
7.5

IBM Message Service Client for .NET

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
247.

This edition applies to version 7 release 5 of IBM® WebSphere® MQ and to all subsequent releases and modifications until
otherwise indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 2007, 2025.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Message Service Client for .NET... 5
Introduction to the Message Service Client for .NET.. 5
What's new in this release... 6
Styles of messaging... 6
The XMS object model... 7

Attributes and properties of objects.. 8
Administered objects... 9

The XMS message model...10
Preventing applications from using newer XMS version...10
Setting up the messaging server environment... 10

Configuring the queue manager and broker for an application that connects to a IBM
WebSphere MQ queue manager... 11

Configuring a broker for an application that uses a real-time connection to a broker.......................13
Configuring the service integration bus for an application that connects to a WebSphere

Service Integration Bus...14
Installing Message Service Client for .NET using the installation wizard... 15
Prerequisites for XMS applications connecting to IBM WebSphere MQ.. 17

Using the XMS sample applications.. 18
The sample applications.. 18
Running the sample applications...19
Building the .NET sample applications..20

Developing XMS applications.. 21
Writing XMS applications... 21
Writing XMS .NET applications...44
Working with administered objects... 50
Securing communications for XMS applications... 64
XMS messages..69

Troubleshooting... 82
Trace configuration for .NET applications..82
FFDC configuration for .NET applications..87
Tips for troubleshooting...87

Message Service Clients for .NET reference... 88
.NET interfaces... 88
Properties of XMS objects..177

Notices..247
Programming interface information..248
Trademarks.. 248

 iii

iv

Introduction to the Message Service Client for .NET

Message Service Client for .NET provides an application programming interface (API) called XMS that
has the same set of interfaces as the Java Message Service (JMS) API. Message Service Client for .NET
contains a fully managed implementation of XMS, which can be used by any .NET compliant language.

XMS supports:

• point-to-point messaging
• publish/subscribe messaging
• Synchronous message delivery
• Asynchronous message delivery

An XMS application can exchange messages with the following types of application:

• An XMS application
• A IBM WebSphere MQ classes for JMS application
• A native IBM WebSphere MQ application
• A JMS application that is using the WebSphere default messaging provider

An XMS application can connect to, and use the resources of, any of the following messaging servers:
IBM WebSphere MQ queue manager

The application can connect in either bindings or client mode.
WebSphere Application Server Service Integration Bus

The application can use a direct TCP/IP connection, or it can use HTTP over TCP/IP.
WebSphere Event Broker or WebSphere Message Broker

Messages are transported between the application and the broker using WebSphere MQ Real-Time
Transport. Messages can be delivered to the application using WebSphere MQ Multicast Transport.

By connecting to a IBM WebSphere MQ queue manager, an XMS application can use IBM WebSphere
MQ Enterprise Transport to communicate with WebSphere Event Broker or WebSphere Message Broker.
Alternatively, an XMS application can publish and subscribe by connecting to IBM WebSphere MQ.

Related concepts
“Styles of messaging” on page 6
“The XMS object model” on page 7
The XMS API is an object-oriented interface. The XMS object model is based on the JMS 1.1 object model.
“The XMS message model” on page 10
The XMS message model is the same as the IBM WebSphere MQ classes for JMS message model.

Introduction to the Message Service Client for .NET
Message Service Client for .NET provides an application programming interface (API) called XMS that
has the same set of interfaces as the Java Message Service (JMS) API. Message Service Client for .NET
contains a fully managed implementation of XMS, which can be used by any .NET compliant language.

XMS supports:

• point-to-point messaging
• publish/subscribe messaging
• Synchronous message delivery
• Asynchronous message delivery

An XMS application can exchange messages with the following types of application:

• An XMS application

© Copyright IBM Corp. 2007, 2025 5

• A IBM WebSphere MQ classes for JMS application
• A native IBM WebSphere MQ application
• A JMS application that is using the WebSphere default messaging provider

An XMS application can connect to, and use the resources of, any of the following messaging servers:
IBM WebSphere MQ queue manager

The application can connect in either bindings or client mode.
WebSphere Application Server Service Integration Bus

The application can use a direct TCP/IP connection, or it can use HTTP over TCP/IP.
WebSphere Event Broker or WebSphere Message Broker

Messages are transported between the application and the broker using WebSphere MQ Real-Time
Transport. Messages can be delivered to the application using WebSphere MQ Multicast Transport.

By connecting to a IBM WebSphere MQ queue manager, an XMS application can use IBM WebSphere
MQ Enterprise Transport to communicate with WebSphere Event Broker or WebSphere Message Broker.
Alternatively, an XMS application can publish and subscribe by connecting to IBM WebSphere MQ.

Related concepts
“Styles of messaging” on page 6
“The XMS object model” on page 7
The XMS API is an object-oriented interface. The XMS object model is based on the JMS 1.1 object model.
“The XMS message model” on page 10
The XMS message model is the same as the IBM WebSphere MQ classes for JMS message model.

What's new in this release
There are a number of enhancements in this release of Message Service Client for .NET.

“Reading and writing the message descriptor from a Message Service Client for .NET application” on
page 82

You can access all the message descriptor fields in a IBM WebSphere MQ message except StrucId
and Version. The BackoutCount field can be read but not written to. Access to the fields is
available only when connecting to a IBM WebSphere MQ version 6 queue manager and above. Access
is controlled by destination properties described later.

“The sample applications” on page 18
The XMS sample applications provide an overview of the common features of each API. You can use
them to verify your installation and messaging server setup, and to verify your own applications.

Performance improvements
The performance of XMS .NET is improved.

“Automatic IBM WebSphere MQ Client reconnection through XMS” on page 44
You can configure a WebSphere MQ V7.1 XMS IBM WebSphere MQ Client to reconnect automatically
following a network, queue manager, or server failure.

“Managed IBM WebSphere MQ XA transactions through XMS” on page 39
Managed WebSphere MQ XA transactions can be used through XMS.

GMO_CONVERT
Specifying a GMO_CONVERT value in a message is optional. If a GMO_CONVERT value is specified,
conversion takes place according to the value specified.

Styles of messaging
XMS supports the point-to-point and publish/subscribe styles of messaging.

Styles of messaging are also called messaging domains.

6 IBM Message Service Client for .NET

Point-to-point messaging
A common form of point-to-point messaging uses queuing. In the simplest case, an application sends a
message to another application by identifying, implicitly or explicitly, a destination queue. The underlying
messaging and queuing system receives the message from the sending application and routes the
message to its destination queue. The receiving application can then retrieve the message from the
queue.

If the underlying messaging and queuing system contains WebSphere Message Broker, WebSphere
Message Broker might replicate a message and route copies of the message to different queues. As
a result, more than one application can receive the message. WebSphere Message Broker might also
transform a message and add data to it.

A key characteristic of point-to-point messaging is that an application places a message onto a local
queue when it sends a message. The underlying messaging and queuing system determines which
destination queue the message is sent to. The receiving application retrieves the message from the
destination queue.

Publish/subscribe messaging
In publish/subscribe messaging, there are two types of application: publisher and subscriber.

A publisher supplies information in the form of publication messages. When a publisher publishes a
message, it specifies a topic, which identifies the subject of the information inside the message.

A subscriber is a consumer of the information that is published. A subscriber specifies the topics it is
interested in by creating subscriptions.

The publish/subscribe system receives publications from publishers and subscriptions from subscribers.
It routes publications to subscribers. A subscriber receives publications on only those topics to which it
subscribed.

A key characteristic of publish/subscribe messaging is that a publisher identifies a topic when it publishes
a message. It does not identify the subscribers. If a message is published on a topic for which there are
no subscribers, no application receives the message.

An application can be both a publisher and a subscriber.

The XMS object model
The XMS API is an object-oriented interface. The XMS object model is based on the JMS 1.1 object model.

The following list summarizes the main XMS classes, or types of object:
ConnectionFactory

A ConnectionFactory object encapsulates a set of parameters for a connection. An application
uses a ConnectionFactory to create a connection. An application can provide the parameters at
run time and create a ConnectionFactory object. Alternatively, the connection parameters can
be stored in a repository of administered objects. An application can retrieve an object from the
repository and create a ConnectionFactory object from it.

Connection
A Connection object encapsulates an active connection from an application to a messaging server.
An application uses a connection to create sessions.

Destination
An application sends messages or receives messages using a Destination object. In the publish/
subscribe domain, a Destination object encapsulates a topic and, in the point-to-point domain, a
Destination object encapsulates a queue. An application can provide the parameters to create a
Destination object at run time. Alternatively, it can create a Destination object from an object
definition that is stored in repository of administered objects.

Session
A Session object is a single threaded context for sending and receiving messages. An application
uses a Session object to create Message, MessageProducer, and MessageConsumer objects.

Introduction to the Message Service Client for .NET 7

Message
A Message object encapsulates the Message object that an application sends using a
MessageProducer object, or receives using a MessageConsumer object.

MessageProducer
A MessageProducer object is used by an application to send messages to a destination.

MessageConsumer
An MessageConsumer object is used by an application to receive messages sent to a destination.

Figure 1 on page 8 shows these objects and their relationships.

Figure 1. XMS objects and their relationships

In .NET, the XMS classes are defined as a set of .NET interfaces. When you are coding XMS .NET
applications, you need only the declared interfaces.

The XMS object model is based on the domain independent interfaces that are described in Java
Message Service Specification, Version 1.1. Domain-specific classes, such as Topic, TopicPublisher,
and TopicSubscriber, are not provided.

Attributes and properties of objects
An XMS object can have attributes and properties, which are characteristics of the object, that are
implemented in different ways.
Attributes

An object characteristic that is always present and occupies storage, even if the attribute does not
have a value. In this respect, an attribute is similar to a field in a fixed-length data structure. A
distinguishing feature of attributes is that each attribute has its own methods for setting and getting
its value.

Properties
A property of an object is present and occupies storage only after its value is set. A property cannot be
deleted or its storage recovered after its value is set. You can change its value. XMS provides a set of
generic methods for setting and getting property values.

Related concepts
XMS primitive types
XMS provides equivalents of the eight Java primitive types (byte, short, int, long, float, double, char, and
boolean). This allows the interchange of messages between XMS and JMS without data becoming lost or
corrupted.
Implicit conversion of a property value from one data type to another

8 IBM Message Service Client for .NET

When an application gets the value of a property, the value can be converted by XMS into another data
type. Many rules govern which conversions are supported and how XMS performs the conversions.
Related reference
Data types for elements of application data
To ensure that an XMS application can exchange messages with a IBM WebSphere MQ classes for JMS
application, both the applications must be able to interpret the application data in the body of a message
in the same way.

Administered objects
Using administered objects, you can administer the connection settings used by client applications
to be administered from a central repository. An application retrieves object definitions from the
central repository and uses them to create ConnectionFactory and Destination objects. Using
administered objects, you can de-couple applications from the resources that they use at run time.

For example, XMS applications can be written and tested with administered objects that reference
a set of connections and destinations in a test environment. When the applications are deployed,
the administered objects can be changed to configure the applications to refer to connections and
destinations in the production environment.

XMS supports two types of administered object:

• A ConnectionFactory object, which is used by applications to make the initial connection to the
server.

• A Destination object, which is used by applications to specify the destination for messages that are
being sent, and the source of messages that are being received. A destination is either a topic or a
queue on the server to which an application connects.

The administration tool JMSAdmin is supplied with IBM WebSphere MQ. It is used to create and manage
administered objects for in a central repository of administered objects.

The administered objects in the repository can be used by IBM WebSphere MQ classes for JMS and XMS
applications. XMS applications can use the ConnectionFactory and Destination objects to connect
to a IBM WebSphere MQ queue manager. An administrator can change the object definitions held in the
repository without affecting application code.

The following diagram shows how an XMS application typically uses administered objects.

Figure 2. Typical use of administered objects by an XMS application

Related concepts
Supported types of administered object repository

Introduction to the Message Service Client for .NET 9

XMS supports three types of administered object directories: File System, Lightweight Directory Access
Protocol (LDAP), and COS Naming. File System and LDAP administered objects can be used to connect
to IBM WebSphere MQ and WebSphere Application Server, whereas COS Naming can be used to connect
only to the WebSphere Application Server.
Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.

The XMS message model
The XMS message model is the same as the IBM WebSphere MQ classes for JMS message model.

In particular, XMS implements the same message header fields and message properties that IBM
WebSphere MQ classes for JMS implements:

• JMS header fields. These fields have names that commence with the prefix JMS.
• JMS defined properties. These fields have properties whose names commence with the prefix JMSX.
• IBM defined properties. These fields have properties whose names commence with the prefix

JMS_IBM_.

As a result, XMS applications can exchange messages with IBM WebSphere MQ classes for JMS
applications. In each message, some of the header fields and properties are set by the application and
others are set by XMS or IBM WebSphere MQ classes for JMS. Some of the fields set by XMS or IBM
WebSphere MQ classes for JMS are set when the message is sent, and others when it is received. Header
fields and properties are propagated with a message through a messaging server where appropriate. They
are made available to any application that receives the message.

Preventing applications from using newer XMS version
By default, when a newer XMS version is installed, the applications using the previous version
automatically switch to the newer version without having to recompile.

About this task
The multiple versions coexistence feature ensures that installation of a newer XMS version does not
overwrite the previous XMS version. Instead, multiple instances of similar XMS .NET assemblies coexist
in the Global Assembly Cache (GAC), but have different version numbers. Internally, the GAC uses a
policy file to route the application calls to the latest version of XMS. Applications run without a need for
recompilation and can use new features available in the newer XMS .NET version.

However, if an application is required to use the older XMS version, set the publisherpolicy attribute
to no in the application configuration file.

Note: An application configuration file is a file with a name that consists of the name of the executable
program to which the file relates, with the suffix .config. For example, the application configuration file for
text.exe would have the name text.exe.config.

At any time, however, all the applications of a system use the same version of XMS .NET.

Setting up the messaging server environment
This sectionchapter describes how to set up the messaging server environment to allow XMS applications
to connect to a server.

For applications that connect to a IBM WebSphere MQ queue manager, the IBM WebSphere MQ client (or
queue manager for bindings mode) is required.

There are currently no prerequisites for applications that use a real-time connection to a broker.

10 IBM Message Service Client for .NET

You must set up the messaging server environment before running any XMS applications, including the
sample applications provided with XMS.

This sectionchapter contains the following topicssections:

• “Configuring the queue manager and broker for an application that connects to a IBM WebSphere MQ
queue manager” on page 11

• “Configuring a broker for an application that uses a real-time connection to a broker” on page 13
• “Configuring the service integration bus for an application that connects to a WebSphere Service

Integration Bus” on page 14

Related tasks
Installing Message Service Client for .NET using the installation wizard
The installation uses an InstallShield X/Windows MSI installer. Two setup options are available, so that
you can choose either a complete or a custom installation.

Configuring the queue manager and broker for an application that connects
to a IBM WebSphere MQ queue manager

This section assumes that you are using IBM WebSphere MQ version 7.0. Before you can run an
application that connects to a IBM WebSphere MQ queue manager, you must configure the queue
manager. For a publish/subscribe application, some additional configuration is required if you are using
Queued publish/subscribe interface.

Before you begin
XMS works with WebSphere Message Broker version 6.1 or earlier.

Before starting this task, you perform the following steps:

• Make sure that your application has access to a queue manager that is running.
• If your application is a publish/subscribe application and uses Queued publish/subscribe interface,

make sure that "PSMODE" attribute is set to "ENABLED" on the queue manager.
• Make sure that your application uses a connection factory whose properties are set appropriately to

connect to the queue manager. If your application is a publish/subscribe application, make sure that the
appropriate connection factory properties are set for using the broker. For more information about the
properties of a connection factory, “Properties of ConnectionFactory” on page 179.

About this task
You configure the queue manager and broker to run XMS applications in the same way that you configure
the queue manager and queued publish/subscribe interface to run WebSphere MQ JMS applications. The
following steps summarize what you need to do.

Procedure
1. On the queue manager, create the queues that your application needs.

For information about how to create queues, see the Defining queues topic in the WebSphere MQ
product documentation.

If your application is a publish/subscribe application and uses Queued publish/subscribe interface that
needs access to IBM WebSphere MQ classes for JMS system queues, wait until Step 4a before creating
the queues.

2. Grant the user ID associated with your application the authority to connect to the queue manager, and
the appropriate authority to access the queues.

For information about authorization, see the Security section of the IBM WebSphere MQ product
documentation. If your application connects to the queue manager in client mode, see also the Clients
topic in the IBM WebSphere MQ product documentation.

Introduction to the Message Service Client for .NET 11

3. If your application connects to the queue manager in client mode, make sure that a server connection
channel is defined at the queue manager and that a listener is started.

For information about how to do this, see the Clients topic in the IBM WebSphere MQ product
documentation.

You do not need to perform this step for each application that connects to the queue manager. One
server connection channel definition and one listener can support all the applications that connect in
client mode.

4. If your application is a publish/subscribe application, and uses Queued publish/subscribe interface,
perform the following steps.
a) On the queue manager, create the IBM WebSphere MQ classes for JMS system queues by running

the script of MQSC commands that are supplied with IBM WebSphere MQ. Make sure that the user
ID associated with the WebSphere Message Broker has the authority to access the queues.

For information about where to find the script and how to run it, see the Using Java™ topic in the
WebSphere MQ product documentation.

Perform this step only once for the queue manager. The same set of IBM WebSphere MQ classes
for JMS system queues can support all XMS and IBM WebSphere MQ classes for JMS applications
that connect to the queue manager.

b) Grant the user ID associated with your application the authority to access the IBM WebSphere MQ
classes for JMS system queues.

For information about what authorities the user ID needs, see the Using Java topic in the IBM
WebSphere MQ product documentation.

c) For a broker of WebSphere Event Broker or WebSphere Message Broker, create and deploy a
message flow to service the queue where applications send messages that they publish.

The basic message flow comprises an MQInput message processing node to read the published
messages and a Publication message processing node to publish the messages.

For information about how to create and deploy a message flow, see the WebSphere Event Broker
or WebSphere Message Broker product documentation.

You do not need to perform this step if a suitable message flow is already deployed at the broker.

Results
You can now start your application.
Related tasks
Configuring a broker for an application that uses a real-time connection to a broker
Before you can run an application that uses a real-time connection to a broker, you must configure that
broker.
Configuring the service integration bus for an application that connects to a WebSphere Service
Integration Bus
Before you can run an application that connects to a WebSphere Service Integration Bus, you must
configure the service integration bus in the same way that you configure the service integration bus to run
JMS applications that use the default messaging provider.
Installing Message Service Client for .NET using the installation wizard
The installation uses an InstallShield X/Windows MSI installer. Two setup options are available, so that
you can choose either a complete or a custom installation.
Related reference
Prerequisites for XMS applications connecting to IBM WebSphere MQ

12 IBM Message Service Client for .NET

Some prerequisites apply if your XMS application connects to IBM WebSphere MQ.

Configuring a broker for an application that uses a real-time connection to a
broker

Before you can run an application that uses a real-time connection to a broker, you must configure that
broker.

Before you begin
XMS works with WebSphere Message Broker version 6.1 or earlier.

Before starting this task, you perform the following steps:

• Make sure that your application has access to a broker that is running.
• Make sure that your application uses a connection factory whose properties are set appropriately for a

real-time connection to a broker. For more information about the properties of a connection factory, see
“Properties of ConnectionFactory” on page 179.

About this task
You configure a broker to run XMS applications in the same way that you configure a broker to run IBM
WebSphere MQ classes for JMS applications. The following steps summarize what you need to do but, for
more details, see the WebSphere Event Broker, or WebSphere Message Broker product documentation:

Procedure
1. Create and deploy a message flow to read messages from the TCP/IP port on which a broker is

listening and publish the messages.

You can do this in either of the following ways:

• Create a message flow that contains a Real-timeOptimizedFlow message processing node.
• Create a message flow that contains a Real-timeInput message processing node and a

Publication message processing node.

You must configure the Real-timeOptimizedFlow or Real-timeInput node to listen on the port
used for real-time connections. In XMS, the default port number for real-time connections is 1506.

You do not need to perform this step if a suitable message flow is already deployed at the broker.
2. If you require messages to be delivered to your application using WebSphere MQ Multicast Transport,

configure the broker to enable multicast. Configure the topics that must be multicast enabled,
specifying a reliable quality of service for those topics requiring reliable multicast.

3. If your application supplies a user ID and a password when it connects to the broker, and you want the
broker to authenticate your application using this information, configure the user name server and the
broker for simple telnet-like password authentication.

Results
You can now start your application.
Related tasks
Configuring the queue manager and broker for an application that connects to a IBM WebSphere MQ
queue manager
This section assumes that you are using IBM WebSphere MQ version 7.0. Before you can run an
application that connects to a IBM WebSphere MQ queue manager, you must configure the queue
manager. For a publish/subscribe application, some additional configuration is required if you are using
Queued publish/subscribe interface.
Configuring the service integration bus for an application that connects to a WebSphere Service
Integration Bus

Introduction to the Message Service Client for .NET 13

Before you can run an application that connects to a WebSphere Service Integration Bus, you must
configure the service integration bus in the same way that you configure the service integration bus to run
JMS applications that use the default messaging provider.
Installing Message Service Client for .NET using the installation wizard
The installation uses an InstallShield X/Windows MSI installer. Two setup options are available, so that
you can choose either a complete or a custom installation.
Related reference
Prerequisites for XMS applications connecting to IBM WebSphere MQ
Some prerequisites apply if your XMS application connects to IBM WebSphere MQ.

Configuring the service integration bus for an application that connects to a
WebSphere Service Integration Bus

Before you can run an application that connects to a WebSphere Service Integration Bus, you must
configure the service integration bus in the same way that you configure the service integration bus to run
JMS applications that use the default messaging provider.

Before you begin
Before starting this task, you must do the following steps:

• Make sure that a messaging bus is created and that your server is added to the bus as a bus member.
• Make sure that your application has access to a service integration bus that contains at least one

messaging engine that is running.
• If HTTP operation, is required then an HTTP messaging engine inbound transport channel must be
defined. By default, channels for SSL and TCP are defined during the server installation.

• Make sure that your application uses a connection factory whose properties are set appropriately to
connect to the service integration bus using a bootstrap server. The minimum information required is:

– The provider endpoint, which describes the location and protocol to use when negotiating a
connection to the messaging server (that is, via the bootstrap server). In its simplest form, for a
server installed with default settings, the provide endpoint can be set to the hostname of the server.

– The name of the bus through which messages are sent.

For more information about the properties of a connection factory, see “Properties of
ConnectionFactory” on page 179.

About this task
Any queue or topic spaces that you require must be defined. By default a topic space called
Default.Topic.Space is defined during the server installation but, if you require further topic spaces, you
must create these topic spaces yourself. You do not need to predefine individual topics within a topic
space, since the server instantiates these individual topics dynamically as required.

The following steps summarize what you need to do.

Procedure
1. Create the queues that your application needs for point-to-point messaging.
2. Create any additional topic spaces that your application needs for publish/subscribe messaging.

Results
You can now start your application.
Related tasks
Configuring the queue manager and broker for an application that connects to a IBM WebSphere MQ
queue manager

14 IBM Message Service Client for .NET

This section assumes that you are using IBM WebSphere MQ version 7.0. Before you can run an
application that connects to a IBM WebSphere MQ queue manager, you must configure the queue
manager. For a publish/subscribe application, some additional configuration is required if you are using
Queued publish/subscribe interface.
Configuring a broker for an application that uses a real-time connection to a broker
Before you can run an application that uses a real-time connection to a broker, you must configure that
broker.
Installing Message Service Client for .NET using the installation wizard
The installation uses an InstallShield X/Windows MSI installer. Two setup options are available, so that
you can choose either a complete or a custom installation.
Related reference
Prerequisites for XMS applications connecting to IBM WebSphere MQ
Some prerequisites apply if your XMS application connects to IBM WebSphere MQ.

Installing Message Service Client for .NET using the installation wizard
The installation uses an InstallShield X/Windows MSI installer. Two setup options are available, so that
you can choose either a complete or a custom installation.

About this task
To install Message Service Client for .NET on Windows, follow this procedure.

Procedure
1. If you are installing from a SupportPac complete the following steps, otherwise proceed directly to

step “2” on page 15.
a) On Windows, log on as an administrator.
b) Run the dotNETClientsetup.exe installer.

2. Wait for the installation wizard to open and display the following message:

Welcome to IBM Message Service Client for .NET installation wizard

Click Next.

The wizard might ask you to read the license agreement.
3. If you are asked to read the license agreement and you accept the terms of the license agreement,

click I accept the terms in the license agreement, and then click Next.

The installation wizard asks you to choose the setup type that best suits your needs.
4. Select the type of setup you require:

• To install all program features, and install them in the default installation directory, click Complete.
• To choose which features you want to install, and specify where they are installed, click Custom.

5. Click Next.

If you select the complete installation option, the installation wizard displays a message that it is ready
to begin installation, as described in step “8” on page 16. If you select the custom installation option,
the installation wizard asks you to select the features that you want to install and you must complete
step “6” on page 15 and step “7” on page 16 before moving on to step “8” on page 16.

6. For a custom installation only, click an icon in the list of features to specify any changes to how you
want the Message Service Client for .NET features to be installed. If you do not want to install Message
Service Client for .NET in the directory suggested, choose another directory.

If you choose to install Message Service Client for .NET in a directory that does not currently exist, the
installation wizard creates the directory for you.

Introduction to the Message Service Client for .NET 15

If you want to develop XMS applications, ensure that the Development Tools and Samples feature is
selected. This feature provides the sample applications, and the libraries and any other files required
to compile .NET applications. If you do not select this feature, only the files required to run XMS
applications are installed.

7. If you are using the custom installation option, click Next after selecting the options you require as
described in step “6” on page 15.

The installation wizard displays a message that it is ready to begin installation.
8. Click Install to start the installation.

The installation wizard displays a bar showing the progress of the installation. Wait for the progress
bar to complete. When the installation completes successfully, the window displays the following
message:

The installation wizard has successfully installed IBM Message Service Client
for .NET. Click Finish to exit the wizard.

9. Click Finish to close the installation wizard.

Results
You have successfully installed Message Service Client for .NET, which is ready to use.

What to do next
Before running any XMS applications, including the sample applications provided with XMS, you must set
up the messaging server environment, for details see: “Setting up the messaging server environment” on
page 10.
Related concepts
JNDI Lookup Web service
To access a COS naming directory from XMS, a JNDI Lookup Web service must be deployed on a
WebSphere Service Integration Bus server. This Web service translates the Java information from the
COS naming service into a form that XMS applications can read.
Setting up the messaging server environment
This sectionchapter describes how to set up the messaging server environment to allow XMS applications
to connect to a server.
Using the XMS sample applications
Use the sample applications supplied with XMS to verify your installation and messaging server setup,
and to help you build your own applications. The samples provide an overview of the common features of
each API.
Related tasks
Configuring the queue manager and broker for an application that connects to a IBM WebSphere MQ
queue manager
This section assumes that you are using IBM WebSphere MQ version 7.0. Before you can run an
application that connects to a IBM WebSphere MQ queue manager, you must configure the queue
manager. For a publish/subscribe application, some additional configuration is required if you are using
Queued publish/subscribe interface.
Configuring a broker for an application that uses a real-time connection to a broker
Before you can run an application that uses a real-time connection to a broker, you must configure that
broker.
Configuring the service integration bus for an application that connects to a WebSphere Service
Integration Bus

16 IBM Message Service Client for .NET

Before you can run an application that connects to a WebSphere Service Integration Bus, you must
configure the service integration bus in the same way that you configure the service integration bus to run
JMS applications that use the default messaging provider.
Related reference
Prerequisites for XMS applications connecting to IBM WebSphere MQ
Some prerequisites apply if your XMS application connects to IBM WebSphere MQ.

Prerequisites for XMS applications connecting to IBM WebSphere MQ
Some prerequisites apply if your XMS application connects to IBM WebSphere MQ.

For applications that connect to a IBM WebSphere MQ queue manager, you must install the appropriate
IBM WebSphere MQ client libraries on the machine you use to run the XMS application. These libraries are
pre-installed on machines with a local queue manager.

For XMS client for .NET, use the client libraries shipped with IBM WebSphere MQ Version 7.0.1.0 or
later. These are the IBM WebSphere MQ classes for .NET. They enable client mode connections to IBM
WebSphere MQ Version 7.0, IBM WebSphere MQ Version 6.0, and IBM WebSphere MQ Version 5.3 queue
managers, and bindings mode connections to a local queue manager, if it is also Version 7.0.1.0 or later.

Microsoft .NET Framework Version 2.0 Redistributable Package must be installed on the computer on
which XMS is to be installed. If this package is not available, XMS installation will fail. You then need to
quit the installation procedure, install Microsoft .NET Framework Version 2.0 Redistributable Package on
your computer, and rerun the installation procedure.

On the Microsoft download site, you need to look for dotnetfx.exe for Microsoft .NET Framework
Version 2.0 Redistributable Package (x86) and NetFx64.exe for Microsoft .NET Framework version 2.0
Redistributable Package (x64), whichever is applicable.

Related concepts
“Setting up the messaging server environment” on page 10
This sectionchapter describes how to set up the messaging server environment to allow XMS applications
to connect to a server.
Related tasks
Configuring the queue manager and broker for an application that connects to a IBM WebSphere MQ
queue manager
This section assumes that you are using IBM WebSphere MQ version 7.0. Before you can run an
application that connects to a IBM WebSphere MQ queue manager, you must configure the queue
manager. For a publish/subscribe application, some additional configuration is required if you are using
Queued publish/subscribe interface.
Configuring a broker for an application that uses a real-time connection to a broker
Before you can run an application that uses a real-time connection to a broker, you must configure that
broker.
Configuring the service integration bus for an application that connects to a WebSphere Service
Integration Bus
Before you can run an application that connects to a WebSphere Service Integration Bus, you must
configure the service integration bus in the same way that you configure the service integration bus to run
JMS applications that use the default messaging provider.
Installing Message Service Client for .NET using the installation wizard

Introduction to the Message Service Client for .NET 17

The installation uses an InstallShield X/Windows MSI installer. Two setup options are available, so that
you can choose either a complete or a custom installation.

Using the XMS sample applications
Use the sample applications supplied with XMS to verify your installation and messaging server setup,
and to help you build your own applications. The samples provide an overview of the common features of
each API.
Related concepts
“The sample applications” on page 18
The sample applications provide an overview of the common features of each API. You can use them to
verify your installation and messaging server setup and to help you build your own applications.
Related tasks
Installing Message Service Client for .NET using the installation wizard
The installation uses an InstallShield X/Windows MSI installer. Two setup options are available, so that
you can choose either a complete or a custom installation.
“Running the sample applications” on page 19
You can run the .NET sample applications interactively in either simple or advanced mode, or
noninteractively by using auto-generated or customized response files.
“Building the .NET sample applications” on page 20
When you build a sample .NET application, an executable version of your chosen sample is created.

The sample applications
The sample applications provide an overview of the common features of each API. You can use them to
verify your installation and messaging server setup and to help you build your own applications.

If you need help to create your own applications, you can use the sample applications as a starting point.
Both the source and a compiled version are provided for each application. Review the sample source
code and identify the key steps to create each required object for your application (ConnectionFactory,
Connection, Session, Destination, and a Producer, or a Consumer, or both), and to set any specific
properties that are needed to specify how you want your application to work. For more information,
see “Writing XMS applications” on page 21. The samples are subject to change in future releases of
XMS.

The following table shows the three sets of sample applications (one for each API) that are supplied with
XMS.

Name of sample Description

SampleConsumerCS A message consumer application that takes messages from a queue or
subscribes to a topic.

SampleProducerCS A message producer application that produces messages to a queue or on
a topic.

SampleConfigCS A configuration application that you can use to create an administered
object repository that is file-based. The application contains a connection
factory and destination for your particular connection settings. This
administered object repository can then be used with each of the sample
consumer and producer applications.

The samples that support the same functions in the various APIs have syntactical differences.

• The sample message consumer and producer applications both support the following functions:

– Connections to IBM WebSphere MQ, WebSphere Event Broker, WebSphere Message Broker (by using
a real-time connection to a broker), and a WebSphere Service Integration Bus

– Administered object repository lookups by using the initial context interface

18 IBM Message Service Client for .NET

– Connections to queues (IBM WebSphere MQ and WebSphere Service Integration Bus) and topics
(IBM WebSphere MQ, real-time connection to a broker, and WebSphere Service Integration Bus)

– Base, byte, map, object, stream, and text messages
• The sample message consumer application supports synchronous and asynchronous receive modes,

and SQL Selector statements.
• The sample message producer application supports persistent and non-persistent delivery modes.

Operating modes
The samples can operate in one of two modes:

Simple mode
You can run the samples with the minimum user input.

Advanced mode
You can customize more finely the way in which the samples operate.

All the samples are compatible and can therefore operate across languages.

Where to find the samples
To find out where the sample applications for Message Service Client for .NET are installed, see
Directories installed on Windows (.NET) in the online IBM IBM WebSphere MQ product documentation.

Related concepts
“Building your own applications” on page 43
You build your own applications like you build the sample applications.
Related tasks
Running the sample applications
You can run the .NET sample applications interactively in either simple or advanced mode, or
noninteractively by using auto-generated or customized response files.
Building the .NET sample applications
When you build a sample .NET application, an executable version of your chosen sample is created.
“Running the sample applications” on page 19
You can run the .NET sample applications interactively in either simple or advanced mode, or
noninteractively by using auto-generated or customized response files.
“Building the .NET sample applications” on page 20
When you build a sample .NET application, an executable version of your chosen sample is created.

Running the sample applications
You can run the .NET sample applications interactively in either simple or advanced mode, or
noninteractively by using auto-generated or customized response files.

Before you begin
Before running any of the supplied sample applications, you must first set up the messaging server
environment so that the applications can connect to a server. See “Setting up the messaging server
environment” on page 10.

Procedure
To run a .NET sample application, complete the following steps:

Tip: When you are running a sample application, type ? at any time to get help about what to do next.
1. Select the mode in which you want to run the sample application.

Type either Advanced or Simple.

Introduction to the Message Service Client for .NET 19

2. Answer the questions.
To select the default value, which is shown in the square brackets at the end of the question, press
Enter. To select a different value, type the appropriate value, and press Enter.

Here is an example question:

Enter connection type [wpm]:

In this case, the default value is wpm (connection to a WebSphere Service Integration Bus).

Results
When you run the sample applications, response files are generated automatically in the current
working directory. Response file names are in the format connection_type-sample_type.rsp; for
example, wpm-producer.rsp. If required, you can use the generated response file to rerun the sample
application with the same options, so that you do not have to enter the options again.

Related concepts
The sample applications
The sample applications provide an overview of the common features of each API. You can use them to
verify your installation and messaging server setup and to help you build your own applications.
“The sample applications” on page 18
The sample applications provide an overview of the common features of each API. You can use them to
verify your installation and messaging server setup and to help you build your own applications.
Related tasks
Building the .NET sample applications
When you build a sample .NET application, an executable version of your chosen sample is created.
“Building the .NET sample applications” on page 20
When you build a sample .NET application, an executable version of your chosen sample is created.

Building the .NET sample applications
When you build a sample .NET application, an executable version of your chosen sample is created.

Before you begin
Install the appropriate compiler. See Installing Message Service Client for .NET in the online IBM IBM
WebSphere MQ product documentation. This task assumes that you have Visual Studio 2005 installed,
and that you are familiar with using it.

Procedure
To build a .NET sample application, complete the following steps:
1. Click the Samples.sln solution file provided with the .NET samples.
2. Right-click the solution Samples in the Solution Explorer window and select Build Solution.

Results
An executable program is created in the appropriate subfolder of the sample, either bin/Debug or bin/
Release, depending on the configuration that you have chosen. This program has the same name as the
folder, with a suffix of CS. For example, if you are building the C# version of the message producer sample
application, SampleProducerCS.exe is created in the SampleProducer folder.
Related concepts
The sample applications
The sample applications provide an overview of the common features of each API. You can use them to
verify your installation and messaging server setup and to help you build your own applications.
“The sample applications” on page 18

20 IBM Message Service Client for .NET

The sample applications provide an overview of the common features of each API. You can use them to
verify your installation and messaging server setup and to help you build your own applications.
“Building your own applications” on page 43
You build your own applications like you build the sample applications.
Related tasks
Running the sample applications
You can run the .NET sample applications interactively in either simple or advanced mode, or
noninteractively by using auto-generated or customized response files.
“Running the sample applications” on page 19
You can run the .NET sample applications interactively in either simple or advanced mode, or
noninteractively by using auto-generated or customized response files.

Developing XMS applications
This sectionchapter provides information that you might find useful when writing XMS applications.

The information in this sectionchapter applies to .NET applications.

For information about writing XMS applications, refer to the following topics:

Writing XMS applications
This sectionchapter provides information to help you when writing XMS applications.

This sectionchapter contains general concepts for writing XMS applications. See also “Writing XMS .NET
applications” on page 44 for information specific to creating .NET applications.

This sectionchapter contains the following topicssections:

• “The threading model” on page 21
• “ConnectionFactories and Connection objects” on page 22
• “Sessions” on page 25
• “Destinations” on page 29
• “Message producers” on page 34
• “Message consumers” on page 35
• “Queue browsers” on page 38
• “Requestors” on page 38
• “Object Deletion” on page 38
• “XMS primitive types” on page 39
• “Implicit conversion of a property value from one data type to another” on page 40
• “Iterators” on page 43
• “Coded character set identifiers” on page 43
• “XMS error and exception codes” on page 43
• “Building your own applications” on page 43

Related reference
.NET interfaces
This topicsection documents the .NET class interfaces and their properties and methods.

The threading model
General rules govern how a multithreaded application can use XMS objects.

• Only objects of the following types can be used concurrently on different threads:

– ConnectionFactory

Introduction to the Message Service Client for .NET 21

– Connection
– ConnectionMetaData
– Destination

• A Session object can be used on only a single thread at any one time.

Exceptions to these rules are indicated by entries labeled "Thread context" in the interface definitions of
the methods in the API reference chapters“Message Service Clients for .NET reference” on page 88.

Error conditions that can be handled at run time
Return codes from API calls are error conditions that can be handled at run time. The way in which you
deal with this type of error depends on whether you are using the C or C++ API.

How to detect errors at run time
If an application calls a C API function and the call fails, a response with a return code other than XMS_OK
is returned with an XMS error block containing more information about the reason for the failure.

The C++ API throws an exception when a method is used.

An application uses an exception listener to be notified asynchronously of a problem with a connection.
The exception listener is supplied to, and is initialized using, the XMS C or C++ API.

How to handle errors at run time
Some error conditions are an indication that some resource is unavailable, and the action that an
application can take depends on the XMS function that the application is calling. For example, if a
connection fails to connect to the server, then the application may wish to retry periodically until a
connection is made. An XMS error block or exception might not contain enough information to determine
what action to take, and, in these situations, there is often a linked error block or exception that contains
more specific diagnostic information.

In the C API, always test for a response with a return code other than XMS_OK, and always pass an error
block on the API call. The action taken usually depends on which API function is the application using.

In the C++ API, always include calls to methods in a try block and, to catch all types of XMS exception,
specify the Exception class in the catch construct.

The exception listener is an asynchronous error condition path that can be started at any time. When the
exception listener function is started, on its own thread, it is usually an indication of a more severe failure
than a normal XMS API error condition. Any appropriate action may be taken, but you must be careful to
follow the rules for the XMS threading model as described in “The threading model” on page 21.

ConnectionFactories and Connection objects
A ConnectionFactory object provides a template that an application uses to create a Connection object.
The application uses the Connection object to create a Session object.

For .NET, an XMS application first uses an XMSFactoryFactory object to get a reference to a
ConnectionFactory object that is appropriate to the required type of protocol. This ConnectionFactory
object can then produce connections only for that protocol type.

An XMS application can create multiple connections, and a multithreaded application can use a single
Connection object concurrently on multiple threads. A Connection object encapsulates a communications
connection between an application and a messaging server.

A connection serves several purposes:

• When an application creates a connection, the application can be authenticated.
• An application can associate a unique client identifier with a connection. The client identifier is used to

support durable subscriptions in the publish/subscribe domain. The client identifier can be set in two
ways:

22 IBM Message Service Client for .NET

The preferred way of assigning a connections client identifier, is to configure in a client-specific
ConnectionFactory object using properties and transparently assign it to the connection it creates.

An alternative way of assigning a client identifier is to use a provider-specific value that is set on the
Connection object. This value does not override the identifier that has been administratively configured.
It is provided for the case where no administratively specified identifier exists. If an administratively
specified identifier does exist, an attempt to override it with a provider-specific value causes an
exception to be thrown. If an application explicitly sets an identifier, it must do it immediately after
creating the connection and before any other action on the connection is taken; otherwise, an exception
is thrown.

An XMS application typically creates a connection, one or more sessions, and a number of message
producers and message consumers.

Creating a connection is relatively expensive in terms of system resources because it involves establishing
a communications connection, and it might also involve authenticating the application.

Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.
Related reference
IConnectionFactory (for the .NET interface)
An application uses a connection factory to create a connection.
Properties of ConnectionFactory
An overview of the properties of the ConnectionFactory object, with links to more detailed reference
information.
IDestination (for the .NET interface)
A destination is where an application sends messages, or it is a source from which an application receives
messages, or both.
Properties of Destination
An overview of the properties of the Destination object, with links to more detailed reference information.

Connection started and stopped mode
A connection can operate in either started or stopped mode.

When an application creates a connection, the connection is in stopped mode. When the connection is in
stopped mode, the application can initialize sessions, and it can send messages but cannot receive them,
either synchronously or asynchronously.

An application can start a connection by calling the Start Connection method. When the connection
is in started mode, the application can send and receive messages. The application can then stop and
restart the connection by calling the Stop Connection and Start Connection methods.

Related concepts
Connection closure
An application closes a connection by calling the Close Connection method.
Exception Handling
If an application uses a connection only to consume messages asynchronously it learns about a problem
with the connection only by using an exception listener.
Connection to a WebSphere service integration bus
An XMS application can connect to a WebSphere Service Integration Bus either by using a direct TCP/IP
connection or by using HTTP over TCP/IP.

Connection closure
An application closes a connection by calling the Close Connection method.

When an application closes a connection, XMS performs the following actions:

Introduction to the Message Service Client for .NET 23

• It closes all the sessions associated with the connection and deletes certain objects associated with
these sessions. For more information about which objects are deleted, see “Object Deletion” on page
38. At the same time, XMS rolls back any transactions currently in progress within the sessions.

• It ends the communications connection with the messaging server.
• It releases the memory and other internal resources used by the connection.

XMS does not acknowledge the receipt of any messages that it has failed to acknowledge during
a session, prior to closing the connection. For more information about acknowledging the receipt of
messages, see “Message acknowledgement” on page 26.

Related concepts
Connection started and stopped mode
A connection can operate in either started or stopped mode.
Exception Handling
If an application uses a connection only to consume messages asynchronously it learns about a problem
with the connection only by using an exception listener.
Connection to a WebSphere service integration bus
An XMS application can connect to a WebSphere Service Integration Bus either by using a direct TCP/IP
connection or by using HTTP over TCP/IP.

Exception Handling
If an application uses a connection only to consume messages asynchronously it learns about a problem
with the connection only by using an exception listener.

XMS .NET exceptions are all derived from System.Exception. For more information, see “Error handling
in .NET” on page 48.

Related concepts
Connection started and stopped mode
A connection can operate in either started or stopped mode.
Connection closure
An application closes a connection by calling the Close Connection method.
Connection to a WebSphere service integration bus
An XMS application can connect to a WebSphere Service Integration Bus either by using a direct TCP/IP
connection or by using HTTP over TCP/IP.

Connection to a WebSphere service integration bus
An XMS application can connect to a WebSphere Service Integration Bus either by using a direct TCP/IP
connection or by using HTTP over TCP/IP.

The HTTP protocol can be used in situations where a direct TCP/IP connection is not possible. One
common situation is when communicating through a firewall, such as when two enterprises exchange
messages. Using HTTP to communicate through a firewall is often referred to as HTTP tunneling. HTTP
tunneling, however, is inherently slower than using a direct TCP/IP connection because HTTP headers
add significantly to the amount of data that is transferred, and because the HTTP protocol requires more
communication flows than TCP/IP.

To create a TCP/IP connection, an application can use a connection
factory whose XMSC_WPM_TARGET_TRANSPORT_CHAIN property is set to
XMSC_WPM_TARGET_TRANSPORT_CHAIN_BASIC. This is the default value of the property. If the
connection is created successfully, the XMSC_WPM_CONNECTION_PROTOCOL property of the connection
is set to XMSC_WPM_CP_TCP.

To create a connection that uses HTTP, an application must use a connection factory whose
XMSC_WPM_TARGET_TRANSPORT_CHAIN property is set to the name of an inbound transport chain,
that is configured to use an HTTP transport channel. If the connection is created successfully, the
XMSC_WPM_CONNECTION_PROTOCOL property of the connection is set to XMSC_WPM_CP_HTTP. For

24 IBM Message Service Client for .NET

information about how to configure transport chains, see Transport chains in the WebSphere Application
Server doucumentation.

An application has a similar choice of communication protocols when connecting to a bootstrap server.
The XMSC_WPM_PROVIDER_ENDPOINTS property of a connection factory is a sequence of one or more
endpoint addresses of bootstrap servers. The bootstrap transport chain component of each endpoint
address can be either XMSC_WPM_BOOTSTRAP_TCP, for a TCP/IP connection to a bootstrap server or
XMSC_WPM_BOOTSTRAP_HTTP, for a connection that uses HTTP.

Related concepts
Connection started and stopped mode
A connection can operate in either started or stopped mode.
Connection closure
An application closes a connection by calling the Close Connection method.
Exception Handling
If an application uses a connection only to consume messages asynchronously it learns about a problem
with the connection only by using an exception listener.
Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.
Related reference
IConnectionFactory (for the .NET interface)
An application uses a connection factory to create a connection.
Properties of ConnectionFactory
An overview of the properties of the ConnectionFactory object, with links to more detailed reference
information.
IDestination (for the .NET interface)
A destination is where an application sends messages, or it is a source from which an application receives
messages, or both.
Properties of Destination
An overview of the properties of the Destination object, with links to more detailed reference information.

Sessions
A session is a single threaded context for sending and receiving messages.

An application can use a session to create messages, message producers, message consumers, queue
browsers, and temporary destinations. An application can also use a session to run local transactions.

An application can create multiple sessions, where each session produces and consumes messages
independently of the other sessions. If two message consumers in separate sessions (or even in the same
session) subscribe to the same topic, each receives a copy of any message published on that topic.

Unlike a Connection object, a Session object cannot be used concurrently on different threads. Only the
Close Session method of a Session object can be called from a thread other than the one that the Session
object is using at the time. The Close Session method ends a session and releases any system resources
allocated to the session.

If an application must process messages concurrently on more than one thread, the application must
create a session on each thread, and then use that session for any send or receive operation within that
thread.

Introduction to the Message Service Client for .NET 25

https://www.ibm.com/docs/en/was/8.5.5?topic=ctc-transport-chains

Transacted sessions
XMS applications can run local transactions. A local transaction is a transaction that involves changes only
to the resources of the queue manager or service integration bus to which the application is connected.

The information in this topicsection is relevant only if an application connects to a IBM WebSphere MQ
queue manager or a WebSphere service integration bus. The information is not relevant for a real-time
connection to a broker.

To run local transactions, an application must first create a transacted session by calling the Create
Session method of a Connection object, specifying as a parameter that the session is transacted.
Subsequently, all messages sent and received within the session are grouped into a sequence of
transactions. A transaction ends when the application commits or rolls back the messages it has sent
and received since the transaction began.

To commit a transaction, an application calls the Commit method of the Session object. When a
transaction is committed, all messages sent within the transaction become available for delivery to other
applications, and all messages received within the transaction are acknowledged so that the messaging
server does not attempt to deliver them to the application again. In the point-to-point domain, the
messaging server also removes the received messages from their queues.

To roll back a transaction, an application calls the Rollback method of the Session object. When a
transaction is rolled back, all messages sent within the transaction are discarded by the messaging
server, and all messages received within the transaction become available for delivery again. In the
point-to-point domain, the messages that were received are put back on their queues and become visible
to other applications again.

A new transaction starts automatically when an application creates a transacted session or calls the
Commit or Rollback method. Therefore, a transacted session always has an active transaction.

When an application closes a transacted session, an implicit rollback occurs. When an application closes a
connection, an implicit rollback occurs for all the connection's transacted sessions.

A transaction is wholly contained within a transacted session. A transaction cannot span sessions. This
means that it is not possible for an application to send and receive messages in two or more transacted
sessions and then commit or roll back all these actions as a single transaction.

Related concepts
Message acknowledgement
Every session that is not transacted has an acknowledgement mode that determines how messages
received by the application are acknowledged. Three acknowledgement modes are available, and the
choice of acknowledgement mode affects the design of the application.
Asynchronous message delivery
XMS uses one thread to handle all asynchronous message deliveries for a session. This means that only
one message listener function or one onMessage() method can run at a time.
Synchronous message delivery
Messages are delivered synchronously to an application if the application uses the Receive methods of
MessageConsumer objects.
Message delivery mode
XMS supports two modes of message delivery.

Message acknowledgement
Every session that is not transacted has an acknowledgement mode that determines how messages
received by the application are acknowledged. Three acknowledgement modes are available, and the
choice of acknowledgement mode affects the design of the application.

The information in this topicsection is relevant only if an application connects to a IBM WebSphere MQ
queue manager or a WebSphere Service Integration Bus. The information is not relevant for a real-time
connection to a broker.

XMS uses the same mechanism for acknowledging the receipt of messages that JMS uses.

26 IBM Message Service Client for .NET

If a session is not transacted, the way that messages received by the application are acknowledged
is determined by the acknowledgement mode of the session. The three acknowledgement modes are
described in the following paragraphs:

XMSC_AUTO_ACKNOWLEDGE
The session automatically acknowledges each message received by the application.

If messages are delivered synchronously to the application, the session acknowledges receipt of a
message every time a Receive call completes successfully.

If the application receives a message successfully, but a failure prevents acknowledgement from
occurring, the message becomes available for delivery again. The application must therefore be able
to handle a message that is redelivered.

XMSC_DUPS_OK_ACKNOWLEDGE
The session acknowledges the messages received by the application at times it selects.

Using this acknowledgement mode reduces the amount of work the session must do, but a failure that
prevents message acknowledgement might result in more than one message becoming available for
delivery again. The application must therefore be able to handle messages that are redelivered.

XMSC_CLIENT_ACKNOWLEDGE
The application acknowledges the messages it receives by calling the Acknowledge method of the
Message class.

The application can acknowledge the receipt of each message individually, or it can receive a batch
of messages and call the Acknowledge method only for the last message it receives. When the
Acknowledge method is called all messages received since the last time the method was called are
acknowledged.

In conjunction with any of these acknowledgement modes, an application can stop and restart the
delivery of messages in a session by calling the Recover method of the Session class. Messages whose
receipt was previously unacknowledged are redelivered. However, they might not be delivered in the
same sequence in which they were previously delivered. In the meantime, higher priority messages might
have arrived, and some of the original messages might have expired. In the point-to-point domain, some
of the original messages might have been consumed by another application.

An application can determine whether a message is being re-delivered by examining the contents of the
JMSRedelivered header field of the message. The application does this by calling the Get JMSRedelivered
method of the Message class.

Related concepts
Transacted sessions
XMS applications can run local transactions. A local transaction is a transaction that involves changes only
to the resources of the queue manager or service integration bus to which the application is connected.
Asynchronous message delivery
XMS uses one thread to handle all asynchronous message deliveries for a session. This means that only
one message listener function or one onMessage() method can run at a time.
Synchronous message delivery
Messages are delivered synchronously to an application if the application uses the Receive methods of
MessageConsumer objects.
Message delivery mode
XMS supports two modes of message delivery.

Asynchronous message delivery
XMS uses one thread to handle all asynchronous message deliveries for a session. This means that only
one message listener function or one onMessage() method can run at a time.

If more than one message consumer in a session is receiving messages asynchronously, and a message
listener function or onMessage() method is delivering a message to a message consumer, then any
other message consumers that are waiting for the same message must continue to wait. Other messages
that are waiting to be delivered to the session must also continue to wait.

Introduction to the Message Service Client for .NET 27

If an application requires concurrent delivery of messages, create more than one session so that XMS
uses more than one thread to handle asynchronous message delivery. In this way, more than one
message listener function or onMessage() method can run concurrently.

A session is not made asynchronous by assigning a message listener to a consumer. A session
becomes asynchronous only when the Connection.Start method is called. All synchronous calls are
permitted until the Connection.Start method is called. Message delivery to consumers start when the
Connection.Start is called.

If synchronous calls, such as creation of a consumer or producer, must be made on an asynchronous
session, the Connection.Stop must be called. A session can be resumed by calling the
Connection.Start method to start delivery of messages. The only exception to this is the Session
message delivery thread, which is the thread that delivers messages to the callback function. This thread
can to make any call on session (except a Close call) in the message callback function.

Note: In Unmanaged mode, the MQDISC call within a call-back function is not supported by the WMQ.NET
client. So, the client application cannot Create or Close sessions within the MessageListener callback in
Asynchronous receive mode. Create and dispose the session outside of the MessageListener method.

Related concepts
Transacted sessions
XMS applications can run local transactions. A local transaction is a transaction that involves changes only
to the resources of the queue manager or service integration bus to which the application is connected.
Message acknowledgement
Every session that is not transacted has an acknowledgement mode that determines how messages
received by the application are acknowledged. Three acknowledgement modes are available, and the
choice of acknowledgement mode affects the design of the application.
Synchronous message delivery
Messages are delivered synchronously to an application if the application uses the Receive methods of
MessageConsumer objects.
Message delivery mode
XMS supports two modes of message delivery.

Synchronous message delivery
Messages are delivered synchronously to an application if the application uses the Receive methods of
MessageConsumer objects.

Using the Receive methods, an application can wait a specified period of time for a message, or it can wait
indefinitely. Alternatively, if an application does not want to wait for a message, it can use the Receive
with No Wait method.

Related concepts
Transacted sessions
XMS applications can run local transactions. A local transaction is a transaction that involves changes only
to the resources of the queue manager or service integration bus to which the application is connected.
Message acknowledgement
Every session that is not transacted has an acknowledgement mode that determines how messages
received by the application are acknowledged. Three acknowledgement modes are available, and the
choice of acknowledgement mode affects the design of the application.
Asynchronous message delivery
XMS uses one thread to handle all asynchronous message deliveries for a session. This means that only
one message listener function or one onMessage() method can run at a time.
Message delivery mode

28 IBM Message Service Client for .NET

XMS supports two modes of message delivery.

Message delivery mode
XMS supports two modes of message delivery.

• Persistent messages are delivered once. A messaging server takes special precautions, such as logging
the messages, to ensure that persistent messages are not lost in transit, even in the event of a failure.

• Nonpersistent messages are delivered no more than once. Nonpersistent messages are less reliable
than persistent messages because they can be lost in transit in the event of a failure.

The choice of delivery mode is a trade-off between reliability and performance. Nonpersistent messages
are typically transported more quickly than persistent messages.

Related concepts
Transacted sessions
XMS applications can run local transactions. A local transaction is a transaction that involves changes only
to the resources of the queue manager or service integration bus to which the application is connected.
Message acknowledgement
Every session that is not transacted has an acknowledgement mode that determines how messages
received by the application are acknowledged. Three acknowledgement modes are available, and the
choice of acknowledgement mode affects the design of the application.
Asynchronous message delivery
XMS uses one thread to handle all asynchronous message deliveries for a session. This means that only
one message listener function or one onMessage() method can run at a time.
Synchronous message delivery
Messages are delivered synchronously to an application if the application uses the Receive methods of
MessageConsumer objects.

Destinations
An XMS application uses a Destination object to specify the destination of messages that are being sent,
and the source of messages that are being received.

An XMS application can either create a Destination object at run time, or obtain a predefined destination
from the repository of administered objects.

As with a ConnectionFactory, the most flexible way for an XMS application to specify a destination is to
define it as an administered object. Using this approach, applications written in C, C++, .NET languages,
and Java, can share definitions of the destination. The properties of administered Destination objects can
be changed without changing any code.

For .NET applications, you create a destination by using the CreateTopic or CreateQueue method. These
two methods are available in both the ISession and XMSFactoryFactory objects in the .NET API. For more
information, see “Destinations in .NET” on page 46 and “IDestination” on page 107.

Related reference
IDestination (for the .NET interface)
A destination is where an application sends messages, or it is a source from which an application receives
messages, or both.
Properties of Destination
An overview of the properties of the Destination object, with links to more detailed reference information.

Topic uniform resource identifiers
The topic uniform resource identifier (URI) specifies the name of the topic; it can also specify one or more
properties for it.

The URI for a topic begins with the sequence topic://, followed by the name of the topic and (optional) a
list of name-value pairs that set the remaining topic properties. A topic name cannot be empty.

Introduction to the Message Service Client for .NET 29

Here is an example in a fragment of .NET code:

topic = session.CreateTopic("topic://Sport/Football/Results?multicast=7");

For more information about the properties of a topic, including the name and valid values that you can use
in a URI, see “Properties of Destination” on page 185.

When specifying a topic URI for use in a subscription, wildcards can be used. The syntax for these
wildcards depends on the connection type and broker version; the following options are available:

• IBM WebSphere MQ V7.0 queue manager with Character level wildcard format
• IBM WebSphere MQ V7.0 queue manager with Topic level wild card format
• IBM WebSphere MQ V6.0 queue manager with broker V1 (IBM WebSphere MQ V6.0 Publish/Subscribe)
• IBM WebSphere MQ V6.0 with, or real-time connection to, broker V2 (WebSphere Event Broker or

WebSphere Message Broker)
• WebSphere service integration bus

IBM WebSphere MQ V7.0 queue manager with Character level wildcard format
IBM WebSphere MQ V7.0 queue manager with Character level wildcard format uses the following wild
card characters:

* for 0 or more characters
? for 1 character
% for an escape character

Table 1 on page 30 gives some examples of how to use this wildcard scheme.

Table 1. Example URIs using character level wildcard scheme for IBM WebSphere MQ V7.0 queue manager

Uniform Resource
Identifier Matches Examples

"topic://Sport*Results" All topics starting with "Sport"
and ending in "Results"

"topic://SportsResults" and "topic://Sport/
Hockey/National/Div3/Results"

"topic://Sport?Results" All topics starting with "Sport"
followed by a single character,
followed by "Results"

"topic://SportsResults" and "topic://
SportXResults"

"topic://Sport/*ball*/Div?/
Results/*/???"

Topics "topic://Sport/Football/Div1/Results/2002/Nov"
and "topic://Sport/Netball/National/Div3/
Results/02/Jan"

IBM WebSphere MQ V7.0 queue manager with Topic level wild card format
IBM WebSphere MQ V7.0 queue manager with Topic level wild card format uses the following wildcard
characters:

to match multiple levels
+ to match a single level

Table 2 on page 30 gives some examples of how to use this wildcard scheme.

Table 2. Example URIs using topic level wildcard scheme for IBM WebSphere MQ V7.0 queue manager

Uniform Resource
Identifier Matches Examples

"topic://Sport/+/Results" All topics with a single hierarchical level
name between Sport and Results

"topic://Sport/Football/Results" and
"topic://Sport/Ju-Jitsu/Results"

30 IBM Message Service Client for .NET

Table 2. Example URIs using topic level wildcard scheme for IBM WebSphere MQ V7.0 queue manager
(continued)

Uniform Resource
Identifier Matches Examples

"topic://Sport/#/Results" All topics starting with "Sport/" and
ending in "/Results"

"topic://Sport/Football/Results"
and "topic://Sport/Hockey/National/
Div3/Results"

"topic://Sport/
Football/#"

All topics starting with "Sport/Football/" "topic://Sport/Football/Results"
and "topic://Sport/Football/TeamNews/
Signings/Managerial"

IBM WebSphere MQ V6.0 queue manager with broker V1
IBM WebSphere MQ V6.0 queue manager with broker V1 uses the following wildcard characters:

* for 0 or more characters
? for 1 character
% for an escape character

Table 1 on page 30 gives some examples of how to use this wildcard scheme.

IBM WebSphere MQ V6.0 with, or real-time connection to, a broker V2
IBM WebSphere MQ V6.0 with, or real-time connection to, a broker V2 uses the following wildcard
characters:

to match multiple levels
+ to match a single level

Table 2 on page 30 gives some examples of how to use this wildcard scheme.

WebSphere service integration bus
WebSphere service integration bus uses the following wildcard characters:

* to match any characters at one level in the hierarchy
// to match 0 or more levels
//. to match 0 or more levels (at the end of a Topic expression)

Table 3 on page 31 gives some examples of how to use this wildcard scheme.

Table 3. Example URIs using wildcard scheme for WebSphere service integration bus

Uniform Resource
Identifier Matches Examples

"topic://Sport/*ball/
Results"

All topics with a single hierarchical level
name ending in "ball" between Sport
and Results

"topic://Sport/Football/Results" and
"topic://Sport/Netball/Results"

"topic://Sport//
Results"

All topics starting with "Sport/" and
ending in "/Results"

"topic://Sport/Football/Results"
and "topic://Sport/Hockey/National/Div3/
Results"

"topic://Sport/
Football//."

All topics starting with "Sport/Football/" "topic://Sport/Football/Results"
and "topic://Sport/Football/TeamNews/
Signings/Managerial"

Introduction to the Message Service Client for .NET 31

Table 3. Example URIs using wildcard scheme for WebSphere service integration bus (continued)

Uniform Resource
Identifier Matches Examples

"topic://Sport/*ball//
Results//."

Topics "topic://Sport/Football/Results"
and "topic://Sport/Netball/National/Div3/
Results/2002/November"

Related concepts
Queue uniform resource identifiers
The URI for a queue specifies the name of the queue; it can also specify one or more properties of the
queue.
Temporary destinations
XMS applications can create and use temporary destinations.
Destination wildcards
XMS provides support for destination wildcards, ensuring that wildcards can be passed through to the
place where they are needed for matching. There is a different wildcard scheme for each server type that
XMS can work with.
Related reference
IDestination (for the .NET interface)
A destination is where an application sends messages, or it is a source from which an application receives
messages, or both.
Properties of Destination
An overview of the properties of the Destination object, with links to more detailed reference information.

Queue uniform resource identifiers
The URI for a queue specifies the name of the queue; it can also specify one or more properties of the
queue.

The URI for a queue begins with the sequence queue://, followed by the name of the queue; it might also
include a list of name-value pairs that set the remaining queue properties.

For IBM WebSphere MQ queues (but not for WebSphere Application Server default messaging provider
queues), the queue manager on which the queue resides may be specified before the queue, with a /
separating the queue manager name from the queue name.

If a queue manager is specified, then it must be the one to which XMS is directly connected for the
connection using this queue, or it must be accessible from this queue. Remote queue managers are only
supported for retrieving messages from queues, not for putting messages onto queues. For full details,
refer to the IBM WebSphere MQ queue manager documentation.

If no queue manager is specified, then the extra / separator is optional, and its presence or absence
makes no difference to the definition of the queue.

The following queue definitions are all equivalent for a IBM WebSphere MQ queue called QB on a queue
manager called QM_A, to which XMS is directly connected:

queue://QB
queue:///QB
queue://QM_A/QB

Related concepts
Topic uniform resource identifiers
The topic uniform resource identifier (URI) specifies the name of the topic; it can also specify one or more
properties for it.
Temporary destinations

32 IBM Message Service Client for .NET

XMS applications can create and use temporary destinations.
Destination wildcards
XMS provides support for destination wildcards, ensuring that wildcards can be passed through to the
place where they are needed for matching. There is a different wildcard scheme for each server type that
XMS can work with.
Related reference
IDestination (for the .NET interface)
A destination is where an application sends messages, or it is a source from which an application receives
messages, or both.
Properties of Destination
An overview of the properties of the Destination object, with links to more detailed reference information.

Temporary destinations
XMS applications can create and use temporary destinations.

An application typically uses a temporary destination to receive replies to request messages. To specify
the destination where a reply to a request message is to be sent, an application calls the Set JMSReplyTo
method of the Message object representing the request message. The destination specified on the call
can be a temporary destination.

Although a session is used to create a temporary destination, the scope of a temporary destination is
actually the connection that was used to create the session. Any of the connection's sessions can create
message producers and message consumers for the temporary destination. The temporary destination
remains until it is explicitly deleted, or the connection ends, whichever happens first.

When an application creates a temporary queue, a queue is created in the messaging server to which
the application is connected. If the application is connected to a queue manager, a dynamic queue
is created from the model queue whose name is specified by the XMSC_WMQ_TEMPORARY_MODEL
property, and the prefix that is used to form the name of the dynamic queue is specified by the
XMSC_WMQ_TEMP_Q_PREFIX property. If the application is connected to a service integration bus, a
temporary queue is created in the bus, and the prefix that is used to form the name of the temporary
queue is specified by the XMSC_WPM_TEMP_Q_PREFIX property.

When an application that is connected to a service integration bus creates a temporary
topic, the prefix that is used to form the name of the temporary topic is specified by the
XMSC_WPM_TEMP_TOPIC_PREFIX property.

Related concepts
Topic uniform resource identifiers
The topic uniform resource identifier (URI) specifies the name of the topic; it can also specify one or more
properties for it.
Queue uniform resource identifiers
The URI for a queue specifies the name of the queue; it can also specify one or more properties of the
queue.
Destination wildcards
XMS provides support for destination wildcards, ensuring that wildcards can be passed through to the
place where they are needed for matching. There is a different wildcard scheme for each server type that
XMS can work with.
Related reference
IDestination (for the .NET interface)
A destination is where an application sends messages, or it is a source from which an application receives
messages, or both.
Properties of Destination

Introduction to the Message Service Client for .NET 33

An overview of the properties of the Destination object, with links to more detailed reference information.

Destination wildcards
XMS provides support for destination wildcards, ensuring that wildcards can be passed through to the
place where they are needed for matching. There is a different wildcard scheme for each server type that
XMS can work with.

The schemes are:

Type of connection
Wildcard
scheme Description

IBM WebSphere MQ queue
manager

*

?

%

0 or more characters

1 character

Escape character

Real-time connection to a broker #

+

Match multiple levels

Match a single level

WebSphere Service Integration
Bus

*

//

//.

Match any characters at one level in the hierarchy

Match 0 or more levels

Match 0 or more levels (at the end of a Topic
expression)

See also Topic names and use of wildcard characters in topic expressions in the WebSphere Application
Server documentation.

Related concepts
Topic uniform resource identifiers
The topic uniform resource identifier (URI) specifies the name of the topic; it can also specify one or more
properties for it.
Queue uniform resource identifiers
The URI for a queue specifies the name of the queue; it can also specify one or more properties of the
queue.
Temporary destinations
XMS applications can create and use temporary destinations.
Related reference
IDestination (for the .NET interface)
A destination is where an application sends messages, or it is a source from which an application receives
messages, or both.
Properties of Destination
An overview of the properties of the Destination object, with links to more detailed reference information.

Message producers
In XMS, a message producer can be created either with a valid destination or with no associated
destination. When creating a message producer with a null destination, a valid destination needs to be
specified when sending a message.

Message producers with no associated destination
In XMS .NET, a message producer can be created with a null destination.

To create a message producer with no associated destination when using the .NET API, NULL must
be passed as a parameter into the CreateProducer() method of the ISession object (for example,

34 IBM Message Service Client for .NET

https://www.ibm.com/docs/en/was/8.5.5?topic=pmts-topic-names-use-wildcard-characters-in-topic-expressions

session.CreateProducer(null)). However a valid destination must be specified when the message
is sent.

Message producers with associated destination
In this scenario, the message producer is created using a valid destination. During the send operation, the
destination need not be specified.

Message consumers
Message consumers can be classified as durable and non-durable subscribers and synchronous and
asynchronous message consumers.

Durable subscribers
A durable subscriber is a message consumer that receives all messages published on a topic, including
messages published while the subscriber is inactive.

The information in this topicsection is relevant only if an application connects to a IBM WebSphere MQ
queue manager or aWebSphere service integration bus. The information is not relevant for a real-time
connection to a broker.

To create a durable subscriber for a topic, an application calls the Create Durable Subscriber method
of a Session object, specifying as parameters a name that identifies the durable subscription and a
Destination object representing the topic. The application can create a durable subscriber with or without
a message selector, and it can specify whether the durable subscriber is to receive messages published
by its own connection.

The session used to create a durable subscriber must have an associated client identifier. The client
identifier is the same as that associated with the connection that is used to create the session; it is
specified as described in “ConnectionFactories and Connection objects” on page 22.

The name that identifies the durable subscription must be unique within the client identifier, and
therefore the client identifier forms part of the full, unique identifier of the durable subscription. The
messaging server maintains a record of the durable subscription and ensures that all messages published
on the topic are retained until they are acknowledged by the durable subscriber or they expire.

The messaging server continues to maintain the record of the durable subscription even after the durable
subscriber closes. To reuse a durable subscription that was created previously, an application must create
a durable subscriber specifying the same subscription name, and using a session with the same client
identifier, as those associated with the durable subscription. Only one session at a time can have a
durable subscriber for a particular durable subscription.

The scope of a durable subscription is the messaging server that is maintaining a record of the
subscription. If two applications connected to different messaging servers each create a durable
subscriber using the same subscription name and client identifier, two completely independent durable
subscriptions are created.

To delete a durable subscription, an application calls the Unsubscribe method of a Session object,
specifying as a parameter the name that identifies the durable subscription. The client identifier
associated with the session must be the same as that associated with the durable subscription. The
messaging server deletes the record of the durable subscription that it is maintaining and does not send
any more messages to the durable subscriber.

To change an existing subscription, an application can create a durable subscriber using the same
subscription name and client identifier, but specifying a different topic, or message selector (or both).
Changing a durable subscription is equivalent to deleting the subscription and creating a new one.

For an application that connects to IBM WebSphere MQ V7.0 queue manager, XMS manages the
subscriber queues. Hence the application is not required to specify a subscriber queue. XMS will ignore
the subscriber queue if specified.

However for an application that connects to IBM WebSphere MQ V6.0 queue manager, each durable
subscriber must have a designated subscriber queue. To specify the name of the subscriber queue for

Introduction to the Message Service Client for .NET 35

a topic, set the XMSC_WMQ_DUR_SUBQ property of the Destination object representing the topic. The
default subscriber queue is SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

Durable subscribers connecting to IBM WebSphere MQ V6.0 queue managers can share a single
subscriber queue, or each durable subscriber can retrieve its messages from its own exclusive subscriber
queue. For a discussion about which approach to adopt for your application, see IBM WebSphere MQ Using
Java.

Note that you cannot change the subscriber queue for a durable subscription. The only way to change the
subscriber queue is to delete the subscription and create a new one.

For an application that connects to a service integration bus, each durable subscriber must have
a designated durable subscription home. To specify the durable subscription home for all durable
subscribers that use the same connection, set the XMSC_WPM_DUR_SUB_HOME property of the
ConnectionFactory object that is used to create the connection. To specify the durable subscription
home for an individual topic, set the XMSC_WPM_DUR_SUB_HOME property of the Destination object
representing the topic. A durable subscription home must be specified for a connection before an
application can create a durable subscriber that uses the connection. Any value specified for a destination
overrides the value specified for the connection.

Non-durable subscribers
A non-durable subscriber is a message consumer that only receives messages that are published while
the subscriber is active. Messages delivered while the subscriber is inactive are lost.

The information in this topicsection is relevant only when you are using publish/subscribe messaging over
IBM WebSphere MQ V6.0 queue manager.

If consumer objects are not deleted before or during the closing of the connection, messages can be left
on the broker queues for subscribers that are no longer active.

In this situation, the queues can be cleared of these messages using the Cleanup utility provided with IBM
WebSphere MQ Classes for JMS. Details of how to use this utility are provided in IBM WebSphere MQ Using
Java. You may also need to increase the queue depth of the subscriber queue if there are large numbers
of messages left on this queue.

Synchronous message consumers
The synchronous message consumer receives the messages from a queue synchronously.

A synchronous message consumer receives one message at a time. When the Receive(wait
interval) method is used; the call waits only a specified period of time in milliseconds for a message,
or until the message consumer is closed.

If the ReceiveNoWait() method is used, the synchronous message consumer receives messages without
any delay; if the next message is available, it is received immediately, otherwise a pointer to a null
Message object is returned.

Asynchronous message consumers
The asynchronous message consumer receives message from a queue asynchronously. The message
listener registered by the application is invoked whenever a new message is available on the queue.

Poison messages
A poison message is one which cannot be processed by a receiving MDB application. If a poison message
is encountered, the XMS MessageConsumer object can requeue it according to two queue properties,
BOQNAME, and BOTHRESH.

In some circumstances, a message delivered to an MDB might be rolled back onto a IBM WebSphere MQ
queue. This can happen, for example, if a message is delivered within a unit of work that is subsequently
rolled back. A message that is rolled back is generally delivered again, but a badly formatted message
might repeatedly cause an MDB to fail and therefore cannot be delivered. Such a message is called
a poison message. You can configureIBM WebSphere MQ so that the poison message is automatically
transferred to another queue for further investigation or is discarded. For information about how to
configure IBM WebSphere MQ in this way, see Handling poison messages in ASF.

36 IBM Message Service Client for .NET

Sometimes, a badly formatted message arrives on a queue. In this context, badly formatted means that
the receiving application cannot process the message correctly. Such a message can cause the receiving
application to fail and to back out this badly formatted message. The message can then be repeatedly
delivered to the input queue and repeatedly backed out by the application. These messages are known as
poison messages. The XMS MessageConsumer object detects poison messages and reroutes them to an
alternative destination.

The IBM WebSphere MQ queue manager keeps a record of the number of times that each message has
backed out. When this number reaches a configurable threshold value, the message consumer requeues
the message to a named backout queue. If this requeuing fails for any reason, the message is removed
from the input queue and either requeued to the dead-letter queue, or discarded.

XMS ConnectionConsumer objects handle poison messages in the same way and using the same queue
properties. If multiple connection consumers are monitoring the same queue, it is possible that the
poison message may be delivered to an application more times than the threshold value before the
requeue occurs. This behavior is due to the way individual connection consumers monitor queues and
requeue poison messages.

The threshold value and the name of the back out queue are attributes of a IBM WebSphere MQ queue.
The names of the attributes are BackoutThreshold and BackoutRequeueQName. The queue they apply to
is as follows:

• For point-to-point messaging, this is the underlying local queue. This is important when message
consumers and connection consumers use queue aliases.

• For publish/subscribe messaging in IBM WebSphere MQ messaging provider normal mode, it is the
model queue from which the Topic's managed queue is created.

• For publish/subscribe messaging in IBM WebSphere MQ messaging provider migration mode, it is the
CCSUB queue defined on the TopicConnectionFactory object, or the CCDSUB queue defined on the
Topic object.

To set the BackoutThreshold and BackoutRequeueQName attributes, issue the following MQSC
command:

ALTER QLOCAL(your.queue.name) BOTHRESH(threshold value)
BOQNAME(your.backout.queue.name)

For publish/subscribe messaging, if your system creates a dynamic queue for each subscription,
these attribute values are obtained from the IBM WebSphere MQ classes for JMS model queue,
SYSTEM.JMS.MODEL.QUEUE. To alter these settings, use:

ALTER QMODEL(SYSTEM.JMS.MODEL.QUEUE) BOTHRESH(threshold value)
BOQNAME(your.backout.queue.name)

If the backout threshold value is zero, poison message handling is disabled, and poison messages remain
on the input queue. Otherwise, when the backout count reaches the threshold value, the message is sent
to the named backout queue. If the backout count reaches the threshold value, but the message cannot
go to the backout queue, the message is sent to the dead-letter queue or it is discarded. This situation
occurs if the backout queue is not defined, or if the MessageConsumer object cannot send the message to
the backout queue.

Handling poison messages in ASF
When you use Application Server Facilities (ASF), the ConnectionConsumer, rather than the
MessageConsumer, processes poison messages. The ConnectionConsumer requeues messages according
to the BackoutThreshold and BackoutRequeueQName properties of the queue.

When an application uses ConnectionConsumers, the circumstances in which a message is backed out
depend on the session that the application server provides:

• When the session is non-transacted, with AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE, a
message is backed out only after a system error, or if the application terminates unexpectedly.

Introduction to the Message Service Client for .NET 37

• When the session is non-transacted with CLIENT_ACKNOWLEDGE, unacknowledged messages can be
backed out by the application server calling Session.recover().

Typically, the client implementation of MessageListener or the application server calls
Message.acknowledge(). Message.acknowledge() acknowledges all messages delivered on the
session so far.

• When the session is transacted, unacknowledged messages can be backed out by the application server
calling Session.rollback().

Queue browsers
An application uses a queue browser to browse messages on a queue without removing them.

To create a queue browser, an application calls the Create Queue Browser method of an ISession object,
specifying as a parameter a Destination object that identifies the queue to be browsed. The application
can create a queue browser with or without a message selector.

After creating a queue browser, the application can call the GetEnumerator method of the IQueueBrowser
object to get a list of the messages on the queue. The method returns an enumerator that encapsulates
a list of Message objects. The order of the Message objects in the list is the same as the order in which
the messages would be retrieved from the queue. The application can then use the enumerator to browse
each message in turn.

The enumerator is updated dynamically as messages are put on the queue and removed from the queue.
Each time the application calls IEnumerator.MoveNext() to browse the next message on the queue, the
message reflects the current contents of the queue.

An application can call the GetEnumerator method more than once for a given queue browser. Each call
returns a new enumerator. The application can therefore use more than one enumerator to browse the
messages on a queue and maintain multiple positions within the queue.

An application can use a queue browser to search for a suitable message to remove from a queue, and
then use a message consumer with a message selector to remove the message. The message selector
can select the message according to the value of the JMSMessageID header field. For information about
this and other JMS message header fields, see “Header fields in an XMS message” on page 70.

Requestors
An application uses a requestor to send a request message and then to wait for and to receive the reply.

Many messaging applications are based on algorithms that send a request message and then wait for a
reply. XMS provides a class called Requestor to help with the development of this style of application.

To create a requestor, an application calls the Create Requestor constructor of the Requestor class,
specifying as parameters a Session object and a Destination object that identifies where request
messages are to be sent. The session must not be transacted nor have an acknowledgement mode of
XMSC_CLIENT_ACKNOWLEDGE. The constructor automatically creates a temporary queue or topic where
reply messages are to be sent.

After creating a requestor, the application can call the Request method of the Requestor object to send
a request message and then wait for, and receive, a reply from the application that receives the request
message. The call waits until the reply is received or until the session ends, whichever occurs first. Only
one reply is required by the requestor for each request message.

When the application closes the requestor, the temporary queue or topic is deleted. The associated
session, however, does not close.

Object Deletion
When an application deletes an XMS object that it created, XMS releases the internal resources that have
been allocated to the object.

When an application creates an XMS object, XMS allocates memory and other internal resources to the
object. XMS retains these internal resources until the application explicitly deletes the object by calling

38 IBM Message Service Client for .NET

the object's close or delete method, at which point XMS releases the internal resources. If an application
tries to delete an object that is already deleted, the call is ignored.

When an application deletes a Connection or Session object, XMS deletes certain associated objects
automatically and releases their internal resources. These are objects that were created by the
Connection or Session object and have no function independent from the object. These objects are shown
in Table 4 on page 39.

Note: if an application closes a connection with dependent sessions, all objects dependent on those
sessions are also deleted. Only a Connection or Session object can have dependent objects.

Table 4. Objects that are deleted automatically

Deleted object Method Dependent objects that are deleted automatically

Connection Close Connection ConnectionMetaData and Session objects

Session Close Session MessageConsumer, MessageProducer, QueueBrowser, and
Requestor objects

Managed IBM WebSphere MQ XA transactions through XMS
Managed IBM WebSphere MQ XA transactions can be used through XMS.

To use XA transactions through XMS, a transacted session has to be created. When XA transaction
is in use, the transaction control is through Distributed Transaction Coordinator (DTC) global
transactions and it is not though XMS sessions. When using XA transactions, Session.commit or
Session.rollback cannot be issued on the XMS session. Instead, use the Transscope.Commit or
Transscope.Rollback DTC methods commit or rollback the transactions. If a session is used for XA
transaction, the producer or consumer that are created using the session must be a part of the XA
transaction. They cannot be used for any operations outside the XA transaction scope. They cannot be
used for operations like Producer.send or Consumer.receive outside the XA transaction.

An IllegalStateException exception object is thrown if

• XA transacted session is used for Session.commit or Session.rollback.
• Producer or consumer objects which are once used in XA transacted session are used out side the XA

transaction scope.

The XA transactions are not supported in asynchronous consumers.

Note:

1. A close might be issued on the Producer, Consumer, Session, or Connection object before the XA
transaction commit. In which cases the messages in the transaction are rolled back. Similarly, if the
connection is broken before the XA transaction commit, all the messages in the transaction are rolled
back. For a Producer object, a roll-back means that the messages are not put on the queue. For a
Consumer object, a roll-back means that the messages are left on the queue.

2. If a Producer object puts a message with TimeToLive in the TransactionScope and a commit is
issued after the time is elapsed, the message can expire before the commit is issued. In this case, the
message is not made available to Consumer objects.

3. Session objects are not supported across threads. The use of transactions with Session objects that
are shared across threads is not supported.

XMS primitive types
XMS provides equivalents of the eight Java primitive types (byte, short, int, long, float, double, char, and
boolean). This allows the interchange of messages between XMS and JMS without data becoming lost or
corrupted.

Table 5 on page 40 lists the Java equivalent data type, size, and minimum and maximum value of each
XMS primitive type.

Introduction to the Message Service Client for .NET 39

Table 5. XMS data types and their Java equivalents

XMS data type Compatible
Java data
type

Size Minimum value Maximum value

System.Boolean boolean 32 bits false true

System.SBYTE byte 8 bits -27 (-128) 27-1 (127)

System.BYTE byte 8 bits -27 (-128) 27-1 (127)

System.CHAR byte 8 bits -27 (-128) 27-1 (127)

System.Int16 short 16 bits -215 (-32768) 215-1 (32767)

System.Int32 int 32 bits -231 (-2147483648) 231-1 (2147483647)

System.Int64 long 64 bits -263

(-9223372036854775808)
263-1
(9223372036854775807)

System.Single float 32 bits -3.402823E-38 (to 7-digits
precision)

3.402823E+38 (to 7-digits
precision)

System.Double double 64 bits -1.79769313486231E-308 (to
15-digits precision)

1.79769313486231E+308 (to
15-digits precision)

Related concepts
Attributes and properties of objects
An XMS object can have attributes and properties, which are characteristics of the object, that are
implemented in different ways.
Implicit conversion of a property value from one data type to another
When an application gets the value of a property, the value can be converted by XMS into another data
type. Many rules govern which conversions are supported and how XMS performs the conversions.
Related reference
Data types for elements of application data
To ensure that an XMS application can exchange messages with a IBM WebSphere MQ classes for JMS
application, both the applications must be able to interpret the application data in the body of a message
in the same way.

Implicit conversion of a property value from one data type to another
When an application gets the value of a property, the value can be converted by XMS into another data
type. Many rules govern which conversions are supported and how XMS performs the conversions.

A property of an object has a name and a value; the value has an associated data type, where the value of
a property is also referred to as the property type.

An application uses the methods of the PropertyContext class to get and set the properties of objects. In
order to get the value of a property, an application calls the method that is appropriate for the property
type. For example, to get the value of an integer property, an application typically calls the GetIntProperty
method.

However, when an application gets the value of a property, the value can be converted by XMS into
another data type. For example, to get the value of an integer property, an application can call the
GetStringProperty method, which returns the value of the property as a string. The conversions supported
by XMS are shown in Table 6 on page 41.

40 IBM Message Service Client for .NET

Table 6. Supported conversions from a property type to other data types

Property type Supported target data types

System.String System.Boolean, System.Double, System.Float, System.Int32, System.Int64,
System.SByte, System.Int16

System.Boolean System.String, System.SByte, System.Int32, System.Int64, System.Int16

System.Char System.String

System.Double System.String

System.Float System.String, System.Double

System.Int32 System.String, System.Int64

System.Int64 System.String

System.SByte System.String, System.Int32, System.Int64, System.Int16

System.SByte array System.String

System.Int16 System.String, System.Int32, System.Int64

The following general rules govern the supported conversions:

• Numeric property values can be converted from one data type to another provided no data is lost during
the conversion. For example, the value of a property with data type System.Int32 can be converted
into a value with data type System.Int64, but it cannot be converted into a value with data type
System.Int16.

• A property value of any data type can be converted into a string.
• A string property value can be converted to any other data type provided the string is formatted

correctly for the conversion. If an application attempts to convert a string property value that is not
formatted correctly, XMS may return errors.

• If an application attempts a conversion that is not supported, XMS may return an error.

The following rules apply when a property value is converted from one data type to another:

• When converting a boolean property value to a string, the value true is converted to the string "true",
and the value false is converted to the string "false".

• When converting a boolean property value to a numeric data type, including System.SByte, the value
true is converted to 1, and the value false is converted to 0.

• When converting a string property value to a boolean value, the string "true" (not case-sensitive) or "1"
is converted to true, and the string "false" (not case-sensitive) or "0" is converted to false. All other
strings cannot be converted.

• When converting a string property value to a value with data type System.Int32, System.Int64,
System.SByte, or System.Int16, the string must have the following format:

[blanks][sign]digits

The string components are defined as follows:
blanks

Optional leading blank characters.
sign

An optional plus sign (+) or minus sign (-) character.
digits

A contiguous sequence of digit characters (0-9). At least one digit character must be present.

After the sequence of digit characters, the string can contain other characters that are not digit
characters, but the conversion stops as soon as the first of these characters is reached. The string
is assumed to represent a decimal integer.

Introduction to the Message Service Client for .NET 41

XMS may return an error if the string is not formatted correctly.
• When converting a string property value to a value with data type System.Double or System.Float, the

string must have the following format:

[blanks][sign][digits][point[d_digits]][e_char[e_sign]e_digits]

The string components are defined as follows:
blanks

(Optional) Leading blank characters.
sign

(Optional) Plus sign (+) or minus sign (-) character.
digits

A contiguous sequence of digit characters (0-9). At least one digit character must be present in
either digits or d_digits.

point
(Optional) Decimal point (.).

d_digits
A contiguous sequence of digit characters (0-9). At least one digit character must be present in
either digits or d_digits.

e_char
An exponent character, which is either E or e.

e_sign
(Optional) Plus sign (+) or minus sign (-) character for the exponent.

e_digits
A contiguous sequence of digit characters (0-9) for the exponent. At least one digit character must
be present if the string contains an exponent character.

After the sequence of digit characters, or the optional characters representing an exponent, the string
can contain other characters that are not digit characters, but the conversion stops as soon as the first
of these characters is reached. The string is assumed to represent a decimal floating point number with
an exponent that is a power of 10.

XMS may return an error if the string is not formatted correctly.
• When converting a numeric property value to a string, including a property value with data type

System.SByte, the value is converted to the string representation of the value as a decimal number,
not the string containing the ASCII character for that value. For example, the integer 65 is converted to
the string "65", not the string "A".

• When converting a byte array property value to a string, each byte is converted to the 2 hexadecimal
characters that represent the byte. For example, the byte array {0xF1, 0x12, 0x00, 0xFF} is converted to
the string "F11200FF".

Conversions from a property type to other data types are supported by the methods of both the Property
and the PropertyContext classes.

Related concepts
Attributes and properties of objects
An XMS object can have attributes and properties, which are characteristics of the object, that are
implemented in different ways.
XMS primitive types
XMS provides equivalents of the eight Java primitive types (byte, short, int, long, float, double, char, and
boolean). This allows the interchange of messages between XMS and JMS without data becoming lost or
corrupted.
Related reference
Map messages

42 IBM Message Service Client for .NET

The body of a map message contains a set of name-value pairs, where each value has an associated data
type.
Stream messages
The body of a stream message contains a stream of values, where each value has an associated data type.
Data types for elements of application data
To ensure that an XMS application can exchange messages with a IBM WebSphere MQ classes for JMS
application, both the applications must be able to interpret the application data in the body of a message
in the same way.

Iterators
An iterator encapsulates a list of objects and a cursor that maintains the current position in the list.
The concept of an Iterator, as available in Message Service Client for C/C++ is implemented by using
IEnumerator interface in Message Service Client for .NET.

When an iterator is created, the position of the cursor is before the first object. An application uses an
iterator to retrieve each object in turn.

The Iterator class of Message Service Client for C/C++ is equivalent to the Enumerator class in Java.
XMS .NET is similar to Java and uses an IEnumerator interface.

An application can use an IEnumerator to perform the following tasks:

• To get the properties of a message
• To get the name-value pairs in the body of a map message
• To browse the messages on a queue
• To get the names of the JMS defined message properties supported by a connection

Coded character set identifiers
In XMS .NET, all strings are passed using the native .NET string. Because this has a fixed encoding, no
further information is required to interpret it. Hence the XMSC_CLIENT_CCSID property is not required for
XMS .NET applications.

XMS error and exception codes
XMS uses a range of error codes to indicate failures. These error codes are not explicitly listed in this
documentation because they may vary from release to release. Only XMS exception codes (in the format
XMS_X_...) are documented because they remain the same across releases of XMS.

Building your own applications
You build your own applications like you build the sample applications.

Build your .NET application, as described in “Building the .NET sample applications” on page 20
topicsection, which also lists the prerequisites you need to build your own .NET applications. For
additional guidance on how to build your own applications, use the makefiles provided for each sample
application.

Tip: To assist with problem diagnosis in the event of a failure, you might find it helpful to compile
applications with symbols included.

Related reference
.NET interfaces
This topicsection documents the .NET class interfaces and their properties and methods.
Properties of XMS objects

Introduction to the Message Service Client for .NET 43

This sectionchapter documents the object properties defined by XMS.

Automatic IBM WebSphere MQ Client reconnection through XMS
Configure your XMS client to reconnect automatically following a network, queue manager, or server
failure while using IBM WebSphere MQ V7.1 Client or above as the message provider.

Use the WMQ_CONNECTION_NAME_LIST and WMQ_CLIENT_RECONNECT_OPTIONS properties of the
MQConnectionFactory class to configure a client connection to automatically reconnect. Automatic
client reconnection reconnects a client after a connection failure, or as an option after stopping the queue
manager. The design of some client applications makes them unsuitable for automatic reconnection.

Automatically reconnectable client connections become reconnectable once the connection is
established.

Note: The properties Client Reconnect Options, Client Reconnect Timeout, and Connection
Namelist can also be set via Client Channel Definitions Table (CCDT) or by enabling the client
reconnection via the mqclient.ini file.

Note: If reconnection properties are set on the ConnectionFactory object and as well as in the CCDT,
the precedence rule is as follows. If the default value of the connection name list property is set in the
ConnectionFactory object, then the CCDT takes precedence. If the connection name list is not set
to its default value, the property values set in the ConnectionFactory object take precedence. The
default value of the connection namelist is localhost(1414).

Writing XMS .NET applications
This sectionchapter provides information to help you when writing XMS.NET applications.

This sectionchapter provides information that is specific to writing XMS .NET applications. For general
information about writing XMS applications, see “Writing XMS applications” on page 21.

The sectionchapter contains the following topicssections:

• “Data types for .NET” on page 44
• “Managed and unmanaged operations in .NET” on page 45
• “Destinations in .NET” on page 46
• “Properties in .NET” on page 46
• “Non-existent properties handling in .NET” on page 47
• “Error handling in .NET” on page 48
• “Message and exception listeners in .NET” on page 48

Related reference
.NET interfaces
This topicsection documents the .NET class interfaces and their properties and methods.

Data types for .NET
XMS .NET supports System.Boolean, System.Byte, System.SByte, System.Char, System.String,
System.Single, System.Double, System.Decimal, System.Int16, System.Int32, System.Int64,
System.UInt16, System.UInt32, System.UInt64, and System.Object. Data types for XMS .NET are
different from data types for XMS C++. You can use this sectionchapter to identify the corresponding
data types.

The following table shows the corresponding XMS .NET and XMS C++ data types and briefly describes
them.

44 IBM Message Service Client for .NET

Table 7. Data types for XMS .NET and XMS C++

XMS .NET type XMS C++ type Description

System.SByte xmsSBYTE
xmsINT8

Signed 8-bit value

System.Byte xmsBYTE
xmsUINT8

Unsigned 8-bit value

System.Int16 xmsINT16
xmsSHORT

Signed 16-bit value

System.UInt16 xmsUINT16
xmsUSHORT

Unsigned 16-bit value

System.Int32 xmsINT32
xmsINT

Signed 32-bit value

System.UInt32 xmsUINT32
xmsUINT

Unsigned 32-bit value

System.Int64 xmsLONG
xmsINT64

Signed 64-bit value

System.UInt64 xmsULONG
xmsUINT64

Unsigned 64-bit value

System.Char xmsCHAR16 Unsigned 16-bit character (Unicode
for .NET)

System.Single xmsFLOAT IEEE 32-bit float

System.Double xmsDOUBLE IEEE 64-bit float

System.Boolean xmsBOOL A True/False value

Not applicable xmsCHAR Signed or Unsigned 8-bit value
(signed or unsigned depends on
platform)

System.Decimal Not applicable 96-bit signed integer times 100

through 1028

System.Object Not applicable Base of all types

System.String Not applicable String type

Managed and unmanaged operations in .NET
Managed code is executed exclusively within the .NET common language runtime environment and is
wholly dependent on the services provided by that runtime. An application is classed as unmanaged if any
part of the application runs or calls services outside of the .NET common language runtime environment.

Certain advanced functionality cannot currently be supported within the managed .NET environment.

If your application requires some functionality that is not currently supported in the fully managed
environment, then you can change your application to use the unmanaged environment without requiring

Introduction to the Message Service Client for .NET 45

substantial change to your application. However, you should note that the XMS stack makes use of
unmanaged code when this selection is made.

Connections to a IBM WebSphere MQ queue manager
Managed connections to WMQ_CM_CLIENT will not support SSL connections, non-TCP communications,
and channel compression. However, these connections might be supported by using an unmanaged
connection (WMQ_CM_CLIENT_UNMANAGED). For more information, see Developing .NET applications.

If you create a connection factory from an administered object in an unmanaged environment, you must
manually change the value for the connection mode to XMSC_WMQ_CM_CLIENT_UNMANAGED.

Connections to a WebSphere Service Integration Bus messaging engine
Connections to a WebSphere service integration bus messaging engine that require the use of the SSL
protocol (including HTTPS) are not currently supported as managed code.

Related reference
XMSC_WMQ_CONNECTION_MODE

Destinations in .NET
In .NET, destinations are created according to protocol type and can be used only on the protocol type for
which they are created.

Two functions are provided for creating destinations, one for topics and one for queues:

• IDestination CreateTopic(String topic);
• IDestination CreateQueue(String queue);

These functions are available on the following two objects in the API:

• ISession
• XMSFactoryFactory

In both cases these methods can accept a URI style string, which can include parameters, in the following
format:

"topic://some/topic/name?priority=5"

Alternatively, these methods can accept a destination name only, that is, a name without a topic:// or
queue:// prefix and without parameters.

This means that the following URI style string:

CreateTopic("topic://some/topic/name");

would produce the same result as the following destination name:

CreateTopic("some/topic/name");

As for WebSphere Service Integration Bus JMS, topics can also be specified in a shorthand form, which
includes both the topicname and topicspace but cannot include parameters:

CreateTopic("topicspace:topicname");

Properties in .NET
A .NET application uses the methods in the PropertyContext interface to get and set the properties of
objects.

The PropertyContext interface encapsulates methods that get and set properties. These methods are
inherited, directly or indirectly, by the following classes:

46 IBM Message Service Client for .NET

• BytesMessage
• Connection
• ConnectionFactory
• ConnectionMetaData
• Destination
• MapMessage
• Message
• MessageConsumer
• MessageProducer
• ObjectMessage
• QueueBrowser
• Session
• StreamMessage
• TextMessage

If an application sets the value of a property, the new value replaces any previous value the property had.

For more information about XMS properties, see “Properties of XMS objects” on page 177.

For ease of use, XMS property names and values in .NET are predefined as public constants in a struct
called XMSC. The names of these constants are in the form XMSC.<constant>; for example, XMSC.USERID
(a property name constant) and XMSC.DELIVERY_AS_APP (a value constant).

Additionally, you can access IBM WebSphere MQ constants by using the IBM.XMS.MQC struct. If the
IBM.XMS namespace is already imported, you can access the values for these properties in the form
MQC.<constant>. For example, MQC.MQRO_COA_WITH_FULL_DATA.

Furthermore, if you have a hybrid application that uses both XMS .NET and IBM WebSphere MQ classes
for .NET and that imports both IBM.XMS and IBM.WMQ namespaces, then you must fully qualify the MQC
struct namespace to ensure that each occurrence is unique.

Some advanced functionality is not currently supported within the managed .NET environment. Refer to
“Managed and unmanaged operations in .NET” on page 45 for more details.

Non-existent properties handling in .NET
The handling of non-existent properties in the XMS .NET is broadly consistent with the JMS specification,
and also with the C and C++ implementations of XMS.

In JMS, accessing a non-existent property can result in a Java system exception when a method tries
to convert the non-existent (null) value to the required type. If a property does not exist the following
exceptions occur:

• getStringProperty and getObjectProperty return null
• getBooleanProperty returns false because Boolean.valueOf(null) returns false
• getIntProperty etc.throw java.lang.NumberFormatException because Integer.valueOf(null) throws the

exception

If a property does not exist in XMS .NET the following exceptions occur:

• GetStringProperty and GetObjectProperty (and GetBytesProperty) return null (which is the same as
Java)

• GetBooleanProperty throws System.NullReferenceException
• GetIntProperty etc. throws System.NullReferenceException

This implementation is different from Java, but it is broadly consistent with the JMS specification,
and with the XMS C and C++ interfaces. Like the Java implementation, XMS .NET propagates any
exceptions from the System.Convert call to the caller. Unlike Java however, XMS explicitly throws

Introduction to the Message Service Client for .NET 47

NullReferenceExceptions rather than just using the native behavior of the .NET framework through
passing null to system conversion routines. If your application sets a property to a String like "abc"
and calls GetIntProperty, the System.FormatException thrown by Convert.ToInt32("abc") is propagated to
the caller, which is consistent with Java. MessageFormatException is thrown only if the types used for
setProperty and getProperty are incompatible. This behavior is also consistent with Java.

Error handling in .NET
XMS .NET exceptions are all derived from System.Exception. XMS method calls can throw specific XMS
exceptions such as MessageFormatException, general XMSExceptions, or system exceptions such as
NullReferenceException.

Write applications to catch any of these errors, either in specific catch blocks or in general
System.Exception catch blocks, as appropriate to the applications requirements.

Message and exception listeners in .NET
A .NET application uses a message listener to receive messages asynchronously, and it uses an exception
listener to be notified asynchronously of a problem with a connection.

The functionality of both the message and exception listeners is the same for .NET and for C++. However,
there are some small implementation differences.

Message listeners in .NET
To receive messages asynchronously, you must complete the following steps:

1. Define a method that matches the signature of the message listener delegate. The method that you
define can be either a static or an instance method and can be defined in any accessible class. The
delegate signature is as follows:

public delegate void MessageListener(IMessage msg);

and so you could define the method as:

void SomeMethodName(IMessage msg);

2. Instantiate this method as a delegate using something similar to the following:

MessageListener OnMsgMethod = new MessageListener(SomeMethodName)

3. Register the delegate with one or more consumers by setting it to the MessageListener property of the
consumer:

consumer.MessageListener = OnMsgMethod;

You can remove the delegate by setting the MessageListener back to null:

consumer.MessageListener = null;

Exception listeners in .NET
The exception listener works in much the same way as the message listener, but has a different delegate
definition and is assigned to the connection rather then the message consumer. This is the same as for
C++.

1. Define the method. The delegate signature is as follows:

public delegate void ExceptionListener(Exception ex);

and so the method defined could be:

48 IBM Message Service Client for .NET

void SomeMethodName(Exception ex);

2. Instantiate this method as a delegate using something similar to:

ExceptionListener OnExMethod = new ExceptionListener(SomeMethodName)

3. Register the delegate with the connection by setting its ExceptionListener property:

connection.ExceptionListener = OnExMethod ;

You can remove the delegate by resetting the ExceptionListener to:

null: connection.ExceptionListener = null;

When no references to them remain, exceptions or messages are deleted automatically by the systems
garbage collector.

The following is a sample code:

using System;
using System.Threading;
using IBM.XMS;

public class Sample
{
 public static void Main()
 {
 XMSFactoryFactory factoryFactory = XMSFactoryFactory.GetInstance(XMSC.CT_RTT);

 IConnectionFactory connectionFactory = factoryFactory.CreateConnectionFactory();
 connectionFactory.SetStringProperty(XMSC.RTT_HOST_NAME, "localhost");
 connectionFactory.SetStringProperty(XMSC.RTT_PORT, "1506");

 //
 // Create the connection and register an exception listener
 //

 IConnection connection = connectionFactory.CreateConnection();
 connection.ExceptionListener = new ExceptionListener(Sample.OnException);

 ISession session = connection.CreateSession(false, AcknowledgeMode.AutoAcknowledge);
 IDestination topic = session.CreateTopic("topic://xms/sample");

 //
 // Create the consumer and register an async message listener
 //

 IMessageConsumer consumer = session.CreateConsumer(topic);
 consumer.MessageListener = new MessageListener(Sample.OnMessage);

 connection.Start();

 while (true)
 {
 Console.WriteLine("Waiting for messages....");
 Thread.Sleep(1000);
 }
 }

 static void OnMessage(IMessage msg)
 {
 Console.WriteLine(msg);
 }

 static void OnException(Exception ex)
 {
 Console.WriteLine(ex);
 }
}

Introduction to the Message Service Client for .NET 49

Working with administered objects
This sectionchapter provides information about administered objects. XMS applications can retrieve
object definitions from a central administered objects repository, and use them to create connection
factories and destinations.

This sectionchapter provides information to help with creating and managing administered objects,
describing the types of administered object repository that XMS supports. The sectionchapter also
explains how an XMS application makes a connection to an administered objects repository to retrieve the
required administered objects.

The sectionchapter contains the following topicssections:

Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.

Supported types of administered object repository
XMS supports three types of administered object directories: File System, Lightweight Directory Access
Protocol (LDAP), and COS Naming. File System and LDAP administered objects can be used to connect
to IBM WebSphere MQ and WebSphere Application Server, whereas COS Naming can be used to connect
only to the WebSphere Application Server.

File System object directories take the form of serialized Java and Naming Directory Interface (JNDI)
objects. LDAP object directories are directories that contain JNDI objects. File System and LDAP
object directories can be administered by using either the JMSAdmin tool, which is provided with IBM
WebSphere MQ v6.0, or the WebSphere MQ Explorer, which is provided with WebSphere MQ v7.0 and
later. Both the File system and the LDAP object directories can be used to administer client connections
by centralizing IBM WebSphere MQ connection factories and destinations. The network administrator can
deploy multiple applications that refer to the same central repository, and that are automatically updated
to reflect changes to connection settings made in the central repository.

A COS naming directory contains WebSphere Service Integration Bus connection factories and
destinations and can be administered by using the WebSphere Application Server administrative console.
For an XMS application to retrieve objects from the COS naming directory, a JNDI lookup web service
must be deployed. This web service is not available on all WebSphere service integration technologies.
Refer to the product documentation for details.

Note: Restart application connections for changes to the object directory to take effect.

Related concepts
Property mapping for administered objects
To enable applications to use IBM WebSphere MQ JMS and WebSphere Application Server connection
factory and destination object definitions, the properties retrieved from these definitions must be mapped
on to the corresponding XMS properties that can be set on XMS connection factories and destinations.
InitialContext properties
The parameters of the InitialContext constructor include the location of the repository of administered
objects, given as a uniform resource indicator (URI). In order for an application to establish a connection
to the repository, it may be necessary to provide more information than the information contained in the
URI.
URI format for XMS initial contexts
The location of the repository of administered objects is provided as a uniform resource indicator (URI).
The format of the URI depends on the context type.
JNDI Lookup Web service

50 IBM Message Service Client for .NET

To access a COS naming directory from XMS, a JNDI Lookup Web service must be deployed on a
WebSphere Service Integration Bus server. This Web service translates the Java information from the
COS naming service into a form that XMS applications can read.
Retrieval of administered objects
XMS retrieves an administered object from the repository using the address provided when the
InitialContext object is created, or in the InitialContext properties.
Administered objects
Using administered objects, you can administer the connection settings used by client applications
to be administered from a central repository. An application retrieves object definitions from the
central repository and uses them to create ConnectionFactory and Destination objects. Using
administered objects, you can de-couple applications from the resources that they use at run time.
Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.
InitialContext objects
An application must create an initial context to be used to make a connection to the administered objects
repository to retrieve the required administered objects.
Related reference
Required properties for administered ConnectionFactory objects
When an application creates a connection factory, a number of properties must be defined to create a
connection to a messaging server.
Required properties for administered Destination objects
An application that is creating a destination must set several properties that the application on an
administered Destination object.

Property mapping for administered objects
To enable applications to use IBM WebSphere MQ JMS and WebSphere Application Server connection
factory and destination object definitions, the properties retrieved from these definitions must be mapped
on to the corresponding XMS properties that can be set on XMS connection factories and destinations.

In order to create, for example, an XMS connection factory with properties retrieved from a IBM
WebSphere MQ JMS connection factory, the properties must be mapped between the two.

All property mappings are performed automatically.

The following table demonstrates the mappings between some of the most common properties of
connection factories and destinations. The properties shown in this table are just a small set of examples,
and not all properties shown are relevant to all connection types and servers.

Table 8. Examples of name mapping for connection factory and destination properties

IBM WebSphere MQ JMS
property name XMS property name

PERSISTENCE (PER) XMSC_DELIVERY_MODE

EXPIRY (EXP) XMSC_TIME_TO_LIVE

PRIORITY (PRI) XMSC_PRIORITY

Introduction to the Message Service Client for .NET 51

Table 9. Examples of name mapping for connection factory and destination properties

IBM WebSphere MQ JMS
property name XMS property name

WebSphere Service Integration
Bus property name

PERSISTENCE (PER) XMSC_DELIVERY_MODE

EXPIRY (EXP) XMSC_TIME_TO_LIVE

PRIORITY (PRI) XMSC_PRIORITY

XMSC_WPM_HOST_NAME serverName

XMSC_WPM_BUS_NAME busName

XMSC_WPM_TOPIC_SPACE topicName

Related concepts
Supported types of administered object repository
XMS supports three types of administered object directories: File System, Lightweight Directory Access
Protocol (LDAP), and COS Naming. File System and LDAP administered objects can be used to connect
to IBM WebSphere MQ and WebSphere Application Server, whereas COS Naming can be used to connect
only to the WebSphere Application Server.
InitialContext properties
The parameters of the InitialContext constructor include the location of the repository of administered
objects, given as a uniform resource indicator (URI). In order for an application to establish a connection
to the repository, it may be necessary to provide more information than the information contained in the
URI.
URI format for XMS initial contexts
The location of the repository of administered objects is provided as a uniform resource indicator (URI).
The format of the URI depends on the context type.
JNDI Lookup Web service
To access a COS naming directory from XMS, a JNDI Lookup Web service must be deployed on a
WebSphere Service Integration Bus server. This Web service translates the Java information from the
COS naming service into a form that XMS applications can read.
Retrieval of administered objects
XMS retrieves an administered object from the repository using the address provided when the
InitialContext object is created, or in the InitialContext properties.
Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.
InitialContext objects
An application must create an initial context to be used to make a connection to the administered objects
repository to retrieve the required administered objects.
Related reference
Required properties for administered ConnectionFactory objects
When an application creates a connection factory, a number of properties must be defined to create a
connection to a messaging server.
Required properties for administered Destination objects
An application that is creating a destination must set several properties that the application on an
administered Destination object.
IDestination (for the .NET interface)

52 IBM Message Service Client for .NET

A destination is where an application sends messages, or it is a source from which an application receives
messages, or both.
Properties of Destination
An overview of the properties of the Destination object, with links to more detailed reference information.
IConnectionFactory (for the .NET interface)
An application uses a connection factory to create a connection.
Properties of ConnectionFactory
An overview of the properties of the ConnectionFactory object, with links to more detailed reference
information.

Required properties for administered ConnectionFactory objects
When an application creates a connection factory, a number of properties must be defined to create a
connection to a messaging server.

The properties listed in the following tables are the minimum required for an application to set to create
a connection to a messaging server. If you want to customize the way that a connection is created, then
your application can set any additional properties of the ConnectionFactory object as necessary. For more
information, see “Properties of ConnectionFactory” on page 179. A complete list of available properties is
included.

Connection to a IBM WebSphere MQ queue manager
Table 10. Property settings for administered ConnectionFactory objects for connections to a IBM
WebSphere MQ queue manager

Required XMS Equivalent IBM WebSphere MQ JMS property required

XMSC_CONNECTION_TYPE XMS works this out from the connection factory class name
and TRANSPORT (TRAN) property.

XMSC_WMQ_HOST_NAME HOSTNAME (HOST)

XMSC_WMQ_PORT PORT

XMSC_WMQ_QUEUE_MANAGER Name of the Queue Manager

Real-time connection to a broker
Table 11. Property settings for administered ConnectionFactory objects for real-time connections to a
broker

Required XMS Equivalent IBM WebSphere MQ JMS property required

XMSC_CONNECTION_TYPE XMS works this out from the connection factory class name
and TRANSPORT (TRAN) property.

XMSC_RTT_HOST_NAME HOSTNAME (HOST)

XMSC_RTT_PORT PORT

Introduction to the Message Service Client for .NET 53

Connection to a WebSphere Service Integration Bus
Table 12. Property settings for administered ConnectionFactory objects for connections to a WebSphere
Service Integration Bus

XMS property Description

XMSC_CONNECTION_TYPE The type of messaging server to which an application
connects.. This is determined from the connection factory
class name.

XMSC_WPM_BUS_NAME For a connection factory, the name of the service integration
bus that the application connects to or, for a destination, the
name of the service integration bus in which the destination
exists.

Related concepts
Supported types of administered object repository
XMS supports three types of administered object directories: File System, Lightweight Directory Access
Protocol (LDAP), and COS Naming. File System and LDAP administered objects can be used to connect
to IBM WebSphere MQ and WebSphere Application Server, whereas COS Naming can be used to connect
only to the WebSphere Application Server.
Property mapping for administered objects
To enable applications to use IBM WebSphere MQ JMS and WebSphere Application Server connection
factory and destination object definitions, the properties retrieved from these definitions must be mapped
on to the corresponding XMS properties that can be set on XMS connection factories and destinations.
InitialContext properties
The parameters of the InitialContext constructor include the location of the repository of administered
objects, given as a uniform resource indicator (URI). In order for an application to establish a connection
to the repository, it may be necessary to provide more information than the information contained in the
URI.
URI format for XMS initial contexts
The location of the repository of administered objects is provided as a uniform resource indicator (URI).
The format of the URI depends on the context type.
JNDI Lookup Web service
To access a COS naming directory from XMS, a JNDI Lookup Web service must be deployed on a
WebSphere Service Integration Bus server. This Web service translates the Java information from the
COS naming service into a form that XMS applications can read.
Retrieval of administered objects
XMS retrieves an administered object from the repository using the address provided when the
InitialContext object is created, or in the InitialContext properties.
Secure connections to a IBM WebSphere MQ queue manager
To enable an XMS .NET application to make secure connections to a IBM WebSphere MQ queue manager,
the relevant properties must be defined in the ConnectionFactory object.
Secure connections to a WebSphere Service Integration Bus messaging engine
To enable an XMS .NET application to make secure connections to a WebSphere Service Integration Bus
messaging engine, the relevant properties must be defined in the ConnectionFactory object.
Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.
InitialContext objects

54 IBM Message Service Client for .NET

An application must create an initial context to be used to make a connection to the administered objects
repository to retrieve the required administered objects.
Related reference
Required properties for administered Destination objects
An application that is creating a destination must set several properties that the application on an
administered Destination object.
IConnectionFactory (for the .NET interface)
An application uses a connection factory to create a connection.
Properties of ConnectionFactory
An overview of the properties of the ConnectionFactory object, with links to more detailed reference
information.

Required properties for administered Destination objects
An application that is creating a destination must set several properties that the application on an
administered Destination object.

Table 13. IBM WebSphere MQ JMS property settings for administered Destination objects

Type of connection Property Description

IBM WebSphere MQ queue
manager

QUEUE (QU)

TOPIC (TOP)

The queue that you want to connect to

The topic that the application uses as a destination

Real-time connection to a broker TOPIC (TOP) The topic that the application uses as a destination

Table 14. Property settings for administered Destination objects

Type of connection Property Description

IBM WebSphere MQ queue
manager

QUEUE (QU)

TOPIC (TOP)

The queue that you want to connect to

The topic that the application uses as a destination

Real-time connection to a broker TOPIC (TOP) The topic that the application uses as a destination

WebSphere Service Integration
Bus

topicName

queueName

If your application is connecting to a topic

If your application is connecting to a queue

Related concepts
Supported types of administered object repository
XMS supports three types of administered object directories: File System, Lightweight Directory Access
Protocol (LDAP), and COS Naming. File System and LDAP administered objects can be used to connect
to IBM WebSphere MQ and WebSphere Application Server, whereas COS Naming can be used to connect
only to the WebSphere Application Server.
Property mapping for administered objects
To enable applications to use IBM WebSphere MQ JMS and WebSphere Application Server connection
factory and destination object definitions, the properties retrieved from these definitions must be mapped
on to the corresponding XMS properties that can be set on XMS connection factories and destinations.
InitialContext properties
The parameters of the InitialContext constructor include the location of the repository of administered
objects, given as a uniform resource indicator (URI). In order for an application to establish a connection
to the repository, it may be necessary to provide more information than the information contained in the
URI.
URI format for XMS initial contexts

Introduction to the Message Service Client for .NET 55

The location of the repository of administered objects is provided as a uniform resource indicator (URI).
The format of the URI depends on the context type.
JNDI Lookup Web service
To access a COS naming directory from XMS, a JNDI Lookup Web service must be deployed on a
WebSphere Service Integration Bus server. This Web service translates the Java information from the
COS naming service into a form that XMS applications can read.
Retrieval of administered objects
XMS retrieves an administered object from the repository using the address provided when the
InitialContext object is created, or in the InitialContext properties.
Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.
InitialContext objects
An application must create an initial context to be used to make a connection to the administered objects
repository to retrieve the required administered objects.
Related reference
Required properties for administered ConnectionFactory objects
When an application creates a connection factory, a number of properties must be defined to create a
connection to a messaging server.
IDestination (for the .NET interface)
A destination is where an application sends messages, or it is a source from which an application receives
messages, or both.
Properties of Destination
An overview of the properties of the Destination object, with links to more detailed reference information.

Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.

Before you begin
For further details about the different types of administered object repository that XMS supports, see
“Supported types of administered object repository” on page 50.

About this task
To create the administered objects for IBM WebSphere MQ use the IBM WebSphere MQ Explorer or IBM
WebSphere MQ JMS administration (JMSAdmin) tool.

To create the administered objects for IBM WebSphere MQ, WebSphere Event Broker, or WebSphere
Message Broker, use the IBM WebSphere MQ JMS administration (JMSAdmin) tool.

To create administered objects for WebSphere Service Integration Bus, use the WebSphere Application
Server administrative console.

The following steps summarize what you do to create administered objects.

Procedure
1. Create a connection factory and define the necessary properties to create a connection from your

application to your chosen server.
The minimum properties that XMS requires to make a connection are defined in “Required properties
for administered ConnectionFactory objects” on page 53.

2. Create the required destination on the messaging server, which your application connects to:

56 IBM Message Service Client for .NET

• For a connection to a IBM WebSphere MQ queue manager, create a queue or topic.
• For a real-time connection to a broker, create a topic.
• For a connection to a WebSphere Service Integration Bus, create a queue or a topic.

The minimum properties that XMS requires to make a connection are defined in “Required properties
for administered Destination objects” on page 55.

Related concepts
Supported types of administered object repository
XMS supports three types of administered object directories: File System, Lightweight Directory Access
Protocol (LDAP), and COS Naming. File System and LDAP administered objects can be used to connect
to IBM WebSphere MQ and WebSphere Application Server, whereas COS Naming can be used to connect
only to the WebSphere Application Server.
Property mapping for administered objects
To enable applications to use IBM WebSphere MQ JMS and WebSphere Application Server connection
factory and destination object definitions, the properties retrieved from these definitions must be mapped
on to the corresponding XMS properties that can be set on XMS connection factories and destinations.
InitialContext properties
The parameters of the InitialContext constructor include the location of the repository of administered
objects, given as a uniform resource indicator (URI). In order for an application to establish a connection
to the repository, it may be necessary to provide more information than the information contained in the
URI.
URI format for XMS initial contexts
The location of the repository of administered objects is provided as a uniform resource indicator (URI).
The format of the URI depends on the context type.
JNDI Lookup Web service
To access a COS naming directory from XMS, a JNDI Lookup Web service must be deployed on a
WebSphere Service Integration Bus server. This Web service translates the Java information from the
COS naming service into a form that XMS applications can read.
Retrieval of administered objects
XMS retrieves an administered object from the repository using the address provided when the
InitialContext object is created, or in the InitialContext properties.
Administered objects
Using administered objects, you can administer the connection settings used by client applications
to be administered from a central repository. An application retrieves object definitions from the
central repository and uses them to create ConnectionFactory and Destination objects. Using
administered objects, you can de-couple applications from the resources that they use at run time.
Working with administered objects
This sectionchapter provides information about administered objects. XMS applications can retrieve
object definitions from a central administered objects repository, and use them to create connection
factories and destinations.
ConnectionFactories and Connection objects
A ConnectionFactory object provides a template that an application uses to create a Connection object.
The application uses the Connection object to create a Session object.
Connection to a WebSphere service integration bus
An XMS application can connect to a WebSphere Service Integration Bus either by using a direct TCP/IP
connection or by using HTTP over TCP/IP.
Related tasks
InitialContext objects
An application must create an initial context to be used to make a connection to the administered objects
repository to retrieve the required administered objects.
Related reference
Required properties for administered ConnectionFactory objects

Introduction to the Message Service Client for .NET 57

When an application creates a connection factory, a number of properties must be defined to create a
connection to a messaging server.
Required properties for administered Destination objects
An application that is creating a destination must set several properties that the application on an
administered Destination object.
IConnectionFactory (for the .NET interface)
An application uses a connection factory to create a connection.
Properties of ConnectionFactory
An overview of the properties of the ConnectionFactory object, with links to more detailed reference
information.
IDestination (for the .NET interface)
A destination is where an application sends messages, or it is a source from which an application receives
messages, or both.
Properties of Destination
An overview of the properties of the Destination object, with links to more detailed reference information.

InitialContext objects
An application must create an initial context to be used to make a connection to the administered objects
repository to retrieve the required administered objects.

About this task
An InitialContext object encapsulates a connection to the repository. The XMS API provides methods to
perform the following tasks:

• Create an InitialContext object
• Look up an administered object in the administered object repository.

For further details about creating an InitialContext object, see “InitialContext” on page 109 for .NET and
“Properties of InitialContext” on page 188.

Related concepts
Supported types of administered object repository
XMS supports three types of administered object directories: File System, Lightweight Directory Access
Protocol (LDAP), and COS Naming. File System and LDAP administered objects can be used to connect
to IBM WebSphere MQ and WebSphere Application Server, whereas COS Naming can be used to connect
only to the WebSphere Application Server.
Property mapping for administered objects
To enable applications to use IBM WebSphere MQ JMS and WebSphere Application Server connection
factory and destination object definitions, the properties retrieved from these definitions must be mapped
on to the corresponding XMS properties that can be set on XMS connection factories and destinations.
InitialContext properties
The parameters of the InitialContext constructor include the location of the repository of administered
objects, given as a uniform resource indicator (URI). In order for an application to establish a connection
to the repository, it may be necessary to provide more information than the information contained in the
URI.
URI format for XMS initial contexts
The location of the repository of administered objects is provided as a uniform resource indicator (URI).
The format of the URI depends on the context type.
JNDI Lookup Web service
To access a COS naming directory from XMS, a JNDI Lookup Web service must be deployed on a
WebSphere Service Integration Bus server. This Web service translates the Java information from the
COS naming service into a form that XMS applications can read.
Retrieval of administered objects

58 IBM Message Service Client for .NET

XMS retrieves an administered object from the repository using the address provided when the
InitialContext object is created, or in the InitialContext properties.
Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.
Related reference
Required properties for administered ConnectionFactory objects
When an application creates a connection factory, a number of properties must be defined to create a
connection to a messaging server.
Required properties for administered Destination objects
An application that is creating a destination must set several properties that the application on an
administered Destination object.
InitialContext (for the .NET interface)
An application uses an InitialContext object to create objects from object definitions that are retrieved
from a repository of administered objects.
Properties of InitialContext
An overview of the properties of the InitialContext object, with links to more detailed reference
information.

InitialContext properties
The parameters of the InitialContext constructor include the location of the repository of administered
objects, given as a uniform resource indicator (URI). In order for an application to establish a connection
to the repository, it may be necessary to provide more information than the information contained in the
URI.

In JNDI and in the .NET implementation of XMS, the additional information is provided in an environment
Hashtable to the constructor.

The location of the administered object repository is defined in the XMSC_IC_URL property. This property
is typically passed on the Create call, but can be modified to connect to a different naming directory
before the lookup. For FileSystem or LDAP contexts, this property defines the address of the directory.
For COS naming, this is the address of the Web service that uses these properties to connect to the JNDI
directory.

The following properties are passed unmodified to the Web service which will use them to use to connect
to the JNDI directory.

• XMSC_IC_PROVIDER_URL
• XMSC_IC_SECURITY_CREDENTIALS
• XMSC_IC_SECURITY_AUTHENTICATION
• XMSC_IC_SECURITY_PRINCIPAL
• XMSC_IC_SECURITY_PROTOCOL

Related concepts
Supported types of administered object repository
XMS supports three types of administered object directories: File System, Lightweight Directory Access
Protocol (LDAP), and COS Naming. File System and LDAP administered objects can be used to connect
to IBM WebSphere MQ and WebSphere Application Server, whereas COS Naming can be used to connect
only to the WebSphere Application Server.
Property mapping for administered objects
To enable applications to use IBM WebSphere MQ JMS and WebSphere Application Server connection
factory and destination object definitions, the properties retrieved from these definitions must be mapped
on to the corresponding XMS properties that can be set on XMS connection factories and destinations.
URI format for XMS initial contexts

Introduction to the Message Service Client for .NET 59

The location of the repository of administered objects is provided as a uniform resource indicator (URI).
The format of the URI depends on the context type.
JNDI Lookup Web service
To access a COS naming directory from XMS, a JNDI Lookup Web service must be deployed on a
WebSphere Service Integration Bus server. This Web service translates the Java information from the
COS naming service into a form that XMS applications can read.
Retrieval of administered objects
XMS retrieves an administered object from the repository using the address provided when the
InitialContext object is created, or in the InitialContext properties.
Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.
InitialContext objects
An application must create an initial context to be used to make a connection to the administered objects
repository to retrieve the required administered objects.
Related reference
Required properties for administered ConnectionFactory objects
When an application creates a connection factory, a number of properties must be defined to create a
connection to a messaging server.
Required properties for administered Destination objects
An application that is creating a destination must set several properties that the application on an
administered Destination object.
InitialContext (for the .NET interface)
An application uses an InitialContext object to create objects from object definitions that are retrieved
from a repository of administered objects.
Properties of InitialContext
An overview of the properties of the InitialContext object, with links to more detailed reference
information.

URI format for XMS initial contexts
The location of the repository of administered objects is provided as a uniform resource indicator (URI).
The format of the URI depends on the context type.

FileSystem context
For the FileSystem context, the URL gives the location of the file system based directory. The structure of
the URL is as defined by RFC 1738, Uniform Resource Locators (URL): the URL has the prefix file://, and
the syntax following this prefix is a valid definition of a file that can be opened on the system on which
XMS is running.

This syntax can be platform-specific, and can use either '/ separators or '\' separators. If you use '\', then
each separator needs to be escaped by using an additional '\'. This prevents the .NET framework from
trying to interpret the separator as an escape character for what follows.

These examples illustrate this syntax:

file://myBindings
file:///admin/.bindings
file://\\admin\\.bindings
file://c:/admin/.bindings
file://c:\\admin\\.bindings
file://\\\\madison\\shared\\admin\\.bindings
file:///usr/admin/.bindings

60 IBM Message Service Client for .NET

LDAP context
For the LDAP context, the basic structure of the URL is as defined by RFC 2255, The LDAP URL Format,
with the case-insensitive prefix ldap://

The precise syntax is illustrated in the following example:

LDAP://[Hostname][:Port]["/"[DistinguishedName]]

This syntax is as defined in the RFC but without support for any attributes, scope, filters, or extensions.

Examples of this syntax include:

ldap://madison:389/cn=JMSData,dc=IBM,dc=UK
ldap://madison/cn=JMSData,dc=IBM,dc=UK
LDAP:///cn=JMSData,dc=IBM,dc=UK

WSS context
For the WSS context, the URL is in the form of a Web services endpoint, with the prefix http://.

Alternatively, you can use the prefix cosnaming:// or wsvc://,

These two prefixes are interpreted as meaning that you are using a WSS context with the URL accessed
over http, which enables the initial context type to be derived easily directly from the URL.

Examples of this syntax include the following:

http://madison.ibm.com:9080/xmsjndi/services/JndiLookup
cosnaming://madison/jndilookup

Related concepts
Supported types of administered object repository
XMS supports three types of administered object directories: File System, Lightweight Directory Access
Protocol (LDAP), and COS Naming. File System and LDAP administered objects can be used to connect
to IBM WebSphere MQ and WebSphere Application Server, whereas COS Naming can be used to connect
only to the WebSphere Application Server.
Property mapping for administered objects
To enable applications to use IBM WebSphere MQ JMS and WebSphere Application Server connection
factory and destination object definitions, the properties retrieved from these definitions must be mapped
on to the corresponding XMS properties that can be set on XMS connection factories and destinations.
InitialContext properties
The parameters of the InitialContext constructor include the location of the repository of administered
objects, given as a uniform resource indicator (URI). In order for an application to establish a connection
to the repository, it may be necessary to provide more information than the information contained in the
URI.
JNDI Lookup Web service
To access a COS naming directory from XMS, a JNDI Lookup Web service must be deployed on a
WebSphere Service Integration Bus server. This Web service translates the Java information from the
COS naming service into a form that XMS applications can read.
Retrieval of administered objects
XMS retrieves an administered object from the repository using the address provided when the
InitialContext object is created, or in the InitialContext properties.
Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.
InitialContext objects

Introduction to the Message Service Client for .NET 61

An application must create an initial context to be used to make a connection to the administered objects
repository to retrieve the required administered objects.
Related reference
Required properties for administered ConnectionFactory objects
When an application creates a connection factory, a number of properties must be defined to create a
connection to a messaging server.
Required properties for administered Destination objects
An application that is creating a destination must set several properties that the application on an
administered Destination object.
InitialContext (for the .NET interface)
An application uses an InitialContext object to create objects from object definitions that are retrieved
from a repository of administered objects.
Properties of InitialContext
An overview of the properties of the InitialContext object, with links to more detailed reference
information.

JNDI Lookup Web service
To access a COS naming directory from XMS, a JNDI Lookup Web service must be deployed on a
WebSphere Service Integration Bus server. This Web service translates the Java information from the
COS naming service into a form that XMS applications can read.

The Web service is provided in the enterprise archive file SIBXJndiLookupEAR.ear, located within the
install directory. For the current release of Message Service Client for .NET, SIBXJndiLookupEAR.ear can
be found in the <install_dir>\java\lib directory. This can be installed within a WebSphere service
integration bus server by using either the administrative console or the wsaadmin scripting tool. Refer to
the product documentation for further information on deploying Web service applications.

To define the Web service within XMS applications, you simply need to set the XMSC_IC_URL property of
the InitialContext object to the Web service endpoint URL. For example, if the Web service is deployed on
a server host called MyServer, an example of a Web service endpoint URL:

wsvc://MyHost:9080/SIBXJndiLookup/services/JndiLookup

Setting the XMSC_IC_URL property allows InitialContext Lookup calls to invoke the Web service at the
defined endpoint, which in turn looks up the required administered object from the COS naming service.

.NET applications can use the Web service. The server-side deployment is the same for XMS C, /C++ and,
XMS .NET. XMS .NET invokes the Web service directly through the Microsoft .NET framework.

Related concepts
Supported types of administered object repository
XMS supports three types of administered object directories: File System, Lightweight Directory Access
Protocol (LDAP), and COS Naming. File System and LDAP administered objects can be used to connect
to IBM WebSphere MQ and WebSphere Application Server, whereas COS Naming can be used to connect
only to the WebSphere Application Server.
Property mapping for administered objects
To enable applications to use IBM WebSphere MQ JMS and WebSphere Application Server connection
factory and destination object definitions, the properties retrieved from these definitions must be mapped
on to the corresponding XMS properties that can be set on XMS connection factories and destinations.
InitialContext properties
The parameters of the InitialContext constructor include the location of the repository of administered
objects, given as a uniform resource indicator (URI). In order for an application to establish a connection
to the repository, it may be necessary to provide more information than the information contained in the
URI.
URI format for XMS initial contexts

62 IBM Message Service Client for .NET

The location of the repository of administered objects is provided as a uniform resource indicator (URI).
The format of the URI depends on the context type.
Retrieval of administered objects
XMS retrieves an administered object from the repository using the address provided when the
InitialContext object is created, or in the InitialContext properties.
Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.
InitialContext objects
An application must create an initial context to be used to make a connection to the administered objects
repository to retrieve the required administered objects.
Installing Message Service Client for .NET using the installation wizard
The installation uses an InstallShield X/Windows MSI installer. Two setup options are available, so that
you can choose either a complete or a custom installation.
Related reference
Required properties for administered ConnectionFactory objects
When an application creates a connection factory, a number of properties must be defined to create a
connection to a messaging server.
Required properties for administered Destination objects
An application that is creating a destination must set several properties that the application on an
administered Destination object.

Retrieval of administered objects
XMS retrieves an administered object from the repository using the address provided when the
InitialContext object is created, or in the InitialContext properties.

Objects to be retrieved can have the following types of names:

• A simple name describing the Destination object, for example, a queue destination called SalesOrders
• A composite name, which can be made up of SubContexts, separated by '/', and it must end with

the object name. An example of a composite name is "Warehouse/PickLists/DispatchQueue2" where
Warehouse and Picklists are SubContexts in the naming directory, and DispatchQueue2 is the name of a
Destination object.

Related concepts
Supported types of administered object repository
XMS supports three types of administered object directories: File System, Lightweight Directory Access
Protocol (LDAP), and COS Naming. File System and LDAP administered objects can be used to connect
to IBM WebSphere MQ and WebSphere Application Server, whereas COS Naming can be used to connect
only to the WebSphere Application Server.
Property mapping for administered objects
To enable applications to use IBM WebSphere MQ JMS and WebSphere Application Server connection
factory and destination object definitions, the properties retrieved from these definitions must be mapped
on to the corresponding XMS properties that can be set on XMS connection factories and destinations.
InitialContext properties
The parameters of the InitialContext constructor include the location of the repository of administered
objects, given as a uniform resource indicator (URI). In order for an application to establish a connection
to the repository, it may be necessary to provide more information than the information contained in the
URI.
URI format for XMS initial contexts

Introduction to the Message Service Client for .NET 63

The location of the repository of administered objects is provided as a uniform resource indicator (URI).
The format of the URI depends on the context type.
JNDI Lookup Web service
To access a COS naming directory from XMS, a JNDI Lookup Web service must be deployed on a
WebSphere Service Integration Bus server. This Web service translates the Java information from the
COS naming service into a form that XMS applications can read.
Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.
InitialContext objects
An application must create an initial context to be used to make a connection to the administered objects
repository to retrieve the required administered objects.
Related reference
Required properties for administered ConnectionFactory objects
When an application creates a connection factory, a number of properties must be defined to create a
connection to a messaging server.
Required properties for administered Destination objects
An application that is creating a destination must set several properties that the application on an
administered Destination object.
InitialContext (for the .NET interface)
An application uses an InitialContext object to create objects from object definitions that are retrieved
from a repository of administered objects.
Properties of InitialContext
An overview of the properties of the InitialContext object, with links to more detailed reference
information.

Securing communications for XMS applications
This sectionchapter provides information about setting up secure communications to enable XMS
applications to connect via Secure Sockets Layer (SSL) to a WebSphere Service Integration Bus
messaging engine or IBM WebSphere MQ queue manager.

This sectionchapter provides information about configuring XMS ConnectionFactory properties to enable
applications to make secure connections.

The sectionchapter contains the following topicssections:

Secure connections to a IBM WebSphere MQ queue manager
To enable an XMS .NET application to make secure connections to a IBM WebSphere MQ queue manager,
the relevant properties must be defined in the ConnectionFactory object.

The protocol used in the encryption negotiation can be either Secure Sockets Layer (SSL) or Transport
Layer Security (TLS), depending on which CipherSuite you specify in the ConnectionFactory object.

If you use the IBM WebSphere MQ Version 7.0.0.1 and above client libraries and connect to a IBM
WebSphere MQ Version 7 queue manager, then you can create multiple connections to same queue
manager in XMS application. However connection to different queue manager is not permitted. If you
attempt, you get the MQRC_SSL_ALREADY_INITIALIZED error.

If you use the IBM WebSphere MQ Version 6 and above client libraries, then you can create a SSL
connection only if you close any previous SSL connection first. Multiple concurrent SSL connections from
the same process to the same or different queue managers are not permitted. If you attempt more than
one request, you get the warning MQRC_SSL_ALREADY_INITIALIZED, which might mean that some
requested parameters for the SSL connection were ignored.

64 IBM Message Service Client for .NET

ConnectionFactory properties for connections via SSL to a IBM WebSphere MQ manager, with a brief
description, are shown in the following table:

Table 15. Properties of ConnectionFactory for connections to a IBM WebSphere MQ queue manager via SSL

Name of property Description

XMSC_WMQ_SSL_CERT_STORES The locations of the servers that hold the certificate
revocation lists (CRLs) to be used on an SSL connection
to a queue manager.

XMSC_WMQ_SSL_CIPHER_SPEC The name of the CipherSpec to be used on a secure
connection to a queue manager.

XMSC_WMQ_SSL_CIPHER_SUITE The name of the CipherSuite to be used on an SSL or
TLS connection to a queue manager. The protocol used
in negotiating the secure connection depends on the
specified CipherSuite.

XMSC_WMQ_SSL_CRYPTO_HW Configuration details for the cryptographic hardware
connected to the client system.

XMSC_WMQ_SSL_FIPS_REQUIRED The value of this property determines whether an
application can or cannot use non-FIPS compliant cipher
suites. If this property is set to true, only FIPS algorithms
are used for the client-server connection.

XMSC_WMQ_SSL_KEY_REPOSITORY The location of the key database file in which keys and
certificates are stored.

XMSC_WMQ_SSL_KEY_RESETCOUNT The KeyResetCount represents the total number of
unencrypted bytes sent and received within an SSL
conversation before the secret key is renegotiated.

XMSC_WMQ_SSL_PEER_NAME The peer name to be used on an SSL connection to a queue
manager.

Related reference
IConnectionFactory (for the .NET interface)
An application uses a connection factory to create a connection.
Properties of ConnectionFactory
An overview of the properties of the ConnectionFactory object, with links to more detailed reference
information.
Required properties for administered ConnectionFactory objects
When an application creates a connection factory, a number of properties must be defined to create a
connection to a messaging server.

CipherSuite and CipherSpec name mappings for connections to a IBM WebSphere MQ
queue manager
The InitialContext translates between the JMSAdmin Connection Factory property SSLCIPHERSUITE and
the XMS near-equivalent XMSC_WMQ_SSL_CIPHER_SPEC. A similar translation is necessary if you specify
a value for XMSC_WMQ_SSL_CIPHER_SUITE but omit value for XMSC_WMQ_SSL_CIPHER_SPEC.

Table 16 on page 65 lists the available CipherSpecs and their JSSE CipherSuite equivalents.

Table 16. Available CipherSpecs and their JSSE CipherSuite equivalents

CipherSpec Equivalent JSSE CipherSuite

DES_SHA_EXPORT SSL_RSA_WITH_DES_CBC_SHA

DES_SHA_EXPORT1024 SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA

Introduction to the Message Service Client for .NET 65

Table 16. Available CipherSpecs and their JSSE CipherSuite equivalents (continued)

CipherSpec Equivalent JSSE CipherSuite

FIPS_WITH_3DES_EDE_CBC_SHA SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA

FIPS_WITH_DES_CBC_SHA SSL_RSA_FIPS_WITH_DES_CBC_SHA

NULL_MD5 SSL_RSA_WITH_NULL_MD5

NULL_SHA SSL_RSA_WITH_NULL_SHA

RC2_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

RC4_56_SHA_EXPORT1024 SSL_RSA_EXPORT1024_WITH_RC4_56_SHA

RC4_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC4_40_MD5

RC4_MD5_US SSL_RSA_WITH_RC4_128_MD5

RC4_SHA_US SSL_RSA_WITH_RC4_128_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA SSL_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHA

TRIPLE_DES_SHA_US SSL_RSA_WITH_3DES_EDE_CBC_SHA

Note: A one-to-one mapping for the CipherSuite name SSL_RSA_WITH_3DES_EDE_CBC_SHA
or SSL_RSA_WITH_DES_CBC_SHA must account for the setting of the property
XMSC_WMQ_SSL_FIPSREQUIRED and apply a heuristic.

If you specify SSL_RSA_WITH_3DES_EDE_CBC_SHA or SSL_RSA_WITH_DES_CBC_SHA for the property
XMSC_WMQ_SSL_CIPHER_SUITE, and there is no value for XMSC_WMQ_SSL_CIPHER_SPEC, a value for
XMSC_WMQ_SSL_CIPHER_SPEC is chosen according to the following tables.

The values used for XMSC_WMQ_SSL_CIPHER_SPEC when you specify
SSL_RSA_WITH_3DES_EDE_CBC_SHA for the XMSC_WMQ_SSL_CIPHER_SUITE property are shown in
the following table:

Table 17. Values used for XMSC_WMQ_SSL_CIPHER_SPEC when you specify
SSL_RSA_WITH_3DES_EDE_CBC_SHA for the XMSC_WMQ_SSL_CIPHER_SUITE property

Input: XMSC_WMQ_SSL_FIPSREQUIRED value Output: XMSC_WMQ_SSL_CIPHER_SPEC chosen

false (that is, MQSSL_FIPS_NO) TRIPLE_DES_SHA_US

true (that is, MQSSL_FIPS_YES) TLS_RSA_WITH_3DES_EDE_CBC_SHA

Note:

• TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated. However, it can still be used to transfer up to 32
GB of data before the connection is terminated with error AMQ9288. To avoid this error, you need to
either avoid using triple DES, or enable secret key reset when using this CipherSpec.

The values used for XMSC_WMQ_SSL_CIPHER_SPEC when you specify SSL_RSA_WITH_DES_CBC_SHA
for the XMSC_WMQ_SSL_CIPHER_SUITE property are shown in the following table:

66 IBM Message Service Client for .NET

Table 18. Values used for XMSC_WMQ_SSL_CIPHER_SPEC when you specify SSL_RSA_WITH_DES_CBC_SHA for
the XMSC_WMQ_SSL_CIPHER_SUITE property

Input: XMSC_WMQ_SSL_FIPSREQUIRED value Output: XMSC_WMQ_SSL_CIPHER_SPEC chosen

false (that is, MQSSL_FIPS_NO) DES_SHA_EXPORT

true (that is, MQSSL_FIPS_YES) TLS_RSA_WITH_DES_CBC_SHA

Secure connections to a WebSphere Service Integration Bus messaging
engine
To enable an XMS .NET application to make secure connections to a WebSphere Service Integration Bus
messaging engine, the relevant properties must be defined in the ConnectionFactory object.

XMS provides SSL and HTTPS support for connections to a WebSphere Service Integration Bus. SSL and
HTTPS provide secure connections for authentication and confidentiality.

LikeWebSphere security, XMS security is configured with respect to JSSE security standards and naming
conventions, which include the use of CipherSuites to specify the algorithms that are used when
negotiating a secure connection. The protocol used in the encryption negotiation can be either SSL or
TLS, depending on which CipherSuite you specify in the ConnectionFactory object.

Note: For a .NET application, the security capabilities are provided by Microsoft Secure Channel
(SChannel).

Table 19 on page 67 lists the properties that must be defined in the ConnectionFactory object.

Table 19. Properties of ConnectionFactory for secure connections to a WebSphere service integration bus
messaging engine

Name of property Description

XMSC_WPM_SSL_CIPHER_SUITE The name of the CipherSuite to be used on an SSL or
TLS connection to a WebSphere Service Integration Bus
messaging engine. The protocol used in negotiating the
secure connection depends on the specified CipherSuite.

Note: This property is supported on a .NET application.

XMSC_WPM_SSL_KEYRING_LABEL The certificate to be used when authenticating with the
server.

Note: This property is supported on a .NET application.

The following is an example of ConnectionFactory properties for secure connections to aWebSphere
integration messaging engine:

cf.setStringProperty(XMSC_WPM_PROVIDER_ENDPOINTS, host_name:port_number:chain_name);
cf.setStringProperty(XMSC_WPM_SSL_KEY_REPOSITORY, key_repository_pathname);
cf.setStringProperty(XMSC_WPM_TARGET_TRANSPORT_CHAIN, transport_chain);
cf.setStringProperty(XMSC_WPM_SSL_CIPHER_SUITE, cipher_suite);
cf.setStringProperty(XMSC_WPM_SSL_KEYRING_STASH_FILE, stash_file_pathname);

Where chain_name should be set to either BootstrapTunneledSecureMessaging or
BootstrapSecureMessaging, and port_number is the number of the port on which the bootstrap server
listens for incoming requests.

The following is an example of ConnectionFactory properties for secure connections to a WebSphere
integration messaging engine with sample values inserted:

 /* CF properties needed for an SSL connection */
 cf.setStringProperty(XMSC_WPM_PROVIDER_ENDPOINTS,"localhost:7286:BootstrapSecureMessaging");
 cf.setStringProperty(XMSC_WPM_TARGET_TRANSPORT_CHAIN,"InboundSecureMessaging");
 cf.setStringProperty(XMSC_WPM_SSL_KEY_REPOSITORY,"C:\\Program Files\\IBM\\gsk7\\bin\
\XMSkey.kdb");

Introduction to the Message Service Client for .NET 67

 cf.setStringProperty(XMSC_WPM_SSL_KEYRING_STASH_FILE,"C:\\Program Files\\IBM\\gsk7\\bin\
\XMSkey.sth");
 cf.setStringProperty(XMSC_WPM_SSL_CIPHER_SUITE,"SSL_RSA_EXPORT_WITH_RC4_40_MD5");

Related reference
IConnectionFactory (for the .NET interface)
An application uses a connection factory to create a connection.
Properties of ConnectionFactory
An overview of the properties of the ConnectionFactory object, with links to more detailed reference
information.
Required properties for administered ConnectionFactory objects
When an application creates a connection factory, a number of properties must be defined to create a
connection to a messaging server.

CipherSuite and CipherSpec name mappings for connections to a WebSphere Service
Integration Bus
Because GSKit uses CipherSpecs rather than CipherSuites, the JSSE-style CipherSuite names specified in
the XMSC_WPM_SSL_CIPHER_SUITE property must be mapped to the GSKit-style CipherSpec names.

Table 20 on page 68 lists the equivalent CipherSpec for each recognized CipherSuite.

Table 20. Available CipherSuites and their equivalent CipherSpecs

CipherSuite CipherSpec equivalent

SSL_RSA_WITH_NULL_MD5 NULL_MD5

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 RC2_MD5_EXPORT

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RC4_MD5_EXPORT

SSL_RSA_WITH_RC4_128_MD5 RC4_MD5_US

SSL_RSA_WITH_NULL_SHA NULL_SHA

SSL_RSA_EXPORT1024_WITH_RC4_56_SHA RC4_56_SHA_EXPORT1024

SSL_RSA_WITH_RC4_128_SHA RC4_SHA_US

SSL_RSA_WITH_DES_CBC_SHA DES_SHA_EXPORT

SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA DES_SHA_EXPORT1024

SSL_RSA_FIPS_WITH_DES_CBC_SHA FIPS_WITH_DES_CBC_SHA

SSL_RSA_WITH_3DES_EDE_CBC_SHA TRIPLE_DES_SHA_US

SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA FIPS_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_DES_CBC_SHA TLS_RSA_WITH_DES_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA TLS_RSA_WITH_AES_256_CBC_SHA

Note:

• TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated. However, it can still be used to transfer up to 32
GB of data before the connection is terminated with error AMQ9288. To avoid this error, you need to
either avoid using triple DES, or enable secret key reset when using this CipherSpec.

68 IBM Message Service Client for .NET

XMS messages
This sectionchapter describes the structure and content of XMS messages and explains how applications
process XMS messages.

This sectionchapter contains the following topicssections:

• “Parts of an XMS message” on page 69
• “Header fields in an XMS message” on page 70
• “Properties of an XMS message” on page 71
• “The body of an XMS message” on page 74
• “Message selectors” on page 80
• “Mapping XMS messages onto IBM WebSphere MQ messages” on page 81

Related reference
IMessage (for the .NET interface)
A Message object represents a message that an application sends or receives. IMessage is a superclass
for the message classes such as IMapMessage.

Parts of an XMS message
An XMS message consists of a header, a set of properties, and a body.

Header
The header of a message contains fields, and all messages contain the same set of header fields.
XMS and applications use the values of the header fields to identify and route messages. For more
information about header fields, see “Header fields in an XMS message” on page 70.

Set of properties
The properties of a message specify additional information about the message. Although all messages
have the same set of header fields, every message can have a different set of properties. For more
information, see “Properties of an XMS message” on page 71.

Body
The body of a message contains application data. For more information, see “The body of an XMS
message” on page 74.

An application can select which messages it wants to receive. By using message selectors, which specify
the selection criteria. The criteria can be based on the values of certain header fields and the values of any
of the properties of a message. For more information about message selectors, see “Message selectors”
on page 80.

Related reference
Header fields in an XMS message
To allow an XMS application to exchange messages with a WebSphere JMS application, the header of an
XMS message contains the JMS message header fields.
Properties of an XMS message
XMS supports three kinds of message property: JMS defined properties, IBM defined properties, and
application-defined properties.
The body of an XMS message
The body of a message contains application data. However, a message can have no body, and comprise
only the header fields and properties.
Message selectors
An XMS application uses messages selectors to select the messages it wants to receive.
Mapping XMS messages onto IBM WebSphere MQ messages

Introduction to the Message Service Client for .NET 69

The JMS header fields and properties of an XMS message are mapped onto fields in the header structures
of a IBM WebSphere MQ message.

Header fields in an XMS message
To allow an XMS application to exchange messages with a WebSphere JMS application, the header of an
XMS message contains the JMS message header fields.

The names of these header fields commence with the prefix JMS. For a description of the JMS message
header fields, see the Java Message Service Specification, Version 1.1.

XMS implements the JMS message header fields as attributes of a Message object. Each header field has
its own methods for setting and getting its value. For a description of these methods, see “IMessage” on
page 122. A header field is always readable and writable.

Table 21 on page 70 lists the JMS message header fields and indicates how the value of each field is set
for a transmitted message. Some of the fields are set automatically by XMS when an application sends a
message or, in the case of JMSRedelivered, when an application receives a message.

Table 21. JMS message header fields

Name of the JMS message
header field

How the value is set for a transmitted message (in the format
method [class])

JMSCorrelationID Set JMSCorrelationID [Message]

JMSDeliveryMode Send [MessageProducer]

JMSDestination Send [MessageProducer]

JMSExpiration Send [MessageProducer]

JMSMessageID Send [MessageProducer]

JMSPriority Send [MessageProducer]

JMSRedelivered Receive [MessageConsumer]

JMSReplyTo Set JMSReplyTo [Message]

JMSTimestamp Send [MessageProducer]

JMSType Set JMSType [Message]

Related reference
Parts of an XMS message
An XMS message consists of a header, a set of properties, and a body.
Properties of an XMS message
XMS supports three kinds of message property: JMS defined properties, IBM defined properties, and
application-defined properties.
The body of an XMS message
The body of a message contains application data. However, a message can have no body, and comprise
only the header fields and properties.
Message selectors
An XMS application uses messages selectors to select the messages it wants to receive.
Mapping XMS messages onto IBM WebSphere MQ messages

70 IBM Message Service Client for .NET

The JMS header fields and properties of an XMS message are mapped onto fields in the header structures
of a IBM WebSphere MQ message.

Properties of an XMS message
XMS supports three kinds of message property: JMS defined properties, IBM defined properties, and
application-defined properties.

An XMS application can exchange messages with a WebSphere JMS application because XMS supports
the following predefined properties of a Message object:

• The same JMS-defined properties that WebSphere JMS supports. The names of these properties begin
with the prefix JMSX.

• The same IBM-defined properties that WebSphere JMS supports. The names of these properties begin
with the prefix JMS_IBM_.

Each predefined property has two names:

• A JMS name, for a JMS-defined property, or a WebSphere JMS name, for an IBM-defined property.

This is the name by which the property is known in JMS or WebSphere JMS, and it is also the name that
is transmitted with a message that has this property. An XMS application uses this name to identify the
property in a message selector expression.

• An XMS name to identify the property in all situations except in a message selector expression. Each
XMS name is defined as a named constant in IBM.XMS.XMSC class. The value of the named constant is
the corresponding JMS or WebSphere JMS name.

In addition to the predefined properties, an XMS application can create and use its own set of message
properties. These properties are called application defined properties.

After an application creates a message, the properties of the message are readable and writable. The
properties remain readable and writable after the application sends the message. When an application
receives a message, the properties of the message are read-only. If an application calls the Clear
Properties method of the Message class when the properties of a message are read-only, the
properties become readable and writable. The method also clears the properties.

The received message, when forwarded after clearing up the message properties, will behave in a manner
consistent with the behavior of forwarding a standard WMQ XMS for .NET BytesMessage with message
properties cleared up.

This is, however, not recommended since the following properties will be lost:

• JMS_IBM_Encoding property value, implying that the message data cannot be decoded meaningfully.
• JMS_IBM_Format property value, implying that the header chaining between the (MQMD or the new

MQRFH2) message header and existing headers would be broken.

Related reference
Parts of an XMS message
An XMS message consists of a header, a set of properties, and a body.
Header fields in an XMS message
To allow an XMS application to exchange messages with a WebSphere JMS application, the header of an
XMS message contains the JMS message header fields.
The body of an XMS message
The body of a message contains application data. However, a message can have no body, and comprise
only the header fields and properties.
Message selectors
An XMS application uses messages selectors to select the messages it wants to receive.
Mapping XMS messages onto IBM WebSphere MQ messages

Introduction to the Message Service Client for .NET 71

The JMS header fields and properties of an XMS message are mapped onto fields in the header structures
of a IBM WebSphere MQ message.

JMS-defined properties of a message
Several JMS-defined properties of a message are supported by both XMS and WebSphere JMS.

Table 22 on page 72 lists the JMS-defined properties of a message that are supported by both XMS and
WebSphere JMS. For a description of the JMS-defined properties, see Java Message Service Specification,
Version 1.1. The JMS-defined properties are not valid for a real-time connection to a broker.

The table specifies the data type of each property and indicates how the value of the property is set for a
transmitted message. Some of the properties are set automatically by XMS when an application sends a
message or, in the case of JMSXDeliveryCount, when an application receives a message.

Table 22. JMS-defined properties of a message

XMS name of the JMS
defined property JMS name Data type

How the value is set for
a transmitted message
(in the format method
[class])

JMSX_APPID JMSXAppID System.String Send [MessageProducer]

JMSX_DELIVERY_COUNT JMSXDeliveryCount System.Int32 Receive
[MessageConsumer]

JMSX_GROUPID JMSXGroupID System.String Set String Property
[PropertyContext]

JMSX_GROUPSEQ JMSXGroupSeq System.Int32 Set Integer Property
[PropertyContext]

JMSX_USERID JMSXUserID System.String Send [MessageProducer]

IBM-defined properties of a message
Several IBM-defined properties of a message are supported by XMS and WebSphere JMS.

Table 23 on page 72 lists the IBM defined properties of a message that are supported by both XMS and
WebSphere JMS. For more information about the IBM-defined properties, see IBM WebSphere MQ Using
Java or the WebSphere Application Server product documentation.

The table specifies the data type of each property and indicates how the value of the property is set for a
transmitted message. Some of the properties are set automatically by XMS when an application sends a
message.

Table 23. IBM-defined properties of a message

XMS name of the IBM
defined property WebSphere JMS name Data type

How the value is set for
a transmitted message
(in the format method
[class])

JMS_IBM_CHARACTER_S
ET

JMS_IBM_Character_Set System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_ENCODING JMS_IBM_Encoding System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_EXCEPTIONME
SSAGE

JMS_IBM_ExceptionMess
age

System.String Receive
[MessageConsumer]

JMS_IBM_EXCEPTIONRE
ASON

JMS_IBM_ExceptionReas
on

System.Int32 Receive
[MessageConsumer]

72 IBM Message Service Client for .NET

Table 23. IBM-defined properties of a message (continued)

XMS name of the IBM
defined property WebSphere JMS name Data type

How the value is set for
a transmitted message
(in the format method
[class])

JMS_IBM_EXCEPTIONTI
MESTAMP

JMS_IBM_ExceptionTime
stamp

System.Int64 Receive
[MessageConsumer]

JMS_IBM_EXCEPTIONPR
OBLEM
 DESTINATION

JMS_IBM_ExceptionProbl
emDestination

System.String Receive
[MessageConsumer]

JMS_IBM_FEEDBACK JMS_IBM_Feedback System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_FORMAT JMS_IBM_Format System.String Set String Property
[PropertyContext]

JMS_IBM_LAST_MSG_IN
_GROUP

JMS_IBM_Last_Msg_In_G
roup

System.Boolean Set Integer Property
[PropertyContext]

JMS_IBM_MSGTYPE JMS_IBM_MsgType System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_PUTAPPLTYPE JMS_IBM_PutApplType System.Int32 Send [MessageProducer]

JMS_IBM_PUTDATE JMS_IBM_PutDate System.String Send [MessageProducer]

JMS_IBM_PUTTIME JMS_IBM_PutTime System.String Send [MessageProducer]

JMS_IBM_REPORT_COA JMS_IBM_Report_COA System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_COD JMS_IBM_Report_COD System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_DISC
ARD_MSG

JMS_IBM_Report_Discard
_Msg

System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_EXCE
PTION

JMS_IBM_Report_Excepti
on

System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_EXPI
RATION

JMS_IBM_Report_Expirati
on

System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_NAN JMS_IBM_Report_NAN System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_PAN JMS_IBM_Report_PAN System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_PASS
CORREL
 ID

JMS_IBM_Report_Pass_C
orrel_ID

System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_PASS
_MSG_ID

JMS_IBM_Report_Pass_
Msg_ID

System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_SYSTEM_MESS
AGEID

JMS_IBM_System_Messa
geID

System.String Send [MessageProducer]

Introduction to the Message Service Client for .NET 73

Application-defined properties of a message
An XMS application can create and use its own set of message properties. When an application sends a
message, these properties are also transmitted with the message. A receiving application, using message
selectors, can then select which messages it wants to receive based on the values of these properties.

To allow a WebSphere JMS application to select and process messages sent by an XMS application,
the name of an application-defined property must conform to the rules for forming identifiers in
message selector expressions, as documented in IBM WebSphere MQ Using Java. The value of an
application-defined property must have one of the following data types: System.Boolean, System.SByte,
System.Int16, System.Int32, System.Int64, System.Float, System.Double, or System.String.

The body of an XMS message
The body of a message contains application data. However, a message can have no body, and comprise
only the header fields and properties.

XMS supports five types of message body:
Bytes

The body contains a stream of bytes. A message with this type of body is called a bytes message.
The IBytesMessage interface contains the methods to process the body of a bytes message. For more
information, see “Bytes messages” on page 76.

Map
The body contains a set of name-value pairs, where each value has an associated data type. A
message with this type of body is called a map message. The IMapMessage interface contains the
methods to process the body of a map message. For more information, see “Map messages” on page
77.

Object
The body contains a serialized Java or .NET object. A message with this type of body is called an
object message. The IObjectMessage interface contains the methods to process the body of an object
message. For more information, see “Object messages” on page 77.

Stream
The body contains a stream of values, where each value has an associated data type. A message with
this type of body is called a stream message. The IStreamMessage interface contains the methods to
process the body of a stream message. For more information, see “Stream messages” on page 78.

Text
The body contains a string. A message with this type of body is called a text message. The
ITextMessage interface contains the methods to process the body of a text message. For more
information, see “Text messages” on page 79.

The IMessage interface is the parent of all message objects and can be used in messaging functions to
represent any of the XMS message types.

For information about the size and maximum and minimum values of each of these data types, see Table
5 on page 40.

For more information about the required data types for elements of application data written in the body of
a message and about the five types of body message, see the subtopics.

Related reference
Parts of an XMS message
An XMS message consists of a header, a set of properties, and a body.
Header fields in an XMS message
To allow an XMS application to exchange messages with a WebSphere JMS application, the header of an
XMS message contains the JMS message header fields.
Properties of an XMS message

74 IBM Message Service Client for .NET

XMS supports three kinds of message property: JMS defined properties, IBM defined properties, and
application-defined properties.
Message selectors
An XMS application uses messages selectors to select the messages it wants to receive.
Mapping XMS messages onto IBM WebSphere MQ messages
The JMS header fields and properties of an XMS message are mapped onto fields in the header structures
of a IBM WebSphere MQ message.

Data types for elements of application data
To ensure that an XMS application can exchange messages with a IBM WebSphere MQ classes for JMS
application, both the applications must be able to interpret the application data in the body of a message
in the same way.

For this reason, each element of application data written in the body of a message by an XMS application
must have one of the data types listed in Table 24 on page 75. For each data type, the table shows the
compatible Java data type. XMS provides the methods to write elements of application data only with
these data types.

Table 24. XMS data types that are compatible with Java data types

XMS Data type Represents Compatible Java
data type

System.Boolean The boolean value true or false boolean

System.Char16 Double byte character char

System.SByte Signed 8-bit integer byte

System.Int16 Signed 16-bit integer short

System.Int32 Signed 32-bit integer int

System.Int64 Signed 64-bit integer long

System.Float Signed floating point number float

System.Double Signed double precision floating point number double

System.String String of characters String

For information about the size, maximum value and minimum value of each of these data types, see “XMS
primitive types” on page 39.

Related concepts
Attributes and properties of objects
An XMS object can have attributes and properties, which are characteristics of the object, that are
implemented in different ways.
XMS primitive types
XMS provides equivalents of the eight Java primitive types (byte, short, int, long, float, double, char, and
boolean). This allows the interchange of messages between XMS and JMS without data becoming lost or
corrupted.
Implicit conversion of a property value from one data type to another
When an application gets the value of a property, the value can be converted by XMS into another data
type. Many rules govern which conversions are supported and how XMS performs the conversions.
Related reference
Bytes messages
The body of a bytes message contains a stream of bytes. The body contains only the actual data, and it is
the responsibility of the sending and receiving applications to interpret this data.
Map messages

Introduction to the Message Service Client for .NET 75

The body of a map message contains a set of name-value pairs, where each value has an associated data
type.
Object messages
The body of an object message contains a serializedJava or .NET object.
Stream messages
The body of a stream message contains a stream of values, where each value has an associated data type.
Text messages
The body of a text message contains a string.

Bytes messages
The body of a bytes message contains a stream of bytes. The body contains only the actual data, and it is
the responsibility of the sending and receiving applications to interpret this data.

Bytes messages are useful if an XMS application needs to exchange messages with applications that are
not using the XMS or JMS application programming interface.

After an application creates a bytes message, the body of the message is write-only. The application
assembles the application data into the body by calling the appropriate write methods of the
IBytesMessage interface for .NET. Each time the application writes a value to the bytes message stream,
the value is assembled immediately after the previous value written by the application. XMS maintains an
internal cursor to remember the position of the last byte that was assembled.

When the application sends the message, the body of the message becomes read-only. In this mode, the
application can send the message repeatedly.

When an application receives a bytes message, the body of the message is read-only. The application
can use the appropriate read methods of the IBytesMessage interface to read the contents of the bytes
message stream. The application reads the bytes in sequence, and XMS maintains an internal cursor to
remember the position of the last byte that was read.

If an application calls the Reset method of the IBytesMessage interface when the body of a bytes
message is writeable, the body becomes read-only. The method also repositions the cursor at the
beginning of the bytes message stream.

If an application calls the Clear Body method of the IMessage interface for .NET when the body of a
bytes message is read-only, the body becomes writeable. The method also clears the body.

Related reference
Data types for elements of application data
To ensure that an XMS application can exchange messages with a IBM WebSphere MQ classes for JMS
application, both the applications must be able to interpret the application data in the body of a message
in the same way.
Map messages
The body of a map message contains a set of name-value pairs, where each value has an associated data
type.
Object messages
The body of an object message contains a serializedJava or .NET object.
Stream messages
The body of a stream message contains a stream of values, where each value has an associated data type.
Text messages
The body of a text message contains a string.
IBytesMessage (for the .NET interface)

76 IBM Message Service Client for .NET

A bytes message is a message whose body comprises a stream of bytes.

Map messages
The body of a map message contains a set of name-value pairs, where each value has an associated data
type.

In each name-value pair, the name is a string that identifies the value, and the value is an element of
application data that has one of the XMS data types listed in Table 24 on page 75. The order of the
name-value pairs is not defined. The MapMessage class contains the methods to set and get name-value
pairs.

An application can access a name-value pair randomly by specifying its name.

A .NET application can use the MapNames property to get an enumeration of the names in the body of the
map message.

When an application gets the value of a name-value pair, the value can be converted by XMS into another
data type. For example, to get an integer from the body of a map message, an application can call
the GetString method of the MapMessage class, which returns the integer as a string. The supported
conversions are the same as those that are supported when XMS converts a property value from one
data type to another. For more information about the supported conversions, see “Implicit conversion of a
property value from one data type to another” on page 40.

After an application creates a map message, the body of the message is readable and writable. The body
remains readable and writable after the application sends the message. When an application receives a
map message, the body of the message is read-only. If an application calls the Clear Body method of the
Message class when the body of a map message is read-only, the body becomes readable and writable.
The method also clears the body.

Related concepts
Implicit conversion of a property value from one data type to another
When an application gets the value of a property, the value can be converted by XMS into another data
type. Many rules govern which conversions are supported and how XMS performs the conversions.
Related reference
Data types for elements of application data
To ensure that an XMS application can exchange messages with a IBM WebSphere MQ classes for JMS
application, both the applications must be able to interpret the application data in the body of a message
in the same way.
Bytes messages
The body of a bytes message contains a stream of bytes. The body contains only the actual data, and it is
the responsibility of the sending and receiving applications to interpret this data.
Object messages
The body of an object message contains a serializedJava or .NET object.
Stream messages
The body of a stream message contains a stream of values, where each value has an associated data type.
Text messages
The body of a text message contains a string.
IMapMessage (for the .NET interface)
A map message is a message whose body comprises a set of name-value pairs, where each value has an
associated data type.

Object messages
The body of an object message contains a serializedJava or .NET object.

An XMS application can receive an object message, change its header fields and properties, and then send
it to another destination. An application can also copy the body of an object message and use it to form
another object message. XMS treats the body of an object message as an array of bytes.

Introduction to the Message Service Client for .NET 77

After an application creates an object message, the body of the message is readable and writable.
The body remains readable and writable after the application sends the message. When an application
receives an object message, the body of the message is read-only. If an application calls the Clear Body
method of the IMessage interface for .NET when the body of an object message is read-only, the body
becomes readable and writable. The method also clears the body.

Related reference
Data types for elements of application data
To ensure that an XMS application can exchange messages with a IBM WebSphere MQ classes for JMS
application, both the applications must be able to interpret the application data in the body of a message
in the same way.
Bytes messages
The body of a bytes message contains a stream of bytes. The body contains only the actual data, and it is
the responsibility of the sending and receiving applications to interpret this data.
Map messages
The body of a map message contains a set of name-value pairs, where each value has an associated data
type.
Stream messages
The body of a stream message contains a stream of values, where each value has an associated data type.
Text messages
The body of a text message contains a string.
IObjectMessage (for the .NET interface)
An object message is a message whose body comprises a serialized Java or .NET object.

Stream messages
The body of a stream message contains a stream of values, where each value has an associated data type.

The data type of a value is one of the XMS data types listed in Table 24 on page 75.

After an application creates a stream message, the body of the message is writable. The application
assembles the application data into the body by calling the appropriate write methods of the
IStreamMessage interface for .NET. Each time the application writes a value to the message stream,
the value, and its data type are assembled immediately after the previous value written by the application.
XMS maintains an internal cursor to remember the position of the last value that was assembled.

When the application sends the message, the body of the message becomes read-only. In this mode, the
application can send the message multiple times.

When an application receives a stream message, the body of the message is read-only. The application
can use the appropriate read methods of the IStreamMessage interface for .NET to read the contents of
the message stream. The application reads the values in sequence, and XMS maintains an internal cursor
to remember the position of the last value that was read.

When an application reads a value from the message stream, the value can be converted by XMS into
another data type. For example, to read an integer from the message stream, an application can call the
ReadString method, which returns the integer as a string. The supported conversions are the same as
those that are supported when XMS converts a property value from one data type to another. For more
information about the supported conversions, see “Implicit conversion of a property value from one data
type to another” on page 40.

If an error occurs while an application is attempting to read a value from the message stream, the cursor
is not advanced. The application can recover from the error by attempting to read the value as another
data type.

If an application calls the Reset method of the IStreamMessage interface for .NET when the body of a
stream message is write-only, the body becomes read-only. The method also repositions the cursor at the
beginning of the message stream.

If an application calls the Clear Body method of the IMessage interface for .NET when the body of a
stream message is read-only, the body becomes write-only. The method also clears the body.

78 IBM Message Service Client for .NET

Related concepts
Implicit conversion of a property value from one data type to another
When an application gets the value of a property, the value can be converted by XMS into another data
type. Many rules govern which conversions are supported and how XMS performs the conversions.
Related reference
Data types for elements of application data
To ensure that an XMS application can exchange messages with a IBM WebSphere MQ classes for JMS
application, both the applications must be able to interpret the application data in the body of a message
in the same way.
Bytes messages
The body of a bytes message contains a stream of bytes. The body contains only the actual data, and it is
the responsibility of the sending and receiving applications to interpret this data.
Map messages
The body of a map message contains a set of name-value pairs, where each value has an associated data
type.
Object messages
The body of an object message contains a serializedJava or .NET object.
Text messages
The body of a text message contains a string.
IStreamMessage (for the .NET interface)
A stream message is a message whose body comprises a stream of values, where each value has an
associated data type. The contents of the body are written and read sequentially.

Text messages
The body of a text message contains a string.

After an application creates an text message, the body of the message is readable and writable. The body
remains readable and writable after the application sends the message. When an application receives an
text message, the body of the message is read-only. If an application calls the Clear Body method of the
IMessage interface for .NET when the body of an text message is read-only, the body becomes readable
and writable. The method also clears the body.

Related reference
Data types for elements of application data
To ensure that an XMS application can exchange messages with a IBM WebSphere MQ classes for JMS
application, both the applications must be able to interpret the application data in the body of a message
in the same way.
Bytes messages
The body of a bytes message contains a stream of bytes. The body contains only the actual data, and it is
the responsibility of the sending and receiving applications to interpret this data.
Map messages
The body of a map message contains a set of name-value pairs, where each value has an associated data
type.
Object messages
The body of an object message contains a serializedJava or .NET object.
Stream messages
The body of a stream message contains a stream of values, where each value has an associated data type.
ITextMessage (for the .NET interface)

Introduction to the Message Service Client for .NET 79

A text message is a message whose body comprises a string.

Message selectors
An XMS application uses messages selectors to select the messages it wants to receive.

When an application creates a message consumer, it can associate a message selector expression with
the consumer. The message selector expression specifies the selection criteria.

When an application is connecting to IBM WebSphere MQ V7.0 queue manager the message selection
is done at the queue manager side. XMS does not do any selection and simply delivers the message it
received from the queue manager thus providing better performance.

However, when an application is connecting to IBM WebSphere MQ V6.0 and below, WebSphere Event
Broker, or WebSphere Message Broker, WebSphere Service Integration Bus XMS determines whether
each incoming message satisfies the selection criteria. If a message satisfies the selection criteria, XMS
delivers the message to the message consumer. If a message does not meet the selection criteria, XMS
does not deliver the message and, in the point-to-point domain, the message remains on the queue.

An application can create more than one message consumer, each with its own message selector
expression. If an incoming message meets the selection criteria of more than one message consumer,
XMS delivers the message to each of these consumers.

A message selector expression can reference the following properties of a message:

• JMS-defined properties
• IBM-defined properties
• Application-defined properties

It can also reference the following message header fields:

• JMSCorrelationID
• JMSDeliveryMode
• JMSMessageID
• JMSPriority
• JMSTimestamp
• JMSType

A message selector expression, however, cannot reference data in the body of a message.

Here is an example of a message selector expression:

JMSPriority > 3 AND manufacturer = 'Jaguar' AND model in ('xj6','xj12')

XMS delivers a message to a message consumer with this message selector expression only if the
message has a priority greater than 3; an application-defined property, manufacturer, with a value of
Jaguar; and another application defined-property, model, with a value of xj6 or xj12.

The syntax rules for forming a message selector expression in XMS are the same as those in IBM
WebSphere MQ classes for JMS. For information about how to construct a message selector expression,
see WebSphere MQ Using Java. Note that, in a message selector expression, the names of JMS-defined
properties must be the JMS names, and the names of IBM-defined properties must be the IBM
WebSphere MQ classes for JMS names. You cannot use the XMS names in a message selector expression.

Related reference
Parts of an XMS message
An XMS message consists of a header, a set of properties, and a body.
Header fields in an XMS message
To allow an XMS application to exchange messages with a WebSphere JMS application, the header of an
XMS message contains the JMS message header fields.
Properties of an XMS message

80 IBM Message Service Client for .NET

XMS supports three kinds of message property: JMS defined properties, IBM defined properties, and
application-defined properties.
The body of an XMS message
The body of a message contains application data. However, a message can have no body, and comprise
only the header fields and properties.
Mapping XMS messages onto IBM WebSphere MQ messages
The JMS header fields and properties of an XMS message are mapped onto fields in the header structures
of a IBM WebSphere MQ message.

Mapping XMS messages onto IBM WebSphere MQ messages
The JMS header fields and properties of an XMS message are mapped onto fields in the header structures
of a IBM WebSphere MQ message.

When an XMS application is connected to a IBM WebSphere MQ queue manager, messages sent to the
queue manager are mapped onto IBM WebSphere MQ messages in the same way that IBM WebSphere
MQ classes for JMS messages are mapped onto IBM WebSphere MQ messages in similar circumstances.

If the XMSC_WMQ_TARGET_CLIENT property of a Destination object is set to
XMSC_WMQ_TARGET_DEST_JMS, the JMS header fields and properties of a message sent to the
destination are mapped onto fields in the MQMD and MQRFH2 header structures of the IBM WebSphere
MQ message. Setting the XMSC_WMQ_TARGET_CLIENT property in this way assumes that the application
that receives the message can handle an MQRFH2 header. The receiving application might therefore be
another XMS application, a IBM WebSphere MQ classes for JMS application, or a native IBM WebSphere
MQ application that has been designed to handle an MQRFH2 header.

If the XMSC_WMQ_TARGET_CLIENT property of a Destination object is set to
XMSC_WMQ_TARGET_DEST_MQ instead, the JMS header fields and properties of a message sent to the
destination are mapped onto fields in the MQMD header structure of the IBM WebSphere MQ message.
The message does not contain an MQRFH2 header, and any JMS header fields and properties that cannot
be mapped onto fields in the MQMD header structure are ignored. The application that receives the
message can therefore be a native IBM WebSphere MQ that's not designed to handle an MQRFH2 header.

IBM WebSphere MQ messages received from a queue manager are mapped onto XMS messages in the
same way that IBM WebSphere MQ messages are mapped onto IBM WebSphere MQ classes for JMS
messages in similar circumstances.

If an incoming IBM WebSphere MQ message has an MQRFH2 header, the resulting XMS message has
a body whose type is determined by the value of the Msd property contained in the mcd folder of the
MQRFH2 header. If the Msd property is not present in the MQRFH2 header, or if the IBM WebSphere MQ
message has no MQRFH2 header, the resulting XMS message has a body whose type is determined by
the value of the Format field in the MQMD header. If the Format field is set to MQFMT_STRING, the XMS
message is a text message. Otherwise, the XMS message is a bytes message. If the IBM WebSphere MQ
message has no MQRFH2 header, only those JMS header fields and properties that can be derived from
fields in the MQMD header are set.

For more information about mapping IBM WebSphere MQ classes for JMS messages onto IBM
WebSphere MQ messages, see IBM WebSphere MQ Using Java.

Related reference
Parts of an XMS message
An XMS message consists of a header, a set of properties, and a body.
Header fields in an XMS message
To allow an XMS application to exchange messages with a WebSphere JMS application, the header of an
XMS message contains the JMS message header fields.
Properties of an XMS message
XMS supports three kinds of message property: JMS defined properties, IBM defined properties, and
application-defined properties.
The body of an XMS message

Introduction to the Message Service Client for .NET 81

The body of a message contains application data. However, a message can have no body, and comprise
only the header fields and properties.
Message selectors
An XMS application uses messages selectors to select the messages it wants to receive.

Reading and writing the message descriptor from a Message Service Client for .NET
application
You can access all the message descriptor (MQMD) fields of a IBM WebSphere MQ message except
StrucId and Version; BackoutCount can be read but not written to. This feature is available only when
connecting to a IBM WebSphere MQ queue manager Version 6 and above, and is controlled by destination
properties described later.

The message attributes provided by the Message Service Client for .NET facilitates XMS applications to
set MQMD fields and also to drive IBM WebSphere MQ applications.

Some restrictions apply when usingpublish/subscribe messaging. For example, MQMD fields like MsgID
and CorrelId, if set, are ignored.

The function described in this topic is unavailable for publish/subscribe messaging when you are
either connecting to a IBM WebSphere MQ V6 queue manager. It is also unavailable when the
PROVIDERVERSION property is set to 6.

AccessingIBM WebSphere MQ Message data from a Message Service Client for .NET
application
You can access the complete IBM WebSphere MQ message data including the MQRFH2 header (if
present) and any other IBM WebSphere MQ headers (if present) within a Message Service Client for .NET
application as the body of a JMSBytesMessage.

The function described in this topic is available only when connecting to a IBM WebSphere MQ queue
manager at Version 7 or later and the IBM WebSphere MQ messaging provider is in normal mode.

Destination object properties determine how the XMS application accesses the whole of a IBM
WebSphere MQmessage (including the MQRFH2 header, if present) as the body of a JMSBytesMessage.

Troubleshooting
This sectionchapter provides information to help you to detect and deal with problems when using
Message Service Client for .NET.

This sectionchapter provides information to help you with problem determination for XMS applications,
and describes how to configure First Failure Data Capture (FFDC) and trace for .NET applications.

This sectionchapter contains the following topicssections:

• “Trace configuration for .NET applications” on page 82
• “FFDC configuration for .NET applications” on page 87
• “Tips for troubleshooting” on page 87

Trace configuration for .NET applications
For XMS .NET applications, you can configure trace from an application configuration file as well as from
the XMS environment variables. You can select the components that you want to trace. Trace is normally
used under the guidance of IBM Support.

Tracing for XMS .NET is based on the standard .NET trace infrastructure.

All tracing except for error tracing is disabled by default. You can turn on tracing and configure the trace
settings in either of the following ways:

• By using an application configuration file with a name that consists of the name of the executable
program to which the file relates, with the suffix .config. For example, the application configuration
file for text.exe would have the name text.exe.config. Using an application configuration file is the

82 IBM Message Service Client for .NET

preferred way of enabling trace for XMS .NET applications. For further details, see “Trace configuration
using an application configuration file” on page 83.

• By using XMS environment variables as for XMS C or C++ applications. For further details, see “Trace
configuration using XMS environment variables” on page 85.

The active trace file has a name of the format xms_trace<PID>.log where <PID> represents the
process ID of the application. The size of the active trace file is by default limited to 20 MB. When
this limit is reached, the file is renamed and archived. Archived files have names of the format
xms_trace<PID>_YY.MM.DD_HH.MM.SS.log

By default, the number of trace files that are retained is four, that is, one active file and three archived
files. These four files are used as a rolling buffer until the application stops, with the oldest file being
removed and replaced by the newest file. You can change the number of trace files by specifying a
different number in the application configuration file. However, there must be at least two files (one active
file and one archived file).

Two trace file formats are available:

• Basic format trace files are human readable, in a WebSphere Application Server format. This format is
the default trace file format. The basic format is not compatible with trace analyzer tools.

• Advanced format trace files are compatible with trace analyzer tools. You must specify that you want to
produce trace files in advanced format in the application configuration file.

Trace entries contain the following information:

• The date and time that the trace was logged
• The class name
• The trace type
• The trace message

The following example shows an extract from some trace:

[09/11/2005 14:33:46:914276] 00000004 IBM.XMS.Comms.IoRequest > Allocate Entry
[09/11/2005 14:33:46:914276] 00000004 IBM.XMS.Comms.IoRequest > Initialize Entry
[09/11/2005 14:33:46:914276] 00000004 IBM.XMS.Comms.IoRequest < Initialize Exit
[09/11/2005 14:33:46:914276] 00000004 IBM.XMS.Comms.IoRequest < Allocate Exit

In the previous example, the format is:

[Date Time:Microsecs] Thread-id Classname Trace-type Methodname Entry
or Exit

where Trace-type is:

> for Entry
< for Exit
d for Debug information

Trace configuration using an application configuration file
The preferred way of configuring trace for XMS .NET applications is with an application configuration file.
The trace section of this file includes parameters that define what is to be traced, the trace file location
and maximum allowed size, the number of trace files used, and the trace file format.

To turn on trace using the application configuration file, you simply place the file in the same directory as
the executable file for your application.

Trace can be enabled both by component and trace type. It is also possible to turn on trace for an entire
trace group. You can turn on trace for components in a hierarchy either individually or collectively. The
types of trace available include:

• Debug trace

Introduction to the Message Service Client for .NET 83

• Exception trace
• Warnings, informational messages, and error messages
• Method entry and exit trace

The following example shows the trace settings defined in the Trace section of an application
configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <configSections>
 <sectionGroup name="IBM.XMS">
 <section name="Trace"
 type="System.Configuration.SingleTagSectionHandler" />
 </sectionGroup>
 </configSections>

 <IBM.XMS>
 <Trace traceSpecification="*=all=enabled" traceFilePath=""
 traceFileSize="20000000" traceFileNumber="3"
 traceFormat="advanced" />
 </IBM.XMS>
 </configuration>

Table 25 on page 84 describes the parameter settings in more detail.

Table 25. Application configuration file trace parameter settings

Parameter Description

traceSpecification=<ComponentName>=<ty
pe>=<state>

<ComponentName> is the name of the class that
you want to trace. You can use a * wildcard
character in this name. For example, *=all=enabled
specifies that you want to trace all classes, and
IBM.XMS.impl.*=all=enabled specifies that you
require API trace only.

<type> can be any of the following trace types:

• all
• debug
• event
• EntryExit

<state> can be either enabled or disabled.

You can string multiple trace elements together by using
a ':' (colon) delimiter.

traceFilePath="<filename>" If you do not specify a traceFilePath, or if the
traceFilePath is present but contains an empty string, the
trace file is placed in the current directory. To store the
trace file in a named directory, specify the directory name
in the traceFilePath, for example:

traceFilePath="c:\somepath"

traceFileSize="<size>" The maximum allowed size of the trace file. When
a file reaches this size, it is archived and renamed.
The default maximum is 20 KB, which is specified as
traceFileSize="20000000".

traceFileNumber="<number>" The number of trace files that are to be retained. The
default is 4 (one active file and 3 archive files). The
minimum number allowed is 2.

84 IBM Message Service Client for .NET

Table 25. Application configuration file trace parameter settings (continued)

Parameter Description

traceFormat="<format>" The default trace format is basic. Trace files are produced
in this format if you specify traceFormat="basic", or
if you do not specify a traceFormat, or if the traceFormat
is present but contains an empty string.

If you require trace that is compatible with trace analyzer
tools, you must specify traceFormat="advanced".

The trace settings in the application configuration file are dynamic, and are reread every time the file is
saved or replaced. If errors are found in the file after it is edited, the trace file settings revert to their
default values.

Related concepts
Trace configuration using XMS environment variables
As an alternative to using an application configuration file, you can turn on trace using XMS environment
variables. These environment variables are only used if there is no trace specification in the application
configuration file.

Trace configuration using XMS environment variables
As an alternative to using an application configuration file, you can turn on trace using XMS environment
variables. These environment variables are only used if there is no trace specification in the application
configuration file.

To configure trace for an XMS .NET application, set the following environment variables before running the
application:

Table 26. Environment variable settings for .NET trace

Environment variables Default Settings Meaning

XMS_TRACE_ON Not applicable Not applicable: the value
of this variable is ignored

If XMS_TRACE_ON is set,
all trace is enabled by
default.

Introduction to the Message Service Client for .NET 85

Table 26. Environment variable settings for .NET trace (continued)

Environment variables Default Settings Meaning

XMS_TRACE_FILE_PATH Current working directory /dirpath/ The directory path that
trace and FFDC records
are written to.

XMS creates FFDC and
trace files in the
current working directory,
unless you specify an
alternative location. You
can specify an alternative
location by setting the
environment variable
XMS_TRACE_FILE_PATH
to the fully qualified path
name of the directory
where you want XMS
to create the FFDC and
trace files. You must
set this environment
variable before you start
the application that you
want to trace. You must
make sure that the user
identifier under which
the application runs has
the authority to write to
the directory where XMS
creates the FFDC and
trace files.

XMS_TRACE_FORMAT BASIC BASIC, ADVANCED Specifies the required
trace format, which can
be either BASIC or
ADVANCED. The default
format is BASIC. The
ADVANCED format is
compatible with trace
analyzer tools.

XMS_TRACE_SPECIFICAT
ION

Not applicable See “Trace configuration
using an application
configuration file” on page
83

Overrides the trace
specification, which
follows the format
specified in “Trace
configuration using an
application configuration
file” on page 83.

Related concepts
Trace configuration using an application configuration file

86 IBM Message Service Client for .NET

The preferred way of configuring trace for XMS .NET applications is with an application configuration file.
The trace section of this file includes parameters that define what is to be traced, the trace file location
and maximum allowed size, the number of trace files used, and the trace file format.

FFDC configuration for .NET applications
For the .NET implementation of XMS, one FFDC file is produced for each FFDC.

First Failure Data Capture (FFDC) files are stored in human readable text files. These files have
names of the form xmsffdc<processID>_<Date>T<Timestamp>.txt. An example of a file
name is xmsffdc264_2006.01.06T13.18.52.990955.txt. The timestamp contains microseconds
resolution.

Files start with the date and time that the exception occurred, followed by the exception type. The files
include a unique short probeId, which can be used to locate where this FFDC occurred.

You do not need to carry out any configuration to turn on FFDC. By default, all FFDC files are written to the
current directory. However, if required, you can specify a different directory by changing ffdcDirectory in
the Trace section of the application configuration file. In the following example, all trace files are logged to
the directory c:client\ffdc:

<IBM.XMS>
 <Trace ffdc=true ffdcDirectory="c:\client\ffdc"/>
</IBM.XMS>

You can disable trace by setting FFDC to false in the Trace section of the application configuration file.

If you are not using an application configuration file, FFDC is on and trace is off.

Tips for troubleshooting
Use these tips to help you troubleshoot problems with using XMS.

An XMS application cannot connect to a queue manager (MQRC_NOT_AUTHORIZED)
The XMS .NET client may have different behavior from the behavior of the IBM WebSphere MQ JMS client.
Therefore, you may find that your XMS application cannot connect to your queue manager, although your
JMS application can.

• A simple solution to this problem is to try using a user ID that is no more than 12 characters long and is
authorized completely in the queue manager's authority list. If this solution is not ideal, a different but
more complex approach would be to use security exits. If you need further help on this issue, contact
IBM Support for assistance.

• If you set the XMSC_USERID property of the connection factory, it must match the user ID and
password of the logged on user. If you do not set this property, the queue manager uses the user
ID of the logged on user by default.

• User authentication for IBM WebSphere MQ is performed by using the details of the user currently
logged on and not the information provided in the XMSC.USERID and XMSC.PASSWORD fields. This is
designed to maintain consistency with IBM WebSphere MQ. For more information on authentication,
refer to Authentication Information in the online IBM IBM WebSphere MQ product documentation.

Connection redirected to the messaging engine
When you connect to a WebSphere Application Server Version 6.0.2 service integration bus, all
connections may be redirected from the original provider endpoint to the messaging engine that the bus
chooses for that client connection. When doing so, it will always redirect the connection to a host server
specified by the hostname, rather than by an IP address. Therefore, you may experience connection
problems if the hostname cannot be resolved.

Introduction to the Message Service Client for .NET 87

To successfully connect to WebSphere Application Server Version 6.0.2 service integration bus, you may
need to provide a mapping between the hostnames and IP addresses on your client host machine. For
example you can specify the mapping in a local hosts table on your client host machine.

An XMS application using a larger JVM heap
The XMS .NET application that sends messages through the WebSphere Application Server messaging
engines typically needs to use a larger JVM heap than the default specified. To change heap configuration
settings, refer to Tuning messaging performance with service integration technologies in the WebSphere
Application Server Version 7 product documentation.

Support for telnet-like password authentication
The XMS .NET Real Time Transport protocol supports only simple telnet-like password authentication.
The XMS .NET Real Time Transport protocol does not support Quality Of Protection.

Setting values for property type double
On a Windows 64-bit platform, the SetDoubleProperty() or GetDoubleProperty() methods may not work
correctly when setting or getting values for the property type double, if the values are smaller than
Double.Epsilon.

For example, if you try to set a value of 4.9E-324 for a property with type double, the Windows 64-bit
platforms treat it as 0.0. So, in a distributed messaging environment, if a JMS or another application
sets the value for a double property as 4.9E-324 on any Unix or Windows 32-bit machine, and XMS .Net
runs on a 64-bit machine, the value returned by GetDoubleProperty() is 0.0. This is a known issue with
Microsoft .NET 2.0 Framework.

Message Service Clients for .NET reference
This reference section provides information to help you with using Message Service Client for .NET. This
information helps you carry out the tasks involved in programming with XMS.

.NET interfaces
This topicsection documents the .NET class interfaces and their properties and methods.

The following table summarizes all the interfaces, which are defined within the IBM.XMS namespace.

Table 27. Summary of the .NET class interfaces

Interface Description

“IBytesMessage” on page 91 A bytes message is a message whose body
comprises a stream of bytes.

“IConnection” on page 101 A Connection object represents the active
connection of the application to a messaging
server.

“IConnectionFactory” on page 104 An application uses a connection factory to create
a connection.

“IConnectionMetaData” on page 106 A ConnectionMetaData object provides information
about a connection.

“IDestination” on page 107 A destination is where an application sends
messages, or it is a source from which an
application receives messages, or both.

88 IBM Message Service Client for .NET

https://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tjn0026_.html

Table 27. Summary of the .NET class interfaces (continued)

Interface Description

“ExceptionListener” on page 108 An application uses an exception listener to be
notified asynchronously of a problem with a
connection.

“IllegalStateException” on page 109 XMS throws this exception if an application calls
a method at an incorrect or inappropriate time,
or if XMS is not in an appropriate state for the
requested operation.

“InitialContext” on page 109 An application uses an InitialContext object
to create objects from object definitions that
are retrieved from a repository of administered
objects.

“InvalidClientIDException” on page 112 XMS throws this exception if an application
attempts to set a client identifier for a connection,
but the client identifier is not valid or is already in
use.

“InvalidDestinationException” on page 112 XMS throws this exception if an application
specifies a destination that is not valid.

“InvalidSelectorException” on page 113 XMS throws this exception if an application
provides a message selector expression whose
syntax is not valid.

“IMapMessage” on page 113 A map message is a message whose body
comprises a set of name-value pairs, where each
value has an associated data type.

“IMessage” on page 122 A Message object represents a message that
an application sends or receives. IMessage is
a superclass for the message classes such as
IMapMessage.

“IMessageConsumer” on page 129 An application uses a message consumer to
receive messages sent to a destination.

“MessageEOFException” on page 131 XMS throws this exception if XMS encounters
the end of a bytes message stream when an
application is reading the body of a bytes message.

“MessageFormatException” on page 132 XMS throws this exception if XMS encounters a
message with a format that is not valid.

“IMessageListener (delegate)” on page 132 An application uses a message listener to receive
messages asynchronously.

“MessageNotReadableException” on page 132 XMS throws this exception if an application
attempts to read the body of a message that is
write only.

“MessageNotWritableException” on page 133 XMS throws this exception if an application
attempts to write to the body of a message that
is read-only.

“IMessageProducer” on page 133 An application uses a message producer to send
messages to a destination.

Introduction to the Message Service Client for .NET 89

Table 27. Summary of the .NET class interfaces (continued)

Interface Description

“IObjectMessage” on page 139 An object message is a message whose body
comprises a serialized Java or .NET object.

“IPropertyContext” on page 140 IPropertyContext is an abstract superclass that
contains methods that get and set properties.
These methods are inherited by other classes.

“IQueueBrowser” on page 149 An application uses a queue browser to browse
messages on a queue without removing them.

“Requestor” on page 151 An application uses a requestor to send a request
message and then wait for, and receive, the reply.

“ResourceAllocationException” on page 152 XMS throws this exception if XMS cannot allocate
the resources required by a method.

“SecurityException” on page 153 XMS throws this exception if the user identifer and
password provided to authenticate an application
are rejected. XMS also throws this exception if an
authority check fails and prevents a method from
completing.

“ISession” on page 153 A session is a single threaded context for sending
and receiving messages.

“IStreamMessage” on page 164 A stream message is a message whose body
comprises a stream of values, where each value
has an associated data type.

“ITextMessage” on page 173 A text message is a message whose body
comprises a string.

“TransactionInProgressException” on page 174 XMS throws this exception if an application
requests an operation that is not valid because a
transaction is in progress.

“TransactionRolledBackException” on page 174 XMS throws this exception if an application
calls Session.commit() to commit the current
transaction, but the transaction is then rolled back.

XMSC For .NET, XMS property names and values are
defined in this class as public constants. For
further details, see “Properties of XMS objects” on
page 177.

“XMSException” on page 175 If XMS detects an error while processing a call
to a .NET method, XMS throws an exception.
An exception is an object that encapsulates
information about the error.

There are different types of XMS exception, and an
XMSException object is just one type of exception.
However, the XMSException class is a superclass
of the other XMS exception classes. XMS throws an
XMSException object in situations where none of
the other types of exception are appropriate.

90 IBM Message Service Client for .NET

Table 27. Summary of the .NET class interfaces (continued)

Interface Description

“XMSFactoryFactory” on page 175 If an application is not using administered objects,
use this class to create connection factories,
queues, and topics.

The definition of each method lists the exception codes that XMS might return if it detects an error while
processing a call to the method. Each exception code is represented by its named constant, which has a
corresponding exception.

Related concepts
Building your own applications
You build your own applications like you build the sample applications.
Writing XMS applications
This sectionchapter provides information to help you when writing XMS applications.
Writing XMS .NET applications
This sectionchapter provides information to help you when writing XMS.NET applications.
Related reference
Properties of XMS objects
This sectionchapter documents the object properties defined by XMS.

IBytesMessage
A bytes message is a message whose body comprises a stream of bytes.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessage
 |
 +----IBM.XMS.IBytesMessage

Related reference
Bytes messages
The body of a bytes message contains a stream of bytes. The body contains only the actual data, and it is
the responsibility of the sending and receiving applications to interpret this data.

.NET properties
Summary of .NET properties:

.NET property Description

BodyLength Get the length of the body of the message in bytes when the body of the
message is read-only.

BodyLength - Get Body Length

Interface:

Int64 BodyLength
 {
 get;
 }

Get the length of the body of the message in bytes when the body of the message is read-only.

The value returned is the length of the whole body regardless of where the cursor for reading the message
is currently positioned.

Introduction to the Message Service Client for .NET 91

Exceptions:

• XMSException
• MessageNotReadableException

Methods
Summary of methods:

Method Description

ReadBoolean Read a boolean value from the bytes message stream.

ReadSignedByte Read the next byte from the bytes message stream as a signed 8-bit
integer.

ReadBytes Read an array of bytes from the bytes message stream starting from the
current position of the cursor.

ReadChar Read the next 2 bytes from the bytes message stream as a character.

ReadDouble Read the next 8 bytes from the bytes message stream as a double
precision floating point number.

ReadFloat Read the next 4 bytes from the bytes message stream as a floating point
number.

ReadInt Read the next 4 bytes from the bytes message stream as a signed 32-bit
integer.

ReadLong Read the next 8 bytes from the bytes message stream as a signed 64-bit
integer.

ReadShort Read the next 2 bytes from the bytes message stream as a signed 16-bit
integer.

ReadByte Read the next byte from the bytes message stream as an unsigned 8-bit
integer.

ReadUnsignedShort Read the next 2 bytes from the bytes message stream as an unsigned
16-bit integer.

ReadUTF Read a string, encoded in UTF-8, from the bytes message stream.

Reset Put the body of the message into read-only mode and reposition the cursor
at the beginning of the bytes message stream.

WriteBoolean Write a boolean value to the bytes message stream.

WriteByte Write a byte to the bytes message stream.

WriteBytes Write an array of bytes to the bytes message stream.

WriteBytes Write a partial array of bytes to the bytes message stream, as defined by
the specified length.

WriteChar Write a character to the bytes message stream as 2 bytes, high-order byte
first.

WriteDouble Convert a double precision floating point number to a long integer and
write the long integer to the bytes message stream as 8 bytes, high-order
byte first.

WriteFloat Convert a floating point number to an integer and write the integer to the
bytes message stream as 4 bytes, high-order byte first.

WriteInt Write an integer to the bytes message stream as 4 bytes, high-order byte
first.

92 IBM Message Service Client for .NET

Method Description

WriteLong Write a long integer to the bytes message stream as 8 bytes, high-order
byte first.

WriteObject Write the specified object into the byte message stream.

WriteShort Write a short integer to the bytes message stream as 2 bytes, high-order
byte first.

WriteUTF Write a string, encoded in UTF-8, to the bytes message stream.

ReadBoolean - Read Boolean Value

Interface:

Boolean ReadBoolean();

Read a boolean value from the bytes message stream.

Parameters:
None

Returns:
The boolean value that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadSignedByte - Read Byte

Interface:

Int16 ReadSignedByte();

Read the next byte from the bytes message stream as a signed 8-bit integer.

Parameters:
None

Returns:
The byte that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadBytes - Read Bytes

Interface:

Int32 ReadBytes(Byte[] array);
Int32 ReadBytes(Byte[] array, Int32 length);

Read an array of bytes from the bytes message stream starting from the current position of the cursor.

Parameters:
array (output)

The buffer to contain the array of bytes that is read. If the number of bytes remaining to be read
from the stream before the call is greater than or equal to the length of the buffer, the buffer is
filled. Otherwise, the buffer is partially filled with all the remaining bytes.

Introduction to the Message Service Client for .NET 93

If you specify a null pointer on input, the method skips over the bytes without reading them.
If the number of bytes remaining to be read from the stream before the call is greater than or
equal to the length of the buffer, the number of bytes skipped is equal to the length of the buffer.
Otherwise, all the remaining bytes are skipped. The cursor is left at the next position to read in the
byte message stream.

length (input)
The length of the buffer in bytes

Returns:
The number of bytes that are read into the buffer. If the buffer is partially filled, the value is less than
the length of the buffer, indicating that there are no more bytes remaining to be read. If there are no
bytes remaining to be read from the stream before the call, the value is XMSC_END_OF_STREAM.

If you specify a null pointer on input, the method returns no value.

Exceptions:

• XMSException
• MessageNotReadableException

ReadChar - Read Character

Interface:

Char ReadChar();

Read the next 2 bytes from the bytes message stream as a character.

Parameters:
None

Returns:
The character that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadDouble - Read Double Precision Floating Point Number

Interface:

Double ReadDouble();

Read the next 8 bytes from the bytes message stream as a double precision floating point number.

Parameters:
None

Returns:
The double precision floating point number that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadFloat - Read Floating Point Number

Interface:

Single ReadFloat();

94 IBM Message Service Client for .NET

Read the next 4 bytes from the bytes message stream as a floating point number.

Parameters:
None

Returns:
The floating point number that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadInt - Read Integer

Interface:

Int32 ReadInt();

Read the next 4 bytes from the bytes message stream as a signed 32-bit integer.

Parameters:
None

Returns:
The integer that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadLong - Read Long Integer

Interface:

Int64 ReadLong();

Read the next 8 bytes from the bytes message stream as a signed 64-bit integer.

Parameters:
None

Returns:
The long integer that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadShort - Read Short Integer

Interface:

Int16 ReadShort();

Read the next 2 bytes from the bytes message stream as a signed 16-bit integer.

Parameters:
None

Returns:
The short integer that is read.

Introduction to the Message Service Client for .NET 95

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadByte - Read Unsigned Byte

Interface:

Byte ReadByte();

Read the next byte from the bytes message stream as an unsigned 8-bit integer.

Parameters:
None

Returns:
The byte that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadUnsignedShort - Read Unsigned Short Integer

Interface:

Int32 ReadUnsignedShort();

Read the next 2 bytes from the bytes message stream as an unsigned 16-bit integer.

Parameters:
None

Returns:
The unsigned short integer that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadUTF - Read UTF String

Interface:

String ReadUTF();

Read a string, encoded in UTF-8, from the bytes message stream.

Note: Before calling ReadUTF(), ensure that the cursor of the buffer is pointing to beginning of the byte
message stream.

Parameters:
None

Returns:
A String object encapsulating the string that is read.

Exceptions:

• XMSException

96 IBM Message Service Client for .NET

• MessageNotReadableException
• MessageEOFException

Reset - Reset

Interface:

void Reset();

Put the body of the message into read-only mode and reposition the cursor at the beginning of the bytes
message stream.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException
• MessageNotReadableException

WriteBoolean - Write Boolean Value

Interface:

void WriteBoolean(Boolean value);

Write a boolean value to the bytes message stream.

Parameters:
value (input)

The boolean value to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteByte - Write Byte

Interface:

void WriteByte(Byte value);
void WriteSignedByte(Int16 value);

Write a byte to the bytes message stream.

Parameters:
value (input)

The byte to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

Introduction to the Message Service Client for .NET 97

WriteBytes - Write Bytes

Interface:

void WriteBytes(Byte[] value);

Write an array of bytes to the bytes message stream.

Parameters:
value (input)

The array of bytes to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteBytes - Write Partial Bytes Array

Interface:

void WriteBytes(Byte[] value, int offset, int length);

Write a partial array of bytes to the bytes message stream, as defined by the specified length.

Parameters:
value (input)

The array of bytes to be written.
offset (input)

The starting point for the array of bytes to be written.
length (input)

The number of bytes to write.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteChar - Write Character

Interface:

void WriteChar(Char value);

Write a character to the bytes message stream as 2 bytes, high-order byte first.

Parameters:
value (input)

The character to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

98 IBM Message Service Client for .NET

WriteDouble - Write Double Precision Floating Point Number

Interface:

void WriteDouble(Double value);

Convert a double precision floating point number to a long integer and write the long integer to the bytes
message stream as 8 bytes, high-order byte first.

Parameters:
value (input)

The double precision floating point number to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteFloat - Write Floating Point Number

Interface:

void WriteFloat(Single value);

Convert a floating point number to an integer and write the integer to the bytes message stream as 4
bytes, high-order byte first.

Parameters:
value (input)

The floating point number to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteInt - Write Integer

Interface:

void WriteInt(Int32 value);

Write an integer to the bytes message stream as 4 bytes, high-order byte first.

Parameters:
value (input)

The integer to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

Introduction to the Message Service Client for .NET 99

WriteLong - Write Long Integer

Interface:

void WriteLong(Int64 value);

Write a long integer to the bytes message stream as 8 bytes, high-order byte first.

Parameters:
value (input)

The long integer to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteObject - Write Object

Interface:

void WriteObject(Object value);

Write the specified object into the byte message stream.

Parameters:
value (input)

The object to be written, which must be a reference to a primitive type.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteShort - Write Short Integer

Interface:

void WriteShort(Int16 value);

Write a short integer to the bytes message stream as 2 bytes, high-order byte first.

Parameters:
value (input)

The short integer to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteUTF - Write UTF String

Interface:

void WriteUTF(String value);

100 IBM Message Service Client for .NET

Write a string, encoded in UTF-8, to the bytes message stream.

Parameters:
value (input)

A String object encapsulating the string to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

Inherited properties and methods
The following properties are inherited from the IMessage interface:

JMSCorrelationID, JMSDeliveryMode, JMSDestination, JMSExpiration, JMSMessageID, JMSPriority,
JMSRedelivered, JMSReplyTo, JMSTimestamp, JMSType, Properties

The following methods are inherited from the IMessage interface:

clearBody, clearProperties, PropertyExists

The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IConnection
A Connection object represents the active connection of the application to a messaging server.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IConnection

For a list of the XMS defined properties of a Connection object, see “Properties of Connection” on page
178.

.NET properties
Summary of .NET properties:

.NET property Description

ClientID Get and set the client identifier for the connection.

ExceptionListener Get the exception listener that is registered with the connection, and
register an exception listener with the connection.

MetaData Get the metadata for the connection.

ClientID - Get and Set Client ID

Interface:

String ClientID
 {
 get;
 set;
 }

Introduction to the Message Service Client for .NET 101

Get and set the client identifier for the connection.

The client identifier can either be preconfigured by the administrator in a ConnectionFactory, or assigned
by setting ClientID.

A client identifier is used only to support durable subscriptions in the publish/subscribe domain, and is
ignored in the point-to-point domain.

If an application sets a client identifier for a connection, the application must do so immediately after
creating the connection, and before performing any other operation on the connection. If the application
tries to set a client identifier after this point, the call throws exception IllegalStateException.

This property is not valid for a real-time connection to a broker.

Exceptions:

• XMSException
• IllegalStateException
• InvalidClientIDException

ExceptionListener - Get and Set Exception Listener

Interface:

 ExceptionListener ExceptionListener
 {
 get;
 set;
 }

Get the exception listener that is registered with the connection, and register an exception listener with
the connection.

If no exception listener is registered with the connection, the method returns null. If an exception listener
is already registered with the connection, you can cancel the registration by specifying a null instead of
the exception listener.

For more information about using exception listeners, see “Message and exception listeners in .NET” on
page 48.

Exceptions:

• XMSException

Metadata - Get Metadata

Interface:

IConnectionMetaData MetaData
 {
 get;
 }

Get the metadata for the connection.

Exceptions:

• XMSException

Methods
Summary of methods:

Method Description

Close Close the connection.

CreateSession Create a session.

102 IBM Message Service Client for .NET

Method Description

Start Start or restart the delivery of incoming messages for the connection.

Stop Stop the delivery of incoming messages for the connection.

Close - Close Connection

Interface:

void Close();

Close the connection.

If an application tries to close a connection that is already closed, the call is ignored.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException

CreateSession - Create Session

Interface:

 ISession CreateSession(Boolean transacted,
 AcknowledgeMode acknowledgeMode);

Create a session.

Parameters:
transacted (input)

The value True means that the session is transacted. The value False means that the session is
not transacted.

For a real-time connection to a broker, the value must be False.

acknowledgeMode (input)
Indicates that how messages received by an application are acknowledged. The value must be
one of the following from the AcknowledgeMode enumerator:

AcknowledgeMode.AutoAcknowledge
AcknowledgeMode.ClientAcknowledge
AcknowledgeMode.DupsOkAcknowledge

For a real-time connection to a broker, the value must be
AcknowledgeMode.AutoAcknowledge or AcknowledgeMode.DupsOkAcknowledge

This parameter is ignored if the session is transacted. For more information about
acknowledgement modes, see “Message acknowledgement” on page 26.

Returns:
The Session object

Exceptions:

• XMSException

Start - Start Connection

Interface:

void Start();

Introduction to the Message Service Client for .NET 103

Start or restart the delivery of incoming messages for the connection. The call is ignored if the connection
is already started.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException

Stop - Stop Connection

Interface:

void Stop();

Stop the delivery of incoming messages for the connection. The call is ignored if the connection is already
stopped.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IConnectionFactory
An application uses a connection factory to create a connection.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IConnectionFactory

For a list of the XMS defined properties of a ConnectionFactory object, see “Properties of
ConnectionFactory” on page 179.

Related concepts
ConnectionFactories and Connection objects
A ConnectionFactory object provides a template that an application uses to create a Connection object.
The application uses the Connection object to create a Session object.
Connection to a WebSphere service integration bus
An XMS application can connect to a WebSphere Service Integration Bus either by using a direct TCP/IP
connection or by using HTTP over TCP/IP.
Secure connections to a IBM WebSphere MQ queue manager

104 IBM Message Service Client for .NET

To enable an XMS .NET application to make secure connections to a IBM WebSphere MQ queue manager,
the relevant properties must be defined in the ConnectionFactory object.
Secure connections to a WebSphere Service Integration Bus messaging engine
To enable an XMS .NET application to make secure connections to a WebSphere Service Integration Bus
messaging engine, the relevant properties must be defined in the ConnectionFactory object.
Property mapping for administered objects
To enable applications to use IBM WebSphere MQ JMS and WebSphere Application Server connection
factory and destination object definitions, the properties retrieved from these definitions must be mapped
on to the corresponding XMS properties that can be set on XMS connection factories and destinations.
Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.
Related reference
Required properties for administered ConnectionFactory objects
When an application creates a connection factory, a number of properties must be defined to create a
connection to a messaging server.

Methods
Summary of methods:

Method Description

CreateConnection Create a connection factory with the default properties.

CreateConnection Create a connection using a specified user identity.

CreateConnection - Create Connection Factory (using the default user identity)

Interface:

IConnection CreateConnection();

Create a connection factory with the default properties.

If you are connecting to IBM WebSphere MQ, and you set the XMSC_USERID property of the connection
factory, it must match the userid of the logged on user. If you do not set these properties, the queue
manager uses the userid of the logged on user by default. If you require further connection-level
authentication of individual users you can write a client authentication exit which is configured in IBM
WebSphere MQ.

Parameters:
None

Exceptions:

• XMSException

CreateConnection - Create Connection (using a specified user identity)

Interface:

IConnection CreateConnection(String userId, String password);

Create a connection using a specified user identity.

If you are connecting to IBM WebSphere MQ, and you set the XMSC_USERID property of the connection
factory, it must match the userid of the logged on user. If you do not set these properties, the queue
manager uses the userid of the logged on user by default. If you require further connection-level
authentication of individual users you can write a client authentication exit which is configured in IBM
WebSphere MQ.

Introduction to the Message Service Client for .NET 105

The connection is created in stopped mode. No messages are delivered until the application calls
Connection.start().

Parameters:
userID (input)

A String object encapsulating the user identifier to be used to authenticate the application. If you
provide a null, an attempt is made to create the connection without authentication.

password (input)
A String object encapsulating the password to be used to authenticate the application. If you
provide a null, an attempt is made to create the connection without authentication.

Returns:
The Connection object.

Exceptions:

• XMSException
• XMS_X_SECURITY_EXCEPTION

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IConnectionMetaData
A ConnectionMetaData object provides information about a connection.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IConnectionMetaData

For a list of the XMS defined properties of a ConnectionMetaData object, see “Properties of
ConnectionMetaData” on page 185.

.NET properties
Summary of properties:

Method Description

JMSXPropertyNames Return an enumeration of the names of the JMS defined message
properties supported by the connection.

JMSXPropertyNames - Get JMS Defined Message Properties

Interface:

System.Collections.IEnumerator JMSXPropertyNames
 {
 get;
 }

Return an enumeration of the names of the JMS defined message properties supported by the
connection.

JMS defined message properties are not supported by a real-time connection to a broker.

106 IBM Message Service Client for .NET

Exceptions:

• XMSException

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IDestination
A destination is where an application sends messages, or it is a source from which an application receives
messages, or both.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IDestination

For a list of the XMS defined properties of a Destination object, see “Properties of Destination” on page
185.

Related concepts
ConnectionFactories and Connection objects
A ConnectionFactory object provides a template that an application uses to create a Connection object.
The application uses the Connection object to create a Session object.
Connection to a WebSphere service integration bus
An XMS application can connect to a WebSphere Service Integration Bus either by using a direct TCP/IP
connection or by using HTTP over TCP/IP.
Destinations
An XMS application uses a Destination object to specify the destination of messages that are being sent,
and the source of messages that are being received.
Destination wildcards
XMS provides support for destination wildcards, ensuring that wildcards can be passed through to the
place where they are needed for matching. There is a different wildcard scheme for each server type that
XMS can work with.
Topic uniform resource identifiers
The topic uniform resource identifier (URI) specifies the name of the topic; it can also specify one or more
properties for it.
Queue uniform resource identifiers
The URI for a queue specifies the name of the queue; it can also specify one or more properties of the
queue.
Temporary destinations
XMS applications can create and use temporary destinations.
Property mapping for administered objects
To enable applications to use IBM WebSphere MQ JMS and WebSphere Application Server connection
factory and destination object definitions, the properties retrieved from these definitions must be mapped
on to the corresponding XMS properties that can be set on XMS connection factories and destinations.
Related tasks
Creating administered objects

Introduction to the Message Service Client for .NET 107

The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.
Related reference
Required properties for administered Destination objects
An application that is creating a destination must set several properties that the application on an
administered Destination object.

.NET properties
Summary of methods:

Method Description

Name Get the name of the destination.

TypeId Get the type of the destination.

Name - Get Destination Name

Interface:

String Name
{
 get;
}

Get the name of the destination. The name is a string encapsulating either the name of a queue or the
name of a topic.

Exceptions:

• XMSException

TypeId - Get Destination Type

Interface:

DestinationType TypeId
{
 get;
}

Get the type of the destination. The type of the destination is one of the following values:

DestinationType.Queue
DestinationType.Topic

Exceptions:

• XMSException

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

ExceptionListener
Inheritance hierarchy:

None

108 IBM Message Service Client for .NET

An application uses an exception listener to be notified asynchronously of a problem with a connection.

If an application uses a connection only to consume messages asynchronously, and for no other purpose,
then the only way the application can learn about a problem with the connection is by using an exception
listener. In other situations, an exception listener can provide a more immediate way of learning about a
problem with a connection than waiting until the next synchronous call to XMS.

Delegate
Summary of delegate:

Delegate Description

ExceptionListener Notify the application of a problem with a connection.

ExceptionListener - Exception Listener

Interface:

public delegate void ExceptionListener(Exception ex)

Notify the application of a problem with a connection.

Methods that implement this delegate can be registered with the connection.

For more information about using exception listeners, see “Message and exception listeners in .NET” on
page 48.

Parameters:
exception (input)

A pointer to an exception created by XMS.
Returns:

Void

IllegalStateException
Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.Exception
 |
 +----IBM.XMS.IllegalStateException

XMS throws this exception if an application calls a method at an incorrect or inappropriate time, or if XMS
is not in an appropriate state for the requested operation.

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

InitialContext
An application uses an InitialContext object to create objects from object definitions that are retrieved
from a repository of administered objects.

Inheritance hierarchy:
None

Related concepts
InitialContext properties
The parameters of the InitialContext constructor include the location of the repository of administered
objects, given as a uniform resource indicator (URI). In order for an application to establish a connection

Introduction to the Message Service Client for .NET 109

to the repository, it may be necessary to provide more information than the information contained in the
URI.
URI format for XMS initial contexts
The location of the repository of administered objects is provided as a uniform resource indicator (URI).
The format of the URI depends on the context type.
Retrieval of administered objects
XMS retrieves an administered object from the repository using the address provided when the
InitialContext object is created, or in the InitialContext properties.
Related tasks
InitialContext objects
An application must create an initial context to be used to make a connection to the administered objects
repository to retrieve the required administered objects.

.NET properties
Summary of .NET properties:

.NET property Description

Environment Get the environment.

Environment - Get the environment

Interface:

Hashtable Environment
{
 get;
}

Get the environment.

Exceptions:

• Exceptions are specific to the directory service being used.

Constructors
Summary of constructors:

Constructor Description

InitialContext Create an InitialContext object.

InitialContext - Create Initial Context

Interface:

InitialContext(Hashtable env);

Create an InitialContext object.

Parameters:

The information required to establish a connection to the repository of administered objects is
provided to the constructor in an environment Hashtable.

Exceptions:

• XMSException

110 IBM Message Service Client for .NET

Methods
Summary of methods:

Method Description

AddToEnvironment Add a new property to the environment.

Close Close this context.

Lookup Create an object from an object definition that is retrieved from the
repository of administered objects.

RemoveFromEnvironme
nt

Remove a property from the environment.

AddToEnvironment - Add a New Property to the Environment

Interface:

Object AddToEnvironment(String propName, Object propVal);

Add a new property to the environment.

Parameters:
propName (input)

A String object encapsulating the name of the property to be added.
propVal (input)

The value of the property to be added.
Returns:

The old value of the property.
Exceptions:

• Exceptions are specific to the directory service being used.

Close - Close this context

Interface:

void Close()

Close this context.

Parameters:
None

Returns:
None

Exceptions:

• Exceptions are specific to the directory service being used.

Lookup - Look Up Object in Initial Context

Interface:

Object Lookup(String name);

Create an object from an object definition that is retrieved from the repository of administered objects.

Introduction to the Message Service Client for .NET 111

Parameters:
name (input)

A String object encapsulating the name of the administered object to be retrieved. The name can
be either a simple name or a complex name. For further details, see “Retrieval of administered
objects” on page 63.

Returns:
Either an IConnectionFactory or an IDestination, depending on the type of object being retrieved. If
the function can access the directory, but cannot find the required object, a null is returned.

Exceptions:

• Exceptions are specific to the directory service being used.

RemoveFromEnvironment - Remove a Property from the Environment

Interface:

Object RemoveFromEnvironment(String propName);

Remove a property from the environment.

Parameters:
propName (input)

A String object encapsulating the name of the property to be removed.
Returns:

The object that was removed.
Exceptions:

• Exceptions are specific to the directory service being used.

InvalidClientIDException
Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.InvalidClientIDException

XMS throws this exception if an application attempts to set a client identifier for a connection, but the
client identifier is not valid or is already in use.

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

InvalidDestinationException
Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.InvalidDestinationException

XMS throws this exception if an application specifies a destination that is not valid.

Inherited properties and methods
The following methods are inherited from the XMSException interface:

112 IBM Message Service Client for .NET

GetErrorCode, GetLinkedException

InvalidSelectorException
Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.InvalidSelectorException

XMS throws this exception if an application provides a message selector expression whose syntax is not
valid.

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

IMapMessage
A map message is a message whose body comprises a set of name-value pairs, where each value has an
associated data type.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessage
 |
 +----IBM.XMS.IMapMessage

When an application gets the value of name-value pair, the value can be converted by XMS into another
data type. For more information about this form of implicit conversion, see “Map messages” on page 77.

Related reference
Map messages
The body of a map message contains a set of name-value pairs, where each value has an associated data
type.

.NET properties
Summary of .NET properties:

.NET property Description

MapNames Get an enumeration of the names in the body of the map message.

MapNames - Get Map Names

Interface:

System.Collections.IEnumerator MapNames
{
 get;
}

Get an enumeration of the names in the body of the map message.

Exceptions:

• XMSException

Introduction to the Message Service Client for .NET 113

Methods
Summary of methods:

Method Description

GetBoolean Get the boolean value identified by name from the body of the map
message.

GetByte Get the byte identified by name from the body of the map message.

GetBytes Get the array of bytes identified by name from the body of the map
message.

GetChar Get the character identified by name from the body of the map message.

GetDouble Get the double precision floating point number identified by name from the
body of the map message.

GetFloat Get the floating point number identified by name from the body of the map
message.

GetInt Get the integer identified by name from the body of the map message.

GetLong Get the long integer identified by name from the body of the map message.

GetObject Get a reference to the value of a name-value pair, from the body of the map
message.

GetShort Get the short integer identified by name from the body of the map
message.

GetString Get the string identified by name from the body of the map message.

ItemExists Check whether the body of the map message contains a name-value pair
with the specified name.

SetBoolean Set a boolean value in the body of the map message.

SetByte Set a byte in the body of the map message.

SetBytes Set an array of bytes in the body of the map message.

SetChar Set a 2-byte character in the body of the map message.

SetDouble Set a double precision floating point number in the body of the map
message.

SetFloat Set a floating point number in the body of the map message.

SetInt Set an integer in the body of the map message.

SetLong Set a long integer in the body of the map message.

SetObject Set a value, which must be an XMS primitive type, in the body of the map
message.

SetShort Set a short integer in the body of the map message.

SetString Set a string in the body of the map message.

GetBoolean - Get Boolean Value

Interface:

Boolean GetBoolean(String name);

Get the boolean value identified by name from the body of the map message.

114 IBM Message Service Client for .NET

Parameters:
name (input)

A String object encapsulating the name that identifies the boolean value.
Returns:

The boolean value retrieved from the body of the map message.
Exceptions:

• XMSException

GetByte - Get Byte

Interface:

Byte GetByte(String name);
 Int16 GetSignedByte(String name);

Get the byte identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the byte.
Returns:

The byte retrieved from the body of the map message. No data conversion is performed on the byte.
Exceptions:

• XMSException

GetBytes - Get Bytes

Interface:

Byte[] GetBytes(String name);

Get the array of bytes identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the array of bytes.
Returns:

The number of bytes in the array.
Exceptions:

• XMSException

GetChar - Get Character

Interface:

Char GetChar(String name);

Get the character identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the character.
Returns:

The character retrieved from the body of the map message.
Exceptions:

• XMSException

Introduction to the Message Service Client for .NET 115

GetDouble - Get Double Precision Floating Point Number

Interface:

Double GetDouble(String name);

Get the double precision floating point number identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the double precision floating point number.
Returns:

The double precision floating point number retrieved from the body of the map message.
Exceptions:

• XMSException

GetFloat - Get Floating Point Number

Interface:

Single GetFloat(String name);

Get the floating point number identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the floating point number.
Returns:

The floating point number retrieved from the body of the map message.
Exceptions:

• XMSException

GetInt - Get Integer

Interface:

Int32 GetInt(String name);

Get the integer identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the integer.
Returns:

The integer retrieved from the body of the map message.
Exceptions:

• XMSException

GetLong - Get Long Integer

Interface:

Int64 GetLong(String name);

Get the long integer identified by name from the body of the map message.

116 IBM Message Service Client for .NET

Parameters:
name (input)

A String object encapsulating the name that identifies the long integer.
Returns:

The long integer retrieved from the body of the map message.
Exceptions:

• XMSException

GetObject - Get Object

Interface:

Object GetObject(String name);

Get a reference to the value of a name-value pair, from the body of the map message. The name-value
pair is identified by name.

Parameters:
name (input)

A String object encapsulating the name of the name-value pair.
Returns:

The value, which is one of the following object types:

Boolean
Byte
Byte[]
Char
Double
Single
Int32
Int64
Int16
String

Exceptions:
XMSException

GetShort - Get Short Integer

Interface:

Int16 GetShort(String name);

Get the short integer identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the short integer.
Returns:

The short integer retrieved from the body of the map message.
Exceptions:

• XMSException

Introduction to the Message Service Client for .NET 117

GetString - Get String

Interface:

String GetString(String name);

Get the string identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the string in the body of the map message.
Returns:

A String object encapsulating the string retrieved from the body of the map message. If data
conversion is required, this value is the string after conversion.

Exceptions:

• XMSException

ItemExists - Check Name-Value Pair Exists

Interface:

Boolean ItemExists(String name);

Check whether the body of the map message contains a name-value pair with the specified name.

Parameters:
name (input)

A String object encapsulating the name of the name-value pair.
Returns:

• True, if the body of the map message contains a name-value pair with the specified name.
• False, if the body of the map message does not contain a name-value pair with the specified name.

Exceptions:

• XMSException

SetBoolean - Set Boolean Value

Interface:

void SetBoolean(String name, Boolean value);

Set a boolean value in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the boolean value in the body of the map
message.

value (input)
The boolean value to be set.

Returns:
Void

Exceptions:

• XMSException

118 IBM Message Service Client for .NET

SetByte - Set Byte

Interface:

void SetByte(String name, Byte value);
void SetSignedByte(String name, Int16 value);

Set a byte in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the byte in the body of the map message.
value (input)

The byte to be set.
Returns:

Void
Exceptions:

• XMSException

SetBytes - Set Bytes

Interface:

void SetBytes(String name, Byte[] value);

Set an array of bytes in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the array of bytes in the body of the map
message.

value (input)
The array of bytes to be set.

Returns:
Void

Exceptions:

• XMSException

SetChar - Set Character

Interface:

void SetChar(String name, Char value);

Set a 2-byte character in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the character in the body of the map message.
value (input)

The character to be set.
Returns:

Void
Exceptions:

• XMSException

Introduction to the Message Service Client for .NET 119

SetDouble - Set Double Precision Floating Point Number

Interface:

void SetDouble(String name, Double value);

Set a double precision floating point number in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the double precision floating point number in
the body of the map message.

value (input)
The double precision floating point number to be set.

Returns:
Void

Exceptions:

• XMSException

SetFloat - Set Floating Point Number

Interface:

void SetFloat(String name, Single value);

Set a floating point number in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the floating point number in the body of the
map message.

value (input)
The floating point number to be set.

Returns:
Void

Exceptions:

• XMSException

SetInt - Set Integer

Interface:

void SetInt(String name, Int32 value);

Set an integer in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the integer in the body of the map message.
value (input)

The integer to be set.
Returns:

Void
Exceptions:

• XMSException

120 IBM Message Service Client for .NET

SetLong - Set Long Integer

Interface:

void SetLong(String name, Int64 value);

Set a long integer in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the long integer in the body of the map
message.

value (input)
The long integer to be set.

Returns:
Void

Exceptions:

• XMSException

SetObject - Set Object

Interface:

void SetObject(String name, Object value);

Set a value, which must be an XMS primitive type, in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the value in the body of the map message.
value (input)

An array of bytes containing the value to be set.
Returns:

Void
Exceptions:

• XMSException

SetShort - Set Short Integer

Interface:

void SetShort(String name, Int16 value);

Set a short integer in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the short integer in the body of the map
message.

value (input)
The short integer to be set.

Returns:
Void

Exceptions:

• XMSException

Introduction to the Message Service Client for .NET 121

SetString - Set String

Interface:

void SetString(String name, String value);

Set a string in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the string in the body of the map message.
value (input)

A String object encapsulating the string to be set.
Returns:

Void
Exceptions:

• XMSException

Inherited properties and methods
The following properties are inherited from the IMessage interface:

JMSCorrelationID, JMSDeliveryMode, JMSDestination, JMSExpiration, JMSMessageID, JMSPriority,
JMSRedelivered, JMSReplyTo, JMSTimestamp, JMSType, Properties

The following methods are inherited from the IMessage interface:

clearBody, clearProperties, PropertyExists

The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IMessage
A Message object represents a message that an application sends or receives. IMessage is a superclass
for the message classes such as IMapMessage.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessage

For a list of the JMS message header fields in a Message object, see “Header fields in an XMS message”
on page 70. For a list of the JMS defined properties of a Message object, see “JMS-defined properties of
a message” on page 72. For a list of the IBM defined properties of a Message object, see “IBM-defined
properties of a message” on page 72. For a list of JMS_IBM_MQMD* properties for the Message object,
see “JMS_IBM_MQMD* properties” on page 190

Messages are deleted by the garbage collector. When a message is deleted, this frees the resources it was
using.

Related reference
XMS messages

122 IBM Message Service Client for .NET

This sectionchapter describes the structure and content of XMS messages and explains how applications
process XMS messages.

.NET properties
Summary of .NET properties:

.NET property Description

JMSCorrelationID Get and set the correlation identifier of the message as a String object.

JMSDeliveryMode Get and set the delivery mode of the message.

JMSDestination Get and set the destination of the message.

JMSExpiration Get and set the expiration time of the message.

JMSMessageID Get and set the message identifier of the message as a string object
encapsulating the message identifier.

JMSPriority Get and set the priority of the message.

JMSRedelivered Get an indication of whether the message is being redelivered, and indicate
whether the message is being redelivered.

JMSReplyTo Get and set the destination where a reply to the message is to be sent.

JMSTimestamp Get and set the time when the message was sent.

JMSType Get and set the type of the message.

PropertyNames Get an enumeration of the names properties of the message.

GetJMSCorrelationID - Get and Set JMSCorrelationID

Interface:

String JMSCorrelationID
{
 get;
 set;
}

Get and set the correlation identifier of the message as a String object.

Exceptions:

• XMSException

JMSDeliveryMode - Get and Set JMSDeliveryMode

Interface:

DeliveryMode JMSDeliveryMode
{
 get;
 set;
}

Get and set the delivery mode of the message.

The delivery mode of the message is one of the following values:

DeliveryMode.Persistent
DeliveryMode.NonPersistent

For a newly created message that was not sent, the delivery mode is DeliveryMode.Persistent,
except for a real-time connection to a broker for which the delivery mode is
DeliveryMode.NonPersistent. For a message that is received, the method returns the delivery mode

Introduction to the Message Service Client for .NET 123

that was set by the IMessageProducer.send() call when the message was sent unless the receiving
application changes the delivery mode by setting JMSDeliveryMode.

Exceptions:

• XMSException

JMSDestination - Get and Set JMSDestination

Interface:

IDestination JMSDestination
{
 get;
 set;
}

Get and set the destination of the message.

The destination is set by the IMessageProducer.send() call when the message is sent. The value of
JMSDestination is ignored. However, you can use JMSDestination to change the destination of a message
that was received.

For a newly created message that was not sent, the method returns a null Destination object, unless
the sending application sets a destination by setting JMSDestination. For a message that was received,
the method returns a Destination object for the destination that was set by the IMessageProducer.send()
call when the message was sent unless the receiving application changes the destination by setting
JMSDestination.

Exceptions:

• XMSException

JMSExpiration - Get and Set JMSExpiration

Interface:

Int64 JMSExpiration
{
 get;
 set;
}

Get and set the expiration time of the message.

The expiration time is set by the IMessageProducer.send() call when the message is sent. Its value is
calculated by adding the time to live, as specified by the sending application, to the time when the
message is sent. The expiration time is expressed in milliseconds since 00:00:00 GMT on the 1 January
1970.

For a newly created message that was not sent, the expiration time is 0 unless the sending application
sets a different expiration time by setting JMSExpiration. For a message that was received, the method
returns the expiration time that was set by the IMessageProducer.send() call when the message was sent
unless the receiving application changes the expiration time by setting JMSExpiration.

If the time to live is 0, the IMessageProducer.send() call sets the expiration time to 0 to indicate that the
message does not expire.

XMS discards expired messages and does not deliver them to applications.

Exceptions:

• XMSException

124 IBM Message Service Client for .NET

JMSMessageID - Get and Set JMSMessageID

Interface:

String JMSMessageID
{
 get;
 set;
}

Get and set the message identifier of the message as a string object encapsulating the message identifier.

The message identifier is set by the IMessageProducer.send() call when the message is sent. For
a message that was received, the method returns the message identifier that was set by the
IMessageProducer.send() call when the message was sent unless the receiving application changes the
message identifier by setting JMSMessageID.

If the message has no message identifier, the method returns a null.

Exceptions:

• XMSException

JMSPriority - Get and Set JMSPriority

Interface:

Int32 JMSPriority
{
 get;
 set;
}

Get and set the priority of the message.

The priority is set by the IMessageProducer.send() call when the message is sent. The value is an integer
in the range 0, the lowest priority, to 9, the highest priority.

For a newly created message that was not sent, the priority is 4 unless the sending application sets
a different priority by setting JMSPriority. For a message that was received, the method returns the
priority that was set by the IMessageProducer.send() call when the message was sent unless the receiving
application changes the priority by setting JMSPriority.

Exceptions:

• XMSException

JMSRedelivered - Get and Set JMSRedelivered

Interface:

Boolean JMSRedelivered
{
 get;
 set;
}

Get an indication of whether the message is being redelivered, and indicate whether the message is being
redelivered. The indication is set by the IMessageConsumer.receive() call when the message is received.

This property has the following values:

• True, if the message is being redelivered.
• False, if the message is not being redelivered.

For a real-time connection to a broker, the value is always False.

An indication of redelivery set by JMSRedelivered before the message is sent is ignored by the
IMessageProducer.send() call when the message is sent, and is ignored and replaced by the

Introduction to the Message Service Client for .NET 125

IMessageConsumer.receive() call when the message is received. However, you can use JMSRedelivered to
change the indication for a message that was received.

Exceptions:

• XMSException

JMSReplyTo - Get and Set JMSReplyTo

Interface:

IDestination JMSReplyTo
{
 get;
 set;
}

Get and set the destination where a reply to the message is to be sent.

The value of this property is a Destination object for the destination where a reply to the message is to be
sent. A null Destination object means that no reply is expected.

Exceptions:

• XMSException

JMSTimestamp - Get and Set JMSTimestamp

Interface:

Int64 JMSTimestamp
{
 get;
 set;
}

Get and set the time when the message was sent.

The time stamp is set by the IMessageProducer.send() call when the message is sent and is expressed in
milliseconds since 00:00:00 GMT on the 1 January 1970.

For a newly created message that was not sent, the time stamp is 0 unless the sending application sets
a different time stamp by setting JMSTimestamp. For a message that was received, the method returns
the time stamp that was set by the IMessageProducer.send() call when the message was sent unless the
receiving application changes the time stamp by setting JMSTimestamp.

Exceptions:

• XMSException

Notes:

1. If the time stamp is undefined, the method returns 0 but throws no exception.

JMSType - Get and Set JMSType

Interface:

String JMSType
{
 get;
 set;
}

Get and set the type of the message.

The value of JMSType is a string encapsulating the type of the message. If data conversion is required,
this value is the type after conversion.

126 IBM Message Service Client for .NET

Exceptions:

• XMSException

PropertyNames - Get Properties

Interface:

System.Collections.IEnumerator PropertyNames
{
 get;
}

Get an enumeration of the names properties of the message.

Exceptions:

• XMSException

Methods
Summary of methods:

Method Description

Acknowledge Acknowledge this message and all previously unacknowledged messages
received by the session.

ClearBody Clear the body of the message.

ClearProperties Clear the properties of the message.

PropertyExists Check whether the message has a property with the specified name.

Acknowledge - Acknowledge

Interface:

void Acknowledge();

Acknowledge this message and all previously unacknowledged messages received by the session.

An application can call this method if the acknowledgement mode of the session is
AcknowledgeMode.ClientAcknowledge. Calls to the method are ignored if the session has any other
acknowledgement mode or is transacted.

Messages that were received but not acknowledged might be redelivered.

For more information about acknowledging messages, see “Message acknowledgement” on page 26.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException
• IllegalStateException

ClearBody - Clear Body

Interface:

void ClearBody();

Clear the body of the message. The header fields and message properties are not cleared.

Introduction to the Message Service Client for .NET 127

If an application clears a message body, the body is left in the same state as an empty body in a newly
created message. The state of an empty body in a newly created message depends on the type of
message body. For more information, see “The body of an XMS message” on page 74.

An application can clear a message body at any time, no matter what state the body is in. If a message
body is read-only, the only way that an application can write to the body is for the application to clear the
body first.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException

ClearProperties - Clear Properties

Interface:

void ClearProperties();

Clear the properties of the message. The header fields and the message body are not cleared.

If an application clears the properties of a message, the properties become readable and writable.

An application can clear the properties of a message at any time, no matter what state the properties are
in. If the properties of a message are read-only, the only way that the properties can become writable is
for the application to clear the properties first.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException

PropertyExists - Check Property Exists

Interface:

Boolean PropertyExists(String propertyName);

Check whether the message has a property with the specified name.

Parameters:
propertyName (input)

A String object encapsulating the name of the property.
Returns:

• True, if the message has a property with the specified name.
• False, if the message does not have a property with the specified name.

Exceptions:

• XMSException

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,

128 IBM Message Service Client for .NET

GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IMessageConsumer
An application uses a message consumer to receive messages sent to a destination.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessageConsumer

For a list of the XMS defined properties of a MessageConsumer object, see “Properties of
MessageConsumer” on page 194.

.NET properties
Summary of .NET properties:

.NET property Description

MessageListener Get the message listener that is registered with the message consumer,
and register a message listener with the message consumer.

MessageSelector Get the message selector for the message consumer.

MessageListener - Get and Set Message Listener

Interface:

MessageListener MessageListener
{
 get;
 set;
}

Get the message listener that is registered with the message consumer, and register a message listener
with the message consumer.

If no message listener is registered with the message consumer, MessageListener is null. If a message
listener is already registered with the message consumer, you can cancel the registration by specifying a
null instead.

For more information about using message listeners, see “Message and exception listeners in .NET” on
page 48.

Exceptions:

• XMSException

MessageSelector - Get Message Selector

Interface:

String MessageSelector
{
 get;
}

Get the message selector for the message consumer. The return value is a String object encapsulating
the message selector expression. If data conversion is required, this value is the message selector
expression after conversion. If the message consumer does not have a message selector, the value of
MessageSelector is a null String object.

Introduction to the Message Service Client for .NET 129

Exceptions:

• XMSException

Methods
Summary of methods:

Method Description

Close Close the message consumer.

Receive Receive the next message for the message consumer. The call waits
indefinitely for a message, or until the message consumer is closed.

Receive Receive the next message for the message consumer. The call waits only a
specified period for a message, or until the message consumer is closed.

ReceiveNoWait Receive the next message for the message consumer if one is available
immediately.

Close - Close Message Consumer

Interface:

void Close();

Close the message consumer.

If an application tries to close a message consumer that is already closed, the call is ignored.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException

Receive - Receive

Interface:

IMessage Receive();

Receive the next message for the message consumer. The call waits indefinitely for a message, or until the
message consumer is closed.

Parameters:
None

Returns:
A pointer to the Message object. If the message consumer is closed while the call is waiting for a
message, the method returns a pointer to a null Message object.

Exceptions:

• XMSException

Receive - Receive (with a wait interval)

Interface:

IMessage Receive(Int64 delay);

Receive the next message for the message consumer. The call waits only a specified period for a message,
or until the message consumer is closed.

130 IBM Message Service Client for .NET

Parameters:
delay (input)

The time, in milliseconds, that the call waits for a message. If you specify a wait interval of 0, the
call waits indefinitely for a message.

Returns:
A pointer to the Message object. If no message arrives during the wait interval, or if the message
consumer is closed while the call is waiting for a message, the method returns a pointer to a null
Message object but throws no exception.

Exceptions:

• XMSException

ReceiveNoWait - Receive with No Wait

Interface:

IMessage ReceiveNoWait();

Receive the next message for the message consumer if one is available immediately.

Parameters:
None

Returns:
A pointer to a Message object. If no message is available immediately, the method returns a pointer to
a null Message object.

Exceptions:

• XMSException

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

MessageEOFException
Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.MessageEOFException

XMS throws this exception if XMS encounters the end of a bytes message stream when an application is
reading the body of a bytes message.

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

Introduction to the Message Service Client for .NET 131

MessageFormatException
Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.MessageFormatException

XMS throws this exception if XMS encounters a message with a format that is not valid.

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

IMessageListener (delegate)
Inheritance hierarchy:

None

An application uses a message listener to receive messages asynchronously.

Delegate
Summary of methods:

Method Description

MessageListener Deliver a message asynchronously to the message consumer.

MessageListener - Message Listener

Interface:

public delegate void MessageListener(IMessage msg);

Deliver a message asynchronously to the message consumer.

Methods that implement this delegate can be registered with the connection.

For more information about using message listeners, see “Message and exception listeners in .NET” on
page 48.

Parameters:
mesg (input)

The Message object.
Returns:

Void

MessageNotReadableException
Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.MessageNotReadableException

XMS throws this exception if an application attempts to read the body of a message that is write only.

132 IBM Message Service Client for .NET

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

MessageNotWritableException
Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.MessageNotWritableException

XMS throws this exception if an application attempts to write to the body of a message that is read-only.

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

IMessageProducer
An application uses a message producer to send messages to a destination.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessageProducer

For a list of the XMS defined properties of a MessageProducer object, see “Properties of
MessageProducer” on page 194.

.NET properties
Summary of .NET properties:

.NET properties Description

DeliveryMode Get and set the default delivery mode for messages sent by the message
producer.

Destination Get the destination for the message producer.

DisableMsgID Get an indication of whether a receiving application requires message
identifiers to be included in messages sent by the message producer, and
indicate whether a receiving application requires message identifiers to be
included in messages sent by the message producer.

DisableMsgTS Get an indication of whether a receiving application requires time stamps
to be included in messages sent by the message producer, and indicate
whether a receiving application requires time stamps to be included in
messages sent by the message producer.

Priority Get and set the default priority for messages sent by the message
producer.

TimeToLive Get and set the default length of time that a message exists before it
expires.

Introduction to the Message Service Client for .NET 133

DeliveryMode - Get and Set Default Delivery Mode

Interface:

DeliveryMode DeliveryMode
{
 get;
 set;
}

Get and set the default delivery mode for messages sent by the message producer.

The default delivery mode has one of the following values:

DeliveryMode.Persistent
DeliveryMode.NonPersistent

For a real-time connection to a broker, the value must be DeliveryMode.NonPersistent.

The default value is DeliveryMode.Persistent, except for a real-time connection to a broker for
which the default value is DeliveryMode.NonPersistent.

Exceptions:

• XMSException

Destination - Get Destination

Interface:

IDestination Destination
{
 get;
}

Get the destination for the message producer.

Parameters:
None

Returns:
The Destination object. If the message producer does not have a destination, the method returns a
null Destination object.

Exceptions:

• XMSException

DisableMsgID - Get and Set Disable Message ID Flag

Interface:

Boolean DisableMessageID
{
 get;
 set;
}

Get an indication of whether a receiving application requires message identifiers to be included in
messages sent by the message producer, and indicate whether a receiving application requires message
identifiers to be included in messages sent by the message producer.

On a connection to a queue manager, or on a real-time connection to a broker, this flag is ignored. On a
connection to a service integration bus, the flag is honored.

DisabledMsgID has the following values:

• True, if a receiving application does not require message identifiers to be included in messages sent by
the message producer.

134 IBM Message Service Client for .NET

• False, if a receiving application does require message identifiers to be included in messages sent by
the message producer.

Exceptions:

• XMSException

DisableMsgTS - Get and Set Disable Time Stamp Flag

Interface:

Boolean DisableMessageTimestamp
{
 get;
 set;
}

Get an indication of whether a receiving application requires time stamps to be included in messages
sent by the message producer, and indicate whether a receiving application requires time stamps to be
included in messages sent by the message producer.

On a real-time connection to a broker, this flag is ignored. On a connection to a queue manager, or on a
connection to a service integration bus, the flag is honored.

DisableMsgTS has the following values:

• True, if a receiving application does not require time stamps to be included in messages sent by the
message producer.

• False, if a receiving application does require time stamps to be included in messages sent by the
message producer.

Returns:
Exceptions:

• XMSException

Priority - Get and Set Default Priority

Interface:

Int32 Priority
{
 get;
 set;
}

Get and set the default priority for messages sent by the message producer.

The value of the default message priority is an integer in the range 0, the lowest priority, to 9, the highest
priority.

On a real-time connection to a broker, the priority of a message is ignored.

Exceptions:

• XMSException

TimeToLive - Get and Set Default Time to Live

Interface:

Int64 TimeToLive
{
 get;
 set;
}

Get and set the default length of time that a message exists before it expires.

Introduction to the Message Service Client for .NET 135

The time is measured from when the message producer sends the message and is the default time to live
in milliseconds. A value of 0 means that a message never expires.

For a real-time connection to a broker, this value is always 0.

Exceptions:

• XMSException

Methods
Summary of methods:

Method Description

Close Close the message producer.

Send Send a message to the destination that was specified when the message
producer was created. Send the message using the message producer
default delivery mode, priority, and time to live.

Send Send a message to the destination that was specified when the message
producer was created. Send the message using the specified delivery
mode, priority, and time to live.

Send Send a message to a specified destination if you are using a message
producer for which no destination was specified when the message
producer was created. Send the message using the message producer
default delivery mode, priority, and time to live.

Send Send a message to a specified destination if you are using a message
producer for which no destination was specified when the message
producer was created. Send the message using the specified delivery
mode, priority, and time to live.

Close - Close Message Producer

Interface:

void Close();

Close the message producer.

If an application tries to close a message producer that is already closed, the call is ignored.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException

Send - Send

Interface:

void Send(IMessage msg) ;

Send a message to the destination that was specified when the message producer was created. Send the
message using the message producer default delivery mode, priority, and time to live.

Parameters:
msg (input)

The Message object.

136 IBM Message Service Client for .NET

Returns:
Void

Exceptions:

• XMSException
• MessageFormatException
• InvalidDestinationException

Send - Send (specifying a delivery mode, priority, and time to live)

Interface:

void Send(IMessage msg,
 DeliveryMode deliveryMode,
 Int32 priority,
 Int64 timeToLive);

Send a message to the destination that was specified when the message producer was created. Send the
message using the specified delivery mode, priority, and time to live.

Parameters:
msg (input)

The Message object.
deliveryMode (input)

The delivery mode for the message, which must be one of the following values:

DeliveryMode.Persistent
DeliveryMode.NonPersistent

For a real-time connection to a broker, the value must be DeliveryMode.NonPersistent.

priority (input)
The priority of the message. The value can be an integer in the range 0, for the lowest priority, to 9,
for the highest priority. On a real-time connection to a broker, the value is ignored.

timeToLive (input)
The time to live for the message in milliseconds. A value of 0 means that the message never
expires. For a real-time connection to a broker, the value must be 0.

Returns:
Void

Exceptions:

• XMSException
• MessageFormatException
• InvalidDestinationException
• IllegalStateException

Send - Send (to a specified destination)

Interface:

void Send(IDestination dest, IMessage msg) ;

Send a message to a specified destination if you are using a message producer for which no destination
was specified when the message producer was created. Send the message using the message producer
default delivery mode, priority, and time to live.

Typically, you specify a destination when you create a message producer but, if you do not, you must
specify a destination every time you send a message.

Introduction to the Message Service Client for .NET 137

Parameters:
dest (input)

The Destination object.
msg (input)

The Message object.
Returns:

Void
Exceptions:

• XMSException
• MessageFormatException
• InvalidDestinationException

Send - Send (to a specified destination, specifying a delivery mode, priority, and time to live)

Interface:

void Send(IDestination dest,
 IMessage msg,
 DeliveryMode deliveryMode,
 Int32 priority,
 Int64 timeToLive) ;

Send a message to a specified destination if you are using a message producer for which no destination
was specified when the message producer was created. Send the message using the specified delivery
mode, priority, and time to live.

Typically, you specify a destination when you create a message producer but, if you do not, you must
specify a destination every time you send a message.

Parameters:
dest (input)

The Destination object.
msg (input)

The Message object.
deliveryMode (input)

The delivery mode for the message, which must be one of the following values:

DeliveryMode.Persistent
DeliveryMode.NonPersistent

For a real-time connection to a broker, the value must be DeliveryMode.NonPersistent.

priority (input)
The priority of the message. The value can be an integer in the range 0, for the lowest priority, to 9,
for the highest priority. On a real-time connection to a broker, the value is ignored.

timeToLive (input)
The time to live for the message in milliseconds. A value of 0 means that the message never
expires. For a real-time connection to a broker, the value must be 0.

Returns:
Void

Exceptions:

• XMSException
• MessageFormatException
• InvalidDestinationException
• IllegalStateException

138 IBM Message Service Client for .NET

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IObjectMessage
An object message is a message whose body comprises a serialized Java or .NET object.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessage
 |
 +----IBM.XMS.IObjectMessage

Related reference
Object messages
The body of an object message contains a serializedJava or .NET object.

.NET properties
Summary of .NET properties:

.NET property Description

Object Get and set the object that forms the body of the object message.

Object - Get and Set Object as Bytes

Interface:

System.Object Object
 {
 get;
 set;
 }

 Byte[] GetObject();

Get and set the object that forms the body of the object message.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException
• MessageNotWritableException

Inherited properties and methods
The following properties are inherited from the IMessage interface:

JMSCorrelationID, JMSDeliveryMode, JMSDestination, JMSExpiration, JMSMessageID, JMSPriority,
JMSRedelivered, JMSReplyTo, JMSTimestamp, JMSType, Properties

The following methods are inherited from the IMessage interface:

clearBody, clearProperties, PropertyExists

The following methods are inherited from the IPropertyContext interface:

Introduction to the Message Service Client for .NET 139

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IPropertyContext
IPropertyContext is an abstract superclass that contains methods that get and set properties. These
methods are inherited by other classes.

Inheritance hierarchy:
None

Methods
Summary of methods:

Method Description

GetBooleanProperty Get the value of the boolean property with the specified name.

GetByteProperty Get the value of the byte property identified by name.

GetBytesProperty Get the value of the byte array property identified by name.

GetCharProperty Get the value of the 2-byte character property identified by name.

GetDoubleProperty Get the value of the double precision floating point property identified by
name.

GetFloatProperty Get the value of the floating point property identified by name.

GetIntProperty Get the value of the integer property identified by name.

GetLongProperty Get the value of the long integer property identified by name.

GetObjectProperty Get the value and data type of the property identified by name.

GetShortProperty Get the value of the short integer property identified by name.

GetStringProperty Get the value of the string property identified by name.

SetBooleanProperty Set the value of the boolean property identified by name.

SetByteProperty Set the value of the byte property identified by name.

SetBytesProperty Set the value of the byte array property identified by name.

SetCharProperty Set the value of the 2-byte character property identified by name.

SetDoubleProperty Set the value of the double precision floating point property identified by
name.

SetFloatProperty Set the value of the floating point property identified by name.

SetIntProperty Set the value of the integer property identified by name.

SetLongProperty Set the value of the long integer property identified by name.

SetObjectProperty Set the value and data type of a property identified by name.

SetShortProperty Set the value of the short integer property identified by name.

SetStringProperty Set the value of the string property identified by name.

140 IBM Message Service Client for .NET

GetBooleanProperty - Get Boolean Property

Interface:

Boolean GetBooleanProperty(String property_name);

Get the value of the boolean property with the specified name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

GetByteProperty - Get Byte Property

Interface:

Byte GetByteProperty(String property_name) ;
Int16 GetSignedByteProperty(String property_name) ;

Get the value of the byte property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

GetBytesProperty - Get Byte Array Property

Interface:

Byte[] GetBytesProperty(String property_name) ;

Get the value of the byte array property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The number of bytes in the array.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

Introduction to the Message Service Client for .NET 141

GetCharProperty - Get Character Property

Interface:

Char GetCharProperty(String property_name) ;

Get the value of the 2-byte character property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

GetDoubleProperty - Get Double Precision Floating Point Property

Interface:

Double GetDoubleProperty(String property_name) ;

Get the value of the double precision floating point property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

GetFloatProperty - Get Floating Point Property

Interface:

Single GetFloatProperty(String property_name) ;

Get the value of the floating point property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

142 IBM Message Service Client for .NET

GetIntProperty - GetIntProperty

Interface:

Int32 GetIntProperty(String property_name) ;

Get the value of the integer property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

GetLongProperty - Get Long Integer Property

Interface:

Int64 GetLongProperty(String property_name) ;

Get the value of the long integer property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

GetObjectProperty - Get Object Property

Interface:

Object GetObjectProperty(String property_name) ;

Get the value and data type of the property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property, which is one of the following object types:

Boolean
Byte
Byte[]
Char
Double
Single
Int32

Introduction to the Message Service Client for .NET 143

Int64
Int16
String

Thread context:
Determined by the subclass

Exceptions:

• XMSException

GetShortProperty - Get Short Integer Property

Interface:

Int16 GetShortProperty(String property_name) ;

Get the value of the short integer property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

GetStringProperty - GetStringProperty

Interface:

String GetStringProperty(String property_name) ;

Get the value of the string property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

A String object encapsulating the string that is the value of the property. If data conversion is required,
this value is the string after conversion.

Thread context:
Determined by the subclass

Exceptions:

• XMSException

SetBooleanProperty - Set Boolean Property

Interface:

void SetBooleanProperty(String property_name, Boolean value) ;

Set the value of the boolean property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.

144 IBM Message Service Client for .NET

value (input)
The value of the property.

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

• XMSException
• MessageNotWritableException

SetByteProperty - Set Byte Property

Interface:

void SetByteProperty(String property_name, Byte value) ;
 void SetSignedByteProperty(String property_name, Int16 value) ;

Set the value of the byte property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

SetBytesProperty - Set Byte Array Property

Interface:

void SetBytesProperty(String property_name, Byte[] value) ;

Set the value of the byte array property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property, which is an array of bytes.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

Introduction to the Message Service Client for .NET 145

SetCharProperty - Set Character Property

Interface:

void SetCharProperty(String property_name, Char value) ;

Set the value of the 2-byte character property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

SetDoubleProperty - Set Double Precision Floating Point Property

Interface:

void SetDoubleProperty(String property_name, Double value) ;

Set the value of the double precision floating point property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

SetFloatProperty - Set Floating Point Property

Interface:

void SetFloatProperty(String property_name, Single value) ;

Set the value of the floating point property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property.

146 IBM Message Service Client for .NET

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

• XMSException
• MessageNotWritableException

SetIntProperty - Set Integer Property

Interface:

void SetIntProperty(String property_name, Int32 value) ;

Set the value of the integer property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

SetLongProperty - Set Long Integer Property

Interface:

void SetLongProperty(String property_name, Int64 value) ;

Set the value of the long integer property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

Introduction to the Message Service Client for .NET 147

SetObjectProperty - Set Object Property

Interface:

void SetObjectProperty(String property_name, Object value) ;

Set the value and data type of a property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
objectType (input)

The value of the property, which must be one of the following object types:

Boolean
Byte
Byte[]
Char
Double
Single
Int32
Int64
Int16
String

value (input)
The value of the property as an array of bytes.

length (input)
The number of bytes in the array.

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

• XMSException
• MessageNotWritableException

SetShortProperty - Set Short Integer Property

Interface:

void SetShortProperty(String property_name, Int16 value) ;

Set the value of the short integer property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property.
Returns:

Void
Thread context:

Determined by the subclass

148 IBM Message Service Client for .NET

Exceptions:

• XMSException
• MessageNotWritableException

SetStringProperty - Set String Property

Interface:

void SetStringProperty(String property_name, String value);

Set the value of the string property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

A String object encapsulating the string that is the value of the property.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

IQueueBrowser
An application uses a queue browser to browse messages on a queue without removing them.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
System.Collections.IEnumerable
 |
 +----IBM.XMS.IQueueBrowser

.NET Properties
Summary of .NET properties:

.NET property Description

MessageSelector Get the message selector for the queue browser.

Queue Get the queue associated with the queue browser as a destination object
representing the queue.

MessageSelector - Get Message Selector

Interface:

String MessageSelector
{
 get;
}

Get the message selector for the queue browser.

The message selector is a String object encapsulating the message selector expression. If data
conversion is required, this value is the message selector expression after conversion. If the queue
browser does not have a message selector, the method returns a null String object.

Introduction to the Message Service Client for .NET 149

Exceptions:

• XMSException

Queue - Get Queue

Interface:

IDestination Queue
{
 get;
}

Get the queue associated with the queue browser as a destination object representing the queue.

Exceptions:

• XMSException

Methods
Summary of methods:

Method Description

Close Close the queue browser.

GetEnumerator Get a list of the messages on the queue.

Close - Close Queue Browser

Interface:

void Close();

Close the queue browser.

If an application tries to close a queue browser that is already closed, the call is ignored.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException

GetEnumerator - Get Messages

Interface:

IEnumerator GetEnumerator();

Get a list of the messages on the queue.

The method returns an enumerator that encapsulates a list of Message objects. The order of the Message
objects is the same as the order in which the messages would be retrieved from the queue. The
application can then use the enumerator to browse each message in turn.

The enumerator is updated dynamically as messages are put on the queue and removed from the queue.
Each time the application calls IEnumerator.MoveNext() to browse the next message on the queue, the
message reflects the current contents of the queue.

If an application calls this method more than once for a queue browser, each call returns a new
enumerator. The application can therefore use more than one enumerator to browse the messages on
a queue and maintain multiple positions within the queue.

150 IBM Message Service Client for .NET

Parameters:
None

Returns:
The Iterator object.

Exceptions:

• XMSException

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

Requestor
An application uses a requestor to send a request message and then wait for, and receive, the reply.

Inheritance hierarchy:
None

Constructors
Summary of constructors:

Constructor Description

Requestor Create a requestor.

Requestor - Create Requestor

Interface:

Requestor(ISession sess, IDestination dest);

Create a requestor.

Parameters:
sess (input)

A Session object. The session must not be transacted and must have one of the following
acknowledgement modes:

AcknowledgeMode.AutoAcknowledge
AcknowledgeMode.DupsOkAcknowledge

dest (input)
A Destination object representing the destination where the application can send request
messages.

Thread context:
The session associated with the requestor

Exceptions:

• XMSException

Introduction to the Message Service Client for .NET 151

Methods
Summary of methods:

Method Description

Close Close the requestor.

Request Send a request message and then wait for, and receive, a reply from the
application that receives the request message.

Close - Close Requestor

Interface:

void Close();

Close the requestor.

If an application tries to close a requestor that is already closed, the call is ignored.

Note: When an application closes a requestor, the associated session does not close as well. In this
respect, XMS behaves differently compared to JMS.

Parameters:
None

Returns:
Void

Thread context:
Any

Exceptions:

• XMSException

Request - Request Response

Interface:

IMessage Request(IMessage requestMessage);

Send a request message and then wait for, and receive, a reply from the application that receives the
request message.

A call to this method blocks until a reply is received or until the session ends, whichever is the sooner.

Parameters:
requestMessage (input)

The Message object encapsulating the request message.
Returns:

A pointer to the Message object encapsulating the reply message.
Thread context:

The session associated with the requestor
Exceptions:

• XMSException

ResourceAllocationException
Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException

152 IBM Message Service Client for .NET

 |
 +----IBM.XMS.ResourceAllocationException

XMS throws this exception if XMS cannot allocate the resources required by a method.

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

SecurityException
Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.SecurityException

XMS throws this exception if the user identifer and password provided to authenticate an application
are rejected. XMS also throws this exception if an authority check fails and prevents a method from
completing.

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

ISession
A session is a single threaded context for sending and receiving messages.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.ISession

For a list of the XMS defined properties of a Session object, see “Properties of Session” on page 194.

.NET properties
Summary of .NET properties:

.NET property Description

AcknowledgeMode Get the acknowledgement mode for the session.

Transacted Determine whether the session is transacted.

AcknowledgeMode - Get Acknowledgement Mode

Interface:

AcknowledgeMode AcknowledgeMode
 {
 get;
 }

Get the acknowledgement mode for the session.

The acknowledgement mode is specified when the session is created.

Provided the session is not transacted, the acknowledgement mode is one of the following values:

AcknowledgeMode.AutoAcknowledge

Introduction to the Message Service Client for .NET 153

AcknowledgeMode.ClientAcknowledge
AcknowledgeMode.DupsOkAcknowledge

For more information about acknowledgement modes, see “Message acknowledgement” on page 26.

A session that is transacted has no acknowledgement mode. If the session is transacted, the method
returns AcknowledgeMode.SessionTransacted instead.

Exceptions:

• XMSException

Transacted - Determine Whether Transacted

Interface:

Boolean Transacted
 {
 get;
 }

Determine whether the session is transacted.

The transacted stated is:

• True, if the session is transacted.
• False, if the session is not transacted.

For a real-time connection to a broker, the method always returns False.

Exceptions:

• XMSException

Methods
Summary of methods:

Method Description

Close Close the session.

Commit Commit all messages processed in the current transaction.

CreateBrowser Create a queue browser for the specified queue.

CreateBrowser Create a queue browser for the specified queue using a message selector.

CreateBytesMessage Create a bytes message.

CreateConsumer Create a message consumer for the specified destination.

CreateConsumer Create a message consumer for the specified destination using a message
selector.

CreateConsumer Create a message consumer for the specified destination using a message
selector and, if the destination is a topic, specifying whether the message
consumer receives the messages published by its own connection.

CreateDurableSubscrib
er

Create a durable subscriber for the specified topic.

CreateDurableSubscrib
er

Create a durable subscriber for the specified topic using a message
selector and specifying whether the durable subscriber receives the
messages published by its own connection.

CreateMapMessage Create a map message.

CreateMessage Create a message that has no body.

CreateObjectMessage Create an object message.

154 IBM Message Service Client for .NET

Method Description

CreateProducer Create a message producer to send messages to the specified destination.

CreateQueue Create a Destination object to represent a queue in the messaging server.

CreateStreamMessage Create a stream message.

CreateTemporaryQueue Create a temporary queue.

CreateTemporaryTopic Create a temporary topic.

CreateTextMessage Create a text message with an empty body.

CreateTextMessage Create a text message whose body is initialized with the specified text.

CreateTopic Create a Destination object to represent a topic.

Recover Recover the session.

Rollback Rollback all messages processed in the current transaction.

Unsubscribe Delete a durable subscription.

Close - Close Session

Interface:

void Close();

Close the session. If the session is transacted, any transaction in progress is rolled back.

If an application tries to close a session that is already closed, the call is ignored.

Parameters:
None

Returns:
Void

Thread context:
Any

Exceptions:

• XMSException

Commit - Commit

Interface:

void Commit();

Commit all messages processed in the current transaction.

The session must be a transacted session.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException
• IllegalStateException
• TransactionRolledBackException

Introduction to the Message Service Client for .NET 155

CreateBrowser - Create Queue Browser

Interface:

IQueueBrowser CreateBrowser(IDestination queue) ;

Create a queue browser for the specified queue.

Parameters:
queue (input)

A Destination object representing the queue.
Returns:

The QueueBrowser object.
Exceptions:

• XMSException
• InvalidDestinationException

CreateBrowser - Create Queue Browser (with message selector)

Interface:

IQueueBrowser CreateBrowser(IDestination queue, String selector) ;

Create a queue browser for the specified queue using a message selector.

Parameters:
queue (input)

A Destination object representing the queue.
selector (input)

A String object encapsulating a message selector expression. Only those messages with
properties that match the message selector expression are delivered to the queue browser.

A null String object means that there is no message selector for the queue browser.

Returns:
The QueueBrowser object.

Exceptions:

• XMSException
• InvalidDestinationException
• InvalidSelectorException

CreateBytesMessage - Create Bytes Message

Interface:

IBytesMessage CreateBytesMessage();

Create a bytes message.

Parameters:
None

Returns:
The BytesMessage object.

Exceptions:

• XMSException
• IllegalStateException (The session is closed)

156 IBM Message Service Client for .NET

CreateConsumer - Create Consumer

Interface:

IMessageConsumer CreateConsumer(IDestination dest) ;

Create a message consumer for the specified destination.

Parameters:
dest (input)

The Destination object.
Returns:

The MessageConsumer object.
Exceptions:

• XMSException
• InvalidDestinationException

CreateConsumer - Create Consumer (with message selector)

Interface:

IMessageConsumer CreateConsumer(IDestination dest,
 String selector) ;

Create a message consumer for the specified destination using a message selector.

Parameters:
dest (input)

The Destination object.
selector (input)

A String object encapsulating a message selector expression. Only those messages with
properties that match the message selector expression are delivered to the message consumer.

A null String object means that there is no message selector for the message consumer.

Returns:
The MessageConsumer object.

Exceptions:

• XMSException
• InvalidDestinationException
• InvalidSelectorException

CreateConsumer - Create Consumer (with message selector and local message flag)

Interface:

IMessageConsumer CreateConsumer(IDestination dest,
 String selector,
 Boolean noLocal) ;

Create a message consumer for the specified destination using a message selector and, if the destination
is a topic, specifying whether the message consumer receives the messages published by its own
connection.

Parameters:
dest (input)

The Destination object.

Introduction to the Message Service Client for .NET 157

selector (input)
A String object encapsulating a message selector expression. Only those messages with
properties that match the message selector expression are delivered to the message consumer.

A null String object means that there is no message selector for the message consumer.

noLocal (input)
The value True means that the message consumer does not receive the messages published
by its own connection. The value False means that the message consumer does receive the
messages published by its own connection. The default value is False.

Returns:
The MessageConsumer object.

Exceptions:

• XMSException
• InvalidDestinationException
• InvalidSelectorException

CreateDurableSubscriber - Create Durable Subscriber

Interface:

IMessageConsumer CreateDurableSubscriber(IDestination dest,
 String subscription) ;

Create a durable subscriber for the specified topic.

This method is not valid for a real-time connection to a broker.

For more information about durable subscribers, see “Durable subscribers” on page 35.

Parameters:
dest (input)

A Destination object representing the topic. The topic must not be a temporary topic.
subscription (input)

A String object encapsulating a name that identifies the durable subscription. The name must be
unique within the client identifier for the connection.

Returns:
The MessageConsumer object representing the durable subscriber.

Exceptions:

• XMSException
• InvalidDestinationException

CreateDurableSubscriber - Create Durable Subscriber (with message selector and local message flag)

Interface:

IMessageConsumer CreateDurableSubscriber(IDestination dest,
 String subscription,
 String selector,
 Boolean noLocal) ;

Create a durable subscriber for the specified topic using a message selector and specifying whether the
durable subscriber receives the messages published by its own connection.

This method is not valid for a real-time connection to a broker.

For more information about durable subscribers, see “Durable subscribers” on page 35.

158 IBM Message Service Client for .NET

Parameters:
dest (input)

A Destination object representing the topic. The topic must not be a temporary topic.
subscription (input)

A String object encapsulating a name that identifies the durable subscription. The name must be
unique within the client identifier for the connection.

selector (input)
A String object encapsulating a message selector expression. Only those messages with
properties that match the message selector expression are delivered to the durable subscriber.

A null String object means that there is no message selector for the durable subscriber.

noLocal (input)
The value True means that the durable subscriber does not receive the messages published by its
own connection. The value False means that the durable subscriber does receive the messages
published by its own connection. The default value is False.

Returns:
The MessageConsumer object representing the durable subscriber.

Exceptions:

• XMSException
• InvalidDestinationException
• InvalidSelectorException

CreateMapMessage - Create Map Message

Interface:

IMapMessage CreateMapMessage();

Create a map message.

Parameters:
None

Returns:
The MapMessage object.

Exceptions:

• XMSException
• IllegalStateException (The session is closed)

CreateMessage - Create Message

Interface:

IMessage CreateMessage();

Create a message that has no body.

Parameters:
None

Returns:
The Message object.

Exceptions:

• XMSException
• IllegalStateException (The session is closed)

Introduction to the Message Service Client for .NET 159

CreateObjectMessage - Create Object Message

Interface:

IObjectMessage CreateObjectMessage();

Create an object message.

Parameters:
None

Returns:
The ObjectMessage object.

Exceptions:

• XMSException
• IllegalStateException (The session is closed)

CreateProducer - Create Producer

Interface:

IMessageProducer CreateProducer(IDestination dest) ;

Create a message producer to send messages to the specified destination.

Parameters:
dest (input)

The Destination object.

If you specify a null Destination object, the message producer is created without a destination. In
this case, the application must specify a destination every time it uses the message producer to
send a message.

Returns:
The MessageProducer object.

Exceptions:

• XMSException
• InvalidDestinationException

CreateQueue - Create Queue

Interface:

IDestination CreateQueue(String queue) ;

Create a Destination object to represent a queue in the messaging server.

This method does not create the queue in the messaging server. You must create the queue before an
application can call this method.

Parameters:
queue (input)

A String object encapsulating the name of the queue, or encapsulating a uniform resource
identifier (URI) that identifies the queue.

Returns:
The Destination object representing the queue.

Exceptions:

• XMSException

160 IBM Message Service Client for .NET

CreateStreamMessage - Create Stream Message

Interface:

IStreamMessage CreateStreamMessage();

Create a stream message.

Parameters:
None

Returns:
The StreamMessage object.

Exceptions:

• XMSException
• XMS_ILLEGAL_STATE_EXCEPTION

CreateTemporaryQueue - Create Temporary Queue

Interface:

IDestination CreateTemporaryQueue() ;

Create a temporary queue.

The scope of the temporary queue is the connection. Only the sessions created by the connection can use
the temporary queue.

The temporary queue remains until it is explicitly deleted, or the connection ends, whichever is the
sooner.

For more information about temporary queues, see “Temporary destinations” on page 33.

Parameters:
None

Returns:
The Destination object representing the temporary queue.

Exceptions:

• XMSException

CreateTemporaryTopic - Create Temporary Topic

Interface:

IDestination CreateTemporaryTopic() ;

Create a temporary topic.

The scope of the temporary topic is the connection. Only the sessions created by the connection can use
the temporary topic.

The temporary topic remains until it is explicitly deleted, or the connection ends, whichever is the sooner.

For more information about temporary topics, see “Temporary destinations” on page 33.

Parameters:
None

Returns:
The Destination object representing the temporary topic.

Exceptions:

• XMSException

Introduction to the Message Service Client for .NET 161

CreateTextMessage - Create Text Message

Interface:

ITextMessage CreateTextMessage();

Create a text message with an empty body.

Parameters:
None

Returns:
The TextMessage object.

Exceptions:

• XMSException

CreateTextMessage - Create Text Message (initialized)

Interface:

ITextMessage CreateTextMessage(String initialValue);

Create a text message whose body is initialized with the specified text.

Parameters:
initialValue (input)

A String object encapsulating the text to initialize the body of the text message.
None

Returns:
The TextMessage object.

Exceptions:

• XMSException

CreateTopic - Create Topic

Interface:

IDestination CreateTopic(String topic) ;

Create a Destination object to represent a topic.

Parameters:
topic (input)

A String object encapsulating the name of the topic, or encapsulating a uniform resource identifier
(URI) that identifies the topic.

Returns:
The Destination object representing the topic.

Exceptions:

• XMSException

Recover - Recover

Interface:

void Recover();

Recover the session. Message delivery is stopped and then restarted with the oldest unacknowledged
message.

The session must not be a transacted session.

162 IBM Message Service Client for .NET

For more information about recovering a session, see “Message acknowledgement” on page 26.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException
• IllegalStateException

Rollback - Rollback

Interface:

void Rollback();

Rollback all messages processed in the current transaction.

The session must be a transacted session.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException
• IllegalStateException

Unsubscribe - Unsubscribe

Interface:

void Unsubscribe(String subscription);

Delete a durable subscription. The messaging server deletes the record of the durable subscription that it
is maintaining and does not send any more messages to the durable subscriber.

An application cannot delete a durable subscription in any of the following circumstances:

• While there is an active message consumer for the durable subscription
• While a consumed message is part of a pending transaction
• While a consumed message was not acknowledged

This method is not valid for a real-time connection to a broker.

Parameters:
subscription (input)

A String object encapsulating the name that identifies the durable subscription.
Returns:

Void
Exceptions:

• XMSException
• InvalidDestinationException
• IllegalStateException

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

Introduction to the Message Service Client for .NET 163

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IStreamMessage
A stream message is a message whose body comprises a stream of values, where each value has an
associated data type. The contents of the body are written and read sequentially.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessage
 |
 +----IBM.XMS.IStreamMessage

When an application reads a value from the message stream, the value can be converted by XMS into
another data type. For more information about this form of implicit conversion, see “Stream messages” on
page 78.

Related reference
Stream messages
The body of a stream message contains a stream of values, where each value has an associated data type.

Methods
Summary of methods:

Method Description

ReadBoolean Read a boolean value from the message stream.

ReadByte Read a signed 8-bit integer from the message stream.

ReadBytes Read an array of bytes from the message stream.

ReadChar Read a 2-byte character from the message stream.

ReadDouble Read an 8-byte double precision floating point number from the message
stream.

ReadFloat Read a 4-byte floating point number from the message stream.

ReadInt Read a signed 32-bit integer from the message stream.

ReadLong Read a signed 64-bit integer from the message stream.

ReadObject Read a value from the message stream, and return its data type.

ReadShort Read a signed 16-bit integer from the message stream.

ReadString Read a string from the message stream.

Reset Put the body of the message into read-only mode and reposition the cursor
at the beginning of the message stream.

WriteBoolean Write a boolean value to the message stream.

WriteByte Write a byte to the message stream.

WriteBytes Write an array of bytes to the message stream.

WriteChar Write a character to the message stream as 2 bytes, high-order byte first.

164 IBM Message Service Client for .NET

Method Description

WriteDouble Convert a double precision floating point number to a long integer and
write the long integer to the message stream as 8 bytes, high-order byte
first.

WriteFloat Convert a floating point number to an integer and write the integer to the
message stream as 4 bytes, high-order byte first.

WriteInt Write an integer to the message stream as 4 bytes, high-order byte first.

WriteLong Write a long integer to the message stream as 8 bytes, high-order byte first.

WriteObject Write a value, with a specified data type, to the message stream.

WriteShort Write a short integer to the message stream as 2 bytes, high-order byte
first.

WriteString Write a string to the message stream.

ReadBoolean - Read Boolean Value

Interface:

Boolean ReadBoolean();

Read a boolean value from the message stream.

Parameters:
None

Returns:
The boolean value that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadByte - Read Byte

Interface:

Int16 ReadSignedByte();
 Byte ReadByte();

Read a signed 8-bit integer from the message stream.

Parameters:
None

Returns:
The byte that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadBytes - Read Bytes

Interface:

Int32 ReadBytes(Byte[] array);

Introduction to the Message Service Client for .NET 165

Read an array of bytes from the message stream.

Parameters:
array (input)

The buffer containing the array of bytes that is read and the length of the buffer in bytes.

If the number of bytes in the array is less than or equal to the length of the buffer, the whole array
is read into the buffer. If the number of bytes in the array is greater than the length of the buffer,
the buffer is filled with part of the array, and an internal cursor marks the position of the next byte
to be read. A subsequent call to readBytes() reads bytes from the array starting from the current
position of the cursor.

If you specify a null pointer on input, the call skips over the array of bytes without reading it.

Returns:
The number of bytes that are read into the buffer. If the buffer is partially filled, the value is less
than the length of the buffer, indicating that there are no more bytes in the array remaining to
be read. If there are no bytes remaining to be read from the array before the call, the value is
XMSC_END_OF_BYTEARRAY.

If you specify a null pointer on input, the method returns no value.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadChar - Read Character

Interface:

Char ReadChar();

Read a 2-byte character from the message stream.

Parameters:
None

Returns:
The character that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadDouble - Read Double Precision Floating Point Number

Interface:

Double ReadDouble();

Read an 8-byte double precision floating point number from the message stream.

Parameters:
None

Returns:
The double precision floating point number that is read.

Exceptions:

• XMSException
• MessageNotReadableException

166 IBM Message Service Client for .NET

• MessageEOFException

ReadFloat - Read Floating Point Number

Interface:

Single ReadFloat();

Read a 4-byte floating point number from the message stream.

Parameters:
None

Returns:
The floating point number that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadInt - Read Integer

Interface:

Int32 ReadInt();

Read a signed 32-bit integer from the message stream.

Parameters:
None

Returns:
The integer that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadLong - Read Long Integer

Interface:

Int64 ReadLong();

Read a signed 64-bit integer from the message stream.

Parameters:
None

Returns:
The long integer that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

Introduction to the Message Service Client for .NET 167

ReadObject - Read Object

Interface:

Object ReadObject();

Read a value from the message stream, and return its data type.

Parameters:
None

Returns:
The value, which is one of the following object types:

Boolean
Byte
Byte[]
Char
Double
Single
Int32
Int64
Int16
String

Exceptions:
XMSException

ReadShort - Read Short Integer

Interface:

Int16 ReadShort();

Read a signed 16-bit integer from the message stream.

Parameters:
None

Returns:
The short integer that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadString - Read String

Interface:

String ReadString();

Read a string from the message stream. If required, XMS converts the characters in the string into the
local code page.

Parameters:
None

Returns:
A String object encapsulating the string that is read. If data conversion is required, this is the string
after conversion.

168 IBM Message Service Client for .NET

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

Reset - Reset

Interface:

void Reset();

Put the body of the message into read-only mode and reposition the cursor at the beginning of the
message stream.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

WriteBoolean - Write Boolean Value

Interface:

void WriteBoolean(Boolean value);

Write a boolean value to the message stream.

Parameters:
value (input)

The boolean value to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteByte - Write Byte

Interface:

void WriteByte(Byte value);
void WriteSignedByte(Int16 value);

Write a byte to the message stream.

Parameters:
value (input)

The byte to be written.
Returns:

Void
Exceptions:

• XMSException

Introduction to the Message Service Client for .NET 169

• MessageNotWritableException

WriteBytes - Write Bytes

Interface:

void WriteBytes(Byte[] value);

Write an array of bytes to the message stream.

Parameters:
value (input)

The array of bytes to be written.
length (input)

The number of bytes in the array.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteChar - Write Character

Interface:

void WriteChar(Char value);

Write a character to the message stream as 2 bytes, high-order byte first.

Parameters:
value (input)

The character to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteDouble - Write Double Precision Floating Point Number

Interface:

void WriteDouble(Double value);

Convert a double precision floating point number to a long integer and write the long integer to the
message stream as 8 bytes, high-order byte first.

Parameters:
value (input)

The double precision floating point number to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

170 IBM Message Service Client for .NET

WriteFloat - Write Floating Point Number

Interface:

void WriteFloat(Single value);

Convert a floating point number to an integer and write the integer to the message stream as 4 bytes,
high-order byte first.

Parameters:
value (input)

The floating point number to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteInt - Write Integer

Interface:

void WriteInt(Int32 value);

Write an integer to the message stream as 4 bytes, high-order byte first.

Parameters:
value (input)

The integer to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteLong - Write Long Integer

Interface:

void WriteLong(Int64 value);

Write a long integer to the message stream as 8 bytes, high-order byte first.

Parameters:
value (input)

The long integer to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteObject - Write Object

Interface:

void WriteObject(Object value);

Introduction to the Message Service Client for .NET 171

Write a value, with a specified data type, to the message stream.

Parameters:
objectType (input)

The value, which must be one of the following object types:

Boolean
Byte
Byte[]
Char
Double
Single
Int32
Int64
Int16
String

value (input)
An array of bytes containing the value to be written.

length (input)
The number of bytes in the array.

Returns:
Void

Exceptions:

• XMSException

WriteShort - Write Short Integer

Interface:

void WriteShort(Int16 value);

Write a short integer to the message stream as 2 bytes, high-order byte first.

Parameters:
value (input)

The short integer to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteString - Write String

Interface:

void WriteString(String value);

Write a string to the message stream.

Parameters:
value (input)

A String object encapsulating the string to be written.
Returns:

Void

172 IBM Message Service Client for .NET

Exceptions:

• XMSException
• MessageNotWritableException

Inherited properties and methods
The following properties are inherited from the IMessage interface:

JMSCorrelationID, JMSDeliveryMode, JMSDestination, JMSExpiration, JMSMessageID, JMSPriority,
JMSRedelivered, JMSReplyTo, JMSTimestamp, JMSType, Properties

The following methods are inherited from the IMessage interface:

clearBody, clearProperties, PropertyExists

The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

ITextMessage
A text message is a message whose body comprises a string.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessage
 |
 +----IBM.XMS.ITextMessage

Related reference
Text messages
The body of a text message contains a string.

.NET properties
Summary of .NET properties:

.NET property Description

Text Get and set the string that forms the body of the text message.

Text - Get and Set Text

Interface:

String Text
{
 get;
 set;
}

Get and set the string that forms the body of the text message.

If required, XMS converts the characters in the string into the local code page.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageNotWritableException

Introduction to the Message Service Client for .NET 173

• MessageEOFException

Inherited properties and methods
The following properties are inherited from the IMessage interface:

JMSCorrelationID, JMSDeliveryMode, JMSDestination, JMSExpiration, JMSMessageID, JMSPriority,
JMSRedelivered, JMSReplyTo, JMSTimestamp, JMSType, Properties

The following methods are inherited from the IMessage interface:

clearBody, clearProperties, PropertyExists

The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

TransactionInProgressException
Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.TransactionInProgressException

XMS throws this exception if an application requests an operation that is not valid because a transaction is
in progress.

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

TransactionRolledBackException
Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.TransactionRolledBackException

XMS throws this exception if an application calls Session.commit() to commit the current transaction, but
the transaction is then rolled back.

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

174 IBM Message Service Client for .NET

XMSException
If XMS detects an error while processing a call to a .NET method, XMS throws an exception. An exception
is an object that encapsulates information about the error.

Inheritance hierarchy:

System.Exception
 |
 +----IBM.XMS.XMSException

There are different types of XMS exception, and an XMSException object is just one type of exception.
However, the XMSException class is a superclass of the other XMS exception classes. XMS throws an
XMSException object in situations where none of the other types of exception are appropriate.

.NET properties
Summary of .NET properties:

.NET property Description

ErrorCode Get the error code.

LinkedException Get the next exception in the chain of exceptions.

ErrorCode - Get Error Code

Interface:

public String ErrorCode
{
 get {return errorCode_;}
}

Get the error code.

Exceptions:

• XMSException

LinkedException - Get Linked Exception

Interface:

public Exception LinkedException
{
 get { return linkedException_;}
 set { linkedException_ = value;}
}

Get the next exception in the chain of exceptions.

The method returns a null if there are no more exceptions in the chain.

Exceptions:

• XMSException

XMSFactoryFactory
If an application is not using administered objects, use this class to create connection factories, queues,
and topics.

Inheritance hierarchy:
None

Introduction to the Message Service Client for .NET 175

.NET properties
Summary of .NET properties:

.NET property Description

MetaData Get the metadata that is appropriate to the connection type of the
XMSFactoryFactory object.

Metadata - Retrieve metadata

Interface:

IConnectionMetaData MetaData

Get the metadata that is appropriate to the connection type of the XMSFactoryFactory object.

Exceptions:
None

Methods
Summary of methods:

Method Description

CreateConnectionFacto
ry

Create a ConnectionFactory object of the declared type.

CreateQueue Create a Destination object to represent a queue in the messaging server.

CreateTopic Create a Destination object to represent a topic.

GetInstance Create an instance of XMSFactoryFactory. An XMS application uses an
XMSFactoryFactory object to get a reference to a ConnectionFactory object
that is appropriate to the required type of protocol. This ConnectionFactory
object can then produce connections for that protocol type only.

CreateConnectionFactory - Create Connection Factory

Interface:

IConnectionFactory CreateConnectionFactory();

Create a ConnectionFactory object of the declared type.

Parameters:
None

Returns:
The ConnectionFactory object.

Exceptions:

• XMSException

CreateQueue - Create Queue

Interface:

IDestination CreateQueue(String name);

Create a Destination object to represent a queue in the messaging server.

This method does not create the queue in the messaging server. You must create the queue before an
application can call this method.

176 IBM Message Service Client for .NET

Parameters:
name (input)

A String object encapsulating the name of the queue, or encapsulating a uniform resource
identifier (URI) that identifies the queue.

Returns:
The Destination object representing the queue.

Exceptions:

• XMSException

CreateTopic - Create Topic

Interface:

IDestination CreateTopic(String name);

Create a Destination object to represent a topic.

Parameters:
name (input)

A String object encapsulating the name of the topic, or encapsulating a uniform resource identifier
(URI) that identifies the topic.

Returns:
The Destination object representing the topic.

Exceptions:

• XMSException

GetInstance - Get an instance of XMSFactoryFactory

Interface:

static XMSFactoryFactory GetInstance(int connectionType);

Create an instance of XMSFactoryFactory. An XMS application uses an XMSFactoryFactory object to get
a reference to a ConnectionFactory object that is appropriate to the required type of protocol. This
ConnectionFactory object can then produce connections for that protocol type only.

Parameters:
connectionType (input)

The type of connection for which the ConnectionFactory object produces connections:

• XMSC.CT_WPM
• XMSC.CT_RTT
• XMSC.CT_WMQ

Returns:
The XMSFactoryFactory object dedicated to the declared connection type.

Exceptions:

• NotSupportedException

Properties of XMS objects
This sectionchapter documents the object properties defined by XMS.

The sectionchapter contains the following topicssections:

• “Properties of Connection” on page 178
• “Properties of ConnectionFactory” on page 179

Introduction to the Message Service Client for .NET 177

• “Properties of ConnectionMetaData” on page 185
• “Properties of Destination” on page 185
• “Properties of InitialContext” on page 188
• “Properties of Message” on page 189
• “Properties of MessageConsumer” on page 194
• “Properties of MessageProducer” on page 194
• “Properties of Session” on page 194

Each topicsection lists the properties of an object of the specified type and provides a short description of
each property.

This sectionchapter also contains the “Property definitions” on page 194 topicsection, which provides a
definition of each property.

If an application defines its own properties of the objects described in this sectionchapter, it does not
cause an error, but it might cause unpredictable results.

Note: The property names and values in this section are shown in the form XMSC.NAME, which is the
form used for C and C++. However, in .NET, the form of the property name can be either XMSC.NAME or
XMSC_NAME, depending on how you are using it:

• If you are specifying a property, the property name must be in the form XMSC.NAME as shown in the
following example:

cf.SetStringProperty(XMSC.WMQ_CHANNEL, "DOTNET.SVRCONN");

• If you are specifying a string, the property name must be in the form XMSC_NAME as shown in the
following example:

cf.SetStringProperty("XMSC_WMQ_CHANNEL", "DOTNET.SVRCONN");

In .NET, property names and values are provided as constants in the XMSC class. These constants
identify strings and would be used by any XMS .NET application. If you are using these predefined
constants, the property names and values are in the form XMSC.NAME, so, for example, you would use
XMSC.USERID, rather than XMSC_USERID.

The data types are also in the form used for C/C++. You can find the corresponding values for .NET
in“Data types for .NET” on page 44.

Related concepts
Building your own applications
You build your own applications like you build the sample applications.
Related reference
.NET interfaces
This topicsection documents the .NET class interfaces and their properties and methods.

Properties of Connection
An overview of the properties of the Connection object, with links to more detailed reference information.

Table 28. Properties of Connection

Name of property Description

“XMSC_WMQ_RESOLVED_QUEUE_MANAGER” on
page 229

This property is used to obtain the name of the queue
manager to which it is connected.

“XMSC_WMQ_RESOLVED_QUEUE_MANAGER_ID”
on page 229

This property is populated with the ID of the queue
manager after the connection.

178 IBM Message Service Client for .NET

Table 28. Properties of Connection (continued)

Name of property Description

XMSC_WPM_CONNECTION_PROTOCOL The communications protocol used for the connection to
the messaging engine. This property is read-only.

XMSC_WPM_HOST_NAME The host name or IP address of the system that
contains the messaging engine to which the application is
connected. This property is read-only.

XMSC_WPM_ME_NAME The name of the messaging engine to which the application
is connected. This property is read-only.

XMSC_WPM_PORT The number of the port listened on by the messaging
engine to which the application is connected. This property
is read-only.

A Connection object also has read-only properties that are derived from the properties of the connection
factory that was used to create the connection. These properties are derived not only from the connection
factory properties that were set at the time the connection was created, but also from the default values
of the properties that were not set. The properties include only the ones that are relevant for the type of
messaging server that the application is connected to. The names of the properties are the same as the
names of the connection factory properties.

Properties of ConnectionFactory
An overview of the properties of the ConnectionFactory object, with links to more detailed reference
information.

Table 29. Properties of ConnectionFactory

Name of property Description

“XMSC_ASYNC_EXCEPTIONS” on page 206 This property determines whether XMS informs an
ExceptionListener only when a connection is broken, or
when any exception occurs asynchronously to an XMS API
call. This property applies to all Connections created from
this ConnectionFactory that have an ExceptionListener
registered.

XMSC_CLIENT_ID The client identifier for a connection.

XMSC_CONNECTION_TYPE The type of messaging server to which an application
connects.

XMSC_PASSWORD A password that can be used to authenticate the
application when it attempts to connect to a messaging
server.

“XMSC_RTT_BROKER_PING_INTERVAL” on page
211

The time interval, in milliseconds, after which XMS .NET
checks the connection to a Real Time messaging server to
detect any activity.

XMSC_RTT_CONNECTION_PROTOCOL The communications protocol used for a real-time
connection to a broker.

XMSC_RTT_HOST_NAME The host name or IP address of the system on which a
broker runs.

XMSC_RTT_LOCAL_ADDRESS The host name or IP address of the local network interface
to be used for a real-time connection to a broker.

Introduction to the Message Service Client for .NET 179

Table 29. Properties of ConnectionFactory (continued)

Name of property Description

XMSC_RTT_MULTICAST The multicast setting for a connection factory or
destination.

XMSC_RTT_PORT The number of the port on which a broker listens for
incoming requests.

XMSC_USERID A user identifier that can be used to authenticate the
application when it attempts to connect to a messaging
server.

XMSC_WMQ_BROKER_CONTROLQ The name of the control queue used by a broker.

Note: This property can be used with Version 2.0
of IBM Message Service Client for .NET but has
no effect for an application connected to a IBM
WebSphere MQ Version 7.0 queue manager unless
the XMSC_WMQ_PROVIDER_VERSION property of the
connection factory is set to a version number less than 7.

XMSC_WMQ_BROKER_PUBQ The name of the queue monitored by a broker where
applications send messages that they publish.

Note: This property can be used with Version 2.0
of IBM Message Service Client for .NET but has
no effect for an application connected to a IBM
WebSphere MQ Version 7.0 queue manager unless
the XMSC_WMQ_PROVIDER_VERSION property of the
connection factory is set to a version number less than 7.

XMSC_WMQ_BROKER_QMGR The name of the queue manager to which a broker is
connected.

Note: This property can be used with Version 2.0
of IBM Message Service Client for .NET but has
no effect for an application connected to a IBM
WebSphere MQ Version 7.0 queue manager unless
the XMSC_WMQ_PROVIDER_VERSION property of the
connection factory is set to a version number less than 7.

XMSC_WMQ_BROKER_SUBQ The name of the subscriber queue for a nondurable
message consumer.

Note: This property can be used with Version 2.0
of IBM Message Service Client for .NET but has
no effect for an application connected to a IBM
WebSphere MQ Version 7.0 queue manager unless
the XMSC_WMQ_PROVIDER_VERSION property of the
connection factory is set to a version number less than 7.

XMSC_WMQ_BROKER_VERSION The type of broker used by the application for a connection
or for the destination.

Note: This property can be used with Version 2.0
of IBM Message Service Client for .NET but has
no effect for an application connected to a IBM
WebSphere MQ Version 7.0 queue manager unless
the XMSC_WMQ_PROVIDER_VERSION property of the
connection factory is set to a version number less than 7.

180 IBM Message Service Client for .NET

Table 29. Properties of ConnectionFactory (continued)

Name of property Description

“XMSC_WMQ_CCDTURL” on page 216 A Uniform Resource Locator (URL) that identifies the name
and location of the file that contains the client channel
definition table and also specifies how the file can be
accessed.

XMSC_WMQ_CHANNEL The name of the channel to be used for a connection.

“XMSC_WMQ_CLIENT_RECONNECT_OPTIONS”
on page 217

This property specifies the client reconnect options for new
connections created by this factory

“XMSC_WMQ_CLIENT_RECONNECT_TIMEOUT”
on page 217

This property specifies the duration of time, in seconds,
that a client connection attempts to reconnect.

XMSC_WMQ_CONNECTION_MODE The mode by which an application connects to a queue
manager.

“XMSC_WMQ_CONNECTION_NAME_LIST” on
page 218

This property specifies the hosts to which the client
attempts to reconnect to after its connection are broken.

XMSC_WMQ_FAIL_IF_QUIESCE Whether calls to certain methods fail if the queue manager
to which the application is connected is in a quiescing
state.

XMSC_WMQ_HOST_NAME The host name or IP address of the system on which a
queue manager runs.

XMSC_WMQ_LOCAL_ADDRESS For a connection to a queue manager, this property
specifies the local network interface to be used, or the
local port or range of local ports to be used, or both.

XMSC_WMQ_MESSAGE_SELECTION Determines whether message selection is done by the XMS
client or by the broker.

Note: This property can be used with Version 2.0
of IBM Message Service Client for .NET but has
no effect for an application connected to a IBM
WebSphere MQ Version 7.0 queue manager unless
the XMSC_WMQ_PROVIDER_VERSION property of the
connection factory is set to a version number less than 7.

XMSC_WMQ_MSG_BATCH_SIZE The maximum number of messages to be retrieved from
a queue in one batch when using asynchronous message
delivery.

Note: This property can be used with Version 2.0
of IBM Message Service Client for .NET but has
no effect for an application connected to a IBM
WebSphere MQ Version 7.0 queue manager unless
the XMSC_WMQ_PROVIDER_VERSION property of the
connection factory is set to a version number less than 7.

Introduction to the Message Service Client for .NET 181

Table 29. Properties of ConnectionFactory (continued)

Name of property Description

XMSC_WMQ_POLLING_INTERVAL If each message listener within a session has no suitable
message on its queue, this value is the maximum interval,
in milliseconds, that elapses before each message listener
tries again to get a message from its queue.

Note: This property can be used with Version 2.0
of IBM Message Service Client for .NET but has
no effect for an application connected to a IBM
WebSphere MQ Version 7.0 queue manager unless
the XMSC_WMQ_PROVIDER_VERSION property of the
connection factory is set to a version number less than 7.

“XMSC_WMQ_PROVIDER_VERSION” on page 226 The version, release, modification level and fix pack of
the queue manager to which the application intends to
connect.

XMSC_WMQ_PORT The number of the port on which a queue manager listens
for incoming requests.

XMSC_WMQ_PUB_ACK_INTERVAL The number of messages published by a publisher before
the XMS client requests an acknowledgement from the
broker.

Note: This property can be used with Version 2.0
of IBM Message Service Client for .NET but has
no effect for an application connected to a IBM
WebSphere MQ Version 7.0 queue manager unless
the XMSC_WMQ_PROVIDER_VERSION property of the
connection factory is set to a version number less than 7.

“XMSC_WMQ_PUT_ASYNC_ALLOWED” on page
222

This property determines whether message producers are
allowed to use asynchronous puts to send messages to this
destination.

XMSC_WMQ_QMGR_CCSID The identifier (CCSID) of the coded character set, or code
page, in which fields of character data defined in the
Message Queue Interface (MQI) are exchanged between
the XMS client and the IBM WebSphere MQ client.

XMSC_WMQ_QUEUE_MANAGER The name of the queue manager to connect to.

XMSC_WMQ_RECEIVE_EXIT Identifies a channel receive exit to be run.

XMSC_WMQ_RECEIVE_EXIT_INIT The user data that is passed to a channel receive exit when
it is called.

XMSC_WMQ_SECURITY_EXIT Identifies a channel security exit.

XMSC_WMQ_SECURITY_EXIT_INIT The user data that is passed to a channel security exit
when it is called.

“XMSC_WMQ_SEND_CHECK_COUNT” on page
231

The number of send calls to allow between checking for
asynchronous put errors, within a single non-transacted
XMS session.

XMSC_WMQ_SEND_EXIT Identifies a channel send exit.

XMSC_WMQ_SEND_EXIT_INIT The user data that is passed to channel send exits when
they are called.

182 IBM Message Service Client for .NET

Table 29. Properties of ConnectionFactory (continued)

Name of property Description

“XMSC_WMQ_SHARE_CONV_ALLOWED” on page
231

Whether a client connection can share its socket with other
top-level XMS connections from the same process to the
same queue manager, if the channel definitions match.
This property is provided to allow complete isolation of
Connections in separate sockets if required for application
development, maintenance, or operational reasons.

XMSC_WMQ_SSL_CERT_STORES The locations of the servers that hold the certificate
revocation lists (CRLs) to be used on an SSL connection
to a queue manager.

XMSC_WMQ_SSL_CIPHER_SPEC The name of the CipherSpec to be used on a secure
connection to a queue manager.

XMSC_WMQ_SSL_CIPHER_SUITE The name of the CipherSuite to be used on an SSL or
TLS connection to a queue manager. The protocol used
in negotiating the secure connection depends on the
specified CipherSuite.

XMSC_WMQ_SSL_CRYPTO_HW Configuration details for the cryptographic hardware
connected to the client system.

XMSC_WMQ_SSL_FIPS_REQUIRED The value of this property determines whether an
application can or cannot use non-FIPS compliant cipher
suites. If this property is set to true, only FIPS algorithms
are used for the client-server connection.

XMSC_WMQ_SSL_KEY_REPOSITORY The location of the key database file in which keys and
certificates are stored.

XMSC_WMQ_SSL_KEY_RESETCOUNT The KeyResetCount represents the total number of
unencrypted bytes sent and received within an SSL
conversation before the secret key is renegotiated.

XMSC_WMQ_SSL_PEER_NAME The peer name to be used on an SSL connection to a queue
manager.

XMSC_WMQ_SYNCPOINT_ALL_GETS Whether all messages must be retrieved from queues
within sync point control.

“XMSC_WMQ_TARGET_CLIENT” on page 238

XMSC_WMQ_TEMP_Q_PREFIX The prefix used to form the name of the IBM WebSphere
MQ dynamic queue that is created when the application
creates an XMS temporary queue.

XMSC_WMQ_TEMP_TOPIC_PREFIX When creating temporary topics, XMS generates a
topic string of the form "TEMP/TEMPTOPICPREFIX/
unique_id", or if this property is left with the default
value, just "TEMP/unique_id". Specifying a non-empty
value allows specific model queues to be defined for
creating the managed queues for subscribers to temporary
topics created under this connection.

XMSC_WMQ_TEMPORARY_MODEL The name of the IBM WebSphere MQ model queue from
which a dynamic queue is created when the application
creates an XMS temporary queue.

Introduction to the Message Service Client for .NET 183

Table 29. Properties of ConnectionFactory (continued)

Name of property Description

XMSC_WPM_BUS_NAME For a connection factory, the name of the service
integration bus that the application connects to or, for
a destination, the name of the service integration bus in
which the destination exists.

XMSC_WPM_CONNECTION_PROXIMITY The connection proximity setting for the connection.

XMSC_WPM_DUR_SUB_HOME The name of the messaging engine where all durable
subscriptions for a connection or a destination are
managed.

XMSC_WPM_LOCAL_ADDRESS For a connection to a service integration bus, this property
specifies the local network interface to be used, or the
local port or range of local ports to be used, or both.

XMSC_WPM_NON_PERSISTENT_MAP The reliability level of nonpersistent messages that are
sent using the connection.

XMSC_WPM_PERSISTENT_MAP The reliability level of persistent messages that are sent
using the connection.

XMSC_WPM_PROVIDER_ENDPOINTS A sequence of one or more endpoint addresses of
bootstrap servers.

XMSC_WPM_TARGET_GROUP The name of a target group of messaging engines.

XMSC_WPM_TARGET_SIGNIFICANCE The significance of the target group of messaging engines.

XMSC_WPM_TARGET_TRANSPORT_CHAIN The name of the inbound transport chain that the
application must use to connect to a messaging engine.

XMSC_WPM_TARGET_TYPE The type of the target group of messaging engines.

XMSC_WPM_TEMP_Q_PREFIX The prefix used to form the name of the temporary queue
that is created in the service integration bus when the
application creates an XMS temporary queue.

XMSC_WPM_TEMP_TOPIC_PREFIX The prefix used to form the name of a temporary topic that
is created by the application.

Related concepts
ConnectionFactories and Connection objects
A ConnectionFactory object provides a template that an application uses to create a Connection object.
The application uses the Connection object to create a Session object.
Connection to a WebSphere service integration bus
An XMS application can connect to a WebSphere Service Integration Bus either by using a direct TCP/IP
connection or by using HTTP over TCP/IP.
Secure connections to a IBM WebSphere MQ queue manager
To enable an XMS .NET application to make secure connections to a IBM WebSphere MQ queue manager,
the relevant properties must be defined in the ConnectionFactory object.
Secure connections to a WebSphere Service Integration Bus messaging engine
To enable an XMS .NET application to make secure connections to a WebSphere Service Integration Bus
messaging engine, the relevant properties must be defined in the ConnectionFactory object.
Property mapping for administered objects

184 IBM Message Service Client for .NET

To enable applications to use IBM WebSphere MQ JMS and WebSphere Application Server connection
factory and destination object definitions, the properties retrieved from these definitions must be mapped
on to the corresponding XMS properties that can be set on XMS connection factories and destinations.
Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.
Related reference
Required properties for administered ConnectionFactory objects
When an application creates a connection factory, a number of properties must be defined to create a
connection to a messaging server.

Properties of ConnectionMetaData
An overview of the properties of the ConnectionMetaData object, with links to more detailed reference
information.

Table 30. Properties of ConnectionMetaData

Name of property Description

XMSC_JMS_MAJOR_VERSION The major version number of the JMS specification upon
which XMS is based. This property is read-only.

XMSC_JMS_MINOR_VERSION The minor version number of the JMS specification upon
which XMS is based. This property is read-only.

XMSC_JMS_VERSION The version identifier of the JMS specification upon which
XMS is based. This property is read-only.

XMSC_MAJOR_VERSION The version number of the XMS client. This property is
read-only.

XMSC_MINOR_VERSION The release number of the XMS client. This property is
read-only.

XMSC_PROVIDER_NAME The provider of the XMS client. This property is read-only.

XMSC_VERSION The version identifier of the XMS client. This property is
read-only.

Properties of Destination
An overview of the properties of the Destination object, with links to more detailed reference information.

Table 31. Properties of Destination

Name of property Description

XMSC_DELIVERY_MODE The delivery mode of messages sent to the destination.

XMSC_PRIORITY The priority of messages sent to the destination.

XMSC_RTT_MULTICAST The multicast setting for a connection factory or
destination.

XMSC_TIME_TO_LIVE The time to live for messages sent to the destination.

XMSC_WMQ_BROKER_VERSION The type of broker used by the application for a connection
or for the destination.

Introduction to the Message Service Client for .NET 185

Table 31. Properties of Destination (continued)

Name of property Description

XMSC_WMQ_CCSID The identifier (CCSID) of the coded character set, or code
page, that the strings of character data in the body of a
message are in when the XMS client forwards the message
to the destination.

XMSC_WMQ_DUR_SUBQ The name of the subscriber queue for a durable subscriber
that is receiving messages from the destination.

Note: This property can be used with Version 2.0
of IBM Message Service Client for .NET but has
no effect for an application connected to a IBM
WebSphere MQ Version 7.0 queue manager unless
the XMSC_WMQ_PROVIDER_VERSION property of the
connection factory is set to a version number less than 7.

XMSC_WMQ_ENCODING How numerical data in the body of a message is
represented when the XMS client forwards the message
to the destination.

XMSC_WMQ_FAIL_IF_QUIESCE Whether calls to certain methods fail if the queue manager
to which the application is connected is in a quiescing
state.

“XMSC_WMQ_MESSAGE_BODY” on page 220 This property determines whether an XMS application
processes the MQRFH2 of a IBM WebSphere MQ message
as part of the message payload (that is, as part of the
message body).

“XMSC_WMQ_MQMD_MESSAGE_CONTEXT” on
page 220

Determines what level of message context is to be set
by the XMS application. The application must be running
with appropriate context authority for this property to take
effect.

“XMSC_WMQ_MQMD_READ_ENABLED” on page
221

This property determines whether an XMS application can
extract the values of MQMD fields or not.

“XMSC_WMQ_MQMD_WRITE_ENABLED” on page
222

This property determines whether an XMS application can
the values of MQMD fields or not.

“XMSC_WMQ_READ_AHEAD_ALLOWED” on page
223

This property determines whether message consumers
and queue browsers are allowed to use read ahead to
get non-persistent, non-transactional messages from this
destination into an internal buffer before receiving them.

“XMSC_WMQ_READ_AHEAD_CLOSE_POLICY” on
page 223

This property determines, for messages being delivered
to an asynchronous message listener, what happens to
messages in the internal read ahead buffer when the
message consumer is closed.

“XMSC_WMQ_RECEIVE_CCSID” on page 228 Destination property that sets the target CCSID for
queue manager message conversion. The value is ignored
unless XMSC_WMQ_RECEIVE_CONVERSION is set to
WMQ_RECEIVE_CONVERSION_QMGR.

“XMSC_WMQ_RECEIVE_CONVERSION” on page
228

Destination property that determines whether data
conversion is going to be performed by the queue manager.

XMSC_WMQ_TARGET_CLIENT Whether messages sent to the destination contain an
MQRFH2 header.

186 IBM Message Service Client for .NET

Table 31. Properties of Destination (continued)

Name of property Description

XMSC_WMQ_TEMP_TOPIC_PREFIX When creating temporary topics, XMS generates a
topic string of the form "TEMP/TEMPTOPICPREFIX/
unique_id", or if this property is left with the default
value, just "TEMP/unique_id". Specifying a non-empty
value allows specific model queues to be defined for
creating the managed queues for subscribers to temporary
topics created under this connection.

XMSC_WPM_BUS_NAME For a connection factory, the name of the service
integration bus that the application connects to or, for
a destination, the name of the service integration bus in
which the destination exists.

XMSC_WPM_TOPIC_SPACE The name of the topic space that contains the topic.

Related concepts
ConnectionFactories and Connection objects
A ConnectionFactory object provides a template that an application uses to create a Connection object.
The application uses the Connection object to create a Session object.
Connection to a WebSphere service integration bus
An XMS application can connect to a WebSphere Service Integration Bus either by using a direct TCP/IP
connection or by using HTTP over TCP/IP.
Destinations
An XMS application uses a Destination object to specify the destination of messages that are being sent,
and the source of messages that are being received.
Destination wildcards
XMS provides support for destination wildcards, ensuring that wildcards can be passed through to the
place where they are needed for matching. There is a different wildcard scheme for each server type that
XMS can work with.
Topic uniform resource identifiers
The topic uniform resource identifier (URI) specifies the name of the topic; it can also specify one or more
properties for it.
Queue uniform resource identifiers
The URI for a queue specifies the name of the queue; it can also specify one or more properties of the
queue.
Temporary destinations
XMS applications can create and use temporary destinations.
Property mapping for administered objects
To enable applications to use IBM WebSphere MQ JMS and WebSphere Application Server connection
factory and destination object definitions, the properties retrieved from these definitions must be mapped
on to the corresponding XMS properties that can be set on XMS connection factories and destinations.
Related tasks
Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.
Related reference
Required properties for administered Destination objects

Introduction to the Message Service Client for .NET 187

An application that is creating a destination must set several properties that the application on an
administered Destination object.

Properties of InitialContext
An overview of the properties of the InitialContext object, with links to more detailed reference
information.

Table 32. Properties of InitialContext

Name of property Description

XMSC_IC_URL For LDAP and FileSystem contexts, the address of the
repository containing administered objects.

Table 33. Properties of InitialContext

Name of property Description

XMSC_IC_PROVIDER_URL Used to locate the JNDI naming directory so that the COS
naming service does not need to be on the same server as
the web service.

XMSC_IC_SECURITY_AUTHENTICATION Based on the Java Context interface
SECURITY_AUTHENTICATION. This property is only
applicable to the COS naming context.

XMSC_IC_SECURITY_CREDENTIALS Based on the Java Context interface
SECURITY_CREDENTIALS. This property is only applicable
to the COS naming context.

XMSC_IC_SECURITY_PRINCIPAL Based on the Java Context interface
SECURITY_PRINCIPAL. This property is only applicable to
the COS naming context.

XMSC_IC_SECURITY_PROTOCOL Based on the Java Context interface SECURITY_PROTOCOL
This property is only applicable to the COS naming context.

XMSC_IC_URL For LDAP and FileSystem contexts, the address of
the repository containing administered objects. For COS
naming contexts, the address of the web service that looks
up the objects in the directory.

Related concepts
InitialContext properties
The parameters of the InitialContext constructor include the location of the repository of administered
objects, given as a uniform resource indicator (URI). In order for an application to establish a connection
to the repository, it may be necessary to provide more information than the information contained in the
URI.
URI format for XMS initial contexts
The location of the repository of administered objects is provided as a uniform resource indicator (URI).
The format of the URI depends on the context type.
Retrieval of administered objects
XMS retrieves an administered object from the repository using the address provided when the
InitialContext object is created, or in the InitialContext properties.
Related tasks
InitialContext objects

188 IBM Message Service Client for .NET

An application must create an initial context to be used to make a connection to the administered objects
repository to retrieve the required administered objects.

Properties of Message
An overview of the properties of the Message object, with links to more detailed reference information.

Table 34. Properties of Message

Name of property Description

JMS_IBM_CHARACTER_SET The identifier (CCSID) of the coded character set, or code
page, that the strings of character data in the body of the
message is in when the XMS client forwards the message
to its intended destination. In XMS this property has a
numeric value and maps to CCSID. However, this property
is based on a JMS property so has a string type value
and maps to the Java character set that represents this
numeric CCSID.

JMS_IBM_ENCODING How numerical data in the body of the message is
represented when the XMS client forwards the message
to its intended destination.

JMS_IBM_EXCEPTIONMESSAGE Text that describes why the message was sent to the
exception destination. This property is read-only.

JMS_IBM_EXCEPTIONPROBLEMDESTINATION The name of the destination that the message was at
before the message was sent to the exception destination.

JMS_IBM_EXCEPTIONREASON A reason code indicating the reason why the message was
sent to the exception destination.

JMS_IBM_EXCEPTIONTIMESTAMP The time when the message was sent to the exception
destination.

JMS_IBM_FEEDBACK A code that indicates the nature of a report message.

JMS_IBM_FORMAT The nature the application data in the message.

JMS_IBM_LAST_MSG_IN_GROUP Indicate whether the message is the last message in a
message group.

JMS_IBM_MSGTYPE The type of the message.

JMS_IBM_PUTAPPLTYPE The type of application that sent the message.

JMS_IBM_PUTDATE The date when the message was sent.

JMS_IBM_PUTTIME The time when the message was sent.

JMS_IBM_REPORT_COA Request 'confirm on arrival' report messages, specifying
how much application data from the original message must
be included in a report message.

JMS_IBM_REPORT_COD Request 'confirm on delivery' report messages, specifying
how much application data from the original message must
be included in a report message.

JMS_IBM_REPORT_DISCARD_MSG Request that the message is discarded if it cannot be
delivered to its intended destination.

JMS_IBM_REPORT_EXCEPTION Request exception report messages, specifying how much
application data from the original message must be
included in a report message.

Introduction to the Message Service Client for .NET 189

Table 34. Properties of Message (continued)

Name of property Description

JMS_IBM_REPORT_EXPIRATION Request expiration report messages, specifying how much
application data from the original message must be
included in a report message.

JMS_IBM_REPORT_NAN Request negative action notification report messages.

JMS_IBM_REPORT_PAN Request positive action notification report messages.

JMS_IBM_REPORT_PASS_CORREL_ID Request that the correlation identifier of any report or reply
message is the same as the correlation identifier of the
original message.

JMS_IBM_REPORT_PASS_MSG_ID Request that the message identifier of any report or reply
message is the same as the message identifier of the
original message.

JMS_IBM_RETAIN Setting this property indicates to the queue manager to
treat a message as Retained Publication.

JMS_IBM_SYSTEM_MESSAGEID An identifier that identifies the message uniquely within
the service integration bus. This property is read-only.

JMSX_APPID The name of the application that sent the message.

JMSX_DELIVERY_COUNT The number of attempts to deliver the message.

JMSX_GROUPID The identifier of the message group to which the message
belongs.

JMSX_GROUPSEQ The sequence number of the message within a message
group.

JMSX_USERID The user identifier associated with the application that sent
the message.

JMS_IBM_MQMD* properties
IBM Message Service Client for .NET enables client applications to read/write MQMD fields using APIs.
It also allows access to MQ message data. By default access to MQMD is disabled and must be
enabled explicitly by the application using Destination properties XMSC_WMQ_MQMD_WRITE_ENABLED
and XMSC_WMQ_MQMD_READ_ENABLED. These two properties are independent of each other.

All MQMD fields except StrucId and Version are exposed as additional Message object properties and are
prefixed JMS_IBM_MQMD.

JMS_IBM_MQMD* properties take higher precedence over other properties like JMS_IBM* described in
the previous table.

Sending messages

All MQMD fields except StrucId and Version are represented. These properties refer only to the MQMD
fields; where a property occurs both in the MQMD and in the MQRFH2 header, the version in the MQRFH2
is not set or extracted. Any of these properties can be set, except JMS_IBM_MQMD_BackoutCount. Any
value set for JMS_IBM_MQMD_BackoutCount is ignored.

If a property has a maximum length and you supply a value that is too long, the value is truncated.

For certain properties, you must also set the XMSC_WMQ_MQMD_MESSAGE_CONTEXT property on the
Destination object. The application must be running with appropriate context authority for this property
to take effect. If you do not set XMSC_WMQ_MQMD_MESSAGE_CONTEXT to an appropriate value, the
property value is ignored. If you set XMSC_WMQ_MQMD_MESSAGE_CONTEXT to an appropriate value but

190 IBM Message Service Client for .NET

you do not have sufficient context authority for the queue manager, an exception is issued. Properties
requiring specific values of XMSC_WMQ_MQMD_MESSAGE_CONTEXT are as follows.

The following properties require XMSC_WMQ_MQMD_MESSAGE_CONTEXT to be set to
XMSC_WMQ_MDCTX_SET_IDENTITY_CONTEXT or XMSC_WMQ_MDCTX_SET_ALL_CONTEXT:

• JMS_IBM_MQMD_UserIdentifier
• JMS_IBM_MQMD_AccountingToken
• JMS_IBM_MQMD_ApplIdentityData

The following properties require XMSC_WMQ_MQMD_MESSAGE_CONTEXT to be set to
XMSC_WMQ_MDCTX_SET_ALL_CONTEXT:

• JMS_IBM_MQMD_PutApplType
• JMS_IBM_MQMD_PutApplName
• JMS_IBM_MQMD_PutDate
• JMS_IBM_MQMD_PutTime
• JMS_IBM_MQMD_ApplOriginData

Receiving messages

All these properties are available on a received message if XMSC_WMQ_MQMD_READ_ENABLED property
is set to true, irrespective of the actual properties that the producing application set. An application
cannot modify the properties of a received message unless all properties are cleared first, according to
the JMS specification. The received message can be forwarded without modifying the properties.

Note: If your application receives a message from a destination with
XMSC_WMQ_MQMD_READ_ENABLED property set to true, and forwards it to a destination with
XMSC_WMQ_MQMD_WRITE_ENABLED set to true, this results in all the MQMD field values of the received
message being copied into the forwarded message. Table of properties

Table 35. Properties of the Message object representing the MQMD fields

Property Description Type

JMS_IBM_MQMD_REPORT Options for report messages System.Int32

JMS_IBM_MQMD_MSGTYPE Message type System.Int32

JMS_IBM_MQMD_EXPIRY message lifetime System.Int32

JMS_IBM_MQMD_FEEDBACK Feedback or reason code System.Int32

JMS_IBM_MQMD_ENCODING Numeric encoding of message data System.Int32

JMS_IBM_MQMD_CODEDCHARSETID Character set identifier of message
data

System.Int32

JMS_IBM_MQMD_FORMAT Format name of message data System.String

JMS_IBM_MQMD_PRIORITY

Note: If you assign a value to
JMS_IBM_MQMD_PRIORITY that is not
within the range 0-9, this value violates the
JMS specification.

Message priority System.Int32

JMS_IBM_MQMD_PERSISTENCE Message persistence System.Int32

Introduction to the Message Service Client for .NET 191

Table 35. Properties of the Message object representing the MQMD fields (continued)

Property Description Type

JMS_IBM_MQMD_MSGID

Note: The JMS specification states that
the message ID must be set by the
JMS provider and that it must either be
unique or null. If you assign a value
to JMS_IBM_MQMD_MSGID, this value is
copied to the JMSMessageID. Thus it is
not set by the JMS provider and might
not be unique: this value violates the JMS
specification.

Message identifier Byte Array

Note: The use of byte
array properties on a
message violates the JMS
specification.

JMS_IBM_MQMD_CORRELID

Note: If you assign a value to
JMS_IBM_MQMD_CORRELID that starts
with the string 'ID:', this value violates the
JMS specification.

Correlation identifier Byte Array

Note: The use of byte
array properties on a
message violates the JMS
specification.

JMS_IBM_MQMD_BACKOUTCOUNT Backout counter System.Int32

JMS_IBM_MQMD_REPLYTOQ Name of reply queue System.String

JMS_IBM_MQMD_REPLYTOQMGR Name of reply queue manager System.String

JMS_IBM_MQMD_USERIDENTIFIER User identifier System.String

JMS_IBM_MQMD_ACCOUNTINGTOKEN Accounting token Byte Array

Note: The use of byte
array properties on a
message violates the JMS
specification.

JMS_IBM_MQMD_APPLIDENTITYDATA Application data relating to identity System.String

JMS_IBM_MQMD_PUTAPPLTYPE Type of application that put the
message

System.Int32

JMS_IBM_MQMD_PUTAPPLNAME Name of the application that put
the message

System.String

JMS_IBM_MQMD_PUTDATE Date when message was put System.String

JMS_IBM_MQMD_PUTTIME Time when message was put System.String

JMS_IBM_MQMD_APPLORIGINDATA Application data relating to origin System.String

JMS_IBM_MQMD_GROUPID Group identifier Byte Array

Note: The use of byte
array properties on a
message violates the JMS
specification.

JMS_IBM_MQMD_MSGSEQNUMBER Sequence number of local message
within group

System.Int32

JMS_IBM_MQMD_OFFSET Offset of data in physical message
from start of logical message

System.Int32

192 IBM Message Service Client for .NET

Table 35. Properties of the Message object representing the MQMD fields (continued)

Property Description Type

JMS_IBM_MQMD_MSGFLAGS Message flags System.Int32

JMS_IBM_MQMD_ORIGINALLENGTH Length of original message System.Int32

See MQMD for further details.

Examples
This example results in a message being put to a queue or topic with MQMD.UserIdentifier set to
"JoeBloggs".

 // Create a ConnectionFactory, connection, session, producer, message
 // ...

 // Create a destination
 // ...

 // Enable MQMD write
 dest.setBooleanProperty(XMSC_WMQ_MQMD_WRITE_ENABLED,
 XMSC_WMQ_MQMD_WRITE_ENABLED_YES);

 // Optionally, set a message context if applicable for this MD field
 dest.setIntProperty(XMSC_WMQ_MQMD_MESSAGE_CONTEXT,
 XMSC_WMQ_MDCTX_SET_IDENTITY_CONTEXT);

 // On the message, set property to provide custom UserId
 msg.setStringProperty(JMS_IBM_MQMD_USERIDENTIFIER, "JoeBloggs");

 // Send the message
 // ...

It is necessary to set XMSC_WMQ_MQMD_MESSAGE_CONTEXT before setting
JMS_IBM_MQMD_USERIDENTIFIER. For more information about the use of
XMSC_WMQ_MQMD_MESSAGE_CONTEXT, see Message object properties.

Similarly, you can extract the contents of the MQMD fields by setting
XMSC_WMQ_MQMD_READ_ENABLED to true before receiving a message and then using the get methods
of the message, such as getStringProperty. Any properties received are read-only.

This example results in the value field holding the value of the MQMD.ApplIdentityData field of a message
got from a queue or a topic.

 // Create a ConnectionFactory, connection, session, consumer
 // ...

 // Create a destination
 // ...

 // Enable MQMD read
 dest.setBooleanProperty(XMSC_WMQ_MQMD_READ_ENABLED, XMSC_WMQ_MQMD_READ_ENABLED_YES);

 // Receive a message
 // ...

 // Get desired MQMD field value using a property
 System.String value = rcvMsg.getStringProperty(JMS_IBM_MQMD_APPLIDENTITYDATA);

Introduction to the Message Service Client for .NET 193

Properties of MessageConsumer
An overview of the properties of the MessageConsumer object, with links to more detailed reference
information.

Table 36. Properties of MessageConsumer

Name of property Description

XMSC_IS_SUBSCRIPTION_MULTICAST Indicates whether messages are being delivered to
the message consumer using WebSphere MQ Multicast
Transport. This property is read-only.

XMSC_IS_SUBSCRIPTION_RELIABLE_MULTICAS
T

Indicates whether messages are being delivered to
the message consumer using WebSphere MQ Multicast
Transport with a reliable quality of service. This property
is read-only.

Refer to .NET properties of IMessageConsumer for more details.

Properties of MessageProducer
An overview of the properties of the MessageProducer object, with links to more detailed reference
information.

See .NET properties of IMessageProducer for more details.

Properties of Session
An overview of the properties of the Session object, with links to more detailed reference information.

See .NET properties of ISession for more details.

Property definitions
This topicsection provides a definition of each object property.

Each property definition includes the following information:

• The data type of the property
• The types of object that have the property
• For a property of Destination, the name that can be used in a uniform resource identifier (URI)
• A more detailed description of the property
• The valid values of the property
• The default value of the property

Properties whose names commence with one of the following prefixes are relevant only for the specified
type of connection:
XMSC_RTT

The properties are relevant only for a real-time connection to a broker. The names of the properties
are defined as named constants in the header file xmsc_rtt.h.

XMSC_WMQ
The properties are relevant only when an application connects to a IBM WebSphere MQ queue
manager. The names of the properties are defined as named constants in the header file
xmsc_wmq.h.

XMSC_WPM
The properties are relevant only when an application connects to a WebSphere service integration
bus. The names of the properties are defined as named constants in the header file xmsc_wpm.h.

194 IBM Message Service Client for .NET

Unless stated otherwise in their definitions, the remaining properties are relevant for all types of
connection. The names of the properties are defined as named constants in the header file xmsc.h.
Properties whose names commence with the prefix JMSX are JMS defined properties of a message, and
properties whose names commence with the prefix JMS_IBM are IBM defined properties of a message.
For more information about the properties of messages, see “Properties of an XMS message” on page 71.

Unless stated otherwise in its definition, each property is relevant in both the point-to-point and publish/
subscribe domains.

An application can get and set the value of any property, unless the property is designated as read-only.

The following properties are defined:

“JMS_IBM_CHARACTER_SET” on page 197
“JMS_IBM_ENCODING” on page 197
“JMS_IBM_EXCEPTIONMESSAGE” on page 198
“JMS_IBM_EXCEPTIONPROBLEMDESTINATION” on page 198
“JMS_IBM_EXCEPTIONREASON” on page 198
“JMS_IBM_EXCEPTIONTIMESTAMP” on page 199
“JMS_IBM_FEEDBACK” on page 199
“JMS_IBM_FORMAT” on page 199
“JMS_IBM_LAST_MSG_IN_GROUP” on page 199
“JMS_IBM_MSGTYPE” on page 200
“JMS_IBM_PUTAPPLTYPE” on page 200
“JMS_IBM_PUTDATE” on page 200
“JMS_IBM_PUTTIME” on page 201
“JMS_IBM_REPORT_COA” on page 201
“JMS_IBM_REPORT_COD” on page 201
“JMS_IBM_REPORT_DISCARD_MSG” on page 202
“JMS_IBM_REPORT_EXCEPTION” on page 202
“JMS_IBM_REPORT_EXPIRATION” on page 203
“JMS_IBM_REPORT_NAN” on page 203
“JMS_IBM_REPORT_PAN” on page 203
“JMS_IBM_REPORT_PASS_CORREL_ID” on page 204
“JMS_IBM_REPORT_PASS_MSG_ID” on page 204
“JMS_IBM_SYSTEM_MESSAGEID” on page 205
“JMSX_APPID” on page 205
“JMSX_DELIVERY_COUNT” on page 205
“JMSX_GROUPID” on page 205
“JMSX_GROUPSEQ” on page 206
“JMSX_USERID” on page 206
“XMSC_CLIENT_ID” on page 207
“XMSC_CONNECTION_TYPE” on page 207
“XMSC_DELIVERY_MODE” on page 207
“XMSC_IC_PROVIDER_URL” on page 208
“XMSC_IC_SECURITY_AUTHENTICATION” on page 208
“XMSC_IC_SECURITY_CREDENTIALS” on page 208
“XMSC_IC_SECURITY_PRINCIPAL” on page 209
“XMSC_IC_SECURITY_PROTOCOL” on page 209
“XMSC_IC_URL” on page 209
“XMSC_IS_SUBSCRIPTION_MULTICAST” on page 209
“XMSC_IS_SUBSCRIPTION_RELIABLE_MULTICAST” on page 209
“XMSC_JMS_MAJOR_VERSION” on page 210
“XMSC_JMS_MINOR_VERSION” on page 210

Introduction to the Message Service Client for .NET 195

“XMSC_JMS_VERSION” on page 210
“XMSC_MAJOR_VERSION” on page 210
“XMSC_MINOR_VERSION” on page 210
“XMSC_PASSWORD” on page 210
“XMSC_PRIORITY” on page 211
“XMSC_PROVIDER_NAME” on page 211
“XMSC_RTT_BROKER_PING_INTERVAL” on page 211
“XMSC_RTT_CONNECTION_PROTOCOL” on page 212
“XMSC_RTT_HOST_NAME” on page 212
“XMSC_RTT_LOCAL_ADDRESS” on page 212
“XMSC_RTT_MULTICAST” on page 212
“XMSC_RTT_PORT” on page 213
“XMSC_TIME_TO_LIVE” on page 213
“XMSC_USERID” on page 214
“XMSC_VERSION” on page 214
“XMSC_WMQ_BROKER_CONTROLQ” on page 214
“XMSC_WMQ_BROKER_PUBQ” on page 215
“XMSC_WMQ_BROKER_QMGR” on page 215
“XMSC_WMQ_BROKER_SUBQ” on page 215
“XMSC_WMQ_BROKER_VERSION” on page 215
“XMSC_WMQ_CCDTURL” on page 216
“XMSC_WMQ_CCSID” on page 216
“XMSC_WMQ_CHANNEL” on page 216
“XMSC_WMQ_CONNECTION_MODE” on page 217
“XMSC_WMQ_DUR_SUBQ” on page 218
“XMSC_WMQ_ENCODING” on page 218
“XMSC_WMQ_FAIL_IF_QUIESCE” on page 219
“XMSC_WMQ_HOST_NAME” on page 224
“XMSC_WMQ_LOCAL_ADDRESS” on page 224
“XMSC_WMQ_MESSAGE_SELECTION” on page 225
“XMSC_WMQ_MSG_BATCH_SIZE” on page 225
“XMSC_WMQ_POLLING_INTERVAL” on page 226
“XMSC_WMQ_PORT” on page 226
“XMSC_WMQ_PUB_ACK_INTERVAL” on page 227
“XMSC_WMQ_QMGR_CCSID” on page 227
“XMSC_WMQ_QUEUE_MANAGER” on page 228
“XMSC_WMQ_RECEIVE_EXIT” on page 228
“XMSC_WMQ_RECEIVE_EXIT_INIT” on page 229
“XMSC_WMQ_SECURITY_EXIT” on page 229
“XMSC_WMQ_SECURITY_EXIT_INIT” on page 230
“XMSC_WMQ_SEND_EXIT” on page 230
“XMSC_WMQ_SEND_EXIT_INIT” on page 230
“XMSC_WMQ_SYNCPOINT_ALL_GETS” on page 237
“XMSC_WMQ_TARGET_CLIENT” on page 238
“XMSC_WMQ_TEMP_Q_PREFIX” on page 238
“XMSC_WMQ_TEMPORARY_MODEL” on page 239
“XMSC_WPM_BUS_NAME” on page 239
“XMSC_WPM_CONNECTION_PROTOCOL” on page 240
“XMSC_WPM_CONNECTION_PROXIMITY” on page 240
“XMSC_WPM_DUR_SUB_HOME” on page 240
“XMSC_WPM_HOST_NAME” on page 241

196 IBM Message Service Client for .NET

“XMSC_WPM_LOCAL_ADDRESS” on page 241
“XMSC_WPM_ME_NAME” on page 241
“XMSC_WPM_NON_PERSISTENT_MAP” on page 242
“XMSC_WPM_PERSISTENT_MAP” on page 242
“XMSC_WPM_PORT” on page 243
“XMSC_WPM_PROVIDER_ENDPOINTS” on page 243
“XMSC_WPM_TARGET_GROUP” on page 243
“XMSC_WPM_TARGET_SIGNIFICANCE” on page 244
“XMSC_WPM_TARGET_TRANSPORT_CHAIN” on page 244
“XMSC_WPM_TARGET_TYPE” on page 244
“XMSC_WPM_TEMP_Q_PREFIX” on page 245
“XMSC_WPM_TEMP_TOPIC_PREFIX” on page 245
“XMSC_WPM_TOPIC_SPACE” on page 245

JMS_IBM_CHARACTER_SET
Data type:

System.Int32
Property of:

Message

The identifier (CCSID) of the coded character set, or code page, that the strings of character data in the
body of the message is in when the XMS client forwards the message to its intended destination. In XMS
this property has a numeric value and maps to CCSID. However, this property is based on a JMS property
so has a string type value and maps to the Java character set that represents this numeric CCSID. This
property overrides any CCSID specified for the destination by the XMSC_WMQ_CCSID property.

By default, the property is not set.

This property is not relevant when an application connects to a service integration bus.

JMS_IBM_ENCODING
Data type:

System.Int32
Property of:

Message

How numerical data in the body of the message is represented when the XMS client forwards the
message to its intended destination. This property overrides any encoding specified for the destination
by the XMSC_WMQ_ENCODING property. The property specifies the representation of binary integers,
packed decimal integers, and floating point numbers.

The valid values of the property are the same as the values that can be specified in the Encoding field
of a message descriptor. For more information about the Encoding field, see the IBM WebSphere MQ
Application Programming Reference.

An application can use the following named constants to set the property:

Named constant Meaning

MQENC_INTEGER_NORMAL Normal integer encoding

MQENC_INTEGER_REVERSED Reversed integer encoding

MQENC_DECIMAL_NORMAL Normal packed decimal encoding

MQENC_DECIMAL_REVERSED Reversed packed decimal encoding

MQENC_FLOAT_IEEE_NORMAL Normal IEEE floating point encoding

MQENC_FLOAT_IEEE_REVERSED Reversed IEEE floating point encoding

Introduction to the Message Service Client for .NET 197

Named constant Meaning

MQENC_FLOAT_S390 z/OS® architecture floating point encoding

MQENC_NATIVE Native machine encoding

To form a value for the property, the application can add three of these constants as follows:

• A constant whose name commences with MQENC_INTEGER, to specify the representation of binary
integers

• A constant whose name commences with MQENC_DECIMAL, to specify the representation of packed
decimal integers

• A constant whose name commences with MQENC_FLOAT, to specify the representation of floating point
numbers

Alternatively, the application can set the property to MQENC_NATIVE, whose value is environment-
dependent.

By default, the property is not set.

This property is not relevant when an application connects to a service integration bus.

JMS_IBM_EXCEPTIONMESSAGE
Data type:

String
Property of:

Message

Text that describes why the message was sent to the exception destination. This property is read-only.

This property is relevant only when an application connects to a service integration bus and receives a
message from an exception destination.

JMS_IBM_EXCEPTIONPROBLEMDESTINATION
Data type:

String
Property of:

Message

The name of the destination that the message was at before the message was sent to the exception
destination.

This property is relevant only when an application connects to a service integration bus and receives a
message from an exception destination.

JMS_IBM_EXCEPTIONREASON
Data type:

System.Int32
Property of:

Message

A reason code indicating the reason why the message was sent to the exception destination.

For a list of all possible reason codes, see the definition of the com.ibm.websphere.sib.SIRCConstants
class in the documentation generated by the Javadoc tool, as supplied with WebSphere Application
Server.

This property is relevant only when an application connects to a service integration bus and receives a
message from an exception destination.

198 IBM Message Service Client for .NET

JMS_IBM_EXCEPTIONTIMESTAMP
Data type:

System.Int64
Property of:

Message

The time when the message was sent to the exception destination.

The time is expressed in milliseconds since 00:00:00 GMT on the 1 January 1970.

This property is relevant only when an application connects to a service integration bus and receives a
message from an exception destination.

JMS_IBM_FEEDBACK
Data type:

System.Int32
Property of:

Message

A code that indicates the nature of a report message.

The valid values of the property are the feedback codes and reason codes that can be specified in the
Feedback field of a message descriptor. For more information about the Feedback field, see the IBM
WebSphere MQ Application Programming Reference.

By default, the property is not set.

JMS_IBM_FORMAT
Data type:

String
Property of:

Message

The nature the application data in the message.

The valid values of the property are the same as the values that can be specified in the Format field of a
message descriptor. For more information about the Format field, see the IBM WebSphere MQ Application
Programming Reference.

By default, the property is not set.

This property is not relevant when an application connects to a service integration bus.

JMS_IBM_LAST_MSG_IN_GROUP
Data type:

System.Boolean
Property of:

Message

Indicate whether the message is the last message in a message group.

Set the property to true if the message is the last message in a message group. Otherwise, set the
property to false, or do not set the property. By default, the property is not set.

The value true corresponds to the status flag MQMF_LAST_MSG_IN_GROUP, which can be specified in the
MsgFlags field of a message descriptor. For more information about this flag, see the IBM WebSphere MQ
Application Programming Reference.

This property is ignored in the publish/subscribe domain and is not relevant when an application connects
to a service integration bus.

Introduction to the Message Service Client for .NET 199

JMS_IBM_MSGTYPE
Data type:

System.Int32
Property of:

Message

The type of the message.

The valid values of the property are as follows:

Valid value Meaning

MQMT_DATAGRAM The message is one that does not require a reply.

MQMT_REQUEST The message is one that requires a reply.

MQMT_REPLY The message is a reply message.

MQMT_REPORT The message is a report message.

These values correspond to the message types that can be specified in the MsgType field of a message
descriptor. For more information about the MsgType field, see the IBM WebSphere MQ Application
Programming Reference.

By default, the property is not set.

This property is not relevant when an application connects to a service integration bus.

JMS_IBM_PUTAPPLTYPE
Data type:

System.Int32
Property of:

Message

The type of application that sent the message.

The valid values of the property are the application types that can be specified in the PutApplType field
of a message descriptor. For more information about the PutApplType field, see the IBM WebSphere MQ
Application Programming Reference.

By default, the property is not set.

This property is not relevant when an application connects to a service integration bus.

JMS_IBM_PUTDATE
Data type:

String
Property of:

Message

The date when the message was sent.

The valid values of the property are the same as the values that can be specified in the PutDate field
of a message descriptor. For more information about the PutDate field, see the IBM WebSphere MQ
Application Programming Reference.

By default, the property is not set.

This property is not relevant when an application connects to a service integration bus.

200 IBM Message Service Client for .NET

JMS_IBM_PUTTIME
Data type:

String
Property of:

Message

The time when the message was sent.

The valid values of the property are the same as the values that can be specified in the PutTime field
of a message descriptor. For more information about the PutTime field, see the IBM WebSphere MQ
Application Programming Reference.

By default, the property is not set.

This property is not relevant when an application connects to a service integration bus.

JMS_IBM_REPORT_COA
Data type:

System.Int32
Property of:

Message

Request 'confirm on arrival' report messages, specifying how much application data from the original
message must be included in a report message.

The valid values of the property are as follows:

Valid value Meaning

MQRO_COA Request 'confirm on arrival' report messages, with no
application data from the original message included in a
report message.

MQRO_COA_WITH_DATA Request 'confirm on arrival' report messages, with the first
100 bytes of application data from the original message
included in a report message.

MQRO_COA_WITH_FULL_DATA Request 'confirm on arrival' report messages, with all the
application data from the original message included in a
report message.

These values correspond to report options that can be specified in the Report field of a message
descriptor. For more information about these options, see the IBM WebSphere MQ Application
Programming Reference.

By default, the property is not set.

JMS_IBM_REPORT_COD
Data type:

System.Int32
Property of:

Message

Request 'confirm on delivery' report messages, specifying how much application data from the original
message must be included in a report message.

The valid values of the property are as follows:

Introduction to the Message Service Client for .NET 201

Valid value Meaning

MQRO_COD Request 'confirm on delivery' report messages, with no
application data from the original message included in a
report message.

MQRO_COD_WITH_DATA Request 'confirm on delivery' report messages, with the
first 100 bytes of application data from the original
message included in a report message.

MQRO_COD_WITH_FULL_DATA Request 'confirm on delivery' report messages, with all the
application data from the original message included in a
report message.

These values correspond to report options that can be specified in the Report field of a message
descriptor. For more information about these options, see the IBM WebSphere MQ Application
Programming Reference.

By default, the property is not set.

JMS_IBM_REPORT_DISCARD_MSG
Data type:

System.Int32
Property of:

Message

Request that the message is discarded if it cannot be delivered to its intended destination.

Set the property to MQRO_DISCARD_MSG to request that the message is discarded if it cannot be
delivered to its intended destination. If you require the message to be put on a dead letter queue instead,
or sent to an exception destination, do not set the property. By default, the property is not set.

The value MQRO_DISCARD_MSG corresponds to a report option that can be specified in the Report field
of a message descriptor. For more information about this option, see the IBM WebSphere MQ Application
Programming Reference.

JMS_IBM_REPORT_EXCEPTION
Data type:

System.Int32
Property of:

Message

Request exception report messages, specifying how much application data from the original message
must be included in a report message.

The valid values of the property are as follows:

Valid value Meaning

MQRO_EXCEPTION Request exception report messages, with no
application data from the original message
included in a report message.

MQRO_EXCEPTION_WITH_DATA Request exception report messages, with the
first 100 bytes of application data from the
original message included in a report message.

MQRO_EXCEPTION_WITH_FULL_DATA Request exception report messages, with all
the application data from the original message
included in a report message.

202 IBM Message Service Client for .NET

These values correspond to report options that can be specified in the Report field of a message
descriptor. For more information about these options, see the IBM WebSphere MQ Application
Programming Reference.

By default, the property is not set.

JMS_IBM_REPORT_EXPIRATION
Data type:

System.Int32
Property of:

Message

Request expiration report messages, specifying how much application data from the original message
must be included in a report message.

The valid values of the property are as follows:

Valid value Meaning

MQRO_EXPIRATION Request expiration report messages, with no
application data from the original message
included in a report message.

MQRO_EXPIRATION_WITH_DATA Request expiration report messages, with the
first 100 bytes of application data from the
original message included in a report message.

MQRO_EXPIRATION_WITH_FULL_DATA Request expiration report messages, with all
the application data from the original message
included in a report message.

These values correspond to report options that can be specified in the Report field of a message
descriptor. For more information about these options, see the IBM WebSphere MQ Application
Programming Reference.

By default, the property is not set.

JMS_IBM_REPORT_NAN
Data type:

System.Int32
Property of:

Message

Request negative action notification report messages.

Set the property to MQRO_NAN to request negative action notification report messages. If you do not
require negative action notification report messages, do not set the property. By default, the property is
not set.

The value MQRO_NAN corresponds to a report option that can be specified in the Report field of a
message descriptor. For more information about this option, see the IBM WebSphere MQ Application
Programming Reference.

JMS_IBM_REPORT_PAN
Data type:

System.Int32
Property of:

Message

Request positive action notification report messages.

Introduction to the Message Service Client for .NET 203

Set the property to MQRO_PAN to request positive action notification report messages. If you do not
require positive action notification report messages, do not set the property. By default, the property is
not set.

The value MQRO_PAN corresponds to a report option that can be specified in the Report field of a
message descriptor. For more information about this option, see the IBM WebSphere MQ Application
Programming Reference.

JMS_IBM_REPORT_PASS_CORREL_ID
Data type:

System.Int32
Property of:

Message

Request that the correlation identifier of any report or reply message is the same as the correlation
identifier of the original message.

The valid values of the property are as follows:

Valid value Meaning

MQRO_PASS_CORREL_ID Request that the correlation identifier of any
report or reply message is the same as the
correlation identifier of the original message.

MQRO_COPY_MSG_ID_TO_CORREL_ID Request that the correlation identifier of any
report or reply message is the same as the
message identifier of the original message.

These values correspond to report options that can be specified in the Report field of a message
descriptor. For more information about these options, see the IBM WebSphere MQ Application
Programming Reference.

The default value of the property is MQRO_COPY_MSG_ID_TO_CORREL_ID.

JMS_IBM_REPORT_PASS_MSG_ID
Data type:

System.Int32
Property of:

Message

Request that the message identifier of any report or reply message is the same as the message identifier
of the original message.

The valid values of the property are as follows:

Valid value Meaning

MQRO_PASS_MSG_ID Request that the message identifier of any report or reply message is
the same as the message identifier of the original message.

MQRO_NEW_MSG_ID Request that a new message identifier is generated for each report or
reply message.

These values correspond to report options that can be specified in the Report field of a message
descriptor. For more information about these options, see the IBM WebSphere MQ Application
Programming Reference.

The default value of the property is MQRO_NEW_MSG_ID.

204 IBM Message Service Client for .NET

JMS_IBM_RETAIN
Data type:

System.Int32
Property of:

Message

Setting this property indicates to the queue manager to treat a message as Retained Publication. When
a subscriber receives messages from topics, it might receive additional messages immediately after
subscribing, beyond the messages received in previous releases. These messages are the optional
retained publications for the topics subscribed. For each topic matching the subscription, if there is a
retained publication the publication is made available for delivery to the subscribing message consumer.

RETAIN_PUBLICATION is the only valid value for this property. By default this property is not set.

Note: This property is relevant only in publish/subscribe domain only

JMS_IBM_SYSTEM_MESSAGEID
Data type:

String
Property of:

Message

An identifier that identifies the message uniquely within the service integration bus. This property is
read-only.

This property is relevant only when an application connects to a service integration bus.

JMSX_APPID
Data type:

String
Property of:

Message

The name of the application that sent the message.

This property is the JMS defined property with the JMS name JMSXAppID. For more information about the
property, see the Java Message Service Specification, Version 1.1.

By default, the property is not set.

This property is not valid for a real-time connection to a broker.

JMSX_DELIVERY_COUNT
Data type:

System.Int32
Property of:

Message

The number of attempts to deliver the message.

This property is the JMS defined property with the JMS name JMSXDeliveryCount. For more information
about the property, see the Java Message Service Specification, Version 1.1.

By default, the property is not set.

This property is not valid for a real-time connection to a broker.

JMSX_GROUPID
Data type:

String

Introduction to the Message Service Client for .NET 205

Property of:
Message

The identifier of the message group to which the message belongs.

This property is the JMS defined property with the JMS name JMSXGroupID. For more information about
the property, see the Java Message Service Specification, Version 1.1.

By default, the property is not set.

This property is not valid for a real-time connection to a broker.

JMSX_GROUPSEQ
Data type:

System.Int32
Property of:

Message

The sequence number of the message within a message group.

This property is the JMS defined property with the JMS name JMSXGroupSeq. For more information about
the property, see the Java Message Service Specification, Version 1.1.

By default, the property is not set.

This property is not valid for a real-time connection to a broker.

JMSX_USERID
Data type:

String
Property of:

Message

The user identifier associated with the application that sent the message.

This property is the JMS defined property with the JMS name JMSXUserID. For more information about
the property, see the Java Message Service Specification, Version 1.1.

By default, the property is not set.

This property is not valid for a real-time connection to a broker.

XMSC_ASYNC_EXCEPTIONS
Data type:

System.Int32
Property of:

ConnectionFactory

This property determines whether XMS informs an ExceptionListener only when a connection is broken,
or when any exception occurs asynchronously to an XMS API call. This property applies to all Connections
created from this ConnectionFactory that have an ExceptionListener registered.

Valid values for this property are:

XMSC_ASYNC_EXCEPTIONS_ALL
Any exception detected asynchronously, outside the scope of a synchronous API call, and all
connection broken exceptions are sent to the ExceptionListener.

XMSC_ASYNC_EXCEPTIONS_CONNECTIONBROKEN
Only exceptions indicating a broken connection are sent to the ExceptionListener. Any other
exceptions occurring during asynchronous processing are not reported to the ExceptionListener, and
hence the application is not informed of these exceptions.

By default this property is set to XMSC_ASYNC_EXCEPTIONS_ALL.

206 IBM Message Service Client for .NET

XMSC_CLIENT_ID
Data type:

String
Property of:

ConnectionFactory

The client identifier for a connection.

A client identifier is used only to support durable subscriptions in the publish/subscribe domain, and
is ignored in the point-to-point domain. For more information about setting client identifiers, see
“ConnectionFactories and Connection objects” on page 22.

This property is not relevant for a real-time connection to a broker.

XMSC_CONNECTION_TYPE
Data type:

System.Int32
Property of:

ConnectionFactory

The type of messaging server to which an application connects.

The valid values of the property are as follows:

Valid value Meaning

XMSC_CT_RTT A real-time connection to a broker.

XMSC_CT_WMQ A connection to a IBM WebSphere MQ queue manager.

XMSC_CT_WPM A connection to a WebSphere service integration bus.

By default, the property is not set.

XMSC_DELIVERY_MODE
Data type:

System.Int32
Property of:

Destination
Name used in a URI:

persistence (for a IBM WebSphere MQ destination)
deliveryMode (for a WebSphere default messaging provider destination)

The delivery mode of messages sent to the destination.

The valid values of the property are as follows:

Valid value Meaning

XMSC_DELIVERY_NOT_PERSISTENT A message sent to the destination is nonpersistent.
The default delivery mode of the message
producer, or any delivery mode specified on the
Send call, is ignored. If the destination is a IBM
WebSphere MQ queue, the value of the queue
attribute DefPersistence is also ignored.

Introduction to the Message Service Client for .NET 207

Valid value Meaning

XMSC_DELIVERY_PERSISTENT A message sent to the destination is persistent.
The default delivery mode of the message
producer, or any delivery mode specified on the
Send call, is ignored. If the destination is a IBM
WebSphere MQ queue, the value of the queue
attribute DefPersistence is also ignored.

XMSC_DELIVERY_AS_APP A message sent to the destination has the delivery
mode specified on the Send call. If the Send call
specifies no delivery mode, the default delivery
mode of the message producer is used instead. If
the destination is a IBM WebSphere MQ queue, the
value of the queue attribute DefPersistence is
ignored.

XMSC_DELIVERY_AS_DEST If the destination is a IBM WebSphere MQ queue,
a message put on the queue has the delivery
mode specified by the value of the queue attribute
DefPersistence. The default delivery mode of
the message producer, or any delivery mode
specified on the Send call, is ignored.

If the destination is not a IBM WebSphere MQ
queue, the meaning is the same as that of
XMSC_DELIVERY_AS_APP.

The default value is XMSC_DELIVERY_AS_APP.

XMSC_IC_PROVIDER_URL
Data type:

String
Property of:

InitialContext

Used to locate the JNDI naming directory so that the COS naming service does not need to be on the
same server as the web service.

XMSC_IC_SECURITY_AUTHENTICATION
Data type:

String
Property of:

InitialContext

Based on the Java Context interface SECURITY_AUTHENTICATION. This property is only applicable to the
COS naming context.

XMSC_IC_SECURITY_CREDENTIALS
Data type:

String
Property of:

InitialContext

Based on the Java Context interface SECURITY_CREDENTIALS. This property is only applicable to the COS
naming context.

208 IBM Message Service Client for .NET

XMSC_IC_SECURITY_PRINCIPAL
Data type:

String
Property of:

InitialContext

Based on the Java Context interface SECURITY_PRINCIPAL. This property is only applicable to the COS
naming context.

XMSC_IC_SECURITY_PROTOCOL
Data type:

String
Property of:

InitialContext

Based on the Java Context interface SECURITY_PROTOCOL This property is only applicable to the COS
naming context.

XMSC_IC_URL
Data type:

String
Property of:

InitialContext

For LDAP and FileSystem contexts, the address of the repository containing administered objects.

For COS naming contexts, the address of the web service that looks up the objects in the directory.

XMSC_IS_SUBSCRIPTION_MULTICAST
Data type:

System.Boolean
Property of:

MessageConsumer

Indicates whether messages are being delivered to the message consumer using WebSphere MQ
Multicast Transport. This property is read-only.

The value of the property is true if messages are being delivered to the message consumer using
WebSphere MQ Multicast Transport. Otherwise, the value is false.

This property is relevant only for a real-time connection to a broker.

XMSC_IS_SUBSCRIPTION_RELIABLE_MULTICAST
Data type:

System.Boolean
Property of:

MessageConsumer

Indicates whether messages are being delivered to the message consumer using WebSphere MQ
Multicast Transport with a reliable quality of service. This property is read-only.

The value of the property is true if messages are being delivered to the message consumer using
WebSphere MQ Multicast Transport with a reliable quality of service. Otherwise, the value is false.

This property is relevant only for a real-time connection to a broker.

Introduction to the Message Service Client for .NET 209

XMSC_JMS_MAJOR_VERSION
Data type:

System.Int32
Property of:

ConnectionMetaData

The major version number of the JMS specification upon which XMS is based. This property is read-only.

XMSC_JMS_MINOR_VERSION
Data type:

System.Int32
Property of:

ConnectionMetaData

The minor version number of the JMS specification upon which XMS is based. This property is read-only.

XMSC_JMS_VERSION
Data type:

String
Property of:

ConnectionMetaData

The version identifier of the JMS specification upon which XMS is based. This property is read-only.

XMSC_MAJOR_VERSION
Data type:

System.Int32
Property of:

ConnectionMetaData

The version number of the XMS client. This property is read-only.

XMSC_MINOR_VERSION
Data type:

System.Int32
Property of:

ConnectionMetaData

The release number of the XMS client. This property is read-only.

XMSC_PASSWORD
Data type:

Byte array
Property of:

ConnectionFactory

A password that can be used to authenticate the application when it attempts to connect to a messaging
server. The password is used with the XMSC_USERID property.

By default, the property is not set.

If you are connecting to IBM WebSphere MQ on distributed platforms, and you set the XMSC_USERID
property of the connection factory, it must match the userid of the logged on user. If you do not set
these properties, the queue manager uses the userid of the logged on user by default. If you require
further connection-level authentication of individual users you can write a client authentication exit which

210 IBM Message Service Client for .NET

is configured in IBM WebSphere MQ. You can learn more about creating a client authentication exit in the
Authentication topic in the IBM WebSphere MQ Clients manual.

To authenticate the user when connecting to IBM WebSphere MQ on z/OS you need to use a security exit.

XMSC_PRIORITY
Data type:

System.Int32
Property of:

Destination
Name used in a URI:

priority

The priority of messages sent to the destination.

The valid values of the property are as follows:

Valid value Meaning

An integer in the range 0, the lowest
priority, to 9, the highest priority

A message sent to the destination has the specified priority.
The default priority of the message producer, or any priority
specified on the Send call, is ignored. If the destination is a
IBM WebSphere MQ queue, the value of the queue attribute
DefPriority is also ignored.

XMSC_PRIORITY_AS_APP A message sent to the destination has the priority specified
on the Send call. If the Send call specifies no priority, the
default priority of the message producer is used instead. If the
destination is a IBM WebSphere MQ queue, the value of the
queue attribute DefPriority is ignored.

XMSC_PRIORITY_AS_DEST If the destination is a IBM WebSphere MQ queue, a message
put on the queue has the priority specified by the value of
the queue attribute DefPriority. The default priority of the
message producer, or any priority specified on the Send call, is
ignored.

If the destination is not a IBM WebSphere MQ queue, the
meaning is the same as that of XMSC_PRIORITY_AS_APP.

The default value is XMSC_PRIORITY_AS_APP.

WebSphere MQ Real-Time Transport and WebSphere MQ Multicast Transport take no action based upon
the priority of a message.

XMSC_PROVIDER_NAME
Data type:

String
Property of:

ConnectionMetaData

The provider of the XMS client. This property is read-only.

XMSC_RTT_BROKER_PING_INTERVAL
Data type:

System.Int32
Property of:

ConnectionFactory

Introduction to the Message Service Client for .NET 211

The time interval, in milliseconds, after which XMS .NET checks the connection to a Real Time messaging
server to detect any activity. If no activity is detected, the client initiates a ping; the connection is closed if
no response is detected to the ping.

The default value of the property is 30000.

XMSC_RTT_CONNECTION_PROTOCOL
Data type:

System.Int32
Property of:

ConnectionFactory

The communications protocol used for a real-time connection to a broker.

The value of the property must be XMSC_RTT_CP_TCP, which means a real-time connection to a broker
over TCP/IP. The default value is XMSC_RTT_CP_TCP.

XMSC_RTT_HOST_NAME
Data type:

String
Property of:

ConnectionFactory

The host name or IP address of the system on which a broker runs.

This property is used with the XMSC_RTT_PORT property to identify the broker.

By default, the property is not set.

XMSC_RTT_LOCAL_ADDRESS
Data type:

String
Property of:

ConnectionFactory

The host name or IP address of the local network interface to be used for a real-time connection to a
broker.

This property is useful only if the system on which the application is running has two or more network
interfaces and you need to be able to specify which interface must be used for a real-time connection. If
the system has only one network interface, only that interface can be used. If the system has two or more
network interfaces and the property is not set, the interface is selected at random.

By default, the property is not set.

XMSC_RTT_MULTICAST
Data type:

System.Int32
Property of:

ConnectionFactory and Destination
Name used in a URI:

mulicast

The multicast setting for a connection factory or destination. Only a destination that is a topic can have
this property.

An application uses this property to enable multicast in association with a real-time connection to a
broker and, if multicast is enabled, to specify the precise way in which multicast is used to deliver

212 IBM Message Service Client for .NET

messages from the broker to a message consumer. The property has no effect on how a message
producer sends messages to the broker.

The valid values of the property are as follows:

Valid value Meaning

XMSC_RTT_MULTICAST_DISABLED Messages are not delivered to a message
consumer using WebSphere MQ Multicast
Transport. This value is the default value for a
ConnectionFactory object.

XMSC_RTT_MULTICAST_ASCF Messages are delivered to a message
consumer according to the multicast setting
for the connection factory associated with the
message consumer. The multicast setting for
the connection factory is noted at the time that
the connection is created. This value is valid
only for a Destination object, and is the default
value for a Destination object.

XMSC_RTT_MULTICAST_ENABLED If the topic is configured for multicast in the
broker, messages are delivered to a message
consumer using WebSphere MQ Multicast
Transport. A reliable quality of service is used
if the topic is configured for reliable multicast.

XMSC_RTT_MULTICAST_RELIABLE If the topic is configured for reliable multicast
in the broker, messages are delivered to
a message consumer using WebSphere MQ
Multicast Transport with a reliable quality of
service. If the topic is not configured for
reliable multicast, you cannot create a message
consumer for the topic.

XMSC_RTT_MULTICAST_NOT_RELIABLE If the topic is configured for multicast in the
broker, messages are delivered to a message
consumer using WebSphere MQ Multicast
Transport. A reliable quality of service is not
used even if the topic is configured for reliable
multicast.

XMSC_RTT_PORT
Data type:

System.Int32
Property of:

ConnectionFactory

The number of the port on which a broker listens for incoming requests. On the broker, you must configure
a Real-timeInput or Real-timeOptimizedFlow message processing node to listen on this port.

This property is used with the XMSC_RTT_HOST_NAME property to identify the broker.

The default value of the property is XMSC_RTT_DEFAULT_PORT, or 1506.

XMSC_TIME_TO_LIVE
Data type:

System.Int32
Property of:

Destination

Introduction to the Message Service Client for .NET 213

Name used in a URI:

expiry (for a IBM WebSphere MQ destination)
timeToLive (for a WebSphere default messaging provider destination)

The time to live for messages sent to the destination.

The valid values of the property are as follows:

Valid value Meaning

0 A message sent to the destination never expires.

A positive integer A message sent to the destination has the specified time to
live in milliseconds. The default time to live of the message
producer, or any time to live specified on the Send call, is
ignored.

XMSC_TIME_TO_LIVE_AS_APP A message sent to the destination has the time to live
specified on the Send call. If the Send call specifies no time to
live, the default time to live of the message producer is used
instead.

The default value is XMSC_TIME_TO_LIVE_AS_APP.

XMSC_USERID
Data type:

String
Property of:

ConnectionFactory

A user identifier that can be used to authenticate the application when it attempts to connect to a
messaging server. The user identifier is used with the XMSC_PASSWORD property.

By default, the property is not set.

If you are connecting to IBM WebSphere MQ distributed platforms, and you set the XMSC_USERID
property of the connection factory, it must match the userid of the logged on user. If you do not set
these properties, the queue manager uses the userid of the logged on user by default. If you require
further connection-level authentication of individual users you can write a client authentication exit which
is configured in IBM WebSphere MQ.

To authenticate the user when connecting to IBM WebSphere MQ on z/OS you need to use a security exit.

XMSC_VERSION
Data type:

String
Property of:

ConnectionMetaData

The version identifier of the XMS client. This property is read-only.

XMSC_WMQ_BROKER_CONTROLQ
Data type:

String
Property of:

ConnectionFactory

The name of the control queue used by a broker.

The default value of the property is SYSTEM.BROKER.CONTROL.QUEUE.

214 IBM Message Service Client for .NET

This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_BROKER_PUBQ
Data type:

String
Property of:

ConnectionFactory

The name of the queue monitored by a broker where applications send messages that they publish.

The default value of the property is SYSTEM.BROKER.DEFAULT.STREAM.

This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_BROKER_QMGR
Data type:

String
Property of:

ConnectionFactory

The name of the queue manager to which a broker is connected.

By default, the property is not set.

This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_BROKER_SUBQ
Data type:

String
Property of:

ConnectionFactory

The name of the subscriber queue for a nondurable message consumer.

The name of the subscriber queue must start with the following characters:

SYSTEM.JMS.ND.

If you want all nondurable message consumers to share a subscriber queue, specify the complete name
of the shared queue. A queue with the specified name must exist before an application can create a
nondurable message consumer.

If you want each nondurable message consumer to retrieve messages from its own exclusive subscriber
queue, specify a queue name that ends with an asterisk (*). Then, when an application creates a
nondurable message consumer, the XMS client creates a dynamic queue for exclusive use by the message
consumer. The XMS client uses the value of the property to set the contents of the DynamicQName field in
the object descriptor that is used to create the dynamic queue.

The default value of the property is SYSTEM.JMS.ND.SUBSCRIBER.QUEUE, which means that XMS uses
the shared queue approach by default.

This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_BROKER_VERSION
Data type:

System.Int32
Property of:

ConnectionFactory and Destination
Name used in a URI:

brokerVersion

Introduction to the Message Service Client for .NET 215

The type of broker used by the application for a connection or for the destination. Only a destination that
is a topic can have this property.

The valid values of the property are as follows:

Valid value Meaning

XMSC_WMQ_BROKER_V1 The application is using a IBM WebSphere MQ Publish/Subscribe
broker.

The application can also use this value if you migrate from IBM
WebSphere MQ Publish/Subscribe to WebSphere Event Broker or
WebSphere Message Broker but did not change the application.

XMSC_WMQ_BROKER_V2 The application is using a broker of WebSphere Event Broker or
WebSphere Message Broker.

XMSC_WMQ_BROKER_UNSPECIFIED After the broker is migrated from Version 6 to Version 7, set
this property so that RFH2 headers are no longer used. After
migration, this property is no longer relevant.

The default value for a connectionfactory is XMSC_WMQ_BROKER_UNSPECIFIED but, by default, the
property is not set for a destination. Setting the property for a destination overrides any value specified by
the connection factory property.

XMSC_WMQ_CCDTURL
Data type:

System.String
Property of:

ConnectionFactory

A Uniform Resource Locator (URL) that identifies the name and location of the file that contains the client
channel definition table and also specifies how the file can be accessed.

By default, this property is not set.

XMSC_WMQ_CCSID
Data type:

System.Int32
Property of:

Destination
Name used in a URI:

CCSID

The identifier (CCSID) of the coded character set, or code page, that the strings of character data in
the body of a message are in when the XMS client forwards the message to the destination. If set for
an individual message, the JMS_IBM_CHARACTER_SET property overrides the CCSID specified for the
destination by this property.

The default value of the property is 1208.

This property is relevant only to messages sent to the destination, not to messages received from the
destination.

XMSC_WMQ_CHANNEL
Data type:

String
Property of:

ConnectionFactory

216 IBM Message Service Client for .NET

The name of the channel to be used for a connection.

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in client mode.

XMSC_WMQ_CLIENT_RECONNECT_OPTIONS
Data type:

String
Property of:

ConnectionFactory

This property specifies the client reconnect options for new connections created by this factory. It is
found in XMSC, and is one of:

• WMQ_CLIENT_RECONNECT_AS_DEF (default). Use the value specified in the mqclient.ini file. Set
the value by using the DefRecon property within the Channels stanza. It can be set to one of:

1. YES. Behaves as the WMQ_CLIENT_RECONNECT option
2. NO. Default. Does not specify any reconnection options
3. QMGR. Behaves as the WMQ_CLIENT_RECONNECT_Q_MGR option
4. DISABLED. Behaves as the WMQ_CLIENT_RECONNECT_DISABLED option

• WMQ_CLIENT_RECONNECT. Reconnect to any of the queue managers specified in the connection name
list.

• WMQ_CLIENT_RECONNECT_Q_MGR. Reconnects to the same queue manager that it is originally
connected to. It returns MQRC_RECONNECT_QMID_MISMATCH if the queue manager it tries to connect
to (specified in the connection name list) has a different QMID to the queue manager originally
connected to.

• WMQ_CLIENT_RECONNECT_DISABLED. Reconnection is disabled.

XMSC_WMQ_CLIENT_RECONNECT_TIMEOUT
Data type:

String
Property of:

ConnectionFactory

This property specifies the duration of time, in seconds, that a client connection attempts to reconnect.

After attempting to reconnect for this duration of time, the client will
fail with MQRC_RECONNECT_FAILED. The default setting for this property is
XMSC.WMQ_CLIENT_RECONNECT_TIMEOUT_DEFAULT.

The default value of this property is 1800.

XMSC_WMQ_CONNECTION_MODE
Data type:

System.Int32
Property of:

ConnectionFactory

The mode by which an application connects to a queue manager.

The valid values of the property are as follows:

Valid value Meaning

XMSC_WMQ_CM_BINDINGS A connection to a queue manager in bindings mode, for optimal
performance. This value is the default value for C/C++.

Introduction to the Message Service Client for .NET 217

Valid value Meaning

XMSC_WMQ_CM_CLIENT A connection to a queue manager in client mode, to ensure a
fully managed stack. This value is the default value for .NET.

XMSC_WMQ_CM_CLIENT_UNMANAGED
(for .NET only)

A connection to a queue manager which forces an unmanaged
client stack.

Related concepts
Managed and unmanaged operations in .NET
Managed code is executed exclusively within the .NET common language runtime environment and is
wholly dependent on the services provided by that runtime. An application is classed as unmanaged if any
part of the application runs or calls services outside of the .NET common language runtime environment.

XMSC_WMQ_CONNECTION_NAME_LIST
Data type:

String
Property of:

ConnectionFactory

This property specifies the hosts to which the client attempts to reconnect to after its connection are
broken.

The connection name list is a comma-separated list of host/ip port pairs. The default setting for this
property is WMQ_CONNECTION_NAME_LIST_DEFAULT.

For example,127.0.0.1(1414),host2.example.com(1400)

The default setting of this property is localhost(1414).

XMSC_WMQ_DUR_SUBQ
Data type:

String
Property of:

Destination

The name of the subscriber queue for a durable subscriber that is receiving messages from the
destination. Only a destination that is a topic can have this property.

The name of the subscriber queue must start with the following characters:

SYSTEM.JMS.D.

If you want all durable subscribers to share a subscriber queue, specify the complete name of the shared
queue. A queue with the specified name must exist before an application can create a durable subscriber.

If you want each durable subscriber to retrieve messages from its own exclusive subscriber queue,
specify a queue name that ends with an asterisk (*). Then, when an application creates a durable
subscriber, the XMS client creates a dynamic queue for exclusive use by the durable subscriber. The
XMS client uses the value of the property to set the contents of the DynamicQName field in the object
descriptor that is used to create the dynamic queue.

The default value of the property is SYSTEM.JMS.D.SUBSCRIBER.QUEUE, which means that XMS uses the
shared queue approach by default.

This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_ENCODING
Data type:

System.Int32

218 IBM Message Service Client for .NET

Property of:
Destination

How numerical data in the body of a message is represented when the XMS client forwards the message
to the destination. If set for an individual message, the JMS_IBM_ENCODING property overrides the
encoding specified for the destination by this property. The property specifies the representation of binary
integers, packed decimal integers, and floating point numbers.

The valid values of the property are the same as the values that can be specified in the Encoding field of
a message descriptor.

An application can use the following named constants to set the property:

Named constant Meaning

MQENC_INTEGER_NORMAL Normal integer encoding

MQENC_INTEGER_REVERSED Reversed integer encoding

MQENC_DECIMAL_NORMAL Normal packed decimal encoding

MQENC_DECIMAL_REVERSED Reversed packed decimal encoding

MQENC_FLOAT_IEEE_NORMAL Normal IEEE floating point encoding

MQENC_FLOAT_IEEE_REVERSED Reversed IEEE floating point encoding

MQENC_FLOAT_S390 z/OS architecture floating point encoding

MQENC_NATIVE Native machine encoding

To form a value for the property, the application can add three of these constants as follows:

• A constant whose name commences with MQENC_INTEGER, to specify the representation of binary
integers

• A constant whose name commences with MQENC_DECIMAL, to specify the representation of packed
decimal integers

• A constant whose name commences with MQENC_FLOAT, to specify the representation of floating point
numbers

Alternatively, the application can set the property to MQENC_NATIVE, whose value is environment-
dependent.

The default value of the property is MQENC_NATIVE.

This property is relevant only to messages sent to the destination, not to messages received from the
destination.

XMSC_WMQ_FAIL_IF_QUIESCE
Data type:

System.Int32
Property of:

ConnectionFactory and Destination
Name used in a URI:

failIfQuiesce

Whether calls to certain methods fail if the queue manager to which the application is connected is in a
quiescing state.

The valid values of the property are as follows:

Introduction to the Message Service Client for .NET 219

Valid value Meaning

XMSC_WMQ_FIQ_YES Calls to certain methods fail if the queue manager is in a quiescing state. When
the application detects that the queue manager is quiescing, the application
can complete its immediate task and close the connection, allowing the queue
manager to stop.

XMSC_WMQ_FIQ_NO No method calls fail because the queue manager is in a quiescing state. If
you specify this value, the application cannot detect that the queue manager
is quiescing. The application might continue to perform operations against the
queue manager and therefore prevent the queue manager from stopping.

The default value for a connection factory is XMSC_WMQ_FIQ_YES but, by default, the property is not set
for a destination. Setting the property for a destination overrides any value specified by the connection
factory property.

XMSC_WMQ_MESSAGE_BODY
Data type:

System.Int32
Property of:

Destination

This property determines whether an XMS application processes the MQRFH2 of a IBM WebSphere MQ
message as part of the message payload (that is, as part of the message body).

Note: When sending messages to a destination, XMSC_WMQ_MESSAGE_BODY property supersedes
existing XMS Destination property XMSC_WMQ_TARGET_CLIENT.

Valid values for this property are:

XMSC_WMQ_MESSAGE_BODY_JMS
Receive: The inbound XMS message type and body are determined by the contents of the MQRFH2 (if
present) or the MQMD (if there is no MQRFH2) in the received IBM WebSphere MQ message.
Send: The outbound XMS message body contains a prepended and auto-generated MQRFH2 header
based on XMS Message properties and header fields.

XMSC_WMQ_MESSAGE_BODY_MQ
Receive: The inbound XMS message type is always ByteMessage, irrespective of the contents of
received IBM WebSphere MQ message or the format field of the received MQMD. The XMS message
body is the unaltered message data returned by the underlying messaging provider API call. The
character set and encoding of the data in the message body is determined by the CodedCharSetId and
Encoding fields of the MQMD. The format of the data in the message body is determined by the Format
field of the MQMD.
Send: The outbound XMS message body contains the application payload as-is; and no auto-
generated IBM WebSphere MQ header is added to the body.

XMSC_WMQ_MESSAGE_BODY_UNSPECIFIED
Receive: The XMS client determines a suitable value for this property. On receive path, this value is
the WMQ_MESSAGE_BODY_JMS property value.
Send: The XMS client determines a suitable value for this property. On send path, this value is the
XMSC_WMQ_TARGET_CLIENT property value.

By default this property is set to XMSC_WMQ_MESSAGE_BODY_UNSPECIFIED.

XMSC_WMQ_MQMD_MESSAGE_CONTEXT
Data type:

System.Int32

220 IBM Message Service Client for .NET

Property of:
Destination

Determines what level of message context is to be set by the XMS application. The application must be
running with appropriate context authority for this property to take effect.

The valid values for this property are:

XMSC_WMQ_MDCTX_DEFAULT
For outbound messages, the MQOPEN API call and the MQPMO structure specifies no explicit
message context options.

XMSC_WMQ_MDCTX_SET_IDENTITY_CONTEXT
The MQOPEN API call specifies the message context option MQOO_SET_IDENTITY_CONTEXT and the
MQPMO structure specifies MQPMO_SET_IDENTITY_CONTEXT.

XMSC_WMQ_MDCTX_SET_ALL_CONTEXT
The MQOPEN API call specifies the message context option MQOO_SET_ALL_CONTEXT and the
MQPMO structure specifies MQPMO_SET_ALL_CONTEXT.

By default this property is set to XMSC_WMQ_MDCTX_DEFAULT.

Note: This property is not relevant when an application connects to System Integration Bus.

The following properties require XMSC_WMQ_MQMD_MESSAGE_CONTEXT property
to be set to XMSC_WMQ_MDCTX_SET_IDENTITY_CONTEXT property value or
XMSC_WMQ_MDCTX_SET_ALL_CONTEXT property value when sending a message for in order to have
wanted effect:

• JMS_IBM_MQMD_USERIDENTIFIER

• JMS_IBM_MQMD_ACCOUNTINGTOKEN

• JMS_IBM_MQMD_APPLIDENTITYDATA

Following properties require XMSC_WMQ_MQMD_MESSAGE_CONTEXT property to be set to
XMSC_WMQ_MDCTX_SET_ALL_CONTEXT property value when sending a message for in order to have
wanted effect:

• JMS_IBM_MQMD_PUTAPPLTYPE

• JMS_IBM_MQMD_PUTAPPLNAME

• JMS_IBM_MQMD_PUTDATE

• JMS_IBM_MQMD_PUTTIME

• JMS_IBM_MQMD_APPLORIGINDATA

XMSC_WMQ_MQMD_READ_ENABLED
Data type:

System.Int32
Property of:

Destination

This property determines whether an XMS application can extract the values of MQMD fields or not.

The valid values for this property are:

XMSC_WMQ_READ_ENABLED_NO
When sending messages, the JMS_IBM_MQMD* properties on a sent message are not updated to
reflect the updated field values in the MQMD.
When receiving messages, none of the JMS_IBM_MQMD* properties are available on a received
message, even if some or all of them are set by the sender.

Introduction to the Message Service Client for .NET 221

XMSC_WMQ_READ_ENABLED_YES
When sending messages, all of the JMS_IBM_MQMD* properties on a sent message are updated to
reflect the updated field values in the MQMD, including those properties that the sender did not set
explicitly.
When receiving messages, all of the JMS_IBM_MQMD* properties are available on a received
message, including those properties that the sender did not set explicitly.

By default this property is set to XMSC_WMQ_READ_ENABLED_NO.

XMSC_WMQ_MQMD_WRITE_ENABLED
Data type:

System.Int32
Property of:

Destination

This property determines whether an XMS application can the values of MQMD fields or not.

The valid values for this property are:

XMSC_WMQ_WRITE_ENABLED_NO
All JMS_IBM_MQMD* properties are ignored and their values are not copied into the underlying
MQMD structure.

XMSC_WMQ_WRITE_ENABLED_YES
JMS_IBM_MQMD* properties are processed. Their values are copied into the underlying MQMD
structure.

By default this property is set to XMSC_WMQ_WRITE_ENABLED_NO.

XMSC_WMQ_PUT_ASYNC_ALLOWED
Data type:

System.Int32
Property of:

Destination

This property determines whether message producers are allowed to use asynchronous puts to send
messages to this destination.

The valid values for this property are:

XMSC_WMQ _PUT_ASYNC_ALLOWED_AS_DEST
Determine whether asynchronous puts are allowed by referring to the queue or topic definition.

XMSC_WMQ _PUT_ASYNC_ALLOWED_AS_Q_DEF
Determine whether asynchronous puts are allowed by referring to the queue definition.

XMSC_WMQ _PUT_ASYNC_ALLOWED_AS_TOPIC_DEF
Determine whether asynchronous puts are allowed by referring to the topic definition.

XMSC_WMQ _PUT_ASYNC_ALLOWED_DISABLED
Asynchronous puts are not allowed.

XMSC_WMQ _PUT_ASYNC_ALLOWED_ENABLED
Asynchronous puts are allowed.

By default this property is set to XMSC_WMQ _PUT_ASYNC_ALLOWED_AS_DEST.

Note: This property is not relevant when an application is connecting to System Integration Bus.

222 IBM Message Service Client for .NET

XMSC_WMQ_READ_AHEAD_ALLOWED
Data type:

System.Int32
Property of:

Destination

This property determines whether message consumers and queue browsers are allowed to use read
ahead to get non-persistent, non-transactional messages from this destination into an internal buffer
before receiving them.

The valid values for this property are:

XMSC_WMQ_READ_AHEAD_ALLOWED_AS_Q_DEF
Determine whether read ahead is allowed by referring to the queue definition.

XMSC_WMQ_READ_AHEAD_ALLOWED_AS_ TOPIC _DEF
Determine whether read ahead is allowed by referring to the topic definition.

XMSC_WMQ_READ_AHEAD_ALLOWED_AS_DEST
Determine whether read ahead is allowed by referring to the queue or topic definition.

XMSC_WMQ_READ_AHEAD_ALLOWED_DISABLED
Read ahead is not allowed while consuming or browsing messages.

XMSC_WMQ_READ_AHEAD_ALLOWED_ENABLED
Read ahead is allowed.

By default this property is set to XMSC_WMQ _READ_AHEAD_ALLOWED_AS_DEST.

XMSC_WMQ_READ_AHEAD_CLOSE_POLICY
Data type:

System.Int32
Property of:

Destination

This property determines, for messages being delivered to an asynchronous message listener, what
happens to messages in the internal read ahead buffer when the message consumer is closed.

This property is applicable in specifying closing queue options when consuming messages from a
destination and not applicable when sending messages to a destination.

This property is ignored for Queue Browsers since during browse the messages are still available in the
queues.

The valid values for this property are:

XMSC_WMQ_READ_AHEAD_CLOSE_POLICY_DELIVER_CURRENT
Only the current message listener invocation completes before returning, potentially leaving
messages in the internal read ahead buffer, which are then discarded.

XMSC_WMQ_READ_AHEAD_CLOSE_POLICY_DELIVER_ALL
All messages in the internal read ahead buffer are delivered to the application message listener
before returning.

By default this property is set to XMSC_WMQ _READ_AHEAD_CLOSE_POLICY_DELIVER_CURRENT.

Note:

• Abnormal application termination

All the messages in the read ahead buffer are lost when an XMS application terminates abruptly.
• Implications on Transactions

Introduction to the Message Service Client for .NET 223

The read ahead is disabled when the applications use transaction. So, the application is not seeing any
difference in the behavior when they use transacted sessions.

• Implications of Session Acknowledgement modes

The read ahead is enabled on a non-transacted session when the acknowledgement modes are either
XMSC_AUTO_ACKNOWLEDGE or XMSC_DUPS_OK_ACKNOWLEDGE. The read ahead is disabled if the
session acknowledgement mode is XMSC_CLIENT_ACKNOWLEDGE irrespective of transacted or non-
transacted sessions.

• Implications on Queue Browsers and Queue Browser Selectors

The Queue Browsers and Queue Browser Selectors, used in XMS applications, get the performance
advantage from read ahead. Closing the Queue Browser does not degrade performance, because the
message is still available in the queue for ay further operations. There are no any other implication on
queue browsers and queue browser selectors apart from performance benefits of read ahead.

• Implications of read ahead destination properties on WebSphere Message Broker V6 or earlier
queue managers

Specifying destination properties XMSC_WMQ_READ_AHEAD_ALLOWED and
XMSC_WMQ_READ_AHEAD_CLOSE_POLICY, when XMS application uses the WebSphere Message
Broker V6 queue manager will not be able to use the specified values. These destination property
values will be silently ignored and the applications continue to work without read ahead. There will not
be any errors thrown when used with V6 queue managers.

XMSC_WMQ_HOST_NAME
Data type:

String
Property of:

ConnectionFactory

The host name or IP address of the system on which a queue manager runs.

This property is used only when an application connects to a queue manager in client mode. The property
is used with the XMSC_WMQ_PORT property to identify the queue manager.

The default value of the property is localhost.

XMSC_WMQ_LOCAL_ADDRESS
Data type:

String
Property of:

ConnectionFactory

For a connection to a queue manager, this property specifies the local network interface to be used, or the
local port or range of local ports to be used, or both.

The value of the property is a string with the following format:

[host_name][(low_port)[,high_port])]

The meanings of the variables are as follows:
host_name

The host name or IP address of the local network interface to be used for the connection.

Providing this information is necessary only if the system on which the application is running has
two or more network interfaces and you need to be able to specify which interface must be used for
the connection. If the system has only one network interface, only that interface can be used. If the
system has two or more network interfaces and you do not specify which interface must be used, the
interface is selected at random.

224 IBM Message Service Client for .NET

low_port
The number of the local port to be used for the connection.

If high_port is also specified, low_port is interpreted the lowest port number in a range of port
numbers.

high_port
The highest port number in a range of port numbers. One of the ports in the specified range must be
used for the connection.

The maximum length of the string is 48 characters.

Here are some examples of valid values of the property:

JUPITER
9.20.4.98
JUPITER(1000)
9.20.4.98(1000,2000)
(1000)
(1000,2000)

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in client mode.

XMSC_WMQ_MESSAGE_SELECTION
Data type:

System.Int32
Property of:

ConnectionFactory

Determines whether message selection is done by the XMS client or by the broker.

The valid values of the property are as follows:

Valid value Meaning

XMSC_WMQ_MSEL_CLIENT Message selection is done by the XMS client.

XMSC_WMQ_MSEL_BROKER Message selection is done by the broker.

The default value is XMSC_WMQ_MSEL_CLIENT.

This property is relevant only in the publish/subscribe domain. Message selection by the broker is not
supported if the XMSC_WMQ_BROKER_VERSION property is set to XMSC_WMQ_BROKER_V1.

XMSC_WMQ_MSG_BATCH_SIZE
Data type:

System.Int32
Property of:

ConnectionFactory

The maximum number of messages to be retrieved from a queue in one batch when using asynchronous
message delivery.

When an application is using asynchronous message delivery, under certain conditions, the XMS client
retrieves a batch of messages from a queue before forwarding each message individually to the
application. This property specifies the maximum number of messages that can be in the batch.

The value of the property is a positive integer, and the default value is 10. Consider setting the property to
a different value only if you have a specific performance problem that you need to address.

Introduction to the Message Service Client for .NET 225

If an application is connected to a queue manager over a network, raising the value of this property can
reduce network overheads and response times, but increase the amount of memory required to store the
messages on the client system. Conversely, lowering the value of this property might increase network
overheads and response times, but reduce the amount of memory required to store the messages.

XMSC_WMQ_POLLING_INTERVAL
Data type:

System.Int32
Property of:

ConnectionFactory

If each message listener within a session has no suitable message on its queue, this value is the
maximum interval, in milliseconds, that elapses before each message listener tries again to get a message
from its queue.

If it frequently happens that no suitable message is available for any of the message listeners in a session,
consider increasing the value of this property.

The value of the property is a positive integer. The default value is 5000.

XMSC_WMQ_PORT
Data type:

System.Int32
Property of:

ConnectionFactory

The number of the port on which a queue manager listens for incoming requests.

This property is used only when an application connects to a queue manager in client mode. The property
is used with the XMSC_WMQ_HOST_NAME property to identify the queue manager.

The default value of the property is XMSC_WMQ_DEFAULT_CLIENT_PORT, or 1414.

XMSC_WMQ_PROVIDER_VERSION
Data type:

String
Property of:

ConnectionFactory

The version, release, modification level and fix pack of the queue manager to which the application
intends to connect. Valid values for this property are:

• Unspecified

Or a string in one of the following formats

• V.R.M.F

• V.R.M

• V.R

• V

Where V, R, M and F are integer values greater than or equal to zero.

A value of 7 or greater indicates that this version is intended as a IBM WebSphere MQ Version 7.0
ConnectionFactory for connections to a IBM WebSphere MQ Version 7.0 queue manager. A value
lower than 7 (for example "6.0.2.0"), indicates that it is intended for use with queue managers
earlier than Version 7.0. The default value, unspecified, allows connections to any level of queue
manager, determining the applicable properties and functionality available based on the queue manager's
capabilities.

226 IBM Message Service Client for .NET

By default this property is set to "unspecified".

Note:

• No socket sharing happens if XMSC_WMQ_PROVIDER_VERSION is set to 6. 2.
• Connection fails if XMSC_WMQ_PROVIDER_VERSION is set to 7 and on the server SHARECNV for the

channel is set to 0.
• IBM WebSphere MQ Version 7.0 specific features are disabled if XMSC_WMQ_PROVIDER_VERSION is

set to UNSPECIFIED and SHARECNV is set to 0.

The version of IBM WebSphere MQ Client also plays major role in whether an XMS client application can
use IBM WebSphere MQ Version 7.0 specific features. The following table describes the behavior.

Note: A system property XMSC_WMQ_OVERRIDEPROVIDERVERSION overrides the
XMSC_WMQ_PROVIDER_VERSION property. This property can be used if you are unable to change
connection factory setting.

Table 37. XMS client - Ability to use IBM WebSphere MQ Version 7.0 specific features.

XMSC_WMQ_PROVIDER_VERSION
IBM WebSphere MQ Client
Version

IBM WebSphere MQ Version
7.0 features

1 unspecified 7 ON

2 unspecified 6 OFF

3 7 7 ON

4 7 6 Exception

5 6 6 OFF

6 6 7 OFF

XMSC_WMQ_PUB_ACK_INTERVAL
Data type:

System.Int32
Property of:

ConnectionFactory

The number of messages published by a publisher before the XMS client requests an acknowledgement
from the broker.

If you lower the value of this property, the client requests acknowledgements more often, and therefore
the performance of the publisher decreases. If you raise the value, the client takes a longer time to throw
an exception if the broker fails.

The value of the property is a positive integer. The default value is 25.

XMSC_WMQ_QMGR_CCSID
Data type:

System.Int32
Property of:

ConnectionFactory

The identifier (CCSID) of the coded character set, or code page, in which fields of character data defined in
the Message Queue Interface (MQI) are exchanged between the XMS client and the IBM WebSphere MQ
client. This property does not apply to the strings of character data in the bodies of messages.

When an XMS application connects to a queue manager in client mode, the XMS client links to the IBM
WebSphere MQ client. The information exchanged between the two clients contains fields of character
data that are defined in the MQI. Under normal circumstances, the IBM WebSphere MQ client assumes

Introduction to the Message Service Client for .NET 227

that these fields are in the code page of the system on which the clients are running. If the XMS client
provides and expects to receive these fields in a different code page, you must set this property to inform
the IBM WebSphere MQ client.

When the IBM WebSphere MQ client forwards these fields of character data to the queue manager, the
data in them must be converted if necessary into the code page used by the queue manager. Similarly,
when the IBM WebSphere MQ client receives these fields from the queue manager, the data in them must
be converted if necessary into the code page in which the XMS client expects to receive the data. The IBM
WebSphere MQ client uses this property to perform these data conversions.

By default, the property is not set.

Setting this property is equivalent to setting the MQCCSID environment variable for a IBM WebSphere MQ
client that is supporting native IBM WebSphere MQ client applications. For more information about this
environment variable, see IBM WebSphere MQ Clients.

XMSC_WMQ_QUEUE_MANAGER
Data type:

String
Property of:

ConnectionFactory

The name of the queue manager to connect to.

By default, the property is not set.

XMSC_WMQ_RECEIVE_CCSID
Destination property that sets the target CCSID for queue manager message conversion. The value is
ignored unless XMSC_WMQ_RECEIVE_CONVERSION is set to WMQ_RECEIVE_CONVERSION_QMGR.

Data type:
Integer

Value:
Any positive integer.

The default value is 1208.

XMSC_WMQ_RECEIVE_CONVERSION
Destination property that determines whether data conversion is going to be performed by the queue
manager.

Data type:
Integer

Values:
XMSC_WMQ_RECEIVE_CONVERSION_CLIENT_MSG (DEFAULT): Perform data conversion on the XMS
client only. Conversion is always done using codepage 1208.
XMSC_WMQ_RECEIVE_CONVERSION_QMGR: Perform data conversion on the queue manager before
sending a message to the XMS client.

XMSC_WMQ_RECEIVE_EXIT
Data type:

String
Property of:

ConnectionFactory

Identifies a channel receive exit to be run.

The value of the property is a string that identifies a channel receive exit and has the following format:

228 IBM Message Service Client for .NET

libraryName(entryPointName)

where,

• libraryName is the full path of the managed exit .dll
• entryPointName is the class name qualified by the namespace

For example, C:\MyReceiveExit.dll(MyReceiveExitNameSpace.MyReceiveExitClassName)

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in managed client mode.
Also, only managed exits are supported.

XMSC_WMQ_RECEIVE_EXIT_INIT
Data type:

String
Property of:

ConnectionFactory

The user data that is passed to a channel receive exit when it is called.

The value of the property is a string. By default, the property is not set.

This property is relevant only when an application connects to a queue manager in managed client mode
and the “XMSC_WMQ_RECEIVE_EXIT” on page 228 property is set.

XMSC_WMQ_RESOLVED_QUEUE_MANAGER
Data type:

String
Property of:

ConnectionFactory

This property is used to obtain the name of the queue manager to which it is connected.

When used with a CCDT (Client Channel Definition Table), this name might be different from the queue
manager name specified in the Connection Factory.

XMSC_WMQ_RESOLVED_QUEUE_MANAGER_ID
Data type:

String
Property of:

ConnectionFactory

This property is populated with the ID of the queue manager after the connection.

XMSC_WMQ_SECURITY_EXIT
Data type:

String
Property of:

ConnectionFactory

Identifies a channel security exit.

The value of the property is a string that identifies a channel security exit and has the following format:

libraryName(entryPointName)

where,

• libraryName is the full path of the managed exit .dll

Introduction to the Message Service Client for .NET 229

• entryPointName is the class name qualified by the namespace

For example, C:\MySecurityExit.dll(MySecurityExitNameSpace.MySecurityExitClassName)

The maximum length of the string is 128 characters.

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in managed client mode.
Also, only managed exits are supported.

XMSC_WMQ_SECURITY_EXIT_INIT
Data type:

String
Property of:

ConnectionFactory

The user data that is passed to a channel security exit when it is called.

The maximum length of the string of user data is 32 characters.

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in managed client mode
and the “XMSC_WMQ_SECURITY_EXIT” on page 229 property is set.

XMSC_WMQ_SEND_EXIT
Data type:

String
Property of:

ConnectionFactory

Identifies a channel send exit.

The value of the property is a string. A channel send exit has the following format:

libraryName(entryPointName)

where,

• libraryName is the full path of the managed exit .dll
• entryPointName is the class name qualified by the namespace

For example, C:\MySendExit.dll(MySendExitNameSpace.MySendExitClassName)

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in managed client mode.
Also, only managed exits are supported.

XMSC_WMQ_SEND_EXIT_INIT
Data type:

String
Property of:

ConnectionFactory

The user data that is passed to channel send exits when they are called.

The value of the property is a string of one or more items of user data separated by commas. By default,
the property is not set.

The rules for specifying user data that is passed to a sequence of channel send exits, are the same as
the rules for specifying user data that is passed to a sequence of channel receive exits. For the rules
therefore, see “XMSC_WMQ_RECEIVE_EXIT_INIT” on page 229.

230 IBM Message Service Client for .NET

This property is relevant only when an application connects to a queue manager in managed client mode
and the “XMSC_WMQ_SEND_EXIT” on page 230 property is set.

XMSC_WMQ_SEND_CHECK_COUNT
Data type:

System.Int32
Property of:

ConnectionFactory

The number of send calls to allow between checking for asynchronous put errors, within a single non-
transacted XMS session.

By default this property is set to 0.

XMSC_WMQ_SHARE_CONV_ALLOWED
Data type:

System.Int32
Property of:

ConnectionFactory

Whether a client connection can share its socket with other top-level XMS connections from the same
process to the same queue manager, if the channel definitions match. This property is provided to
allow complete isolation of Connections in separate sockets if required for application development,
maintenance, or operational reasons. Setting this property merely indicates to XMS to make the
underlying socket shared. It does not indicate how many connections shares a single socket. The number
of connections sharing a socket is determined by SHARECNV value which is negotiated between IBM
WebSphere MQ Client and IBM WebSphere MQ Server.

An application can set the following named constants to set the property:

• XMSC_WMQ_SHARE_CONV_ALLOWED_FALSE - Connections do not share a socket.
• XMSC_WMQ_SHARE_CONV_ALLOWED_TRUE - Connections share a socket.

By default the property is set to XMSC_WMQ_SHARE_CONV_ALLOWED_ENABLED.

This property is relevant only when an application connects to a queue manager in client mode.

XMSC_WMQ_SSL_CERT_STORES
Data type:

String
Property of:

ConnectionFactory

The locations of the servers that hold the certificate revocation lists (CRLs) to be used on an SSL
connection to a queue manager.

The value of the property is a list of one or more URLs separated by commas. Each URL has the following
format:

[user[/password]@]ldap://[serveraddress][:portnum][,...]

This format is compatible with, but extended from, the basic MQJMS format.

It is valid to have an empty serveraddress. In this case, XMS assumes that the value is the string
"localhost".

An example list is:

myuser/mypassword@ldap://server1.mycom.com:389
ldap://server1.mycom.com

Introduction to the Message Service Client for .NET 231

ldap://
ldap://:389

For .NET only: Managed connections to IBM WebSphere MQ (WMQ_CM_CLIENT) do not
support SSL connections, but might be supported by using an unmanaged connection
(WMQ_CM_CLIENT_UNMANAGED).

By default, the property is not set.

XMSC_WMQ_SSL_CIPHER_SPEC
Data type:

String
Property of:

ConnectionFactory

The name of the CipherSpec to be used on a secure connection to a queue manager.

Cipher specifications that you can use with IBM WebSphere MQ SSL and TLS support are listed in the
following table. When you request a personal certificate, you specify a key size for the public and private
key pair. The key size that is used during the SSL handshake is the size stored in the certificate unless it is
determined by the CipherSpec, as noted in the table. By default, this property is not set.

CipherSpec name Protocol
used

Hash
algorith
m

Encrypt
ion
algorith
m

Encrypt
ion bits

FIPS1 Suite B
128 bit

Suite B
192 bit

NULL_MD5 SSL 3.0
8

MD5 None 0 No No No

NULL_SHA SSL 3.0
8

SHA-1 None 0 No No No

RC4_MD5_EXPORT 2 SSL 3.0
8

MD5 RC4 40 No No No

RC4_MD5_US SSL 3.0
8

MD5 RC4 128 No No No

RC4_SHA_US SSL 3.0
8

SHA-1 RC4 128 No No No

RC2_MD5_EXPORT2 SSL 3.0
8

MD5 RC2 40 No No No

DES_SHA_EXPORT 2 SSL 3.0
8

SHA-1 DES 56 No No No

RC4_56_SHA_EXPORT10243 SSL 3.0
8

SHA-1 RC4 56 No No No

DES_SHA_EXPORT1024 3 SSL 3.0
8

SHA-1 DES 56 No No No

TRIPLE_DES_SHA_US SSL 3.0
8

SHA-1 3DES 168 No No No

TLS_RSA_WITH_AES_128_CBC_SHA TLS 1.0 SHA-1 AES 128 Yes No No

TLS_RSA_WITH_AES_256_CBC_SHA4 TLS 1.0 SHA-1 AES 256 Yes No No

TLS_RSA_WITH_DES_CBC_SHA TLS 1.0 SHA-1 DES 56 No5 No No

TLS_RSA_WITH_3DES_EDE_CBC_SHA8 TLS 1.0 SHA-1 3DES 168 Yes No No

232 IBM Message Service Client for .NET

CipherSpec name Protocol
used

Hash
algorith
m

Encrypt
ion
algorith
m

Encrypt
ion bits

FIPS1 Suite B
128 bit

Suite B
192 bit

FIPS_WITH_DES_CBC_SHA SSL 3.0 SHA-1 DES 56 No6 No No

FIPS_WITH_3DES_EDE_CBC_SHA SSL 3.0 SHA-1 3DES 168 No7 No No

TLS_RSA_WITH_AES_128_GCM_SHA25
6

TLS 1.2 SHA-25
6

AES 128 Yes No No

TLS_RSA_WITH_AES_256_GCM_SHA38
4

TLS 1.2 SHA-38
4

AES 256 Yes No No

TLS_RSA_WITH_AES_128_CBC_SHA25
6

TLS 1.2 SHA-25
6

AES 128 Yes No No

TLS_RSA_WITH_AES_256_CBC_SHA25
6

TLS 1.2 SHA-25
6

AES 256 Yes No No

ECDHE_ECDSA_RC4_128_SHA256 TLS 1.2 SHA-25
6

RC4 128 No No No

ECDHE_ECDSA_3DES_EDE_CBC_SHA25
6

TLS 1.2 SHA-25
6

3DES 168 Yes No No

ECDHE_RSA_RC4_128_SHA256 TLS 1.2 SHA-25
6

RC4 128 No No No

ECDHE_RSA_3DES_EDE_CBC_SHA256 TLS 1.2 SHA-25
6

3DES 168 Yes No No

ECDHE_ECDSA_AES_128_CBC_SHA256 TLS 1.2 SHA-25
6

AES 128 Yes No No

ECDHE_ECDSA_AES_256_CBC_SHA384 TLS 1.2 SHA-38
4

AES 256 Yes No No

ECDHE_RSA_AES_128_CBC_SHA256 TLS 1.2 SHA-25
6

AES 128 Yes No No

ECDHE_RSA_AES_256_CBC_SHA384 TLS 1.2 SHA-38
4

AES 256 Yes No No

ECDHE_ECDSA_AES_128_GCM_SHA256 TLS 1.2 SHA-25
6

AES 128 Yes Yes No

ECDHE_ECDSA_AES_256_GCM_SHA384 TLS 1.2 SHA-38
4

AES 256 Yes No Yes

ECDHE_RSA_AES_128_GCM_SHA256 TLS 1.2 SHA-25
6

AES 128 Yes No No

ECDHE_RSA_AES_256_GCM_SHA384 TLS 1.2 SHA-38
4

AES 256 Yes No No

TLS_RSA_WITH_NULL_SHA256 TLS 1.2 SHA-25
6

None 0 No No No

ECDHE_RSA_NULL_SHA256 TLS 1.2 SHA-25
6

None 0 No No No

ECDHE_ECDSA_NULL_SHA256 TLS 1.2 SHA-25
6

None 0 No No No

Introduction to the Message Service Client for .NET 233

CipherSpec name Protocol
used

Hash
algorith
m

Encrypt
ion
algorith
m

Encrypt
ion bits

FIPS1 Suite B
128 bit

Suite B
192 bit

TLS_RSA_WITH_NULL_NULL TLS 1.2 None None 0 No No No

TLS_RSA_WITH_RC4_128_SHA256 TLS 1.2 SHA-25
6

RC4 128 No No No

Notes:

1. Specifies whether the CipherSpec complies with Federal Information Processing Standards (FIPS) 140-2.
For an explanation of FIPS and information about how to configure WebSphere MQ for FIPS 140-2
compliant operation, see Federal Information Processing Standards (FIPS) in the online IBM IBM
WebSphere MQ product documentation.

2. The maximum handshake key size is 512 bits. If either of the certificates exchanged during the SSL
handshake has a key size greater than 512 bits, a temporary 512-bit key is generated for use during the
handshake.

3. The handshake key size is 1024 bits.
4. This CipherSpec cannot be used to secure a connection from the WebSphere MQ Explorer to a queue

manager unless the appropriate unrestricted policy files are applied to the JRE used by the Explorer.
5. This CipherSpec was FIPS 140-2 certified before 19 May 2007.
6. This CipherSpec was FIPS 140-2 certified before 19 May 2007. The name FIPS_WITH_DES_CBC_SHA is

historical and reflects the fact that this CipherSpec was previously (but is no longer) FIPS-compliant. This
CipherSpec is deprecated.

7. The name FIPS_WITH_3DES_EDE_CBC_SHA is historical and reflects the fact that this CipherSpec was
previously (but is no longer) FIPS-compliant. The use of this CipherSpec is deprecated.

8. When WebSphere MQ is configured for FIPS 140-2 compliant operation, this CipherSpec can be used to
transfer up to 32 GB of data before the connection is terminated with error AMQ9288. To avoid this error,
either avoid using triple DES (which is deprecated), or enable secret key reset when using this CipherSpec in
a FIPS 140-2 configuration.

Related concepts
Security
Data integrity of messages
Related tasks
Specifying CipherSpecs

XMSC_WMQ_SSL_CIPHER_SUITE
Data type:

String
Property of:

ConnectionFactory

The name of the CipherSuite to be used on an SSL or TLS connection to a queue manager. The protocol
used in negotiating the secure connection depends on the specified CipherSuite.

This property has the following canonical values:

• SSL_RSA_WITH_DES_CBC_SHA
• SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA
• SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA
• SSL_RSA_FIPS_WITH_DES_CBC_SHA
• SSL_RSA_WITH_NULL_MD5

234 IBM Message Service Client for .NET

• SSL_RSA_WITH_NULL_SHA
• SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
• SSL_RSA_EXPORT1024_WITH_RC4_56_SHA
• SSL_RSA_EXPORT_WITH_RC4_40_MD5
• SSL_RSA_WITH_RC4_128_MD5
• SSL_RSA_WITH_RC4_128_SHA
• SSL_RSA_WITH_3DES_EDE_CBC_SHA
• SSL_RSA_WITH_AES_128_CBC_SHA
• SSL_RSA_WITH_AES_256_CBC_SHA
• SSL_RSA_WITH_DES_CBC_SHA
• SSL_RSA_WITH_3DES_EDE_CBC_SHA

This value can be supplied as an alternative to XMSC_WMQ_SSL_CIPHER_SPEC.

If a non-empty value is specified for XMSC_WMQ_SSL_CIPHER_SPEC, this value overrides the setting for
XMSC_WMQ_SSL_CIPHER_SUITE. If XMSC_WMQ_SSL_CIPHER_SPEC does not have a value, the value of
XMSC_WMQ_SSL_CIPHER_SUITE is used as the cipher suite to be given to GSKit. In this case, the value
is mapped on to the equivalent CipherSpec value, as described in “CipherSuite and CipherSpec name
mappings for connections to a IBM WebSphere MQ queue manager” on page 65.

If both XMSC_WMQ_SSL_CIPHER_SPEC and XMSC_WMQ_SSL_CIPHER_SUITE are empty, the field
pChDef->SSLCipherSpec is filled with spaces.

For .NET only: Managed connections to IBM WebSphere MQ (WMQ_CM_CLIENT) will not
support SSL connections, but might be supported by using an unmanaged connection
(WMQ_CM_CLIENT_UNMANAGED).

By default, the property is not set.

XMSC_WMQ_SSL_CRYPTO_HW
Data type:

String
Property of:

ConnectionFactory

Configuration details for the cryptographic hardware connected to the client system.

This property has the following canonical values:

• GSK_ACCELERATOR_RAINBOW_CS_OFF
• GSK_ACCELERATOR_RAINBOW_CS_ON
• GSK_ACCELERATOR_NCIPHER_NF_OFF
• GSK_ACCELERATOR_NCIPHER_NF_ON

There is a special format for PKCS11 cryptographic hardware (where DriverPath, TokenLabel, and
TokenPassword are user-specified strings):

GSK_PKCS11=PKCS#11 DriverPath; PKCS#11 TokenLabel;PKCS#11 TokenPassword

XMS does not interpret or alter the contents of the string. It copies the value supplied, up to a limit of 256
single-byte characters, into the MQSCO.CryptoHardware field.

For .NET only: Managed connections to IBM WebSphere MQ (WMQ_CM_CLIENT) does not
support SSL connections, but might be supported by using an unmanaged connection
(WMQ_CM_CLIENT_UNMANAGED).

By default, the property is not set.

Introduction to the Message Service Client for .NET 235

XMSC_WMQ_SSL_FIPS_REQUIRED
Data type:

Boolean
Property of:

ConnectionFactory

The value of this property determines whether an application can or cannot use non-FIPS compliant
cipher suites. If this property is set to true, only FIPS algorithms are used for the client-server connection.

This property can have the following values, which translate to the two canonical values for
MQSCO.FipsRequired:

Table 38. Table of values for MQSCO.FlipsRequired property

Value Description
Corresponding value of
MQSCO.FipsRequired

false Any CipherSpec can be used. MQSSL_FIPS_NO (the default)

true Only FIPS-certified cryptographic
algorithms can be used in the
CipherSpec applying to this client
connection.

MQSSL_FIPS_YES

XMS copies the relevant value into MQSCO.FipsRequired before calling MQCONNX.

The parameter MQSCO.FipsRequired is only available from IBM WebSphere MQ version 6. If IBM
WebSphere MQ version 5.3, if this property is set, XMS does not attempt to make the connection to
the queue manager, and throws an appropriate exception instead.

For .NET only: Managed connections to IBM WebSphere MQ (WMQ_CM_CLIENT) does not
support SSL connections, but might be supported by using an unmanaged connection
(WMQ_CM_CLIENT_UNMANAGED).

XMSC_WMQ_SSL_KEY_REPOSITORY
Data type:

String
Property of:

ConnectionFactory

The location of the key database file in which keys and certificates are stored.

XMS copies the string, up to a limit of 256 single-byte characters, into the MQSCO.KeyRepository field.
IBM WebSphere MQ interprets this string as a filename, including the full path.

For .NET only: Managed connections to IBM WebSphere MQ (WMQ_CM_CLIENT) does not
support SSL connections, but might be supported by using an unmanaged connection
(WMQ_CM_CLIENT_UNMANAGED).

By default, the property is not set.

XMSC_WMQ_SSL_KEY_RESETCOUNT
Data type:

System.Int32
Property of:

ConnectionFactory

The KeyResetCount represents the total number of unencrypted bytes sent and received within an SSL
conversation before the secret key is renegotiated. The number of bytes includes control information sent
by the MCA.

236 IBM Message Service Client for .NET

XMS copies the value that you supply for this property into MQSCO.KeyResetCount before calling
MQCONNX.

The parameter MQSCO.KeyRestCount is only available from IBM WebSphere MQ version 6. If IBM
WebSphere MQ version 5.3, if this property is set, XMS does not attempt to make the connection to
the queue manager, and throws an appropriate exception instead.

For .NET only: Managed connections to IBM WebSphere MQ (WMQ_CM_CLIENT) does not
support SSL connections, but might be supported by using an unmanaged connection
(WMQ_CM_CLIENT_UNMANAGED).

The default value of this property is zero, which means that secret keys are never renegotiated.

XMSC_WMQ_SSL_PEER_NAME
Data type:

String
Property of:

ConnectionFactory

The peer name to be used on an SSL connection to a queue manager.

There is no list of canonical values for this property. Instead, you must build this string according to the
rules for SSLPEER.

An example of a peer name is:

"CN=John Smith, O=IBM ,OU=Test , C=GB"

XMS copies the string into the correct single-byte code page, and places the correct values into
MQCD.SSLPeerNamePtr and MQCD.SSLPeerNameLength before calling MQCONNX.

This property is relevant only if the application connects to a queue manager in client mode.

For .NET only: Managed connections to IBM WebSphere MQ (WMQ_CM_CLIENT) does not
support SSL connections, but might be supported by using an unmanaged connection
(WMQ_CM_CLIENT_UNMANAGED).

By default, the property is not set.

XMSC_WMQ_SYNCPOINT_ALL_GETS
Data type:

System.Boolean
Property of:

ConnectionFactory

Whether all messages must be retrieved from queues within sync point control.

The valid values of the property are as follows:

Valid value Meaning

false When the circumstances are appropriate, the XMS client
can retrieve messages from queues outside of sync point
control.

true The XMS client must retrieve all messages from queues
within sync point control.

The default value is false.

Introduction to the Message Service Client for .NET 237

XMSC_WMQ_TARGET_CLIENT
Data type:

System.Int32
Property of:

Destination
Name used in a URI:

targetClient

Whether messages sent to the destination contain an MQRFH2 header.

If an application sends a message containing an MQRFH2 header, the receiving application must be able
to handle the header.

The valid values of the property are as follows:

Valid value Meaning

XMSC_WMQ_TARGET_DEST_JMS Messages sent to the destination contain an MQRFH2 header.
Specify this value if the application is sending the messages to
another XMS application, a WebSphere JMS application, or a native
IBM WebSphere MQ application that is designed to handle an
MQRFH2 header.

XMSC_WMQ_TARGET_DEST_MQ Messages sent to the destination do not contain an MQRFH2
header. Specify this value if the application is sending the
messages to a native IBM WebSphere MQ application that is not
designed to handle an MQRFH2 header.

The default value is XMSC_WMQ_TARGET_DEST_JMS.

XMSC_WMQ_TEMP_Q_PREFIX
Data type:

String
Property of:

ConnectionFactory

The prefix used to form the name of the IBM WebSphere MQ dynamic queue that is created when the
application creates an XMS temporary queue.

The rules for forming the prefix are the same as the rules for forming the contents of the DynamicQName
field in an object descriptor, but the last non-blank character must be an asterisk(*). If the property is not
set, the value used is CSQ.* on z/OS and AMQ.* on the other platforms. By default, the property is not
set.

This property is relevant only in the point-to-point domain.

XMSC_WMQ_TEMP_TOPIC_PREFIX
Data type:

String
Property of:

ConnectionFactory, Destination

When creating temporary topics, XMS generates a topic string of the form "TEMP/TEMPTOPICPREFIX/
unique_id", or if this property is left with the default value, just "TEMP/unique_id". Specifying a non-
empty value allows specific model queues to be defined for creating the managed queues for subscribers
to temporary topics created under this connection.

Any non-null string consisting only of valid characters for a IBM WebSphere MQ topic string is a valid value
for this property.

238 IBM Message Service Client for .NET

By default this property is set to "" (empty string).

Note: This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_TEMPORARY_MODEL
Data type:

String
Property of:

ConnectionFactory

The name of the IBM WebSphere MQ model queue from which a dynamic queue is created when the
application creates an XMS temporary queue.

The default value of the property is SYSTEM.DEFAULT.MODEL.QUEUE.

This property is relevant only in the point-to-point domain.

XMSC_WMQ_WILDCARD_FORMAT
Data type:

System.Int32
Property of:

ConnectionFactory, Destination

This property determines which version of wildcard syntax is to be used.

When using publish/subscribe with IBM WebSphere MQ '*' and '?' are treated as wildcards. Whereas '#'
and '+' are treated as wildcards when using publish subscribe with WebSphere Message Broker. This
property replaces the XMSC_WMQ_BROKER_VERSION property.

The valid values for this property are:

XMSC_WMQ_WILDCARD_TOPIC_ONLY
Recognizes the topic level wildcards only i.e. '#' and '+' are treated as wildcards. This value is same as
XMSC_WMQ_BROKER_V2.

XMSC_WMQ_WILDCARD_CHAR_ONLY
Recognizes the character wildcards only i.e. '*' and '?' are treated as wildcards. This value is same as
XMSC_WMQ_BROKER_V1.

By default this property is set to XMSC_WMQ_WILDCARD_TOPIC_ONLY.

Note: This property is not relevant when doing publish/subscribe using IBM WebSphere MQ Version 6.0
and below. Instead XMSC_WMQ_BROKER_VERSION property must be used.

XMSC_WPM_BUS_NAME
Data type:

String
Property of:

ConnectionFactory and Destination
Name used in a URI:

busName

For a connection factory, the name of the service integration bus that the application connects to or, for a
destination, the name of the service integration bus in which the destination exists.

For a destination that is a topic, this property is the name of the service integration bus in which the
associated topic space exists. This topic space is specified by the XMSC_WPM_TOPIC_SPACE property.

If the property is not set for a destination, the queue or associated topic space is assumed to exist in the
service integration bus to which the application connects.

By default, the property is not set.

Introduction to the Message Service Client for .NET 239

XMSC_WPM_CONNECTION_PROTOCOL
Data type:

System.Int32
Property of:

Connection

The communications protocol used for the connection to the messaging engine. This property is read-
only.

The possible values of the property are as follows:

Value Meaning

XMSC_WPM_CP_HTTP The connection uses HTTP over TCP/IP.

XMSC_WPM_CP_TCP The connection uses TCP/IP.

XMSC_WPM_CONNECTION_PROXIMITY
Data type:

System.Int32
Property of:

ConnectionFactory

The connection proximity setting for the connection. This property determines how close the messaging
engine that the application connects to must be to the bootstrap server.

The valid values of the property are as follows:

Valid value
Connection proximity
setting

XMSC_WPM_CONNECTION_PROXIMITY_BUS Bus

XMSC_WPM_CONNECTION_PROXIMITY_CLUSTER Cluster

XMSC_WPM_CONNECTION_PROXIMITY_HOST Host

XMSC_WPM_CONNECTION_PROXIMITY_SERVER Server

The default value is XMSC_WPM_CONNECTION_PROXIMITY_BUS.

XMSC_WPM_DUR_SUB_HOME
Data type:

String
Property of:

ConnectionFactory
Name used in a URI:

durableSubscriptionHome

The name of the messaging engine where all durable subscriptions for a connection or a destination are
managed. Messages to be delivered to the durable subscribers are stored at the publication point of the
same messaging engine.

A durable subscription home must be specified for a connection before an application can create a
durable subscriber that uses the connection. Any value specified for a destination overrides the value
specified for the connection.

By default, the property is not set.

This property is relevant only in the publish/subscribe domain.

240 IBM Message Service Client for .NET

XMSC_WPM_HOST_NAME
Data type:

String
Property of:

Connection

The host name or IP address of the system that contains the messaging engine to which the application is
connected. This property is read-only.

XMSC_WPM_LOCAL_ADDRESS
Data type:

String
Property of:

ConnectionFactory

For a connection to a service integration bus, this property specifies the local network interface to be
used, or the local port or range of local ports to be used, or both.

The value of the property is a string with the following format:

[host_name][(low_port)[,high_port])]

The meanings of the variables are as follows:
host_name

The host name or IP address of the local network interface to be used for the connection.

Providing this information is necessary only if the system on which the application is running has
two or more network interfaces and you need to be able to specify which interface must be used for
the connection. If the system has only one network interface, only that interface can be used. If the
system has two or more network interfaces and you do not specify which interface must be used, the
interface is selected at random.

low_port
The number of the local port to be used for the connection.

If high_port is also specified, low_port is interpreted the lowest port number in a range of port
numbers.

high_port
The highest port number in a range of port numbers. One of the ports in the specified range must be
used for the connection.

Here are some examples of valid values of the property:

JUPITER
9.20.4.98
JUPITER(1000)
9.20.4.98(1000,2000)
(1000)
(1000,2000)

By default, the property is not set.

XMSC_WPM_ME_NAME
Data type:

String
Property of:

Connection

The name of the messaging engine to which the application is connected. This property is read-only.

Introduction to the Message Service Client for .NET 241

XMSC_WPM_NON_PERSISTENT_MAP
Data type:

System.Int32
Property of:

ConnectionFactory

The reliability level of nonpersistent messages that are sent using the connection.

The valid values of the property are as follows:

Valid value Reliability level

XMSC_WPM_MAPPING_AS_DESTINATION Determined by the default
reliability level specified for the
queue or topic space in the
service integration bus

XMSC_WPM_MAPPING_BEST_EFFORT_NON_
 PERSISTENT

Best effort nonpersistent

XMSC_WPM_MAPPING_EXPRESS_NON_
 PERSISTENT

Express nonpersistent

XMSC_WPM_MAPPING_RELIABLE_NON_
 PERSISTENT

Reliable nonpersistent

XMSC_WPM_MAPPING_RELIABLE_PERSISTENT Reliable persistent

XMSC_WPM_MAPPING_ASSURED_PERSISTENT Assured persistent

The default value is XMSC_WPM_MAPPING_EXPRESS_NON_PERSISTENT.

XMSC_WPM_PERSISTENT_MAP
Data type:

System.Int32
Property of:

ConnectionFactory

The reliability level of persistent messages that are sent using the connection.

The valid values of the property are as follows:

Valid value Reliability level

XMSC_WPM_MAPPING_AS_DESTINATION Determined by the default
reliability level specified for the
queue or topic space in the
service integration bus

XMSC_WPM_MAPPING_BEST_EFFORT_NON_
 PERSISTENT

Best effort nonpersistent

XMSC_WPM_MAPPING_EXPRESS_NON_
 PERSISTENT

Express nonpersistent

XMSC_WPM_MAPPING_RELIABLE_NON_
 PERSISTENT

Reliable nonpersistent

242 IBM Message Service Client for .NET

Valid value Reliability level

XMSC_WPM_MAPPING_RELIABLE_PERSISTENT Reliable persistent

XMSC_WPM_MAPPING_ASSURED_PERSISTENT Assured persistent

The default value is XMSC_WPM_MAPPING_RELIABLE_PERSISTENT.

XMSC_WPM_PORT
Data type:

System.Int32
Property of:

Connection

The number of the port listened on by the messaging engine to which the application is connected. This
property is read-only.

XMSC_WPM_PROVIDER_ENDPOINTS
Data type:

String
Property of:

ConnectionFactory

A sequence of one or more endpoint addresses of bootstrap servers. The endpoint addresses are
separated by commas.

A bootstrap server is an application server that is responsible for selecting the messaging engine to which
the application connects. The endpoint address of a bootstrap server has the following format:

host_name:port_number:chain_name

The meanings of the components of an endpoint address are as follows:
host_name

The host name or IP address of the system on which the bootstrap server resides. If no host name or
IP address is specified, the default is localhost.

port_number
The number of the port on which the bootstrap server listens for incoming requests. If no port number
is specified, the default is 7276.

chain_name
The name of a bootstrap transport chain used by the bootstrap server. The valid values are as follows:

Valid value Name of the bootstrap transport chain

XMSC_WPM_BOOTSTRAP_HTTP BootstrapTunneledMessaging

XMSC_WPM_BOOTSTRAP_HTTPS BootstrapTunneledSecureMessaging

XMSC_WPM_BOOTSTRAP_SSL BootstrapSecureMessaging

XMSC_WPM_BOOTSTRAP_TCP BootstrapBasicMessaging

If no name is specified, the default value is XMSC_WPM_BOOTSTRAP_TCP.

If no endpoint address is specified, the default is localhost:7276:BootstrapBasicMessaging.

XMSC_WPM_TARGET_GROUP
Data type:

String
Property of:

ConnectionFactory

Introduction to the Message Service Client for .NET 243

The name of a target group of messaging engines. The nature of the target group is determined by the
XMSC_WPM_TARGET_TYPE property.

Set this property if you want to restrict the search for a messaging engine to a subgroup of the messaging
engines in the service integration bus. If you want your application to be able to connect to any messaging
engine in the service integration bus, do not set this property.

By default, the property is not set.

XMSC_WPM_TARGET_SIGNIFICANCE
Data type:

System.Int32
Property of:

ConnectionFactory

The significance of the target group of messaging engines.

The valid values of the property are as follows:

Valid value Meaning

XMSC_WPM_TARGET_SIGNIFICANCE_
 PREFERRED

A messaging engine in the target group is
selected if one is available. Otherwise, a
messaging engine outside the target group is
selected, provided it is in the same service
integration bus.

XMSC_WPM_TARGET_SIGNIFICANCE_
 REQUIRED

The selected messaging engine must be in the
target group. If a messaging engine in the target
group is not available, the connection process
fails.

The default value of the property is XMSC_WPM_TARGET_SIGNIFICANCE_PREFERRED.

XMSC_WPM_TARGET_TRANSPORT_CHAIN
Data type:

String
Property of:

ConnectionFactory

The name of the inbound transport chain that the application must use to connect to a messaging engine.

The value of the property can be the name of any inbound transport chain that is available in the
application server that hosts the messaging engine. The following named constant is provided for one of
the predefined inbound transport chains:

Named constant Name of transport chain

XMSC_WPM_TARGET_TRANSPORT_CHAIN_BASIC InboundBasicMessaging

The default value of the property is XMSC_WPM_TARGET_TRANSPORT_CHAIN_BASIC.

XMSC_WPM_TARGET_TYPE
Data type:

System.Int32
Property of:

ConnectionFactory

The type of the target group of messaging engines. This property determines the nature of the target
group identified by the XMSC_WPM_TARGET_GROUP property.

244 IBM Message Service Client for .NET

The valid values of the property are as follows:

Valid value Meaning

XMSC_WPM_TARGET_TYPE_BUSMEMBER The name of the target group is the name
of a bus member. The target group is all the
messaging engines in the bus member.

XMSC_WPM_TARGET_TYPE_CUSTOM The name of the target group is the name of a
user-defined group of messaging engines. The
target group is all the messaging engines that
are registered with the user-defined group.

XMSC_WPM_TARGET_TYPE_ME The name of the target group is the name of
a messaging engine. The target group is the
specified messaging engine.

By default, the property is not set.

XMSC_WPM_TEMP_Q_PREFIX
Data type:

String
Property of:

ConnectionFactory

The prefix used to form the name of the temporary queue that is created in the service integration bus
when the application creates an XMS temporary queue. The prefix can contain up to 12 characters.

The name of a temporary queue starts with the characters "_Q" followed by the prefix. The remainder of
the name consists of system generated characters.

By default, the property is not set, which means that the name of a temporary queue does not have a
prefix.

This property is relevant only in the point-to-point domain.

XMSC_WPM_TEMP_TOPIC_PREFIX
Data type:

String
Property of:

ConnectionFactory

The prefix used to form the name of a temporary topic that is created by the application. The prefix can
contain up to 12 characters.

The name of a temporary topic starts with the characters "_T" followed by the prefix. The remainder of
the name consists of system generated characters.

By default, the property is not set, which means that the name of a temporary topic does not have a
prefix.

This property is relevant only in the publish/subscribe domain.

XMSC_WPM_TOPIC_SPACE
Data type:

String
Property of:

Destination
Name used in a URI:

topicSpace

Introduction to the Message Service Client for .NET 245

The name of the topic space that contains the topic. Only a destination that is a topic can have this
property.

By default, the property is not set, which means that the default topic space is assumed.

This property is relevant only in the publish/subscribe domain.

246 IBM Message Service Client for .NET

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2007, 2025 247

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of IBM WebSphere MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information"www.ibm.com/legal/copytrade.shtml. Other product and service names might be trademarks
of IBM or other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

248 Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or both.

This product includes software developed by the Eclipse Project (http://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 249

250 IBM Message Service Client for .NET

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Message Service Client for .NET
	Introduction to the Message Service Client for .NET
	What's new in this release
	Styles of messaging
	The XMS object model
	Attributes and properties of objects
	Administered objects

	The XMS message model
	Preventing applications from using newer XMS version
	Setting up the messaging server environment
	Configuring the queue manager and broker for an application that connects to a IBM WebSphere MQ queue manager
	Configuring a broker for an application that uses a real-time connection to a broker
	Configuring the service integration bus for an application that connects to a WebSphere Service Integration Bus
	Installing Message Service Client for .NET using the installation wizard
	Prerequisites for XMS applications connecting to IBM WebSphere MQ

	Using the XMS sample applications
	The sample applications
	Running the sample applications
	Building the .NET sample applications

	Developing XMS applications
	Writing XMS applications
	The threading model
	Error conditions that can be handled at run time

	ConnectionFactories and Connection objects
	Connection started and stopped mode
	Connection closure
	Exception Handling
	Connection to a WebSphere service integration bus

	Sessions
	Transacted sessions
	Message acknowledgement
	Asynchronous message delivery
	Synchronous message delivery
	Message delivery mode

	Destinations
	Topic uniform resource identifiers
	Queue uniform resource identifiers
	Temporary destinations
	Destination wildcards

	Message producers
	Message producers with no associated destination
	Message producers with associated destination

	Message consumers
	Durable subscribers
	Non-durable subscribers
	Synchronous message consumers
	Asynchronous message consumers
	Poison messages
	Handling poison messages in ASF

	Queue browsers
	Requestors
	Object Deletion
	Managed IBM WebSphere MQ XA transactions through XMS
	XMS primitive types
	Implicit conversion of a property value from one data type to another
	Iterators
	Coded character set identifiers
	XMS error and exception codes
	Building your own applications
	Automatic IBM WebSphere MQ Client reconnection through XMS

	Writing XMS .NET applications
	Data types for .NET
	Managed and unmanaged operations in .NET
	Destinations in .NET
	Properties in .NET
	Non-existent properties handling in .NET
	Error handling in .NET
	Message and exception listeners in .NET

	Working with administered objects
	Supported types of administered object repository
	Property mapping for administered objects
	Required properties for administered ConnectionFactory objects
	Required properties for administered Destination objects
	Creating administered objects
	InitialContext objects
	InitialContext properties
	URI format for XMS initial contexts
	JNDI Lookup Web service
	Retrieval of administered objects

	Securing communications for XMS applications
	Secure connections to a IBM WebSphere MQ queue manager
	CipherSuite and CipherSpec name mappings for connections to a IBM WebSphere MQ queue manager

	Secure connections to a WebSphere Service Integration Bus messaging engine
	CipherSuite and CipherSpec name mappings for connections to a WebSphere Service Integration Bus

	XMS messages
	Parts of an XMS message
	Header fields in an XMS message
	Properties of an XMS message
	JMS-defined properties of a message
	IBM-defined properties of a message
	Application-defined properties of a message

	The body of an XMS message
	Data types for elements of application data
	Bytes messages
	Map messages
	Object messages
	Stream messages
	Text messages

	Message selectors
	Mapping XMS messages onto IBM WebSphere MQ messages
	Reading and writing the message descriptor from a Message Service Client for .NET application
	AccessingIBM WebSphere MQ Message data from a Message Service Client for .NET application

	Troubleshooting
	Trace configuration for .NET applications
	Trace configuration using an application configuration file
	Trace configuration using XMS environment variables

	FFDC configuration for .NET applications
	Tips for troubleshooting

	Message Service Clients for .NET reference
	.NET interfaces
	IBytesMessage
	.NET properties
	BodyLength - Get Body Length

	Methods
	ReadBoolean - Read Boolean Value
	ReadSignedByte - Read Byte
	ReadBytes - Read Bytes
	ReadChar - Read Character
	ReadDouble - Read Double Precision Floating Point Number
	ReadFloat - Read Floating Point Number
	ReadInt - Read Integer
	ReadLong - Read Long Integer
	ReadShort - Read Short Integer
	ReadByte - Read Unsigned Byte
	ReadUnsignedShort - Read Unsigned Short Integer
	ReadUTF - Read UTF String
	Reset - Reset
	WriteBoolean - Write Boolean Value
	WriteByte - Write Byte
	WriteBytes - Write Bytes
	WriteBytes - Write Partial Bytes Array
	WriteChar - Write Character
	WriteDouble - Write Double Precision Floating Point Number
	WriteFloat - Write Floating Point Number
	WriteInt - Write Integer
	WriteLong - Write Long Integer
	WriteObject - Write Object
	WriteShort - Write Short Integer
	WriteUTF - Write UTF String

	Inherited properties and methods

	IConnection
	.NET properties
	ClientID - Get and Set Client ID
	ExceptionListener - Get and Set Exception Listener
	Metadata - Get Metadata

	Methods
	Close - Close Connection
	CreateSession - Create Session
	Start - Start Connection
	Stop - Stop Connection

	Inherited properties and methods

	IConnectionFactory
	Methods
	CreateConnection - Create Connection Factory (using the default user identity)
	CreateConnection - Create Connection (using a specified user identity)

	Inherited properties and methods

	IConnectionMetaData
	.NET properties
	JMSXPropertyNames - Get JMS Defined Message Properties

	Inherited properties and methods

	IDestination
	.NET properties
	Name - Get Destination Name
	TypeId - Get Destination Type

	Inherited properties and methods

	ExceptionListener
	Delegate
	ExceptionListener - Exception Listener

	IllegalStateException
	Inherited properties and methods

	InitialContext
	.NET properties
	Environment - Get the environment

	Constructors
	InitialContext - Create Initial Context

	Methods
	AddToEnvironment - Add a New Property to the Environment
	Close - Close this context
	Lookup - Look Up Object in Initial Context
	RemoveFromEnvironment - Remove a Property from the Environment

	InvalidClientIDException
	Inherited properties and methods

	InvalidDestinationException
	Inherited properties and methods

	InvalidSelectorException
	Inherited properties and methods

	IMapMessage
	.NET properties
	MapNames - Get Map Names

	Methods
	GetBoolean - Get Boolean Value
	GetByte - Get Byte
	GetBytes - Get Bytes
	GetChar - Get Character
	GetDouble - Get Double Precision Floating Point Number
	GetFloat - Get Floating Point Number
	GetInt - Get Integer
	GetLong - Get Long Integer
	GetObject - Get Object
	GetShort - Get Short Integer
	GetString - Get String
	ItemExists - Check Name-Value Pair Exists
	SetBoolean - Set Boolean Value
	SetByte - Set Byte
	SetBytes - Set Bytes
	SetChar - Set Character
	SetDouble - Set Double Precision Floating Point Number
	SetFloat - Set Floating Point Number
	SetInt - Set Integer
	SetLong - Set Long Integer
	SetObject - Set Object
	SetShort - Set Short Integer
	SetString - Set String

	Inherited properties and methods

	IMessage
	.NET properties
	GetJMSCorrelationID - Get and Set JMSCorrelationID
	JMSDeliveryMode - Get and Set JMSDeliveryMode
	JMSDestination - Get and Set JMSDestination
	JMSExpiration - Get and Set JMSExpiration
	JMSMessageID - Get and Set JMSMessageID
	JMSPriority - Get and Set JMSPriority
	JMSRedelivered - Get and Set JMSRedelivered
	JMSReplyTo - Get and Set JMSReplyTo
	JMSTimestamp - Get and Set JMSTimestamp
	JMSType - Get and Set JMSType
	PropertyNames - Get Properties

	Methods
	Acknowledge - Acknowledge
	ClearBody - Clear Body
	ClearProperties - Clear Properties
	PropertyExists - Check Property Exists

	Inherited properties and methods

	IMessageConsumer
	.NET properties
	MessageListener - Get and Set Message Listener
	MessageSelector - Get Message Selector

	Methods
	Close - Close Message Consumer
	Receive - Receive
	Receive - Receive (with a wait interval)
	ReceiveNoWait - Receive with No Wait

	Inherited properties and methods

	MessageEOFException
	Inherited properties and methods

	MessageFormatException
	Inherited properties and methods

	IMessageListener (delegate)
	Delegate
	MessageListener - Message Listener

	MessageNotReadableException
	Inherited properties and methods

	MessageNotWritableException
	Inherited properties and methods

	IMessageProducer
	.NET properties
	DeliveryMode - Get and Set Default Delivery Mode
	Destination - Get Destination
	DisableMsgID - Get and Set Disable Message ID Flag
	DisableMsgTS - Get and Set Disable Time Stamp Flag
	Priority - Get and Set Default Priority
	TimeToLive - Get and Set Default Time to Live

	Methods
	Close - Close Message Producer
	Send - Send
	Send - Send (specifying a delivery mode, priority, and time to live)
	Send - Send (to a specified destination)
	Send - Send (to a specified destination, specifying a delivery mode, priority, and time to live)

	Inherited properties and methods

	IObjectMessage
	.NET properties
	Object - Get and Set Object as Bytes

	Inherited properties and methods

	IPropertyContext
	Methods
	GetBooleanProperty - Get Boolean Property
	GetByteProperty - Get Byte Property
	GetBytesProperty - Get Byte Array Property
	GetCharProperty - Get Character Property
	GetDoubleProperty - Get Double Precision Floating Point Property
	GetFloatProperty - Get Floating Point Property
	GetIntProperty - GetIntProperty
	GetLongProperty - Get Long Integer Property
	GetObjectProperty - Get Object Property
	GetShortProperty - Get Short Integer Property
	GetStringProperty - GetStringProperty
	SetBooleanProperty - Set Boolean Property
	SetByteProperty - Set Byte Property
	SetBytesProperty - Set Byte Array Property
	SetCharProperty - Set Character Property
	SetDoubleProperty - Set Double Precision Floating Point Property
	SetFloatProperty - Set Floating Point Property
	SetIntProperty - Set Integer Property
	SetLongProperty - Set Long Integer Property
	SetObjectProperty - Set Object Property
	SetShortProperty - Set Short Integer Property
	SetStringProperty - Set String Property

	IQueueBrowser
	.NET Properties
	MessageSelector - Get Message Selector
	Queue - Get Queue

	Methods
	Close - Close Queue Browser
	GetEnumerator - Get Messages

	Inherited properties and methods

	Requestor
	Constructors
	Requestor - Create Requestor

	Methods
	Close - Close Requestor
	Request - Request Response

	ResourceAllocationException
	Inherited properties and methods

	SecurityException
	Inherited properties and methods

	ISession
	.NET properties
	AcknowledgeMode - Get Acknowledgement Mode
	Transacted - Determine Whether Transacted

	Methods
	Close - Close Session
	Commit - Commit
	CreateBrowser - Create Queue Browser
	CreateBrowser - Create Queue Browser (with message selector)
	CreateBytesMessage - Create Bytes Message
	CreateConsumer - Create Consumer
	CreateConsumer - Create Consumer (with message selector)
	CreateConsumer - Create Consumer (with message selector and local message flag)
	CreateDurableSubscriber - Create Durable Subscriber
	CreateDurableSubscriber - Create Durable Subscriber (with message selector and local message flag)
	CreateMapMessage - Create Map Message
	CreateMessage - Create Message
	CreateObjectMessage - Create Object Message
	CreateProducer - Create Producer
	CreateQueue - Create Queue
	CreateStreamMessage - Create Stream Message
	CreateTemporaryQueue - Create Temporary Queue
	CreateTemporaryTopic - Create Temporary Topic
	CreateTextMessage - Create Text Message
	CreateTextMessage - Create Text Message (initialized)
	CreateTopic - Create Topic
	Recover - Recover
	Rollback - Rollback
	Unsubscribe - Unsubscribe

	Inherited properties and methods

	IStreamMessage
	Methods
	ReadBoolean - Read Boolean Value
	ReadByte - Read Byte
	ReadBytes - Read Bytes
	ReadChar - Read Character
	ReadDouble - Read Double Precision Floating Point Number
	ReadFloat - Read Floating Point Number
	ReadInt - Read Integer
	ReadLong - Read Long Integer
	ReadObject - Read Object
	ReadShort - Read Short Integer
	ReadString - Read String
	Reset - Reset
	WriteBoolean - Write Boolean Value
	WriteByte - Write Byte
	WriteBytes - Write Bytes
	WriteChar - Write Character
	WriteDouble - Write Double Precision Floating Point Number
	WriteFloat - Write Floating Point Number
	WriteInt - Write Integer
	WriteLong - Write Long Integer
	WriteObject - Write Object
	WriteShort - Write Short Integer
	WriteString - Write String

	Inherited properties and methods

	ITextMessage
	.NET properties
	Text - Get and Set Text

	Inherited properties and methods

	TransactionInProgressException
	Inherited properties and methods

	TransactionRolledBackException
	Inherited properties and methods

	XMSException
	.NET properties
	ErrorCode - Get Error Code
	LinkedException - Get Linked Exception

	XMSFactoryFactory
	.NET properties
	Metadata - Retrieve metadata

	Methods
	CreateConnectionFactory - Create Connection Factory
	CreateQueue - Create Queue
	CreateTopic - Create Topic
	GetInstance - Get an instance of XMSFactoryFactory

	Properties of XMS objects
	Properties of Connection
	Properties of ConnectionFactory
	Properties of ConnectionMetaData
	Properties of Destination
	Properties of InitialContext
	Properties of Message
	Properties of MessageConsumer
	Properties of MessageProducer
	Properties of Session
	Property definitions
	JMS_IBM_CHARACTER_SET
	JMS_IBM_ENCODING
	JMS_IBM_EXCEPTIONMESSAGE
	JMS_IBM_EXCEPTIONPROBLEMDESTINATION
	JMS_IBM_EXCEPTIONREASON
	JMS_IBM_EXCEPTIONTIMESTAMP
	JMS_IBM_FEEDBACK
	JMS_IBM_FORMAT
	JMS_IBM_LAST_MSG_IN_GROUP
	JMS_IBM_MSGTYPE
	JMS_IBM_PUTAPPLTYPE
	JMS_IBM_PUTDATE
	JMS_IBM_PUTTIME
	JMS_IBM_REPORT_COA
	JMS_IBM_REPORT_COD
	JMS_IBM_REPORT_DISCARD_MSG
	JMS_IBM_REPORT_EXCEPTION
	JMS_IBM_REPORT_EXPIRATION
	JMS_IBM_REPORT_NAN
	JMS_IBM_REPORT_PAN
	JMS_IBM_REPORT_PASS_CORREL_ID
	JMS_IBM_REPORT_PASS_MSG_ID
	JMS_IBM_RETAIN
	JMS_IBM_SYSTEM_MESSAGEID
	JMSX_APPID
	JMSX_DELIVERY_COUNT
	JMSX_GROUPID
	JMSX_GROUPSEQ
	JMSX_USERID
	XMSC_ASYNC_EXCEPTIONS
	XMSC_CLIENT_ID
	XMSC_CONNECTION_TYPE
	XMSC_DELIVERY_MODE
	XMSC_IC_PROVIDER_URL
	XMSC_IC_SECURITY_AUTHENTICATION
	XMSC_IC_SECURITY_CREDENTIALS
	XMSC_IC_SECURITY_PRINCIPAL
	XMSC_IC_SECURITY_PROTOCOL
	XMSC_IC_URL
	XMSC_IS_SUBSCRIPTION_MULTICAST
	XMSC_IS_SUBSCRIPTION_RELIABLE_MULTICAST
	XMSC_JMS_MAJOR_VERSION
	XMSC_JMS_MINOR_VERSION
	XMSC_JMS_VERSION
	XMSC_MAJOR_VERSION
	XMSC_MINOR_VERSION
	XMSC_PASSWORD
	XMSC_PRIORITY
	XMSC_PROVIDER_NAME
	XMSC_RTT_BROKER_PING_INTERVAL
	XMSC_RTT_CONNECTION_PROTOCOL
	XMSC_RTT_HOST_NAME
	XMSC_RTT_LOCAL_ADDRESS
	XMSC_RTT_MULTICAST
	XMSC_RTT_PORT
	XMSC_TIME_TO_LIVE
	XMSC_USERID
	XMSC_VERSION
	XMSC_WMQ_BROKER_CONTROLQ
	XMSC_WMQ_BROKER_PUBQ
	XMSC_WMQ_BROKER_QMGR
	XMSC_WMQ_BROKER_SUBQ
	XMSC_WMQ_BROKER_VERSION
	XMSC_WMQ_CCDTURL
	XMSC_WMQ_CCSID
	XMSC_WMQ_CHANNEL
	XMSC_WMQ_CLIENT_RECONNECT_OPTIONS
	XMSC_WMQ_CLIENT_RECONNECT_TIMEOUT
	XMSC_WMQ_CONNECTION_MODE
	XMSC_WMQ_CONNECTION_NAME_LIST
	XMSC_WMQ_DUR_SUBQ
	XMSC_WMQ_ENCODING
	XMSC_WMQ_FAIL_IF_QUIESCE
	XMSC_WMQ_MESSAGE_BODY
	XMSC_WMQ_MQMD_MESSAGE_CONTEXT
	XMSC_WMQ_MQMD_READ_ENABLED
	XMSC_WMQ_MQMD_WRITE_ENABLED
	XMSC_WMQ_PUT_ASYNC_ALLOWED
	XMSC_WMQ_READ_AHEAD_ALLOWED
	XMSC_WMQ_READ_AHEAD_CLOSE_POLICY
	XMSC_WMQ_HOST_NAME
	XMSC_WMQ_LOCAL_ADDRESS
	XMSC_WMQ_MESSAGE_SELECTION
	XMSC_WMQ_MSG_BATCH_SIZE
	XMSC_WMQ_POLLING_INTERVAL
	XMSC_WMQ_PORT
	XMSC_WMQ_PROVIDER_VERSION
	XMSC_WMQ_PUB_ACK_INTERVAL
	XMSC_WMQ_QMGR_CCSID
	XMSC_WMQ_QUEUE_MANAGER
	XMSC_WMQ_RECEIVE_CCSID
	XMSC_WMQ_RECEIVE_CONVERSION
	XMSC_WMQ_RECEIVE_EXIT
	XMSC_WMQ_RECEIVE_EXIT_INIT
	XMSC_WMQ_RESOLVED_QUEUE_MANAGER
	XMSC_WMQ_RESOLVED_QUEUE_MANAGER_ID
	XMSC_WMQ_SECURITY_EXIT
	XMSC_WMQ_SECURITY_EXIT_INIT
	XMSC_WMQ_SEND_EXIT
	XMSC_WMQ_SEND_EXIT_INIT
	XMSC_WMQ_SEND_CHECK_COUNT
	XMSC_WMQ_SHARE_CONV_ALLOWED
	XMSC_WMQ_SSL_CERT_STORES
	XMSC_WMQ_SSL_CIPHER_SPEC
	XMSC_WMQ_SSL_CIPHER_SUITE
	XMSC_WMQ_SSL_CRYPTO_HW
	XMSC_WMQ_SSL_FIPS_REQUIRED
	XMSC_WMQ_SSL_KEY_REPOSITORY
	XMSC_WMQ_SSL_KEY_RESETCOUNT
	XMSC_WMQ_SSL_PEER_NAME
	XMSC_WMQ_SYNCPOINT_ALL_GETS
	XMSC_WMQ_TARGET_CLIENT
	XMSC_WMQ_TEMP_Q_PREFIX
	XMSC_WMQ_TEMP_TOPIC_PREFIX
	XMSC_WMQ_TEMPORARY_MODEL
	XMSC_WMQ_WILDCARD_FORMAT
	XMSC_WPM_BUS_NAME
	XMSC_WPM_CONNECTION_PROTOCOL
	XMSC_WPM_CONNECTION_PROXIMITY
	XMSC_WPM_DUR_SUB_HOME
	XMSC_WPM_HOST_NAME
	XMSC_WPM_LOCAL_ADDRESS
	XMSC_WPM_ME_NAME
	XMSC_WPM_NON_PERSISTENT_MAP
	XMSC_WPM_PERSISTENT_MAP
	XMSC_WPM_PORT
	XMSC_WPM_PROVIDER_ENDPOINTS
	XMSC_WPM_TARGET_GROUP
	XMSC_WPM_TARGET_SIGNIFICANCE
	XMSC_WPM_TARGET_TRANSPORT_CHAIN
	XMSC_WPM_TARGET_TYPE
	XMSC_WPM_TEMP_Q_PREFIX
	XMSC_WPM_TEMP_TOPIC_PREFIX
	XMSC_WPM_TOPIC_SPACE

	Notices
	Programming interface information
	Trademarks

