
7.5

Securing IBM WebSphere MQ

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
315.

This edition applies to version 7 release 5 of IBM® WebSphere® MQ and to all subsequent releases and modifications until
otherwise indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 2007, 2025.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Security.. 5
Security overview...5

Concepts and mechanisms.. 5
IBM WebSphere MQ security mechanisms... 20

Planning for your security requirements...45
Planning identification and authentication..46
Planning authorization... 48
Planning confidentiality..57
Planning data integrity... 65
Planning auditing..65
Planning security by topology.. 66
Firewalls and Internet pass-thru... 77

Setting up security... 78
Setting up security on UNIX and Linux, and Windows systems..78
Setting up security on HP NSS... 103
Setting up IBM WebSphere MQ MQI client security... 104
Setting up communications for SSL or TLS on UNIX, Linux, and Windows systems........................106
Working with SSL or TLS.. 107

Identifying and authenticating users.. 139
Privileged users.. 141
Identifying and authenticating users using the MQCSP structure..142
Implementing identification and authentication in security exits..142
Identity mapping in message exits..143
Identity mapping in the API exit and API-crossing exit..143
Working with revoked certificates... 144

Authorizing access to objects..153
Controlling access to objects by using the OAM on UNIX, Linux and Windows systems................ 153
Granting required access to resources..162
Authority to administer IBM WebSphere MQ on UNIX, Linux, and Windows systems.................... 190
Authority to work with IBM WebSphere MQ objects...192
Implementing access control in security exits..196
Implementing access control in message exits.. 198
Implementing access control in the API exit and API-crossing exit.. 198

Confidentiality of messages.. 198
Connecting two queue managers using SSL or TLS.. 199
Connecting a client to a queue manager securely.. 205
Specifying CipherSpecs... 210
Resetting SSL secret keys.. 216
Implementing confidentiality in user exit programs...217

Data integrity of messages.. 219
Connecting two queue managers using SSL or TLS.. 219
Connecting a client to a queue manager securely.. 227
Specifying CipherSpecs... 232

Auditing..236
Keeping clusters secure.. 236

Stopping unauthorized queue managers sending messages... 236
Stopping unauthorized queue managers putting messages on your queues.................................. 237
Authorizing putting messages on remote cluster queues.. 237
Preventing queue managers joining a cluster... 238
Forcing unwanted queue managers to leave a cluster... 239
Preventing queue managers receiving messages... 240
SSL and clusters... 240

 iii

Publish/subscribe security..242
Example publish/subscribe security setup... 249
Subscription security... 259

IBM WebSphere MQ Advanced Message Security..260
IBM WebSphere MQ Advanced Message Security overview.. 260
Installing IBM WebSphere MQ Advanced Message Security..284
Using keystores and certificates..284
Adiministering IBM WebSphere MQ Advanced Message Security security policies........................296
Problems and solutions... 312

Notices..315
Programming interface information..316
Trademarks.. 316

iv

Security

Security is an important consideration for both developers of IBM WebSphere MQ applications, and for
system administrators configuring IBM WebSphere MQ authorities.

Security overview
This collection of topics introduces the IBM WebSphere MQ security concepts.

Security concepts and mechanisms, as they apply to any computer system, are presented first, followed
by a discussion of those security mechanisms as they are implemented in IBM WebSphere MQ.

Security concepts and mechanisms
This collection of topics describes aspects of security to consider in your IBM WebSphere MQ installation.

The commonly accepted aspects of security are as follows:

• “Identification and authentication” on page 5
• “Authorization” on page 6
• “Auditing” on page 6
• “Confidentiality” on page 7
• “Data integrity” on page 7

Security mechanisms are technical tools and techniques that are used to implement security services. A
mechanism might operate by itself, or with others, to provide a particular service. Examples of common
security mechanisms are as follows:

• “Cryptography” on page 7
• “Message digests and digital signatures” on page 9
• “Digital certificates” on page 9
• “Public Key Infrastructure (PKI)” on page 13

When you are planning a IBM WebSphere MQ implementation, consider which security mechanisms you
require to implement those aspects of security that are important to you. For information about what to
consider after you have read these topics, see “Planning for your security requirements” on page 45.

Related concepts
“Connecting two queue managers using SSL or TLS” on page 199
Secure communications that use the SSL or TLS cryptographic security protocols involve setting up the
communication channels and managing the digital certificates that you will use for authentication.
“Working with SSL or TLS” on page 107
These topics give instructions for performing single tasks related to using SSL or TLS with IBM WebSphere
MQ.

Identification and authentication
Identification is the ability to identify uniquely a user of a system or an application that is running in the
system. Authentication is the ability to prove that a user or application is genuinely who that person or
what that application claims to be.

For example, consider a user who logs on to a system by entering a user ID and password. The system
uses the user ID to identify the user. The system authenticates the user at the time of logon by checking
that the supplied password is correct.

© Copyright IBM Corp. 2007, 2025 5

Non-repudiation
The non-repudiation service can be viewed as an extension to the identification and authentication
service. In general, non-repudiation applies when data is transmitted electronically; for example, an order
to a stock broker to buy or sell stock, or an order to a bank to transfer funds from one account to another.

The overall goal of the non-repudiation service is to be able to prove that a particular message is
associated with a particular individual.

The non-repudiation service can contain more than one component, where each component provides a
different function. If the sender of a message ever denies sending it, the non-repudiation service with
proof of origin can provide the receiver with undeniable evidence that the message was sent by that
particular individual. If the receiver of a message ever denies receiving it, the non-repudiation service with
proof of delivery can provide the sender with undeniable evidence that the message was received by that
particular individual.

In practice, proof with virtually 100% certainty, or undeniable evidence, is a difficult goal. In the real
world, nothing is fully secure. Managing security is more concerned with managing risk to a level that is
acceptable to the business. In such an environment, a more realistic expectation of the non-repudiation
service is to be able to provide evidence that is admissible, and supports your case, in a court of law.

Non-repudiation is a relevant security service in an IBM WebSphere MQ environment because IBM
WebSphere MQ is a means of transmitting data electronically. For example, you might require
contemporaneous evidence that a particular message was sent or received by an application associated
with a particular individual.

IBM WebSphere MQ with IBM WebSphere MQ Advanced Message Security does not provide a non-
repudiation service as part of its base function. However, this product documentation does contain
suggestions on how you might provide your own non-repudiation service within a WebSphere MQ
environment by writing your own exit programs.

Related concepts
“Identification and authentication in IBM WebSphere MQ” on page 20
In IBM WebSphere MQ, you can implement identification and authentication using message context
information and mutual authentication.

Authorization
Authorization protects critical resources in a system by limiting access only to authorized users and their
applications. It prevents the unauthorized use of a resource or the use of a resource in an unauthorized
manner.
Related concepts
“Authorization in IBM WebSphere MQ” on page 21
You can use authorization to limit what particular individuals or applications can do in your IBM
WebSphere MQ environment.

Auditing
Auditing is the process of recording and checking events to detect whether any unexpected or
unauthorized activity has taken place, or whether any attempt has been made to perform such activity.

For more information on how you set up authorization, see “Planning authorization” on page 48 and the
associated sub-topics.

Related concepts
“Auditing in IBM WebSphere MQ” on page 21

6 Securing IBM WebSphere MQ

IBM WebSphere MQ can issue event messages to record that unusual activity has taken place.

Confidentiality
The confidentiality service protects sensitive information from unauthorized disclosure.

When sensitive data is stored locally, access control mechanisms might be sufficient to protect it on the
assumption that the data cannot be read if it cannot be accessed. If a greater level of security is required,
the data can be encrypted.

Encrypt sensitive data when it is transmitted over a communications network, especially over an insecure
network such as the Internet. In a networking environment, access control mechanisms are not effective
against attempts to intercept the data, such as wiretapping.

Data integrity
The data integrity service detects whether there has been unauthorized modification of data.

There are two ways in which data might be altered: accidentally, through hardware and transmission
errors, or because of a deliberate attack. Many hardware products and transmission protocols have
mechanisms to detect and correct hardware and transmission errors. The purpose of the data integrity
service is to detect a deliberate attack.

The data integrity service aims only to detect whether data has been modified. It does not aim to restore
data to its original state if it has been modified.

Access control mechanisms can contribute to data integrity insofar as data cannot be modified if access
is denied. But, as with confidentiality, access control mechanisms are not effective in a networking
environment.

Cryptographic concepts
This collection of topics describes the concepts of cryptography applicable to WebSphere MQ.

The term entity is used to refer to a queue manager, a WebSphere MQ MQI client, an individual user, or
any other system capable of exchanging messages.

Related concepts
“Cryptography in IBM WebSphere MQ” on page 22
IBM WebSphere MQ provides cryptography by using the Secure sockets Layer (SSL) and Transport
Security Layer (TLS) protocols.

Cryptography
Cryptography is the process of converting between readable text, called plaintext, and an unreadable
form, called ciphertext.

This occurs as follows:

1. The sender converts the plaintext message to ciphertext. This part of the process is called encryption
(sometimes encipherment).

2. The ciphertext is transmitted to the receiver.
3. The receiver converts the ciphertext message back to its plaintext form. This part of the process is

called decryption (sometimes decipherment).

See the Glossary for a definition of cryptography.

The conversion involves a sequence of mathematical operations that change the appearance of the
message during transmission but do not affect the content. Cryptographic techniques can ensure
confidentiality and protect messages against unauthorized viewing (eavesdropping), because an
encrypted message is not understandable. Digital signatures, which provide an assurance of message
integrity, use encryption techniques. See “Digital signatures in SSL and TLS” on page 18 for more
information.

Security 7

Cryptographic techniques involve a general algorithm, made specific by the use of keys. There are two
classes of algorithm:

• Those that require both parties to use the same secret key. Algorithms that use a shared key are known
as symmetric algorithms. Figure 1 on page 8 illustrates symmetric key cryptography.

• Those that use one key for encryption and a different key for decryption. One of these must be kept
secret but the other can be public. Algorithms that use public and private key pairs are known as
asymmetric algorithms. Figure 2 on page 8 illustrates asymmetric key cryptography, which is also
known as public key cryptography.

The encryption and decryption algorithms used can be public but the shared secret key and the private
key must be kept secret.

Figure 1. Symmetric key cryptography

Figure 2. Asymmetric key cryptography

Figure 2 on page 8 shows plaintext encrypted with the receiver's public key and decrypted with the
receiver's private key. Only the intended receiver holds the private key for decrypting the ciphertext.
Note that the sender can also encrypt messages with a private key, which allows anyone that holds the
sender's public key to decrypt the message, with the assurance that the message must have come from
the sender.

With asymmetric algorithms, messages are encrypted with either the public or the private key but can be
decrypted only with the other key. Only the private key is secret, the public key can be known by anyone.
With symmetric algorithms, the shared key must be known only to the two parties. This is called the
key distribution problem . Asymmetric algorithms are slower but have the advantage that there is no key
distribution problem.

Other terminology associated with cryptography is:

8 Securing IBM WebSphere MQ

Strength
The strength of encryption is determined by the key size. Asymmetric algorithms require large keys,
for example:

1024 bits Low-strength asymmetric key

2048 bits Medium-strength asymmetric key

4096 bits High-strength asymmetric key

Symmetric keys are smaller: 256 bit keys give you strong encryption.
Block cipher algorithm

These algorithms encrypt data by blocks. For example, the RC2 algorithm from RSA Data Security Inc.
uses blocks 8 bytes long. Block algorithms are typically slower than stream algorithms.

Stream cipher algorithm
These algorithms operate on each byte of data. Stream algorithms are typically faster than block
algorithms.

Message digests and digital signatures
A message digest is a fixed size numeric representation of the contents of a message, computed by a hash
function. A message digest can be encrypted, forming a digital signature.

Messages are inherently variable in size. A message digest is a fixed size numeric representation of the
contents of a message. A message digest is computed by a hash function, which is a transformation that
meets two criteria:

• The hash function must be one way. It must not be possible to reverse the function to find the message
corresponding to a particular message digest, other than by testing all possible messages.

• It must be computationally infeasible to find two messages that hash to the same digest.

The message digest is sent with the message itself. The receiver can generate a digest for the message
and compare it with the digest of the sender. The integrity of the message is verified when the two
message digests are the same. Any tampering with the message during transmission almost certainly
results in a different message digest.

A message digest created using a secret symmetric key is known as a Message Authentication Code
(MAC), because it can provide assurance that the message has not been modified.

The sender can also generate a message digest and then encrypt the digest using the private key of an
asymmetric key pair, forming a digital signature. The signature must then be decrypted by the receiver,
before comparing it with a locally generated digest.

Related concepts
“Digital signatures in SSL and TLS” on page 18
A digital signature is formed by encrypting a representation of a message. The encryption uses the private
key of the signatory and, for efficiency, usually operates on a message digest rather than the message
itself.

Digital certificates
Digital certificates protect against impersonation, certifying that a public key belongs to a specified entity.
They are issued by a Certificate Authority.

Digital certificates provide protection against impersonation, because a digital certificate binds a public
key to its owner, whether that owner is an individual, a queue manager, or some other entity. Digital
certificates are also known as public key certificates, because they give you assurances about the
ownership of a public key when you use an asymmetric key scheme. A digital certificate contains the
public key for an entity and is a statement that the public key belongs to that entity:

• When the certificate is for an individual entity, the certificate is called a personal certificate or user
certificate.

Security 9

• When the certificate is for a Certificate Authority, the certificate is called a CA certificate or signer
certificate.

If public keys are sent directly by their owner to another entity, there is a risk that the message could
be intercepted and the public key substituted by another. This is known as a man in the middle attack.
The solution to this problem is to exchange public keys through a trusted third party, giving you a strong
assurance that the public key really belongs to the entity with which you are communicating. Instead of
sending your public key directly, you ask the trusted third party to incorporate it into a digital certificate.
The trusted third party that issues digital certificates is called a Certificate Authority (CA), as described in
“Certificate Authorities” on page 11.

What is in a digital certificate
Digital certificates contain specific pieces of information, as determined by the X.509 standard.

Digital certificates used by WebSphere MQ comply with the X.509 standard, which specifies the
information that is required and the format for sending it. X.509 is the Authentication framework part
of the X.500 series of standards.

Digital certificates contain at least the following information about the entity being certified:

• The owner's public key
• The owner's Distinguished Name
• The Distinguished Name of the CA that issued the certificate
• The date from which the certificate is valid
• The expiry date of the certificate
• The version number of the certificate data format as defined in X.509. The current version of the X.509

standard is Version 3, and most certificates conform to that version.
• A serial number. This is a unique identifier assigned by the CA which issued the certificate. The serial

number is unique within the CA which issued the certificate: no two certificates signed by the same CA
certificate have the same serial number.

An X.509 Version 2 certificate also contains an Issuer Identifier and a Subject Identifier, and an X.509
Version 3 certificate can contain a number of extensions. Some certificate extensions, such as the Basic
Constraint extension, are standard, but others are implementation-specific. An extension can be critical,
in which case a system must be able to recognize the field; if it does not recognize the field, it must reject
the certificate. If an extension is not critical, the system can ignore it if does not recognize it.

The digital signature in a personal certificate is generated using the private key of the CA which signed
that certificate. Anyone who needs to verify the personal certificate can use the CA's public key to do so.
The CA's certificate contains its public key.

Digital certificates do not contain your private key. You must keep your private key secret.

Requirements for personal certificates
WebSphere MQ supports digital certificates that comply with the X.509 standard. It requires the client
authentication option.

Because IBM WebSphere MQ is a peer to peer system, it is viewed as client authentication in SSL
terminology. Therefore, any personal certificate used for SSL authentication needs to allow a key usage of
client authentication. Not all server certificates have this option enabled, so the certificate provider might
need to enable client authentication on the root CA for the secure certificate.

In addition to the standards which specify the data format for a digital certificate, there are also standards
for determining whether a certificate is valid. These standards have been updated over time in order to
prevent certain types of security breach. For example, older X.509 version 1 and 2 certificates did not
indicate whether the certificate could be legitimately used to sign other certificates. It was therefore
possible for a malicious user to obtain a personal certificate from a legitimate source and create new
certificates designed to impersonate other users.

When using X.509 version 3 certificates, the BasicConstraints and KeyUsage certificate extensions are
used to specify which certificates can legitimately sign other certificates. The IETF RFC 5280 standard

10 Securing IBM WebSphere MQ

specifies a series of certificate validation rules which compliant application software must implement in
order to prevent impersonation attacks. A set of certificate rules is known as a certificate validation policy.

For more information about certificate validation policies in IBM WebSphere MQ, see “Certificate
validation policies in IBM WebSphere MQ” on page 33.

Certificate Authorities
A Certificate Authority (CA) is a trusted third party that issues digital certificates to provide you with an
assurance that the public key of an entity truly belongs to that entity.

The roles of a CA are:

• On receiving a request for a digital certificate, to verify the identity of the requestor before building,
signing and returning the personal certificate

• To provide the CA's own public key in its CA certificate
• To publish lists of certificates that are no longer trusted in a Certificate Revocation List (CRL). For more

information, see “Working with revoked certificates” on page 144
• To provide access to certificate revocation status by operating an OCSP responder server

Distinguished Names
The Distinguished Name (DN) uniquely identifies an entity in an X.509 certificate.

The following attribute types are commonly found in the DN:

SERIALNUMBER Certificate serial number

MAIL Email address

E Email address (Deprecated in preference to MAIL)

UID or USERID User identifier

CN Common Name

T Title

OU Organizational Unit name

DC Domain component

O Organization name

STREET Street / First line of address

L Locality name

ST (or SP or S) State or Province name

PC Postal code / zip code

C Country

UNSTRUCTUREDNAME Host name

UNSTRUCTUREDADDRESS IP address

DNQ Distinguished name qualifier

The X.509 standard defines other attributes that do not typically form part of the DN but can provide
optional extensions to the digital certificate.

The X.509 standard provides for a DN to be specified in a string format. For example:

CN=John Smith, OU=Test, O=IBM, C=GB

The Common Name (CN) can describe an individual user or any other entity, for example a web server.

Security 11

The DN can contain multiple OU and DC attributes. Only one instance of each of the other attributes is
permitted. The order of the OU entries is significant: the order specifies a hierarchy of Organizational Unit
names, with the highest-level unit first. The order of the DC entries is also significant.

IBM WebSphere MQ tolerates certain malformed DNs. For more information, see WebSphere MQ rules for
SSLPEER values.

Related concepts
“What is in a digital certificate” on page 10
Digital certificates contain specific pieces of information, as determined by the X.509 standard.

Obtaining personal certificates from a certificate authority
You can obtain a certificate from a trusted external certificate authority (CA).

You obtain a digital certificate by sending information to a CA, in the form of a certificate request. The
X.509 standard defines a format for this information, but some CAs have their own format. Certificate
requests are typically generated by the certificate management tool your system uses, for example the
iKeyman tool on UNIX, Linux®, and Windows systems and RACF® on z/OS®. The information contains
your Distinguished Name and your public key. When your certificate management tool generates your
certificate request, it also generates your private key, which you must keep secure. Never distribute your
private key.

When the CA receives your request, the authority verifies your identity before building the certificate and
returning it to you as a personal certificate.

Figure 3 on page 12 illustrates the process of obtaining a digital certificate from a CA.

Figure 3. Obtaining a digital certificate

In the diagram:

• "User identification" includes your Subject Distinguished Name.
• "Certification Authority identification" includes the Distinguished Name of the CA that is issuing the
certificate.

•

Digital certificates contain additional fields other than those shown in the diagram. For more information
about the other fields in a digital certificate, see “What is in a digital certificate” on page 10.

How certificate chains work
When you receive the certificate for another entity, you might need to use a certificate chain to obtain the
root CA certificate.

The certificate chain, also known as the certification path , is a list of certificates used to authenticate
an entity. The chain, or path, begins with the certificate of that entity, and each certificate in the chain
is signed by the entity identified by the next certificate in the chain. The chain terminates with a root CA

12 Securing IBM WebSphere MQ

certificate. The root CA certificate is always signed by the certificate authority (CA) itself. The signatures of
all certificates in the chain must be verified until the root CA certificate is reached.

Figure 4 on page 13 illustrates a certification path from the certificate owner to the root CA, where the
chain of trust begins.

Figure 4. Chain of trust

Each certificate can contain one or more extensions. A certificate belonging to a CA typically contains a
BasicConstraints extension with the isCA flag set to indicate that it is allowed to sign other certificates.

When certificates are no longer valid
Digital certificates can expire or be revoked.

Digital certificates are issued for a fixed period and are not valid after their expiry date.

See the Glossary for a definition of certificate expiration.

Certificates can be revoked for various reasons, including:

• The owner has moved to a different organization.
• The private key is no longer secret.

WebSphere MQ can check whether a certificate is revoked by sending a request to an Online Certificate
Status Protocol (OCSP) responder (on UNIX, Linux and Windows systems only). Alternatively, they can
access a CRL on an LDAP server. The OCSP revocation and CRL information is published by a Certificate
Authority. For more information, see “Working with revoked certificates” on page 144.

Public Key Infrastructure (PKI)
A Public Key Infrastructure (PKI) is a system of facilities, policies, and services that supports the use of
public key cryptography for authenticating the parties involved in a transaction.

There is no single standard that defines the components of a Public Key Infrastructure, but a PKI typically
comprises certificate authorities (CAs) and Registration Authorities (RAs). CAs provide the following
services::

• Issuing digital certificates

Security 13

• Validating digital certificates
• Revoking digital certificates
• Distributing public keys

The X.509 standards provide the basis for the industry standard Public Key Infrastructure.

Refer to “Digital certificates” on page 9 for more information about digital certificates and certificate
authorities (CAs). RAs verify that the information provided when digital certificates are requested. If the
RA verifies that information, the CA can issue a digital certificate to the requester.

A PKI might also provide tools for managing digital certificates and public keys. A PKI is sometimes
described as a trust hierarchy for managing digital certificates, but most definitions include additional
services. Some definitions include encryption and digital signature services, but these services are not
essential to the operation of a PKI.

Cryptographic security protocols: SSL and TLS
Cryptographic protocols provide secure connections, enabling two parties to communicate with privacy
and data integrity. The Transport Layer Security (TLS) protocol evolved from that of the Secure Sockets
Layer (SSL). IBM WebSphere MQ supports both SSL and TLS.

The primary goals of both protocols is to provide confidentiality, (sometimes referred to as privacy), data
integrity, identification, and authentication using digital certificates.

Although the two protocols are similar, the differences are sufficiently significant that SSL 3.0 and the
various versions of TLS do not interoperate.

Related concepts
“Security protocols in IBM WebSphere MQ” on page 22
IBM WebSphere MQ supports both the Transport Layer Security (TLS) and the Secure Sockets Layer (SSL)
protocols to provide link level security for message channels and MQI channels.

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) concepts
The SSL and TLS protocols enable two parties to identify and authenticate each other and communicate
with confidentiality and data integrity. The TLS protocol evolved from the Netscape SSL 3.0 protocol but
TLS and SSL do not interoperate.

The SSL and TLS protocols provide communications security over the internet, and allow client/server
applications to communicate in a way that is confidential and reliable. The protocols have two layers:
a Record Protocol and a Handshake Protocol, and these are layered above a transport protocol such as
TCP/IP. They both use asymmetric and symmetric cryptography techniques.

An SSL or TLS connection is initiated by an application, which becomes the SSL or TLS client. The
application which receives the connection becomes the SSL or TLS server. Every new session begins with
a handshake, as defined by the SSL or TLS protocols.

A full list of CipherSpecs supported by IBM WebSphere MQ is provided at “Specifying CipherSpecs” on
page 210.

For more information about the SSL protocol, see the information provided at https://www.mozilla.org/
projects/security/pki/nss/ssl/draft302.txt. For more information about the TLS protocol, see the
information provided by the TLS Working Group on the website of the Internet Engineering Task Force
at https://www.ietf.org

An overview of the SSL or TLS handshake
The SSL or TLS handshake enables the SSL or TLS client and server to establish the secret keys with
which they communicate.

This section provides a summary of the steps that enable the SSL or TLS client and server to communicate
with each other.

• Agree on the version of the protocol to use.
• Select cryptographic algorithms.

14 Securing IBM WebSphere MQ

https://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt
https://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt
https://www.ietf.org

• Authenticate each other by exchanging and validating digital certificates.
• Use asymmetric encryption techniques to generate a shared secret key, which avoids the key

distribution problem. SSL or TLS then uses the shared key for the symmetric encryption of messages,
which is faster than asymmetric encryption.

For more information about cryptographic algorithms and digital certificates, refer to the related
information.

In overview, the steps involved in the SSL handshake are as follows:

1. The SSL or TLS client sends a "client hello" message that lists cryptographic information such as
the SSL or TLS version and, in the client's order of preference, the CipherSuites supported by the
client. The message also contains a random byte string that is used in subsequent computations. The
protocol allows for the "client hello" to include the data compression methods supported by the client.

2. The SSL or TLS server responds with a "server hello" message that contains the CipherSuite chosen
by the server from the list provided by the client, the session ID, and another random byte string.
The server also sends its digital certificate. If the server requires a digital certificate for client
authentication, the server sends a "client certificate request" that includes a list of the types of
certificates supported and the Distinguished Names of acceptable Certification Authorities (CAs).

3. The SSL or TLS client verifies the server's digital certificate. For more information, see “How SSL and
TLS provide identification, authentication, confidentiality, and integrity” on page 16.

4. The SSL or TLS client sends the random byte string that enables both the client and the server to
compute the secret key to be used for encrypting subsequent message data. The random byte string
itself is encrypted with the server's public key.

5. If the SSL or TLS server sent a "client certificate request", the client sends a random byte string
encrypted with the client's private key, together with the client's digital certificate, or a "no digital
certificate alert". This alert is only a warning, but with some implementations the handshake fails if
client authentication is mandatory.

6. The SSL or TLS server verifies the client's certificate. For more information, see “How SSL and TLS
provide identification, authentication, confidentiality, and integrity” on page 16.

7. The SSL or TLS client sends the server a "finished" message, which is encrypted with the secret key,
indicating that the client part of the handshake is complete.

8. The SSL or TLS server sends the client a "finished" message, which is encrypted with the secret key,
indicating that the server part of the handshake is complete.

9. For the duration of the SSL or TLS session, the server and client can now exchange messages that are
symmetrically encrypted with the shared secret key.

Figure 5 on page 16 illustrates the SSL or TLS handshake.

Security 15

Figure 5. Overview of the SSL or TLS handshake

How SSL and TLS provide identification, authentication, confidentiality, and integrity
During both client and server authentication there is a step that requires data to be encrypted with one of
the keys in an asymmetric key pair and decrypted with the other key of the pair. A message digest is used
to provide integrity.

For an overview of the steps involved in the TLS handshake, see “An overview of the SSL or TLS
handshake” on page 14.

How SSL and TLS provide authentication
For server authentication, the client uses the server's public key to encrypt the data that is used to
compute the secret key. The server can generate the secret key only if it can decrypt that data with the
correct private key.

For client authentication, the server uses the public key in the client certificate to decrypt the data the
client sends during step “5” on page 15 of the handshake. The exchange of finished messages that are
encrypted with the secret key (steps “7” on page 15 and “8” on page 15 in the overview) confirms that
authentication is complete.

If any of the authentication steps fail, the handshake fails and the session terminates.

The exchange of digital certificates during the SSLor TLS handshake is part of the authentication process.
For more information about how certificates provide protection against impersonation, refer to the related

16 Securing IBM WebSphere MQ

information. The certificates required are as follows, where CA X issues the certificate to the SSL or TLS
client, and CA Y issues the certificate to the SSL or TLS server:

For server authentication only, the SSL or TLS server needs:

• The personal certificate issued to the server by CA Y
• The server's private key

and the SSL or TLS client needs:

• The CA certificate for CA Y

If the SSL or TLS server requires client authentication, the server verifies the client's identity by verifying
the client's digital certificate with the public key for the CA that issued the personal certificate to the
client, in this case CA X . For both server and client authentication, the server needs:

• The personal certificate issued to the server by CA Y
• The server's private key
• The CA certificate for CA X

and the client needs:

• The personal certificate issued to the client by CA X
• The client's private key
• The CA certificate for CA Y

Both the SSL or TLS server and client might need other CA certificates to form a certificate chain to the
root CA certificate. For more information about certificate chains, refer to the related information.

What happens during certificate verification
As noted in steps “3” on page 15 and “6” on page 15 of the overview, the SSL or TLS client verifies the
server's certificate, and the SSL or TLS server verifies the client's certificate. There are four aspects to this
verification:

1. The digital signature is checked (see “Digital signatures in SSL and TLS” on page 18).
2. The certificate chain is checked; you should have intermediate CA certificates (see “How certificate

chains work” on page 12).
3. The expiry and activation dates and the validity period are checked.
4. The revocation status of the certificate is checked (see “Working with revoked certificates” on page

144).

Secret key reset
During an SSL or TLS handshake a secret key is generated to encrypt data between the SSL or TLS client
and server. The secret key is used in a mathematical formula that is applied to the data to transform
plaintext into unreadable ciphertext, and ciphertext into plaintext.

The secret key is generated from the random text sent as part of the handshake and is used to encrypt
plaintext into ciphertext. The secret key is also used in the MAC (Message Authentication Code) algorithm,
which is used to determine whether a message has been altered. See “Message digests and digital
signatures” on page 9 for more information.

If the secret key is discovered, the plaintext of a message could be deciphered from the ciphertext, or
the message digest could be calculated, allowing messages to be altered without detection. Even for a
complex algorithm, the plaintext can eventually be discovered by applying every possible mathematical
transformation to the ciphertext. To minimize the amount of data that can be deciphered or altered if
the secret key is broken, the secret key can be renegotiated periodically. When the secret key has been
renegotiated, the previous secret key can no longer be used to decrypt data encrypted with the new
secret key.

Security 17

How SSL and TLS provide confidentiality
SSL and TLS use a combination of symmetric and asymmetric encryption to ensure message privacy.
During the SSL or TLS handshake, the SSL or TLS client and server agree an encryption algorithm and
a shared secret key to be used for one session only. All messages transmitted between the SSL or TLS
client and server are encrypted using that algorithm and key, ensuring that the message remains private
even if it is intercepted. SSL supports a wide range of cryptographic algorithms. Because SSL and TLS use
asymmetric encryption when transporting the shared secret key, there is no key distribution problem. For
more information about encryption techniques, refer to “Cryptography” on page 7.

How SSL and TLS provide integrity
SSL and TLS provide data integrity by calculating a message digest. For more information, refer to “Data
integrity of messages” on page 219.

Use of SSL or TLS does ensure data integrity, provided that the CipherSpec in your channel definition uses
a hash algorithm as described in the table in “Specifying CipherSpecs” on page 210.

In particular, if data integrity is a concern, you should avoid choosing a CipherSpec whose hash algorithm
is listed as "None". Use of MD5 is also strongly discouraged as this is now very old and no longer secure
for most practical purposes.

CipherSpecs and CipherSuites
Cryptographic security protocols must agree on the algorithms used by a secure connection. CipherSpecs
and CipherSuites define specific combinations of algorithms.

A CipherSpec identifies a combination of encryption algorithm and Message Authentication Code (MAC)
algorithm. Both ends of a TLS, or SSL, connection must agree on the same CipherSpec to be able to
communicate.

Important: When dealing with IBM WebSphere MQ channels, you use a CipherSpec. When dealing with
Javachannels, JMS channels, or MQTT channels you specify a CipherSuite.

For more information about CipherSpecs, see “Specifying CipherSpecs” on page 210.

A CipherSuite is a suite of cryptographic algorithms used by an SSL or TLS connection. A suite comprises
three distinct algorithms:

• The key exchange and authentication algorithm, used during the handshake
• The encryption algorithm, used to encipher the data
• The MAC (Message Authentication Code) algorithm, used to generate the message digest

There are several options for each component of the suite, but only certain combinations are valid
when specified for a TLS or SSL connection. The name of a valid CipherSuite defines the combination of
algorithms used. For example, the CipherSuite SSL_RSA_WITH_RC4_128_MD5 specifies:

• The RSA key exchange and authentication algorithm
• The RC4 encryption algorithm, using a 128-bit key
• The MD5 MAC algorithm

Several algorithms are available for key exchange and authentication, but the RSA algorithm is currently
the most widely used. There is more variety in the encryption algorithms and MAC algorithms that are
used.

Digital signatures in SSL and TLS
A digital signature is formed by encrypting a representation of a message. The encryption uses the private
key of the signatory and, for efficiency, usually operates on a message digest rather than the message
itself.

Digital signatures vary with the data being signed, unlike handwritten signatures, which do not depend
on the content of the document being signed. If two different messages are signed digitally by the same

18 Securing IBM WebSphere MQ

entity, the two signatures differ, but both signatures can be verified with the same public key, that is, the
public key of the entity that signed the messages.

The steps of the digital signature process are as follows:

1. The sender computes a message digest and then encrypts the digest using the sender's private key,
forming the digital signature.

2. The sender transmits the digital signature with the message.
3. The receiver decrypts the digital signature using the sender's public key, regenerating the sender's

message digest.
4. The receiver computes a message digest from the message data received and verifies that the two

digests are the same.

Figure 6 on page 19 illustrates this process.

Figure 6. The digital signature process

If the digital signature is verified, the receiver knows that:

• The message has not been modified during transmission.
• The message was sent by the entity that claims to have sent it.

Digital signatures are part of integrity and authentication services. Digital signatures also provide proof
of origin. Only the sender knows the private key, which provides strong evidence that the sender is the
originator of the message.

Note: You can also encrypt the message itself, which protects the confidentiality of the information in the
message.

Federal Information Processing Standards
The US government produces technical advice on IT systems and security, including data encryption.
The National Institute for Standards and Technology (NIST) is an important body concerned with IT
systems and security. NIST produces recommendations and standards, including the Federal Information
Processing Standards (FIPS).

A significant one of these standards is FIPS 140-2, which requires the use of strong cryptographic
algorithms. FIPS 140-2 also specifies requirements for hashing algorithms to be used to protect packets
against modification in transit.

IBM WebSphere MQ provides FIPS 140-2 support when it has been configured to do so.

Over time, analysts develop attacks against existing encryption and hashing algorithms. New algorithms
are adopted to resist those attacks. FIPS 140-2 is periodically updated to take account of these changes.

Security 19

National Security Agency (NSA) Suite B Cryptography
The government of the Unites States of America produces technical advice on IT systems and security,
including data encryption. The US National Security Agency (NSA) recommends a set of interoperable
cryptographic algorithms in its Suite B standard.

The Suite B standard specifies a mode of operation in which only a specific set of secure cryptographic
algorithms are used. The Suite B standard specifies:

• The encryption algorithm (AES)
• The key exchange algorithm (Elliptic Curve Diffie-Hellman, also known as ECDH)
• The digital signature algorithm (Elliptic Curve Digital Signature Algorithm, also known as ECDSA)
• The hashing algorithms (SHA-256 or SHA-384)

Additionally, the IETF RFC 6460 standard specifies Suite B compliant profiles which define the detailed
application configuration and behavior necessary to comply with the Suite B standard. It defines two
profiles:

1. A Suite B compliant profile for use with TLS version 1.2. When configured for Suite B compliant
operation, only the restricted set of cryptographic algorithms listed above will be used.

2. A transitional profile for use with TLS version 1.0 or TLS version 1.1. This profile enables
interoperability with non-Suite B compliant servers. When configured for Suite B transitional operation,
additional encryption and hashing algorithms may be used.

The Suite B standard is conceptually similar to FIPS 140-2, because it restricts the set of enabled
cryptographic algorithms in order to provide an assured level of security.

On Windows, UNIX and Linux systems, WebSphere MQ, can be configured to conform to the Suite B
compliant TLS 1.2 profile, but does not support the Suite B transitional profile. For further information,
see “NSA Suite B Cryptography in IBM WebSphere MQ” on page 30.

Related information
“Federal Information Processing Standards” on page 19
The US government produces technical advice on IT systems and security, including data encryption.
The National Institute for Standards and Technology (NIST) is an important body concerned with IT
systems and security. NIST produces recommendations and standards, including the Federal Information
Processing Standards (FIPS).

IBM WebSphere MQ security mechanisms
This collection of topics explains how you can implement the various security concepts in IBM WebSphere
MQ.

IBM WebSphere MQ provides mechanisms to implement all the security concepts introduced in “Security
concepts and mechanisms” on page 5. These are discussed in more detail in the following sections.

Identification and authentication in IBM WebSphere MQ
In IBM WebSphere MQ, you can implement identification and authentication using message context
information and mutual authentication.

Here are some examples of the identification and authentication in an IBM WebSphere MQ environment:

• Every message can contain message context information. This information is held in the message
descriptor. It can be generated by the queue manager when a message is put on a queue by an
application. Alternatively, the application can supply the information if the user ID associated with the
application is authorized to do so.

The context information in a message allows the receiving application to find out about the originator of
the message. It contains, for example, the name of the application that put the message and the user ID
associated with the application.

20 Securing IBM WebSphere MQ

• When a message channel starts, it is possible for the message channel agent (MCA) at each end of the
channel to authenticate its partner. This technique is known as mutual authentication. For the sending
MCA, it provides assurance that the partner it is about to send messages to is genuine. For the receiving
MCA, there is a similar assurance that it is about to receive messages from a genuine partner.

Related concepts
“Identification and authentication” on page 5
Identification is the ability to identify uniquely a user of a system or an application that is running in the
system. Authentication is the ability to prove that a user or application is genuinely who that person or
what that application claims to be.

Authorization in IBM WebSphere MQ
You can use authorization to limit what particular individuals or applications can do in your IBM
WebSphere MQ environment.

Here are some examples of authorization in an IBM WebSphere MQ environment:

• Allowing only an authorized administrator to issue commands to manage IBM WebSphere MQ
resources.

• Allowing an application to connect to a queue manager only if the user ID associated with the
application is authorized to do so.

• Allowing an application to open only those queues that are necessary for its function.
• Allowing an application to subscribe only to those topics that are necessary for its function.
• Allowing an application to perform only those operations on a queue that are necessary for its function.

For example, an application might need only to browse messages on a particular queue, and not to put
or get messages.

For more information on how you set up authorization, see “Planning authorization” on page 48 and the
associated sub-topics.

Related concepts
“Authorization” on page 6
Authorization protects critical resources in a system by limiting access only to authorized users and their
applications. It prevents the unauthorized use of a resource or the use of a resource in an unauthorized
manner.

Auditing in IBM WebSphere MQ
IBM WebSphere MQ can issue event messages to record that unusual activity has taken place.

Here are some examples of auditing in an IBM WebSphere MQ environment:

• An application attempts to open a queue that it is not authorized to open. An instrumentation event
message is issued. By inspecting the event message, you discover that this attempt occurred and can
decide what action is necessary.

• An application attempts to open a channel, but the attempt fails because SSL does not allow the
connection. An instrumentation event message is issued. By inspecting the event message, you discover
that this attempt occurred and can decide what action is necessary.

Related concepts
“Auditing” on page 6
Auditing is the process of recording and checking events to detect whether any unexpected or
unauthorized activity has taken place, or whether any attempt has been made to perform such activity.

Confidentiality in IBM WebSphere MQ
You can implement confidentiality in IBM WebSphere MQ by encrypting messages.

Here are some examples of how confidentiality can be ensured in an IBM WebSphere MQ environment:

Security 21

• After a sending MCA gets a message from a transmission queue, IBM WebSphere MQ uses SSL or TLS
to encrypt the message before it is sent over the network to the receiving MCA. At the other end of the
channel, the message is decrypted before the receiving MCA puts it on its destination queue.

• While messages are stored on a local queue, the access control mechanisms provided by IBM
WebSphere MQ might be considered sufficient to protect their contents against unauthorized
disclosure. However, for a greater level of security, you can use IBM WebSphere MQ Advanced Message
Security to encrypt the messages stored in the queues.

Related concepts
“Confidentiality” on page 7
The confidentiality service protects sensitive information from unauthorized disclosure.

Data integrity in IBM WebSphere MQ
You can use a data integrity service to detect whether a message has been modified.

Here are some examples of how data integrity can be ensured in an IBM WebSphere MQ environment:

• You can use SSL or TLS to detect whether the contents of a message have been deliberately modified
while it was being transmitted over a network. In SSL and TLS, the message digest algorithm
provides detection of modified messages in transit. All IBM WebSphere MQ CipherSpecs provide a
message digest algorithm, except for TLS_RSA_WITH_NULL_NULL which does not provide message
data integrity.

• While messages are stored on a local queue, the access control mechanisms provided by IBM
WebSphere MQ might be considered sufficient to prevent deliberate modification of the contents of the
messages. However, for a greater level of security, you can use IBM WebSphere MQ Advanced Message
Security to detect whether the contents of a message have been deliberately modified between the
time the message was put on the queue and the time it was retrieved from the queue.

Related concepts
“Data integrity” on page 7
The data integrity service detects whether there has been unauthorized modification of data.

Cryptography in IBM WebSphere MQ
IBM WebSphere MQ provides cryptography by using the Secure sockets Layer (SSL) and Transport
Security Layer (TLS) protocols.

For more information see “Security protocols in IBM WebSphere MQ” on page 22.

Related concepts
“Cryptographic concepts” on page 7
This collection of topics describes the concepts of cryptography applicable to WebSphere MQ.

Security protocols in IBM WebSphere MQ
IBM WebSphere MQ supports both the Transport Layer Security (TLS) and the Secure Sockets Layer (SSL)
protocols to provide link level security for message channels and MQI channels.

Message channels and MQI channels can use the SSL or TLS protocol to provide link level security. A
caller MCA is an SSL or TLS client and a responder MCA is an SSL or TLS server. WebSphere MQ supports
Version 3.0 of the SSL protocol and Version 1.0 and Version 1.2 of the Transport Layer Security (TLS)
protocol. You specify the cryptographic algorithms that are used by the SSL or protocol by supplying a
CipherSpec as part of the channel definition.

At each end of a message channel, and at the server end of an MQI channel, the MCA acts on behalf of
the queue manager to which it is connected. During the SSL or TLS handshake, the MCA sends the digital
certificate of the queue manager to its partner MCA at the other end of the channel. The WebSphere
MQ code at the client end of an MQI channel acts on behalf of the user of the WebSphere MQ client
application. During the SSL or TLS handshake, the WebSphere MQ code sends the user's digital certificate
to the MCA at the server end of the MQI channel.

22 Securing IBM WebSphere MQ

Queue managers and WebSphere MQ client users are not required to have personal digital certificates
associated with them when they are acting as SSL or TLS clients, unless SSLCAUTH(REQUIRED) is
specified at the server side of the channel.

Digital certificates are stored in a key repository . The queue manager attribute SSLKeyRepository specifies
the location of the key repository that holds the queue manager's digital certificate. On a WebSphere MQ
client system, the MQSSLKEYR environment variable specifies the location of the key repository that holds
the user's digital certificate. Alternatively, a WebSphere MQ client application can specify its location in
the KeyRepository field of the SSL and TLS configuration options structure, MQSCO, on an MQCONNX call.
See the related topics for more information about key repositories and how to specify where they are
located.

Related concepts
“Cryptographic security protocols: SSL and TLS” on page 14
Cryptographic protocols provide secure connections, enabling two parties to communicate with privacy
and data integrity. The Transport Layer Security (TLS) protocol evolved from that of the Secure Sockets
Layer (SSL). IBM WebSphere MQ supports both SSL and TLS.

IBM WebSphere MQ support for SSL and TLS
IBM WebSphere MQ supports both the Secure Sockets Layer (SSL) protocol and the Transport Layer
Security (TLS) protocol.

For more information about the SSL and TLS protocols, refer to the related information.

IBM WebSphere MQ provides the following support for SSL Version 3.0 and TLS 1.0 and TLS 1.2:
Java and JMS clients

These clients use the JVM to provide SSL and TLS support.
UNIX, Linux, and Windows, and HP Integrity NonStop Server systems

For UNIX, Linux, and Windows, and HP Integrity NonStop Server systems, the SSL and TLS support is
installed with IBM WebSphere MQ.

For information about any prerequisites for IBM WebSphere MQ SSL and TLS support, see System
Requirements for IBM WebSphere MQ.

The SSL or TLS key repository
A mutually authenticated SSL or TLS connection requires a key repository (which can be known by
different names on different platforms) at each end of the connection. The key repository includes digital
certificates and private keys.

This information uses the general term key repository to describe the store for digital certificates and their
associated private keys. The specific store names used on the platforms and environments that support
SSL and TLS are:

Java and JMS keystore and trust store

Windows , UNIX and Linux
systems

key database file

For more information, refer to “Digital certificates” on page 9 and “Secure Sockets Layer (SSL) and
Transport Layer Security (TLS) concepts” on page 14.

A mutually authenticated SSL or TLS connection requires a key repository at each end of the connection.
The key repository may contain:

• A number of CA certificates from various Certification Authorities that allow the queue manager or client
to verify certificates that it receives from its partner at the remote end of the connection. Individual
certificates might be in a certificate chain.

Security 23

https://www-01.ibm.com/support/docview.wss?rs=171&uid=swg27006467
https://www-01.ibm.com/support/docview.wss?rs=171&uid=swg27006467

• One or more personal certificates received from a Certification Authority. You associate a separate
personal certificate with each queue manager or WebSphere MQ MQI client. Personal certificates are
essential on an SSL or TLS client if mutual authentication is required. If mutual authentication is not
required, personal certificates are not needed on the client. The key repository might also contain the
private key corresponding to each personal certificate.

• Certificate requests which are waiting to be signed by a trusted CA certificate.

For more information about protecting your key repository, see “Protecting IBM WebSphere MQ key
repositories” on page 24.

The location of the key repository depends on the platform you are using:

 Windows, UNIX and Linux systems
On Windows, UNIX and Linux systems the key repository is a key database file. The name of
the key database file must have a file extension of .kdb. For example, on UNIX and Linux, the
default key database file for queue manager QM1 is /var/mqm/qmgrs/QM1/ssl/key.kdb . If IBM
WebSphere MQ is installed in the default location, the equivalent path on Windows is C:\Program
Files\IBM\WebSphere MQ\Qmgrs\QM1\ssl\key.kdb.

On Windows , UNIX and Linux systems, each key database file has an associated password stash file.
This file holds encoded passwords that allow programs to access the key database. The password
stash file must be in the same directory and have the same file stem as the key database, and must
end with the suffix .sth , for example /var/mqm/qmgrs/QM1/ssl/key.sth

Note: On Windows, UNIX and Linux systems, PKCS #11 cryptographic hardware cards can contain
the certificates and keys that are otherwise held in a key database file. When certificates and keys
are held on PKCS #11 cards, WebSphere MQ still requires access to both a key database file and a
password stash file.

On Windows and UNIX systems, the key database also contains the private key for the personal
certificate associated with the queue manager or WebSphere MQ MQI client.

Protecting IBM WebSphere MQ key repositories
The key repository for IBM WebSphere MQ is a file. Ensure that only the intended user can access the
key repository file. This prevents an intruder or other unauthorized user copying the key repository file to
another system, and then setting up an identical user ID on that system to impersonate the intended user.

The permissions on the files depend on the user's umask and which tool is used. On Windows, IBM
WebSphere MQ accounts require permission BypassTraverseChecking which means the permissions
of the folders in the file path have no effect.

Check the file permissions of key repository files and make sure that the files and containing folder are not
world readable, preferably not even group readable.

Making the keystore read-only is good practice, on whichever system you use, with only the administrator
being permitted to enable write operations in order to perform maintenance.

In practice, you must protect all the keystores, whatever the location and whether they are password
protected or not; protect the key repositories.

Refreshing the queue manager's key repository
When you change the contents of a key repository, the queue manager does not immediately pick up the
new contents. For a queue manager to use the new key repository contents, you must issue the REFRESH
SECURITY TYPE(SSL) command.

This process is intentional, and prevents the situation where multiple running channels could use
different versions of a key repository. As a security control, only one version of a key repository can
be loaded by the queue manager at any time.

For more information about the REFRESH SECURITY TYPE(SSL) command, see REFRESH SECURITY.

You can also refresh a key repository using PCF commands or the WebSphere MQ Explorer. For more
information, see the MQCMD_REFRESH_SECURITY command and the topic Refreshing SSL or TLS Security
in the WebSphere MQ Explorer section of this product documentation.

24 Securing IBM WebSphere MQ

Related concepts
“Refreshing a client's view of the SSL key repository contents and SSL settings” on page 25
To update the client application with the refreshed contents of the key repository, you must stop and
restart the client application.

Refreshing a client's view of the SSL key repository contents and SSL settings
To update the client application with the refreshed contents of the key repository, you must stop and
restart the client application.

You cannot refresh security on a WebSphere MQ client; there is no equivalent of the REFRESH SECURITY
TYPE(SSL) command for clients (see REFRESH SECURITY) for more information.

You must stop and restart the application, whenever you change the security certificate, to update the
client application with the refreshed contents of the key repository.

If restarting the channel refreshes the configurations, and if your application has reconnection logic, it is
possible for you to refresh security at the client by issuing the STOP CHL STATUS(INACTIVE) command.

Related concepts
“Refreshing the queue manager's key repository” on page 24
When you change the contents of a key repository, the queue manager does not immediately pick up the
new contents. For a queue manager to use the new key repository contents, you must issue the REFRESH
SECURITY TYPE(SSL) command.

Federal Information Processing Standards (FIPS)
This topic introduces the Federal Information Processing Standards (FIPS) Cryptomodule Validation
Program of the US National Institute of Standards and Technology and the cryptographic functions which
can be used on SSL or TLS channels, for Windows, UNIX and Linux, and z/OS systems.

The FIPS 140-2 compliance of an IBM WebSphere MQ SSL or TLS connection on UNIX, Linux, and
Windows systems is found here “Federal Information Processing Standards (FIPS) for UNIX, Linux, and
Windows” on page 26.

If cryptographic hardware is present, the cryptographic modules used by IBM WebSphere MQ can be
configured to be those provided by the hardware manufacturer. If this is done, the configuration is only
FIPS-compliant if those cryptographic modules are FIPS-certified.

Over time, the Federal Information Processing Standards are updated to reflect new attacks against
encryption algorithms and protocols. For example, some CipherSpecs may cease to be FIPS certified.
When such changes occur, IBM WebSphere MQ is also updated to implement the latest standard. As a
result, you might see changes in behavior after applying maintenance.

Related concepts
“Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client” on page 104
Create your key repositories using FIPS-compliant software, then specify that the channel must use
FIPS-certified CipherSpecs.
“Using iKeyman, iKeycmd, runmqakm, and runmqckm” on page 110
On UNIX, Linux and Windows systems, manage keys and digital certificates with the iKeyman GUI or from
the command line using iKeycmd or runmqakm.
Related tasks
Enabling SSL in WebSphere MQ classes for Java
Using Secure Sockets Layer (SSL) with WebSphere MQ classes for JMS
Related reference
SSL properties of JMS objects
Related information
“Federal Information Processing Standards” on page 19
The US government produces technical advice on IT systems and security, including data encryption.
The National Institute for Standards and Technology (NIST) is an important body concerned with IT

Security 25

systems and security. NIST produces recommendations and standards, including the Federal Information
Processing Standards (FIPS).

Federal Information Processing Standards (FIPS) for UNIX, Linux, and Windows
When cryptography is required on an SSL or TLS channel on Windows, UNIX and Linux systems,
WebSphere MQ uses a cryptography package called IBM Crypto for C (ICC). On the Windows, UNIX
and Linux platforms, the ICC software has passed the Federal Information Processing Standards (FIPS)
Cryptomodule Validation Program of the US National Institute of Standards and Technology, at level
140-2.

The FIPS 140-2 compliance of a WebSphere MQ SSL or TLS connection on Windows, UNIX and Linux
systems is as follows:

• For all IBM WebSphere MQ message channels (except CLNTCONN channel types), the connection is
FIPS-compliant if the following conditions are met:

– The installed GSKit ICC version has been certified FIPS 140-2 compliant on the installed operating
system version and hardware architecture.

– The queue manager's SSLFIPS attribute has been set to YES.
– All key repositories have been created and manipulated using only FIPS-compliant software, such as
runmqakm with the -fips option.

• For all IBM WebSphere MQ MQI client applications , the connection uses GSKit and is FIPS-compliant if
the following conditions are met:

– The installed GSKit ICC version has been certified FIPS 140-2 compliant on the installed operating
system version and hardware architecture.

– You have specified that only FIPS-certified cryptography is to be used, as described in the related
topic for the MQI client.

– All key repositories have been created and manipulated using only FIPS-compliant software, such as
runmqakm with the -fips option.

• For IBM WebSphere MQ classes for Java applications using client mode, the connection uses the JRE's
SSL and TLS implementations and is FIPS-compliant if the following conditions are met:

– The Java Runtime Environment used to run the application is FIPS-compliant on the installed
operating system version and hardware architecture.

– You have specified that only FIPS-certified cryptography is to be used, as described in the related
topic for the Java client.

– All key repositories have been created and manipulated using only FIPS-compliant software, such as
runmqakm with the -fips option.

• For IBM WebSphere MQ classes for JMS applications using client mode, the connection uses the JRE's
SSL and TLS implementations and is FIPS-compliant if the following conditions are met:

– The Java Runtime Environment used to run the application is FIPS-compliant on the installed
operating system version and hardware architecture.

– You have specified that only FIPS-certified cryptography is to be used, as described in the related
topic for the JMS client.

– All key repositories have been created and manipulated using only FIPS-compliant software, such as
runmqakm with the -fips option.

• For unmanaged .NET client applications, the connection uses GSKit and is FIPS-compliant if the
following conditions are met:

– The installed GSKit ICC version has been certified FIPS 140-2 compliant on the installed operating
system version and hardware architecture.

– You have specified that only FIPS-certified cryptography is to be used, as described in the related
topic for the .NET client.

– All key repositories have been created and manipulated using only FIPS-compliant software, such as
runmqakm with the -fips option.

26 Securing IBM WebSphere MQ

• For unmanaged XMS .NET client applications, the connection uses GSKit and is FIPS-compliant if the
following conditions are met:

– The installed GSKit ICC version has been certified FIPS 140-2 compliant on the installed operating
system version and hardware architecture.

– You have specified that only FIPS-certified cryptography is to be used, as described in the XMS .NET
documentation.

– All key repositories have been created and manipulated using only FIPS-compliant software, such as
runmqakm with the -fips option.

All supported AIX®, Linux, HP-UX, Solaris, Windows, and z/OS platforms are FIPS 140-2 certified except
as noted in the readme file included with each fix pack or refresh pack.

For SSL and TLS connections using GSKit, the component which is FIPS 140-2 certified is named ICC.
It is the version of this component which determines GSKit FIPS compliance on any given platform. To
determine the ICC version currently installed, run the dspmqver -p 64 -v command.

Here is an example extract of the dspmqver -p 64 -v output relating to ICC:
 ICC
 ============
@(#)CompanyName: IBM Corporation
@(#)LegalTrademarks: IBM
@(#)FileDescription: IBM Crypto for C-language
@(#)FileVersion: 8.0.0.0
@(#)LegalCopyright: Licensed Materials - Property of IBM
@(#) ICC
@(#) (C) Copyright IBM Corp. 2002, 2025.
@(#) All Rights Reserved. US Government Users
@(#) Restricted Rights - Use, duplication or disclosure
@(#) restricted by GSA ADP Schedule Contract with IBM Corp.
@(#)ProductName: icc_8.0 (GoldCoast Build) 100415
@(#)ProductVersion: 8.0.0.0
@(#)ProductInfo: 10/04/15.03:32:19.10/04/15.18:41:51
@(#)CMVCInfo:

The NIST certification statement for GSKit ICC 8 (included in GSKit 8) can be found at the following
address: Cryptographic Module Validation Program.

If cryptographic hardware is present, the cryptographic modules used by IBM WebSphere MQ can be
configured to be those provided by the hardware manufacturer. If this is done, the configuration is only
FIPS-compliant if those cryptographic modules are FIPS-certified.

Note: 32 bit Solaris x86 SSL and TLS clients configured for FIPS 140-2 compliant operation fail when
running on Intel systems. This failure occurs because the FIPS 140-2 compliant GSKit-Crypto Solaris x86
32 bit library file does not load on the Intel chipset. On affected systems, error AMQ9655 is reported
in the client error log. To resolve this issue, disable FIPS 140-2 compliance or recompile the client
application 64 bit, because 64 bit code is not affected.

Triple DES restrictions enforced when operating in compliance with FIPS 140-2
When WebSphere MQ is configured to operate in compliance with FIPS 140-2, additional restrictions are
enforced in relation to Triple DES (3DES) CipherSpecs. These restrictions enable compliance with the US
NIST SP800-67 recommendation.

1. All parts of the Triple DES key must be unique.
2. No part of the Triple DES key can be a Weak, Semi-Weak, or Possibly-Weak key according to the

definitions in NIST SP800-67.
3. No more than 32 GB of data can be transmitted over the connection before a secret key reset

must occur. By default, WebSphere MQ does not reset the secret session key so this reset must be
configured. Failure to enable secret key reset when using a Triple DES CipherSpec and FIPS 140-2
compliance results in the connection closing with error AMQ9288 after the maximum byte count is
exceeded. For information about how to configure secret key reset, see “Resetting SSL and TLS secret
keys” on page 216.

Security 27

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/1994

WebSphere MQ generates Triple DES session keys which already comply with rules 1 and 2. However, to
satisfy the third restriction you must enable secret key reset when using Triple DES CipherSpecs in a FIPS
140-2 configuration. Alternatively, you can avoid using Triple DES.

Related concepts
“Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client” on page 104
Create your key repositories using FIPS-compliant software, then specify that the channel must use
FIPS-certified CipherSpecs.
“Using iKeyman, iKeycmd, runmqakm, and runmqckm” on page 110
On UNIX, Linux and Windows systems, manage keys and digital certificates with the iKeyman GUI or from
the command line using iKeycmd or runmqakm.
Related tasks
Enabling SSL in WebSphere MQ classes for Java
Using Secure Sockets Layer (SSL) with WebSphere MQ classes for JMS
Related reference
SSL properties of JMS objects
Related information
“Federal Information Processing Standards” on page 19
The US government produces technical advice on IT systems and security, including data encryption.
The National Institute for Standards and Technology (NIST) is an important body concerned with IT
systems and security. NIST produces recommendations and standards, including the Federal Information
Processing Standards (FIPS).

SSL and TLS on the IBM WebSphere MQ MQI client
IBM WebSphere MQ supports SSL and TLS on clients. You can tailor the use of SSL or TLS in various ways.

IBM WebSphere MQ provides SSL and TLS support for IBM WebSphere MQ MQI clients on Windows,
UNIX and Linux systems. If you are using IBM WebSphere MQ classes for Java, see Using WebSphere
MQ classes for Java and if you are using IBM WebSphere MQ classes for JMS, see Using WebSphere MQ
classes for JMS. The rest of this section does not apply to the Java or JMS environments.

You can specify the key repository for an IBM WebSphere MQ MQI client either with the MQSSLKEYR
value in your IBM WebSphere MQ client configuration file, or when your application makes an MQCONNX
call. You have three options for specifying that a channel uses SSL:

• Using a channel definition table
• Using the SSL configuration options structure, MQSCO, on an MQCONNX call
• Using the Active Directory (on Windows systems)

You cannot use the MQSERVER environment variable to specify that a channel uses SSL.

You can continue to run your existing IBM WebSphere MQ MQI client applications without SSL, as long as
SSL is not specified at the other end of the channel.

If changes are made on a client machine to the contents of the SSL Key Repository, the location of the SSL
Key Repository, the Authentication Information, or the Cryptographic hardware parameters, you need to
end all the SSL connections in order to reflect these changes in the client-connection channels that the
application is using to connect to the queue manager. Once all the connections have ended, restart the
SSL channels. All the new SSL settings are used. These settings are analogous to those refreshed by the
REFRESH SECURITY TYPE(SSL) command on queue manager systems.

When your IBM WebSphere MQ MQI client runs on a Windows, UNIX and Linux system with cryptographic
hardware, you configure that hardware with the MQSSLCRYP environment variable. This variable is
equivalent to the SSLCRYP parameter on the ALTER QMGR MQSC command. Refer to ALTER QMGR for a
description of the SSLCRYP parameter on the ALTER QMGR MQSC command. If you use the GSK_PCS11
version of the SSLCRYP parameter, the PKCS #11 token label must be specified entirely in lower-case.

SSL secret key reset and FIPS are supported on IBM WebSphere MQ MQI clients. For more information,
see “Resetting SSL and TLS secret keys” on page 216 and “Federal Information Processing Standards
(FIPS) for UNIX, Linux, and Windows” on page 26.

28 Securing IBM WebSphere MQ

See “Setting up IBM WebSphere MQ MQI client security” on page 104 for more information about the SSL
support for IBM WebSphere MQ MQI clients.

Related tasks
Configuring a client using a configuration file

Specifying that an MQI channel uses SSL
For an MQI channel to use SSL, the value of the SSLCipherSpec attribute of the client-connection channel
must be the name of a CipherSpec that is supported by IBM WebSphere MQ on the client platform.

You can define a client-connection channel with a value for this attribute in the following ways. They are
listed in order of decreasing precedence.

1. When a PreConnect exit provides a channel definition structure to use.

A PreConnect exit can provide the name of a CipherSpec in the SSLCipherSpec field of a channel
definition structure, MQCD. This structure is returned in the ppMQCDArrayPtr field of the MQNXP exit
parameter structure used by the PreConnect exit.

2. When a WebSphere MQ MQI client application issues an MQCONNX call.

The application can specify the name of a CipherSpec in the SSLCipherSpec field of a channel definition
structure, MQCD. This structure is referenced by the connect options structure, MQCNO, which is a
parameter on the MQCONNX call.

3. Using a client channel definition table (CCDT).

One or more entries in a client channel definition table can specify the name of a CipherSpec. For
example, if you create an entry by using the DEFINE CHANNEL MQSC command, you can use the
SSLCIPH parameter on the command to specify the name of a CipherSpec.

4. Using Active Directory on Windows.

On Windows systems, you can use the setmqscp control command to publish the client-connection
channel definitions in Active Directory. One or more of these definitions can specify the name of a
CipherSpec.

For example, if a client application provides a client-connection channel definition in an MQCD structure
on an MQCONNX call, this definition is used in preference to any entries in a client channel definition table
that can be accessed by the WebSphere MQ client.

You cannot use the MQSERVER environment variable to provide the channel definition at the client end of
an MQI channel that uses SSL.

To check whether a client certificate has flowed, display the channel status at the server end of a channel
for the presence of a peer name parameter value.

Related concepts
“Specifying a CipherSpec for an IBM WebSphere MQ MQI client” on page 215
You have three options for specifying a CipherSpec for an IBM WebSphere MQ MQI client.

CipherSpecs and CipherSuites in IBM WebSphere MQ
IBM WebSphere MQ supports both SSL and TLS CipherSpecs, and RSA and Diffie-Hellman algorithms.

WebSphere MQ supports SSL V3 and TLS V1.0 and V1.2 CipherSpecs.

WebSphere MQ supports the RSA and Diffie-Hellman key exchange and authentication algorithms. The
size of the key used during the SSL handshake can depend on the digital certificate you use, but some
CipherSpecs include a specification of the handshake key size. Larger handshake key sizes provide
stronger authentication. With smaller key sizes, the handshake is faster.

Related concepts
“CipherSpecs and CipherSuites” on page 18

Security 29

Cryptographic security protocols must agree on the algorithms used by a secure connection. CipherSpecs
and CipherSuites define specific combinations of algorithms.

NSA Suite B Cryptography in IBM WebSphere MQ
This topic provides information about how to configure IBM WebSphere MQ on Windows, Linux, and UNIX
systems to conform to the Suite B compliant TLS 1.2 profile.

Over time, the NSA Cryptography Suite B Standard is updated to reflect new attacks against encryption
algorithms and protocols. For example, some CipherSpecs might cease to be Suite B certified. When
such changes occur, IBM WebSphere MQ is also updated to implement the latest standard. As a result,
you might see changes in behavior after applying maintenance. The IBM WebSphere MQ Version 7.5
readme file lists the version of Suite B enforced by each product maintenance level. If you configure IBM
WebSphere MQ to enforce Suite B compliance, always consult the readme file when planning to apply
maintenance (see IBM MQ, WebSphere MQ, and MQSeries product READMEs).

On Windows, UNIX, and Linux systems, IBM WebSphere MQ can be configured to conform to the Suite B
compliant TLS 1.2 profile at the security levels shown in Table 1.

Table 1. Suite B security levels with allowed CipherSpecs and digital signature algorithms

Security level Allowed CipherSpecs
Allowed digital signature
algorithms

128-bit ECDHE_ECDSA_AES_128_GCM_SHA256
ECDHE_ECDSA_AES_256_GCM_SHA384

ECDSA with SHA-256
ECDSA with SHA-384

192-bit ECDHE_ECDSA_AES_256_GCM_SHA384 ECDSA with SHA-384

Both 1
ECDHE_ECDSA_AES_128_GCM_SHA256
ECDHE_ECDSA_AES_256_GCM_SHA384

ECDSA with SHA-256
ECDSA with SHA-384

1. It is possible to configure both the 128-bit and 192-bit security levels concurrently. Since the Suite B
configuration determines the minimum acceptable cryptographic algorithms, configuring both security
levels is equivalent to configuring only the 128-bit security level. The cryptographic algorithms of the
192-bit security level are stronger than the minimum required for the 128-bit security level, so they
are permitted for the 128-bit security level even if the 192-bit security level is not enabled.

Note: The naming conventions used for the Security level do not necessarily represent the elliptic curve
size or the key size of the AES encryption algorithm.

CipherSpec conformation to Suite B
Although the default behavior of IBM WebSphere MQ is not to comply with the Suite B standard,
IBM WebSphere MQ can be configured to conform to either, or both security levels on Windows,
UNIX and Linux systems. Following the successful configuration of IBM WebSphere MQ to use
Suite B, any attempt to start an outbound channel using a CipherSpec not conforming to Suite
B results in the error AMQ9282. This activity also results in the MQI client returning the reason
code MQRC_CIPHER_SPEC_NOT_SUITE_B. Similarly, attempting to start an inbound channel using a
CipherSpec not conforming to the Suite B configuration results in the error AMQ9616.

For more information about WebSphere MQ CipherSpecs, see “Specifying CipherSpecs” on page 210

Suite B and digital certificates
Suite B restricts the digital signature algorithms which can be used to sign digital certificates. Suite B
also restricts the type of public key which certificates can contain. Therefore WebSphere MQ must be
configured to use certificates whose digital signature algorithm and public key type are allowed by the
configured Suite B security level of the remote partner. Digital certificates which do not comply with the
security level requirements are rejected and the connection fails with error AMQ9633 or AMQ9285.

30 Securing IBM WebSphere MQ

https://www.ibm.com/support/docview.wss?uid=swg27006097

For the 128-bit Suite B security level, the public key of the certificate subject is required to use either the
NIST P-256 elliptic curve or the NIST P-384 elliptic curve and to be signed with either the NIST P-256
elliptic curve or the NIST P-384 elliptic curve. At the 192-bit Suite B security level, the public key of the
certificate subject is required to use the NIST P-384 elliptic curve and to be signed with the NIST P-384
elliptic curve.

To obtain a certificate suitable for Suite B compliant operation, use the runmqakm command and specify
the -sig_alg parameter to request a suitable digital signature algorithm. The EC_ecdsa_with_SHA256
and EC_ecdsa_with_SHA384 -sig_alg parameter values correspond to elliptic curve keys signed by
the allowed Suite B digital signature algorithms.

For more information about the runmqakm command, see runmqckm and runmqakm options.

Note: The iKeycmd and iKeyman tools do not support the creation of digital certificates for Suite B
compliant operation.

Creating and requesting digital certificates
To create a self-signed digital certificate for Suite B testing, see “Creating a self-signed personal
certificate on UNIX, Linux, and Windows systems” on page 118

To request a CA-signed digital certificate for Suite B production use, see “Requesting a personal
certificate on UNIX, Linux, and Windows systems” on page 120.

Note: The certificate authority being used must generate digital certificates which satisfy the
requirements described in IETF RFC 6460.

FIPS 140-2 and Suite B
The Suite B standard is conceptually similar to FIPS 140-2, as it restricts the set of enabled cryptographic
algorithms in order to provide an assured level of security. The Suite B CipherSpecs currently supported
can be used when IBM WebSphere MQ is configured for FIPS 140-2 compliant operation. It is therefore
possible to configure WebSphere MQ for both FIPS and Suite B compliance simultaneously, in which case
both sets of restrictions apply.

The following diagram illustrates the relationship between these

subsets:

Configuring WebSphere MQ for Suite B compliant operation
For information about how to configure IBM WebSphere MQ on Windows, UNIX and Linux for Suite B
compliant operation, see “Configuring IBM WebSphere MQ for Suite B” on page 32.

IBM WebSphere MQ does not support Suite B compliant operation on the IBM i and z/OS platforms. The
WebSphere MQ Java and JMS clients also do not support Suite B compliant operation.

Related concepts
“Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client” on page 104

Security 31

Create your key repositories using FIPS-compliant software, then specify that the channel must use
FIPS-certified CipherSpecs.

Configuring IBM WebSphere MQ for Suite B
IBM WebSphere MQ can be configured to operate in compliance with the NSA Suite B standard on UNIX,
Linux, and Windows systems.

Suite B restricts the set of enabled cryptographic algorithms in order to provide an assured level of
security. IBM WebSphere MQ can be configured to operate in compliance with Suite B to provide an
enhanced level of security. For further information on Suite B, see “National Security Agency (NSA) Suite
B Cryptography” on page 20. For more information about Suite B configuration and its effect on SSL and
TLS channels, see “NSA Suite B Cryptography in IBM WebSphere MQ” on page 30.

Queue manager
For a queue manager, use the command ALTER QMGR with the parameter SUITEB to set the values
appropriate for your required level of security. For further information see ALTER QMGR.

You can also use the PCF MQCMD_CHANGE_Q_MGR command with the MQIA_SUITE_B_STRENGTH
parameter to configure the queue manager for Suite B compliant operation

MQI client
By default, MQI clients do not enforce Suite B compliance. You can enable the MQI client for Suite B
compliance by executing one of the options below:

1. By setting the EncryptionPolicySuiteB field in the MQSCO structure on an MQCONNX call to one
or more of the values below:

• MQ_SUITE_B_NONE
• MQ_SUITE_B_128_BIT
• MQ_SUITE_B_192_BIT

Using MQ_SUITE_B_NONE with any other value is invalid.
2. By setting the MQSUITEB environment variable to one or more of the values below:

• NONE
• 128_BIT
• 192_BIT

You can specify multiple values using a comma separated list. Using the value NONE with any other
value is invalid.

3. By setting the EncryptionPolicySuiteB attribute in the SSL stanza of the MQI client configuration
file to one or more of the values below:

• NONE
• 128_BIT
• 192_BIT

You can specify multiple values using a comma separated list. Using NONE with any other value is
invalid.

Note: The MQI client settings are listed in order of priority. The MSCO structure on the MQCONNX call
overrides the setting on the MQSUITEB environment variable, which overrides the attribute in the SSL
stanza.

For full details of the MQSCO structure, see MQSCO - SSL configuration options.

For more information about the use of Suite B in the client configuration file, see SSL stanza of the client
configuration file .

For further information on the use of the MQSUITEB environment variable, see Environment Variables.

32 Securing IBM WebSphere MQ

.NET
For .NET unmanaged clients, the property MQC.ENCRYPTION_POLICY_SUITE_B indicates the type of
Suite B security required.

For information about the using Suite B in IBM WebSphere MQ classes for .NET, see MQEnvironment .NET
class.

Certificate validation policies in IBM WebSphere MQ
The certificate validation policy determines how strictly the certificate chain validation conforms to
industry security standards.

The certificate validation policy depends upon the platform and environment as follows:

• For Java and JMS applications on all platforms, the certificate validation policy depends on the JSSE
component of the Java runtime environment. For more information about the certificate validation
policy, see the documentation for your JRE.

• For UNIX, Linux, and Windows systems, the certificate validation policy is supplied by GSKit and can be
configured. Two different certificate validation policies are supported:

– A legacy certificate validation policy, used for maximum backwards compatibility and interoperability
with old digital certificates that do not comply with the current IETF certificate validation standards.
This policy is known as the Basic policy.

– A strict, standards-compliant certificate validation policy which enforces the RFC 5280 standard. This
policy is known as the Standard policy.

For information about how to configure the certificate validation policy on UNIX, Linux, and Windows
systems, see “Configuring certificate validation policies in IBM WebSphere MQ” on page 33. For more
information about the differences between the Basic and Standard certificate validation policies, see
Certificate validation and trust policy design on UNIX, Linux and Windows systems .

Configuring certificate validation policies in IBM WebSphere MQ
You can specify which SSL/TLS certificate validation policy is used to validate digital certificates received
from remote partner systems in four ways.

On the queue manager, the certificate validation policy can be set in the following ways:

• Using the queue manager attribute CERTVPOL. For more information about setting this attribute, see
ALTER QMGR .

On the client, there are several methods that can be used to set the certificate validation policy. If more
than one method is used to set the policy, the client uses the settings in the following priority order:

1. Using the CertificateValPolicy field in the client MQSCO structure. For more information about using this
field, see MQSCO - SSL configuration options.

2. Using the client environment variable, MQCERTVPOL. For more information about using this variable,
see MQCERTVPOL .

3. Using the client SSL stanza tuning parameter setting, CertificateValPolicy. For more information about
using this setting, see SSL stanza of the client configuration file .

For more information about certificate validation policies, see “Certificate validation policies in IBM
WebSphere MQ” on page 33.

Digital certificates and CipherSpec compatibility in IBM WebSphere MQ
This topic provides information on how to choose appropriate CipherSpecs and digital certificates for
your security policy, by outlining the relationship between CipherSpecs and digital certificates in IBM
WebSphere MQ.

In previous releases of IBM WebSphere MQ, all supported SSL and TLS CipherSpecs used the RSA
algorithm for digital signatures and key agreement. All of the supported types of digital certificate were
compatible with all of the supported CipherSpecs, so it was possible to change the CipherSpec for any
channel without needing to change digital certificates.

Security 33

In IBM WebSphere MQ v7.5 only a subset of the supported CipherSpecs can be used with all of the
supported types of digital certificate. It is therefore necessary to choose an appropriate CipherSpec for
your digital certificate. Similarly, if your organization's security policy requires that you use a particular
CipherSpec then you must obtain an appropriate digital certificate for that CipherSpec.

The MD5 digital signature algorithm and TLS 1.2
Digital certificates signed using the MD5 algorithm are rejected when the TLS 1.2 protocol is used. This
is because the MD5 algorithm is now considered weak by many cryptographic analysts and its use is
generally discouraged. If you wish to use newer CipherSpecs based on the TLS 1.2 protocol, ensure
that the digital certificates do not use the MD5 algorithm in their digital signatures. Older CipherSpecs
which use the SSL 3.0 and TLS 1.0 protocols are not subject to this restriction and can continue to use
certificates with MD5 digital signatures.

To view the digital signature algorithm for a particular certificate, you can use the runmqakm command:

runmqakm -cert -details -db key.kdb -pw password -label cert_label

where cert_label is the certificate label of the digital signature algorithm you need to display.

Note: Although the iKeycmd (runmqckm) tool and the iKeyman (strmqikm) GUI can be used to
view a selection of digital signature algorithms, the runmqakm tool provides a wider range.

The execution of the runmqakm command will produce output displaying the use of the signature
algorithm specified:

Label : ibmwebspheremqexample
Key Size : 1024
Version : X509 V3
Serial : 4e4e93f1
Issuer : CN=Old Certificate Authority,OU=Test,O=Example,C=US
Subject : CN=Example Queue Manager,OU=Test,O=Example,C=US
Not Before : August 19, 2011 5:48:49 PM GMT+01:00
Not After : August 18, 2012 5:48:49 PM GMT+01:00
Public Key
 30 81 9F 30 0D 06 09 2A 86 48 86 F7 0D 01 01 01
 05 00 03 81 8D 00 30 81 89 02 81 81 00 98 5A 7A
 F0 18 21 EE E4 8A 6E DE C8 01 4B 3A 1E 41 90 3D
 CE 01 3F E6 32 30 6C 23 59 F0 FE 78 6D C2 80 EF
 BC 83 54 7A EB 60 80 62 6B F1 52 FE 51 9D C1 61
 80 A5 1C D4 F0 76 C7 15 6D 1F 0D 4D 31 3E DC C6
 A9 20 84 6E 14 A1 46 7D 4C F5 79 4D 37 54 0A 3B
 A9 74 ED E7 8B 0F 80 31 63 1A 0B 20 A5 99 EE 0A
 30 A6 B6 8F 03 97 F6 99 DB 6A 58 89 7F 27 34 DE
 55 08 29 D8 A9 6B 46 E6 02 17 C3 13 D3 02 03 01
 00 01
Public Key Type : RSA (1.2.840.113549.1.1.1)
Fingerprint : SHA1 :
 09 4E 4F F2 1B CB C1 F4 4F 15 C9 2A F7 32 0A 82
 DA 45 92 9F
Fingerprint : MD5 :
 44 54 81 7C 58 68 08 3A 5D 75 96 40 D5 8C 7A CB
Fingerprint : SHA256 :
 3B 47 C6 E7 7B B0 FF 85 34 E7 48 BE 11 F2 D4 35
 B7 9A 79 53 2B 07 F5 E7 65 E8 F7 84 E0 2E 82 55
Signature Algorithm : MD5WithRSASignature (1.2.840.113549.1.1.4)
Value
 3B B9 56 E6 F2 77 94 69 5B 3F 17 EA 7B 19 D0 A2
 D7 10 38 F1 88 A4 44 1B 92 35 6F 3B ED 99 9B 3A
 A5 A4 FC 72 25 5A A9 E3 B1 96 88 FC 1E 9F 9B F1
 C5 E8 8E CF C4 8F 48 7B 0E A6 BB 13 AE 2B BD D8
 63 2C 03 38 EF DC 01 E1 1F 7A 6F FB 2F 65 74 D0
 FD 99 94 BA B2 3A D5 B4 89 6C C1 2B 43 6D E2 39
 66 6A 65 CB C3 C4 E2 CC F5 49 39 A3 8B 93 5A DD
 B0 21 0B A8 B2 59 5B 24 59 50 44 89 DC 78 19 51
Trust Status : Enabled

The Signature Algorithm line shows that the MD5WithRSASignature algorithm is used. This
algorithm is based upon MD5 and so this digital certificate cannot be used with the TLS 1.2 CipherSpecs.

34 Securing IBM WebSphere MQ

Interoperability of Elliptic Curve and RSA CipherSpecs
Not all CipherSpecs can be used with all digital certificates. There are three types of CipherSpec, denoted
by the CipherSpec name prefix. Each type of CipherSpec imposes different restrictions upon the type
of digital certificate which may be used. These restrictions apply to all WebSphere MQ SSL and TLS
connections, but are particularly relevant to users of Elliptic Curve cryptography.

The relationships between CipherSpecs and digital certificates are summarized in the following table:

Table 2. Relationships between CipherSpecs and digital certificates

Type
CipherSpec
Name Prefix Description

Required
public key type

Digital
signature

encryption
algorithm

Secret key
establishment

method

1 ECDHE_ECDSA
_

CipherSpecs
which use

Elliptic Curve
public keys,

Elliptic Curve
secret keys,
and Elliptic

Curve digital
signature

algorithms.

Elliptic Curve ECDSA ECDHE

2 ECDHE_RSA_ CipherSpecs
which use RSA

public keys,
Elliptic Curve
secret keys,
and Elliptic

Curve digital
signature

algorithms.

RSA RSA ECDHE

3 (All others) CipherSpecs
which use RSA
public keys and

RSA digital
signature

algorithms.

RSA RSA RSA

Note: Type 1 and 2 CipherSpecs are only supported by WebSphere MQ queue managers and MQI clients
on the UNIX, Linux, and Windows platforms.

The required public key type column shows the type of public key which the personal certificate must
have when using each type of CipherSpec. The personal certificate is the end-entity certificate which
identifies the queue manager or client to its remote partner.

The digital signature encryption algorithm refers to the encryption algorithm used to validate the peer.
The encryption algorithm is used along with a hash algorithm such as MD5, SHA-1 or SHA-256 to
compute the digital signature. There are various digital signature algorithms which can be used, for
example "RSA with MD5" or "ECDSA with SHA-256". In the table, ECDSA refers to the set of digital
signature algorithms which use ECDSA; RSA refers to the set of digital signature algorithms which use
RSA. Any supported digital signature algorithm in the set may be used, provided it is based upon the
stated encryption algorithm.

Type 1 CipherSpecs require that the personal certificate must have an Elliptic Curve public key. When
these CipherSpecs are used, Elliptic Curve Diffie Hellman Ephemeral key agreement is used to establish
the secret key for the connection.

Security 35

Type 2 CipherSpecs require that the personal certificate has an RSA public key. When these CipherSpecs
are used, Elliptic Curve Diffie Hellman Ephemeral key agreement is used to establish the secret key for
the connection.

Type 3 CipherSpecs require that the the personal certificate must have an RSA public key. When these
CipherSpecs are used, RSA key exchange is used to establish the secret key for the connection.

This list of restrictions is not exhaustive: depending on the configuration, there might be additional
restrictions which can further affect the ability to interoperate. For example, if WebSphere MQ is
configured to comply with the FIPS 140-2 or NSA Suite B standards then this will also limit the range
of allowable configurations. Refer to the following section for more information.

A WebSphere MQ queue manager can only use a single personal certificate to identify itself. This means
all channels on the queue manager will use the same digital certificate and therefore each queue manager
may only use one type of CipherSpec at a time. Similarly, a WebSphere MQ client application can only use
a single personal certificate to identify itself. This means that all SSL and TLS connections within a single
application process will use the same digital certificate and therefore each client application process may
only use one type of CipherSpec at a time.

The three types of CipherSpec do not interoperate directly: this is a limitation of the current SSL and TLS
standards. For example, suppose you have chosen to use the ECDHE_ECDSA_AES_128_CBC_SHA256
CipherSpec for a receiver channel named TO.QM1 on a queue manager named QM1.
ECDHE_ECDSA_AES_128_CBC_SHA256 is a Type 1 CipherSpec, so QM1 must have a personal certificate
with an Elliptic Curve key and an ECDSA-based digital signature. All clients and other queue managers
which communicate directly with QM1 must therefore have digital certificates which satisfy the Type 1
CipherSpec requirements. Other channels connecting to queue manager QM1 may use other CipherSpecs
(for example ECDHE_ECDSA_3DES_EDE_CBC_SHA256), but they may only use Type 1 CipherSpecs to
communicate with QM1.

When planning your WebSphere MQ networks, consider carefully which channels require SSL or TLS and
ensure that all of the clients and queue managers which need to interoperate use the same type of
CipherSpecs and appropriate digital certificates. The IETF standards RFC 4492, RFC 5246 and RFC 6460
describe the detailed usage of Elliptic Curve CipherSpecs in TLS 1.2.

To view the digital signature algorithm and public key type for a digital certificate you can use the
runmqakm command:

runmqakm -cert -details -db key.kdb -pw password -label cert_label

where cert_label is the label of the certificate whose digital signature algorithm you need to display.

The execution of the runmqakm command will produce output displaying the Public Key Type:

Label : ibmwebspheremqexample
Key Size : 384
Version : X509 V3
Serial : 9ad5eeef5d756f41
Issuer : CN=Example Certificate Authority,OU=Test,O=Example,C=US
Subject : CN=Example Queue Manager,OU=Test,O=Example,C=US
Not Before : 21 August 2011 13:10:24 GMT+01:00
Not After : 21 August 2012 13:10:24 GMT+01:00
Public Key
 30 76 30 10 06 07 2A 86 48 CE 3D 02 01 06 05 2B
 81 04 00 22 03 62 00 04 3E 6F A9 06 B6 C3 A0 11
 F8 D6 22 78 FE EF 0A FE 34 52 C0 8E AB 5E 81 73
 D0 97 3B AB D6 80 08 E7 31 E9 18 3F 6B DE 06 A7
 15 D6 9D 5B 6F 56 3B 7F 72 BB 6F 1E C9 45 1C 46
 60 BE F2 DC 1B AD AC EC 64 4C 0E 06 65 6E ED 93
 B8 F5 95 E0 F9 2A 05 D6 21 02 BD FB 06 63 A1 CC
 66 C6 8A 0A 5C 3F F7 D3
Public Key Type : EC_ecPublicKey (1.2.840.10045.2.1)
Fingerprint : SHA1 :
 3C 34 58 04 5B 63 5F 5C C9 7A E7 67 08 2B 84 43
 3D 43 7A 79
Fingerprint : MD5 :
 49 13 13 E1 B2 AC 18 9A 31 41 DC 8C B4 D6 06 68
Fingerprint : SHA256 :
 6F 76 78 68 F3 70 F1 53 CE 39 31 D9 05 C5 C5 9F
 F2 B8 EE 21 49 16 1D 90 64 6D AC EB 0C A7 74 17
Signature Algorithm : EC_ecdsa_with_SHA384 (1.2.840.10045.4.3.3)

36 Securing IBM WebSphere MQ

Value
 30 65 02 30 0A B0 2F 72 39 9E 24 5A 22 FE AC 95
 0D 0C 6D 6C 2F B3 E7 81 F6 C1 36 1B 9A B0 6F 07
 59 2A A1 4C 02 13 7E DD 06 D6 FE 4B E4 03 BC B1
 AC 49 54 1E 02 31 00 90 0E 46 2B 04 37 EE 2C 5F
 1B 9C 69 E5 99 60 84 84 10 71 1A DA 63 88 33 E2
 22 CC E6 1A 4E F4 61 CC 51 F9 EE A0 8E F4 DC B5
 0B B9 72 58 C3 C7 A4
Trust Status : Enabled

The Public Key Type line in this case shows that the certificate has an Elliptic Curve public key. The
Signature Algorithm line in this case shows that the EC_ecdsa_with_SHA384 algorithm is in use: this
is based upon the ECDSA algorithm. This certificate is therefore only suitable for use with Type 1
CipherSpecs.

You can also use the iKeycmd (runmqckm) tool with the same parameters. Also the iKeyman
(strmqikm) GUI can be used to view digital signature algorithms if you open the key repository and
double-click the label of the certificate. However, you are advised to use the runmqakm tool to view digital
certificates because it supports a wider range of algorithms.

Elliptic Curve CipherSpecs and NSA Suite B
When WebSphere MQ is configured to conform to the Suite B compliant TLS 1.2 profile, the permitted
CipherSpecs and digital signature algorithms are restricted as described in “NSA Suite B Cryptography
in IBM WebSphere MQ” on page 30. Additionally, the range of acceptable Elliptic Curve keys is reduced
according to the configured security levels.

At the 128-bit Suite B security level, the certificate subject's public key is required to use either the NIST
P-256 or NIST P-384 elliptic curve and to be signed with either the NIST P-256 elliptic curve or the NIST
P-384 elliptic curve. The runmqakm command can be used to request digital certificates for this security
level using a -sig_alg parameter of EC_ecdsa_with_SHA256, or EC_ecdsa_with_SHA384.

At the 192-bit Suite B security level, the certificate subject's public key is required to use the NIST P-384
elliptic curve and to be signed with the NIST P-384 elliptic curve. The runmqakm command can be used
to request digital certificates for this security level using a -sig_alg parameter of EC_ecdsa_with_SHA384.

The supported NIST elliptic curves are as follows:

Table 3. Supported NIST elliptic curves

NIST FIPS 186-3 curve name RFC 4492 curve name Elliptic Curve key size (bits)

P-256 secp256r1 256

P-384 secp384r1 384

P-521 secp521r1 521

Note: The NIST P-521 elliptic curve cannot be used for Suite B compliant operation.

Related concepts
“Specifying CipherSpecs” on page 210
Specify a CipherSpec by using the SSLCIPH parameter in either the DEFINE CHANNEL MQSC command
or the ALTER CHANNEL MQSC command.
“Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client” on page 104
Create your key repositories using FIPS-compliant software, then specify that the channel must use
FIPS-certified CipherSpecs.
“NSA Suite B Cryptography in IBM WebSphere MQ” on page 30
This topic provides information about how to configure IBM WebSphere MQ on Windows, Linux, and UNIX
systems to conform to the Suite B compliant TLS 1.2 profile.
“National Security Agency (NSA) Suite B Cryptography” on page 20

Security 37

The government of the Unites States of America produces technical advice on IT systems and security,
including data encryption. The US National Security Agency (NSA) recommends a set of interoperable
cryptographic algorithms in its Suite B standard.

CipherSpec values supported in IBM WebSphere MQ
The set of default CipherSpecs allows only the following values:

TLS 1.0

• TLS_RSA_WITH_AES_128_CBC_SHA
• TLS_RSA_WITH_AES_256_CBC_SHA

TLS 1.2

• ECDHE_ECDSA_AES_128_CBC_SHA256
• ECDHE_ECDSA_AES_256_CBC_SHA384
• ECDHE_ECDSA_AES_128_GCM_SHA256
• ECDHE_ECDSA_AES_256_GCM_SHA384
• ECDHE_RSA_AES_128_CBC_SHA256
• ECDHE_RSA_AES_256_CBC_SHA384
• ECDHE_RSA_AES_128_GCM_SHA256
• ECDHE_RSA_AES_256_GCM_SHA384
• TLS_RSA_WITH_AES_128_CBC_SHA256
• TLS_RSA_WITH_AES_256_CBC_SHA256
• TLS_RSA_WITH_AES_128_GCM_SHA256
• TLS_RSA_WITH_AES_256_GCM_SHA384

Enabling deprecated CipherSpecs
By default, you are not allowed to specify a deprecated CipherSpec on a channel definition. If you
attempt to specify a deprecated CipherSpec, you receive message AMQ9788 in the error log for the queue
manager.

It is possible for you to re-enable the deprecated CipherSpecs by editing the qm.ini file. Within the SSL
stanza of the qm.ini file, add the following line:

SSL:
AllowWeakCipherSpec=Yes

You can also re-enable one or more of the deprecated CipherSpecs at runtime on the server by setting the
environment variable AMQ_SSL_WEAK_CIPHER_ENABLE to any value. This environment variable enables
the CipherSpecs regardless of the value that is specified in the qm.ini file.

Channel authentication records
To exercise more precise control over the access granted to connecting systems at a channel level, you
can use channel authentication records.

You might find that clients attempt to connect to your queue manager using a blank user ID or a high-level
user ID that would allow the client to perform undesirable actions. You can block access to these clients
using channel authentication records. Alternatively, a client might assert a user ID that is valid on the
client platform but is unknown or of an invalid format on the server platform. You can use a channel
authentication record to map the asserted user ID to a valid user ID.

You might find a client application that connects to your queue manager and behaves badly in some way.
To protect the server from the issues this application is causing, it needs to be temporarily blocked using
the IP address the client application is on until such time as the firewall rules are updated or the client

38 Securing IBM WebSphere MQ

application is corrected. You can use a channel authentication record to block the IP address from which
the client application connects.

If you have set up an administration tool such as the IBM WebSphere MQ Explorer, and a channel for
that specific use, you might want to ensure that only specific client computers can use it. You can use a
channel authentication record to allow the channel to be used only from certain IP addresses.

If you are just getting started with some sample applications running as clients, see Preparing and
running the sample programs for an example of setting up the queue manager securely using channel
authentication records.

To get channel authentication records to control inbound channels, use the MQSC command ALTER QMGR
CHLAUTH(ENABLED).

CHLAUTH rules are applied for a channel MCA that is created in response to a new inbound connection.
For a channel MCA created in response to the channel being started locally, no CHLAUTH rules are applied.

Table 4. Where CHLAUTH rules are applied for different channel pairs

Channel type MCA where CHLAUTH rules are applied

SDR-RCVR RCVR

RQSTR-SVR (Started at SVR) RQSTR

RQSTR-SVR (Started at RQSTR) SVR

RQSTR-SDR (Started at SDR) RQSTR

RQSTR-SDR (Started at RQSTR) SDR for initial connection. RQSTR for callback
connection.

Channel authentication records can be created to perform the following functions:

• To block connections from specific IP addresses.
• To block connections from specific user IDs.
• To set an MCAUSER value to be used for any channel connecting from a specific IP address.
• To set an MCAUSER value to be used for any channel asserting a specific user ID.
• To set an MCAUSER value to be used for any channel having a specific SSL or TLS Distinguished Name

(DN).
• To set an MCAUSER value to be used for any channel connecting from a specific queue manager.
• To block connections claiming to be from a certain queue manager unless the connection is from a
specific IP address.

• To block connections presenting a certain SSL or TLS certificate unless the connection is from a specific
IP address.

These uses are explained further in the following sections.

You create, modify, or remove channel authentication records using the MQSC command SET CHLAUTH
or the PCF command Set Channel Authentication Record.

Note: Large numbers of channel authentication records can have a negative impact on a queue manager's
performance.

Blocking IP addresses
It is normally the role of a firewall to prevent access from certain IP addresses. However, there might be
occasions where you experience connection attempts from an IP address that should not have access to
your WebSphere MQ system and must temporarily block the address before the firewall can be updated.
These connection attempts might not even be coming from WebSphere MQ channels, but from other
socket applications that are misconfigured to target your WebSphere MQ listener. Block IP addresses

Security 39

by setting a channel authentication record of type BLOCKADDR. You can specify one or more single
addresses, ranges of addresses, or patterns including wildcards.

Whenever an inbound connection is refused because the IP address is blocked in this manner, an
event message MQRC_CHANNEL_BLOCKED with reason qualifier MQRQ_CHANNEL_BLOCKED_ADDRESS
is issued, provided that channel events are enabled and the queue manager is running. Additionally, the
connection is held open for 30 seconds prior to returning the error to ensure the listener is not flooded
with repeated attempts to connect that are blocked.

To block IP addresses only on specific channels, or to avoid the delay before the error is reported, set a
channel authentication record of type ADDRESSMAP with the USERSRC(NOACCESS) parameter.

Whenever an inbound connection is refused for this reason, an event message
MQRC_CHANNEL_BLOCKED with reason qualifier MQRQ_CHANNEL_BLOCKED_NOACCESS is issued,
provided that channel events are enabled and the queue manager is running.

See “Blocking specific IP addresses” on page 176 for an example.

Blocking user IDs
To prevent certain user IDs from connecting over a client channel, set a channel authentication record
of type BLOCKUSER. This type of channel authentication record applies only to client channels, not to
message channels. You can specify one or more individual user IDs to be blocked, but you cannot use
wildcards.

Whenever an inbound connection is refused for this reason, an event message
MQRC_CHANNEL_BLOCKED with reason qualifier MQRQ_CHANNEL_BLOCKED_USERID is issued,
provided that channel events are enabled.

See “Blocking specific user IDs” on page 177 for an example.

You can also block any access for specified user IDs on certain channels by setting a channel
authentication record of type USERMAP with the USERSRC(NOACCESS) parameter.

Whenever an inbound connection is refused for this reason, an event message
MQRC_CHANNEL_BLOCKED with reason qualifier MQRQ_CHANNEL_BLOCKED_NOACCESS is issued,
provided that channel events are enabled and the queue manager is running.

See “Blocking access for a client asserted user ID” on page 180 for an example.

Blocking queue manager names
To specify that any channel connecting from a specified queue manager is to have no access, set a
channel authentication record of type QMGRMAP with the USERSRC(NOACCESS) parameter. You can
specify a single queue manager name or a pattern including wildcards. There is no equivalent of the
BLOCKUSER function to block access from queue managers.

Whenever an inbound connection is refused for this reason, an event message
MQRC_CHANNEL_BLOCKED with reason qualifier MQRQ_CHANNEL_BLOCKED_NOACCESS is issued,
provided that channel events are enabled and the queue manager is running.

See “Blocking access from a remote queue manager” on page 180 for an example.

Blocking SSL or TLS DNs
To specify that any user presenting an SSL or TLS personal certificate containing a specified DN is to
have no access, set a channel authentication record of type SSLPEERMAP with the USERSRC(NOACCESS)
parameter. You can specify a single distinguished name or a pattern including wildcards. There is no
equivalent of the BLOCKUSER function to block access for DNs.

Whenever an inbound connection is refused for this reason, an event message
MQRC_CHANNEL_BLOCKED with reason qualifier MQRQ_CHANNEL_BLOCKED_NOACCESS is issued,
provided that channel events are enabled and the queue manager is running.

See “Blocking access for an SSL Distinguished Name” on page 181 for an example.

40 Securing IBM WebSphere MQ

Mapping IP addresses to user IDs to be used
To specify that any channel connecting from a specified IP address is to use a specific MCAUSER, set
a channel authentication record of type ADDRESSMAP. You can specify a single address, a range of
addresses, or a pattern including wildcards.

If you use a port forwarder, DMZ session break, or any other setup which changes the IP address
presented to the queue manager, then mapping IP addresses is not necessarily suitable for your use.

See “Mapping an IP address to an MCAUSER user ID” on page 181 for an example.

Mapping queue manager names to user IDs to be used
To specify that any channel connecting from a specified queue manager is to use a specific MCAUSER, set
a channel authentication record of type QMGRMAP. You can specify a single queue manager name or a
pattern including wildcards.

See “Mapping a remote queue manager to an MCAUSER user ID” on page 178 for an example.

Mapping user IDs asserted by a client to user IDs to be used
To specify that if a certain user ID is used by a connection from a WebSphere MQ MQI client, a different,
specified MCAUSER is to be used, set a channel authentication record of type USERMAP. User ID mapping
does not use wildcards.

See “Mapping a client asserted user ID to an MCAUSER user ID” on page 179 for an example.

Mapping SSL or TLS DNs to user IDs to be used
To specify that any user presenting an SSL/TLS personal certificate containing a specified DN is to use
a specific MCAUSER, set a channel authentication record of type SSLPEERMAP. You can specify a single
distinguished name or a pattern including wildcards.

See “Mapping an SSL or TLS Distinguished Name to an MCAUSER user ID” on page 179 for an example.

Mapping queue managers, clients, or SSL or TLS DNs according to IP address
In some circumstances it might be possible for a third party to spoof a queue manager name. An SSL
or TLS certificate or key database file might also be stolen and reused. To protect against these threats,
you can specify that a connection from a certain queue manager or client, or using a certain DN must be
connecting from a specified IP address. Set a channel authentication record of type USERMAP, QMGRMAP
or SSLPEERMAP and specify the permitted IP address, or pattern of IP addresses, using the ADDRESS
parameter.

See “Mapping a remote queue manager to an MCAUSER user ID” on page 178 for an example.

Interaction between channel authentication records
It is possible that a channel attempting to make a connection matches more than one channel
authentication record, and that these have contradictory effects. For example, a channel might assert
a user ID which is blocked by a BLOCKUSER channel authentication record, but with an SSL or TLS
certificate that matches an SSLPEERMAP record that sets a different user ID. In addition, if channel
authentication records use wildcards, a single IP address, queue manager name, or SSL or TLS DN
might match several patterns. For example, the IP address 192.0.2.6 matches the patterns 192.0.2.0-24,
192.0.2.*, and 192.0.*.6. The action taken is determined as follows.

• The channel authentication record used is selected as follows:

– A channel authentication record explicitly matching the channel name takes priority over a channel
authentication record matching the channel name by using a wildcard.

– A channel authentication record using an SSL or TLS DN takes priority over a record using a user ID,
queue manager name, or IP address.

– A channel authentication record using a user ID or queue manager name takes priority over a record
using an IP address.

Security 41

• If a matching channel authentication record is found and it specifies an MCAUSER, this MCAUSER is
assigned to the channel.

• If a matching channel authentication record is found and it specifies that the channel has no access, an
MCAUSER value of *NOACCESS is assigned to the channel. This value can later be changed by a security
exit program.

• If no matching channel authentication record is found, or a matching channel authentication record is
found and it specifies that the user ID of the channel is to be used, the MCAUSER field is inspected.

– If the MCAUSER field is blank, the client user ID is assigned to the channel.
– If the MCAUSER field is not blank, it is assigned to the channel.

• Any security exit program is run. This exit program might set the channel user ID or determine that
access is to be blocked.

• If the connection is blocked or the MCAUSER is set to *NOACCESS, the channel ends.
• If the connection is not blocked, for any channel except a client channel, the channel user ID

determined in the previous steps is checked against the list of blocked users.

– If the user ID is in the list of blocked users, the channel ends.
– If the user ID is not in the list of blocked users, the channel runs.

Where a number of channel authentication records match a channel name, IP address, queue manager
name, or SSL or TLS DN, the most specific match is used. The match considered to be most specific is
determined as follows.

• For a channel name:

– The most specific match is a name without wildcards, for example A.B.C.
– The most generic match is a single asterisk (*), which matches all channel names.
– A pattern with an asterisk in the left-most position is more generic than a pattern with a defined value

in the left-most position. Thus *.B.C is more generic than A.*.
– A pattern with an asterisk in the second position is more generic than a pattern with a defined value

in the second position, and similarly for each subsequent position. Thus A.*.C is more generic than
A.B.*

– Where two or more patterns have an asterisk in the same position, the one with fewer nodes
following the asterisk is more generic. Thus A.* is more generic than A.*.C

• For an IP address:

– The most specific match is a name without wildcards, for example 192.0.2.6.
– The most generic match is a single asterisk (*), which matches all channel names.
– A pattern with an asterisk in the left-most position is more generic than a pattern with a defined value

in the left-most position. Thus *.0.2.6 is more generic than 192.*.
– A pattern with an asterisk in the second position is more generic than a pattern with a defined value

in the second position, and similarly for each subsequent position. Thus 192.*.2.6 is more generic
than 192.0.*.

– Where two or more patterns have an asterisk in the same position, the one with fewer nodes
following the asterisk is more generic. Thus 192.* is more generic than 192.*.2.*.

– A range indicated with a hyphen (-), is more specific than an asterisk. Thus 192.0.2.0-24 is more
specific than 192.0.2.*.

– A range that is a subset of another is more specific than the larger range. Thus 192.0.2.5-15 is more
specific than 192.0.2.0-24.

– Overlapping ranges are not permitted. For example, you cannot have channel authentication records
for both 192.0.2.0-15 and 192.0.2.10-20.

– A pattern cannot have fewer than the required number of parts, unless the pattern ends with a single
trailing asterisk. For example 192.0.2 is invalid, but 192.0.2.* is valid.

42 Securing IBM WebSphere MQ

– A trailing asterisk must be separated from the rest of the address by the appropriate part separator (a
dot (.) for IPv4, a colon (:) for IPv6). For example, 192.0* is not valid because the asterisk is not in a
part of its own.

– A pattern may contain additional asterisks provided that no asterisk is adjacent to the trailing
asterisk. For example, 192.*.2.* is valid, but 192.0.*.* is not valid.

– A IPv6 address pattern cannot contain a double colon and a trailing asterisk, because the
resulting address would be ambiguous. For example, 2001::* could expand to 2001:0000:*,
2001:0000:0000:* and so on

• For a queue manager name:

– The most specific match is a name without wildcards, for example 192.0.2.6.
– The most generic match is a single asterisk (*), which matches all channel names.
– A pattern with an asterisk in the left-most position is more generic than a pattern with a defined value

in the left-most position. Thus *QUEUEMANAGER is more generic than QUEUEMANAGER*.
– A pattern with an asterisk in the second position is more generic than a pattern with a defined value

in the second position, and similarly for each subsequent position. Thus Q*MANAGER is more generic
than QUEUE*.

– Where two or more patterns have an asterisk in the same position, the one with fewer characters
following the asterisk is more generic. Thus Q* is more generic than Q*MGR.

• For an SSL or TLS Distinguished Name (DN), the precedence order of substrings is as follows:

Table 5. Precedence order of substrings

Order DN substring Name

1 SERIALNUMBER= Certificate serial number

2 MAIL= Email address

3 E= Email address (Deprecated in
preference to MAIL)

4 UID=, USERID= User identifier

5 CN= Common name

6 T= Title

7 OU= Organizational unit

8 DC= Domain component

9 O= Organization

10 STREET= Street / First line of address

11 L= Locality

12 ST=, SP=, S= State or province name

13 PC= Postal code / zip code

14 C= Country

15 UNSTRUCTUREDNAME= Host name

16 UNSTRUCTUREDADDRESS= IP address

17 DNQ= Distinguished name qualifier

Thus, if an SSL or TLS certificate is presented with a DN containing the substrings O=IBM and C=UK,
WebSphere MQ uses a channel authentication record for O=IBM in preference to one for C=UK, if both
are present.

Security 43

A DN can contain multiple OUs, which must be specified in hierarchical order with the large
organizational units specified first. If two DNs are equal in all respects except for their OU values,
the more specific DN is determined as follows:

1. If they have different numbers of OU attributes then the DN with the most OU values is more
specific. This is because the DN with more Organizational Units fully qualifies the DN in more detail
and provides more matching criteria. Even if its top-level OU is a wildcard (OU=*), the DN with more
OUs is still regarded as more specific overall.

2. If they have the same number of OU attributes then the corresponding pairs of OU values are
compared in sequence left-to-right, where the left-most OU is the highest-level (least specific),
according to the following rules.

a. An OU with no wildcard values is the most specific because it can only match exactly one string.
b. An OU with a single wildcard at either the beginning or end (for example, OU=ABC* or OU=*ABC)

is next most specific.
c. An OU with two wildcards for example, OU=*ABC*) is next most specific.
d. An OU consisting only of an asterisk (OU=*) is the least specific.

3. If the string comparison is tied between two attribute values of the same specificity then whichever
attribute string is longer is more specific.

4. If the string comparison is tied between two attribute values of the same specificity and length then
the result is determined by a case-insensitive string comparison of the portion of the DN excluding
any wildcards.

If two DNs are equal in all respects except for their DC values, the same matching rules apply as for
OUs except that in DC values the left-most DC is the lowest-level (most specific) and the comparison
ordering differs accordingly.

Displaying channel authentication records
To display channel authentication records, use the MQSC command DISPLAY CHLAUTH or the PCF
command Inquire Channel Authentication Records. You can choose to return all records that
match the supplied channel name, or you can choose an explicit match. The explicit match tells you which
channel authentication record would be used if a channel attempted to make a connection from a specific
IP address, from a specific queue manager or using a specific user ID, and, optionally, presenting an
SSL/TLS personal certificate containing a specified DN.
Related concepts
“Security for remote messaging” on page 54
This section deals with remote messaging aspects of security.

Message security in IBM WebSphere MQ
Message security in IBM WebSphere MQ infrastructure is provided by a separately licensed component
IBM WebSphere MQ Advanced Message Security.

IBM WebSphere MQ Advanced Message Security (AMS) expands IBM WebSphere MQ security services
to provide data signing and encryption at the message level. The expanded services guarantees that
message data has not been modified between when it is originally placed on a queue and when it is
retrieved. In addition, AMS verifies that a sender of message data is authorized to place signed messages
on a target queue.

Related concepts
“IBM WebSphere MQ Advanced Message Security” on page 260
IBM WebSphere MQ Advanced Message Security (AMS) is a separately licensed component of IBM
WebSphere MQ Advanced Message Security that provides a high level of protection for sensitive data

44 Securing IBM WebSphere MQ

flowing through the IBM WebSphere MQ Advanced Message Security network, while not impacting the
end applications.

Planning for your security requirements
This collection of topics explains what you need to consider when planning security in an IBM WebSphere
MQ environment.

You can use IBM WebSphere MQ for a wide variety of applications on a range of platforms. The
security requirements are likely to be different for each application. For some, security will be a critical
consideration.

WebSphere MQ provides a range of link-level security services, including support for the Secure Sockets
Layer (SSL) and Transport Layer Security (TLS).

You must consider certain aspects of security when implementing WebSphere. On UNIX, Linux and
Windows systems, if you ignore these aspects and do nothing, you cannot use WebSphere MQ.

Security considerations are described below.

Authority to administer WebSphere MQ
WebSphere MQ administrators need authority to:

• Issue commands to administer WebSphere MQ
• Use the IBM WebSphere MQ Explorer

For more information, see:

• “Authority to administer IBM WebSphere MQ on UNIX, Linux, and Windows systems” on page 190

Authority to work with WebSphere MQ objects
Applications can access the following WebSphere MQ objects by issuing MQI calls:

• Queue managers
• Queues
• Processes
• Namelists
• Topics

Applications can also use Programmable Command Format (PCF) commands to access these WebSphere
MQ objects, and to access channels and authentication information objects as well. These objects can
be protected by WebSphere MQ so that the user IDs associated with the applications need authority to
access them.

For more information, see “Authorization for applications to use IBM WebSphere MQ” on page 49.

Channel security
The user IDs associated with message channel agents (MCAs) need authority to access various
WebSphere MQ resources. For example, an MCA must be able to connect to a queue manager. If it is
a sending MCA, it must be able to open the transmission queue for the channel. If it is a receiving MCA,
it must be able to open destination queues. The user IDs associated with applications which need to
administer channels, channel initiators, and listeners need authority to use the relevant PCF commands.
However, most applications do not need such access.

For more information, see “Channel authorization” on page 66.

Security 45

Additional considerations
You need to consider the following aspects of security only if you are using certain WebSphere MQ
function or base product extensions:

• “Security for queue manager clusters” on page 75
• “Security for IBM WebSphere MQ Publish/Subscribe” on page 76
• “Security for IBM WebSphere MQ internet pass-thru” on page 77

Planning identification and authentication
Decide what user IDs to use, and how and at what levels you want to apply authentication controls.

You must decide how you will identify the users of your IBM WebSphere MQ applications, bearing in mind
that different operating systems support user IDs of different lengths. You can use channel authentication
records to map from one user ID to another, or to specify a user ID based on some attribute of the
connection. IBM WebSphere MQ channels using SSL or TLS use digital certificates as a mechanism for
identification and authentication. Each digital certificate has a subject distinguished name which can be
mapped onto specific identities using channel authentication records. Additionally, CA certificates in the
key repository determine which digital certificates may be used to authenticate to IBM WebSphere MQ.
For more information see:

• “Mapping a remote queue manager to an MCAUSER user ID” on page 178
• “Mapping a client asserted user ID to an MCAUSER user ID” on page 179
• “Mapping an SSL or TLS Distinguished Name to an MCAUSER user ID” on page 179
• “Mapping an IP address to an MCAUSER user ID” on page 181

Planning authentication for a client application
You can apply authentication controls at four levels: at the communications level, in security exits, with
channel authentication records, and in terms of the identification that is passed to a security exit.

There are four levels of security to consider. The diagram shows an IBM WebSphere MQ MQI client that
is connected to a server. Security is applied at four levels, as described in the following text. MCA is a
Message Channel Agent.

Figure 7. Security in a client/server connection

1. Communications level

46 Securing IBM WebSphere MQ

See arrow 1. To implement security at the communications level, use SSL or TLS. For more
information, see “Cryptographic security protocols: SSL and TLS” on page 14

2. Channel authentication records

See arrows 2 & 3. Authentication can be controlled by using the IP address or SSL/TLS distinguished
names at the security level. A user ID can also be blocked or an asserted user ID can be mapped to a
valid user ID. A full description is given in “Channel authentication records” on page 38.

3. Channel security exits

See arrow 2. The channel security exits for client to server communication can work in the same way
as for server to server communication. A protocol independent pair of exits can be written to provide
mutual authentication of both the client and the server. A full description is given in Channel security
exit programs.

4. Identification that is passed to a channel security exit

See arrow 3. In client to server communication, the channel security exits do not have to operate as a
pair. The exit on the IBM WebSphere MQ client side can be omitted. In this case, the user ID is placed
in the channel descriptor (MQCD) and the server-side security exit can alter it, if required.

Windows clients also send extra information to assist identification.

• The user ID that is passed to the server is the currently logged-on user ID on the client.
• The security ID of the currently logged-on user.

To assist identification on IBM WebSphere MQ client for HP Integrity NonStop Server, the client passes
the OSS Safeguard alias under which the client application is running. This ID is typically of the form
<PRIMARYGROUP>.<ALIAS>. If required, you can map this user ID to an alternative user ID on the
queue manager by using either channel authentication records or a security exit. For more information
about message exits, see “Identity mapping in message exits” on page 143. For more information
about defining channel authentication records, see “Mapping a client asserted user ID to an MCAUSER
user ID” on page 179.

The values of the user ID and, if available, the security ID, can be used by the server security exit to
establish the identity of the IBM WebSphere MQ MQI client.

User IDs
If the IBM WebSphere MQ MQI client is on Windows and the IBM WebSphere MQ server is also on
Windows and has access to the domain on which the client user ID is defined, IBM WebSphere MQ
supports user IDs of up to 20 characters. On UNIX and Linux platforms and configurations, the maximum
length is 12 characters.

A WebSphere MQ for Windows server does not support the connection of a Windows client if the client
is running under a user ID that contains the @ character, for example, abc@d. The return code to the
MQCONN call at the client is MQRC_NOT_AUTHORIZED.

However, you can specify the user ID using two @ characters, for example, abc@@d. Using the
id@domain format is the preferred practice, to ensure that the user ID is resolved in the correct domain
consistently; thus abc@@d@domain.

Note that UNKNOWN is a reserved user ID and the NOBODY user ID also have special meanings to
WebSphere MQ. Creating user IDs in the operating system called UNKNOWN or NOBODY could have
unintended results.

Although user IDs are used to authenticate, groups are used for authorization, except for Windows.

If you create service accounts, without paying attention to groups, and authorize all the user IDs
differently, every user can access the information of every other user.

Security 47

Planning authorization
Plan the users who will have administrative authority and plan how to authorize users of applications to
appropriately use IBM WebSphere MQ objects, including those connecting from an IBM WebSphere MQ
MQI client.

Individuals or applications must be granted access in order to use IBM WebSphere MQ. What access they
require depend on the roles they undertake and the tasks which they need to perform. Authorization in
IBM WebSphere MQ can be subdivided into two main categories:

• Authorization to perform administrative operations
• Authorization for applications to use IBM WebSphere MQ

Both classes of operation are controlled by the same component and an individual can be granted
authority to perform both categories of operation.

The following topics give further information about specific areas of authorization that you must consider:

Authority to administer IBM WebSphere MQ
IBM WebSphere MQ administrators need authority to perform various functions. This authority is obtained
in different ways on different platforms.

IBM WebSphere MQ administrators need authority to:

• Issue commands to administer IBM WebSphere MQ
• Use the IBM WebSphere MQ Explorer

For more information, see the topic appropriate to your operating system.

Authority to administer IBM WebSphere MQ on UNIX and Windows systems
An IBM WebSphere MQ administrator is a member of the mqm group. This group has access to all IBM
WebSphere MQ resources and can issue IBM WebSphere MQ control commands. An administrator can
grant specific authorities to other users.

To be an IBM WebSphere MQ administrator on UNIX and Windows systems, a user must be a member
of the mqm group. This group is created automatically when you install WebSphere MQ. To allow users
to issue control commands, you must add them to the mqm group. This includes the root user on UNIX
systems.

Users who are not member of the mqm group can be granted administrative privileges, but they are
not able to issue IBM WebSphere MQ control commands, and they are authorized to execute only the
commands for which they have been granted access.

Additionally, on Windows systems, the SYSTEM and Administrator accounts have full access to IBM
WebSphere MQ resources.

All members of the mqm group have access to all WebSphere MQ resources on the system, including
being able to administer any queue manager running on the system. This access can be revoked only by
removing a user from the mqm group. On Windows systems, members of the Administrators group also
have access to all WebSphere MQ resources.

Administrators can use the control command runmqsc to issue WebSphere MQ Script (MQSC) commands.
When runmqsc is used in indirect mode to send MQSC commands to a remote queue manager, each
MQSC command is encapsulated within an Escape PCF command. Administrators must have the required
authorities for the MQSC commands to be processed by the remote queue manager.

The WebSphere MQ Explorer issues PCF commands to perform administration tasks. Administrators
require no additional authorities to use the WebSphere MQ Explorer to administer a queue manager on
the local system. When the WebSphere MQ Explorer is used to administer a queue manager on another
system, administrators must have the required authorities for the PCF commands to be processed by the
remote queue manager.

48 Securing IBM WebSphere MQ

For more information about the authority checks carried out when PCF and MQSC commands are
processed, see the following topics:

• For commands that operate on queue managers, queues, channels, processes, namelists, and
authentication information objects, see “Authorization for applications to use IBM WebSphere MQ”
on page 49.

• For commands that operate on channels, channel initiators, listeners, and clusters, see Channel
security.

For more information about the authority you need to administer WebSphere MQ on UNIX and Windows
systems, see the related information.

Authorization for applications to use IBM WebSphere MQ
When applications access objects, the user IDs associated with the applications need appropriate
authority.

Applications can access the following IBM WebSphere MQ objects by issuing MQI calls:

• Queue managers
• Queues
• Processes
• Namelists
• Topics

Applications can also use PCF commands to administer IBM WebSphere MQ objects. When the PCF
command is processed, it uses the authority context of the user ID that put the PCF message.

Applications, in this context, include those written by users and vendors.

Applications that use IBM WebSphere MQ classes for Java, IBM WebSphere MQ classes for JMS,
IBM WebSphere MQ classes for .NET, or the Message Service Clients for C/C++ and .NET use the MQI
indirectly.

MCAs also issue MQI calls and the user IDs associated with the MCAs need authority to access these
WebSphere MQ objects. For more information about these user IDs and the authorities they require, see
“Channel authorization” on page 66.

When authority checks are performed
Authority checks are performed when an application attempts to access a queue manager, queue,
process, or namelist.

The checks are performed in the following circumstances:
When an application connects to a queue manager using an MQCONN or MQCONNX call

The queue manager asks the operating system for the user ID associated with the application. The
queue manager then checks that the user ID is authorized to connect to it and retains the user ID for
future checks.

Users do not have to sign on to IBM WebSphere MQ. IBM WebSphere MQ assumes that users are
signed on to the underlying operating system and are been authenticated by it.

When an application opens an IBM WebSphere MQ object using an MQOPEN or MQPUT1 call
All authority checks are performed when an object is opened, not when it is accessed later. For
example, authority checks are performed when an application opens a queue. They are not performed
when the application puts messages on the queue or gets messages from the queue.

When an application opens an object, it specifies the types of operation it needs to perform on the
object. For example, an application might open a queue to browse the messages on it, get messages
from it, but not to put messages on it. For each type of operation, the queue manager checks that the
user ID associated with the application has the authority to perform that operation.

Security 49

When an application opens a queue, the authority checks are performed against the object named
in the ObjectName field of the object descriptor. The ObjectName field is used on the MQOPEN or
MQPUT1 calls. If the object is an alias queue or a remote queue definition, the authority checks are
performed against the object itself. They are not performed on the queue to which the alias queue or
the remote queue definition resolves. This means that the user does not need permission to access it.
Limit the authority to create queues to privileged users. If you do not, users might bypass the normal
access control simply by creating an alias.

An application can reference a remote queue explicitly. It sets the ObjectName and
ObjectQMgrName fields in the object descriptor to the names of the remote queue and the remote
queue manager. The authority checks are performed against the transmission queue with the same
name as the remote queue manager. On UNIX, Linux, and Windows, a check is made against the
RQMNAME profile that matches the remote queue manager name, if clustering is being used. An
application can reference a cluster queue explicitly by setting the ObjectName field in the object
descriptor to the name of the cluster queue. The authority checks are performed against the cluster
transmission queue, SYSTEM.CLUSTER.TRANSMIT.QUEUE.

The authority to a dynamic queue is based on the model queue from which it is derived, but is not
necessarily the same; see note 1.

The user ID that the queue manager uses for the authority checks is obtained from the operating
system. The user ID is obtained when the application connects to the queue manager. A suitably
authorized application can issue an MQOPEN call specifying an alternative user ID; access control
checks are then made on the alternative user ID. Using an alternate user ID does not change the user
ID associated with the application, only the one used for access control checks.

When an application subscribes to a topic using an MQSUB call
When an application subscribes to a topic, it specifies the type of operation that it needs to perform. It
is either creating a subscription, altering an existing subscription, or resuming an existing subscription
without changing it. For each type of operation, the queue manager checks that the user ID that is
associated with the application has the authority to perform the operation.

When an application subscribes to a topic, the authority checks are performed against topic objects
that are found in the topic tree. The topic objects are at, or above, the point in the topic tree at which
the application subscribed. The authority checks might involve checks on more than one topic object.
The user ID that the queue manager uses for the authority checks is obtained from the operating
system. The user ID is obtained when the application connects to the queue manager.

The queue manager performs authority checks on subscriber queues but not on managed queues.

When an application deletes a permanent dynamic queue using an MQCLOSE call
The object handle specified on the MQCLOSE call is not necessarily the same one returned by the
MQOPEN call that created the permanent dynamic queue. If it is different, the queue manager checks
the user ID associated with the application that issued the MQCLOSE call. It checks that the user ID is
authorized to delete the queue.

When an application that closes a subscription to remove it did not create it, the appropriate authority
is required to remove it.

When a PCF command that operates on a WebSphere MQ object is processed by the command server
This rule includes the case where a PCF command operates on an authentication information object.

The user ID that is used for the authority checks is the one found in the UserIdentifier field in
the message descriptor of the PCF command. This user ID must have the required authorities on the
queue manager where the command is processed. The equivalent MQSC command encapsulated
within an Escape PCF command is treated in the same way. For more information about the
UserIdentifier field, and how it is set, see “Message context” on page 51.

50 Securing IBM WebSphere MQ

Alternate user authority
When an application opens an object or subscribes to a topic, the application can supply a user ID on the
MQOPEN, MQPUT1, or MQSUB call. It can ask the queue manager to use this user ID for authority checks
instead of the one associated with the application.

The application succeeds in opening the object only if both the following conditions are met:

• The user ID associated with the application has the authority to supply a different user ID for authority
checks. The application is said to have alternate user authority.

• The user ID supplied by the application has the authority to open the object for the types of operation
requested, or to subscribe to the topic.

Message context
Message context information allows the application that retrieves a message to find out about the
originator of the message. The information is held in fields in the message descriptor and the fields
are divided into three logical parts

These parts are as follows:
identity context

These fields contain information about the user of the application that put the message on the queue.
origin context

These fields contain information about the application itself and when the message was put on the
queue.

user context
These fields contain message properties that applications can use to select messages that the queue
manager should deliver.

When an application puts a message on a queue, the application can ask the queue manager to generate
the context information in the message. This is the default action. Alternatively, it can specify that the
context fields are to contain no information. The user ID associated with an application requires no
special authority to do either of these.

An application can set the identity context fields in a message, allowing the queue manager to generate
the origin context, or it can set all the context fields. An application can also pass the identity context
fields from a message it has retrieved to a message it is putting on a queue, or it can pass all the context
fields. However, the user ID associated with an application requires authority to set or pass context
information. An application specifies that it intends to set or pass context information when it opens the
queue on which it is about to put messages, and its authority is checked at this time.

Here is a brief description of each of the context fields:
Identity context

UserIdentifier
The user ID associated with the application that put the message. If the queue manager sets this
field, it is set to the user ID obtained from the operating system when the application connects to
the queue manager.

AccountingToken
Information that can be used to charge for the work done as a result of the message.

ApplIdentityData
If the user ID associated with an application has authority to set the identity context fields, or to
set all the context fields, the application can set this field to any value related to identity. If the
queue manager sets this field, it is set to blank.

Origin context
PutApplType

The type of the application that put the message; a CICS® transaction, for example.
PutApplName

The name of the application that put the message.

Security 51

PutDate
The date when the message was put.

PutTime
The time when the message was put.

ApplOriginData
If the user ID associated with an application has authority to set all the context fields, the
application can set this field to any value related to origin. If the queue manager sets this field, it is
set to blank.

User context

The following values are supported for MQINQMP or MQSETMP:
MQPD_USER _CONTEXT

The property is associated with the user context.

No special authorization is required to be able to set a property associated with the user context
using the MQSETMP call.

On a V7.0 or subsequent queue manager, a property associated with the user context is saved as
described for MQOO_SAVE_ALL_CONTEXT. An MQPUT with MQOO_PASS_ALL_CONTEXT specified
causes the property to be copied from the saved context into the new message.

MQPD_NO_CONTEXT

The property is not associated with a message context.

An unrecognized value is rejected with MQRC_PD_ERROR. The initial value of this field is
MQPD_NO_CONTEXT.

For a detailed description of each of the context fields, see MQMD - Message descriptor. For more
information about how to use message context, see Message context.

Authority to work with IBM WebSphere MQ objects on UNIX, Linux and Windows
systems
The authorization service component provided with IBM WebSphere MQ is called the object authority
manager (OAM). It provides access control via authentication and authorization checks.

1. Authentication.

The authentication check performed by the OAM provided with IBM WebSphere MQ is basic, and is
only performed in specific circumstances. It is not intended to meet the strict requirements expected
in a highly secure environment.

The OAM performs its authentication check when an application connects to a queue manager, and the
following conditions are true.

If an MQCSP structure has been supplied by the connecting application, and the AuthenticationType
attribute in the MQCSP structure is given the value MQCSP_AUTH_USER_ID_AND_PWD, then the
check is performed by the OAM in its MQZID_AUTHENTICATE_USER function. This is the check: the
user ID in the MQCSP structure is compared against the user ID in the IdentityContext (MQZIC), to
determine whether they match. If they do not match, the check fails.

This basic check is not intended to be a full authentication of the user. For example, there is no check
of the authenticity of the user by checking the password supplied in the MQCSP structure. Also, if the
application omits an MQCSP structure, then no check is performed.

If fuller authentication services are required in the queue manager via the authorization service
component, then the OAM provided with IBM WebSphere MQ does not offer this. You must write a new
authorization service component, or obtain one from a vendor.

2. Authorization.

The authorization checks are comprehensive, and are intended to meet most normal requirements.

52 Securing IBM WebSphere MQ

Authorization checks are performed when an application issues an MQI call to access a queue
manager, queue, process, topic, or namelist. They are also performed at other times, for example,
when a command is being performed by the Command Server.

On UNIX, Linux and Windows systems, the authorization service provides the access control when an
application issues an MQI call to access an IBM WebSphere MQ object that is a queue manager, queue,
process, topic, or namelist. This includes checks for alternative user authority and the authority to set or
pass context information.

On Windows, the OAM gives members of the Administrators group the authority to access all IBM
WebSphere MQ objects, even when UAC is enabled.

Additionally, on Windows systems, the SYSTEM account has full access to IBM WebSphere MQ resources.

The authorization service also provides authority checks when a PCF command operates on one of these
IBM WebSphere MQ objects or an authentication information object. The equivalent MQSC command
encapsulated within an Escape PCF command is treated in the same way.

The authorization service is an installable service, which means that it is implemented by one or more
installable service components. Each component is invoked using a documented interface. This enables
users and vendors to provide components to augment or replace those provided by the IBM WebSphere
MQ products.

The authorization service component provided with IBM WebSphere MQ is called the object authority
manager (OAM). The OAM is automatically enabled for each queue manager you create.

The OAM maintains an access control list (ACL) for each IBM WebSphere MQ object it is controlling access
to. On UNIX and Linux systems, only group IDs can appear in an ACL. This means that all members of
a group have the same authorities. On Windows systems, both user IDs and group IDs can appear in an
ACL. This means that authorities can be granted to individual users and groups.

A 12 character limitation applies to both the group and the user ID. UNIX platforms generally restrict
the length of a user ID to 12 characters. AIX and Linux have raised this limit but IBM WebSphere MQ
continues to observe a 12 character restriction on all UNIX platforms. If you use a user ID of greater than
12 characters, IBM WebSphere MQ replaces it with the value "UNKNOWN". Do not define a user ID with a
value of "UNKNOWN".

The OAM can authenticate a user and change appropriate identity context fields. You enable this by
specifying a connection security parameters structure (MQCSP) on an MQCONNX call. The structure is
passed to the OAM Authenticate User function (MQZ_AUTHENTICATE_USER), which sets appropriate
identity context fields. If an MQCONNX connection from an IBM WebSphere MQ client, the information in
the MQCSP is flowed to the queue manager to which the client is connecting over the client-connection
and server-connection channel. If security exits are defined on that channel, the MQCSP is passed into
each security exit and can be altered by the exit. Security exits can also create the MQCSP. For more
details of the use of security exits in this context, see Channel security exit programs.

On UNIX, Linux and Windows systems, the control command setmqaut grants and revokes authorities
and is used to maintain the ACLs. For example, the command:

setmqaut -m JUPITER -t queue -n MOON.EUROPA -g VOYAGER +browse +get

allows the members of the group VOYAGER to browse messages on the queue MOON.EUROPA that is
owned by the queue manager JUPITER. It allows the members to get messages from the queue as well.
To revoke these authorities later, enter the following command:

setmqaut -m JUPITER -t queue -n MOON.EUROPA -g VOYAGER -browse -get

The command:

setmqaut -m JUPITER -t queue -n MOON.* -g VOYAGER +put

allows the members of the group VOYAGER to put messages on any queue with a name that commences
with the characters MOON. . MOON.* is the name of a generic profile. A generic profile allows you to grant
authorities for a set of objects using a single setmqaut command.

Security 53

The control command dspmqaut is available to display the current authorities that a user or group has
for a specified object. The control command dmpmqaut is also available to display the current authorities
associated with generic profiles.

If you do not want any authority checks, for example, in a test environment, you can disable the OAM.

Using PCF to access OAM commands
On UNIX, Linux and Windows systems, you can use PCF commands to access OAM administration
commands.

The PCF commands and their equivalent OAM commands are as follows:

Table 6. PCF commands and their equivalent OAM commands

PCF command OAM command

Inquire Authority Records dmpmqaut

Inquire Entity Authority dspmqaut

Set Authority Record setmqaut

Delete Authority Record setmqaut with -remove option

The setmqaut and dmpmqaut commands are restricted to members of the mqm group. The equivalent
PCF commands can be executed by users in any group who have been granted dsp and chg authorities on
the queue manager.

For more information about using these commands, see Introduction to Programmable Command
Formats .

Security for remote messaging
This section deals with remote messaging aspects of security.

You must provide users with authority to use the IBM WebSphere MQ facilities. This is organized
according to actions to be taken with respect to objects and definitions. For example:

• Queue managers can be started and stopped by authorized users
• Applications must connect to the queue manager and have authority to use queues
• Message channels must be created and controlled by authorized users
• Objects are kept in libraries and access to these libraries can be restricted

The message channel agent at a remote site must check that the message being delivered originated from
a user with authority to do so at this remote site. In addition, as MCAs can be started remotely, it might be
necessary to verify that the remote processes trying to start your MCAs are authorized to do so. There are
four possible ways for you to deal with this:

1. Make appropriate use of the PutAuthority attribute of your RCVR, RQSTR, or CLUSRCVR channel
definition to control which user is used for authorization checks at the time incoming messages are put
to your queues. See the DEFINE CHANNEL command description in the MQSC Command Reference.

2. Implement channel authentication records to reject unwanted connection attempts, or to set an
MCAUSER value based on the following: the remote IP address, the remote user ID, the SSL or TLS
Subject Distinguished Name (DN) provided, or the remote queue manager name.

3. Implement user exit security checking to ensure that the corresponding message channel is
authorized. The security of the installation hosting the corresponding channel ensures that all users
are properly authorized, so that you do not need to check individual messages.

4. Implement user exit message processing to ensure that individual messages are vetted for
authorization.

54 Securing IBM WebSphere MQ

Security of objects on UNIX and Linux systems
Administration users must be part of the mqm group on your system (including root) if this ID is going to
use IBM WebSphere MQ administration commands.

You should always run amqcrsta as the "mqm" user ID.

User IDs on UNIX and Linux systems
The queue manager converts all uppercase or mixed case user identifiers into lowercase. The queue
manager then inserts the user identifiers into the context part of a message, or checks their authorization.
Authorizations are therefore based only on lowercase identifiers.

Security of objects on Windows systems
Administration users must be part of both the mqm group and the administrators group on Windows
systems if this ID is going to use IBM WebSphere MQ administration commands.

User IDs on Windows systems
On Windows systems, if there is no message exit installed, the queue manager converts any uppercase
or mixed case user identifiers into lowercase. The queue manager then inserts the user identifiers into
the context part of a message, or checks their authorization. Authorizations are therefore based only on
lowercase identifiers.

User IDs across systems
Platforms other than Windows , UNIX and Linux systems use uppercase characters for user IDs in
messages.

To allow Windows, UNIX and Linux systems to use lowercase user IDs in messages, the following
conversions are carried out by the message channel agent (MCA) on these platforms:
At the sending end

The alphabetic characters in all user IDs are converted to uppercase characters, if there is no
message exit installed.

At the receiving end
The alphabetic characters in all user IDs are converted to lowercase characters, if there is no message
exit installed.

The automatic conversions are not carried out if you provide a message exit on UNIX, Linux and Windows
systems for any other reason.

Using a custom authorization service
IBM WebSphere MQ supplies an installable authorization service. You can choose to install an alternative
service.

The authorization service component supplied with IBM WebSphere MQ is called the Object Authority
Manager (OAM). If the OAM does not supply the authorization facilities you need, you can write your
own authorization service component. The installable service functions that must be implemented by an
authorization service component are described at Installable services interface reference information.

Access control for clients
Access control is based on user IDs. There can be many user IDs to administer, and user IDs can be
in different formats. You can set the server-connection channel property MCAUSER to a special user ID
value for use by clients.

Access control in IBM WebSphere MQ is based on user IDs. The user ID of the process making MQI
calls is normally used. For MQ MQI clients, the server-connection MCA makes MQI calls on behalf of MQ
MQI clients. You can select an alternative user ID for the server-connection MCA to use for making MQI
calls. The alternative user ID can be associated either with the client workstation, or with anything you
choose to organize and control the access of clients. The user ID needs to have the necessary authorities

Security 55

allocated to it on the server to issue MQI calls. Choosing an alternative user ID is preferable to allowing
clients to make MQI calls with the authority of the server-connection MCA.

Table 7. The user ID used by a server-connection channel

User ID When used

The user ID that is set by a security exit Used unless blocked by a CHLAUTH
TYPE(BLOCKUSER) rule. See the following section,
“Setting the user ID in a security exit” on page 56
for more information.

The user ID that is set by a CHLAUTH rule Used unless over-ridden by a security exit.
See Channel Authentication Records for more
information.

The user ID that is defined in the MCAUSER
attribute in the SVRCONN channel definition

Used unless over-ridden by a security exit or a
CHLAUTH rule.

The user ID that is flowed from the client machine Used when no used ID is set by any other means.

The user ID that started the server-connection
channel

Used when no user ID is set by any other means
and no client user ID is flowed. See the following
section, “The user ID that runs the channel
program” on page 57 for more information.

Because the server-connection MCA makes MQI calls on behalf of remote users, it is important to
consider the security implications of the server-connection MCA issuing MQI calls on behalf of remote
clients and how to administer the access of a potentially large number of users.

• One approach is for the server-connection MCA to issue MQI calls on its own authority. But beware, it is
normally undesirable for the server-connection MCA, with its powerful access capabilities, to issue MQI
calls on behalf of client users.

• Another approach is to use the user ID that flows from the client. The server-connection MCA can
issue MQI calls using the access capabilities of the client user ID. This approach presents a number of
questions to consider:

1. There are different formats for the user ID on different platforms. This sometimes causes problems if
the format of the user ID on the client differs from the acceptable formats on the server.

2. There are potentially many clients, with different, and changing user IDs. The IDs need to be defined
and managed on the server.

3. Is the user ID to be trusted? Any user ID can be flowed from a client, not necessarily the ID of the
logged on user. For example, the client might flow an ID with full mqm authority that was intentionally
only defined on the server for security reasons.

• The preferred approach is to define client identification tokens at the server, and so limit the capabilities
of client connected applications. This is typically done by setting the server-connection channel
property MCAUSER to a special user ID value to be used by clients, and defining few IDs for use by
clients with different level of authorization on the server.

Setting the user ID in a security exit
For IBM WebSphere MQ MQI clients, the process that issues the MQI calls is the server-connection
MCA. The user ID used by the server-connection MCA is contained in either the MCAUserIdentifier or
LongMCAUserIdentifier fields of the MQCD. The contents of these fields are set by:

• Any values set by security exits
• The user ID from the client
• MCAUSER (in the server-connection channel definition)

The security exit can override the values that are visible to it, when it is invoked.

56 Securing IBM WebSphere MQ

• If the server-connection channel MCAUSER attribute is set to nonblank, the MCAUSER value is used.
• If the server-connection channel MCAUSER attribute is blank, the user ID received from the client is

used.
• If the server-connection channel MCAUSER attribute is blank, and no user ID is received from the client

then the user ID that started the server-connection channel is used.

Ensure that the MCAUSER field is restricted to 12 characters on Windows platforms because any extra
characters will be truncated which might lead to authorization failures.

The IBM WebSphere MQ client does not flow the asserted user ID to the server when a client-side
security exit is in use.

The user ID that runs the channel program
When the user ID fields are derived from the user ID that started the server-connection channel, the
following value is used:

• For z/OS, the user ID assigned to the channel initiator started task by the z/OS started procedures table.
• For TCP/IP (non-z/OS), the user ID from the inetd.conf entry, or the user ID that started the listener.
• For SNA (non-z/OS), the user ID from the SNA Server entry or (if there is none) the incoming attach

request, or the user ID that started the listener.
• For NetBIOS or SPX, the user ID that started the listener.

If any server-connection channel definitions exist that have the MCAUSER attribute set to blank, clients
can use this channel definition to connect to the queue manager with access authority determined
by the user ID supplied by the client. This might be a security exposure if the system on which the
queue manager is running allows unauthorized network connections. The IBM WebSphere MQ default
server-connection channel (SYSTEM.DEF.SVRCONN) has the MCAUSER attribute set to blank. To prevent
unauthorized access, update the MCAUSER attribute of the default definition with a user ID that has no
access to IBM WebSphere MQ MQ objects.

Case of user IDs
When you define a channel with runmqsc, the MCAUSER attribute is changed to uppercase unless the
user ID is contained within single quotation marks.

For servers on UNIX, Linux and Windows systems, the content of the MCAUserIdentifier field that is
received from the client is changed to lowercase.

For servers on IBM i, the content of the LongMCAUserIdentifier field that is received from the client is
changed to uppercase.

For servers on UNIX and Linux systems, the content of the LongMCAUserIdentifier field that is
received from the client is changed to lowercase.

By default, the user ID that is passed when a MQ JMS binding application is used, is the user ID for the
JVM the application is running on.

It is also possible to pass a user ID via the createQueueConnection method.

Planning confidentiality
Plan how to keep your data confidential.

You can implement confidentiality at the application level or at link level. You might choose to use SSL or
TLS, in which case you must plan your usage of digital certificates. You can also use channel exit programs
if standard facilities do not satisfy your requirements.
Related concepts
“Comparing link level security and application level security” on page 58

Security 57

This topic contains information about various aspects of link level security and application level security,
and compares the two levels of security.
“Channel exit programs” on page 62
Channel exit programs are programs that are called at defined places in the processing sequence of an
MCA. Users and vendors can write their own channel exit programs. Some are supplied by IBM.
“Protecting channels with SSL” on page 68
SSL support in IBM WebSphere MQ uses the queue manager authentication information object, and
various MQSC commands. You must also consider your use of digital certificates.

Comparing link level security and application level security
This topic contains information about various aspects of link level security and application level security,
and compares the two levels of security.

Link level and application level security are illustrated in Figure 8 on page 58.

Figure 8. Link level security and application level security

Protecting messages in queues
Link level security can protect messages while they are transferred from one queue manager to another.
It is particularly important when messages are transmitted over an insecure network. It cannot, however,
protect messages while they are stored in queues at either a source queue manager, a destination queue
manager, or an intermediate queue manager.

Application level security, by comparison, can protect messages while they are stored in queues and
applies even when distributed queuing is not used. This is the major difference between link level security
and application level security and is illustrated in Figure 8 on page 58.

Queue managers not running in controlled and trusted environments
If a queue manager is running in a controlled and trusted environment, the access control mechanisms
provided by WebSphere MQ might be considered sufficient to protect the messages stored on its queues.
This is particularly true if only local queuing is involved and messages never leave the queue manager.
Application level security in this case might be considered unnecessary.

58 Securing IBM WebSphere MQ

Application level security might also be considered unnecessary if messages are transferred to another
queue manager that is also running in a controlled and trusted environment, or are received from such a
queue manager. The need for application level security becomes greater when messages are transferred
to, or received from, a queue manager that is not running in a controlled and trusted environment.

Differences in cost
Application level security might cost more than link level security in terms of administration and
performance.

The cost of administration is likely to be greater because there are potentially more constraints to
configure and maintain. For example, you might need to ensure that a particular user sends only certain
types of message and sends messages only to certain destinations. Conversely, you might need to ensure
that a particular user receives only certain types of message and receives messages only from certain
sources. Instead of managing the link level security services on a single message channel, you might
need to be configuring and maintaining rules for every pair of users who exchange messages across that
channel.

There might be an effect on performance if security services are invoked every time an application puts or
gets a message.

Organizations tend to consider link level security first because it might be easier to implement. They
consider application level security if they discover that link level security does not satisfy all their
requirements.

Availability of components
Generally, in a distributed environment, a security service requires a component on at least two systems.
For example, a message might be encrypted on one system and decrypted on another. This applies to
both link level security and application level security.

In a heterogeneous environment, with different platforms in use, each with different levels of security
function, the required components of a security service might not be available for every platform on which
they are needed and in a form that is easy to use. This is probably more of an issue for application level
security than for link level security, particularly if you intend to provide your own application level security
by buying in components from various sources.

Messages in a dead letter queue
If a message is protected by application level security, there might be a problem if, for any reason, the
message does not reach its destination and is put on a dead letter queue. If you cannot work out how
to process the message from the information in the message descriptor and the dead letter header, you
might need to inspect the contents of the application data. You cannot do this if the application data is
encrypted and only the intended recipient can decrypt it.

What application level security cannot do
Application level security is not a complete solution. Even if you implement application level security, you
might still require some link level security services. For example:

• When a channel starts, the mutual authentication of the two MCAs might still be a requirement. This can
be done only by a link level security service.

• Application level security cannot protect the transmission queue header, MQXQH, which includes the
embedded message descriptor. Nor can it protect the data in WebSphere MQ channel protocol flows
other than message data. Only link level security can provide this protection.

• If application level security services are invoked at the server end of an MQI channel, the services
cannot protect the parameters of MQI calls that are sent over the channel. In particular, the application
data in an MQPUT, MQPUT1, or MQGET call is unprotected. Only link level security can provide the
protection in this case.

Security 59

Link level security
Link level security refers to those security services that are invoked, directly or indirectly, by an MCA, the
communications subsystem, or a combination of the two working together.

Link level security is illustrated in Figure 8 on page 58.

Here are some examples of link level security services:

• The MCA at each end of a message channel can authenticate its partner. This is done when the channel
starts and a communications connection has been established, but before any messages start to flow.
If authentication fails at either end, the channel is closed and no messages are transferred. This is an
example of an identification and authentication service.

• A message can be encrypted at the sending end of a channel and decrypted at the receiving end. This is
an example of a confidentiality service.

• A message can be checked at the receiving end of a channel to determine whether its contents have
been deliberately modified while it was being transmitted over the network. This is an example of a data
integrity service.

Link level security provided by IBM WebSphere MQ
The primary means of provision of confidentiality and data integrity in IBM WebSphere MQ is by the use
of SSL or TLS. For more information about the use of SSL and TLS in IBM WebSphere MQ, see “IBM
WebSphere MQ support for SSL and TLS” on page 23. For authentication, IBM WebSphere MQ provides
the facility to use channel authentication records. Channel authentication records offer precise control
over the access granted to connecting systems, at the level of individual channels or groups of channels.
For more information, see “Channel authentication records” on page 38.

Providing your own link level security
This collection of topics describes how you can provide your own link level security services. Writing your
own channel exit programs is the main way to provide your own link level security services.

Channel exit programs are introduced in “Channel exit programs” on page 62. The same topic also
describes the channel exit program that is supplied with IBM WebSphere MQ for Windows (the SSPI
channel exit program). This channel exit program is supplied in source format so that you can modify the
source code to suit your requirements. If this channel exit program, or channel exit programs available
from other vendors, do not meet your requirements, you can design and write your own. This topic
suggests ways in which channel exit programs can provide security services. For information about how to
write a channel exit program, see Writing channel-exit programs.

Link level security using a security exit
Security exits normally work in pairs; one at each end of a channel. They are called immediately after the
initial data negotiation has completed on channel startup.

Security exits can be used to provide identification and authentication, access control, and confidentiality.

Link level security using a message exit
A message exit can be used only on a message channel, not on an MQI channel. It has access to both
the transmission queue header, MQXQH, which includes the embedded message descriptor, and the
application data in a message. It can modify the contents of the message and change its length.

A message exit can be used for any purpose that requires access to the whole message rather than a
portion of it.

Message exits can be used to provide identification and authentication, access control, confidentiality,
data integrity, and non-repudiation, and for reasons other than security.

Link level security using send and receive exits
Send and receive exits can be used on both message and MQI channels. They are called for all types of
data that flow on a channel, and for flows in both directions.

Send and receive exits have access to each transmission segment. They can modify its contents and
change its length.

60 Securing IBM WebSphere MQ

On a message channel, if an MCA needs to split a message and send it in more than one transmission
segment, a send exit is called for each transmission segment containing a portion of the message and,
at the receiving end, a receive exit is called for each transmission segment. The same occurs on an MQI
channel if the input or output parameters of an MQI call are too large to be sent in a single transmission
segment.

On an MQI channel, byte 10 of a transmission segment identifies the MQI call, and indicates whether
the transmission segment contains the input or output parameters of the call. Send and receive exits can
examine this byte to determine whether the MQI call contains application data that might need to be
protected.

When a send exit is called for the first time, to acquire and initialize any resources it needs, it can ask the
MCA to reserve a specified amount of space in the buffer that holds a transmission segment. When it is
called later to process a transmission segment, it can use this space to add an encrypted key or a digital
signature, for example. The corresponding receive exit at the other end of the channel can remove the
data added by the send exit, and use it to process the transmission segment.

Send and receive exits are best suited for purposes in which they do not need to understand the structure
of the data they are handling and can therefore treat each transmission segment as a binary object.

Send and receive exits can be used to provide confidentiality and data integrity, and for uses other than
security.

Related tasks
Identifying the API call in a send or receive exit program

Application level security
Application level security refers to those security services that are invoked at the interface between an
application and a queue manager to which it is connected.

These services are invoked when the application issues MQI calls to the queue manager. The services
might be invoked, directly or indirectly, by the application, the queue manager, another product that
supports WebSphere MQ, or a combination of any of these working together. Application level security is
illustrated in Figure 8 on page 58.

Application level security is also known as end-to-end security or message level security.

Here are some examples of application level security services:

• When an application puts a message on a queue, the message descriptor contains a user ID associated
with the application. However, there is no data present, such as an encrypted password, that can be
used to authenticate the user ID. A security service can add this data. When the message is eventually
retrieved by the receiving application, another component of the service can authenticate the user
ID using the data that has travelled with the message. This is an example of an identification and
authentication service.

• A message can be encrypted when it is put on a queue by an application and decrypted when it is
retrieved by the receiving application. This is an example of a confidentiality service.

• A message can be checked when it is retrieved by the receiving application. This check determines
whether its contents have been deliberately modified since it was first put on a queue by the sending
application. This is an example of a data integrity service.

Planning for Advanced Message Security
IBM WebSphere MQ Advanced Message Security (AMS) is a separately licensed component of IBM
WebSphere MQ that provides a high level of protection for sensitive data flowing through the IBM
WebSphere MQ network, while not impacting the end applications.

If you are moving highly sensitive or valuable information, especially confidential or payment-related
information such as patient records or credit card details, you must pay special attention to information
security. Ensuring that information moving around the enterprise retains its integrity and is protected
from unauthorized access is an ongoing challenge and responsibility. You are also likely to be required to
comply with security regulations, at the risk of penalties for non-compliance.

Security 61

You can develop your own security extensions to IBM WebSphere MQ. However, such solutions require
specialist skills and can be complicated and expensive to maintain. IBM WebSphere MQ Advanced
Message Security helps address these challenges when moving information around the enterprise
between virtually every type of commercial IT system.

IBM WebSphere MQ Advanced Message Security extends the security features of IBM WebSphere MQ in
the following ways:

• It provides application-level, end-to-end data protection for your point to point messaging
infrastructure, using either encryption or digital signing of messages.

• It provides comprehensive security without writing complex security code or modifying or recompiling
existing applications.

• It uses Public Key Infrastructure (PKI) technology to provide authentication, authorization,
confidentiality, and data integrity services for messages.

• It provides administration of security policies for mainframe and distributed servers.
• It supports both IBM WebSphere MQ servers and clients.
• It integrates with IBM WebSphere MQ Managed File Transfer to provide an end-to-end secure

messaging solution.

For more information, see “IBM WebSphere MQ Advanced Message Security” on page 260.

Providing your own application level security
This collection of topics describes how you can provide your own application level security services.

To help you implement application level security, IBM WebSphere MQ provides two exits, the API exit and
the API-crossing exit.

These exits can provide identification and authentication, access control, confidentiality, data integrity,
and non-repudiation services, and other functions not related to security.

If the API exit or API-crossing exit is not supported in your system environment, you might want to
consider other ways of providing your own application level security. One way is to develop a higher
level API that encapsulates the MQI. Programmers then use this API, instead of the MQI, to write IBM
WebSphere MQ applications.

The most common reasons for using a higher level API are:

• To hide the more advanced features of the MQI from programmers.
• To enforce standards in the use of the MQI.
• To add function to the MQI. This additional function can be security services.

Some vendor products use this technique to provide application level security for IBM WebSphere MQ.

If you are planning to provide security services in this way, note the following regarding data conversion:

• If a security token, such as a digital signature, has been added to the application data in a message, any
code performing data conversion must be aware of the presence of this token.

• A security token might have been derived from a binary image of the application data. Therefore, any
checking of the token must be done before converting the data.

• If the application data in a message has been encrypted, it must be decrypted before data conversion.

Channel exit programs
Channel exit programs are programs that are called at defined places in the processing sequence of an
MCA. Users and vendors can write their own channel exit programs. Some are supplied by IBM.

There are several types of channel exit program, but only four have a role in providing link level security:

• Security exit
• Message exit

62 Securing IBM WebSphere MQ

• Send exit
• Receive exit

These four types of channel exit program are illustrated in Figure 9 on page 63 and are described in the
following topics.

Figure 9. Security, message, send, and receive exits on a message channel

Related concepts
Channel-exit programs for messaging channels

Security exit overview
Security exits normally work in pairs. They are called before messages flow and their purpose is to allow
an MCA to authenticate its partner.

Security exits normally work in pairs; one at each end of a channel. They are called immediately after
the initial data negotiation has completed on channel startup, but before any messages start to flow. The
primary purpose of the security exit is to enable the MCA at each end of a channel to authenticate its
partner. However, there is nothing to prevent a security exit from performing other function, even function
that has nothing to do with security.

Security exits can communicate with each other by sending security messages. The format of a security
message is not defined and is determined by the user. One possible outcome of the exchange of security
messages is that one of the security exits might decide not to proceed any further. In that case, the
channel is closed and messages do not flow. If there is a security exit at only one end of a channel, the
exit is still called and can elect whether to continue or to close the channel.

Security exits can be called on both message and MQI channels. The name of a security exit is specified
as a parameter in the channel definition at each end of a channel.

For more information about security exits, see “Link level security using a security exit” on page 60.

Message exit
Message exits operate only on message channels and normally work in pairs. A message exit can operate
on the whole message and make various changes to it.

Message exits at the sending and receiving ends of a channel normally work in pairs. A message exit at
the sending end of a channel is called after the MCA has got a message from the transmission queue. At
the receiving end of a channel, a message exit is called before the MCA puts a message on its destination
queue.

Security 63

A message exit has access to both the transmission queue header, MQXQH, which includes the embedded
message descriptor, and the application data in a message. A message exit can modify the contents of the
message and change its length. A change of length might be the result of compressing, decompressing,
encrypting, or decrypting the message. It might also be the result of adding data to the message, or
removing data from it.

Message exits can be used for any purpose that requires access to the whole message, rather than a
portion of it, and not necessarily for security.

A message exit can determine that the message it is currently processing should not proceed any further
towards its destination. The MCA then puts the message on the dead letter queue. A message exit can
also close the channel.

Message exits can be called only on message channels, not on MQI channels. This is because the purpose
of an MQI channel is to enable the input and output parameters of MQI calls to flow between the IBM
WebSphere MQ MQI client application and the queue manager.

The name of a message exit is specified as a parameter in the channel definition at each end of a channel.
You can also specify a list of message exits to be run in succession.

For more information about message exits, see “Link level security using a message exit” on page 60.

Send and receive exits
Send and receive exits typically work in pairs. They operate on transmission segments and are best used
where the structure of the data they are processing is not relevant.

A send exit at one end of a channel and a receive exit at the other end normally work in pairs. A send exit is
called just before an MCA issues a communications send to send data over a communications connection.
A receive exit is called just after an MCA has regained control following a communications receive and has
received data from a communications connection. If sharing conversations is in use, over an MQI channel,
a different instance of a send and receive exit is called for each conversation.

The IBM WebSphere MQ channel protocol flows between two MCAs on a message channel contain control
information as well as message data. Similarly, on an MQI channel, the flows contain control information
as well as the parameters of MQI calls. Send and receive exits are called for all types of data.

Message data flows in only one direction on a message channel but, on an MQI channel, the input
parameters of an MQI call flow in one direction and the output parameters flow in the other. On both
message and MQI channels, control information flows in both directions. As a result, send and receive
exits can be called at both ends of a channel.

The unit of data that is transmitted in a single flow between two MCAs is called a transmission segment.
Send and receive exits have access to each transmission segment. They can modify its contents and
change its length. A send exit, however, must not change the first 8 bytes of a transmission segment.
These 8 bytes form part of the IBM WebSphere MQ channel protocol header. There are also restrictions
on how much a send exit can increase the length of a transmission segment. In particular, a send exit
cannot increase its length beyond the maximum that was negotiated between the two MCAs at channel
startup.

On a message channel, if a message is too large to be sent in a single transmission segment, the sending
MCA splits the message and sends it in more than one transmission segment. As a consequence, a send
exit is called for each transmission segment containing a portion of the message and, at the receiving end,
a receive exit is called for each transmission segment. The receiving MCA reconstitutes the message from
the transmission segments after they have been processed by the receive exit.

Similarly, on an MQI channel, the input or output parameters of an MQI call are sent in more than one
transmission segment if they are too large. This might occur, for example, on an MQPUT, MQPUT1, or
MQGET call if the application data is sufficiently large.

Taking these considerations into account, it is more appropriate to use send and receive exits for
purposes in which they do not need to understand the structure of the data they are handling and can
therefore treat each transmission segment as a binary object.

A send or a receive exit can close a channel.

64 Securing IBM WebSphere MQ

The names of a send exit and a receive exit are specified as parameters in the channel definition at each
end of a channel. You can also specify a list of send exits to be run in succession. Similarly, you can
specify a list of receive exits.

For more information about send and receive exits, see “Link level security using send and receive exits”
on page 60.

Planning data integrity
Plan how to preserve the integrity of your data.

You can implement data integrity at the application level or at link level.

At the application level, you might choose to use IBM WebSphere MQ Advanced Message Security to
digitally sign messages in order to protect against unauthorized modification. You can also use API exit
programs if standard facilities do not satisfy your requirements.

At the link level, you might choose to use SSL or TLS, in which case you must plan your usage of digital
certificates. You can also use channel exit programs if standard facilities do not satisfy your requirements.

Related concepts
“Protecting channels with SSL” on page 68
SSL support in IBM WebSphere MQ uses the queue manager authentication information object, and
various MQSC commands. You must also consider your use of digital certificates.
“Data integrity in IBM WebSphere MQ” on page 22
You can use a data integrity service to detect whether a message has been modified.
“Planning for Advanced Message Security” on page 61
IBM WebSphere MQ Advanced Message Security (AMS) is a separately licensed component of IBM
WebSphere MQ that provides a high level of protection for sensitive data flowing through the IBM
WebSphere MQ network, while not impacting the end applications.
Related reference
API exit reference
Channel-exit calls and data structures

Planning auditing
Decide what data you need to audit, and how you will capture and process audit information. Consider
how to check that your system is correctly configured.

There are several aspects to activity monitoring. The aspects you must consider are often defined by
auditor requirements, and these requirements are often driven by regulatory standards such as HIPAA
(Health Insurance Portability and Accountability Act) or SOX (Sarbanes-Oxley). IBM WebSphere MQ
provides features intended to help with compliance to such standards.

Consider whether you are interested only in exceptions or whether you are interested in all system
behavior.

Some aspects of auditing can also be considered as operational monitoring; one distinction for auditing is
that you are often looking at historic data, not just looking at real-time alerts. Monitoring is covered in the
section Monitoring and performance .

What data to audit
Consider what types of data or activity you need to audit, as described in the following sections:
Changes made to IBM WebSphere MQ using the IBM WebSphere MQ interfaces

Configure IBM WebSphere MQ to issue instrumentation events, specifically command events and
configuration events.

Changes made to IBM WebSphere MQ outside its control
Some changes can affect how IBM WebSphere MQ behaves, but cannot be directly monitored by
IBM WebSphere MQ. Examples of such changes include changes to the configuration files mqs.ini,

Security 65

qm.ini, and mqclient.ini, the creation and deletion of queue managers, installation of binary files
such as user exit programs, and changes to file permissions. To monitor these activities, you must use
tools running at the level of the operating system. Different tools are available and appropriate for
different operating systems. You might also have logs created by associated tools such as sudo.

Operational control of IBM WebSphere MQ
You might have to use operating system tools to audit activities such as the starting and stopping
of queue managers. In some cases, IBM WebSphere MQ can be configured to issue instrumentation
events.

Application activity within IBM WebSphere MQ
To audit the actions of applications, for example opening of queues and putting and getting of
messages, configure IBM WebSphere MQ to issue appropriate events.

Intruder alerts
To audit attempted breaches of security, configure your system to issue authorization events. Channel
events might also be useful to show activity, particularly if a channel ends unexpectedly.

Planning the capture, display, and archiving of audit data
Many of the elements you need are reported as IBM WebSphere MQ event messages. You must choose
tools that can read and format these messages. If you are interested in long-term storage and analysis
you must move them to an auxiliary storage mechanism such as a database. If you do not process these
messages, they remain on the event queue, possibly filling the queue. You might decide to implement a
tool that automatically takes action based on some events; for example, to issue an alert when a security
failure happens.

Verifying that your system is correctly configured
A set of tests are supplied with the IBM WebSphere MQ Explorer. Use these to check your object
definitions for problems.

Also, check periodically that the system configuration is as you expect. Although command and
configuration events can report when something is changed, it is also useful to dump the configuration
and compare it to a known good copy.

Planning security by topology
This section covers security in specific situations, namely for channels, queue manager clusters, publish/
subscribe and multicast applications, and when using a firewall.

See the following subtopics for more information:

Channel authorization
When you send or receive a message through a channel, you need a user ID that has access to various
IBM WebSphere MQ resources.

To receive messages at PUT time for MCAs, you can use either the user ID associated with the MCA, or the
user ID associated with the message.

At CONNECT time you can map the asserted user ID to an alternative user, by using CHLAUTH channel
authentication records.

In WebSphere MQ, channels can be protected by SSL or TLS support.

The user IDs associated with sending and receiving channels, excluding the sender channel where the
MCAUSER attribute is unused, require access to the following resources:

• The user ID associated with a sending channel requires access to the queue manager, the transmission
queue, the dead-letter queue, and access to any other resources that are required by channel exits.

• The MCAUSER user ID of a receiver channel needs +setall authority.

66 Securing IBM WebSphere MQ

The reason is that the receiver channel has to create the full MQMD, including all context fields, using
the data it received from the remote sender channel.

The queue manager therefore requires that the user performing this activity has the +setall authority.
This +setall authority must be granted to the user for:

– All queues that the receiver channel validly puts messages to.
– The queue manager object. See Authorizations for context for further information.

• The MCAUSER user ID of a receiver channel where the originator requested a COA report message
needs +passid authority on the transmission queue that returns the report message. Without this
authority, AMQ8077 error messages are logged.

• With the user ID associated with the receiving channel you can open the target queues to put messages
onto the queues.

This involves the Message queuing Interface (MQI), so additional access control checks might need
to be made if you are not using the WebSphere MQ Object Authority Manager (OAM). You can specify
whether the authorization checks are made against the user ID associated with the MCA (as described
in this topic), or against the user ID associated with the message (from the MQMD UserIdentifier field).

For the channel types to which it applies, the PUTAUT parameter of a channel definition specifies which
user ID is used for these checks.

– The channel defaults to using the queue manager's service account, that will have full administrative
rights and requires no special authorizations

In the case of server-connection channels, administrative connections are blocked by default by
CHLAUTH rules and require explicit provisioning.

Channels of type receiver, requester, and cluster-receiver allow local administration by any adjacent
queue manager, unless the administrator takes steps to restrict this access.

– If you use a user ID that lacks WebSphere administrative privileges, then you must grant dsp and
ctrlx authority for the channel to that user ID for the channel to work. The MCAUSER attribute is
unused for the SDR channel type.

– If you use the user ID associated with the message, it is likely that the user ID is from a remote
system.

This remote system user ID must be recognized by the target system. For example, issue the
following commands:

-setmqaut -m QMgrName -t qmgr -g GroupName +connect +inq +setall

-setmqaut -m QMgrName -t chl -n Profile -g GroupName +dsp +ctrlx

where Profile is a channel.

-setmqaut -m QMgrName -t q -n Profile -g GroupName +put +setall

where Profile is a dead-letter queue, if set.

-setmqaut -m QMgrName -t q -n Profile -g GroupName +put +setall

where Profile is a list of authorized queues.

Attention: Exercise caution when authorizing a user ID to place messages onto the Command
Queue or other sensitive system queues.

The user ID associated with the MCA depends on the type of MCA. There are two types of MCA:
Caller MCA

MCAs that initiate a channel. Caller MCAs can be started as individual processes, as threads of the
channel initiator, or as threads of a process pool. The user ID used is the user ID associated with the
parent process (the channel initiator), or the user ID associated with the process that starts the MCA.

Security 67

Responder MCA
Responder MCAs are MCAs that are started as a result of a request by a caller MCA. Responder MCAs
can be started as individual processes, as threads of the listener, or as threads of a process pool. The
user ID can be any one of the following types (in this order of preference):

1. On APPC, the caller MCA can indicate the user ID to be used for the responder MCA. This is called
the network user ID and applies only to channels started as individual processes. Set the network
user ID by using the USERID parameter of the channel definition.

2. If the USERID parameter is not used, the channel definition of the responder MCA can specify the
user ID that the MCA must use. Set the user ID by using the MCAUSER parameter of the channel
definition.

3. If the user ID has not been set by either of the previous (two) methods, the user ID of the process
that starts the MCA or the user ID of the parent process (the listener) is used.

Related concepts
“Channel authentication records” on page 38
To exercise more precise control over the access granted to connecting systems at a channel level, you
can use channel authentication records.
Channel authentication record properties

Protecting channel initiator definitions
Only members of the mqm group can manipulate channel initiators.

IBM WebSphere MQ channel initiators are not IBM WebSphere MQ objects; access to them is not
controlled by the OAM. IBM WebSphere MQ does not allow users or applications to manipulate these
objects, unless their user ID is a member of the mqm group. If you have an application that issues the
PCF command StartChannelInitiator, the user ID specified in the message descriptor of the PCF
message must be a member of the mqm group on the target queue manager.

A user ID must also be a member of the mqm group on the target machine to issue the equivalent MQSC
commands through the Escape PCF command or using runmqsc in indirect mode.

Transmission queues
Queue managers automatically put remote messages on a transmission queue; no special authority is
required for this.

However, if you need to put a message directly on a transmission queue, this requires special
authorization; see Table 10 on page 87.

Channel exits
If channel authentication records are not suitable, you can use channel exits for added security. A security
exit forms a secure connection between two security exit programs. One program is for the sending
message channel agent (MCA), and one is for the receiving MCA.

See “Channel exit programs” on page 62 for more information about channel exits.

Protecting channels with SSL
SSL support in IBM WebSphere MQ uses the queue manager authentication information object, and
various MQSC commands. You must also consider your use of digital certificates.

Commands and attributes for SSL support
The Secure Sockets Layer (SSL) protocol provides channel security, with protection against
eavesdropping, tampering, and impersonation. IBM WebSphere MQ support for SSL enables you to
specify, on the channel definition, that a particular channel uses SSL security. You can also specify details
of the type of security you want, such as the encryption algorithm you want to use.

The following MQSC commands support SSL:

68 Securing IBM WebSphere MQ

ALTER AUTHINFO
Modifies the attributes of an authentication information object.

DEFINE AUTHINFO
Creates an authentication information object.

DELETE AUTHINFO
Deletes an authentication information object.

DISPLAY AUTHINFO
Displays the attributes for a specific authentication information object.

The following queue manager parameters support SSL:
SSLCRLNL

The SSLCRLNL attribute specifies a namelist of authentication information objects which are used to
provide certificate revocation locations to allow enhanced TLS/SSL certificate checking.

SSLCRYP
On Windows, UNIX and Linux systems, sets the SSLCryptoHardware queue manager attribute. This
attribute is the name of the parameter string that you can use to configure the cryptographic hardware
you have on your system.

SSLEV
Determines whether an SSL event message is reported if a channel using SSL fails to establish an SSL
connection.

SSLFIPS
Specifies whether only FIPS-certified algorithms are to be used if cryptography is carried out in IBM
WebSphere MQ, rather than in cryptographic hardware. If cryptographic hardware is configured, the
cryptographic modules provided by the hardware product are used, and these might be FIPS-certified
to a particular level. This depends on the hardware product in use.

SSLKEYR
On Windows,UNIX and Linux systems, associates a key repository with a queue manager. The key
database is held in a GSKit key database. (The IBM Global Security Kit (GSKit) enables you to use SSL
security on Windows,UNIX and Linux systems.)

SSLRKEYC
The number of bytes to be sent and received within an SSL conversation before the secret key is
renegotiated. The number of bytes includes control information sent by the MCA.

The following channel parameters support SSL:
SSLCAUTH

Defines whether IBM WebSphere MQ requires and validates a certificate from the SSL client.
SSLCIPH

Specifies the encryption strength and function (CipherSpec), for example NULL_MD5 or
RC4_MD5_US. The CipherSpec must match at both ends of channel.

SSLPEER
Specifies the distinguished name (unique identifier) of allowed partners.

This section describes the setmqaut, dspmqaut, dmpmqaut, rcrmqobj, rcdmqimg, and dspmqfls
commands to support the authentication information object. It also describes the iKeycmd command for
managing certificates on UNIX and Linux systems, and the runmqakm tool for managing certificates on
UNIX, Linux and Windows systems. See the following sections:

• setmqaut
• dspmqaut
• dmpmqaut
• rcrmqobj
• rcdmqimg
• dspmqfls
• Managing keys and certificates

Security 69

For an overview of channel security using SSL, see

• “IBM WebSphere MQ support for SSL and TLS” on page 23

For details of MQSC commands associated with SSL, see

• ALTER AUTHINFO
• DEFINE AUTHINFO
• DELETE AUTHINFO
• DISPLAY AUTHINFO

For details of PCF commands associated with SSL, see

• Change, Copy, and Create Authentication Information Object
• Delete Authentication Information Object
• Inquire Authentication Information Object

Self-signed and CA-signed certificates
It is important to plan your use of digital certificates, both when you are developing and testing your
application, and for its use in production. You can use CA-signed certificates or self-signed certificates,
depending on the usage of your queue managers and client applications.

CA-signed certificates
For production systems, obtain your certificates from a trusted certificate authority (CA). When you
obtain a certificate from an external CA, you pay for the service.

Self-signed certificates
While you are developing your application you can use self-signed certificates or certificates issued by
a local CA, depending on platform:

On Windows, UNIX, and Linux systems, you can use self-
signed certificates. See “Creating a self-signed personal certificate on UNIX, Linux, and Windows
systems” on page 118 for instructions.

Self-signed certificates are not suitable for production use, for the following reasons:

• Self-signed certificates cannot be revoked, which might allow an attacker to spoof an identity after
a private key has been compromised. CAs can revoke a compromised certificate, which prevents its
further use. CA-signed certificates are therefore safer to use in a production environment, though
self-signed certificates are more convenient for a test system.

• Self-signed certificates never expire. This is both convenient and safe in a test environment, but in a
production environment it leaves them open to eventual security breaches. The risk is compounded by
the fact that self-signed certificates cannot be revoked.

• A self-signed certificate is used both as a personal certificate and as a root (or trust anchor) CA
certificate. A user with a self-signed personal certificate might be able to use it to sign other personal
certificates. In general, this is not true of personal certificates issued by a CA, and represents a
significant exposure.

CipherSpecs and digital certificates
Only a subset of the supported CipherSpecs can be used with all of the supported types of digital
certificate. It is therefore necessary to choose an appropriate CipherSpec for your digital certificate.
Similarly, if your organization's security policy requires that a particular CipherSpec be used, then you
must obtain a suitable digital certificate.

For more information on the relationship between CipherSpecs and digital certificates, refer to “Digital
certificates and CipherSpec compatibility in IBM WebSphere MQ” on page 33

70 Securing IBM WebSphere MQ

Certificate validation policies
The IETF RFC 5280 standard specifies a series of certificate validation rules which compliant application
software must implement in order to prevent impersonation attacks. A set of certificate validation rules
is known as a certificate validation policy. For more information about certificate validation policies in
WebSphere MQ, see “Certificate validation policies in IBM WebSphere MQ” on page 33.

SNA LU 6.2 security services
SNA LU 6.2 offers session level cryptography, session level authentication, and conversation level
authentication.

Note: This collection of topics assumes that you have a basic understanding of Systems Network
Architecture (SNA). The other documentation referred to in this section contains a brief introduction
to the relevant concepts and terminology. If you require a more comprehensive technical introduction to
SNA, see Systems Network Architecture Technical Overview, GC30-3073.

SNA LU 6.2 provides three security services:

• Session level cryptography
• Session level authentication
• Conversation level authentication

For session level cryptography and session level authentication, SNA uses the Data Encryption Standard
(DES) algorithm. The DES algorithm is a block cipher algorithm, which uses a symmetric key for encrypting
and decrypting data. Both the block and the key are 8 bytes in length.

Session level cryptography
Session level cryptography encrypts and decrypts session data using the DES algorithm. It can therefore
be used to provide a link level confidentiality service on SNA LU 6.2 channels.

Logical units (LUs) can provide mandatory (or required) data cryptography, selective data cryptography, or
no data cryptography.

On a mandatory cryptographic session, an LU encrypts all outbound data request units and decrypts all
inbound data request units.

On a selective cryptographic session, an LU encrypts only the data request units specified by the sending
transaction program (TP). The sending LU signals that the data is encrypted by setting an indicator in the
request header. By checking this indicator, the receiving LU can tell which request units to decrypt before
passing them on to the receiving TP.

In an SNA network, WebSphere MQ MCAs are transaction programs. MCAs do not request encryption
for any data that they send. Selective data cryptography is not an option therefore; only mandatory data
cryptography or no data cryptography is possible on a session.

For information about how to implement mandatory data cryptography, see the documentation for your
SNA subsystem. Refer to the same documentation for information about stronger forms of encryption that
might be available for use on your platform, such as Triple DES 24-byte encryption on z/OS.

For more general information about session level cryptography, see Systems Network Architecture LU 6.2
Reference: Peer Protocols, SC31-6808.

Session level authentication
Session level authentication is a session level security protocol that enables two LUs to authenticate each
other while they are activating a session. It is also known as LU-LU verification.

Because an LU is effectively the "gateway" into a system from the network, you might consider this
level of authentication to be sufficient in certain circumstances. For example, if your queue manager
needs to exchange messages with a remote queue manager that is running in a controlled and trusted
environment, you might be prepared to trust the identities of the remaining components of the remote
system after the LU has been authenticated.

Security 71

Session level authentication is achieved by each LU verifying its partner's password. The password is
called an LU-LU password because one password is established between each pair of LUs. The way that
an LU-LU password is established is implementation dependent and outside the scope of SNA.

Figure 10 on page 72 illustrates the flows for session level authentication.

Figure 10. Flows for session level authentication

The protocol for session level authentication is as follows. The numbers in the procedure correspond to
the numbers in Figure 10 on page 72.

1. The primary LU generates a random data value (RD1) and sends it to the secondary LU in the BIND
request.

2. When the secondary LU receives the BIND request with the random data, it encrypts the data using
the DES algorithm with its copy of the LU-LU password as the key. The secondary LU then generates a
second random data value (RD2) and sends it, with the encrypted data (ERD1), to the primary LU in the
BIND response.

3. When the primary LU receives the BIND response, it computes its own version of the encrypted data
from the random data it generated originally. It does this by using the DES algorithm with its copy of
the LU-LU password as the key. It then compares its version with the encrypted data that it received in
the BIND response. If the two values are the same, the primary LU knows that the secondary LU has
the same password as it does and the secondary LU is authenticated. If the two values do not match,
the primary LU terminates the session.

The primary LU then encrypts the random data that it received in the BIND response and sends the
encrypted data (ERD2) to the secondary LU in a Function Management Header 12 (FMH-12).

4. When the secondary LU receives the FMH-12, it computes its own version of the encrypted data from
the random data it generated. It then compares its version with the encrypted data that it received in

72 Securing IBM WebSphere MQ

the FMH-12. If the two values are the same, the primary LU is authenticated. If the two values do not
match, the secondary LU terminates the session.

In an enhanced version of the protocol, which provides better protection against man in the middle
attacks, the secondary LU computes a DES Message Authentication Code (MAC) from RD1, RD2, and the
fully qualified name of the secondary LU, using its copy of the LU-LU password as the key. The secondary
LU sends the MAC to the primary LU in the BIND response instead of ERD1.

The primary LU authenticates the secondary LU by computing its own version of the MAC, which it
compares with the MAC received in the BIND response. The primary LU then computes a second MAC
from RD1 and RD2, and sends the MAC to the secondary LU in the FMH-12 instead of ERD2.

The secondary LU authenticates the primary LU by computing its own version of the second MAC, which it
compares with the MAC received in the FMH-12.

For information about how to configure session level authentication, see the documentation for your
SNA subsystem. For more general information about session level authentication, see Systems Network
Architecture LU 6.2 Reference: Peer Protocols, SC31-6808.

Conversation level authentication
When a local TP attempts to allocate a conversation with a partner TP, the local LU sends an attach
request to the partner LU, asking it to attach the partner TP. Under certain circumstances, the attach
request can contain security information, which the partner LU can use to authenticate the local TP. This is
known as conversation level authentication, or end user verification.

The following topics describe how IBM WebSphere MQ provides support for conversation level
authentication.

For more information about conversation level authentication, see Systems Network Architecture LU
6.2 Reference: Peer Protocols, SC31-6808. For information specific to z/OS, see z/OS MVS Planning:
APPC/MVS Management, SA22-7599.

For more information about CPI-C, see Common Programming Interface Communications CPI-C
Specification, SC31-6180. For more information about APPC/MVS TP Conversation Callable Services, see
z/OS MVS Programming: Writing Transaction Programs for APPC/MVS, SA22-7621.

Support for conversation level authentication in IBM WebSphere MQ on UNIX systems, and Windows
systems
Use this topic to gain an overview of how conversation level authentication works, on UNIX, Linux, and
Windows.

The support for conversation level authentication in IBM WebSphere MQ for WebSphere MQ on UNIX
systems, and WebSphere MQ for Windows is illustrated in Figure 11 on page 74. The numbers in the
diagram correspond to the numbers in the description that follows.

Security 73

Figure 11. WebSphere MQ support for conversation level authentication

On IBM i, UNIX systems, and Windows systems, an MCA uses Common Programming Interface
Communications (CPI-C) calls to communicate with a partner MCA across an SNA network. In the channel
definition at the caller end of a channel, the value of the CONNAME parameter is a symbolic destination
name, which identifies a CPI-C side information entry (1). This entry specifies:

• The name of the partner LU
• The name of the partner TP, which is a responder MCA
• The name of the mode to be used for the conversation

A side information entry can also specify the following security information:

• A security type.

The commonly implemented security types are CM_SECURITY_NONE, CM_SECURITY_PROGRAM, and
CM_SECURITY_SAME, but others are defined in the CPI-C specification.

• A user ID.
• A password.

A caller MCA prepares to allocate a conversation with a responder MCA by issuing the CPI-C call CMINIT,
using the value of CONNAME as one of the parameters on the call. The CMINIT call identifies, for the
benefit of the local LU, the side information entry that the MCA intends to use for the conversation. The
local LU uses the values in this entry to initialize the characteristics of the conversation (2).

The caller MCA then checks the values of the USERID and PASSWORD parameters in the channel
definition (3). If USERID is set, the caller MCA issues the following CPI-C calls (4):

74 Securing IBM WebSphere MQ

• CMSCST, to set the security type for the conversation to CM_SECURITY_PROGRAM.
• CMSCSU, to set the user ID for the conversation to the value of USERID.
• CMSCSP, to set the password for the conversation to the value of PASSWORD. CMSCSP is not called

unless PASSWORD is set.

The security type, user ID, and password set by these calls override any values acquired previously from
the side information entry.

The caller MCA then issues the CPI-C call CMALLC to allocate the conversation (5). In response to this
call, the local LU sends an attach request (Function Management Header 5, or FMH-5) to the partner LU
(6).

If the partner LU will accept a user ID and a password, the values of USERID and PASSWORD are included
in the attach request. If the partner LU will not accept a user ID and a password, the values are not
included in the attach request. The local LU discovers whether the partner LU will accept a user ID and a
password as part of an exchange of information when the LUs bind to form a session.

In a later version of the attach request, a password substitute can flow between the LUs instead of a clear
password. A password substitute is a DES Message Authentication Code (MAC), or an SHA-1 message
digest, formed from the password. Password substitutes can be used only if both LUs support them.

When the partner LU receives an incoming attach request containing a user ID and a password, it might
use the user ID and password for the purposes of identification and authentication. By referring to access
control lists, the partner LU might also determine whether the user ID has the authority to allocate a
conversation and attach the responder MCA.

In addition, the responder MCA might run under the user ID included in the attach request. In this case,
the user ID becomes the default user ID for the responder MCA and is used for authority checks when the
MCA attempts to connect to the queue manager. It might also be used for authority checks subsequently
when the MCA attempts to access the queue manager's resources.

The way in which a user ID and a password in an attach request can be used for identification,
authentication, and access control is implementation dependent. For information specific to your SNA
subsystem, refer to the appropriate documentation.

If USERID is not set, the caller MCA does not call CMSCST, CMSCSU, and CMSCSP. In this case, the
security information that flows in an attach request is determined solely by what is specified in the side
information entry and what the partner LU will accept.

Security for queue manager clusters
Though queue manager clusters can be convenient to use, you must pay special attention to their
security.

A queue manager cluster is a network of queue managers that are logically associated in some way. A
queue manager that is a member of a cluster is called a cluster queue manager.

A queue that belongs to a cluster queue manager can be made known to other queue managers in the
cluster. Such a queue is called a cluster queue. Any queue manager in a cluster can send messages to
cluster queues without needing any of the following:

• An explicit remote queue definition for each cluster queue
• Explicitly defined channels to and from each remote queue manager
• A separate transmission queue for each outbound channel

You can create a cluster in which two or more queue managers are clones. This means that they have
instances of the same local queues, including any local queues declared as cluster queues, and can
support instances of the same server applications.

When an application connected to a cluster queue manager sends a message to a cluster queue that has
an instance on each of the cloned queue managers, IBM WebSphere MQ decides which queue manager
to send it to. When many applications send messages to the cluster queue, WebSphere MQ balances the
workload across each of the queue managers that have an instance of the queue. If one of the systems

Security 75

hosting a cloned queue manager fails, WebSphere MQ continues to balance the workload across the
remaining queue managers until the system that failed is restarted.

If you are using queue manager clusters, you need to consider the following security issues:

• Allowing only selected queue managers to send messages to your queue manager
• Allowing only selected users of a remote queue manager to send messages to a queue on your queue

manager
• Allowing applications connected to your queue manager to send messages only to selected remote

queues

These considerations are relevant even if you are not using clusters, but they become more important if
you are using clusters.

If an application can send messages to one cluster queue, it can send messages to any other cluster
queue without needing additional remote queue definitions, transmission queues, or channels. It
therefore becomes more important to consider whether you need to restrict access to the cluster queues
on your queue manager, and to restrict the cluster queues to which your applications can send messages.

There are some additional security considerations, which are relevant only if you are using queue
manager clusters:

• Allowing only selected queue managers to join a cluster
• Forcing unwanted queue managers to leave a cluster

For more information about all these considerations, see Keeping clusters secure.

Related tasks
“Preventing queue managers receiving messages” on page 240
You can prevent a cluster queue manager from receiving messages it is unauthorized to receive by using
exit programs.

Security for IBM WebSphere MQ Publish/Subscribe
There are additional security considerations if you are using IBM WebSphere MQ Publish/Subscribe.

In a publish/subscribe system, there are two types of application: publisher and subscriber. Publishers
supply information in the form of IBM WebSphere MQ messages. When a publisher publishes a message,
it specifies a topic, which identifies the subject of the information inside the message.

Subscribers are the consumers of the information that is published. A subscriber specifies the topics it is
interested in by subscribing to them.

The queue manager is an application supplied with IBM WebSphere MQ Publish/Subscribe. It receives
published messages from publishers and subscription requests from subscribers, and routes the
published messages to the subscribers. A subscriber is sent messages only on those topics to which
it has subscribed.

For more information, see Publish/subscribe security.

Multicast security
Use this information to understand why security processes might be needed with IBM WebSphere MQ
Multicast.

IBM WebSphere MQ Multicast does not have in-built security. Security checks are handled in the queue
manager at MQOPEN time and the MQMD field setting is handled by the client. Some applications in the
network might not be IBM WebSphere MQ applications (For example, LLM applications, see Multicast
interoperability with WebSphere MQ Low Latency Messaging for more information), therefore you might
need to implement your own security procedures because receiving applications cannot be certain of the
validity of context fields.

There are three security processes to consider:

76 Securing IBM WebSphere MQ

Access control

Access control in IBM WebSphere MQ is based on user IDs. For more information on this subject, see
“Access control for clients” on page 55.

Network security
An isolated network might be a viable security option to prevent fake messages. It is possible
for an application on the multicast group address to publish malicious messages using native
communication functions, which are indistinguishable from MQ messages because they come from
an application on the same multicast group address.

It is also possible for a client on the multicast group address to receive messages that were intended
for other clients on the same multicast group address.

Isolating the multicast network ensures that only valid clients and applications have access. This
security precaution can prevent malicious messages from coming in, and confidential information
from going out.

For information about multicast group network addresses, see: Setting the appropriate network for
multicast traffic

Digital signatures
A digital signature is formed by encrypting a representation of a message. The encryption uses the
private key of the signatory and, for efficiency, usually operates on a message digest rather than the
message itself. Digitally signing a message before an MQPUT is a good security precaution, but this
process might have a detrimental effect on performance if there is a large volume of messages.

Digital signatures vary with the data being signed. If two different messages are signed digitally by the
same entity, the two signatures differ, but both signatures can be verified with the same public key,
that is, the public key of the entity that signed the messages.

As mentioned previously in this section, it might be possible for an application on the multicast
group address to publish malicious messages using native communication functions, which are
indistinguishable from MQ messages. Digital signatures provide proof of origin, and only the sender
knows the private key, which provides strong evidence that the sender is the originator of the
message.

For more information on this subject, see “Cryptographic concepts” on page 7.

Firewalls and Internet pass-thru
You would normally use a firewall to prevent access from hostile IP addresses, for example in a Denial of
Service attack. However, you might need to temporarily block IP addresses within IBM WebSphere MQ,
perhaps while you wait for a security administrator to update the firewall rules.

To block one or more IP addresses, create a channel authentication record of type BLOCKADDR or
ADDRESSMAP. For more information, see “Blocking specific IP addresses” on page 176.

Security for IBM WebSphere MQ internet pass-thru
Internet pass-thru can simplify communication through a firewall, but this has security implications.

IBM WebSphere MQ internet pass-thru is a IBM WebSphere MQ base product extension that is supplied in
SupportPac MS81.

WebSphere MQ internet pass-thru enables two queue managers to exchange messages, or a WebSphere
MQ client application to connect to a queue manager, over the Internet without requiring a direct TCP/IP
connection. This is useful if a firewall prohibits a direct TCP/IP connection between two systems. It
makes the passage of WebSphere MQ channel protocol flows into and out of a firewall simpler and more
manageable by tunnelling the flows inside HTTP or by acting as a proxy. Using the Secure Sockets Layer
(SSL), it can also be used to encrypt and decrypt messages that are sent over the Internet.

When your WebSphere MQ system communicates with IPT, unless you are using SSLProxyMode in IPT,
ensure that the CipherSpec used by WebSphere MQ matches the CipherSuite used by IPT:

Security 77

• When IPT is acting as the SSL or TLS server and WebSphere MQ is connecting as the SSL or TLS client,
the CipherSpec used by WebSphere MQ must correspond to a CipherSuite that is enabled in the relevant
IPT key ring.

• When IPT is acting as the SSL or TLS client and is connecting to a WebSphere MQ SSL or TLS server, the
IPT CipherSuite must match the CipherSpec defined on the receiving WebSphere MQ channel.

If you migrate from IPT to the integrated WebSphere MQ SSL and TLS support, transfer the digital
certificates from IPT Using iKeyman.

For more information, see WebSphere MQ Internet Pass-Thru (SupportPac MS81).

Setting up security
This collection of topics contains information specific to different operating systems, and to the use of
clients.

Setting up security on UNIX, Linux, and Windows systems
Security considerations specific to UNIX, Linux, and Windows systems.

IBM WebSphere MQ queue managers transfer information that is potentially valuable, so you need to use
an authority system to ensure that unauthorized users cannot access your queue managers. Consider the
following types of security controls:
Who can administer IBM WebSphere MQ

You can define the set of users who can issue commands to administer IBM WebSphere MQ.
Who can use IBM WebSphere MQ objects

You can define which users (usually applications) can use MQI calls and PCF commands to do the
following:

• Who can connect to a queue manager.
• Who can access objects (queues, process definitions, namelists, channels, client connection

channels, listeners, services, and authentication information objects), and what type of access they
have to those objects.

• Who can access IBM WebSphere MQ messages.
• Who can access the context information associated with a message.

Channel security
You need to ensure that channels used to send messages to remote systems can access the required
resources.

You can use standard operating facilities to grant access to program libraries, MQI link libraries, and
commands. However, the directory containing queues and other queue manager data is private to IBM
WebSphere MQ; do not use standard operating system commands to grant or revoke authorizations to
MQI resources.

Connecting to IBM WebSphere MQ using Terminal Services
The Create global objects user right can cause problems if you are using Terminal Services.

If you are connecting to a Windows system by using Terminal Services and you have problems creating or
starting a queue manager, this might be because of the user right, Create global objects, in recent
versions of Windows.

The Create global objects user right limits the users authorized to create objects in the global
namespace. In order for an application to create a global object, it must either be running in the global
namespace, or the user under which the application is running must have the Create global objects
user right applied to it.

78 Securing IBM WebSphere MQ

Administrators have the Create global objects user right applied by default, so an administrator can
create and start queue managers when connected by using Terminal Services without altering the user
rights.

If the various methods of administering WebSphere MQ do no work when you use terminal services, try
setting the Create global objects user right:

1. Open the Administrative Tools panel:
Windows 2003 and Windows XP

Access this panel using Control Panel > Administrative Tools.
Windows Vista and Windows Server 2008

Access this panel using Control Panel > System and Maintenance > Administrative Tools.
2. Double-click Local Security Policy.
3. Expand Local Policies.
4. Click User Rights Assignment.
5. Add the new user or group to the Create global objects policy.

Creating and managing groups on Windows
These instructions lead you through the process of administering groups on a workstation or member
server machine.

For domain controllers, users and groups are administered through Active Directory. For more details on
using Active Directory refer to the appropriate operating system instructions.

Any changes you make to a principal's group membership are not recognized until the queue manager is
restarted, or you issue the MQSC command REFRESH SECURITY (or the PCF equivalent).

Use the Computer Management panel to work with user and groups. Any changes made to the current
logged on user might not be effective until the user logs in again.
Windows 2003 and Windows XP

Access this panel using Control Panel > Administrative Tools > Computer Management.
Windows Vista and Windows Server 2008

Access this panel using Control Panel > System and Maintenance > Administrative Tools >
Computer Management.

Windows 7
Access this panel using Administrative Tools > Computer Management

Creating a group on Windows
Create a group by using the control panel.

Procedure
1. Open the control panel
2. Double-click Administrative Tools.

The Administrative Tools panel opens.
3. Double-click Computer Management.

The Computer Management panel opens.
4. Expand Local Users and Groups.
5. Right-click Groups, and select New Group....

The New Group panel is displayed.
6. Type an appropriate name in the Group name field, then click Create.
7. Click Close.

Security 79

Adding a user to a group on Windows
Add a user to a group by using the control panel.

Procedure
1. Open the control panel
2. Double-click Administrative Tools.

The Administrative Tools panel opens.
3. Double-click Computer Management.

The Computer Management panel opens.
4. From the Computer Management panel, expand Local Users and Groups.
5. Select Users
6. Double-click the user that you want to add to a group.

The user properties panel is displayed.
7. Select the Member Of tab.
8. Select the group that you want to add the user to. If the group you want is not visible:

a) Click Add....
The Select Groups panel is displayed.

b) Click Locations....
The Locations panel is displayed.

c) Select the location of the group you want to add the user to from the list and click OK.
d) Type the group name in the field provided.

Alternatively, click Advanced... and then Find Now to list the groups available in the currently
selected location. From here, select the group you want to add the user to and click OK.

e) Click OK.
The user properties panel is displayed, showing the group you added.

f) Select the group.
9. Click OK.

The Computer Management panel is displayed.

Displaying who is in a group on Windows
Display the members of a group by using the control panel.

Procedure
1. Open the control panel
2. Double-click Administrative Tools.

The Administrative Tools panel opens.
3. Double-click Computer Management.

The Computer Management panel opens.
4. From the Computer Management panel, expand Local Users and Groups.
5. Select Groups.
6. Double-click a group. The group properties panel is displayed.

The group properties panel is displayed.

Results
The group members are displayed.

80 Securing IBM WebSphere MQ

Removing a user from a group on Windows
Remove a user from a group by using the control panel.

Procedure
1. Open the control panel
2. Double-click Administrative Tools.

The Administrative Tools panel opens.
3. Double-click Computer Management.

The Computer Management panel opens.
4. From the Computer Management panel, expand Local Users and Groups.
5. Select Users.
6. Double-click the user that you want to add to a group.

The user properties panel is displayed.
7. Select the Member Of tab.
8. Select the group that you want to remove the user from, then click Remove.
9. Click OK.

The Computer Management panel is displayed.

Results
You have now removed the user from the group.

Creating and managing groups on HP-UX
On HP-UX, providing you are not using NIS or NIS+, use the System Administration Manager (SAM) to
work with groups.

Creating a group on HP-UX
Add a user to a group by using the System Administration Manager

Procedure
1. From the System Administration Manager (SAM), double click Accounts for Users and Groups.
2. Double click Groups.
3. Select Add from the Actions pull down to display the Add a New Group panel.
4. Enter the name of the group and select the users that you want to add to the group.
5. Click Apply to create the group.

Results
You have now created a group.

Adding a user to a group on HP-UX
Add a user to a group by using the System Administration Manager.

Procedure
1. From the System Administration Manager (SAM), double click Accounts for Users and Groups.
2. Double click Groups.
3. Highlight the name of the group and select Modify from the Actions pull down to display the Modify an

Existing Group panel.
4. Select a user that you want to add to the group and click Add.
5. If you want to add other users to the group, repeat step 4 for each user.

Security 81

6. When you have finished adding names to the list, click OK.

Results
You have now added a user to a group.

Displaying who is in a group on HP-UX
Display who is in a group by using the System Administration Manager

Procedure
1. From the System Administration Manager (SAM), double click Accounts for Users and Groups.
2. Double click Groups.
3. Highlight the name of the group and select Modify from the Actions pull down to display the Modify an

Existing Group panel, showing a list of the users in the group.

Results
The group members are displayed.

Removing a user from a group on HP-UX
Remove a user from a group by using the System Administration Manager.

Procedure
1. From the System Administration Manager (SAM), double click Accounts for Users and Groups.
2. Double click Groups.
3. Highlight the name of the group and select Modify from the Actions pull down to display the Modify an

Existing Group panel.
4. Select a user that you want to remove from the group and click Remove.
5. If you want to remove other users from the group, repeat step 4 for each user.
6. When you have finished removing names from the list, click OK.

Results
You have now removed a user from a group

Creating and managing groups on AIX
On AIX, providing you are not using NIS or NIS+, use SMITTY to work with groups.

Creating a group
Create a group using SMITTY.

Procedure
1. From SMITTY, select Security and Users and press Enter.
2. Select Groups and press Enter.
3. Select Add a Group and press Enter.
4. Enter the name of the group and the names of any users that you want to add to the group, separated

by commas.
5. Press Enter to create the group.

Results
You have now created a group.

82 Securing IBM WebSphere MQ

Adding a user to a group
Add a user to a group by using SMITTY.

Procedure
1. From SMITTY, select Security and Users and press Enter.
2. Select Groups and press Enter.
3. Select Change / Show Characteristics of Groups and press Enter.
4. Enter the name of the group to show a list of the members of the group.
5. Add the names of the users that you want to add to the group, separated by commas.
6. Press Enter to add the names to the group.

Displaying who is in a group
Display who is in a group using SMITTY.

Procedure
1. From SMITTY, select Security and Users and press Enter.
2. Select Groups and press Enter.
3. Select Change / Show Characteristics of Groups and press Enter.
4. Enter the name of the group to show a list of the members of the group.

Results
The group members are displayed.

Removing a user from a group
Remove a user from a group by using SMITTY.

Procedure
1. From SMITTY, select Security and Users and press Enter.
2. Select Groups and press Enter.
3. Select Change / Show Characteristics of Groups and press Enter.
4. Enter the name of the group to show a list of the members of the group.
5. Delete the names of the users that you want to remove from the group.
6. Press Enter to remove the names from the group.

Results
You have now removed a user from a group.

Creating and managing groups on Solaris
On Solaris, providing you are not using NIS or NIS+, use the /etc/group file to work with groups.

Creating a group on Solaris
Creating a group by using the groupadd command.

Procedure
Type the following command: groupadd group-name
where group-name is the name of the group.

Security 83

Results
The file /etc/group file holds group information.

Adding a user to a group on Solaris
Add a user to a group by using the usermod command.

Procedure
To add a member to a supplementary group, execute the usermod command and list the supplementary
groups that the user is currently a member of, and the supplementary groups that the user is to become a
member of.
For example, if the user is a member of the group groupa, and is to become a member of groupb also,
use the following command: usermod -G groupa,groupb user-name , where user-name is the user
name.

Displaying who is in a group on Solaris
To discover who is a member of a group, look at the entry for that group in the /etc/group file.

Removing a user from a group on Solaris
Remove a user from a group by using the usermod command.

Procedure
To remove a member from a supplementary group, execute the usermod command listing the
supplementary groups that you want the user to remain a member of.
For example, if the user's primary group is users and the user is also a member of the groups mqm,
groupa and groupb, to remove the user from the mqm group, the following command is used: usermod
-G groupa,groupb user-name, where user-name is the user name.

Creating and managing groups on Linux
On Linux, providing you are not using NIS or NIS+, use the /etc/group file to work with groups.

Creating a group on Linux
Create a group by using the groupadd command.

Procedure
To create a new group, type the following command: groupadd -g group-ID group-name
, where group-ID is the numeric identifier of the group, and group-name is the name of the group.

Results
The file /etc/group file holds group information.

Adding a user to a group on Linux
Add a user to a group by using the usermod command.

Procedure
To add a member to a supplementary group, execute the usermod command and list the supplementary
groups that the user is currently a member of, and the supplementary groups that the user is to become a
member of.
For example, if the user is a member of the group groupa, and is to become a member of groupb also,
the following command is used: usermod -G groupa,groupb user-name
, where user-name is the user name.

84 Securing IBM WebSphere MQ

Displaying who is in a group on Linux
Display who is in a group by using the getent command.

Procedure
To display who is a member of a group, type the following command: getent group group-name
, where group-name is the name of the group.

Removing a user from a group
Remove a user from a group by using the usermod command.

Procedure
To remove a member from a supplementary group, execute the usermod command listing the
supplementary groups that you want the user to remain a member of.
For example, if the user's primary group is users and the user is also a member of the groups mqm,
groupa and groupb, to remove the user from the mqm group, the following command is used: usermod
-G groupa,groupb user-name
, where user-name is the user name.

How authorizations work
The authorization specification tables in the topics in this section define precisely how the authorizations
work and the restrictions that apply.

The tables apply to these situations:

• Applications that issue MQI calls
• Administration programs that issue MQSC commands as escape PCFs
• Administration programs that issue PCF commands

In this section, the information is presented as a set of tables that specify the following:
Action to be performed

MQI option, MQSC command, or PCF command.
Access control object

Queue, process, queue manager, namelist, authentication information, channel, client connection
channel, listener, or service.

Authorization required
Expressed as an MQZAO_ constant.

In the tables, the constants prefixed by MQZAO_ correspond to the keywords in the authorization list
for the setmqaut command for the particular entity. For example, MQZAO_BROWSE corresponds to the
keyword +browse, MQZAO_SET_ALL_CONTEXT corresponds to the keyword +setall, and so on. These
constants are defined in the header file cmqzc.h, supplied with the product.

Authorizations for MQI calls
MQCONN, MQOPEN, MQPUT1, and MQCLOSE might require authorization checks. The tables in this topic
summarize the authorizations needed for each call.

An application is allowed to issue specific MQI calls and options only if the user identifier under which it is
running (or whose authorizations it is able to assume) has been granted the relevant authorization.

Four MQI calls might require authorization checks: MQCONN, MQOPEN, MQPUT1, and MQCLOSE.

For MQOPEN and MQPUT1, the authority check is made on the name of the object being opened, and not
on the name, or names, resulting after a name has been resolved. For example, an application might
be granted authority to open an alias queue without having authority to open the base queue to which
the alias resolves. The rule is that the check is carried out on the first definition encountered during the
process of resolving a name that is not a queue manager alias, unless the queue manager alias definition

Security 85

is opened directly; that is, its name is displayed in the ObjectName field of the object descriptor.
Authority is always needed for the object being opened. In some cases additional queue-independent
authority, obtained through an authorization for the queue manager object, is required.

Table 8 on page 86, Table 9 on page 86, Table 10 on page 87, and Table 11 on page 87 summarize
the authorizations needed for each call. In the tables Not applicable means that authorization checking is
not relevant to this operation; No check means that no authorization checking is performed.

Note: You will find no mention of namelists, channels, client connection channels, listeners, services,
or authentication information objects in these tables. This is because none of the authorizations apply
to these objects, except for MQOO_INQUIRE, for which the same authorizations apply as for the other
objects.

The special authorization MQZAO_ALL_MQI includes all the authorizations in the tables that are relevant
to the object type, except MQZAO_DELETE and MQZAO_DISPLAY, which are classed as administration
authorizations.

In order to modify any of the message context options, you must have the appropriate
authorizations to issue the call. For example, in order to use MQOO_SET_IDENTITY_CONTEXT or
MQPMO_SET_IDENTITY_CONTEXT, you must have +setid permission.

Table 8. Security authorization needed for MQCONN calls

Authorization required
for:

Queue object (“1” on
page 87)

Process object Queue manager object

MQCONN Not applicable Not applicable MQZAO_CONNECT

Table 9. Security authorization needed for MQOPEN calls

Authorization required
for:

Queue object (“1” on
page 87)

Process object Queue manager object

MQOO_INQUIRE MQZAO_INQUIRE MQZAO_INQUIRE MQZAO_INQUIRE

MQOO_BROWSE MQZAO_BROWSE Not applicable No check

MQOO_INPUT_* MQZAO_INPUT Not applicable No check

MQOO_SAVE_
ALL_CONTEXT (“2” on
page 88)

MQZAO_INPUT Not applicable Not applicable

MQOO_OUTPUT (Normal
queue) (“3” on page 88)

MQZAO_OUTPUT Not applicable Not applicable

MQOO_PASS_
IDENTITY_CONTEXT (“4”
on page 88)

MQZAO_PASS_
IDENTITY_CONTEXT

Not applicable No check

MQOO_PASS_ALL_
CONTEXT (“4” on page
88, “5” on page 88)

MQZAO_PASS
_ALL_CONTEXT

Not applicable No check

MQOO_SET_
IDENTITY_CONTEXT (“4”
on page 88, “5” on page
88)

MQZAO_SET_
IDENTITY_CONTEXT

Not applicable MQZAO_SET_
IDENTITY_CONTEXT (“6”
on page 88)

MQOO_SET_
ALL_CONTEXT (“4” on
page 88, “7” on page
88)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (“6” on
page 88)

86 Securing IBM WebSphere MQ

Table 9. Security authorization needed for MQOPEN calls (continued)

Authorization required
for:

Queue object (“1” on
page 87)

Process object Queue manager object

MQOO_OUTPUT
(Transmission queue)
(“8” on page 88)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (“6” on
page 88)

MQOO_SET MQZAO_SET Not applicable No check

MQOO_ALTERNATE_
USER_AUTHORITY

(“9” on page 88) (“9” on page 88) MQZAO_ALTERNATE_
USER_AUTHORITY (“9”
on page 88, “10” on
page 88)

Table 10. Security authorization needed for MQPUT1 calls

Authorization required
for:

Queue object (“1” on
page 87)

Process object Queue manager object

MQPMO_PASS_
IDENTITY_CONTEXT

MQZAO_PASS_
IDENTITY_CONTEXT
(“11” on page 88)

Not applicable No check

MQPMO_PASS_ALL
_CONTEXT

MQZAO_PASS_
ALL_CONTEXT (“11” on
page 88)

Not applicable No check

MQPMO_SET_
IDENTITY_CONTEXT

MQZAO_SET_
IDENTITY_CONTEXT
(“11” on page 88)

Not applicable MQZAO_SET_
IDENTITY_CONTEXT (“6”
on page 88)

MQPMO_SET_
ALL_CONTEXT

MQZAO_SET_
ALL_CONTEXT (“11” on
page 88)

Not applicable MQZAO_SET_
ALL_CONTEXT (“6” on
page 88)

(Transmission queue)
(“8” on page 88)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (“6” on
page 88)

MQPMO_ALTERNATE_
USER_AUTHORITY

(“12” on page 88) Not applicable MQZAO_ALTERNATE_
USER_AUTHORITY (“10”
on page 88)

Table 11. Security authorization needed for MQCLOSE calls

Authorization required
for:

Queue object (“1” on
page 87)

Process object Queue manager object

MQCO_DELETE MQZAO_DELETE (“13” on
page 88)

Not applicable Not applicable

MQCO_DELETE _PURGE MQZAO_DELETE (“13” on
page 88)

Not applicable Not applicable

Notes for the tables:

1. If opening a model queue:

• MQZAO_DISPLAY authority is needed for the model queue, in addition to the authority to open the
model queue for the type of access for which you are opening.

• MQZAO_CREATE authority is not needed to create the dynamic queue.

Security 87

• The user identifier used to open the model queue is automatically granted all the queue-specific
authorities (equivalent to MQZAO_ALL) for the dynamic queue created.

2. MQOO_INPUT_* must also be specified. This is valid for a local, model, or alias queue.
3. This check is performed for all output cases, except transmission queues (see note “8” on page 88).
4. MQOO_OUTPUT must also be specified.
5. MQOO_PASS_IDENTITY_CONTEXT is also implied by this option.
6. This authority is required for both the queue manager object and the particular queue.
7. MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALL_CONTEXT, and

MQOO_SET_IDENTITY_CONTEXT are also implied by this option.
8. This check is performed for a local or model queue that has a Usage queue attribute of

MQUS_TRANSMISSION, and is being opened directly for output. It does not apply if a remote queue
is being opened (either by specifying the names of the remote queue manager and remote queue, or
by specifying the name of a local definition of the remote queue).

9. At least one of MQOO_INQUIRE (for any object type), or MQOO_BROWSE, MQOO_INPUT_*,
MQOO_OUTPUT, or MQOO_SET (for queues) must also be specified. The check carried out is as for the
other options specified, using the supplied alternate-user identifier for the specific-named object
authority, and the current application authority for the MQZAO_ALTERNATE_USER_IDENTIFIER
check.

10. This authorization allows any AlternateUserId to be specified.
11. An MQZAO_OUTPUT check is also carried out if the queue does not have a Usage queue attribute of

MQUS_TRANSMISSION.
12. The check carried out is as for the other options specified, using the supplied alternate-user

identifier for the specific-named queue authority, and the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

13. The check is carried out only if both of the following are true:

• A permanent dynamic queue is being closed and deleted.
• The queue was not created by the MQOPEN call that returned the object handle being used.

Otherwise, there is no check.

Authorizations for MQSC commands in escape PCFs
This information summarizes the authorizations needed for each MQSC command contained in Escape
PCF.

Not applicable means that this operation is not relevant to this object type.

The user ID under which the program that submits the command is running must also have the following
authorities:

• MQZAO_CONNECT authority to the queue manager
• MQZAO_DISPLAY authority on the queue manager in order to perform PCF commands
• Authority to issue the MQSC command within the text of the Escape PCF command

ALTER object

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager MQZAO_CHANGE

Namelist MQZAO_CHANGE

88 Securing IBM WebSphere MQ

Object Authorization required

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Communication information MQZAO_CHANGE

CLEAR object

Object Authorization required

Queue MQZAO_CLEAR

Topic MQZAO_CLEAR

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel Not applicable

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

Communication information Not applicable

DEFINE object NOREPLACE (“1” on page 93)

Object Authorization required

Queue MQZAO_CREATE (“2” on page 93)

Topic MQZAO_CREATE (“2” on page 93)

Process MQZAO_CREATE (“2” on page 93)

Queue manager Not applicable

Namelist MQZAO_CREATE (“2” on page 93)

Authentication information MQZAO_CREATE (“2” on page 93)

Channel MQZAO_CREATE (“2” on page 93)

Client connection channel MQZAO_CREATE (“2” on page 93)

Listener MQZAO_CREATE (“2” on page 93)

Service MQZAO_CREATE (“2” on page 93)

Communication information MQZAO_CREATE (“2” on page 93)

Security 89

DEFINE object REPLACE (“1” on page 93, “3” on page 93)

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager Not applicable

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Communication information MQZAO_CHANGE

DELETE object

Object Authorization required

Queue MQZAO_DELETE

Topic MQZAO_DELETE

Process MQZAO_DELETE

Queue manager Not applicable

Namelist MQZAO_DELETE

Authentication information MQZAO_DELETE

Channel MQZAO_DELETE

Client connection channel MQZAO_DELETE

Listener MQZAO_DELETE

Service MQZAO_DELETE

Communication information MQZAO_DELETE

DISPLAY object

Object Authorization required

Queue MQZAO_DISPLAY

Topic MQZAO_DISPLAY

Process MQZAO_DISPLAY

Queue manager MQZAO_DISPLAY

Namelist MQZAO_DISPLAY

Authentication information MQZAO_DISPLAY

Channel MQZAO_DISPLAY

90 Securing IBM WebSphere MQ

Object Authorization required

Client connection channel MQZAO_DISPLAY

Listener MQZAO_DISPLAY

Service MQZAO_DISPLAY

Communication information MQZAO_DISPLAY

START object

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener MQZAO_CONTROL

Service MQZAO_CONTROL

Communication information Not applicable

STOP object

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener MQZAO_CONTROL

Service MQZAO_CONTROL

Communication information Not applicable

Channel Commands

Command Object Authorization required

PING CHANNEL Channel MQZAO_CONTROL

RESET CHANNEL Channel MQZAO_CONTROL_EXTENDED

Security 91

Command Object Authorization required

RESOLVE CHANNEL Channel MQZAO_CONTROL_EXTENDED

Subscription Commands

Command Object Authorization required

ALTER SUB Topic MQZAO_CONTROL

DEFINE SUB Topic MQZAO_CONTROL

DELETE SUB Topic MQZAO_CONTROL

DISPLAY SUB Topic MQZAO_DISPLAY

Security Commands

Command Object Authorization required

SET AUTHREC Queue manager MQZAO_CHANGE

DELETE AUTHREC Queue manager MQZAO_CHANGE

DISPLAY AUTHREC Queue manager MQZAO_DISPLAY

DISPLAY AUTHSERV Queue manager MQZAO_DISPLAY

DISPLAY ENTAUTH Queue manager MQZAO_DISPLAY

SET CHLAUTH Queue manager MQZAO_CHANGE

DISPLAY CHLAUTH Queue manager MQZAO_DISPLAY

REFRESH SECURITY Queue manager MQZAO_CHANGE

Status Displays

Command Object Authorization required

DISPLAY CHSTATUS Queue manager MQZAO_DISPLAY

Note that +inq authority (or
equivalently MQZAO_INQUIRE)
is required on the transmission
queue if the channel type is
CLUSSDR.

DISPLAY LSSTATUS Queue manager MQZAO_DISPLAY

DISPLAY PUBSUB Queue manager MQZAO_DISPLAY

DISPLAY SBSTATUS Queue manager MQZAO_DISPLAY

DISPLAY SVSTATUS Queue manager MQZAO_DISPLAY

DISPLAY TPSTATUS Queue manager MQZAO_DISPLAY

Cluster Commands

Command Object Authorization required

DISPLAY CLUSQMGR Queue manager MQZAO_DISPLAY

REFRESH CLUSTER 'mqm' group membership required

RESET CLUSTER 'mqm' group membership required

92 Securing IBM WebSphere MQ

Command Object Authorization required

SUSPEND QMGR 'mqm' group membership required

RESUME QMGR 'mqm' group membership required

Other Administrative Commands

Command Object Authorization required

PING QMGR Queue manager MQZAO_DISPLAY

REFRESH QMGR Queue manager MQZAO_CHANGE

RESET QMGR Queue manager MQZAO_CHANGE

DISPLAY CONN Queue manager MQZAO_DISPLAY

STOP CONN Queue manager MQZAO_CHANGE

Note:

1. For DEFINE commands, MQZAO_DISPLAY authority is also needed for the LIKE object if one is
specified, or on the appropriate SYSTEM.DEFAULT.xxx object if LIKE is omitted.

2. The MQZAO_CREATE authority is not specific to a particular object or object type. Create authority is
granted for all objects for a specified queue manager, by specifying an object type of QMGR on the
setmqaut command.

3. This applies if the object to be replaced already exists. If it does not, the check is as for DEFINE object
NOREPLACE.

Related information
Clustering: Using REFRESH CLUSTER best practices

Authorizations for PCF commands
This section summarizes the authorizations needed for each PCF command.

No check means that no authorization checking is carried out; Not applicable means that this operation is
not relevant to this object type.

The user ID under which the program that submits the command is running must also have the following
authorities:

• MQZAO_CONNECT authority to the queue manager
• MQZAO_DISPLAY authority on the queue manager in order to perform PCF commands

The special authorization MQZAO_ALL_ADMIN includes all the authorizations in the following list that are
relevant to the object type, except MQZAO_CREATE, which is not specific to a particular object or object
type.

Change object

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager MQZAO_CHANGE

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Security 93

Object Authorization required

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Communication information MQZAO_CHANGE

Clear object

Object Authorization required

Queue MQZAO_CLEAR

Topic MQZAO_CLEAR

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel Not applicable

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

Communication information Not applicable

Copy object (without replace) (1)

Object Authorization required

Queue MQZAO_CREATE (2)

Topic MQZAO_CREATE (2)

Process MQZAO_CREATE (2)

Queue manager Not applicable

Namelist MQZAO_CREATE (2)

Authentication information MQZAO_CREATE (2)

Channel MQZAO_CREATE (2)

Client connection channel MQZAO_CREATE (2)

Listener MQZAO_CREATE (2)

Service MQZAO_CREATE (2)

Communication information MQZAO_CREATE (“2” on page 99)

Copy object (with replace) (1, 4)

Object Authorization required

Queue MQZAO_CHANGE

94 Securing IBM WebSphere MQ

Object Authorization required

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager Not applicable

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Communication information MQZAO_CHANGE

Create object (without replace) (3)

Object Authorization required

Queue MQZAO_CREATE (2)

Topic MQZAO_CREATE (2)

Process MQZAO_CREATE (2)

Queue manager Not applicable

Namelist MQZAO_CREATE (2)

Authentication information MQZAO_CREATE (2)

Channel MQZAO_CREATE (2)

Client connection channel MQZAO_CREATE (2)

Listener MQZAO_CREATE (2)

Service MQZAO_CREATE (2)

Communication information MQZAO_CREATE (2)

Create object (with replace) (3, 4)

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager Not applicable

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Security 95

Object Authorization required

Service MQZAO_CHANGE

Communication information MQZAO_CHANGE

Delete object

Object Authorization required

Queue MQZAO_DELETE

Topic MQZAO_DELETE

Process MQZAO_DELETE

Queue manager Not applicable

Namelist MQZAO_DELETE

Authentication information MQZAO_DELETE

Channel MQZAO_DELETE

Client connection channel MQZAO_DELETE

Listener MQZAO_DELETE

Service MQZAO_DELETE

Communication information MQZAO_DELETE

Inquire object

Object Authorization required

Queue MQZAO_DISPLAY

Topic MQZAO_DISPLAY

Process MQZAO_DISPLAY

Queue manager MQZAO_DISPLAY

Namelist MQZAO_DISPLAY

Authentication information MQZAO_DISPLAY

Channel MQZAO_DISPLAY

Client connection channel MQZAO_DISPLAY

Listener MQZAO_DISPLAY

Service MQZAO_DISPLAY

Communication information MQZAO_DISPLAY

Inquire object names

Object Authorization required

Queue No check

Topic No check

Process No check

Queue manager No check

96 Securing IBM WebSphere MQ

Object Authorization required

Namelist No check

Authentication information No check

Channel No check

Client connection channel No check

Listener No check

Service No check

Communication information No check

Start object

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener MQZAO_CONTROL

Service MQZAO_CONTROL

Communication information Not applicable

Stop object

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener MQZAO_CONTROL

Service MQZAO_CONTROL

Communication information Not applicable

Security 97

Channel Commands

Command Object Authorization required

Ping Channel Channel MQZAO_CONTROL

Reset Channel Channel MQZAO_CONTROL_EXTENDED

Resolve Channel Channel MQZAO_CONTROL_EXTENDED

Subscription Commands

Command Object Authorization required

Change Subscription Topic MQZAO_CONTROL

Create Subscription Topic MQZAO_CONTROL

Delete Subscription Topic MQZAO_CONTROL

Inquire Subscription Topic MQZAO_DISPLAY

Security Commands

Command Object Authorization required

Set Authority Record Queue manager MQZAO_CHANGE

Delete Authority Record Queue manager MQZAO_CHANGE

Inquire Authority Records Queue manager MQZAO_DISPLAY

Inquire Authority Service Queue manager MQZAO_DISPLAY

Inquire Entity Authority Queue manager MQZAO_DISPLAY

Set Channel Authentication
Record

Queue manager MQZAO_CHANGE

Inquire Channel Authentication
Records

Queue manager MQZAO_DISPLAY

Refresh Security Queue manager MQZAO_CHANGE

Status Displays

Command Object Authorization required

Inquire Channel Status Queue manager MQZAO_DISPLAY

Note that +inq authority (or
equivalently MQZAO_INQUIRE)
is required on the transmission
queue if the channel type is
CLUSSDR.

Inquire Channel Listener Status Queue manager MQZAO_DISPLAY

Inquire Pub/Sub Status Queue manager MQZAO_DISPLAY

Inquire Subscription Status Queue manager MQZAO_DISPLAY

Inquire Service Status Queue manager MQZAO_DISPLAY

Inquire Topic Status Queue manager MQZAO_DISPLAY

98 Securing IBM WebSphere MQ

Cluster Commands

Command Object Authorization required

Inquire Cluster Queue Manager Queue manager MQZAO_DISPLAY

Refresh Cluster 'mqm' group membership required

Reset Cluster 'mqm' group membership required

Suspend Queue Manager
Cluster

'mqm' group membership required

Resume Queue Manager Cluster 'mqm' group membership required

Other Administrative Commands

Command Object Authorization required

Ping Queue Manager Queue manager MQZAO_DISPLAY

Refresh Queue Manager Queue manager MQZAO_CHANGE

Reset Queue Manager Queue manager MQZAO_CHANGE

Reset Queue Statistics Queue MQZAO_DISPLAY and
MQZAO_CHANGE

Inquire Connection Queue manager MQZAO_DISPLAY

Stop Connection Queue manager MQZAO_CHANGE

Note:

1. For Copy commands, MQZAO_DISPLAY authority is also needed for the From object.
2. The MQZAO_CREATE authority is not specific to a particular object or object type. Create authority is

granted for all objects for a specified queue manager, by specifying an object type of QMGR on the
setmqaut command.

3. For Create commands, MQZAO_DISPLAY authority is also needed for the appropriate
SYSTEM.DEFAULT.* object.

4. This applies if the object to be replaced already exists. If it does not, the check is as for Copy or Create
without replace.

Special considerations for security on Windows
Some security functions behave differently on different versions of Windows.

IBM WebSphere MQ security relies on calls to the operating system API for information about user
authorizations and group memberships. Some functions do not behave identically on the Windows
systems. This collection of topics includes descriptions of how those differences might affect IBM
WebSphere MQ security when you are running IBM WebSphere MQ in a Windows environment.

The SSPI channel exit program
WebSphere MQ for Windows supplies a security exit program, which can be used on both message
and MQI channels. The exit is supplied as source and object code, and provides one-way and two-way
authentication.

The security exit uses the Security Support Provider Interface (SSPI), which provides the integrated
security facilities of Windows platforms.

The security exit provides the following identification and authentication services:

Security 99

One way authentication
This uses Windows NT LAN Manager (NTLM) authentication support. NTLM allows servers to
authenticate their clients. It does not allow a client to authenticate a server, or one server to
authenticate another. NTLM was designed for a network environment in which servers are assumed
to be genuine. NTLM is supported on all Windows platforms that are supported by WebSphere MQ
Version 7.0.

This service is typically used on an MQI channel to enable a server queue manager to authenticate a
WebSphere MQ MQI client application. A client application is identified by the user ID associated with
the process that is running.

To perform the authentication, the security exit at the client end of a channel acquires an
authentication token from NTLM and sends the token in a security message to its partner at the
other end of the channel. The partner security exit passes the token to NTLM, which checks that the
token is authentic. If the partner security exit is not satisfied with the authenticity of the token, it
instructs the MCA to close the channel.

Two way, or mutual, authentication
This uses Kerberos authentication services. The Kerberos protocol does not assume that servers in
a network environment are genuine. Servers can authenticate clients and other servers, and clients
can authenticate servers. Kerberos is supported on all Windows platforms that are supported by
WebSphere MQ Version 7.0.

This service can be used on both message and MQI channels. On a message channel, it provides
mutual authentication of the two queue managers. On an MQI channel, it enables the server queue
manager and the WebSphere MQ MQI client application to authenticate each other. A queue manager
is identified by its name prefixed by the string ibmMQSeries/. A client application is identified by the
user ID associated with the process that is running.

To perform the mutual authentication, the initiating security exit acquires an authentication token
from the Kerberos security server and sends the token in a security message to its partner. The
partner security exit passes the token to the Kerberos server, which checks that it is authentic. The
Kerberos security server generates a second token, which the partner sends in a security message
to the initiating security exit. The initiating security exit then asks the Kerberos server to check that
the second token is authentic. During this exchange, if either security exit is not satisfied with the
authenticity of the token sent by the other, it instructs the MCA to close the channel.

The security exit is supplied in both source and object format. You can use the source code as a starting
point for writing your own channel exit programs or you can use the object module as supplied. The object
module has two entry points, one for one way authentication using NTLM authentication support and the
other for two way authentication using Kerberos authentication services.

For more information about how the SSPI channel exit program works, and for instructions on how to
implement it, see Using the SSPI security exit on Windows systems.

When you get a 'group not found' error on Windows
This problem can arise because WebSphere MQ loses access to the local mqm group when Windows
servers are promoted to, or demoted from, domain controllers. To remedy this problem, re-create the
local mqm group.

The symptom is an error indicating the lack of a local mqm group, for example:

>crtmqm qm0
AMQ8066:Local mqm group not found.

Altering the state of a machine between server and domain controller can affect the operation of
WebSphere MQ, because WebSphere MQ uses a locally-defined mqm group. When a server is promoted
to be a domain controller, the scope changes from local to domain local. When the machine is demoted to
server, all domain local groups are removed. This means that changing a machine from server to domain
controller and back to server loses access to a local mqm group.

To remedy this problem, re-create the local mqm group using the standard Windows management tools.
Because all group membership information is lost, you must reinstate privileged WebSphere MQ users in

100 Securing IBM WebSphere MQ

the newly-created local mqm group. If the machine is a domain member, you must also add the domain
mqm group to the local mqm group to grant privileged domain WebSphere MQ user IDs the required level
of authority.

When you have problems with IBM WebSphere MQ and domain controllers on
Windows
Certain problems can arise with security settings when Windows servers are promoted to domain
controllers.

While promoting Windows 2000, Windows 2003, or Windows Server 2008 servers to domain controllers,
you are presented with the option of selecting a default or non-default security setting relating to user and
group permissions. This option controls whether arbitrary users are able to retrieve group memberships
from the active directory. Because WebSphere MQ relies on group membership information to implement
its security policy, it is important that the user ID that is performing WebSphere MQ operations can
determine the group memberships of other users.

On Windows 2000, when a domain is created using the default security option, the default user ID
created by WebSphere MQ during the installation process can obtain group memberships for other users
as required. The product then installs normally, creating default objects, and the queue manager can
determine the access authority of local and domain users if required.

On Windows 2000, when a domain is created using the non-default security option, or on Windows 2003
and Windows Server 2008 when a domain is created using the default security option, the user ID created
by WebSphere MQ during the installation cannot always determine the required group memberships. In
this case, you need to know:

• How Windows 2000 with non-default, or Windows 2003 and Windows Server 2008 with default,
security permissions behaves

• How to allow domain mqm group members to read group membership
• How to configure an IBM WebSphere MQ Windows service to run under a domain user

Windows 2000 domain with non-default, or Windows 2003 and Windows Server 2008 domain with
default, security permissions
Installation of WebSphere MQ behaves differently on these operating systems depending on whether a
local user or domain user performs the installation.

If a local user installs WebSphere MQ, the Prepare WebSphere MQ Wizard detects that the local user
created for the IBM WebSphere MQ Windows service can retrieve the group membership information
of the installing user. The Prepare WebSphere MQ Wizard asks the user questions about the network
configuration to determine whether there are other user accounts defined on domain controllers running
on Windows 2000 or later. If so, the IBM WebSphere MQ Windows service needs to run under a domain
user account with particular settings and authorities. The Prepare WebSphere MQ Wizard prompts the
user for the account details of this user. Its online help provides details of the domain user account
required that can be sent to the domain administrator.

If a domain user installs WebSphere MQ, the Prepare WebSphere MQ Wizard detects that the local user
created for the IBM WebSphere MQ Windows service cannot retrieve the group membership information
of the installing user. In this case, the Prepare WebSphere MQ Wizard always prompts the user for the
account details of the domain user account for the IBM WebSphere MQ Windows service to use.

When the IBM WebSphere MQ Windows service needs to use a domain user account, WebSphere MQ
cannot operate correctly until this has been configured using the Prepare WebSphere MQ Wizard. The
Prepare WebSphere MQ Wizard does not allow the user to continue with other tasks, until the Windows
service has been configured with a suitable account.

If a Windows 2000 domain has been configured with non-default security permissions, the usual solution
to enable WebSphere MQ to work correctly is to configure it with a suitable domain user account, as
described above.

See Creating and setting up domain accounts for WebSphere MQ for more information.

Security 101

Configuring IBM WebSphere MQ Services to run under a domain user on Windows
Use the Prepare IBM WebSphere MQ wizard to enter the account details of the domain user account.
Alternatively, you can use the Computer Management panel to alter the Log On details for the installation
specific IBM WebSphere MQ Service.

For more information see Changing the password of the IBM WebSphere MQ Windows service user
account

Applying security template files to Windows
Applying a template might affect the security settings applied to WebSphere MQ files and directories. If
you use the highly secure template, apply it before installing WebSphere MQ.

Windows supports text-based security template files that you can use to apply uniform security settings
to one or more computers with the Security Configuration and Analysis MMC snap-in. In particular,
Windows supplies several templates that include a range of security settings with the aim of providing
specific levels of security. These templates include Compatible, Secure, and Highly Secure.

Applying one of these templates might affect the security settings applied to WebSphere MQ files and
directories. If you want to use the Highly Secure template, configure your machine before you install
WebSphere MQ.

If you apply the highly secure template to a machine on which WebSphere MQ is already installed, all
the permissions you have set on the WebSphere MQ files and directories are removed. Because these
permissions are removed, you lose Administrator, mqm, and, when applicable, Everyone group access
from the error directories.

Nested groups
There are restrictions on the use of nested groups. These result partly from the domain functional level
and partly from WebSphere MQ restrictions.

Active Directory can support different group types within a Domain context depending on the Domain
functional level. By default, Windows 2003 domains are in the Windows 2000 mixed functional level.
(Windows server 2003 , Windows XP, Windows Vista, and Windows Server 2008 all follow the Windows
2003 domain model.) The domain functional level determines the supported group types and level
of nesting allowed when configuring user IDs in a domain environment. Refer to Active Directory
documentation for details on the Group Scope and inclusion criteria.

In addition to Active Directory requirements, further restrictions are imposed on IDs used by WebSphere
MQ. The network APIs used by WebSphere MQ do not support all the configurations that are supported
by the domain functional level. As a result, WebSphere MQ is not able to query the group memberships
of any Domain IDs present in a Domain Local group which is then nested in a local group. Furthermore,
multiple nesting of global and universal groups is not supported. However, immediately nested global or
universal groups are supported.

Configuring additional authority for Windows applications connecting to IBM
WebSphere MQ
The account under which IBM WebSphere MQ processes run might need additional authorization before
SYNCHRONIZE access to application processes can be granted.

You might experience problems if you have Windows applications, for example ASP pages, connecting to
IBM WebSphere MQ that are configured to run at a security level higher than usual.

IBM WebSphere MQ requires SYNCHRONIZE access to application processes in order to coordinate
certain actions. APAR IC35116 changed IBM WebSphere MQ so that the appropriate privileges are
specified. However, the account under which IBM WebSphere MQ processes run might need additional
authorization before the requested access can be granted.

When a server application first attempts to connect to a queue manager IBM WebSphere MQ will
modify the process to grant SYNCHRONIZE authority for IBM WebSphere MQ administrators. To configure
additional authority to the user ID under which IBM WebSphere MQ processes are running, complete the
following steps:

102 Securing IBM WebSphere MQ

1. Start the Local Security Policy tool, click Security Settings ->Local Policies->User Right Assignments,
click "Debug Programs".

2. Double click "Debug Programs", then add your IBM WebSphere MQ user ID to the list

If the system is in a Windows domain and the effective policy setting is still not set, even though the local
policy setting is set, the user ID must be authorized in the same way at domain level, using the Domain
Security Policy tool.

Setting up security on HP Integrity NonStop Server
Security considerations specific to HP Integrity NonStop Server systems.

The IBM WebSphere MQ client for HP Integrity NonStop Server supports both the Transport Layer
Security (TLS) and the Secure Sockets Layer (SSL) protocols to provide link level security when you are
connecting to a queue manager. These protocols are supported by using an implementation of OpenSSL.
OpenSSL requires a source of random data for providing strong cryptographic operations.

OpenSSL
OpenSSL security overview for IBM WebSphere MQ client for HP Integrity NonStop Server.

The OpenSSL toolkit is an open source implementation of the Secure Sockets Layer (SSL) and Transport
Layer Security (TLS) protocols for secure communications over a network.

The toolkit is developed by the OpenSSL Project. For more information about the OpenSSL Project, see
https://www.openssl.org. IBM WebSphere MQ client for HP Integrity NonStop Server contains modified
versions of the OpenSSL libraries and the openssl command. The libraries and openssl command are
ported from the OpenSSL toolkit 1.0.1c, and are supplied as object code only. No source code is provided.

The OpenSSL libraries are loaded by IBM WebSphere MQ client application programs dynamically as
required. Only the OpenSSL libraries that are provided by IBM WebSphere MQ are supported for use with
IBM WebSphere MQ client applications.

The openssl command, which can be used for certificate management purposes, is installed in the OSS
directory opt_installation_path/opt/mqm/bin.

Using the openssl command, you can create and manage keys and digital certificates with various
common data formats, and carry out simple certificate authority (CA) tasks.

The default format for key and certificate data that is processed by OpenSSL is the Privacy Enhanced Mail
(PEM) format. Data in PEM format is base64 encoded ASCII data. The data can therefore be transferred
by using text-based systems such as email, and can be cut and pasted by using text editors and web
browsers. PEM is an Internet standard for text-based cryptographic exchanges and is specified in Internet
RFCs 1421, 1422, 1423, and 1424. IBM WebSphere MQ assumes that a file with extension .pem contains
data in PEM format. A file in PEM format can contain multiple certificates and other encoded objects, and
can include comments.

The IBM WebSphere MQ SSL support on other operating systems might require key and certificate data in
files to be encoded by using Distinguished Encoding Rules (DER). DER is a set of encoding rules for using
the ASN.1 notation in secure communications. Data that is encoded by using DER is binary data, and the
format of key and certificate data that is encoded by using DER is also known as PKCS#12 or PFX. A file
that contains this data commonly has an extension of .p12 or .pfx. The openssl command can convert
between PEM and PKCS#12 format.

Entropy Daemon
OpenSSL requires a source of random data for providing strong cryptographic operations. Random
number generation is a capability that is usually provided by the operating system or by a system-wide
daemon process. The HP Integrity NonStop Server operating system does not provide this capability
within the operating system.

When you are using the SSL and TLS support supplied with IBM WebSphere MQ client for HP Integrity
NonStop Server, a process that is called an entropy daemon is needed to provide the source of random

Security 103

https://www.openssl.org

data. When you start a client channel that requires SSL or TLS, OpenSSL expects an entropy daemon to be
running and providing its services on a socket in the OSS file system at /etc/egd-pool.

An entropy daemon is not provided by IBM WebSphere MQ client for HP Integrity NonStop Server. The
IBM WebSphere MQ client for HP Integrity NonStop Server is tested with the following entropy daemons:

• amqjkdm0 (as provided by the IBM WebSphere MQ 5.3 server)
• /usr/local/bin/prngd (Version 0.9.27, as provided by HP Integrity NonStop Server Open Source

Technical Library)

Setting up IBM WebSphere MQ MQI client security
You must consider IBM WebSphere MQ MQI client security, so that the client applications do not have
unrestricted access to resources on the server.

When running a client application, do not run the application using a user ID that has more access rights
than necessary; for example, a user in the mqm group or even the mqm user itself.

By running an application as a user with too many access rights, you run the risk of the application
accessing and changing parts of the queue manager, either by accident or maliciously.

There are two aspects to security between a client application and its queue manager server:
authentication and access control.

• Authentication can be used to ensure that the client application, running as a specific user, is who they
say they are. By using authentication you can prevent an attacker from gaining access to your queue
manager by impersonating one of your applications.

You should use mutual authentication within SSL or TLS. For more information, see “Working with SSL
or TLS” on page 107

• Access control can be used to give or remove access rights for a specific user or group of users. By
running a client application with a specifically created user (or user in a specific group) you can then
use access controls to ensure the application cannot access parts of your queue manager that the
application is not supposed to.

When setting up access control you must consider channel authentication rules and the MCAUSER field
on a channel. Both of these features have the ability to change which user id is being used for verifying
access control rights.

For more information on access control, see “Authorizing access to objects” on page 153.

If you have set up a client application to connect to a specific channel with a restricted ID, but the
channel has an administrator ID set in its MCAUSER field then, provided the client application connects
successfully, the administrator ID is used for access control checks. Therefore, the client application will
have full access rights to your queue manager.

For more information on the MCAUSER attribute, see “Mapping a client asserted user ID to an MCAUSER
user ID” on page 179.

Channel authentication rules can also be used as a method for controlling access to a queue manager, by
setting up specific rules and criteria for a connection to be accepted.

For more information on channel authentication rules see: “Channel authentication records” on page 38.

Specifying that only FIPS-certified CipherSpecs are used at run time on the
MQI client
Create your key repositories using FIPS-compliant software, then specify that the channel must use
FIPS-certified CipherSpecs.

In order to be FIPS-compliant at run time, the key repositories must have been created and managed
using only FIPS-compliant software such as runmqakm with the -fips option.

You can specify that an SSL or TLS channel must use only FIPS-certified CipherSpecs in three ways, listed
in order of precedence:

104 Securing IBM WebSphere MQ

1. Set the FipsRequired field in the MQSCO structure to MQSSL_FIPS_YES.
2. Set the environment variable MQSSLFIPS to YES.
3. Set the SSLFipsRequired attribute in the client configuration file to YES.

By default, FIPS-certified CipherSpecs is not required.

These values have the same meanings as the equivalent parameter values on ALTER QMGR SSLFIPS (see
ALTER QMGR). If the client process currently has no active SSL or TLS connections, and a FipsRequired
value is validly specified on an SSL MQCONNX, all subsequent SSL connections associated with this
process must use only the CipherSpecs associated with this value. This applies until this and all other SSL
or TLS connections have stopped, at which stage a subsequent MQCONNX can provide a new value for
FipsRequired.

If cryptographic hardware is present, the cryptographic modules used by WebSphere MQ can be
configured to be those modules provided by the hardware product, and these might be FIPS-certified to a
particular level. The configurable modules and whether they are FIPS-certified depends on the hardware
product in use.

Where possible, if FIPS-only CipherSpecs is configured then the MQI client rejects connections which
specify a non-FIPS CipherSpec with MQRC_SSL_INITIALIZATION_ERROR. WebSphere MQ does not
guarantee to reject all such connections and it is your responsibility to determine whether your
WebSphere MQ configuration is FIPS-compliant.

Related concepts
“Federal Information Processing Standards (FIPS) for UNIX, Linux, and Windows” on page 26
When cryptography is required on an SSL or TLS channel on Windows, UNIX and Linux systems,
WebSphere MQ uses a cryptography package called IBM Crypto for C (ICC). On the Windows, UNIX
and Linux platforms, the ICC software has passed the Federal Information Processing Standards (FIPS)
Cryptomodule Validation Program of the US National Institute of Standards and Technology, at level
140-2.
SSL stanza of the client configuration file
Related reference
FipsRequired (MQLONG)
MQSSLFIPS

Running SSL or TLS client applications with multiple installations of GSKit
V8.0 on AIX
SSL or TLS client applications on AIX might experience MQRC_CHANNEL_CONFIG_ERROR and error
AMQ6175 when running on AIX systems with multiple GSKit V8.0 installations.

When running client applications on an AIX system with multiple GSKit V8.0 installations, the client
connect calls can return MQRC_CHANNEL_CONFIG_ERROR when using SSL or TLS. The /var/mqm/
errors logs record error AMQ6175 and AMQ9220 for the failing client application, for example:

09/08/11 11:16:13 - Process(24412.1) User(user) Program(example)
 Host(machine.example.ibm.com) Installation(Installation1)
 VRMF(7.1.0.0)
AMQ6175: The system could not dynamically load the shared library
'/usr/mqm/gskit8/lib64/libgsk8ssl_64.so'. The system returned
error number '8' and error message 'Symbol resolution failed
for /usr/mqm/gskit8/lib64/libgsk8ssl_64.so because:
 Symbol VALUE_EC_NamedCurve_secp256r1__9GSKASNOID (number 16) is not
exported from dependent module /db2data/db2inst1/sqllib/lib64/libgsk8cms_64.so.
 Symbol VALUE_EC_NamedCurve_secp384r1__9GSKASNOID (number 17) is not exported from
dependent module /db2data/db2inst1/sqllib/lib64/libgsk8cms_64.so.
 Symbol VALUE_EC_NamedCurve_secp521r1__9GSKASNOID (number 18) is not exported from
dependent module /db2data/db2inst1/sqllib/lib64/libgsk8cms_64.so.
 Symbol VALUE_EC_ecPublicKey__9GSKASNOID (number 19) is not exported from dependent
module /db2data/db2inst1/sqllib/lib64/libgsk8cms_64.so.
 Symbol VALUE_EC_ecdsa_with_SHA1__9GSKASNOID (number 20) is not exported from
dependent module /db2data/db2inst1/sqllib/lib64/libgsk8cms_64.so.
 Symbol VALUE_EC_ecdsa__9GSKASNOID (number 21) is not exported from dependent
 module /db2data/db2inst1/sqllib/lib64/libgsk8cms_64.so.'.

Security 105

EXPLANATION:
This message applies to AIX systems. The shared library
'/usr/mqm/gskit8/lib64/libgsk8ssl_64.so' failed
to load correctly due to a problem with the library.
ACTION:
Check the file access permissions and that the file has not been corrupted.
----- amqxufnx.c : 1284 ---
09/08/11 11:16:13 - Process(24412.1) User(user) Program(example)
 Host(machine.example.ibm.com) Installation(Installation1)
 VRMF(7.1.0.0)
AMQ9220: The GSKit communications program could not be loaded.

EXPLANATION:
The attempt to load the GSKit library or procedure
'/usr/mqm/gskit8/lib64/libgsk8ssl_64.so' failed with error code
536895861.
ACTION:
Either the library must be installed on the system or the environment changed
to allow the program to locate it.
----- amqcgska.c : 836 --

A common cause of this error is that the setting of the LIBPATH or LD_LIBRARY_PATH environment
variable has caused the IBM WebSphere MQ client to load a mixed set of libraries from two different GSKit
V8.0 installations. Executing aIBM WebSphere MQ client application in a DB2® environment can cause this
error.

To avoid this error, include the IBM WebSphere MQ library directories at the front of the library path
so that the IBM WebSphere MQ libraries take precedence. This can be achieved using the setmqenv
command with the -k parameter, for example:

. /usr/mqm/bin/setmqenv -s -k

For more information about the use of the setmqenv command, refer to setmqenv (set WebSphere MQ
environment)

Setting up communications for SSL or TLS on UNIX, Linux, and Windows
systems

Secure communications that use the SSL or TLS cryptographic security protocols involve setting up the
communication channels and managing the digital certificates that you will use for authentication.

To set up your SSL or TLS installation you must define your channels to use SSL or TLS. You must also
create and manage your digital certificates. On UNIX, Linux and Windows systems, you can perform the
tests with self-signed certificates.

Self-signed certificates cannot be revoked, which could allow an attacker to spoof an identity after a
private key has been compromised. CAs can revoke a compromised certificate, which prevents its further
use. CA-signed certificates are therefore safer to use in a production environment, though self-signed
certificates are more convenient for a test system.

For full information about creating and managing certificates, see “Working with SSL or TLS on UNIX,
Linux, and Windows systems” on page 110.

This collection of topics introduces some of the tasks involved in setting up SSL communications, and
provides step-by-step guidance on completing those tasks.

You might also want to test SSL or TLS client authentication, which are an optional part of the protocols.
During the SSL or TLS handshake, the SSL or TLS client always obtains and validates a digital certificate
from the server. With the IBM WebSphere MQ implementation, the SSL or TLS server always requests a
certificate from the client.

On UNIX, Linux and Windows systems, the SSL or TLS client sends a certificate only if it has one labeled in
the correct IBM WebSphere MQ format:

• For a queue manager, the format is ibmwebspheremq followed by the name of your queue manager
changed to lowercase. For example, for QM1, ibmwebspheremqqm1

106 Securing IBM WebSphere MQ

• For an IBM WebSphere MQ client, ibmwebspheremq followed by your logon user ID changed to
lowercase, for example ibmwebspheremqmyuserid.

IBM WebSphere MQ uses the ibmwebspheremq prefix on a label to avoid confusion with certificates for
other products. Ensure that you specify the entire certificate label in lowercase.

The SSL or TLS server always validates the client certificate if one is sent. If the client does not send a
certificate, authentication fails only if the end of the channel acting as the SSL or TLS server is defined
with either the SSLCAUTH parameter set to REQUIRED or an SSLPEER parameter value set. For more
information, see “Connecting two queue managers using SSL or TLS” on page 199.

Working with SSL or TLS
These topics give instructions for performing single tasks related to using SSL or TLS with IBM WebSphere
MQ.

Many of them are used as steps in the higher-level tasks described in the following sections:

• “Identifying and authenticating users” on page 139
• “Authorizing access to objects” on page 153
• “Confidentiality of messages” on page 198
• “Data integrity of messages” on page 219
• “Keeping clusters secure” on page 236

Working with SSL or TLS on HP Integrity NonStop Server
Describes the IBM WebSphere MQ client for HP Integrity NonStop Server OpenSSL security
implementation, including security services, components, supported protocol versions, supported
CipherSpecs, and unsupported security functionality.

IBM WebSphere MQ SSL & TLS support provides the following security services for client channels:

• Authentication of the server and, optionally, authentication of the client.
• Encryption and decryption of the data that is flowing across a channel.
• Integrity checks on the data that is flowing across a channel.

The SSL and TLS support supplied with the IBM WebSphere MQ client for HP Integrity NonStop Server
comprises the following components:

• OpenSSL libraries and the openssl command.
• IBM WebSphere MQ password stash command, amqrsslc.

The following required components for SSL or TLS client channel operation are not provided with the IBM
WebSphere MQ client for HP Integrity NonStop Server:

• An entropy daemon to provide a source of random data for OpenSSL cryptography.

Supported protocol versions
The IBM WebSphere MQ client for HP Integrity NonStop Server supports the following protocol versions:

• SSL 3.0
• TLS 1.0
• TLS 1.2

Supported CipherSpecs
The IBM WebSphere MQ client for HP Integrity NonStop Server supports the following CipherSpecs
versions:

• TLS_RSA_WITH_AES_128_CBC_SHA

Security 107

• TLS_RSA_WITH_AES_256_CBC_SHA
• RC4_SHA_US
• RC4_MD5_US
• TRIPLE_DES_SHA_US
• TLS_RSA_WITH_3DES_EDE_CBC_SHA (deprecated)
• DES_SHA_EXPORT1024
• RC4_56_SHA_EXPORT1024
• RC4_MD5_EXPORT
• RC2_MD5_EXPORT
• DES_SHA_EXPORT
• TLS_RSA_WITH_DES_CBC_SHA
• NULL_SHA
• NULL_MD5
• FIPS_WITH_DES_CBC_SHA
• FIPS_WITH_3DES_EDE_CBC_SHA
• TLS_RSA_WITH_AES_128_CBC_SHA256
• TLS_RSA_WITH_AES_256_CBC_SHA256
• TLS_RSA_WITH_NULL_SHA256
• TLS_RSA_WITH_AES_128_GCM_SHA256
• TLS_RSA_WITH_AES_256_GCM_SHA384
• ECDHE_ECDSA_AES_128_CBC_SHA256
• ECDHE_ECDSA_AES_256_CBC_SHA384
• ECDHE_RSA_AES_128_CBC_SHA256
• ECDHE_RSA_AES_256_CBC_SHA384
• ECDHE_ECDSA_AES_128_GCM_SHA256
• ECDHE_ECDSA_AES_256_GCM_SHA384
• ECDHE_RSA_AES_128_GCM_SHA256
• ECDHE_RSA_AES_256_GCM_SHA384

Unsupported security functionality
The IBM WebSphere MQ client for HP Integrity NonStop Server does not currently support:

• PKCS#11 Cryptographic hardware support
• LDAP Certificate Revocation List checking
• OCSP Online Certificate Status Protocol checking
• FIPS 140-2, NSA SUITE B cipher suite controls

Certificate management
Use a set of files to store digital certificate and certificate revocation information.

IBM WebSphere MQ SSL and TLS support uses a set of files to store digital certificate and certificate
revocation information. These files are located in a directory specified either programmatically by way
of the KeyRepository field in the MQSCO structure passed on the MQCONNX call, by the MQSSLKEYR
environment variable, or, in the SSL stanza of the mqclient.ini using the SSLKeyRepository attribute.

The MQSCO structure takes precedence over the MQSSLKEYR environment variable which takes
precedence over the ini file stanza value.

108 Securing IBM WebSphere MQ

Important: The key repository location specifies a directory location and not a filename on the HP
Integrity NonStop Server platform.

The IBM WebSphere MQ client for HP Integrity NonStop Server uses the following, case sensitive, named
files in the key repository location:

• “Personal certificate store” on page 109
• “Certificate trust store” on page 109
• “Pass phrase stash file” on page 109
• “Certificate revocation list file” on page 110

Personal certificate store
The personal certificate store file, cert.pem.

This file contains the personal certificate and the encrypted private key for the client to use, in PEM
format. The existence of this file is optional when you are using SSL or TLS channels that do not require
client authentication. Where client authentication is required by the channel, and SSLCAUTH(REQUIRED)
is specified on the channel definition, this file must exist and contain both the certificate and encrypted
private key.

File permissions must be set on this file to allow read access to the owner of the certificate store.

A correctly formatted cert.pem file must contain exactly two sections with the following headers and
footers:

-----BEGIN PRIVATE KEY-----
Base 64 ASCII encoded private key data here
-----END PRIVATE KEY-----

-----BEGIN CERTIFICATE-----
Base 64 ASCII encoded certificate data here
-----END CERTIFICATE-----

The pass phrase for the encrypted private key is stored in the pass phrase stash file, Stash.sth.

Certificate trust store
The certificate truststore file, trust.pem.

This file contains the certificates that are needed to validate the personal certificates that are used by
queue managers that the client connects to, in PEM format. The certificate truststore is mandatory for all
SSL or TLS client channels.

File permissions must be set to limit write access to this file.

A correctly formatted trust.pem file must contain one or more sections with the following headers and
footers:

-----BEGIN CERTIFICATE-----
Base 64 ASCII encoded certificate data here
-----END CERTIFICATE-----

Pass phrase stash file
The pass phrase stash file, Stash.sth.

This file is a binary format private to IBM WebSphere MQ and contains the encrypted pass phrase for use
when you are accessing the private key that is held in the cert.pem file. The private key itself is stored in
the cert.pem certificate store.

This file is created or altered by using the IBM WebSphere MQ amqrsslc command-line tool with the -s
parameter. For example, where the directory /home/alice contains a cert.pem file:

amqrsslc -s /home/alice/cert

 Enter password for Keystore /home/alice/cert.pem :
 password

Security 109

 Stashed the password in file /home/alice/Stash.sth

File permissions must be set on this file to allow read access to the owner of the associated personal
certificate store.

Certificate revocation list file
The certificate revocation list file, crl.pem.

This file contains the certificate revocation lists (CRLs) that the client uses to validate digital certificates,
in PEM format. The existence of this file is optional. If this file is not present, no certificate revocation
checks are done when you are validating certificates.

File permissions must be set to limit write access to this file.

A correctly formatted crl.pem file must contain one or more sections with the following headers and
footers:

-----BEGIN X509 CRL-----
Base 64 ASCII encoded CRL data here
-----END X509 CRL-----

Working with SSL or TLS on UNIX, Linux, and Windows systems
On UNIX, Linux and Windows systems, Secure Sockets Layer (SSL) support is installed with IBM
WebSphere MQ.

For more detailed information about certificate validation policies, see Certificate validation and trust
policy design.

Using iKeyman, iKeycmd, runmqakm, and runmqckm
On UNIX, Linux and Windows systems, manage keys and digital certificates with the iKeyman GUI or from
the command line using iKeycmd or runmqakm.

• For UNIX and Linux systems:

– Use the strmqikm command to start the iKeyman GUI.
– Use the runmqckm command to perform tasks with the iKeycmd command line interface.
– Use the runmqakm command to perform tasks with the runmqakm command line interface. The

command syntax for runmqakm is the same as the syntax for runmqckm.

If you need to manage SSL certificates in a way that is FIPS compliant, use the runmqakm command
instead of the runmqckm or strmqikm commands.

See Managing keys and certificates for a full description of the command line interfaces for the
runmqckm and runmqakm commands.

If you are using certificates or keys stored on PKCS #11 cryptographic hardware, note that iKeycmd and
iKeyman are 64-bit programs. External modules required for PKCS #11 support will be loaded into a
64-bit process, therefore you must have a 64-bit PKCS #11 library installed for the administration of
cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only exceptions, as the
iKeyman and iKeycmd programs are 32-bit on those platforms.

On the following platforms, where the JRE was 32 bit in earlier versions of the product, but is 64 bit only
in IBM WebSphere MQ Version 7.5, you might need to install additional PKCS#11 drivers appropriate for
the addressing mode of the iKeyman and iKeycmd JRE. This is because the PKCS#11 driver must use
the same addressing mode as the JRE. The following table shows the IBM WebSphere MQ Version 7.5
JRE addressing modes.

Table 12. IBM WebSphere MQ Version 7.5 JRE addressing modes

Platform JRE Addressing Mode

Windows (32 bit or 64 bit) 32

110 Securing IBM WebSphere MQ

Table 12. IBM WebSphere MQ Version 7.5 JRE addressing modes (continued)

Platform JRE Addressing Mode

Linux for System x 32 bit 32

Linux for System x 64 bit 64

Linux for System p 64

Linux for System z 64

HP-UX 64

Solaris Sparc 64

Solaris x86-64 64

AIX 64

Before you run the strmqikm command to start the iKeyman GUI, ensure you are working on a machine
that is able to run the X Window System and that you do the following:

– Set the DISPLAY environment variable, for example:

export DISPLAY=mypc:0

– Ensure that your PATH environment variable contains /usr/bin and /bin. This is also required for
the runmqckm and runmqakm commands. For example:

export PATH=$PATH:/usr/bin:/bin

• For Windows systems:

– Use the strmqikm command to start the iKeyman GUI.
– Use the runmqckm command to perform tasks with the iKeycmd command line interface.

If you need to manage SSL certificates in a way that is FIPS compliant, use the runmqakm command
instead of the runmqckm or strmqikm commands.

To request SSL tracing on UNIX, Linux or Windows systems, see strmqtrc.

Related reference
runmqckm, and runmqakm commands

Setting up a key repository on UNIX, Linux, and Windows systems
You can set up a key repository by using the iKeyman user interface, or by using the iKeycmd or
runmqakm commands.

About this task
An SSL or TLS connection requires a key repository at each end of the connection. Each IBM WebSphere
MQ queue manager and IBM WebSphere MQ MQI client must have access to a key repository. For more
information, see “The SSL or TLS key repository” on page 23.

On UNIX, Linux, and Windows systems, digital certificates are stored in a key database file that is
managed by using the iKeyman user interface, or by using the iKeycmd or runmqakm commands. These
digital certificates have labels. A specific label associates a personal certificate with a queue manager or
IBM WebSphere MQ MQI client. SSL and TLS use that certificate for authentication purposes. On UNIX,
Linux, and Windows systems, IBM WebSphere MQ uses ibmwebspheremq as a label prefix to avoid
confusion with certificates for other products. The prefix is followed by the name of the queue manager
or IBM WebSphere MQ MQI client user logon ID, changed to lowercase. Ensure that you specify the entire
certificate label in lowercase.

Security 111

The key database file name comprises a path and stem name:

• On UNIX and Linux systems, the default path for a queue manager (set when you created the queue
manager) is /var/mqm/qmgrs/<queue_manager_name>/ssl.

On Windows systems, the default path is
MQ_INSTALLATION_PATH\Qmgrs\queue_manager_name\ssl, where MQ_INSTALLATION_PATH
is the directory in which IBM WebSphere MQ is installed. For example, C:\program
files\IBM\WebSphere MQ\Qmgrs\QM1\ssl.

The default stem name is key. Optionally, you can choose your own path and stem name, but the
extension must be .kdb.

If you choose your own path or file name, set the permissions to the file to tightly control access to it.
• For a WebSphere MQ client, there is no default path or stem name. Tightly control access to this file. The

extension must be .kdb.

Do not create key repositories on a file system that does not support file level locks, for example NFS
version 2 on Linux systems.

See “Changing the key repository location for a queue manager on UNIX, Linux or Windows systems” on
page 116 for information about checking and specifying the key database file name. You can specify the
key database file name either before or after creating the key database file.

The user ID from which you run the iKeyman or iKeycmd commands must have write permission for the
directory in which the key database file is created or updated. For a queue manager using the default ssl
directory, the user ID from which you run iKeyman or iKeycmd must be a member of the mqm group.
For a IBM WebSphere MQ MQI client, if you run iKeyman or iKeycmd from a user ID different from that
under which the client runs, you must alter the file permissions to enable the IBM WebSphere MQ MQI
client to access the key database file at run time. For more information, see “Accessing and securing your
key database files on Windows” on page 114 or “Accessing and securing your key database files on UNIX
and Linux systems” on page 114.

In iKeyman or iKeycmd version 7.0, new key databases are automatically populated with a set of
pre-defined certificate authority (CA) certificates. In iKeyman or iKeycmd version 8.0, key databases
are not automatically populated, making the initial setup more secure because you include only the CA
certificates that you want, in your key database file.

Note: Because of this change in behavior for GSKit version 8.0 that results in CA certificates no longer
being automatically added to the repository, you must manually add your preferred CA certificates. This
change of behavior provides you with more granular control over the CA certificates used. See “Adding
default CA certificates into an empty key repository on UNIX, Linux, and Windows systems with GSKit
version 8.0” on page 114.

You create the key database either by using the command line, or by using the strmqikm (iKeyman) user
interface.

Note: If you must manage TLS certificates in a way that is FIPS-compliant, use the runmqakm command.
The strmqikm user interface does not provide a FIPS-compliant option.

Procedure
Create a key database by using the command line.

1. Run either of the following commands:

• On UNIX, Linux, and Windows systems:

runmqckm -keydb -create -db filename -pw password -type cms -stash

• Using runmqakm:

runmqakm -keydb -create -db filename -pw password -type cms
 -stash -fips -strong

112 Securing IBM WebSphere MQ

where:
-db filename

Specifies the fully qualified file name of a CMS key database, and must have a file extension
of .kdb.

-pw password
Specifies the password for the CMS key database.

-type cms
Specifies the type of database. (For IBM WebSphere MQ, it must be cms.)

-stash
Saves the key database password to a file.

-fips
Disables the use of the BSafe cryptographic library. Only the ICC component is used and
this component must be successfully initialized in FIPS mode. When in FIPS mode, the ICC
component uses algorithms that are FIPS 140-2 validated. If the ICC component does not
initialize in FIPS mode, the runmqakm command fails.

-strong
Checks that the password entered satisfies the minimum requirements for password strength.
The minimum requirements for a password are as follows:

• The password must be a minimum length of 14 characters.
• The password must contain a minimum of one lowercase character, one uppercase character,

and one digit or special character. Special characters include the asterisk (*), the dollar sign ($),
the number sign (#), and the percent sign (%). A space is classified as a special character.

• Each character can occur a maximum of three times in a password.
• A maximum of two consecutive characters in the password can be identical.
• All characters are in the standard ASCII printable character set within the range 0x20 - 0x7E.

Alternatively, create a key database by using the strmqikm (iKeyman) user interface.
2. On UNIX and Linux systems, log in as the root user. On Windows systems, log in as Administrator or

as a member of the MQM group.
3. Start the iKeyman user interface by running the strmqikm command.
4. From the Key Database File menu, click New.

The New window opens.
5. Click Key database type and select CMS (Certificate Management System).
6. In the File Name field, type a file name.

This field already contains the text key.kdb. If your stem name is key, leave this field unchanged.
If you specified a different stem name, replace key with your stem name. However, you must not
change the .kdb extension.

7. In the Location field, type the path.
For example:

• For a queue manager: /var/mqm/qmgrs/QM1/ssl (on UNIX and Linux systems) or C:\Program
Files\IBM\WebSphere MQ\qmgrs\QM1\ssl (on Windows systems).

The path must match the value of the SSLKeyRepository attribute of the queue manager.
• For an IBM WebSphere MQ client: /var/mqm/ssl (on UNIX and Linux systems) or C:\mqm\ssl

(on Windows systems).
8. Click Open.

The Password Prompt window opens.
9. Type a password in the Password field, and type it again in the Confirm Password field.

10. Select the Stash the password to a file check box.

Security 113

Note: If you do not stash the password, attempts to start SSL or TLS channels fail because they
cannot obtain the password required to access the key database file.

11. Click OK.
The Personal Certificates window opens.

12. Set the access permissions as described in “Accessing and securing your key database files on
Windows” on page 114 or “Accessing and securing your key database files on UNIX and Linux
systems” on page 114.

Accessing and securing your key database files on Windows
The key database files might not have appropriate access permissions. You must set appropriate access
to these files.

Set access control to the files key.kdb, key.sth, key.crl, and key.rdb, where key is the stem name
of your key database, to grant authority to a restricted set of users.

Consider granting access as follows:
full authority

BUILTIN\Administrators, NT AUTHORITY\SYSTEM, and the user who created the database files.
read authority

For a queue manager, the local mqm group only. This assumes that the MCA is running under a user ID
in the mqm group.
For a client, the user ID under which the client process is running.

Accessing and securing your key database files on UNIX and Linux systems
The key database files might not have appropriate access permissions. You must set appropriate access
to these files.

For a queue manager, set permissions on the key database files so that queue manager and channel
processes can read them when necessary, but other users cannot read or modify them. Normally, the
mqm user needs read permissions. If you have created the key database file by logging in as the mqm
user, then the permissions are probably sufficient; if you were not the mqm user, but another user in the
mqm group, you probably need to grant read permissions to other users in the mqm group.

Similarly for a client, set permissions on the key database files so that client application processes can
read them when necessary, but other users cannot read or modify them. Normally, the user under which
the client process runs needs read permissions. If you have created the key database file by logging in as
that user, then the permissions are probably sufficient; if you were not the client process user, but another
user in that group, you probably need to grant read permissions to other users in the group.

Set the permissions on the files key.kdb, key.sth, key.crl, and key.rdb, where key is the stem
name of your key database, to read and write for the file owner, and to read for the mqm or client user
group (-rw-r-----).

Adding default CA certificates into an empty key repository on UNIX, Linux, and Windows systems with
GSKit version 8.0
Follow this procedure to add one or more of the default CA certificates to an empty key repository with
GSKit version 8.

In GSKit version 7.0, the behaviour when creating a new key repository was to automatically add in a set
of default CA certificates for commonly-used Certificate Authorities. For GSKit version 8, this behaviour
has changed so that CA certificates are no longer automatically added to the repository. The user is now
required to manually add CA certificates into the key repository.

Using iKeyman
Perform the following steps on the machine on which you want to add the CA certificate:

1. Start the iKeyman GUI using the strmqikm command (on UNIX, Linux and Windows systems).
2. From the Key Database File menu, click Open. The Open window opens.

114 Securing IBM WebSphere MQ

3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file to which you want to add the certificate, for example key.kdb.
6. Click Open. The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK. The name of your key

database file displays in the File Name field.
8. In the Key database content field, select Signer Certificates.
9. Click Populate. The Add CA's Certificate window opens.

10. The CA certificates that are available to be added to the repository are displayed in a hierarchical tree
structure. Select the top level entry for the organization whose CA certificates you wish to trust to
view the complete list of valid CA certificates.

11. Select the CA certificates you wish to trust from the list and click OK. The certificates are added to
the key repository.

Using the command line
Use the following commands to list, then add CA certificates using iKeycmd:

• Issue the following command to list the default CA certificates along with the organizations which issue
them:

runmqckm -cert -listsigners

• Issue the following command to add all of the CA certificates for the organization specified in the label
field:

runmqckm -cert -populate -db filename -pw password -label label

where:

-db filename is the fully qualified path name of the key database.

-pw password is the password for the key database.

-label label is the label attached to the certificate.

Note: Adding a CA certificate to a key repository results in WebSphere MQ trusting all personal
certificates signed by that CA certificate. Consider carefully which Certificate Authorities you wish to
trust and only add the set of CA certificates needed to authenticate your clients and managers. It is not
recommended to add the full set of default CA certificates unless this is a definitive requirement for your
security policy.

Locating the key repository for a queue manager on UNIX, Linux, and Windows
systems
Use this procedure to obtain the location of your queue manager's key database file

Procedure
1. Display your queue manager's attributes, using either of the following MQSC commands:

DISPLAY QMGR ALL
DISPLAY QMGR SSLKEYR

You can also display your queue manager's attributes using the IBM WebSphere MQ Explorer or PCF
commands.

2. Examine the command output for the path and stem name of the key database file.

Security 115

For example,

a. on UNIX and Linux systems: /var/mqm/qmgrs/QM1/ssl/key, where /var/mqm/
qmgrs/QM1/ssl is the path and key is the stem name

b. on Windows: MQ_INSTALLATION_PATH\qmgrs\QM1\ssl\key, where
MQ_INSTALLATION_PATH\qmgrs\QM1\ssl is the path and key is the stem name.
MQ_INSTALLATION_PATH represents the high-level directory in which WebSphere MQ is installed.

Changing the key repository location for a queue manager on UNIX, Linux or Windows
systems
You can change the location of your queue manager's key database file by various means including the
MQSC command ALTER QMGR.

You can change the location of your queue manager's key database file by using the MQSC command
ALTER QMGR to set your queue manager's key repository attribute. For example, on UNIX and Linux
systems:

ALTER QMGR SSLKEYR('/var/mqm/qmgrs/QM1/ssl/MyKey')

The key database file has the fully qualified file name: /var/mqm/qmgrs/QM1/ssl/MyKey.kdb

On Windows:

ALTER QMGR SSLKEYR('C:\Program Files\IBM\WebSphere MQ\Qmgrs\QM1\ssl\Mykey')

The key database file has the fully qualified file name: C:\Program Files\IBM\WebSphere
MQ\Qmgrs\QM1\ssl\Mykey.kdb

Attention: Ensure that you do not include the .kdb extension in the file name on the SSLKEYR
keyword, as the queue manager appends this extension automatically.

You can also alter your queue manager's attributes using the WebSphere MQ Explorer or PCF commands.

When you change the location of a queue manager's key database file, certificates are not transferred
from the old location. If the key database file you are now accessing is a new key database file, you
must populate it with the CA and personal certificates you need, as described in “Importing a personal
certificate into a key repository on UNIX, Linux, and Windows systems” on page 129.

Locating the key repository for an IBM WebSphere MQ MQI client on UNIX, Linux, and
Windows systems
The location of the key repository is given by the MQSSLKEYR variable, or specified in the MQCONNX call.

Examine the MQSSLKEYR environment variable to obtain the location of your IBM WebSphere MQ MQI
client's key database file. For example:

echo $MQSSLKEYR

Also check your application, because the key database file name can also be set in an MQCONNX call,
as described in “Specifying the key repository location for an IBM WebSphere MQ MQI client on UNIX,
Linux, and Windows systems” on page 116. The value set in an MQCONNX call overrides the value of
MQSSLKEYR.

Specifying the key repository location for an IBM WebSphere MQ MQI client on UNIX,
Linux, and Windows systems
There is no default key repository for an IBM WebSphere MQ MQI client. You can specify its location
in either of two ways. Ensure that the key database file can be accessed only by intended users or
administrators to prevent unauthorized copying to other systems.

You can specify the location of your IBM WebSphere MQ MQI client's key database file in either of two
ways:

116 Securing IBM WebSphere MQ

• Setting the MQSSLKEYR environment variable. For example, on UNIX and Linux systems:

export MQSSLKEYR=/var/mqm/ssl/key

The key database file has the fully-qualified file name:

/var/mqm/ssl/key.kdb

On Windows:

set MQSSLKEYR=C:\Program Files\IBM\WebSphere MQ\ssl\key

The key database file has the fully-qualified file name:

C:\Program Files\IBM\WebSphere MQ\ssl\key.kdb

Note: The .kdb extension is a mandatory part of the file name, but is not included as part of the value of
the environment variable.

• Providing the path and stem name of the key database file in the KeyRepository field of the MQSCO
structure when an application makes an MQCONNX call. For more information about using the MQSCO
structure in MQCONNX, see Overview for MQSCO .

When changes to certificates or the certificate store become effective on UNIX, Linux or
Windows systems.
When you change the certificates in a certificate store, or the location of the certificate store, the changes
take effect depending on the type of channel and how the channel is running.

Changes to the certificates in the key database file and to the key repository attribute become effective in
the following situations:

• When a new outbound single channel process first runs an SSL channel.
• When a new inbound TCP/IP single channel process first receives a request to start an SSL channel.
• When the MQSC command REFRESH SECURITY TYPE(SSL) is issued to refresh the Websphere MQ SSL

environment.
• For client application processes, when the last SSL connection in the process is closed. The next SSL

connection will pick up the certificate changes.
• For channels that run as threads of a process pooling process (amqrmppa), when the process pooling

process is started or restarted and first runs an SSL channel. If the process pooling process has already
run an SSL channel, and you want the change to become effective immediately, run the MQSC command
REFRESH SECURITY TYPE(SSL).

• For channels that run as threads of the channel initiator, when the channel initiator is started or
restarted and first runs an SSL channel. If the channel initiator process has already run an SSL
channel, and you want the change to become effective immediately, run the MQSC command REFRESH
SECURITY TYPE(SSL).

• For channels that run as threads of a TCP/IP listener, when the listener is started or restarted and first
receives a request to start an SSL channel. If the listener has already run an SSL channel, and you want
the change to become effective immediately, run the MQSC command REFRESH SECURITY TYPE(SSL).

You can also refresh the WebSphere MQ SSL environment using the IBM WebSphere MQ Explorer or PCF
commands.

Security 117

Creating a self-signed personal certificate on UNIX, Linux, and Windows systems
You can create a self-signed certificate by using iKeyman, iKeycmd, or runmqakm.

Note: IBM WebSphere MQ does not support SHA-3 or SHA-5 algorithms. You can use the digital signature
algorithm names SHA384WithRSA and SHA512WithRSA because both algorithms are members of the
SHA-2 family.

The digital signature algorithm names SHA3WithRSA and SHA5WithRSA are deprecated because they are
an abbreviated form of SHA384WithRSA and SHA512WithRSA respectively.

For more information about why you might want to use self-signed certificates, see “Using self-signed
certificates for mutual authentication of two queue managers” on page 199.

Not all digital certificates can be used with all CipherSpecs. Ensure that you create a certificate that
is compatible with the CipherSpecs you need to use. WebSphere MQ supports three different types
of CipherSpec. For details, see “Interoperability of Elliptic Curve and RSA CipherSpecs” on page 35 in
the “Digital certificates and CipherSpec compatibility in IBM WebSphere MQ” on page 33 topic. To use
the Type 1 CipherSpecs (those with names beginning ECDHE_ECDSA_) you must use the runmqakm
command to create the certificate and you must specify an Elliptic Curve ECDSA signature algorithm
parameter; for example, -sig_alg EC_ecdsa_with_SHA384 .

Using iKeyman
iKeyman does not provide a FIPS-compliant option. If you need to manage SSL or TLS certificates in a way
that is FIPS-compliant, use the runmqakm command.

Use the following procedure to obtain a self-signed certificate for your queue manager or WebSphere MQ
MQI client:

1. Start the iKeyman GUI by using the strmqikm command .
2. From the Key Database File menu, click Open. The Open window displays.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file in which you want to save the certificate, for example key.kdb.
6. Click Open. The Password Prompt window displays.
7. Type the password you set when you created the key database and click OK. The name of your key

database file is displayed in the File Name field.
8. From the Create menu, click New Self-Signed Certificate. The Create New Self-Signed Certificate

window is displayed.
9. In the Key Label field, type:

• For a queue manager, ibmwebspheremq followed by the name of your queue manager folded to
lowercase. For example, for QM1, ibmwebspheremqqm1, or,

• For a WebSphere MQ client, ibmwebspheremq followed by your logon user ID folded to lowercase,
for example ibmwebspheremqmyuserid .

10. Type or select a value for any field in the Distinguished name, or any of the Subject
alternative name fields.

11. For the remaining fields, either accept the default values, or type or select new values. For more
information about Distinguished Names, see “Distinguished Names” on page 11.

12. Click OK. The Personal Certificates list shows the label of the self-signed personal certificate you
created.

Using the command line
Use the following commands to create a self-signed personal certificate by using iKeycmd or runmqakm:

118 Securing IBM WebSphere MQ

• Using iKeycmd on UNIX, Linux and Windows systems:

runmqckm -cert -create -db filename -pw
password -label label
 -dn distinguished_name -size key_size
 -x509version version -expire days
 -sig_alg algorithm

Instead of -dn distinguished_name , you can use -san_dsname DNS_names ,
-san_emailaddr email_addresses , or -san_ipaddr IP_addresses .

• Using runmqakm:

runmqakm -cert -create -db filename -pw
password -label label
 -dn distinguished_name -size key_size
 -x509version version -expire days

 -fips -sig_alg algorithm

-db filename The fully qualified file name of a CMS key database.

-pw password The password for the CMS key database.

-label label The key label attached to the certificate.

-dn distinguished_name The X.500 distinguished name enclosed in double quotation marks.
At least one attribute is required. You can supply multiple OU or DC
attributes.

-size key_size The key size. For iKeycmd, the value can be 512 or 1024. For runmqakm,
the value can be 512, 1024, 2048 or 4096.

-x509version version The version of X.509 certificate to create. The value can be 1, 2, or 3.
The default is 3.

-expire days The expiration time in days of the certificate. The default is 365 days for
a certificate.

-fips Specifies that the command is run in FIPS mode. This mode disables the
use of the BSafe cryptographic library. Only the ICC component is used
and this component must be successfully initialized in FIPS mode. When
in FIPS mode, the ICC component uses algorithms that have been FIPS
140-2 validated. If the ICC component does not initialize in FIPS mode,
the runmqakm command fails.

-sig_alg For runmqakm, the hashing algorithm used during the
creation of a self-signed certificate. This hashing algorithm
is used to create the signature associated with the newly
created self-signed certificate. The value can be md5,
MD5_WITH_RSA, MD5WithRSA, SHA_WITH_DSA , SHA_WITH_RSA,
sha1, SHA1WithDSA , SHA1WithECDSA, SHA1WithRSA, sha224,
SHA224_WITH_RSA, SHA224WithDSA , SHA224WithECDSA,
SHA224WithRSA , sha256, SHA256_WITH_RSA, SHA256WithDSA,
SHA256WithECDSA, SHA256WithRSA, SHA2WithRSA, sha384 ,
SHA384_WITH_RSA, SHA384WithECDSA , SHA384WithRSA,
sha512, SHA512_WITH_RSA, SHA512WithECDSA, SHA512WithRSA,
SHAWithDSA, SHAWithRSA , EC_ecdsa_with_SHA1,
EC_ecdsa_with_SHA224 , EC_ecdsa_with_SHA256,
EC_ecdsa_with_SHA384 , or EC_ecdsa_with_SHA512. The default
value is SHA1WithRSA.

Security 119

-sig_alg For iKeycmd, the asymmetric signature algorithm used for the
creation of the entry's key pair. The value can be MD2_WITH_RSA,
MD2WithRSA, MD5_WITH_RSA , MD5WithRSA, SHA1WithDSA,
SHA1WithRSA, SHA256_WITH_RSA, SHA256WithRSA , SHA2WithRSA,
SHA384_WITH_RSA, SHA384WithRSA, SHA512_WITH_RSA,
SHA512WithRSA, SHA_WITH_DSA, SHA_WITH_RSA , SHAWithDSA, or
SHAWithRSA. The default value is SHA1WithRSA.

-san_dnsname DNS_names A comma- or space-delimited list of DNS names for the entry being
created.

-san_emailaddr
email_addresses

A comma- or space-delimited list of email addresses for the entry being
created.

-san_ipaddr
IP_addresses

A comma- or space-delimited list of IP addresses for the entry being
created.

Requesting a personal certificate on UNIX, Linux, and Windows systems
You can request a personal certificate by using the strmqikm (iKeyman) GUI, or from the command line
using the runmqckm or runmqakm commands. If you need to manage SSL or TLS certificates in a way that
is FIPS-compliant, use the runmqakm command.

About this task
You can request a personal certificate using the iKeyman GUI, or from the command line, subject to the
following considerations:

• WebSphere MQ does not support SHA-3 or SHA-5 algorithms. You can use the digital signature
algorithm names SHA384WithRSA and SHA512WithRSA because both algorithms are members of the
SHA-2 family.

• The digital signature algorithm names SHA3WithRSA and SHA5WithRSA are deprecated because they
are an abbreviated form of SHA384WithRSA and SHA512WithRSA respectively.

• Not all digital certificates can be used with all CipherSpecs. Ensure that you request a certificate that
is compatible with the CipherSpecs you need to use. WebSphere MQ supports three different types of
CipherSpec. For details, see “Interoperability of Elliptic Curve and RSA CipherSpecs” on page 35 in the
“Digital certificates and CipherSpec compatibility in IBM WebSphere MQ” on page 33 topic.

• To use the Type 1 CipherSpecs (with names beginning ECDHE_ECDSA_) you must use the runmqakm
command to request the certificate and you must specify an Elliptic Curve ECDSA signature algorithm
parameter; for example, -sig_alg EC_ecdsa_with_SHA384.

• Only the runmqakm command provides a FIPS-compliant option.
• If you are using cryptographic hardware, see “Requesting a personal certificate for your PKCS #11

hardware” on page 136.

Using the iKeyman user interface

About this task
iKeyman does not provide a FIPS-compliant option. If you need to manage SSL or TLS certificates in a way
that is FIPS-compliant, use the runmqakm command.

Procedure
Complete the following steps to apply for a personal certificate, by using the iKeyman user interface:

1. Start the iKeyman user interface by using the strmqikm command.
2. From the Key Database File menu, click Open.

The Open window opens.
3. Click Key database type and select CMS (Certificate Management System).

120 Securing IBM WebSphere MQ

4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file from which you want to generate the request; for example, key.kdb.
6. Click Open.

The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK.

The name of your key database file is shown in the File Name field.
8. From the Create menu, click New Certificate Request. The Create New Key and Certificate

Request window opens.
9. In the Key Label field, enter the following labels:

• For a queue manager, enter ibmwebspheremq followed by the name of your queue manager
changed to lowercase. For example, for a queue manager called QM1, enter ibmwebspheremqqm1.

• For an IBM WebSphere MQ MQI client, enter ibmwebspheremq followed by your logon user ID, all
in lowercase; for example, ibmwebspheremqmyuserid .

10. Type or select a value for any field in the Distinguished name field, or any of the Subject alternative
name fields. For the remaining fields, either accept the default values, or type or select new values.
For more information about Distinguished Names, see “Distinguished Names” on page 11.

11. In the Enter the name of a file in which to store the certificate request field, either accept the
default certreq.arm, or type a new value with a full path.

12. Click OK.
A confirmation window is displayed.

13. Click OK.
The Personal Certificate Requests list shows the label of the new personal certificate request you
created. The certificate request is stored in the file you chose in step “11” on page 121.

14. Request the new personal certificate either by sending the file to a certificate authority (CA), or by
copying the file into the request form on the website for the CA.

Using the command line

Procedure
Use the following commands to request a personal certificate by using either the runmqckm or runmqakm
command:

• Using runmqckm:

runmqckm -certreq -create -db filename -pw
password -label label
 -dn distinguished_name -size key_size
 -file filename -sig_alg algorithm

Instead of -dn distinguished_name , you can use -san_dsname DNS_names ,
-san_emailaddr email_addresses , or -san_ipaddr IP_addresses .

• Using runmqakm:

runmqakm -certreq -create -db filename -pw
password -label label
 -dn distinguished_name -size key_size
 -file filename -fips
 -sig_alg algorithm

where:
-db filename

Specifies the fully qualified file name of a CMS key database.

Security 121

-pw password
Specifies the password for the CMS key database.

-label label
Specifies the key label attached to the certificate.

-dn distinguished_name
Specifies the X.500 distinguished name enclosed in double quotation marks. At least one attribute is
required. You can supply multiple OU and DC attributes.

-size key_size
Specifies the key size. If you are using runmqckm , the value can be 512 or 1024. If you are using
runmqakm, the value can be 512, 1024, or 2048.

-file filename
Specifies the file name for the certificate request.

-fips
Specifies that the command is run in FIPS mode. This mode disables the use of the BSafe
cryptographic library. Only the ICC component is used and this component must be successfully
initialized in FIPS mode. When in FIPS mode, the ICC component uses algorithms that are FIPS 140-2
validated. If the ICC component does not initialize in FIPS mode, the runmqakm command fails.

-sig_alg
For runmqckm, specifies the asymmetric signature algorithm used for the creation of
the entry's key pair. The value can be MD2_WITH_RSA, MD2WithRSA, MD5_WITH_RSA,
MD5WithRSA, SHA1WithDSA , SHA1WithRSA, SHA256_WITH_RSA, SHA256WithRSA, SHA2WithRSA,
SHA384_WITH_RSA , SHA384WithRSA, SHA512_WITH_RSA , SHA512WithRSA, SHA_WITH_DSA,
SHA_WITH_RSA, SHAWithDSA, or SHAWithRSA . The default value is SHA1WithRSA

-sig_alg
For runmqakm, specifies the hashing algorithm used during the creation of a certificate
request. This hashing algorithm is used to create the signature associated with the
newly created certificate request. The value can be md5, MD5_WITH_RSA, MD5WithRSA,
SHA_WITH_DSA , SHA_WITH_RSA, sha1, SHA1WithDSA , SHA1WithECDSA, SHA1WithRSA,
sha224, SHA224_WITH_RSA, SHA224WithDSA , SHA224WithECDSA, SHA224WithRSA , sha256,
SHA256_WITH_RSA, SHA256WithDSA, SHA256WithECDSA, SHA256WithRSA, SHA2WithRSA,
sha384 , SHA384_WITH_RSA, SHA384WithECDSA , SHA384WithRSA, sha512, SHA512_WITH_RSA,
SHA512WithECDSA, SHA512WithRSA, SHAWithDSA, SHAWithRSA , EC_ecdsa_with_SHA1,
EC_ecdsa_with_SHA224 , EC_ecdsa_with_SHA256, EC_ecdsa_with_SHA384 , or
EC_ecdsa_with_SHA512. The default value is SHA1WithRSA.

-san_dnsname DNS_names
Specifies a comma-delimited or space-delimited list of DNS names for the entry being created.

-san_emailaddr email_addresses
Specifies a comma-delimited or space-delimited list of email addresses for the entry being created.

-san_ipaddr IP_addresses
Specifies a comma-delimited or space-delimited list of IP addresses for the entry being created.

Renewing an existing personal certificate on UNIX, Linux, and Windows systems
You can renew a personal certificate by using the iKeyman user interface, or by using the iKeycmd or
runmqakm commands.

Before you begin
If you have a requirement to use larger key sizes for your personal certificates, the renewal steps
described below do not work, because the recreated certificate request is generated from an existing key.

Follow the steps described in “Requesting a personal certificate on UNIX, Linux, and Windows systems”
on page 120 to create a new certificate request, using the key sizes you require. This process replaces
your existing key.

122 Securing IBM WebSphere MQ

About this task
A personal certificate has an expiry date, after which the certificate can no longer be used. This task
explains how to renew an existing personal certificate before it expires.

Using the iKeyman user interface

About this task
iKeyman does not provide a FIPS-compliant option. If you need to manage SSL or TLS certificates in a way
that is FIPS-compliant, use the runmqakm command.

Procedure
Complete the following steps to apply for a personal certificate, by using the iKeyman user interface:

1. Start the iKeyman user interface by using the strmqikm command on UNIX, Linux, and Windows
systems.

2. From the Key Database File menu, click Open.
The Open window opens.

3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file from which you want to generate the request; for example, key.kdb.
6. Click Open.

The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK.

The name of your key database file is shown in the File Name field.
8. Select Personal Certificates from the drop down selection menu, and select the certificate from the

list that you want to renew.
9. Click the Recreate Request... button.

A window opens for you to enter the file name and file location information.
10. In the file namefield, either accept the default certreq.arm, or type a new value, including the full

file path.
11. Click OK. The certificate request is stored in the file you selected in step “9” on page 123.
12. Request the new personal certificate either by sending the file to a certificate authority (CA), or by

copying the file into the request form on the website for the CA.

Using the command line

Procedure
Use the following commands to request a personal certificate by using either the iKeycmd or runmqakm
command:

• Using iKeycmd on UNIX, Linux, and Windows systems:

runmqckm -certreq -recreate -db filename -pw
password -label label
 -target filename

• Using runmqakm:

runmqakm -certreq -recreate -db filename -pw
password -label label
 -target filename

where:

Security 123

-db filename
Specifies the fully qualified file name of a CMS key database.

-pw password
Specifies the password for the CMS key database.

-target filename
Specifies the file name for the certificate request.

What to do next
Once you have received the signed personal certificate from the certificate authority, you can add it to
your key database using the steps described in “Receiving personal certificates into a key repository on
UNIX, Linux and Windows systems” on page 124.

Receiving personal certificates into a key repository on UNIX, Linux and Windows
systems
Use this procedure to receive a personal certificate into the key database file. The key repository must be
the same repository where you created the certificate request.

After the CA sends you a new personal certificate, you add it to the key database file from which you
generated the new certificate request . If the CA sends the certificate as part of an email message, copy
the certificate into a separate file.

Using iKeyman
If you need to manage SSL certificates in a way that is FIPS compliant, use the runmqakm command.
iKeyman does not provide a FIPS-compliant option.

Ensure that the certificate file to be imported has write permission for the current user, and then use
the following procedure for either a queue manager or a WebSphere MQ MQI client to receive a personal
certificate into the key database file:

1. Start the iKeyman GUI using the strmqikm command (on Windows UNIX and Linux).
2. From the Key Database File menu, click Open. The Open window opens.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file to which you want to add the certificate, for example key.kdb.
6. Click Open, and then click OK. The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK. The name of your key

database file is displayed in the File Name field. Select the Personal Certificates view.
8. Click Receive. The Receive Certificate from a File window opens.
9. Type the certificate file name and location for the new personal certificate, or click Browse to select

the name and location.
10. Click OK. If you already have a personal certificate in your key database, a window opens, asking if

you want to set the key you are adding as the default key in the database.
11. Click Yes or No. The Enter a Label window opens.
12. Click OK. The Personal Certificates field shows the label of the new personal certificate you added.

Using the command line
Use the following commands to add a personal certificate to a key database file using iKeycmd :

• On UNIX, Linux and Windows, issue the following command:

runmqckm -cert -receive -file filename -db filename -pw

124 Securing IBM WebSphere MQ

password
 -format ascii

where:

-file filename is the fully qualified file name of the file containing the personal
certificate.

-db filename is the fully qualified file name of a CMS key database.

-pw password is the password for the CMS key database.

-format ascii is the format of the certificate. The value can be ascii for Base64-
encoded ASCII or binary for Binary DER data. The default is ascii .

If you are using cryptographic hardware, refer to “Importing a personal certificate to your PKCS #11
hardware” on page 138.

Extracting a CA certificate from a key repository
Follow this procedure to extract a CA certificate.

Using iKeyman
If you need to manage SSL certificates in a way that is FIPS compliant, use the runmqakm command.
iKeyman does not provide a FIPS-compliant option.

Perform the following steps on the machine from which you want to extract the CA certificate:

1. Start the iKeyman GUI using the strmqikm command..
2. From the Key Database File menu, click Open. The Open window opens.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file from which you want to extract, for example key.kdb.
6. Click Open. The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK. The name of your key

database file is displayed in the File Name field.
8. In the Key database content field, select Signer Certificates and select the certificate you want to

extract.
9. Click Extract. The Extract a Certificate to a File window opens.

10. Select the Data type of the certificate, for example Base64-encoded ASCII data for a file with
the .arm extension.

11. Type the certificate file name and location where you want to store the certificate, or click Browse to
select the name and location.

12. Click OK. The certificate is written to the file you specified.

Using the command line
Use the following commands to extract a CA certificate using iKeycmd :

• On UNIX, Linux and Windows:

runmqckm -cert -extract -db filename -pw password -label label -target filename
 -format ascii

where:

-db filename is the fully qualified path name of a CMS key database.

Security 125

-pw password is the password for the CMS key database.

-label label is the label attached to the certificate.

-target filename is the name of the destination file.

-format ascii is the format of the certificate. The value can be ascii for Base64-
encoded ASCII or binary for Binary DER data. The default is ascii.

Extracting the public part of a self-signed certificate from a key repository on UNIX,
Linux and Windows systems
Follow this procedure to extract the public part of a self-signed certificate.

Using iKeyman
If you need to manage SSL certificates in a way that is FIPS compliant, use the runmqakm command.
iKeyman does not provide a FIPS-compliant option.

Perform the following steps on the machine from which you want to extract the public part of a self-
signed certificate:

1. Start the iKeyman GUI using the strmqikm command (on UNIX, Linux and Windows).
2. From the Key Database File menu, click Open. The Open window opens.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file from which you want to extract the certificate, for example key.kdb.
6. Click Open. The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK. The name of your key

database file is displayed in the File Name field.
8. In the Key database content field, select Personal Certificates and select the certificate.
9. Click Extract certificate. The Extract a Certificate to a File window opens.

10. Select the Data type of the certificate, for example Base64-encoded ASCII data for a file with
the .arm extension.

11. Type the certificate file name and location where you want to store the certificate, or click Browse to
select the name and location.

12. Click OK. The certificate is written to the file you specified. Note that when you extract (rather than
export) a certificate, only the public part of the certificate is included, so a password is not required.

Using the command line
Use the following commands to extract the public part of a self-signed certificate using iKeycmd or
runmqakm:

• On UNIX, Linux and Windows:

runmqckm -cert -extract -db filename -pw password -label label -target filename
 -format ascii

• Using runmqakm:

runmqakm -cert -extract -db filename -pw password -label label
 -target filename -format ascii -fips

where:

-db filename is the fully qualified path name of a CMS key database.

126 Securing IBM WebSphere MQ

-pw password is the password for the CMS key database.

-label label is the label attached to the certificate.

-target filename is the name of the destination file.

-format ascii is the format of the certificate. The value can be ascii for Base64-
encoded ASCII or binary for Binary DER data. The default is ascii.

Adding a CA certificate (or the public part of a self-signed certificate) into a key
repository, on UNIX, Linux, and Windows systems
Follow this procedure to add a CA certificate or the public part of a self-signed certificate to the key
repository.

If the certificate that you want to add is in a certificate chain, you must also add all the certificates that
are above it in the chain. You must add the certificates in strictly descending order starting from the root,
followed by the CA certificate immediately below it in the chain, and so on.

Where the following instructions refer to a CA certificate, they also apply to the public part of a self-signed
certificate.

Note: If the certificate you want to add is in a certificate chain, you must also add all the certificates that
are above it in the chain. You must ensure that the certificate is in ASCII (UTF-8) or binary (DER) encoding,
because IBM Global Secure Toolkit (GSKit) does not support certificates with other types of encoding. You
must add the certificates in strictly descending order starting from the root, followed by the CA certificate
immediately below it in the chain.

Using iKeyman
If you need to manage SSL certificates in a way that is FIPS compliant, use the runmqakm command.
iKeyman does not provide a FIPS-compliant option.

Perform the following steps on the machine on which you want to add the CA certificate:

1. Start the iKeyman GUI using the strmqikm command (on UNIX, Linux and Windows systems).
2. From the Key Database File menu, click Open. The Open window opens.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file to which you want to add the certificate, for example key.kdb.
6. Click Open. The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK. The name of your key

database file displays in the File Name field.
8. In the Key database content field, select Signer Certificates.
9. Click Add. The Add CA's Certificate from a File window opens.

10. Type the certificate file name and location where the certificate is stored, or click Browse to select
the name and location.

11. Click OK. The Enter a Label window opens.
12. In the Enter a Label window, type the name of the certificate.
13. Click OK. The certificate is added to the key database.

Using the command line
Use the following commands to add a CA certificate using iKeycmd :

Security 127

• On UNIX, Linux and Windows, issue the following command:

runmqckm -cert -add -db filename -pw password -label label -file filename
 -format ascii

where:

-db filename is the fully qualified path name of the CMS key database.

-pw password is the password for the CMS key database.

-label label is the label attached to the certificate.

-file filename is the name of the file containing the certificate.

-format ascii is the format of the certificate. The value can be ascii for Base64-
encoded ASCII or binary for Binary DER data. The default is ascii.

Exporting a personal certificate from a key repository
Follow this procedure to exporting a personal certificate.

Using iKeyman
If you need to manage SSL certificates in a way that is FIPS compliant, use the runmqakm command.
iKeyman does not provide a FIPS-compliant option.

Perform the following steps on the machine from which you want to export the personal certificate:

1. Start the iKeyman GUI using the strmqikm command (on Windows UNIX and Linux).
2. From the Key Database File menu, click Open. The Open window opens.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file from which you want to export the certificate, for example key.kdb.
6. Click Open. The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK. The name of your key

database file is displayed in the File Name field.
8. In the Key database content field, select Personal Certificates and select the certificate you want to

export.
9. Click Export/Import. The Export/Import key window opens.

10. Select Export Key.
11. Select the Key file type of the certificate you want to export, for example PKCS12.
12. Type the file name and location to which you want to export the certificate, or click Browse to select

the name and location.
13. Click OK. The Password Prompt window opens. Note that when you export (rather than extract) a

certificate, both the public and private parts of the certificate are included. This is why the exported
file is protected by a password. When you extract a certificate, only the public part of the certificate is
included, so a password is not required.

14. Type a password in the Password field, and type it again in the Confirm Password field.
15. Click OK. The certificate is exported to the file you specified.

Using the command line
Use the following commands to export a personal certificate using iKeycmd:

128 Securing IBM WebSphere MQ

• On UNIX, Linux and Windows:

runmqckm -cert -export -db filename -pw password -label label -type cms
 -target filename -target_pw password -target_type pkcs12

where:

-db filename is the fully qualified path name of the CMS key database.

-pw password is the password for the CMS key database.

-label label is the label attached to the certificate.

-type cms is the type of the database.

-target filename is the fully qualified path name of the destination file.

-target_pw password is the password for encrypting the certificate.

-target_type pkcs12 is the type of the certificate.

Importing a personal certificate into a key repository on UNIX, Linux, and Windows
systems
Follow this procedure to import a personal certificate

Before importing a personal certificate in PKCS #12 format into the key database file, you must first add
the full valid chain of issuing CA certificates to the key database file (see “Adding a CA certificate (or the
public part of a self-signed certificate) into a key repository, on UNIX, Linux, and Windows systems” on
page 127).

PKCS #12 files should be considered temporary and deleted after use.

Using iKeyman
If you need to manage SSL certificates in a way that is FIPS-compliant, use the runmqakm command.
iKeyman does not provide a FIPS-compliant option.

Perform the following steps on the machine to which you want to import the personal certificate:

1. Start the iKeyman GUI using the strmqikm command .
2. From the Key Database File menu, click Open. The Open window displays.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file to which you want to add the certificate, for example key.kdb.
6. Click Open. The Password Prompt window displays.
7. Type the password you set when you created the key database and click OK. The name of your key

database file displays in the File Name field.
8. In the Key database content field, select Personal Certificates.
9. If there are certificates in the Personal Certificates view, follow these steps:

a. Click Export/Import. The Export/Import key window is displayed.
b. Select Import Key.

10. If there are no certificates in the Personal Certificates view, click Import.
11. Select the Key file type of the certificate you want to import, for example PKCS12.
12. Type the certificate file name and location where the certificate is stored, or click Browse to select

the name and location.
13. Click OK. The Password Prompt window displays.
14. In the Password field, type the password used when the certificate was exported.

Security 129

15. Click OK. The Change Labels window is displayed. This window allows the labels of certificates being
imported to be changed if, for example, a certificate with the same label already exists in the target
key database. Changing certificate labels has no effect on certificate chain validation. This can be
used to change the personal certificate label to that required by WebSphere MQ in order to associate
the certificate with the particular queue manager or client (ibmwebspheremqqm1 for example).

16. To change a label, select the required label from the Select a label to change list. The label is copied
into the Enter a new label entry field. Replace the label text with that of the new label and click
Apply.

17. The text in the Enter a new label entry field is copied back into the Select a label to change field,
replacing the originally selected label and so relabelling the corresponding certificate.

18. When you have changed all the labels that needed to be changed, click OK. The Change Labels
window closes, and the original IBM Key Management window reappears with the Personal
Certificates and Signer Certificates fields updated with the correctly labeled certificates.

19. The certificate is imported to the target key database.

Using the command line
To import a personal certificate using iKeycmd, use the following commands:

• On UNIX, Linux and Windows:

runmqckm -cert -import -file filename -pw password -type pkcs12 -target filename
-target_pw password -target_type cms -label label

where:

-file filename is the fully qualified file name of the file containing the PKCS #12
certificate.

-pw password is the password for the PKCS #12 certificate.

-type pkcs12 is the type of the file.

-target filename is the name of the destination CMS key database.

-target_pw password is the password for the CMS key database.

-target_type cms is the type of the database specified by -target

-label label is the label of the certificate to import from the source key database.

-new_label label is the label that the certificate will be assigned in the target database.
If you omit -new_label option, the default is to use the same as the
-label option.

iKeycmd does not provide a command to change certificate labels directly. Use the following steps to
change a certificate label:

1. Export the certificate to a PKCS #12 file using the -cert -export command. Specify the existing
certificate label for the -label option.

2. Remove the existing copy of the certificate from the original key database using the -cert -delete
command.

3. Import the certificate from the PKCS #12 file using the -cert -import command. Specify the old
label for the -label option and the required new label for the -new_label option. The certificate will
be imported back into the key database with the required label.

130 Securing IBM WebSphere MQ

Importing from a Microsoft .pfx file
Folow this procedure to mport from a Microsoft .pfx file using iKeyman. You cannot use runmqakm to
import a .pfx file.

A .pfx file can contain two certificates relating to the same key. One is a personal or site certificate
(containing both a public and private key). The other is a CA (signer) certificate (containing only a public
key). These certificates cannot coexist in the same CMS key database file, so only one of them can be
imported. Also, the "friendly name" or label is attached to only the signer certificate.

The personal certificate is identified by a system generated Unique User Identifier (UUID). This section
shows the import of a personal certificate from a pfx file while labeling it with the friendly name previously
assigned to the CA (signer) certificate. The issuing CA (signer) certificates should already be added to the
target key database. Note that PKCS#12 files should be considered temporary and deleted after use.

Follow these steps to import a personal certificate from a source pfx key database:

1. Start the iKeyman GUI using the strmqikm command (on Linux, UNIX or Windows). The IBM Key
Management window is displayed.

2. From the Key Database File menu, click Open. The Open window is displayed.
3. Select a key database type of PKCS12.
4. You are recommended to take a backup of the pfx database before performing this step. Select

the pfx key database that you want to import. Click Open. The Password Prompt window is displayed.
5. Enter the key database password and click OK. The IBM Key Management window is displayed. The

title bar shows the name of the selected pfx key database file, indicating that the file is open and
ready.

6. Select Signer Certificates from the list. The "friendly name" of the required certificate is displayed as
a label in the Signer Certificates panel.

7. Select the label entry and click Delete to remove the signer certificate. The Confirm window is
displayed.

8. Click Yes. The selected label is no longer displayed in the Signer Certificates panel.
9. Repeat steps 6, 7, and 8 for all the signer certificates.

10. From the Key Database File menu, click Open. The Open window is displayed.
11. Select the target key CMS database which the pfx file is being imported into. Click Open. The

Password Prompt window is displayed.
12. Enter the key database password and click OK. The IBM Key Management window is displayed. The

title bar shows the name of the selected key database file, indicating that the file is open and ready.
13. Select Personal Certificates from the list.
14. If there are certificates in the Personal Certificates view, follow these steps:

a. Click Export/Import key. The Export/Import key window is displayed.
b. Select Import from Choose Action Type.

15. If there are no certificates in the Personal Certificates view, click Import.
16. Select the PKCS12 file.
17. Enter the name of the pfx file as used in Step 4. Click OK. The Password Prompt window is displayed.
18. Specify the same password that you specified when you deleted the signer certificate. Click OK.
19. The Change Labels window is displayed (as there should be only a single certificate available for

import). The label of the certificate should be a UUID which has a format xxxxxxxx-xxxx-xxxx-
xxxx-xxxxxxxxxxxx.

20. To change the label select the UUID from the Select a label to change: panel. The label will be
replicated into the Enter a new label: field. Replace the label text with that of the friendly name that
was deleted in Step 7 and click Apply. The friendly name must be in the form ibmwebspheremq,
followed by the queue manager name or the WebSphere MQ MQI client user logon ID in lowercase.

Security 131

21. Click OK. The Change Labels window is now removed and the original IBM Key Management window
reappears with the Personal Certificates and Signer Certificates panels updated with the correctly
labeled personal certificate.

22. The pfx personal certificate is now imported to the (target) database.

It is not possible to change a certificate label using iKeycmd

Importing from a PKCS #7 file
The iKeyman and iKeycmd tools do not support PKCS #7 (.p7b) files. Use the runmqckm tool to import
certificates from a PKCS #7 file.

Use the following command to add a CA certificate from a PKCS #7 file:

runmqckm -cert -add -db filename -pw password -type cms -file filename
-label label

-db filename is the fully qualified file name of the CMS key database.

-pw password is the password for the key database.

-type cms is the type of the key database.

-file filename is the name of the PKCS #7 file.

-label label is the label that the certificate is assigned in the target database. The
first certificate takes the label given. All other certificates, if present, are
labeled with their subject name.

Use the following command to import a personal certificate from a PKCS #7 file:

 runmqckm -cert -import -db filename -pw password -type pkcs7 -target filename
 -target_pw password -target_type cms -label label -new_label label

-db filename is the fully qualified file name of the file containing the PKCS #7
certificate.

-pw password is the password for the PKCS #7 certificate.

-type pkcs7 is the type of the file.

-target filename is the name of the destination key database.

-target_pw password is the password for the destination key database.

-target_type cms is the type of the database specified by -target

-label label is the label of the certificate that is to be imported.

-new_label label is the label that the certificate will be assigned in the target database. If
you omit the -new_label option, the default is to use the same as the
-label option.

Deleting a certificate from a key repository on UNIX, Linux, and Windows systems
Use this procedure to remove personal or CA certificates.

Using iKeyman
If you need to manage SSL certificates in a way that is FIPS compliant, use the runmqakm command.
iKeyman does not provide a FIPS-compliant option.

1. Start the iKeyman GUI using the strmqikm command (on UNIX, Linux and Windows systems).
2. From the Key Database File menu, click Open. The Open window opens.
3. Click Key database type and select CMS (Certificate Management System).

132 Securing IBM WebSphere MQ

4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file from which you want to delete the certificate, for example key.kdb.
6. Click Open. The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK. The name of your key

database file is displayed in the File Name field.
8. From the drop down list, select Personal Certificates or Signer Certificates
9. Select the certificate you want to delete.

10. If you do not already have a copy of the certificate and you want to save it, click Export/Import and
export it (see “Exporting a personal certificate from a key repository” on page 128).

11. With the certificate selected, click Delete. The Confirm window opens.
12. Click Yes. The Personal Certificates field no longer shows the label of the certificate you deleted.

Using the command line
Use the following commands to delete a certificate using iKeycmd or runmqakm:

• On UNIX, Linux and Windows:

runmqckm -cert -delete -db filename -pw password -label label

where:

-db filename is the fully qualified file name of a CMS key database.

-pw password is the password for the CMS key database.

-label label is the label attached to the personal certificate.

-fips specifies that the command is run in FIPS mode. This mode disables the
use of the BSafe cryptographic library. Only the ICC component is used
and this component must be successfully initialized in FIPS mode. When
in FIPS mode, the ICC component uses algorithms that have been FIPS
140-2 validated. If the ICC component does not initialize in FIPS mode,
the runmqakm command fails.

Generating strong passwords for key repository protection
You can generate strong passwords for key repository protection using the runmqakm command.

You can use the runmqakm command with the following parameters to generate a strong password:

runmqakm -random -create -length 14 -strong -fips

When using the generated password on the -pw parameter of subsequent certificate administration
commands, always place double quotation marks around the password. On UNIX and Linux systems, you
must also use a backslash character to escape the following characters if they appear in the password
string:

! \ " '

When entering the password in response to a prompt from runmqckm, runmqakm or the iKeyman GUI
then it is not necessary to quote or escape the password. It is not necessary because the operating
system shell does not affect data entry in these cases.

Configuring for cryptographic hardware on UNIX, Linux, and Windows systems
You can configure cryptographic hardware for a queue manager or client in a number of ways.

You can configure cryptographic hardware for a queue manager on UNIX, Linux or Windows systems using
either of the following methods:

Security 133

• Use the ALTER QMGR MQSC command with the SSLCRYP parameter, as described in ALTER QMGR.
• Use IBM WebSphere MQ Explorer to configure the cryptographic hardware on your UNIX, Linux or

Windows system. For more information, refer to the online help.

You can configure cryptographic hardware for a WebSphere MQ client on UNIX, Linux or Windows systems
using either of the following methods:

• Set the MQSSLCRYP environment variable. The permitted values for MQSSLCRYP are the same as for the
SSLCRYP parameter, as described in ALTER QMGR. If you use the GSK_PCS11 version of the SSLCRYP
parameter, the PKCS #11 token label must be specified entirely in lower-case.

• Set the CryptoHardware field of the SSL configuration options structure, MQSCO, on an MQCONNX
call. For more information, see Overview for MQSCO.

If you have configured cryptographic hardware which uses the PKCS #11 interface using any of these
methods, you must store the personal certificate for use on your channels in the key database file for
the cryptographic token you have configured. This is described in “Managing certificates on PKCS #11
hardware” on page 134.

Managing certificates on PKCS #11 hardware
You can manage digital certificates on cryptographic hardware that supports the PKCS #11 interface.

About this task
You must create a key database to prepare the IBM WebSphere MQ environment, even if you do not
intend to store certificate authority (CA) certificates in it, but will store all your certificates on your
cryptographic hardware. A key database is necessary for the queue manager to reference in its SSLKEYR
field, or for the client application to reference in the MQSSLKEYR environment variable. This key database
is also required if you are creating a certificate request.

You create the key database either by using the command line, or by using the strmqikm (iKeyman) user
interface.

Procedure
Create a key database by using the command line.

1. Run either of the following commands:

• On UNIX, Linux, and Windows systems:

runmqckm -keydb -create -db filename -pw password -type cms -stash

• Using runmqakm:

runmqakm -keydb -create -db filename -pw password -type cms
 -stash -fips -strong

where:
-db filename

Specifies the fully qualified file name of a CMS key database, and must have a file extension
of .kdb.

-pw password
Specifies the password for the CMS key database.

-type cms
Specifies the type of database. (For IBM WebSphere MQ, it must be cms.)

-stash
Saves the key database password to a file.

-fips
Disables the use of the BSafe cryptographic library. Only the ICC component is used and
this component must be successfully initialized in FIPS mode. When in FIPS mode, the ICC

134 Securing IBM WebSphere MQ

component uses algorithms that are FIPS 140-2 validated. If the ICC component does not
initialize in FIPS mode, the runmqakm command fails.

-strong
Checks that the password entered satisfies the minimum requirements for password strength.
The minimum requirements for a password are as follows:

• The password must be a minimum length of 14 characters.
• The password must contain a minimum of one lowercase character, one uppercase character,

and one digit or special character. Special characters include the asterisk (*), the dollar sign ($),
the number sign (#), and the percent sign (%). A space is classified as a special character.

• Each character can occur a maximum of three times in a password.
• A maximum of two consecutive characters in the password can be identical.
• All characters are in the standard ASCII printable character set within the range 0x20 - 0x7E.

Alternatively, create a key database by using the strmqikm (iKeyman) user interface.
2. On UNIX and Linux systems, log in as the root user. On Windows systems, log in as Administrator or

as a member of the MQM group.
3. Start the iKeyman user interface by running the strmqikm command.
4. Click Key Database File > Open.
5. Click Key database type and select PKCS11Direct.
6. In the File Name field, type the name of the module for managing your cryptographic hardware; for

example, PKCS11_API.so.

If you are using certificates or keys stored on PKCS #11 cryptographic hardware, note that
iKeycmd and iKeyman are 64-bit programs. External modules required for PKCS #11 support will
be loaded into a 64-bit process, therefore you must have a 64-bit PKCS #11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the iKeyman and iKeycmd programs are 32-bit on those platforms.

7. In the Location field, enter the path:

• On UNIX and Linux systems, this might be /usr/lib/pksc11, for example.
• On Windows systems, you can type the library name; for example, cryptoki.

Click OK. The Open Cryptographic Token window opens.
8. In the Cryptographic Token Password field, type the password that you set when you configured the

cryptographic hardware.
9. If your cryptographic hardware has the capacity to hold the signer certificates required to receive or

import a personal certificate, clear both secondary key database check boxes and continue from step
“13” on page 136.
If you require a secondary CMS key database to hold the signer certificates, select either Open
existing secondary key database file or Create new secondary key database file.

10. In the File Name field, type a file name. This field already contains the text key.kdb. If your stem
name is key, leave this field unchanged. If you specified a different stem name, replace key with
your stem name. You must not change the .kdb suffix.

11. In the Location field, type the path, for example:

• For a queue manager: /var/mqm/qmgrs/QM1/ssl
• For an IBM WebSphere MQ MQI client: /var/mqm/ssl

Click OK. The Password Prompt window opens.
12. Enter a password.

If you selected Open existing secondary key database file in step “9” on page 135, type a password
in the Password field.

If you selected Create new secondary key database file in step “9” on page 135, complete the
following sub steps:

Security 135

a) Type a password in the Password field, and type it again in the Confirm Password field.
b) Select Stash the password to a file. Note that if you do not stash the password, attempts to start

SSL channels fail because they cannot obtain the password required to access the key database
file.

c) Click OK. A window opens, confirming that the password is in file key.sth (unless you specified a
different stem name).

13. Click OK. The Key database content frame displays.

Requesting a personal certificate for your PKCS #11 hardware
Use this procedure for either a queue manager or an IBM WebSphere MQ MQI client to request a personal
certificate for your cryptographic hardware.

Using the iKeyman user interface

About this task
Note: WebSphere MQ does not support SHA-3 or SHA-5 algorithms. You can use the digital signature
algorithm names SHA384WithRSA and SHA512WithRSA because both algorithms are members of the
SHA-2 family.

The digital signature algorithm names SHA3WithRSA and SHA5WithRSA are deprecated because they are
an abbreviated form of SHA384WithRSA and SHA512WithRSA respectively.

Procedure
To request a personal certificate from the iKeyman user interface, complete the following steps:
1. Complete the steps to work with your cryptographic hardware. See “Managing certificates on PKCS

#11 hardware” on page 134.
2. From the Create menu, click New Certificate Request.

The Create New Key and Certificate Request window opens.
3. In the Key Label field, enter the following labels:

• For a queue manager, enter ibmwebspheremq followed by the name of your queue manager
changed to lowercase. For example, for a queue manager called QM1, enter ibmwebspheremqqm1.

• For a IBM WebSphere MQ MQI client, enter ibmwebspheremq followed by your logon user ID, all in
lowercase; for example, ibmwebspheremqmyuserid .

4. Enter values for Common Name and Organization, and select a Country . For the remaining optional
fields, either accept the default values, or type or select new values.
Note that you can supply only one name in the Organizational Unit field. For more information about
these fields, see “Distinguished Names” on page 11.

5. In the Enter the name of a file in which to store the certificate request field, either accept the
default certreq.arm, or type a new value with a full path.

6. Click OK.
A confirmation window opens.

7. Click OK.
The Personal Certificate Requests list shows the label of the new personal certificate request you
created. The certificate request is stored in the file you chose in step “5” on page 136.

8. Request the new personal certificate either by sending the file to a certificate authority (CA), or by
copying the file into the request form on the website for the CA.

136 Securing IBM WebSphere MQ

Using the command line

Procedure
Use the following commands to request a personal certificate by using either the runmqckm or runmqakm
command:

• Using runmqckm:

runmqckm -certreq -create -db filename -pw
password -label label
 -dn distinguished_name -size key_size
 -file filename -sig_alg algorithm

Instead of -dn distinguished_name , you can use -san_dsname DNS_names ,
-san_emailaddr email_addresses , or -san_ipaddr IP_addresses .

• Using runmqakm:

runmqakm -certreq -create -db filename -pw
password -label label
 -dn distinguished_name -size key_size
 -file filename -fips
 -sig_alg algorithm

where:
-db filename

Specifies the fully qualified file name of a CMS key database.
-pw password

Specifies the password for the CMS key database.
-label label

Specifies the key label attached to the certificate.
-dn distinguished_name

Specifies the X.500 distinguished name enclosed in double quotation marks. At least one attribute is
required. You can supply multiple OU and DC attributes.

-size key_size
Specifies the key size. If you are using runmqckm , the value can be 512 or 1024. If you are using
runmqakm, the value can be 512, 1024, or 2048.

-file filename
Specifies the file name for the certificate request.

-fips
Specifies that the command is run in FIPS mode. This mode disables the use of the BSafe
cryptographic library. Only the ICC component is used and this component must be successfully
initialized in FIPS mode. When in FIPS mode, the ICC component uses algorithms that are FIPS 140-2
validated. If the ICC component does not initialize in FIPS mode, the runmqakm command fails.

-sig_alg
For runmqckm, specifies the asymmetric signature algorithm used for the creation of
the entry's key pair. The value can be MD2_WITH_RSA, MD2WithRSA, MD5_WITH_RSA,
MD5WithRSA, SHA1WithDSA , SHA1WithRSA, SHA256_WITH_RSA, SHA256WithRSA, SHA2WithRSA,
SHA384_WITH_RSA , SHA384WithRSA, SHA512_WITH_RSA , SHA512WithRSA, SHA_WITH_DSA,
SHA_WITH_RSA, SHAWithDSA, or SHAWithRSA . The default value is SHA1WithRSA

-sig_alg
For runmqakm, specifies the hashing algorithm used during the creation of a certificate
request. This hashing algorithm is used to create the signature associated with the
newly created certificate request. The value can be md5, MD5_WITH_RSA, MD5WithRSA,
SHA_WITH_DSA , SHA_WITH_RSA, sha1, SHA1WithDSA , SHA1WithECDSA, SHA1WithRSA,
sha224, SHA224_WITH_RSA, SHA224WithDSA , SHA224WithECDSA, SHA224WithRSA , sha256,

Security 137

SHA256_WITH_RSA, SHA256WithDSA, SHA256WithECDSA, SHA256WithRSA, SHA2WithRSA,
sha384 , SHA384_WITH_RSA, SHA384WithECDSA , SHA384WithRSA, sha512, SHA512_WITH_RSA,
SHA512WithECDSA, SHA512WithRSA, SHAWithDSA, SHAWithRSA , EC_ecdsa_with_SHA1,
EC_ecdsa_with_SHA224 , EC_ecdsa_with_SHA256, EC_ecdsa_with_SHA384 , or
EC_ecdsa_with_SHA512. The default value is SHA1WithRSA.

-san_dnsname DNS_names
Specifies a comma-delimited or space-delimited list of DNS names for the entry being created.

-san_emailaddr email_addresses
Specifies a comma-delimited or space-delimited list of email addresses for the entry being created.

-san_ipaddr IP_addresses
Specifies a comma-delimited or space-delimited list of IP addresses for the entry being created.

Importing a personal certificate to your PKCS #11 hardware
Use this procedure for either a queue manager or an IBM WebSphere MQ MQI client to import a personal
certificate to your cryptographic hardware.

Using iKeyman

Procedure
To request a personal certificate from the iKeyman user interface, complete the following steps:
1. Complete the steps to work with your cryptographic hardware. See “Managing certificates on PKCS

#11 hardware” on page 134.
2. Click Receive. The Receive Certificate from a File window opens.
3. Select the Data type of the new personal certificate; for example, Base64-encoded ASCII data for

a file with the .arm extension.
4. Type the certificate file name and location for the new personal certificate, or click Browse to select

the name and location.
5. Click OK. If you already have a personal certificate in your key database a window opens, asking if you

want to set the key you are adding as the default key in the database.
6. Click Yes or No. The Enter a Label window opens.
7. Type a label.

For example, you might use the same label as when you requested the personal certificate. Note that
the label must be in the correct IBM WebSphere MQ format:

• For a queue manager, ibmwebspheremq followed by the name of your queue manager
in lowercase. For example, for a queue manager called QM1, the label would be:
ibmwebspheremqqm1.

• For an IBM WebSphere MQ MQI client, ibmwebspheremq followed by your logon user ID in
lowercase. For example, for a user ID MyUserID, the label would be: ibmwebspheremqmyuserid.

8. Click OK. The Personal Certificates list shows the label of the new personal certificate you added.
This label is formed by adding the cryptographic token label before the label you supplied.

Using the command line

Procedure
To request a personal certificate from a command line, complete the following steps:
1. Open a command window that is configured for your environment.
2. Enter the appropriate command for your operating system and configuration:

• On Windows, UNIX and Linux systems, use one of the following commands:

runmqckm -cert -receive -file filename -crypto path
-tokenlabel hardware_token -pw hardware_password -format cert_format

138 Securing IBM WebSphere MQ

runmqakm -cert -receive -file filename -crypto path
-tokenlabel hardware_token -pw hardware_password -format cert_format -fips

where:
-file filename

Specifies the fully qualified file name of the file containing the personal certificate.
-crypto path

Specifies the fully qualified path to the PKCS #11 library supplied with the hardware.
-tokenlabel hardware_token

Specifies the label given to the storage part of the cryptographic hardware during installation.
-pw hardware_password

Specifies the password for access to the hardware.
-format cert_format

Specifies the format of the certificate. The value can be ascii for Base64-encoded ASCII or
binary for binary DER data. The default is ASCII.

-fips
Specifies that the command is run in FIPS mode This mode disables the use of the BSafe
cryptographic library. Only the ICC component is used and this component must be successfully
initialized in FIPS mode. When in FIPS mode, the ICC component uses algorithms that are FIPS
140-2 validated. If the ICC component does not initialize in FIPS mode, the runmqakm command
fails.

Identifying and authenticating users
You can identify and authenticate users by using the MQCSP structure or in several types of user exit
program.

Using the MQCSP structure
You specify the MQCSP connection security parameters structure on an MQCONNX call; this structure
contains a user ID and password. If necessary, you can alter the MQCSP in a security exit.

Note: The object authority manager (OAM) does not use the password. However the OAM does some
limited work with the user ID, that could be considered a trivial form of authentication. These checks stop
you adopting another user ID, if you use those parameters in your applications.

Implementing identification and authentication in security exits
The primary purpose of a security exit is to enable the MCA at each end of a channel to authenticate its
partner. At each end of a message channel, and at the server end of an MQI channel, an MCA typically
acts on behalf of the queue manager to which it is connected. At the client end of an MQI channel, an
MCA typically acts on behalf of the user of the WebSphere MQ client application. In this situation, mutual
authentication actually takes place between two queue managers, or between a queue manager and the
user of a WebSphere MQ MQI client application.

The supplied security exit (the SSPI channel exit) illustrates how mutual authentication can be
implemented by exchanging authentication tokens that are generated, and then checked, by a trusted
authentication server such as Kerberos. For more details, see “The SSPI channel exit program” on page
99.

Mutual authentication can also be implemented by using Public Key Infrastructure (PKI) technology. Each
security exit generates some random data, signs it using the private key of the queue manager or user it
is representing, and sends the signed data to its partner in a security message. The partner security exit
performs the authentication by checking the digital signature using the public key of the queue manager
or user. Before exchanging digital signatures, the security exits might need to agree the algorithm for
generating a message digest, if more than one algorithm is available for use.

Security 139

When a security exit sends the signed data to its partner, it also needs to send some means of identifying
the queue manager or user it is representing. This might be a Distinguished Name, or even a digital
certificate. If a digital certificate is sent, the partner security exit can validate the certificate by working
through the certificate chain to the root CA certificate. This provides assurance of the ownership of the
public key that is used to check the digital signature.

The partner security exit can validate a digital certificate only if it has access to a key repository that
contains the remaining certificates in the certificate chain. If a digital certificate for the queue manager or
user is not sent, one must be available in the key repository to which the partner security exit has access.
The partner security exit cannot check the digital signature unless it can find the signer's public key.

The Secure Sockets Layer (SSL) and Transport Layer Security (TLS) use PKI techniques like the ones just
described. For more information about how SSL and TLS perform authentication, see “Secure Sockets
Layer (SSL) and Transport Layer Security (TLS) concepts” on page 14.

If a trusted authentication server or PKI support is not available, other techniques can be used. A
common technique, which can be implemented in security exits, uses a symmetric key algorithm.

One of the security exits, exit A, generates a random number and sends it in a security message to
its partner security exit, exit B. Exit B encrypts the number using its copy of a key which is known
only to the two security exits. Exit B sends the encrypted number to exit A in a security message with
a second random number that exit B has generated. Exit A verifies that the first random number has
been encrypted correctly, encrypts the second random number using its copy of the key, and sends the
encrypted number to exit B in a security message. Exit B then verifies that the second random number has
been encrypted correctly. During this exchange, if either security exit is not satisfied with the authenticity
of other, it can instruct the MCA to close the channel.

An advantage of this technique is that no key or password is sent over the communications connection
during the exchange. A disadvantage is that it does not provide a solution to the problem of how to
distribute the shared key in a secure way. One solution to this problem is described in “Implementing
confidentiality in user exit programs” on page 217. A similar technique is used in SNA for the mutual
authentication of two LUs when they bind to form a session. The technique is described in “Session level
authentication” on page 71.

All the preceding techniques for mutual authentication can be adapted to provide one-way
authentication.

Implementing identification and authentication in message exits
When an application puts a message on a queue, the UserIdentifier field in the message descriptor
contains a user ID associated with the application. However, there is no data present that can be used
to authenticate the user ID. This data can be added by a message exit at the sending end of a channel
and checked by a message exit at the receiving end of the channel. The authenticating data can be an
encrypted password or a digital signature, for example.

This service might be more effective if it is implemented at the application level. The basic requirement is
for the user of the application that receives the message to be able to identify and authenticate the user
of the application that sent the message. It is therefore natural to consider implementing this service at
the application level. For more information, see “Identity mapping in the API exit and API-crossing exit”
on page 143.

Implementing identification and authentication in the API exit and API-crossing
exit
At the level of an individual message, identification and authentication is a service that involves two users,
the sender and the receiver of the message. The basic requirement is for the user of the application that
receives the message to be able to identify and authenticate the user of the application that sent the
message. Note that the requirement is for one way, not two way, authentication.

Depending on how it is implemented, the users and their applications might need to interface, or even
interact, with the service. In addition, when and how the service is used might depend on where the users

140 Securing IBM WebSphere MQ

and their applications are located, and on the nature of the applications themselves. It is therefore natural
to consider implementing the service at the application level rather than at the link level.

If you consider implementing this service at the link level, you might need to resolve issues such as the
following:

• On a message channel, how do you apply the service only to those messages that require it?
• How do you enable users and their applications to interface, or interact, with the service, if this is a

requirement?
• In a multi-hop situation, where a message is sent over more than one message channel on the way to its

destination, where do you invoke the components of the service?

Here are some examples of how the identification and authentication service can be implemented at the
application level. The term API exit means either an API exit or an API-crossing exit.

• When an application puts a message on a queue, an API exit can acquire an authentication token from a
trusted authentication server such as Kerberos. The API exit can add this token to the application data
in the message. When the message is retrieved by the receiving application, a second API exit can ask
the authentication server to authenticate the sender by checking the token.

• When an application puts a message on a queue, an API exit can append the following items to the
application data in the message:

– The digital certificate of the sender
– The digital signature of the sender

If different algorithms for generating a message digest are available for use, the API exit can include the
name of the algorithm it has used.

When the message is retrieved by the receiving application, a second API exit can perform the following
checks:

– The API exit can validate the digital certificate by working through the certificate chain to the root CA
certificate. To do this, the API exit must have access to a key repository that contains the remaining
certificates in the certificate chain. This check provide assurance that the sender, identified by the
Distinguished Name, is the genuine owner of the public key contained in the certificate.

– The API exit can check the digital signature using the public key contained in the certificate. This
check authenticates the sender.

The Distinguished Name of the sender can be sent instead of the whole digital certificate. In this case,
the key repository must contain the sender's certificate so that the second API exit can find the public
key of the sender. Another possibility is to send all the certificates in the certificate chain.

• When an application puts a message on a queue, the UserIdentifier field in the message descriptor
contains a user ID associated with the application. The user ID can be used to identify the sender.
To enable authentication, an API exit can append some data, such as an encrypted password, to the
application data in the message. When the message is retrieved by the receiving application, a second
API exit can authenticate the user ID by using the data that has travelled with the message.

This technique might be considered sufficient for messages that originate in a controlled and trusted
environment, and in circumstances where a trusted authentication server or PKI support is not
available.

Privileged users
A privileged user is one that has full administrative authorities for WebSphere MQ.

In addition to the users listed in the following table, members of any group with +crt authority for queues
are indirectly administrators. Similarly, any user that has +set authority on the queue manager, and +put
authority on the command queue is an administrator.

You should not grant these privileges to ordinary users and applications.

Security 141

Table 13. Privileged users by platform.

A table of privileged users. On Windows, SYSTEM, all members of the mqm group, and all members of
the Administrators group are privileged users. On UNIX and Linux systems, all members of the mqm
group are privileged users. On IBM i, the profiles (users) qmqm and qmqmadm, all members of the
qmqmadm group, and any user defined with the *ALLOBJ setting are privileged users.

Platform Privileged users

Windows systems • SYSTEM
• Members of the mqm group
• Members of the Administrators group

UNIX and Linux systems • Members of the mqm group

Identifying and authenticating users using the MQCSP structure
You can specify the MQCSP connection security parameters structure on an MQCONNX call.

The MQCSP connection security parameters structure contains a user ID and password, which the
authorization service can use to identify and authenticate the user.

The authorization service component supplied with IBM WebSphere MQ is called the Object Authority
Manager (OAM). The OAM authorizes users based on the ID contained in the MQCSP but does not validate
the password. It is possible to implement password validation in the authorization service by using
chained exits with the OAM, or by replacing the OAM with an alternative authorization service.

You can alter the MQCSP in a security exit.

Implementing identification and authentication in security exits
You can use a security exit to implement one-way or mutual authentication.

The primary purpose of a security exit is to enable the MCA at each end of a channel to authenticate its
partner. At each end of a message channel, and at the server end of an MQI channel, an MCA typically
acts on behalf of the queue manager to which it is connected. At the client end of an MQI channel, an MCA
typically acts on behalf of the user of the WebSphere MQ MQI client application. In this situation, mutual
authentication actually takes place between two queue managers, or between a queue manager and the
user of a WebSphere MQ MQI client application.

The supplied security exit (the SSPI channel exit) illustrates how mutual authentication can be
implemented by exchanging authentication tokens that are generated, and then checked, by a trusted
authentication server such as Kerberos. For more details, see “The SSPI channel exit program” on page
99.

Mutual authentication can also be implemented by using Public Key Infrastructure (PKI) technology. Each
security exit generates some random data, signs it using the private key of the queue manager or user it
is representing, and sends the signed data to its partner in a security message. The partner security exit
performs the authentication by checking the digital signature using the public key of the queue manager
or user. Before exchanging digital signatures, the security exits might need to agree the algorithm for
generating a message digest, if more than one algorithm is available for use.

When a security exit sends the signed data to its partner, it also needs to send some means of identifying
the queue manager or user it is representing. This might be a Distinguished Name, or even a digital
certificate. If a digital certificate is sent, the partner security exit can validate the certificate by working
through the certificate chain to the root CA certificate. This provides assurance of the ownership of the
public key that is used to check the digital signature.

The partner security exit can validate a digital certificate only if it has access to a key repository that
contains the remaining certificates in the certificate chain. If a digital certificate for the queue manager or

142 Securing IBM WebSphere MQ

user is not sent, one must be available in the key repository to which the partner security exit has access.
The partner security exit cannot check the digital signature unless it can find the signer's public key.

The Secure Sockets Layer (SSL) and Transport Layer Security (TLS) use PKI techniques like the ones
just described. For more information about how the Secure Sockets Layer performs authentication, see
“Secure Sockets Layer (SSL) and Transport Layer Security (TLS) concepts” on page 14.

If a trusted authentication server or PKI support is not available, other techniques can be used. A
common technique, which can be implemented in security exits, uses a symmetric key algorithm.

One of the security exits, exit A, generates a random number and sends it in a security message to
its partner security exit, exit B. Exit B encrypts the number using its copy of a key which is known
only to the two security exits. Exit B sends the encrypted number to exit A in a security message with
a second random number that exit B has generated. Exit A verifies that the first random number has
been encrypted correctly, encrypts the second random number using its copy of the key, and sends the
encrypted number to exit B in a security message. Exit B then verifies that the second random number has
been encrypted correctly. During this exchange, if either security exit is not satisfied with the authenticity
of other, it can instruct the MCA to close the channel.

An advantage of this technique is that no key or password is sent over the communications connection
during the exchange. A disadvantage is that it does not provide a solution to the problem of how to
distribute the shared key in a secure way. One solution to this problem is described in “Implementing
confidentiality in user exit programs” on page 217. A similar technique is used in SNA for the mutual
authentication of two LUs when they bind to form a session. The technique is described in “Session level
authentication” on page 71.

All the preceding techniques for mutual authentication can be adapted to provide one-way
authentication.

Identity mapping in message exits
You can use message exits to process information to authenticate a user ID, though it might be better to
implement authentication at the application level.

When an application puts a message on a queue, the UserIdentifier field in the message descriptor
contains a user ID associated with the application. However, there is no data present that can be used
to authenticate the user ID. This data can be added by a message exit at the sending end of a channel
and checked by a message exit at the receiving end of the channel. The authenticating data can be an
encrypted password or a digital signature, for example.

This service might be more effective if it is implemented at the application level. The basic requirement is
for the user of the application that receives the message to be able to identify and authenticate the user
of the application that sent the message. It is therefore natural to consider implementing this service at
the application level. For more information, see “Identity mapping in the API exit and API-crossing exit”
on page 143.

Identity mapping in the API exit and API-crossing exit
An application that receives a message must be able to identify and authenticate the user of the
application that sent the message. This service is typically best implemented at the application level.
API exits can implement the service in a number of ways.

At the level of an individual message, identification and authentication is a service that involves two users,
the sender and the receiver of the message. The basic requirement is for the user of the application that
receives the message to be able to identify and authenticate the user of the application that sent the
message. Note that the requirement is for one way, not two way, authentication.

Depending on how it is implemented, the users and their applications might need to interface, or even
interact, with the service. In addition, when and how the service is used might depend on where the users
and their applications are located, and on the nature of the applications themselves. It is therefore natural
to consider implementing the service at the application level rather than at the link level.

Security 143

If you consider implementing this service at the link level, you might need to resolve issues such as the
following:

• On a message channel, how do you apply the service only to those messages that require it?
• How do you enable users and their applications to interface, or interact, with the service, if this is a

requirement?
• In a multi-hop situation, where a message is sent over more than one message channel on the way to its

destination, where do you invoke the components of the service?

Here are some examples of how the identification and authentication service can be implemented at the
application level. The term API exit means either an API exit or an API-crossing exit.

• When an application puts a message on a queue, an API exit can acquire an authentication token from a
trusted authentication server such as Kerberos. The API exit can add this token to the application data
in the message. When the message is retrieved by the receiving application, a second API exit can ask
the authentication server to authenticate the sender by checking the token.

• When an application puts a message on a queue, an API exit can append the following items to the
application data in the message:

– The digital certificate of the sender
– The digital signature of the sender

If different algorithms for generating a message digest are available for use, the API exit can include the
name of the algorithm it has used.

When the message is retrieved by the receiving application, a second API exit can perform the following
checks:

– The API exit can validate the digital certificate by working through the certificate chain to the root CA
certificate. To do this, the API exit must have access to a key repository that contains the remaining
certificates in the certificate chain. This check provide assurance that the sender, identified by the
Distinguished Name, is the genuine owner of the public key contained in the certificate.

– The API exit can check the digital signature using the public key contained in the certificate. This
check authenticates the sender.

The Distinguished Name of the sender can be sent instead of the whole digital certificate. In this case,
the key repository must contain the sender's certificate so that the second API exit can find the public
key of the sender. Another possibility is to send all the certificates in the certificate chain.

• When an application puts a message on a queue, the UserIdentifier field in the message descriptor
contains a user ID associated with the application. The user ID can be used to identify the sender.
To enable authentication, an API exit can append some data, such as an encrypted password, to the
application data in the message. When the message is retrieved by the receiving application, a second
API exit can authenticate the user ID by using the data that has travelled with the message.

This technique might be considered sufficient for messages that originate in a controlled and trusted
environment, and in circumstances where a trusted authentication server or PKI support is not
available.

Working with revoked certificates
Digital certificates can be revoked by Certificate Authorities. You can check the revocation status of
certificates using OCSP, or CRLs on LDAP servers, depending on platform.

During the SSL handshake, the communicating partners authenticate each other with digital certificates.
Authentication can include a check that the certificate received can still be trusted. Certificate Authorities
(CAs) revoke certificates for various reasons, including:

• The owner has moved to a different organization
• The private key is no longer secret

144 Securing IBM WebSphere MQ

CAs publish revoked personal certificates in a Certificate Revocation List (CRL). CA certificates that have
been revoked are published in an Authority Revocation List (ARL).

On UNIX, Linux and Windows systems, WebSphere MQ SSL support checks for revoked certificates
using OCSP (Online Certificate Status Protocol) or using CRLs and ARLs on LDAP (Lightweight Directory
Access Protocol) servers. OCSP is the preferred method. IBM WebSphere MQ classes for Java and IBM
WebSphere MQ classes for JMS cannot use the OCSP information in a client channel definition table file.
However, you can configure OCSP as described in the section Using Online Certificate Protocol.

On z/Os and IBM i WebSphere MQ SSL support checks for revoked certificates using CRLs and ARLs on
LDAP servers only.

For more information about Certificate

Authorities, see “Digital certificates” on page 9.

Revoked certificates and OCSP
IBM WebSphere MQ determines which Online Certificate Status Protocol (OCSP) responder to use, and
handles the response received. You might have to take steps to make the OCSP responder accessible.

Note: This information applies only to WebSphere MQ on Windows, UNIX and Linux systems.

To check the revocation status of a digital certificate using OCSP, WebSphere MQ can use two methods to
determines which OCSP responder to contact:

• By using the AuthorityInfoAccess (AIA) certificate extension in the certificate to be checked.
• By using a URL specified in an authentication information object or specified by a client application.

A URL specified in an authentication information object or by a client application takes priority over a URL
in an AIA certificate extension.

If the URL of the OCSP responder lies behind a firewall, reconfigure the firewall so the OCSP responder
can be accessed or set up an OCSP proxy server. Specify the name of the proxy server by using the
SSLHTTPProxyName variable in the SSL stanza. On client systems, you can also specify the name of
the proxy server by using the environment variable MQSSLPROXY. For more details, see the related
information.

If you are not concerned whether TLS or SSL certificates are revoked, perhaps because you are running
in a test environment, you can set OCSPCheckExtensions to NO in the SSL stanza. If you set this
variable, any AIA certificate extension is ignored. This solution is unlikely to be acceptable in a production
environment, where you probably do not want to allow access from users presenting revoked certificates.

The call to access the OCSP responder can result in one of the following three outcomes:
Good

The certificate is valid.
Revoked

The certificate is revoked.
Unknown

This outcome can arise for one of three reasons:

• IBM WebSphere MQ cannot access the OCSP responder.
• The OCSP responder has sent a response, but WebSphere MQ cannot verify the digital signature of

the response.
• The OCSP responder has sent a response that indicates that it has no revocation data for the
certificate.

If IBM WebSphere MQ receives an OCSP outcome of Unknown, its behavior depends on the setting
of the OCSPAuthentication attribute. For queue managers, this attribute is held in the SSL stanza of
the qm.ini file for UNIX and Linux systems, or the Windows registry. It can be set using the IBM
WebSphere MQ Explorer. For clients, it is held in the SSL stanza of the client configuration file.

Security 145

If an outcome of Unknown is received and OCSPAuthentication is set to REQUIRED (the
default value), WebSphere MQ rejects the connection and issues an error message of type
AMQ9716. If queue manager SSL event messages are enabled, an SSL event message of
type MQRC_CHANNEL_SSL_ERROR with ReasonQualifier set to MQRQ_SSL_HANDSHAKE_ERROR is
generated.

If an outcome of Unknown is received and OCSPAuthentication is set to OPTIONAL, WebSphere MQ
allows the SSL channel to start and no warnings or SSL event messages are generated.

If an outcome of Unknown is received and OCSPAuthentication is set to WARN, the SSL
channel starts but IBM WebSphere MQ issues a warning message of type AMQ9717 in the
error log. If queue manager SSL event messages are enabled, an SSL event message of type
MQRC_CHANNEL_SSL_WARNING with ReasonQualifier set to MQRQ_SSL_UNKNOWN_REVOCATION
is generated.

Digital signing of OCSP responses
An OCSP responder can sign its responses in one of three ways. Your responder will inform you which
method is used.

• The OCSP response can be digitally signed using the same CA certificate that issued the certificate that
you are checking. In this case, you do not need to set up any additional certificate; the steps you have
already taken to establish SSL connectivity are sufficient to verify the OCSP response.

• The OCSP response can be digitally signed using another certificate signed by the same certificate
authority (CA) that issued the certificate you are checking. The signing certificate is sent together with
the OCSP response in this case. The certificate flowed from the OCSP responder must have an Extended
Key Usage Extension set to id-kp-OCSPSigning so that it can be trusted for this purpose. Because
the OCSP response is sent with the certificate which signed it (and that certificate is signed by a CA that
is already trusted for SSL connectivity), no additional certificate setup is required.

• The OCSP response can be digitally signed using another certificate that is not directly related to the
certificate you are checking. In this case, the OCSP response is signed by a certificate issued by the
OCSP responder itself. You must add a copy of the OCSP responder certificate to the key database of
the client or queue manager which performs the OCSP checking; see “Adding a CA certificate (or the
public part of a self-signed certificate) into a key repository, on UNIX, Linux, and Windows systems” on
page 127. When a CA certificate is added, by default it is added as a trusted root, which is the required
setting in this context. If this certificate is not added, WebSphere MQ cannot verify the digital signature
on the OCSP response and the OCSP check results in an Unknown outcome, which might cause IBM
WebSphere MQ to close the channel, depending on the value of OCSPAuthentication.

Online Certificate Status Protocol (OCSP) in Java and JMS client applications
Due to a limitation of the Java API, WebSphere MQ can use Online Certificate Status Protocol (OCSP)
certificate revocation checking for SSL and TLS secure sockets only when OCSP is enabled for the entire
Java virtual machine (JVM) process. There are two ways to enable OCSP for all secure sockets in the JVM:

• Edit the JRE java.security file to include the OCSP configuration settings that are shown in Table 1 and
restart the application.

• Use the java.security.Security.setProperty() API, subject to any Java Security Manager policy in effect.

As a minimum, you must specify one of the ocsp.enable and ocsp.responderURL values.

Property Name Description

ocsp.enable This property's value is either true or false. If true, OCSP
checking is enabled when doing certificate revocation checking; if
false or not set, OCSP checking is disabled.

ocsp.responderURL This property's value is a URL that identifies the location of the OCSP
responder. Here is an example; ocsp.responderURL=http://
ocsp.example.net:80. By default, the location of the OCSP
responder is determined implicitly from the certificate that is being

146 Securing IBM WebSphere MQ

Property Name Description

validated. The property is used when the Authority Information
Access extension (defined in RFC 3280) is absent from the certificate
or when it requires overriding.

ocsp.responderCertSubjectName This property's value is the subject name of the
OCSP responder's certificate. Here is an example;
ocsp.responderCertSubjectName="CN=OCSP Responder,
O=XYZ Corp". By default, the certificate of the OCSP responder
is that of the issuer of the certificate that is being validated. This
property identifies the certificate of the OCSP responder when the
default does not apply. Its value is a string distinguished name
(defined in RFC 2253) which identifies a certificate in the set of
certificates that are supplied during cert path validation. In cases
where the subject name alone is not sufficient to uniquely identify
the certificate, then both the ocsp.responderCertIssuerName
and ocsp.responderCertSerialNumber properties must
be used instead. When this property is set,
then the properties ocsp.responderCertIssuerName and
ocsp.responderCertSerialNumber are ignored.

ocsp.responderCertIssuerName This property's value is the issuer name of the
OCSP responder's certificate. Here is an example;
ocsp.responderCertIssuerName="CN=Enterprise CA,
O=XYZ Corp". By default, the certificate of the OCSP responder
is that of the issuer of the certificate that is being validated. This
property identifies the certificate of the OCSP responder when
the default does not apply. Its value is a string distinguished
name (defined in RFC 2253) which identifies a certificate in the
set of certificates that are supplied during cert path validation.
When this property is set then the ocsp.responderCertSerialNumber
property must also be set. This property is ignored when the
ocsp.responderCertSubjectName property is set.

ocsp.responderCertSerialNumber This property's value is the serial number of the
OCSP responder's certificate. Here is an example;
ocsp.responderCertSerialNumber=2A:FF:00. By default, the
certificate of the OCSP responder is that of the issuer of the
certificate that is being validated. This property identifies the
certificate of the OCSP responder when the default does not
apply. This value is a string of hexadecimal digits (colon or space
separators might be present) which identifies a certificate in the
set of certificates that are supplied during cert path validation.
When this property is set then the ocsp.responderCertIssuerName
property must also be set. This property is ignored when the
ocsp.responderCertSubjectName property is set.

Before you enable OCSP in this way, there are a number of considerations:

• Setting the OCSP configuration affects all secure sockets in the JVM process. In some cases this
configuration might have undesirable side-effects when the JVM is shared with other application code
that uses SSL or TLS secure sockets. Ensure that the chosen OCSP configuration is suitable for all of the
applications that are running in the same JVM.

• Applying maintenance to your JRE might overwrite the java.security file. Take care when you apply Java
interim fixes and product maintenance to avoid overwriting the java.security file. It might be necessary
to reapply your java.security changes after you apply maintenance. For this reason, you might consider
setting the OCSP configuration by using the java.security.Security.setProperty() API instead.

Security 147

• Enabling OCSP checking has an effect only if revocation checking is also enabled. Revocation checking
is enabled by the PKIXParameters.setRevocationEnabled() method.

• If you are using the AMS Java Interceptor described in Enabling OCSP checking in native interceptors,
take care to avoid using a java.security OCSP configuration that conflicts with the AMS OCSP
configuration in the keystore configuration file.

Working with Certificate Revocation Lists and Authority Revocation Lists
WebSphere MQ's support for CRLs and ARLs varies by platform.

CRL and ARL support on each platform is as follows:

• On z/OS, System SSL supports CRLs and ARLs stored in LDAP servers by the Tivoli® Public Key
Infrastructure product.

• On other platforms, the CRL and ARL support complies with PKIX X.509 V2 CRL profile
recommendations.

WebSphere MQ maintains a cache of CRLs and ARLs that have been accessed in the preceding 12 hours.

When a queue manager or WebSphere MQ MQI client receives a certificate, it checks the CRL to confirm
that the certificate is still valid. WebSphere MQ first checks in the cache, if there is a cache. If the CRL
is not in the cache, WebSphere MQ interrogates the LDAP CRL server locations in the order they occur
in the namelist of authentication information objects specified by the SSLCRLNamelist attribute, until
WebSphere MQ finds an available CRL. If the namelist is not specified, or is specified with a blank value,
CRLs are not checked.

For more information about LDAP, see Using lightweight directory access protocol services with
WebSphere MQ for Windows.

Setting up LDAP servers
Configure the LDAP Directory Information Tree structure to reflect the hierarchy of Distinguished Names
of CAs. Do this using LDAP Data Interchange Format files.

Configure the LDAP Directory Information Tree (DIT) structure to use the hierarchy corresponding to the
Distinguished Names of the CAs that issue the certificates and CRLs. You can set up the DIT structure
with a file that uses the LDAP Data Interchange Format (LDIF). You can also use LDIF files to update a
directory.

LDIF files are ASCII text files that contain the information required to define objects within an LDAP
directory. LDIF files contain one or more entries, each of which comprises a Distinguished Name, at least
one object class definition and, optionally, multiple attribute definitions.

The certificateRevocationList;binary attribute contains a list, in binary form, of revoked user
certificates. The authorityRevocationList;binary attribute contains a binary list of CA certificates
that have been revoked. For use with WebSphere MQ SSL, the binary data for these attributes must
conform to DER (Definite Encoding Rules) format. For more information about LDIF files, refer to the
documentation provided with your LDAP server.

Figure 12 on page 149 shows a sample LDIF file that you might create as input to your LDAP server to
load the CRLs and ARLs issued by CA1, which is an imaginary Certificate Authority with the Distinguished
Name "CN=CA1, OU=Test, O=IBM, C=GB", set up by the Test organization within IBM.

148 Securing IBM WebSphere MQ

dn: o=IBM, c=GB
o: IBM
objectclass: top
objectclass: organization

dn: ou=Test, o=IBM, c=GB
ou: Test
objectclass: organizationalUnit

dn: cn=CA1, ou=Test, o=IBM, c=GB
cn: CA1
objectclass: cRLDistributionPoint
objectclass: certificateAuthority
authorityRevocationList;binary:: (DER format data)
certificateRevocationList;binary:: (DER format data)
caCertificate;binary:: (DER format data)

Figure 12. Sample LDIF file for a Certificate Authority. This might vary from implementation to
implementation.

Figure 13 on page 149 shows the DIT structure that your LDAP server creates when you load the sample
LDIF file shown in Figure 12 on page 149 together with a similar file for CA2, an imaginary Certificate
Authority set up by the PKI organization, also within IBM.

Figure 13. Example of an LDAP Directory Information Tree structure

WebSphere MQ checks both CRLs and ARLs.

Note: Ensure that the access control list for your LDAP server allows authorized users to read, search, and
compare the entries that hold the CRLs and ARLs. WebSphere MQ accesses the LDAP server using the
LDAPUSER and LDAPPWD properties of the AUTHINFO object.

Configuring and updating LDAP servers
Use this procedure to configure or update your LDAP server.

1. Obtain the CRLs and ARLs in DER format from your Certification Authority, or Authorities.
2. Using a text editor or the tool provided with your LDAP server, create one or more LDIF files that

contain the Distinguished Name of the CA and the required object class definitions. Copy the DER
format data into the LDIF file as the values of either the certificateRevocationList;binary
attribute for CRLs, the authorityRevocationList;binary attribute for ARLs , or both.

3. Start your LDAP server.
4. Add the entries from the LDIF file or files you created at step “2” on page 149.

After you have configured your LDAP CRL server, check that it is set up correctly. First, try using a
certificate that is not revoked on the channel, and check that the channel starts correctly. Then use a
certificate that is revoked, and check that the channel fails to start.

Security 149

Obtain updated CRLs from the Certification Authorities frequently. Consider doing this on your LDAP
servers every 12 hours.

Accessing CRLs and ARLs with a queue manager
A queue manager is associated with one or more authentication information objects, which hold the
address of an LDAP CRL server.

Note that in this section, information about Certificate Revocation Lists (CRLs) also applies to Authority
Revocation Lists (ARLs).

You tell the queue manager how to access CRLs by supplying the queue manager with authentication
information objects, each of which holds the address of an LDAP CRL server. The authentication
information objects are held in a namelist, which is specified in the SSLCRLNamelist queue manager
attribute.

In the following example, MQSC is used to specify the parameters:

1. Define authentication information objects using the DEFINE AUTHINFO MQSC command, with the
AUTHTYPE parameter set to CRLLDAP.

The value CRLLDAP for the AUTHTYPE parameter indicates that CRLs are accessed on LDAP servers.
Each authentication information object with type CRLLDAP that you create holds the address of an
LDAP server. When you have more than one authentication information object, the LDAP servers to
which they point must contain identical information. This provides continuity of service if one or more
LDAP servers fail.

On all platforms, the user ID and password are sent to the LDAP server unencrypted.
2. Using the DEFINE NAMELIST MQSC command, define a namelist for the names of your authentication

information objects.
3. Using the ALTER QMGR MQSC command, supply the namelist to the queue manager. For example:

ALTER QMGR SSLCRLNL(sslcrlnlname)

where sslcrlnlname is your namelist of authentication information objects.

This command sets a queue manager attribute called SSLCRLNamelist. The queue manager's initial
value for this attribute is blank.

You can add up to 10 connections to alternative LDAP servers to the namelist, to ensure continuity of
service if one or more LDAP servers fail. Note that the LDAP servers must contain identical information.

Accessing CRLs and ARLs using IBM WebSphere MQ Explorer
You can use IBM WebSphere MQ Explorer to tell a queue manager how to access CRLs.

Note that in this section, information about Certificate Revocation Lists (CRLs) also applies to Authority
Revocation Lists (ARLs).

Use the following procedure to set up an LDAP connection to a CRL:

1. Ensure that you have started your queue manager.
2. Right-click the Authentication Information folder and click New -> Authentication Information. In

the property sheet that opens:

a. On the first page Create Authentication Information , enter a name for the CRL(LDAP) object.
b. On the General page of Change Properties, select the connection type. Optionally you can enter a

description.
c. Select the CRL(LDAP) page of Change Properties.
d. Enter the LDAP server name as either the network name or the IP address.
e. If the server requires login details, provide a user ID and if necessary a password.
f. Click OK.

150 Securing IBM WebSphere MQ

3. Right-click the Namelists folder and click New -> Namelist . In the property sheet that opens:

a. Type a name for the namelist.
b. Add the name of the CRL(LDAP) object (from step “2.a” on page 150) to the list.
c. Click OK.

4. Right-click the queue manager, select Properties, and select the SSL page:

a. Select the Check certificates received by this queue manager against Certification Revocation
Lists check box.

b. Type the name of the namelist (from step “3.a” on page 151) in the CRL Namelist field.

Accessing CRLs and ARLs with an IBM WebSphere MQ MQI client
You have three options for specifying the LDAP servers that hold CRLs for checking by an IBM WebSphere
MQ MQI client.

Note that in this section, information about Certificate Revocation Lists (CRLs) also applies to Authority
Revocation Lists (ARLs).

The three ways of specifying the LDAP servers are as follows:

• Using a channel definition table
• Using the SSL configuration options structure, MQSCO, on an MQCONNX call
• Using the Active Directory (on Windows systems with Active Directory support)

For more details, refer to the related information.

You can include up to 10 connections to alternative LDAP servers to ensure continuity of service if one or
more LDAP servers fail. Note that the LDAP servers must contain identical information.

You cannot access LDAP CRLs from a WebSphere MQ MQI client channel running on Linux (zSeries
platform).

Location of an OCSP responder, and of LDAP servers that hold CRLs
On an IBM WebSphere MQ MQI client system, you can specify the location of an OCSP responder, and of
Lightweight Directory Access Protocol (LDAP) servers that hold certificate revocation lists (CRLs).

You can specify these locations in three ways, listed here in order of decreasing precedence.

When a WebSphere MQ MQI client application issues an MQCONNX call
You can specify an OCSP responder or an LDAP server holding CRLs on an MQCONNX call.

On an MQCONNX call, the connect options structure, MQCNO, can reference an SSL configuration options
structure, MQSCO. In turn, the MQSCO structure can reference one or more authentication information
record structures, MQAIR. Each MQAIR structure contains all the information a WebSphere MQ MQI client
requires to access an OCSP responder or an LDAP server holding CRLs. For example, one of the fields in
an MQAIR structure is the URL at which a responder can be contacted. For more information about the
MQAIR structure, see MQAIR - Authentication information record.

Using a client channel definition table (ccdt) to access an OCSP responder or LDAP
servers
So that a WebSphere MQ MQI client can access an OCSP responder or LDAP servers that hold CRLs,
include the attributes of one or more authentication information objects in a client channel definition
table.

On a server queue manager, you can define one or more authentication information objects. The
attributes of an authentication object contain all the information that is required to access an OCSP
responder (on platforms where OCSP is supported) or an LDAP server that holds CRLs. One of the
attributes specifies the OCSP responder URL, another specifies the host address, or IP address of a
system on which an LDAP server runs.

Security 151

An authentication information object with AUTHTYPE(OCSP) does not apply for use on IBM i or z/OS
queue managers, but it can be specified on those platforms to be copied to the client channel definition
table (CCDT) for client use.

To enable a WebSphere MQ MQI client to access an OCSP responder or LDAP servers that hold CRLs, the
attributes of one or more authentication information objects can be included in a client channel definition
table. You can include such attributes in one of the following ways:

On the server platforms AIX, HP-UX, Linux, Solaris, and Windows

You can define a namelist that contains the names of one or more authentication information objects.
You can then set the queue manager attribute, SSLCRLNameList, to the name of this namelist.

If you are using CRLs, more than one LDAP server can be configured to provide higher availability. The
intention is that each LDAP server holds the same CRLs. If one LDAP server is unavailable when it is
required, a WebSphere MQ MQI client can attempt to access another.

The attributes of the authentication information objects identified by the namelist are referred to
collectively here as the certificate revocation location. When you set the queue manager attribute,
SSLCRLNameList, to the name of the namelist, the certificate revocation location is copied into the
client channel definition table associated with the queue manager. If the CCDT can be accessed from
a client system as a shared file, or if the CCDT is then copied to a client system, the WebSphere MQ
MQI client on that system can use the certificate revocation location in the CCDT to access an OCSP
responder or LDAP servers that hold CRLs.

If the certificate revocation location of the queue manager is changed later, the change is reflected
in the CCDT associated with the queue manager. If the queue manager attribute, SSLCRLNameList,
is set to blank, the certificate revocation location is removed from the CCDT. These changes are not
reflected in any copy of the table on a client system.

If you require the certificate revocation location at the client and server ends of an MQI channel to
be different, and the server queue manager is the one that is used to create the certificate revocation
location, you can do it as follows:

1. On the server queue manager, create the certificate revocation location for use on the client
system.

2. Copy the CCDT containing the certificate revocation location to the client system.
3. On the server queue manager, change the certificate revocation location to what is required at the

server end of the MQI channel.

Using Active Directory on Windows
On Windows systems, you can use the setmqcrl control command to publish the current CRL
information in Active Directory.

Command setmqcrl does not publish OCSP information.

For information about this command and its syntax, see setmqcrl.

Accessing CRLs and ARLs with IBM WebSphere MQ classes for Java and IBM
WebSphere MQ classes for JMS
IBM WebSphere MQ classes for Java and IBM WebSphere MQ classes for JMS access CRLs differently
from other platforms.

For information about working with CRLs and ARLs with IBM WebSphere MQ classes for Java, see Using
certificate revocation lists.

For information about working with CRLs and ARLs with IBM WebSphere MQ classes for JMS, see
SSLCERTSTORES object property.

152 Securing IBM WebSphere MQ

Manipulating authentication information objects
You can manipulate authentication information objects using MQSC or PCF commands, or the IBM
WebSphere MQ Explorer.

The following MQSC commands act on authentication information objects:

• DEFINE AUTHINFO
• ALTER AUTHINFO
• DELETE AUTHINFO
• DISPLAY AUTHINFO

For a complete description of these commands, see Script (MQSC) Commands .

The following Programmable Command Format (PCF) commands act on authentication information
objects:

• Create Authentication Information
• Copy Authentication Information
• Change Authentication Information
• Delete Authentication Information
• Inquire Authentication Information
• Inquire Authentication Information Names

For a complete description of these commands, see Definitions of the Programmable Command Formats .

On platforms where it is available, you can also use the WebSphere MQ Explorer.

Authorizing access to objects
This section contains information about using the object authority manager and channel exit programs to
control access to objects.

On UNIX, Linux, and Windows systems. you control access to objects by using the object authority
manager (OAM). This collection of topics contains information about using the command interface to the
OAM. It also contains a checklist you can use to determine what tasks to perform to apply security to your
system, and considerations for granting users the authority to administer IBM WebSphere MQ and to work
with IBM WebSphere MQ objects. If the supplied security mechanisms do not meet your needs, you can
develop your own channel exit programs.

Controlling access to objects by using the OAM on UNIX, Linux and Windows
systems

The object authority manager (OAM) provides a command interface for granting and revoking authority to
WebSphere MQ objects.

You must be suitably authorized to use these commands, as described in “Authority to administer IBM
WebSphere MQ on UNIX, Linux, and Windows systems” on page 190. User IDs that are authorized to
administer WebSphere MQ have super user authority to the queue manager, which means that you do not
have to grant them further permission to issue any MQI requests or commands.

Giving access to an IBM WebSphere MQ object on UNIX, Linux, and Windows
systems
Use the setmqaut control command, or the MQCMD_SET_AUTH_REC PCF command to give users, and
groups of users, access to IBM WebSphere MQ objects.

For a full definition of the setmqaut control command and its syntax, see setmqaut, and for a full
definition of the MQCMD_SET_AUTH_REC PCF command and its syntax, see Set Authority Record.

Security 153

The queue manager must be running to use this command. When you have changed access for a principal,
the changes are reflected immediately by the OAM.

To give users access to an object, you need to specify:

• The name of the queue manager that owns the objects you are working with; if you do not specify the
name of a queue manager, the default queue manager is assumed.

• The name and type of the object (to identify the object uniquely). You specify the name as a profile; this
is either the explicit name of the object, or a generic name, including wildcard characters. For a detailed
description of generic profiles, and the use of wildcard characters within them, see “Using OAM generic
profiles on UNIX, Linux, and Windows systems” on page 155.

• One or more principals and group names to which the authority applies.

If a user ID contains spaces, enclose it in quotation marks when you use this command. On Windows
systems, you can qualify a user ID with a domain name. If the actual user ID contains an at sign (@)
symbol, replace it with @@ to show that it is part of the user ID, not the delimiter between the user ID
and the domain name.

• A list of authorizations. Each item in the list specifies a type of access that is to be granted to that object
(or revoked from it). Each authorization in the list is specified as a keyword, prefixed with a plus sign (+)
or a minus sign (-). Use a plus sign to add the specified authorization, and a minus sign to remove the
authorization. There must be no spaces between the + or - sign and the keyword.

You can specify any number of authorizations in a single command. For example, the list of
authorizations to permit a user or group to put messages on a queue and to browse them, but to
revoke access to get messages is:

 +browse -get +put

Examples of using the setmqaut command
The following examples show how to use the setmqaut command to grant and revoke permission to use
an object:

setmqaut -m saturn.queue.manager -t queue -n RED.LOCAL.QUEUE
 -g groupa +browse -get +put

In this example:

• saturn.queue.manager is the queue manager name
• queue is the object type
• RED.LOCAL.QUEUE is the object name
• groupa is the identifier of the group with authorizations that are to change
• +browse -get +put is the authorization list for the specified queue

– +browse adds authorization to browse messages on the queue (to issue MQGET with the browse
option)

– -get removes authorization to get (MQGET) messages from the queue
– +put adds authorization to put (MQPUT) messages on the queue

The following command revokes put authority on the queue MyQueue from principal fvuser and from
groups groupa and groupb. On UNIX and Linux systems, this command also revokes put authority for all
principals in the same primary group as fvuser.

setmqaut -m saturn.queue.manager -t queue -n MyQueue -p fvuser
 -g groupa -g groupb -put

154 Securing IBM WebSphere MQ

Using the command with a different authorization service
If you are using your own authorization service instead of the OAM, you can specify the name of
this service on the setmqaut command to direct the command to this service. You must specify this
parameter if you have multiple installable components running at the same time; if you do not, the update
is made to the first installable component for the authorization service. By default, this is the supplied
OAM.

Using OAM generic profiles on UNIX, Linux, and Windows systems
OAM generic profiles enable you to set the authority a user has to many objects at once, rather than
having to issue separate setmqaut commands against each individual object when it is created.

Using generic profiles in the setmqaut command enables you to set a generic authority for all objects
that fit that profile.

This collection of topics describes the use of generic profiles in more detail.

Using wildcard characters in OAM profiles
What makes a profile generic is the use of special characters (wildcard characters) in the profile name.
For example, the question mark (?) wildcard character matches any single character in a name. So, if
you specify ABC.?EF, the authorization you give to that profile applies to any objects with the names
ABC.DEF , ABC.CEF, ABC.BEF, and so on.

The wildcard characters available are:
?

Use the question mark (?) instead of any single character. For example, AB.?D applies to the objects
AB.CD , AB.ED, and AB.FD.

*
Use the asterisk (*) as:

• A qualifier in a profile name to match any one qualifier in an object name. A qualifier is the part of an
object name delimited by a period. For example, in ABC.DEF.GHI, the qualifiers are ABC, DEF, and
GHI .

For example, ABC.*.JKL applies to the objects ABC.DEF.JKL, and ABC.GHI.JKL. (Note that it
does not apply to ABC.JKL; * used in this context always indicates one qualifier.)

• A character within a qualifier in a profile name to match zero or more characters within the qualifier
in an object name.

For example, ABC.DE*.JKL applies to the objects ABC.DE.JKL, ABC.DEF.JKL, and
ABC.DEGH.JKL .

**
Use the double asterisk (**) once in a profile name as:

• The entire profile name to match all object names. For example if you use -t prcs to identify
processes, then use ** as the profile name, you change the authorizations for all processes.

• As either the beginning, middle, or ending qualifier in a profile name to match zero or more qualifiers
in an object name. For example, **.ABC identifies all objects with the final qualifier ABC.

Note: When using wildcard characters on UNIX and Linux systems, you must enclose the profile name in
single quotation marks.

Profile priorities
An important point to understand when using generic profiles is the priority that profiles are given when
deciding what authorities to apply to an object being created. For example, suppose that you have issued
the commands:

Security 155

setmqaut -n AB.* -t q +put -p fred
setmqaut -n AB.C* -t q +get -p fred

The first gives put authority to all queues for the principal fred with names that match the profile AB.*; the
second gives get authority to the same types of queue that match the profile AB.C*.

Suppose that you now create a queue called AB.CD. According to the rules for wildcard matching, either
setmqaut could apply to that queue. So, does it have put or get authority?

To find the answer, you apply the rule that, whenever multiple profiles can apply to an object, only the
most specific applies. The way that you apply this rule is by comparing the profile names from left to
right. Wherever they differ, a non-generic character is more specific then a generic character. So, in the
example above, the queue AB.CD has get authority (AB.C* is more specific than AB.*).

When you are comparing generic characters, the order of specificity is:

1. ?
2. *
3. **

Dumping profile settings
For a full definition of the dmpmqaut control command and its syntax, see dmpmqaut, and for a full
definition of the MQCMD_INQUIRE_AUTH_RECS PCF command and its syntax, see Inquire Authority
Records .

The following examples show the use of the dmpmqaut control command to dump authority records for
generic profiles:

1. This example dumps all authority records with a profile that matches queue a.b.c for principal user1.

dmpmqaut -m qm1 -n a.b.c -t q -p user1

The resulting dump looks something like this:

profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq

Note: Although UNIX and Linux users can use the -p option for the dmpmqaut command, they must
use -g groupname instead when defining authorizations.

2. This example dumps all authority records with a profile that matches queue a.b.c.

dmpmqaut -m qmgr1 -n a.b.c -t q

The resulting dump looks something like this:

profile: a.b.c
object type: queue
entity: Administrator
type: principal
authority: all
- - - - - - - - - - - - - - - - -
profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq
- - - - - - - - - - - - - - - - -
profile: a.**
object type: queue
entity: group1

156 Securing IBM WebSphere MQ

type: group
authority: get

3. This example dumps all authority records for profile a.b.*, of type queue.

dmpmqaut -m qmgr1 -n a.b.* -t q

The resulting dump looks something like this:

profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq

4. This example dumps all authority records for queue manager qmX.

dmpmqaut -m qmX

The resulting dump looks something like this:

profile: q1
object type: queue
entity: Administrator
type: principal
authority: all
- - - - - - - - - - - - - - - - -
profile: q*
object type: queue
entity: user1
type: principal
authority: get, browse
- - - - - - - - - - - - - - - - -
profile: name.*
object type: namelist
entity: user2
type: principal
authority: get
- - - - - - - - - - - - - - - - -
profile: pr1
object type: process
entity: group1
type: group
authority: get

5. This example dumps all profile names and object types for queue manager qmX.

dmpmqaut -m qmX -l

The resulting dump looks something like this:

profile: q1, type: queue
profile: q*, type: queue
profile: name.*, type: namelist
profile: pr1, type: process

Note: For WebSphere MQ for Windows only, all principals displayed include domain information, for
example:

profile: a.b.*
object type: queue
entity: user1@domain1
type: principal
authority: get, browse, put, inq

Security 157

Using wildcard characters in OAM profiles
Use wildcard characters in an object authority manager (OAM) profile name to make that profile
applicable to more than one object.

What makes a profile generic is the use of special characters (wildcard characters) in the profile name.
For example, the question mark (?) wildcard character matches any single character in a name. So, if
you specify ABC.?EF, the authorization you give to that profile applies to any objects with the names
ABC.DEF, ABC.CEF, ABC.BEF, and so on.

The wildcard characters available are:
?

Use the question mark (?) instead of any single character. For example, AB.?D applies to the objects
AB.CD, AB.ED, and AB.FD.

*
Use the asterisk (*) as:

• A qualifier in a profile name to match any one qualifier in an object name. A qualifier is the part of an
object name delimited by a period. For example, in ABC.DEF.GHI, the qualifiers are ABC, DEF, and
GHI.

For example, ABC.*.JKL applies to the objects ABC.DEF.JKL, and ABC.GHI.JKL. (Note that it
does not apply to ABC.JKL; * used in this context always indicates one qualifier.)

• A character within a qualifier in a profile name to match zero or more characters within the qualifier
in an object name.

For example, ABC.DE*.JKL applies to the objects ABC.DE.JKL, ABC.DEF.JKL, and
ABC.DEGH.JKL.

**
Use the double asterisk (**) once in a profile name as:

• The entire profile name to match all object names. For example if you use -t prcs to identify
processes, then use ** as the profile name, you change the authorizations for all processes.

• As either the beginning, middle, or ending qualifier in a profile name to match zero or more qualifiers
in an object name. For example, **.ABC identifies all objects with the final qualifier ABC.

Note: When using wildcard characters on UNIX and Linux systems, you must enclose the profile name in
single quotation marks.

Profile priorities
More than one generic profile can apply to a single object. Where this is the case, the most specific rule
applies.

An important point to understand when using generic profiles is the priority that profiles are given when
deciding what authorities to apply to an object being created. For example, suppose that you have issued
the commands:

setmqaut -n AB.* -t q +put -p fred
setmqaut -n AB.C* -t q +get -p fred

The first gives put authority to all queues for the principal fred with names that match the profile AB.*; the
second gives get authority to the same types of queue that match the profile AB.C*.

Suppose that you now create a queue called AB.CD. According to the rules for wildcard matching, either
setmqaut could apply to that queue. So, does it have put or get authority?

To find the answer, you apply the rule that, whenever multiple profiles can apply to an object, only the
most specific applies. The way that you apply this rule is by comparing the profile names from left to
right. Wherever they differ, a non-generic character is more specific then a generic character. So, in the
example above, the queue AB.CD has get authority (AB.C* is more specific than AB.*).

When you are comparing generic characters, the order of specificity is:

158 Securing IBM WebSphere MQ

1. ?
2. *
3. **

Dumping profile settings
Use the dmpmqaut control command or the MQCMD_INQUIRE_AUTH_RECS PCF command to dump the
current authorizations associated with a specified profile.

For a full definition of the dmpmqaut control command and its syntax, see dmpmqaut, and for a full
definition of the MQCMD_INQUIRE_AUTH_RECS PCF command and its syntax, see Inquire Authority
Records.

The following examples show the use of the dmpmqaut control command to dump authority records for
generic profiles:

1. This example dumps all authority records with a profile that matches queue a.b.c for principal user1.

dmpmqaut -m qm1 -n a.b.c -t q -p user1

The resulting dump looks something like this example:

profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq

Note: UNIX and Linux users cannot use the -p option; they must use -g groupname instead.
2. This example dumps all authority records with a profile that matches queue a.b.c.

dmpmqaut -m qmgr1 -n a.b.c -t q

The resulting dump looks something like this example:

profile: a.b.c
object type: queue
entity: Administrator
type: principal
authority: all
- - - - - - - - - - - - - - - - -
profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq
- - - - - - - - - - - - - - - - -
profile: a.**
object type: queue
entity: group1
type: group
authority: get

3. This example dumps all authority records for profile a.b.*, of type queue.

dmpmqaut -m qmgr1 -n a.b.* -t q

The resulting dump looks something like this example:

profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq

4. This example dumps all authority records for queue manager qmX.

dmpmqaut -m qmX

Security 159

The resulting dump looks something like this example:

profile: q1
object type: queue
entity: Administrator
type: principal
authority: all
- - - - - - - - - - - - - - - - -
profile: q*
object type: queue
entity: user1
type: principal
authority: get, browse
- - - - - - - - - - - - - - - - -
profile: name.*
object type: namelist
entity: user2
type: principal
authority: get
- - - - - - - - - - - - - - - - -
profile: pr1
object type: process
entity: group1
type: group
authority: get

5. This example dumps all profile names and object types for queue manager qmX.

dmpmqaut -m qmX -l

The resulting dump looks something like this example:

profile: q1, type: queue
profile: q*, type: queue
profile: name.*, type: namelist
profile: pr1, type: process

Note: For WebSphere MQ for Windows only, all principals displayed include domain information, for
example:

profile: a.b.*
object type: queue
entity: user1@domain1
type: principal
authority: get, browse, put, inq

Displaying access settings
Use the dspmqaut control command, or the MQCMD_INQUIRE_ENTITY_AUTH PCF command to view the
authorizations that a specific principal or group has for a particular object.

The queue manager must be running to use this command. When you change access for a principal, the
changes are reflected immediately by the OAM. Authorization can be displayed for only one group or
principal at a time. For a full definition of the dmpmqaut control command and its syntax, see dmpmqaut,
and for a full definition of the MQCMD_INQUIRE_ENTITY_AUTH PCF command and its syntax, see Inquire
Entity Authority.

The following example shows the use of the dspmqaut control command to display the authorizations
that the group GpAdmin has to a process definition named Annuities that is on queue manager
QueueMan1.

dspmqaut -m QueueMan1 -t process -n Annuities -g GpAdmin

160 Securing IBM WebSphere MQ

Changing and revoking access to an IBM WebSphere MQ object
To change the level of access that a user or group has to an object, use the setmqaut command. To
revoke the access of a particular user that is a member of a group that has authorization, remove the user
from the group.

The process of removing the user from a group is described in:

• “Creating and managing groups on Windows ” on page 79
• “Creating and managing groups on HP-UX” on page 81
• “Creating and managing groups on AIX” on page 82
• “Creating and managing groups on Solaris” on page 83
• “Creating and managing groups on Linux” on page 84

.

The user ID that creates an IBM WebSphere MQ object is granted full control authorities to that
object. If you remove this user ID from the local mqm group (or the Administrators group on
Windows systems) these authorities are not revoked. Use the setmqaut control command or the
MQCMD_DELETE_AUTH_REC PCF command to revoke access to an object for the user ID that created
it, after removing it from the mqm or Administrators group. For a full definition of the setmqaut control
command and its syntax, see setmqaut, and for a full definition of the MQCMD_INQUIRE_ENTITY_AUTH
PCF command and its syntax, see Inquire Entity Authority.

On Windows, delete the OAM entries corresponding to a particular Windows user account before deleting
the user profile. It is impossible to remove the OAM entries after removing the user account.

Preventing security access checks on UNIX, Linux, and Windows systems
To turn off all security checking you can disable the OAM. This might be suitable for a test environment.
Having disabled or removed the OAM, you cannot add an OAM to an existing queue manager.

If you decide that you do not want to perform security checks (for example, in a test environment), you
can disable the OAM in one of two ways:

• Before you create a queue manager, set the operating system environment variable MQSNOAUT (if you
do this, you cannot add an OAM later):

See Environment variables for more information about the implications of setting the MQSNOAUT
variable.

• Edit the queue manager configuration file to remove the service. (If you do this, you cannot add an OAM
later.)

If you use setmqaut, or dspmqaut while the OAM is disabled, note the following points:

• The OAM does not validate the specified principal, or group, meaning that the command can accept
invalid values.

• The OAM does not perform security checks and indicates that all principals and groups are authorized to
perform all applicable object operations.

Warning: When an OAM is removed, it cannot be put back on an existing queue manager. This is
because the OAM needs to be in place at object creation time. To use the WebSphere MQ OAM
again after it has been removed, the queue manager needs to be rebuilt.

Related concepts
Installable services

Security 161

Granting required access to resources
Use this topic to determine what tasks to perform to apply security to your WebSphere MQ system.

About this task
During this task, you decide what actions are necessary to apply the appropriate level of security to the
elements of your WebSphere MQ installation. Each individual task you are referred to gives step-by-step
instructions for all platforms.

Procedure
1. Do you need to limit access to your queue manager to certain users?

a) No: Take no further action.
b) Yes: Go to the next question.

2. Do these users need partial administrative access on a subset of queue manager resources?
a) No: Go to the next question.
b) Yes: See “Granting partial administrative access on a subset of queue manager resources” on page

162.
3. Do these users need full administrative access on a subset of queue manager resources?

a) No: Go to the next question.
b) Yes: See “Granting full administrative access on a subset of queue manager resources” on page

167.
4. Do these users need read only access to all queue manager resources?

a) No: Go to the next question.
b) Yes: See “Granting read-only access to all resources on a queue manager” on page 172.

5. Do these users need full administrative access on all queue manager resources?
a) No: Go to the next question.
b) Yes: See “Granting full administrative access to all resources on a queue manager” on page 173.

6. Do you need user applications to connect to your queue manager?
a) No: Disable connectivity, as described in “Removing connectivity to the queue manager” on page

174

b) Yes: See “Allowing user applications to connect to your queue manager” on page 174.

Granting partial administrative access on a subset of queue manager
resources
You need to give certain users partial administrative access to some, but not all, queue manager
resources. Use this table to determine the actions you need to take.

Table 14. Granting partial administrative access to a subset of queue manager resources

The users need to administer objects of this type Perform this action

Queues Grant partial administrative access to the required
queues, as described in “Granting limited
administrative access to some queues” on page
163

Topics Grant partial administrative access to the
required topics, as described in “Granting limited
administrative access to some topics” on page 164

162 Securing IBM WebSphere MQ

Table 14. Granting partial administrative access to a subset of queue manager resources (continued)

The users need to administer objects of this type Perform this action

Channels Grant partial administrative access to the required
channels, as described in “Granting limited
administrative access to some channels” on page
164

The queue manager Grant partial administrative access to the queue
manager, as described in “Granting limited
administrative access to a queue manager” on
page 165

Processes Grant partial administrative access to the required
processes, as described in “Granting limited
administrative access to some processes” on page
166

Namelists Grant partial administrative access to the required
namelists, as described in “Granting limited
administrative access to some namelists” on page
166

Services Grant partial administrative access to the required
services, as described in “Granting limited
administrative access to some services” on page
167

Granting limited administrative access to some queues
Grant partial administrative access to some queues on a queue manager, to each group of users with a
business need for it.

About this task
To grant limited administrative access to some queues for some actions, use the appropriate commands
for your operating system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName ReqdAction

• The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

ReqdAction
The action you are allowing the group to take:

– On UNIX, Linux and Windows systems, any combination of the following authorizations: +chg,
+clr, +dlt, +dsp. The authorization +alladm is equivalent to +chg +clr +dlt +dsp.

Note: Granting +crt for queues indirectly makes the user or group an administrator. Do not use +crt
authority to grant limited administrative access to some queues.

Security 163

QType

For the DISPLAY command, one of the values QUEUE, QLOCAL, QALIAS, QMODEL, QREMOTE, or
QCLUSTER.

For other values of ReqdAction, one of the values QLOCAL, QALIAS, QMODEL, or QREMOTE.

Granting limited administrative access to some topics
Grant partial administrative access to some topics on a queue manager, to each group of users with a
business need for it.

About this task
To grant limited administrative access to some topics for some actions, use the appropriate commands
for your operating system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t topic -g GroupName ReqdAction

• The variable names have the following meanings:
QMgrName

The name of the queue manager.
ObjectProfile

The name of the object or generic profile for which to change authorizations.
GroupName

The name of the group to be granted access.
ReqdAction

The action you are allowing the group to take:

– On UNIX, Linux and Windows systems, any combination of the following authorizations: +chg,
+clr, +crt, +dlt, +dsp. +ctrl. The authorization +alladm is equivalent to +chg +clr +dlt +dsp.

Granting limited administrative access to some channels
Grant partial administrative access to some channels on a queue manager, to each group of users with a
business need for it.

About this task
To grant limited administrative access to some channels for some actions, use the appropriate commands
for your operating system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t channel -g GroupName ReqdAction

• The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

164 Securing IBM WebSphere MQ

ReqdAction
The action you are allowing the group to take:

– On UNIX, Linux and Windows systems, any combination of the following authorizations: +chg,
+clr, +crt, +dlt, +dsp. +ctrl, +ctrlx. The authorization +alladm is equivalent to +chg +clr +dlt
+dsp.

Granting limited administrative access to a queue manager
Grant partial administrative access to a queue manager, to each group of users with a business need for it.

About this task
To grant limited administrative access to perform some actions on the queue manager, use the
appropriate commands for your operating system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t qmgr -g GroupName ReqdAction

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*MQM) USER(GroupName) AUT(ReqdAction)
MQMNAME('QMgrName')

Results
To determine which MQSC commands the user can perform on the queue manager, issue the following
commands for each MQSC command:

RDEFINE MQCMDS QMgrName.ReqdAction.QMGR UACC(NONE)
PERMIT QMgrName.ReqdAction.QMGR CLASS(MQCMDS) ID(GroupName) ACCESS(ALTER)

To permit the user to use the DISPLAY QMGR command, issue the following commands:

RDEFINE MQCMDS QMgrName.DISPLAY.QMGR UACC(NONE)
PERMIT QMgrName.DISPLAY.QMGR CLASS(MQCMDS) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager.
ObjectProfile

The name of the object or generic profile for which to change authorizations.
GroupName

The name of the group to be granted access.
ReqdAction

The action you are allowing the group to take:

• On UNIX, Linux and Windows systems, any combination of the following authorizations: +chg, +clr,
+crt, +dlt, +dsp. The authorization +alladm is equivalent to +chg +clr +dlt +dsp.

Although +set is an MQI authorization and not normally considered administrative, granting +set on
the queue manager can indirectly lead to full administrative authority. Do not grant +set to ordinary
users and applications.

Security 165

Granting limited administrative access to some processes
Grant partial administrative access to some processes on a queue manager, to each group of users with a
business need for it.

About this task
To grant limited administrative access to some processes for some actions, use the appropriate
commands for your operating system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t process -g GroupName ReqdAction

• The variable names have the following meanings:
QMgrName

The name of the queue manager.
ObjectProfile

The name of the object or generic profile for which to change authorizations.
GroupName

The name of the group to be granted access.
ReqdAction

The action you are allowing the group to take:

– On UNIX, Linux and Windows systems, any combination of the following authorizations: +chg,
+clr, +crt, +dlt, +dsp. The authorization +alladm is equivalent to +chg +clr +dlt +dsp.

Granting limited administrative access to some namelists
Grant partial administrative access to some namelists on a queue manager, to each group of users with a
business need for it.

About this task
To grant limited administrative access to some namelists for some actions, use the appropriate
commands for your operating system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t namelist -g GroupName ReqdAction

• The variable names have the following meanings:
QMgrName

The name of the queue manager.
ObjectProfile

The name of the object or generic profile for which to change authorizations.
GroupName

The name of the group to be granted access.
ReqdAction

The action you are allowing the group to take:

– On UNIX, Linux and Windows systems, any combination of the following authorizations: +chg,
+clr, +crt, +dlt, +ctrl, +ctrlx, +dsp. The authorization +alladm is equivalent to +chg +clr +dlt
+dsp.

166 Securing IBM WebSphere MQ

Granting limited administrative access to some services
Grant partial administrative access to some services on a queue manager, to each group of users with a
business need for it.

About this task
To grant limited administrative access to some services for some actions, use the appropriate commands
for your operating system.

Note: Service objects do not exist on z/OS.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t service -g GroupName ReqdAction

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*SVC) USER(GroupName) AUT(ReqdAction)
MQMNAME('QMgrName')

Results
These commands grant access to the specified service. To determine which MQSC commands the user
can perform on the service, issue the following commands for each MQSC command:

RDEFINE MQCMDS QMgrName.ReqdAction.SERVICE UACC(NONE)
PERMIT QMgrName.ReqdAction.SERVICE CLASS(MQCMDS) ID(GroupName) ACCESS(ALTER)

To permit the user to use the DISPLAY SERVICE command, issue the following commands:

RDEFINE MQCMDS QMgrName.DISPLAY.SERVICE UACC(NONE)
PERMIT QMgrName.DISPLAY.SERVICE CLASS(MQCMDS) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager.
ObjectProfile

The name of the object or generic profile for which to change authorizations.
GroupName

The name of the group to be granted access.
ReqdAction

The action you are allowing the group to take:

• On UNIX, Linux and Windows systems, any combination of the following authorizations: +chg, +clr,
+crt, +dlt, +ctrl, +ctrlx, +dsp. The authorization +alladm is equivalent to +chg +clr +dlt +dsp.

Granting full administrative access on a subset of queue manager resources
You need to give certain users full administrative access to some, but not all, queue manager resources.
Use these tables to determine the actions you need to take.

Table 15. Granting full administrative access to a subset of queue manager resources

The users need to administer objects of this type Perform this action

Queues Grant full administrative access to the
required queues, as described in “Granting full
administrative access to some queues” on page
168

Security 167

Table 15. Granting full administrative access to a subset of queue manager resources (continued)

The users need to administer objects of this type Perform this action

Topics Grant full administrative access to the required
topics, as described in “Granting full administrative
access to some topics” on page 169

Channels Grant full administrative access to the required
channels, as described in “Granting full
administrative access to some channels” on page
169

The queue manager Grant full administrative access to the queue
manager, as described in “Granting full
administrative access to a queue manager” on
page 170

Processes Grant full administrative access to the required
processes, as described in “Granting full
administrative access to some processes” on page
170

Namelists Grant full administrative access to the required
namelists, as described in “Granting full
administrative access to some namelists” on page
171

Services Grant full administrative access to the required
services, as described in “Granting full
administrative access to some services” on page
171

Granting full administrative access to some queues
Grant full administrative access to some queues on a queue manager, to each group of users with a
business need for it.

About this task
To grant full administrative access to some queues, use the appropriate commands for your operating
system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +alladm

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*Q) USER(GroupName) AUT(*ALLADM) MQMNAME('QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQADMIN QMgrName.QUEUE.ObjectProfile UACC(NONE)
PERMIT QMgrName.QUEUE.ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

168 Securing IBM WebSphere MQ

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting full administrative access to some topics
Grant full administrative access to some topics on a queue manager, to each group of users with a
business need for it.

About this task
To grant full administrative access to some topics for some actions, use the appropriate commands for
your operating system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t topic -g GroupName +alladm

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*TOPIC) USER(GroupName) AUT(ALLADM)
MQMNAME('QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQADMIN QMgrName.TOPIC.ObjectProfile UACC(NONE)
PERMIT QMgrName.TOPIC.ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting full administrative access to some channels
Grant full administrative access to some channels on a queue manager, to each group of users with a
business need for it.

About this task
To grant full administrative access to some channels, use the appropriate commands for your operating
system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t channel -g GroupName +alladm

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*CHL) USER(GroupName) AUT(ALLADM) MQMNAME('QMgrName')

• For z/OS, issue the following commands:

Security 169

RDEFINE MQADMIN QMgrName.CHANNEL.ObjectProfile UACC(NONE)
PERMIT QMgrName.CHANNEL.ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting full administrative access to a queue manager
Grant full administrative access to a queue manager, to each group of users with a business need for it.

About this task
To grant full administrative access to the queue manager, use the appropriate commands for your
operating system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -t qmgr -g GroupName +alladm

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*MQM) USER(GroupName) AUT(*ALLADM) MQMNAME('QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQADMIN QMgrName.QMGR UACC(NONE)
PERMIT QMgrName.QMGR CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting full administrative access to some processes
Grant full administrative access to some processes on a queue manager, to each group of users with a
business need for it.

About this task
To grant full administrative access to some processes, use the appropriate commands for your operating
system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t process -g GroupName +alladm

170 Securing IBM WebSphere MQ

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*PRC) USER(GroupName) AUT(*ALLADM) MQMNAME('QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQADMIN QMgrName.CHANNEL.ObjectProfile UACC(NONE)
PERMIT QMgrName.PROCESS.ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting full administrative access to some namelists
Grant full administrative access to some namelists on a queue manager, to each group of users with a
business need for it.

About this task
To grant full administrative access to some namelists, use the appropriate commands for your operating
system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t namelist -g GroupName +alladm

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*NMLIST) USER(GroupName) AUT(*ALLADM)
MQMNAME('QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQADMIN QMgrName.NAMELIST.ObjectProfile UACC(NONE)
PERMIT QMgrName.NAMELIST.ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting full administrative access to some services
Grant full administrative access to some services on a queue manager, to each group of users with a
business need for it.

About this task
To grant full administrative access to some services, use the appropriate commands for your operating
system.

Security 171

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t service -g GroupName +alladm

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*SVC) USER(GroupName) AUT(*ALLADM) MQMNAME('QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQADMIN QMgrName.SERVICE.ObjectProfile UACC(NONE)
PERMIT QMgrName.SERVICE.ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting read-only access to all resources on a queue manager
Grant read-only access to all the resources on a queue manager, to each user or group of users with a
business need for it.

About this task
Use the Add Role Based Authorities wizard or the appropriate commands for your operating system.

Procedure
• Using the wizard:

a) In the WebSphere MQ Explorer Navigator pane, right-click the queue manager and click Object
Authorities > Add Role Based Authorities
The Add Role Based Authorities wizard opens.

• For UNIX and Windows systems, issue the following commands:

setmqaut -m QMgrName -n ** -t queue -g GroupName +browse +dsp
setmqaut -m QMgrName -n SYSTEM.ADMIN.COMMAND.QUEUE -t queue -g GroupName +dsp +inq +put
setmqaut -m QMgrName -n SYSTEM.MQEXPLORER.REPLY.MODEL -t queue -g GroupName +dsp +inq +get
setmqaut -m QMgrName -n ** -t topic -g GroupName +dsp
setmqaut -m QMgrName -n ** -t channel -g GroupName +dsp +inq
setmqaut -m QMgrName -n ** -t clntconn -g GroupName +dsp
setmqaut -m QMgrName -n ** -t authinfo -g GroupName +dsp
setmqaut -m QMgrName -n ** -t listener -g GroupName +dsp
setmqaut -m QMgrName -n ** -t namelist -g GroupName +dsp
setmqaut -m QMgrName -n ** -t process -g GroupName +dsp
setmqaut -m QMgrName -n ** -t service -g GroupName +dsp
setmqaut -m QMgrName -t qmgr -g GroupName +dsp +inq +connect

The specific authorities to SYSTEM.ADMIN.COMMAND.QUEUE and
SYSTEM.MQEXPLORER.REPLY.MODEL are necessary only if you want to use the MQ Explorer.

• For IBM i, issue the following commands:

GRTMQMAUT OBJ(*ALL) OBJTYPE(*Q) USER('GroupName') AUT(*ADMDSP *BROWSE) MQMNAME('QMgrName')
GRTMQMAUT OBJ(*ALL) OBJTYPE(*TOPIC) USER('GroupName') AUT(*ADMDSP) MQMNAME('QMgrName')
GRTMQMAUT OBJ(*ALL) OBJTYPE(*CHL) USER('GroupName') AUT(*ADMDSP *INQ) MQMNAME('QMgrName')
GRTMQMAUT OBJ(*ALL) OBJTYPE(*CLTCN) USER('GroupName') AUT(*ADMDSP) MQMNAME('QMgrName')
GRTMQMAUT OBJ(*ALL) OBJTYPE(*AUTHINFO) USER('GroupName') AUT(*ADMDSP) MQMNAME('QMgrName')
GRTMQMAUT OBJ(*ALL) OBJTYPE(*LSR) USER('GroupName') AUT(*ADMDSP)MQMNAME('QMgrName')

172 Securing IBM WebSphere MQ

GRTMQMAUT OBJ(*ALL) OBJTYPE(*NMLIST) USER('GroupName') AUT(*ADMDSP) MQMNAME('QMgrName')
GRTMQMAUT OBJ(*ALL) OBJTYPE(*PRC) USER('GroupName') AUT(*ADMDSP) MQMNAME('QMgrName')
GRTMQMAUT OBJ(*ALL) OBJTYPE(*SVC) USER('GroupName') AUT(*ADMDSP) MQMNAME('QMgrName')
GRTMQMAUT OBJ('object-name') OBJTYPE(*MQM) USER('GroupName') AUT(*ADMDSP *CONNECT *INQ)
MQMNAME('QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQQUEUE QMgrName.** UACC(NONE)
PERMIT QMgrName.** CLASS(MQQUEUE) ID(GroupName) ACCESS(READ)
RDEFINE MQTOPIC QMgrName.** UACC(NONE)
PERMIT QMgrName.** CLASS(MQTOPIC) ID(GroupName) ACCESS(READ)
RDEFINE MQPROC QMgrName.** UACC(NONE)
PERMIT QMgrName.** CLASS(MQPROC) ID(GroupName) ACCESS(READ)
RDEFINE MQNLIST QMgrName.** UACC(NONE)
PERMIT QMgrName.** CLASS(MQNLIST) ID(GroupName) ACCESS(READ)
RDEFINE MQCONN QMgrName.BATCH UACC(NONE)
PERMIT QMgrName.BATCH CLASS(MQCONN) ID(GroupName) ACCESS(READ)
RDEFINE MQCONN QMgrName.CICS UACC(NONE)
PERMIT QMgrName.CICS CLASS(MQCONN) ID(GroupName) ACCESS(READ)
RDEFINE MQCONN QMgrName.IMS UACC(NONE)
PERMIT QMgrName.IMS CLASS(MQCONN) ID(GroupName) ACCESS(READ)
RDEFINE MQCONN QMgrName.CHIN UACC(NONE)
PERMIT QMgrName.CHIN CLASS(MQCONN) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

GroupName
The name of the group to be granted access.

Granting full administrative access to all resources on a queue manager
Grant full administrative access to all the resources on a queue manager, to each user or group of users
with a business need for it.

About this task
Use the Add Role Based Authorities wizard or the appropriate commands for your operating system.

Procedure
• Using the wizard:

a) In the WebSphere MQ Explorer Navigator pane, right-click the queue manager and click Object
Authorities > Add Role Based Authorities
The Add Role Based Authorities wizard opens.

• For UNIX and Linux systems, issue the following commands:

setmqaut -m QMgrName -n '**' -t queue -g GroupName +alladm +browse
setmqaut -m QMgrName -n @class -t queue -g GroupName +crt
setmqaut -m QMgrName -n SYSTEM.ADMIN.COMMAND.QUEUE -t queue -g GroupName +dsp +inq +put
setmqaut -m QMgrName -n SYSTEM.MQEXPLORER.REPLY.QUEUE -t queue -g GroupName +dsp +inq +get
setmqaut -m QMgrName -n '**' -t topic -g GroupName +alladm
setmqaut -m QMgrName -n @class -t topic -g GroupName +crt
setmqaut -m QMgrName -n '**' -t channel -g GroupName +alladm
setmqaut -m QMgrName -n @class -t channel -g GroupName +crt
setmqaut -m QMgrName -n '**' -t clntconn -g GroupName +alladm
setmqaut -m QMgrName -n @class -t clntconn -g GroupName +crt
setmqaut -m QMgrName -n '**' -t authinfo -g GroupName +alladm
setmqaut -m QMgrName -n @class -t authinfo -g GroupName +crt
setmqaut -m QMgrName -n '**' -t listener -g GroupName +alladm
setmqaut -m QMgrName -n @class -t listener -g GroupName +crt
setmqaut -m QMgrName -n '**' -t namelist -g GroupName +alladm
setmqaut -m QMgrName -n @class -t namelist -g GroupName +crt
setmqaut -m QMgrName -n '**' -t process -g GroupName +alladm
setmqaut -m QMgrName -n @class -t process -g GroupName +crt
setmqaut -m QMgrName -n '**' -t service -g GroupName +alladm
setmqaut -m QMgrName -n @class -t service -g GroupName +crt
setmqaut -m QMgrName -t qmgr -g GroupName +alladm +conn

Security 173

• For Windows systems, issue the same commands as for UNIX and Linux systems, but using the profile
name @CLASS instead of @class.

• For IBM i, issue the following command:

GRTMQMAUT OBJ(*ALL) OBJTYPE(*ALL) USER('GroupName') AUT(*ALLADM) MQMNAME('QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQADMIN QMgrName.*.** UACC(NONE)
PERMIT QMgrName.*.** CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

GroupName
The name of the group to be granted access.

Removing connectivity to the queue manager
If you do not want user applications to connect to your queue manager, remove their authority to connect
to it.

About this task
Revoke the authority of all users to connect to the queue manager by using the appropriate command for
your operating system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -t qmgr -g GroupName -connect

• For IBM i, issue the following command:

RVKMQMAUT OBJ ('QMgrName') OBJTYPE(*MQM) USER(*ALL) AUT(*CONNECT)

• For z/OS, issue the following commands:

RDEFINE MQCONN QMgrName.BATCH UACC(NONE)
RDEFINE MQCONN QMgrName.CHIN UACC(NONE)
RDEFINE MQCONN QMgrName.CICS UACC(NONE)
RDEFINE MQCONN QMgrName.IMS UACC(NONE)

Do not issue any PERMIT commands.

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

GroupName
The name of the group to be denied access.

Allowing user applications to connect to your queue manager
You want to allow user application to connect to your queue manager. Use the tables in this topic to
determine what actions to take.

First, determine whether client applications will connect to your queue manager.

174 Securing IBM WebSphere MQ

If none of the applications that will connect to your queue manager are client applications, disable remote
access as described in “Disabling remote access to the queue manager” on page 181.

If one or more of the applications that will connect to your queue manager are client applications, secure
remote connectivity as described in “Securing remote connectivity to the queue manager” on page 175.

In both cases, set up connection security as described in “Setting up connection security” on page 182

If you want to control access to resources for each user connecting to the queue manager, see the
following table. If the statement in the first column is true, take the action listed in the second column.

Statement Take this action

You have applications that make use of queues See “Controlling user access to queues” on page
182

You have applications that make use of topics See “Controlling user access to topics” on page
187.

You have applications that inquire on the queue
manager object

See “Granting authority to inquire on a queue
manager” on page 188.

You have applications that use process objects See “Granting authority to access processes” on
page 189

You have applications that make use of namelists See “Granting authority to access namelists” on
page 189

Securing remote connectivity to the queue manager
You can secure remote connectivity to the queue manager using SSL or TLS, a security exit, channel
authentication records, or a combination of these methods.

About this task
You connect a client to the queue manager by using a client-connection channel on the client workstation
and a server-connection channel on the server. Secure such connections in one of the following ways.

Procedure
1. Using SSL or TLS with channel authentication records:

a) Prevent any Distinguished Name (DN) from opening a channel, by using an SSLPEERMAP channel
authentication record to map all DNs to USERSRC(NOACCESS).

b) Allow specific DNs or sets of DNs to open a channel by using an SSLPEERMAP channel
authentication record to map them to USERSRC(CHANNEL).

2. Using SSL or TLS with a security exit:
a) Set MCAUSER on the server-connection channel to a user identifier with no privileges.
b) Write a security exit to assign an MCAUSER value depending on the value of SSL DN it receives in

the SSLPeerNamePtr and SSLPeerNameLength fields passed to the exit in the MQCD structure.
3. Using SSL or TLS with fixed channel definition values:

a) Set SSLPEER on the server-connection channel to a specific value or narrow range of values.
b) Set MCAUSER on the server-connection channel to the user ID the channel should run with.

4. Using channel authentication records on channels that do not use SSL or TLS:
a) Prevent any IP address from opening channels, by using an address-mapping channel

authentication record with ADDRESS(*) and USERSRC(NOACCESS).
b) Allow specific IP addresses to open channels, by using address-mapping channel authentication

records for those addresses with USERSRC(CHANNEL).
5. Using a security exit:

Security 175

a) Write a security exit to authorize connections based on any property you choose, for example, the
originating IP address.

6. It is also possible to use channel authentication records with a security exit, or to use all three
methods, if your particular circumstances require it.

Blocking specific IP addresses
You can prevent a specific channel accepting an inbound connection from an IP address, or prevent the
whole queue manager from allowing access from an IP address, by using a channel authentication record.

Before you begin
Enable channel authentication records by running the following command:

ALTER QMGR CHLAUTH(ENABLED)

About this task
To disallow specific channels from accepting an inbound connection and ensure that connections are only
accepted when using the correct channel name, one type of rule can be used to block IP addresses.
To disallow an IP address access to the whole queue manager, you would normally use a firewall to
permanently block it. However, another type of rule can be used to allow you to block a few addresses
temporarily, for example while you are waiting for the firewall to be updated.

Procedure
• To block IP addresses from using a specific channel, set a channel authentication record by using the

MQSC command SET CHLAUTH, or the PCF command Set Channel Authentication Record.

SET CHLAUTH(generic-channel-name) TYPE(ADDRESSMAP) ADDRESS(generic-ip-address)
USERSRC(NOACCESS)

There are three parts to the command:
SET CHLAUTH (generic-channel-name)

You use this part of the command to control whether you want to block a connection for the entire
queue manager, single channel or range of channels. What you put in here determines which areas
are covered.
For example:

– SET CHLAUTH('*') - blocks every channel on a queue manager, that is, the entire queue
manager

– SET CHLAUTH('SYSTEM.*') - blocks every channel that begins with SYSTEM.
– SET CHLAUTH('SYSTEM.DEF.SVRCONN') - blocks the channel SYSTEM.DEF.SVRCONN

Type of CHLAUTH rule
Use this part of the command to specify the type of command and determines whether you want to
supply a single address or list of addresses.
For example:

– TYPE(ADDRESSMAP) - Use ADDRESSMAP if you want to supply a single address or wild card
address. For example, ADDRESS('192.168.*') blocks any connections coming from an IP
address starting in 192.168.

For more information about filtering IP addresses with patterns, see Generic IP addresses.
– TYPE(BLOCKADDR) - Use BLOCKADDR if you want to supply a list of address to block.

Additional parameters
These parameters are dependent upon the type of rule you used in the second part of the
command:

– For TYPE(ADDRESSMAP) you use ADDRESS

176 Securing IBM WebSphere MQ

– For TYPE(BLOCKADDR) you use ADDRLIST

Related reference
SET CHLAUTH

Temporarily blocking specific IP addresses if the queue manager is not running
You might want to block particular IP addresses, or ranges of addresses, when the queue manager is not
running and you cannot therefore issue MQSC commands. You can temporarily block IP addresses on an
exceptional basis by modifying the blockaddr.ini file.

About this task
The blockaddr.ini file contains a copy of the BLOCKADDR definitions that are used by the queue
manager. This file is read by the listener if the listener is started before the queue manager. In these
circumstances, the listener uses any values that you have manually added to the blockaddr.ini file.

However, be aware that when the queue manager is started, it writes the set of BLOCKADDR definitions to
the blockaddr.ini file, over-writing any manual editing you might have done. Similarly, every time you
add or delete a BLOCKADDR definition by using the SET CHLAUTH command, the blockaddr.ini file
is updated. You can therefore make permanent changes to the BLOCKADDR definitions only by using the
SET CHLAUTH command when the queue manager is running.

Procedure
1. Open the blockaddr.ini file in a text editor.

The file is located in the data directory of the queue manager.
2. Add IP addresses as simple keyword-value pairs, where the keyword is Addr.

For information about filtering IP addresses with patterns, see Generic IP addresses.
For example:

Addr = 192.0.2.0
Addr = 192.0.*
Addr = 192.0.2.1-8

Related tasks
“Blocking specific IP addresses” on page 176
You can prevent a specific channel accepting an inbound connection from an IP address, or prevent the
whole queue manager from allowing access from an IP address, by using a channel authentication record.
Related reference
SET CHLAUTH

Blocking specific user IDs
You can prevent specific users from using a channel by specifying user IDs that, if asserted, cause the
channel to end. Do this by setting a channel authentication record.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

Procedure
Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command Set
Channel Authentication Record. For example, you can issue the MQSC command:

SET CHLAUTH('generic-channel-name') TYPE(BLOCKUSER) USERLIST(userID1, userID2)

Security 177

generic-channel-name is either the name of a channel to which you want to control access, or a pattern
including the asterisk (*) symbol as a wildcard that matches the channel name.
The user list provided on a TYPE(BLOCKUSER) only applies to SVRCONN channels and not queue
manager to queue manager channels.
userID1 and userID2 are each the ID of a user that is to be prevented from using the channel. You
can also specify the special value *MQADMIN to refer to privileged administrative users. For more
information about privileged users, see “Privileged users” on page 141. For more information about
*MQADMIN, see SET CHLAUTH.

Related reference
SET CHLAUTH

Mapping a remote queue manager to an MCAUSER user ID
You can use a channel authentication record to set the MCAUSER attribute of a channel, according to the
queue manager from which the channel is connecting.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

About this task
Optionally, you can restrict the IP addresses to which the rule applies.

Note that this technique does not apply to server-connection channels. If you specify the name of a
server-connection channel in the commands shown below, it has no effect.

Procedure
• Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command

Set Channel Authentication Record. For example, you can issue the MQSC command:

SET CHLAUTH('generic-channel-name') TYPE (QMGRMAP) QMNAME(generic-partner-qmgr-name
) USERSRC(MAP) MCAUSER(user)

generic-channel-name is either the name of a channel to which you want to control access, or a
pattern including the asterisk (*) symbol as a wildcard that matches the channel name.
generic-partner-qmgr-name is either the name of the queue manager, or a pattern including the
asterisk (*) symbol as a wildcard that matches the queue manager name.
user is the user ID to be used for all connections from the specified queue manager.

• To restrict this command to certain IP addresses, include the ADDRESS parameter, as follows:

SET CHLAUTH('generic-channel-name') TYPE (QMGRMAP) QMNAME(generic-partner-qmgr-name
) USERSRC(MAP) MCAUSER(user) ADDRESS(
generic-ip-address)

generic-channel-name is either the name of a channel to which you want to control access, or a
pattern including the asterisk (*) symbol as a wildcard that matches the channel name.
generic-ip-address is either a single address, or a pattern including the asterisk (*) symbol as a
wildcard or the hyphen (-) to indicate a range, that matches the address. For more information
about generic IP addresses, see Generic IP addresses .

Related reference
SET CHLAUTH

178 Securing IBM WebSphere MQ

Mapping a client asserted user ID to an MCAUSER user ID
You can use a channel authentication record to change the MCAUSER attribute of a server-connection
channel, according to the original user ID received from a client.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

About this task
Note that this technique applies only to server-connection channels. It has no effect on other channel
types.

Procedure
Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command Set
Channel Authentication Record . For example, you can issue the MQSC command:

SET CHLAUTH('generic-channel-name') TYPE (USERMAP) CLNTUSER(client-user-name) USERSRC(MAP)
MCAUSER(
user)

generic-channel-name is either the name of a channel to which you want to control access, or a pattern
including the asterisk (*) symbol as a wildcard that matches the channel name.
client-user-name is the user ID asserted by the client.
user is the user ID to be used instead of the client user name.

Related reference
SET CHLAUTH

Mapping an SSL or TLS Distinguished Name to an MCAUSER user ID
You can use a channel authentication record to set the MCAUSER attribute of a channel, according to the
Distinguished Name (DN) received.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

Procedure
Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command Set
Channel Authentication Record. For example, you can issue the MQSC command:

SET CHLAUTH('generic-channel-name') TYPE (SSLPEERMAP) SSLPEER(generic-ssl-peer-name
) USERSRC(MAP) MCAUSER(user)

generic-channel-name is either the name of a channel to which you want to control access, or a pattern
including the asterisk (*) symbol as a wildcard that matches the channel name.
generic-ssl-peer-name is a string following the standard IBM WebSphere MQ rules for SSLPEER values.
See WebSphere MQ rules for SSLPEER values.
user is the user ID to be used for all connections using the specified DN.

Related reference
SET CHLAUTH

Security 179

Blocking access from a remote queue manager
You can use a channel authentication record to prevent a remote queue manager from starting channels.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

About this task
Note that this technique does not apply to server-connection channels. If you specify the name of a
server-connection channel in the command shown below, it has no effect.

Procedure
Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command Set
Channel Authentication Record. For example, you can issue the MQSC command:

SET CHLAUTH('generic-channel-name') TYPE(QMGRMAP) QMNAME('generic-partner-qmgr-name')
USERSRC(NOACCESS)

generic-channel-name is either the name of a channel to which you want to control access, or a pattern
including the asterisk (*) symbol as a wildcard that matches the channel name.
generic-partner-qmgr-name is either the name of the queue manager, or a pattern including the
asterisk (*) symbol as a wildcard that matches the queue manager name.

Related reference
SET CHLAUTH

Blocking access for a client asserted user ID
You can use a channel authentication record to prevent a client asserted user ID from starting channels.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

About this task
Note that this technique applies only to server-connection channels. It has no effect on other channel
types.

Procedure
Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command Set
Channel Authentication Record. For example, you can issue the MQSC command:

SET CHLAUTH('generic-channel-name') TYPE(USERMAP) CLNTUSER('client-user-name') USERSRC(NOACCESS)

generic-channel-name is either the name of a channel to which you want to control access, or a pattern
including the asterisk (*) symbol as a wildcard that matches the channel name.
client-user-name is the user ID asserted by the client.

Related reference
SET CHLAUTH

180 Securing IBM WebSphere MQ

Blocking access for an SSL Distinguished Name
You can use a channel authentication record to prevent an SSL Distinguished Name from starting
channels.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

Procedure
Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command Set
Channel Authentication Record. For example, you can issue the MQSC command:

SET CHLAUTH('generic-channel-name') TYPE(SSLPEERMAP) SSLPEER('generic-ssl-peer-name')
USERSRC(NOACCESS)

generic-channel-name is either the name of a channel to which you want to control access, or a pattern
including the asterisk (*) symbol as a wildcard that matches the channel name.
generic-ssl-peer-name is a string following the standard IBM WebSphere MQ rules for SSLPEER values.
See WebSphere MQ rules for SSLPEER values.

Related reference
SET CHLAUTH

Mapping an IP address to an MCAUSER user ID
You can use a channel authentication record to set the MCAUSER attribute of a channel, according to the
IP address from which the connection is received.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

Procedure
Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command Set
Channel Authentication Record. For example, you can issue the MQSC command:

SET CHLAUTH('generic-channel-name') TYPE(ADDRESSMAP) ADDRESS('generic-ip-address') USERSRC(MAP)
MCAUSER(user)

generic-channel-name is either the name of a channel to which you want to control access, or a pattern
including the asterisk (*) symbol as a wildcard that matches the channel name.
user is the user ID to be used for all connections using the specified DN.
generic-ip-address is either the address from which the connection is being made, or a pattern
including the asterisk (*) as a wildcard or the hyphen (-) to indicate a range, that matches the address.

Related reference
SET CHLAUTH

Disabling remote access to the queue manager
If you do not want client applications to connect to your queue manager, disable remote access to it.

About this task
Prevent client applications connecting to the queue manager in one of the following ways:

Security 181

Procedure
• Delete all server-connection channels using the MQSC command DELETE CHANNEL.
• Set the message channel agent user identifier (MCAUSER) of the channel to a user ID with no access

rights, using the MQSC command ALTER CHANNEL.

Setting up connection security
Grant the authority to connect to the queue manager to each user or group of users with a business need
to do so.

About this task
To set up connection security, use the appropriate commands for your operating system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -t qmgr -g GroupName +connect

• For IBM i, issue the following command:

GRTMQMAUT OBJ('QMgrName') OBJTYPE(*MQM) USER('GroupName') AUT(*CONNECT)

• For z/OS, issue the following commands:

RDEFINE MQCONN QMgrName.BATCH UACC(NONE)
PERMIT QMgrName.BATCH CLASS(MQCONN) ID(GroupName) ACCESS(READ)
RDEFINE MQCONN QMgrName.CICS UACC(NONE)
PERMIT QMgrName.CICS CLASS(MQCONN) ID(GroupName) ACCESS(READ)
RDEFINE MQCONN QMgrName.IMS UACC(NONE)
PERMIT QMgrName.IMS CLASS(MQCONN) ID(GroupName) ACCESS(READ)
RDEFINE MQCONN QMgrName.CHIN UACC(NONE)
PERMIT QMgrName.CHIN CLASS(MQCONN) ID(GroupName) ACCESS(READ)

These commands give authority to connect for batch, CICS, IMS and the channel initiator (CHIN). If
you do not use a particular type of connection, omit the relevant commands.
The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Controlling user access to queues
You want to control application access to queues. Use this topic to determine what actions to take.

For each true statement in the first column, take the action indicated in the second column.

Statement Action

The application gets messages from a queue See “Granting authority to get messages from
queues” on page 183

The application sets context See “Granting authority to set context” on page
183

The application passes context See “Granting authority to pass context” on page
184

182 Securing IBM WebSphere MQ

Statement Action

The application puts messages on a clustered
queue

See “Authorizing putting messages on remote
cluster queues” on page 237

The application puts messages on a local queue See “Granting authority to put messages to a local
queue” on page 185

The application puts messages on a model queue See “Granting authority to put messages to a
model queue” on page 186

The application puts messages on a remote queue See “Granting authority to put messages to a
remote cluster queue” on page 186

Granting authority to get messages from queues
Grant the authority to get messages from a queue or set of queues, to each group of users with a business
need for it.

About this task
To grant the authority to get messages from some queues, use the appropriate commands for your
operating system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +get

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*Q) USER(GroupName) AUT(*GET) MQMNAME('QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQQUEUE QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQQUEUE) ID(GroupName) ACCESS(UPDATE)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting authority to set context
Grant the authority to set context on a message that is being put, to each group of users with a business
need for it.

About this task
To grant the authority to set context on some queues, use the appropriate commands for your operating
system.

Procedure
• For UNIX, Linux and Windows systems, issue one of the following commands:

• To set identity context only:

Security 183

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +setid

• To set all context:

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +setall

• For IBM i, issue one of the following commands:

• To set identity context only:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*Q) USER(GroupName) AUT(*SETID) MQMNAME('QMgrName')

• To set all context:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*Q) USER(GroupName) AUT(*SETALL)
MQMNAME('QMgrName')

• For z/OS, issue one of the following sets of commands:

• To set identity context only:

RDEFINE MQQUEUE QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQQUEUE) ID(GroupName) ACCESS(UPDATE)

• To set all context:

RDEFINE MQQUEUE QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQQUEUE) ID(GroupName) ACCESS(CONTROL)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting authority to pass context
Grant the authority to pass context from a retrieved message to one that is being put, to each group of
users with a business need for it.

About this task
To grant the authority to pass context on some queues, use the appropriate commands for your operating
system.

Procedure
• For UNIX, Linux and Windows systems, issue one of the following commands:

• To pass identity context only:

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +passid

• To pass all context:

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +passall

• For IBM i, issue one of the following commands:

• To pass identity context only:

184 Securing IBM WebSphere MQ

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*Q) USER(GroupName) AUT(*PASSID)
MQMNAME('QMgrName')

• To pass all context:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*Q) USER(GroupName) AUT(*PASSALL)
MQMNAME('QMgrName')

• For z/OS, issue the following commands to pass identity context or all context:

RDEFINE MQQUEUE QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQQUEUE) ID(GroupName) ACCESS(UPDATE)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting authority to put messages to a local queue
Grant the authority to put messages to a local queue or set of queues, to each group of users with a
business need for it.

About this task
To grant the authority to put messages to some local queues, use the appropriate commands for your
operating system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +put

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*Q) USER(GroupName) AUT(*PUT) MQMNAME('QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQQUEUE QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQQUEUE) ID(GroupName) ACCESS(UPDATE)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Security 185

Granting authority to put messages to a model queue
Grant the authority to put messages to a model queue or set of model queues, to each group of users with
a business need for it.

About this task
Model queues are used to create dynamic queues. You must therefore grant authority to both the model
and dynamic queues. To grant these authorities, use the appropriate commands for your operating
system.

Procedure
• For UNIX, Linux and Windows systems, issue the following commands:

setmqaut -m QMgrName -n ModelQueueName -t queue -g GroupName +put
setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +put

• For IBM i, issue the following commands:

GRTMQMAUT OBJ('ModelQueueName') OBJTYPE(*Q) USER(GroupName) AUT(*PUT) MQMNAME('QMgrName')
GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*Q) USER(GroupName) AUT(*PUT) MQMNAME('QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQQUEUE QMgrName.ModelQueueName UACC(NONE)
PERMIT QMgrName.ModelQueueName CLASS(MQQUEUE) ID(GroupName) ACCESS(UPDATE)
RDEFINE MQQUEUE QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQQUEUE) ID(GroupName) ACCESS(UPDATE)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ModelQueueName
The name of the model queue on which dynamic queues are based.

ObjectProfile
The name of the dynamic queue or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting authority to put messages to a remote cluster queue
Grant the authority to put messages to a remote cluster queue or set of queues, to each group of users
with a business need for it.

About this task
To put a message on a remote cluster queue, you can either put it on a local definition of a remote queue,
or a fully qualified remote queue. If you are using a local definition of a remote queue, you need authority
to put to the local object: see “Granting authority to put messages to a local queue” on page 185. If
you are using a fully qualified remote queue, you need authority to put to the remote queue. Grant this
authority using the appropriate commands for your operating system.

The default behavior is to perform access control against the SYSTEM.CLUSTER.TRANSMIT.QUEUE. Note
that this behavior applies, even if you are using multiple transmission queues.

The specific behavior described in this topic applies only when you have configured the
ClusterQueueAccessControl attribute in the qm.ini file to be RQMName, as described in the
Security stanza topic, and restarted the queue manager.

On UNIX, Linux, and Windows systems, you can also use the SET AUTHREC command.

186 Securing IBM WebSphere MQ

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -t rqmname -n
ObjectProfile -g GroupName +put

Note that you can use the rqmname object for remote cluster queues only.
• For IBM i, issue the following command:

GRTMQMAUT OBJTYPE(*RMTMQMNAME) OBJ('
ObjectProfile') USER(GroupName) AUT(*PUT) MQMNAME('
QMgrName')

Note that you can use the RMTMQMNAME object for remote cluster queues only.

Controlling user access to topics
You need to control the access of applications to topics. Use this topic to determine what actions to take.

For each true statement in the first column, take the action indicated in the second column.

Table 16. Controlling user access to topics

Statement Action

The application publishes messages to a topic See “Granting authority to publish messages to a
topic” on page 187

The application subscribes to a topic See “Granting authority to subscribe to topics” on
page 188

Granting authority to publish messages to a topic
Grant the authority to publish messages to a topic or set of topics, to each group of users with a business
need for it.

About this task
To grant the authority to publish messages to some topics, use the appropriate commands for your
operating system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t topic -g GroupName +pub

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*TOPIC) USER(GroupName) AUT(*PUB) MQMNAME('QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQTOPIC QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQTOPIC) ID(GroupName) ACCESS(UPDATE)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

Security 187

GroupName
The name of the group to be granted access.

Granting authority to subscribe to topics
Grant the authority to subscribe to a topic or set of topics, to each group of users with a business need for
it.

About this task
To grant the authority to subscribe to some topics, use the appropriate commands for your operating
system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t topic -g GroupName +sub

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*TOPIC) USER(GroupName) AUT(*SUB) MQMNAME('QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQTOPIC QMgrName.SUBSCRIBE.ObjectProfile UACC(NONE)
PERMIT QMgrName.SUBSCRIBE.ObjectProfile CLASS(MQTOPIC) ID(GroupName) ACCESS(UPDATE)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting authority to inquire on a queue manager
Grant the authority to inquire on a queue manager, to each group of users with a business need for it.

About this task
To grant the authority to inquire on a queue manager, use the appropriate commands for your operating
system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t qmgr -g GroupName +inq

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*MQM) USER(GroupName) AUT(*INQ) MQMNAME('QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQCMDS QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName ObjectProfile CLASS(MQCMDS) ID(GroupName) ACCESS(READ)

188 Securing IBM WebSphere MQ

These commands grant access to the specified queue manager. To permit the user to use the MQINQ
command, issue the following commands:

RDEFINE MQCMDS QMgrName.MQINQ.QMGR UACC(NONE)
PERMIT QMgrName.MQINQ.QMGR CLASS(MQCMDS) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting authority to access processes
Grant the authority to access a process or set of processes, to each group of users with a business need
for it.

About this task
To grant the authority to access some processes, use the appropriate commands for your operating
system.

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t process -g GroupName +all

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile') OBJTYPE(*PRC) USER(GroupName) AUT(*ALL) MQMNAME('QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQPROC QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQPROC) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting authority to access namelists
Grant the authority to access a namelist or set of namelists, to each group of users with a business need
for it.

About this task
To grant the authority to access some namelists, use the appropriate commands for your operating
system.

Security 189

Procedure
• For UNIX, Linux and Windows systems, issue the following command:

setmqaut -m QMgrName -n
ObjectProfile -t namelist -g GroupName
 +all

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile
') OBJTYPE(*NMLIST) USER(GroupName) AUT(*ALL) MQMNAME('
QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQNLIST
QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile
 CLASS(MQNLIST) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Authority to administer IBM WebSphere MQ on UNIX, Linux, and Windows
systems

IBM WebSphere MQ administrators can use all IBM WebSphere MQ commands and grant authorities
for other users. When administrators issue commands to remote queue managers, they must have the
required authority on the remote queue manager. Further considerations apply to Windows systems.

IBM WebSphere MQ administrators have authority to use all WebSphere MQ commands (including the
commands to grant WebSphere MQ authorities for other users)

To be an IBM WebSphere MQ administrator, you must be a member of a special group called the mqm
group (or a member of the Administrators group on Windows systems). The mqm group is created
automatically when WebSphere MQ is installed; add further users to the group to allow them to perform
administration. All members of this group have access to all resources. This access can be revoked only
by removing a user from the mqm group and issuing the REFRESH SECURITY command. Administrators
can use control commands to administer WebSphere MQ. One of these control commands is setmqaut,
which is used to grant authorities to other users to enable them to access or control WebSphere MQ
resources. The PCF commands for managing authority records are available to non-administrators who
have been granted dsp and chg authorities on the queue manager. For more information about managing
authorities using PCF commands, see Programmable Command Formats.

Administrators can use the control command runmqsc to issue IBM WebSphere MQ Script (MQSC)
commands. When runmqsc is used in indirect mode to send MQSC commands to a remote queue
manager, each MQSC command is encapsulated within an Escape PCF command. Administrators must
have the required authorities for the MQSC commands to be processed by the remote queue manager.
The WebSphere MQ Explorer issues PCF commands to perform administration tasks. Administrators
require no additional authorities to use the WebSphere MQ Explorer to administer a queue manager
on the local system. When the IBM WebSphere MQ Explorer is used to administer a queue manager
on another system, administrators must have the required authorities for the PCF commands to be
processed by the remote queue manager.

190 Securing IBM WebSphere MQ

For more information about authority checks when PCF and MQSC commands are processed, see the
following topics:

• For PCF commands that operate on queue managers, queues, processes, namelists, and authentication
information objects, see Authority to work with WebSphere MQ objects. Refer to this section for the
equivalent MQSC commands encapsulated within Escape PCF commands.

• For PCF commands that operate on channels, channel initiators, listeners, and clusters, see Channel
security.

• For PCF commands that operate on authority records, see Authority checking for PCF commands

Additionally, on Windows systems, the SYSTEM account has full access to WebSphere MQ resources.

On UNIX and Linux platforms, a special user ID of mqm is also created, for use by the product only. It
must never be available to non-privileged users. All WebSphere MQ objects are owned by user ID mqm.

On Windows systems, members of the Administrators group can also administer any queue manager, as
can the SYSTEM account. You can also create a domain mqm group on the domain controller that contains
all privileged user IDs active within the domain, and add it to the local mqm group. Some commands, for
example crtmqm, manipulate authorities on IBM WebSphere MQ objects and so need authority to work
with these objects (as described in the following sections). Members of the mqm group have authority to
work with all objects, but there might be circumstances on Windows systems when authority is denied
if you have a local user and a domain-authenticated user with the same name. This is described in
“Principals and groups” on page 194.

Windows versions with a User Account Control (UAC) feature restricts the actions users can perform on
certain operating system facilities, even if they are members of the Administrators group. If your userid
is in the Administrators group but not the mqm group you must use an elevated command prompt to
issue WebSphere MQ admin commands such as crtmqm, otherwise the error "AMQ7077: You are not
authorized to perform the requested operation" is generated. To open an elevated command prompt,
right-click the start menu item, or icon, for the command prompt, and select "Run as administrator".

You do not need to be a member of the mqm group to do the following:

• Issue commands from an application program that issues PCF commands, or MQSC commands within
an Escape PCF command, unless the commands manipulate channel initiators. (These commands are
described in “Protecting channel initiator definitions” on page 68).

• Issue MQI calls from an application program (unless you want to use the fast path bindings on the
MQCONNX call).

• Use the crtmqcvx command to create a fragment of code that performs data conversion on data type
structures.

• Use the dspmq command to display queue managers.
• Use the dspmqtrc command to display WebSphere MQ formatted trace output.

A 12 character limitation applies to both group and user IDs.

UNIX and Linux platforms generally restrict the length of a user ID to 12 characters. AIX Version 5.3 has
raised this limit but WebSphere MQ continues to observe a 12 character restriction on all UNIX and Linux
platforms. If you use a user ID of greater than 12 characters, WebSphere MQ replaces it with the value
UNKNOWN. Do not define a user ID with a value of UNKNOWN.

Managing the mqm group
Users in the mqm group are granted full administrative privileges over WebSphere MQ. For this reason,
you should not enroll applications and ordinary users in the mqm group. The mqm group should contain
the accounts of the WebSphere MQ administrators only.

These tasks are described in:

• Creating and managing groups on Windows
• Creating and managing groups on HP-UX
• Creating and managing groups on AIX

Security 191

• Creating and managing groups on Solaris
• Creating and managing groups on Linux

If your domain controller runs on Windows 2000 or Windows 2003, your domain administrator might have
to set up a special account for WebSphere MQ to use. This is described in the Configuring WebSphere MQ
accounts.

Authority to work with IBM WebSphere MQ objects on UNIX, Linux, and
Windows systems

All objects are protected by IBM WebSphere MQ, and principals must be given appropriate authority to
access them. Different principals need different access rights to different objects.

Queue managers, queues, process definitions, namelists, channels, client connection channels, listeners,
services, and authentication information objects are all accessed from applications that use MQI calls
or PCF commands. These resources are all protected by WebSphere MQ, and applications need to be
given permission to access them. The entity making the request might be a user, an application program
that issues an MQI call, or an administration program that issues a PCF command. The identifier of the
requester is referred to as the principal.

Different groups of principals can be granted different types of access authority to the same object.
For example, for a specific queue, one group might be allowed to perform both put and get operations;
another group might be allowed only to browse the queue (MQGET with browse option). Similarly, some
groups might have put and get authority to a queue, but not be allowed to alter attributes of the queue or
delete it.

Some operations are particularly sensitive and should be limited to privileged users. For example:

• Accessing some special queues, such as transmission queues or the command queue
SYSTEM.ADMIN.COMMAND.QUEUE

• Running programs that use full MQI context options
• Creating and deleting application queues

Full access permission to an object is automatically given to the user ID that created the object and to all
members of the mqm group (and to the members of the local Administrators group on Windows systems).

Related concepts
“Authority to administer IBM WebSphere MQ on UNIX, Linux, and Windows systems” on page 190
IBM WebSphere MQ administrators can use all IBM WebSphere MQ commands and grant authorities
for other users. When administrators issue commands to remote queue managers, they must have the
required authority on the remote queue manager. Further considerations apply to Windows systems.

When security checks are made on UNIX, Linux, and Windows systems
Security checks are typically made on connecting to a queue manager, opening or closing objects, and
putting or getting messages.

The security checks made for a typical application are as follows:
Connecting to the queue manager (MQCONN or MQCONNX calls)

This is the first time that the application is associated with a particular queue manager. The
queue manager interrogates the operating environment to discover the user ID associated with the
application. WebSphere MQ then verifies that the user ID is authorized to connect to the queue
manager and retains the user ID for future checks.

Users do not have to sign on to WebSphere MQ; WebSphere MQ assumes that users have signed on to
the underlying operating system and have been authenticated by that.

Opening the object (MQOPEN or MQPUT1 calls)
WebSphere MQ objects are accessed by opening the object and issuing commands against it. All
resource checks are performed when the object is opened, rather than when it is actually accessed.

192 Securing IBM WebSphere MQ

This means that the MQOPEN request must specify the type of access required (for example, whether
the user wants only to browse the object or perform an update like putting messages onto a queue).

WebSphere MQ checks the resource that is named in the MQOPEN request. For an alias or remote
queue object, the authorization used is that of the object itself, not the queue to which the alias or
remote queue resolves. This means that the user does not need permission to access it. Limit the
authority to create queues to privileged users. If you do not, users might bypass the normal access
control simply by creating an alias. If a remote queue is referred to explicitly with both the queue
and queue manager names, the transmission queue associated with the remote queue manager is
checked.

The authority to a dynamic queue is based on that of the model queue from which it is derived, but is
not necessarily the same. This is described in Note “1” on page 87.

The user ID used by the queue manager for access checks is the user ID obtained from the operating
environment of the application connected to the queue manager. A suitably authorized application can
issue an MQOPEN call specifying an alternative user ID; access control checks are then made on the
alternative user ID. This does not change the user ID associated with the application, only that used
for access control checks.

Putting and getting messages (MQPUT or MQGET calls)
No access control checks are performed.

Closing the object (MQCLOSE)
No access control checks are performed, unless the MQCLOSE results in a dynamic queue being
deleted. In this case, there is a check that the user ID is authorized to delete the queue.

Subscribing to a topic (MQSUB)
When an application subscribes to a topic, it specifies the type of operation that it needs to perform.
It is either creating a new subscription, altering an existing subscription, or resuming an existing
subscription without changing it. For each type of operation, the queue manager checks that the user
ID that is associated with the application has the authority to perform the operation.
When an application subscribes to a topic, the authority checks are performed against the topic
objects that are found in the topic tree at, or above, the point in the topic tree at which the application
subscribed. The authority checks might involve checks on more than one topic object.
The user ID that the queue manager uses for the authority checks is the user ID obtained from the
operating system when the application connects to the queue manager.
The queue manager performs authority checks on subscriber queues but not on managed queues.

How access control is implemented by IBM WebSphere MQ on UNIX, Linux,
and Windows systems
IBM WebSphere MQ uses the security services provided by the underlying operating system, using the
object authority manager. IBM WebSphere MQ supplies commands to create and maintain access control
lists.

An access control interface called the Authorization Service Interface is part of WebSphere MQ.
WebSphere MQ supplies an implementation of an access control manager (conforming to the
Authorization Service Interface) known as the object authority manager (OAM). This is automatically
installed and enabled for each queue manager you create, unless you specify otherwise (as described
in “Preventing security access checks on UNIX, Linux, and Windows systems” on page 161). The OAM
can be replaced by any user or vendor written component that conforms to the Authorization Service
Interface.

The OAM exploits the security features of the underlying operating system, using operating system
user and group IDs. Users can access WebSphere MQ objects only if they have the correct authority.
“Controlling access to objects by using the OAM on UNIX, Linux and Windows systems” on page 153
describes how to grant and revoke this authority.

The OAM maintains an access control list (ACL) for each resource that it controls. Authorization data is
stored on a local queue called SYSTEM.AUTH.DATA.QUEUE. Access to this queue is restricted to users in

Security 193

the mqm group, and additionally on Windows, to users in the Administrators group, and users logged in
with the SYSTEM ID. User access to the queue cannot be changed.

WebSphere MQ supplies commands to create and maintain access control lists. For more information
on these commands, see “Controlling access to objects by using the OAM on UNIX, Linux and Windows
systems” on page 153.

WebSphere MQ passes the OAM a request containing a principal, a resource name, and an access type.
The OAM grants or rejects access based on the ACL that it maintains. WebSphere MQ follows the decision
of the OAM; if the OAM cannot make a decision, WebSphere MQ does not allow access.

Identifying the user ID on UNIX, Linux, and Windows systems
The object authority manager identifies the principal that is requesting access to a resource. The user ID
used as the principal varies according to context.

The object authority manager (OAM) must be able to identify who is requesting access to a particular
resource. IBM WebSphere MQ uses the term principal to refer to this identifier. The principal is
established when the application first connects to the queue manager; it is determined by the queue
manager from the user ID associated with the connecting application. (If the application issues XA calls
without connecting to the queue manager, then the user ID associated with the application that issues the
xa_open call is used for authority checks by the queue manager.)

On UNIX and Linux systems, the authorization routines checks either the real (logged-in) user ID, or the
effective user ID associated with the application. The user ID checked can be dependent on the bind type,
for details see Installable services.

IBM WebSphere MQ propagates the user ID received from the system in the message header (MQMD
structure) of each message as identification of the user. This identifier is part of the message context
information and is described in “Context authority on UNIX, Linux and Windows systems” on page
196. Applications cannot alter this information unless they have been authorized to change context
information.

Principals and groups
Principals can belong to groups. You can grant access to a particular resource to groups rather than
to individuals, to reduce the amount of administration required. On UNIX and Linux systems all Access
Control Lists (ACLs) are based on groups, but on Windows systems, ACLS are based on user IDs and
groups.

For example, you might define a group consisting of users who want to run a particular application. Other
users can be given access to all the resources they require by adding their user ID to the appropriate
group. This process is described in:

• Creating and managing groups on Windows
• Creating and managing groups on HP-UX
• Creating and managing groups on AIX
• Creating and managing groups on Solaris
• Creating and managing groups on Linux

A principal can belong to more than one group (its group set). It has the aggregate of all the authorities
granted to each group in its group set. These authorities are cached, so any changes you make to the
group membership of the principal are not recognized until the queue manager is restarted, unless you
issue the MQSC command REFRESH SECURITY (or the PCF equivalent).
UNIX and Linux systems

All ACLs are based on groups. When a user is granted access to a particular resource, the primary
group of the user ID is included in the ACL. The individual user ID is not included and authority is
granted to all members of that group. Because of this, be aware that you can inadvertently change
the authority of a principal by changing the authority of another principal in the same group. All users
are nominally assigned to the default user group nobody and by default, no authorizations are given to

194 Securing IBM WebSphere MQ

this group. You can change the authorization in the nobody group to grant access to WebSphere MQ
resources to users without specific authorizations.

Do not define a user ID with the value "UNKNOWN". The value "UNKNOWN" is used when a user ID is
too long, so arbitrary user IDs would use the access authorities of UNKNOWN.

User IDs can contain up to 12 characters and group names up to 12 characters.

Windows systems
ACLs are based on both user IDs and groups. Checks are the same as for UNIX systems except that
individual user IDs can be displayed in the ACL as well. You can have different users on different
domains with the same user ID. WebSphere MQ permits user IDs to be qualified by a domain name so
that these users can be given different levels of access.

The group name can optionally include a domain name, specified in the following formats:

GroupName@domain
domain\GroupName

Global groups are checked by the OAM in two cases only:

1. The queue manager security stanza includes the setting: GroupModel=GlobalGroups; see
Security.

2. The queue manager is using an alternate security access group; see crtmqm.

User IDs can contain up to 20 characters, domain names up to 15 characters, and group names up to
64 characters.

The OAM first checks the local security database, then the database of the primary domain, and finally
the database of any trusted domains. The first user ID encountered is used by the OAM for checking.
Each of these user IDs might have different group memberships on a particular computer.

Some control commands (for example, crtmqm) change authorities on WebSphere MQ objects using
the object authority manager (OAM). The OAM searches the security databases in the order given in
the preceding paragraph to determine the authority rights for a particular user ID. As a result, the
authority determined by the OAM might override the fact that a user ID is a member of the local mqm
group. For example, if you issue the crtmqm command from a user ID authenticated by a domain
controller that has membership of the local mqm group through a global group, the command fails if
the system has a local user of the same name who is not in the local mqm group.

Windows security identifiers (SIDs)
WebSphere MQ on Windows uses the SID where it is available. If a Windows SID is not supplied with an
authorization request, WebSphere MQ identifies the user based on the user name alone, but this might
result in the wrong authority being granted.

On Windows systems, the security identifier (SID) is used to supplement the user ID. The SID contains
information that identifies the full user account details on the Windows security account manager (SAM)
database where the user is defined. When a message is created on WebSphere MQ for Windows,
WebSphere MQ stores the SID in the message descriptor. When WebSphere MQ on Windows performs
authorization checks, it uses the SID to query the full information from the SAM database. (The SAM
database in which the user is defined must be accessible for this query to succeed.)

By default, if a Windows SID is not supplied with an authorization request, WebSphere MQ identifies the
user based on the user name alone. It does this by searching the security databases in the following
order:

1. The local security database
2. The security database of the primary domain
3. The security database of trusted domains

If the user name is not unique, incorrect WebSphere MQ authority might be granted. To prevent this
problem, include an SID in each authorization request; the SID is used by WebSphere MQ to establish
user credentials.

Security 195

To specify that all authorization requests must include an SID, use regedit. Set the SecurityPolicy to
NTSIDsRequired.

Alternate-user authority on UNIX, Linux and Windows systems
You can specify that a user ID can use the authority of another user when accessing a WebSphere MQ
object. This is called alternate-user authority, and you can use it on any WebSphere MQ object.

Alternate-user authority is essential where a server receives requests from a program and wants to
ensure that the program has the required authority for the request. The server might have the required
authority, but it needs to know whether the program has the authority for the actions it has requested.

For example, assume that a server program running under user ID PAYSERV retrieves a request message
from a queue that was put on the queue by user ID USER1. When the server program gets the request
message, it processes the request and puts the reply back into the reply-to queue specified with the
request message. Instead of using its own user ID (PAYSERV) to authorize opening the reply-to queue, the
server can specify a different user ID, in this case, USER1. In this example, you can use alternate-user
authority to control whether PAYSERV is allowed to specify USER1 as an alternate-user ID when it opens
the reply-to queue.

The alternate-user ID is specified on the AlternateUserId field of the object descriptor.

Context authority on UNIX, Linux and Windows systems
Context is information that applies to a particular message and is contained in the message descriptor,
MQMD, which is part of the message. Applications can specify the context data when either an MQOPEN or
MQPUT call is made.

The context information comes in two sections:
Identity section

Who the message came from. It consists of the UserIdentifier, AccountingToken, and
ApplIdentityData fields.

Origin section
Where the message came from, and when it was put onto the queue. It consists of the PutApplType,
PutApplName, PutDate, PutTime, and ApplOriginData fields.

Applications can specify the context data when either an MQOPEN or MQPUT call is made. This data might
be generated by the application, passed on from another message, or generated by the queue manager by
default. For example, context data can be used by server programs to check the identity of the requester,
testing whether the message came from an application running under an authorized user ID.

A server program can use the UserIdentifier to determine the user ID of an alternative user. You use
context authorization to control whether the user can specify any of the context options on any MQOPEN or
MQPUT1 call.

See Controlling context information for information about the context options, and Overview for MQMD for
descriptions of the message descriptor fields relating to context.

Implementing access control in security exits
You can implement access control in a security exit by use of the MCAUserIdentifier or the object
authority manager.

MCAUserIdentifier
Every instance of a channel that is current has an associated channel definition structure, MQCD. The
initial values of the fields in MQCD are determined by the channel definition that is created by a
WebSphere MQ administrator. In particular, the initial value of one of the fields, MCAUserIdentifier, is
determined by the value of the MCAUSER parameter on the DEFINE CHANNEL command, or by the
equivalent to MCAUSER if the channel definition is created in another way. MCAUserIdentifier contains
the first 12 bytes of the MCA user identifier. If the MCA user identifier is not blank, it specifies the user

196 Securing IBM WebSphere MQ

identifier to be used by the message channel agent for authorization to access MQ resources. Ensure that
the MCAUSER is less than 12 characters on Windows platform.

The MQCD structure is passed to a channel exit program when it is called by an MCA. When a security exit
is called by an MCA, the security exit can change the value of MCAUserIdentifier, replacing any value that
was specified in the channel definition.

On IBM i, UNIX, Linux and Windows systems, unless the value of MCAUserIdentifier is blank, the queue
manager uses the value of MCAUserIdentifier as the user ID for authority checks when an MCA attempts
to access the queue manager's resources after it has connected to the queue manager. If the value of
MCAUserIdentifier is blank, the queue manager uses the default user ID of the MCA instead. This applies
to RCVR, RQSTR, CLUSRCVR and SVRCONN channels. For sending MCAs, the default user ID is always
used for authority checks, even if the value of MCAUserIdentifier is not blank.

On z/OS, the queue manager might use the value of MCAUserIdentifier for authority checks, provided it is
not blank. For receiving MCAs and server connection MCAs, whether the queue manager uses the value of
MCAUserIdentifier for authority checks depends on:

• The value of the PUTAUT parameter in the channel definition
• The RACF profile used for the checks
• The access level of the channel initiator address space user ID to the RESLEVEL profile

For sending MCAs, it depends on:

• Whether the sending MCA is a caller or a responder
• The access level of the channel initiator address space user ID to the RESLEVEL profile

The user ID that a security exit stores in MCAUserIdentifier can be acquired in various ways. Here are
some examples:

• Provided there is no security exit at the client end of an MQI channel, a user ID associated with
the WebSphere MQ client application flows from the client connection MCA to the server connection
MCA when the client application issues an MQCONN call. The server connection MCA stores this
user ID in the RemoteUserIdentifier field in the channel definition structure, MQCD. If the value of
MCAUserIdentifier is blank at this time, the MCA stores the same user ID in MCAUserIdentifier. If
the MCA does not store the user ID in MCAUserIdentifier, a security exit can do it later by setting
MCAUserIdentifier to the value of RemoteUserIdentifier.

If the user ID that flows from the client system is entering a new security domain and is not valid on the
server system, the security exit can substitute the user ID for one that is valid and store the substituted
user ID in MCAUserIdentifier.

• The user ID can be sent by the partner security exit in a security message.

On a message channel, a security exit called by the sending MCA can send the user ID under which
the sending MCA is running. A security exit called by the receiving MCA can then store the user ID in
MCAUserIdentifier. Similarly, on an MQI channel, a security exit at the client end of the channel can send
the user ID associated with the WebSphere MQ MQI client application. A security exit at the server end
of the channel can then store the user ID in MCAUserIdentifier. As in the previous example, if the user
ID is not valid on the target system, the security exit can substitute the user ID for one that is valid and
store the substituted user ID in MCAUserIdentifier.

If a digital certificate is received as part of the identification and authentication service, a security exit
can map the Distinguished Name in the certificate to a user ID that is valid on the target system. It can
then store the user ID in MCAUserIdentifier.

• If SSL is used on the channel, the partner's Distinguished Name (DN) is passed to the exit in the
SSLPeerNamePtr field of the MQCD, and the DN of the issuer of that certificate is passed to the exit in
the SSLRemCertIssNamePtr field of the MQCXP.

For more information about the MCAUserIdentifier field, the channel definition structure, MQCD, and
the channel exit parameter structure, MQCXP, see Channel-exit calls and data structures. For more
information about the user ID that flows from a client system on an MQI channel, see Access control.

Security 197

Note: Security exit applications constructed prior to the release of WebSphere MQ v7.1 may require
updating. For more information see Channel security exit programs.

WebSphere MQ object authority manager user authentication
On WebSphere MQ MQI client connections, security exits can be used to modify or create the MQCSP
structure used in object authority manager (OAM) user authentication. This is described in Channel-exit
programs for messaging channels

Implementing access control in message exits
You might need to use a message exit to substitute one user ID with another.

Consider a client application that sends a message to a server application. The server application
can extract the user ID from the UserIdentifier field in the message descriptor and, provided it has
alternate user authority, ask the queue manager to use this user ID for authority checks when it accesses
WebSphere MQ resources on behalf of the client.

If the PUTAUT parameter is set to CTX (or ALTMCA on z/OS) in the channel definition, the user ID in
the UserIdentifier field of each incoming message is used for authority checks when the MCA opens the
destination queue.

In certain circumstances, when a report message is generated, it is put using the authority of the user
ID in the UserIdentifier field of the message causing the report. In particular, confirm-on-delivery (COD)
reports and expiration reports are always put with this authority.

Because of these situations, it might be necessary to substitute one user ID for another in the
UserIdentifier field as a message enters a new security domain. This can be done by a message exit
at the receiving end of the channel. Alternatively, you can ensure that the user ID in the UserIdentifier field
of an incoming message is defined in the new security domain.

If an incoming message contains a digital certificate for the user of the application that sent the message,
a message exit can validate the certificate and map the Distinguished Name in the certificate to a user ID
that is valid on the receiving system. It can then set the UserIdentifier field in the message descriptor to
this user ID.

If it is necessary for a message exit to change the value of the UserIdentifier field in an incoming message,
it might be appropriate for the message exit to authenticate the sender of the message at the same time.
For more details, see “Identity mapping in message exits” on page 143.

Implementing access control in the API exit and API-crossing exit
An API or API-crossing exit can provide access controls to supplement those provided by WebSphere
MQ. In particular, the exit can provide access control at the message level. The exit can ensure that an
application puts on a queue, or gets from a queue, only those messages that satisfy certain criteria.

Consider the following examples:

• A message contains information about an order. When an application attempts to put a message on
a queue, an API or API-crossing exit can check that the total value of the order is less than some
prescribed limit.

• Messages arrive on a destination queue from remote queue managers. When an application attempts to
get a message from the queue, an API or API-crossing exit can check that the sender of the message is
authorized to send a message to the queue.

Confidentiality of messages
To maintain confidentiality, encrypt your messages. There are various methods of encrypting messages in
WebSphere MQ depending on your needs.

Your choice of CipherSpec determines what level of confidentiality you have.

198 Securing IBM WebSphere MQ

If you need application-level, end-to-end data protection for your point to point messaging infrastructure,
you can use WebSphere MQ Advanced Message Security to encrypt the messages, or write your own API
exit or API-crossing exit.

If you need to encrypt messages only while they are being transported through a channel, because you
have adequate security on your queue managers, you can use SSL or TLS, or you can write your own
security exit, message exit, or send and receive exit programs.

For more information about WebSphere MQ Advanced Message Security, see “Planning for Advanced
Message Security” on page 61.The use of SSL and TLS with WebSphere MQ is described at “IBM
WebSphere MQ support for SSL and TLS” on page 23. The use of exit programs in message encryption is
described at “Implementing confidentiality in user exit programs” on page 217.

Connecting two queue managers using SSL or TLS
Secure communications that use the SSL or TLS cryptographic security protocols involve setting up the
communication channels and managing the digital certificates that you will use for authentication.

To set up your SSL or TLS installation you must define your channels to use SSL or TLS. You must also
obtain and manage your digital certificates. On a test system, you can use self-signed certificates or
certificates issued by a local certificate authority (CA). On a production system, do not use self-signed
certificates. For more information, see ..//zs14140_.dita.

For full information about creating and managing certificates, see “Working with SSL or TLS on UNIX,
Linux, and Windows systems” on page 110.

This collection of topics introduces the tasks involved in setting up SSL communications, and provides
step-by-step guidance on completing those tasks.

You might also want to test SSL or TLS client authentication, which are an optional part of the protocols.
During the SSL or TLS handshake, the SSL or TLS client always obtains and validates a digital certificate
from the server. With the WebSphere MQ implementation, the SSL or TLS server always requests a
certificate from the client.

Notes:

1. In this context, an SSL client refers to the connection initiating the handshake.
2. See the Glossary for further details.

On UNIX, Linux and Windows systems, the SSL or TLS client sends a certificate only if it has one labeled
in the correct WebSphere MQ format, which is ibmwebspheremq followed by the name of your queue
manager changed to lowercase. For example, for QM1, ibmwebspheremqqm1.

WebSphere MQ uses the ibmwebspheremq prefix on a label to avoid confusion with certificates for other
products. Ensure that you specify the entire certificate label in lowercase.

The SSL or TLS server always validates the client certificate if one is sent. If the client does not send a
certificate, authentication fails only if the end of the channel that is acting as the SSL or TLS server is
defined with either the SSLCAUTH parameter set to REQUIRED or an SSLPEER parameter value set. For
more information about connecting a queue manager anonymously, that is, when the SSL or TLS client
does not send a certificate, see “Connecting two queue managers using one-way authentication” on page
203.

Using self-signed certificates for mutual authentication of two queue
managers
Follow these sample instructions to implement mutual authentication between two queue managers,
using self-signed SSL or TLS certificates.

About this task
Scenario:

Security 199

• You have two queue managers, QM1 and QM2, which need to communicate securely. You require
mutual authentication to be carried out between QM1 and QM2.

• You have decided to test your secure communication using self-signed certificates.

The resulting configuration looks like this:

Figure 14. Configuration resulting from this task

In Figure 14 on page 200, the key repository for QM1 contains the certificate for QM1 and the public
certificate from QM2. The key repository for QM2 contains the certificate for QM2 and the public
certificate from QM1.

Procedure
1. Prepare the key repository on each queue manager, according to operating system:

• On UNIX, Linux, and Windows systems.
2. Create a self-signed certificate for each queue manager:

• On UNIX, Linux, and Windows systems.
3. Extract a copy of each certificate:

• On UNIX, Linux, and Windows systems.
4. Transfer the public part of the QM1 certificate to the QM2 system and vice versa, using a utility such as

FTP.
5. Add the partner certificate to the key repository for each queue manager:

• On UNIX, Linux, and Windows systems.
6. On QM1, define a sender channel and associated transmission queue, by issuing commands like the

following example:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(TCP) CONNAME(QM1.MACH.COM) XMITQ(QM2)
SSLCIPH(RC4_MD5_US) DESCR('Sender channel using SSL from QM1 to QM2')

DEFINE QLOCAL(QM2) USAGE(XMITQ)

This example uses CipherSpec RC4_MD5. The CipherSpecs at each end of the channel must be the
same.

7. On QM2, define a receiver channel, by issuing a command like the following example:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) SSLCIPH(RC4_MD5_US)
SSLCAUTH(REQUIRED) DESCR('Receiver channel using SSL from QM1 to QM2')

The channel must have the same name as the sender channel you defined in step 6, and use the same
CipherSpec.

8. Start the channel.

200 Securing IBM WebSphere MQ

Results
Key repositories and channels are created as illustrated in Figure 14 on page 200

What to do next
Check that the task has been completed successfully by using DISPLAY commands. If the task was
successful, the resulting output is similar to that shown in the following examples.

From queue manager QM1, enter the following command:

DISPLAY CHS(QM1.TO.QM2) SSLPEER SSLCERTI

The resulting output is like the following example:

DISPLAY CHSTATUS(QM1.TO.QM2) SSLPEER SSLCERTI
 4 : DISPLAY CHSTATUS(QM1.TO.QM2) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(QM1.TO.QM2) CHLTYPE(SDR)
 CONNAME(9.20.25.40) CURRENT
 RQMNAME(QM2)
 SSLCERTI("CN=QM2,OU=WebSphere MQ Development,O=IBM,ST=Hampshire,C=UK")
 SSLPEER("SERIALNUMBER=4C:D0:49:D5:02:5E:02,CN=QM2,OU=WebSphere MQ
Development,O=IBM,ST=Hampshire,C=UK")
 STATUS(RUNNING) SUBSTATE(MQGET)
 XMITQ(QM2)

From queue manager QM2, enter the following command:

DISPLAY CHS(QM1.TO.QM2) SSLPEER SSLCERTI

The resulting output is like the following example:

DISPLAY CHSTATUS(QM1.TO.QM2) SSLPEER SSLCERTI
 5 : DISPLAY CHSTATUS(QM1.TO.QM2) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR)
 CONNAME(9.20.35.92) CURRENT
 RQMNAME(QM1)
 SSLCERTI("CN=QM1,OU=WebSphere MQ Development,O=IBM,ST=Hampshire,C=UK")
 SSLPEER("SERIALNUMBER=4C:D0:49:D5:02:5F:38,CN=QM1,OU=WebSphere MQ
Development,O=IBM,ST=Hampshire,C=UK")
 STATUS(RUNNING) SUBSTATE(RECEIVE)
 XMITQ()

In each case, the value of SSLPEER must match that of the DN in the partner certificate that was created
in Step 2. The issuers name matches the peer name because the certificate is self-signed .

SSLPEER is optional. If it is specified, its value must be set so that the DN in the partner certificate
(created in step 2) is allowed. For more information about the use of SSLPEER, see WebSphere MQ rules
for SSLPEER values .

Using CA-signed certificates for mutual authentication of two queue
managers
Follow these sample instructions to implement mutual authentication between two queue managers,
using CA-signed SSL or TLS certificates.

About this task
Scenario:

• You have two queue managers called QMA and QMB, which need to communicate securely. You require
mutual authentication to be carried out between QMA and QMB.

• In the future you are planning to use this network in a production environment, and therefore you have
decided to use CA-signed certificates from the beginning.

Security 201

The resulting configuration looks like this:

Figure 15. Configuration resulting from this task

In Figure 15 on page 202, the key repository for QMA contains QMA's certificate and the CA certificate.
The key repository for QMB contains QMB's certificate and the CA certificate. In this example both
QMA's certificate and QMB's certificate were issued by the same CA. If QMA's certificate and QMB's
certificate were issued by different CAs then the key repositories for QMA and QMB must contain both CA
certificates.

Procedure
1. Prepare the key repository on each queue manager, according to operating system:

• On UNIX, Linux, and Windows systems.
2. Request a CA-signed certificate for each queue manager.

You might use different CAs for the two queue managers.

• On UNIX, Linux, and Windows systems.
3. Add the Certificate Authority certificate to the key repository for each queue manager:

If the Queue managers are using different Certificate Authorities then the CA certificate for each
Certificate Authority must be added to both key repositories.

• On UNIX, Linux, and Windows systems.
4. Add the CA-signed certificate to the key repository for each queue manager:

• On UNIX, Linux, and Windows systems.
5. On QMA, define a sender channel and associated transmission queue by issuing commands like the

following example:

DEFINE CHANNEL(TO.QMB) CHLTYPE(SDR) TRPTYPE(TCP) CONNAME(QMB.MACH.COM) XMITQ(QMB)
SSLCIPH(RC2_MD5_EXPORT) DESCR('Sender channel using SSL from QMA to QMB')

DEFINE QLOCAL(QMB) USAGE(XMITQ)

This example uses CipherSpec RC4_MD5. The CipherSpecs at each end of the channel must be the
same.

6. On QMB, define a receiver channel by issuing a command like the following example:

DEFINE CHANNEL(TO.QMB) CHLTYPE(RCVR) TRPTYPE(TCP) SSLCIPH(RC2_MD5_EXPORT)
SSLCAUTH(REQUIRED) DESCR('Receiver channel using SSL to QMB')

The channel must have the same name as the sender channel you defined in step 6, and use the same
CipherSpec.

7. Start the channel:

202 Securing IBM WebSphere MQ

Results
Key repositories and channels are created as illustrated in Figure 15 on page 202.

What to do next
Check that the task has been completed successfully by using DISPLAY commands. If the task was
successful, the resulting output is like that shown in the following examples.

From queue manager QMA, enter the following command:

DISPLAY CHS(TO.QMB) SSLPEER SSLCERTI

The resulting output is like the following example:

DISPLAY CHSTATUS(TO.QMB) SSLPEER SSLCERTI
 4 : DISPLAY CHSTATUS(TO.QMB) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(TO.QMB) CHLTYPE(SDR)
 CONNAME(9.20.25.40) CURRENT
 RQMNAME(QMB)
 SSLCERTI("CN=WebSphere MQ CA,OU=WebSphere MQ Devt,O=IBM,ST=Hampshire,C=UK")
 SSLPEER("SERIALNUMBER=4C:D0:49:D5:02:5F:38,CN=QMB,OU=WebSphere MQ
Development,O=IBM,ST=Hampshire,C=UK")
 STATUS(RUNNING) SUBSTATE(MQGET)
 XMITQ(QMB)

From the queue manager QMB, enter the following command:

DISPLAY CHS(TO.QMB) SSLPEER SSLCERTI

The resulting output is like the following example:

DISPLAY CHSTATUS(TO.QMB) SSLPEER SSLCERTI
 5 : DISPLAY CHSTATUS(TO.QMB) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(TO.QMB) CHLTYPE(RCVR)
 CONNAME(9.20.35.92) CURRENT
 RQMNAME(QMA)
 SSLCERTI("CN=WebSphere MQ CA,OU=WebSphere MQ Devt,O=IBM,ST=Hampshire,C=UK")
 SSLPEER("SERIALNUMBER=4C:D0:49:D5:02:5F:38,CN=QMA,OU=WebSphere MQ
Development,O=IBM,ST=Hampshire,C=UK")
 STATUS(RUNNING) SUBSTATE(RECEIVE)
 XMITQ()

In each case, the value of SSLPEER must match that of the Distinguished Name (DN) in the partner
certificate that was created in Step 2. The issuer name matches the subject DN of the CA certificate that
signed the personal certificate added in Step 4.

Connecting two queue managers using one-way authentication
Follow these sample instructions to modify a system with mutual authentication to allow a queue
manager to connect using one-way authentication to another; that is, when the SSL or TLS client does not
send a certificate.

About this task
Scenario:

• Your two queue managers (QM1 and QM2) have been set up as in “Using CA-signed certificates for
mutual authentication of two queue managers” on page 201.

• You want to change QM1 so that it connects using one-way authentication to QM2.

The resulting configuration looks like this:

Security 203

Figure 16. Queue managers allowing one-way authentication

Procedure
1. Remove QM1's personal certificate from its key repository, according to operating system:

• On UNIX, Linux, and Windows systems. The certificate is labeled as follows:

– ibmwebspheremq followed by the name of your queue manager folded to lowercase. For
example, for QM1 , ibmwebspheremqqm1.

2. Optional: On QM1, if any SSL or TLS channels have run previously, refresh the SSL or TLS environment.
3. Allow anonymous connections on the receiver.

Results
Key repositories and channels are changed as illustrated in Figure 16 on page 204

What to do next
If the sender channel was running and you issued the REFRESH SECURITY TYPE(SSL) command (in step
2), the channel restarts automatically. If the sender channel was not running, start it.

At the server end of the channel, the presence of the peer name parameter value on the channel status
display indicates that a client certificate has flowed.

Verify that the task has been completed successfully by issuing some DISPLAY commands. If the task was
successful, the resulting output is similar to that shown in the following examples:

From the QM1 queue manager, enter the following command:

DISPLAY CHS(TO.QM2) SSLPEER SSLCERTI

The resulting output will be similar to the following example:

DISPLAY CHSTATUS(TO.QMB) SSLPEER SSLCERTI
 4 : DISPLAY CHSTATUS(TO.QMB) SSLPEER
AMQ8417: Display Channel Status details.
 CHANNEL(TO.QM2) CHLTYPE(SDR)
 CONNAME(9.20.25.40) CURRENT
 RQMNAME(QM2)
 SSLCERTI("CN=WebSphere MQ CA,OU=WebSphere MQ Devt,O=IBM,ST=Hampshire,C=UK")
 SSLPEER("SERIALNUMBER=4C:D0:49:D5:02:5F:38,CN=QMB,OU=WebSphere MQ
Development,O=IBM,ST=Hampshire,C=UK")
 STATUS(RUNNING) SUBSTATE(MQGET)
 XMITQ(QM2)

From the QM2 queue manager, enter the following command:

204 Securing IBM WebSphere MQ

DISPLAY CHS(TO.QM2) SSLPEER SSLCERTI

The resulting output will be similar to the following example:

DISPLAY CHSTATUS(TO.QM2) SSLPEER SSLCERTI
 5 : DISPLAY CHSTATUS(TO.QM2) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(TO.QM2) CHLTYPE(RCVR)
 CONNAME(9.20.35.92) CURRENT
 RQMNAME(QMA) SSLCERTI()
 SSLPEER() STATUS(RUNNING)
 SUBSTATE(RECEIVE) XMITQ()

On QM2, the SSLPEER field is empty, showing that QM1 did not send a certificate. On QM1, the value of
SSLPEER matches that of the DN in QM2's personal certificate.

Connecting a client to a queue manager securely
Secure communications that use the SSL or TLS cryptographic security protocols involve setting up the
communication channels and managing the digital certificates that you will use for authentication.

To set up your SSL or TLS installation you must define your channels to use SSL or TLS. You must also
obtain and manage your digital certificates. On a test system, you can use self-signed certificates or
certificates issued by a local certificate authority (CA). On a production system, do not use self-signed
certificates. For more information, see ..//zs14140_.dita.

For full information about creating and managing certificates, see “Working with SSL or TLS on UNIX,
Linux, and Windows systems” on page 110.

This collection of topics introduces the tasks involved in setting up SSL communications, and provides
step-by-step guidance on completing those tasks.

You might also want to test SSL or TLS client authentication, which are an optional part of the protocols.
During the SSL or TLS handshake, the SSL or TLS client always obtains and validates a digital certificate
from the server. With the WebSphere MQ implementation, the SSL or TLS server always requests a
certificate from the client.

On UNIX, Linux, and Windows systems, the SSL or TLS client sends a certificate only if it has one labeled
in the correct WebSphere MQ format, which is ibmwebspheremq followed by your logon user ID changed
to lowercase, for example ibmwebspheremqmyuserid.

WebSphere MQ uses the ibmwebspheremq prefix on a label to avoid confusion with certificates for other
products. Ensure that you specify the entire certificate label in lowercase.

The SSL or TLS server always validates the client certificate if one is sent. If the client does not send a
certificate, authentication fails only if the end of the channel that is acting as the SSL or TLS server is
defined with either the SSLCAUTH parameter set to REQUIRED or an SSLPEER parameter value set. For
more information about connecting a queue manager anonymously, see “Connecting a client to a queue
manager anonymously” on page 209.

Using self-signed certificates for mutual authentication of a client and queue
manager
Follow these sample instructions to implement mutual authentication between a client and a queue
manager, by using self-signed SSL or TLS certificates.

About this task
Scenario:

• You have a client, C1, and a queue manager, QM1, which need to communicate securely. You require
mutual authentication to be carried out between C1 and QM1.

Security 205

• You have decided to test your secure communication by using self-signed certificates.

DCM on IBM i does not support self-signed certificates, so this task is not applicable on IBM i systems.

The resulting configuration looks like this:

Figure 17. Configuration resulting from this task

In Figure 17 on page 206, the key repository for QM1 contains the certificate for QM1 and the public
certificate from C1. The key repository for C1 contains the certificate for C1 and the public certificate from
QM1.

Procedure
1. Prepare the key repository on the client and queue manager, according to operating system:

• On UNIX, Linux, and Windows systems.
2. Create self-signed certificates for the client and queue manager:

• On UNIX, Linux, and Windows systems.
3. Extract a copy of each certificate:

• On UNIX, Linux, and Windows systems.
4. Transfer the public part of the C1 certificate to the QM1 system and vice versa, using a utility such as

FTP.
5. Add the partner certificate to the key repository for the client and queue manager:

• On UNIX, Linux, and Windows systems.
6. Issue the command REFRESH SECURITY TYPE(SSL) on the queue manager.
7. Define a client-connection channel in either of the following ways:

• Using the MQCONNX call with the MQSCO structure on C1, as described in Creating a client-
connection channel on the WebSphere MQ MQI client.

• Using a client channel definition table, as described in Creating server-connection and client-
connection definitions on the server .

8. On QM1, define a server-connection channel, by issuing a command like the following example:

DEFINE CHANNEL(C1.TO.QM1) CHLTYPE(SVRCONN) TRPTYPE(TCP) SSLCIPH(RC4_MD5_US)
SSLCAUTH(REQUIRED) DESCR('Receiver channel using SSL from C1 to QM1')

The channel must have the same name as the client-connection channel you defined in step 6, and use
the same CipherSpec.

Results
Key repositories and channels are created as illustrated in Figure 17 on page 206

206 Securing IBM WebSphere MQ

What to do next
Check that the task has been completed successfully by using DISPLAY commands. If the task was
successful, the resulting output is similar to that shown in the following example.

From queue manager QM1, enter the following command:

DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI

The resulting output is like the following example:

DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI
 5 : DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(C1.TO.QM1) CHLTYPE(SVRCONN)
 CONNAME(9.20.35.92) CURRENT
 SSLCERTI("CN=QM1,OU=WebSphere MQ Development,O=IBM,ST=Hampshire,C=UK")
 SSLPEER("SERIALNUMBER=4C:D0:49:D5:02:5E:02,CN=QM2,OU=WebSphere MQ
Development,O=IBM,ST=Hampshire,C=UK")
 STATUS(RUNNING) SUBSTATE(RECEIVE)

It is optional to set the SSLPEER filter attribute of the channel definitions. If the channel definition
SSLPEER is set, its value must match the subject DN in the partner certificate that was created in Step 2.
After a successful connection, the SSLPEER field in the DISPLAY CHSTATUS output shows the subject DN
of the remote client certificate.

Using CA-signed certificates for mutual authentication of a client and queue
manager
Follow these sample instructions to implement mutual authentication between a client and a queue
manager, by using CA-signed SSL or TLS certificates.

About this task
Scenario:

• You have a client, C1, and a queue manager, QM1, which need to communicate securely. You require
mutual authentication to be carried out between C1 and QM1.

• In the future you are planning to use this network in a production environment, and therefore you have
decided to use CA-signed certificates from the beginning.

The resulting configuration looks like this:

Figure 18. Configuration resulting from this task

In Figure 18 on page 207, the key repository for C1 contains certificate for C1 and the CA certificate.
The key repository for QM1 contains the certificate for QM1 and the CA certificate. In this example both

Security 207

C1's certificate and QM1's certificate were issued by the same CA. If C1's certificate and QM1's certificate
were issued by different CAs then the key repositories for C1 and QM1 must contain both CA certificates.

Procedure
1. Prepare the key repository on the client and queue manager, according to operating system:

• On UNIX, Linux, and Windows systems.
2. Request a CA-signed certificate for the client and queue manager.

You might use different CAs for the client and queue manager.

• On UNIX, Linux, and Windows systems.
3. Add the certificate authority certificate to the key repository for the client and queue manager.

If the client and queue manager are using different Certificate Authorities then the CA certificate for
each Certificate Authority must be added to both key repositories.

• On UNIX, Linux, and Windows systems.
4. Add the CA-signed certificate to the key repository for the client and queue manager:

• On UNIX, Linux, and Windows systems.
5. Define a client-connection channel in either of the following ways:

• Using the MQCONNX call with the MQSCO structure on C1, as described in Creating a client-
connection channel on the WebSphere MQ MQI client.

• Using a client channel definition table, as described in Creating server-connection and client-
connection definitions on the server .

6. On QM1, define a server-connection channel by issuing a command like the following example:

DEFINE CHANNEL(C1.TO.QM1) CHLTYPE(SVRCONN) TRPTYPE(TCP) SSLCIPH(RC2_MD5_EXPORT)
SSLCAUTH(REQUIRED) DESCR('Receiver channel using SSL from C1 to QM1')

The channel must have the same name as the client-connection channel you defined in step 6, and use
the same CipherSpec.

Results
Key repositories and channels are created as illustrated in Figure 18 on page 207.

What to do next
Check that the task has been completed successfully by using DISPLAY commands. If the task was
successful, the resulting output is like that shown in the following example.

From the queue manager QM1, enter the following command:

DISPLAY CHSTATUS(TO.QMB) SSLPEER SSLCERTI

The resulting output is like the following example:

DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI
 5 : DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(C1.TO.QM1) CHLTYPE(SVRCONN)
 CONNAME(9.20.35.92) CURRENT
 SSLCERTI("CN=WebSphere MQ CA,OU=WebSphere MQ Devt,O=IBM,ST=Hampshire,C=UK")
 SSLPEER("SERIALNUMBER=4C:D0:49:D5:02:5F:38,CN=QMA,OU=WebSphere MQ
Development,O=IBM,ST=Hampshire,C=UK")
 STATUS(RUNNING) SUBSTATE(RECEIVE)

The SSLPEER field in the DISPLAY CHSTATUS output shows the subject DN of the remote client certificate
that was created in Step 2. The issuer name matches the subject DN of the CA certificate that signed the
personal certificate added in Step 4.

208 Securing IBM WebSphere MQ

Connecting a client to a queue manager anonymously
Follow these sample instructions to modify a system with mutual authentication to allow a queue
manager to connect anonymously to another.

About this task
Scenario:

• Your queue manager and client (QM1 and C1) have been set up as in “Using CA-signed certificates for
mutual authentication of a client and queue manager” on page 207.

• You want to change C1 so that it connects anonymously to QM1.

The resulting configuration looks like this:

Figure 19. Client and queue manager allowing anonymous connection

Procedure
1. Remove the personal certificate from key repository for C1, according to operating system:

• On UNIX, Linux, and Windows systems. The certificate is labeled as follows:

– ibmwebspheremq followed by your logon user ID folded to lowercase, for example
ibmwebspheremqmyuserid.

2. Restart the client application, or cause the client application to close and reopen all SSL or TLS
connections.

3. Allow anonymous connections on the queue manager, by issuing the following command:

ALTER CHANNEL(C1.TO.QM1) CHLTYPE(SVRCONN) SSLCAUTH(OPTIONAL)

Results
Key repositories and channels are changed as illustrated in Figure 19 on page 209

What to do next
At the server end of the channel, the presence of the peer name parameter value on the channel status
display indicates that a client certificate has flowed.

Verify that the task has been completed successfully by issuing some DISPLAY commands. If the task was
successful, the resulting output is similar to that shown in the following example:

From queue manager QM1, enter the following command:

DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI

Security 209

The resulting output will be similar to the following example:

DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI
 5 : DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(C1.TO.QM1) CHLTYPE(SVRCONN)
 CONNAME(9.20.35.92) CURRENT
 SSLCERTI() SSLPEER()
 STATUS(RUNNING) SUBSTATE(RECEIVE)

The SSLCERTI and SSLPEER fields are empty, showing that C1 did not send a certificate.

Specifying CipherSpecs
Specify a CipherSpec by using the SSLCIPH parameter in either the DEFINE CHANNEL MQSC command
or the ALTER CHANNEL MQSC command.

Some of the CipherSpecs that you can use with IBM WebSphere MQ are FIPS compliant. Others, such
as NULL_MD5, are not. Similarly, some of the FIPS compliant CipherSpecs are also Suite B compliant
although others, are not. All Suite B compliant CipherSpecs are also FIPS compliant. All Suite B compliant
CipherSpecs fall into two groups: 128 bit (for example, ECDHE_ECDSA_AES_128_GCM_SHA256) and 192
bit (for example, ECDHE_ECDSA_AES_256_GCM_SHA384),

The following diagram illustrates the relationship between these subsets:

Cipher specifications that you can use with IBM WebSphere MQ SSL and TLS support are listed in the
following table. When you request a personal certificate, you specify a key size for the public and private
key pair. The key size that is used during the SSL handshake is the size stored in the certificate unless it is
determined by the CipherSpec, as noted in the table.

CipherSpec name Protoc
ol used

MAC
algorithm

Encrypti
on
algorith
m

Encryptio
n bits

FIP
S1

Suite B
128 bit

Suite
B 192
bit

NULL_MD5 a SSL 3.0 MD5 None 0 No No No

NULL_SHA a SSL 3.0 SHA-1 None 0 No No No

RC4_MD5_EXPORT 2 a SSL 3.0 MD5 RC4 40 No No No

RC4_MD5_US a SSL 3.0 MD5 RC4 128 No No No

RC4_SHA_US a SSL 3.0 SHA-1 RC4 128 No No No

RC2_MD5_EXPORT 2 a SSL 3.0 MD5 RC2 40 No No No

DES_SHA_EXPORT 2 a SSL 3.0 SHA-1 DES 56 No No No

RC4_56_SHA_EXPORT1024 3 b SSL 3.0 SHA-1 RC4 56 No No No

DES_SHA_EXPORT1024 3 b SSL 3.0 SHA-1 DES 56 No No No

TLS_RSA_WITH_AES_128_CBC_SHA a TLS 1.0 SHA-1 AES 128 Yes No No

210 Securing IBM WebSphere MQ

CipherSpec name Protoc
ol used

MAC
algorithm

Encrypti
on
algorith
m

Encryptio
n bits

FIP
S1

Suite B
128 bit

Suite
B 192
bit

TLS_RSA_WITH_AES_256_CBC_SHA 4 a TLS 1.0 SHA-1 AES 256 Yes No No

TLS_RSA_WITH_DES_CBC_SHA a TLS 1.0 SHA-1 DES 56 No5 No No

FIPS_WITH_DES_CBC_SHA b SSL 3.0 SHA-1 DES 56 No6 No No

TLS_RSA_WITH_AES_128_GCM_SHA256 b TLS 1.2 AEAD
AES-128
GCM

AES 128 Yes No No

TLS_RSA_WITH_AES_256_GCM_SHA384 b TLS 1.2 AEAD
AES-256
GCM

AES 256 Yes No No

TLS_RSA_WITH_AES_128_CBC_SHA256 b TLS 1.2 SHA-256 AES 128 Yes No No

TLS_RSA_WITH_AES_256_CBC_SHA256 b TLS 1.2 SHA-256 AES 256 Yes No No

ECDHE_ECDSA_RC4_128_SHA256 b TLS 1.2 SHA-1 RC4 128 No No No

ECDHE_RSA_RC4_128_SHA256 b TLS 1.2 SHA_1 RC4 128 No No No

ECDHE_ECDSA_AES_128_CBC_SHA256 b TLS 1.2 SHA-256 AES 128 Yes No No

ECDHE_ECDSA_AES_256_CBC_SHA384 b TLS 1.2 SHA-384 AES 256 Yes No No

ECDHE_RSA_AES_128_CBC_SHA256 b TLS 1.2 SHA-256 AES 128 Yes No No

ECDHE_RSA_AES_256_CBC_SHA384 b TLS 1.2 SHA-384 AES 256 Yes No No

ECDHE_ECDSA_AES_128_GCM_SHA256 b TLS 1.2 AEAD
AES-128
GCM

AES 128 Yes Yes No

ECDHE_ECDSA_AES_256_GCM_SHA384 b TLS 1.2 AEAD
AES-256
GCM

AES 256 Yes No Yes

ECDHE_RSA_AES_128_GCM_SHA256 b TLS 1.2 AEAD
AES-128
GCM

AES 128 Yes No No

ECDHE_RSA_AES_256_GCM_SHA384 b TLS 1.2 AEAD
AES-256
GCM

AES 256 Yes No No

TLS_RSA_WITH_NULL_SHA256 b TLS 1.2 SHA-256 None 0 No No No

ECDHE_RSA_NULL_SHA256 b TLS 1.2 SHA-1 None 0 No No No

ECDHE_ECDSA_NULL_SHA256 b TLS 1.2 SHA-1 None 0 No No No

TLS_RSA_WITH_NULL_NULL b TLS 1.2 None None 0 No No No

TLS_RSA_WITH_RC4_128_SHA256 b TLS 1.2 SHA-1 RC4 128 No No No

Security 211

CipherSpec name Protoc
ol used

MAC
algorithm

Encrypti
on
algorith
m

Encryptio
n bits

FIP
S1

Suite B
128 bit

Suite
B 192
bit

Notes:

1. Specifies whether the CipherSpec is FIPS-certified on a FIPS-certified platform. See Federal Information
Processing Standards (FIPS) for an explanation of FIPS.

2. The maximum handshake key size is 512 bits. If either of the certificates exchanged during the SSL
handshake has a key size greater than 512 bits, a temporary 512-bit key is generated for use during the
handshake.

3. The handshake key size is 1024 bits.
4. This CipherSpec cannot be used to secure a connection from the WebSphere MQ Explorer to a queue

manager unless the appropriate unrestricted policy files are applied to the JRE used by the Explorer.
5. This CipherSpec was FIPS 140-2 certified before 19 May 2007.
6. This CipherSpec was FIPS 140-2 certified before 19 May 2007. The name FIPS_WITH_DES_CBC_SHA is

historical and reflects the fact that this CipherSpec was previously (but is no longer) FIPS-compliant. This
CipherSpec is deprecated and its use is not recommended.

7. This CipherSpec can be used to transfer up to 32 GB of data before the connection is terminated with error
AMQ9288. To avoid this error, either avoid using triple DES, or enable secret key reset when using this
CipherSpec.

Platform support:

• a Available on all supported platforms.
• b Available only on UNIX, Linux, and Windows platforms.

Related concepts
“Digital certificates and CipherSpec compatibility in IBM WebSphere MQ” on page 33
This topic provides information on how to choose appropriate CipherSpecs and digital certificates for
your security policy, by outlining the relationship between CipherSpecs and digital certificates in IBM
WebSphere MQ.
Related reference
DEFINE CHANNEL
ALTER CHANNEL

Deprecated CipherSpecs
A list of deprecated CipherSpecs that you are able to use with WebSphere MQ if necessary.

See “CipherSpec values supported in IBM WebSphere MQ” on page 38 for more information on how you
can enable deprecated CipherSpecs.

Deprecated CipherSpecs that you can use with WebSphere MQ TLS support are listed in the following
table:

Platfor
m
suppor
t “1” on
page 214

CipherSpec name Protoc
ol used

Data
integrity

Encrypti
on
algorith
m

Encryp
tion
bits

FIPS
“2” on
page
214

Suit
e B

Updat
e when
deprec
ated

All DES_SHA_EXPORT“3” on page 214 SSL 3.0 SHA-1 DES 56 No No 7.5.0.6

212 Securing IBM WebSphere MQ

Platfor
m
suppor
t “1” on
page 214

CipherSpec name Protoc
ol used

Data
integrity

Encrypti
on
algorith
m

Encryp
tion
bits

FIPS
“2” on
page
214

Suit
e B

Updat
e when
deprec
ated

DES_SHA_EXPORT1024“4” on page 214 SSL 3.0 SHA-1 DES 56 No No 7.5.0.6

FIPS_WITH_DES_CBC_SHA SSL 3.0 SHA-1 DES 56 No“6
” on
page
214

No 7.5.0.6

FIPS_WITH_3DES_EDE_CBC_SHA SSL 3.0 SHA-1 3DES 168 No“7
” on
page
214

No 7.5.0.8

All NULL_MD5 SSL 3.0 MD5 None 0 No No 7.5.0.6

All NULL_SHA SSL 3.0 SHA-1 None 0 No No 7.5.0.6

All RC2_MD5_EXPORT“3” on page 214 SSL 3.0 MD5 RC2 40 No No 7.5.0.7

All RC4_MD5_EXPORT“3” on page 214 SSL 3.0 MD5 RC4 40 No No 7.5.0.7

All RC4_MD5_US SSL 3.0 MD5 RC4 128 No No 7.5.0.7

All RC4_SHA_US SSL 3.0 SHA-1 RC4 128 No No 7.5.0.7

RC4_56_SHA_EXPORT1024“4” on page
214

SSL 3.0 SHA-1 RC4 56 No No 7.5.0.7

All TRIPLE_DES_SHA_US SSL 3.0 SHA-1 3DES 168 No No 7.5.0.8

All TLS_RSA_WITH_DES_CBC_SHA TLS 1.0 SHA-1 DES 56 No“5
” on
page
214

No 7.5.0.6

ECDHE_ECDSA_NULL_SHA256 TLS 1.2 SHA-1 None 0 No No 7.5.0.6

ECDHE_ECDSA_RC4_128_SHA256 TLS 1.2 SHA-1 RC4 128 No No 7.5.0.7

ECDHE_RSA_NULL_SHA256 TLS 1.2 SHA-1 None 0 No No 7.5.0.6

ECDHE_RSA_RC4_128_SHA256 TLS 1.2 SHA-1 RC4 128 No No 7.5.0.7

Security 213

Platfor
m
suppor
t “1” on
page 214

CipherSpec name Protoc
ol used

Data
integrity

Encrypti
on
algorith
m

Encryp
tion
bits

FIPS
“2” on
page
214

Suit
e B

Updat
e when
deprec
ated

TLS_RSA_WITH_NULL_NULL TLS 1.2 None None 0 No No 7.5.0.6

All TLS_RSA_WITH_NULL_SHA256 TLS 1.2 SHA-256 None 0 No No 7.5.0.6

TLS_RSA_WITH_RC4_128_SHA256 TLS 1.2 SHA-1 RC4 128 No No 7.5.0.7

All TLS_RSA_WITH_3DES_EDE_CBC_S
HA“8” on page 214

TLS 1.0 SHA-1 3DES 168 Yes No 7.5.0.8

ECDHE_ECDSA_3DES_EDE_CBC_SH
A256“8” on page 214

TLS 1.2 SHA-1 3DES 168 Yes No 7.5.0.8

ECDHE_RSA_3DES_EDE_CBC_SHA2
56“8” on page 214

TLS 1.2 SHA-1 3DES 168 Yes No 7.5.0.8

Notes:

1. If no specific platform is noted, the CipherSpec is available on all platforms.
2. Specifies whether the CipherSpec is FIPS-certified on a FIPS-certified platform. See Federal Information

Processing Standards (FIPS) for an explanation of FIPS.
3. The maximum handshake key size is 512 bits. If either of the certificates exchanged during the SSL

handshake has a key size greater than 512 bits, a temporary 512-bit key is generated for use during the
handshake.

4. The handshake key size is 1024 bits.
5. This CipherSpec was FIPS 140-2 certified before 19 May 2007.
6. This CipherSpec was FIPS 140-2 certified before 19 May 2007. The name FIPS_WITH_DES_CBC_SHA is

historical and reflects the fact that this CipherSpec was previously (but is no longer) FIPS-compliant. This
CipherSpec is deprecated and its use is not recommended.

7. The name FIPS_WITH_3DES_EDE_CBC_SHA is historical and reflects the fact that this CipherSpec was
previously (but is no longer) FIPS-compliant. The use of this CipherSpec is deprecated.

8. This CipherSpec can be used to transfer up to 32 GB of data before the connection is terminated with error
AMQ9288. To avoid this error, either avoid using triple DES, or enable secret key reset when using this
CipherSpec.

Obtaining information about CipherSpecs using IBM WebSphere MQ Explorer
You can use IBM WebSphere MQ Explorer to display descriptions of CipherSpecs.

Use the following procedure to obtain information about the CipherSpecs in “Specifying CipherSpecs” on
page 210:

1. Open IBM WebSphere MQ Explorer and expand the Queue Managers folder.
2. Ensure that you have started your queue manager.
3. Select the queue manager you want to work with and click Channels.

214 Securing IBM WebSphere MQ

4. Right-click the channel you want to work with and select Properties.
5. Select the SSL property page.
6. Select from the list the CipherSpec you want to work with. A description is displayed in the window

below the list.

Alternatives for specifying CipherSpecs
For those platforms where the operating system provides the SSL support, your system might support
new CipherSpecs. You can specify a new CipherSpec with the SSLCIPH parameter, but the value you
supply depends on your platform.

Note: This section does not apply to UNIX, Linux or Windows systems, because the CipherSpecs are
provided with the WebSphere MQ product, so new CipherSpecs do not become available after shipment.

For those platforms where the operating system provides the SSL support, your system might support
new CipherSpecs that are not included in “Specifying CipherSpecs” on page 210. You can specify a new
CipherSpec with the SSLCIPH parameter, but the value you supply depends on your platform. In all cases
the specification must correspond to an SSL CipherSpec that is both valid and supported by the version of
SSL your system is running.

IBM i
A two-character string representing a hexadecimal value.

For more information about the permitted values, refer to the appropriate product documentation
(search for cipher_spec in the IBM i product documentation).

You can use either the CHGMQMCHL or the CRTMQMCHL command to specify the value, for example:

CRTMQMCHL CHLNAME('channel name') SSLCIPH('hexadecimal value')

You can also use the ALTER QMGR MQSC command to set the SSLCIPH parameter.

z/OS
A two-character string representing a hexadecimal value. The hexadecimal codes correspond to the
values defined in the SSL protocol.

For more information, refer to the description of gsk_environment_open() in the API reference chapter
of z/OS Cryptographic Services System SSL Programming, SC24-5901, where there is a list of all the
supported SSL V3.0 and TLS V1.0 cipher specifications in the form of 2-digit hexadecimal codes.

Considerations for WebSphere MQ clusters
With WebSphere MQ clusters it is safest to use the CipherSpec names in “Specifying CipherSpecs” on
page 210. If you use an alternative specification, be aware that the specification might not be valid on
other platforms. For more information, refer to “SSL and clusters” on page 240.

Specifying a CipherSpec for an IBM WebSphere MQ MQI client
You have three options for specifying a CipherSpec for an IBM WebSphere MQ MQI client.

These options are as follows:

• Using a channel definition table
• Using the SSLCipherSpec field in the MQCD structure, at MQCD_VERSION_7 or higher, on an MQCONNX

call.
• Using the Active Directory (on Windows systems with Active Directory support)

Security 215

https://www.ibm.com/docs/en/i

Specifying a CipherSuite with IBM WebSphere MQ classes for Java and IBM
WebSphere MQ classes for JMS
IBM WebSphere MQ classes for Java and IBM WebSphere MQ classes for JMS specify CipherSuites
differently from other platforms.

For information about specifying a CipherSuite with IBM WebSphere MQ classes for Java, see Secure
Sockets Layer (SSL) support.

For information about specifying a CipherSuite with IBM WebSphere MQ classes for JMS, see Using
Secure Sockets Layer (SSL) with WebSphere MQ classes for JMS.

Resetting SSL and TLS secret keys
IBM WebSphere MQ supports the resetting of secret keys on queue managers and clients.

Secret keys are reset when a specified number of encrypted bytes of data have flowed across the
channel, or after the channel has been idle for a period.

The key reset value is always set by the initiating side of the MQ channel.

Queue manager
For a queue manager, use the command ALTER QMGR with the parameter SSLRKEYC to set the values
used during key renegotiation.

MQI client
By default, MQI clients do not renegotiate the secret key. You can make an MQI client renegotiate the
key in any of three ways. In the following list, the methods are shown in order of priority. If you specify
multiple values, the highest priority value is used.

1. By using the KeyResetCount field in the MQSCO structure on an MQCONNX call
2. By using the environment variable MQSSLRESET
3. By setting the SSLKeyResetCount attribute in the MQI client configuration file

These variables can be set to an integer in the range 0 through 999 999 999, representing the number of
unencrypted bytes sent and received within an SSL or TLS conversation before the SSL or TLS secret key
is renegotiated. Specifying a value of 0 indicates that SSL or TLS secret keys are never renegotiated. If you
specify an SSL or TLS secret key reset count in the range 1 byte through 32 KB, SSL or TLS channels will
use a secret key reset count of 32 KB. This is to avoid excessive key resets which would occur for small
SSL or TLS secret key reset values.

If a value greater than zero is specified and channel heartbeats are enabled for the channel, the secret
key is also renegotiated before message data is sent or received following a channel heartbeat.

The count of bytes until the next secret key renegotiation is reset after each successful renegotiation.

For full details of the MQSCO structure, see KeyResetCount (MQLONG). For full details of MQSSLRESET,
see MQSSLRESET. For more information about the use of SSL or TLS in the client configuration file, see
SSL stanza of the client configuration file.

Java
For IBM WebSphere MQ classes for Java, an application can reset the secret key in either of the following
ways:

• By setting the sslResetCount field in the MQEnvironment class.
• By setting the environment property MQC.SSL_RESET_COUNT_PROPERTY in a Hashtable object. The

application then assigns the hashtable to the properties field in the MQEnvironment class, or passes
the hashtable to an MQQueueManager object on its constructor.

216 Securing IBM WebSphere MQ

If the application uses more than one of these ways, the usual precedence rules apply. See Class
com.ibm.mq.MQEnvironment for the precedence rules.

The value of the sslResetCount field or environment property MQC.SSL_RESET_COUNT_PROPERTY
represents the total number of bytes sent and received by the WebSphere MQ classes for Java client
code before the secret key is renegotiated. The number of bytes sent is the number before encryption,
and the number of bytes received is the number after decryption. The number of bytes also includes
control information sent and received by the WebSphere MQ classes for Java client.

If the reset count is zero, which is the default value, the secret key is never renegotiated. The reset count
is ignored if no CipherSuite is specified.

JMS
For IBM WebSphere MQ classes for JMS, the SSLRESETCOUNT property represents the total number of
bytes sent and received by a connection before the secret key that is used for encryption is renegotiated.
The number of bytes sent is the number before encryption, and the number of bytes received is the
number after decryption. The number of bytes also includes control information sent and received by IBM
WebSphere MQ classes for JMS. For example, to configure a ConnectionFactory object that can be used to
create a connection over an SSL or TLS enabled MQI channel with a secret key that is renegotiated after 4
MB of data have flowed, issue the following command to JMSAdmin:

ALTER CF(my.cf) SSLRESETCOUNT(4194304)

If the value of SSLRESETCOUNT is zero, which is the default value, the secret key is never renegotiated.
The SSLRESETCOUNT property is ignored if SSLCIPHERSUITE is not set.

.NET
For .NET unmanaged clients, the integer property SSLKeyResetCount indicates the number of
unencrypted bytes sent and received within an SSL or TLS conversation before the secret key is
renegotiated.

For information about the use of object properties in IBM WebSphere MQ classes for .NET, see Getting
and setting attribute values.

XMS .NET
For XMS .NET unmanaged clients, see Secure connections to an IBM WebSphere MQ queue manager.

Related reference
ALTER QMGR
DISPLAY QMGR

Implementing confidentiality in user exit programs

Implementing confidentiality in security exits
Security exits can play a role in the confidentiality service by generating and distributing the symmetric
key for encrypting and decrypting the data that flows on the channel. A common technique for doing this
uses PKI technology.

One security exit generates a random data value, encrypts it with the public key of the queue manager
or user that the partner security exit is representing, and sends the encrypted data to its partner in a
security message. The partner security exit decrypts the random data value with the private key of the
queue manager or user it is representing. Each security exit can now use the random data value to derive
the symmetric key independently of the other by using an algorithm known to both of them. Alternatively,
they can use the random data value as the key.

Security 217

If the first security exit has not authenticated its partner by this time, the next security message sent by
the partner can contain an expected value encrypted with the symmetric key. The first security exit can
now authenticate its partner by checking that the partner security exit was able to encrypt the expected
value correctly.

The security exits can also use this opportunity to agree the algorithm for encrypting and decrypting the
data that flows on the channel, if more than one algorithm is available for use.

Implementing confidentiality in message exits
A message exit at the sending end of a channel can encrypt the application data in a message and
another message exit at the receiving end of the channel can decrypt the data. For performance
reasons, a symmetric key algorithm is normally used for this purpose. For more information about how
the symmetric key can be generated and distributed, see “Implementing confidentiality in user exit
programs” on page 217.

Headers in a message, such as the transmission queue header, MQXQH, which includes the embedded
message descriptor, must not be encrypted by a message exit. This is because data conversion of the
message headers takes place either after a message exit is called at the sending end or before a message
exit is called at the receiving end. If the headers are encrypted, data conversion fails and the channel
stops.

Implementing confidentiality in send and receive exits
Send and receive exits can be used to encrypt and decrypt the data that flows on a channel. They are
more appropriate than message exits for providing this service for the following reasons:

• On a message channel, message headers can be encrypted as well as the application data in the
messages.

• Send and receive exits can be used on MQI channels as well as message channels. Parameters on
MQI calls might contain sensitive application data that needs to be protected while it flows on an MQI
channel. You can therefore use the same send and receive exits on both kinds of channels.

Implementing confidentiality in the API exit and API-crossing exit
The application data in a message can be encrypted by an API or API-crossing exit when the message
is put by the sending application and decrypted by a second exit when the message is retrieved by
the receiving application. For performance reasons, a symmetric key algorithm is typically used for this
purpose. However, at the application level, where many users might be sending messages to each other,
the problem is how to ensure that only the intended receiver of a message is able to decrypt the message.
One solution is to use a different symmetric key for each pair of users that send messages to each other.
But this solution might be difficult and time consuming to administer, particularly if the users belong to
different organizations. A standard way of solving this problem is known as digital enveloping and uses
PKI technology.

When an application puts a message on a queue, an API or API-crossing exit generates a random
symmetric key and uses the key to encrypt the application data in the message. The exit encrypts the
symmetric key with the public key of the intended receiver. It then replaces the application data in the
message with the encrypted application data and the encrypted symmetric key. In this way, only the
intended receiver can decrypt the symmetric key and therefore the application data. If an encrypted
message has more than one possible intended receiver, the exit can encrypt a copy of the symmetric key
for each intended receiver.

If different algorithms for encrypting and decrypting the application data are available for use, the exit can
include the name of the algorithm it has used.

218 Securing IBM WebSphere MQ

Data integrity of messages
To maintain data integrity, you can use various types of user exit program to provide message digests or
digital signatures for your messages.

Data integrity
Implementing data integrity in messages

When you use SSL or TLS, your choice of CipherSpec determines the level of data integrity in the
enterprise. If you use the WebSphere MQ Advanced Message Service (AMS) you can specify the
integrity for a unique message.

Implementing data integrity in message exits

A message can be digitally signed by a message exit at the sending end of a channel. The digital
signature can then be checked by a message exit at the receiving end of a channel to detect whether
the message has been deliberately modified.

Some protection can be provided by using a message digest instead of a digital signature. A message
digest might be effective against casual or indiscriminate tampering, but it does not prevent the more
informed individual from changing or replacing the message, and generating a completely new digest
for it. This is particularly true if the algorithm that is used to generate the message digest is a well
known one.

Implementing data integrity in send and receive exits
On a message channel, message exits are more appropriate for providing this service because a
message exit has access to a whole message. On an MQI channel, parameters on MQI calls might
contain application data that needs to be protected and only send and receive exits can provide this
protection.

Implementing data integrity in the API exit or API-crossing exit

A message can be digitally signed by an API or API-crossing exit when the message is put by the
sending application. The digital signature can then be checked by a second exit when the message is
retrieved by the receiving application to detect whether the message has been deliberately modified.

Some protection can be provided by using a message digest instead of a digital signature. A message
digest might be effective against casual or indiscriminate tampering, but it does not prevent the more
informed individual from changing or replacing the message, and generating a completely new digest
for it. This is particularly true if the algorithm that is used to generate the message digest is a well
known one,

Connecting two queue managers using SSL or TLS
Secure communications that use the SSL or TLS cryptographic security protocols involve setting up the
communication channels and managing the digital certificates that you will use for authentication.

To set up your SSL or TLS installation you must define your channels to use SSL or TLS. You must also
obtain and manage your digital certificates. On a test system, you can use self-signed certificates or
certificates issued by a local certificate authority (CA). On a production system, do not use self-signed
certificates. For more information, see ../zs14140_.dita.

For full information about creating and managing certificates, see “Working with SSL or TLS on UNIX,
Linux, and Windows systems” on page 110.

This collection of topics introduces the tasks involved in setting up SSL communications, and provides
step-by-step guidance on completing those tasks.

You might also want to test SSL or TLS client authentication, which are an optional part of the protocols.
During the SSL or TLS handshake, the SSL or TLS client always obtains and validates a digital certificate
from the server. With the WebSphere MQ implementation, the SSL or TLS server always requests a
certificate from the client.

Notes:

Security 219

1. In this context, an SSL client refers to the connection initiating the handshake.
2. See the Glossary for further details.

On UNIX, Linux and Windows systems, the SSL or TLS client sends a certificate only if it has one labeled
in the correct WebSphere MQ format, which is ibmwebspheremq followed by the name of your queue
manager changed to lowercase. For example, for QM1, ibmwebspheremqqm1.

WebSphere MQ uses the ibmwebspheremq prefix on a label to avoid confusion with certificates for other
products. Ensure that you specify the entire certificate label in lowercase.

The SSL or TLS server always validates the client certificate if one is sent. If the client does not send a
certificate, authentication fails only if the end of the channel that is acting as the SSL or TLS server is
defined with either the SSLCAUTH parameter set to REQUIRED or an SSLPEER parameter value set. For
more information about connecting a queue manager anonymously, that is, when the SSL or TLS client
does not send a certificate, see “Connecting two queue managers using one-way authentication” on page
203.

Digital certificate labels, understanding the requirements
When setting up SSL and TLS to use digital certificates, there might be specific label requirements that
you must follow, depending on the platform used and the method you use to connect.

About this task
What is the certificate label?

A certificate label is a unique identifier representing a digital certificate stored in a key repository,
and provides a convenient human-readable name with which to refer to a particular certificate when
performing key management functions. You assign the certificate label when adding a certificate to a key
repository for the first time.

The certificate label is separate from the certificate's Subject Distinguished Name or Subject Common
Name fields. Note that the Subject Distinguished Name and Subject Common Name are fields within the
certificate itself. These are defined when the certificate is created and cannot be changed. However, you
can change the label associated with a digital certificate if necessary.

How is the certificate label used?

IBM WebSphere MQ uses certificate labels to locate a personal certificate that is sent during the
SSL handshake. This eliminates ambiguity when more than one personal certificate exists in the key
repository.

Certificate labels follow a naming convention; you need to ensure that you use the correct label naming
convention corresponding to the platform that you are using.

In this context, an SSL or TLS client refers to the connection partner initiating the handshake, which might
be a IBM WebSphere MQ client or another queue manager.

During the SSL or TLS handshake, the SSL or TLS client always obtains and validates a digital certificate
from the server. With the IBM WebSphere MQ implementation, the SSL or TLS server always requests
a certificate from the client and the client always provide a certificate to the server if a one is found. If
the client is unable to locate a personal certificate, the client sends a no certificate response to the
server.

The SSL or TLS server always validates the client certificate if one is sent. If the client does not send a
certificate, authentication fails if the end of the channel that is acting as the SSL or TLS server is defined
with either the SSLCAUTH parameter set to REQUIRED or an SSLPEER parameter value set.

For more information about connecting a queue manager using one-way authentication, that is, when
the SSL or TLS client does not send a certificate, see “Connecting two queue managers using one-way
authentication” on page 203.

220 Securing IBM WebSphere MQ

, UNIX, Linux, and Windows systems

About this task
On , UNIX, Linux, and Windows systems, the SSL or TLS server sends a certificate to the client, only if the
server finds one labeled in the correct IBM WebSphere MQ format. On these systems, the correct format
is ibmwebspheremq, followed by the name of your queue manager changed to lowercase.

For example, for a queue manager named QM1, the certificate label requirement is:

ibmwebspheremqqm1

If no certificate is found in the queue manager's key repository, matching the required label in the correct
case and format, an error occurs and the SSL or TLS handshake fails.

IBM WebSphere MQ client

About this task
When connecting from a IBM WebSphere MQ client application, the SSL or TLS client sends a certificate
only if it has one a certificate with a label in the format ibmwebspheremq, followed by the username of
the user running the client application process.

For example, for the username wasadmin, the certificate label requirement is as shown, folded to
lowercase:

 ibmwebspheremqwasadmin

The above label requirement applies to Message Service Clients for C, or C++, and .NET.

IBM WebSphere MQ Java or IBM WebSphere MQ JMS client

About this task
IBM WebSphere MQ Java or IBM WebSphere MQ JMS clients use the facilities of their Java Secure Socket
Extension (JSSE) provider to select a personal certificate during the SSL or TLS handshake and therefore
are not subject to certificate label requirements.

The default behavior, is that the JSSE client iterates through the certificates in the key repository,
selecting the first acceptable personal certificate found. However, this behavior is only a default, and
is dependent on the implementation of the JSSE provider.

In addition, the JSSE interface is highly customizable through configuration and direct access at runtime
by the application. Consult the documentation supplied by your JSSE provider for specific details.

For troubleshooting, or to better understand the handshake performed by the IBM WebSphere MQ Java
client application in combination with your specific JSSE provider, you can enable debugging by setting

javax.net.debug=ssl

in the JVM environment.

You can use -Djavax.net.debug=ssl on the command line, or set the variable within the application,
or through configuration.

Related concepts
“Importing a personal certificate into a key repository on UNIX, Linux, and Windows systems” on page
129

Security 221

Follow this procedure to import a personal certificate

Using self-signed certificates for mutual authentication of two queue
managers
Follow these sample instructions to implement mutual authentication between two queue managers,
using self-signed SSL or TLS certificates.

About this task
Scenario:

• You have two queue managers, QM1 and QM2, which need to communicate securely. You require
mutual authentication to be carried out between QM1 and QM2.

• You have decided to test your secure communication using self-signed certificates.

The resulting configuration looks like this:

Figure 20. Configuration resulting from this task

In Figure 14 on page 200, the key repository for QM1 contains the certificate for QM1 and the public
certificate from QM2. The key repository for QM2 contains the certificate for QM2 and the public
certificate from QM1.

Procedure
1. Prepare the key repository on each queue manager, according to operating system:

• On UNIX, Linux, and Windows systems.
2. Create a self-signed certificate for each queue manager:

• On UNIX, Linux, and Windows systems.
3. Extract a copy of each certificate:

• On UNIX, Linux, and Windows systems.
4. Transfer the public part of the QM1 certificate to the QM2 system and vice versa, using a utility such as

FTP.
5. Add the partner certificate to the key repository for each queue manager:

• On UNIX, Linux, and Windows systems.
6. On QM1, define a sender channel and associated transmission queue, by issuing commands like the

following example:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(TCP) CONNAME(QM1.MACH.COM) XMITQ(QM2)
SSLCIPH(RC4_MD5_US) DESCR('Sender channel using SSL from QM1 to QM2')

222 Securing IBM WebSphere MQ

DEFINE QLOCAL(QM2) USAGE(XMITQ)

This example uses CipherSpec RC4_MD5. The CipherSpecs at each end of the channel must be the
same.

7. On QM2, define a receiver channel, by issuing a command like the following example:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) SSLCIPH(RC4_MD5_US)
SSLCAUTH(REQUIRED) DESCR('Receiver channel using SSL from QM1 to QM2')

The channel must have the same name as the sender channel you defined in step 6, and use the same
CipherSpec.

8. Start the channel.

Results
Key repositories and channels are created as illustrated in Figure 14 on page 200

What to do next
Check that the task has been completed successfully by using DISPLAY commands. If the task was
successful, the resulting output is similar to that shown in the following examples.

From queue manager QM1, enter the following command:

DISPLAY CHS(QM1.TO.QM2) SSLPEER SSLCERTI

The resulting output is like the following example:

DISPLAY CHSTATUS(QM1.TO.QM2) SSLPEER SSLCERTI
 4 : DISPLAY CHSTATUS(QM1.TO.QM2) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(QM1.TO.QM2) CHLTYPE(SDR)
 CONNAME(9.20.25.40) CURRENT
 RQMNAME(QM2)
 SSLCERTI("CN=QM2,OU=WebSphere MQ Development,O=IBM,ST=Hampshire,C=UK")
 SSLPEER("SERIALNUMBER=4C:D0:49:D5:02:5E:02,CN=QM2,OU=WebSphere MQ
Development,O=IBM,ST=Hampshire,C=UK")
 STATUS(RUNNING) SUBSTATE(MQGET)
 XMITQ(QM2)

From queue manager QM2, enter the following command:

DISPLAY CHS(QM1.TO.QM2) SSLPEER SSLCERTI

The resulting output is like the following example:

DISPLAY CHSTATUS(QM1.TO.QM2) SSLPEER SSLCERTI
 5 : DISPLAY CHSTATUS(QM1.TO.QM2) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR)
 CONNAME(9.20.35.92) CURRENT
 RQMNAME(QM1)
 SSLCERTI("CN=QM1,OU=WebSphere MQ Development,O=IBM,ST=Hampshire,C=UK")
 SSLPEER("SERIALNUMBER=4C:D0:49:D5:02:5F:38,CN=QM1,OU=WebSphere MQ
Development,O=IBM,ST=Hampshire,C=UK")
 STATUS(RUNNING) SUBSTATE(RECEIVE)
 XMITQ()

In each case, the value of SSLPEER must match that of the DN in the partner certificate that was created
in Step 2. The issuers name matches the peer name because the certificate is self-signed .

SSLPEER is optional. If it is specified, its value must be set so that the DN in the partner certificate
(created in step 2) is allowed. For more information about the use of SSLPEER, see WebSphere MQ rules
for SSLPEER values .

Security 223

Using CA-signed certificates for mutual authentication of two queue
managers
Follow these sample instructions to implement mutual authentication between two queue managers,
using CA-signed SSL or TLS certificates.

About this task
Scenario:

• You have two queue managers called QMA and QMB, which need to communicate securely. You require
mutual authentication to be carried out between QMA and QMB.

• In the future you are planning to use this network in a production environment, and therefore you have
decided to use CA-signed certificates from the beginning.

The resulting configuration looks like this:

Figure 21. Configuration resulting from this task

In Figure 15 on page 202, the key repository for QMA contains QMA's certificate and the CA certificate.
The key repository for QMB contains QMB's certificate and the CA certificate. In this example both
QMA's certificate and QMB's certificate were issued by the same CA. If QMA's certificate and QMB's
certificate were issued by different CAs then the key repositories for QMA and QMB must contain both CA
certificates.

Procedure
1. Prepare the key repository on each queue manager, according to operating system:

• On UNIX, Linux, and Windows systems.
2. Request a CA-signed certificate for each queue manager.

You might use different CAs for the two queue managers.

• On UNIX, Linux, and Windows systems.
3. Add the Certificate Authority certificate to the key repository for each queue manager:

If the Queue managers are using different Certificate Authorities then the CA certificate for each
Certificate Authority must be added to both key repositories.

• On UNIX, Linux, and Windows systems.
4. Add the CA-signed certificate to the key repository for each queue manager:

• On UNIX, Linux, and Windows systems.
5. On QMA, define a sender channel and associated transmission queue by issuing commands like the

following example:

224 Securing IBM WebSphere MQ

DEFINE CHANNEL(TO.QMB) CHLTYPE(SDR) TRPTYPE(TCP) CONNAME(QMB.MACH.COM) XMITQ(QMB)
SSLCIPH(RC2_MD5_EXPORT) DESCR('Sender channel using SSL from QMA to QMB')

DEFINE QLOCAL(QMB) USAGE(XMITQ)

This example uses CipherSpec RC4_MD5. The CipherSpecs at each end of the channel must be the
same.

6. On QMB, define a receiver channel by issuing a command like the following example:

DEFINE CHANNEL(TO.QMB) CHLTYPE(RCVR) TRPTYPE(TCP) SSLCIPH(RC2_MD5_EXPORT)
SSLCAUTH(REQUIRED) DESCR('Receiver channel using SSL to QMB')

The channel must have the same name as the sender channel you defined in step 6, and use the same
CipherSpec.

7. Start the channel:

Results
Key repositories and channels are created as illustrated in Figure 15 on page 202.

What to do next
Check that the task has been completed successfully by using DISPLAY commands. If the task was
successful, the resulting output is like that shown in the following examples.

From queue manager QMA, enter the following command:

DISPLAY CHS(TO.QMB) SSLPEER SSLCERTI

The resulting output is like the following example:

DISPLAY CHSTATUS(TO.QMB) SSLPEER SSLCERTI
 4 : DISPLAY CHSTATUS(TO.QMB) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(TO.QMB) CHLTYPE(SDR)
 CONNAME(9.20.25.40) CURRENT
 RQMNAME(QMB)
 SSLCERTI("CN=WebSphere MQ CA,OU=WebSphere MQ Devt,O=IBM,ST=Hampshire,C=UK")
 SSLPEER("SERIALNUMBER=4C:D0:49:D5:02:5F:38,CN=QMB,OU=WebSphere MQ
Development,O=IBM,ST=Hampshire,C=UK")
 STATUS(RUNNING) SUBSTATE(MQGET)
 XMITQ(QMB)

From the queue manager QMB, enter the following command:

DISPLAY CHS(TO.QMB) SSLPEER SSLCERTI

The resulting output is like the following example:

DISPLAY CHSTATUS(TO.QMB) SSLPEER SSLCERTI
 5 : DISPLAY CHSTATUS(TO.QMB) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(TO.QMB) CHLTYPE(RCVR)
 CONNAME(9.20.35.92) CURRENT
 RQMNAME(QMA)
 SSLCERTI("CN=WebSphere MQ CA,OU=WebSphere MQ Devt,O=IBM,ST=Hampshire,C=UK")
 SSLPEER("SERIALNUMBER=4C:D0:49:D5:02:5F:38,CN=QMA,OU=WebSphere MQ
Development,O=IBM,ST=Hampshire,C=UK")
 STATUS(RUNNING) SUBSTATE(RECEIVE)
 XMITQ()

In each case, the value of SSLPEER must match that of the Distinguished Name (DN) in the partner
certificate that was created in Step 2. The issuer name matches the subject DN of the CA certificate that
signed the personal certificate added in Step 4.

Security 225

Connecting two queue managers using one-way authentication
Follow these sample instructions to modify a system with mutual authentication to allow a queue
manager to connect using one-way authentication to another; that is, when the SSL or TLS client does not
send a certificate.

About this task
Scenario:

• Your two queue managers (QM1 and QM2) have been set up as in “Using CA-signed certificates for
mutual authentication of two queue managers” on page 201.

• You want to change QM1 so that it connects using one-way authentication to QM2.

The resulting configuration looks like this:

Figure 22. Queue managers allowing one-way authentication

Procedure
1. Remove QM1's personal certificate from its key repository, according to operating system:

• On UNIX, Linux, and Windows systems. The certificate is labeled as follows:

– ibmwebspheremq followed by the name of your queue manager folded to lowercase. For
example, for QM1 , ibmwebspheremqqm1.

2. Optional: On QM1, if any SSL or TLS channels have run previously, refresh the SSL or TLS environment.
3. Allow anonymous connections on the receiver.

Results
Key repositories and channels are changed as illustrated in Figure 16 on page 204

What to do next
If the sender channel was running and you issued the REFRESH SECURITY TYPE(SSL) command (in step
2), the channel restarts automatically. If the sender channel was not running, start it.

At the server end of the channel, the presence of the peer name parameter value on the channel status
display indicates that a client certificate has flowed.

Verify that the task has been completed successfully by issuing some DISPLAY commands. If the task was
successful, the resulting output is similar to that shown in the following examples:

From the QM1 queue manager, enter the following command:

226 Securing IBM WebSphere MQ

DISPLAY CHS(TO.QM2) SSLPEER SSLCERTI

The resulting output will be similar to the following example:

DISPLAY CHSTATUS(TO.QMB) SSLPEER SSLCERTI
 4 : DISPLAY CHSTATUS(TO.QMB) SSLPEER
AMQ8417: Display Channel Status details.
 CHANNEL(TO.QM2) CHLTYPE(SDR)
 CONNAME(9.20.25.40) CURRENT
 RQMNAME(QM2)
 SSLCERTI("CN=WebSphere MQ CA,OU=WebSphere MQ Devt,O=IBM,ST=Hampshire,C=UK")
 SSLPEER("SERIALNUMBER=4C:D0:49:D5:02:5F:38,CN=QMB,OU=WebSphere MQ
Development,O=IBM,ST=Hampshire,C=UK")
 STATUS(RUNNING) SUBSTATE(MQGET)
 XMITQ(QM2)

From the QM2 queue manager, enter the following command:

DISPLAY CHS(TO.QM2) SSLPEER SSLCERTI

The resulting output will be similar to the following example:

DISPLAY CHSTATUS(TO.QM2) SSLPEER SSLCERTI
 5 : DISPLAY CHSTATUS(TO.QM2) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(TO.QM2) CHLTYPE(RCVR)
 CONNAME(9.20.35.92) CURRENT
 RQMNAME(QMA) SSLCERTI()
 SSLPEER() STATUS(RUNNING)
 SUBSTATE(RECEIVE) XMITQ()

On QM2, the SSLPEER field is empty, showing that QM1 did not send a certificate. On QM1, the value of
SSLPEER matches that of the DN in QM2's personal certificate.

Connecting a client to a queue manager securely
Secure communications that use the SSL or TLS cryptographic security protocols involve setting up the
communication channels and managing the digital certificates that you will use for authentication.

To set up your SSL or TLS installation you must define your channels to use SSL or TLS. You must also
obtain and manage your digital certificates. On a test system, you can use self-signed certificates or
certificates issued by a local certificate authority (CA). On a production system, do not use self-signed
certificates. For more information, see ../zs14140_.dita.

For full information about creating and managing certificates, see “Working with SSL or TLS on UNIX,
Linux, and Windows systems” on page 110.

This collection of topics introduces the tasks involved in setting up SSL communications, and provides
step-by-step guidance on completing those tasks.

You might also want to test SSL or TLS client authentication, which are an optional part of the protocols.
During the SSL or TLS handshake, the SSL or TLS client always obtains and validates a digital certificate
from the server. With the WebSphere MQ implementation, the SSL or TLS server always requests a
certificate from the client.

On UNIX, Linux, and Windows systems, the SSL or TLS client sends a certificate only if it has one labeled
in the correct WebSphere MQ format, which is ibmwebspheremq followed by your logon user ID changed
to lowercase, for example ibmwebspheremqmyuserid.

WebSphere MQ uses the ibmwebspheremq prefix on a label to avoid confusion with certificates for other
products. Ensure that you specify the entire certificate label in lowercase.

The SSL or TLS server always validates the client certificate if one is sent. If the client does not send a
certificate, authentication fails only if the end of the channel that is acting as the SSL or TLS server is

Security 227

defined with either the SSLCAUTH parameter set to REQUIRED or an SSLPEER parameter value set. For
more information about connecting a queue manager anonymously, see “Connecting a client to a queue
manager anonymously” on page 209.

Using self-signed certificates for mutual authentication of a client and queue
manager
Follow these sample instructions to implement mutual authentication between a client and a queue
manager, by using self-signed SSL or TLS certificates.

About this task
Scenario:

• You have a client, C1, and a queue manager, QM1, which need to communicate securely. You require
mutual authentication to be carried out between C1 and QM1.

• You have decided to test your secure communication by using self-signed certificates.

DCM on IBM i does not support self-signed certificates, so this task is not applicable on IBM i systems.

The resulting configuration looks like this:

Figure 23. Configuration resulting from this task

In Figure 17 on page 206, the key repository for QM1 contains the certificate for QM1 and the public
certificate from C1. The key repository for C1 contains the certificate for C1 and the public certificate from
QM1.

Procedure
1. Prepare the key repository on the client and queue manager, according to operating system:

• On UNIX, Linux, and Windows systems.
2. Create self-signed certificates for the client and queue manager:

• On UNIX, Linux, and Windows systems.
3. Extract a copy of each certificate:

• On UNIX, Linux, and Windows systems.
4. Transfer the public part of the C1 certificate to the QM1 system and vice versa, using a utility such as

FTP.
5. Add the partner certificate to the key repository for the client and queue manager:

• On UNIX, Linux, and Windows systems.
6. Issue the command REFRESH SECURITY TYPE(SSL) on the queue manager.
7. Define a client-connection channel in either of the following ways:

228 Securing IBM WebSphere MQ

• Using the MQCONNX call with the MQSCO structure on C1, as described in Creating a client-
connection channel on the WebSphere MQ MQI client.

• Using a client channel definition table, as described in Creating server-connection and client-
connection definitions on the server .

8. On QM1, define a server-connection channel, by issuing a command like the following example:

DEFINE CHANNEL(C1.TO.QM1) CHLTYPE(SVRCONN) TRPTYPE(TCP) SSLCIPH(RC4_MD5_US)
SSLCAUTH(REQUIRED) DESCR('Receiver channel using SSL from C1 to QM1')

The channel must have the same name as the client-connection channel you defined in step 6, and use
the same CipherSpec.

Results
Key repositories and channels are created as illustrated in Figure 17 on page 206

What to do next
Check that the task has been completed successfully by using DISPLAY commands. If the task was
successful, the resulting output is similar to that shown in the following example.

From queue manager QM1, enter the following command:

DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI

The resulting output is like the following example:

DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI
 5 : DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(C1.TO.QM1) CHLTYPE(SVRCONN)
 CONNAME(9.20.35.92) CURRENT
 SSLCERTI("CN=QM1,OU=WebSphere MQ Development,O=IBM,ST=Hampshire,C=UK")
 SSLPEER("SERIALNUMBER=4C:D0:49:D5:02:5E:02,CN=QM2,OU=WebSphere MQ
Development,O=IBM,ST=Hampshire,C=UK")
 STATUS(RUNNING) SUBSTATE(RECEIVE)

It is optional to set the SSLPEER filter attribute of the channel definitions. If the channel definition
SSLPEER is set, its value must match the subject DN in the partner certificate that was created in Step 2.
After a successful connection, the SSLPEER field in the DISPLAY CHSTATUS output shows the subject DN
of the remote client certificate.

Using CA-signed certificates for mutual authentication of a client and queue
manager
Follow these sample instructions to implement mutual authentication between a client and a queue
manager, by using CA-signed SSL or TLS certificates.

About this task
Scenario:

• You have a client, C1, and a queue manager, QM1, which need to communicate securely. You require
mutual authentication to be carried out between C1 and QM1.

• In the future you are planning to use this network in a production environment, and therefore you have
decided to use CA-signed certificates from the beginning.

The resulting configuration looks like this:

Security 229

Figure 24. Configuration resulting from this task

In Figure 18 on page 207, the key repository for C1 contains certificate for C1 and the CA certificate.
The key repository for QM1 contains the certificate for QM1 and the CA certificate. In this example both
C1's certificate and QM1's certificate were issued by the same CA. If C1's certificate and QM1's certificate
were issued by different CAs then the key repositories for C1 and QM1 must contain both CA certificates.

Procedure
1. Prepare the key repository on the client and queue manager, according to operating system:

• On UNIX, Linux, and Windows systems.
2. Request a CA-signed certificate for the client and queue manager.

You might use different CAs for the client and queue manager.

• On UNIX, Linux, and Windows systems.
3. Add the certificate authority certificate to the key repository for the client and queue manager.

If the client and queue manager are using different Certificate Authorities then the CA certificate for
each Certificate Authority must be added to both key repositories.

• On UNIX, Linux, and Windows systems.
4. Add the CA-signed certificate to the key repository for the client and queue manager:

• On UNIX, Linux, and Windows systems.
5. Define a client-connection channel in either of the following ways:

• Using the MQCONNX call with the MQSCO structure on C1, as described in Creating a client-
connection channel on the WebSphere MQ MQI client.

• Using a client channel definition table, as described in Creating server-connection and client-
connection definitions on the server .

6. On QM1, define a server-connection channel by issuing a command like the following example:

DEFINE CHANNEL(C1.TO.QM1) CHLTYPE(SVRCONN) TRPTYPE(TCP) SSLCIPH(RC2_MD5_EXPORT)
SSLCAUTH(REQUIRED) DESCR('Receiver channel using SSL from C1 to QM1')

The channel must have the same name as the client-connection channel you defined in step 6, and use
the same CipherSpec.

Results
Key repositories and channels are created as illustrated in Figure 18 on page 207.

230 Securing IBM WebSphere MQ

What to do next
Check that the task has been completed successfully by using DISPLAY commands. If the task was
successful, the resulting output is like that shown in the following example.

From the queue manager QM1, enter the following command:

DISPLAY CHSTATUS(TO.QMB) SSLPEER SSLCERTI

The resulting output is like the following example:

DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI
 5 : DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(C1.TO.QM1) CHLTYPE(SVRCONN)
 CONNAME(9.20.35.92) CURRENT
 SSLCERTI("CN=WebSphere MQ CA,OU=WebSphere MQ Devt,O=IBM,ST=Hampshire,C=UK")
 SSLPEER("SERIALNUMBER=4C:D0:49:D5:02:5F:38,CN=QMA,OU=WebSphere MQ
Development,O=IBM,ST=Hampshire,C=UK")
 STATUS(RUNNING) SUBSTATE(RECEIVE)

The SSLPEER field in the DISPLAY CHSTATUS output shows the subject DN of the remote client certificate
that was created in Step 2. The issuer name matches the subject DN of the CA certificate that signed the
personal certificate added in Step 4.

Connecting a client to a queue manager anonymously
Follow these sample instructions to modify a system with mutual authentication to allow a queue
manager to connect anonymously to another.

About this task
Scenario:

• Your queue manager and client (QM1 and C1) have been set up as in “Using CA-signed certificates for
mutual authentication of a client and queue manager” on page 207.

• You want to change C1 so that it connects anonymously to QM1.

The resulting configuration looks like this:

Figure 25. Client and queue manager allowing anonymous connection

Procedure
1. Remove the personal certificate from key repository for C1, according to operating system:

• On UNIX, Linux, and Windows systems. The certificate is labeled as follows:

Security 231

– ibmwebspheremq followed by your logon user ID folded to lowercase, for example
ibmwebspheremqmyuserid.

2. Restart the client application, or cause the client application to close and reopen all SSL or TLS
connections.

3. Allow anonymous connections on the queue manager, by issuing the following command:

ALTER CHANNEL(C1.TO.QM1) CHLTYPE(SVRCONN) SSLCAUTH(OPTIONAL)

Results
Key repositories and channels are changed as illustrated in Figure 19 on page 209

What to do next
At the server end of the channel, the presence of the peer name parameter value on the channel status
display indicates that a client certificate has flowed.

Verify that the task has been completed successfully by issuing some DISPLAY commands. If the task was
successful, the resulting output is similar to that shown in the following example:

From queue manager QM1, enter the following command:

DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI

The resulting output will be similar to the following example:

DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI
 5 : DISPLAY CHSTATUS(C1.TO.QM1) SSLPEER SSLCERTI
AMQ8417: Display Channel Status details.
 CHANNEL(C1.TO.QM1) CHLTYPE(SVRCONN)
 CONNAME(9.20.35.92) CURRENT
 SSLCERTI() SSLPEER()
 STATUS(RUNNING) SUBSTATE(RECEIVE)

The SSLCERTI and SSLPEER fields are empty, showing that C1 did not send a certificate.

Specifying CipherSpecs
Specify a CipherSpec by using the SSLCIPH parameter in either the DEFINE CHANNEL MQSC command
or the ALTER CHANNEL MQSC command.

Some of the CipherSpecs that you can use with IBM WebSphere MQ are FIPS compliant. Others, such
as NULL_MD5, are not. Similarly, some of the FIPS compliant CipherSpecs are also Suite B compliant
although others, are not. All Suite B compliant CipherSpecs are also FIPS compliant. All Suite B compliant
CipherSpecs fall into two groups: 128 bit (for example, ECDHE_ECDSA_AES_128_GCM_SHA256) and 192
bit (for example, ECDHE_ECDSA_AES_256_GCM_SHA384),

The following diagram illustrates the relationship between these subsets:

Cipher specifications that you can use with IBM WebSphere MQ SSL and TLS support are listed in the
following table. When you request a personal certificate, you specify a key size for the public and private

232 Securing IBM WebSphere MQ

key pair. The key size that is used during the SSL handshake is the size stored in the certificate unless it is
determined by the CipherSpec, as noted in the table.

CipherSpec name Protoc
ol used

MAC
algorithm

Encrypti
on
algorith
m

Encryptio
n bits

FIP
S1

Suite B
128 bit

Suite
B 192
bit

NULL_MD5 a SSL 3.0 MD5 None 0 No No No

NULL_SHA a SSL 3.0 SHA-1 None 0 No No No

RC4_MD5_EXPORT 2 a SSL 3.0 MD5 RC4 40 No No No

RC4_MD5_US a SSL 3.0 MD5 RC4 128 No No No

RC4_SHA_US a SSL 3.0 SHA-1 RC4 128 No No No

RC2_MD5_EXPORT 2 a SSL 3.0 MD5 RC2 40 No No No

DES_SHA_EXPORT 2 a SSL 3.0 SHA-1 DES 56 No No No

RC4_56_SHA_EXPORT1024 3 b SSL 3.0 SHA-1 RC4 56 No No No

DES_SHA_EXPORT1024 3 b SSL 3.0 SHA-1 DES 56 No No No

TLS_RSA_WITH_AES_128_CBC_SHA a TLS 1.0 SHA-1 AES 128 Yes No No

TLS_RSA_WITH_AES_256_CBC_SHA 4 a TLS 1.0 SHA-1 AES 256 Yes No No

TLS_RSA_WITH_DES_CBC_SHA a TLS 1.0 SHA-1 DES 56 No5 No No

FIPS_WITH_DES_CBC_SHA b SSL 3.0 SHA-1 DES 56 No6 No No

TLS_RSA_WITH_AES_128_GCM_SHA256 b TLS 1.2 AEAD
AES-128
GCM

AES 128 Yes No No

TLS_RSA_WITH_AES_256_GCM_SHA384 b TLS 1.2 AEAD
AES-256
GCM

AES 256 Yes No No

TLS_RSA_WITH_AES_128_CBC_SHA256 b TLS 1.2 SHA-256 AES 128 Yes No No

TLS_RSA_WITH_AES_256_CBC_SHA256 b TLS 1.2 SHA-256 AES 256 Yes No No

ECDHE_ECDSA_RC4_128_SHA256 b TLS 1.2 SHA-1 RC4 128 No No No

ECDHE_RSA_RC4_128_SHA256 b TLS 1.2 SHA_1 RC4 128 No No No

ECDHE_ECDSA_AES_128_CBC_SHA256 b TLS 1.2 SHA-256 AES 128 Yes No No

ECDHE_ECDSA_AES_256_CBC_SHA384 b TLS 1.2 SHA-384 AES 256 Yes No No

ECDHE_RSA_AES_128_CBC_SHA256 b TLS 1.2 SHA-256 AES 128 Yes No No

ECDHE_RSA_AES_256_CBC_SHA384 b TLS 1.2 SHA-384 AES 256 Yes No No

ECDHE_ECDSA_AES_128_GCM_SHA256 b TLS 1.2 AEAD
AES-128
GCM

AES 128 Yes Yes No

ECDHE_ECDSA_AES_256_GCM_SHA384 b TLS 1.2 AEAD
AES-256
GCM

AES 256 Yes No Yes

Security 233

CipherSpec name Protoc
ol used

MAC
algorithm

Encrypti
on
algorith
m

Encryptio
n bits

FIP
S1

Suite B
128 bit

Suite
B 192
bit

ECDHE_RSA_AES_128_GCM_SHA256 b TLS 1.2 AEAD
AES-128
GCM

AES 128 Yes No No

ECDHE_RSA_AES_256_GCM_SHA384 b TLS 1.2 AEAD
AES-256
GCM

AES 256 Yes No No

TLS_RSA_WITH_NULL_SHA256 b TLS 1.2 SHA-256 None 0 No No No

ECDHE_RSA_NULL_SHA256 b TLS 1.2 SHA-1 None 0 No No No

ECDHE_ECDSA_NULL_SHA256 b TLS 1.2 SHA-1 None 0 No No No

TLS_RSA_WITH_NULL_NULL b TLS 1.2 None None 0 No No No

TLS_RSA_WITH_RC4_128_SHA256 b TLS 1.2 SHA-1 RC4 128 No No No

Notes:

1. Specifies whether the CipherSpec is FIPS-certified on a FIPS-certified platform. See Federal Information
Processing Standards (FIPS) for an explanation of FIPS.

2. The maximum handshake key size is 512 bits. If either of the certificates exchanged during the SSL
handshake has a key size greater than 512 bits, a temporary 512-bit key is generated for use during the
handshake.

3. The handshake key size is 1024 bits.
4. This CipherSpec cannot be used to secure a connection from the WebSphere MQ Explorer to a queue

manager unless the appropriate unrestricted policy files are applied to the JRE used by the Explorer.
5. This CipherSpec was FIPS 140-2 certified before 19 May 2007.
6. This CipherSpec was FIPS 140-2 certified before 19 May 2007. The name FIPS_WITH_DES_CBC_SHA is

historical and reflects the fact that this CipherSpec was previously (but is no longer) FIPS-compliant. This
CipherSpec is deprecated and its use is not recommended.

7. This CipherSpec can be used to transfer up to 32 GB of data before the connection is terminated with error
AMQ9288. To avoid this error, either avoid using triple DES, or enable secret key reset when using this
CipherSpec.

Platform support:

• a Available on all supported platforms.
• b Available only on UNIX, Linux, and Windows platforms.

Related concepts
“Digital certificates and CipherSpec compatibility in IBM WebSphere MQ” on page 33
This topic provides information on how to choose appropriate CipherSpecs and digital certificates for
your security policy, by outlining the relationship between CipherSpecs and digital certificates in IBM
WebSphere MQ.
Related reference
DEFINE CHANNEL
ALTER CHANNEL

234 Securing IBM WebSphere MQ

Obtaining information about CipherSpecs using IBM WebSphere MQ Explorer
You can use IBM WebSphere MQ Explorer to display descriptions of CipherSpecs.

Use the following procedure to obtain information about the CipherSpecs in “Specifying CipherSpecs” on
page 210:

1. Open IBM WebSphere MQ Explorer and expand the Queue Managers folder.
2. Ensure that you have started your queue manager.
3. Select the queue manager you want to work with and click Channels.
4. Right-click the channel you want to work with and select Properties.
5. Select the SSL property page.
6. Select from the list the CipherSpec you want to work with. A description is displayed in the window

below the list.

Alternatives for specifying CipherSpecs
For those platforms where the operating system provides the SSL support, your system might support
new CipherSpecs. You can specify a new CipherSpec with the SSLCIPH parameter, but the value you
supply depends on your platform.

Note: This section does not apply to UNIX, Linux or Windows systems, because the CipherSpecs are
provided with the WebSphere MQ product, so new CipherSpecs do not become available after shipment.

For those platforms where the operating system provides the SSL support, your system might support
new CipherSpecs that are not included in “Specifying CipherSpecs” on page 210. You can specify a new
CipherSpec with the SSLCIPH parameter, but the value you supply depends on your platform. In all cases
the specification must correspond to an SSL CipherSpec that is both valid and supported by the version of
SSL your system is running.

IBM i
A two-character string representing a hexadecimal value.

For more information about the permitted values, refer to the appropriate product documentation
(search for cipher_spec in the IBM i product documentation).

You can use either the CHGMQMCHL or the CRTMQMCHL command to specify the value, for example:

CRTMQMCHL CHLNAME('channel name') SSLCIPH('hexadecimal value')

You can also use the ALTER QMGR MQSC command to set the SSLCIPH parameter.

z/OS
A two-character string representing a hexadecimal value. The hexadecimal codes correspond to the
values defined in the SSL protocol.

For more information, refer to the description of gsk_environment_open() in the API reference chapter
of z/OS Cryptographic Services System SSL Programming, SC24-5901, where there is a list of all the
supported SSL V3.0 and TLS V1.0 cipher specifications in the form of 2-digit hexadecimal codes.

Considerations for WebSphere MQ clusters
With WebSphere MQ clusters it is safest to use the CipherSpec names in “Specifying CipherSpecs” on
page 210. If you use an alternative specification, be aware that the specification might not be valid on
other platforms. For more information, refer to “SSL and clusters” on page 240.

Specifying a CipherSpec for an IBM WebSphere MQ MQI client
You have three options for specifying a CipherSpec for an IBM WebSphere MQ MQI client.

These options are as follows:

Security 235

https://www.ibm.com/docs/en/i

• Using a channel definition table
• Using the SSLCipherSpec field in the MQCD structure, at MQCD_VERSION_7 or higher, on an MQCONNX

call.
• Using the Active Directory (on Windows systems with Active Directory support)

Specifying a CipherSuite with IBM WebSphere MQ classes for Java and IBM
WebSphere MQ classes for JMS
IBM WebSphere MQ classes for Java and IBM WebSphere MQ classes for JMS specify CipherSuites
differently from other platforms.

For information about specifying a CipherSuite with IBM WebSphere MQ classes for Java, see Secure
Sockets Layer (SSL) support.

For information about specifying a CipherSuite with IBM WebSphere MQ classes for JMS, see Using
Secure Sockets Layer (SSL) with WebSphere MQ classes for JMS.

Auditing
You can check for security intrusions, or attempted intrusions, by using event messages. You can also
check the security of your system by using the IBM WebSphere MQ Explorer.

To detect attempts to perform unauthorized actions such as connecting to a queue manager or put
a message on a queue, inspect the event messages produced by your queue managers, particularly
authority event messages. For more information about queue manager event messages, see Queue
manager events, and for more information about event monitoring in general, see Event monitoring .

Keeping clusters secure
Authorize or prevent queue managers joining clusters or putting messages on cluster queues. Force a
queue manager to leave a cluster. Take account of some additional considerations when configuring SSL
for clusters.

Stopping unauthorized queue managers sending messages
Prevent unauthorized queue managers sending messages to your queue manager using a channel
security exit.

Before you begin
Clustering has no effect on the way security exits work. You can restrict access to a queue manager in the
same way as you would in a distributed queuing environment.

About this task
Prevent selected queue managers from sending messages to your queue manager:

Procedure
1. Define a channel security exit program on the CLUSRCVR channel definition.
2. Write a program that authenticates queue managers trying to send messages on your cluster-receiver

channel and denies them access if they are not authorized.

What to do next
Channel security exit programs are called at MCA initiation and termination.

236 Securing IBM WebSphere MQ

Stopping unauthorized queue managers putting messages on your queues
Use the channel put authority attribute on the cluster-receiver channel to stop unauthorized queue
managers putting messages on your queues. Authorize a remote queue manager by checking the user ID
in the message using RACF on z/OS, or the OAM on other platforms.

About this task
Use the security facilities of a platform and the access control mechanism in WebSphere MQ to control
access to queues.

Procedure
1. To prevent certain queue managers from putting messages on a queue, use the security facilities

available on your platform.

For example:

• RACF or other external security managers on WebSphere MQ for z/OS
• The object authority manager (OAM) on other platforms.

2. Use the put authority, PUTAUT, attribute on the CLUSRCVR channel definition.

The PUTAUT attribute allows you to specify what user identifiers are to be used to establish authority
to put a message to a queue.

The options on the PUTAUT attribute are:
DEF

Use the default user ID. On z/OS, the check might involve using both the user ID received from the
network and that derived from MCAUSER.

CTX
Use the user ID in the context information associated with the message. On z/OS the check might
involve using either the user ID received from the network, or that derived from MCAUSER, or both.
Use this option if the link is trusted and authenticated.

ONLYMCA (z/OS only)
As for DEF, but any user ID received from the network is not used. Use this option if the link is not
trusted. You want to allow only a specific set of actions on it, which are defined for the MCAUSER.

ALTMCA (z/OS only)
As for CTX, but any user ID received from the network is not used.

Authorizing putting messages on remote cluster queues
On your platform, authorize access to connect to the queue manager and to put to the queue on that
queue manager.

About this task
The default behavior is to perform access control against the SYSTEM.CLUSTER.TRANSMIT.QUEUE. Note
that this behavior applies, even if you are using multiple transmission queues.

The specific behavior described in this topic applies only when you have configured the
ClusterQueueAccessControl attribute in the qm.ini file to be RQMName, as described in the
Security stanza topic, and restarted the queue manager.

Procedure
• For UNIX, Linux and Windows systems, issue the following commands:

setmqaut -m QMgrName -t qmgr -g GroupName +connect
setmqaut -m QMgrName -t queue -n QueueName -g GroupName -all +put

Security 237

The user can put messages only to the specified cluster queue, and no other cluster queues.

The variable names have the following meanings:
QMgrName

The name of the queue manager.
GroupName

The name of the group to be granted access.
QueueName

Name of the queue or generic profile for which to change authorizations.

What to do next
If you specify a reply-to queue when you put a message on a cluster queue, the consuming application
must have authority to send the reply. Set this authority by following the instructions in “Granting
authority to put messages to a remote cluster queue” on page 186.

Related information
Security stanza in qm.ini

Preventing queue managers joining a cluster
If a rogue queue manager joins a cluster it is difficult to prevent it receiving messages you do not want it
to receive.

Procedure
If you want to ensure that only certain authorized queue managers join a cluster you have a choice of
three techniques:

• Using channel authentication records you can block the cluster channel connection based on: the
remote IP address, the remote queue manager name, or the SSL/TLS Distinguished Name provided by
the remote system.

• Write an exit program to prevent unauthorized queue managers from writing to
SYSTEM.CLUSTER.COMMAND.QUEUE. Do not restrict access to SYSTEM.CLUSTER.COMMAND.QUEUE
such that no queue manager can write to it, or you would prevent any queue manager from joining the
cluster.

• A security exit program on the CLUSRCVR channel definition.

Security exits on cluster channels
Extra considerations when using security exits on cluster channels.

About this task
When a cluster-sender channel is first started, it uses attributes defined manually by a system
administrator. When the channel is stopped and restarted, it picks up the attributes from the
corresponding cluster-receiver channel definition. The original cluster-sender channel definition is
overwritten with the new attributes, including the SecurityExit attribute.

Procedure
1. You must define a security exit on both the cluster-sender end and the cluster-receiver end of a

channel.

The initial connection must be made with a security-exit handshake, even though the security exit
name is sent over from the cluster-receiver definition.

2. Validate the PartnerName in the MQCXP structure in the security exit.

The exit must allow the channel to start only if the partner queue manager is authorized

238 Securing IBM WebSphere MQ

3. Design the security exit on the cluster-receiver definition to be receiver initiated.

4. If you design it as sender initiated, an unauthorized queue manager without a security exit can join the
cluster because no security checks are performed.

Not until the channel is stopped and restarted can the SCYEXIT name be sent over from the cluster-
receiver definition and full security checks made.

5. To view the cluster-sender channel definition that is currently in use, use the command:

DISPLAY CLUSQMGR(queue manager) ALL

The command displays the attributes that have been sent across from the cluster-receiver definition.
6. To view the original definition, use the command:

DISPLAY CHANNEL(channel name) ALL

7. You might need to define a channel auto-definition exit, CHADEXIT, on the cluster-sender queue
manager, if the queue managers are on different platforms.

Use the channel auto-definition exit to set the SecurityExit attribute to an appropriate format for
the target platform.

8. Deploy and configure the security-exit.

Windows, UNIX and Linux systems

• The security-exit dynamic link library must be in the path specified in the SCYEXIT attribute of
the channel definition.

• The channel auto-definition exit dynamic link library must be in the path specified in the
CHADEXIT attribute of the queue manager definition.

Forcing unwanted queue managers to leave a cluster
Force an unwanted queue manager to leave a cluster by issuing the RESET CLUSTER command at a full
repository queue manager.

About this task
You can force an unwanted queue manager to leave a cluster. If for example, a queue manager is deleted
but its cluster-receiver channels are still defined to the cluster. You might want to tidy up.

Only full repository queue managers are authorized to eject a queue manager from a cluster.

Follow this procedure to eject the queue manager OSLO from the cluster NORWAY:

Procedure
1. On a full repository queue manager, issue the command:

RESET CLUSTER(NORWAY) QMNAME(OSLO) ACTION(FORCEREMOVE)

2. Alternative use the QMID instead of QMNAME in the command:

RESET CLUSTER(NORWAY) QMID(qmid) ACTION(FORCEREMOVE)

Results
The queue manager that is force removed does not change: its local cluster definitions show it to be in the
cluster. The definitions at all other queue managers do not show it in the cluster.

Security 239

Preventing queue managers receiving messages
You can prevent a cluster queue manager from receiving messages it is unauthorized to receive by using
exit programs.

About this task
It is difficult to stop a queue manager that is a member of a cluster from defining a queue. There is a
danger that a rogue queue manager joins a cluster, and defines its own instance of one of the queues in
the cluster. It can now receive messages that it is not authorized to receive. To prevent a queue manager
receiving messages, use one of the following options given in the procedure.

Procedure
• A channel exit program on each cluster-sender channel. The exit program uses the connection name to

determine the suitability of the destination queue manager to be sent the messages.
• A cluster workload exit program, which uses the destination records to determine the suitability of the

destination queue and queue manager to be sent the messages.

SSL and clusters
When configuring SSL for clusters, be aware a CLUSRCVR channel definition is propagated to other queue
managers as an auto-defined CLUSSDR channel. If a CLUSRCVR channel uses SSL, you must configure
SSL on all queue managers that communicate using the channel.

For more information about SSL, see WebSphere MQ support for SSL and TLS. The advice there is
generally applicable to cluster channels, but you might want to give some special consideration to the
following:

In an IBM WebSphere MQ cluster a particular CLUSRCVR channel definition is frequently propagated to
many other queue managers where it is transformed into an auto-defined CLUSSDR. Subsequently the
auto-defined CLUSSDR is used to start a channel to the CLUSRCVR. If the CLUSRCVR is configured for SSL
connectivity the following considerations apply:

• All queue managers that want to communicate with this CLUSRCVR must have access to SSL support.
This SSL provision must support the CipherSpec for the channel.

• The different queue managers to which the auto-defined cluster-sender channels have been
propagated will each have a different distinguished name associated. If distinguished name peer
checking is to be used on the CLUSRCVR it must be set up so all of the distinguished names that
can be received are successfully matched.

For example, let us assume that all of the queue managers that will host cluster-sender channels
which will connect to a particular CLUSRCVR, have certificates associated. Let us also assume that
the distinguished names in all of these certificates define the country as UK, organization as IBM,
the organization unit as IBM WebSphere MQ Development, and all have common names in the form
DEVT.QMnnn, where nnn is numeric.

In this case an SSLPEER value of C=UK, O=IBM, OU=WebSphere MQ Development,
CN=DEVT.QM* on the CLUSRCVR will allow all the required cluster-sender channels to connect
successfully, but will prevent unwanted cluster-sender channels from connecting.

• If custom CipherSpec strings are used, be aware that the custom string formats are not allowed on all
platforms. An example of this is that the CipherSpec string RC4_SHA_US has a value of 05 on IBM i
but is not a valid specification on UNIX, Linux or Windows systems. So if custom SSLCIPH parameters
are used on a CLUSRCVR, all resulting auto-defined cluster-sender channels should reside on platforms
on which the underlying SSL support implements this CipherSpec and on which it can be specified
with the custom value. If you cannot select a value for the SSLCIPH parameter that will be understood
throughout your cluster you will need a channel auto definition exit to change it into something the
platforms being used will understand. Use the textual CipherSpec strings where possible (for example
RC4_MD5_US).

240 Securing IBM WebSphere MQ

An SSLCRLNL parameter applies to an individual queue manager and is not propagated to other queue
managers within a cluster.

Upgrading clustered queue managers and channels to SSL
Upgrade the cluster channels one at a time, changing all the CLUSRCVR channels before the CLUSSDR
channels.

Before you begin
Consider the following considerations, as these might affect your choice of CipherSpec for a cluster:

• Some CipherSpecs are not available on all platforms. Take care to choose a CipherSpec that is
supported by all of the queue managers in the cluster.

• Some CipherSpecs might be new in the current WebSphere MQ release and not supported in older
releases. A cluster containing queue managers running at different MQ releases is only be able to use
the CipherSpecs supported by each release.

To use a new CipherSpec within a cluster, you must first migrate all of the cluster queue managers to the
current release.

• Some CipherSpecs require a specific type of digital certificate to be used, notably those that use Elliptic
Curve Cryptography.

Upgrade all queue managers in the cluster to WebSphere MQ V6 or higher, if they are not already at these
levels. Distribute the certificates and keys so that SSL works from each of them.

About this task
Change one CLUSRCVR at a time, and allow the changes to flow through the cluster before changing the
next. Make sure that you do not change the reverse path until the changes for the current channel have
been distributed throughout the cluster.

Procedure
1. Switch the CLUSRCVR channels to SSL in any order you like.

The changes flow in the opposite direction over channels which are not changed to SSL.
2. Switch all manual CLUSSDR channels to SSL.

This does not have any effect on the operation of the cluster, unless you use the REFRESH CLUSTER
command with the REPOS(YES) option.

Note: For large clusters, use of the REFRESH CLUSTER command can be disruptive to the cluster
while it is in progress, and again at 27 day intervals thereafter when the cluster objects automatically
send status updates to all interested queue managers. See Refreshing in a large cluster can affect
performance and availability of the cluster.

Related concepts
“Specifying CipherSpecs” on page 210
Specify a CipherSpec by using the SSLCIPH parameter in either the DEFINE CHANNEL MQSC command
or the ALTER CHANNEL MQSC command.
“Digital certificates and CipherSpec compatibility in IBM WebSphere MQ” on page 33
This topic provides information on how to choose appropriate CipherSpecs and digital certificates for
your security policy, by outlining the relationship between CipherSpecs and digital certificates in IBM
WebSphere MQ.
Related information
Clustering: Using REFRESH CLUSTER best practices

Security 241

Disabling SSL or TLS on clustered queue managers and channels
To turn off SSL or TLS, set the SSLCIPH parameter to ' '. Disable TLS on the cluster channels
individually, changing all the cluster receiver channels before the cluster sender channels.

About this task
Change one cluster receiver channel at a time, and allow the changes to flow through the cluster before
changing the next.

Important: Ensure that you do not change the reverse path until the changes for the current channel have
been distributed throughout the cluster.

Procedure
1. Set the value of the SSLCIPH parameter to ' ', an empty string in a single quotation mark .

You can turn off SSL or TLS on the cluster receiver channels in any order you like.

Note that the changes flow in the opposite direction over channels on which you leave SSL or TLS
active.

2. Check that the new value is reflected in all the other queue managers by using the command DISPLAY
CLUSQMGR(*) ALL.

3. Turn off SSL or TLS on all manual cluster sender channels.
This does not have any effect on the operation of the cluster, unless you use the REFRESH CLUSTER
command with the REPOS(YES) option.

For large clusters, use of the REFRESH CLUSTER command can be disruptive to the cluster while
it is in progress, and again at regular intervals thereafter, when the cluster objects automatically
send status updates to all interested queue managers. See Refreshing in a large cluster can affect
performance and availability of the cluster for more information.

4. Stop and restart the cluster sender channels.

Publish/subscribe security
The components and interactions that are involved in publish/subscribe are described as an introduction
to the more detailed explanations and examples that follow.

There are a number of components involved in publishing and subscribing to a topic. Some of the security
relationships between them are illustrated in Figure 26 on page 243 and described in the following
example.

242 Securing IBM WebSphere MQ

Figure 26. Publish/subscribe security relationships

Topics
Topics are identified by topic strings, and are typically organized into trees, see Topic trees. You need
to associate a topic with a topic object to control access to the topic. “Topic security model” on page
245 explains how you secure topics using topic objects.

Administrative topic objects
You can control who has access to a topic, and for what purpose, by using the command setmqaut
with a list of administrative topic objects. See the examples, “Grant access to a user to subscribe to a
topic” on page 249 and “Grant access to a user to publish to a topic” on page 254.

Subscriptions

Subscribe to one or more topics by creating a subscription supplying a topic string, which can include
wildcards, to match against the topic strings of publications. For further details, see:
Subscribe using a topic object

“Subscribing using the topic object name” on page 246
Subscribe using a topic

“Subscribing using a topic string where the topic node does not exist” on page 247
Subscribe using a topic with wildcards

“Subscribing using a topic string that contains wildcard characters” on page 247

Security 243

A subscription contains information about the identity of the subscriber and the identity of the
destination queue on to which the publications are to be placed. It also contains information about
how the publication is to be placed on the destination queue.

As well as defining which subscribers have the authority to subscribe to certain topics, you can restrict
subscriptions to being used by an individual subscriber. You can also control what information about
the subscriber is used by the queue manager when publications are placed on to the destination
queue. See “Subscription security” on page 259.

Queues

The destination queue is an important queue to secure. It is local to the subscriber, and publications
that matched the subscription are placed onto it. You need to consider access to the destination
queue from two perspectives:

1. Putting a publication on to the destination queue.
2. Getting the publication off the destination queue.

The queue manager puts a publication onto the destination queue using an identity provided by the
subscriber. The subscriber, or a program that has been delegated the task of getting publications,
takes messages off the queue. See “Authority to destination queues” on page 247.

There are no topic object aliases, but you can use an alias queue as the alias for a topic object. If
you do so, as well as checking authority to use the topic for publish or subscribe, the queue manager
checks authority to use the queue.

Publish/subscribe security between queue managers

Your permission to publish or subscribe to a topic is checked on the local queue manager using
local identities and authorizations. Authorization does not depend on whether the topic is defined or
not, nor where it is defined. Consequently, you need to perform topic authorization on every queue
manager in a cluster when clustered topics are used.

Note: The security model for topics differs from the security model for queues. You can achieve the
same result for queues by defining a queue alias locally for every clustered queue.

Queue managers exchange subscriptions in a cluster. In most WebSphere MQ cluster configurations,
channels are configured with PUTAUT=DEF to place messages onto target queues using the authority
of the channel process. You can modify the channel configuration to use PUTAUT=CTX to require
the subscribing user to have authority to propagate a subscription onto another queue manager in a
cluster.

Publish/subscribe security between queue managers describes how to change your channel
definitions to control who is allowed to propagate subscriptions onto other servers in the cluster.

Authorization
You can apply authorization to topic objects, just like queues and other objects. There are three
authorization operations, pub, sub, and resume that you can apply only to topics. The details are
described in Specifying authorities for different object types.

Function calls

In publish and subscribe programs, like in queued programs, authorization checks are made when
objects are opened, created, changed, or deleted. Checks are not made when MQPUT or MQGET MQI
calls are made to put and get publications.

To publish a topic, perform an MQOPEN on the topic, which performs the authorization checks. Publish
messages to the topic handle using the MQPUT command, which performs no authorization checks.

To subscribe to a topic, typically you perform an MQSUB command to create or resume the
subscription, and also to open the destination queue to receive publications. Alternatively, perform a
separate MQOPEN to open the destination queue, and then perform the MQSUB to create or resume the
subscription.

Whichever calls you use, the queue manager checks that you can subscribe to the topic and get
the resulting publications from the destination queue. If the destination queue is unmanaged,

244 Securing IBM WebSphere MQ

authorization checks are also made that the queue manager is able to place publications on the
destination queue. It uses the identity it adopted from a matching subscription. It is assumed that the
queue manager is always able to place publications onto managed destination queues.

Roles

Users are involved in four roles in running publish/subscribe applications:

1. Publisher
2. Subscriber
3. Topic administrator
4. WebSphere MQ Administrator - member of group mqm

Define groups with appropriate authorizations corresponding to the publish, subscribe, and topic
administration roles. You can then assign principals to these groups authorizing them to perform
specific publish and subscribe tasks.

In addition, you need to extend the administrative operations authorizations to the administrator of
the queues and channels responsible for moving publications and subscriptions.

Topic security model
Only defined topic objects can have associated security attributes. For a description of topic objects,
see Administrative topic objects. The security attributes specify whether a specified user ID, or security
group, is permitted to perform a subscribe or a publish operation on each topic object.

The security attributes are associated with the appropriate administration node in the topic tree. When
an authority check is made for a particular user ID during a subscribe or publish operation, the authority
granted is based on the security attributes of the associated topic tree node.

The security attributes are an access control list, indicating what authority a particular operating system
user ID or security group has to the topic object.

Consider the following example where the topic objects have been defined with the security attributes, or
authorities shown:

Table 17. Example topic object authorities

Topic name Topic string
Authorities - not
z/OS z/OS authorities

SECROOT SEC None None

SECGOOD SEC/GOOD usr1+subscribe ALTER

HLQ.SUBSCRIBE.SECGOOD

SECBAD SEC/BAD None None

HLQ.SUBSCRIBE.SECBAD

SECCOMB SEC/COMB None None

HLQ.SUBSCRIBE.SECCOMB

SECCOMBB SEC/COMB/
GOOD/BAD

None None

HLQ.SUBSCRIBE.SECCOMBB

SECCOMBG SEC/COMB/GOOD usr2+subscribe ALTER

HLQ.SUBSCRIBE.SECCOMBG

Security 245

Table 17. Example topic object authorities (continued)

Topic name Topic string
Authorities - not
z/OS z/OS authorities

SECCOMBN SEC/COMB/BAD None None

HLQ.SUBSCRIBE.SECCOMBN

The topic tree with the associated security attributes at each node can be represented as follows:

The examples listed give the following authorizations:

• At the root node of the tree /SEC, no user has authority at that node.
• usr1 has been granted subscribe authority to the object /SEC/GOOD
• usr2 has been granted subscribe authority to the object /SEC/COMB/GOOD

Subscribing using the topic object name
When subscribing to a topic object by specifying the MQCHAR48 name, the corresponding node in the
topic tree is located. If the security attributes associated with the node indicate that the user has
authority to subscribe, then access is granted.

If the user is not granted access, the parent node in the tree determines if the user has authority to
subscribe at the parent node level. If so, then access is granted. If not, then the parent of that node is
considered. The recursion continues until a node is located that grants subscribe authority to the user.
The recursion stops when the root node is considered without authority having been granted. In the latter
case, access is denied.

In short, if any node in the path grants authority to subscribe to that user or application, the subscriber is
allowed to subscribe at that node, or anywhere below that node in the topic tree.

The root node in the example is SEC.

The user is granted subscribe authority if the access control list indicates that the user ID itself has
authority, or that an operating system security group of which the user ID is a member has authority.

So, for example:

• If usr1 tries to subscribe, using a topic string of SEC/GOOD, the subscription would be allowed as
the user ID has access to the node associated with that topic. However, if usr1 tried to subscribe
using topic string SEC/COMB/GOOD the subscription would not be allowed as the user ID does not have
access to the node associated with it.

• If usr2 tries to subscribe, using a topic string of SEC/COMB/GOOD the subscription would be allowed
to as the user ID has access to the node associated with the topic. However, if usr2 tried to subscribe

246 Securing IBM WebSphere MQ

to SEC/GOOD the subscription would not be allowed as the user ID does not have access to the node
associated with it.

• If usr2 tries to subscribe using a topic string of SEC/COMB/GOOD/BAD the subscription would be
allowed to because the user ID has access to the parent node SEC/COMB/GOOD.

• If usr1 or usr2 tries to subscribe using a topic string of /SEC/COMB/BAD, neither would be allowed as
they do not have access to the topic node associated with it, or the parent nodes of that topic.

A subscribe operation specifying the name of a topic object that does not exist results in an
MQRC_UNKNOWN_OBJECT_NAME error.

Subscribing using a topic string where the topic node exists
The behavior is the same as when specifying the topic by the MQCHAR48 object name.

Subscribing using a topic string where the topic node does not exist
Consider the case of an application subscribing, specifying a topic string representing a topic node that
does not currently exist in the topic tree. The authority check is performed as outlined in the previous
section. The check starts with the parent node of that which is represented by the topic string. If the
authority is granted, a new node representing the topic string is created in the topic tree.

For example, usr1 tries to subscribe to a topic SEC/GOOD/NEW. Authority is granted as usr1 has access
to the parent node SEC/GOOD. A new topic node is created in the tree as the following diagram shows.
The new topic node is not a topic object it does not have any security attributes associated with it directly;
the attributes are inherited from its parent.

Subscribing using a topic string that contains wildcard characters
Consider the case of subscribing using a topic string that contains a wildcard character. The authority
check is made against the node in the topic tree that matches the fully qualified part of the topic string.

So, if an application subscribes to SEC/COMB/GOOD/*, an authority check is carried out as outlined in the
previous two sections on the node SEC/COMB/GOOD in the topic tree.

Similarly, if an application needs to subscribe to SEC/COMB/*/GOOD, an authority check is carried out on
the node SEC/COMB.

Authority to destination queues
When subscribing to a topic, one of the parameters is the handle hobj of a queue that has been opened
for output to receive the publications.

If hobj is not specified, but is blank, a managed queue is created if the following conditions apply:

• The MQSO_MANAGED option has been specified.

Security 247

• The subscription does not exist.
• Create is specified.

If hobj is blank, and you are altering or resuming an existing subscription, the previously provided
destination queue could be either managed or unmanaged.

The application or user making the MQSUB request must have the authority to put messages to the
destination queue it has provided; in effect authority to have published messages put on that queue. The
authority check follows the existing rules for queue security checking.

The security checking includes alternate user ID and context security checks where required. To be able
to set any of the Identity context fields you must specify the MQSO_SET_IDENTITY_CONTEXT option as
well as the MQSO_CREATE or MQSO_ALTER option. You cannot set any of the Identity context fields on an
MQSO_RESUME request.

If the destination is a managed queue, no security checks are performed against the managed
destination. If you are allowed to subscribe to a topic it is assumed that you can use managed
destinations.

Publishing using the topic name or topic string where the topic node exists
The security model for publishing is the same as that for subscribing, with the exception of wildcards.
Publications do not contain wildcards; so there is no case of a topic string containing wildcards to
consider.

The authorities to publish and subscribe are distinct. A user or group can have the authority to do one
without necessarily being able to do the other.

When publishing to a topic object by specifying either the MQCHAR48 name or the topic string, the
corresponding node in the topic tree is located. If the security attributes associated with the topic node
indicates that the user has authority to publish, then access is granted.

If access is not granted, the parent node in the tree determines if the user has authority to publish at that
level. If so, then access is granted. If not, the recursion continues until a node is located which grants
publish authority to the user. The recursion stops when the root node is considered without authority
having been granted. In the latter case, access is denied.

In short, if any node in the path grants authority to publish to that user or application, the publisher is
allowed to publish at that node or anywhere below that node in the topic tree.

Publishing using the topic name or topic string where the topic node does not exist
As with the subscribe operation, when an application publishes, specifying a topic string representing
a topic node that does not currently exist in the topic tree, the authority check is performed starting
with the parent of the node represented by the topic string. If the authority is granted, a new node
representing the topic string is created in the topic tree.

Publishing using an alias queue that resolves to a topic object
If you publish using an alias queue that resolves to a topic object then security checking occurs on both
the alias queue and the underlying topic to which it resolves.

The security check on the alias queue verifies that the user has authority to put messages on that alias
queue and the security check on the topic verifies that the user can publish to that topic. When an alias
queue resolves to another queue, checks are not made on the underlying queue. Authority checking is
performed differently for topics and queues.

Closing a subscription
There is additional security checking if you close a subscription using the MQCO_REMOVE_SUB option if
you did not create the subscription under this handle.

248 Securing IBM WebSphere MQ

A security check is performed to ensure that you have the correct authority to do this as the action results
in the removal of the subscription. If the security attributes associated with the topic node indicate that
the user has authority, then access is granted. If not, then the parent node in the tree is considered to
determine if the user has authority to close the subscription. The recursion continues until either authority
is granted or the root node is reached.

Defining, altering, and deleting a subscription
No subscribe security checks are performed when a subscription is created administratively, rather
than using an MQSUB API request. The administrator has already been given this authority through the
command.

Security checks are performed to ensure that publications can be put on the destination queue associated
with the subscription. The checks are performed in the same way as for an MQSUB request.

The user ID that is used for these security checks depends upon the command being issued. If the
SUBUSER parameter is specified it affects the way the check is performed, as shown in Table 18 on page
249:

Table 18. User IDs used for security checks for commands

Command SUBUSER
specified
and blank

SUBUSER
specified
and
completed

SUBUSER
not
specified

Use the
administrato
r ID

Use the
administrato
r ID

Use the
administrato
r ID

Use the user
ID from the
existing
subscription

The only security check performed when deleting subscriptions using the DELETE SUB command is the
command security check.

Example publish/subscribe security setup
This section describes a scenario that has access control setup on topics in a way that allows the security
control to be applied as required.

Grant access to a user to subscribe to a topic
This topic is the first one in a list of tasks that tells you how to grant access to topics by more than one
user.

About this task
This task assumes that no administrative topic objects exist, nor have any profiles been defined for
subscription or publication. The applications are creating new subscriptions, rather than resuming
existing ones, and are doing so using the topic string only.

An application can make a subscription by providing a topic object, or a topic string, or a combination of
both. Whichever way the application selects, the effect is to make a subscription at a certain point in the
topic tree. If this point in the topic tree is represented by an administrative topic object, a security profile
is checked based on the name of that topic object.

Security 249

Figure 27. Topic object access example

Table 19. Example topic object access

Topic Subscribe
access required

Topic object

Price No user None

Price/Fruit USER1 FRUIT

Define a new topic object as follows:

Procedure
1. Issue the MQSC command DEF TOPIC(FRUIT) TOPICSTR('Price/Fruit').
2. Grant access as follows:

• Other platforms:

Grant access to USER1 to subscribe to topic "Price/Fruit" by granting the user access to the
FRUIT object. Do this, using the authorization command for the platform:

Windows, UNIX and Linux systems

setmqaut -t topic -n FRUIT -p USER1 +sub

Results
When USER1 attempts to subscribe to topic "Price/Fruit" the result is success.

When USER2 attempts to subscribe to topic "Price/Fruit" the result is failure with an
MQRC_NOT_AUTHORIZED message, together with:

• On other platforms, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC
TopicString "Price/Fruit"

Note that this is an illustration of what you see; not all the fields.

Grant access to a user to subscribe to a topic deeper within the tree
This topic is the second in a list of tasks that tells you how to grant access to topics by more than one user.

Before you begin
This topic uses the setup described in “Grant access to a user to subscribe to a topic” on page 249.

250 Securing IBM WebSphere MQ

About this task
If the point in the topic tree where the application makes the subscription is not represented by an
administrative topic object, move up the tree until the closest parent administrative topic object is
located. The security profile is checked, based on the name of that topic object.

Figure 28. Example of granting access to a topic within a topic tree

Table 20. Access requirements for example topics and topic objects

Topic Subscribe
access required

Topic object

Price No user None

Price/Fruit USER1 FRUIT

Price/Fruit/
Apples

USER1

Price/Fruit/
Oranges

USER1

In the previous task USER1 was granted access to subscribe to topic "Price/Fruit" by granting it
access to the hlq.SUBSCRIBE.FRUIT profile on z/OS and subscribe access to the FRUIT profile on
other platforms. This single profile also grants USER1 access to subscribe to "Price/Fruit/Apples",
"Price/Fruit/Oranges" and "Price/Fruit/#".

When USER1 attempts to subscribe to topic "Price/Fruit/Apples" the result is success.

When USER2 attempts to subscribe to topic "Price/Fruit/Apples" the result is failure with an
MQRC_NOT_AUTHORIZED message, together with:

• On z/OS, the following messages seen on the console that show the full security path through the topic
tree that has been attempted:

ICH408I USER(USER2) ...
 hlq.SUBSCRIBE.FRUIT ...

ICH408I USER(USER2) ...
 hlq.SUBSCRIBE.SYSTEM.BASE.TOPIC ...

• On other platforms, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC
TopicString "Price/Fruit/Apples"

Security 251

Note the following:

• The messages you receive on z/OS are identical to those received in the previous task as the same topic
objects and profiles are controlling the access.

• The event message you receive on other platforms is similar to the one received in the previous task,
but the actual topic string is different.

Grant another user access to subscribe to only the topic deeper within the
tree
This topic is the third in a list of tasks that tells you how to grant access to subscribe to topics by more
than one user.

Before you begin
This topic uses the setup described in “Grant access to a user to subscribe to a topic deeper within the
tree” on page 250.

About this task
In the previous task USER2 was refused access to topic "Price/Fruit/Apples". This topic tells you
how to grant access to that topic, but not to any other topics.

Figure 29. Granting access to specific topics within a topic tree

Table 21. Access requirements for example topics and topic objects

Topic Subscribe
access required

Topic object

Price No user None

Price/Fruit USER1 FRUIT

Price/Fruit/
Apples

USER1 and
USER2

APPLE

Price/Fruit/
Oranges

USER1

Define a new topic object as follows:

Procedure
1. Issue the MQSC command DEF TOPIC(APPLE) TOPICSTR('Price/Fruit/Apples').
2. Grant access as follows:

252 Securing IBM WebSphere MQ

• Other platforms:

In the previous task USER1 was granted access to subscribe to topic "Price/Fruit/Apples" by
granting the user subscribe access to the FRUIT profile.

This single profile also granted USER1 access to subscribe to "Price/Fruit/Oranges" and
"Price/Fruit/#", and this access remains even with the addition of the new topic object and the
profiles associated with it.

Grant access to USER2 to subscribe to topic "Price/Fruit/Apples" by granting the user
subscribe access to the APPLE profile. Do this, using the authorization command for the platform:

Windows, UNIX and Linux systems

setmqaut -t topic -n APPLE -p USER2 +sub

Results
On z/OS, when USER1 attempts to subscribe to topic "Price/Fruit/Apples" the first security check
on the hlq.SUBSCRIBE.APPLE profile fails, but on moving up the tree the hlq.SUBSCRIBE.FRUIT
profile allows USER1 to subscribe, so the subscription succeeds and no return code is sent to the MQSUB
call. However, a RACF ICH message is generated for the first check:

 ICH408I USER(USER1) ...
 hlq.SUBSCRIBE.APPLE ...

When USER2 attempts to subscribe to topic "Price/Fruit/Apples" the result is success because the
security check passes on the first profile.

When USER2 attempts to subscribe to topic "Price/Fruit/Oranges" the result is failure with an
MQRC_NOT_AUTHORIZED message, together with:

• On Windows, UNIX and Linux platforms, the following
authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC
TopicString "Price/Fruit/Oranges"

The disadvantage of this setup is that, on z/OS, you receive additional ICH messages on the console. You
can avoid this if you secure the topic tree in a different manner.

Change access control to avoid additional messages
This topic is the fourth in a list of tasks that tells you how to grant access to subscribe to topics by more
than one user and to avoid additional RACF ICH408I messages on z/OS.

Before you begin
This topic enhances the setup described in “Grant another user access to subscribe to only the topic
deeper within the tree” on page 252 so that you avoid additional error messages.

About this task
This topic tells you how to grant access to topics deeper in the tree, and how to remove access to the
topic lower down the tree when no user requires it.

Security 253

Figure 30. Example of granting access control to avoid additional messages.

Define a new topic object as follows:

Procedure
1. Issue the MQSC command DEF TOPIC(ORANGE) TOPICSTR('Price/Fruit/Oranges').
2. Grant access as follows:

• Other platforms:

Setup the equivalent access by using the authorization commands for the platform:

Windows, UNIX and Linux systems

setmqaut -t topic -n ORANGE -p USER1 +sub
setmqaut -t topic -n APPLE -p USER1 +sub

Results
On z/OS, when USER1 attempts to subscribe to topic "Price/Fruit/Apples" the first security check
on the hlq.SUBSCRIBE.APPLE profile succeeds.

Similarly, when USER2 attempts to subscribe to topic "Price/Fruit/Apples" the result is success
because the security check passes on the first profile.

When USER2 attempts to subscribe to topic "Price/Fruit/Oranges" the result is failure with an
MQRC_NOT_AUTHORIZED message, together with:

• On other platforms, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames ORANGE, FRUIT, SYSTEM.BASE.TOPIC
TopicString "Price/Fruit/Oranges"

Grant access to a user to publish to a topic
This topic is the first one in a list of tasks that tells you how to grant access to publish topics by more than
one user.

About this task
This task assumes that no administrative topic objects exist on the right hand side of the topic tree, nor
have any profiles been defined for publication. The assumption used is that publishers are using the topic
string only.

254 Securing IBM WebSphere MQ

An application can publish to a topic by providing a topic object, or a topic string, or a combination of both.
Whichever way the application selects, the effect is to publish at a certain point in the topic tree. If this
point in the topic tree is represented by an administrative topic object, a security profile is checked based
on the name of that topic object. For example:

Figure 31. Granting publish access to a topic

Table 22. Example publish access requirements

Topic Publish access
required

Topic object

Price No user None

Price/Vegetables USER1 VEG

Define a new topic object as follows:

Procedure
1. Issue the MQSC command DEF TOPIC(VEG) TOPICSTR('Price/Vegetables').
2. Grant access as follows:

• Other platforms:

Grant access to USER1 to publish to topic "Price/Vegetables" by granting the user access to
the VEG profile. Do this, using the authorization command for the platform:

Windows, UNIX and Linux systems

setmqaut -t topic -n VEG -p USER1 +pub

Results
When USER1 attempts to publish to topic "Price/Vegetables" the result is success; that is, the
MQOPEN call succeeds.

When USER2 attempts to publish to topic "Price/Vegetables" the MQOPEN call fails with an
MQRC_NOT_AUTHORIZED message, together with:

• On other platforms, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_OPEN_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames VEG, SYSTEM.BASE.TOPIC
TopicString "Price/Vegetables"

Note that this is an illustration of what you see; not all the fields.

Security 255

Grant access to a user to publish to a topic deeper within the tree
This topic is the second in a list of tasks that tells you how to grant access to publish to topics by more
than one user.

Before you begin
This topic uses the setup described in “Grant access to a user to publish to a topic” on page 254.

About this task
If the point in the topic tree where the application publishes is not represented by an administrative topic
object, move up the tree until the closest parent administrative topic object is located. The security profile
is checked, based on the name of that topic object.

Figure 32. Granting publish access to a topic within a topic tree

Table 23. Example publish access requirements

Topic Subscribe
access required

Topic object

Price No user None

Price/Vegetables USER1 VEG

Price/
Vegetables/
Potatoes

USER1

Price/
Vegetables/
Onions

USER1

In the previous task USER1 was granted access to publish topic "Price/Vegetables/Potatoes" by
granting it access to the hlq.PUBLISH.VEG profile on z/OS or publish access to the VEG profile on other
platforms. This single profile also grants USER1 access to publish at "Price/Vegetables/Onions".

When USER1 attempts to publish at topic "Price/Vegetables/Potatoes" the result is success; that
is the MQOPEN call succeeds.

When USER2 attempts to subscribe to topic "Price/Vegetables/Potatoes" the result is failure; that
is, the MQOPEN call fails with an MQRC_NOT_AUTHORIZED message, together with:

• On z/OS, the following messages seen on the console that show the full security path through the topic
tree that has been attempted:

ICH408I USER(USER2) ...
 hlq.PUBLISH.VEG ...

256 Securing IBM WebSphere MQ

ICH408I USER(USER2) ...
 hlq.PUBLISH.SYSTEM.BASE.TOPIC ...

• On other platforms, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_OPEN_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames VEG, SYSTEM.BASE.TOPIC
TopicString "Price/Vegetables/Potatoes"

Note the following:

• The messages you receive on z/OS are identical to those received in the previous task as the same topic
objects and profiles are controlling the access.

• The event message you receive on other platforms is similar to the one received in the previous task,
but the actual topic string is different.

Grant access for publish and subscribe
This topic is the last in a list of tasks that tells you how to grant access to publish and subscribe to topics
by more than one user.

Before you begin
This topic uses the setup described in “Grant access to a user to publish to a topic deeper within the tree”
on page 256.

About this task
In a previous task USER1 was given access to subscribe to the topic "Price/Fruit". This topic tells you
how to grant access to that user to publish to that topic.

Figure 33. Granting access for publishing and subscribing

Table 24. Example publishing and subscribing access requirements

Topic Subscribe
access
required

Publish
access
required

Topic object

Price No user No user None

Price/Fruit USER1 USER1 FRUIT

Price/Fruit/
Apples

USER1 and
USER2

APPLE

Security 257

Table 24. Example publishing and subscribing access requirements (continued)

Topic Subscribe
access
required

Publish
access
required

Topic object

Price/Fruit/
Oranges

USER1 ORANGE

Procedure
Grant access as follows:

• Other platforms:

Grant access to USER1 to publish to topic "Price/Fruit" by granting the user publish access to the
FRUIT profile. Do this, using the authorization command for the platform:

Windows, UNIX and Linux systems

setmqaut -t topic -n FRUIT -p USER1 +pub

Results
On z/OS, when USER1 attempts to publish to topic "Price/Fruit" the security check on the MQOPEN
call passes.

When USER2 attempts to publish at topic "Price/Fruit" the result is failure with an
MQRC_NOT_AUTHORIZED message, together with:

• On Windows, UNIX, and Linux platforms, the following
authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_OPEN_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC
TopicString "Price/Fruit"

Following the complete set of these tasks, gives USER1 and USER2 the following access authorities for
publish and subscribe to the topics listed:

Table 25. Complete list of access authorities resulting from security examples

Topic Subscribe
access
required

Publish
access
required

Topic object

Price No user No user None

Price/Fruit USER1 USER1 FRUIT

Price/Fruit/
Apples

USER1 and
USER2

APPLE

Price/Fruit/
Oranges

USER1 ORANGE

Price/
Vegetables

USER1 VEG

Price/
Vegetables/
Potatoes

258 Securing IBM WebSphere MQ

Table 25. Complete list of access authorities resulting from security examples (continued)

Topic Subscribe
access
required

Publish
access
required

Topic object

Price/
Vegetables/
Onions

Where you have different requirements for security access at different levels within the topic tree, careful
planning ensures that you do not receive extraneous security warnings on the z/OS console log. Setting up
security at the correct level within the tree avoids misleading security messages.

Subscription security

MQSO_ALTERNATE_USER_AUTHORITY
The AlternateUserId field contains a user identifier to use to validate this MQSUB call. The call can
succeed only if this AlternateUserId is authorized to subscribe to the topic with the specified access
options, regardless of whether the user identifier under which the application is running is authorized to
do so.

MQSO_SET_IDENTITY_CONTEXT
The subscription is to use the accounting token and application identity data supplied in the
PubAccountingToken and PubApplIdentityData fields.

If this option is specified, the same authorization check is carried out as if the destination queue was
accessed using an MQOPEN call with MQOO_SET_IDENTITY_CONTEXT, except in the case where the
MQSO_MANAGED option is also used in which case there is no authorization check on the destination
queue.

If this option is not specified, the publications sent to this subscriber have default context information
associated with them as follows:

Table 26. Default publication context information

Field in MQMD Value used

UserIdentifier The user ID associated with the subscription (see
SUBUSER field on DISPLAY SBSTATUS) at the time
the publication is made.

AccountingToken Determined from the environment if possible; set
to MQACT_NONE otherwise.

ApplIdentityData Set to blanks.

This option is only valid with MQSO_CREATE and MQSO_ALTER. If used with MQSO_RESUME, the
PubAccountingToken and PubApplIdentityData fields are ignored, so this option has no effect.

If a subscription is altered without using this option where previously the subscription had supplied
identity context information, default context information is generated for the altered subscription.

If a subscription allowing different user IDs to use it with option MQSO_ANY_USERID, is resumed by a
different user ID, default identity context is generated for the new user ID now owning the subscription
and any subsequent publications are delivered containing the new identity context.

Security 259

AlternateSecurityId
This is a security identifier that is passed with the AlternateUserId to the authorization service
to allow appropriate authorization checks to be performed. AlternateSecurityId is used only if
MQSO_ALTERNATE_USER_AUTHORITY is specified, and the AlternateUserId field is not entirely blank
up to the first null character or the end of the field.

MQSO_ANY_USERID subscription option

When MQSO_ANY_USERID is specified, the identity of the subscriber is not restricted to a single user ID.
This allows any user to alter or resume the subscription when they have suitable authority. Only a single
user may have the subscription at any one time. An attempt to resume use of a subscription currently in
use by another application will cause the call to fail with MQRC_SUBSCRIPTION_IN_USE.

To add this option to an existing subscription the MQSUB call (using MQSO_ALTER) must come from the
same user ID as the original subscription.

If an MQSUB call refers to an existing subscription with MQSO_ANY_USERID set, and the user ID differs
from the original subscription, the call succeeds only if the new user ID has authority to subscribe to the
topic. After successful completion, future publications to this subscriber are put to the subscriber's queue
with the new user ID set in the publication.

MQSO_FIXED_USERID
When MQSO_FIXED_USERID is specified, the subscription can only be altered or resumed by a single
owning user ID. This user ID is the last user ID to alter the subscription that set this option, thereby
removing the MQSO_ANY_USERID option, or if no alters have taken place, it is the user ID that created the
subscription.

If an MQSUB verb refers to an existing subscription with MQSO_ANY_USERID set and alters the
subscription (using MQSO_ALTER) to use option MQSO_FIXED_USERID, the user ID of the subscription
is now fixed at this new user ID. The call succeeds only if the new user ID has authority to subscribe to the
topic.

If a user ID other than the one recorded as owning a subscription trys to resume or alter an
MQSO_FIXED_USERID subscription, the call will fail with MQRC_IDENTITY_MISMATCH. The owning user
ID of a subscription can be viewed using the DISPLAY SBSTATUS command.

If neither MQSO_ANY_USERID or MQSO_FIXED_USERID is specified, the default is MQSO_FIXED_USERID.

IBM WebSphere MQ Advanced Message Security
IBM WebSphere MQ Advanced Message Security (AMS) is a separately licensed component of IBM
WebSphere MQ Advanced Message Security that provides a high level of protection for sensitive data
flowing through the IBM WebSphere MQ Advanced Message Security network, while not impacting the
end applications.

IBM WebSphere MQ Advanced Message Security overview
IBM WebSphere MQ applications can use IBM WebSphere MQ Advanced Message Security to send
sensitive data, such as high-value financial transactions and personal information, with different levels of
protection by using a public key cryptography model.
Related reference
GSKit return codes used in IBM WebSphere MQ AMS messages

260 Securing IBM WebSphere MQ

Behavior that has changed between version 7.0.1 and version 7.5
As IBM Advanced Message Security became a component in WebSphere MQ 7.5, some aspects of IBM
WebSphere MQ AMS functionality have changed, what might affect existing applications, administrative
scripts, or management procedures.

Review the following list of changes carefully before upgrading queue managers to version 7.5. Decide
whether you must plan to make changes to existing applications, scripts, and procedures before starting
to migrate systems to IBM WebSphere MQ version 7.5:

• IBM WebSphere MQ AMS installation is a part of WebSphere MQ installation process.
• IBM WebSphere MQ AMS security capabilities are enabled with its installation and controlled with

security policies. You do not need to enable interceptors to allow IBM WebSphere MQ AMS start
intercepting data.

• IBM WebSphere MQ AMS in WebSphere MQ version 7.5 does not require the use of the cfgmqs
command as in the stand-alone version of IBM WebSphere MQ AMS.

Features and functions of IBM WebSphere MQ Advanced Message Security
Advanced Message Security expands WebSphere MQ security services to provide data signing and
encryption at the message level. The expanded services guarantees that message data has not been
modified between when it is originally placed on a queue and when it is retrieved. In addition, IBM
WebSphere MQ AMS verifies that a sender of message data is authorized to place signed messages on a
target queue.

Here is a complete list of IBM WebSphere MQ AMS functions:

• Secures sensitive or high-value transactions processed by WebSphere MQ.
• Detects and removes rogue or unauthorized messages before they are processed by a receiving

application.
• Verifies that messages were not modified while in transit from queue to queue.
• Protects the data not only as it flows across the network but also when it is put on a queue.
• Secures existing proprietary and customer-written applications for WebSphere MQ.

Error handling
Advanced Message Security defines an error handling queue to manage messages that contain errors or
messages that cannot be unprotected.

Defective messages are dealt with as exceptional cases. If a received message does not meet the security
requirements for the queue it is on, for example, if the message is signed when it should be encrypted,
or decryption or signature verification fails, the message is sent to the error handling queue. A message
might be sent to the error handling queue for the following reasons:

• Quality of protection mismatch - a quality of protection (QOP) mismatch exists between the received
message and the QOP definition in the security policy.

• Decryption error - the message cannot be decrypted.
• PDMQ header error - the WebSphere MQ AMS message header cannot be accessed.
• Size mismatch - length of a message after decryption is different than expected.
• Encryption algorithm strength mismatch - the message encryption algorithm is weaker than required.
• Unknown error - unexpected error occurred.

WebSphere MQ AMS uses the SYSTEM.PROTECTION.ERROR.QUEUE as its error handling queue. All
messages put by IBM WebSphere MQ AMS to the SYSTEM.PROTECTION.ERROR.QUEUE are preceded
by MQDLH header.

Your WebSphere MQ administrator can also define the SYSTEM.PROTECTION.ERROR.QUEUE as an alias
queue pointing to another queue.

Security 261

Key concepts
Learn about the key concepts in Advanced Message Security to understand how the tool works and how to
manage it effectively.

Public key infrastructure
Public key infrastructure (PKI) is a system of facilities, policies, and services that support the use of public
key cryptography to obtain secure communication.

There is no single standard that defines the components of a public key infrastructure, but a PKI typically
involves usage of public key certificates and comprises certificate authorities (CA) and other registration
authorities (RA) that provide the following services:

• Issuing digital certificates
• Validating digital certificates
• Revoking digital certificates
• Distributing certificates

Identity of users and applications are represented by distinguished name (DN) field in a certificate
associated with signed or encrypted messages. Advanced Message Security uses this identity to
represent a user or an application. To authenticate this identity, the user or application must have access
to the keystore where the certificate and associated private key are stored. Each certificate is represented
by a label in the keystore.

Related concepts
“Using keystores and certificates” on page 284
To provide transparent cryptographic protection to WebSphere MQ applications, Advanced Message
Security uses the keystore file, where public key certificates and a private key are stored.

Digital certificates
Advanced Message Security associates users and applications with X.509 standard digital certificates.
X.509 certificates are typically signed by a trusted certificate authority (CA) and involve private and public
keys which are used for encryption and decryption.

Digital certificates provide protection against impersonation by binding a public key to its owner, whether
that owner is an individual, a queue manager, or some other entity. Digital certificates are also known as
public key certificates, because they give you assurance about the ownership of a public key when you
use an asymmetric key scheme. This scheme requires that a public key and a private key be generated for
an application. Data encrypted with the public key can only be decrypted using the corresponding private
key while data encrypted with the private key can only be decrypted using the corresponding public key.
The private key is stored in a key database file that is password-protected. Only its owner has the access
to the private key used to decrypt messages that are encrypted using the corresponding public key.

If public keys are sent directly by their owner to another entity, there is a risk that the message could be
intercepted and the public key substituted by another. This is known as a "man-in-the-middle" attack. The
solution is to exchange public keys through a trusted third party, giving the user a strong assurance that
the public key belongs to the entity with which you are communicating. Instead of sending your public key
directly, you ask a trusted third party to incorporate it into a digital certificate. The trusted third-party who
issues digital certificates is called a certificate authority (CA).

For more information about digital certificates, see What is in a digital certificate.

A digital certificate contains the public key for an entity and states that the public key belongs to that
entity:

• when a certificate is for an individual entity, it is called a personal certificate or user certificate.
• when a certificate is for a certificate authority, the certificate is called a CA certificate or signer
certificate.

Note: Advanced Message Security supports self-signed certificates in both Java and native applications

262 Securing IBM WebSphere MQ

Related concepts
“Cryptography” on page 7
Cryptography is the process of converting between readable text, called plaintext, and an unreadable
form, called ciphertext.

Object authority manager
The Object Authority Manager (OAM) is the authorization service component supplied with the
WebSphere MQ products.

The access to Advanced Message Security entities is controlled through WebSphere MQ user groups
and the OAM. Administrators can use the command-line interface to grant or revoke authorizations as
required. Different groups of users can have different kinds of access authority to the same objects. For
example, one group could perform both PUT and GET operations for a specific queue while another group
might be allowed only to browse the queue. Similarly, some groups might have GET and PUT authority to a
queue, but are not allowed to alter or delete the queue.

Through the OAM, you can control:

• Access to Advanced Message Security objects through MQI. When an application program attempts to
access objects, the OAM checks if the user profile making the request has the authorization for the
operation requested. This means that queues, and the messages on queues, can be protected from
unauthorized access.

• Permission to use PCF and MQSC commands.

Related concepts
Object authority manager

Supported technology
Advanced Message Security depends on several technology components to provide a security
infrastructure.

Advanced Message Security supports the following WebSphere MQ application programming interfaces
(APIs):

• Message queue interface (MQI)
• WebSphere MQ Java Message Service (JMS) 1.0.2 and 1.1.
• WebSphere MQ Base Classes for Java
• WebSphere MQ classes for .Net in an unmanaged mode

Note: Advanced Message Security supports X.509 compliant certificate authorities.

Known limitations
Learn about limitations of IBM WebSphere MQ Advanced Message Security.

• The following IBM WebSphere MQ options are not supported:

– Publish/subscribe.
– Channel data conversion.
– Distribution lists.
– Application message segmentation
– The use of non-threaded applications using API exit on HP-UX platforms.
– IBM WebSphere MQ classes for .NET in a managed mode (client or bindings connections).
– Message Service client for .NET (XMS) applications.
– Message Service client for C/C++ (XMS supportPac IA94) applications.

• All Java applications are dependent on the IBM Java Runtime.

IBM WebSphere MQ Advanced Message Security does not support JRE provided by other vendors.

Security 263

• JMS and Java client applications using IBM WebSphere MQ Advanced Message Security in client mode.

Any JMS, or Java, client application (including IBM WebSphere MQ Explorer and IBM WebSphere MQ
Managed File Transfer agents) cannot use IBM WebSphere MQ Advanced Message Security in client
mode with a WebSphere MQ queue manager earlier than Version 7.5.

In order to use message protection policies, these applications either need to interact with an IBM
WebSphere MQ Version 7.5 queue manager, or connect in local bindings mode to a queue manager on
the same machine as the application.

• You should avoid putting two or more certificates with the same Distinguished Names, in a single
keystore file, because the IBM WebSphere MQ Advanced Message Security intereceptor's functioning
with such certificates is undefined.

• The IBM WebSphere MQ Version 7.5 resource adapter does not support IBM WebSphere MQ Advanced
Message Security. If message protection is required to be used with IBM WebSphere MQ classes
for JMS or IBM WebSphere MQ classes for Java applications running within an application server
environment then:

– Either the application server must be configured to use the Version 8.0 or later resource adapter.
– Or Message Channel Agent (MCA) interception must be used.

User scenarios
Familiarize yourself with possible scenarios to understand what business goals you can achieve with
Advanced Message Security.

Quick Start Guide for Windows platforms
Use this guide to quickly configure IBM Advanced Message Security to provide message security on
Windows platforms. By the time you complete it, you will have created a key database to verify user
identities, and defined signing/encryption policies for your queue manager.

Before you begin
You should have at least the following features installed on your system:

• Server
• Development Toolkit (for the Sample programs)
• Advanced Message Security

Refer to IBM WebSphere MQ features for Windows systems for details.

For information about using the setmqenv command to initialize the current environment so that the
appropriate WebSphere MQ commands can be located and executed by the operating system, see
setmqenv.

1. Creating a queue manager and a queue

About this task
All the following examples use a queue named TEST.Q for passing messages between applications.
Advanced Message Security uses interceptors to sign and encrypt messages at the point they enter the
WebSphere MQ infrastructure through the standard WebSphere MQ interface. The basic setup is done in
WebSphere MQ and is configured in the following steps.

You can use WebSphere MQ Explorer to create the queue manager QM_VERIFY_AMS and its local
queue called TEST.Q by using all the default wizard settings, or you can use the commands found in
\WebSphere MQ\bin. Remember that you must be a member of the mqm user group to run the following
administrative commands.

264 Securing IBM WebSphere MQ

Procedure
1. Create a queue manager

crtmqm QM_VERIFY_AMS

2. Start the queue manager

strmqm QM_VERIFY_AMS

3. Create a queue called TEST.Q by entering the following command into runmqsc for queue manager
QM_VERIFY_AMS

DEFINE QLOCAL(TEST.Q)

Results
If the procedure is completed, command entered into runmqsc will display details about TEST.Q:

DISPLAY Q(TEST.Q)

2. Creating and authorizing users

About this task
There are two users that appear in this example: alice, the sender, and bob, the receiver. To use
the application queue, these users need to be granted authority to use it. Also to successfully use the
protection policies that we will define these users must be granted access to some system queues. For
more information about the setmqaut command refer to setmqaut .

Procedure
1. Create the two users and ensure that HOMEPATH and HOMEDRIVE are set for both these users.
2. Authorize the users to connect to the queue manager and to work with the queue

setmqaut -m QM_VERIFY_AMS -t qmgr -p alice -p bob +connect +inq
setmqaut -m QM_VERIFY_AMS -n TEST.Q -t queue -p alice +put
setmqaut -m QM_VERIFY_AMS -n TEST.Q -t queue -p bob +get

3. You must also allow the two users to browse the system policy queue and put messages on the error
queue.

setmqaut -m QM_VERIFY_AMS -t queue -n SYSTEM.PROTECTION.POLICY.QUEUE -p alice -p bob +browse
setmqaut -m QM_VERIFY_AMS -t queue -n SYSTEM.PROTECTION.ERROR.QUEUE -p alice -p bob +put

Results
Users are now created and the required authorities granted to them.

What to do next
To verify if the steps were carried out correctly, use the amqsput and amqsget samples as described in
section “7. Testing the setup” on page 268.

3. Creating key database and certificates

About this task
Interceptor requires the public key of the sending users to encrypt the message. Thus, the key database
of user identities mapped to public and private keys must be created. In the real system, where users
and applications are dispersed over several computers, each user would have its own private keystore.
Similarly, in this guide, we create key databases for alice and bob and share the user certificates
between them.

Security 265

Note: In this guide, we use sample applications written in C connecting using local bindings. If you plan
to use Java applications using client bindings, you must create a JKS keystore and certificates using the
keytool command, which is part of the JRE (see “Quick Start Guide for Java clients” on page 275 for
more details). For all other languages, and for Java applications using local bindings, the steps in this
guide are correct.

Procedure
1. Use the IBM Key Management GUI (strmqikm.exe) to create a new key database for the user alice.

Type: CMS
Filename: alicekey.kdb
Location: C:/Documents and Settings/alice/AMS

Note:

• It is advisable to use a strong password to secure the database.
• Make sure that Stash password to a file check box is selected.

2. Change the key database content view to Personal Certificates.
3. Select New Self Signed; self signed certificates are used in this scenario.
4. Create a certificate identifying the user alice for use in encryption, using these fields:

Key label: Alice_Cert
Common Name: alice
Organisation: IBM
Country: GB

Note:

• For the purpose of this guide, we are using self-signed certificate which can be created without using
a Certificate Authority. For production systems, it is advisable not to use self-signed certificates but
instead rely on certificates signed by a Certificate Authority.

• The Key label parameter specifies the name for the certificate, which interceptors will look up to
receive necessary information.

• The Common Name and optional parameters specifies the details of the Distinguished Name (DN),
which must be unique for each user.

5. Repeat step 1-4 for the user bob

Results
The two users alice and bob each now have a self-signed certificate.

4. Creating keystore.conf

About this task
You must point Advanced Message Security interceptors to the directory where the key databases and
certificates are located.This is done via the keystore.conf file, which holds that information in plain
text form. Each user must have a separate keystore.conf file. This step must be done for both alice
and bob.

The content of keystore.conf must be of the form:

cms.keystore = <dir>/keystore_file
cms.certificate = certificate_label

266 Securing IBM WebSphere MQ

Example
For this scenario, the contents of the keystore.conf will be as follows:

cms.keystore = C:/Documents and Settings/alice/AMS/alicekey
cms.certificate = Alice_Cert

Note:

• The path to the keystore file must be provided with no file extension.
• The certificate label can include spaces, thus "Alice_Cert" and "Alice_Cert " for example, are recognized

as labels of two different certificates. However, to avoid confusion, it is better not to use spaces in
label's name.

• There are the following keystore formats: CMS (Cryptographic Message Syntax), JKS (Java Keystore)
and JCEKS (Java Cryptographic Extension Keystore). For more information, refer to “Structure of the
keystore configuration file (keystore.conf)” on page 285.

• %HOMEDRIVE%\%HOMEPATH%\.mqs\keystore.conf (eg. C:\Documents and
Settings\alice\.mqs\keystore.conf) is the default location where Advanced Message Security searches
for the keystore.conf file. For information about how to use a non-default location for the
keystore.conf, see “Using keystores and certificates” on page 284.

• To create .mqs directory, you must use the command prompt.

5. Sharing Certificates

About this task
Share the certificates between the two key databases so that each user can successfully identify the
other. This is done by extracting each user's public certificate to a file, which is then added to the other
user's key database.

Note: Take care to use the extract option, and not the export option. Extract gets the user's public
key, whereas export gets both the public and private key. Using export by mistake would completely
compromise your application, by passing on its private key.

Procedure
1. Extract the certificate identifying alice to an external file:

runmqakm -cert -extract -db "C:/Documents and Settings/alice/AMS/alicekey.kdb" -pw passw0rd
-label Alice_Cert -target alice_public.arm

2. Add the certificate to bob's keystore:

runmqakm -cert -add -db "C:/Documents and Settings/bob/AMS/bobkey.kdb" -pw passw0rd -label
Alice_Cert -file alice_public.arm

3. Repeat steps for bob:

runmqakm -cert -extract -db "C:/Documents and Settings/alice/AMS/bobkey.kdb" -pw passw0rd
-label Bob_Cert -target bob_public.arm

runmqakm -cert -add -db "C:/Documents and Settings/bob/AMS/alicekey.kdb" -pw passw0rd -label
Bob_Cert -file bob_public.arm

Results
The two users alice and bob are now able to successfully identify each other having created and shared
self-signed certificates.

What to do next
Verify that a certificate is in the keystore either by browsing it using the GUI or running the following
commands which print out its details:

Security 267

runmqakm -cert -details -db "C:/Documents and Settings/bob/AMS/bobkey.kdb"
-pw passw0rd -label Alice_Cert

runmqakm -cert -details -db "C:/Documents and Settings/alice/AMS/alicekey.kdb"
-pw passw0rd -label Bob_Cert

6. Defining queue policy

About this task
With the queue manager created and interceptors prepared to intercept messages and access encryption
keys, we can start defining protection policies on QM_VERIFY_AMS using the setmqspl command. Refer
to setmqspl for more information on this command. Each policy name must be the same as the queue
name it is to be applied to.

Example
This is an example of a policy defined for the TEST.Q queue. In the example, messages are signed with
the SHA1 algorithm and encrypted with the AES256 algorithm. alice is the only valid sender and bob is
the only receiver of the messages on this queue:

setmqspl -m QM_VERIFY_AMS -p TEST.Q -s SHA1 -a "CN=alice,O=IBM,C=GB" -e AES256 -r
"CN=bob,O=IBM,C=GB"

Note: The DNs match exactly those specified in the respective user's certificate from the key database.

What to do next
To verify the policy you have defined, issue the following command:

dspmqspl -m QM_VERIFY_AMS

To print the policy details as a set of setmqspl commands, the -export flag. This allows storing already
defined policies:

dspmqspl -m QM_VERIFY_AMS -export >restore_my_policies.bat

7. Testing the setup

About this task
By running different programs under different users you can verify if the application has been properly
configured.

Procedure
1. Switch user to run as user alice

Right-click cmd.exe and select Run as.... When prompted, log in as the user alice.
2. As the user alice put a message using a sample application:

amqsput TEST.Q QM_VERIFY_AMS

3. Type the text of the message, then press Enter.
4. Switch user to run as user bob

Open another window by right-clicking cmd.exe and selecting Run as.... When prompted, log in as the
user bob.

5. As the user Bob get a message using a sample application:

amqsget TEST.Q QM_VERIFY_AMS

268 Securing IBM WebSphere MQ

Results
If the application has been configured properly for both users, the user alice's message is displayed
when bob runs the getting application.

8. Testing encryption

About this task
To verify that the encryption is occurring as expected, create an alias queue which references the original
queue TEST.Q. This alias queue will have no security policy and so no user will have the information to
decrypt the message and therefore the encrypted data will be shown.

Procedure
1. Using the runmqsc command against queue manager QM_VERIFY_AMS, create an alias queue.

DEFINE QALIAS(TEST.ALIAS) TARGET(TEST.Q)

2. Grant bob access to browse from the alias queue

setmqaut -m QM_VERIFY_AMS -n TEST.ALIAS -t queue -p bob +browse

3. As the user alice, put another message using a sample application just as before:

amqsput TEST.Q QM_VERIFY_AMS

4. As the user bob, browse the message using a sample application via the alias queue this time:

amqsbcg TEST.ALIAS QM_VERIFY_AMS

5. As the user bob, get the message using a sample application from the local queue:

amqsget TEST.Q QM_VERIFY_AMS

Results
The output from the amqsbcg application shows the encrypted data that is on the queue proving that the
message has been encrypted.

Quick Start Guide for UNIX platforms
Use this guide to quickly configure IBM Advanced Message Security to provide message security on UNIX
platforms. By the time you complete it, you will have created a key database to verify user identities, and
defined signing/encryption policies for your queue manager.

Before you begin
You should have at least the following components installed on your system:

• Runtime
• Server
• Sample programs
• IBM Global Security Kit
• MQ Advanced Message Security

Refer to the following topics for the component names on each specific platform:

• IBM WebSphere MQ components for Linux systems
• IBM WebSphere MQ components for HP-UX systems
• IBM WebSphere MQ components for AIX systems
• IBM WebSphere MQ components for Solaris systems

Security 269

1. Creating a queue manager and a queue

About this task
All the following examples use a queue named TEST.Q for passing messages between applications.
Advanced Message Security uses interceptors to sign and encrypt messages at the point they enter the
WebSphere MQ infrastructure through the standard WebSphere MQ interface. The basic setup is done in
WebSphere MQ and is configured in the following steps.

You can use WebSphere MQ Explorer to create the queue manager QM_VERIFY_AMS and its local
queue called TEST.Q by using all the default wizard settings, or you can use the commands found in
<MQ_INSTALL_PATH>/bin. Remember that you must be a member of the mqm user group to run the
following administrative commands.

Procedure
1. Create a queue manager

crtmqm QM_VERIFY_AMS

2. Start the queue manager

strmqm QM_VERIFY_AMS

3. Create a queue called TEST.Q by entering the following command into runmqsc for queue manager
QM_VERIFY_AMS

DEFINE QLOCAL(TEST.Q)

Results
If the procedure completed successfully, the following command entered into runmqsc will display
details about TEST.Q:

DISPLAY Q(TEST.Q)

2. Creating and authorizing users

About this task
There are two users that appear in this example: alice, the sender, and bob, the receiver. To use
the application queue, these users need to be granted authority to use it. Also to successfully use the
protection policies that we will define these users must be granted access to some system queues. For
more information about the setmqaut command refer to setmqaut .

Procedure
1. Create the two users

useradd alice
useradd bob

2. Authorize the users to connect to the queue manager and to work with the queue

setmqaut -m QM_VERIFY_AMS -t qmgr -p alice -p bob +connect +inq
setmqaut -m QM_VERIFY_AMS -n TEST.Q -t queue -p alice +put
setmqaut -m QM_VERIFY_AMS -n TEST.Q -t queue -p bob +get

3. You must also allow the two users to browse the system policy queue and put messages on the error
queue.

setmqaut -m QM_VERIFY_AMS -t queue -n SYSTEM.PROTECTION.POLICY.QUEUE -p alice -p bob +browse
setmqaut -m QM_VERIFY_AMS -t queue -n SYSTEM.PROTECTION.ERROR.QUEUE -p alice -p bob +put

270 Securing IBM WebSphere MQ

Results
User groups are now created and the required authorities granted to them. This way users who are
assigned to those groups will also have permission to connect to the queue manager and to put and get
from the queue.

What to do next
To verify if the steps were carried out correctly, use the amqsput and amqsget samples as described in
section “8. Testing encryption” on page 274.

3. Creating key database and certificates

About this task
To encrypt the message, the interceptor requires the private key of the sending user and the public key(s)
of the recipient(s). Thus, the key database of user identities mapped to public and private keys must be
created. In the real system, where users and applications are dispersed over several computers, each
user would have its own private keystore. Similarly, in this guide, we create key databases for alice and
bob and share the user certificates between them.

Note: In this guide, we use sample applications written in C connecting using local bindings. If you plan
to use Java applications using client bindings, you must create a JKS keystore and certificates using the
keytool command, which is part of the JRE (see “Quick Start Guide for Java clients” on page 275 for
more details). For all other languages, and for Java applications using local bindings, the steps in this
guide are correct.

Procedure
1. Create a new key database for the user alice

mkdir /home/alice/.mqs -p
runmqakm -keydb -create -db /home/alice/.mqs/alicekey.kdb -pw passw0rd -stash

Note:

• It is advisable to use a strong password to secure the database.
• The stash parameter stores the password into the key.sth file, which interceptors can use to open

the database.
2. Ensure the key database is readable

chmod +r /home/alice/.mqs/alicekey.kdb

3. Create a certificate identifying the user alice for use in encryption

runmqakm -cert -create -db /home/alice/.mqs/alicekey.kdb -pw passw0rd
-label Alice_Cert -dn "cn=alice,o=IBM,c=GB" -default_cert yes

Note:

• For the purpose of this guide, we are using self-signed certificate which can be created without using
a Certificate Authority. For production systems, it is advisable not to use self-signed certificates but
instead rely on certificates signed by a Certificate Authority.

• The label parameter specifies the name for the certificate, which interceptors will look up to
receive necessary information.

• The DN parameter specifies the details of the Distinguished Name (DN), which must be unique for
each user.

4. Now we have created the key database, we should set the ownership of it, and ensure it is unreadable
by all other users.

Security 271

chown alice /home/alice/.mqs/alicekey.kdb /home/alice/.mqs/alicekey.sth
chmod 600 /home/alice/.mqs/alicekey.kdb /home/alice/.mqs/alicekey.sth

5. Repeat step 1-4 for the user bob

Results
The two users alice and bob each now have a self-signed certificate.

4. Creating keystore.conf

About this task
You must point Advanced Message Security interceptors to the directory where the key databases and
certificates are located. This is done via the keystore.conf file, which holds that information in plain
text form. Each user must have a separate keystore.conf file in the .mqs folder. This step must be
done for both alice and bob.

The content of keystore.conf must be of the form:

cms.keystore = <dir>/keystore_file
cms.certificate = certificate_label

Example
For this scenario, the contents of the keystore.conf will be as follows:

cms.keystore = /home/alice/.mqs/alicekey
cms.certificate = Alice_Cert

Note:

• The path to the keystore file must be provided with no file extension.
• There are the following keystore formats: CMS (Cryptographic Message Syntax), JKS (Java Keystore)

and JCEKS (Java Cryptographic Extension Keystore). For more information, refer to “Structure of the
keystore configuration file (keystore.conf)” on page 285.

• HOME/.mqs/keystore.conf is the default location where Advanced Message Security searches
for the keystore.conf file. For information about how to use a non-default location for the
keystore.conf, see “Using keystores and certificates” on page 284.

5. Sharing Certificates

About this task
Share the certificates between the two key databases so that each user can successfully identify the
other. This is done by extracting each user's public certificate to a file, which is then added to the other
user's key database.

Note: Take care to use the extract option, and not the export option. Extract gets the user's public
key, whereas export gets both the public and private key. Using export by mistake would completely
compromise your application, by passing on its private key.

Procedure
1. Extract the certificate identifying alice to an external file:

runmqakm -cert -extract -db /home/alice/.mqs/alicekey.kdb -pw passw0rd -label Alice_Cert
-target alice_public.arm

2. Add the certificate to bob's keystore:

272 Securing IBM WebSphere MQ

runmqakm -cert -add -db /home/bob/.mqs/bobkey.kdb -pw passw0rd -label Alice_Cert -file
alice_public.arm

3. Repeat the step for bob:

 runmqakm -cert -extract -db /home/bob/.mqs/bobkey.kdb -pw passw0rd -label Bob_Cert -target
bob_public.arm

4. Add the certificate for bob to alice's keystore:

runmqakm -cert -add -db /home/alice/.mqs/alicekey.kdb -pw passw0rd -label Bob_Cert -file
bob_public.arm

Results
The two users alice and bob are now able to successfully identify each other having created and shared
self-signed certificates.

What to do next
Verify that a certificate is in the keystore by running the following commands which print out its details:

runmqakm -cert -details -db /home/bob/.mqs/bobkey.kdb -pw passw0rd -label Alice_Cert
runmqakm -cert -details -db /home/alice/.mqs/alicekey.kdb -pw passw0rd -label Bob_Cert

6. Defining queue policy

About this task
With the queue manager created and interceptors prepared to intercept messages and access encryption
keys, we can start defining protection policies on QM_VERIFY_AMS using the setmqspl command. Refer
to setmqspl for more information on this command. Each policy name must be the same as the queue
name it is to be applied to.

Example
This is an example of a policy defined for the TEST.Q queue. In this example, messages are signed by the
user alice using the SHA1 algorithm, and encrypted using the 256-bit AES algorithm.alice is the only
valid sender and bob is the only receiver of the messages on this queue:

setmqspl -m QM_VERIFY_AMS -p TEST.Q -s SHA1 -a "CN=alice,O=IBM,C=GB" -e AES256 -r
"CN=bob,O=IBM,C=GB"

Note: The DNs match exactly those specified in the respective user's certificate from the key database.

What to do next
To verify the policy you have defined, issue the following command:

dspmqspl -m QM_VERIFY_AMS

To print the policy details as a set of setmqspl commands, the -export flag. This allows storing already
defined policies:

dspmqspl -m QM_VERIFY_AMS -export >restore_my_policies.bat

7. Testing the setup

About this task
By running different programs under different users you can verify if the application has been properly
configured.

Security 273

Procedure
1. Change to the directory containing the samples. If MQ is installed in a non-default location, this may be

in a different place.

cd /opt/mqm/samp/bin

2. Switch user to run as user alice

su alice

3. As the user alice, put a message using a sample application:

./amqsput TEST.Q QM_VERIFY_AMS

4. Type the text of the message, then press Enter.
5. Stop running as user alice

exit

6. Switch user to run as user bob

su bob

7. As the user bob, get a message using a sample application:

./amqsget TEST.Q QM_VERIFY_AMS

Results
If the application has been configured properly for both users, the user alice's message is displayed
when bob runs the getting application.

8. Testing encryption

About this task
To verify that the encryption is occurring as expected, create an alias queue which references the original
queue TEST.Q. This alias queue will have no security policy and so no user will have the information to
decrypt the message and therefore the encrypted data will be shown.

Procedure
1. Using the runmqsc command against queue manager QM_VERIFY_AMS, create an alias queue.

DEFINE QALIAS(TEST.ALIAS) TARGET(TEST.Q)

2. Grant bob access to browse from the alias queue

setmqaut -m QM_VERIFY_AMS -n TEST.ALIAS -t queue -p bob +browse

3. As the user alice, put another message using a sample application just as before:

./amqsput TEST.Q QM_VERIFY_AMS

4. As the user bob, browse the message using a sample application via the alias queue this time:

./amqsbcg TEST.ALIAS QM_VERIFY_AMS

5. As the user bob, get the message using a sample application from the local queue:

./amqsget TEST.Q QM_VERIFY_AMS

274 Securing IBM WebSphere MQ

Results
The output from the amqsbcg application will show the encrypted data that is on the queue proving that
the message has been encrypted.

Quick Start Guide for Java clients
Use this guide to quickly configure IBM Advanced Message Security to provide message security for Java
applications connecting using client bindings. By the time you complete it, you will have created a key
store to verify user identities, and defined signing/encryption policies for your queue manager.

Before you begin
Ensure you have the appropriate components installed as described in the Quick Start Guide (Windows
or UNIX).

1. Creating a queue manager and a queue

About this task
All the following examples use a queue named TEST.Q for passing messages between applications.
Advanced Message Security uses interceptors to sign and encrypt messages at the point they enter the
WebSphere MQ infrastructure through the standard WebSphere MQ interface. The basic setup is done in
WebSphere MQ and is configured in the following steps.

Procedure
1. Create a queue manager

crtmqm QM_VERIFY_AMS

2. Start the queue manager

strmqm QM_VERIFY_AMS

3. Create and start a listener by entering the following commands into runmqsc for queue manager
QM_VERIFY_AMS

DEFINE LISTENER(AMS.LSTR) TRPTYPE(TCP) PORT(1414) CONTROL(QMGR)
START LISTENER(AMS.LSTR)

4. Create a channel for our applications to connect in through by entering the following command into
runmqsc for queue manager QM_VERIFY_AMS

DEFINE CHANNEL(AMS.SVRCONN) CHLTYPE(SVRCONN)

5. Create a queue called TEST.Q by entering the following command into runmqsc for queue manager
QM_VERIFY_AMS

DEFINE QLOCAL(TEST.Q)

Results
If the procedure completed successfully, the following command entered into runmqsc will display
details about TEST.Q:

DISPLAY Q(TEST.Q)

2. Creating and authorizing users

About this task
There are two users that appear in our scenario: alice, the sender, and bob, the receiver. To use
the application queue, these users need to be granted authority to use it. Also to successfully use the

Security 275

protection policies that we will define these users must be granted access to some system queues. For
more information about the setmqaut command refer to setmqaut .

Procedure
1. Create the two users as described in the Quick Start Guide (Windows or UNIX) for your platform.
2. Authorize the users to connect to the queue manager and to work with the queue

setmqaut -m QM_VERIFY_AMS -t qmgr -p alice -p bob +connect +inq
setmqaut -m QM_VERIFY_AMS -n TEST.Q -t queue -p alice +put
setmqaut -m QM_VERIFY_AMS -n TEST.Q -t queue -p bob +get +inq

3. You must also allow the two users to browse the system policy queue and put messages on the error
queue.

setmqaut -m QM_VERIFY_AMS -t queue -n SYSTEM.PROTECTION.POLICY.QUEUE -p alice -p bob +browse
setmqaut -m QM_VERIFY_AMS -t queue -n SYSTEM.PROTECTION.ERROR.QUEUE -p alice -p bob +put

Results
Users are now created and the required authorities granted to them.

What to do next
To verify if the steps were carried out correctly, use the JmsProducer and JmsConsumer samples as
described in section “7. Testing the setup” on page 279.

3. Creating key database and certificates

About this task
To encrypt the message to interceptor requires the public key of the sending users. Thus, the key
database of user identities mapped to public and private keys must be created. In the real system,
where users and applications are dispersed over several computer, each user would have its own
private keystore. Similarly, in this guide, we create key databases for alice and bob and share the
user certificates between them.

Note: In this guide, we use sample applications written in Java connecting using client bindings. If you
plan to use Java applications using local bindings or C applications, you must create a CMS keystore and
certificates using the runmqakm command. This is shown in the Quick Start Guide (Windows or UNIX).

Procedure
1. Create a directory to create your keystore in, for example /home/alice/.mqs. You might wish to

create it in the same directory as used by the Quick Start Guide (Windows or UNIX) for your platform.

Note: This directory will be referred to as keystore-dir in the following steps
2. Create a new keystore and certificate identifying the user alice for use in encryption

Note: The keytool command is part of the JRE.

keytool -genkey -alias Alice_Java_Cert -keyalg RSA -keystore keystore-dir/keystore.jks
-storepass passw0rd
-dname "CN=alice, O=IBM, C=GB" -keypass passw0rd

Note:

• If your keystore-dir contains spaces, you must put quotes round the full name of your keystore
• It is advisable to use a strong password to secure the keystore.
• For the purpose of this guide, we are using self-signed certificate which can be created without using

a Certificate Authority. For production systems, it is advisable not to use self-signed certifcates but
instead rely on certificates signed by a Certificate Authority.

276 Securing IBM WebSphere MQ

• The alias parameter specifies the name for the certificate, which interceptors will look up to
receive necessary information.

• The dname parameter specifies the details of the Distinguished Name (DN), which must be unique
for each user.

3. On UNIX, ensure the keystore is readable

chmod +r keystore-dir/keystore.jks

4. Repeat step1-4 for the user bob

Results
The two users alice and bob each now have a self-signed certificate.

4. Creating keystore.conf

About this task
You must point Advanced Message Security interceptors to the directory where the key databases and
certificates are located. This is done via the keystore.conf file, which hold that information in the plain
text form. Each user must have a separate keystore.conf file. This step should be done for both alice
and bob.

Example
For this scenario, the contents of the keystore.conf for alice will be as follows:

JKS.keystore = keystore-dir/keystore
JKS.certificate = Alice_Java_Cert
JKS.encrypted = no
JKS.keystore_pass = passw0rd
JKS.key_pass = passw0rd
JKS.provider = IBMJCE

For this scenario, the contents of the keystore.conf for bob will be as follows:

JKS.keystore = keystore-dir/keystore
JKS.certificate = Bob_Java_Cert
JKS.encrypted = no
JKS.keystore_pass = passw0rd
JKS.key_pass = passw0rd
JKS.provider = IBMJCE

Note:

• The path to the keystore file must be provided with no file extension.
• If you already have a keystore.conf because you have followed Quick Start Guide (Windows or

UNIX), you can edit the existing one to add in the above lines.
• For more information, see “Structure of the keystore configuration file (keystore.conf)” on page 285.

5. Sharing Certificates

About this task
Share the certificates between the two keystores so that each user can successfully identify the other.
This is done by extracting each user's certificate and importing it into the other user's keystore.

Note: The terms extract and export are used differently by different certificate tools. For example the
IBM GSKit Keyman (ikeyman) tool makes a distinction that you extract certificates (public keys) and you
export private keys. This distinction is extremely important for tools that offer both options, since using
export by mistake would completely compromise your application by passing on its private key. Because
the distinction is so important, the WebSphere MQ documentation strives to use these terms consistently.
However, the Java keytool provides a command line option called exportcert that extracts only the public

Security 277

key. For these reasons, the following procedure refers to extracting certificates by using the exportcert
option.

Procedure
1. Extract the certificate identifying alice.

keytool -exportcert -keystore alice-keystore-dir/keystore.jks -storepass passw0rd
-alias Alice_Java_Cert -file alice-keystore-dir/Alice_Java_Cert.cer

2. Import the certificate identifying alice into the keystore that bob will use. When prompted indicate
that you will trust this certificate.

keytool -importcert -file alice-keystore-dir/Alice_Java_Cert.cer -alias Alice_Java_Cert
-keystore bob-keystore-dir/keystore.jks -storepass passw0rd

3. Repeat the steps for bob

Results
The two users alice and bob are now able to successfully identify each other having created and shared
self-signed certificates.

What to do next
Verify that a certificate is in the keystore by running the following commands which print out its details:

keytool -list -keystore bob-keystore-dir/keystore.jks -storepass passw0rd -alias Alice_Java_Cert
keytool -list -keystore alice-keystore-dir/keystore.jks -storepass passw0rd -alias Bob_Java_Cert

6. Defining queue policy

About this task
With the queue manager created and interceptors prepared to intercept messages and access encryption
keys, we can start defining protection policies on QM_VERIFY_AMS using the setmqspl command. Refer
to setmqspl for more information on this command. Each policy name must be the same as the queue
name it is to be applied to.

Example
This is an example of a policy defined on the TEST.Q queue, signed by the user alice using the SHA1
algorithm, and encrypted using the 256-bit AES algorithm for the user bob:

setmqspl -m QM_VERIFY_AMS -p TEST.Q -s SHA1 -a "CN=alice,O=IBM,C=GB" -e AES256 -r
"CN=bob,O=IBM,C=GB"

Note: The DNs match exactly those specified in the respective user's certificate from the key database.

What to do next
To verify the policy you have defined, issue the following command:

dspmqspl -m QM_VERIFY_AMS

To print the policy details as a set of setmqspl commands, the -export flag. This allows storing already
defined policies:

dspmqspl -m QM_VERIFY_AMS -export >restore_my_policies.bat

278 Securing IBM WebSphere MQ

7. Testing the setup

Before you begin
Ensure the version of Java you are using has the unrestricted JCE policy files installed.

Note: The version of Java supplied in the WebSphere MQ installation already has these policy files. It can
be found in MQ_INSTALLATION_PATH/java/bin.

About this task
By running different programs under different users you can verify if the application has been properly
configured. Refer to the Quick Start Guide (Windows or UNIX) for your platform, for details about running
programs under different users.

Procedure
1. To run these JMS sample applications, use the CLASSPATH setting for your platform as shown in

Environment variables used by IBM WebSphere MQ classes for JMS to ensure the samples directory is
included.

2. As the user alice, put a message using a sample application, connecting as a client:

java JMSProducer -m QM_VERIFY_AMS -d TEST.Q -h localhost -p 1414 -l AMS.SVRCONN

3. As the user bob, get a message using a sample application, connecting as a client:

java JMSConsumer -m QM_VERIFY_AMS -d TEST.Q -h localhost -p 1414 -l AMS.SVRCONN

Results
If the application has been configured properly for both users, the user alice's message is displayed
when bob runs the getting application.

Protecting remote queues
To fully protect remote queue connections, the same policy must be set on the remote queue and local
queue to which messages are transmitted.

When a message is put into a remote queue, Advanced Message Security intercepts the operation and
processes the message according to a policy set for the remote queue. For example, for an encryption
policy, the message is encrypted before it is passed to the WebSphere MQ to handle it. After Advanced
Message Security has processed the message put into a remote queue, WebSphere MQ puts it into
associated transmission queue and forwards it to the target queue manager and target queue.

When a GET operation is performed on the local queue, Advanced Message Security tries to decode the
message according to the policy set on the local queue. For the operation to succeed, the policy used
to decrypt the message must be identical to the one used to encrypt it. Any discrepancy will cause the
message to be rejected.

If for any reason both policies cannot be set at the same time, a staged roll-out support is provided. The
policy can be set on a local queue with toleration flag on, which indicates that a policy associated with
a queue can be ignored when an attempt to retrieve a message from the queue involves a message that
does not have the security policy set. In this case, GET will try to decrypt the message, but will allow
non-encrypted messages to be delivered. This way policies on remote queues can be set after the local
queues has been protected (and tested).

Remember: Remove the toleration flag once the Advanced Message Security roll-out has been
completed.

Related reference
setmqspl (set security policy)

Security 279

Routing protected messages using WebSphere Message Broker
IBM Advanced Message Security can protect messages in an infrastructure where WebSphere Message
Broker version 8.0.0.1 (or later) is installed. You should understand the nature of both products before
applying security in the WebSphere Message Broker environment.

About this task
Advanced Message Security provides end-to-end security of the message payload. This means that only
the parties specified as the valid senders and recipients of a message are capable of producing or
receiving it. This implies that in order to secure messages flowing through WebSphere Message Broker,
you can either allow WebSphere Message Broker to process messages without knowing their content
(Scenario 1) or make it an authorized user able to receive and send messages (Scenario 2).

Scenario 1 - Message Broker cannot see message content

Before you begin
You should have your WebSphere Message Broker connected to an existing queue manager.. Replace
QMgrName with this existing queue manager name in the commands that follow.

About this task
In this scenario, Alice puts a protected message into an input queue QIN. Based on the message property
routeTo, the message is routed either to bob's (QBOB), 1 (QCECIL), or the default (QDEF) queue. The
routing is possible because Advanced Message Security protects only the message payload and not
its headers and properties which remain unprotected and can be read by WebSphere Message Broker.
Advanced Message Security is used only by alice, bob and cecil. It is not necessary to install or configure it
for the WebSphere Message Broker.

WebSphere Message Broker receives the protected message from the unprotected alias queue in order
to avoid any attempt to decrypt the message. If it were to use the protected queue directly, the
message would be put onto the DEAD LETTER queue as impossible to decrypt. The message is routed
by WebSphere Message Broker and arrives on the target queue unchanged. Therefore it is still signed by
the original author (both bob and cecil only accept messages sent by alice) and protected as before (only
bob and cecil can read it). WebSphere Message Broker puts the routed message to an unprotected alias.
The recipients retrieve the message from a protected output queue where IBM WebSphere MQ AMS will
transparently decrypt the message.

Procedure
1. Configure alice, bob and cecil to use Advanced Message Security as described in the Quick Start

Guide (Windows or UNIX).
Ensure the following steps are completed:

• Creating and authorizing users
• Creating Key Database and Certificates
• Creating keystore.conf

2. Provide alice's certificate to bob and cecil, so alice can be identified by them when checking digital
signatures on messages.

Do this by extracting the certificate identifying alice to an external file, then adding the extracted
certificate to bob's and cecil's keystores. It is important that you use the method described in Task 5.
Sharing Certificates in the Quick Start Guide (Windows or UNIX).

3. Provide bob and cecil's certificates to alice, so alice can send messages encrypted for bob and cecil.

Do this using the method specified in the previous step.
4. On your queue manager, define local queues called QIN, QBOB, QCECIL and QDEF.

1 cecil's

280 Securing IBM WebSphere MQ

DEFINE QLOCAL(QIN)

5. Setup the security policy for the QIN queue to an eligible configuration. Use the identical setup for the
QBOB, QCECIL and QDEF queues.

setmqspl -m QMgrName -p QIN -s SHA1 -a "CN=alice,O=IBM,C=GB"
-e AES256 -r "CN=bob,O=IBM,C=GB" -r "CN=cecil,O=IBM,C=GB"

This scenario assumes the security policy where alice is the only authorized sender and bob and cecil
are the recipients.

6. Define alias queues AIN, ABOB and ACECIL referencing local queues QIN, QBOB and QCECIL
respectively.

DEFINE QALIAS(AIN) TARGET(QIN)

7. Verify that the security configuration for the aliases specified in the previous step is not present;
otherwise set its policy to NONE.

dspmqspl -m QMgrName -p AIN

8. In WebSphere Message Broker create a message flow to route the messages arriving on the AIN alias
queue to the BOB, CECIL, or DEF node depending on the routeTo property of the message. To do so:
a) Create an MQInput node called IN and assign the AIN alias as its queue name.
b) Create MQOutput nodes called BOB, CECIL and DEF and assign alias queues ABOB, ACECIL and
ADEF as their respective queue names.

c) Create a route node and call it TEST.
d) Connect the IN node to the input terminal of the TEST node.
e) Create bob, and cecil output terminals for the TEST node.
f) Connect the bob output terminal to the BOB node.
g) Connect the cecil output terminal to the CECIL node.
h) Connect the DEF node to the default output terminal.
i) Apply the following rules:

$Root/MQRFH2/usr/routeTo/text()="bob"
$Root/MQRFH2/usr/routeTo/text()="cecil"

9. Deploy the message flow to the WebSphere Message Broker runtime component.
10. Running as the user Alice put a message that also contains a message property called routeTo

with a value of either bob or cecil. Running the sample application amqsstm will allow you to do
this.

Sample AMQSSTMA start
target queue is TEST.Q
Enter property name
routeTo
Enter property value
bob
Enter property name

Enter message text
My Message to Bob
Sample AMQSSTMA end

11. Running as user bob retrieve the message from the queue QBOB using the sample application
amqsget.

Results
When alice puts a message on the QIN queue, the message is protected. It is retrieved in protected form
by the WebSphere Message Broker from the AIN alias queue. WebSphere Message Broker decides where

Security 281

to route the message reading the routeTo property which is, as all properties, not encrypted. WebSphere
Message Broker places the message on the appropriate unprotected alias avoiding its further protection.
When received by bob or cecil from the queue, the message is decrypted and the digital signature is
verified.

Scenario 2 - Message Broker can see message content

About this task
In this scenario, a group of individuals are allowed to send messages to WebSphere Message Broker.
Another group are authorized to receive messages which are created by WebSphere Message Broker. The
transmission between the parties and WebSphere Message Broker cannot be eavesdropped.

Remember that WebSphere Message Broker reads protection policies and certificates only when a queue
is opened, so you must reload the execution group after making any updates to protection policies for the
changes to take effect.

mqsireload execution-group-name

If WebSphere Message Broker is considered an authorized party allowed to read or sign the message
payload, you must configure Advanced Message Security for the user starting the WebSphere Message
Broker service. Be aware it is not necessarily the same user who puts/gets the messages onto queues nor
the user creating and deploying the WebSphere Message Broker applications.

Procedure
1. Configure alice, bob, cecil and dave and the WebSphere Message Broker service user, to use Advanced

Message Security as described in the Quick Start Guide (Windows or UNIX).
Ensure the following steps are completed:

• Creating and authorizing users
• Creating Key Database and Certificates
• Creating keystore.conf

2. Provide alice, bob, cecil and dave's certificates to the WebSphere Message Broker service user.

Do this by extracting to external files each of the certificates identifying alice, bob, cecil and dave,
then adding the extracted certificates to the WebSphere Message Broker keystore. It is important that
you use the method described in Task 5. Sharing Certificates in the Quick Start Guide (Windows or
UNIX).

3. Provide the WebSphere Message Broker service user's certificate to alice, bob, cecil and dave.

Do this using the method specified in the previous step.

Note: Alice and bob need the WebSphere Message Broker service user's certificate to encrypt the
messages correctly. The WebSphere Message Broker service user needs alice's and bob's certificates
to verify authors of the messages. The WebSphere Message Broker service user needs cecil's and
dave's certificates to encrypt the messages for them. cecil and dave need the WebSphere Message
Broker service user's certificate to verify if the message comes from WebSphere Message Broker.

4. Define a local queue named IN and define the security policy with alice and bob specified as authors
and WebSphere Message Broker's service user specified as recipient:

setmqspl -m QMgrName -p IN -s MD5 -a "CN=alice,O=IBM,C=GB" -a "CN=bob,O=IBM,C=GB"
-e AES256 -r "CN=broker,O=IBM,C=GB"

5. Define a local queue named OUT and define the security policy with WebSphere Message Broker's
service user specified as author and cecil and dave specified as recipients:

setmqspl -m QMgrName -p OUT -s MD5 -a "CN=broker,O=IBM,C=GB" -e AES256
-r "CN=cecil,O=IBM,C=GB" -r "CN=dave,O=IBM,C=GB"

282 Securing IBM WebSphere MQ

6. In WebSphere Message Broker create a message flow with an MQInput and MQOutput node.
Configure the MQInput node to use the IN queue and the MQOutput node to use the OUT queue.

7. Deploy the message flow to the WebSphere Message Broker runtime component.
8. Running as user alice or bob put a message on the queue IN using the sample application amqsput.
9. Running as user cecil or dave retrieve the message from the queue OUT using the sample application
amqsget.

Results
Messages sent by alice or bob to the input queue IN are encrypted allowing only WebSphere Message
Broker to read it. WebSphere Message Broker will only accept messages from alice and bob and will
reject any others. The accepted messages will be appropriately processed then signed and encrypted
with cecil's and dave's keys before being put onto the output queue OUT. Only cecil and dave are capable
of reading it, messages not signed by WebSphere Message Broker are rejected.

Using IBM WebSphere MQ Advanced Message Security with IBM WebSphere MQ
Managed File Transfer
This scenario explains how to configure Advanced Message Security to provide message privacy for data
being sent through a IBM WebSphere MQ Managed File Transfer.

Before you begin
Ensure that you have Advanced Message Security component installed on the WebSphere MQ installation
hosting the queues used by IBM WebSphere MQ Managed File Transfer that you wish to protect.

If your IBM WebSphere MQ Managed File Transfer agents are connecting in bindings mode, ensure you
also have the GSKit component installed on their local installation.

About this task
When transfer of data between two IBM WebSphere MQ Managed File Transfer agents is interrupted,
possibly confidential data might remain unprotected on the underlying WebSphere MQ queues used to
manage the transfer. This scenario explains how to configure and use Advanced Message Security to
protect such data on the IBM WebSphere MQ Managed File Transfer queues.

In this scenario we consider a simple topology comprising one machine with two IBM WebSphere MQ
Managed File Transfer queues and two agents, AGENT1 and AGENT2, sharing a single queue manager,
hubQM, as described in the scenario Basic file transfer using the scripts. Both agents connect in the same
way, either in bindings mode or client mode.

1. Creating certificates

Before you begin
This scenario uses a simple model where a user ftagent in a group FTAGENTS is used to run the IBM
WebSphere MQ Managed File Transfer agent processes. If you are using your own user and group names,
change the commands accordingly.

About this task
Advanced Message Security uses public key cryptography to sign and/or encrypt messages on protected
queues.

Note:

• If your IBM WebSphere MQ Managed File Transfer agents are running in bindings mode, the commands
that you use to create a CMS (Cryptographic Message Syntax) keystore are detailed in the Quick Start
Guide (Windows or UNIX) for your platform.

• If your IBM WebSphere MQ Managed File Transfer agents are running in client mode, the commands
you will need to create a JKS (Java Keystore) are detailed in the “Quick Start Guide for Java clients” on
page 275.

Security 283

Procedure
1. Create a self-signed certificate to identify the user ftagent as detailed in the appropriate Quick Start

Guide.
Use a Distinguished Name (DN) as follows:

CN=ftagent, OU=MFT, O=IBM, L=Hursley, ST=Hampshire, C=GB

2. Create a keystore.conf file to identify the location of the keystore and the certificate within it as
detailed in the appropriate Quick Start Guide.

2. Configuring message protection

About this task
You should define a security policy for the data queue used by AGENT2, using the setmqspl command. In
this scenario the same user is used to start both agents, and therefore the signer and receiver DN are the
same and match the certificate we generated.

Procedure
1. Shut down the IBM WebSphere MQ Managed File Transfer agents in preparation for protection using

the fteStopAgent command.
2. Create a security policy to protect the SYSTEM.FTE.DATA.AGENT2 queue.

setmqspl -m hubQM -p SYSTEM.FTE.DATA.AGENT2 -s SHA1 -a "CN=ftagent, OU=MFT, O=IBM,
L=Hursley, ST=Hampshire, C=GB"
-e AES128 -r "CN=ftagent, OU=MFT, O=IBM, L=Hursley, ST=Hampshire, C=GB"

3. Ensure the user running the IBM WebSphere MQ Managed File Transfer agent process has access to
browse the system policy queue and put messages on the error queue.

setmqaut -m hubQM -t queue -n SYSTEM.PROTECTION.POLICY.QUEUE -p ftagent +browse
setmqaut -m hubQM -t queue -n SYSTEM.PROTECTION.ERROR.QUEUE -p ftagent +put

4. Restart your IBM WebSphere MQ Managed File Transfer agents using the fteStartAgent command.
5. Confirm that your agents restarted successfully by using the fteListAgents command and verifying

that the agents are in READY status.

Results
You are now able to submit transfers from AGENT1 to AGENT2, and the file contents will be transmitted
securely between the two agents.

Installing IBM WebSphere MQ Advanced Message Security
Install the IBM WebSphere MQ Advanced Message Security component on various platforms.

About this task
For complete installation procedures, see Installing IBM WebSphere MQ Advanced Message Security.
Related tasks
Uninstalling IBM WebSphere MQ Advanced Message Security

Using keystores and certificates
To provide transparent cryptographic protection to WebSphere MQ applications, Advanced Message
Security uses the keystore file, where public key certificates and a private key are stored.

In Advanced Message Security, users and applications are represented by public key infrastructure (PKI)
identities. This type of identity is used to sign and encrypt messages. The PKI identity is represented by
the subject's distinguished name (DN) field in a certificate that is associated with signed and encrypted

284 Securing IBM WebSphere MQ

messages. For a user or application to encrypt their messages they require access to the keystore file
where certificates and associated private and public keys are stored.

Location of the keystore is provided in the keystore configuration file, which is keystore.conf
by default. Each Advanced Message Security user must have the keystore configuration file that
points to a keystore file. Advanced Message Security accepts the following format of keystore
files: .kdb, .jceks, .jks.

The default location of the keystore.conf file is:

• On UNIX platforms: $HOME/.mqs/keystore.conf
• On Windows platforms: %HOMEDRIVE%%HOMEPATH%\.mqs\keystore.conf

If you are using a specified keystore filename and location, you should use the following commands

• For Java: java -D MQS_KEYSTORE_CONF=path/filename app_name
• For C Client and Server:

– On UNIX and Linux: export MQS_KEYSTORE_CONF=path/filename
– On Windows: set MQS_KEYSTORE_CONF=path\filename

Note: The path on Windows can, and should, specify the drive letter if more than one drive letter is
available.

Related concepts
“Sender distinguished names” on page 298
The sender distinguished names (DNs) identify users who are authorized to place messages on a queue.
“Recipient distinguished names” on page 299
The recipient distinguished names (DN) identify users who are authorized to retrieve messages from a
queue.

Structure of the keystore configuration file (keystore.conf)
The keystore configuration file (keystore.conf) points Advanced Message Security to the location of
the appropriate keystore.

There are two types of configuration CMS and Java (JKS and JCEKS). CMS configuration entries are
prefixed with cms. and Java are prefixed with jks. or jceks. depending on the type of a keystore.

The configuration file, depending on the type of the configuration file, can have one of the following
structures:

cms.keystore = /<dir>/<keystore_file>
cms.certificate = certificate_label

jceks.keystore = <dir>/Keystore
jceks.certificate = <certificate_label>
jceks.encrypted = no
jceks.keystore_pass = <password>
jceks.key_pass = <password>
jceks.provider = IBMJCE

jks.keystore = <dir>/Keystore
jks.certificate = <certificate_label>
jks.encrypted = no
jks.keystore_pass = <password>
jks.key_pass = <password>
jks.provider = IBMJCE

Configuration file parameters are defined as follows:
keystore

Path to the keystore file.

Important:

• The path to the keystore file must not include the file extension.

Security 285

• For Java keystore files, IBM WebSphere MQ AMS supports the following file
formats: .jks, .jceks, .jck.

certificate
Certificate label.

encrypted
Status of the password.

keystore_pass
Password for the keystore file.

Note:

• For the CMS keystore, IBM WebSphere MQ AMS relies on the stash files (.sth), whereas JKS and
JCEKS might require a password for both the certificate and the user's private key.

• Storing passwords in plain text is a security risk.

key_pass
Password for the user's private key.

Important: Storing passwords in plain text form can pose a security risk.

provider
The Java security provider that implements cryptographic algorithms required by the keystore
certificate.

Note: Currently IBMJCE is the only provider that is supported by Advanced Message Security.

Important: Information stored in the keystore is crucial for the secure flow of data sent using WebSphere
MQ, which is why security administrators must pay particular attention when assigning file permissions to
these files.

Here is an example of the keystore.conf file:

cms.keystore = c:\Documents and Settings\Alice\AliceKeystore
cms.certificate = AliceCert

jceks.keystore = c:/Documents and Settings/Alice/AliceKeystore
jceks.certificate = AliceCert
jceks.encrypted = no
jceks.keystore_pass = <password>
jceks.key_pass = <password>
jceks.provider = IBMJCE

Related tasks
“Protecting passwords in Java” on page 296
Storing keystore and private key passwords as plain text poses a security risk so Advanced Message
Security provides a tool that can scramble those passwords using a user's key, which is available in the
keystore file.

Message Channel Agent (MCA) interception
MCA interception enables a queue manager running under IBM WebSphere MQ to selectively enable
policies to be applied for server connection channels.

MCA interception allows clients that remain outside IBM WebSphere MQ AMS to still be connected to a
queue manager and their messages to be encrypted and decrypted.

MCA interception is intended to provide IBM WebSphere MQ AMS capability when IBM WebSphere MQ
AMS cannot be enabled at the client. Note that using MCA interception and an IBM WebSphere MQ
AMS-enabled client leads to double-protection of messages which might be problematic for receiving
applications.

If a 2085 (MQRC_UNKNOWN_OBJECT_NAME) error is reported if you are using a Version 7.5 or later
client to connect to a queue manager from an earlier version of the product, you need to disable IBM

286 Securing IBM WebSphere MQ

WebSphere MQ Advanced Message Security at the client. For more information, see “Disabling IBM
WebSphere MQ Advanced Message Security at the client” on page 289.

Keystore configuration file
By default, the keystore configuration file for MCA interception is keystore.conf and is located in
the .mqs directory in the HOME directory path of the user who started the queue manager or the
listener. The keystore can also be configured by using the MQS_KEYSTORE_CONF environment variable.
For more information about configuring the IBM WebSphere MQ AMS keystore, see “Using keystores and
certificates” on page 284.

To enable MCA interception, you must provide the name of a channel that you want to use in the keystore
configuration file. For MCA interception, only a cms keystore type can be used.

For an example of setting up MCA interception, see “IBM WebSphere MQ AMS MCA interception example”
on page 287.

Attention: You must complete client authentication and encryption on the selected channels,
for example, by using SSL and SSLPEER or CHLAUTH TYPE(SSLPEERMAP), to ensure that only
authorized clients can connect and use this capability.

IBM WebSphere MQ AMS MCA interception example
An example task on how you setup an IBM WebSphere MQ AMS MCA interception.

Before you begin
Attention: You must complete client authentication and encryption on the selected channels,
for example, by using SSL and SSLPEER or CHLAUTH TYPE(SSLPEERMAP), to ensure that only
authorized clients can connect and use this capability.

About this task
This task takes you through the process of setting up your system to use MCA interception, then verifying
the setup.

Note: Prior to IBM WebSphere MQ Version 7.5, IBM WebSphere MQ AMS was an add-on product that
needed to be separately installed and interceptors configured to protect applications. From Version 7.5
onwards, the interceptors are automatically included and dynamically enabled in the MQ client and server
runtime environments. In this MCA interception example, the interceptors are provided at the server end
of the channel, and an older client runtime is used (in Step 12) to put an unprotected messages across
the channel so that it can be seen to be protected by the MCA interceptors. If this example had used
a Version 7.5 or later client, it would cause the message to be protected twice, because the MQ client
runtime interceptor and the MCA interceptor would both protect the message as it comes into MQ.

Attention: Replace userID in the code with your user ID.

Procedure
1. Create the key database and certificates by using the following commands to create a shell script.

Also, change the INSTLOC and KEYSTORELOC or run the required commands. Note that you might
not need to create the certificate for bob.

INSTLOC=/opt/mq75
KEYSTORELOC=/home/testusr/ssl/ams1
mkdir -p $KEYSTORELOC
chmod -R 777 $KEYSTORELOC
chown -R mqm:mqm $KEYSTORELOC
export PATH=$PATH:$INSTLOC/gskit8/bin
echo "PATH = $PATH"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$INSTLOC/gskit8/lib64

gsk8capicmd_64 -keydb -create -db $KEYSTORELOC/alicekey.kdb -pw passw0rd -stash

Security 287

gsk8capicmd_64 -keydb -create -db $KEYSTORELOC/bobkey.kdb -pw passw0rd -stash
gsk8capicmd_64 -cert -create -db $KEYSTORELOC/alicekey.kdb -pw passw0rd
-label alice_cert -dn "cn=alice,O=IBM,c=IN" -default_cert yes
gsk8capicmd_64 -cert -create -db $KEYSTORELOC/bobkey.kdb -pw passw0rd
-label bob_cert -dn "cn=bob,O=IBM,c=IN" -default_cert yes

2. Share the certificates between the two key databases so that each user can successfully identify the
other.

It is important that you use the method described in Task 5. Sharing Certificates in the Quick Start
Guide (Windows or UNIX).

3. Create keystore.conf with the following configuration: Keystore.conf location: /home/
userID/ssl/ams1/

cms.keystore = /home/userID/ssl/ams1/alicekey
cms.certificate.channel.SYSTEM.DEF.SVRCONN = alice_cert

4. Create and start queue manager AMSQMGR1
5. Define a listener with port 14567 and control QMGR
6. Disable channel authority or set the rules for channel authority.

See SET CHLAUTH for more information.
7. Stop the queue manager.
8. Set the keystore:

export MQS_KEYSTORE_CONF=/home/userID/ssl/ams1/keystore.conf

9. Start the queue manager on the same shell.
10. Set the security policy and verify:

setmqspl -m AMSQMGR1 -s SHA256 -e AES256 -p TESTQ -a "CN=alice,O=IBM,C=IN"
-r "CN=alice,O=IBM,C=IN"
dspmqspl -m AMSQMGR1

See setmqspl and dspmqspl for more information.
11. Set the channel configuration:

export MQSERVER='SYSTEM.DEF.SVRCONN/TCP/127.0.0.1(14567)'

12. Run amqsputc from an MQ client that does not automatically enable an MCA interceptor; for
example an IBM WebSphere MQ Version 7.1 or earlier client. Put the following two messages:

/opt/mqm/samp/bin/amqsputc TESTQ TESTQMGR

13. Remove the security policy and verify the result:

setmqspl -m AMSQMGR1 -p TESTQ -remove
dspmqspl -m AMSQMGR1

14. Browse the queue from your IBM WebSphere MQ Version 7.5 installation:

/opt/mq75/samp/bin/amqsbcg TESTQ AMSQMGR1

The browse output shows the messages in encrypted format.
15. Set the security policy and verify the result:

setmqspl -m AMSQMGR1 -s SHA256 -e AES256 -p TESTQ -a "CN=alice,O=IBM,C=IN"
-r "CN=alice,O=IBM,C=IN"
dspmqspl -m AMSQMGR1

16. Run amqsgetc from your IBM WebSphere MQ Version 7.5 installation:

/opt/mqm/samp/bin/amqsgetc TESTQ TESTQMGR

288 Securing IBM WebSphere MQ

Related tasks
“Quick Start Guide for Java clients” on page 275
Use this guide to quickly configure IBM Advanced Message Security to provide message security for Java
applications connecting using client bindings. By the time you complete it, you will have created a key
store to verify user identities, and defined signing/encryption policies for your queue manager.
Related reference
“Known limitations” on page 263
Learn about limitations of IBM WebSphere MQ Advanced Message Security.

Disabling IBM WebSphere MQ Advanced Message Security at the client
You need to disable IBM WebSphere MQ Advanced Message Security (AMS) at the client if you are using
a Version 7.5 or later client to connect to a queue manager from an earlier version of the product and a
2085 (MQRC_UNKNOWN_OBJECT_NAME) error is reported.

About this task
From Version 7.5, IBM WebSphere MQ Advanced Message Security (AMS) is automatically enabled in an
IBM WebSphere MQ client so, by default, the client tries to check the security policies for objects at the
queue manager. However, servers on earlier versions of the product, for example Version 7.1, do not have
AMS enabled, which causes a 2085 (MQRC_UNKNOWN_OBJECT_NAME) error to be reported.

If this error is reported, when you are trying to connect to a queue manager from an earlier version of the
product, you can disable AMS at the client as follows:

• For Java clients, in any of the following ways:

– By setting an environment variable AMQ_DISABLE_CLIENT_AMS.

– By setting the Java system property com.ibm.mq.cfg.AMQ_DISABLE_CLIENT_AMS.

– By using the DisableClientAMS property, under the Security stanza in the
mqclient.ini file.

• For C clients, in either of the following ways:

– By setting an environment variable AMQ_DISABLE_CLIENT_AMS.

– By using the DisableClientAMS property, under the Security stanza in the
mqclient.ini file.

Procedure
• To disable AMS at the client, use one of the following options:

AMQ_DISABLE_CLIENT_AMS environment variable
You need to set this variable in the following cases:

– If you are using Java Runtime Environment (JRE) other than the IBM Java Runtime Environment
(JRE)

– If you are using Version 7.5, or later, IBM WebSphere MQ classes for Java or IBM WebSphere
MQ classes for JMS client.

You can also use AMQ_DISABLE_CLIENT_AMS to disable AMS functionality for C clients.
Create the AMQ_DISABLE_CLIENT_AMS environment variable and set it to TRUE in the
environment where the application is running. For example:

export AMQ_DISABLE_CLIENT_AMS=TRUE

Security 289

com.ibm.mq.cfg.AMQ_DISABLE_CLIENT_AMS system property
For IBM WebSphere MQ classes for JMS and IBM WebSphere MQ classes for Java clients, set the
Java system property com.ibm.mq.cfg.AMQ_DISABLE_CLIENT_AMS to the value TRUE for the Java
application.
For example, you can set the Java system property as a -D option when the Java command is
invoked:

java -Dcom.ibm.mq.cfg.AMQ_DISABLE_CLIENT_AMS=TRUE -cp <MQ_INSTALLATION_PATH>/java/lib/
com.ibm.mqjms.jar my.java.applicationClass

Alternatively, you can specify the Java system property within a JMS configuration file,
jms.config, if the application uses this file.

DisableClientAMS property in the mqclient.ini file
For IBM WebSphere MQ classes for JMS and IBM WebSphere MQ classes for Java clients,
and for C clients, add the property name DisableClientAMS under the Security stanza the
mqclient.ini file as shown in the following example:

Security:
DisableClientAMS=Yes

You can also enable AMS as shown in the following example:

Security:
DisableClientAMS=No

What to do next
For more information on problems with opening AMS protected queues, see “Problems opening protected
queues when using JMS” on page 312.

Related concepts
“Message Channel Agent (MCA) interception” on page 286
MCA interception enables a queue manager running under IBM WebSphere MQ to selectively enable
policies to be applied for server connection channels.
Related tasks
Configuring a client using a configuration file
Related reference
The IBM WebSphere MQ classes for JMS configuration file

Certificate requirements for AMS
Certificates must have an RSA public key in order to be used with Advanced Message Security.

For more information about different public key types and how to create them, see “Digital certificates
and CipherSpec compatibility in IBM WebSphere MQ” on page 33.

Key usage extensions
Key usage extensions place additional restrictions on the way a certificate can be used.

In Advanced Message Security, the key usage must be set as following: for certificates in X.509 V3 or later
standard that are used for the quality of protection integrity, if the key usage extensions are set, they must
include at least one of the two:

• nonRepudiation
• digitalSignature

For the quality of protection privacy, if the key usage extensions are set, they must also include the
keyEncipherment extension.

290 Securing IBM WebSphere MQ

Related concepts
“Quality of protection” on page 300
Advanced Message Security data-protection policies imply a quality of protection (QOP).

Certificate validation methods in IBM WebSphere MQ Advanced Message
Security
You can use IBM WebSphere MQ Advanced Message Security to detect and reject revoked certificates so
that messages on your queues are not protected using certificates that do not fulfill security standards.

IBM WebSphere MQ AMS allows you to verify a certificate validity by using either Online Certificate Status
Protocol (OCSP) or certificate revocation list (CRL).

IBM WebSphere MQ AMS can be configured for either OCSP or CRL checking or both. If both methods are
enabled, then, for performance reasons, IBM WebSphere MQ AMS uses OCSP for revocation status first. If
the revocation status of a certificate is undetermined after the OCSP checking, IBM WebSphere MQ AMS
uses the CRL checking.

Related concepts
“Online Certificate Status Protocol (OCSP)” on page 291
Online Certificate Status Protocol (OCSP) determines whether a certificate has been revoked, and
therefore, helps to determine whether the certificate can be trusted.
“Certificate revocation lists (CRLs)” on page 293
CRLs holds a list of certificates that have been marked by Certificate Authority (CA) as no longer trusted
for a variety of reasons, for example, the private key has been lost or compromised.

Online Certificate Status Protocol (OCSP)
Online Certificate Status Protocol (OCSP) determines whether a certificate has been revoked, and
therefore, helps to determine whether the certificate can be trusted.

Enabling OCSP checking in native interceptors
To enable Online Certificate Status Protocol (OCSP) checking in Advanced Message Security, you must
modify the keystore configuration file.

Procedure
Add the following options to the keystore configuration file:

Note: Values for individual options provided in the table are default.

You must specify one of the following values:

• ocsp.enable=on
• ocsp.url=<reposnder_URL>
• ocsp.http.proxy.host=<OCSP_proxy>

Option Description

ocsp.enable=off Enable the OCSP checking if the certificate being
checked has a Authority Info Access Extension
with an PKIX_AD_OCSP access method containing
a URI of where the OCSP Responder is located.

Possible values: on/off.

ocsp.url=<reposnder_URL> The URL address of OCSP responder.

ocsp.http.proxy.host=<OCSP_proxy> The URL address of the OCSP proxy server.

ocsp.http.proxy.port=<port_number> The OCSP proxy server's port number.

Security 291

Option Description

ocsp.nonce.generation=on/off Generate nonce when querying OCSP.

The default value is off.

ocsp.nonce.check=on/off Check nonce after receiving a response from OCSP.

The default value is off.

ocsp.nonce.size=8 Nonce size in bytes.

ocsp.http.get=on/off Specify HTTP GET as your request method. If this
option is set to off, HTTP POST is used.

ocsp.max_response_size=20480 Maximum size of response from the OCSP
responder provided in bytes.

ocsp.cache_size=100 Enable internal OCSP response caching and set the
limit for the number of cache entries.

ocsp.timeout=30 Waiting time for a server response, in seconds,
after which Advanced Message Security times-out.

Enabling OCSP checking in Java
To enable OCSP checkin for Java in Advanced Message Security, modify the java.security file or the
keystore configuration file.

About this task
There are two ways of enabling OCSP checking in Advanced Message Security:

Using java.security
Check whether your certificate has Authority Information Access (AIA) set up.

Procedure
1. If AIA is not set up or you want to override your certificate, edit the $JAVA_HOME/lib/security/
java.security file with the following properties:

ocsp.responderURL=http://url.to.responder:port
ocsp.responderCertSubjectName=CN=Example CA,O=IBM,C=US

and enable OCSP checking by editing the $JAVA_HOME/lib/security/java.security file with
the following line:

ocsp.enable=true

2. If AIA is set up, enable OCSP checking by editing the $JAVA_HOME/lib/security/java.security
file with the following line:

ocsp.enable=true

What to do next
If you are using Java Security Manager, too complete the configuration, add the following Java permission
to lib/security/java.policy

permission java.security.SecurityPermission "getProperty.ocsp.enable";

292 Securing IBM WebSphere MQ

Using keystore.conf

Procedure
Add the following attribute to the configuration file:

ocsp.enable=true

Important: Setting this attribute in the configuration file overrides java.security settings.

What to do next
To complete the configuration, add the following Java permissions to lib/security/java.policy:

permission java.security.SecurityPermission "getProperty.ocsp.enable";
permission java.security.SecurityPermission "setProperty.ocsp.enable";

Certificate revocation lists (CRLs)
CRLs holds a list of certificates that have been marked by Certificate Authority (CA) as no longer trusted
for a variety of reasons, for example, the private key has been lost or compromised.

To validate certificates, Advanced Message Security constructs a certificate chain that consists of the
signer's certificate and the certificate authority's (CA's) certificate chain up to a trust anchor. A trust
anchor is a trusted keystore file that contains a trusted certificate or a trusted root certificate that is
used to assert the trust of a certificate.IBM WebSphere MQ AMS verifies the certificate path using a PKIX
validation algorithm. When the chain is created and verified, IBM WebSphere MQ AMS completes the
certificate validation which includes validating the issue and expiry date of each certificate in the chain
against the current date, checking if the key usage extension is present in the End Entity certificate. If
the extension is appended to the certificate, IBM WebSphere MQ AMS verifies whether digitalSignature
or nonRepudiation are also set. If they are not, the MQRC_SECURITY_ERROR is reported and logged.
Next, IBM WebSphere MQ AMS downloads CRLs from files or from LDAP depending on what values
were specified in the configuration file. Only CRLs that are encoded in DER format are supported by
IBM WebSphere MQ AMS. If no CRL related configuration is found in the keystore configuration file, IBM
WebSphere MQ AMS performs no CRL validity check. For each CA certificate, IBM WebSphere MQ AMS
queries LDAP for CRLs using Distinguished Names of a CA to find its CRL. The following attributes are
included in the LDAP query:

certificateRevocationList,
certificateRevocationList;binary,
authorityRevocationList,
authorityRevocationList;binary
deltaRevocationList
deltaRevocationList;binary,

Note: deltaRevocationList is supported only when it is specified as distribution points.

Enabling certificate validation and certificate revocation list support in native interceptors
You have to modify the keystore configuration file so that Advanced Message Security can download CLRs
from the Lightweight Directory Access Protocol (LDAP) server.

Procedure
Add the following options to the configuration file:

Note: Values for individual options provided in the table are default.

Option Description

crl.ldap.host=<host_name> LDAP server host name.

Security 293

Option Description

crl.ldap.port=<port_number> LDAP server port number.

You can specify up to 11 servers. Multiple LDAP
hosts are used to ensure transparent failover in
case of LDAP connection failure. It is expected
that all LDAP servers are replicas and contain the
same data. When the IBM WebSphere MQ AMS
Java interceptor successfully connects to an LDAP
server, it does not attempt to download CRLs from
the remaining servers provided.

crl.cdp=off Use this option to check or use
CRLDistributionPoints extensions in certificates.

crl.ldap.version=3 LDAP protocol version number. Possible values: 2
or 3.

crl.ldap.user=cn=<username> Login to the LDAP server. If this value is not
specified, CRL attributes in LDAP must be world-
readable

crl.ldap.pass=<password> Password for the LDAP server.

crl.ldap.cache_lifetime=0 LDAP cache lifetime in seconds. Possible values:
0-86400.

crl.ldap.cache_size=50 LDAP cache size. This option can be specified only
if the crl.ldap.cache_lifetime value is larger
than 0.

crl.http.proxy.host=some.host.com Http proxy server port for CDP CRL retrieval.

crl.http.proxy.port=8080 Http proxy server port number.

crl.http.max_response_size=204800 The maximum size of CRL, in bytes, that can be
retrieved from a HTTP server that is accepted by
GSKit.

crl.http.timeout=30 Waiting time for a server response, in seconds,
after which IBM WebSphere MQ AMS time-outs.

crl.http.cache_size=0 HTTP cache size, in bytes.

Enabling certificate revocation list support in Java
To enable CRL support in Advanced Message Security, you must modify the keystore configuration file to
allow IBM WebSphere MQ AMS to download CRLs from the Lightweight Directory Access Protocol (LDAP)
server and configure the java.security file.

Procedure
1. Add the following options to the configuration file:

Header Description

crl.ldap.host=<host_name> LDAP host name.

294 Securing IBM WebSphere MQ

Header Description

crl.ldap.port=<port_number> LDAP server port number.

You can specify up to 11 servers. Multiple LDAP
hosts are used to ensure transparent failover in
case of LDAP connection failure. It is expected
that all LDAP servers are replicas and contain
the same data. When the IBM WebSphere MQ
AMS Java interceptor successfully connects to
an LDAP server, it does not attempt to download
CRLs from the remaining servers provided.

Java does not use crl.ldap.user and
crl.ldaworldp.pass values. It does not use a
user and password when connecting to an LDAP
server. As a consequence, CRL attributes in LDAP
must be world-readable.

crl.cdp=on/off Use this option to check or use
CRLDistributionPoints extensions in certificates.

2. Modify the JRE/lib/security/java.security file with the following properties:

Property Name Description

com.ibm.security.enableCRLDP This property takes the following values: true,
false.

If it is set to true, when doing certificate
revocation check, CRLs are located using the
URL from CRL distribution points extension of the
certificate.

If it is set to false or not set, checking CRL
by using the CRL distribution points extension is
disabled.

ibm.security.certpath.ldap.cache.life
time

This property can be used to set the lifetime of
entries in the memory cache of LDAP CertStore
to a value in seconds. A value of 0 disables the
cache; -1 means unlimited lifetime. If not set, the
default lifetime is 30 seconds.

com.ibm.security.enableAIAEXT This property takes the following values: true,
false.

If it is set to true, any Authority Information
Access extensions that are found within the
certificates of the certificate path being built
are examined to determine whether they contain
LDAP URIs. For each LDAP URI found, an
LDAPCertStore object is created and added to
the collection of CertStores that is used to locate
other certificates that are required to build the
certificate path.

If it is set to false or not set, additional
LDAPCertStore objects are not created.

Security 295

Protecting passwords in Java
Storing keystore and private key passwords as plain text poses a security risk so Advanced Message
Security provides a tool that can scramble those passwords using a user's key, which is available in the
keystore file.

Before you begin
The keystore.conf file owner must ensure that only the file owner is entitled to read the file. The
passwords protection described in this chapter is only an additional measure of protection.

Procedure
1. Edit the keystore.conf files to include path to the keystore and users label.

jceks.keystore = c:/Documents and Setting/Alice/AliceKeystore
jceks.certificate = AliceCert
jceks.provider = IBMJCE

2. To run the tool, issue:

java -cp com.ibm.mq.jmqi.jar com.ibm.mq.ese.config.KeyStoreConfigProtector keystore_password
private_key_password

An output with encrypted passwords is generated and can be copied to the keystore.conf file.

To copy the output to the keystore.conf file automatically, run:

java -cp com.ibm.mq.jmqi.jar com.ibm.mq.ese.config.KeyStoreConfigProtector keystore_password
private_key_password >> ~/<path_to_keystore>/keystore.conf

Note:

For a list of default locations of keystore.conf on various platforms, see “Using keystores and
certificates” on page 284.

Example
Here is an example of such output:

#Fri Jul 30 15:20:29 CEST 2010
jceks.key_pass=MMXh997n5ZOr8uRlJmc5qity9MN2CggGBMKCDxdbn1AyPklvdgTsOLG6X3C1YT7oDzwaqZFlOR4t\r\nm
Zsc7JGAx8nqqxLnAucdGn0NWo6xnjZB1n501YGol2k/
PhaQHhFXKMAU9dKg0f8djOtCAOlX4ETe\r\nfYl9LBUt2wk87uM7dSs\=
jceks.keystore_pass=OIdeayBnSCfLG4cFuxEVrk6SYyAsdSPpDqgPf16s9s1M04cqZjNbhgjoA2EXonudHZHH+4s2drvQ
\r\nCUvQgu9GuaBMJK2F2OjtHJJ1Y4BVeLW2c2okgawo/
W2J1AdUYKkJ0raYTkDouLaTYTQeulyG0xIl\r\niD2si1xUCxhYvvyhbbY\=
jceks.encrypted=yes

Administering IBM WebSphere MQ Advanced Message Security security
policies

IBM WebSphere MQ Advanced Message Security uses security policies to specify the cryptographic
encryption and signature algorithms for encrypting and authenticating messages that flow through the
queues.

Security policies overview
IBM Advanced Message Security security policies are conceptual objects that describe the way a message
is cryptographically encrypted and signed.

For details of the security policy attributes, see the following subtopics:

Related concepts
“Quality of protection” on page 300

296 Securing IBM WebSphere MQ

Advanced Message Security data-protection policies imply a quality of protection (QOP).
“Security policy attributes” on page 300
You can use Advanced Message Security to select a particular algorithm or method to protect the data.

Policy name
The policy name is a unique name that identifies a specific Advanced Message Security policy and the
queue to which it applies.

The policy name must be the same as the queue name to which it applies. There is a one-to-one mapping
between a Advanced Message Security (IBM WebSphere MQ AMS) policy and a queue.

By creating a policy with the same name as a queue, you activate the policy for that queue. Queues
without matching policy names are not protected by IBM WebSphere MQ AMS.

The scope of the policy is relevant to the local queue manager and its queues. Remote queue managers
must have their own locally-defined policies for the queues they manage.

Signature algorithm
The signature algorithm indicates the algorithm that should be used when signing data messages.

Valid values include:

• MD5
• SHA-1
• SHA-2 family:

– SHA256
– SHA384 (minimum key length acceptable - 768 bits)
– SHA512 (minimum key length acceptable - 768 bits)

A policy that does not specify a signature algorithm, or specifies an algorithm of NONE, implies that
messages placed on the queue associated with the policy are not signed.

Note: The quality of protection used for the message put and get functions must match. If there is a policy
quality of protection mismatch between the queue and the message in the queue, the message is not
accepted and is sent to the error handling queue. This rule applies for both local and remote queues.

Encryption algorithm
The encryption algorithm indicates the algorithm that should be used when encrypting data messages
placed on the queue associated with the policy.

Valid values include:

• RC2
• DES
• 3DES
• AES128
• AES256

A policy that does not specify an encryption algorithm or specifies an algorithm of NONE implies that
messages placed on the queue associated with the policy are not encrypted.

Note that a policy that specifies an encryption algorithm other than NONE must also specify at least one
Recipient DN and a signature algorithm because Advanced Message Security encrypted messages are
also signed.

Important: The quality of protection used for the message put and get functions must match. If there is
a policy quality of protection mismatch between the queue and the message in the queue, the message is
not accepted and is sent to the error handling queue. This rule applies for both local and remote queues.

Security 297

Toleration
The toleration attribute indicates whether IBM Advanced Message Security can accept messages with no
security policy specified.

When retrieving a message from a queue with a policy to encrypt messages, if the message is not
encrypted, it is returned to the calling application. Valid values include:

0
No (default).

1
Yes.

A policy that does not specify a toleration value or specifies 0, implies that messages placed on the queue
associated with the policy must match the policy rules.

Toleration is optional and exists to facilitate configuration roll-out, where policies were applied to queues
but those queues already contain messages that do not have a security policy specified.

Sender distinguished names
The sender distinguished names (DNs) identify users who are authorized to place messages on a queue.

IBM Advanced Message Security (IBM WebSphere MQ AMS) does not check whether a message has been
placed on a data-protected queue by a valid user until the message is retrieved. At this time, if the policy
stipulates one or more valid senders, and the user that placed the message on the queue is not in the
list of valid senders, IBM WebSphere MQ AMS returns an error to the getting application, and place the
message on its error queue.

A policy can have 0 or more sender DNs specified. If no sender DNs are specified for the policy, any user
can put data-protected messages to the queue providing the user's certificate is trusted.

Sender distinguished names have the following form:

CN=Common Name,O=Organization,C=Country

Important:

• All DNs must be in uppercase. All component name identifiers in the DN must be specified in the order
shown in the following table:

Component name Value

CN The common name for the object of this DN, such
as a full name or the intended purpose of a device.

OU The unit within the organization with which the
object of the DN is affiliated, such as a corporate
division or a product name.

O The organization with which the object of the DN
is affiliated, such as a corporation.

L The locality (city or municipality) where the object
of the DN is located.

ST The state or province name where the object of
the DN is located.

C The country where the object of the distinguished
name (DN) is located.

• If one or more sender DNs are specified for the policy, only those users can put messages to the queue
associated with the policy.

• Sender DNs, when specified, must match exactly the DN contained in the digital certificate associated
with user putting the message.

298 Securing IBM WebSphere MQ

• IBM WebSphere MQ AMS supports DNs with values only from Latin-1 character set. To create DNs with
characters of the set, you must first create a certificate with a DN that is created in UTF-8 coding using
UNIX platforms with UTF-8 coding turned on or with the iKeyman utility. Then you must create a policy
from a UNIX platform with UTF-8 coding turned on or use the IBM WebSphere MQ AMS plug-in to
WebSphere MQ.

Related concepts
“Recipient distinguished names” on page 299
The recipient distinguished names (DN) identify users who are authorized to retrieve messages from a
queue.

Recipient distinguished names
The recipient distinguished names (DN) identify users who are authorized to retrieve messages from a
queue.

A policy can have zero or more recipient DNs specified. Recipient distinguished names have the following
form:

CN=Common Name,O=Organization,C=Country

Important:

• All DNs must be in uppercase. All component name identifiers in the DN must be specified in the order
shown in the following table:

Component name Value

CN The common name for the object of this DN, such
as a full name or the intended purpose of a device.

OU The unit within the organization with which the
object of the DN is affiliated, such as a corporate
division or a product name.

O The organization with which the object of the DN
is affiliated, such as a corporation.

L The locality (city or municipality) where the object
of the DN is located.

ST The state or province name where the object of
the DN is located.

C The country where the object of the distinguished
name (DN) is located.

• If no recipient DNs are specified for the policy, any user can get messages from the queue associated
with the policy.

• If one or more recipient DNs are specified for the policy, only those users can get messages from the
queue associated with the policy.

• Recipient DNs, when specified, must match exactly the DN contained in the digital certificate associated
with user getting the message.

• Advanced Message Security supports DNs with values only from Latin-1 character set. To create DNs
with characters of the set, you must first create a certificate with a DN that is created in UTF-8 coding
using UNIX platforms with UTF-8 coding turned on or with the iKeyman utility. Then you must create a
policy from a UNIX platform with UTF-8 coding turned on or use the Advanced Message Security plug-in
to WebSphere MQ.

Related concepts
“Sender distinguished names” on page 298

Security 299

The sender distinguished names (DNs) identify users who are authorized to place messages on a queue.

Security policy attributes
You can use Advanced Message Security to select a particular algorithm or method to protect the data.

A security policy is a conceptual object that describes the way a message is cryptographically encrypted
and signed. The following table presents the security policy attributes in Advanced Message Security:

Attributes Description

Policy name Unique name of the policy for a queue manager.

Signature algorithm Cryptographic algorithm that is used to sign
messages before sending.

Encryption algorithm Cryptographic algorithm that is used to encrypt
messages before sending.

Recipient list List of certificate distinguished names (DNs) of
potential receivers of a message.

Signature DN checklist List of signature DNs to be validated during
message retrieval.

In Advanced Message Security, messages are encrypted with a symmetric key, and the symmetric key
is encrypted with the public keys of the recipients. Public keys are encrypted with the RSA algorithm,
with keys of an effective length up to 2048 bits. The actual asymmetric key encryption depends on the
certificate key length.

The supported symmetric-key algorithms are as follows:

• RC2
• DES
• 3DES
• AES128
• AES256

Advanced Message Security also supports the following cryptographic hash functions:

• MD5
• SHA-1
• SHA-2 family:

– SHA256
– SHA384 (minimum key length acceptable - 768 bits)
– SHA512 (minimum key length acceptable - 768 bits)

Note: The quality of protection used for the message put and get functions must match. If there is a policy
quality of protection mismatch between the queue and the message in the queue, the message is not
accepted and is sent to the error handling queue. This rule applies for both local and remote queues.

Quality of protection
Advanced Message Security data-protection policies imply a quality of protection (QOP).

The three quality of protection levels in Advanced Message Security depend on cryptographic algorithms
that are used to sign and encrypt the message:

• Privacy - messages placed on the queue must be signed and encrypted.
• Integrity - messages placed on the queue must be signed by the sender.
• None - no data protection is applicable.

300 Securing IBM WebSphere MQ

A policy that stipulates that messages must be signed when placed on a queue has a QOP of INTEGRITY.
A QOP of INTEGRITY means that a policy stipulates a signature algorithm, but does not stipulate an
encryption algorithm. Integrity-protected messages are also referred to as "SIGNED".

A policy that stipulates that messages must be signed and encrypted when placed on a queue has a
QOP of PRIVACY. A QOP of PRIVACY means that when a policy stipulates a signature algorithm and an
encryption algorithm. Privacy-protected messages are also referred to as "SEALED".

A policy that does not stipulate a signature algorithm or an encryption algorithm has a QOP of NONE.
Advanced Message Security provides no data-protection for queues that have a policy with a QOP of
NONE.

Managing security policies
A security policy is a conceptual object that describes the way a message is cryptographically encrypted
and signed.

All administrative tasks related to security policies are run from the following location:

• On UNIX platforms: <MQInstallRoot>/bin
• On Windows platforms administrative tasks can be run from any location as the PATH environment

variable is updated at the installation.

Related tasks
“Creating security policies” on page 301
Security policies define the way in which a message is protected when the message is put, or how a
message must have been protected when a message is received.
“Changing security policies” on page 302
You can use Advanced Message Security to alter details of security policies that you have already defined.
“Displaying and dumping security policies” on page 302
Use the dspmqspl command to display a list of all security policies or details of a named policy
depending on the command-line parameters you supply.
“Removing security policies” on page 304
To remove security policies in Advanced Message Security, you must use the setmqspl command.

Creating security policies
Security policies define the way in which a message is protected when the message is put, or how a
message must have been protected when a message is received.

Before you begin
There are some entry conditions which must be met when creating security policies:

• The queue manager must be running.
• The name of a security policy must follow Rules for naming WebSphere MQ objects.
• You must have the necessary +connect +inq +chg authorities to create a security policy. For the

complete syntax of authorization change command, see setmqaut .
• Make sure that you have necessary permissions to operate on WebSphere MQ queues and queue

managers. For more information, see “Granting OAM permissions” on page 305

Example
Here is an example of creating a policy on queue manager QMGR. The policy specifies that messages
be signed using the SHA1 algorithm and encrypted using the AES256 algorithm for certificates with DN:
CN=joe,O=IBM,C=US and DN: CN=jane,O=IBM,C=US. This policy is attached to MY.QUEUE:

$ setmqspl -m QMGR -p MY.QUEUE -s SHA1 -e AES256 -r CN=joe,O=IBM,C=US -r CN=jane,O=IBM,C=US

Security 301

Here is an example of creating policy on the queue manager QMGR. The policy specifies that
messages be encrypted using the DES algorithm for certificates with DNs: CN=john,O=IBM,C=US and
CN=jeff,O=IBM,C=US and signed with the MD5 algorithm for certificate with DN: CN=phil,O=IBM,C=US

$ setmqspl -m QMGR -p MY.OTHER.QUEUE -s MD5 -e DES -r CN=john,O=IBM,C=US -r CN=jeff,O=IBM,C=US
-a CN=phil,O=IBM,C=US

Note:

• The quality of protection being used for the message put and get must match. If the policy quality of
protection that is defined for the message is weaker than that defined for a queue, the message is sent
to the error handling queue. This policy is valid for both local and remote queues.

Related reference
Complete list of setmqspl command attributes

Changing security policies
You can use Advanced Message Security to alter details of security policies that you have already defined.

Before you begin
• The queue manager on which you want to operate must be running.
• You must have necessary +connect +inq +chg authorities to create security policies. For the

complete syntax of authorization change command, see setmqaut .

About this task
To change security policies, apply the setmqspl command to an already existing policy providing new
attributes.

Example
Here is an example of creating a policy named MYQUEUE on a queue manager named QMGR specifying that
messages will be encrypted using the RC2 algorithm for certificates with DN:CN=bob,O=IBM,C=US and
signed with the SHA1 algorithm for certificates with DN:CN=jeff,O=IBM,C=US.

setmqspl -m QMGR -p MYQUEUE -e RC2 -s SHA1 -a CN=jeff,O=IBM,C=US -r CN=alice,O=IBM,C=US

To alter this policy, issue the setmqspl command with all attributes from the example changing only the
values you want to modify. In this example, previously created policy is attached to a new queue and its
encryption algorithm is changed to AES256:

setmqspl -m QMGR -p MYQUEUE -e AES256 -s SHA1 -a CN=jeff,O=IBM,C=US -r CN=alice,O=IBM,C=US

Related reference
setmqspl

Displaying and dumping security policies
Use the dspmqspl command to display a list of all security policies or details of a named policy
depending on the command-line parameters you supply.

Before you begin
• To display security policies details, the queue manager must exist, and be running.
• You must have necessary +connect +inq +dsp permissions applied to a queue manager to display

and dump security policies. For the complete syntax of authorization change command, see setmqaut .

About this task
Here is the list of dspmqspl command flags:

302 Securing IBM WebSphere MQ

Table 27. dspmqspl command flags.

Command flag Explanation

-m Queue manager name (mandatory).

-p Policy name.

-export Adding this flag generates output which can easily
be applied to a different queue manager.

Example
In this example we will create two security policies for venus.queue.manager:

setmqspl -m venus.queue.manager -p AMS_POL_04_ONE -s MD5 -a "CN=signer1,O=IBM,C=US" -e NONE
setmqspl -m venus.queue.manager -p AMS_POL_06_THREE -s MD5 -a "CN=another signer,O=IBM,C=US" -e
NONE

This example shows a command that displays details of all policies defined for venus.queue.manager
and the output it produces:

dspmqspl -m venus.queue.manager

Policy Details:
Policy name: AMS_POL_04_ONE
Quality of protection: INTEGRITY
Signature algorithm: MD5
Encryption algorithm: NONE
Signer DNs:
 CN=signer1,O=IBM,C=US
Recipient DNs: -
Toleration: 0
- -
Policy Details:
Policy name: AMS_POL_06_THREE
Quality of protection: INTEGRITY
Signature algorithm: MD5
Encryption algorithm: NONE
Signer DNs:
 CN=another signer,O=IBM,C=US
Recipient DNs: -
Toleration: 0

This example shows a command that displays details of a selected security policy defined for
venus.queue.manager and the output it produces:

dspmqspl -m venus.queue.manager -p AMS_POL_06_THREE

Policy Details:
Policy name: AMS_POL_06_THREE
Quality of protection: INTEGRITY
Signature algorithm: MD5
Encryption algorithm: NONE
Signer DNs:
 CN=another signer,O=IBM,C=US
Recipient DNs: -
Toleration: 0

In the next example, first, we create a security policy and then, we export the policy using the -export
flag:

setmqspl -m venus.queue.manager -p AMS_POL_04_ONE -s MD5 -a "CN=signer1,O=IBM,C=US" -e NONE

dspmqspl -m venus.queue.manager -export > policies.[bat|sh]

To import a security policy:

• On Windows platforms, run policies.bat
• On UNIX platforms:

Security 303

1. Log on as a user that belongs to the mqm WebSphere MQ administration group.
2. Issue . policies.sh.

Related reference
Complete list of dspmqspl command attributes

Removing security policies
To remove security policies in Advanced Message Security, you must use the setmqspl command.

Before you begin
There are some entry conditions which must be met when managing security policies:

• The queue manager must be running.
• You must have necessary +connect +inq +chg authorities to create security policies. For the

complete syntax of authorization change command, see setmqaut .

About this task
Use the setmqspl command with the -remove option.

Example
Here is an example of removing a policy:

$ setmqspl -m QMGR -remove -p MY.OTHER.QUEUE

Related reference
Complete list of setmqspl command attributes

System queue protection
System queues enable communication between WebSphere MQ and its ancillary applications. Whenever
a queue manager is created, a system queue is also created to store WebSphere MQ internal messages
and data. You can protect system queues with Advanced Message Security so that only authorized users
can access or decrypt them.

System queue protection follows the same pattern as the protection of regular queues. See “Creating
security policies” on page 301.

To use system queue protection on Windows platforms, copy the keystore.conf file to the following
directory:

c:\Documents and Settings\Default User\.mqs\keystore.conf

To provide protection for SYSTEM.ADMIN.COMMAND.QUEUE, the command server must have access
to the keystore and the keystore.conf, which contain keys and a configuration so that
the command server can access keys and certificates. All changes made to security policy of
SYSTEM.ADMIN.COMMAND.QUEUE require the restart of the command server.

All messages that are sent and received from the command queue are signed or signed and encrypted
depending on policy settings. If an administrator defines authorised signers, command messages that
do not pass signer Distinguished Name (DN) check are not executed by the command server and are
not routed to the Advanced Message Security error handling queue. Messages that are sent as replies to
WebSphere MQ Explorer temporary dynamic queues are not protected by WebSphere MQ AMS.

Changes to Advanced Message Security security policies require you to restart the WebSphere MQ
command server

Security policies do not have an effect on the following SYSTEM queues:

• SYSTEM.ADMIN.ACCOUNTING.QUEUE
• SYSTEM.ADMIN.ACTIVITY.QUEUE

304 Securing IBM WebSphere MQ

• SYSTEM.ADMIN.CHANNEL.EVENT
• SYSTEM.ADMIN.COMMAND.EVENT
• SYSTEM.ADMIN.CONFIG.EVENT
• SYSTEM.ADMIN.LOGGER.EVENT
• SYSTEM.ADMIN.PERFM.EVENT
• SYSTEM.ADMIN.PUBSUB.EVENT
• SYSTEM.ADMIN.QMGR.EVENT
• SYSTEM.ADMIN.STATISTICS.QUEUE
• SYSTEM.ADMIN.TRACE.ROUTE.QUEUE
• SYSTEM.AUTH.DATA.QUEUE
• SYSTEM.BROKER.ADMIN.STREAM
• SYSTEM.BROKER.CONTROL.QUEUE
• SYSTEM.BROKER.DEFAULT.STREAM
• SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS
• SYSTEM.CHANNEL.INITQ
• SYSTEM.CHANNEL.SYNCQ
• SYSTEM.CICS.INITIATION.QUEUE
• SYSTEM.CLUSTER.COMMAND.QUEUE
• SYSTEM.CLUSTER.HISTORY.QUEUE
• SYSTEM.CLUSTER.REPOSITORY.QUEUE
• SYSTEM.CLUSTER.TRANSMIT.QUEUE
• SYSTEM.DEAD.LETTER.QUEUE
• SYSTEM.DURABLE.SUBSCRIBER.QUEUE
• SYSTEM.HIERARCHY.STATE
• SYSTEM.INTER.QMGR.CONTROL
• SYSTEM.INTER.QMGR.FANREQ
• SYSTEM.INTER.QMGR.PUBS
• SYSTEM.INTERNAL.REPLY.QUEUE
• SYSTEM.PENDING.DATA.QUEUE
• SYSTEM.PROTECTION.ERROR.QUEUE
• SYSTEM.PROTECTION.POLICY.QUEUE
• SYSTEM.RETAINED.PUB.QUEUE
• SYSTEM.SELECTION.EVALUATION.QUEUE
• SYSTEM.SELECTION.VALIDATION.QUEUE

Granting OAM permissions
File permissions authorize all users to execute setmqspl and dspmqspl commands. However, IBM
Advanced Message Security relies on the Object Authority Manager (OAM) and every attempt to execute
these commands by a user who does not belong to the mqm group, which is the WebSphere MQ
administration group, or does not have permissions to read security policy settings that are granted,
results in an error.

Procedure
To grant necessary permissions to a user, run:

Security 305

setmqaut -m SOME.QUEUE.MANAGER -t qmgr -p SOME.USER +connect +inq
setmqaut -m SOME.QUEUE.MANAGER -t queue -n SYSTEM.PROTECTION.POLICY.QUEUE -p SOME.USER +browse
+put
setmqaut -m SOME.QUEUE.MANAGER -t queue -n SYSTEM.PROTECTION.ERROR.QUEUE -p SOME.USER +put

Command and configuration events
With Advanced Message Security, you can generate command and configuration event messages, which
can be logged and serve as a record of policy changes for auditing.

Command and configuration events generated by WebSphere MQ are message of the PCF format sent to
dedicated queues.

Configuration events messages are sent to the SYSTEM.ADMIN.CONFIG.EVENT queue on the queue
manager where the event occurs.

Command events messages are sent to the SYSTEM.ADMIN.COMMAND.EVENT queue on the queue
manager where the event occurs.

Events are generated regardless of tools you are using to manage Advanced Message Security security
policies.

In Advanced Message Security, there are four types of events generated by different actions on security
policies:

• “Creating security policies” on page 301, which generate two WebSphere MQ event messages:

– A configuration event
– A command event

• “Changing security policies” on page 302, which generates three WebSphere MQ event messages:

– A configuration event that contains old security policy values
– A configuration event that contains new security policy values
– A command event

• “Displaying and dumping security policies” on page 302, which generates one WebSphere MQ event
message:

– A command event
• “Removing security policies” on page 304, which generates two WebSphere MQ event messages:

– A configuration event
– A command event

Enabling and disabling event logging
You control command and configuration events by using the queue manager attributes CONFIGEV and
CMDEV. To enable these events, set the appropriate queue manager attribute to ENABLED. To disable
these events, set the appropriate queue manager attribute to DISABLED.

Procedure

Configuration events
To enable configuration events, set CONFIGEV to ENABLED. To disable configuration events, set
CONFIGEV to DISABLED. For example, you can enable configuration events by using the following
MQSC command:

ALTER QMGR CONFIGEV (ENABLED)

Command events
To enable command events, set CMDEV to ENABLED. To enable command events for commands
except DISPLAY MQSC commands and Inquire PCF commands, set the CMDEV to NODISPLAY. To

306 Securing IBM WebSphere MQ

disable command events, set CMDEV to DISABLED. For example, you can enable command events by
using the following MQSC command:

ALTER QMGR CMDEV (ENABLED)

Related tasks
Controlling configuration, command, and logger events in Websphere MQ

Command event message format
Command event message consists of MQCFH structure and PCF parameters following it.

Here are selected MQCFH values:

Type = MQCFT_EVENT;
Command = MQCMD_COMMAND_EVENT;
MsgSeqNumber = 1;
Control = MQCFC_LAST;
ParameterCount = 2;
CompCode = MQCC_WARNING;
Reason = MQRC_COMMAND_PCF;

Note: ParameterCount value is two because there are always two paramteters of MQCFGR type (group).
Each group consists of appropriate parameters. The event data consists of two groups, CommandContext
and CommandData.

CommandContext contains:
EventUserID

Description: The user ID that issued the command or call that generated the event. (This
is the same user ID that is used to check the authority to issue the command
or call; for commands received from a queue, this is also the user identifier
(UserIdentifier) from the MD of the command message).

Identifier: MQCACF_EVENT_USER_ID.

Data type: MQCFST.

Maximum length: MQ_USER_ID_LENGTH.

Returned: Always.

EventOrigin

Description: The origin of the action causing the event.

Identifier: MQIACF_EVENT_ORIGIN.

Data type: MQCFIN.

Values: MQEVO_CONSOLE
Console command - command line.

MQEVO_MSG
Command message from WebSphere MQ Explorer plugin.

Returned: Always.

EventQMgr

Description: The queue manager where the command or call was entered. (The queue
manager where the command is executed and that generates the event is in
the MD of the event message).

Identifier: MQCACF_EVENT_Q_MGR.

Data type: MQCFST.

Security 307

Maximum length: MQ_Q_MGR_NAME_LENGTH.

Returned: Always.

EventAccountingToken

Description: For commands received as a message (MQEVO_MSG), the accounting token
(AccountingToken) from the MD of the command message.

Identifier: MQBACF_EVENT_ACCOUNTING_TOKEN.

Data type: MQCFBS.

Maximum length: MQ_ACCOUNTING_TOKEN_LENGTH.

Returned: Only if EventOrigin is MQEVO_MSG.

EventIdentityData

Description: For commands received as a message (MQEVO_MSG), application identity data
(ApplIdentityData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_IDENTITY.

Data type: MQCFST.

Maximum length: MQ_APPL_IDENTITY_DATA_LENGTH.

Returned: Only if EventOrigin is MQEVO_MSG.

EventApplType

Description: For commands received as a message (MQEVO_MSG), the type of application
(PutApplType) from the MD of the command message.

Identifier: MQIACF_EVENT_APPL_TYPE.

Data type: MQCFIN.

Returned: Only if EventOrigin is MQEVO_MSG.

EventApplName

Description: For commands received as a message (MQEVO_MSG), the name of the
application (PutApplName) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_NAME.

Data type: MQCFST.

Maximum length: MQ_APPL_NAME_LENGTH.

Returned: Only if EventOrigin is MQEVO_MSG.

EventApplOrigin

Description: For commands received as a message (MQEVO_MSG), the application origin
data (ApplOriginData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_ORIGIN.

Data type: MQCFST.

Maximum length: MQ_APPL_ORIGIN_DATA_LENGTH.

Returned: Only if EventOrigin is MQEVO_MSG.

308 Securing IBM WebSphere MQ

Command

Description: The command code.

Identifier: MQIACF_COMMAND.

Data type: MQCFIN.

Values: MQCMD_INQUIRE_PROT_POLICY numeric value 205
MQCMD_CREATE_PROT_POLICY numeric value 206
MQCMD_DELETE_PROT_POLICY numeric value 207
MQCMD_CHANGE_PROT_POLICY numeric value 208
These are defined in WebSphere MQ 7.5 cmqcfc.h

Returned: Always.

CommandData contains PCF elements that comprised the PCF command.

Configuration event message format
Configuration events are PCF messages of standard Advanced Message Security format.

For possible values for the MQMD message descriptor, see Event message MQMD (message descriptor).

Here are selected MQMD values:

Format = MQFMT_EVENT
Peristence = MQPER_PERSISTENCE_AS_Q_DEF
PutApplType = MQAT_QMGR //for both CLI and command server

The message buffer consists of the MQCFH structure and the parameter structure that follows it. For
possible MQCFH values, see Event message MQCFH (PCF header).

Here are selected MQCFH values:

Type = MQCFT_EVENT
Command = MQCMD_CONFIG_EVENT
MsgSeqNumber = 1 or 2 // 2 will be in case of Change Object event
Control = MQCFC_LAST or MQCFC_NOT_LAST //MQCFC_NOT_LAST will be in case of 1 Change Object
event
ParameterCount = reflects number of PCF parameters following MQCFH
CompCode = MQCC_WARNING
Reason = one of {MQRC_CONFIG_CREATE_OBJECT, MQRC_CONFIG_CHANGE_OBJECT,
MQRC_CONFIG_DELETE_OBJECT}

The parameters following MQCFH are:

EventUserID

Description: The user ID that issued the command or call that generated the event. (This
is the same user ID that is used to check the authority to issue the command
or call; for commands received from a queue, this is also the user identifier
(UserIdentifier) from the MD of the command message).

Identifier: MQCACF_EVENT_USER_ID

Data type: MQCFST.

Maximum length: MQ_USER_ID_LENGTH.

Returned: Always.

SecurityId

Description: Value of MQMD.AccountingToken in case of command server message or
Windows SID for local command.

Identifier: MQBACF_EVENT_SECURITY_ID

Security 309

Data type: MQCBS.

Maximum length: MQ_SECURITY_ID_LENGTH.

Returned: Always.

EventOrigin

Description: The origin of the action causing the event.

Identifier: MQIACF_EVENT_ORIGIN

Data type: MQCFIN.

Values: MQEVO_CONSOLE
Console command - command line.

MQEVO_MSG
Command message from the WebSphere MQ Explorer plugin.

Returned: Always.

EventQMgr

Description: The queue manager where the command or call was entered. (The queue
manager where the command is executed and that generates the event is in
the MD of the event message).

Identifier: MQCACF_EVENT_Q_MGR

Data type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: Always.

ObjectType

Description: Object type.

Identifier: MQIACF_OBJECT_TYPE

Data type: MQCFIN

Value: MQOT_PROT_POLICY
Advanced Message Security protection policy. 1019 - a numeric value
defined in WebSphere MQ 7.5 or in the cmqc.h file.

Returned: Always.

PolicyName

Description: The Advanced Message Security policy name.

Identifier: MQCA_POLICY_NAME.

Data type: MQCFST.

Value: 2112 - a numeric value defined in WebSphere MQ 7.5 or in the cmqc.h file.

Maximum length: MQ_OBJECT_NAME_LENGTH.

Returned: Always.

PolicyVersion

Description: The Advanced Message Security policy version.

310 Securing IBM WebSphere MQ

Identifier: MQIA_POLICY_VERSION

Data type: MQCFIN

Value 238 - a numeric value defined in WebSphere MQ 7.5 or in the cmqc.h file.

Returned: Always

TolerateFlag

Description: The Advanced Message Security policy toleration flag.

Identifier: MQIA_TOLERATE_UNPROTECTED

Data type: MQCFIN

Value 235 - a numeric value defined in WebSphere MQ 7.5 or in the cmqc.h file.

Returned: Always.

SignatureAlgorithm

Description: The Advanced Message Security policy signature algorithm.

Identifier: MQIA_SIGNATURE_ALGORITHM

Data type: MQCFIN

Value: 236 - a numeric value defined in WebSphere MQ 7.5 or in the cmqc.h file.

Returned: Whenever there is a signature algorithm defined in the Advanced Message
Security policy

EncryptionAlgorithm

Description: The Advanced Message Security policy encryption algorithm.

Identifier: MQIA_ENCRYPTION_ALGORITHM

Data type: MQCFIN

Value: 237 - a numeric value defined in WebSphere MQ 7.5 or in the cmqc.h file.

Returned: Whenever there is an encryption algorithm defined in the WebSphere MQ policy

SignerDNs

Description: Subject DistinguishedName of allowed signers.

Identifier: MQCA_SIGNER_DN

Data type: MQCFSL

Value: 2113 - a numeric value defined in WebSphere MQ 7.5 or in the cmqc.h file.

Maximum length: Longest signer DN in the policy, but no longer then
MQ_DISTINGUISHED_NAME_LENGTH

Returned: Whenever defined in WebSphere MQ policy.

RecipientDNs

Description: Subject DistinguishedName of allowed signers.

Identifier: MQCA_RECIPIENT_DN

Data type: MQCFSL

Value: 2114 - a numeric value defined in WebSphere MQ 7.5 or in the cmqc.h file.

Security 311

Maximum length: Longest recipient DN in the policy, but no longer then
MQ_DISTINGUISHED_NAME_LENGTH.

Returned: Whenever defined in WebSphere MQ policy.

Problems and solutions
This section describes how to solve problems that might arise with any installation of IBM Use this
information to identify and resolve any problems relating to Advanced Message Security.

com.ibm.security.pkcsutil.PKCSException: Error encrypting contents
Error com.ibm.security.pkcsutil.PKCSException: Error encrypting contents suggests
that IBM Advanced Message Security has problems with accessing cryptographic algorithms.

If the following error is returned by Advanced Message Security:

DRQJP0103E The IBM WebSphere MQ Advanced Message Security Java interceptor failed to protect
message.
 com.ibm.security.pkcsutil.PKCSException: Error encrypting contents
(java.security.InvalidKeyException: Illegal key size or default parameters)

verify if the JCE security policy in JAVA_HOME/lib/security/local_policy.jar/*.policy grants
access to the signature algorithms used in MQ AMS policy.

If the signature algorithm you want to use is not specified in your current security policy, download
correct Java policy file from the following locations:

• IBM SDK Policy files for Java 1.4.2.
• IBM SDK Policy files for Java 5.0.
• IBM SDK Policy files for Java 6.0.
• IBM SDK Policy files for Java 7.0.

OSGi support
To use OSGi bundle with IBM Advanced Message Security additional parameters are required.

Run the following parameter during the OSGi bundle startup:

-Dorg.osgi.framework.system.packages.extra=com.ibm.security.pkcs7

When using encrypted password in your keystore.conf, the following statement must be added when OSGi
bundle is running:

-Dorg.osgi.framework.system.packages.extra=com.ibm.security.pkcs7,com.ibm.misc

Restriction: IBM WebSphere MQ AMS supports communication using only MQ Base Java Classes for
queues protected from within the OSGi bundle.

Problems opening protected queues when using JMS
Various problems can arise when you open protected queues when using IBM WebSphere MQ Advanced
Message Security.

You are running JMS and you receive error 2085 (MQRC_UNKNOWN_OBJECT_NAME) together with error
JMSMQ2008.

You have verified that you have set up your IBM WebSphere MQ Advanced Message Security as described
in “Quick Start Guide for Java clients” on page 275.

A possible cause is that you are using a non-IBM Java Runtime Environment. This is a known limitation
described in “Known limitations” on page 263.

You have not set the AMQ_DISABLE_CLIENT_AMS environment variable.

312 Securing IBM WebSphere MQ

https://www.ibm.com/developerworks/java/jdk/security/142/
https://www.ibm.com/developerworks/java/jdk/security/50/
https://www.ibm.com/developerworks/java/jdk/security/60/
https://www.ibm.com/developerworks/java/jdk/security/70/

Resolving the problem
There are four options for working around this problem:

1. Start your JMS application under a supported IBM Java Runtime Environment (JRE).
2. Move your application to the same machine where your queue manager is running and have it connect

using a bindings mode connection.

A bindings mode connection uses platform native libraries to perform the IBM WebSphere MQ API
calls. Accordingly, the native AMS interceptor is used to perform the AMS operations and there is no
reliance on the capabilities of the JRE.

3. Use an MCA interceptor, because this allows signing and encryption of messages as soon as they arrive
at the queue manager, without the need for the client to perform any AMS processing.

Given that the protection is applied at the queue manager, an alternate mechanism must be used to
protect the messages in transit from the client to the queue manager. Most commonly this is achieved
by configuring SSL/TLS encryption on the server connection channel used by the application.

4. Set the AMQ_DISABLE_CLIENT_AMS environment variable if you do not want to use IBM WebSphere
MQ Advanced Message Security.

See “Message Channel Agent (MCA) interception” on page 286 for further information.

Note: A security policy must be in place for each queue that the MCA Interceptor will deliver
messages onto. In other words, the target queue needs to have an AMS security policy in
place with the distinguished name (DN) of the signer and recipient matching that of the
certificate assigned to the MCA Interceptor. That is, the DN of the certificate designated by
cms.certificate.channel.SYSTEM.DEF.SVRCONN property in the keystore.conf used by the
queue manager.

Security 313

314 Securing IBM WebSphere MQ

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2007, 2025 315

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of IBM WebSphere MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information"www.ibm.com/legal/copytrade.shtml. Other product and service names might be trademarks
of IBM or other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

316 Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

This product includes software developed by the Eclipse Project (http://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 317

318 Securing IBM WebSphere MQ

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Security
	Security overview
	Concepts and mechanisms
	Identification and authentication
	Authorization
	Auditing
	Confidentiality
	Data integrity
	Cryptographic concepts
	Cryptography
	Message digests
	Digital certificates
	What is in a digital certificate
	Requirements for personal certificates
	Certification Authorities
	Distinguished Names
	Obtaining personal certificates from a certificate authority
	How certificate chains work
	When certificates are no longer valid

	Public Key Infrastructure (PKI)

	Cryptographic security protocols: TLS and SSL
	Secure Sockets Layer (SSL) and Transport Layer Security (TLS) concepts
	An overview of the SSL or TLS handshake
	How SSL and TLS provide authentication, confidentiality, and integrity
	CipherSuites and CipherSpecs
	Digital signatures
	Federal Information Processing Standards
	National Security Agency Suite B Cryptography

	IBM WebSphere MQ security mechanisms
	Identification and authentication in IBM WebSphere MQ
	Authorization in IBM Websphere MQ
	Auditing in IBM Websphere MQ
	Confidentiality in IBM WebSphere MQ
	Data integrity in IBM WebSphere MQ
	Cryptography in IBM WebSphere MQ
	Security protocols in IBM WebSphere MQ
	IBM WebSphere MQ SSL and TLS support
	The SSL or TLS key repository
	Protecting IBM WebSphere MQ key repositories
	Refreshing the queue manager's key repository
	Refreshing a client's view of the SSL key repository contents and SSL settings

	Federal Information Processing Standards (FIPS)
	Federal Information Processing Standards for UNIX, Linux and Windows

	SSL and TLS on the IBM WebSphere MQ MQI client
	Specifying that an MQI channel uses SSL

	CipherSpecs in IBM WebSphere MQ
	NSA Suite B Cryptography in IBM WebSphere MQ
	Configuring IBM WebSphere MQ for Suite B
	Certificate validation policies in IBM WebSphere MQ
	Configuring certificate validation policies in IBM WebSphere MQ
	Digital certificates and CipherSpec compatability in IBM WebSphere MQ

	CipherSpec values supported in IBM WebSphere MQ

	Channel authentication records
	Message security in IBM WebSphere MQ

	Planning for your security requirements
	Planning identification and authentication
	Planning authentication for a client application
	User IDs

	Planning authorization
	Authority to administer IBM WebSphere MQ
	Authority to administer IBM WebSphere MQ on UNIX and Windows systems

	Authorization for applications to use IBM WebSphere MQ
	When authority checks are performed
	Alternate user authority
	Message context
	Authority to work with IBM WebSphere MQ objects on UNIX, Linux and Windows systems
	Using PCF to access OAM commands

	Security for remote messaging
	Security of objects on UNIX and Linux systems
	Security of objects on Windows systems
	User IDs across systems

	Using a custom authorization service
	Access control for clients

	Planning confidentiality
	Comparing link level security and application level security
	Link level security
	Providing your own link level security
	Security exit
	Message exit
	Send and receive exits

	Application level security
	IBM WebSphere MQ Advanced Message Security
	Providing your own application level security

	Channel exit programs
	Security exit
	Message exit
	Send and receive exits

	Planning data integrity
	Planning auditing
	Planning security by topology
	Channel security
	Protecting channel initiator definitions
	Transmission queues
	Channel exits
	Protecting channels with SSL
	SNA LU 6.2 security services
	Session level cryptography
	Session level authentication
	Conversation level authentication
	Support for conversation level authentication in IBM WebSphere MQ on UNIX systems, and Windows systems

	Security for queue manager clusters
	Security for IBM WebSphere MQ Publish/Subscribe
	Multicast security

	Firewalls and Internet pass-thru
	Security for IBM WebSphere MQ internet pass-thru

	Setting up security
	Setting up security on UNIX and Linux, and Windows systems
	Connecting to IBM WebSphere MQ using Terminal Services
	Creating and managing groups on Windows
	Creating a group
	Adding a user to a group
	Displaying who is in a group
	Removing a user from a group

	Creating and managing groups on HP-UX
	Creating a group
	Adding a user to a group
	Displaying who is in a group
	Removing a user from a group

	Creating and managing groups on AIX
	Creating a group
	Adding a user to a group
	Displaying who is in a group
	Removing a user from a group

	Creating and managing groups on Solaris
	Creating a group
	Adding a user to a group
	Displaying who is in a group
	Removing a user from a group

	Creating and managing groups on Linux
	Creating a group
	Adding a user to a group
	Displaying who is in a group
	Removing a user from a group

	How authorizations work
	Authorizations for MQI calls
	Authorizations for MQSC commands in escape PCFs
	Authorizations for PCF commands

	Special considerations for security on Windows
	The SSPI channel exit program
	When you get a 'group not found' error
	When you have problems with IBM WebSphere MQ and domain controllers
	Windows 2000 domain with non-default, or Windows 2003 and Windows Server 2008 domain with default, security permissions
	Configuring IBM WebSphere MQ Services to run under a domain user

	Applying security template files
	Nested groups
	Configuring additional authority for Windows applications connecting to IBM WebSphere MQ

	Setting up security on HP NSS
	OpenSSL
	Entropy Daemon

	Setting up IBM WebSphere MQ MQI client security
	Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client
	Running SSL or TLS client applications on AIX with multiple installations of GSKit v8.0

	Setting up communications for SSL or TLS on UNIX, Linux, and Windows systems
	Working with SSL or TLS
	Working with SSL or TLS on HP Integrity NonStop Server
	Certificate management
	Personal certificate store
	Certificate trust store
	Pass phrase stash file
	Certificate revocation list file

	Working with SSL or TLS on UNIX, Linux, and Windows systems
	Using iKeyman, iKeycmd, and GSKCapicmd
	Setting up a key repository on UNIX, Linux and Windows systems
	Accessing your key database file on Windows
	Accessing your key database file on UNIX and Linux
	Adding a CA certificate into an empty key repository on UNIX, Linux, and Windows systems

	Locating the key repository for a queue manager on UNIX, Linux, and Windows systems
	Changing the key repository location for a queue manager
	Locating the key repository for an IBM WebSphere MQ MQI client
	Specifying the key repository location for an IBM WebSphere MQ MQI client on UNIX, Linux, and Windows systems
	When changes become effective
	Creating a self-signed personal certificate on UNIX, Linux, and Windows systems
	Requesting a personal certificate on UNIX, Linux, and Windows systems.
	Using the iKeyman user interface
	Using the command line

	Renewing an existing personal certificate on UNIX, Linux, and Windows systems.
	Using the iKeyman user interface
	Using the command line

	Receiving personal certificates into a key repository on UNIX, Linux and Windows systems
	Extracting a CA certificate from a key repository
	Extracting the public part of a self-signed certificate from a key repository on UNIX, Linux and Windows systems
	Adding a CA certificate (or the public part of a self-signed certificate) into a key repository, on UNIX, Linux, and Windows systems
	Exporting a personal certificate from a key repository
	Importing a personal certificate into a key repository on UNIX, Linux, and Windows systems
	Importing from a Microsoft .pfx file
	Importing from a PKCS #7 file
	Deleting a certificate from a key repository on UNIX, Linux, and Windows systems
	Generating strong passwords for key repository protection
	Configuring for cryptographic hardware on UNIX, Linux, and Windows systems
	Managing certificates on PKCS #11 hardware
	Requesting a personal certificate for your PKCS #11 hardware
	Using the iKeyman user interface
	Using the command line

	Importing a personal certificate to your PKCS #11 hardware
	Using iKeyman
	Using the command line

	Identifying and authenticating users
	Privileged users
	Identifying and authenticating users using the MQCSP structure
	Implementing identification and authentication in security exits
	Identity mapping in message exits
	Identity mapping in the API exit and API-crossing exit
	Working with revoked certificates
	Revoked certificates and OCSP
	Working with Certificate Revocation Lists and Authority Revocation Lists
	Setting up LDAP servers
	Configuring and updating LDAP servers

	Accessing CRLs and ARLs with a queue manager
	Accessing CRLs and ARLs using IBM WebSphere MQ Explorer

	Accessing CRLs and ARLs with an IBM WebSphere MQ MQI client
	Location of an OCSP responder, and of LDAP servers that hold CRLs

	Accessing CRLs and ARLs with IBM WebSphere MQ classes for Java and IBM WebSphere MQ classes for JMS

	Manipulating authentication information objects with PCF commands

	Authorizing access to objects
	Controlling access to objects by using the OAM on UNIX, Linux and Windows systems
	Giving access to an IBM WebSphere MQ object on UNIX, Linux, and Windows systems
	Using OAM generic profiles on UNIX, Linux, and Windows
	Using wildcard characters
	Profile priorities
	Dumping profile settings

	Displaying access settings
	Changing and revoking access to an IBM WebSphere MQ object
	Preventing security access checks on UNIX, Linux, and Windows systems

	Granting required access to resources
	Granting partial administrative access on a subset of queue manager resources
	Granting limited administrative access to some queues
	Granting limited administrative access to some topics
	Granting limited administrative access to some channels
	Granting limited administrative access to a queue manager
	Granting limited administrative access to some processes
	Granting limited administrative access to some namelists
	Granting limited administrative access to some services

	Granting full administrative access on a subset of queue manager resources
	Granting full administrative access to some queues
	Granting full administrative access to some topics
	Granting full administrative access to some channels
	Granting full administrative access to a queue manager
	Granting full administrative access to some processes
	Granting full administrative access to some namelists
	Granting full administrative access to some services

	Granting read-only access to all resources on a queue manager
	Granting full administrative access to all resources on a queue manager
	Removing connectivity to the queue manager
	Allowing user applications to connect to your queue manager
	Securing remote connectivity to the queue manager
	Blocking specific IP addresses
	Blocking addresses when the queue manager is not running

	Blocking specific user IDs
	Mapping a remote queue manager to an MCAUSER user ID
	Mapping a client asserted user ID to an MCAUSER user ID
	Mapping an SSL or TLS Distinguished Name to an MCAUSER user ID
	Blocking access from a remote queue manager
	Blocking access for a client asserted user ID
	Blocking access for an SSL Distinguished Name
	Mapping an IP address to an MCAUSER user ID

	Disabling remote access to the queue manager
	Setting up connection security
	Controlling user access to queues
	Granting authority to get messages from queues
	Granting authority to set context
	Granting authority to pass context
	Granting authority to put messages to a local queue
	Granting authority to put messages to a model queue
	Granting authority to put messages to a remote cluster queue

	Controlling user access to topics
	Granting authority to publish messages to a topic
	Granting authority to subscribe to topics

	Granting authority to inquire on a queue manager
	Granting authority to access processes
	Granting authority to access namelists

	Authority to administer IBM WebSphere MQ on UNIX, Linux, and Windows systems
	Managing the mqm group

	Authority to work with IBM WebSphere MQ objects
	When security checks are made on UNIX, Linux, and Windows systems
	How access control is implemented by IBM WebSphere MQ
	Identifying the user ID on UNIX, Linux, and Windows systems
	Principals and groups
	Windows security identifiers (SIDs)

	Alternate-user authority
	Context authority

	Implementing access control in security exits
	Implementing access control in message exits
	Implementing access control in the API exit and API-crossing exit

	Confidentiality of messages
	Connecting two queue managers using SSL or TLS
	Using self-signed certificates for mutual authentication
	Using CA-signed certificates for mutual authentication
	Connecting two queue managers using one-way authentication

	Connecting a client to a queue manager securely
	Using self-signed certificates for mutual authentication of a client and queue manager
	Using CA-signed certificates for mutual authentication of a client and queue manager
	Connecting a client to a queue manager anonymously

	Specifying CipherSpecs
	Deprecated CipherSpecs
	Obtaining information about CipherSpecs using IBM WebSphere MQ Explorer
	Alternatives for specifying CipherSpecs
	Specifying a CipherSpec for an IBM WebSphere MQ MQI client
	Specifying a CipherSuite with IBM WebSphere MQ classes for Java and IBM WebSphere MQ classes for JMS

	Resetting SSL secret keys
	Implementing confidentiality in user exit programs

	Data integrity of messages
	Connecting two queue managers using SSL or TLS
	Digital certificate labels, understanding the requirements
	, UNIX, Linux, and Windows systems
	IBM WebSphere MQ client
	IBM WebSphere MQ Java or IBM WebSphere MQ JMS client

	Using self-signed certificates for mutual authentication
	Using CA-signed certificates for mutual authentication
	Connecting a queue manager using one-way authentication

	Connecting a client to a queue manager securely
	Using self-signed certificates for mutual authentication of a client and queue manager
	Using CA-signed certificates for mutual authentication of a client and queue manager
	Connecting a client to a queue manager anonymously

	Specifying CipherSpecs
	Obtaining information about CipherSpecs using IBM WebSphere MQ Explorer
	Alternatives for specifying CipherSpecs
	Specifying a CipherSpec for an IBM WebSphere MQ MQI client
	Specifying a CipherSuite with IBM WebSphere MQ classes for Java and IBM WebSphere MQ classes for JMS

	Auditing
	Keeping clusters secure
	Stopping unauthorized queue managers sending messages
	Stopping unauthorized queue managers putting messages on your queues
	Authorizing putting messages on remote cluster queues
	Preventing queue managers joining a cluster
	Security exits on cluster channels

	Forcing unwanted queue managers to leave a cluster
	Preventing queue managers receiving messages
	SSL and clusters
	Upgrading clustered queue managers and channels to SSL
	Disabling SSL on clustered queue managers and channels

	Publish/subscribe security
	Example publish/subscribe security setup
	Grant access to subscribe to a topic
	Grant access to subscribe to a topic deeper within the tree
	Grant access to another user to subscribe to a topic deeper within the tree
	Grant access control to avoid additional messages
	Grant access to publish to a topic
	Grant access to publish to a topic deeper within the tree
	Grant access to publish/subscribe

	Subscription security
	MQSO_ANY_USERID

	IBM WebSphere MQ Advanced Message Security
	IBM WebSphere MQ Advanced Message Security overview
	Behavior that has changed between version 7.0.1 and version 7.5
	Features and functions of IBM WebSphere MQ Advanced Message Security
	Error handling
	Key concepts
	Public key infrastructure
	Digital certificates
	Object authority manager

	Supported technology
	Known limitations

	User scenarios
	Quick Start Guide for Windows platforms
	1. Creating a queue manager and a queue
	2. Creating and authorizing users
	3. Creating key database and certificates
	4. Creating keystore.conf
	5. Sharing Certificates
	6. Defining queue policy
	7. Testing the setup
	8. Testing encryption

	Quick Start Guide for UNIX platforms
	1. Creating a queue manager and a queue
	2. Creating and authorizing users
	3. Creating key database and certificates
	4. Creating keystore.conf
	5. Sharing Certificates
	6. Defining queue policy
	7. Testing the setup
	8. Testing encryption

	Quick Start Guide for Java clients
	1. Creating a queue manager and a queue
	2. Creating and authorizing users
	3. Creating key database and certificates
	4. Creating keystore.conf
	5. Sharing Certificates
	6. Defining queue policy
	7. Testing the setup

	Protecting remote queues
	Routing protected messages using WebSphere Message Broker
	Scenario 1 - Message Broker cannot see message content
	Scenario 2 - Message Broker can see message content

	Using IBM WebSphere MQ Advanced Message Security with IBM WebSphere MQ Managed File Transfer
	1. Creating certificates
	2. Configuring message protection

	Installing IBM WebSphere MQ Advanced Message Security
	Using keystores and certificates
	Structure of the configuration file
	MCA interception
	MCA interception example

	Disabling IBM WebSphere MQ Advanced Message Security at the client
	Certificate requirements for AMS
	Certificate validation methods in IBM WebSphere MQ Advanced Message Security
	Online Certificate Status Protocol (OCSP)
	OCSP checking in native interceptors
	OCSP checking in Java
	Using java.security
	Using keystore.conf

	Certificate revocation lists (CRLs)
	Enabling certificate validation and certificate revocation list support in native interceptors
	Enabling certificate revocation lists (CRLs) in Java

	Protecting passwords in Java

	Adiministering IBM WebSphere MQ Advanced Message Security security policies
	Security policies overview
	Policy name
	Signature algorithm
	Encryption algorithm
	Toleration
	Sender distinguished names
	Recipient distinguished names
	Security policy attributes
	Quality of protection

	Managing security policies
	Creating security policies
	Changing security policies
	Displaying and dumping security policies
	Removing security policies

	System queue protection
	Granting OAM permissions
	Command and configuration events
	Enabling and disabling event logging
	Command event message format
	Configuration event message format

	Problems and solutions
	com.ibm.security.pkcsutil.PKCSException: Error encrypting contents
	OSGi support
	Problems opening protected queues when using JMS

	Notices
	Programming interface information
	Trademarks

