Yes

You can enable the cipherspecs marked as deprecated by including the following text in the qm.ini file:

SSL:
 AllowWeakCipherSpec=cipher_spec

Entropy daemon
OpenSSL requires a source of random data for providing strong cryptographic operations. Random
number generation is a capability that is usually provided by the operating system or by a system-wide
daemon process. The HP Integrity NonStop Server operating system does not provide this capability
within the operating system.

When you are using the SSL and TLS support supplied with IBM MQ for HPE NonStop V8.1, a process that
is called an entropy daemon is needed to provide the source of random data. When you start a channel
that requires SSL or TLS, OpenSSL expects an entropy daemon to be running and providing its services on
a socket in the OSS file system at /etc/egd-pool.

The program prngd is supplied in the HPE NonStop server core utils package to provide an entropy
daemon. The prngd program must be running whenever an SSL channel is needed.

Before running prngd you must configure it to specify resources that it uses to generate random data.
Edit the prngd.conf to configure prngd. The following is an example prngd.conf file:

 # entropy gathering commands
Format is: "program-name args" path rate
The "rate" represents the number of bits of usuable entropy per
byte of command output. Be conservative.
"ls -alni /var/adm" /bin/ls 0.02
"ls -alni /tmp" /bin/ls 0.02
"ls -alni /var/tmp" /bin/ls 0.02
"ls -alni /usr/tmp" /bin/ls 0.02
"ps -al" /bin/ps 0.03
"ps -efl" /bin/ps 0.03
"who -u" /bin/who 0.01
"df" /bin/df 0.01
"ipcs -a" /bin/ipcs 0.01

SSL/TLS Channels 103

If you store the prngd.conf in the directory /usr/local/etc/prngd, for example, then the prngd
program can be started by using the following command:

/usr/coreutils/sbin/prngd -c /usr/local/etc/prngd/prngd.conf /etc/egd-pool

Online Certificate Status Protocol
Online Certificate Status Protocol (OCSP) on IBM MQ for HPE NonStop V8.1 is configured and operates in
the same way as OCSP on IBM MQ on other platforms.

IBM MQ for HPE NonStop V8.1 supports the same qm.ini attributes and environment variables for working
with OCSP as other platforms. For more information, see Working with the Online Certificate Status
Protocol in the main IBM MQ V8 Knowledge Center.

Digital signing of OCSP responses

An OCSP responder can digitally sign its responses in any of three ways. Your responder administrator will
inform you which method is used.

• The OCSP response can be digitally signed using the same CA certificate that issued the certificate that
you are checking. In this case, you do not need to set up any additional certificate; the steps you have
already taken to establish SSL connectivity are sufficient to verify the OCSP response.

• The OCSP response can be digitally signed using another certificate signed by the same (CA) that issued
the certificate you are checking. The signing certificate is flowed together with the OCSP response in
this case. The certificate flowed from the OCSP responder must have an Extended Key Usage Extension
set to id-kp-OCSPSigning so that it can be trusted for this purpose. Because the OCSP response is
flowed with the certificate that signed it (and that certificate is signed by a CA which is already trusted
for SSL connectivity) then no additional certificate setup is required.

• The OCSP response can be digitally signed using another certificate that is not directly related to the
certificate you are checking. In this case, the OCSP Response is signed by a certificate issued by the
OCSP responder itself.

You must add a copy of the OCSP responder certificate to the trusted key store (that is, trust.pem) of the
client or queue manager that performs the OCSP checking; When a CA certificate is added it is added
by default as a trusted root, which is the required setting in this context. If this certificate is not added,
IBM MQ cannot verify the digital signature on the OCSP response, and the OCSP check results in an
Unknown outcome. This outcome might cause IBM MQ to close the channel, depending on the value of
OCSPAuthentication.

104 IBM MQ for HPE NonStop V8.1

https://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.explorer.doc/e_auth_info_ocsp.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.explorer.doc/e_auth_info_ocsp.htm

Sample programs

Various sample programs are provided with IBM MQ for HPE NonStop V8.1.

OSS environment and TACL scripts
You must set up an environment on NonStop before you can use the sample files provided with IBM MQ

mqprofile script

The mqprofile script is automatically generated when the product is installed. The mqprofile script
is intended to be sourced into an OSS shell. The script adds the IBM MQ installation bin directory to the
PATH and defines the MQINST environment variable.

The MQINST environment variable is used by the IBM MQ sample build scripts and is not required to run
IBM MQ.

To source the mqprofile, at an OSS login prompt, type:

. OSS_directory/var/mqm/mqprofile

MQCSTM

MQCSTM is a Guardian TACL obey file that sets the MQINST param that is needed by the Guardian IBM
MQ sample build scripts. The MQCSTM file is automatically generated in the installation subvolume when
the product is installed.

At a TACL prompt, type:

obey $vol.subvol.MQCSTM

Installing and building sample Programs
You must install and build the sample programs before you can use them.

Installing native Guardian Source for samples

You use the mqgsamp script (in opt/mqm/samp/bin) to copy the source code for the IBM MQ sample
programs into a Guardian sub-volume. The mqprofile script must be sourced into the OSS shell. At an
OSS login prompt, type:

. <OSS directory>/var/mqm/mqprofile
mqgsamp Sample_Guardian_sub-volume

where Sample_Guardian_sub-volume is an empty Guardian sub-volume that will contain the IBM MQ
sample source code.

Building native Guardian IBM MQ sample programs

To compile and link the native Guardian executable versions of the IBM MQ sample programs, use the
supplied BCSAMP, BLSAMP, and BTSAMP TACL routines.

• BCSAMP compiles and links a C-language Guardian MQ sample
• BLSAMP compiles and links a COBOL Guardian MQ sample
• BTSAMP compiles and links a pTAL Guardian MQ sample

© Copyright IBM Corp. 2017, 2019 105

The Guardian MQCSTM must be obeyed in the TACL session before using these TACL scripts.

Example:

To use BCSAMP to compile and link an IBM MQ sample:

volume Sample_Guardian_sub-volume
BCSAMP amqsputc

The BCSAMP TACL routine will compile and link the sample into the same sub-volume.

Building OSS IBM MQ sample programs

To compile and link the OSS executable versions of the IBM MQ sample programs, use the supplied
bcsamp or blsamp shell scripts.

The OSS sample build scripts are located in OSS_directory/opt/mqm/samp/bin.

• bcsamp - compiles and links a C-language OSS IBM MQ sample
• blsamp - compiles and links a COBOL OSS IBM MQ sample

The OSS mqprofile file must be sourced into the OSS shell before using these scripts.

. OSS_directory/var/mqm/mqprofile

For example:

To use bcsamp to compile and link an IBM MQ C-language sample:

. OSS_directory/var/mqm/mqprofile bcsamp amqsput0.

For example:

To use blsamp to compile and link a COBOL IBM MQ sample:

. OSS_directory/var/mqm/mqprofile blsamp amq0put0.cbl

TNS non-native application samples

For information about TNS non-native applications, see “TNS non-native application support” on page 97.

106 IBM MQ for HPE NonStop V8.1

Problem handling

There are actions you should take to handle problems with IBM MQ for HPE NonStop V8.1.

In case of errors or problems, the following information should be consulted:

IBM MQ error logs and FFST files
These are available at the location described in the main IBM MQ documentation.

EMS messages
For details about EMS messages, see “EMS” on page 107.

If this information does not help you resolve the issue, you might want to contact IBM Support. In that
case you might be asked to provide and SDCP file (see “sdcp tool” on page 108)

EMS

In addition to FFST reports and error logs MQ 8 supports another way for user notifications, the Event
Management Service (EMS).

By default no EMS events are generated. If you want to enable MQ EMS events, you must ensure that the
environment variable MQEMSEVENTS is defined in the context of MQ processes. The value is a three-
character string, which is a decimal value interpreted as a bit map, as follows:

EMS message Bit-map entry MQEMSEVENT value

FFST 0x00000001 1

START / STOP 0x00000002 2

PERFORMANCE 0x00000004 4

CHANNEL 0x00000008 8

QUEUE MANAGER 0x00000010 16

MESSAGE 0x00000020 32

ERROR 0x00000040 64

MQ 8 events 0x00000080 128

ALL 0x000000FF 255

Table 23:

Thus, to switch on all EMS events for MQ, you must define the following environment variable in the
environment from which any administration commands are issued:

/home/mqm: export MQEMSEVENTS=255

Using a different collector
You can use a different collector to the default collector.

By default IBM MQ V8 reports EMS events to $0. A different collector can be defined for IBM MQ V8
events by using the environment variable MQEMSCOLLECTOR:

/home/mqm: export MQEMSCOLLECTOR=‘$0’

© Copyright IBM Corp. 2017, 2019 107

Note the process name $0 is quoted to avoid environment variable substitution performed by the shell.

Messages
The System ID of all MQ 8 EMS events is IBM.WMQS.V80.

IBM MQ V8 supports following WebSphere MQ V5.3 EMS events:

• FFST message
• Queue Manager event
• Performance event
• Channel event
• Display Message Event
• Report Error Event

Following EMS events are introduced with IBM MQ V8:

• Guardian and OSS system call failures.
• Takeover events. Queue manager backup takes over.
• Memory allocation failure. Some IBM MQ process is running out of dynamic memory.
• Cache manager error.
• Process termination by ABEND().
• Other errors.

sdcp tool
sdcp is the Service Data Collection and Packaging tool.

sdcp is an OSS shell script that can be used to collect and package important data from IBM MQ for HPE
NonStop V8.1. The primary purpose of sdcp is to reduce the time and effort required from users and IBM
Support in gathering the most critical and commonly required data in support of the technical analysis of a
PMR.

sdcp gathers data about the IBM MQ installation and the queue managers running in that installation.
Data is also collected about the general operating environment on the HPE NonStop Server. Queue
managers do not need to be stopped when running sdcp.

No customer application message data is collected to avoid inadvertently collecting sensitive information.
Use of IBM MQ utilities to collect queue, channel, and authority information can be excluded if necessary.
sdcp requires no interactive input from the user and makes no modifications to the system, IBM MQ
installation, or the queue managers.

Usage

sdcp runs from the OSS shell and requires a logged-in user ID that is an administrator of the IBM MQ
installation.

The command line interface is as follows:

sdcp [-d] [-e] [-f] [-w workdir] [-m queuemgr] [-p pmrNumber] [-x]

Where:

-d

Enables OSS shell debug output for the script

108 IBM MQ for HPE NonStop V8.1

-e

Excludes the use of IBM MQ utility programs to collect configuration and status information about
running queue managers. If not specified, IBM MQ command line utilities are used to collect this data
for running queue managers.

-f

Enables the fully detailed collection of certain items, including the WHOHAS utility. The full level of
detailed data collection can take over an hour on some systems and is usually not necessary. Only use
this parameter if directed to by IBM Support. If not specified, a normal level of detail is collected.

-w

Is the name of an OSS directory where sdcp stores temporary files that it uses while running, and
where the final output is created. If not specified, the current working directory is used.

-m

queuemgr is the name of the queue manager to collect data for. If not specified, sdcp collects data for
all queue managers in the installation.

-p

pmrNumber defines the final archive and intermediate file name prefix, and must be formatted as an
IBM Support PMR number, branch and country code; with each item being separated by a dot (.) or
comma (,). For example, 11111.222.333.

Note: The use of the –p flag is recommended when collecting data for submission to IBM Support.
Proper use of this flag will ensure that the file gets uploaded to the appropriate storage location.

-x
Enables the use of amqxdbg during gathering of SDCP data. This can lead to the creation of FFSTs in
the global error directory.

For simple usage, just typing sdcp causes the collection of data from the installation, plus all queue
managers in that installation (whether running or not).

To reduce the volume of data and the time taken to collect the data, you can run sdcp to collect data for a
specific queue manager:

sdcp –m qmgr

In the event that one of the queue managers you are collecting information on appears to be
unresponsive, specify the –e parameter to exclude the use of IBM MQ utilities to collect data for running
queue managers:

sdcp –m qmgr -e

The following example illustrates collecting data with typical parameters specified:

sdcp -w /home/fred -m QM1 -p 99999,888,777

Result of running sdcp
Running sdcp creates a compressed tar archive (“tarball”) in the working directory (or current directory,
if –w was not specified) containing all of the data that sdcp collected from the installation, queue
managers, and the system.

The tarball can then be transferred electronically to IBM Support (using binary mode ftp) for analysis.

The sdcp working directory is used as a location for temporary files created as data is gathered about
the installation. By default, all files created in the working directory have a common prefix of MQSDCP,
followed by the date and time when sdcp was started, for example: MQSDCP-170420-123729.

Problem handling 109

If the -p flag is specified, the prefix consists of the PMR number appended with SDCP, followed by the
date and time when sdcp was started, for example:

03825,122,000-SDCP-170420-123729

The final tarball is named using the same prefix that was used for the temporary files, followed by -
archive.tar.Z, for example: MQSDCP-170420-123729-archive.tar.Z.

Information collected by sdcp
sdcp uses standard HPE NonStop Server OSS and Guardian utilities to collect data.

In detail, sdcp collects the following information:

• The OSS and Guardian filesystem objects for the IBM MQ installation and queue managers.
• Version information for all sdcp binaries
• The status and state of all sdcp processes running for queue managers
• Information about the HPE NonStop Server operating system level, versions of critical HPE system

software subsystems
• Basic information about the OSS shell environment that sdcp is running in
• TMF subsystem status
• Disk space summary for the system
• Physical and virtual memory status of each CPU
• OSS fileset status
• Basic configuration of the EMS subsystem
• Status of all TCP/IP subsystems
• The contents of the IBM MQ errors and trace directories
• The IBM MQ installation wide configuration files mqs.ini
• The results of running dspmq (which queue managers are defined and their state)
• For each running queue manager, unless excluded using the –e parameter, configuration and status

data for all IBM MQ objects, channels, authority data, and clustering objects

sdcp typically takes a few minutes to run, depending on system load, but does not interrupt any
operations. With default settings and two running queue managers, sdcp takes approximately 5 minutes
on a NB5400C, depending on system load.

IBM Support directs customers to use this tool in situations where a queue manager is experiencing
problems, to quickly and accurately capture data, and enable faster progress into problem recovery mode
(where necessary).

110 IBM MQ for HPE NonStop V8.1

NonStop specific log messages

The following NonStop specific message might be issued by IBM MQ for HPE NonStop V8.1.

AMQ5401: The volume is not audited
context:

crtmqm

meaning:

crtmqm was called with option –ng (setting Guardian subvolume) but the subvolume specified does
not reside on an audited disk.

consequence:

The crtmqm command fails, no queue manager is created.

Recommended action:

Specify a subvolume of an audited disk when creating a queue manager.

AMQ5402: Cache Mgr … from QM … had failed
context:

Running queue manager.

meaning:

A cache manager process in the queue manager given in the message has failed.

consequence:

All non persistent messages in queues of this cache manager are lost. Applications will receive
Reason 2208 (MQRC_FILE_SYSTEM_ERROR) when trying to MQGET these messages. This error will
be reported once for each lost message. When MQGET has been called for each lost message, normal
operation will continue. The failed process will automatically be restarted by the system.

Recommended action:

When using non-persistent messages code your application to be able to deal with that error code.

AMQ5408: .. called PROCESS_STOP_ on … with rc=….
context:

endmqm phase.

meaning:

In the endmqm phase some IBM MQ processes were hard stopped by the IBM MQ engine.

consequence:

This is an informational message only.

Recommended action:

None.

AMQ5408: Configuration for queue manager '&3' not fault tolerant.
context:

strmqm phase.

© Copyright IBM Corp. 2017, 2019 111

meaning:

The queue manager was configured to run in non-fault tolerant mode, that is, without an EC backup
process.

consequence:

This is an informational message only. A failure of the queue manager CPU brings down the queue
manager, the queue manager has to be restarted manually.

Recommended action:

None.

AMQ5404: No CPU available for backup of EC for queue manager
context:

strmqm phase or running queue manager.

meaning:

The queue manager is configured to run in fault tolerant mode, but there is no CPU available to start
the backup process in.

consequence:

If IBM MQ is running on a two CPU system, this message is normal if a CPU goes down. If running on
a system with four or more CPUs, some CPUs might not be in the allowed list for IBM MQ (runnscnf
configuration). If no allowed CPU is available, IBM MQ runs in non-fault-tolerant mode until an
allowed CPU becomes available again.

Recommended action:

Consider configuring more allowed CPUs.

AMQ5405: Takeover of queue manager '&3' occurred...
context:

Running queue manager.

meaning:

A CPU failure has caused the queue manager to move to a different CPU. A typical cause for this is the
failure of the queue manager CPU. It can also happen if, for any reason, the primary EC process fails.

consequence:

IBM MQ recovers by itself. Applications coded to do retries after a delay for failed connections are
able to reconnect to the queue manager again within a few seconds.

Recommended action:

Analyze the root cause of the failing CPU.

AMQ5407: Backup of queue manager … could not be started
context:

strmqm or running queue manager.

meaning:

IBM MQ has tried to start a backup EC process to run in fault tolerant mode but this ahs failed.

consequence:

Check EMS and FFSTs for the reason why the EC backup process could not be started.

112 IBM MQ for HPE NonStop V8.1

Recommended action:

Clear the root cause of the failure.

AMQ7024: Arguments supplied to a command are not valid. Usage: altmqusr [-m QMgrName] -p
Principal (-u UserName | -r)
context:

A required option is missing, or an invalid option was used.

meaning:

A required option is missing or, an invalid option was used.

consequence:

The command is not executed.

Recommended action:

Correct the input and repeat the command.

The HP NonStop Server User name was specified incorrectly
context:

Execution of altmqusr command. This message is shown at the terminal, it does not appear in the
log.

meaning:

A value to the -u option was invalid; the NonStop OS user ID does not exist.

consequence:

The command is not executed.

Recommended action:

Correct the input and repeat the command.

AMQ7028: The queue manager is not available for use
context:

Execution of altmqusr command. This message is shown at the terminal, it does not appear in the
log.

meaning:

A value to the -m option is invalid; the queue manager does not exist.

consequence:

The command is not executed.

Recommended action:

Correct the input and repeat the command.

AMQ7024: Arguments supplied to a command are not valid. Usage: dspmqusr [-m QMgrName] [-p
Principal]
context:

Execution of dspmqusr command. This message is shown at the terminal, it does not appear in the
log.

NonStop specific log messages 113

meaning:

A required option is missing or an invalid option was supplied.

consequence:

The command is not executed.

Recommended action:

Correct the input and repeat the command.

Username mapping for Queue Manager 'i517x' Principal Userid Username Alias GroupName
GroupType The Principal name was specified incorrectly.
context:

Execution of dspmqusr command. This message is shown at the terminal, it does not appear in the
log.

meaning:

A value for the option -p is invalid: the principal does not exist.

consequence:

The command is not executed.

Recommended action:

Correct the input and repeat the command; use dspmqusr to verify existing principals.

114 IBM MQ for HPE NonStop V8.1

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available
in your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2017, 2019 115

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of IBM MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information"www.ibm.com/legal/copytrade.shtml. Other product and service names might be trademarks
of IBM or other companies.

116 Notices

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 117

118 IBM MQ for HPE NonStop V8.1

Sending your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

Use one of the following methods to send us your comments:

• Send an email to ibmkc@us.ibm.com
• Use the form on the Web at: www.ibm.com/software/data/rcf/

Include the following information:

Your name and address
Your email address
Your telephone or fax number
The publication title and order number
The topic and page number related to your comment
The text of your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

IBM or any other organizations will only use the personal information that you supply to contact you about
the issues that you submit.

Thank you for your participation.

© Copyright IBM Corp. 2017, 2019 119

http://www.ibm.com/software/data/rcf/

120 IBM MQ for HPE NonStop V8.1

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Overview
	Architecture
	What's new
	What's new in previous releases
	Enhancements and limitations
	OSS and Guardian support
	Bindings options
	High availability features
	Data storage
	Application-initiated TMF transactions
	IBM MQ logger
	XA server support
	Crypto hardware
	Support for non-native applications
	CPU assignment

	Installing and upgrading
	Deliverables
	Planning
	Installation procedure
	Upgrade procedure
	Restore procedure
	Fixpacks
	iFix procedure
	Troubleshooting installation
	Guardian install subvolume inventory

	Working with IBM MQ
	Creating a queue manager
	Understanding IBM MQ file names
	Planning disk space
	Environment variables and PATH
	CPU considerations
	Running crtmqm

	Starting and ending queue managers
	Starting a queue manager
	Ending a queue manager
	IBM MQ processes unique to IBM MQ for HPE NonStop V8.1

	Compiling channel exit programs on HPE NonStop systems
	Triggering Guardian programs and TACL scripts from IBM MQ

	Administering IBM MQ
	Enhancements to runmqsc
	Specifying TCP/IP Transport for channels and listeners
	Enhancements to dspmq
	EMS messages
	Tuning agent processes

	Configuring IBM MQ
	Configuration methods
	.ini files
	NonStop-specific tools inherited from WebSphere MQ for HP NonStop Server V5.3
	Environment variables
	runnscnf

	Areas of NonStop-specific configuration
	The runnscnf tool
	Using runnscnf
	runnscnf command reference
	class
	comment
	DEL
	DIS
	FC
	HELP
	LIST
	MODE
	OBEY
	OBJECT
	PREPARE MIGRATE
	SET
	SHOW
	START MIGRATE
	STATUS MIGRATE

	Classes
	Class CacheManager
	Class CacheManagerSupervisor
	Class Processes
	Class Queue
	Class QueueManager
	Class QueuePattern
	Class SetSignalManager

	Examples of using runnscnf
	Setting maximum file size for a set of queues
	Showing Guardian file names of queues
	Configuring Fault Tolerant EC

	altmqfls
	dspmqfls
	altmqusr
	dspmqusr
	Configuring NonStop for IBM MQ
	IBM MQ for HPE NonStop V8.1 TMF Configuration

	High availability (HANSQM)
	Configuring for high availability
	CPU failures

	User name mapping
	User identification
	The installation owner user ID
	User names in the MQM group
	User names not in the MQM Group
	User names for channels
	User names in IBM MQ security exits

	MQGET SET SIGNAL
	Using MQGET SET_SIGNAL
	Message format
	Active Checkpointing

	Migrating between IBM MQ versions
	Exporting a WebSphere MQ V5.3 queue manager by using exportmqm
	Importing a WebSphere V5.3 or IBM MQ V8 queue manager by using importmqm

	Migrating between IBM MQ versions
	Exporting a WebSphere MQ V5.3 queue manager by using exportmqm
	Exporting an IBM MQ V8 queue manager by using exportmqm
	Importing a WebSphere MQ V5.3 or an IBM MQ V8 queue manager by using importmqm
	Importing IBM MQ V8 data back into WebSphere MQ V5.3 using mig/importmqm

	Migrating to alter or partition queue files
	Queue file migration overview
	Using PREPARE MIGRATE
	Offline migration
	Online migration
	Migration example
	Partitioning
	Partitioning examples
	Queue file migration limitations

	TNS non-native application support
	Installing and building TNS non-native samples

	JAVA Support
	SSL/TLS Channels
	Queue manager SSL certificates
	Cipherspecs
	Entropy daemon
	Online Certificate Status Protocol

	Sample programs
	OSS environment and TACL scripts
	Installing and building sample Programs

	Problem handling
	EMS
	Using a different collector
	Messages
	sdcp tool
	Result of running sdcp
	Information collected by sdcp

	NonStop specific log messages
	Notices
	Programming interface information
	Trademarks

	Sending your comments to IBM

