
7.5

IBM WebSphere MQ Overview

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
219.

This edition applies to version 7 release 5 of IBM® WebSphere® MQ and to all subsequent releases and modifications until
otherwise indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 2007, 2025.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About IBM WebSphere MQ...5
Introduction to IBM WebSphere MQ... 6
IBM WebSphere MQ license information.. 9
Introduction to IBM WebSphere MQ Telemetry... 11
IBM WebSphere MQ Version 7.5 information roadmap... 14
IBM WebSphere MQ Version 7.5 in the IBM Documentation Offline app.. 17
IBM WebSphere MQ 7.5 PDF documentation...17
What's new in IBM WebSphere MQ Version 7.5... 18

IBM WebSphere MQ client for HP Integrity NonStop Server.. 20
What's changed in IBM WebSphere MQ Version 7.5.. 23
What's changed in IBM WebSphere MQ Version 7.5 Fix Packs..24
What was new and changed in earlier versions.. 32
Mappings between earlier IBM WebSphere MQ publications and the current information structure....32

Quick beginnings for AIX..33
Quick beginnings for HP-UX...33
Quick beginnings for Linux... 33
Quick beginnings for Solaris...33
Quick beginnings for Windows...34
Application programming guide...34
Application programming reference..34
Clients...35
Constants..35
Intercommunication...35
Messages and codes.. 36
Migration...36
Monitoring...36
Programmable Command Formats and Administration Interface... 37
Publish/Subscribe User's Guide.. 37
Queue manager clusters.. 37
Script (MQSC) Command Reference..37
Security...38
System Administration Guide.. 38
Using .NET.. 38
Using C++..38
Using Java...38
Web services...39
Using the Component Object Model Interface..39

IBM WebSphere MQ Version 7.5, IBM i and z/OS...39
Notices... 39
Technical overview...41

Introduction to message queuing..42
Concepts of intercommunication...49
IBM WebSphere MQ Telemetry..67
Administering objects.. 102
IBM WebSphere MQ Multicast...124
Security...126
Clients and servers...126
Transaction management and support... 133
Extending queue manager facilities.. 135
IBM WebSphere MQ client for HP Integrity NonStop Server technical overview............................ 136

Scenarios... 137
Getting started with IBM WebSphere MQ 7.5... 137

 iii

Basic file transfer using the scripts... 144
Basic file transfer in detail... 152
Two computer file transfer using the scripts...158
Two computer file transfer in detail...164
Adding audit capability to managed file transfer.. 172

Glossary... 174
A..175
B..178
C..178
D..183
E.. 185
F.. 186
G..187
H..188
I...188
J.. 190
K..191
L.. 191
M... 193
N..197
O..198
P..199
Q..202
R..203
S.. 206
T.. 210
U..213
V..214
W...214
X..215

Accessibility... 215
Accessibility on Windows...216

Notices..219
Programming interface information..220
Trademarks.. 220

iv

About IBM WebSphere MQ

This section provides introductory information to help you get started with IBM WebSphere MQ:
Related tasks
Designing a WebSphere MQ architecture

IBM WebSphere MQ
Welcome to the IBM WebSphere MQ Version 7.5 product documentation, where you can find detailed
instructions on how to complete the tasks that you need to perform to create and maintain your MQ
environment. This documentation also contains conceptual information to help you understand the
product, and the ways in which you can use it to solve your business problems.

IBM WebSphere MQ is robust, secure and reliable messaging middleware. It uses messages and queues
to support exchange of information between applications, systems, services and files. It simplifies and
accelerates the integration of different applications and business data across multiple platforms.

Related concepts
About IBM WebSphere MQ
Related tasks
Planning
Migrating and upgrading
Installing
Security
Configuring
Administering
Developing applications
Monitoring and performance
Troubleshooting and support
WebSphere MQ Managed File Transfer
WebSphere MQ Explorer
MQ GUI Wizard Help
WebSphere MQ Internet Pass-Thru
Message Service Client for .NET
WebSphere MQ Hypervisor editions
Mobile Messaging and M2M
Related reference
Reference
Related information
IBM MQ on Cloud

© Copyright IBM Corp. 2007, 2025 5

https://cloud.ibm.com/docs/mqcloud/index.html

Introduction to IBM WebSphere MQ
You can use IBM WebSphere MQ to enable applications to communicate at different times and in many
diverse computing environments.
What is IBM WebSphere MQ?

• IBM WebSphere MQ is messaging for applications. It sends messages across networks of diverse
components. Your application connects to IBM WebSphere MQ to send or receive a message.
IBM WebSphere MQ handles the different processors, operating systems, subsystems, and
communication protocols it encounters in transferring the message. If a connection or a processor
is temporarily unavailable, IBM WebSphere MQ queues the message and forwards it when the
connection is back online.

• An application has a choice of programming interfaces, and programming languages to connect to
IBM WebSphere MQ.

• IBM WebSphere MQ is messaging and queuing middleware, with point-to-point, publish/subscribe,
and file transfer modes of operation. Applications can publish messages to many subscribers over
multicast.

Messaging
Programs communicate by sending each other data in messages rather than by calling each other
directly.

Queuing
Messages are placed on queues, so that programs can run independently of each other, at
different speeds and times, in different locations, and without having a direct connection between
them.

Point-to-point
Applications send messages to a queue, or to a list of queues. The sender must know the name of
the destination, but not where it is.

Publish/subscribe
Applications publish a message on a topic, such as the result of a game played by a team. IBM
WebSphere MQ sends copies of the message to applications that subscribe to the results topic.
They receive the message with the results of games played by the team. The publisher does not
know the names of subscribers, or where they are.

Multicast
Multicast is an efficient form of publish/subscribe messaging that scales to many subscribers. It
transfers the effort of sending a copy of a publication to each subscriber from IBM WebSphere
MQ to the network. Once a path for the publication is established between the publisher and
subscriber, IBM WebSphere MQ is not involved in forwarding the publication.

File transfer
Files are transferred in messages. IBM WebSphere MQ File Transfer Edition manages the transfer
of files and the administration to set up automated transfers and log the results. You can integrate
the file transfer with other file transfer systems, with IBM WebSphere MQ messaging, and the
web.

Telemetry
IBM WebSphere MQ Telemetry is messaging for devices. IBM WebSphere MQ connects device
and application messaging together. It connects the internet, applications, services, and decision
makers with networks of instrumented devices. IBM WebSphere MQ Telemetry has an efficient
messaging protocol that connects a large numbers of devices over a network. The messaging
protocol is published, so that it can be incorporated into devices. You can also develop device
programs with one of the published programming interfaces for the protocol.

What can it do for me?

• IBM WebSphere MQ sends and receives data between your applications, and over networks.

6 IBM WebSphere MQ Overview

• Message delivery is assured and decoupled from the application. Assured, because IBM WebSphere
MQ exchanges messages transactionally, and decoupled, because applications do not have to check
that messages they sent are delivered safely.

• You can secure message delivery between queue managers with SSL/TLS.
• With Advanced Message Security (AMS), you can encrypt and sign messages between being put by

one application and retrieved by another.
• Application programmers do not need to have communications programming knowledge.

How do I use it?

• Create and manage IBM WebSphere MQ with the IBM WebSphere MQ Explorer GUI or by running
commands from a command window or application.

• Program applications to send and receive messages by calling one of the programming interfaces.
Programming interfaces are provided for different languages, and include the standard JMS
programming interface, and classes for the Windows communication foundation.

• Send and receive IBM WebSphere MQ messages from browsers with the HTTP protocol.

How does it work?

• An administrator creates and starts a queue manager with commands. Subsequently, the queue
manager is usually started automatically when the operating system boots. Applications, and other
queue managers can then connect to it to send and receive messages.

• An application or administrator creates a queue or a topic. Queues and topics are objects that are
owned and stored by a queue manager.

• When your application wants to transfer data to another application, it puts the data into a message.
It puts the message onto a queue, or publishes the message to a topic. There are three main ways
that the message can be retrieved:

– A point-to-point application connected to the same queue manager retrieves the message from
the same queue.

For example, an application puts messages on a queue as way of storing temporary or persistent
data. A second example: An application that shares data with another application that is running
in a different process.

– A point-to-point application connected to another queue manager retrieves the same message
from a different queue.

Applications communicate with each other by exchanging messages on queues. The main use
of IBM WebSphere MQ is to send or exchange messages. One application puts a message on a
queue on one computer, and another application gets the same message from another queue on
a different computer. The queue managers on the two computers work together to transfer the
message from the first queue to the second queue. The applications do not communicate with
each other, the queue managers do.

– A subscriber application connected to any queue manager retrieves messages on common topics.

A publisher application creates a message and publishes it to a topic on one computer. Any
number of subscriber applications subscribe to the same topic on different computers. IBM
WebSphere MQ delivers the publication to queues that belong to the queue managers the
subscribers are connected to. The subscribers retrieve the message from the queues.

• MQ channels connect one queue manager to another over a network. You can create MQ channels
yourself, or a queue manager in a cluster of queue managers creates MQ channels when they are
needed.

• You can have many queues and topics on one queue manager.
• You can have more than one queue manager on one computer.
• An application can run on the same computer as the queue manager, or on a different one. If it

runs on the same computer, it is an IBM WebSphere MQ server application. If it runs on a different
computer, it is an IBM WebSphere MQ client application. Whether it is IBM WebSphere MQ client or

About IBM WebSphere MQ 7

server makes almost no difference to the application. You can build a client/server application with
IBM WebSphere MQ clients or servers.

What tools and resources come with IBM WebSphere MQ?

• Control commands, which are run from the command line. You create, start, and stop queue
managers with the control commands. You also run IBM WebSphere MQ administrative and problem
determination programs with the control commands.

• IBM WebSphere MQ script commands (MQSC), which are run by an interpreter. Create queues and
topics, configure, and administer IBM WebSphere MQ with the commands. Edit the commands in a
file, and pass the file to the runmqsc program to interpret them. You can also run the interpreter on
one queue manager, which sends the commands to a different computer to administer a different
queue manager.

• The Programmable Command Format (PCF) commands, which you call in your own applications
to administer IBM WebSphere MQ. The PCF commands have the same capability as the script
commands, but they are easier to program.

• Sample programs.
• On Windows and Linux® x86 and x86-64 platforms, where you can run the following utilities:

– The IBM WebSphere MQ Explorer. The explorer does the same administrative tasks as the script
commands, but is much easier to use interactively.

– The Postcard application to demonstrate messaging and verify your installation.
– Tutorials.

Related concepts
“What's new in IBM WebSphere MQ Version 7.5” on page 18
Learn about the main new functions in IBM WebSphere MQ Version 7.5.
WebSphere MQ Multicast
IBM WebSphere MQ Multicast offers low latency, high fan out, reliable multicast messaging.
WebSphere MQ Telemetry
People, businesses, and governments increasingly want to use IBM WebSphere MQ Telemetry to interact
more smartly with the environment we live and work in. IBM WebSphere MQ Telemetry connects all kinds
of devices to the internet and to the enterprise, and reduces the costs of building applications for smart
devices.
Technical introduction to messaging and queueing
The WebSphere MQ products enable programs to communicate with one another across a network of
unlike components (processors, operating systems, subsystems, and communication protocols) using a
consistent application programming interface.
Technical introduction to WebSphere MQ clients and servers
An introduction to how IBM WebSphere MQ supports client-server configurations for its applications.
Technical introduction to queue manager communication
In WebSphere MQ, intercommunication means sending messages from one queue manager to another.
The receiving queue manager can be on the same machine or another; nearby or on the other side of
the world. It can be running on the same platform as the local queue manager, or can be on any of the
platforms supported by WebSphere MQ. This is called a distributed environment. WebSphere MQ handles
communication in a distributed environment such as this using Distributed Queue Management (DQM).
Related tasks
WebSphere MQ Advanced Messages Security (AMS)
WebSphere MQ Managed File Transfer

8 IBM WebSphere MQ Overview

IBM WebSphere MQ license information
What you can purchase with IBM WebSphere MQ and what each purchase entitles you to install.

Notice: This License Guide provides supplementary information to assist you in deploying the Programs
you licensed from IBM within your purchased entitlement. Your license agreement (such as the IBM
International Program License Agreement (IPLA) or equivalent, and its transaction documents, including
the License Information for the IBM WebSphere MQ product offering) is the sole and complete agreement
between you and IBM regarding use of the Program.

What you can purchase with IBM WebSphere MQ

Distributed platforms

For IBM WebSphere MQ on distributed platforms, the product offering contains 11 chargeable
components that can be independently purchased:
5724-H72 IBM IBM WebSphere MQ

IBM IBM WebSphere MQ (Server)
IBM IBM WebSphere MQ Telemetry
IBM IBM WebSphere MQ Advanced Message Security
IBM IBM WebSphere MQ Idle Standby
IBM IBM WebSphere MQ Advanced Message Security Idle Standby
IBM IBM WebSphere MQ Advanced
IBM IBM WebSphere MQ Advanced Idle Standby
IBM IBM WebSphere MQ Advanced for Developers
IBM IBM WebSphere MQ Managed File Transfer Service
IBM IBM WebSphere MQ Managed File Transfer Service Idle Standby
IBM IBM WebSphere MQ Managed File Transfer Managed Endpoint

What is my enterprise entitled to install?

For IBM WebSphere MQ on distributed platforms the components below map directly to components that
the IBM WebSphere MQ installer can install, so for these the mapping between what you have purchased
and what you can install is easy.

Important: The IBM WebSphere MQ install media contains all the components, but you should only
install the subset that you have purchased entitlement for.

5724-H72 IBM IBM WebSphere MQ
IBM WebSphere (Server)

Includes:

ClientDevelopment Kit (SDK)
IBM Global Security Kit (UNIX)
IBM WebSphere MQ Explorer
Java .NET Messaging and Web Services
Sample programs
Server / Runtime
UNIX Man Pages

IBM IBM WebSphere MQ Telemetry

Includes:

Telemetry Service

About IBM WebSphere MQ 9

IBM IBM WebSphere MQ Advanced Message Security

Includes:

Advanced Message Security

IBM IBM WebSphere MQ Managed File Transfer Service

Includes:

IBM WebSphere MQ Managed File Transfer Logger
IBM WebSphere MQ Managed File Transfer Service
IBM WebSphere MQ Managed File Transfer Tools

IBM WebSphere IBM WebSphere MQ Managed File Transfer Managed Endpoint

Includes:

IBM WebSphere MQ Managed File Transfer Agent
IBM WebSphere MQ Managed File Transfer Logger
IBM WebSphere MQ Managed File Transfer Tools

What is IBM IBM WebSphere MQ Advanced?
IBM WebSphere MQ Advanced has been introduced to simplify the process of purchasing entitlement.
Your enterprise pays one price and obtains entitlement to multiple IBM WebSphere MQ components.

The IBM WebSphere MQ Advanced parts are:
5724-H72 IBM IBM WebSphere MQ

IBM IBM WebSphere MQ Advanced
IBM IBM WebSphere MQ Advanced for Developers

 For IBM IBM WebSphere MQ on distributed platforms, purchasing 100 Processor Value Units (PVUs) of
IBM WebSphere MQ Advanced gives your enterprise entitlement to install:

• 100 PVUs of IBM IBM WebSphere MQ (Server), and
• 100 PVUs of IBM IBM WebSphere MQ Advanced Message Security, and
• 100 PVUs of IBM IBM WebSphere MQ Managed File Transfer Service, and
• Unlimited installs of IBM IBM WebSphere MQTelemetry

Additionally, your enterprise can mix and match IBM versions as required. Therefore, your 100 PVUs
of IBM IBM WebSphere MQ (Server) entitlement could be split into 50 PVUs of the IBM WebSphere MQ
7.1 version and 50 PVUs of the IBM WebSphere MQ 7.5 version of this component.

IBM IBM WebSphere MQ Advanced for Developers gives entitlement to everything included with IBM IBM
WebSphere MQ Advanced plus IBM IBM WebSphere MQ Managed File Transfer Managed Endpoint for
development purposes only.

Attention: The IBM license defines what is considered as development purposes.

What are Idle Standby parts?
Idle Standby parts have been introduced to cater for high availability environments, where the passive
system has IBM WebSphere MQ installed and available, but that system is not doing any IBM WebSphere
MQ processing work, or activity, other than staying up to date with the configuration and activity of the
active queue manager. In this case a lower charge might be applicable.

Notes:

1. Use of the IBM WebSphere MQ multi-instance queue manager feature also requires Idle Standby
entitlement.

10 IBM WebSphere MQ Overview

2. There is no Idle Standby part for the IBM WebSphere MQ Telemetry component. The same IBM IBM
WebSphere MQ Telemetry part needs to be purchased for the active and passive system, unless you
have IBM IBM WebSphere MQ Advanced Idle Standby, in which case it is included.

3. There is also no Idle Standby part for IBM WebSphere Managed File Transfer Managed Endpoint
because the endpoint is not part of the server environment.

Related concepts
“What's changed in IBM WebSphere MQ Version 7.5” on page 23
“IBM WebSphere MQ Technical overview” on page 41
Use IBM WebSphere MQ to connect your applications and manage the distribution of information across
your organization.

Introduction to IBM WebSphere MQ Telemetry
People, businesses, and governments increasingly want to use IBM WebSphere MQ Telemetry to interact
more smartly with the environment we live and work in. IBM WebSphere MQ Telemetry connects all kinds
of devices to the internet and to the enterprise, and reduces the costs of building applications for smart
devices.

The following diagrams demonstrate some typical uses of IBM WebSphere MQ Telemetry:

• An MQTT message that contains energy usage data sent to service provider.
• A telemetry application sends control commands that are based on analysis of energy usage data.
• For more information, see “Telemetry scenario: Home energy monitoring and control” on page 72.

Figure 1. Smart electricity metering

About IBM WebSphere MQ 11

• A telemetry application sends your health data to your hospital and doctor.
• MQTT message alerts or feedback are returned, based on analysis of your health data.
• For more information, see “Telemetry scenario: Home patient monitoring” on page 71.

Figure 2. Smart health monitoring

• A simple card transaction is sent to the bank's server.
• IBM WebSphere MQ Telemetry identifies the one person from the thousands, alerting the customer that

their card has been used.
• IBM WebSphere MQ Telemetry can use the simplest input of information, and locate that individual.

Figure 3. Telemetry: One in a Crowd

What is WebSphere MQ Telemetry?
• It is a feature of IBM WebSphere MQ that extends the universal messaging backbone provided

by IBM WebSphere MQ to a wide range of remote sensors, actuators and telemetry devices. IBM
WebSphere MQ Telemetry extends IBM WebSphere MQ so that it can interconnect intelligent enterprise
applications, services, and decision makers with networks of instrumented devices.

• The two core parts of WebSphere MQ Telemetry are:

1. The IBM WebSphere MQ Telemetry service that runs inside of the IBM WebSphere MQ server.
2. IBM WebSphere MQ Telemetry clients that are distributed to devices together with the applications.

What can it do for me?
• MQ Telemetry uses the MQ Telemetry Transport (MQTT) to send and receive data between your

applications and the IBM WebSphere MQ Queue Manager.

12 IBM WebSphere MQ Overview

• MQTT is an open messaging transport that allows MQTT implementations to be created for a wide
variety of devices.

• MQTT clients can run on small footprint devices that might have limited resources.
• MQTT works efficiently on networks where the bandwidth might be low, where cost of sending data is

expensive or which might be fragile.
• Message delivery is assured and decoupled from the application.
• Application programmers do not need to have communications programming knowledge.
• Messages can be exchanged with other messaging applications. These may be other telemetry

applications, MQI, JMS or enterprise messaging applications.

How do I use it?
• Use the IBM WebSphere MQ Explorer and its associated tools to administer the WebSphere MQ

Telemetry feature of MQ.
• Use MQTT clients in your applications to connect to a queue manager, publish and subscribe for

messages.
• Distribute your application with the MQTT client to the device where your application is to run.

How does it work?
• The MQ Telemetry (MQXR) service turns an IBM WebSphere MQ queue manager into an MQTT server
• The MQTT server understands the MQTT message transport and can receive messages from and send

messages to MQTT clients.
• MQ Telemetry ships with a number of Telemetry clients that implement the MQTT message transport.

These are often referred to as MQTT clients.
• A basic Telemetry client works like a standard MQ client but can run on a much wider variety of

platforms and networks.
• An Advanced Telemetry Client acts as a network concentrator to connect an even greater number of

MQTT clients to a single queue manager. It can also provide store and forward for small devices that
lack a means to buffer messages during short network outages.

• IBM WebSphere MQ Telemetry daemon for devices is an Advanced Telemetry client that is part of IBM
WebSphere MQ Telemetry. See “Telemetry daemon for devices” on page 96 for more information.

• MQTT is a publish subscribe protocol:

– An MQTT client application can publish messages to an MQTT server.
– When an IBM WebSphere MQ queue manager acts as the MQTT server other applications that

connect to the queue manager can subscribe for and receive the messages from the MQTT client.
– An MQTT client can subscribe for messages that are sent by applications that connect to an MQ

queue manager.
– The queue manager acts as router distributing messages from publishing applications to subscribing

applications.
– Messages can be distributed between different types of client applications. For instance, between

Telemetry clients and JMS clients.

IBM WebSphere MQ Telemetry replaces the SCADA nodes that were withdrawn in version 7 of WebSphere
Message Broker and runs on Windows, Linux, and AIX®. Migration of telemetry applications from using
WebSphere Message Broker version 6 to use IBM WebSphere MQ Telemetry and WebSphere Message
Broker version 7.0 provides information to help you migrate applications from using the SCADA nodes
in WebSphere Message Broker V6. Telemetry applications using WebSphere Message Broker version 7
subscribe to topics that are common to MQTT clients. They receive publications from MQTT clients using
MQInput nodes and publish to MQTT clients using publication nodes.

About IBM WebSphere MQ 13

Related concepts
“Telemetry concepts and scenarios for monitoring and control” on page 69
Telemetry is the automated sensing, measurement of data, and control of remote devices. The emphasis
is on the transmission of data from devices to a central control point. Telemetry also includes sending
configuration and control information to devices.
Related tasks
Installing WebSphere MQ Telemetry
Administering WebSphere MQ Telemetry
Migration of telemetry applications from using WebSphere Message Broker version 6 to use WebSphere
MQ Telemetry and WebSphere Message Broker version 7.0
Developing applications for WebSphere MQ Telemetry
Troubleshooting for WebSphere MQ Telemetry
Related reference
WebSphere MQ Telemetry Reference
Related information
“IBM WebSphere MQ Telemetry” on page 67

IBM WebSphere MQ Version 7.5 information roadmap
The information roadmap contains links to a variety of IBM WebSphere MQ Version 7.5 resources.

This roadmap brings together information from different sources to help you find out more about a
particular area of IBM WebSphere MQ. Click the links to each section in the roadmap to see what
resources are available.

• Product overview
• Technical overview
• Scenarios
• Planning
• Migrating and upgrading
• Installing
• Security
• Configuring
• Administering
• Developing applications
• Monitoring and performance
• Troubleshooting and support
• Reference

14 IBM WebSphere MQ Overview

https://www.ibm.com/software/integration/wmq/requirements/

Table 1. IBM WebSphere MQ information roadmap table

Category Information resources

Product
overview

Overview of the overall purpose, capabilities, and new features of IBM WebSphere MQ.

 “About IBM WebSphere MQ” on page 5
Introductory information to help you get started with IBM WebSphere MQ Version
7.5, including an introduction to the product and an overview of what is new and
what is changed for this release.

IBM WebSphere MQ Version 7.5

This IBM Redbooks publication covers the core enhancements made in IBM
WebSphere MQ Version 7.5 and the concepts that must be understood.

IBM WebSphere MQ product web page
Product web page with links to resources and additional information.

IBM WebSphere MQ system requirements
Web page with links to the system requirements for the different releases of IBM
WebSphere MQ.

“IBM WebSphere MQ Version 7.5 in the IBM Documentation Offline app” on page
17

You can download IBM WebSphere MQ Version 7.5 messaging documentation into
an offline version of IBM Documentation that you install locally.

Technical
overview

 “IBM WebSphere MQ Technical overview” on page 41

Information to help you to find out about message queuing and other features that
IBM WebSphere MQ Version 7.5 provides.

Scenarios Each scenario takes you through a significant set of tasks, and helps you to configure a
major product feature. The scenarios include useful links to other content to help you to
gain a better understanding of the area in which you are interested.

 “Scenarios” on page 137
The Getting started scenario explains how to get started with IBM WebSphere MQ.
Use this scenario if you have not used IBM WebSphere MQ before and want to get
started quickly. Further scenarios help you to configure or use product features by
taking you through the appropriate task steps.

 Connecting WebSphere Application Server to IBM WebSphere MQ

Contains information that leads you through the key tasks required to connect
WebSphere Application Server to IBM WebSphere MQ in a variety of scenarios.

 Connecting WebSphere Application Server Liberty profile to IBM WebSphere MQ

Contains information that leads you through the key tasks required to connect
WebSphere Application Server Liberty profile to IBM WebSphere MQ in a variety
of scenarios.

 Connecting IBM MessageSight to IBM WebSphere MQ and WebSphere
Application Server

Contains information that leads you through the key tasks required to connect IBM
MessageSight to IBM WebSphere MQ and WebSphere Application Server in a variety
of scenarios.

About IBM WebSphere MQ 15

https://www.redbooks.ibm.com/abstracts/sg248087.html
https://www.ibm.com/products/mq
https://www.ibm.com/support/docview.wss?uid=swg27006467

Table 1. IBM WebSphere MQ information roadmap table (continued)

Category Information resources

Planning Planning

When planning your IBM WebSphere MQ environment, consider the support that
IBM WebSphere MQ provides for single and multiple queue manager architectures,
and for point-to-point and publish/subscribe messaging styles. Also plan your
resource requirements, and your use of logging and backup facilities.

Migrating and
upgrading

 Migrating and upgrading
To migrate a queue manager to run on a new level of code, you must first upgrade
IBM WebSphere MQ to install the new code level. When you have verified the
upgrade is successful, migrate the queue manager and all the applications and
resources associated with it. Before starting this process, create a migration plan,
based on the information in this migration guide. If you are applying maintenance,
no migration is necessary. However you should test applications with the new level
of IBM WebSphere MQ code

WebSphere / IBM MQ Migration Guide
This guide provides information to help you plan the process of migrating from an
older version to a new version. You can either view the guide in your web browser or
download it as a PDF file.

Installing Installing and uninstalling
Information to help you to prepare for installation, install the product, and verify the
installation. There is also information to help you to uninstall the product.

Security Security
Aspects of security to consider in your IBM WebSphere MQ installation including
identification and authentication, authorization, auditing, confidentiality, and data
integrity.

Configuring Configuring
Create one or more queue managers on one or more computers, and configure them
and their related resources on your development, test, and production systems to
process messages that contain your business data.

Administering Administering IBM WebSphere MQ
Administer your queue managers and associated resources.

Developing
applications

 Developing applications
Develop applications to send and receive messages, and to manage your queue
managers and related resources. IBM WebSphere MQ support applications written
in procedural languages, and object oriented languages and frameworks.

Monitoring
and
performance

 Monitoring and performance
Monitoring information and guidance to help improve the performance of your queue
manager network and tuning tips to help improve the performance of your queue
manager network.

16 IBM WebSphere MQ Overview

https://www.ibm.com/support/pages/websphere-ibm-mq-migration-guide

Table 1. IBM WebSphere MQ information roadmap table (continued)

Category Information resources

Troubleshooti
ng and
support

 Troubleshooting and support
Techniques to help you diagnose and solve problems with your queue manager
network or IBM WebSphere MQ applications.

IBM Support Assistant web page
The IBM Support Assistant (ISA) helps you to resolve questions and problems
with IBM software products by providing access to support-related information and
troubleshooting tools.

IBM Support Portal web page
IBM Support Portal for IBM WebSphere MQ.

Reference Reference
Reference information for configuration, administration, developing applications,
telemetry, security, monitoring, troubleshooting and support, and diagnostic
messages.

IBM WebSphere MQ Version 7.5 in the IBM Documentation Offline
app

If you are in an airgap environment without access to the internet, use our Dark Shop app
"IBM Documentation Offline" to view downloads of the IBM WebSphere MQ Version 7.5 product
documentation.

IBM Documentation Offline has two components:

• The IBM Documentation Offline app. This is a locally-installable offline version of IBM Documentation.
• The documentation packages that you install into the IBM Documentation Offline app. These

packages contain the same documentation as is published online in IBM Documentation.

To download the app, and the IBM WebSphere MQ Version 7.5 documentation package, you need to log in
to IBM Documentation. For more information, see IBM Documentation Offline.

IBM WebSphere MQ Version 7.5 PDF documentation
You can download the IBM WebSphere MQ Version 7.5 product documentation as a series of PDF files.

The IBM WebSphere MQ Version 7.5 PDF files contain the same information as the HTML version
published in IBM Documentation. You can download them by clicking the links in the following table.

Note: You can also download the IBM WebSphere MQ Version 7.5 product documentation in HTML format
into an offline version of IBM Documentation that you install locally. For more information, see “IBM
WebSphere MQ Version 7.5 in the IBM Documentation Offline app” on page 17.

Table 2. PDF files for the product documentation and how they correspond to the sections in IBM
Documentation

PDF file name and download link Equivalent section in IBM Documentation

mq75.overview.pdf About IBM WebSphere MQ

mq75.plan.pdf Planning

mq75.migrate.pdf Migrating and upgrading

mq75.install.pdf Installing

mq75.secure.pdf Security

About IBM WebSphere MQ 17

https://www.ibm.com/support/home/product/C100515X13178X21/other_software/ibm_support_assistant
https://www.ibm.com/support/home/product/P439881V74305Y86/IBM_MQ
https://www.ibm.com/docs/en/offline
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.overview.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.plan.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.migrate.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.install.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.secure.pdf

Table 2. PDF files for the product documentation and how they correspond to the sections in IBM
Documentation (continued)

PDF file name and download link Equivalent section in IBM Documentation

mq75.configure.pdf Configuring

mq75.administer.pdf Administering

mq75.develop.pdf Developing applications

mq75.monitor.pdf Monitoring and performance

mq75.troubleshoot.pdf Troubleshooting and support

mq75.reference.pdf Reference

mq75.refcon.pdf Configuration reference

mq75.refadmin.pdf Administration reference

mq75.refdev.pdf Developing applications reference

mq75.mft.pdf IBM WebSphere MQ Managed File Transfer

mq75.explorer.pdf IBM WebSphere MQ Explorer

mq75.guiwizard.pdf MQ GUI Wizard help

mq75.xms.pdf Message Service Client for .NET

mq75.hve.pdf WebSphere MQ Hypervisor editions

mq75.mmtc.pdf Mobile Messaging and M2M

MQ_Migration_Guide.pdf WebSphere / IBM MQ Migration Guide

Note: The PDF files must be in the same folder for links between PDF files to function correctly.

What's new in IBM WebSphere MQ Version 7.5
Learn about the main new functions in IBM WebSphere MQ Version 7.5.

• “IBM WebSphere MQ Managed File Transfer” on page 18.
• “IBM WebSphere MQ Advanced Message Security” on page 19.
• “Message Channel Agent (MCA) interception” on page 19.
• “Multiple cluster transmission queues” on page 19.
• “Extended transactional functionality is now a part of the core client” on page 19.
• “Identifying a connection to a queue manager by setting an application name” on page 19.
• “Certificate validation policies” on page 19.
• “More transactional visibility” on page 19.
• “Scenarios” on page 20.
• “IBM WebSphere MQ Explorer” on page 20.

IBM WebSphere MQ Managed File Transfer
IBM WebSphere MQ Managed File Transfer uses IBM WebSphere MQ to transfer files between
queue managers. You can extend its reach to workstations and servers that do not have a queue
manager. You can extend it using file transfer agents, Apache Ant, and integrating it with IBM Sterling
Commerce®:Direct, web gateways, and with SFTP, FTP, or FTPS protocol servers.

18 IBM WebSphere MQ Overview

https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.configure.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.administer.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.develop.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.monitor.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.troubleshoot.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.reference.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.refcon.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.refadmin.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.refdev.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.mft.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.explorer.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.guiwizard.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.xms.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.hve.pdf
https://public.dhe.ibm.com/software/integration/wmq/docs/V7.5/PDFs/mq75.mmtc.pdf
https://www.ibm.com/support/pages/sites/default/files/inline-files/$FILE/WMQ_Migration.pdf

With IBM WebSphere MQ Managed File Transfer, you can automate, control, secure, and audit the transfer
of files; see IBM WebSphere MQ Managed File Transfer introduction.

IBM WebSphere MQ Advanced Message Security
IBM IBM WebSphere MQ Advanced Message Security (AMS) is a separately installed component, which is
separately charged. It provides a high level of protection for sensitive data that is flowing through the IBM
WebSphere MQ network. You do not need to modify existing applications to take advantage of AMS, see
IBM WebSphere MQ Advanced Message Security.

Message Channel Agent (MCA) interception
MCA interception feature allows a queue manager running under IBM IBM WebSphere MQ with a licensed
install of Advanced Message Security to selectively enable policies to be applied for server connection
channels. MCA interception allows clients that remain outside IBM WebSphere MQ AMS to still be
connected to a queue manager and their messages to be encrypted and decrypted. See Message Channel
Agent (MCA) interception.

Multiple cluster transmission queues
You can change the new queue manager attribute DEFCLXQ to assign a different cluster transmission
queue to each cluster-sender channel. Messages to be forwarded by each cluster-sender channel are
placed on separate cluster transmission queues; see Cluster transmission queues and cluster-sender
channels . You can also configure cluster transmission queues manually by setting the new queue
attribute CLCHNAME. You can decide which cluster-sender channels share which transmission queues,
which have separate transmission queues, and which use the cluster transmission queue, or queues;
see Clustering: Planning how to configure cluster transmission queues. The change assists system
administrators that manage the transfer of messages between clustered queue managers.

Extended transactional functionality is now a part of the core client
Extended transactional functionality is now incorporated into the IBM WebSphere MQ core client. You do
not need to purchase a separate extended transactional client license, or to install a separate Extended
Transactional Client component; see “What is an extended transactional client?” on page 130.

Identifying a connection to a queue manager by setting an application name
An application can set a name that identifies its connection to the queue manager. Display the application
name with the DISPLAY CONN command. The name is returned in the APPLTAG field. You can also
display the name in the IBM WebSphere MQ Explorer Application Connections window. The field is
called App name; see Setting up the WebSphere MQ environment for WebSphere MQ classes for Java.
You can set the name of an application connection on all platforms, except z/OS®.

Certificate validation policies
On UNIX, Linux, and Windows, you can specify how strictly the certificate chain validation conforms to the
RFC 5280 industry security standard; see Certificate validation policies in WebSphere MQ.

More transactional visibility
The dspmqtrn command has two new parameters: -a and -q to provide more information when an
asynchronous rollback occurs. Two new messages AMQ7486 and AMQ7487 provide information about
the transaction that is being rolled back, and whether the transaction is associated with a connection.

About IBM WebSphere MQ 19

Scenarios
“Scenarios” on page 137 show you how to quickly and easily use and combine new IBM WebSphere MQ
Version 7.5 function. The scenarios include useful links to product documentation content to help you to
gain a better understanding of the area in which you are interested.

IBM WebSphere MQ Explorer
New features in IBM WebSphere MQ Explorer Version 7.5 include the integration of IBM WebSphere
MQ Managed File Transfer and IBM WebSphere MQ Advanced Message Security, improved multi version
support, and reduced overhead.

For more details about what's new in IBM WebSphere MQ Explorer, see What's new and what's changed
in WebSphere MQ Explorer.

Related concepts
“What's changed in IBM WebSphere MQ Version 7.5” on page 23
“What's changed in IBM WebSphere MQ Version 7.5 Fix Packs” on page 24
Changes to functions and resources in Version 7.5 Fix Packs are described in this section.

IBM WebSphere MQ client for HP Integrity NonStop Server
IBM WebSphere MQ now supports the client for the HP Integrity NonStop Server platform.

Overview
For an overview of IBM WebSphere MQ clients, including the client for the HP Integrity NonStop Server
platform, see “Overview of IBM WebSphere MQ MQI clients” on page 127.

For a technical overview of the IBM WebSphere MQ client for HP Integrity NonStop Server platform, see
“IBM WebSphere MQ client for HP Integrity NonStop Server technical overview” on page 136.

For details of IBM WebSphere MQ client for HP Integrity NonStop Server supported environments and
features, see “IBM WebSphere MQ client for HP Integrity NonStop Server supported environments and
features” on page 136.

Planning
For help when you are planning your IBM WebSphere MQ client for HP Integrity NonStop Server
environment, see Planning your IBM WebSphere MQ client environment on HP Integrity NonStop Server.

Installing
Help about installing the IBM WebSphere MQ client for HP Integrity NonStop Server.

• Choosing what to install, see IBM WebSphere MQ client components for HP Integrity NonStop Server.
• Planning your installation, see Planning your installation on HP Integrity NonStop Server.

– File system
• Hardware and software requirements, see Hardware and software requirements on HP Integrity

NonStop Server.
• Verifying that you have the correct software, see Verifying system software prerequisites.
• Preparing your system, see Setting up the user and group on HP Integrity NonStop Server.
• Installing the client, see Installing IBM WebSphere MQ client on HP Integrity NonStop Server systems.
• Verifying your installation, see Verifying a client installation.
• Uninstalling, see Uninstalling IBM WebSphere MQ on HP Integrity NonStop Server.

20 IBM WebSphere MQ Overview

HP Integrity NonStop Server client commands
The following commands are applicable to the IBM WebSphere MQ client for HP Integrity NonStop Server
OSS and Guardian environments:

• dspmqver
• endmqtrc
• mqrc (MQ return code)
• runmqras
• runmqtmc
• strmqtrc

The following command is applicable to the IBM WebSphere MQ client for HP Integrity NonStop Server
OSS environment:

• dspmqtrc

New Product Identifier, MQNC, added to the DISPLAY CHSTATUS command Product Identifier values
table.

Security
To secure your IBM WebSphere MQ client for HP Integrity NonStop Server environment, see:

• Information about how the IBM WebSphere MQ client for HP Integrity NonStop Server identifies itself to
the queue manager added to Planning authentication for a client application.

• Setting up security on HP Integrity NonStop Server

– OpenSSL
– Entropy Daemon

• IBM WebSphere MQ support for SSL and TLS
• Working with SSL or TLS on HP Integrity NonStop Server

– Certificate management
– Personal certificate store
– Certificate trust store
– Pass phrase stash file
– Certificate revocation list file

Transaction Management Facility
For information about the Transaction Management Facility (TMF), refer to the following sections and
topics.

• Planning your IBM WebSphere MQ client environment on HP Integrity NonStop Server

– Preparing the HP Integrity NonStop Server environment
– IBM WebSphere MQ and HP NonStop TMF
– Using HP NonStop TMF

- Using global units of work
- Avoiding long running transactions
- Information about queue manager configuration to expire global units of work after a pre-
configured interval of inactivity added to Expiring global units of work.

• Configuring HP Integrity NonStop Server

– Gateway process overview

About IBM WebSphere MQ 21

– Configuring Gateway to run under Pathway
– TMF and TMF/Gateway stanzas
– Configuring the client initialization file
– Granting permissions to channels

• Administering HP Integrity NonStop Server

– Manually starting the TMF/Gateway from Pathway
– Stopping the TMF/Gateway from Pathway

• Troubleshooting IBM WebSphere MQ client for HP Integrity NonStop Server

Developing applications
For information about developing applications for your IBM WebSphere MQ client on the HP Integrity
NonStop Server platform, see:

• Building your application on HP Integrity NonStop Server

– OSS and Guardian headers and public libraries
– Preparing C programs in HP Integrity NonStop Server
– Preparing COBOL programs
– Preparing pTAL programs

• Coding in pTAL.
• Preparing JMS programs for the IBM WebSphere MQ client for HP Integrity NonStop Server.

New messages
The following are new messages for the IBM WebSphere MQ client on HP Integrity NonStop Server:

• AMQ5000-5999: Installable services

– AMQ5370
– AMQ5371
– AMQ5372
– AMQ5373
– AMQ5374
– AMQ5375
– AMQ5376
– AMQ5377
– AMQ5378
– AMQ5379
– AMQ5380
– AMQ5390
– AMQ5391
– AMQ5392
– AMQ5393
– AMQ5394
– AMQ5395
– AMQ5396
– AMQ5397
– AMQ5398

22 IBM WebSphere MQ Overview

– AMQ5399

• AMQ9000-9999: Remote

– AMQ9816
– AMQ9817
– AMQ9818
– AMQ9819
– AMQ9820
– AMQ9821
– AMQ9823
– AMQ9824

Modified API reason codes
The following existing API reason codes now include HP Integrity NonStop Server:

• 2354 (0932) (RC2354): MQRC_UOW_ENLISTMENT_ERROR
• 2355 (0933) (RC2355): MQRC_UOW_MIX_NOT_SUPPORTED
• 2072 (0818) (RC2072): MQRC_SYNCPOINT_NOT_AVAILABLE
• 2003 (07D3) (RC2003): MQRC_BACKED_OUT

Samples
For information about the techniques demonstrated by the sample programs, see Samples for IBM
WebSphere MQ client for HP Integrity NonStop Server.

Troubleshooting and support
For troubleshooting and support information for the IBM WebSphere MQ client on HP Integrity NonStop
Server, see the following topics:

• Troubleshooting IBM WebSphere MQ client for HP Integrity NonStop Server
• Error logs on HP Integrity NonStop Server
• Using trace on HP Integrity NonStop Server
• FFST: IBM WebSphere MQ for HP Integrity NonStop Server

What's changed in IBM WebSphere MQ Version 7.5
Review the list of changes carefully before upgrading queue managers to IBM WebSphere MQ Version 7.5.
Decide whether you must plan to make changes to existing applications, scripts, and procedures before
starting to migrate systems to Version 7.5.

The following links are to information within the Migrating and upgrading section of the product
documentation. New functions, and changes that do not affect existing applications, administrative
procedures, and administrative scripts are not listed here; see “What's new in IBM WebSphere MQ
Version 7.5” on page 18.

List of changes by version, release, and maintenance level

• V7.1 to V7.5 changes

Related concepts
“What's new in IBM WebSphere MQ Version 7.5” on page 18
Learn about the main new functions in IBM WebSphere MQ Version 7.5.
“What's changed in IBM WebSphere MQ Version 7.5 Fix Packs” on page 24

About IBM WebSphere MQ 23

Changes to functions and resources in Version 7.5 Fix Packs are described in this section.

What's changed in IBM WebSphere MQ Version 7.5 Fix Packs
Changes to functions and resources in Version 7.5 Fix Packs are described in this section.

• “Version 7.5.0, Fix Pack 1: support for the MQTT over WebSockets” on page 25

• “Version 7.5.0, Fix Pack 4: Disable IBM WebSphere MQ Advanced Message Security at the
client by using AMQ_DISABLE_CLIENT_AMS” on page 26

• “Version 7.5.0, Fix Pack 5: Disable IBM WebSphere MQ Advanced Message Security at the
client by using the mqclient.ini file” on page 26

• “Version 7.5.0, Fix Pack 6: userid and password for managed .NET client
applications” on page 26

• “Version 7.5.0, Fix Pack 6: deprecated cipherspecs” on page 26

• “Version 7.5.0, Fix Pack 6: Serviceability enhancements for IBM WebSphere MQ Managed
File Transfer” on page 27

• “Version 7.5.0, Fix Pack 6 New IBM WebSphere MQ Managed File Transfer agent property
failTransferOnFirstFailure” on page 27

• “Version 7.5.0, Fix Pack 7: deprecated cipherspecs” on page 27

• “Version 7.5.0, Fix Pack 7: support for JDBC connections to an Oracle 12c
database” on page 27

• “Version 7.5.0, Fix Pack 7: Removal of restriction on using .NET for
MQCNO_CLIENT_BINDING and MQCNO_LOCAL_BINDING” on page 27

• “Version 7.5.0, Fix Pack 8: Restriction on the use of topic alias queues in distribution lists”
on page 28

• “Version 7.5.0, Fix Pack 8: GSKit version updated” on page 28

• “Version 7.5.0, Fix Pack 8: Deprecated CipherSpecs” on page 28

• “Version 7.5.0, Fix Pack 8: New constant JMS_IBM_SUBSCRIPTION_USER_DATA added to
the JmsConstants interface” on page 28

• “Version 7.5.0, Fix Pack 8: JMS exception listener updates” on page 29

• “Version 7.5.0, Fix Pack 8: Support for class name allowlisting in IBM WebSphere MQ
classes for JMS ObjectMessage” on page 29

• “Version 7.5.0, Fix Pack 8: New IBM WebSphere MQ Managed File Transfer agent property
additionalWildcardSandboxChecking” on page 29

• “Version 7.5.0, Fix Pack 8: Change to behavior of IBM WebSphere MQ Managed File
Transfer fteCleanAgent command” on page 29

• “Version 7.5.0, Fix Pack 9: New environment variable AMQ_SSL_LDAP_SERVER_VERSION”
on page 30

• “Version 7.5.0, Fix Pack 9: Sample configuration file for IBM WebSphere MQ classes for
JMS” on page 30

• “Version 7.5.0, Fix Pack 9: Changes to the dmpmqcfg command” on page 30

24 IBM WebSphere MQ Overview

• “Version 7.5.0, Fix Pack 9: Changes to the strmqm command” on page 30

• “Enhancements to runmqras utility” on page 30

• “Version 7.5.0, Fix Pack 9: Comparison check of transfer identifier and value of groupId
attribute restored for message-to-file transfers” on page 31

• “Version 7.5.0, Fix Pack 9: Resource adapater updates for targetClientMatching property
on an activation specification” on page 30

• “Version 7.5.0, Fix Pack 9: New -caseno parameter for the runmqras command” on page
31

• “Version 7.5.0, Fix Pack 9: Change to handling of errors relating to corrupted character
data within internal MQ command messages used by queue manager clustering component” on page
31

• “Version 7.5.0, Fix Pack 9: Addition of Microsoft Visual Studio 2013 C/C++
runtimes on Windows” on page 31

• “Version 7.5.0, Fix Pack 9: Comparison check of transfer identifier and value of groupId
attribute restored for message-to-file transfers” on page 31

• “Version 7.5.0, Fix Pack 9: Comparison check of transfer identifier and value of groupId
attribute restored for message-to-file transfers” on page 31

• “Version 7.5.0, Fix Pack 9 plus interim fix for APAR IT26482: Change to authorities needed
for IBM WebSphere MQ classes for JMS to query the BackoutThreshold and BackoutRequeueQName of
a cluster queue” on page 31

Version 7.5.0, Fix Pack 1: support for the MQTT over WebSockets

A new communication protocol parameter (PROTOCOL) has been added to the MQTT channel definition
(DEFINE CHANNEL (MQTT)):

• If the parameter is set to MQTTV3, the channel only accepts connections from clients using Version 3 of
the MQ Telemetry Transfer protocol. This was the only protocol supported before IBM WebSphere MQ
Version 7.5.0, Fix Pack 1.

• If the parameter is set to HTTP, the channel only accepts HTTP requests for pages, or WebSockets
connections to IBM WebSphere MQ Telemetry.

• If the parameter is set to MQTTV3,HTTP, the channel accepts connections from clients using either
protocol. This is the default behavior for new MQTT channels created with IBM WebSphere MQ Version
7.5.0, Fix Pack 1 and later versions.

For more information, see Connecting the MQTT messaging client for JavaScript over SSL and
WebSockets.

When a client connects to an MQTT channel using SSL, the parameter SSLCAUTH determines whether
IBM WebSphere MQ requires a certificate from the client (see DEFINE CHANNEL (MQTT)). Before IBM
WebSphere MQ Version 7.5.0, Fix Pack 1, this parameter could be either REQUIRED or OPTIONAL for
MQTT channels:

• REQUIRED means that IBM WebSphere MQ requests a certificate from the client and the client must
supply a valid certificate.

• OPTIONAL means that IBM WebSphere MQ will request a certificate from the client but the client does
not have to supply one. The client connection is allowed if the client supplies a valid certificate or if
the client does not supply a certificate. The client connection is disallowed only if the client supplies an
invalid certificate.

About IBM WebSphere MQ 25

In IBM WebSphere MQ Version 7.5.0, Fix Pack 1 and later, the parameter SSLCAUTH can be set to
NEVER for MQTT channels. NEVER means that IBM WebSphere MQ never requests a certificate from the
client. The new value was added as part of the support for clients using the MQTT messaging client for
JavaScript. It accommodates the behavior of some web browsers which treat the request for a client
certificate as a protocol error.

Version 7.5.0, Fix Pack 4: Disable IBM WebSphere MQ Advanced Message Security
at the client by using AMQ_DISABLE_CLIENT_AMS

From Version 7.5.0, Fix Pack 4, you use the environment variable AMQ_DISABLE_CLIENT_AMS to disable
IBM WebSphere MQ Advanced Message Security (AMS) within IBM WebSphere MQ classes for JMS
and IBM WebSphere MQ classes for Java clients to prevent errors when they are connecting to queue
managers that are running on earlier versions of the product. Alternatively, and also from Version 7.5.0,
Fix Pack 4, you can use the Java system property com.ibm.mq.cfg.AMQ_DISABLE_CLIENT_AMS to disable
AMS at the client.

For more information, see Disabling IBM WebSphere MQ Advanced Message Security at the client.

Version 7.5.0, Fix Pack 5: Disable IBM WebSphere MQ Advanced Message Security
at the client by using the mqclient.ini file

From Version 7.5.0, Fix Pack 4, you can disable IBM WebSphere MQ Advanced Message Security (AMS)
at the client to prevent errors when they are connecting to queue managers that are running on earlier
versions of the product by setting the configuration variable AMQ_DISABLE_CLIENT_AMS. From Version
7.5.0, Fix Pack 5, you can also disable AMS by using the DisableClientAMS property, under the Security
stanza in the mqclient.ini file. For more information, see Disabling IBM WebSphere MQ Advanced
Message Security at the client.

Version 7.5.0, Fix Pack 6: userid and password for managed .NET client applications

From IBM WebSphere MQ Version 7.5.0, Fix Pack 6, the userid and password that are specified with the
managed .NET client application are set in the IBM WebSphere MQ .NET MQChannelDefinition class that
is passed to the client security exit. For more information, see Using channel exits in IBM WebSphere
MQ .NET.

Version 7.5.0, Fix Pack 6: deprecated cipherspecs
The following cipherspecs are deprecated from IBM WebSphere MQ Version 7.5.0, Fix Pack 6:

• DES_SHA_EXPORT

• DES_SHA_EXPORT1024

• FIPS_WITH_DES_CBC_SHA
• NULL_MD5
• NULL_SHA
• TLS_RSA_WITH_DES_CBC_SHA
• ECDHE_ECDSA_NULL_SHA256

• ECDHE_RSA_NULL_SHA256

• TLS_RSA_WITH_NULL_NULL
• TLS_RSA_WITH_NULL_SHA256

26 IBM WebSphere MQ Overview

For more information, see Deprecated cipherspecs.

Version 7.5.0, Fix Pack 6: Serviceability enhancements for IBM WebSphere MQ
Managed File Transfer

From IBM WebSphere MQ Version 7.5.0, Fix Pack 6, the following changes have been made for IBM
WebSphere MQ Managed File Transfer:

• The default value for of the commandMessagePriority property in the installation.properties file
has changed to 8. For more information, see The installation.properties file.

• The default value for of the logTransferRecovery property in the agent.properties file has changed
to true. For more information, see The agent.properties file.

• The need for the enableFunctionalFixPack property to be set in the installation.properties
file when using the -d parameter on the fteShowAgentDetails command is removed. for more
information, see fteShowAgentDetails.

• A first failure data capture (FDC) is generated if an agent encounters an unrecoverable error.

Version 7.5.0, Fix Pack 6 New IBM WebSphere MQ Managed File Transfer agent
property failTransferOnFirstFailure

From IBM WebSphere MQ Version 7.5.0, Fix Pack 6, you can configure an agent to fail a managed transfer
as soon as a transfer item within that managed transfer fails by setting the failTransferOnFirstFailure
property in the agent.properties file. For more information, see The agent.properties file.

Version 7.5.0, Fix Pack 7: deprecated cipherspecs
The following cipherspecs are deprecated from IBM WebSphere MQ Version 7.5.0, Fix Pack 7:

• RC2_MD5_EXPORT
• RC4_MD5_EXPORT
• RC4_MD5_US
• RC4_SHA_US

• RC4_56_SHA_EXPORT1024

• ECDHE_ECDSA_RC4_128_SHA256

• ECDHE_RSA_RC4_128_SHA256

• TLS_RSA_WITH_RC4_128_SHA256

For more information, see Deprecated cipherspecs.

Version 7.5.0, Fix Pack 7: support for JDBC connections to an Oracle 12c database

From IBM WebSphere MQ Version 7.5.0, Fix Pack 7, a new file, jdbcora12.dll, is supplied with the
IBM WebSphere MQ Windows server installation image to support JDBC connections to an Oracle 12c
database (see Configuring JTA/JDBC coordination on Windows).

Version 7.5.0, Fix Pack 7: Removal of restriction on using .NET for
MQCNO_CLIENT_BINDING and MQCNO_LOCAL_BINDING

About IBM WebSphere MQ 27

From IBM WebSphere MQ Version 7.5.0, Fix Pack 7, the IBM WebSphere MQ custom channel for Microsoft
Windows Communication Foundation (WCF) has been updated so that the correct client connection
configuration is used when running from a client-only installation. For more information, see Connecting
to a queue manager using the MQCONNX call.

Version 7.5.0, Fix Pack 8: Restriction on the use of topic alias queues in distribution
lists

Distribution lists do not support the use of alias queues that point to topic objects. From Version 7.5.0,
Fix Pack 8, if an alias queue points to a topic object in a distribution list, IBM WebSphere MQ returns
MQRC_ALIAS_BASE_Q_TYPE_ERROR.

Version 7.5.0, Fix Pack 8: GSKit version updated

The GSKit version has been updated. The new version of GSKit alters the stash file format that is used
when you generate an .sth file to stash the key database password. Stash files that are generated
with this version of GSKit are not readable by earlier versions of GSKit. To ensure that stash files that
are generated with Version 7.5.0, Fix Pack 8, or later, are compatible with your applications and other
IBM WebSphere MQ installations, you must update to a version of IBM WebSphere MQ that contains a
compatible version of GSKit. For IBM WebSphere MQ Version 7.5, this is Version 7.5.0, Fix Pack 8.

If you cannot update your applications or other IBM WebSphere MQ installations, you can request a
stash file format that is compatible with an earlier version. When you use the runmqakm or runmqckm
commands with the -stash or -stashpw option, include the -v1stash command line parameter. You
cannot use the iKeyman GUI to generate a stash file that is compatible with an earlier version.

Version 7.5.0, Fix Pack 8: Deprecated CipherSpecs

From Version 7.5.0, Fix Pack 8, the following CipherSpecs are deprecated:

• FIPS_WITH_3DES_EDE_CBC_SHA
• TRIPLE_DES_SHA_US
• TLS_RSA_WITH_3DES_EDE_CBC_SHA

• ECDHE_ECDSA_3DES_EDE_CBC_SHA256

• ECDHE_RSA_3DES_EDE_CBC_SHA256

For more information, see Deprecated cipherspecs.

Version 7.5.0, Fix Pack 8: New constant JMS_IBM_SUBSCRIPTION_USER_DATA
added to the JmsConstants interface

From Version 7.5.0, Fix Pack 8, the IBM WebSphere MQ classes for JMS are updated so that when
a message is consumed from a queue that contains an RFH2 header with the MQPS folder, the
value associated with the Sud key, if it exists, is added as a String property to the JMS Message
object returned to the IBM WebSphere MQ classes for JMS application. To enable an application
to retrieve this property from the message, a new constant, JMS_IBM_SUBSCRIPTION_USER_DATA,
is added to the JmsConstants interface. This new property can be used with the method
javax.jms.Message.getStringProperty(java.lang.String) to retrieve the subscription user
data. For more information, see Retrieval of user subscription data and DEFINE SUB.

28 IBM WebSphere MQ Overview

Version 7.5.0, Fix Pack 8: JMS exception listener updates

From IBM WebSphere MQ Version 7.5.0, Fix Pack 8, to maintain behavior for current JMS
applications that configure a JMS MessageListener and a JMS ExceptionListener, the default
value for the ASYNC_EXCEPTIONS JMS ConnectionFactory property has been changed to
ASYNC_EXCEPTIONS_CONNECTIONBROKEN for the IBM WebSphere MQ classes for JMS for Version 7.5.
As a result, by default, only exceptions corresponding to broken connection error codes are delivered
to an application's JMS ExceptionListener. Connection broken exceptions are delivered to the exception
listener when consuming messages synchronously or asynchronously.

The IBM WebSphere MQ classes for JMS for Version 7.5 have also been updated such that JMS
exceptions relating to non-connection broken errors that occur during message delivery to asynchronous
message consumers, are delivered to a registered ExceptionListener when the JMS ConnectionFactory
used by the application has the ASYNC_EXCEPTIONS property set to the value ASYNC_EXCEPTIONS_ALL.

For more information, see JMS: Exception listener changes in Version 7.5 and Exceptions in IBM
WebSphere MQ classes for JMS.

Version 7.5.0, Fix Pack 8: Support for class name allowlisting in IBM WebSphere MQ
classes for JMS ObjectMessage

From IBM WebSphere MQ Version 7.5.0, Fix Pack 8, IBM WebSphere MQ classes for JMS supports
allowlisting of classes in the implementation of the JMS ObjectMessage interface. The allowlist
defines which Java classes might be serialized with ObjectMessage.setObject() and deserialized with
ObjectMessage.getObject().

For more information, see Class name allowlisting in JMS ObjectMessage and Running IBM WebSphere
MQ classes for JMS applications under the Java Security Manager.

Version 7.5.0, Fix Pack 8: New IBM WebSphere MQ Managed File Transfer agent
property additionalWildcardSandboxChecking

From IBM WebSphere MQ Version 7.5.0, Fix Pack 8, if an agent has been configured with a user or
agent sandbox in order to restrict the locations that the agent can transfer files to and from, you
can specify that additional checks are to be made on wildcard transfers for that agent by setting the
additionalWildcardSandboxChecking property to true. For more information, see Additional checks for
wildcard transfers and The agent.properties file.

Version 7.5.0, Fix Pack 8: Change to behavior of IBM WebSphere MQ Managed File
Transfer fteCleanAgent command

From IBM WebSphere MQ Version 7.5.0, Fix Pack 8, the fteCleanAgent command has been updated
so that you must specify which IBM WebSphere MQ Managed File Transfer state to clear by passing the
appropriate parameters to the command, as well as providing an agent name. This change in behavior
ensures that, by default, fteCleanAgent does not clear all in-progress and pending transfers, resource
monitor definitions and scheduled transfer definitions for the agent specified.

If required, you can revert to the previous behavior of fteCleanAgent by setting the new
failCleanAgentWithNoArguments property in the command.properties file to false.

For more information, see fteCleanAgent (cleans up a Managed File Transfer Agent) and The
command.properties file.

About IBM WebSphere MQ 29

Version 7.5.0, Fix Pack 9: New environment variable
AMQ_SSL_LDAP_SERVER_VERSION

From Version 7.5.0, Fix Pack 9, you can set the environment variable AMQ_SSL_LDAP_SERVER_VERSION
to ensure that IBM WebSphere MQ passes the required lightweight directory access protocol (LDAP)
version, that is LDAP v2 or LDAP v3, to GSKit when a certificate is validated against a higher version of
LDAP Certificate Revocation List (CRL) server. For more information, see Environment variables.

Version 7.5.0, Fix Pack 9: Sample configuration file for IBM WebSphere MQ classes
for JMS

From Version 7.5.0, Fix Pack 9, a sample configuration file, mqjava.config, is supplied in the bin
subdirectory of the IBM WebSphere MQ classes for JMS installation directory. For more information, see
The IBM MQ classes for Java configuration file.

Version 7.5.0, Fix Pack 9: Changes to the dmpmqcfg command

From Version 7.5.0, Fix Pack 9, a command line switch -w is added to dmpmqcfg. This switch allows you
increase the time, in seconds, that dmpmqcfg waits for a reply message from the command server.

For more information, see dmpmqcfg.

Version 7.5.0, Fix Pack 9: Changes to the strmqm command

From Version 7.5.0, Fix Pack 9, the strmqm command checks the syntax of the CHANNELS and SSL
stanzas in the qm.ini file before starting the queue manager fully, which makes it much easier to see
what is wrong, and correct it quickly if strmqm finds that the qm.ini file contains any errors. For more
information, see strmqm.

Enhancements to runmqras utility

From Version 7.5.0, Fix Pack 9, the following enhancements are made to the runmqras utility:

• Environment variable information is retrieved by default.

• Queue manager data directory listings are retrieved by default.
• The following two sections are added to the runmqras command:

– A leak section to gather IBM WebSphere MQ process resource usage
information.

– An mft section to capture the data obtained by the fteRas command.

For more information, see runmqras.

Version 7.5.0, Fix Pack 9: Resource adapater updates for targetClientMatching
property on an activation specification

The IBM WebSphere MQ JCA resource adapter (MQ-RA) has been updated such that the
targetClientMatching property can be configured for an activation specification. You can configure

30 IBM WebSphere MQ Overview

the property so that an MQRFH2 header is included on reply messages when request messages do
not contain an MQRFH2 header. This means that any message properties that an application defines
on a reply message are included when the message is sent. For more information, see Configuring the
targetClientMatching property for an activation specification.

Version 7.5.0, Fix Pack 9: New -caseno parameter for the runmqras command

The -caseno parameter is equivalent to -pmrno, except it allows a valid Salesforce case number to
specified. -caseno or -pmrno are both optional parameters, but it is not permitted to supply both
together. For more information, see runmqras (collect IBM MQ diagnostic information).

Version 7.5.0, Fix Pack 9: Change to handling of errors relating to corrupted
character data within internal MQ command messages used by queue manager
clustering component

From Version 7.5.0, Fix Pack 9, the way in which the queue manager handles errors that relate
to corrupted character data within internal MQ command messages that are used by the clustering
component of the queue manager is changed. The field(s) that might contain unconvertible characters are
blanked out and the conversion is retried. If the conversion succeeds, the update is stored with a blank
description and error messages AMQ6174 and AMQ9880 are written, to inform the administrator. If the
message is still unconvertible, it is moved to the Dead Letter Queue and an error message is written.

Version 7.5.0, Fix Pack 9: Addition of Microsoft Visual Studio 2013 C/C++ runtimes
on Windows

From Version 7.5.0, Fix Pack 9, some elements of IBM WebSphere MQ require the Microsoft Visual Studio
2013 C/C++ (VS2013) runtimes. These runtimes are installed by any fresh installation of IBM WebSphere
MQ Version 7.5.0, Fix Pack 9.

If the VS2013 runtimes are not present on the machine, they are installed when you install a fresh client,
update a client to the 7.5.0.9 maintenance level or apply the 7.5.0.9 fix pack. In most cases, this process
requires no user action but, should you encounter an installation failure when applying the server fix
pack, there is an environment variable that you might need to specify so that you can install the runtimes
manually. For more information, see Installation of Microsoft Visual Studio 2013 C/C++ runtimes in a
server fix pack.

Version 7.5.0, Fix Pack 9: Comparison check of transfer identifier and value of
groupId attribute restored for message-to-file transfers

From Version 7.5.0, Fix Pack 9, IBM WebSphere MQ Managed File Transfer is updated to restore the
comparison check, previously removed by APAR IT18213 at Version 7.5.0, Fix Pack 6, of the transfer
identifier and the value of the groupId attribute within the transfer request XML payload. If these two
identifiers are equivalent, the source agent uses the identifier as a message identifier match option (as
opposed to a group identifier match option) for the first MQGET attempt that is made on the input queue
for the message-to-file transfer. See also Transferring data from messages to files.

Version 7.5.0, Fix Pack 9 plus interim fix for APAR IT26482: Change to authorities
needed for IBM WebSphere MQ classes for JMS to query the BackoutThreshold
and BackoutRequeueQName of a cluster queue

About IBM WebSphere MQ 31

https://www.ibm.com/support/docview.wss?uid=swg1IT18213

For Version 7.5.0, Fix Pack 9 plus an interim fix for APAR IT26482, the IBM WebSphere MQ classes
for JMS have been updated so that only inquire access is required to query the BackoutThreshold
and BackoutRequeueQName of a cluster queue. For all other versions, browse and get access are also
required. For more information, see Handling poison messages in IBM MQ classes for JMS.

Related concepts
“What's new in IBM WebSphere MQ Version 7.5” on page 18
Learn about the main new functions in IBM WebSphere MQ Version 7.5.
“What's changed in IBM WebSphere MQ Version 7.5” on page 23
Related information
System Requirements for IBM WebSphere MQ
IBM MQ, WebSphere MQ, and MQSeries product readmes web page
Recommended Fixes for WebSphere MQ
WebSphere MQ planned maintenance release dates

What was new and changed in earlier versions
Links to information about new features and changes to functions and resources, including stabilizations,
deprecations and removals, that occurred in versions of the product before IBM WebSphere MQ Version
7.5.

For information about what was new and what changed in an earlier version of the product, see the
appropriate section in the product documentation for that version.

IBM WebSphere MQ Version 7.1
• What's new in IBM WebSphere MQ Version 7.1
• What's changed in IBM WebSphere MQ Version 7.1
• What's changed in IBM WebSphere MQ Version 7.1 Fix Packs

IBM WebSphere MQ Version 7.0.1 and earlier
For older versions of products, where documentation is provided outside of IBM Documentation, see
Documentation for older versions of WebSphere MQ.

Related concepts
“What's new in IBM WebSphere MQ Version 7.5” on page 18
Learn about the main new functions in IBM WebSphere MQ Version 7.5.
“What's changed in IBM WebSphere MQ Version 7.5” on page 23
“What's changed in IBM WebSphere MQ Version 7.5 Fix Packs” on page 24
Changes to functions and resources in Version 7.5 Fix Packs are described in this section.
Introduction to WebSphere MQ migration

Mappings between earlier IBM WebSphere MQ publications and
the current information structure

The information in IBM Documentation is structured according to a set of generic activities. For example
installing, developing, administering, configuring, securing. Earlier publications (the "MQ books") were
structured somewhat differently. This section provides a mapping between these earlier IBM WebSphere
MQ publications, and the current information structure.

32 IBM WebSphere MQ Overview

https://www.ibm.com/software/integration/wmq/requirements/index.html
https://www.ibm.com/support/docview.wss?rs=171&uid=swg27006097
https://www.ibm.com/support/docview.wss?uid=swg27006037
https://www.ibm.com/support/docview.wss?uid=swg27006309

Quick beginnings for AIX
This section provides a mapping from the old Quick beginnings for AIX book to the new product
documentation structure:

• AIX: Planning to migrate to a later version
• Checking requirements
• Preparing the system
• Installing IBM WebSphere MQ server on AIX
• Verifying a server installation
• Installing an IBM WebSphere MQ client on AIX systems
• Verifying a client installation
• AIX: Applying maintenance level upgrades on IBM WebSphere MQ Version 7.5
• Uninstalling IBM WebSphere MQ on AIX

Quick beginnings for HP-UX
This section provides a mapping from the old Quick beginnings for HP-UX book to the new product
documentation structure:

• HP-UX: Planning to migrate to a later version
• Checking requirements
• Preparing the system
• Installing IBM WebSphere MQ server on HP-UX
• Verifying a server installation
• Installing an IBM WebSphere MQ client on HP-UX systems
• Verifying a client installation
• HP-UX: Applying maintenance level updates on IBM WebSphere MQ Version 7.5
• Uninstalling IBM WebSphere MQ on HP-UX

Quick beginnings for Linux
This section provides a mapping from the old Quick beginnings for Linux book to the current product
documentation structure:

• Linux: Planning for migration from IBM WebSphere MQ Version 7.0.1 to IBM WebSphere MQ Version 7.5
• Checking requirements
• Preparing the system
• Installing IBM WebSphere MQ server on Linux
• Verifying a server installation
• Installing WebSphere MQ client on Linux
• Verifying a client installation
• Linux: Applying maintenance level updates on IBM WebSphere MQ Version 7.5
• Uninstalling IBM WebSphere MQ on Linux

Quick beginnings for Solaris
This section provides a mapping from the old Quick beginnings for Solaris book to the new product
documentation structure:

• Solaris: Planning to migrate to a later version
• Checking requirements

About IBM WebSphere MQ 33

• Preparing the system
• Installing IBM WebSphere MQ server on Solaris
• Verifying a server installation
• Installing an IBM WebSphere MQ client on Solaris
• Verifying a client installation
• Solaris: Applying maintenance level updates on IBM WebSphere MQ Version 7.5
• Uninstalling IBM WebSphere MQ on Solaris

Quick beginnings for Windows
This section provides a mapping from the old Quick beginnings for Windows book to the new product
documentation structure:

• Windows: Planning to migrate to a later version
• Checking requirements
• Preparing the system
• Installing IBM WebSphere MQ server on Windows
• Verifying a server installation
• Installing an IBM WebSphere MQ client on Windows systems
• Verifying a client installation
• Windows: Applying maintenance level upgrades on IBM WebSphere MQ Version 7.5
• Uninstalling IBM WebSphere MQ on Solaris

Application programming guide
This section provides a mapping from the old Application programming guide book to the new product
documentation structure:

• Application development concepts
• Designing IBM WebSphere MQ applications
• Writing a queuing application
• Sample WebSphere MQ programs
• C language examples
• COBOL examples
• System/390® assembler-language examplesSystem/390 assembler-language examples
• WebSphere MQ data definition files
• Coding standards on 64-bit platforms

Application programming reference
This section provides a mapping from the old Application programming reference book to the new product
documentation structure:

• Data types used in the MQI
• Function calls
• Attributes of objects
• Return codes
• Rules for validating MQI options
• Report options and message flags
• Report options and message flags

34 IBM WebSphere MQ Overview

• Data conversion
• Properties specified as MQRFH2 elements
• Code page conversion

Clients
This section provides a mapping from the old Clients book to the new product documentation structure:

• “Overview of IBM WebSphere MQ MQI clients” on page 127
• “Platform support for IBM WebSphere MQ clients” on page 129
• Installing an IBM WebSphere MQ client
• Configuring connections between the server and client
• Configuring an extended transactional client
• Verifying a client installation
• Setting up WebSphere MQ MQI client security
• “Channels” on page 114
• Defining MQI channels
• Creating server-connection and client-connection definitions on different platforms
• Creating server-connection and client-connection definitions on the server
• Channel-exit programs for MQI channels
• Connecting a client to a queue-sharing group
• Configuring a client using a configuration file
• Using WebSphere MQ environment variables
• Using the message queue interface (MQI) in a client application
• Building applications for WebSphere MQ MQI clients
• Running applications in the WebSphere MQ MQI client environment
• Preparing and running CICS® and Tuxedo applications
• Preparing and running Microsoft Transaction Server applications
• Preparing and running WebSphere MQ JMS applications
• Resolving problems with IBM WebSphere MQ MQI clients
• Referencing connection definitions using a preconnect exit from a repository

Constants
This section provides a mapping from the old Constants book to the new product documentation
structure:

• WebSphere MQ COPY, header, include, and module filesWebSphere MQ COPY, header, include, and
module files

• Constants

Intercommunication
This section provides a mapping from the old Intercommunication book to the new product
documentation structure:

Introduction

• “Concepts of intercommunication” on page 49
• Connecting applications using distributed queuing
• Networks and Network Planning

About IBM WebSphere MQ 35

• WebSphere MQ distributed-messaging techniques
• Introduction to distributed queue management
• Channel attributes
• Example configuration information

Distributed queue management in WebSphere MQ for
Windows and UNIX platforms

• Monitoring and controlling channels on Windows, UNIX and Linux platforms
• Creating a transmission queue
• Triggering channels
• Channel programs
• Security for remote messaging
• Other things to consider for distributed queue management
• Setting up communication for Windows
• Example configuration - IBM WebSphere MQ for Windows
• Example configuration - IBM WebSphere MQ for AIX
• Example configuration - IBM WebSphere MQ for HP-UX
• Example configuration - IBM WebSphere MQ for Solaris
• Example configuration - IBM WebSphere MQ for Linux
• Message channel planning example for distributed platforms

Further intercommunication considerations

• Channel-exit programs for messaging channels
• Channel-exit calls and data structures
• Queue name resolution

Messages and codes
This section provides a mapping from the old Messages and codes book to the new product
documentation structure:

• Diagnostic messages: AMQ4000-9999
• API completion and reason codes
• PCF reason codes
• Secure Sockets Layer (SSL) and Transport Layer Security (TLS) return codes
• WCF custom channel exceptions

Migration
The structure of the migration section in Version 7.5 remains the same as in Version 7.1.

Topics have been added for migration to Version 7.5, and removed for migration to Version 7.1. To refer
to migration to Version 7.1 and earlier releases, refer to Where to find a topic about a specific migration
path .

Monitoring
This section provides a mapping from the old Monitoring book to the new product documentation
structure:

• Event monitoring
• Message monitoring

36 IBM WebSphere MQ Overview

• Accounting and statistics messages
• Real-time monitoring
• Structure data types
• Object attributes for event data

Programmable Command Formats and Administration Interface
This section provides a mapping from the old Programmable Command Formats and Administration
Interface book to the new product documentation structure:

• Introduction to Programmable Command Formats
• Introduction to the WebSphere MQ Administration Interface (MQAI)

Publish/Subscribe User's Guide
This section provides a mapping from the old Publish/Subscribe User's Guide book to the new product
documentation structure:

• Introduction to WebSphere MQ publish/subscribe messaging
• Distributed publish/subscribe
• Writing publish/subscribe applications
• Publish/subscribe security
• Publish/Subscribe migration from Version 6.0
• Migration of the publish/subscribe broker in WebSphere Event Broker and WebSphere Message Broker

Queue manager clusters
This section provides a mapping from the old Queue manager clusters book to the new product
documentation structure:

• “How clusters work” on page 63
• Configuring a queue manager cluster
• Managing IBM WebSphere MQ clusters
• Routing messages to and from clusters
• Using clusters for workload management
• Keeping clusters secure
• Working with the MQI and clusters
• WebSphere MQ cluster commands
• Resolving problems with queue manager clusters

Script (MQSC) Command Reference
This section provides a mapping from the old Script (MQSC) Command Reference book to the new product
documentation structure:

• Script (MQSC) Commands
• Generic values and characters with special meanings
• Building command scripts
• “Rules for naming IBM WebSphere MQ objects” on page 119
• Syntax diagrams
• The MQSC commands

About IBM WebSphere MQ 37

Security
This section provides a mapping from the old Security book to the new product documentation structure:

• Security

System Administration Guide
This section provides a mapping from the old System Administration Guide book to the new product
documentation structure:

• “IBM WebSphere MQ Technical overview” on page 41
• Administering IBM WebSphere MQ
• Administering local WebSphere MQ objects
• Administration using the IBM WebSphere MQ Explorer
• Using the WebSphere MQ Taskbar application (Windows only)
• WebSphere MQ Control commands

Configuration and management

• Changing IBM WebSphere MQ and queue manager configuration information
• Planning file system support
• Setting up security on Windows, UNIX and Linux systems
• Transactional support
• Handling undelivered messages with the WebSphere MQ dead-letter queue handler
• Availability, recovery and restart
• Troubleshooting and support
• WebSphere MQ and UNIX System V IPC resources
• WebSphere MQ and UNIX Process Priority

• User exits, API exits, and WebSphere MQ installable services

Using .NET
This section provides a mapping from the old Using .NET book to the new product documentation
structure:

• Using .NET
• Writing and deploying WebSphere MQ .NET programs
• The WebSphere MQ .NET classes and interfaces
• IBM WebSphere MQ custom channel for Microsoft Windows Communication Foundation (WCF)

Using C++
This section provides a mapping from the old Using C++ book to the new product documentation
structure:

• Using C++
• WebSphere MQ C++ classes

Using Java
This section provides a mapping from the old Using Java book to the new product documentation
structure:

• Should I use WebSphere MQ classes for Java or WebSphere MQ classes for JMS?

38 IBM WebSphere MQ Overview

• Using WebSphere MQ classes for Java
• WebSphere MQ classes for JMS
• Using WebSphere MQ classes for JMS
• WebSphere MQ classes for Java

Web services
This section provides a mapping from the old Web services to the new product documentation structure:

• WebSphere MQ transport for SOAP
• WebSphere MQ bridge for HTTP

Using the Component Object Model Interface
This section provides a mapping from the old Using the Component Object Model Interface book to the
new product documentation structure:

• Using the Component Object Model Interface (WebSphere MQ Automation Classes for ActiveX)

IBM WebSphere MQ Version 7.5, IBM i and z/OS
IBM WebSphere MQ Version 7.5 is not available for IBM i and z/OS.

These platforms are available in later versions of the product.

For information about the latest versions of IBM MQ for IBM i and z/OS, see the IBM MQ website.

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features contained in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM might have patents or pending patent applications that cover subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

About IBM WebSphere MQ 39

https://www.ibm.com/software/integration/wmq/

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it to enable: (i) the exchange of information
between independently created programs and other programs (including this one) and (ii) the mutual use
of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information might be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments might vary significantly. Some measurements might
have been made on development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some measurements might have been
estimated through extrapolation. Actual results might vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements, or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility, or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding the future direction or intent of IBM are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing, or distributing
application programs that conform to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

40 IBM WebSphere MQ Overview

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows: © (your company name) (year). Portions of this code are derived from IBM Corp. Sample
Programs. © Copyright IBM Corp. 1993, 2025. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations might not appear.

Trademarks
IBM, the IBM logo, ibm.com®, Passport Advantage®, WebSphere, MQSeries®, and z/OS are trademarks
or registered trademarks of International Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM or other companies. A
current list of IBM trademarks is available on the web at Copyright and trademark information at https://
www.ibm.com/legal/copytrade.shtml.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

The Oracle Outside In Technology included herein is subject to a restricted use license and can only be
used in conjunction with this application.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States
and other countries.

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

IBM WebSphere MQ Technical overview
Use IBM WebSphere MQ to connect your applications and manage the distribution of information across
your organization.

IBM WebSphere MQ enables programs to communicate with one another across a network of
unlike components (processors, operating systems, subsystems, and communication protocols) using
a consistent application programming interface. Applications designed and written using this interface are
known as message queuing applications.

Use the following subtopics to find out about message queuing and other features provided by IBM
WebSphere MQ.

Related concepts
“Introduction to IBM WebSphere MQ” on page 6
You can use IBM WebSphere MQ to enable applications to communicate at different times and in many
diverse computing environments.
Related tasks
Designing a WebSphere MQ architecture
WebSphere MQ Managed File Transfer
Related reference
“Main features and benefits of message queuing” on page 43

About IBM WebSphere MQ 41

https://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/legal/copytrade.shtml

This information highlights some features and benefits of message queuing. It describes features such as
security and data integrity of message queuing.

Introduction to message queuing
The WebSphere MQ products enable programs to communicate with one another across a network of
unlike components (processors, operating systems, subsystems, and communication protocols) using a
consistent application programming interface.

Applications designed and written using this interface are known as message queuing applications,
because they use the messaging and queuing style:

Messaging Programs communicate by sending each other data in messages rather than calling
each other directly.

Queuing Messages are placed on queues in storage, allowing programs to run independently
of each other, at different speeds and times, in different locations, and without
having a logical connection between them.

Message queuing has been used in data processing for many years. It is most commonly used today in
electronic mail. Without queuing, sending an electronic message over long distances requires every node
on the route to be available for forwarding messages, and the addressees to be logged on and conscious
of the fact that you are trying to send them a message. In a queuing system, messages are stored at
intermediate nodes until the system is ready to forward them. At their final destination they are stored in
an electronic mailbox until the addressee is ready to read them.

Even so, many complex business transactions are processed today without queuing. In a large network,
the system might be maintaining many thousands of connections in a ready-to-use state. If one part of
the system suffers a problem, many parts of the system become unusable.

You can think of message queuing as being electronic mail for programs. In a message queuing
environment, each program that makes up part of an application suite performs a well-defined, self-
contained function in response to a specific request. To communicate with another program, a program
must put a message on a predefined queue. The other program retrieves the message from the queue,
and processes the requests and information contained in the message. So message queuing is a style of
program-to-program communication.

Queuing is the mechanism by which messages are held until an application is ready to process them.
Queuing allows you to:

• Communicate between programs (which might each be running in different environments) without
having to write the communication code.

• Select the order in which a program processes messages.
• Balance loads on a system by arranging for more than one program to service a queue when the number

of messages exceeds a threshold.
• Increase the availability of your applications by arranging for an alternative system to service the

queues if your primary system is unavailable.

What is a message queue?
A message queue, known simply as a queue, is a named destination to which messages can be sent.
Messages accumulate on queues until they are retrieved by programs that service those queues.

Queues reside in, and are managed by, a queue manager, (see “Message queuing terminology” on page
46). The physical nature of a queue depends on the operating system on which the queue manager is
running. A queue can either be a volatile buffer area in the memory of a computer, or a data set on a
permanent storage device (such as a disk). The physical management of queues is the responsibility of
the queue manager and is not made apparent to the participating application programs.

42 IBM WebSphere MQ Overview

Programs access queues only through the external services of the queue manager. They can open a
queue, put messages on it, get messages from it, and close the queue. They can also set, and inquire
about, the attributes of queues.

Different styles of message queuing
Point-to-point

One message is placed on the queue and one application receives that message.

In point-to-point messaging, a sending application must know information about the receiving
application before it can send a message to that application. For example, the sending application
might need to know the name of the queue to which to send the information, and might also specify a
queue manager name.

Publish/Subscribe

A copy of each message published by a publishing application is delivered to every interested
application. There might be many, one, or no interested applications. In publish/subscribe an
interested application is known as a subscriber and the messages are queued on a queue identified by
a subscription.

Publish/subscribe messaging allows you to decouple the provider of information from the consumers
of that information. The sending application and receiving application do not need to know as much
about each other for the information to be sent and received. For more information about publish/
subscribe messaging, see Introduction to WebSphere MQ publish/subscribe messaging

Benefits of message queuing to the application designer and developer
WebSphere MQ allows application programs to use message queuing to participate in message-driven
processing. Application programs can communicate across different platforms by using the appropriate
message queuing software products. For example, HP-UX and z/OS applications can communicate
through WebSphere MQ for HP-UX and WebSphere MQ for z/OS. The applications are shielded from
the mechanics of the underlying communications. Some of the other benefits of message queuing are:

• You can design applications using small programs that you can share between many applications.
• You can quickly build new applications by reusing these building blocks.
• Applications written to use message queuing techniques are not affected by changes in the way that

queue managers work.
• You do not need to use any communication protocols. The queue manager deals with all aspects of

communication for you.
• Programs that receive messages need not be running at the time that messages are sent to them. The

messages are retained on queues.

Designers can reduce the cost of their applications because development is faster, fewer developers
are needed, and demands on programming skill are lower than those for applications that do not use
message queuing.

WebSphere MQ implements a common application programming interface known as the message queue
interface (or MQI) wherever the applications run. This makes it easier for you to port application programs
from one platform to another.

For details about the MQI, see The Message Queue Interface overview.

Main features and benefits of message queuing
This information highlights some features and benefits of message queuing. It describes features such as
security and data integrity of message queuing.

The main features of applications that use message queuing techniques are:

• There are no direct connections between programs.

About IBM WebSphere MQ 43

• Communication between programs can be independent of time.
• Work can be carried out by small, self-contained programs.
• Communication can be driven by events.
• Applications can assign a priority to a message.
• Security.
• Data integrity.
• Recovery support.

No direct connections between programs
Message queuing is a technique for indirect program-to-program communication. It can be used
within any application where programs communicate with each other. Communication occurs by one
program putting messages on a queue (owned by a queue manager) and another program getting the
messages from the queue.

Programs can get messages that were put on a queue by other programs. The other programs can
be connected to the same queue manager as the receiving program, or to another queue manager.
This other queue manager might be on another system, a different computer system, or even within a
different business or enterprise.

There are no physical connections between programs that communicate using message queues. A
program sends messages to a queue owned by a queue manager, and another program retrieves
messages from the queue (see Figure 4 on page 44).

Figure 4. Message queuing compared with traditional communication

44 IBM WebSphere MQ Overview

As with electronic mail, the individual messages that are part of a transaction travel through a network
on a store-and-forward basis. If a link between nodes fails, the message is kept until the link is
restored, or the operator or program redirects the message.

The mechanism by which a message moves from queue to queue is hidden from the programs.
Therefore the programs are simpler.

Time-independent communication
Programs requesting others to do work do not have to wait for the reply to a request. They can do
other work, and process the reply either when it arrives or at a later time. When writing a messaging
application, you need not know (or be concerned) when a program sends a message, or when the
target is able to receive the message. The message is not lost; it is retained by the queue manager
until the target is ready to process it. The message stays on the queue until it is removed by a
program. This means that the sending and receiving application programs are decoupled; the sender
can continue processing without waiting for the receiver to acknowledge receipt of the message. The
target application does not even have to be running when the message is sent. It can retrieve the
message after it is has been started.

Small programs
Message queuing allows you to use the advantages of using small, self-contained programs. Instead
of a single, large program performing all the parts of a job sequentially, you can spread the job
over several smaller, independent programs. The requesting program sends messages to each of
the separate programs, asking them to perform their function; when each program is complete, the
results are sent back as one or more messages.

Message-driven processing
When messages arrive on a queue, they can automatically start an application using triggering. If
necessary, the applications can be stopped when the message (or messages) have been processed.

Event-driven processing
Programs can be controlled according to the state of queues. For example, you can arrange for a
program to start as soon as a message arrives on a queue, or you can specify that the program
does not start until there are, for example, 10 messages above a certain priority on the queue, or 10
messages of any priority on the queue.

Message priority
A program can assign a priority to a message when it puts the message on a queue. This determines
the position in the queue at which the new message is added.

Programs can get messages from a queue either in the order in which the messages are in the queue,
or by getting a specific message. (A program might want to get a specific message if it is looking for
the reply to a request that it sent earlier.)

Security
Authorization checks are carried out on each resource, using the tables that are set up and maintained
by the WebSphere MQ administrator.

• Use Security Server (formerly known as RACF®) or other external security managers on WebSphere
MQ for z/OS.

• On WebSphere MQ on UNIX systems, Linux systems, Windows systems, and IBM i, a security
manager called the object authority manager (OAM) is provided as an installable service. By default,
the OAM is active.

Data integrity
Data integrity is provided by units of work. The synchronization of the start and end of units of work
is fully supported as an option on each MQGET or MQPUT, allowing the results of the unit of work to
be committed or rolled back. Sync point support operates either internally or externally to WebSphere
MQ depending on the form of sync point coordination selected for the application.

Recovery support
For recovery to be possible, all persistent WebSphere MQ updates are logged. If recovery is necessary,
all persistent messages are restored, all in-flight transactions are rolled back, and any sync point
commit and backouts are handled in the normal way of the sync point manager in control. For more
information about persistent messages, see Message persistence .

About IBM WebSphere MQ 45

Note: When considering WebSphere MQ clients and servers, you do not have to change a server
application to support additional WebSphere MQ MQI clients on new platforms. Similarly, the WebSphere
MQ MQI client can, without change, function with additional types of servers.

Message queuing terminology
This information gives an insight into some terms used in message queuing.

They include:

• Message
• Message descriptor
• Queue
• Queue manager
• Channels
• Message channel agent
• Cluster
• WebSphere MQ MQI client
• Point-to-point
• Publish/subscribe
• Topic
• Subscription

Message

In message queuing, a message is a collection of data sent by one program and intended for another
program. See IBM WebSphere MQ messages. For information about message types, see Types of
message.

Message descriptor

An IBM WebSphere MQ message consists of control information and application data.

The control information is defined in a message descriptor structure (MQMD) and contains such things
as:

• The type of the message
• An identifier for the message
• The priority for delivery of the message

The structure and content of the application data is determined by the participating programs, not by
IBM WebSphere MQ.

Queue

A named destination to which messages can be sent. Messages accumulate on queues until they are
retrieved by programs that service those queues.

Queue manager

A queue manager is a system program that provides queuing services to applications.

It provides an application programming interface so that programs can put messages on, and get
messages from, queues. A queue manager provides additional functions so that administrators can
create new queues, alter the properties of existing queues, and control the operation of the queue
manager.

For IBM WebSphere MQ message queuing services to be available on a system, there must be a
queue manager running. You can have more than one queue manager running on a single system (for
example, to separate a test system from a live system). To an application, each queue manager is
identified by a connection handle (Hconn).

46 IBM WebSphere MQ Overview

Many different applications can use the services of the queue manager at the same time and these
applications can be entirely unrelated. For a program to use the services of a queue manager, it must
establish a connection to that queue manager.

For applications to send messages to applications that are connected to other queue managers, the
queue managers must be able to communicate among themselves. IBM WebSphere MQ implements a
store-and-forward protocol to ensure the safe delivery of messages between such applications.

Channels

Channels are objects that provide a communication path from one queue manager to another.
Channels are used in distributed queuing to move messages from one queue manager to another
and they shield applications from the underlying communications protocols. The queue managers
might exist on the same, or different, platforms.

Message channel agent

A message channel agent moves messages from one queue manager to another.

References are made to them when dealing with report messages and you need to consider them
when designing your application. See Writing your own message channel agents for more information.

Cluster

A cluster is a network of queue managers that are logically associated in some way. Clustering is
available to queue managers in IBM WebSphere MQ Version 7.0 and later versions.

In a IBM WebSphere MQ network using distributed queuing without clustering, every queue manager
is independent. If one queue manager needs to send messages to another, it must have defined a
transmission queue and a channel to the remote queue manager.

There are two different reasons for using clusters: to reduce system administration and to improve
availability and workload balancing.

As soon as you establish even the smallest cluster, you benefit from simplified system administration.
Queue managers that are part of a cluster need fewer definitions and so the risk of making an error in
your definitions is reduced.

For more information about clustering, see “How clusters work” on page 63.

IBM WebSphere MQ MQI client

IBM WebSphere MQ MQI clients are independently installable components of IBM WebSphere MQ.
An MQI client allows you to run IBM WebSphere MQ applications with a communications protocol, to
interact with one or more Message Queue Interface (MQI) servers on other platforms and to connect
to their queue managers.

For full details on how to install and use IBM WebSphere MQ MQI client components, see Installing a
IBM WebSphere MQ MQI client and Configuring connections between the server and client.

Point-to-point messaging

In point-to-point messaging, each message travels from one producing application to one consuming
application. Messages are transferred through the producing application putting messages onto a
queue and the consuming application gets them from that queue.

Publish/subscribe messaging

In publish/subscribe messaging, a copy of each message published by a publishing application is
delivered to every interested application. There might be many, one or no interested applications. In
publish/subscribe an interested application is known as a subscriber and the messages are queued on
a queue identified by a subscription. For more information about publish/subscribe, see Introduction
to IBM WebSphere MQ publish/subscribe messaging.

Topic

A topic is a character string that describes the subject of the information that is published in a publish/
subscribe message.

About IBM WebSphere MQ 47

Topics are key to the successful delivery of messages in a publish/subscribe system. Instead of
including a specific destination address in each message, a publisher assigns a topic to each message.
The queue manager matches the topic with a list of subscribers who have subscribed to that topic,
and delivers the message to each of those subscribers.

Subscription

A publish/subscribe application can register an interest in messages about specific topics. When an
application does this it is known as a subscriber and the term subscription defines how matching
messages are queued for processing.

A subscription contains information about the identity of the subscriber and the identity of the
destination queue on to which publications are to be placed. It also contains information about how a
publication is to be placed on the destination queue.

Messages and queues
Messages and queues are the basic components of a message queuing system.

What is a message?
A message is a string of bytes that is meaningful to the applications that use it. Messages are used to
transfer information from one application program to another (or between different parts of the same
application). The applications can be running on the same platform, or on different platforms.

IBM WebSphere MQ messages have two parts:

• The application data. The content and structure of the application data is defined by the application
programs that use it.

• A message descriptor. The message descriptor identifies the message and contains additional control
information, such as the type of message and the priority assigned to the message by the sending
application.

The format of the message descriptor is defined by IBM WebSphere MQ. For a complete description of
the message descriptor, see MQMD - Message descriptor.

Message lengths
The default maximum message length is 4 MB, although you can increase this to a maximum length of
100 MB (where 1 MB equals 1 048 576 bytes). In practice, the message length might be limited by:

• The maximum message length defined for the receiving queue
• The maximum message length defined for the queue manager
• The maximum message length defined by the queue
• The maximum message length defined by either the sending or receiving application
• The amount of storage available for the message

It might take several messages to send all the information that an application requires.

How do applications send and receive messages?
Application programs send and receive messages using MQI calls .

For example, to put a message onto a queue, an application:

1. Opens the required queue by issuing an MQI MQOPEN call
2. Issues an MQI MQPUT call to put the message onto the queue

Another application can retrieve the message from the same queue by issuing an MQI MQGET call

For more information about MQI calls, see MQI calls .

48 IBM WebSphere MQ Overview

What is a queue?
A queue is a data structure used to store messages.

Each queue is owned by a queue manager. The queue manager is responsible for maintaining the queues
it owns, and for storing all the messages it receives onto the appropriate queues. The messages might be
put on the queue by application programs, or by a queue manager as part of its normal operation.

Predefined queues and dynamic queues
Queues can be characterized by the way they are created:

• Predefined queues are created by an administrator using the appropriate MQSC or PCF commands.
Predefined queues are permanent; they exist independently of the applications that use them and
survive IBM WebSphere MQ restarts.

• Dynamic queues are created when an application issues an MQOPEN request specifying the name of a
model queue. The queue created is based on a template queue definition, which is called a model queue.
You can create a model queue using the MQSC command DEFINE QMODEL. The attributes of a model
queue (for example, the maximum number of messages that can be stored on it) are inherited by any
dynamic queue that is created from it.

Model queues have an attribute that specifies whether the dynamic queue is to be permanent or
temporary. Permanent queues survive application and queue manager restarts; temporary queues are
lost on restart.

Retrieving messages from queues
Suitably authorized applications can retrieve messages from a queue according to the following retrieval
algorithms:

• First-in-first-out (FIFO).
• Message priority, as defined in the message descriptor. Messages that have the same priority are

retrieved on a FIFO basis.
• A program request for a specific message.

The MQGET request from the application determines the method used.

Concepts of intercommunication
In WebSphere MQ, intercommunication means sending messages from one queue manager to another.
The receiving queue manager can be on the same machine or another; nearby or on the other side of
the world. It can be running on the same platform as the local queue manager, or can be on any of the
platforms supported by WebSphere MQ. This is called a distributed environment. WebSphere MQ handles
communication in a distributed environment such as this using Distributed Queue Management (DQM).

The local queue manager is sometimes called the source queue manager and the remote queue manager
is sometimes called the target queue manager or the partner queue manager.

How does distributed queuing work?
Distributed Queuing enables sending messages from one Queue Manager to another. The receiving
Queue Manager could be on the same machine or a remote one. Queue Managers, Queues, Channels
and associated Definitions are outlined, along with Clustering (a network of logically associated Queue
Managers).

Figure 5 on page 50 shows an overview of the components of distributed queuing.

About IBM WebSphere MQ 49

Figure 5. Overview of the components of distributed queuing

1. An application uses the MQCONN call to connect to a queue manager.
2. The application then uses the MQOPEN call to open a queue so that it can put messages on it.
3. A queue manager has a definition for each of its queues, specifying information such as the maximum

number of messages allowed on the queue. It can also have definitions of queues located on remote
queue managers.

4. If the messages are destined for a queue on a remote system, the local queue manager holds them in
a message store until it is ready to forward them to the remote queue manager. This has no effect on
the application.

5. Each queue manager contains communications software called the moving service component;
through this, the queue manager can communicate with other queue managers.

6. The transport service is independent of the queue manager and can be any one of the following
(depending on the platform):

• Systems Network Architecture Advanced Program-to Program Communication (SNA APPC)
• Transmission Control Protocol/Internet Protocol (TCP/IP)
• Network Basic Input/Output System (NetBIOS)
• Sequenced Packet Exchange (SPX)

What are the components of distributed queuing?
WebSphere MQ applications can put messages onto a local queue, that is, a queue on the queue manager
the application is connected to.

A queue manager has a definition for each of its queues. It can also have definitions for queues that are
owned by other queue managers. These are called remote queue definitions. WebSphere MQ applications
can also put messages targeted at these remote queues.

If the messages are destined for a remote queue manager, the local queue manager stores them on a
transmission queue until it is ready to send them to the remote queue manager. A transmission queue is a
special type of local queue on which messages are stored until they can be successfully transmitted and
stored at the remote queue manager.

50 IBM WebSphere MQ Overview

The software that handles the sending and receiving of messages is called the Message Channel Agent
(MCA).

Messages are transmitted between queue managers on a channel. A channel is a one-way communication
link between two queue managers. It can carry messages destined for any number of queues at the
remote queue manager.

Components needed to send a message
If a message is to be sent to a remote queue manager, the local queue manager needs definitions for a
transmission queue and a channel.

Each end of a channel has a separate definition, defining it, for example, as the sending end or the
receiving end. A simple channel consists of a sender channel definition at the local queue manager and
a receiver channel definition at the remote queue manager. These two definitions must have the same
name, and together constitute one channel.

There is also a message channel agent (MCA) at each end of a channel.

Each queue manager should have a dead-letter queue (also known as the undelivered message queue).
Messages are put on this queue if they cannot be delivered to their destination.

Figure 6 on page 51 shows the relationship between queue managers, transmission queues, channels,
and MCAs.

Figure 6. Sending messages

Components needed to return a message
If your application requires messages to be returned from the remote queue manager, you need to define
another channel, to run in the opposite direction between the queue managers, as shown in Figure 7 on
page 52.

About IBM WebSphere MQ 51

Figure 7. Sending messages in both directions

For more information about Distributed Queue Management, see Introduction to distributed queue
management.

Cluster components
An alternative to the traditional WebSphere MQ network that is interconnected through manually defining
channels is the use of clusters.

A cluster is a network of queue managers that are logically associated in some way. You can group queue
managers in a cluster so that queue managers can make the queues that they host available to every
other queue manager in the cluster. Assuming that you have the necessary network infrastructure in
place, any queue manager can send a message to any other queue manager in the same cluster without
the need for explicit channel definitions, remote-queue definitions, or transmission queues for each
destination. Every queue manager in a cluster has a single transmission queue that transmits messages
to any other queue manager in the cluster. Each queue manager needs to define only one cluster-receiver
channel and one cluster-sender channel, any additional channels are automatically managed by the
cluster.

Figure 8 on page 53 shows the components of a cluster called CLUSTER:

52 IBM WebSphere MQ Overview

Figure 8. A cluster of queue managers

• CLUSTER contains three queue managers, QM1, QM2, and QM3.
• QM1 and QM2 host full repositories of information about the queue managers and queues in the cluster.
• QM2 and QM3 host some cluster queues, that is, queues that are accessible to any other queue

manager in the cluster.
• Each queue manager has a cluster-receiver channel called TO.qmgr on which it can receive messages.
• Each queue manager also has a cluster-sender channel on which it can send information to one of the

repository queue managers.
• QM1 and QM3 send to the repository at QM2 and QM2 sends to the repository at QM1.

As with distributed queuing, you use the MQPUT call to put a message to a queue at any queue manager.
You use the MQGET call to retrieve messages from a local queue.

For more information about clusters, see “Queue manager clusters” on page 37.

Related concepts
“Distributed queuing components” on page 54
These are objects you need for enabling intercommunication.
“Dead-letter queues” on page 56
The dead-letter queue (or undelivered-message queue) is the queue to which messages are sent if they
cannot be routed to their correct destination.
“Remote queue definitions” on page 57
Remote queue definitions are definitions for queues that are owned by another queue manager.
“How to get to the remote queue manager” on page 57
You might not always have one channel between each source and target queue manager. There are
a number of other ways of linking between the two, including multi-hopping, sharing channels, using
different channels and clustering.
“Addressing information” on page 59
When an application puts messages that are destined for a remote queue manager, the local queue
manager adds a transmission header to them before placing them on the transmission queue. This header
contains the name of the destination queue and queue manager, that is, the addressing information.
“What are aliases?” on page 60

About IBM WebSphere MQ 53

Aliases are used to provide a quality of service for messages. The queue manager alias enables a system
administrator to alter the name of a target queue manager without causing you to have to change your
applications. It also enables the system administrator to alter the route to a destination queue manager,
or to set up a route that involves passing through a number of other queue managers (multi-hopping). The
reply-to queue alias provides a quality of service for replies.
“Queue manager alias definitions” on page 60
Queue manager alias definitions apply when an application that opens a queue to put a message,
specifies the queue name and the queue manager name.
“Reply-to queue alias definitions” on page 62
A reply-to queue alias definition specifies alternative names for the reply information in the message
descriptor. The advantage of this is that you can alter the name of a queue or queue manager without
having to alter your applications.

Distributed queuing components
These are objects you need for enabling intercommunication.

The components of distributed queuing are:

• Message channels
• Message channel agents
• Transmission queues
• Channel initiators and listeners
• Channel-exit programs

Message channels are the channels that carry messages from one queue manager to another. Do not
confuse message channels with MQI channels. There are two types of MQI channel, server-connection
(SVRCONN) and client-connection (CLNTCONN) . For more information, see MQI channels.

The definition of each end of a message channel can be one of the following types:

• Sender (SDR)
• Receiver (RCVR)
• Server (SVR)
• Requester (RQSTR)
• Cluster sender (CLUSSDR)
• Cluster receiver (CLUSRCVR)

A message channel is defined using one of these types defined at one end, and a compatible type at the
other end. Possible combinations are:

• Sender-receiver
• Requester-server
• Requester-sender (callback)
• Server-receiver
• Cluster sender-cluster receiver

Detailed instructions for creating a sender-receiver channel are included in Defining the channels (not
applicable to z/OS). For examples of the parameters needed to set up sender-receiver channels, see
Example configuration information applicable to your platform. For the parameters needed to define a
channel of any type, see DEFINE CHANNEL.

54 IBM WebSphere MQ Overview

Sender-receiver channels
A sender in one system starts the channel so that it can send messages to the other system. The sender
requests the receiver at the other end of the channel to start. The sender sends messages from its
transmission queue to the receiver. The receiver puts the messages on the destination queue. Figure 9 on
page 55 illustrates this.

Figure 9. A sender-receiver channel

Requester-server channels
A requester in one system starts the channel so that it can receive messages from the other system. The
requester requests the server at the other end of the channel to start. The server sends messages to the
requester from the transmission queue defined in its channel definition.

A server channel can also initiate the communication and send messages to a requester. This applies only
to fully qualified servers, that is server channels that have the connection name of the partner specified
in the channel definition. A fully qualified server can either be started by a requester, or can initiate a
communication with a requester.

Figure 10. A requester-server channel

Requester-sender channels
The requester starts the channel and the sender terminates the call. The sender then restarts the
communication according to information in its channel definition (known as callback). It sends messages
from the transmission queue to the requester.

About IBM WebSphere MQ 55

Figure 11. A requester-sender channel

Server-receiver channels
This is like sender-receiver but applies only to fully qualified servers, that is server channels that have the
connection name of the partner specified in the channel definition. Channel startup must be initiated at
the server end of the link. The illustration of this is like the illustration in Figure 9 on page 55.

Cluster-sender channels
In a cluster, each queue manager has a cluster-sender channel on which it can send cluster information
to one of the full repository queue managers. Queue managers can also send messages to other queue
managers on cluster-sender channels.

Figure 12. A cluster-sender channel

Cluster-receiver channels
In a cluster, each queue manager has a cluster-receiver channel on which it can receive messages and
information about the cluster. The illustration of this is like the illustration in Figure 12 on page 56.

Dead-letter queues
The dead-letter queue (or undelivered-message queue) is the queue to which messages are sent if they
cannot be routed to their correct destination.

Messages are put on this queue when they cannot be put on the destination queue. For example, because
the queue does not exist, or because it is full. Dead-letter queues are also used at the sending end of a
channel, for data-conversion errors.

56 IBM WebSphere MQ Overview

Consider defining a dead-letter queue for each queue manager. If you do not, and the MCA is unable to
put a message, it is left on the transmission queue and the channel is stopped.

Also, if fast, non-persistent messages (see Fast, nonpersistent messages) cannot be delivered, and no
dead-letter queue exists on the target system, these messages are discarded.

However, using dead-letter queues can affect the sequence in which messages are delivered, and so you
might choose not to use them.

You can use the USEDLQ channel attribute to determine whether the dead-letter queue is used when
messages cannot be delivered. This attribute can be configured so that some functions of the queue
manager use the dead-letter queue, while other functions do not. For more information about the use of
the USEDLQ channel attribute on different MQSC commands, see DEFINE CHANNEL, DISPLAY CHANNEL,
ALTER CHANNEL, and DISPLAY CLUSQMGR.

Remote queue definitions
Remote queue definitions are definitions for queues that are owned by another queue manager.

Whereas applications can retrieve messages only from local queues, they can put messages on local
queues or remote queues. Therefore, as well as a definition for each of its local queues, a queue manager
can have remote queue definitions. The advantage of remote queue definitions is that they enable an
application to put a message to a remote queue without having to specify the name of the remote queue
or the remote queue manager, or the name of the transmission queue. Remote queue definitions give you
location independence.

There are other uses for remote queue definitions, which are described later.

How to get to the remote queue manager
You might not always have one channel between each source and target queue manager. There are
a number of other ways of linking between the two, including multi-hopping, sharing channels, using
different channels and clustering.

Multi-hopping
If there is no direct communication link between the source queue manager and the target queue
manager, it is possible to pass through one or more intermediate queue managers on the way to the target
queue manager. This is known as a multi-hop.

You need to define channels between all the queue managers, and transmission queues on the
intermediate queue managers. This is shown in Figure 13 on page 58.

About IBM WebSphere MQ 57

Figure 13. Passing through intermediate queue managers

Sharing channels
As an application designer, you have the choice of forcing your applications to specify the remote queue
manager name along with the queue name, or creating a remote queue definition for each remote
queue. This definition holds the remote queue manager name, the queue name, and the name of the
transmission queue. Either way, all messages from all applications addressing queues at the same remote
location have their messages sent through the same transmission queue. This is shown in Figure 14 on
page 58.

Figure 14. Sharing a transmission queue

Figure 14 on page 58 illustrates that messages from multiple applications to multiple remote queues can
use the same channel.

Using different channels
If you have messages of different types to send between two queue managers, you can define more than
one channel between the two. There are times when you need alternative channels, perhaps for security
purposes, or to trade off delivery speed against sheer bulk of message traffic.

58 IBM WebSphere MQ Overview

To set up a second channel you need to define another channel and another transmission queue,
and create a remote queue definition specifying the location and the transmission queue name. Your
applications can then use either channel but the messages are still delivered to the same target queues.
This is shown in Figure 15 on page 59.

Figure 15. Using multiple channels

When you use remote queue definitions to specify a transmission queue, your applications must not
specify the location (that is, the destination queue manager) themselves. If they do, the queue manager
does not use the remote queue definitions. Remote queue definitions give you location independence.
Applications can put messages to a logical queue without knowing where the queue is located and you
can alter the physical queue without having to change your applications.

Using clustering
Every queue manager within a cluster defines a cluster-receiver channel. When another queue manager
wants to send a message to that queue manager, it defines the corresponding cluster-sender channel
automatically. For example, if there is more than one instance of a queue in a cluster, the cluster-sender
channel could be defined to any of the queue managers that host the queue. WebSphere MQ uses a
workload management algorithm that uses a round-robin routine to select an available queue manager to
route a message to. For more information see “Clusters” on page 123.

Addressing information
When an application puts messages that are destined for a remote queue manager, the local queue
manager adds a transmission header to them before placing them on the transmission queue. This header
contains the name of the destination queue and queue manager, that is, the addressing information.

In a single-queue-manager environment, the address of a destination queue is established when an
application opens a queue for putting messages to. Because the destination queue is on the same queue
manager, there is no need for any addressing information.

In a distributed environment the queue manager needs to know not only the destination queue name,
but also the location of that queue (that is, the queue manager name), and the route to that remote
location (that is, the transmission queue). This addressing information is contained in the transmission
header. The receiving channel removes the transmission header and uses the information in it to locate
the destination queue.

You can avoid the need for your applications to specify the name of the destination queue manager if you
use a remote queue definition. This definition specifies the name of the remote queue, the name of the
remote queue manager to which messages are destined, and the name of the transmission queue used to
transport the messages.

About IBM WebSphere MQ 59

What are aliases?
Aliases are used to provide a quality of service for messages. The queue manager alias enables a system
administrator to alter the name of a target queue manager without causing you to have to change your
applications. It also enables the system administrator to alter the route to a destination queue manager,
or to set up a route that involves passing through a number of other queue managers (multi-hopping). The
reply-to queue alias provides a quality of service for replies.

Queue manager aliases and reply-to queue aliases are created using a remote-queue definition that has a
blank RNAME. These definitions do not define real queues; they are used by the queue manager to resolve
physical queue names, queue manager names, and transmission queues.

Alias definitions are characterized by having a blank RNAME.

Queue name resolution
Queue name resolution occurs at every queue manager each time a queue is opened. Its purpose is to
identify the target queue, the target queue manager (which might be local), and the route to that queue
manager (which might be null). The resolved name has three parts: the queue manager name, the queue
name, and, if the queue manager is remote, the transmission queue.

When a remote queue definition exists, no alias definitions are referenced. The queue name supplied by
the application is resolved to the name of the destination queue, the remote queue manager, and the
transmission queue specified in the remote queue definition. For more detailed information about queue
name resolution, see Queue name resolution.

If there is no remote queue definition and a queue manager name is specified, or resolved by the name
service, the queue manager looks to see if there is a queue manager alias definition that matches the
supplied queue manager name. If there is, the information in it is used to resolve the queue manager
name to the name of the destination queue manager. The queue manager alias definition can also be used
to determine the transmission queue to the destination queue manager.

If the resolved queue name is not a local queue, both the queue manager name and the queue name are
included in the transmission header of each message put by the application to the transmission queue.

The transmission queue used typically has the same name as the resolved queue manager, unless
changed by a remote queue definition or a queue manager alias definition. If you have not defined such a
transmission queue but you have defined a default transmission queue, then this is used.

Names of queue managers running on z/OS are limited to four characters.

Queue manager alias definitions
Queue manager alias definitions apply when an application that opens a queue to put a message,
specifies the queue name and the queue manager name.

Queue manager alias definitions have three uses:

• When sending messages, remapping the queue manager name
• When sending messages, altering or specifying the transmission queue
• When receiving messages, determining whether the local queue manager is the intended destination for

those messages

Outbound messages - remapping the queue manager name
Queue manager alias definitions can be used to remap the queue manager name specified in an MQOPEN
call. For example, an MQOPEN call specifies a queue name of THISQ and a queue manager name of
YOURQM. At the local queue manager, there is a queue manager alias definition like the following example:

DEFINE QREMOTE (YOURQM) RQMNAME(REALQM)

60 IBM WebSphere MQ Overview

This shows that the real queue manager to be used, when an application puts messages to queue
manager YOURQM, is REALQM. If the local queue manager is REALQM, it puts the messages to the queue
THISQ, which is a local queue. If the local queue manager is not called REALQM, it routes the message to a
transmission queue called REALQM. The queue manager changes the transmission header to say REALQM
instead of YOURQM.

Outbound messages - altering or specifying the transmission queue
Figure 16 on page 61 shows a scenario where messages arrive at queue manager QM1 with transmission
headers showing queue names at queue manager QM3. In this scenario, QM3 is reachable by multi-
hopping through QM2.

Figure 16. Queue manager alias

All messages for QM3 are captured at QM1 with a queue manager alias. The queue manager alias is
named QM3 and contains the definition QM3 through transmission queue QM2. The definition looks like the
following example:

DEFINE QREMOTE (QM3) RNAME(' ') RQMNAME(QM3) XMITQ(QM2)

The queue manager puts the messages on transmission queue QM2 but does not alter the transmission
queue header because the name of the destination queue manager, QM3, does not alter.

All messages arriving at QM1 and showing a transmission header containing a queue name at QM2 are
also put on the QM2 transmission queue. In this way, messages with different destinations are collected
onto a common transmission queue to an appropriate adjacent system, for onward transmission to their
destinations.

Inbound messages - determining the destination
A receiving MCA opens the queue referenced in the transmission header. If a queue manager alias
definition exists with the same name as the queue manager referenced, then the queue manager name
received in the transmission header is replaced with the RQMNAME from that definition.

This process has two uses:

• Directing messages to another queue manager
• Altering the queue manager name to be the same as the local queue manager

About IBM WebSphere MQ 61

Reply-to queue alias definitions
A reply-to queue alias definition specifies alternative names for the reply information in the message
descriptor. The advantage of this is that you can alter the name of a queue or queue manager without
having to alter your applications.

Queue name resolution
When an application replies to a message, it uses the data in the message descriptor of the message it
received to find out the name of the queue to reply to. The sending application indicates where replies are
sent to and attaches this information to its messages. This concept must be coordinated as part of your
application design.

Queue name resolution takes place at the sending end of your application, before the message is put to
a queue. This instance is an unusual use of queue name resolution. It is the only situation in which name
resolution takes place at a time when a queue is not being opened. Queue name resolution therefore
occurs before interaction with the remote application that the message is being sent to.

Queue name resolution using a queue manager alias
Normally an application specifies a reply-to queue and leaves the reply-to queue manager name blank.
The queue manager completes its own name at put time. This method works well except when you
want an alternative channel to be used for replies, for example, a channel that uses transmission
queue QM1_relief instead of the default return channel which uses transmission queue QM1. In this
situation, the queue manager names specified in transmission-queue headers do not match "real" queue
manager names, but are respecified using queue manager alias definitions. In order to return replies
along alternative routes, it is necessary to map reply-to queue data as well, using reply-to queue alias
definitions.

Figure 17. Reply-to queue alias used for changing reply location

In the example in Figure 17 on page 62:

1. The application puts a message using the MQPUT call and specifying the following information in the
message descriptor:

ReplyToQ='Reply_to'
ReplyToQMgr=' '

62 IBM WebSphere MQ Overview

ReplyToQMgr must be blank in order for the reply-to queue alias to be used.
2. You create a reply-to queue alias definition called Reply_to, which contains the name Answer, and

the queue manager name QM1_relief.

DEFINE QREMOTE ('Reply_to') RNAME ('Answer')
 RQMNAME ('QM1_relief')

3. The messages are sent with a message descriptor showing ReplyToQ='Answer' and
ReplyToQMgr='QM1_relief'.

4. The application specification must include the information that replies are to be found in queue
Answer rather than Reply_to.

To prepare for the replies you have to create the parallel return channel, defining:

• At QM2, the transmission queue named QM1_relief

DEFINE QLOCAL ('QM1_relief') USAGE(XMITQ)

• At QM1, the queue manager alias QM1_relief

DEFINE QREMOTE ('QM1_relief') RNAME() RQMNAME(QM1)

This queue manager alias terminates the chain of parallel return channels and captures the messages
for QM1.

If you think you might want to do this at sometime in the future, ensure applications use the alias name
from the start. For now this is a normal queue alias to the reply-to queue, but later it can be changed to a
queue manager alias.

Reply-to queue name
Care is needed with naming reply-to queues. The reason that an application puts a reply-to queue name
in the message is that it can specify the queue to which its replies are sent. When you create a reply-to
queue alias definition with this name, you cannot have the actual reply-to queue (that is, a local queue
definition) with the same name. Therefore, the reply-to queue alias definition must contain a new queue
name as well as the queue manager name, and the application specification must include the information
that its replies are found in this other queue.

The applications now have to retrieve the messages from a different queue from the one they named as
the reply-to queue when they put the original message.

How clusters work
Understand what clusters are and how they work.

A cluster is a network of queue managers that are logically associated in some way. The queue
managers in a cluster might be physically remote. For example, they might represent the branches of an
international chain store and be physically located in different countries. Each cluster within an enterprise
must have a unique name.

Typically a cluster contains queue managers that are logically related in some way and need to share
some data or applications. For example you might have one queue manager for each department in your
company, managing data and applications specific to that department. You could group all these queue
managers into a cluster so that they all feed into the payroll application. Or you might have one queue
manager for each branch of your chain store, managing the stock levels and other information for that
branch. If you group these queue managers into a cluster, they can all access the same set of sales and
purchases applications. The sales and purchases application might be held centrally on the head-office
queue manager.

Once you set up a cluster, the queue managers within it can communicate with each other, without you
defining extra channel definitions or remote-queue definitions.

About IBM WebSphere MQ 63

You can convert an existing network of queue managers into a cluster or you can establish a cluster as
part of setting up a new network.

An IBM WebSphere MQ client can connect to a queue manager that is part of a cluster, just as it can
connect to any other queue manager.

Clusters can also be used for workload management. For more information, see Using clusters for
workload management.

How messages are routed in a cluster
If you are familiar with IBM WebSphere MQ and distributed queuing, think of a cluster as a network of
queue managers maintained by a conscientious systems administrator. Whenever you define a cluster
queue, the systems administrator automatically creates corresponding remote-queue definitions as
needed on the other queue managers.

You do not need to make transmission queue definitions because IBM WebSphere MQ provides a
transmission queue on each queue manager in the cluster. This single transmission queue can be used
to carry messages to any other queue manager in the cluster. You are not limited to using a single
transmission queue. A queue manager can use multiple transmission queues to separate the messages
going to each queue manager in a cluster. Typically, a queue manager uses a single cluster transmission
queue. You can change the queue manager attribute DEFCLXQ, so that a queue manager uses a different
cluster transmission queues for each queue manager in a cluster. You can also define cluster transmission
queues manually.

All the queue managers that join a cluster agree to work in this way. They send out information about
themselves and about the queues they host, and they receive information about the other members of the
cluster.

This information is stored in repositories. Most queue managers retain only the information that they
need, that is, information about queues and queue managers with which they need to communicate. Each
queue manager keeps the information in a partial repository. Some designated queue managers retain a
full repository of all the information about all queue managers in the cluster.

In order to become part of a cluster, a queue manager must have two channels; a cluster-sender channel
and a cluster-receiver channel

A cluster-sender channel is a communication channel like a sender channel. You must manually create
one cluster-sender channel on a queue manager to connect it to a full repository that is already a member
of the cluster.

A cluster-receiver channel is a communication channel like a receiver channel. You must manually create
one cluster-receiver channel. The channel acts as the mechanism for the queue manager to receive
cluster communications

All other channels that might then be needed for communication between this queue manager and any
other member of the cluster is created automatically

Queue managers on platforms that support clusters do not have to be part of a cluster. You can continue
to use distributed queuing techniques as well as, or instead of, using clusters.

Example of a cluster

Figure 18 on page 65 shows the components of a cluster called CLSTR1.

• In this cluster, there are three queue managers, QM1, QM2, and QM3.
• QM1 and QM2 host repositories of information about all the queue managers and cluster-related objects

in the cluster. They are referred to as full repository queue managers. The repositories are represented
in the diagram by the shaded cylinders.

• QM2 and QM3 host some queues that are accessible to any other queue manager in the cluster. Queues
that are accessible to any other queue manager in the cluster are called cluster queues. The cluster
queues are represented in the diagram by the shaded queues. Cluster queues are accessible from

64 IBM WebSphere MQ Overview

anywhere in the cluster. IBM WebSphere MQ clustering code ensures that remote queue definitions for
cluster queues are created on any queue manager that refers to them.

As with distributed queuing, an application uses the MQPUT call to put a message on a cluster queue
at any queue manager in the cluster. An application uses the MQGET call to retrieve messages from a
cluster queue only on the queue manager where the queue resides.

• Each queue manager has a manually created definition for the receiving end of a channel called
cluster-name.queue-manager on which it can receive messages. On the receiving queue manager,
cluster-name.queue-manager is a cluster-receiver channel. A cluster-receiver channel is like a
receiver channel used in distributed queuing; it receives messages for the queue manager. In addition, it
also receives information about the cluster.

•

Figure 18. A cluster of queue managers
• In Figure 19 on page 66 each queue manager also has a definition for the sending end of a channel. It

connects to the cluster-receiver channel of one of the full repository queue managers. On the sending
queue manager, cluster-name.queue-manager is a cluster-sender channel. QM1 and QM3 have
cluster-sender channels connecting to CLSTR1.QM2, see dotted line "2".

QM2 has a cluster-sender channel connecting to CLSTR1.QM1, see dotted line "3". A cluster-sender
channel is like a sender-channel used in distributed queuing; it sends messages to the receiving queue
manager. In addition, it also sends information about the cluster.

Once both the cluster-receiver end and the cluster-sender end of a channel are defined, the channel
starts automatically.

About IBM WebSphere MQ 65

Figure 19. A cluster of queue managers with sender channels

What makes clustering work?
Defining a cluster-sender channel on the local queue manager introduces that queue manager to one of
the full repository queue managers. The full repository queue manager updates the information in its full
repository accordingly. Then it automatically creates a cluster-sender channel back to the original queue
manager, and sends that queue manager information about the cluster. Thus a queue manager learns
about a cluster and a cluster learns about a queue manager.

Look again at Figure 18 on page 65. Suppose that an application connected to queue manager QM3 wants
to send some messages to the queues at QM2. The first time that QM3 must access those queues, it
discovers them by consulting a full repository. The full repository in this case is QM2, which is accessed
using the sender channel CLSTR1.QM2. With the information from the repository, it can automatically
create remote definitions for those queues. If the queues are on QM1, this mechanism still works, because
QM2 is a full repository. A full repository has a complete record of all the objects in the cluster. In
this latter case, QM3 would also automatically create a cluster-sender channel corresponding to the
cluster-receiver channel on QM1, allowing direct communication between the two.

Figure 20 on page 67 shows the same cluster, with the two cluster-sender channels that were
created automatically. The cluster-sender channels are represented by the two dashed lines that
join with the cluster-receiver channel CLSTR1.QM3. It also shows the cluster transmission queue,
SYSTEM.CLUSTER.TRANSMIT.QUEUE, which QM1 uses to send its messages. All queue managers in
the cluster have a cluster transmission queue, from which they can send messages to any other queue
manager in the same cluster.

66 IBM WebSphere MQ Overview

Figure 20. A cluster of queue managers, showing auto-defined channels

Note: Other diagrams show only the receiving ends of channels for which you make manual definitions.
The sending ends are omitted because they are mostly defined automatically when needed. The auto-
definition of most cluster-sender channels is crucial to the function and efficiency of clusters.

Related concepts
Clusters
You can group queue managers in a cluster. Queue managers in a cluster can make the queues that they
host available to every other queue manager in the cluster. Any queue manager can send a message to
any other queue manager in the same cluster without the need for many of the object definitions required
for standard distributed queuing.
Comparison of clustering and distributed queuing
Components of a cluster
Related tasks
Configuring a queue manager cluster
Setting up a new cluster
Managing WebSphere MQ clusters

IBM WebSphere MQ Telemetry
IBM WebSphere MQ Telemetry comprises a telemetry (MQXR) service that is part of a queue manager,
telemetry clients that you can write yourself, or use one of the clients that are provided, and command
line and explorer administrative interfaces. Telemetry refers to collecting data from and administering a
wide range of remote devices. With IBM WebSphere MQ Telemetry you can integrate the collection of data
and control of devices with web applications.

MQTT support was previously available with either WebSphere Message Broker or WebSphere MQ Version
7.0.1, where WebSphere MQ Telemetry was a separate feature. Because WebSphere MQ Telemetry is a
component of WebSphere MQ Version 7.1 and later, upgrading is essentially uninstalling WebSphere MQ
Telemetry version 7.0.1 and installing WebSphere MQ Version 7.1. WebSphere MQ Telemetry can either
be installed with the main product, or installed after version 7.1 or later is already installed. For migration
information, see Migrating IBM WebSphere MQ Telemetry from Version 7.0.1 to Version 7.5 or Migration

About IBM WebSphere MQ 67

of telemetry applications from using WebSphere Message Broker version 6 to use IBM WebSphere MQ
Telemetry and WebSphere Message Broker version 7.0.

Included in IBM WebSphere MQ Telemetry are the following components:
Telemetry channels

Use telemetry channels to manage the connection of MQTT clients to IBM WebSphere MQ. Telemetry
channels use new IBM WebSphere MQ objects, such as the SYSTEM.MQTT.TRANSMIT.QUEUE, to
interact with IBM WebSphere MQ.

Telemetry (MQXR) service
MQTT clients use the SYSTEM.MQXR.SERVICE telemetry service to connect to telemetry channels.

IBM WebSphere MQ Explorer support for IBM WebSphere MQ Telemetry
IBM WebSphere MQ Telemetry can be administered using IBM WebSphere MQ Explorer.

Client Software Development Kit (SDK)
The client SDK has four parts:

1. MQTT v3 client libraries for Java SE and Java ME. Use the Java libraries to write Java clients for
devices that support Java SE or Java ME.

2. MQTT v3 libraries for C. Use the C libraries to write C clients for a number of platforms.
3. IBM WebSphere MQ Telemetry daemon for devices, which is an advanced client written in C that

runs on a number of platforms.
4. MQTT v3 protocol. The MQTT v3 protocol is published and licensed for reuse. Use the protocol,

and reference MQTT client implementations, to write MQTT clients for different platforms and
languages.

Documentation
IBM WebSphere MQ Telemetry documentation is included in the standard IBM WebSphere MQ
product documentation from Version 7.1. SDK documentation for Java and C clients is provided in
the product documentation, and as Javadoc and HTML.

Telemetry concepts
You collect information from the environment all around you to decide what to do. As a consumer, you
check what you have in store, before deciding about what food to buy. You want to know how long a
journey is going to take if you leave now, before booking a connection. You check your symptoms, before
deciding whether to visit the doctor. You check when a bus is going to arrive, before deciding whether to
wait. The information for those decisions comes directly from meters and devices, from the written word
on paper or from a screen, and from you. Where ever you are, and when ever you need to, you collect
information, bring it together, analyze it, and act upon it.

If the sources of information are widely dispersed or inaccessible, it becomes difficult and costly to collect
the most accurate information. If there are many changes you want to make, or it is difficult to make the
changes, then the changes do not get made, or are made when they are less effective.

What if the costs of collecting information from, and controlling, widely dispersed devices is greatly
reduced by connecting the devices with digital technology to the internet? The information can be
analyzed using the resources of the internet and the enterprise. You have more opportunities to make
informed decisions and act upon them.

Technological trends, and environmental and economic pressures, are driving these changes to happen:

1. The cost of connecting and controlling sensors and actuators is reducing, due to standardization and
connection to low cost digital processors.

2. The internet, and internet technologies, are increasingly used to connect devices. In some countries,
mobile phones exceed personal computers in the number of connections to internet applications.
Other devices are surely following.

3. The internet, and internet technologies, make it much easier for an application to get data. Easy access
to data is driving the use of data analytics to turn data from sensors into information that is useful in
many more solutions.

68 IBM WebSphere MQ Overview

4. Intelligent use of resources is often a quicker and cheaper way of reducing carbon emissions
and costs. The alternatives: finding new resources, or developing new technologies to use existing
resources, might be the long-term solution. In the short term developing new technologies, or finding
new resources, is often riskier, slower, and more costly, than improving existing solutions.

Example

An example shows how these trends create new opportunities to interact with the environment
intelligently.

The International Convention for the Safety of Life at Sea (SOLAS) requires Automatic Identification
System (AIS) to be deployed on many ships. It is required on merchant ships over 300 tons and
passenger ships. AIS is primarily a collision avoidance system for coastal shipping. It is used by marine
authorities to monitor and control coastal waters.

Enthusiasts around the world are deploying low-cost AIS tracking stations and placing coastal shipping
information onto the internet. Other enthusiasts are writing applications that combine information from
AIS with other information from the internet. The results are put on Web sites, and published using
Twitter and SMS.

In one application, information from AIS stations near Southampton is combined with ship ownership and
geographical information. The application feeds live information about ferry arrivals and departures to
Twitter. Regular commuters using the ferries between Southampton and the Isle of Wight subscribe to the
news feed using Twitter or SMS. If the feed shows their ferry is running late, commuters can delay their
departure and catch the ferry when it docks later than its scheduled arrival time.

For more examples, see “Telemetry concepts and scenarios for monitoring and control” on page 69.

Related tasks
Installing WebSphere MQ Telemetry
Administering WebSphere MQ Telemetry
Migration of telemetry applications from using WebSphere Message Broker version 6 to use WebSphere
MQ Telemetry and WebSphere Message Broker version 7.0
Migrating WebSphere MQ Telemetry from version 7.0.1 to version 7.5
Developing applications for WebSphere MQ Telemetry
Troubleshooting for WebSphere MQ Telemetry
Related reference
WebSphere MQ Telemetry Reference

Telemetry concepts and scenarios for monitoring and control
Telemetry is the automated sensing, measurement of data, and control of remote devices. The emphasis
is on the transmission of data from devices to a central control point. Telemetry also includes sending
configuration and control information to devices.

IBM WebSphere MQ Telemetry connects small devices by using the MQTT protocol, and connects the
devices to other applications by using IBM WebSphere MQ. IBM WebSphere MQ Telemetry bridges a
gap between devices and the internet making it easier to build "smart solutions". Smart solutions unlock
the wealth of information available on the internet, and in enterprise applications, for applications that
monitor and control devices.

The following diagrams demonstrate some typical uses of IBM WebSphere MQ Telemetry:

About IBM WebSphere MQ 69

Telemetry: Smart Electricity

• MQTT message containing energy usage data sent to
service provider.

• IBM WebSphere MQ Telemetry sends CONTROL
COMMANDS based on analysis of energy usage data.

• For more information, see the following scenario:
“Telemetry scenario: Home energy monitoring and
control” on page 72

Telemetry: Smart Health Services

• IBM WebSphere MQ Telemetry sends Health Data to
your Hospital & Doctor.

• MQTT message alerts or feedback can be sent based
on analysis of Health Data.

• For more information, see the following scenario:
“Telemetry scenario: Home patient monitoring” on
page 71

Telemetry: One in a Crowd

• A simple card transaction is sent to the bank's
server.

• IBM WebSphere MQ Telemetry identifies the one
person from the thousands, alerting the customer
that their card has been used.

• IBM WebSphere MQ Telemetry can use the simplest
input of information, and locate that individual.

The subsequent scenarios, drawn from actual examples, illustrate some ways of using telemetry and
some of the common problems that telemetry technology must resolve.

Related concepts
“Telemetry scenario: Home patient monitoring” on page 71
In the collaboration between IBM and a healthcare provider on a cardiac patient care system, an
implanted cardioverter defibrillator communicates with a hospital. Data about the patient and the
implanted device are transferred using RF telemetry to the MQTT device in the home of a patient.
“Telemetry scenario: Home energy monitoring and control” on page 72
“Telemetry scenarios: Radio Frequency Identification (RFID)” on page 73
“Telemetry scenarios: Environment sensing” on page 74

70 IBM WebSphere MQ Overview

Environment sensing uses telemetry to collect information about river water levels and quality,
atmospheric pollutants, and other environmental data.
“Telemetry scenarios: Mobile applications” on page 75
Mobile applications are applications that run on wireless devices. The devices are either generic
application platforms or custom devices.

Telemetry scenario: Home patient monitoring
In the collaboration between IBM and a healthcare provider on a cardiac patient care system, an
implanted cardioverter defibrillator communicates with a hospital. Data about the patient and the
implanted device are transferred using RF telemetry to the MQTT device in the home of a patient.

Typically the transfer takes place nightly to a transmitter located at the bedside. The transmitter transfers
the data securely over the phone system to the hospital, where the data is analyzed.

The system reduces the number of visits a patient must make to a physician. It detects when the patient
or device needs attention, and in the event of an emergency, it alerts the on-call physician.

The collaboration between IBM and the healthcare provider has characteristics that are common to a
number of telemetry scenarios:
Invisibility

The device requires no user intervention other than supplying power, a telephone line, and being in
proximity to the device for part of the day. Its operation is reliable and simple to use.

To remove the need for the patient to set up the device, the device supplier preconfigures the device.
The patient only must plug it in. Elimination of configuration by the patient simplifies the operation of
the device and reduces the chance the device is configured wrongly.

The MQTT client is embedded as part of the device. The device developer embeds the MQTT client
implementation in the device and the developer, or supplier, configures the MQTT client as part of the
preconfiguration.

The MQTT client is shipped as Java SE andJava ME jar file,, which the developer includes in their Java
application. For non-Java environments, such as this one, the device developer can implement a client
in a different language using the published MQTT formats and protocol. Alternatively, the developer
can use one of the C clients shipped as shared libraries for Windows, Linux and ARM platforms.

Uneven connectivity

Communication between the defibrillator and the hospital has uneven network characteristics. Two
different networks are used to solve the different problems of collecting data from the patient, and
sending the data to the hospital. Between the patent and the MQTT device, a short-range low-power
RF network is used. The transmitter connects to the hospital using a VPN TCP/IP connection over a
low-bandwidth phone-line.

It is often impractical to find a way to connect every device directly to an Internet Protocol network.
Using two networks, connected by a hub, is a common solution. The MQTT device is a simple hub,
storing information from the patient, and forwarding it to the hospital.

Security

The physician must be able to trust the authenticity of the patient data, and the patient wants the
privacy of their data to be respected.

In some scenarios it is sufficient to encrypt the connection, using VPN or SSL. In other scenarios, it is
desirable to keep the data secure even after it has been stored.

Sometimes the telemetry device is not secure. It might be in a shared dwelling, for example. The user
of the device must be authenticated to make sure that the data is from the correct patient. The device
itself can be authenticated to the server using SSL, and the server authenticated to the device.

The telemetry channel between the device and the queue manager supports JAAS for user
authentication and SSL for communication encryption, and device authentication. Access to a
publication is controlled by the object authority manager in WebSphere MQ.

About IBM WebSphere MQ 71

The identifier used to authenticate the user can be mapped to a different identifier, such as a common
patient identity. A common identifier simplifies configuring authorization to publication topics in
WebSphere MQ.

Connectivity

The connection between the MQTT device and the hospital uses dial-up, and works with a bandwidth
as low as 300 baud.

To operate effectively at 300 baud, the MQTT protocol adds only a few extra bytes to a message in
addition to TCP/IP headers.

The MQTT protocol provides single transmission "fire and forget" messaging, which keeps latencies
low. It can also use multiple transmissions to guarantee "at least once" and "exactly once" delivery
if guaranteed delivery is more important than response time. To guarantee delivery, messages are
stored at the device until they have been delivered successfully. If a device is connected wirelessly,
guaranteed delivery is especially useful.

Scalability

Telemetry devices are typically deployed in large numbers, from tens of thousands to millions.

Connecting many devices to a system places large demands on a solution. There are business
demands such as the cost of the devices and their software, and the administration demands of
managing licenses, devices, and users. Technical demands include the load on the network, and on
servers.

Opening connections uses more server resource than maintaining the open connections. But in a
scenario such as this that uses phone lines, the expense of connections means that connections are
left open no longer than required. The data transfers are largely of a batched nature. The connections
can be scheduled throughout the night to avoid a sudden peak of connections at bedtime.

On the client, the scalability of clients is helped by the minimal client configuration required. The
MQTT client is embedded in the device. There is no requirement for a configuration or MQTT client
license acceptance step to be built into the deployment of devices to patients.

On the server, WebSphere MQ Telemetry has an initial target of 50,000 open connections per queue
manager.

The connections are managed using WebSphere MQ Explorer. The Explorer filters the connections to
be displayed to a manageable number. With an appropriately chosen scheme of allocating identifiers
to clients, you might filter connections based on geography, or alphabetically by patient name.

Telemetry scenario: Home energy monitoring and control
Smart meters collect more detail about energy consumption than traditional meters.

Smart meters are often coupled with a local telemetry network to monitor and control individual
appliances in a home. Some are also connected remotely for monitoring and control at a distance.

The remote connection could be set up by an individual, by a power utility, or by a central control point.
The remote control point can read power usage and provide usage data. It can provide data to influence
usage such as continuous pricing and weather information. It can limit load to improve overall power
generation efficiency.

Smart meters are beginning to deployed widely. The UK government, for instance, is in consultation about
deployment of smart meters to every UK home by 2020.

Home metering scenarios have a number of common characteristics:
Invisibility

Unless the user wants to be involved in saving energy by using the meter, the meter must not require
user intervention. It must not reduce the reliability of the energy supply to individual appliances.

An MQTT client can be embedded in the software deployed with the meter, and does not require
separate installation or configuration.

72 IBM WebSphere MQ Overview

Uneven connectivity

The communication between appliances and the smart meter demands different standards of
connectivity than between the meter and the remote connection point.

The connection from the smart meter to appliances must be highly available and conform to network
standards for a home area network.

The remote network is likely to use various physical connections. Some of them, such as cellular,
have a high transmission cost, and can be intermittent. The MQTT v3 specification is aimed at remote
connections, and connections between local adapters and the smart meter.

Connection between power outlets and applicances, and the meter, use a home area network,
such as Zigbee. MQTT for sensor networks (MQTT-S), is designed to work with Zigbee and other
low bandwidth network protocols. WebSphere MQ Telemetry does not support MQTT-S directly. It
requires a gateway to connect MQTT-S to MQTT v3.

Like home patient monitoring, solutions for home energy monitoring and control require multiple
networks, connected using the smart meter as a hub.

Security

There are a number of security issues associated with smart meters. These issues include non-
repudiation of transactions, authorization of any control actions that are initiated, and privacy of
power consumption data.

To ensure privacy, data transferred between the meter and the remote control point by MQTT can be
encrypted using SSL. To ensure authorization of control actions, the MQTT connection between the
meter and the remote control point can be mutually authenticated using SSL.

Connectivity

The physical nature of the remote network can vary considerably. It might use an existing broadband
connection, or use a mobile network with high call costs, and intermittent availability. For high cost,
intermittent, connections MQTT is an efficient and reliable protocol; see “Telemetry scenario: Home
patient monitoring” on page 71.

Scalability

Eventually power companies, or central control points, plan to deploy tens of millions of smart
meters. Initially, the numbers of meters per deployment are in the tens to hundreds of thousands.
This number is comparable to the initial MQTT target of 50,000 open client connections per queue
manager.

A critical aspect of the architecture for home energy monitoring and control is to use the smart meter
as a network concentrator. Each appliance adapter is a separate sensor. By connecting them to a local
hub using MQTT, the hub can concentrate the data flows onto a single TCP/IP session with the central
control point, and also store messages for a short period to overcome session outages.

Remote connections must be left open in home energy scenarios for two reasons. First, because
opening connections takes a long time relative to sending requests. The time to open many
connections to send "load-limitation" requests in a short interval is too long. Second, to receive
load-limitation requests from the power company, the connection must first be opened by the client.
With MQTT, connections are always initiated by the client, and to receive load-limitation requests from
the power company, the connection must be left open.

If the rate of opening connections is critical, or the server initiates time-critical requests, the solution
is typically to maintain many open connections.

Telemetry scenarios: Radio Frequency Identification (RFID)
RFID is the use of an embedded RFID tag to identify and track an object wirelessly. RFID tags can be read
up to a range of several meters, and out of the line of sight of the RFID reader. Passive tags are activated
by an RFID reader. Active tags transmit without external activation. Active tags must have a power source.
Passive tags can include a power source to increase their range.

About IBM WebSphere MQ 73

RFID is used in many applications, and the types of scenarios vary enormously. RFID scenarios, and
home patient monitoring and home energy monitoring and control scenarios, have some similarities and
differences.
Invisibility

In many scenarios, the RFID reader is deployed in large numbers and must work without user
intervention. The reader includes an embedded MQTT client to communicate with a central control
point.

For example, in a distribution warehouse, a reader uses a motion sensor to detect a pallet. It activates
the RFID tags of items on the pallet and sends data and requests to central applications. The data is
used to update the location of stock. The requests control what happens to the pallet next, such as
moving it to a particular bay. Airlines, and airport baggage systems, are using RFID in this way.

In some RFID scenarios, the reader has a standard computing environment, such as Java ME. In these
cases, the MQTT client might be deployed in a distinct configuration step, after manufacture.

Uneven connectivity
The RFID readers might be separated from the local control device that contains an MQTT client, or
each reader might embed an MQTT client. Typically, geographical or communications factors indicate
the choice of topology.

Security

Privacy and authenticity are security concerns in the attachment of RFID tags. RFID tags are
unobtrusive and can be covertly monitored, spoofed, or tampered with.

Solution of RFID security issues increases the opportunity for deployment of new RFID solutions.
Although the security exposure is in the RFID tag, and the local reader, using central information
processing suggests approaches for countering different threats. For example, tag tampering might be
detected by dynamically correlating stock levels against deliveries and dispatches.

Connectivity

RFID applications typically involved both batched store and forward of information gathered from
RFID readers and immediate queries. In the distribution warehouse scenario, the RFID reader is
connected all the time. When a tag is read, it is published along with information about the reader. The
warehousing application publishes the response back to the reader.

In the warehousing application the network is typically reliable, and the immediate requests might
use "fire and forget" messages for low latency performance. The batched store and forward data
might use "exactly once" messaging to minimize administration costs associated with loosing data.

Scalability
If the RFID application requires immediate responses, in the order of a second or two, then the RFID
readers must stay connected.

Telemetry scenarios: Environment sensing
Environment sensing uses telemetry to collect information about river water levels and quality,
atmospheric pollutants, and other environmental data.

Sensors are frequently located in remote places, without access to wired communication. Wireless
bandwidth is expensive and reliability can be low. Typically, a number of environment sensors in a small
geographical area are connected to a local monitoring device in a safe location. The local connections
might be wired or wireless.
Invisibility

The sensor devices are likely to be less accessible, lower powered, and deployed in greater numbers,
than the central monitoring device. The sensors are sometimes "dumb", and the local monitoring
device includes adapters to transform and store sensor data. The monitoring device is likely to
incorporate a general-purpose computer that supports Java SE or ME. Invisibility is unlikely to be a
major requirement when configuring the MQTT client.

74 IBM WebSphere MQ Overview

Uneven connectivity

The capabilities of sensors, and cost and bandwidth of remote connection, typically results in a local
monitoring hub connected to a central server.

Security

Unless the solution is being used in a military or defensive scenario, security is not a major
requirement.

Connectivity

Many uses do not require continuous monitoring or immediate availability of data. Exception data,
such as a flood level alert, does need to be forwarded immediately. Sensor data is aggregated at the
local monitor to reduce connection and communication costs, and then transferred using scheduled
connections. Exception data is forwarded as soon as it is detected at the monitor.

Scalability

Sensors are concentrated around local hubs, and sensor data is aggregated into packets that are
transmitted according to a schedule. Both these factors reduce the load on the central server that
would be imposed by using directly connected sensors.

Telemetry scenarios: Mobile applications
Mobile applications are applications that run on wireless devices. The devices are either generic
application platforms or custom devices.

General platforms include handheld devices such as phones and personal data assistants, and portable
devices such as notebook computers. Custom devices use special purpose hardware tailored to specific
applications. A device to record "signed-for" parcel delivery is an example of a custom mobile device.
Applications on custom mobile devices are often built on a generic software platform.

Invisibility

The deployment of custom mobile applications is managed, and can include configuration of the
MQTT client application. Invisibility is unlikely to be a major requirement when configuring the MQTT
client.

Uneven connectivity

Unlike the local hub topology of the preceding scenarios, mobile clients connect remotely. The client
application layer connects directly to an application at the central hub.

Security

With little physical security, the mobile device, and the mobile user must be authenticated. SSL is
used to confirm the identity of the device, and JAAS to authenticate the user.

Connectivity

If the mobile application depends on wireless coverage, it must be able to operate offline, and to deal
efficiently with an interrupted connection. In this environment, the goal is to stay connected, but the
application must be able to store and forward messages. Often the messages are orders, or delivery
confirmations, and have important business value. They need to be stored and forwarded reliably.

Scalability

Scalability is not a major issue. The numbers of application clients are likely to not to exceed the
thousands, or tens of thousands, in custom mobile application scenarios.

Connecting telemetry devices to a queue manager
Telemetry devices connect to a queue manager using an MQTT v3 client. The MQTT v3 client uses TCP/IP
to connect to a TCP/IP listener called the telemetry (MQXR) service.

As an alternative to connecting telemetry devices directly to the telemetry service, you can connect the
devices to the WebSphere MQ Telemetry daemon for devices. The daemon is itself an MQTT v3 client. It

About IBM WebSphere MQ 75

pools the device connections, and makes a single connection to the telemetry (MQXR) service. You can
connect daemons in a hierarchy, increasing the number of devices that can be indirectly connected to IBM
WebSphere MQ by many orders of magnitude.

The MQTT client initiates a TCP/IP connection using the MqttClient.connect method. Like IBM
WebSphere MQ clients, an MQTT client must be connected to the queue manager to send and receive
messages. The connection is made at the server using a TCP/IP listener, installed with IBM WebSphere
MQ Telemetry, called the telemetry (MQXR) service. Each queue manager runs a maximum of one
telemetry (MQXR) service.

The telemetry (MQXR) service uses the remote socket address set by each client in the
MqttClient.connect method to allocate the connection to a telemetry channel. A socket address is
the combination of TCP/IP host name and port number. Multiple clients that use the same remote socket
address are connected to the same telemetry channel by the telemetry (MQXR) service.

If there are multiple queue managers on a server, split the telemetry channels between the queue
managers. Allocate the remote socket addresses between the queue managers. Define each telemetry
channel with a unique remote socket address. Two telemetry channels must not use the same socket
address.

If the same remote socket address is configured for telemetry channels on multiple queue managers, the
first telemetry channel to connect, wins. Subsequent channels connecting on the same address fail, and
create a first-failure data capture (FDC) file.

If there are multiple network adapters on the server, split the remote socket addresses between
telemetry channels. The allocation of socket addresses is entirely arbitrary, as long as any specific socket
address is configured on only one telemetry channel.

76 IBM WebSphere MQ Overview

Configure IBM WebSphere MQ to connect MQTT clients using the wizards provided in the WebSphere
MQ Telemetry supplement for IBM WebSphere MQ Explorer. Alternatively, follow the instructions in
Configuring a queue manager for telemetry on Linux and AIX and Configuring a queue manager for
telemetry on Windows to configure telemetry manually.

Related reference
MQXR properties

Telemetry connection protocols
WebSphere MQ Telemetry supports TCP/IP IPv4 and IPv6, and SSL.

Telemetry (MQXR) service
The telemetry (MQXR) service is a TCP/IP listener, that is managed as an IBM WebSphere MQ service.
Create the service using a IBM WebSphere MQ Explorer wizard, or with a runmqsc command.

The IBM WebSphere MQ Telemetry (MQXR) service is called SYSTEM.MQXR.SERVICE .

The Telemetry sample configuration wizard, provided in the IBM WebSphere MQ Telemetry
supplement for IBM WebSphere MQ Explorer, creates the telemetry service and a sample telemetry
channel; see Verifying the installation of IBM WebSphere MQ Telemetry by using IBM WebSphere MQ
Explorer . Create the sample configuration from the command line; see Verifying the installation of IBM
WebSphere MQ Telemetry using the command line .

The telemetry (MQXR) service starts and stops automatically with the queue manager. Control the service
using the services folder in IBM WebSphere MQ Explorer. To see the service, you must click the icon to
stop the Explorer filtering out SYSTEM objects from the display.

installMQXRService_unix.mqsc shows an example of how to create the service manually on AIX and
Linux. installMQXRService_win.mqsc shows how to create the service manually in Windows.

Telemetry channels
Create telemetry channels to create connections with different properties, such as Java Authentication
and Authorization Service (JAAS) or SSL authentication, or to manage groups of clients.

Create Telemetry channels using the New Telemetry Channel wizard, supplied in the IBM WebSphere
MQ Telemetry supplement for IBM WebSphere MQ Explorer. Configure a channel, using the wizard, to
accept connections from MQTT clients on a particular TCP/IP port. Since Version 7.1, you can configure
IBM WebSphere MQ Telemetry using the command line program, runmqsc.

Create multiple telemetry channels, on different ports, to make large numbers of client connections
easier to manage, by splitting the clients into groups. Each telemetry channel has a different name.

You can configure telemetry channels with different security attributes to create different types of
connection. Create multiple channels to accept client connections on different TCP/IP addresses. Use
SSL to encrypt messages and authenticate the telemetry channel and client; see SSL configuration of
MQTT clients and telemetry channels. Specify the user ID to simplify authorizing access to WebSphere
MQ objects. Specify a JAAS configuration to authenticate the MQTT user with JAAS; see MQTT client
identification, authorization, and authentication.

MQTT protocol
The MQ Telemetry Transport (MQTT) v3 protocol is designed for exchanging messages between small
devices on low bandwidth, or expensive connections, and to send messages reliably. It uses TCP/IP.

The MQTT protocol is published; see MQ Telemetry Transport format and protocol. Version 3 of the
protocol uses publish/subscribe, and supports three qualities of service: "fire and forget", "at least once",
and "exactly once".

The small size of the protocol headers, and the byte array message payload, keeps messages small. The
headers comprise a 2 byte fixed header, and up to 12 bytes of additional variable headers. The protocol

About IBM WebSphere MQ 77

uses 12 byte variable headers to subscribe and connect, and only 2 byte variable headers for most
publications.

With three qualities of service, you can trade off between low-latency and reliability; see Qualities of
service provided by an MQTT client. "Fire and forget" uses no persistent device storage, and only one
transmission to send or receive a publication. "At least once", and "exactly once" require persistent
storage on the device to maintain the protocol state and save a message until it is acknowledged.

The protocol is one of a family of MQTT protocols that are used in other products .

MQTT clients
An MQTT client app is responsible for collecting information from the telemetry device, connecting to the
server, and publishing the information to the server. It can also subscribe to topics, receive publications,
and control the telemetry device.

Unlike IBM WebSphere MQ client applications, MQTT client apps are not IBM WebSphere MQ
applications. They do not specify a queue manager to connect to. They are not limited to using specific
IBM WebSphere MQ programming interfaces. Instead, MQTT clients implement the MQTT version 3
protocol. You can write your own client library to interface to the MQTT protocol in the programming
language, and on the platform, of your choice. See MQ Telemetry Transport format and protocol.

To simplify writing MQTT client apps, use the C, Java, and JavaScript client libraries that encapsulate
the MQTT protocol for a number of platforms. For links to client API documentation for the MQTT client
libraries, see MQTT client programming reference. If you incorporate these libraries in your MQTT apps, a
fully functional MQTT client can be as short as 15 lines of code. See PubSync.java.

Two copies of the com.ibm.micro.client.mqttv3.jar JAR file are installed.
One copy has a version number as part of the file name. For example:
com.ibm.micro.client.mqttv3_3.0.2.0-20100723.jar. Use the versioned copy in OSGi
applications. The content of the JAR files is the same.

The MQTT client app is always responsible for initiating a connection with a telemetry channel. After it
is connected, either the MQTT client app or an IBM WebSphere MQ application can start an exchange of
messages.

MQTT client apps and IBM WebSphere MQ applications publish and subscribe to the same set of topics. A
IBM WebSphere MQ application can also send a message directly to an MQTT client app without the client
app first creating a subscription. See Configure distributed queuing to send messages to MQTT clients.

MQTT client apps are connected to IBM WebSphere MQ using a telemetry channel. The telemetry channel
acts as a bridge between the different types of message used by MQTT and IBM WebSphere MQ. It
creates publications and subscriptions in the queue manager on behalf of the MQTT client app. The
telemetry channel sends publications that match the subscriptions of an MQTT client app from the queue
manager to the MQTT client app.

Send a message to an MQTT client
WebSphere MQ applications can send MQTT v3 clients messages by publishing to subscriptions created
by clients, or by sending messages directly. MQTT clients can send messages to one another by
publishing to topics subscribed to by other clients.

An MQTT client subscribes to a publication, which it receives from WebSphere MQ
Do the task, “Publishing a message to the MQTT client utility from IBM WebSphere MQ Explorer” on page
81 to send a publication from WebSphere MQ to an MQTT client.

The standard way for an MQTT v3 client to receive messages is for it to create a subscription to a topic,
or set of topics. In the example code snippet, Figure 21 on page 79, the MQTT client subscribes using
the topic string "MQTT Examples". A WebSphere MQ C application, Figure 22 on page 80, publishes to
the topic using the topic string "MQTT Examples". In the code snippet Figure 23 on page 80, the MQTT
client receives the publication in the callback method, messageArrived.

78 IBM WebSphere MQ Overview

https://www.ibm.com/docs/SS9D84_1.0.0/com.ibm.mm.tc.doc/tc00200_.htm

For further information about how to configure WebSphere MQ to send publications in response to
subscriptions from MQTT clients, see Publishing a message in response to an MQTT client subscription .

A WebSphere MQ application sends a message directly to an MQTT client
Do the task, “Sending a message to an MQTT client using IBM WebSphere MQ Explorer” on page 85 to
send a message directly from WebSphere MQ to an MQTT client.

A message sent in this way to an MQTT client is called an unsolicited message. MQTT v3 clients receive
unsolicited messages as publications with a topic name set. The telemetry (MQXR) service sets the topic
name to the remote queue name.

You cannot send unsolicited messages to the WebSphere MQ daemon for devices: the daemon might shut
down if it receives an unsolicited message. An MQTT v3 client cannot send an unsolicited message to
another MQTT v3 client, nor to a WebSphere MQ queue.

For further information about how to configure WebSphere MQ to send messages directly to MQTT clients,
see Sending a message to a client directly.

An MQTT client publishes a message
An MQTT v3 client can publish a message that is received by another MQTT v3 client, but it cannot send
an unsolicited message. The code snippet, Figure 24 on page 80 shows how an MQTT v3 client, written
in Java, publishes a message.

The typical pattern for sending a message to one specific MQTT v3 client, is for each client to create
a subscription to its own ClientIdentifier. Do the task, “Publish a message to a specific MQTT
v3 client” on page 86, to publish a message from one MQTT client to another MQTT client using
ClientIdentifier as a topic string.

Example code snippets

The code snippet in Figure 21 on page 79 shows how an MQTT client written in Java creates
a subscription. It also needs a callback method, messageArrived to receive publications for the
subscription. The code snippet is extracted from the task, Creating a subscriber for MQ Telemetry
Transport using Java.

String clientId = String.format("%-23.23s",
 System.getProperty("user.name") + "_" +
 (UUID.randomUUID().toString())).trim()).replace('-', '_');
MqttClient client = new MqttClient("localhost", clientId);
String topicString = "MQTT Examples";
int QoS = 1;
client.subscribe(topicString, QoS);

Figure 21. MQTT v3 client subscriber

The code snippet in Figure 22 on page 80 shows how an WebSphere MQ application written in C sends a
publication. The code snippet is extracted from the task, Create a publisher to a variable topic

About IBM WebSphere MQ 79

/* Define and set variables to.defaults */
/* Omitted lines declaring variables */
char * topicName = ""
char * topicString = "MQTT Examples"
char * publication = "Hello world!";
do {
 MQCONN(qMgrName, &Hconn, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 td.ObjectType = MQOT_TOPIC; /* Object is a topic */
 td.Version = MQOD_VERSION_4; /* Descriptor needs to be V4 */
 strncpy(td.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);
 td.ObjectString.VSPtr = topicString;
 td.ObjectString.VSLength = (MQLONG)strlen(topicString);
 MQOPEN(Hconn, &td, MQOO_OUTPUT | MQOO_FAIL_IF_QUIESCING, &Hobj, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 pmo.Options = MQPMO_FAIL_IF_QUIESCING | MQPMO_RETAIN;
 MQPUT(Hconn, Hobj, &md, &pmo, (MQLONG)strlen(publication)+1, publication, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 MQDISC(&Hconn, &CompCode, &Reason);
} while (0);

Figure 22. WebSphere MQ publisher

When the publication arrives, the MQTT client calls the messageArrived method of the MQTT
application client MqttCallback class. The code snippet is extracted from the task, Creating a
subscriber for MQ Telemetry Transport using Java.

public class CallBack implements MqttCallback {
 public void messageArrived(MqttTopic topic, MqttMessage message) {
 try {
 System.out.println("Message arrived: \"" + message.toString()
 + "\" on topic \"" + topic.toString() + "\"");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
// ... Other callback methods
}

Figure 23. messageArrived method

Figure 24 on page 80 shows an MQTT v3 publishing a message to the subscription created in Figure
21 on page 79. The code snippet is extracted from the task, Creating your first MQ Telemetry Transport
publisher application using Java.

 String address = "localhost";
 String clientId = String.format("%-23.23s",
 System.getProperty("user.name") + "_" +
 (UUID.randomUUID().toString())).trim()).replace('-', '_');
 MqttClient client = new MqttClient(address, clientId);
 String topicString = "MQTT Examples";
 MqttTopic topic = client.getTopic(Example.topicString);
 String publication = "Hello world";
 MqttMessage message = new MqttMessage(publication.getBytes());
 MqttDeliveryToken token = topic.publish(message);

Figure 24. MQTT v3 client publisher

80 IBM WebSphere MQ Overview

Publishing a message to the MQTT client utility from IBM WebSphere MQ Explorer
Follow the steps in this task to publish a message using the IBM WebSphere MQ Explorer, and subscribe
to it with the MQTT client utility. An additional task shows you how to configure a queue manager alias
rather than setting the default transmission queue to SYSTEM.MQTT.TRANSMIT.QUEUE.

Before you begin
The task assumes that you are familiar with IBM WebSphere MQ and the IBM WebSphere MQ Explorer,
and that IBM WebSphere MQ and IBM WebSphere MQ Telemetry feature are installed.

The user creating the queue manager resources for this task must have sufficient authority to do so. For
demonstration purposes, the IBM WebSphere MQ Explorer user ID is assumed to be member of the mqm
group.

About this task
In the task, you create a topic in IBM WebSphere MQ and subscribe to the topic using the MQTT client
utility. When you publish to the topic using IBM WebSphere MQ Explorer, the MQTT client receives the
publication.

Procedure
Do one of the following tasks:

• You have installed WebSphere MQ Telemetry, but you have not started it yet. Do the task: “Start task
with no telemetry (MQXR) service yet defined” on page 82.

• You have run WebSphere MQ telemetry before, but want to use a new queue manager to do the
demonstration. Do the task: “Start task with no telemetry (MQXR) service yet defined” on page 82.

• You want to do the task using an existing queue manager that has no telemetry resources defined. You
do not want to run the Define sample configuration wizard.

a. Do one of the following tasks to set up telemetry:

– Configuring a queue manager for telemetry on Linux and AIX
– Configuring a queue manager for telemetry on Windows

b. Do the task: “Start task with a running telemetry (MQXR) service” on page 83
• If you want to do the task using an existing queue manager that already has telemetry resources

defined, do the task: “Start task with a running telemetry (MQXR) service” on page 83.

What to do next
Do “Sending a message to an MQTT client using IBM WebSphere MQ Explorer” on page 85 to send a
message directly to the client utility.
Related tasks
Sending a message to an MQTT client using IBM WebSphere MQ Explorer
Send a message to the MQTT client utility by putting a message onto an IBM WebSphere MQqueue using
IBM WebSphere MQ Explorer. The task shows you how to configure a remote queue definition to send a
message directly to an MQTT client.
Publish a message to a specific MQTT v3 client

About IBM WebSphere MQ 81

Publish a message from one MQTT v3 client to another, using ClientIdentifier as the topic name and
IBM WebSphere MQ as the publish/subscribe broker. Repeat the task using WebSphere MQ Telemetry
daemon for devices as the publish/subscribe broker.

Start task with no telemetry (MQXR) service yet defined
Create a queue manager and run the Define sample configuration to define sample telemetry resources
for the queue manager. Publish a message using IBM WebSphere MQ Explorer, and subscribe to it with
the MQTT client utility.

About this task
When you set up sample telemetry resources using the Define sample configuration, the wizard sets the
guest user ID permissions. Carefully consider if you want the guest user ID to be authorized in this way.
guest on Windows, and nobody on Linux, are given permission to publish and subscribe to the root of
the topic tree, and to put messages onto SYSTEM.MQTT.TRANSMIT.QUEUE.

The wizard also sets the default transmission queue to SYSTEM.MQTT.TRANSMIT.QUEUE, which might
interfere with applications running on an existing queue manager. It is possible, but laborious, to
configure telemetry and not use the default transmission queue; do the follow on task: “Using a queue
manager alias” on page 84. In this task, you create a queue manager to avoid the possibility of
interfering with any existing default transmission queue.

Procedure
1. Using IBM WebSphere MQ Explorer, create and start a new queue manager.

a) Right-click Queue Managers folder > New > Queue manager Type a queue manager name >
Finish.

Make up a queue manager name; for example, MQTTQMGR.
2. Create and start the telemetry (MQXR) service and create a sample telemetry channel.

a) Open the Queue Managers\QmgrName\Telemetry folder.
b) Click Define sample configuration... > Finish

Leave the Launch MQTT Client Utility check box checked.
3. Create a subscription for MQTT Example using the MQTT client utility.

a) Click Connect.

The Client history records a Connected event.
b) Type MQTT Example into the Subscription\Topic field > Subscribe.

The Client history records a Subscribed event.
4. Create MQTTExampleTopic in WebSphere MQ.

a) Right-click the Queue Managers\QmgrName\Topics folder in the WebSphere MQ Explorer >
New > Topic.

b) Type MQTTExampleTopic as the Name > Next.
c) Type MQTT Example as the Topic string > Finish.
d) Click OK to close the acknowledgment window.

5. Publish Hello World! to the topic MQTT Example using IBM WebSphere MQ Explorer.
a) Click the Queue Managers\QmgrName\Topics folder in the IBM WebSphere MQ Explorer.
b) Right-click MQTTExampleTopic > Test publication...
c) Type Hello World! into the Message data field > Publish message > Switch to the MQTT Client

Utility window.

The Client history records a Received event.

82 IBM WebSphere MQ Overview

Start task with a running telemetry (MQXR) service
Create a telemetry channel and a topic. Authorize the user to use the topic and the telemetry transmit
queue. Publish a message using IBM WebSphere MQ Explorer, and subscribe to it with the MQTT client
utility.

Before you begin
In this version of the task, a queue manager, QmgrName, is defined and running. A telemetry (MQXR)
service is defined and running. The telemetry (MQXR) service might have been created manually, or by
running the Define sample configuration wizard.

About this task
In this task you configure an existing queue manager to send a publication to the MQTT client utility.

Step “1” on page 83 of the task sets the default transmission queue to
SYSTEM.MQTT.TRANSMIT.QUEUE, which might interfere with applications running on an existing queue
manager. It is possible, but laborious, to configure telemetry and not use the default transmission queue;
do the follow on task: “Using a queue manager alias” on page 84.

Procedure
1. Set SYSTEM.MQTT.TRANSMIT.QUEUE as the default transmit queue.

a) Right-click the Queue Managers\QmgrName folder > Properties...
b) Click Communication in the navigator.
c) Click Select... > Select SYSTEM.MQTT.TRANSMIT.QUEUE > OK > OK.

2. Create a telemetry channel MQTTExampleChannel to connect the MQTT client utility to WebSphere
MQ, and start the MQTT client utility.
a) Right-click the Queue Managers\QmgrName\Telemetry\Channels folder in the WebSphere

MQ Explorer > New > Telemetry channel....
b) Type MQTTExampleChannel in the Channel name field > Next > Next.
c) Change the Fixed user ID on the client authorization panel to the user ID that is going to publish

and subscribe to MQTTExample > Next.
d) Leave Launch Client Utility checked > Finish.

3. Create a subscription for MQTT Example using the MQTT client utility.
a) Click Connect.

The Client history records a Connected event.
b) Type MQTT Example into the Subscription\Topic field > Subscribe.

The Client history records a Subscribed event.
4. Create MQTTExampleTopic in WebSphere MQ.

a) Right-click the Queue Managers\QmgrName\Topics folder in the WebSphere MQ Explorer >
New > Topic.

b) Type MQTTExampleTopic as the Name > Next.
c) Type MQTT Example as the Topic string > Finish.
d) Click OK to close the acknowledgment window.

5. If you want a user, not in the mqm group, to publish and subscribe to the MQTTExample topic, do the
following:
a) Authorize the user to publish and subscribe to the topic MQTTExampleTopic:

setmqaut -m qMgrName -t topic -n MQTTExampleTopic -p User ID -all +pub +sub

b) Authorize the user to put a message onto the SYSTEM.MQTT.TRANSMIT.QUEUE:

About IBM WebSphere MQ 83

setmqaut -m qMgrName -t q -n SYSTEM.MQTT.TRANSMIT.QUEUE -p User ID -all +put

6. Publish Hello World! to the topic MQTT Example using IBM WebSphere MQ Explorer.
a) Click the Queue Managers\QmgrName\Topics folder in the IBM WebSphere MQ Explorer.
b) Right-click MQTTExampleTopic > Test publication...
c) Type Hello World! into the Message data field > Publish message > Switch to the MQTT Client

Utility window.

The Client history records a Received event.

Using a queue manager alias
Publish a message to the MQTT client utility using IBM WebSphere MQ Explorer without setting the
default transmission queue to SYSTEM.MQTT.TRANSMIT.QUEUE.

The task is a continuation of the previous task, and uses a queue manager alias to avoid setting the
default transmission queue to SYSTEM.MQTT.TRANSMIT.QUEUE.

Before you begin
Complete either the task, “Start task with no telemetry (MQXR) service yet defined” on page 82 or the
task, “Start task with a running telemetry (MQXR) service” on page 83.

About this task
When an MQTT client creates a subscription, IBM WebSphere MQ sends its response using
ClientIdentifier, as the remote queue manager name. In this task, it uses the ClientIdentifier,
MyClient.

If there is no transmission queue or queue manager alias called MyClient, the response is placed on the
default transmission queue. By setting default transmission queue to SYSTEM.MQTT.TRANSMIT.QUEUE,
the MQTT client gets the response.

You can avoid setting the default transmission queue to SYSTEM.MQTT.TRANSMIT.QUEUE by using
queue manager aliases. You must set up a queue manager alias for every ClientIdentifier. Typically,
there are too many clients to make it practical to use queue manager aliases. Often ClientIdentifier
is unpredictable, making it impossible to configure telemetry this way.

Nonetheless, in some circumstances you might have to configure the default transmission queue to
something other than SYSTEM.MQTT.TRANSMIT.QUEUE. The steps in Procedure configure a queue
manager alias instead of setting the default transmission queue to SYSTEM.MQTT.TRANSMIT.QUEUE.

Procedure
1. Remove SYSTEM.MQTT.TRANSMIT.QUEUE as the default transmit queue.

a) Right-click the Queue Managers\QmgrName folder > Properties...
b) Click Communication in the navigator.
c) Remove SYSTEM.MQTT.TRANSMIT.QUEUE from the Default transmission queue field > OK.

2. Check that you can no longer create a subscription with the MQTT client utility:
a) Click Connect.

The Client history records a Connected event.
b) Type MQTT Example into the Subscription\Topic field > Subscribe.

The Client history records a Subscribe failed and a Connection lost event.
3. Create a queue manager alias for the ClientIdentifier, MyClient.

a) Right-click the Queue Managers\QmgrName\Queues folder > New > Remote queue definition.
b) Name the definition, MyClient > Next.

84 IBM WebSphere MQ Overview

c) Type MyClient in the Remote queue manager field.
d) Type SYSTEM.MQTT.TRANSMIT.QUEUE in the Transmission queue field > Finish.

4. Connect the MQTT client utility again.
a) Check the Client identifier is set to MyClient.
b) Connect

The Client history records a Connected event.
5. Create a subscription for MQTT Example using the MQTT client utility.

a) Click Connect.

The Client history records a Connected event.
b) Type MQTT Example into the Subscription\Topic field > Subscribe.

The Client history records a Subscribed event.
6. Publish Hello World! to the topic MQTT Example using IBM WebSphere MQ Explorer.

a) Click the Queue Managers\QmgrName\Topics folder in the IBM WebSphere MQ Explorer.
b) Right-click MQTTExampleTopic > Test publication...
c) Type Hello World! into the Message data field > Publish message > Switch to the MQTT Client

Utility window.

The Client history records a Received event.

Sending a message to an MQTT client using IBM WebSphere MQ Explorer
Send a message to the MQTT client utility by putting a message onto an IBM WebSphere MQqueue using
IBM WebSphere MQ Explorer. The task shows you how to configure a remote queue definition to send a
message directly to an MQTT client.

Before you begin
Do the task, “Publishing a message to the MQTT client utility from IBM WebSphere MQ Explorer” on page
81. Leave the MQTT client utility connected.

About this task
The task demonstrates sending a message to an MQTT client using queue rather than publishing to a
topic. You do not create a subscription in the client. Step “2” on page 85 of the task demonstrates that
the previous subscription has been deleted.

Procedure
1. Discard any existing subscriptions by disconnecting and reconnecting the MQTT client utility.

The subscription is discarded because, unless you change the defaults, the MQTT client utility
connects with a clean session; see Clean sessions.

To make it easier to do the task, type your own ClientIdentifier, rather than use the generated
ClientIdentifier created by the MQTT client utility.

a) Click Disconnect to disconnect the MQTT client utility from the telemetry channel.

The Client History records a Disconnected event
b) Change the Client Identifer to MyClient.
c) Click Connect.

The Client History records a Connected event
2. Check that the MQTT client utility no longer receives publication for the MQTTExampleTopic.

a) Click the Queue Managers\QmgrName\Topics folder in the IBM WebSphere MQ Explorer.
b) Right-click MQTTExampleTopic > Test publication...

About IBM WebSphere MQ 85

c) Type Hello World! into the Message data field > Publish message > Switch to the MQTT Client
Utility window.

No event is recorded in the Client history.
3. Create a remote queue definition for the client.

Set the ClientIdentifier, MyClient, as the remote queue manager name in the remote queue
definition. Use any name you like as the remote queue name. The remote queue name is passed to an
MQTT client as the topic name.

a) Right-click the Queue Managers\QmgrName\Queues folder > New > Remote queue definition.
b) Name the definition, MyClientRemoteQueue > Next.
c) Type MQTTExampleQueue in the Remote queue field.
d) Type MyClient in the Remote queue manager field.
e) Type SYSTEM.MQTT.TRANSMIT.QUEUE in the Transmission queue field > Finish.

4. Put a test message onto MyClientRemoteQueue.
a) Right-click MyClientRemoteQueue > Put test message...
b) Type Hello queue! into the Message data field > Put message > Close

The Client history records a Received event.
5. Remove SYSTEM.MQTT.TRANSMIT.QUEUE as the default transmit queue.

a) Right-click the Queue Managers\QmgrName folder > Properties...
b) Click Communication in the navigator.
c) Remove SYSTEM.MQTT.TRANSMIT.QUEUE from the Default transmission queue field > OK.

6. Redo step “4” on page 86.

MyClientRemoteQueue is a remote queue definition that explicitly names the transmission queue.
You do not need a to define default transmission queue to send a message to MyClient.

What to do next
With the default transmission queue no longer set to SYSTEM.MQTT.TRANSMIT.QUEUE, the
MQTT Client Utility is unable to create a new subscription unless a queue manager alias
is defined for the ClientIdentifier, MyClient. Restore the default transmission queue to
SYSTEM.MQTT.TRANSMIT.QUEUE.

Related tasks
Publishing a message to the MQTT client utility from IBM WebSphere MQ Explorer
Follow the steps in this task to publish a message using the IBM WebSphere MQ Explorer, and subscribe
to it with the MQTT client utility. An additional task shows you how to configure a queue manager alias
rather than setting the default transmission queue to SYSTEM.MQTT.TRANSMIT.QUEUE.
Publish a message to a specific MQTT v3 client
Publish a message from one MQTT v3 client to another, using ClientIdentifier as the topic name and
IBM WebSphere MQ as the publish/subscribe broker. Repeat the task using WebSphere MQ Telemetry
daemon for devices as the publish/subscribe broker.

Publish a message to a specific MQTT v3 client
Publish a message from one MQTT v3 client to another, using ClientIdentifier as the topic name and
IBM WebSphere MQ as the publish/subscribe broker. Repeat the task using WebSphere MQ Telemetry
daemon for devices as the publish/subscribe broker.

Before you begin
Do the task, “Publishing a message to the MQTT client utility from IBM WebSphere MQ Explorer” on page
81. Leave the MQTT client utility connected.

86 IBM WebSphere MQ Overview

About this task
The task demonstrates two things:

1. Subscribing to a topic in one MQTT client, and receiving a publication from another MQTT client.
2. Setting up "point-to-point" subscriptions by using ClientIdentifier as the topic string.

An additional task, “Using the WebSphere MQ Telemetry daemon for devices as the publish/subscribe
broker” on page 88, uses the WebSphere MQ Telemetry daemon for devices as the publish/subscribe
broker, rather than WebSphere MQ.

Procedure
1. Discard any existing subscriptions by disconnecting and reconnecting the MQTT client utility.

The subscription is discarded because, unless you change the defaults, the MQTT client utility
connects with a clean session; see Clean sessions.

To make it easier to do the task, type your own ClientIdentifier, rather than use the generated
ClientIdentifier created by the MQTT client utility.

a) Click Disconnect to disconnect the MQTT client utility from the telemetry channel.

The Client History records a Disconnected event
b) Change the Client Identifer to MyClient.
c) Click Connect.

The Client History records a Connected event
2. Create a subscription to the topic, MyClient

MyClient is the ClientIdentifier of this client.

a) Type MyClient into the Subscription\Topic field > Subscribe.

The Client history records a Subscribed event.
3. Start another MQTT client utility.

a) Open the Queue Managers\QmgrName\Telemetry\channels folder.
b) Right-click the PlainText channel > Run MQTT Client Utility...
c) Click Connect.

The Client History records a Connected event
4. Publish Hello MyClient! to the topic MyClient.

a) Copy the subscription topic, MyClient, from the MQTT client utility running with the
ClientIdentifier, MyClient.

b) Paste MyClient into the Publication\Topic field of each of the MQTT client utility instances.
c) Type Hello MyClient! into the Publication\message field.
d) Click Publish in both instances.

Results
The Client history in the MQTT client utility with the ClientIdentifier, MyClient, records two
Received events and one Published event. The other MQTT client utility instance records one Published
event.

If you see only one Received event check the following possible causes:

1. Is the default transmission queue for the queue manager set to SYSTEM.MQTT.TRANSMIT.QUEUE?
2. Have you created queue manager aliases or remote queue definitions referencing MyClient in doing

the other exercises? In case you have a configuration problem, delete any resources that reference

About IBM WebSphere MQ 87

MyClient, such as a queue manager aliases or transmission queues. Disconnect the client utilities,
stop, and restart the telemetry (MQXR) service.

What to do next
Do the next task, “Using the WebSphere MQ Telemetry daemon for devices as the publish/subscribe
broker” on page 88. The MQTT client utility connects to the WebSphere MQ Telemetry daemon for
devices rather than to a telemetry channel.

Related tasks
Publishing a message to the MQTT client utility from IBM WebSphere MQ Explorer
Follow the steps in this task to publish a message using the IBM WebSphere MQ Explorer, and subscribe
to it with the MQTT client utility. An additional task shows you how to configure a queue manager alias
rather than setting the default transmission queue to SYSTEM.MQTT.TRANSMIT.QUEUE.
Sending a message to an MQTT client using IBM WebSphere MQ Explorer
Send a message to the MQTT client utility by putting a message onto an IBM WebSphere MQqueue using
IBM WebSphere MQ Explorer. The task shows you how to configure a remote queue definition to send a
message directly to an MQTT client.

Using the WebSphere MQ Telemetry daemon for devices as the publish/subscribe broker
Use the WebSphere MQ Telemetry daemon for devices as the publish/subscribe broker instead of
WebSphere MQ. Publish a message with one instance of the MQTT client utility to send to another
instance, by subscribing using its ClientIdentifier as a topic string.

Before you begin
Install the daemon, if you have not done so already. .

Do not run the verification; it uses port 1883, which is already in use by the PlainText telemetry
channel,

About this task
In the task, you connect the MQTT client utility to the WebSphere MQ Telemetry daemon for devices
using a non-default TCP/IP port. One client subscribes using its ClientIdentifier as a topic string,
and the other client publishes to ClientIdentifier, exactly in the same way as in the previous task,
see Procedure.

Note: The task is documented for running the daemon on Windows. To run the daemon on Linux, modify
the path and the permissions for amqtdd.

Procedure
1. Open a command window in the directory containing the WebSphere MQ Telemetry daemon for

devices.

The directory path for Windows is, WebSphere MQ installation
directory\mqxr\SDK\advanced\DeviceDaemon\windows_ia32

2. Run the daemon on a different TCP/IP port.
a) Create a file called amqtdd.cfg in the same directory as the daemon.
b) Add a line to the file to configure a different default port for the daemon.

port 1884

c) Save the file.
3. Start the daemon.

amqtdd

88 IBM WebSphere MQ Overview

The daemon writes its console log to the command window:

20100712 123133.857 CWNAN9999I IBM WebSphere MQ Telemetry daemon for devices
20100712 123133.857 CWNAN9997I Licensed Materials - Property of IBM
20100712 123133.857 CWNAN9996I Copyright IBM Corp. 2007, 2025. All Rights Reserved
20100712 123133.857 CWNAN9995I US Government Users Restricted Rights ...
20100712 123133.857 CWNAN0049I Configuration file name is .\amqtdd.cfg
20100712 123133.873 CWNAN0054I Features included: bridge
20100712 123134.060 CWNAN0014I MQTT protocol starting, listening on port 1884

4. Start an instance of the MQTT client utility.

Start the MQTT client utility only from a telemetry channel, and then you can connect to the daemon.
Alternatively you can install the IBM WebSphere MQ SupportPac, IA92. The SupportPac is available
from IA92: WBI Brokers - Java implementation of WebSphere MQ Telemetry transport.

a) Open the Queue Managers\QmgrName\Telemetry\channels folder.
b) Right-click the PlainText channel > Run MQTT Client Utility...
c) Change the Port to 1884.
d) Change the Client Identifer to MyClient.
e) Click Connect.

The Client History records a Connected event
5. Create a subscription to the topic, MyClient

MyClient is the ClientIdentifier of this client.

a) Type MyClient into the Subscription\Topic field > Subscribe.

The Client history records a Subscribed event.
6. Start another MQTT client utility.

a) Open the Queue Managers\QmgrName\Telemetry\channels folder.
b) Right-click the PlainText channel > Run MQTT Client Utility...
c) Change the Port to 1884.
d) Click Connect.

The Client History records a Connected event
7. Publish Hello MyClient! to the topic MyClient.

a) Copy the subscription topic, MyClient, from the MQTT client utility running with the
ClientIdentifier, MyClient.

b) Paste MyClient into the Publication\Topic field of each of the MQTT client utility instances.
c) Type Hello MyClient! into the Publication\message field.
d) Click Publish in both instances.

Results
The Client history in the MQTT client utility with the ClientIdentifier, MyClient, records two
Received events and one Published event. The other MQTT client utility instance records one Published
event.

You can also monitor the connection and disconnection events to the WebSphere MQ Telemetry daemon
for devices in the command window.

About IBM WebSphere MQ 89

https://www.ibm.com/support/docview.wss?uid=swg24006006

Send a message to an IBM WebSphere MQ application from an MQTT client
An IBM WebSphere MQ application can receive a message from an MQTT v3 client by subscribing to a
topic. The MQTT client connects to IBM WebSphere MQ using a telemetry channel, and sends a message
to the IBM WebSphere MQ application by publishing to the same topic.

Do the task, “Publishing a message to IBM WebSphere MQ Explorer from an MQTT client” on page 90, to
learn how to send a publication from an MQTT client to a subscription defined in IBM WebSphere MQ.

If the topic is clustered, or distributed using a publish/subscribe hierarchy, the subscription can be on a
different queue manager to the queue manager that the MQTT client is connected to.

Publishing a message to IBM WebSphere MQ Explorer from an MQTT client
Create a subscription to a topic using WebSphere MQ Explorer and publish to the topic using WebSphere
MQTT client utility.

Before you begin
Do the task, “Publishing a message to the MQTT client utility from IBM WebSphere MQ Explorer” on page
81. Leave the MQTT client utility connected.

About this task
The task demonstrates publishing a message with an MQTT client and receiving the publication using an
unmanaged durable subscription created using WebSphere MQ Explorer.

Procedure
1. Create a durable subscription to the topic string MQTT Example. Do either of the following

procedures:

• Run the command script described in Results
• Do the following steps to create the queue, and subscription using WebSphere MQ Explorer.

a) Right-click the Queue Managers\QmgrName\Queues folder in the WebSphere MQ Explorer >
New > Local queue....

b) Type MQTTExampleQueue as the queue name > Finish.
c) Right-click the Queue Managers\QmgrName\Subscriptions folder in the WebSphere MQ

Explorer > New > Subscription....
d) Type MQTTExampleSubscription as the queue name > Next.
e) Click Select... > MQTTExampleTopic > OK.

You have already created the topic, MQTTExampleTopic in step “4” on page 82 of “Publishing a
message to the MQTT client utility from IBM WebSphere MQ Explorer” on page 81.

f) Type MQTTExampleQueue as the destination name > Finish.
2. As an optional step, set the queue up for use by a different user, without mqm authority.

If you are setting up the configuration for users with less authority than mqm, you must give put
and get authority to MQTTExampleQueue. Access to the topic and to the transmission queue was
configured in “Publishing a message to the MQTT client utility from IBM WebSphere MQ Explorer” on
page 81.

a) Authorize a user to put and get to the queue MQTTExampleQueue:

setmqaut -m qMgrName -t queue -n MQTTExampleQueue -p User ID -all +put +get

3. Publish Hello WebSphere MQ! to the topic MQTT Example using the MQTT client utility.

If you have not left the MQTT client utility connected, right-click the PlainText channel > Run MQTT
Client Utility... > Connect.

a) Type MQTT Example into the Publication\Topic field.

90 IBM WebSphere MQ Overview

b) Type Hello WebSphere MQ! into the Publication\Message field > Publish.
4. Open the Queue Managers\QmgrName\Queues folder and find MQTTExampleQueue.

The Current queue depth field is 1
5. Right-click MQTTExampleQueue > Browse messages... and examine the publication.

Transfer messages between the IBM WebSphere MQ Telemetry daemon for
devices and IBM WebSphere MQ
Do this task to learn how to send commands to the IBM WebSphere MQ Telemetry daemon for devices.
The commands you write create a bridge that transfers messages from IBM WebSphere MQ to the
daemon, and messages from the daemon to IBM WebSphere MQ.

Before you begin
Do the tasks “Publish a message to a specific MQTT v3 client” on page 86 and “Using the WebSphere
MQ Telemetry daemon for devices as the publish/subscribe broker” on page 88 to become familiar with
using the MQTT client utility. When you have finished the tasks, leave one instance of the MQTT client
utility connected to the telemetry daemon for devices. Leave another instance connected to the telemetry
channel.

The task presumes you have defined a channel to the telemetry service listening to port 1883 on
address 127.0.0.1. Likewise, the default daemon listener is configured to listen to port 1884 on address
127.0.0.1. A single line in the file amqtdd.cfg, which is stored in the same directory as the daemon,
amqtdd, configures the default daemon listener port.

port 1884

About this task
In this task, you update a running daemon to create a connection bridge to the WebSphere MQ telemetry
(MQXR) service, and then exchange messages with the daemon.

Tip: The update file, amqtdd.upd, is deleted by the daemon after it is used. To keep the commands you
create for later use, you might want to create the commands in a different file and then transfer them to
amqtdd.upd.

Procedure
1. Make sure that you have two instances of the MQTT client utility running. One is connected to the

daemon on port 1884, and one is connected to the telemetry channel running on port 1883.
2. Create the file, amqtdd.upd, in the same directory as the daemon, amqtdd, with the following

commands in the file.

connection daemon1
address 127.0.0.1:1883
topic # in import/ export/
topic # out export/ import/
try_private false

• The bridge is called daemon1, and it connects to the channel configured for the telemetry (MQXR)
service running at the socket address, 127.0.0.1:1883. The try_private command is optional;
true is the default. Without this line, the bridge first tries to connect using a private protocol that
is understood by WebSphere MQ Telemetry daemon for devices. Including try_private false in
the commands avoids this step, and speeds up the time to finish a successful connection.

• The line, topic # in import/ export/, instructs daemon1 to subscribe to all topics matching
the topic string export/# created in the queue manager. It transfers the matching publications
from the queue manager to the daemon, changing the start of the topic string from export/ to
import/. The line, topic # out export/ import/, creates a subscription at the local daemon.
The bridge subscribes to all topics matching the topic string export/# created in the daemon. It

About IBM WebSphere MQ 91

transfers publications from the daemon to the queue manager, changing the start of the topic string
from export/ to import/.

Figure 25 on page 92 shows the resulting console log.

CWNAN0124I Starting bridge connection daemon1
CWNAN0133I Bridge connection daemon1 to 127.0.0.1:1883 now established

Figure 25. Console log from starting connection bridge

3. In each instance of the MQTT client utility, type import/# in the Subscription/Topic: input field >
Subscribe.

4. In each instance of the MQTT client utility, type export/# in the Publication/Topic: input field.
a) In the MQTT client utility connected to port 1883, the telemetry channel, type From the queue
manager in the Publication/Message: input field > Publish.

b) In the MQTT client utility connected to port 1884, the telemetry daemon, type From the daemon
in the Publication/Message: input field > Publish.

The client history in each MQTT client utility shows the publication that has been transferred from one
broker to the other.

MQTT publish/subscribe applications
Use topic-based publish/subscribe to write MQTT applications.

When the MQTT client is connected, publications flow in either direction between the client and server.
The publications are sent from the client when information is published at the client. Publications are
received at the client when a message is published to a topic that matches a subscription created by the
client.

The WebSphere MQ publish/subscribe broker manages the topics and subscriptions created by MQTT
clients. The topics created by MQTT clients share the same topic space as topics created by WebSphere
MQ applications.

Publications that match the topic string in an MQTT client subscription are placed on
SYSTEM.MQTT.TRANSMIT.QUEUE with the remote queue manager name set to the ClientIdentifier
of the client. The telemetry (MQXR) service forwards the publications to the client that created the
subscription. It uses ClientIdentifier, which has been set as the remote queue manager name to
identify the client.

Typically, SYSTEM.MQTT.TRANSMIT.QUEUE must be defined as the default transmission queue. It is
possible, but onerous, to configure MQTT not to use the default transmission queue; see Configure
distributed queuing to send messages to MQTT clients .

An MQTT client can create a persistent session; see “MQTT stateless and stateful sessions” on page
96. Subscriptions created in a persistent session are durable. Publications that arrive for a client with
a persistent session are stored in SYSTEM.MQTT.TRANSMIT.QUEUE, and forwarded to the client when it
reconnects.

An MQTT client can also publish and subscribe to retained publications; see Retained publications and
MQTT clients. A subscriber to a retained publication topic receives the latest publication to the topic. The
subscriber receives the retained publication when it creates a subscription, or when it reconnects to its
earlier session.

Related tasks
Creating your first MQ Telemetry Transport publisher application using Java
Creating a subscriber for MQ Telemetry Transport using Java

92 IBM WebSphere MQ Overview

Telemetry applications
Write telemetry applications using WebSphere MQ or WebSphere Message Broker message flows.

Use JMS, MQI, or other WebSphere MQ programming interfaces to program telemetry applications in
WebSphere MQ.

The telemetry (MQXR) service converts between MQTT v3 messages and WebSphere MQ messages. It
creates subscriptions and publications on behalf of MQTT clients, and forwards publications to MQTT
clients. A publication is the payload of an MQTT v3 message. The payload comprises message headers
and a byte array in jms-bytes format. The telemetry server maps the headers between an MQTT v3
message and a WebSphere MQ message; see “Integration of WebSphere MQ Telemetry with queue
managers” on page 93.

Use the Publication, MQInput, and JMSInput nodes to send and receive publications between
WebSphere Message Broker and MQTT clients.

Using message flows you can integrate telemetry with Web sites using HTTP, and with other applications
using WebSphere MQ and WebSphere Adapters.

WebSphere MQ Telemetry replaces the SCADA nodes in WebSphere Message Broker version 7. See
Migration of telemetry applications from using WebSphere Message Broker version 6 to use IBM
WebSphere MQ Telemetry and WebSphere Message Broker version 7.0 for information about how to
migrate version 6 WebSphere Message Broker message flows using the SCADAInput and SCADAOutput
nodes to version 7.

Integration of WebSphere MQ Telemetry with queue managers
The MQTT client is integrated with WebSphere MQ as a publish/subscribe application. It can either
publish or subscribe to topics in WebSphere MQ, creating new topics, or using existing topics. It receives
publications from WebSphere MQ as a result of MQTT clients, including itself, or other WebSphere MQ
applications publishing to the topics of its subscriptions. Rules are applied to decide the attributes of a
publication.

Many of the attributes associated with topics, publications, subscriptions, and messages that are provided
by WebSphere MQ, are not supported. “MQTT client to WebSphere MQ publish/subscribe broker” on page
93 and “WebSphere MQ to an MQTT client” on page 95 describe how attributes of publications are set.
The settings depend on whether the publication is going to or from the WebSphere MQ publish/subscribe
broker.

In WebSphere MQ publish/subscribe topics are associated with administrative topic objects. The topics
created by MQTT clients are no different. When an MQTT client creates a topic string for a publication
the WebSphere MQ publish/subscribe broker associates it with an administrative topic object. The broker
maps the topic string in the publication to the nearest administrative topic object parent. The mapping
is the same as for WebSphere MQ applications. If there is no user created topic, the publication topic is
mapped to SYSTEM.BASE.TOPIC. The attributes that are applied to the publication are derived from the
topic object.

When a WebSphere MQ application, or an administrator creates a subscription, the subscription is named.
List subscriptions using WebSphere MQ Explorer, or by using runmqsc or PCF commands. All MQTT client
subscriptions are named. They are given a name of the form: ClientIdentifier:Topic name

MQTT client to WebSphere MQ publish/subscribe broker
An MQTT client has sent a publication to WebSphere MQ. The telemetry (MQXR) service converts the
publication to a WebSphere MQ message. The WebSphere MQ message contains three parts:

1. MQMD
2. RFH2
3. Message

MQMD properties are set to their default values, except where noted in Table 3 on page 94.

About IBM WebSphere MQ 93

Table 3. MQMD

MQMD field Type Value

Format MQCHAR8 MQFMT_RF_HEADER_2

UserIdentifier MQCHAR12

Set to one of:

MqttClient.ClientIdentifier
MqttConnectOptions.UserName
A user ID set by the WebSphere MQ administrator for the
telemetry channel.

Priority MQLONG MQPRI_PRIORITY_AS_Q_DEF (Default for WebSphere MQ, which
is different to JMS that has a default of 4.)

Persistence MQLONG
QoS=0→MQPER_NOT_PERSISTENT
QoS=1→MQPER_PERSISTENT
QoS=2→MQPER_PERSISTENT

The RFH2 header does not contain an <msd> folder to define the type of the JMS message. The
telemetry (MQXR) service creates the WebSphere MQ message as a default JMS message. The default
JMS message-type is a jms-bytes message. An application can access additional header information as
message properties; see Message properties.

RFH2 values are set as shown in Table 4 on page 94. The Format property is set in the RFH2 fixed header
and the other values are set in RFH2 folders.

Table 4. RFH2

RFH2 property Type/Folder Header

Format MQCHAR8 MQFMT_NONE

ClientIdentifi
er

mqtt/
clientId

Copy MqttClient.ClientIdentifier with a length of 1...23
bytes.

QoS mqtt/qos Copy QoS from incoming MQTT message.

Message ID mqtt/msgid Copy Message ID from incoming MQTT message, if QoS is 1 or 2.

MQIsRetained mqps/Ret
Set if the original MQTT publication was sent with the RETAIN
property set and the message is received as a retained
publication.

MQTopicString mqps/Top The topic to which the MQTT message was published.

The payload in an MQTT publication is mapped to the contents of a WebSphere MQ message:

Table 5. Message contents

Message contents Type Contents

Buffer MQBYTEn Copy of bytes from incoming MQTT message. The length can be
zero.

94 IBM WebSphere MQ Overview

WebSphere MQ to an MQTT client
A client has subscribed to a publication topic. A WebSphere MQ application has published to the topic,
resulting in a publication being sent to the MQTT subscriber by the WebSphere MQ publish/subscribe
broker. Alternatively, a WebSphere MQ application has sent an unsolicited message directly to an MQTT
client. Table 6 on page 95 describes how the fixed message headers are set in the message that is
sent to the MQTT client. Any other data in the WebSphere MQ message header, or any other headers, are
discarded. The message data in the WebSphere MQ message is sent as the message payload in the MQTT
message, with no alteration. The MQTT message is sent to the MQTT client by the telemetry (MQXR)
service.

Table 6. MQTT fixed header properties

MQTT field Type Value

DUP boolean
Set if QoS = 1 or 2, and the message was sent to this client
in a previous transmission, and the message has not been
acknowledged after a time.

QoS int

The way the value of QoS in an outgoing publication from the
publish/subscribe broker in WebSphere MQ is set depends on
the incoming publication. It depends on whether the incoming
publication was sent from an MQTT client, or from a WebSphere
MQ application.
MQTT

Lower value of the QoS in the incoming publication, and in the
QoS requested by the subscriber.

WebSphere MQ
Lower value of the QoS derived from the incoming publication:

MQPER_NOT_PERSISTENT→QoS=0
MQPER_PERSISTENT→QoS=2

and the QoS requested by the subscriber. If the message
is sent to the client without a subscription, QoS is set by
default to 2. A client can alter this value by subscribing to
DEFAULT.QoS with a different QoS.

RETAIN boolean Set if the incoming publication has the retained property set.

Table 7 on page 95 describes how the variable message headers are set in the MQTT message that is
sent to the MQTT client.

Table 7. MQTT Variable header properties

MQTT field Type Value

Topic name String The topic string the message was published with.

Message ID String The last 2 bytes of the MQMD.MsgId property of the publication
when it is placed in SYSTEM.MQTT.TRANSMIT.QUEUE.

Payload byte[] Direct copy of bytes from incoming publication to the publish/
subscribe broker. The length can be zero.

About IBM WebSphere MQ 95

Telemetry daemon for devices
The WebSphere MQ Telemetry daemon for devices is an advanced MQTT V3 client application. Use it to
store and forward messages from other MQTT clients. It connects to WebSphere MQ like an MQTT client,
but you can also connect other MQTT clients to it. You can connect it to other telemetry daemons too.

It serves four basic purposes:

1. Connect local MQTT clients together in a publish/subscribe network.

You might connect the sensor and an actuator of a device as separate MQTT clients to the
daemon. The sensor publishes its gauge readings, and the actuator subscribes to the readings,
modifying its behavior based on their values. The readings are acted on locally.

2. Filter which subscriptions, and which messages are published to the queue manager, and to the
device.

In the previous example, a WebSphere Message Broker message flow might subscribe to the
topic that the daemon publishes readings to. The flow updates a Web page and shows the state
of the device.
The daemon might also forward the subscription that the actuator created to the queue
manager. A WebSphere Message Broker flow publishes a message to the topic the MQTT client
servicing the actuator subscribed to. The MQTT client modifies the device settings.
The message flow might start from a Web page using a WebSphere Message Broker HTTPInput
node.

3. Concentrate multiple MQTT clients into one connection to the telemetry server.

Rather than each device connecting separately to the telemetry server, the daemon forwards
publications and subscriptions on a single TCP/IP connection. The daemon reduces the number
of TCP/IP connections managed by the telemetry (MQXR) service.
Individual MQTT clients connect to the daemon. The individual clients are invisible to the queue
manager. The daemon makes one connection to the queue manager on behalf of all the clients
that connect to it.

4. Store and forward messages between devices and the queue manager

The daemon takes the responsibility for protecting telemetry devices from short-lived
connection failures of the connection to the queue manager.
A device might only support "fire and forget" messaging. If the connection to the queue
manager is only available intermittently, or is unreliable, the device has no way to transfer
information predictably or reliably.
A solution is to attach the device to the daemon using a local connection that is always
available. The daemon can buffer the messages that flow to and from the queue manager in its
memory. It can use a reliable quality of service to send the messages to and from the queue
manager on an unreliable connection.

Note: The daemon does not have persistent storage for "inflight" messages. Messages are
buffered in memory.

MQTT stateless and stateful sessions
MQTT clients can create a stateful session with the queue manager. When a stateful MQTT client
disconnects, the queue manager maintains the subscriptions created by the client, and in-flight
messages. When the client reconnects, it resolves in-flight message. It sends any messages that are
queued for delivery, and receives any messages published for its subscriptions while it was disconnected.

When an MQTT client connects to a telemetry channel it either starts a new session, or resumes an old
session. A new session has no outstanding messages that have not been acknowledged, no subscriptions,
and no publications awaiting delivery. When a client connects, it specifies whether to start with a clean
session, or to resume an existing session; see Clean sessions.

If the client resumes an existing session, it continues as if the connection had not been broken.
Publications awaiting delivery are sent to the client, and any message transfers that had not been

96 IBM WebSphere MQ Overview

committed, are completed. When a client in a persistent session disconnects from the telemetry (MQXR)
service, any subscriptions the client created remain. Publications for the subscriptions are sent to
the client when it reconnects. If it reconnects without resuming the old session, the publications are
discarded by the telemetry (MQXR) service.

Session state information is saved by the queue manager in the SYSTEM.MQTT.PERSISTENT.STATE
queue.

The WebSphere MQ administrator can disconnect and purge a session.

When an MQTT client is not connected
When a client is not connected the queue manager can continue to receive publications on its behalf.
They are forwarded to the client when it reconnects. A client can create a "Last will and testament", which
the queue manager publishes on behalf of the client, if the client disconnects unexpectedly.

If you want to be notified when the client unexpectedly disconnects, you can register a last will and
testament publication; see Last will and testament publication . It is sent by the telemetry (MQXR)
service, if it detects the connection to the client has broken without the client requesting it.

A client can publish a retained publication at any time; see Retained publications and MQTT clients . A
new subscription to a topic can request to be sent any retained publication associated with topic. If you
create the last will and testament as a retained publication, you can use it to monitor the status of a client.

For example, the client publishes a retained publication, when it connects, advertising its availability. At
the same time, it creates a retained last will and testament publication that announces its unavailability.
In addition, just before it makes a planned disconnection, it publishes its unavailability as a retained
publication. To find out whether the client is available, you would subscribe to the topic of the retained
publication. You would always receive one of the three publications.

If the client is to receive messages published when it is disconnected, then reconnect the client to its
previous session; see “MQTT stateless and stateful sessions” on page 96. Its subscriptions are active
until they are deleted, or until the client creates a clean session.

Loose coupling between MQTT clients and WebSphere MQ applications
The flow of publications between MQTT clients and WebSphere MQ applications is loosely coupled.
Publications might originate from either an MQTT client or a WebSphere MQ application, and in no set
order. Publishers and subscribers are loosely coupled. They interact with each other indirectly through
publications and subscriptions. You can also send messages directly to an MQTT client from a WebSphere
MQ application.

MQTT clients and WebSphere MQ applications are loosely coupled in two senses:

1. Publishers and subscribers are loosely coupled by the association of a publication and a subscription
with a topic. Publishers and subscribers are not normally aware of the address or identity of the other
source of a publication or subscription.

2. MQTT clients publish, subscribe, receive publications, and process delivery acknowledgments on
separate threads.

An MQTT client application does not wait until a publication has been delivered. The application passes
a message to the MQTT client, and then the application continues on its own thread. A delivery-token is
used to synchronize the application with the delivery of a publication; see Delivery tokens.

After passing a message to the MQTT client, the application has the choice of waiting on the delivery-
token. Rather than waiting, the client can provide a callback method that is called when the publication is
delivered to WebSphere MQ. It can also ignore the delivery-token.

Depending on the quality of service associated with the message, the delivery-token is returned
immediately to the callback method, or possibly after some considerable time. The delivery-token might
even be returned after the client has disconnected and reconnected. If the quality of service is "fire and
forget", the delivery-token is returned immediately. In the other two cases, the delivery token is returned
only when the client receives acknowledgment that the publication has been sent to subscribers.

About IBM WebSphere MQ 97

Publications sent to an MQTT client as a result of a client subscription, are delivered to the
messageArrived callback method. messageArrived runs on a different thread to the main
application.

Sending messages directly to an MQTT client
You can send a message to a particular MQTT client in one of two ways.

1. A WebSphere MQ application can send a message directly to an MQTT client without a subscription;
see Sending a message to a client directly .

2. An alternative approach is to use your ClientIdentifier naming convention. Make all MQTT
subscribers create subscriptions using their unique ClientIdentifier as a topic. Publish to
ClientIdentifier. The publication is sent to the client that subscribed to the topic ClientIdentifier. Using
this technique you can send a publication to a particular MQTT subscriber.

WebSphere MQ Telemetry security
Securing telemetry devices can be important, as the devices are likely to be portable, and used in places
that cannot be carefully controlled. You can use VPN to secure the connection from the MQTT device to
the telemetry (MQXR) service. WebSphere MQ Telemetry provides two other security mechanisms, SSL
and JAAS.

SSL is principally used to encrypt communications between the device and the telemetry channel, and to
authenticate the device is connecting to the correct server; see Telemetry channel authentication using
SSL. You can also use SSL to check that the client device is permitted to connect to the server; see MQTT
client authentication using SSL.

JAAS is principally used to check that the user of the device is permitted to use a server application; see
MQTT client authentication using a password. JAAS can be used with LDAP to check a password using a
single sign-on directory.

SSL and JAAS can be used in conjunction to provide two factor authentication. You can restrict the ciphers
used by SSL to ciphers that meet FIPS standards.

With at least tens of thousands of users, it is not always practical to provide individual security profiles.
Nor is it always practical to use the profiles to authorize individual users to access WebSphere MQ
objects. Instead group users into classes for authorizing publication and subscription to topics, and
sending publications to clients.

Configure each telemetry channel to map clients to common client user IDs. Use a common user ID for
every client that connects on a specific channel; see MQTT client identity and authorization.

Authorizing groups of users does not compromise authentication of each individual. Each individual user
can be authenticated, at the client or server, with their Username and Password, and then authorized at
the server using a common user ID.

WebSphere MQ Telemetry globalization
The message payload in the MQTT v3 protocol is encoded as byte-array. Generally, applications handling
text create the message payload in UTF-8. The telemetry channel describes the message payload as
UTF-8, but does not do any code page conversions. The publication topic string must be UTF-8.

The application is responsible for converting alphabetic data to the correct code page and numeric data to
the correct number encoding.

The MQTT Java client has a convenient MqttMessage.toString method. The method treats the
message payload as being encoded in the local platform default character set, which is generally UTF-8.
It converts the payload to a Java String. Java has a String method, getBytes that converts a string into
a byte array encoded using the local platform default character set. Two MQTT Java programs exchanging
text in the message payload, between platforms with the same default character set do so easily and
efficiently in UTF-8.

98 IBM WebSphere MQ Overview

If the default character set of one of the platforms is not UTF-8, then the applications must establish
a convention for exchanging messages. For example, the publisher specifies conversion from a string to
UTF-8 using the getBytes("UTF8") method. To receive the text of a message, the subscriber assumes
that the message is encoded in the UTF-8 character set.

The telemetry (MQXR) service describes the encoding of all incoming publications from MQTT clients
messages as being UTF-8. It sets MQMD.CodedCharSetId to UTF-8, and RFH2.CodedCharSetId to
MQCCSI_INHERIT; see “Integration of WebSphere MQ Telemetry with queue managers” on page 93. The
format of the publication is set to MQFMT_NONE, so no conversion can be performed by channels, or by
MQGET.

Performance and scalability of WebSphere MQ Telemetry
Consider the following factors when managing large numbers of clients and improving scalability of
WebSphere MQ Telemetry.

Capacity Planning
For information about performance reports for WebSphere MQ Telemetry, select the WebSphere MQ
Telemetry Performance Evaluations report from WebSphere MQ Family - Performance Reports.

Connections
Costs involved with connections include

• The cost of setting up a connection itself in terms of processor usage and time.
• Network costs.
• Memory used when keeping a connection open but not using it.

There is an extra load incurred when clients stay connected. If a connection is kept open, TCP/IP flows
and MQTT messages use the network to check that the connection is still there. Additionally, memory is
used in the server for each client connection that is kept open.

If you are sending messages more than one per minute, keep your connection open to avoid the cost of
initiating a new connection. If you are sending messages less than one every 10 - 15 minutes, consider
dropping your connection to avoid the cost of keeping it open. You might want to keep an SSL connection
open, but idle, for longer periods because it is more expensive to set up.

Additionally, consider the capability of the client. If there is a store and forward facility on the client then
you might batch up messages and drop the connection between sending the batches. However, if the
client is disconnected, then it is not possible for the client to receive a message from the server. Therefore
the purpose of your application has a bearing on the decision.

If your system has one client sending many messages, for example file transfers, do not wait for a server
response per message. Instead, send all messages and check at the end that they have all been received.
Alternatively, use Quality of Service (QoS).

You can vary the QoS by message, delivering unimportant messages using QoS 0 and important messages
using a QoS of 2. The message throughput can be around twice as high with a QoS of 0 than with a QoS of
2.

Naming conventions
If you are designing your application for many clients, implement an effective naming convention. In
order to map each client to the correct ClientIdentifier, make the ClientIdentifier meaningful.
A good naming convention makes it easier for the Administrator to work out which clients are running.
A naming convention helps the administrator filter a long list of clients in WebSphere MQ Explorer, and
helps with problem determination; see Client identifier.

About IBM WebSphere MQ 99

https://www.ibm.com/support/docview.wss?uid=swg27007150

Throughput
The length of topic names affects the number of bytes that flow across the network. When publishing
or subscribing, the number of bytes in a message might be important. Therefore limit the number of
characters in a topic name. When an MQTT client subscribes for a topic WebSphere MQ gives it a name of
the form:

 ClientIdentifier:TopicName

To view all of the subscriptions for an MQTT client, you can use the WebSphere MQ MQSC DISPLAY
command:

DISPLAY SUB('ClientID1:*')

Defining resources in WebSphere MQ for use by MQTT clients
An MQTT client connects to an IBM WebSphere MQ remote queue manager. There are two basic methods
for a WebSphere MQ application to send messages to an MQTT client: set the default transmission queue
to SYSTEM.MQTT.TRANSMIT.QUEUE or use queue manager aliases. Define the default transmission
queue of a queue manager, if there are large numbers of MQTT clients. Using the default transmission
queue setting simplifies the administration effort; see Configure distributed queuing to send messages to
MQTT clients .

Improving scalability by avoiding subscriptions.
When an MQTT V3 client subscribes to a topic, a subscription is created by the telemetry
(MQXR) service in WebSphere MQ. The subscription routes publications for the client onto
SYSTEM.MQTT.TRANSMIT.QUEUE. The remote queue manager name in the transmission header of each
publication is set to the ClientIdentifier of the MQTT client that made the subscription. If there
are many clients, each making their own subscriptions, this results in many proxy subscriptions being
maintained throughout the WebSphere MQ publish/subscribe cluster or hierarchy. For information about
not using publish/subscribe, but using a point to point based solution instead, see Sending a message to a
client directly.

Managing large numbers of clients
To support many concurrently connected clients, increase the memory available for the telemetry (MQXR)
service by setting the JVM parameters -Xms and -Xmx. Follow these steps:

1. Find the java.properties file in the telemetry service configuration directory; see Telemetry
(MQXR) service configuration directory on Windows or Telemetry service configuration directory on
Linux.

2. Follow the directions in the file; a heap of 1 GB is sufficient for 50,000 concurrently connected clients.

Heap sizing options - uncomment the following lines to set the heap to 1G
#-Xmx1024m
#-Xms1024m

3. Add other command-line arguments to pass to the JVM running the telemetry (MQXR) service in the
java.properties file; see Passing JVM parameters to the telemetry (MQXR) service.

To increase the number of open file descriptors on Linux, add the following lines to /etc/security/
limits.conf/, and log in again.

@mqm soft nofile 65000
@mqm hard nofile 65000

Each socket requires one file descriptor. The telemetry service require some additional file descriptors, so
this number must be larger than the number of open sockets required.

100 IBM WebSphere MQ Overview

The queue manager uses an object handle for each nondurable subscription. To support many active,
nondurable subscriptions increase the maximum number of active handles in the queue manager; for
example:

echo ALTER QMGR MAXHANDS(999999999) | runmqsc qMgrName

Figure 26. Alter maximum number of handles on Windows

echo "ALTER QMGR MAXHANDS(999999999)" | runmqsc qMgrName

Figure 27. Alter maximum number of handles on Linux

Other considerations
When planning your system requirements, consider the length of time taken to restart the system. The
planned downtime might have implications for the number of messages that queue up, waiting to be
processed. Configure the system so that the messages can be successfully processed in an acceptable
time. Review disk storage, memory, and processing power. With some client applications, it might be
possible to discard messages when the client reconnects. To discard messages, set CleanSession in
the client connection parameters; see Clean sessions. Alternatively, publish and subscribe using the best
effort Quality of Service, 0, in an MQTT client; see Quality of service. Use non-persistent messages
when sending messages from WebSphere MQ. Messages with these qualities of service are not recovered
when the system or connection restarts.

Devices supported by IBM WebSphere MQ Telemetry
MQTT clients can run on a range of devices, from sensors and actuators, to hand held devices and vehicle
systems.

MQTT clients are small, and run on devices constrained by little memory and low processing power. The
MQTT protocol is reliable and has small headers, which suits networks constrained by low bandwidth,
high cost, and intermittent availability.

IBM WebSphere MQ Telemetry provides three clients, which all implement the MQTT v3 protocol:

• A Java client that can run on all variations of Java from the smallest CLDC (Connected Limited
Device Configuration)/MIDP (Mobile Information Device Profile) through CDC (Connected Device
Configuration)/Foundation, J2SE (Java Platform, Standard Edition), and J2EE (Java Platform, Enterprise
Edition). IBM jclRM customized class library is also supported.

• A C reference implementation together with prebuilt native client for Windows and Linux systems. The C
reference implementation enables MQTT to be ported to a wide range of devices and platforms.

• The advanced client, IBM WebSphere MQ Telemetry daemon for devices, which is written in C, and can
run on any suitable Linux or Windows platform.

Some Windows systems on Intel, including Windows XP, RedHat, Ubuntu, and some Linux systems on
ARM platforms such as Eurotech Viper implement versions of Linux that run the C client, but IBM does not
provide service support for the platforms. You must reproduce problems with the client on a supported
platform if you intend to call your IBM support centre.

The Java ME platform is generally used on small devices, such as actuators, sensors, mobile phones, and
other embedded devices. The Java SE platform is generally installed on higher end embedded devices,
such as desktop computers and servers.

Note: The Eclipse Paho project, and MQTT.org, have free downloads of the latest telemetry clients and
samples for a range of programming languages.

Related concepts
“Telemetry daemon for devices” on page 96

About IBM WebSphere MQ 101

http://www.eclipse.org/paho
https://mqtt.org/

The WebSphere MQ Telemetry daemon for devices is an advanced MQTT V3 client application. Use it to
store and forward messages from other MQTT clients. It connects to WebSphere MQ like an MQTT client,
but you can also connect other MQTT clients to it. You can connect it to other telemetry daemons too.

Administering objects
Queue managers define the properties, or attributes, of IBM WebSphere MQ objects. The values of these
attributes affect the way in which WebSphere MQ processes these objects. From your applications,
you use the Message Queue Interface (MQI) to control objects. Objects are identified by an MQ object
descriptor (MQOD) when addressed from a program.

When you use a WebSphere MQ command to carry out an object administration operation, such as
defining, modifying, or deleting an object, the queue manager checks that you have the required level
of authority to perform the operation. Similarly, when an application uses the MQOPEN call to open an
object, the queue manager checks that the application has the required level of authority before it allows
access to that object. The checks are made on the name of the object being opened.

The administration of objects includes the following tasks:

• Starting and stopping queue managers.
• Creating objects, particularly queues, for applications.
• Working with channels to create communication paths to queue managers on other (remote) systems.
• Creating clusters of queue managers to simplify the overall administration process, and to balance

workload.

For an overview of methods about how to create and manage WebSphere MQ objects, see “Managing
objects” on page 123.

For further details of the object administration tasks, see the following subtopics:

Objects
Many of the administration tasks involve manipulating various types of IBM WebSphere MQ objects.

For information about naming IBM WebSphere MQ objects, see “Naming IBM WebSphere MQ objects” on
page 119.

For information about the default objects created on a queue manager, see “System default objects” on
page 124.

For information about the different types of IBM WebSphere MQ objects, see the following subtopics:

Related concepts
“Introduction to message queuing” on page 42
The WebSphere MQ products enable programs to communicate with one another across a network of
unlike components (processors, operating systems, subsystems, and communication protocols) using a
consistent application programming interface.
“Object attributes” on page 123
The properties of an object are defined by its attributes. Some you can specify, others you can only view.
Related reference
The MQSC commands

Queues
Introduction to WebSphere MQ queues and queue attributes.

A WebSphere MQ queue is a named object on which applications can put messages, and from which
applications can get messages.

Messages are stored on a queue, so that if the putting application is expecting a reply to its message, it
is free to do other work while waiting for that reply. Applications access a queue by using the Message
Queue Interface (MQI), described in The Message Queue Interface overview.

102 IBM WebSphere MQ Overview

Before a message can be put on a queue, the queue must have already been created. A queue is owned
by a queue manager, and that queue manager can own many queues. However, each queue must have a
name that is unique within that queue manager.

A queue is maintained through a queue manager. In most cases, each queue is physically managed by
its queue manager but this is not apparent to an application program. WebSphere MQ for z/OS shared
queues can be managed by any queue manager in the queue-sharing group.

To create a queue you can use WebSphere MQ commands (MQSC), PCF commands, or platform-specific
interfaces such as the WebSphere MQ for z/OS operations and control panels.

You can create local queues for temporary jobs dynamically from your application. For example, you
can create reply-to queues (which are not needed after an application ends). For more information, see
“Dynamic and Model queues” on page 108.

Before using a queue, you must open the queue, specifying what you want to do with it. For example, you
can open a queue for:

• Browsing messages only (not retrieving them)
• Retrieving messages (and either sharing the access with other programs, or with exclusive access)
• Putting messages on the queue
• Inquiring about the attributes of the queue
• Setting the attributes of the queue

For a complete list of the options that you can specify when you open a queue, see MQOPEN - Open
object.

Attributes of queues
Some of the attributes of a queue are specified when the queue is defined, and cannot be changed
afterward (for example, the type of the queue). Other attributes of queues can be grouped into those that
can be changed:

• By the queue manager during the processing of the queue (for example, the current depth of a queue)
• Only by commands (for example, the text description of the queue)
• By applications, using the MQSET call (for example, whether put operations are allowed on the queue)

You can find the values of all the attributes using the MQINQ call.

The attributes that are common to more than one type of queue are:
QName

Name of the queue
QType

Type of the queue
QDesc

Text description of the queue
InhibitGet

Whether programs are allowed to get messages from the queue (although you can never get
messages from remote queues)

InhibitPut
Whether programs are allowed to put messages on the queue

DefPriority
Default priority for messages put on the queue

DefPersistence
Default persistence for messages put on the queue

Scope (not supported on z/OS)
Controls whether an entry for this queue also exists in a name service

About IBM WebSphere MQ 103

For a full description of these attributes, see Attributes for queues.

Related concepts
“Remote queues” on page 105
To a program, a queue is remote if it is owned by a different queue manager to the one to which the
program is connected.
“Alias queues” on page 106
An alias queue is a WebSphere MQ object that you can use to access another queue or a topic. This means
that more than one program can work with the same queue, accessing it using different names.
“Defining queues” on page 110
You define queues to IBM WebSphere MQ by using the MQSC command DEFINE or the PCF Create Queue
command.
“Queues used by IBM WebSphere MQ” on page 110
IBM WebSphere MQ uses some local queues for specific purposes related to its operation.
Related tasks
Developing applications reference
Related reference
The MQSC commands
“Local queues” on page 104
Transmission, initiation, dead-letter, command, default, channel, and event queues are types of local
queue.
“Shared and cluster queues” on page 107
This information defines and explains the terms shared queues and cluster queues, as well as providing a
comparison between the two.
“Dynamic and Model queues” on page 108
This information provides an insight into dynamic queues, properties of temporary and permanent
dynamic queues, uses of dynamic queues, some considerations when using dynamic queues, and model
queues.

Local queues
Transmission, initiation, dead-letter, command, default, channel, and event queues are types of local
queue.

A queue is known to a program as local if it is owned by the queue manager to which the program is
connected. You can get messages from, and put messages on, local queues.

The queue definition object holds the definition information of the queue as well as the physical messages
put on the queue.

Each queue manager can have some local queues that it uses for special purposes:
Transmission queues

When an application sends a message to a remote queue, the local queue manager stores the
message in a special local queue, called a transmission queue.

A message channel agent is a channel program is associated with the transmission queue and it
delivers the message to its next destination. The next destination is the queue manager to which the
message channel is connected. It is not necessarily the same queue manager as the final destination
of the message. When the message is delivered to its next destination, it is deleted from the
transmission queue. The message might have to pass through many queue managers on its journey
to its final destination. You must define a transmission queue at each queue manager along the
route, each holding messages waiting to be transmitted to the next destination. A normal transmission
queue holds messages for the next destination, although the messages might have different eventual
destinations. A cluster transmission queue holds messages for multiple destinations. The correlID
of each message identifies the channel that the message is placed on to transfer it to its next
destination.

104 IBM WebSphere MQ Overview

You can define several transmission queues at a queue manager. You might define several
transmission queues for the same destination, with each one being used for a different class
of service. For example, you might want to create different transmission queues for small
messages and large messages going to the same destination. You can then transfer the messages
using different messages channels, so that the large messages do not hold up the smaller
messages. On platforms other than z/OS, messages go onto the single cluster transmission queue,
SYSTEM.CLUSTER.TRANSMIT.QUEUE by default. As an option on the other platforms, you can
change the default, and separate the message traffic going to different cluster queue managers onto
different cluster transmission queues. If you set the queue manager attribute DEFCLXQ to CHANNEL,
each cluster-sender channel creates a separate cluster transmission queue. Another option on the
other platforms, is to manually define cluster transmission queues for cluster-sender channels to use.

Transmission queues can trigger a message channel agent to send messages onward; see Starting
WebSphere MQ applications using triggers .

Initiation queues

An initiation queue is a local queue on which the queue manager puts a trigger message when a
trigger event occurs on an application queue.

A trigger event is an event that is intended to cause a program to start processing a queue. For
example, an event might be more than 10 messages arriving. For more information about how
triggering works, see Starting WebSphere MQ applications using triggers .

Dead-letter (undelivered message) queue

A dead-letter (undelivered message) queue is a local queue on which the queue manager puts
messages that it cannot deliver.

When the queue manager puts a message on the dead-letter queue, it adds a header to the message.
The header information includes the reason that the queue manager put the message on the dead-
letter queue. It also contains the destination of the original message, the date, and the time that the
queue manager put the message on the dead-letter queue.

Applications can also use the queue for messages that they cannot deliver. For more information, see
Using the dead-letter (undelivered message) queue .

System command queue

The system command queue is a queue to which suitably authorized applications can send WebSphere
MQ commands. These queues receive the PCF, MQSC, and CL commands, as supported on your
platform, in readiness for the queue manager to action them.

System default queues

The system default queues contain the initial definitions of the queues for your system. When you
create a queue definition, the queue manager copies the definition from the appropriate system
default queue. Creating a queue definition is different from creating a dynamic queue. The definition
of the dynamic queue is based upon the model queue you choose as the template for the dynamic
queue.

Event queues
Event queues hold event messages. These messages are reported by the queue manager or a channel.

Remote queues
To a program, a queue is remote if it is owned by a different queue manager to the one to which the
program is connected.

Where a communication link has been established, a program can send a message to a remote queue. A
program can never get a message from a remote queue.

About IBM WebSphere MQ 105

The queue definition object, created when you define a remote queue, only holds the information
necessary for the local queue manager to locate the queue to which you want your message to go.
This object is known as the local definition of a remote queue. All the attributes of the remote queue are
held by the queue manager that owns it, because it is a local queue to that queue manager.

When opening a remote queue, to identify the queue you must specify either:

• The name of the local definition that defines the remote queue.

To create a local definition of a remote queue use the DEFINE QREMOTE command; on WebSphere MQ
for IBM i, use the CRTMQMQ command.

From the viewpoint of an application, this is the same as opening a local queue. An application does not
need to know if a queue is local or remote.

• The name of the remote queue manager and the name of the queue as it is known to that remote queue
manager.

Local definitions of remote queues have three attributes in addition to the common attributes described in
“Attributes of queues” on page 103. These are RemoteQName (the name that the queue's owning queue
manager knows it by), RemoteQMgrName (the name of the owning queue manager), and XmitQName (the
name of the local transmission queue that is used when forwarding messages to other queue managers).
For a fuller description of these attributes, see Attributes for queues.

If you use the MQINQ call against the local definition of a remote queue, the queue manager returns the
attributes of the local definition only, that is the remote queue name, the remote queue manager name,
and the transmission queue name, not the attributes of the matching local queue in the remote system.

See also Transmission queues.

Alias queues
An alias queue is a WebSphere MQ object that you can use to access another queue or a topic. This means
that more than one program can work with the same queue, accessing it using different names.

The queue resulting from the resolution of an alias name (known as the base queue) can be a local
queue, the local definition of a remote queue, or a shared queue (a type of local queue only available on
WebSphere MQ for z/OS). It can also be either a predefined queue or a dynamic queue, as supported by
the platform.

An alias name can also resolve to a topic. If an application currently puts messages onto a queue, it
can be made to publish to a topic by making the queue name an alias for the topic. No change to the
application code is necessary.

Note: An alias cannot resolve to another locally defined alias queue.

An example of the use of alias queues is for a system administrator to give different access authorities to
the base queue name (that is, the queue to which the alias resolves) and to the alias queue name. This
means that a program or user can be authorized to use the alias queue, but not the base queue.

Alternatively, authorization can be set to inhibit put operations for the alias name, but allow them for the
base queue.

In some applications, the use of alias queues means that system administrators can easily change the
definition of an alias queue object without having to get the application changed.

WebSphere MQ makes authorization checks against the alias name when programs try to use that name.
It does not check that the program is authorized to access the name to which the alias resolves. A
program can therefore be authorized to access an alias queue name, but not the resolved queue name.

In addition to the general queue attributes described in “Queues” on page 102, alias queues have a
BaseQName attribute. This is the name of the base queue to which the alias name resolves. For a fuller
description of this attribute, see BaseQName (MQCHAR48).

The InhibitGet and InhibitPut attributes (see “Queues” on page 102) of alias queues belong to
the alias name. For example, if the alias-queue name ALIAS1 resolves to the base-queue name BASE,

106 IBM WebSphere MQ Overview

inhibitions on ALIAS1 affect ALIAS1 only and BASE is not inhibited. However, inhibitions on BASE also
affect ALIAS1.

The DefPriority and DefPersistence attributes also belong to the alias name. So, for example, you
can assign different default priorities to different aliases of the same base queue. Also, you can change
these priorities without having to change the applications that use the aliases.

Shared and cluster queues
This information defines and explains the terms shared queues and cluster queues, as well as providing a
comparison between the two.

Shared queues

A shared queue is a type of local queue with messages that can be accessed by one or more queue
managers that are in a queue-sharing group. Shared queues are available only on WebSphere MQ for
z/OS. (This is not the same as a queue being shared by more than one application, using the same queue
manager.) Shared queues are held by a coupling facility (CF), and are accessible by any queue manager in
the queue-sharing group. Each shared queue in a queue-sharing group must have a name that is unique
within that group.

Cluster queues

A cluster queue is a queue that is hosted by a cluster queue manager and made available to other queue
managers in the cluster.

The cluster queue manager makes a local queue definition for the queue specifying the name of the
cluster that the queue is to be available in. This definition advertises the queue to the other queue
managers in the cluster. The other queue managers in the cluster can put messages to a cluster queue
without needing a corresponding remote-queue definition. A cluster queue can be advertised in more
than one cluster. See Cluster and Configuring a queue manager cluster for further information.

Comparison between shared queues and cluster queues
This information is designed to help you compare shared queues and cluster queues, and decide which
might be more suitable for your system.

Mover costs
In cluster queues, messages are sent by the mover, so allow for mover costs in addition to application
costs. There are costs in the network because channels get and put messages. These costs are not
present with shared queues, which therefore use less processing power than cluster queues when moving
messages between queue managers in a Queue Sharing Group.

Availability of messages
When putting to a queue, cluster queues send the message to one of the queue managers with active
channels connected to your queue manager. On the remote queue manager, if applications used to
process the messages are not working, the messages are not processed and wait until the applications
start. Similarly, if a queue manager is shut down, any messages on the queue manager are not made
available until the queue manager restarts. These instances show lower message availability than when
using shared queues.

When using shared queues, any application in the queue-sharing group can get messages that are sent.
If you shut down one queue manager in the queue-sharing group, messages are available to the other
queue managers, providing higher message availability than when using cluster queues.

About IBM WebSphere MQ 107

Capacity
A coupling facility is more expensive than a disk; therefore the cost of storing 1,000,000 messages in a
local queue is lower than having a coupling facility with enough capacity to store the same number of
messages.

Sending to other queue managers
Shared-queue messages are only available within a queue-sharing group. If you want to use a queue
manager outside of the queue-sharing group, you must use the mover. You can use clustering to workload
balance between multiple remote distributed queue managers.

Workload balancing
You can use clustering to give weight to which channels and queue managers get a proportion of the
messages sent. For example, you can send 60% of messages to one queue manager, and 40% of
messages to another queue manager. This instance does not depend on the ability of the remote queue
manager to process work. The system with the first queue manager might be overloaded, and the system
with the second queue manager might be idle, but most of the messages still go to the first queue
manager.

With shared queues, two CICS systems can get messages. If one system is overloaded, the other system
takes over most the workload.

Dynamic and Model queues
This information provides an insight into dynamic queues, properties of temporary and permanent
dynamic queues, uses of dynamic queues, some considerations when using dynamic queues, and model
queues.

When an application program issues an MQOPEN call to open a model queue, the queue manager
dynamically creates an instance of a local queue with the same attributes as the model queue. Depending
on the value of the DefinitionType field of the model queue, the queue manager creates either a
temporary or permanent dynamic queue (See Creating dynamic queues).

Properties of temporary dynamic queues

Temporary dynamic queues have the following properties:

• They cannot be shared queues, accessible from queue managers in a queue-sharing group.

Note that queue-sharing groups are only available on WebSphere MQ for z/OS.
• They hold nonpersistent messages only.
• They are unrecoverable.
• They are deleted when the queue manager is started.
• They are deleted when the application that issued the MQOPEN call that created the queue closes

the queue or terminates.

– If there are any committed messages on the queue, they are deleted.
– If there are any uncommitted MQGET, MQPUT, or MQPUT1 calls outstanding against the queue

at this time, the queue is marked as being logically deleted, and is only physically deleted (after
these calls have been committed) as part of close processing, or when the application terminates.

– If the queue is in use at this time (by the creating, or another application), the queue is marked
as being logically deleted, and is only physically deleted when closed by the last application using
the queue.

– Attempts to access a logically deleted queue (other than to close it) fail with reason code
MQRC_Q_DELETED.

– MQCO_NONE, MQCO_DELETE and MQCO_DELETE_PURGE are all treated as MQCO_NONE when
specified on an MQCLOSE call for the corresponding MQOPEN call that created the queue.

108 IBM WebSphere MQ Overview

Properties of permanent dynamic queues

Permanent dynamic queues have the following properties:

• They hold persistent or nonpersistent messages.
• They are recoverable in the event of system failures.
• They are deleted when an application (not necessarily the one that issued the MQOPEN

call that created the queue) successfully closes the queue using the MQCO_DELETE or
MQCO_DELETE_PURGE option.

– A close request with the MQCO_DELETE option fails if there are any messages (committed
or uncommitted) still on the queue. A close request with the MQCO_DELETE_PURGE option
succeeds even if there are committed messages on the queue (the messages being deleted
as part of the close), but fails if there are any uncommitted MQGET, MQPUT, or MQPUT1 calls
outstanding against the queue.

– If the delete request is successful, but the queue happens to be in use (by the creating, or
another application), the queue is marked as being logically deleted and is only physically deleted
when closed by the last application using the queue.

• They are not deleted if closed by an application that is not authorized to delete the
queue, unless the closing application issued the MQOPEN call that created the queue.
Authorization checks are performed against the user identifier (or alternate user identifier if
MQOO_ALTERNATE_USER_AUTHORITY was specified) that was used to validate the corresponding
MQOPEN call.

• They can be deleted in the same way as a normal queue.

Uses of dynamic queues

You can use dynamic queues for:

• Applications that do not require queues to be retained after the application has terminated.
• Applications that require replies to messages to be processed by another application. Such

applications can dynamically create a reply-to queue by opening a model queue. For example, a
client application can:

1. Create a dynamic queue.
2. Supply its name in the ReplyToQ field of the message descriptor structure of the request

message.
3. Place the request on a queue being processed by a server.

The server can then place the reply message on the reply-to queue. Finally, the client could process
the reply, and close the reply-to queue with the delete option.

Considerations when using dynamic queues

Consider the following points when using dynamic queues:

• In a client-server model, each client must create and use its own dynamic reply-to queue. If
a dynamic reply-to queue is shared between more than one client, deleting the reply-to queue
might be delayed because there is uncommitted activity outstanding against the queue, or because
the queue is in use by another client. Additionally, the queue might be marked as being logically
deleted, and inaccessible for subsequent API requests (other than MQCLOSE).

• If your application environment requires that dynamic queues must be shared between
applications, ensure that the queue is only closed (with the delete option) when all activity against
the queue has been committed. This should be by the last user. This ensures that deletion of the
queue is not delayed, and minimizes the period that the queue is inaccessible because it has been
marked as being logically deleted.

Model queues
A model queue is a template of a queue definition that you use when creating a dynamic queue.

About IBM WebSphere MQ 109

You can create a local queue dynamically from a WebSphere MQ program, naming the model queue that
you want to use as the template for the queue attributes. At that point you can change some attributes of
the new queue. However, you cannot change the DefinitionType. If, for example, you require a permanent
queue, select a model queue with the definition type set to permanent. Some conversational applications
can use dynamic queues to hold replies to their queries because they probably do not need to maintain
these queues after they have processed the replies.

You specify the name of a model queue in the object descriptor (MQOD) of your MQOPEN call. Using the
attributes of the model queue, the queue manager dynamically creates a local queue for you.

You can specify a name (in full) for the dynamic queue, or the stem of a name (for example, ABC) and let
the queue manager add a unique part to this, or you can let the queue manager assign a complete unique
name for you. If the queue manager assigns the name, it puts it in the MQOD structure.

You cannot issue an MQPUT1 call directly to a model queue , but you can issue an MQPUT1 to the
dynamic queue that has been created by opening a model queue.

MQSET and MQINQ cannot be issued against a model queue. Opening a model queue with
MQOO_INQUIRE or MQOO_SET results in subsequent MQINQ and MQSET calls being made against the
dynamically created queue.

The attributes of a model queue are a subset of those of a local queue. For a fuller description, see
Attributes for queues.

Defining queues
You define queues to IBM WebSphere MQ by using the MQSC command DEFINE or the PCF Create Queue
command.

The commands specify the type of queue and its attributes. For example, a local queue object has
attributes that specify what happens when applications reference that queue in MQI calls. Examples of
attributes are:

• Whether applications can retrieve messages from the queue (GET enabled)
• Whether applications can put messages on the queue (PUT enabled)
• Whether access to the queue is exclusive to one application or shared between applications
• The maximum number of messages that can be stored on the queue at the same time (maximum queue

depth)
• The maximum length of messages that can be put on the queue

For further details about defining queue objects, see Script (MQSC) Commands .

Queues used by IBM WebSphere MQ
IBM WebSphere MQ uses some local queues for specific purposes related to its operation.

You must define these queues before IBM WebSphere MQ can use them.
Initiation queues

Initiation queues are queues that are used in triggering. A queue manager puts a trigger message on
an initiation queue when a trigger event occurs. A trigger event is a logical combination of conditions
that is detected by a queue manager. For example, a trigger event might be generated when the
number of messages on a queue reaches a predefined depth. This event causes the queue manager
to put a trigger message on a specified initiation queue. This trigger message is retrieved by a trigger
monitor, a special application that monitors an initiation queue. The trigger monitor then starts the
application program that was specified in the trigger message.

If a queue manager is to use triggering, at least one initiation queue must be defined for that queue
manager. See Managing objects for triggering, runmqtrm, and Starting WebSphere MQ applications
using triggers

Transmission queues
Transmission queues are queues that temporarily store messages that are destined for a remote
queue manager. You must define at least one transmission queue for each remote queue manager
to which the local queue manager is to send messages directly. These queues are also used in

110 IBM WebSphere MQ Overview

remote administration; see Remote administration from a local queue manager. For information about
the use of transmission queues in distributed queuing, see WebSphere MQ distributed-messaging
techniques .

Each queue manager can have a default transmission queue. If a queue manager that is not part of
a cluster puts a message onto a remote queue, the default action is to use the default transmission
queue. If there is a transmission queue with the same name as the destination queue manager,
the message is placed on that transmission queue. If there is a queue manager alias definition, in
which the RQMNAME parameter matches the destination queue manager, and the XMITQ parameter is
specified, the message is placed on the transmission queue named by XMITQ. If there is no XMITQ
parameter, the message is placed on the local queue named in the message.

Cluster transmission queues
Each queue manager within a cluster has a cluster transmission queue
called SYSTEM.CLUSTER.TRANSMIT.QUEUE, and a model cluster transmission queue,
SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE. Definitions of these queues are created by default
when you define a queue manager. If the queue manager attribute, DEFCLXQ, is set to CHANNEL,
a permanent dynamic cluster transmission queue is automatically created for each cluster-sender
channel that is created. The queues are called SYSTEM.CLUSTER.TRANSMIT.ChannelName. You
can also define cluster transmission queues manually.

A queue manager that is part of the cluster sends messages on one of these queues to other queue
managers that are in the same cluster.

During name resolution, a cluster transmission queue takes precedence over the default
transmission queue, and a specific cluster transmission queue takes precedence over
SYSTEM.CLUSTER.TRANSMIT.QUEUE.

Dead-letter queues
A dead-letter (undelivered-message) queue is a queue that stores messages that cannot be routed to
their correct destinations. A message cannot be routed when, for example, the destination queue is
full. The supplied dead-letter queue is called SYSTEM.DEAD.LETTER.QUEUE.

For distributed queuing, define a dead-letter queue on each queue manager involved.

Command queues
The command queue, SYSTEM.ADMIN.COMMAND.QUEUE, is a local queue to which suitably
authorized applications can send MQSC commands for processing. These commands are then
retrieved by an IBM WebSphere MQ component called the command server. The command server
validates the commands, passes the valid ones on for processing by the queue manager, and returns
any responses to the appropriate reply-to queue.

A command queue is created automatically for each queue manager when that queue manager is
created.

Reply-to queues
When an application sends a request message, the application that receives the message can send
back a reply message to the sending application. This message is put on a queue, called a reply-to
queue, which is normally a local queue to the sending application. The name of the reply-to queue is
specified by the sending application as part of the message descriptor.

Event queues
Instrumentation events can be used to monitor queue managers independently of MQI applications.

When an instrumentation event occurs, the queue manager puts an event message on an event
queue. This message can then be read by a monitoring application, which might inform an
administrator or initiate some remedial action if the event indicates a problem.

Note: Trigger events are different from instrumentation events. Trigger events are not caused by the
same conditions, and do not generate event messages.

For more information about instrumentation events, see Instrumentation events.

About IBM WebSphere MQ 111

IBM WebSphere MQ queue managers
An introduction to queue managers and the queuing services that they provide to applications.

A program must have a connection to a queue manager before it can use the services of that queue
manager. A program can make this connection explicitly (using the MQCONN or MQCONNX call), or the
connection might be made implicitly (this depends on the platform and the environment in which the
program is running).

Queue managers provide queuing services to applications, and manages the queues that belong to them.
A queue manager ensures the following actions:

• Object attributes are changed according to the commands received.
• Special events such as trigger events or instrumentation events are generated when the appropriate

conditions are met.
• Messages are put on the correct queue, as requested by the application making the MQPUT call. The

application is informed if this cannot be done, and an appropriate reason code is given.

Each queue belongs to a single queue manager and is said to be a local queue to that queue manager.
The queue manager to which an application is connected is said to be the local queue manager for that
application. For the application, the queues that belong to its local queue manager are local queues.

A remote queue is a queue that belongs to another queue manager. A remote queue manager is any queue
manager other than the local queue manager. A remote queue manager can exist on a remote machine
across the network, or might exist on the same machine as the local queue manager. WebSphere MQ
supports multiple queue managers on the same machine.

A queue manager object can be used in some MQI calls. For example, you can inquire about the attributes
of the queue manager object using the MQI call MQINQ.

Attributes of queue managers
Associated with each queue manager is a set of attributes (or properties) that define its characteristics.
Some of the attributes of a queue manager are fixed when it is created; you can change others using the
WebSphere MQ commands. You can inquire about the values of all the attributes, except those used for
Secure Sockets Layer (SSL) encryption, using the MQINQ call.

The fixed attributes include:

• The name of the queue manager
• The platform on which the queue manager runs (for example, Windows)
• The level of system control commands that the queue manager supports
• The maximum priority that you can assign to messages processed by the queue manager
• The name of the queue to which programs can send WebSphere MQ commands
• The maximum length of messages the queue manager can process
• Whether the queue manager supports syncpointing when programs put and get messages

The changeable attributes include:

• A text description of the queue manager
• The identifier of the character set the queue manager uses for character strings when it processes MQI

calls
• The time interval that the queue manager uses to restrict the number of trigger messages
• The name of the queue manager's dead-letter (undelivered message) queue
• The name of the queue manager's default transmission queue
• The maximum number of open handles for any one connection
• The enabling and disabling of various categories of event reporting
• The maximum number of uncommitted messages within a unit of work

112 IBM WebSphere MQ Overview

Queue managers and workload management
You can set up a cluster of queue managers that has more than one definition for the same queue
(for example, the queue managers in the cluster could be clones of each other). Messages for a
particular queue can be handled by any queue manager that hosts an instance of the queue. A workload-
management algorithm decides which queue manager handles the message and so spreads the workload
between your queue managers; see The cluster workload management algorithm for further information.

Process definitions
Process definition objects allow applications to be started without the need for operator intervention by
defining the attributes of the application for use by the queue manager.

The process definition object defines an application that starts in response to a trigger event on a
IBM WebSphere MQ queue manager. The process definition attributes include the application ID, the
application type, and data specific to the application. For more information, see the "Initiation queues"
entry under “Queues used by IBM WebSphere MQ” on page 110.

To allow an application to be started without the need for operator intervention (described in Starting
WebSphere MQ applications using triggers), the attributes of the application must be known to the queue
manager. These attributes are defined in a process definition object.

The ProcessName attribute is fixed when the object is created; you can change other attributes by using
the IBM WebSphere MQ commands.

You can inquire about the values of all the attributes using MQINQ - Inquire object attributes.

For a full description of the attributes of process definitions, see Attributes for process definitions.

Namelists
A namelist is a WebSphere MQ object that contains a list of cluster names, queue names or authentication
information object names. In a cluster, it can be used to identify a list of clusters for which the queue
manager holds the repositories.

A namelist is a WebSphere MQ object that contains a list of other WebSphere MQ objects. Typically,
namelists are used by applications such as trigger monitors, where they are used to identify a group of
queues. The advantage of using a namelist is that it is maintained independently of applications; it can be
updated without stopping any of the applications that use it. Also, if one application fails, the namelist is
not affected and other applications can continue using it.

Namelists are also used with queue manager clusters to maintain a list of clusters referred to by more
than one WebSphere MQ object.

You can define and modify namelists by using MQSC commands.

Programs can use the MQI to find out which queues are included in these namelists. The organization of
the namelists is the responsibility of the application designer and system administrator.

For a full description of the attributes of namelists, see Attributes for namelists.

Authentication information objects
An introduction to queue manager authentication information objects and a link to further information.

The queue manager authentication information object forms part of WebSphere MQ support for Secure
Sockets Layer (SSL) and Transport Layer Security (TLS). It provides the definitions needed to check for
revoked certificates. Certification Authorities revoke certificates that can no longer be trusted.

This section describes using the setmqaut , dspmqaut, dmpmqaut , rcrmqobj, rcdmqimg , and
dspmqfls commands with the authentication information object. For an overview of SSL and TLS, and the
use of the authentication information objects, see WebSphere MQ support for SSL and TLS .

For more information about SSL and TLS, see Secure Sockets Layer (SSL) and Transport Layer Security
(TLS) concepts .

About IBM WebSphere MQ 113

An authentication information object provides the definitions required to perform certificate revocation
checking.

For a full description of the attributes of authentication information objects, see Authentication
information objects.

Communication information objects
IBM WebSphere MQ Multicast offers low latency, high fanout, reliable multicast messaging. A
communication information (COMMINFO) object is needed to use Multicast transmission.

A COMMINFO object is an IBM WebSphere MQ object that contains the attributes associated with
multicast transmission. For more information about these attributes, see DEFINE COMMINFO . For more
information about creating a COMMINFO object, see Getting started with multicast.

Related concepts
“IBM WebSphere MQ Multicast” on page 124
IBM WebSphere MQ Multicast offers low latency, high fan out, reliable multicast messaging.

Channels
A channel is a communication link used by distributed queue managers.

Channels are objects that provide a communication path from one queue manager to another. Channels
are used in distributed queuing to move messages from one queue manager to another and they shield
applications from the underlying communications protocols. The queue managers might exist on the
same, or different, platforms.

For queue managers to communicate with one another, you must define one channel object at the queue
manager that is to send messages, and another, complementary one, at the queue manager that is to
receive them.

There are two categories of channel in WebSphere MQ:

• Message channels, which are unidirectional, and transfer messages from one queue manager to
another; see Channel-exit calls and data structures for more information.

• MQI channels, which are bidirectional, and transfer MQI calls from a WebSphere MQ MQI client to
a queue manager, and responses from a queue manager to a WebSphere MQ client; see “What is a
channel?” on page 114 for more information.

Related concepts
“Concepts of intercommunication” on page 49
In WebSphere MQ, intercommunication means sending messages from one queue manager to another.
The receiving queue manager can be on the same machine or another; nearby or on the other side of
the world. It can be running on the same platform as the local queue manager, or can be on any of the
platforms supported by WebSphere MQ. This is called a distributed environment. WebSphere MQ handles
communication in a distributed environment such as this using Distributed Queue Management (DQM).
Related tasks
Administering remote WebSphere MQ objects
Related reference
Channel-exit calls and data structures
“Communications” on page 116
WebSphere MQ MQI clients use MQI channels to communicate with the server.

What is a channel?
A channel is a logical communication link between a WebSphere MQ MQI client and a WebSphere MQ
server, or between two WebSphere MQ servers.

A channel has two definitions: one at each end of the connection. The same channel name must be used
at each end of the connection, and the channel type used must be compatible.

There are two categories of channel in WebSphere MQ, with different channel types within these
categories:

114 IBM WebSphere MQ Overview

Related concepts
“Message Channels” on page 115
A message channel is a one-way link. It connects two queue managers by using message channel agents
(MCAs).
“MQI Channels” on page 115
An MQI channel connects a WebSphere MQ MQI client to a queue manager on a server machine, and is
established when you issue an MQCONN or MQCONNX call from a WebSphere MQ MQI client application.
“Stopping channels” on page 116
In WebSphere MQ, when you issue a STOP CHANNEL command against a server-connection channel, you
can choose what method to use to stop the client-connection channel.

Message Channels
A message channel is a one-way link. It connects two queue managers by using message channel agents
(MCAs).

The purpose of a message channel is to transfer messages from one queue manager to another. Message
channels are not required by the client server environment.

Figure 28. Message channels between two queue managers

MQI Channels
An MQI channel connects a WebSphere MQ MQI client to a queue manager on a server machine, and is
established when you issue an MQCONN or MQCONNX call from a WebSphere MQ MQI client application.

It is a two-way link and is used for the transfer of MQI calls and responses only, including MQPUT calls that
contain message data and MQGET calls that result in the return of message data. There are different ways
of creating and using the channel definitions (see Defining MQI channels).

Figure 29. Client-connection and server-connection on an MQI channel

About IBM WebSphere MQ 115

An MQI channel can be used to connect a client to a single queue manager, or to a queue manager that is
part of a queue-sharing group (see Connecting a client to a queue-sharing group).

There are two channel types for MQI channel definitions. They define the bi-directional MQI channel.

Client-connection channel
This type is for the WebSphere MQ MQI client.

Server-connection channel
This type is for the server running the queue manager, with which the WebSphere MQ application,
running in a WebSphere MQ MQI client environment, is to communicate.

Stopping channels
In WebSphere MQ, when you issue a STOP CHANNEL command against a server-connection channel, you
can choose what method to use to stop the client-connection channel.

This means that a client channel issuing an MQGET wait call can be controlled, and you can decide how
and when to stop the channel.

The STOP CHANNEL command can be issued with three modes, indicating how the channel is to be
stopped:
Quiesce

Stops the channel after any current messages have been processed.
If sharing conversations is enabled, the WebSphere MQ MQI client becomes aware of the stop request
in a timely manner; this time is dependent upon the speed of the network. The client application
becomes aware of the stop request as a result of issuing a subsequent call to WebSphere MQ.

Force
Stops the channel immediately.

Terminate
Stops the channel immediately. If the channel is running as a process, it can terminate the channel's
process, or if the channel is running as a thread, its thread.

This is a multi-stage process. If mode terminate is used, an attempt is made to stop the server-
connection channel, first with mode quiesce, then with mode force, and if necessary with mode
terminate. The client can receive different return codes during the different stages of termination. If
the process or thread is terminated, the client receives a communication error.

The return codes returned to the application vary according to the MQI call issued, and the STOP
CHANNEL command issued. The client will receive either an MQRC_CONNECTION_QUIESCING or
an MQRC_CONNECTION_BROKEN return code. If a client detects MQRC_CONNECTION_QUIESCING
it should try to complete the current transaction and terminate. This is not possible with
MQRC_CONNECTION_BROKEN. If the client does not complete the transaction and terminate fast enough
it will get CONNECTION_BROKEN after a few seconds. A STOP CHANNEL command with MODE(FORCE) or
MODE(TERMINATE) is more likely to result in a CONNECTION_BROKEN than with MODE(QUIESCE).

Communications
WebSphere MQ MQI clients use MQI channels to communicate with the server.

A channel definition must be created at both the WebSphere MQ MQI client and server ends of the
connection. How to create channel definitions is explained in Defining MQI channels.

The transmission protocols possible are shown in the following table:

Table 8. Transmission protocols for MQI channels

Client platform LU 6.2 TCP/IP NetBIOS SPX

UNIX and Linux systems Yes1 Yes

Windows Yes Yes Yes Yes

116 IBM WebSphere MQ Overview

Table 8. Transmission protocols for MQI channels (continued)

Client platform LU 6.2 TCP/IP NetBIOS SPX

Note:

1. LU6.2 is not supported on Linux (POWER® platform), Linux (x86-64 platform), Linux (zSeries s390x
platform), or Solaris (x86-64 platform)

Transmission protocols - combination of WebSphere MQ MQI client and server platforms shows the
possible combinations of WebSphere MQ MQI client and server platforms, using these transmission
protocols.

A WebSphere MQ application on a WebSphere MQ MQI client can use all the MQI calls in the same way
as when the queue manager is local. MQCONN or MQCONNX associates the WebSphere MQ application with
the selected queue manager, creating a connection handle. Other calls using that connection handle are
then processed by the connected queue manager. WebSphere MQ MQI client communication requires an
active connection between the client and server, in contrast to communication between queue managers,
which is connection-independent and time-independent.

The transmission protocol is specified by using the channel definition and does not affect the application.
For example, a Windows application can connect to one queue manager over TCP/IP and to another
queue manager over NetBIOS.

Performance considerations
The transmission protocol you use might affect the performance of the WebSphere MQ client and server
system. For dial-up support over a slow telephone line, it might be advisable to use WebSphere MQ
channel compression.

Client connection channels
An introduction to client connection channel objects and a link to further information.

Client connection channels are objects that provide a communication path from a WebSphere MQ MQI
client to a queue manager. Client connection channels are used in distributed queuing to move messages
between a queue manager and a client. They shield applications from the underlying communications
protocols. The client might exist on the same, or different, platform to the queue manager.

For information on client connection channels and how to use them, see “Intercommunication” on page
35.

Listeners
Listeners are processes that accept network requests from other queue managers, or client applications,
and start associated channels.

Listeners are processes that accept network requests from other queue managers, or client applications,
and start associated channels. Listener processes can be started using the runmqlsr control command.

Listener objects are WebSphere MQ objects that allow you to manage the starting and stopping of listener
processes from within the scope of a queue manager. By defining attributes of a listener object you do the
following:

• Configure the listener process.
• Specify whether the listener process automatically starts and stops when the queue manager starts and

stops.

Listener objects are not supported on WebSphere MQ for z/OS.

Services
Service objects are a way of defining programs to be run when a queue manager starts or stops.

Programs can be one of the following types:

About IBM WebSphere MQ 117

Servers
A server is a service object that has the parameter SERVTYPE specified as SERVER. A server service
object is the definition of a program that will be executed when a specified queue manager is started.
Only one instance of a server process can be executed concurrently. While running, the status of a
server process can be monitored using the MQSC command, DISPLAY SVSTATUS. Typically server
service objects are definitions of programs such as dead letter handlers or trigger monitors, however
the programs that can be run are not limited to those supplied with WebSphere MQ. Additionally, a
server service object can be defined to include a command that will be run when the specified queue
manager is shut down to end the program.

Commands
A command is a service object that has the parameter SERVTYPE specified as COMMAND. A command
service object is the definition of a program that will be executed when a specified queue manager
is started or stopped. Multiple instances of a command process can be executed concurrently.
Command service objects differ from server service objects in that once the program is executed
the queue manager will not monitor the program. Typically command service objects are definitions
of programs that are short lived and will perform a specific task such as starting one, or more, other
tasks.

Related concepts
Working with services

Topic objects
A topic object is a WebSphere MQ object that allows you to assign specific, non-default attributes to
topics.

A topic is defined by an application publishing or subscribing to a particular topic string. A topic string
can specify a hierarchy of topics by separating them with a forward slash character (/). This can be
visualized by a topic tree. For example, if an application publishes to the topic strings /Sport/American
Football and /Sport/Soccer, a topic tree will be created that has a parent node Sport with two
children, American Football, and Soccer.

Topics inherit their attributes from the first parent administrative node found in their topic tree. If there
are no administrative topic nodes in a particular topic tree, then all topics will inherit their attributes from
the base topic object, SYSTEM.BASE.TOPIC.

You can create a topic object at any node in a topic tree by specifying that node's topic string in the
TOPICSTR attribute of the topic object. You can also define other attributes for the administrative topic
node. For more information about these attributes, see the The MQSC commands, or the Automating
administration tasks . Each topic object will, by default, inherit its attributes from its closest parent
administrative topic node.

topic objects can also be used to hide the full topic tree from application developers. If a topic object
named FOOTBALL.US is created for the topic /Sport/American Football, an application can publish
or subscribe to the object named FOOTBALL.US instead of the string /Sport/American Football
with the same result.

If you enter a #, +, /, or * character within a topic string on a topic object, the character is treated as a
normal character within the string, and is considered to be part of the topic string associated with a topic
object.

For more information about topic objects, see Introduction to WebSphere MQ publish/subscribe
messaging .

118 IBM WebSphere MQ Overview

Naming IBM WebSphere MQ objects
The naming convention adopted for WebSphere MQ objects depends on the object. The name of the
machines and the user IDs that you use with IBM WebSphere MQ are also subject to some naming
restrictions.

Each instance of a queue manager is known by its name. This name must be unique within the network
of interconnected queue managers, so that one queue manager can unambiguously identify the target
queue manager to which any given message is sent.

For the other types of object, each object has a name associated with it and can be referred to by that
name. These names must be unique within one queue manager and object type. For example, you can
have a queue and a process with the same name, but you cannot have two queues with the same name.

In WebSphere MQ, names can have a maximum of 48 characters, with the exception of channels which
have a maximum of 20 characters. For more information about naming IBM WebSphere MQ objects, see
“Rules for naming IBM WebSphere MQ objects” on page 119.

The name of the machines and the user IDs that you use with IBM WebSphere MQ are also subject to
some naming restrictions:

• Ensure that the machine name does not contain any spaces. IBM WebSphere MQ does not support
machine names that include spaces. If you install IBM WebSphere MQ on such a machine, you cannot
create any queue managers.

• For IBM WebSphere MQ authorizations, names of user IDs and groups must be no longer than 20
characters (spaces are not allowed).

• A WebSphere MQ for Windows server does not support the connection of a Windows client if the client
is running under a user ID that contains the @ character, for example, abc@d.

Related concepts
“Understanding IBM WebSphere MQ file names” on page 121
Each WebSphere MQ queue manager, queue, process definition, namelist, channel, client connection
channel, listener, service, and authentication information object is represented by a file. Because object
names are not necessarily valid file names, the queue manager converts the object name into a valid file
name where necessary.
Related reference
“Rules for naming IBM WebSphere MQ objects” on page 119
IBM WebSphere MQ object names have maximum lengths and are case-sensitive. Not all characters are
supported for every object type, and many objects have rules concerning the uniqueness of names.

Rules for naming IBM WebSphere MQ objects
IBM WebSphere MQ object names have maximum lengths and are case-sensitive. Not all characters are
supported for every object type, and many objects have rules concerning the uniqueness of names.

There are many different types of IBM WebSphere MQ object, and objects from each type can all have the
same name because they exist in separate object namespaces: For example, a local queue and a sender
channel can both have the same name. However, an object cannot have the same name as another object
in the same namespace: For example, a local queue cannot have the same name as a model queue, and a
sender channel cannot have the same name as a receiver channel.

The following IBM WebSphere MQ objects exist in separate object namespaces:

• Authentication information
• Channel
• Client channel
• Listener
• Namelist
• Process

About IBM WebSphere MQ 119

• Queue
• Service
• Storage class
• Subscription
• Topic

Character length of object names
In general, IBM WebSphere MQ object names can be up to 48 characters long. This rule applies to the
following objects:

• Authentication information
• Cluster
• Listener
• Namelist
• Process definition
• Queue
• Queue manager
• Service
• Subscription
• Topic

There are restrictions:

1. The maximum length of channel object names and client connection channel names is 20 characters.
See Defining the channels for more information about channels.

2. Topic strings can be a maximum of 10240 bytes. All IBM WebSphere MQ object names are case-
sensitive.

3. The maximum length of storage class names is 8 characters.
4. The maximum length of CF structure names is 12 characters.

Characters in object names
The valid characters for IBM WebSphere MQ object names are:

Characters Restrictions

Uppercase A - Z • None

Lowercase a - z • In MQSC scripts, names with lowercase characters
must be enclosed in single quotation marks. This
prevents the lowercase characters being folded into
uppercase.

• Systems using EBCDIC Katakana cannot use
lowercase a- z characters in object names.

Numerics 0 - 9 • None

Period (.) • None

Underscore (_)
• None

120 IBM WebSphere MQ Overview

Characters Restrictions

Forward slash (/)
• On Windows systems, the first

character of a queue manager name cannot be a
forward slash.

Percent sign (%)
• None

There are also some general rules concerning characters on object names:

1. Leading or embedded blanks are not allowed.
2. National language characters are not allowed.
3. Any name that is less than the full field length can be padded to the right with blanks. All short names

that are returned by the queue manager are always padded to the right with blanks.

Queue names

The name of a queue has two parts:

• The name of a queue manager
• The local name of the queue as it is known to that queue manager

Each part of the queue name is 48 characters long.

To refer to a local queue, you can omit the name of the queue manager (by replacing it with blank
characters or using a leading null character). However, all queue names returned to a program by IBM
WebSphere MQ contain the name of the queue manager.

To refer to a remote queue, a program must include the name of the queue manager in the full queue
name, or there must be a local definition of the remote queue.

When an application uses a queue name, that name can be either the name of a local queue (or an
alias to one) or the name of a local definition of a remote queue, but the application does not need
to know which, unless it needs to get a message from the queue (when the queue must be local).
When the application opens the queue object, the MQOPEN call performs a name resolution function
to determine on which queue to perform subsequent operations. The significance of this is that the
application has no built-in dependency on particular queues being defined at particular locations in
a network of queue managers. Therefore, if a system administrator relocates queues in the network,
and changes their definitions, the applications that use those queues do not need to be changed.

Reserved object names
Object names that start with SYSTEM. are reserved for objects defined by the queue manager. You can use
the Alter, Define, and Replace commands to change these object definitions to suit your installation.
The names that are defined for IBM WebSphere MQ are listed in full in Queue names.

Related tasks
Choosing an installation name

Understanding IBM WebSphere MQ file names
Each WebSphere MQ queue manager, queue, process definition, namelist, channel, client connection
channel, listener, service, and authentication information object is represented by a file. Because object
names are not necessarily valid file names, the queue manager converts the object name into a valid file
name where necessary.

The default path to a queue manager directory is as follows:

• A prefix, which is defined in the WebSphere MQ configuration information:

About IBM WebSphere MQ 121

– On Windows 32-bit systems the default prefix is C:\Program Files\IBM\WebSphere MQ. On
Windows 64-bit systems the default prefix is, C:\Program Files\IBM\WebSphere MQ (x86)\.
This is configured in the DefaultPrefix stanza of the mqs.ini configuration file.

– On UNIX and Linux systems the default prefix is /var/mqm. This is configured in the
DefaultPrefix stanza of the mqs.ini configuration file.

Where available, the prefix can be changed using the WebSphere MQ properties page in the IBM
WebSphere MQ Explorer, otherwise edit the mqs.ini configuration file manually.

• The queue manager name is transformed into a valid directory name. For example, the queue manager:

queue.manager

would be represented as:

queue!manager

This process is referred to as name transformation.

In WebSphere MQ, you can give a queue manager a name containing up to 48 characters.

For example, you could name a queue manager:

QUEUE.MANAGER.ACCOUNTING.SERVICES

However, each queue manager is represented by a file and there are limitations on the maximum length
of a file name, and on the characters that can be used in the name. As a result, the names of files
representing objects are automatically transformed to meet the requirements of the file system.

The rules governing the transformation of a queue manager name are as follows:

1. Transform individual characters:

• From . to !
• From / to &

2. If the name is still not valid:

a. Truncate it to eight characters
b. Append a three-character numeric suffix

For example, assuming the default prefix and a queue manager with the name queue.manager:

• In WebSphere MQ for Windows with NTFS or FAT32, the queue manager name becomes:

c:\Program Files\IBM\WebSphere MQ\qmgrs\queue!manager

• In WebSphere MQ for Windows with FAT, the queue manager name becomes:

c:\Program Files\IBM\WebSphere MQ\qmgrs\queue!ma

• In WebSphere MQ for UNIX and Linux systems, the queue manager name becomes:

/var/mqm/qmgrs/queue!manager

The transformation algorithm also distinguishes between names that differ only in case on file systems
that are not case sensitive.

122 IBM WebSphere MQ Overview

Object name transformation
Object names are not necessarily valid file system names. You might need to transform your object
names. The method used is different from that for queue manager names because, although there are
only a few queue manager names on each machine, there can be a large number of other objects for each
queue manager. Queues, process definitions, namelists, channels, client connection channels, listeners,
services, and authentication information objects are represented in the file system.

When a new name is generated by the transformation process, there is no simple relationship with the
original object name. You can use the dspmqfls command to convert between real and transformed
object names.

Managing objects
An overview of how to create, alter, display, and delete objects.

For further information, see “Objects” on page 102.

With the exception of dynamic queues, these objects must be defined to the queue manager before you
can work with them.

You define and manage objects using:

• The PCF commands described in Programmable command formats referenceand Automating
administration tasks

• The MQSC commands described in The MQSC commands
• The WebSphere MQ Explorer (Windows, UNIX, and Linux for Intel systems only)

You can manage objects also by using the following methods:

• Control commands, which are typed in from a keyboard. See The control commands.
• IBM WebSphere MQ Administration Interface (MQAI) calls in a program. See WebSphere MQ

Administration Interface (MQAI).

• IBM WebSphere MQ for Windows only:

– MQAI Component Object Model (COM) calls in a program
– The Windows Default Configuration Application

You can also display or alter the attributes of objects, or delete the objects.

For sequences of WebSphere MQ commands on Windows, UNIX
and Linux systems, you can use the MQSC facility to run a series of commands held in a file.

Object attributes
The properties of an object are defined by its attributes. Some you can specify, others you can only view.

For example, the maximum message length that a queue can accommodate is defined by its
MaxMsgLength attribute; you can specify this attribute when you create a queue. The DefinitionType
attribute specifies how the queue was created; you can only display this attribute.

In WebSphere MQ, there are two ways of referring to an attribute:

• Using its PCF name, for example, MaxMsgLength.
• Using its MQSC command name, for example, MAXMSGL.

This guide mainly describes how to specify attributes using MQSC commands, and so it refers to most
attributes using their MQSC command names, rather than their PCF names.

Clusters
You can group queue managers in a cluster. Queue managers in a cluster can make the queues that they
host available to every other queue manager in the cluster. Any queue manager can send a message to

About IBM WebSphere MQ 123

any other queue manager in the same cluster without the need for many of the object definitions required
for standard distributed queuing.

In a traditional WebSphere MQ network using distributed queuing, every queue manager is independent.
If one queue manager needs to send messages to another queue manager, it must define a transmission
queue, a channel to the remote queue manager, and a remote queue definition for every queue to which it
wants to send messages.

A cluster is a group of queue managers set up in such a way that the queue managers can communicate
directly with one another over a single network, without the need for transmission queue, channel, and
remote queue definitions.

Each queue manager in the cluster has a single transmission queue from which it can transmit messages
to any other queue manager in the cluster.

Related concepts
Designing clusters
Understand what clusters are and how they work.
Related tasks
Configuring a queue manager cluster
Setting up a new cluster

System default objects
An introduction to system default objects, and links to further information.

The system default objects are a set of object definitions that are created automatically whenever a queue
manager is created. You can copy and modify any of these object definitions for use in applications at your
installation.

Default object names have the stem SYSTEM; for example, the default local queue is
SYSTEM.DEFAULT.LOCAL.QUEUE, and the default receiver channel is SYSTEM.DEF.RECEIVER. You cannot
rename these objects; default objects of these names are required.

When you define an object, any attributes that you do not specify explicitly are copied from the
appropriate default object. For example, if you define a local queue, those attributes that you do not
specify are taken from the default queue SYSTEM.DEFAULT.LOCAL.QUEUE.

See System and default objects for more information about system defaults.

IBM WebSphere MQ Multicast
IBM WebSphere MQ Multicast offers low latency, high fan out, reliable multicast messaging.

Multicast is an efficient form of publish/subscribe messaging as it can be scaled to a high number
of subscribers without detrimental effects in performance. WebSphere MQ enables reliable Multicast
messaging by using acknowledgements, negative acknowledgments, and sequence numbers to achieve
low latency messaging with high fan out.

WebSphere MQ Multicast's fair delivery enables near simultaneous delivery, ensuring that no recipient
gains an advantage. As WebSphere MQ Multicast uses the network to deliver messages, a publish/
subscribe engine is not needed to fan-out data. After a topic is mapped to a group address, there is
no need for a queue manager because publishers and subscribers can operate in a peer-to-peer mode.
This allows the load to be reduced on queue manager servers, and the queue manager server is no longer
a potential point of failure.

124 IBM WebSphere MQ Overview

Initial multicast concepts
WebSphere MQ Multicast can be easily integrated into existing systems and applications by using the
Communication Information (COMMINFO) object. Two TOPIC object fields enable the quick configuration
of existing TOPIC objects to support or ignore multicast traffic.

Objects needed for multicast
The following information is a brief overview of the two objects needed for WebSphere MQ Multicast:

COMMINFO object
The COMMINFO object contains the attributes associated with multicast transmission. For more
information about the COMMINFO object parameters, see DEFINE COMMINFO .

The only COMMINFO field that MUST be set is the name of the COMMINFO object. This name is then
used to identify the COMMINFO object to a topic. The GRPADDR field of the COMMINFO object must be
checked to ensure that the value is a valid multicast group address.

TOPIC object
A topic is the subject of the information that is published in a publish/subscribe message, and a topic
is defined by creating a TOPIC object. For more information about the TOPIC object parameters, see
DEFINE TOPIC.

Existing topics can be used with multicast by changing the values of the following TOPIC object
parameters: COMMINFO and MCAST.

• COMMINFO This parameter specifies the name of the multicast communication information object.
• MCAST This parameter specifies whether multicast is allowable at this position in the topic tree. By

default, MCAST is set to ASPARENT meaning that the multicast attribute of the topic is inherited from
the parent. Setting MCAST to ENABLED allows multicast traffic at this node.

Multicast networks and topics
The following information is an overview of what happens to subscriptions with different types of
subscription and topic definition. These examples all assume that the TOPIC object COMMINFO parameter
is set to the name of a valid COMMINFO object:
Topic set to multicast enabled

If the topic string MCAST parameter is set to ENABLED, subscriptions from multicast capable clients
are allowed and a multicast subscription is made unless:

• It is a durable subscription from a multicast capable client.
• It is a non-managed subscription from a multicast capable client.
• It is a subscription from a non-multicast capable client.

In these cases a non-multicast subscription is made and subscriptions are downgraded to normal
publish/subscribe.

Topic set to multicast disabled
If the topic string MCAST parameter is set to DISABLED, a non-multicast subscription is always made
and subscriptions are downgraded to normal publish/subscribe.

Topic set to multicast only
If the topic string MCAST parameter is set to ONLY, subscriptions from multicast capable clients are
allowed and a multicast subscription is made unless:

• It is a durable subscription: Durable subscriptions are rejected with reason code 2436 (0984)
(RC2436): MQRC_DURABILITY_NOT_ALLOWED

• It is a non-managed subscription: Non-managed subscriptions are rejected with reason code 2046
(07FE) (RC2046): MQRC_OPTIONS_ERROR

• It is a subscription from a non-multicast capable client: These subscriptions are rejected with
reason code 2560 (0A00) (RC2560): MQRC_MULTICAST_ONLY

About IBM WebSphere MQ 125

• It is a subscription from a locally bound application: These subscriptions are rejected with reason
code 2560 (0A00) (RC2560): MQRC_MULTICAST_ONLY

Security
In IBM WebSphere MQ, there are several methods of providing security: the authorization service
interface; user-written, or third party, channel exits; channel security using Secure Sockets Layer (SSL),
channel authentication records, and message security.

Authorization service interface
Authorization for using MQI calls, commands, and access to objects is provided by the object authority
manager (OAM), which by default is enabled. Access to IBM WebSphere MQ entities is controlled through
IBM WebSphere MQ user groups and the OAM. Administrators can use a command-line interface to grant
or revoke authorizations as required.

For more information about creating authorization service components, see Setting up security on
Windows, UNIX and Linux systems.

User-written or third party channel exits
Channels can use user-written or third party channel exits. For more information, see Channel-exit
programs for messaging channels.

Channel security using SSL
The Secure Sockets Layer (SSL) protocol provides industry-standard channel security, with protection
against eavesdropping, tampering, and impersonation.

SSL uses public key and symmetric techniques to provide message confidentiality and integrity and
mutual authentication.

For a comprehensive review of security in IBM WebSphere MQ including detailed information about SSL,
see Security. For an overview of SSL, including pointers to the commands described in this section, see
Cryptographic security protocols: SSL and TLS.

Channel authentication records
Use channel authentication records to exercise precise control over the access granted to connecting
systems at a channel level. For more information, see Channel authentication records.

Message security
Use Advanced Message Security, which is a separately installed and licensed component of IBM
WebSphere MQ, to provide cryptographic protection to messages sent and receive using IBM WebSphere
MQ. See WebSphere MQ Advanced Message Security.

Related tasks
Security
Planning for your security requirements

Clients and servers
An introduction to how IBM WebSphere MQ supports client-server configurations for its applications.

An IBM WebSphere MQ MQI client is a component that allows an application running on a system to issue
MQI calls to a queue manager running on another system. The output from the call is sent back to the
client, which passes it back to the application.

An IBM WebSphere MQ server is a queue manager that provides queuing services to one or more clients.
All the IBM WebSphere MQ objects, for example queues, exist only on the queue manager machine (the

126 IBM WebSphere MQ Overview

IBM WebSphere MQ server machine), and not on the client. An IBM WebSphere MQ server can also
support local IBM WebSphere MQ applications.

The difference between an IBM WebSphere MQ server and an ordinary queue manager is that a server
has a dedicated communications link with each client. For more information about creating channels for
clients and servers, see Connecting applications using distributed queuing.

For information about clients in general, see “Overview of IBM WebSphere MQ MQI clients” on page 127.

IBM WebSphere MQ applications in a client-server environment
When linked to a server, client IBM WebSphere MQ applications can issue most MQI calls in the same
way as local applications. The client application issues an MQCONN call to connect to a specified queue
manager. Any additional MQI calls that specify the connection handle returned from the connect request
are then processed by this queue manager.

You must link your applications to the appropriate client libraries. See Building applications for
WebSphere MQ MQI clients.

Related concepts
“Transaction management and support” on page 133
An introduction to transaction management and how WebSphere MQ supports transactions.
“Extending queue manager facilities” on page 135
You can extend queue manager facilities by using user exits, API exits, or installable services.

Overview of IBM WebSphere MQ MQI clients
A WebSphere MQ MQI client is a component of the IBM WebSphere MQ product that can be installed on a
system on which no queue manager runs.

Using an IBM WebSphere MQ MQI client, an application running on the same system as the client can
connect to a queue manager that is running on another system. The application can issue MQI calls to
that queue manager. Such an application is called a WebSphere MQ MQI client application and the queue
manager is called a server queue manager.

An IBM WebSphere MQ MQI client application and a server queue manager communicate with each
other by using an MQI channel. An MQI channel starts when the client application issues an MQCONN or
MQCONNX call to connect to the queue manager and ends when the client application issues an MQDISC
call to disconnect from the queue manager. The input parameters of an MQI call flow in one direction on
an MQI channel and the output parameters flow in the opposite direction.

Figure 30. Link between a client and server

The following platforms can be used. The combinations depend on which IBM WebSphere MQ product
you are using and are described in “Platform support for IBM WebSphere MQ clients” on page 129.

About IBM WebSphere MQ 127

IBM WebSphere MQ MQI client IBM WebSphere MQ server

UNIX and Linux
Windows

HP Integrity NonStop Server

UNIX and Linux
Windows

HP Integrity NonStop Server

The MQI is available to applications running on the client platform; the queues and other IBM WebSphere
MQ objects are held on a queue manager that you have installed on a server.

An application that you want to run in the IBM WebSphere MQ MQI client environment must first be linked
with the relevant client library. When the application issues an MQI call, the IBM WebSphere MQ MQI
client directs the request to a queue manager, where it is processed and from where a reply is sent back
to the IBM WebSphere MQ MQI client.

The link between the application and the IBM WebSphere MQ MQI client is established dynamically at run
time.

You can also develop client applications using the IBM WebSphere MQ classes for .NET, IBM WebSphere
MQ classes for Java or IBM WebSphere MQ classes for Java Message Service (JMS). You can use Java and
JMS clients on UNIX, Linux and Windows platforms. The use of Java and JMS is not described here. For
full details on how to install, configure, and use IBM WebSphere MQ classes for Java and IBM WebSphere
MQ classes for JMS see Using WebSphere MQ classes for Java and Using WebSphere MQ classes for JMS.

Related concepts
“Why use IBM WebSphere MQ clients?” on page 128
Using IBM WebSphere MQ clients is an efficient way of implementing IBM WebSphere MQ messaging and
queuing.
“How do I set up an IBM WebSphere MQ MQI client?” on page 130
Follow these instructions to set up a client.
“What is an extended transactional client?” on page 130
A WebSphere MQ extended transactional client can update resources managed by another resource
manager, under the control of an external transaction manager.
“How the client connects to the server” on page 132
A client connects to a server using MQCONN or MQCONNX, and communicates through a channel.

Why use IBM WebSphere MQ clients?
Using IBM WebSphere MQ clients is an efficient way of implementing IBM WebSphere MQ messaging and
queuing.

You can have an application that uses the MQI running on one machine and the queue manager running
on a different machine (either physical or virtual). The benefits of doing this are:

• There is no need for a full WebSphere MQ implementation on the client machine.
• Hardware requirements on the client system are reduced.
• System administration requirements are reduced.
• a WebSphere MQ application running on a client can connect to multiple queue managers on different

systems.
• Alternative channels using different transmission protocols can be used.

Related reference
“What applications run on an IBM WebSphere MQ MQI client?” on page 129
The full MQI is supported in the client environment.
“Platform support for IBM WebSphere MQ clients” on page 129

128 IBM WebSphere MQ Overview

IBM WebSphere MQ on all server platforms accepts client connections from IBM WebSphere MQ MQI
clients on UNIX or Linux systems, and Windows.

What applications run on an IBM WebSphere MQ MQI client?
The full MQI is supported in the client environment.

This enables almost any WebSphere MQ application to be configured to run on an IBM WebSphere MQ
MQI client system by linking the application on the IBM WebSphere MQ MQI client to the MQIC library,
rather than to the MQI library. The exceptions are:

• MQGET with signal
• An application that needs sync point coordination with other resource managers must use an extended

transactional client

If read ahead is enabled, to improve non persistent messaging performance, not all MQGET options are
available. The table shows the options that are allowed, and whether they can be altered between MQGET
calls.

Table 9. MQGET options permitted when read ahead is enabled

Permitted when read ahead is enabled and can be altered
between MQGET calls

Permitted when read ahead is enabled but cannot be
altered between MQGET calls1

MQGET options that are not permitted when read ahead
is enabled2

MQGET MD values MsgId3
CorrelId3

Encoding
CodedCharSetId

MQGET MQGMO options MQGMO_WAIT
MQGMO_NO_WAIT
MQGMO_FAIL_IF_QUIESCING
MQGMO_BROWSE_FIRST4
MQGMO_BROWSE_NEXT4
MQGMO_BROWSE_MESSAGE
_UNDER_CURSOR4

MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_NO_SYNCPOINT
MQGMO_ACCEPT_TRUNCATED_MSG
MQGMO_CONVERT
MQGMO_LOGICAL_ORDER
MQGMO_COMPLETE_MSG
MQGMO_ALL_MSGS_AVAILABLE
MQGMO_ALL_SEGMENTS_AVAILABLE
MQGMO_MARK_BROWSE_HANDLE
MQGMO_MARK_BROWSE_CO_OP
MQGMO_UNMARK_BROWSE_CO_OP
MQGMO_UNMARK_BROWSE_HANDLE
MQGMO_UNMARKED_BROWSE_MSG
MQGMO_PROPERTIES_FORCE_MQRFH2
MQGMO_NO_PROPERTIES
MQGMO_PROPERTIES_IN_HANDLE
MQGMO_PROPERTIES_COMPATIBILITY

MQGMO_SET_SIGNAL
MQGMO_SYNCPOINT
MQGMO_MARK_SKIP
_BACKOUT
MQGMO_MSG_UNDER
_CURSOR4
MQGMO_LOCK
MQGMO_UNLOCK

MQGMO values MsgHandle

1. If these options are altered between MQGET calls an MQRC_OPTIONS_CHANGED reason code is
returned.

2. If these options are specified on the first MQGET call then read ahead is disabled. If these options are
specified on a subsequent MQGET call a reason code MQRC_OPTIONS_ERROR is returned.

3. The client applications need to be aware that if the MsgId and CorrelId values are altered between
MQGET calls messages with the previous values might have already been sent to the client and remain
in the client read ahead buffer until consumed (or automatically purged).

4. The first MQGET call determines whether messages are to be browsed or got from a queue when
read ahead is enabled. If the application attempts to use a combination of browse and get an
MQRC_OPTIONS_CHANGED reason code is returned.

5. MQGMO_MSG_UNDER_CURSOR is not possible with read ahead. Messages can be browsed or got
when read ahead is enabled but not a combination of both.

An application running on an IBM WebSphere MQ MQI client can connect to more than one queue
manager concurrently, or use a queue manager name with an asterisk (*) on an MQCONN or MQCONNX
call (see the examples in Connecting IBM WebSphere MQ MQI client applications to queue managers).

Platform support for IBM WebSphere MQ clients
IBM WebSphere MQ on all server platforms accepts client connections from IBM WebSphere MQ MQI
clients on UNIX or Linux systems, and Windows.

WebSphere MQ installed as a Base product and Server can accept connections from the IBM WebSphere
MQ MQI clients on the following platforms:

• HP Integrity NonStop Server
• UNIX and Linux systems

About IBM WebSphere MQ 129

• Windows

Client connections are subject to differences in coded character set identifier (CCSID) and
communications protocol.

How do I set up an IBM WebSphere MQ MQI client?
Follow these instructions to set up a client.

To set up an IBM WebSphere MQ MQI client you must have an IBM WebSphere MQ server already
installed and working, to which your client will connect. The steps involved in setting up a client are:

1. Check that you have a suitable platform for an IBM WebSphere MQ MQI client and that the hardware
and software satisfy the requirements. Platform support is described in “Platform support for IBM
WebSphere MQ clients” on page 129.

2. Decide how you are going to install IBM WebSphere MQ on your client workstation, and then follow the
instructions for your particular combination of client and server platforms. Installation is described in
Installing a IBM WebSphere MQ client .

3. Ensure that your communication links are configured and connected. Configuration of communication
links is described in Configuring connections between the server and client .

4. Check that your installation is working correctly. Verifying your installation is described in Verifying a
client installation.

5. When you have verified the IBM WebSphere MQ MQI client installation, consider whether you must
secure your client. Client security is described in Setting up IBM WebSphere MQ MQI client security.

6. Set up the channels between the IBM WebSphere MQ MQI client and server that are required by
the IBM WebSphere MQ applications you want to run on the client. Setting up channels is described
in Defining MQI channels . There are some additional considerations if you are using SSL. These
considerations are described in Specifying that an MQI channel uses SSL . You might need to use an
IBM WebSphere MQ MQI client configuration file or IBM WebSphere MQ environment variables to set
up the channels. IBM WebSphere MQ environment variables are described in Using IBM WebSphere
MQ environment variables.

7. IBM WebSphere MQ applications are fully described in the Developing applications.
8. There are some differences from a queue manager environment to consider when designing, building,

and running applications in the IBM WebSphere MQ MQI client environment. For information about
these differences, see:

• Using the message queue interface (MQI) in a client application
• Building applications for WebSphere MQ MQI clients
• Connecting IBM WebSphere MQ MQI client applications to queue managers
• Resolving problems with IBM WebSphere MQ MQI clients

What is an extended transactional client?
A WebSphere MQ extended transactional client can update resources managed by another resource
manager, under the control of an external transaction manager.

If you are not familiar with the concepts of transaction management, see “Transaction management and
support” on page 133.

Note that the XA transactional client is now supplied as part of WebSphere MQ.

A client application can participate in a unit of work that is managed by a queue manager to which it is
connected. Within the unit of work, the client application can put messages to, and get messages from,
the queues that are owned by that queue manager. The client application can then use the MQCMIT call
to commit the unit of work or the MQBACK call to back out the unit of work. However, within the same
unit of work, the client application cannot update the resources of another resource manager, the tables
of a DB2® database, for example. Using a WebSphere MQ extended transactional client removes this
restriction.

130 IBM WebSphere MQ Overview

A WebSphere MQ extended transactional client is a IBM WebSphere MQ MQI client with some additional
function. Using this function a client application, within the same unit of work, can perform the following
tasks:

• Put messages to, and get messages from, queues that are owned by the queue manager to which it is
connected

• Update the resources of a resource manager other than a WebSphere MQ queue manager

This unit of work must be managed by an external transaction manager that is running on the same
system as the client application. The unit of work cannot be managed by the queue manager to which the
client application is connected. This means that the queue manager can act only as a resource manager,
not as a transaction manager. It also means that the client application can commit or back out the
unit of work using only the application programming interface (API) provided by the external transaction
manager. The client application cannot, therefore, use the MQI calls, MQBEGIN, MQCMIT, and MQBACK.

The external transaction manager communicates with the queue manager as a resource manager using
the same MQI channel as used by the client application that is connected to the queue manager. However,
in a recovery situation following a failure, when no applications are running, the transaction manager can
use a dedicated MQI channel to recover any incomplete units of work in which the queue manager was
participating at the time of the failure.

In this section, a WebSphere MQ MQI client that does not have the extended transactional function
is referred to as a WebSphere MQ base client. You can consider, therefore, a WebSphere MQ extended
transactional client to consist of a WebSphere MQ base client with the addition of the extended
transactional function.

Related reference
“Platform support for extended transactional clients” on page 131
IBM WebSphere MQ extended transactional clients are available for all the platforms that support a base
client except z/OS.

Platform support for extended transactional clients
IBM WebSphere MQ extended transactional clients are available for all the platforms that support a base
client except z/OS.

A client application that is using an extended transactional client can connect to a queue manager of the
following IBM WebSphere MQ Version 7.5 products only:

• IBM WebSphere MQ for AIX
• IBM WebSphere MQ for HP-UX
• IBM WebSphere MQ for HP Integrity NonStop Server
• IBM WebSphere MQ for Linux
• IBM WebSphere MQ for Solaris
• IBM WebSphere MQ for Windows

Although there are no extended transactional clients that run on z/OS, a client application that is using an
extended transactional client can connect to a queue manager that runs on z/OS.

For each platform, the hardware and software requirements for the extended transactional client are
the same as those requirements for the IBM WebSphere MQ base client. A programming language is
supported by an extended transactional client if it is supported by the IBM WebSphere MQ base client and
by the transaction manager you are using.

The external transaction managers for each platform are listed on the following web pages.

Extended transactional client
platform

Web page

AIX Minimum Requirements for WebSphere MQ V7.5 - AIX

HP-UX Minimum Requirements for WebSphere MQ V7.5 - HP-UX

About IBM WebSphere MQ 131

https://www.ibm.com/support/docview.wss?uid=swg27027462#AIX_tab
https://www.ibm.com/support/docview.wss?uid=swg27027462#HP_tab

Extended transactional client
platform

Web page

HP Integrity NonStop Server Planning your IBM WebSphere MQ client environment on HP
Integrity NonStop Server

Linux Minimum Requirements for WebSphere MQ V7.5 - Linux

Solaris Minimum Requirements for WebSphere MQ V7.5 - Solaris

Windows Minimum Requirements for WebSphere MQ V7.5 - Windows

How the client connects to the server
A client connects to a server using MQCONN or MQCONNX, and communicates through a channel.

An application running in the IBM WebSphere MQ client environment must maintain an active connection
between the client and server machines.

The connection is made by an application issuing an MQCONN or MQCONNX call. Clients and servers
communicate through MQI channels, or, when using sharing conversations, conversations each share
an MQI channel instance. When the call succeeds, the MQI channel instance or conversation remains
connected until the application issues a MQDISC call. This is the case for every queue manager that an
application needs to connect to.

Related concepts
“Client and queue manager on the same machine” on page 132
You can also run an application in the WebSphere MQ MQI client environment when your machine also
has a queue manager installed.
“Clients on different platforms” on page 133
Here is another example of a WebSphere MQ MQI client and server system. In this example, the server
machine communicates with three WebSphere MQ MQI clients on different platforms.
“Using different versions of client and server software” on page 133
If you are using previous versions of IBM WebSphere MQ products, make sure that code conversion from
the CCSID of your client is supported by the server.

Client and queue manager on the same machine
You can also run an application in the WebSphere MQ MQI client environment when your machine also
has a queue manager installed.

In this situation, you have the choice of linking to the queue manager libraries or the client libraries, but
remember that if you link to the client libraries, you still need to define the channel connections. This
can be useful during the development phase of an application. You can test your program on your own
machine, with no dependency on others, and be confident that it will still work when you move it to an
independent WebSphere MQ MQI client environment.

132 IBM WebSphere MQ Overview

https://www.ibm.com/support/docview.wss?uid=swg27027462#Linux_tab
https://www.ibm.com/support/docview.wss?uid=swg27027462#Solaris_tab
https://www.ibm.com/support/docview.wss?uid=swg27027462#Windows_tab

Clients on different platforms
Here is another example of a WebSphere MQ MQI client and server system. In this example, the server
machine communicates with three WebSphere MQ MQI clients on different platforms.

Figure 31. WebSphere MQ server connected to clients on different platforms

Other more complex environments are possible. For example, a WebSphere MQ client can connect to
more than one queue manager, or any number of queue managers connected as part of a queue-sharing
group.

Using different versions of client and server software
If you are using previous versions of IBM WebSphere MQ products, make sure that code conversion from
the CCSID of your client is supported by the server.

An IBM WebSphere MQ client can connect to all supported versions of queue manager. If you are
connecting to an earlier version queue manager, you cannot use features and structures from a later
version of the product in your IBM WebSphere MQ application on the client.

An IBM WebSphere MQ queue manager can communicate with clients at different versions to itself by
negotiating down to the highest mutually supported protocol level. This means that older clients may be
used with later queue manager levels. It is recommended that both the client and server are at versions
of IBM WebSphere MQ that are currently in support to facilitate problem diagnosis and enable support by
IBM.

For more information, see the programming languages supported in Deciding which programming
language to use.

Transaction management and support
An introduction to transaction management and how WebSphere MQ supports transactions.

A resource manager is a computer subsystem that owns and manages resources that can be accessed and
updated by applications. The following are examples of resource managers:

• A WebSphere MQ queue manager, with resources that are its queues
• A DB2 database, with resources that are its tables

When an application updates the resources of one or more resource managers, there might be a
business requirement to ensure that certain updates all complete successfully as a group, or none of
them complete. The reason for this kind of requirement is that the business data would be left in an
inconsistent state if some of these updates completed successfully, but others did not.

Updates to resources that are managed in this way are said to occur within a unit of work, or a transaction.
An application program can group a set of updates into a unit of work.

About IBM WebSphere MQ 133

During a unit of work, an application issues requests to resource managers to update their resources. The
unit of work ends when the application issues a request to commit all the updates. Until the updates are
committed, none of them become visible to other applications that are accessing the same resources.
Alternatively, if the application decides that it cannot complete the unit of work for any reason, it can issue
a request to back out all the updates it has requested up to that point. In this case, none of the updates
ever become visible to other applications. These updates are usually logically related and must all be
successful for data integrity to be preserved. If one update succeeds while another fails, data integrity is
lost.

When a unit of work completes successfully, it is said to commit. Once committed, all updates made
within that unit of work are made permanent and irreversible. However, if the unit of work fails, all
updates are instead backed out. This process, where units of work are either committed or backed out
with integrity, is known as sync point coordination.

The point in time when all the updates within a unit of work are either committed or backed out is called
a sync point. An update within a unit of work is said to occur within sync point control. If an application
requests an update that is outside of sync point control, the resource manager commits the update
immediately, even if there is a unit of work in progress, and the update cannot be backed out later.

The computer subsystem that manages units of work is called a transaction manager, or a sync point
coordinator.

A local unit of work is one in which the only resources updated are those of the WebSphere MQ queue
manager. Here sync point coordination is provided by the queue manager itself using a single-phase
commit process.

A global unit of work is one in which resources belonging to other resource managers, such as XA-
compliant databases, are also updated. Here, a two-phase commit procedure must be used and the
unit of work can be coordinated by the queue manager itself, or externally by another XA-compliant
transaction manager such as IBM TXSeries®, or BEA Tuxedo.

A transaction manager is responsible for ensuring that all updates to resources within a unit of work
complete successfully, or none of them complete. It is to a transaction manager that an application
issues a request to commit or back out a unit of work. Examples of transaction managers are CICS and
WebSphere Application Server, although both of these possess other function as well.

Some resource managers provide their own transaction management function. For example, a WebSphere
MQ queue manager can manage units of work involving updates to its own resources and updates to
DB2 tables. The queue manager does not need a separate transaction manager to perform this function,
although one can be used if it is a user requirement. If a separate transaction manager is used, it is
referred to as an external transaction manager.

For an external transaction manager to manage a unit of work, there must be a standard interface
between the transaction manager and every resource manager that is participating in the unit of work.
This interface allows the transaction manager and a resource manager to communicate with each other.
One of these interfaces is the XA Interface, which is a standard interface supported by a number of
transaction managers and resource managers. The XA Interface is published by The Open Group in
Distributed Transaction Processing: The XA Specification.

When more than one resource manager participates in a unit of work, a transaction manager must use a
two-phase commit protocol to ensure that all the updates within the unit of work complete successfully
or none of them complete, even if there is a system failure. When an application issues a request to a
transaction manager to commit a unit of work, the transaction manager does the following:
Phase 1 (Prepare to commit)

The transaction manager asks each resource manager participating in the unit of work to ensure that
all the information about the intended updates to its resources is in a recoverable state. A resource
manager normally does this by writing the information to a log and ensuring that the information is
written through to hard disk. Phase 1 completes when the transaction manager receives notification
from each resource manager that the information about the intended updates to its resources is in a
recoverable state.

134 IBM WebSphere MQ Overview

Phase 2 (Commit)
When Phase 1 is complete, the transaction manager makes the irrevocable decision to commit the
unit of work. It asks each resource manager participating in the unit of work to commit the updates
to its resources. When a resource manager receives this request, it must commit the updates. It does
not have the option to back them out at this stage. Phase 2 completes when the transaction manager
receives notification from each resource manager that it has committed the updates to its resources.

The XA Interface uses a two-phase commit protocol.

For more information, see Transactional support.

WebSphere MQ also provides support for the Microsoft Transaction Server (COM+). Using the Microsoft
Transaction Server (COM+) provides information on how to set up WebSphere MQ to take advantage of
COM+ support.

Extending queue manager facilities
You can extend queue manager facilities by using user exits, API exits, or installable services.

User exits
User exits provide a mechanism for you to insert your own code into a queue manager function. The user
exits supported include:
Channel exits

These exits change the way that channels operate. Channel exits are described in Channel-exit
programs for messaging channels.

Data conversion exits
These exits create source code fragments that can be put into application programs to convert data
from one format to another. Data conversion exits are described in the Writing data-conversion exits .

The cluster workload exit
The function performed by this exit is defined by the provider of the exit. Call definition information is
given in MQ_CLUSTER_WORKLOAD_EXIT - Call description.

API exits
API exits let you write code that changes the behavior of WebSphere MQ API calls, such as MQPUT and
MQGET, and then insert that code immediately before or immediately after those calls. The insertion is
automatic; the queue manager drives the exit code at the registered points. For more information about
API exits, see Using and writing API exits.

Installable services
Installable services have formalized interfaces (an API) with multiple entry points.

An implementation of an installable service is called a service component. You can use the components
supplied with WebSphere MQ, or you can write your own component to perform the functions that you
require.

Currently, the following installable services are provided:
Authorization service

The authorization service allows you to build your own security facility.

The default service component that implements the service is the object authority manager (OAM).
By default, the OAM is active, and you do not have to do anything to configure it. You can use the
authorization service interface to create other components to replace or augment the OAM. For more
information about the OAM, see Setting up security on Windows, UNIX and Linux systems.

Name service
The name service enables applications to share queues by identifying remote queues as though they
were local queues.

About IBM WebSphere MQ 135

You can write your own name service component. You might want to do this if you intend to use the
name service with IBM WebSphere MQ, for example. To use the name service you must have either a
component that is either user-written, or supplied by a different software vendor. By default, the name
service is inactive.

IBM WebSphere MQ client for HP Integrity NonStop Server technical
overview

A technical overview of the HP Integrity NonStop Server operating system.

IBM WebSphere MQ client for HP Integrity NonStop Server SupportPac
The IBM WebSphere MQ client for HP Integrity NonStop Server is released in SupportPac MAT1.

Technical overview of the HP Integrity NonStop Server operating system
The HP Integrity NonStop Server is an operating system that is designed for the highest possible
availability, with no planned, or unplanned downtime even with multiple hardware or software failures. It
is linearly scalable, for example, if you add 20 percent more hardware, you get 20 percent more usable
performance. To maintain data integrity, the operating system has its own transaction manager, and a
transactional file system.

The HP Integrity NonStop Server operating system is typically used by:

• Financial institutions, for example, for ATM networks, online banking support, credit authorizations,
stock exchange switches, trading, and bank to bank transactions.

• Manufacturing, for example, for web store back ends, inventory, and process control.
• Telecommunications, for example, for exchanges, emergency, and other network services.

IBM WebSphere MQ client for HP Integrity NonStop Server supported
environments and features
Provides details about the IBM WebSphere MQ client for the HP Integrity NonStop Server platform and
describes supported client API and environments and client functionality specific to HP Integrity NonStop
Server systems.

Supported client API and environments
IBM WebSphere MQ client for HP Integrity NonStop Server supports the following execution
environments:

Table 10.

OSS Guardian

C

JMS

COBOL

pTAL

Functional summary
Some aspects of client functionality are specific to the host operating system. The following summary
describes the aspects of client functionality specific to the IBM WebSphere MQ client for HP Integrity
NonStop Server:

136 IBM WebSphere MQ Overview

• C (native), PTAL, COBOL (native)

– Network Protocol: TCP (IPv4 and IPv6)
– Transport Type: Client only
– Transport Security: SSL/TLS
– Transactional Support: Two-phase commit coordinated by the Transaction Management Facility

(TMF) (requires connection to a queue manager that is at IBM WebSphere MQ Version 7.1 or later)
– Addressing mode: 32 bit

• Java Message Service (JMS)

– Network Protocol: TCP (IPv4 and IPv6)
– Transport Type: Client only (Bindings, Direct, and Direct HTTP are not supported)
– Transport Security: SSL/TLS
– Transactional Support: Single-phase commit
– Execution: Standalone (Application Support Facility (ASF) and Java Connector Architecture (JCA) are

not supported)
– Exits: Java language only (native exits written in other languages are not supported)
– IBM WebSphere MQ Headers and PCF: The following classes are not supported:

com.ibm.mq.headers.* and com.ibm.mq.pcf.*

Scenarios
This section provides information about scenarios that explains how to use and combine new WebSphere
MQ version 7.5 function. The scenarios include useful links to infocenter content to help you to gain a
better understanding of the area in which you are interested.

The available scenarios are described in the following subtopics:

Getting started with IBM WebSphere MQ Version 7.5
This scenario explains how to get started with IBM WebSphere MQ Version 7.5 on a Windows platform.
Use this scenario if you have never used IBM WebSphere MQ and want to get started quickly.

This scenario contains the following sections. It is possible to complete these steps by using either the
graphical or command-line interfaces, as shown in this scenario.

Basic concepts and key terms
Description of the basic concepts and key terms you must know about before using the Getting started
with IBM WebSphere MQ Version 7.5 scenario.

Basic concepts
IBM WebSphere MQ enables applications to read and write messages to a queue. The application that
reads the message is independent of the application that writes the message. It is not a requirement to
have the two applications running at the same time. If no application is available to read the message it is
queued on the IBM WebSphere MQ queue until an application reads it.

Key terms
Here is a list of key terms about message queueing.

About IBM WebSphere MQ 137

Key terms about message queueing.

Term Description

Queue
managers

The queue manager is responsible for maintaining the queues it owns, and for storing
all the messages it receives onto the appropriate queues.

Messages A message is a string of bytes that is meaningful to the applications that use it.
Messages are used to transfer information from one application program to another.
The applications can be running on the same or on different computers.

Local queues A local queue is a data structure used to store messages. The queue can be a normal
queue or a transmission queue. A normal queue holds messages that are to be read
by an application that is reading the message directly from the queue manager. A
transmission queue holds messages that are in transit to another queue manager.

Remote queues A remote queue is used to address a message to another queue manager.

Channels Channels are use to send and receive message between queue managers.

Listeners Listeners are processes that accept network requests from other queue managers, or
client applications, and start associated channels.

Creating a queue manager called QM1
Create a queue manager, called QM1, for use with the Getting started with IBM WebSphere MQ Version 7.5
scenario, by using either the command-line interface or the WebSphere MQ Explorer. Queue managers are
the main components in a WebSphere MQ messaging network.

Before you begin
You must have IBM WebSphere MQ Version 7.5 installed. If you do not, see Installing and uninstalling for
information about how to do so.

About this task
In this example, all names are typed in uppercase and because IBM WebSphere MQ names are case-
sensitive, you must type all names in uppercase too.

Creating the queue manager by using the command-line interface
To create and start a queue manager by using the command-line interface, complete the following steps:

Procedure
1. Create a queue manager with the name QM1 by typing the following command:

crtmqm QM1

When the system creates the queue manager, the following output is displayed:

C:\>crtmqm QM1
WebSphere MQ queue manager created.
Creating or replacing default objects for QM1.
Default objects statistics : 61 created. 0 replaced. 0 failed.
Completing setup.
Setup completed.

The queue manager is created, and is stopped. You must start the queue manager before you can
administer it, and before you can read and write messages from its queues.

2. Start the queue manager by entering the following command:

strmqm QM1

138 IBM WebSphere MQ Overview

When the queue manager successfully starts, the following output is displayed:

C:\>strmqm QM1
WebSphere MQ queue manager 'QM1' starting.
5 log records accessed on queue manager 'QM1' during the log replay phase.
Log replay for queue manager 'QM1' complete.
Transaction manager state recovered for queue manager 'QM1'.
WebSphere MQ queue manager 'QM1' started.

The queue manager is started.

What to do next
To create a queue, see “Creating a queue called LQ1” on page 139.

Creating the queue manager by using WebSphere MQ Explorer
To create and start a queue manager by using the WebSphere MQ Explorer, complete the following steps

Procedure
1. Start WebSphere MQ Explorer.
2. In the Navigator view, right-click the Queue Managers folder, then click New > Queue Manager. The

Create Queue Manager wizard starts.
3. In the Queue Manager name field, type QM1.
4. Select the Make this the default queue manager check box.
5. In the Dead-letter queue field type SYSTEM.DEAD.LETTER.QUEUE.

This is the name of the dead-letter queue that is automatically created when you create the queue
manager.

6. Leave the other fields empty and click Finish, or if that button is disabled, click Next.
The Finish button is disabled if the port number conflicts with an existing queue manager, for example
the queue manager that is created as part of the default configuration. You must continue through the
wizard to change the default port number.

7. If you clicked Next, continue to accept the defaults and click Next on each page until you get to the
final page of the wizard, when the Finish button becomes available. Change the specified port number,
for example to 1415, and click Finish.

WebSphere MQ displays a Creating Queue Manager dialog window while the queue manager is
created and started.

What to do next
To create a queue, see “Creating a queue called LQ1” on page 139.

Creating a queue called LQ1
Create a queue for use with the Getting started with WebSphere IBM WebSphere MQ Version 7.5
scenario, by using either the command-line interface or the WebSphere MQ Explorer. Queues are data
structures that are used to store messages and are IBM WebSphere MQ queue manager objects.

About this task
There are three ways to create IBM WebSphere MQ objects:

• Command-line.
• IBM WebSphere MQ Explorer.
• Using a programmable interface.

In this task you can create IBM WebSphere MQ objects using the command-line or the IBM WebSphere
MQ Explorer.

About IBM WebSphere MQ 139

Creating a queue by using the command-line interface
The command-line interface has a scripting language called IBM WebSphere MQ Script Commands
(MQSC). The scripting tool, runmqsc, is used to run the script against a queue manager. To create and
start a queue by using the command-line interface, complete the following steps:

Procedure
1. Start the scripting tool by typing the following command:

runmqsc QM1

When the scripting tool starts, the following output is displayed:

C:\>runmqsc QM1
5724-H72 (C) Copyright IBM Corp. 1994, 2025. ALL RIGHTS RESERVED.
Starting MQSC for queue manager QM1.

The tool is ready to accept MQSC commands.
2. Create a local queue called LQ1 by typing the following MQSC command:

define qlocal(LQ1)

When the queue is created, the following output is displayed:

define qlocal(LQ1)
 2 : define qlocal(LQ1)
AMQ8006: WebSphere MQ queue created.

3. Stop the scripting tool by typing the following MQSC command:

end

When the scripting tool ends, the following output is displayed:

One MQSC command read.
No commands have a syntax error.
All valid MQSC commands were processed.

C:\>

What to do next
You are ready to put a message on to your queue. To put a message in a queue, see “Putting a message to
the queue LQ1” on page 141.

Creating a queue by using WebSphere MQ Explorer
To create and start a queue by using the WebSphere MQ Explorer, complete the following steps:

Procedure
1. In the Navigator view, expand the Queue Managers folder.
2. Expand queue manager QM1.
3. Right-click the Queues folder, then click New > Local Queue... The New Local Queue wizard starts.
4. In the Name field, type LQ1.
5. Click Finish.

The new queue LQ1, is displayed in the Content view. If the queue is not displayed in the Content
view, click on the Refresh button, at the top of the Content view.

140 IBM WebSphere MQ Overview

What to do next
You are ready to put a message on to your queue. To put a message in a queue, see “Putting a message to
the queue LQ1” on page 141.

Putting a message to the queue LQ1
Put a message on to the queue LQ1, for use with the Getting started with IBM WebSphere MQ Version 7.5
scenario, by using either the command-line interface or the IBM WebSphere MQ Explorer.

About this task
IBM WebSphere MQ comes with a sample application called amqsput. This application puts a message to
a predefined queue.

Putting a message to the queue by using the command-line interface
To put a message on to the queue by using the command-line interface, complete the following steps:

Procedure
1. Use the amqsput sample application to put a message to queue LQ1, by typing the following

command:

amqsput LQ1 QM1

When the sample application starts, the following output is displayed:

C:\>amqsput LQ1 QM1
Sample AMQSPUT0 start
target queue is LQ1

2. Type Hello World and press Enter. You placed a message that contains the text "Hello World" on the
queue LQ1 managed by the queue manager called QM1.

3. To end amqsput, press Enter. The following output is displayed:

C:\>amqsput LQ1 QM1
Sample AMQSPUT0 start
target queue is LQ1
Hello World

Sample AMQSPUT0 end

What to do next
To get a message from the queue, see “Getting a message from the queue LQ1” on page 142.

Putting a message to the queue by using IBM WebSphere MQ Explorer
To put a message on to the queue by using the IBM WebSphere MQ Explorer, complete the following
steps:

Procedure
1. In the Navigator view, expand the Queue Managers folder.
2. Expand queue manager QM1, which you created.
3. Click the Queues folder. The queue manager's queues are listed in the Content view.
4. In the Content view, right-click the local queue LQ1, then click Put Test Message...

The Put test message dialog opens.
5. In the Message data field, type some text, for example Hello World, then click Put message.

The Message data field is cleared and the message is put on the queue.
6. Click Close.

About IBM WebSphere MQ 141

In the Content view, notice that the LQ1 Current queue depth value is now 1. If the Current queue
depth column is not visible, you might need to scroll to the right of the Content View.

What to do next
To get a message from the queue, see “Getting a message from the queue LQ1” on page 142.

Getting a message from the queue LQ1
Get a message from the queue LQ1, for use with the Getting started with IBM WebSphere MQ Version 7.5
scenario, by using either the command-line interface or IBM WebSphere MQ Explorer.

About this task
IBM WebSphere MQ comes with a sample application called amqsget. This application reads messages
from a queue.

Getting a message from the queue using the command-line interface
To get a message from the queue by using the command-line interface, complete the following steps:

Procedure
Use the amqsget sample application to read a message on the queue LQ1, by typing the following
command:

amqsget LQ1 QM1

When the sample application starts, the following output is displayed:

C:\>amqsget LQ1 QM1
Sample AMQSGET0 start
message <Hello World>
no more messages
Sample AMQSGET0 end

The amqsget application ends 30 seconds after reading the message.

What to do next
To learn about writing queuing applications, connecting to and disconnecting from a queue manager,
publish/subscribe, and opening and closing objects, see Writing a queuing application.

Getting a message from the queue by using IBM WebSphere MQ Explorer
To get a message from the queue by using the IBM WebSphere MQ Explorer, complete the following
steps:

Procedure
1. In the Navigator view, expand the Queue Managers folder, then expand QM1.
2. Click the Queues folder.
3. In the Content view, right-click QM1, then click Browse Messages.... The Message browser opens to

show the list of the messages that are currently on QM1.
4. Double-click the last message to open the properties dialog.

On the Data page of the properties dialog, the Message data field displays the content of the message
in human-readable form.

142 IBM WebSphere MQ Overview

What to do next
To learn about writing queuing applications, connecting to and disconnecting from a queue manager,
publish/subscribe, and opening and closing objects, see Writing a queuing application.

What to do next
What to do next on completion of the Getting started with IBM WebSphere MQ Version 7.5 scenario.

IBM WebSphere MQ provides role-based training paths to assist you by defining a path to acquiring skills
for specific WebSphere product offerings. There are two training paths for IBM WebSphere MQ:

• Application Developer

These users are responsible for creating the applications that use the queue manager. In this scenario,
they write the applications amqsput and amqsget.

• System Administrator

These users are responsible for creating the queue manager and it objects, they typically carry out
similar tasks to that you covered in this scenario.

For more information about IBM WebSphere MQ training paths, see: https://www.ibm.com/software/
websphere/education/paths/.

To view the full list of IBM WebSphere MQ courses, see: https://www.ibm.com/software/websphere/
education/curriculum/appint/wmq/.

A certification program is available which demonstrates you achieve a skill level in IBM WebSphere MQ.
For more information, see: https://www.ibm.com/certify/index.

You can collaborate with other users, for example, for:

• E-mail based community of IBM WebSphere MQ professionals, see https://listserv.meduniwien.ac.at/
archives/mqser-l.html.

• Discussion forums focusing on the IBM WebSphere MQ family of products, see https://
www.mqseries.net/.

• An IBM Developer blog by the developers of the various IBM messaging products, see https://
www.ibm.com/developerworks/blogs/page/messaging/.

• The official IBM-hosted forum for IBM WebSphere MQ, see https://www.ibm.com/developerworks/
forums/forum.jspa?forumid=280.

• IBM WebSphere MQ tagged questions and answers on stackoverflow.com, see https://
stackoverflow.com/questions/tagged/websphere-mq.

There are additional topics for you to view in this product documentation. You might want to look at the
following sections:

• Administering IBM WebSphere MQ

IBM WebSphere MQ provides control commands that you can use. You use two of these commands in
this scenario: crtmqm and strmqm. This section also provides a good overview about message queuing.

• MQSC reference

In this scenario, you use the define qlocal('LQ1') command to define a local queue called LQ1;
this command is an MQSC command. IBM WebSphere MQ System Administrators use these commands
to manage their queue managers. This section introduces the commands and shows you how to use
them, before describing the commands in detail, in alphabetical order.

• Configuring a queue manager cluster

This section describes how to organize, use, and manage queue managers in virtual groups known as
clusters. Clustering ensures that each queue manager within a cluster knows about all the other queue
managers in the same cluster. Clustering also makes the management of complex queue manager
networks simpler.

About IBM WebSphere MQ 143

https://www.ibm.com/software/websphere/education/paths/
https://www.ibm.com/software/websphere/education/paths/
https://www.ibm.com/software/websphere/education/curriculum/appint/wmq/
https://www.ibm.com/software/websphere/education/curriculum/appint/wmq/
https://www.ibm.com/certify/index
https://listserv.meduniwien.ac.at/archives/mqser-l.html
https://listserv.meduniwien.ac.at/archives/mqser-l.html
https://www.mqseries.net/
https://www.mqseries.net/
https://www.ibm.com/developerworks/blogs/page/messaging/
https://www.ibm.com/developerworks/blogs/page/messaging/
https://www.ibm.com/developerworks/forums/forum.jspa?forumid=280
https://www.ibm.com/developerworks/forums/forum.jspa?forumid=280
https://stackoverflow.com/questions/tagged/websphere-mq
https://stackoverflow.com/questions/tagged/websphere-mq

The Product Connectivity Scenarios product documentation provides information that leads you through
the key tasks required to connect WebSphere Application Server to WebSphere MQ in a variety of
scenarios. Each scenario contains the instructions for implementing a solution in a business context,
allowing you to learn as you go without needing to make use of other information resources. https://
www.ibm.com/docs/prodconn_1.0.0/com.ibm.prodconn.doc/infocenter_homepage/ic_home.htm

Basic file transfer using the scripts
You can transfer files in a number of different ways using IBM WebSphere MQ Version 7.5. Review the
topics in this section to understand what is covered in this scenario, the reasons why a business might
want to follow the scenario, the user roles involved, and an overview of the solution proposed by the
scenario.

Transferring files with control, reliably, and with auditing can be a fundamental requirement in your
enterprise. IBM WebSphere MQ Version 7.5 provides a Managed File Transfer capability as part of its
integrated messaging platform. You can use Managed File Transfer capability to integrate files seamlessly
into your messaging infrastructure, either through basic file transfers, or fully fledged participants in
messaging. For more details on this capability, see WebSphere MQ Managed File Transfer introduction.

This scenario provides you with a basic understanding of how to integrate files into the simplest IBM
WebSphere MQ messaging topology. To do this, you work through a basic IBM WebSphere MQ scenario
designed to move a file from one location to another. Although this initial scenario is restricted to a single
computer, it gives you experience of configuring the environment and forms an important foundation for
later scenarios. Later scenarios demonstrate how you can use IBM WebSphere MQ to transfer files across
a network, and then begin to show how the Managed File Transfer component can address real business
problems.

You should have a basic understanding of IBM WebSphere MQ, specifically, the notion of a queue
manager and basic configuration and administration of IBM WebSphere MQ through to using commands
such as runmqsc and the IBM WebSphere MQ Explorer.

In this scenario, you explore how IBM WebSphere MQ can be used to initiate and track a transfer of a file
from one location to another on a single computer, giving you experience of installing, configuring, and
using the reliable managed file transfer capability in IBM WebSphere MQ Version 7.5.

Example file transfer topology
This and subsequent scenarios are based around a hub and spoke topology. The diagram shows
conceptual hub and spoke topology that comprises the hub (H) and multiple spokes (S).

144 IBM WebSphere MQ Overview

https://www.ibm.com/docs/prodconn_1.0.0/com.ibm.prodconn.doc/infocenter_homepage/ic_home.htm
https://www.ibm.com/docs/prodconn_1.0.0/com.ibm.prodconn.doc/infocenter_homepage/ic_home.htm

Such a topology finds applications in many business scenarios, for example, you might want to:

1. Send files from a centralized HQ (the hub) to many outlying nodes (the spokes).
2. Collate files from many nodes (the spokes) to a single location (the hub).
3. Transfer files from one spoke to another.

Your topology might differ from this example, but the principles and commands in this scenario can be
readily extended to cater for any IBM WebSphere MQ network.

Planning the solution
Planning the transfer of files to or from a computer using the scripts. Includes understanding the security
model, prerequisites and licenses, installing and configuring IBM WebSphere MQ, and preparing your
users and groups.

To transfer a file from point A to point B, create a hub and spoke topology on a single computer. This
topology comprises the hub, an IBM WebSphere MQ queue manager, and two spokes each a file transfer
agent.

File transfer agents are Java processes that run on the computer and transfer files to and from other
agents. In this scenario, define a file transfer that uses these file transfer agents to move a sample file
from one location to another through two mechanisms:

1. By using the graphical IBM WebSphere MQ Explorer.
2. By way of the command line.

The scenario assumes that you have a Windows system. For a UNIX system, substitute appropriate paths
and commands, and ensure that you have read and write access to all relevant directories. The scenario
also assumes that you have a basic understanding of what a queue manager does.

To transfer files to or from a computer, you must have a file transfer agent running on that computer. Every
agent connects to an IBM WebSphere MQ queue manager and uses IBM WebSphere MQ to communicate
with other agents. For more information, see WebSphere MQ Managed File Transfer topology overview.

IBM WebSphere MQ Version 7.5 has two sample scripts createHub and addSpoke that help you build
up a file transfer topology quickly and easily. Use these scripts to construct this topology from the hub

About IBM WebSphere MQ 145

outwards. The scripts are samples, and you can modify them to meet your own requirements. If you do
want to modify the scripts, copy them to a location in your own user directory first.

Sample scripts createHub and addSpoke are used to construct the topology.

When a transfer is started, you observe the file copied from one location to another. This simple scenario
can be achieved through a single file transfer agent that manages both the source and destination files.
However, two file transfer agents are used to provide you with a better example of how this setup works
before moving to a multiple computer topology.

Understanding the security model
The createHub and addSpoke scripts configure a file transfer topology with the following security
characteristics:

• Access to IBM WebSphere MQ is partitioned between three roles:

1. The IBM WebSphere MQ administrator who configures IBM WebSphere MQ and runs the createHub
and addSpoke scripts.

2. FTAGENTS who start, stop, and interact with agents.
3. FTUSERS who initiate file transfers.

For more information about configuring access, see Authorities for resources specific to WebSphere MQ
Managed File Transfer.

• All incoming connections from agents are mapped to a single user FTAGENT at the hub.
• Weak IP-based authentication is used to authenticate individual agents.

For clarity, the security model in the script is not fully hardened. You must understand your own topology
needs and security threats before using these scripts in production. You must therefore consider whether
to address the following potential vulnerabilities and recommendations:

• Any user can impersonate any other. Consider finer granularity in the object access model for file
transfer resources.

• Any agent can impersonate any other. Consider stronger authentication, for example, TLS/SSL and finer
granularity in the object access model for file transfer resources.

• The interface between file system versus IBM WebSphere MQ security is not considered. Consider
implementing file sandboxing, and understand the impact of permissions of the agent's configuration
files. For more information about sandboxing, see Sandboxes.

146 IBM WebSphere MQ Overview

• The interface between the agent and the operating system is not described. Consider implementing file
sandboxing. For more details, see Sandboxes.

For more information about security, IBM WebSphere MQ, and file transfers, see What to do next.

Prerequisites and licenses
You need the following items:

• A test computer that satisfies the hardware and operating system prerequisites for IBM WebSphere
MQ, for details, see https://www.ibm.com/support/docview.wss?uid=swg27006467, with no existing
installation of IBM WebSphere MQ or IBM WebSphere MQ data.

• IBM WebSphere MQ Version 7.5. You can download a trial version from https://www.ibm.com/
developerworks/downloads/ws/wmq/.

Preparing your computer
Ensure your test computer satisfies the requirements for installation of IBM WebSphere MQ Version 7.5,
see Checking requirements.

Ensure that your computer is prepared appropriately for installation, see Verifying a local installation
using the command line .

Installing IBM WebSphere MQ Version 7.5
Install IBM WebSphere MQ Version 7.5 server with the following components: Server, IBM WebSphere
MQ Explorer, IBM WebSphere MQ Advanced Managed File Transfer Agent, and IBM WebSphere MQ
Managed File Transfer Command Line Tools. For details, see Choosing what to install.

Decide how you want to administer IBM WebSphere MQ. You can administer IBM WebSphere MQ by:

• Setting up an appropriate environment using the setmqenv command. For more information, see
setmqenv.

• Calling fully qualified IBM WebSphere MQ administrative commands.

The scenario assumes that you are using a clean computer with no previous installations of IBM
WebSphere MQ or IBM WebSphere MQ File Transfer Edition installed. If not, you must determine whether
coexistence is supported or adjust the installation mechanism and configuration of environments. For
details, see Multiple installations.

Creating your users and groups
This security model assumes that you have created the following users and groups:

Users

• mqmAdmin

IBM WebSphere MQ administrator, that is, a member of the mqm group, or on Windows a member of the
Administrators group. You must create this user, and make it a member of the mqm group.

• ftuser

You must create this user, and make it a member of the FTUSERS group. To avoid the potential for
administrative level security acts on the queue manager, do not add this user to the mqm group.

• ftagent

You must create this user, and make it a member of the FTAGENTS group. To avoid the potential for
administrative level security acts on the queue manager, do not add this user to the mqm group.

Groups

• mqm

About IBM WebSphere MQ 147

https://www.ibm.com/support/docview.wss?uid=swg27006467
https://www.ibm.com/developerworks/downloads/ws/wmq/
https://www.ibm.com/developerworks/downloads/ws/wmq/

Automatically created as part of the IBM WebSphere MQ installation. Members of this group can
administer IBM WebSphere MQ and its resources.

• FTUSERS

You must create this group. Members of this group can initiate file transfers.
• FTAGENTS

You must create this group. Members of this group can start and stop file transfer agents which are the
endpoints that handle the transfers of files in your network.

Configuring IBM WebSphere MQ for file transfers
Configure IBM WebSphere MQ for file transfers by using the sample scripts createHub and addSpoke to
build the topology for the basic file transfer using scripts scenario.

Procedure
1. Identify a free port that remote agents (defined in later scenarios) can connect to, for example, 1414.
2. Identify a suitable name for a queue manager to act as the hub of the file transfer network, for

example, hubQM.
3. As the user mqmAdmin, from the IBM WebSphere MQ bin directory, <MQ_INSTALL_ROOT>/bin:

a) Create the hub.

Enter the following command:

<MQ_INSTALL_ROOT>\mqft\samples\scripts\createHub hubQmgr=hubQM hubPort=1414

b) Add the first agent spoke (in BINDINGS because it is local to the queue manager) calling the agent
AGENT1.

<MQ_INSTALL_ROOT>\mqft\samples\scripts\addSpoke agentName=AGENT1
hubQmgr=hubQM connectionMode=BINDINGS

c) Add the second agent spoke (in BINDINGS because it is local to the queue manager), calling the
agent AGENT2.

<MQ_INSTALL_ROOT>\mqft\samples\scripts\addSpoke agentName=AGENT2
hubQmgr=hubQM connectionMode=BINDINGS

4. As the user ftagent:
a) Start AGENT1 by entering the following command:

fteStartAgent -p hubQM AGENT1

If you configured more than one hub, the -p hubQM part of the command ensures that you pick up
the correct one. It is not needed for a single hub.

b) Start AGENT2 by entering the following command:

fteStartAgent -p hubQM AGENT2

c) List the agents to confirm they are running correctly.

fteListAgents -p hubQM

You see the following output:

Agent Name: Queue Manager Name: Status:
AGENT1 hubQM READY
AGENT2 hubQM READY

148 IBM WebSphere MQ Overview

Implementing the solution
Implementing the solution in this scenario involves the use of IBM WebSphere MQ Explorer to define and
initiate a file transfer. You can monitor transfer progress, and confirm its success by inspecting the file
system.

About this task
To avoid the need to configure IBM WebSphere MQ Explorer for the non-administrative user ftuser , run
this part of the scenario as the user mqmAdmin . If you want to enable this capability, see Security .

Procedure
1. Identify source file and target directory:

a) Create a sample file to transfer, for example, C:\start\myfile.txt
b) Identify an existing directory to transfer this file to, for example, C:\end\

2. As an administrator, mqmAdmin in this example, start IBM WebSphere MQ Explorer. Start the program
from the Start menu (or equivalent), or run the command MQExplorer. For more details, see
Launching WebSphere MQ Explorer .

3. In the Managed file transfer section, right click the configuration named hubQM and select Connect.
4. Under the Managed file transfer section in the IBM WebSphere MQ navigator, right-click on hubQM

and select New Transfer to start the New Transfer wizard

5. Use the menu to select AGENT1 as the source agent and AGENT2 as the destination agent.

About IBM WebSphere MQ 149

6. Click Next.

7. Click Add... to start selecting the files to transfer from AGENT1 to AGENT2 .
8. In the Source frame, click Browse and browse to the file identified earlier, for example,
C:\start\myFile.txt. Ensure the Remove source file if the transfer is successful checkbox
is checked.

9. In the Destination frame, select a Type of Directory, and then enter the destination directory you
identified earlier, for example, C:\end\.

150 IBM WebSphere MQ Overview

10. Click OK and then Finish and the transfer starts.
11. You can monitor transfer progress in the Current Transfer Progress tab at the bottom of IBM

WebSphere MQ Explorer:

12. You can also inspect the file system manually to confirm that the new file exists, for example,
C:\end\myfile.txt .

Using the command line to transfer a file
In this section, the flexibility of file transfers is demonstrated by showing you how to use the command
line to initiate a transfer. Although out of scope for this scenario, you can build on these principles and the
Ant scripting technology to define and implement much more powerful file transfer scenarios.

Procedure
1. Return the file you transferred to its original location.
2. As the user ftuser, enter the fteCreateTransfer command to initiate the transfer of your file from
C:\start\myfile.txt to C:\end\myfile.txt :

fteCreateTransfer -sa AGENT1 -sm hubQM -sd delete -da AGENT2 -dm hubQM -w -dd C:\end\
C:\start\myfile.txt

• -sa AGENT1 defines the source agent (that is, the agent from which the file is transferred) to be
AGENT1.

• -sm hubQM defines the queue manager to which the source agent, AGENT1, connects.
• -sd delete specified that the source file is deleted after a successful transfer.

About IBM WebSphere MQ 151

• -da AGENT2 defines the destination agent (that is, the agent to which the file is transferred) to be
AGENT2.

• -w requests the fteCreateTransfer command to wait for confirmation of its success.
• -dd C:\end\ defines the destination directory to be C:\end\.
• C:\start\myfile.txt defines the file to transfer.

For more information, see fteCreateTransfer (create new file transfer).
3. Confirm the file transfer is successful by inspecting the file transfer log in IBM WebSphere MQ

Explorer, or by manually inspecting the file system.

What to do next
You might want to explore more features of file transfer capability through external media. See:

• “Two computer file transfer using the scripts” on page 158
• Securing your environment further. Your own requirements might mandate a different access model

to the one used in this scenario. For more information about best practices in this area, see Securing
WebSphere MQ File Transfer Edition V7 .

Basic file transfer in detail
You can transfer files in a number of different ways using IBM WebSphere MQ Version 7.5. Read the topics
in this section to understand what is covered in this scenario, the reasons why a business might want to
follow the scenario, the user roles involved, and an overview of the solution proposed by the scenario.

Transferring files with control, reliably, and with auditing can be a fundamental requirement in your
enterprise. IBM WebSphere MQ Version 7.5 provides a Managed File Transfer capability as part of its
integrated messaging platform. You can use Managed File Transfer capability to integrate files seamlessly
into your messaging infrastructure, either through basic file transfers, or fully fledged participants in
messaging.

This scenario provides you with a basic understanding of how to integrate files into the simplest IBM
WebSphere MQ messaging topology. Work through this basic IBM WebSphere MQ scenario designed to
move a file from one location to another. Although this initial scenario is restricted to a single computer,
it gives you experience of configuring the environment and forms an important foundation for later
scenarios. This scenario demonstrates how to use IBM WebSphere MQ to transfer files across a network,
and then shows how the Managed File Transfer component can address real business problems.

You should have a basic understanding of IBM WebSphere MQ, specifically, the notion of a queue
manager and basic configuration and administration of IBM WebSphere MQ through to using commands
such as runmqsc and the IBM WebSphere MQ Explorer.

Overview
IBM WebSphere MQ can be used to initiate and track the transfer of a file from one location to another on
a single computer. It gives you the experience of installing, configuring, and using managed file transfer
capability in IBM WebSphere MQ Version 7.5, and therefore an understanding of how you can use it to
begin to address real business problems with file transfers.

152 IBM WebSphere MQ Overview

https://www.ibm.com/developerworks/websphere/library/techarticles/0902_wyatt/0902_wyatt.html
https://www.ibm.com/developerworks/websphere/library/techarticles/0902_wyatt/0902_wyatt.html

For more details about planning file transfer capability, see WebSphere MQ Managed File Transfer
introduction.

Planning the solution
Transferring files to or from a computer, file transfer agents, prerequisites, licenses, preparing your
computer, and installing and configuring IBM WebSphere MQ for file transfers for the basic file transfer
scenario.

To transfer a file from point A to point B, define a IBM WebSphere MQ queue manager and two file
transfer agents. You already understand what a queue manager is, however file transfer agents might be
new to you. File transfer agents are Java processes that run on the computer and transfer files to and
from other agents. In this scenario, define a file transfer that uses these file transfer agents to move a
sample file from one location to another through two mechanisms:

1. By using the graphical IBM WebSphere MQ Explorer.
2. By way of the command line.

The walkthrough assumes that you have a Windows system. For a UNIX system, substitute appropriate
paths and commands, and ensure that you have read and write access to all relevant directories. It is also
assumed you have a basic understanding of what a queue manager does.

To transfer files to or from a computer, you must have a file transfer agent running on that computer. Every
agent connects to a IBM WebSphere MQ queue manager and uses IBM WebSphere MQ to communicate
with other agents. For more information, see WebSphere MQ Managed File Transfer topology overview.

This scenario can use a single file transfer agent managing both the source and destination files. However,
this example uses two file transfer agents to provide you with a more realistic understanding of how file
transfers work in realistic situations that typically span networks.

About IBM WebSphere MQ 153

This diagram shows how IBM WebSphere MQ is used to demonstrate a basic file transfer. Observe the file
copied from one location to another.

Prerequisites and licenses
You require the following items:

• A test computer that satisfies the hardware and operating system prerequisites for IBM WebSphere
MQ, for details, see https://www.ibm.com/support/docview.wss?uid=swg27006467, with no existing
installation of IBM WebSphere MQ or IBM WebSphere MQ data.

• IBM WebSphere MQ Version 7.5. You can download a trial version from https://www.ibm.com/
developerworks/downloads/ws/wmq/.

Prepare your computer
Ensure your test computer satisfies the requirements for installation of IBM WebSphere MQ Version 7.5,
see Checking requirements .

Ensure that your computer is prepared appropriately for installation, see Verifying a local installation
using the command line.

Configure WebSphere MQ for file transfers
1. Create a queue manager hubQM.

Enter the command crtmqm hubQM. For more details, see crtmqm .
2. Start the queue manager hubQM.

Enter the command strmqm hubQM. For more details, see strmqm .
3. Configure your queue manager hubQM to coordinate file transfers

a. Create the properties files and the coordination queue manager directory for IBM WebSphere MQ
by entering the following command:

fteSetupCoordination -coordinationQMgr hubQM

This command creates properties files and the coordination queue manager directory for IBM
WebSphere MQ. In this case, hubQM acts as the coordination queue manager broadcasting audit
and file transfer information. If the fteSetupCoordination command is not available, it means

154 IBM WebSphere MQ Overview

https://www.ibm.com/support/docview.wss?uid=swg27006467
https://www.ibm.com/developerworks/downloads/ws/wmq/
https://www.ibm.com/developerworks/downloads/ws/wmq/

that you installed WebSphere MQ with the default settings. Installing the extra packages (for
example, Managed File Transfer) fixes this issue.

For more information, see IBM WebSphere MQ Managed File Transfer topology overview and
fteSetupCoordination (set up coordination details).

b. Configure hubQM to act as the coordination queue manager by entering the following command:

runmqsc hubQM < <filepath from previous statement>

c. Define which queue manager handles file transfer commands, in this case, hubQM.

fteSetupCommands -connectionQMgr hubQM

For more information, see fteSetupCommands (create the command.properties file).
4. Create your first file transfer agent AGENT1.

a. Prepare a file transfer agent AGENT1, including MQSC scripts that you must run against the queue
manager that the agent connects to, in this case, hubQM by entering the following command:

fteCreateAgent -agentName AGENT1 -agentQMgr hubQM

For more information, see fteCreateAgent (create a WebSphere MQ Managed File Transfer agent).
b. Configure hubQM to handle the agent you created.

runmqsc hubQM < <location of AGENT1_create.mqsc>

The location of the file depends on where you installed IBM WebSphere MQ.
5. Create your second file transfer agent AGENT2.

fteCreateAgent -agentName AGENT2 -agentQMgr hubQM

runmqsc hubQM < <location of AGENT2_create.mqsc>

6. Start AGENT1.

fteStartAgent AGENT1

For more information, see fteStartAgent (start a WebSphere MQ Managed File Transfer agent).
7. Start AGENT2.

fteStartAgent AGENT2

Implementing the solution
Implementing the solution in this scenario involves using IBM WebSphere MQ Explorer to define and
initiate a file transfer. You can monitor transfer progress, and confirm its success by inspecting the file
system.

Procedure
1. Identify source file and target directory:

a) Create a sample file to transfer, for example, C:\start\myfile.txt
b) Identify an existing directory to transfer this file to, for example, C:\end\

2. Start IBM WebSphere MQ Explorer. Start the program from the Start menu (or equivalent), or run the
command MQExplorer. For more details, see Launching IBM WebSphere MQ Explorer.

3. Click Managed file transfer in the IBM WebSphere MQ Explorer navigator, right-click on QM, and
select New Transfer to start the New Transfer wizard.

About IBM WebSphere MQ 155

4. Select AGENT1 as the source agent in the From section:

5. Enter the path to the file you created earlier, for example, C:\start\myfile.txt.

6. Select AGENT2 as the destination agent in the To section.
7. Enter the destination directory you identified earlier, for example, C:\end\.

8. Click Finish now and the transfer starts.

156 IBM WebSphere MQ Overview

9. You can monitor transfer progress in the Current transfer progress tab in IBM WebSphere MQ
Explorer:

10. You can also inspect the file system manually to confirm that the new file exists, for example,
C:\end\myfile.txt.

Using the command line to transfer a file
The flexibility of file transfers can be demonstrated by using the command line to initiate a transfer.
Although out of scope for this scenario, you can build on these principles and the Ant scripting technology
to define and implement much more powerful file transfer scenarios.

Procedure
1. Delete the transferred file from the earlier demonstration, for example, C:\end\myfile.txt.
2. Use the fteCreateTransfer command to initiate the transfer of your file from
C:\start\myfile.txt to C:\end\myfile.txt:

fteCreateTransfer -sa AGENT1 -sm hubQM -da AGENT2 -dm hubQM -w -dd C:\end\
C:\start\myfile.txt

• -sa AGENT1 defines the source agent (that is, the agent from which the file is transferred) to be
AGENT1.

• -sm hubQM defines the queue manager to which the source agent, AGENT1, connects.
• -da AGENT2 defines the destination agent (that is, the agent to which the file is transferred) to be

AGENT2.
• -w requests the fteCreateTransfer command to wait for confirmation of its success.
• -dd C:\end\ defines the destination directory to be C:\end\.
• C:\start\myfile.txt defines the file to transfer.

For more information, see fteCreateTransfer (create new file transfer).
3. Confirm the file transfer is successful by inspecting the file transfer log in IBM WebSphere MQ

Explorer, or by manually inspecting the file system.

What to do next
You might want to explore more features of file transfer capability through external media. See:

• “Two computer file transfer using the scripts” on page 158
• Securing your environment further. Your own requirements might mandate a different access model

to the one used in this scenario. For more information about best practices in this area, see https://
www.ibm.com/developerworks/websphere/library/techarticles/0902_wyatt/0902_wyatt.html.

About IBM WebSphere MQ 157

https://www.ibm.com/developerworks/websphere/library/techarticles/0902_wyatt/0902_wyatt.html
https://www.ibm.com/developerworks/websphere/library/techarticles/0902_wyatt/0902_wyatt.html

Two computer file transfer using the scripts
Extends the basic file transfer using the scripts scenario to integrate file transfers into a multiple-
computer IBM WebSphere MQ messaging topology.

After building a simple demonstration of the Managed File Transfer capability (see “Basic file transfer
using the scripts” on page 144), you are now familiar with the basic principles behind managed file
transfers. You can recognize that on a single computer this capability offers little benefit, so now you
extend the scenario to explore how to integrate file transfers into a multiple-computer IBM WebSphere
MQ messaging topology.

Begin to access the benefits offered by the underpinning IBM WebSphere MQ technology, that is, reliable
once-and-once only delivery of files. To achieve this, the topology is extended to include a second
computer that participates in file transfers. In this scenario, you install and configure the separately
available Managed File Transfer Agent, and you begin to understand security considerations that apply
to a multiple computer file transfer topology. This scenario concludes by demonstrating a file transfer
from one computer to the next, providing strong foundations for the next scenario in which you can add
auditing capabilities, thus showing why this is a managed file transfer capability.

It is assumed that you completed the tasks given in “Basic file transfer using the scripts” on page 144.

Overview
In this scenario, the hub and spoke topology configured in the “Basic file transfer using the scripts” on
page 144 scenario is extended to include a second computer, computer 2. Computer 2 has the Managed
File Transfer Agent and Command Line Tools installed; there is not the prerequisite of a local IBM
WebSphere MQ server installation on this second computer. Such a model is popular in hub and spoke
solutions, where multiple Managed File Transfer Agents interact over client connections to a centralized
IBM WebSphere MQ queue manager without the need for IBM WebSphere MQ server installations, and
associated licenses, on each spoke. Other topologies are supported, and your own topology depends on
your specific needs and licensing or entitlement. AGENT2 is retired in favor of using AGENT1 alone to
handle transfers on this computer.

This diagram shows hub and spoke topology spanning two computers. AGENT1 and AGENT2 are
configured to use bindings to the (local) hub, while AGENT3 connects over a client connection. AGENT2
is disabled because it plays no further role in the scenario. AGENT1 handles all file transfer activity on
computer 1. Ensure that you understand the security model and its limitations, for details, see the “Basic

158 IBM WebSphere MQ Overview

file transfer using the scripts” on page 144 scenario. When configured, this topology is used to transfer a
file from computer 1 to computer 2.

This diagram shows the file transfer route that is demonstrated. Again, the underlying file transfer takes
place over reliable and active IBM WebSphere MQ connections. In this example, assume that computer
1 is a Windows computer and that computer 2 is a Linux computer. You might want to use alternative
platforms and architectures, for a full list of supported platforms, see https://www.ibm.com/support/
docview.wss?uid=swg27006467#7.1.

Planning the solution
Describes transferring files to or from a computer, file transfer agents, prerequisites, licenses, preparing
your computer, and configuring IBM WebSphere MQ for the two computer file transfers using the scripts
scenario.

Prerequisites
You need the following items:

• Computer 1, a working configuration from “Basic file transfer using the scripts” on page 144.
• Computer 2, a second test computer that satisfies the hardware and operating system prerequisites

for IBM WebSphere MQ Version 7.5. For more information, see https://www.ibm.com/support/
docview.wss?uid=swg27006467.

• IBM WebSphere MQ Version 7.5. You can download a trial version from https://www.ibm.com/
developerworks/downloads/ws/wmq/.

• Knowledge of the IP addresses of computer 1 and computer 2, in nnn.nnn.nnn.nnn format.

Install IBM WebSphere MQ Version 7.5
Install IBM WebSphere MQ Version 7.5 server with the following components: Server, IBM WebSphere
MQ Explorer, IBM WebSphere MQ Advanced Managed File Transfer Agent, and IBM WebSphere MQ
Managed File Transfer Command Line Tools. For details, see Choosing what to install.

Decide how you want to administer IBM WebSphere MQ. You can administer IBM WebSphere MQ by:

About IBM WebSphere MQ 159

https://www.ibm.com/support/docview.wss?uid=swg27006467#7.1
https://www.ibm.com/support/docview.wss?uid=swg27006467#7.1
https://www.ibm.com/support/docview.wss?uid=swg27006467
https://www.ibm.com/support/docview.wss?uid=swg27006467
https://www.ibm.com/developerworks/downloads/ws/wmq/
https://www.ibm.com/developerworks/downloads/ws/wmq/

• Setting up an appropriate environment using the setmqenv command. For more information, see
setmqenv.

• Calling fully qualified IBM WebSphere MQ administrative commands.

Prepare your users and groups
This security model assumes that you have the following groups and users:

Groups

• mqm

Automatically created as part of the IBM WebSphere MQ installation. Members of this group can
administer IBM WebSphere MQ and its resources.

• FTUSERS

You must create this group. Members of this group can initiate file transfers.
• FTAGENTS

You must create this group. Members of this group can start and stop file transfer agents which are the
endpoints that handle the transfers of files in your network.

Users

• mqmAdmin

IBM WebSphere MQ administrator, that is, a member of the mqm group, or on Windows a member of the
Administrators group.

• ftuser

You must create this user, and make it a member of the FTUSERS group. Do not add this user to the
mqm group, to avoid the potential for administrative security acts on the queue manager.

• ftagent

You must create this user, and make it a member of the FTAGENTS group. Do not add this user to the
mqm group, to avoid the potential for administrative security acts on the queue manager.

Add a new agent AGENT3 as a spoke on computer 2
Prepare computer 2 to support the extended topology for the IBM WebSphere MQ two computer file
transfers using the scripts scenario.

About this task
Use the addSpoke sample script again from computer 1, defining an agent spoke that attaches over a
client connection. The addSpoke command finishes by presenting you with a set of commands to run
from the IBM WebSphere MQ installation on computer 2.

Procedure
1. On computer 1, as user mqmAdmin, run the addspoke command from IBM WebSphere MQ bin

directory <MQ_INSTALL_ROOT>\bin.

<MQ_INSTALL_ROOT>\mqft\samples\scripts\addSpoke agentName=AGENT3
hubQmgr=hubQM connectionMode=CLIENT agentIPAddress=<IP address of computer 2>
hubIPAddress=<IP address of computer 1> hubPort=1414

2. On computer 2, as user mqmAdmin, run the commands output by the addSpoke command from
computer 1, for example:
a) fteSetupCoordination -coordinationQMgr hubQM-coordinationQMgrHost <IP
address of computer 1> -coordinationQMgrPort 1414 -coordinationQMgrChannel
FTE.USER.SVRCONN -f

160 IBM WebSphere MQ Overview

b) fteSetupCommands -p hubQM -connectionQMgr hubQM -connectionQMgrHost <IP
address of computer 1> -connectionQMgrPort 1414 -connectionQMgrChannel
FTE.USER.SVRCONN -f

c) fteCreateAgent -p hubQM -agentName AGENT3 -agentQMgr hubQM -agentQMgrHost
<IP address of computer 1> -agentQMgrPort 1414 -agentQMgrChannel
FTE.AGENT.SVRCONN -f

Note you do not need to run the generated MQSC scripts.
3. On computer 2, as user ftagent, start AGENT3

fteStartAgent -p hubQM AGENT3

4. On computer 2, as user ftagent, confirm the three agents are available (starting the agents on
computer 1 under user ftagent if needed).

fteListAgents -p hubQM

You see the following output:

Agent Name: Queue Manager Name: Status:

AGENT1 hubQM READY

AGENT2 hubQM READY

AGENT2 hubQM READY

Implementing the solution
Start the demonstration for the two computer file transfer using the scripts scenario by using IBM
WebSphere MQ to transfer a file. Monitor the transfer progress, and confirm its success by inspecting the
file system.

Procedure
1. Identify source file and target directory:

a) Create a sample file on computer 1 to transfer, for example, C:\start\myfile.txt
b) Identify an existing directory on computer 2 to transfer this file to, for example, C:\end\. Ensure

user ftagent has write access to the directory.
2. Start IBM WebSphere MQ Explorer on computer 1 as user mqmAdmin. Note as with the earlier

scenario, do this as an IBM WebSphere MQ administrator in the interests of focusing the scenario
around file transfers, rather than configuring IBM WebSphere MQ Explorer. Start the program from
the Start menu (or equivalent), or run the command MQExplorer. For more details, see Launching
WebSphere MQ Explorer.

3. Under the Managed file transfer section in the IBM WebSphere MQ navigator, right-click on hubQM
and select New Transfer to start the New Transfer wizard.

About IBM WebSphere MQ 161

4. Use the menu to select AGENT1 as the source agent and AGENT3 as the destination agent:

5. Click Next and then click Add... and for the source, enter the path to the file you want to transfer, for
example, C:\start\myfile.txt. Ensure the Remove source file if the transfer is successful check
box is checked.

6. Enter the destination directory. In this scenario, this destination is on a Linux platform, so use the
appropriate notation of /home/end/.

162 IBM WebSphere MQ Overview

7. Click OK and then Finish and the transfer starts.
8. You can monitor transfer progress in the Current Transfer Progress tab in IBM WebSphere MQ

Explorer.

:
9. You can also inspect the file system manually to confirm that the new file exists, for example, /
home/end/myfile.txt.

Using the command line to transfer a file
The flexibility of file transfers can be demonstrated by using the command line to initiate a transfer.
Although out of scope for this scenario, you can build on these principles and the Ant scripting technology
to define and implement much more powerful file transfer scenarios.

Procedure
1. Delete the transferred file from the earlier demonstration, for example, /home/end/myfile.txt,

and recreate it in its original location.
2. As use ftuser, use the fteCreateTransfer command from to initiate the transfer of your file from
C:\start\myfile.txt on computer 1 to /home/end/myfile.txt on computer 2:

fteCreateTransfer -sa AGENT1 -sm hubQM -da AGENT3 -dm hubQM -w -dd "/home/end/"
"C:\start\myfile.txt

3. Confirm the file transfer is successful by inspecting the file transfer log in IBM WebSphere MQ
Explorer, or by manually inspecting the file system.

About IBM WebSphere MQ 163

What to do next
For more details about IBM WebSphere MQ security, see Security .

You might want to explore more features of file transfer capability through external media.

• For details about adding audit capability to provide the managed aspect of managed file transfer, see
“Adding audit capability to managed file transfer” on page 172.

• For more details about:

– Triggering: Moving new files when they appear.
– Triggering: Configuring a single file's appearance to initiate transfer of multiple files.
– Scripting transfers using Apache Ant.

See https://www.ibm.com/developerworks/websphere/library/techarticles/1003_phillips/
1003_phillips.html.

• Your own requirements might mandate a different access model to the one used in this scenario. For
more information about best practices in securing your environment further, see https://www.ibm.com/
developerworks/websphere/library/techarticles/0902_wyatt/0902_wyatt.html.

Two computer file transfer in detail
Extends the basic file transfer scenario to integrate file transfers into a multiple-computer IBM
WebSphere MQ messaging topology.

After completing the simple demonstration of the Managed File Transfer capability (see “Basic file
transfer in detail” on page 152), you are now familiar with the basic principles behind managed file
transfers. You can recognize that on a single computer this capability offers little benefit, so now you
extend the scenario to explore how to integrate file transfers into a multiple-computer IBM WebSphere
MQ messaging topology.

Begin to access the benefits offered by the underpinning IBM WebSphere MQ technology, that is, reliable
once-and-once only delivery of files. To achieve this, the topology is extended to include a second
computer that participates in file transfers. In this scenario, you install and configure the separately
available Managed File Transfer Agent, and you begin to understand security considerations that apply
to a multiple computer file transfer topology. This scenario concludes by demonstrating a file transfer
from one computer to the next, providing strong foundations for the next scenario in which you can add
auditing capabilities, thus showing why this is a managed file transfer capability.

It is assumed that you completed the tasks given in “Basic file transfer in detail” on page 152.

Overview
In this scenario, you continue with the existing Windows computer configured in the basic file transfer
scenario. Agent2 is disabled because you use the single agent as the file transfer endpoint on this first
computer. On a second computer, you install the Managed File Transfer Agent; a local IBM WebSphere
MQ server installation is not a prerequisite on this second computer. Such a model is popular in hub
and spoke solutions, where multiple Managed File Transfer Agents interact over client connections to
a centralized IBM WebSphere MQ queue manager without the need for IBM WebSphere MQ server
installations, and associated licenses, on each spoke. Other topologies are supported, and your own
topology depends on your specific needs and licensing or entitlement.

164 IBM WebSphere MQ Overview

https://www.ibm.com/developerworks/websphere/library/techarticles/1003_phillips/1003_phillips.html
https://www.ibm.com/developerworks/websphere/library/techarticles/1003_phillips/1003_phillips.html
https://www.ibm.com/developerworks/websphere/library/techarticles/0902_wyatt/0902_wyatt.html
https://www.ibm.com/developerworks/websphere/library/techarticles/0902_wyatt/0902_wyatt.html

In a file transfer network, a single queue manager is selected to act as a single point in the network to
broadcast audit and file transfer information. In the earlier “Basic file transfer in detail” on page 152
scenario, a single queue manager was implicitly used as the coordination queue manager. In this scenario,
you continue to use the queue manager QM1 on computer 1 to act as the coordination queue manager,
and part of the configuration of computer 2 sets the environment to use this queue manager.

In this topology, the ability to initiate file transfers from computer 2 is not required, therefore do not
install the optional Managed File Transfer Command Line Tools component on this second computer.

It is important to note that although some basic security features are considered, the file transfer
topology is not secured to a level you might find appropriate. For a discussion on securing IBM
WebSphere MQ, and file transfers in particular, see https://www.ibm.com/developerworks/websphere/
library/techarticles/0902_wyatt/0902_wyatt.html.

When installed on the second computer, you create the actual agent Agent3, and then demonstrate the
solution by moving a file from computer 1 to computer 2.

The underlying file transfer takes place over reliable and performing IBM WebSphere MQ connections.
The tasks that follow show how to configure and appropriately secure these connections.

In this example, assume that computer 1 is a Windows computer and that computer 2 is a Linux
computer. You might want to use alternative platforms and architectures, for a full list of supported
platforms, see https://www.ibm.com/support/docview.wss?uid=swg27006467#7.1.

About IBM WebSphere MQ 165

https://www.ibm.com/developerworks/websphere/library/techarticles/0902_wyatt/0902_wyatt.html
https://www.ibm.com/developerworks/websphere/library/techarticles/0902_wyatt/0902_wyatt.html
https://www.ibm.com/support/docview.wss?uid=swg27006467#7.1

Planning the solution
Planning the two computer file transfer solution, including a description of the appropriate infrastructure,
and the groups and users you need to create.

Before you begin
You need the following items:

• A working configuration from the basic file transfer scenario, for details, see “Basic file transfer in
detail” on page 152.

• IBM WebSphere MQ Version 7.5. You can download a trial version from https://www.ibm.com/
developerworks/downloads/ws/wmq/.

• A second test computer that satisfies the hardware and operating system prerequisites for
IBM WebSphere MQ Version 7.5, for details, see https://www.ibm.com/support/docview.wss?
uid=swg27006467.

In this scenario, the second computer interacts with the queue manager over a client connection channel.
Using channel authentication records ensures:

• The incoming connection is authenticated as originating from the new computer that hosts a further
managed file transfer agent.

• The incoming request is mapped to a user that has appropriate access to managed file transfer
resources.

Sandboxing, a technique to restrict file transfers from manipulating particular areas of the file system, for
example, IBM WebSphere MQ configuration files, is not considered.

Procedure
On both computers:
1. Create the groups FTEUSERS and FTEAGENTS. For more details, see your operating system

instructions.
2. Create the user fteuser, and add it to the FTEAGENTS group.
3. Create the user fteagent, and add it to the FTEUSERS group.

The user fteuser initiates file transfers, and the user fteagent starts and stops agent processes.
These users are not members of the mqm (or Windows Administrators) group, and so helps harden the
topology against unwanted administration attacks. You can provide more granular security access by
defining specific users on an agent basis, for example, fteagent1, fteagent2.

Modify computer 1 to support the extended topology
Prepare computer 1 to support the extended topology for the IBM WebSphere MQ two computer file
transfer scenario.

About this task
In this task, you delete Agent2 because it is no longer needed. You then create and start a listener
to accept a client connection from the agent created on computer 2 and thus construct a simple IBM
WebSphere MQ network across the two computers. It is assumed computer 1 is running the Windows
operating system. If you are using a different platform to run this scenario, substitute the appropriate
platform-specific commands.

Procedure
1. Stop the agent Agent2.

fteStopAgent AGENT2

166 IBM WebSphere MQ Overview

https://www.ibm.com/developerworks/downloads/ws/wmq/
https://www.ibm.com/developerworks/downloads/ws/wmq/
https://www.ibm.com/support/docview.wss?uid=swg27006467
https://www.ibm.com/support/docview.wss?uid=swg27006467

For more details about the fteStopAgent command, see fteStopAgent (stop a WebSphere MQ
Managed File Transfer agent).

2. Delete the agent Agent2.

fteDeleteAgent AGENT2

runmqsc QM1 < <output>

For more details about the fteDeleteAgent command, see fteDeleteAgent (delete a WebSphere MQ
Managed File Transfer agent).

Configure IBM WebSphere MQ security so that a new file transfer agent configured on computer 2
can interact with the coordination queue manager, QM1. This new agent connects into QM1 over the
existing SYSTEM.DEF.SVRCONN channel. Your own security needs might differ, for further details on
hardening this topology, see What to do next.

3. Start the MQSC interface for QM1.

runmqsc QM1

4. Create two channels to handle incoming requests from users and agents.

DEFINE CHANNEL(FTE.USER.SVRCONN) CHLTYPE(SVRCONN)

DEFINE CHANNEL(FTE.AGENT.SVRCONN) CHLTYPE(SVRCONN)

5. Create a channel authentication record to allow a connection from computer 2 into QM1, assigning the
created user.

SET CHLAUTH('FTE.USER.SVRCONN') TYPE(ADDRESSMAP) ADDRESS('<IP address of computer2>')
USERSRC (MAP) MCAUSER('fteuser' DESCR('RUle to allow file transfer users to communicate')
ACTION(ADD)

SET CHLAUTH('FTE.AGENT.SVRCONN') TYPE(ADDRESSMAP) ADDRESS('<IP address of computer2>')
USERSRC(MAP) MCAUSER('fteagent') DESCR('Rule to allow file transfer agent processes to
communicate') ACTION(ADD)

For more details, see Channel authentication records.

The goal of this scenario is not to lock down and harden the topology, but to demonstrate a basic
file transfer. The implemented security model supports this demonstration, but you must understand
your own security threats and take appropriate actions where necessary. For discussions of options to
consider, see What to do next.

6. Identify a free port that can be used for network communications with IBM WebSphere MQ. Define a
listener LISTENER1 to use this free port, for example, 1414.

DEFINE LISTENER(LISTENER1) TRPTYPE(TCP) CONTROL(QMGR) PORT(1414)

7. Start the listener LISTENER1.

START LISTENER(LISTENER1)

8. Stop the MQSC interface for QM1.

end

9. Check that the FTEAGENTS and FTEUSERS groups have appropriate access to IBM WebSphere MQ
objects to do file transfer actions for an agent AGENT3 to be created on computer 2. You might want to
tailor this configuration to suit your own security requirements.

a. setmqaut -m QM1 -t qmgr -g FTEAGENTS +connect +inq
b. setmqaut -m QM1 -t qmgr -g FTEUSERS +connect
c. setmqaut -m QM1 -n "SYSTEM.FTE" -t q -g FTEAGENTS +get +put
d. setmqaut -m QM1 -n "SYSTEM.FTE.COMMAND.AGENT1" -t q -g FTEUSERS +put

About IBM WebSphere MQ 167

e. setmqaut -m QM1 -n "SYSTEM.FTE.COMMAND.AGENT1" -t q -g FTEAGENTS +setid
+get +put

f. setmqaut -m QM1 -n "SYSTEM.FTE.COMMAND.AGENT3" -t q -g FTEUSERS +put
g. setmqaut -m QM1 -n "SYSTEM.FTE.COMMAND.AGENT3" -t q -g FTEAGENTS +setid
+get +put

h. setmqaut -m QM1 -n "SYSTEM.FTE.DATA.AGENT1" -t q -g FTEAGENTS +get +put
i. setmqaut -m QM1 -n "SYSTEM.FTE.DATA.AGENT3" -t q -g FTEAGENTS +get +put
j. setmqaut -m QM1 -n "SYSTEM.FTE.EVENT.AGENT1" -t q -g FTEAGENTS +get +put

k. setmqaut -m QM1 -n "SYSTEM.FTE.EVENT.AGENT3" -t q -g FTEAGENTS +get +put
l. setmqaut -m QM1 -n "SYSTEM.FTE.REPLY.AGENT1" -t q -g FTEAGENTS +get +put

m. setmqaut -m QM1 -n "SYSTEM.FTE.REPLY.AGENT3" -t q -g FTEAGENTS +get +put
n. setmqaut -m QM1 -n "SYSTEM.FTE.STATE.AGENT1" -t q -g FTEAGENTS +get +put
+inq

o. setmqaut -m QM1 -n "SYSTEM.FTE.STATE.AGENT3" -t q -g FTEAGENTS +get +put
+inq

p. setmqaut -m QM1 -n "SYSTEM.FTE" -t topic -g FTEUSERS +sub
q. setmqaut -m QM1 -n "SYSTEM.FTE" -t topic -g FTEAGENTS +pub +sub
r. setmqaut -m QM1 -n "SYSTEM.DEFAULT.MODEL.QUEUE" -t q -g FTEUSERS +dsp
+browse +get +put

s. setmqaut -m QM1 -n "SYSTEM.DEFAULT.MODEL.QUEUE" -t q -g FTEAGENTS +dsp
+browse +get +put

For more details about the setmqaut command, see setmqaut.

For more details about granting authority to groups, see Group authorities for resources specific to
WebSphere MQ Managed File Transfer.

Prepare computer 2 for file transfers
Describes preparing computer 2 for file transfers for the IBM WebSphere MQ two computer file transfer
scenario.

About this task
This task assumes computer 2 is running the Linux operating system. If you are using a different platform
to run this scenario, you must substitute the appropriate platform-specific commands.

Procedure
1. Install IBM WebSphere MQ on each computer together with the Managed File Transfer Agent

component, and any appropriate prerequisite components, for example, Managed File Transfer
Command Line Tools. For details, see Choosing what to install .

This step assumes that you are using a clean computer with no previous installations of IBM
WebSphere MQ or IBM WebSphere MQ File Transfer Edition installed. If not, you must determine
whether coexistence is supported and adjust the installation mechanism or configuration of
environments appropriately, for details, see Multiple installations .

Installing the Managed File Transfer Command Line Tools component gives you the ability to define
and initiate transfers from computer 2 in addition to computer 1, as demonstrated in this scenario.

2. As a user in the mqm group, configure file transfers to use QM1 on computer 1 as a coordination
manager. Enter the following commands:

fteSetupCoordination -coordinationQMgr QM1 -coordinationQMgrHost <computer1_hostname>
-coordinationQMgrPort 1414 -coordinationQMgrChannel FTE.USER.SVRCONN

168 IBM WebSphere MQ Overview

You do not have to run the generated MQSC script because you ran it when you configured computer 1.

fteSetupCommands -connectionQMgr QM1 -connectionQMgrHost <computer1_hostname>
-connectionQMgrPort 1414 -connectionQMgrChannel FTE.USER.SVRCONN

For more information, see:

• WebSphere MQ Managed File Transfer topology overview
• fteSetupCoordination (set up coordination details)
• fteSetupCommands (create the command.properties file)

3. List the agents registered with QM1 to ensure that your configuration for client connectivity is correct.
Enter the following command:

fteListAgents

You will see the following output:

Agent Name: Queue Manager Name: Status:
AGENT1 QM1 Ready

4. Create the second file transfer agent AGENT3:

fteCreateAgent -agentName AGENT3 -agentQMgr QM1 -agentQMgrHost <computer1_hostname>
-agentQMgrPort 1414 -agentQMgrChannel FTE.AGENT.SVRCONN

Switch to computer 1 and enter the following command:

runmqsc QM1 < <AGENT3_create.mqsc>

5. Switch to computer 2, and as user fteagent start your new file transfer agent AGENT3.

fteStartAgent AGENT3

6. Optional: Switch to computer 1, and restart AGENT1 as the user fteagent rather than the privileged
IBM WebSphere MQ administrator user used in the first scenario.

7. Check that your configuration for client connectivity is correct by listing the agents registered with
QM1.

fteListAgents

You will see the following output:

Agent Name: Queue Manager Name: Status:
AGENT1 QM1 READY
AGENT3 QM1 READY

Implementing the solution
Implementing the solution in this scenario involves using IBM WebSphere MQ Explorer to define and
initiate a file transfer. You can monitor transfer progress, and confirm its success by inspecting the file
system.

Procedure
1. Identify source file and target directory:

a) Create a sample file on computer 1 to transfer, for example, C:\start\myfile.txt.
b) Identify an existing directory on computer 2 to transfer this file to, for example, /home/end/.

Ensure the user that started the agent has write access to that directory.
2. Start IBM WebSphere MQ Explorer on computer 1. Start the program from the Start menu (or

equivalent), or run the command MQExplorer. For more details, see Launching IBM WebSphere MQ
Explorer.

About IBM WebSphere MQ 169

3. Click Managed file transfer in the IBM WebSphere MQ Explorer navigator, right-click on QM, and
select New Transfer to start the New Transfer wizard.

4. Select AGENT1 as the source agent in the From section:

5. Enter the path to the file you created earlier, for example, C:\start\myfile.txt.

6. Select AGENT2 as the destination agent in the To section.
7. Enter the destination directory you identified earlier, for example, /home/end/.

170 IBM WebSphere MQ Overview

8. Click Finish now and the transfer starts.
9. You can monitor transfer progress in the Current transfer progress tab in IBM WebSphere MQ

Explorer:

10. You can also inspect the file system of computer 2 manually to confirm that the new file exists, for
example, /home/end/myfile.txt.

Using the command line to transfer a file
In this section, the flexibility of file transfers starts to be demonstrated by showing you how to use
the command line to initiate a transfer. Although out of scope for this scenario, you can build on these
principles and the Ant scripting technology to define and implement much more powerful file transfer
scenarios.

Procedure
1. Delete the transferred file from the earlier demonstration, for example, /home/end/myfile.txt.
2. As user fteuser, enter the fteCreateTransfer command to initiate the transfer of your file from
C:\start\myfile.txt on computer 1 to /home/end/myfile.txt on computer 2:

fteCreateTransfer -sa AGENT1 -sm QM1 -da AGENT3 -dm QM1 -w -dd "/home/end/"
"C:\start\myfile.txt"

3. Confirm the file transfer is successful by inspecting the file transfer log in IBM WebSphere MQ
Explorer, or by manually inspecting the file system.

What to do next
For more details about IBM WebSphere MQ security, see Security .

You might want to explore more features of file transfer capability through external media.

About IBM WebSphere MQ 171

• For details about adding audit capability to provide the managed aspect of managed file transfer, see
“Adding audit capability to managed file transfer” on page 172.

• For more details about:

– Triggering: Moving new files when they appear.
– Triggering: Configuring a single file's appearance to initiate transfer of multiple files.
– Scripting transfers using Apache Ant.

See https://www.ibm.com/developerworks/websphere/library/techarticles/1003_phillips/
1003_phillips.html.

• Your own requirements might mandate a different access model to the one used in this scenario. For
more information about best practices in securing your environment further, see https://www.ibm.com/
developerworks/websphere/library/techarticles/0902_wyatt/0902_wyatt.html.

Adding audit capability to managed file transfer
Use this scenario to configure a logger, and how to use this capability to provide an audit trail.

You built a demonstration of the Managed File Transfer capability across computers through the two
previous scenarios, “Basic file transfer in detail” on page 152 and “Two computer file transfer in detail”
on page 164, and you are familiar with configuring a file transfer topology. You see how IBM WebSphere
MQ Version 7.5 provides capabilities to log and audit file transfers thus providing the managed aspect of
Managed File Transfer.

It is assumed that you completed the second managed file transfer scenario according to the instructions
in the “Two computer file transfer in detail” on page 164 scenario.

Overview
In this scenario, you continue with the existing Windows and Linux topology you configured in “Two
computer file transfer in detail” on page 164, and you enable file logging capability. File logging capability
does not require installation of any other components or products, and therefore this scenario does not
require you to consider licensing or entitlement changes from the two computer file transfer scenario.

You can also implement a database logger, which might be more appropriate in a production environment,
for example, for scalability and failover. However, to keep this scenario simple and without the need

172 IBM WebSphere MQ Overview

https://www.ibm.com/developerworks/websphere/library/techarticles/1003_phillips/1003_phillips.html
https://www.ibm.com/developerworks/websphere/library/techarticles/1003_phillips/1003_phillips.html
https://www.ibm.com/developerworks/websphere/library/techarticles/0902_wyatt/0902_wyatt.html
https://www.ibm.com/developerworks/websphere/library/techarticles/0902_wyatt/0902_wyatt.html

for installation of other products, use the fully supported file logger. No further security aspects are
considered. Because this capability might be providing audit information, you might want to consider
hardening security around this.

In this scenario, a file transfer is initiated and details are captured in a log file.

Planning the solution
Describes prerequisites and license requirements for the IBM WebSphere MQ adding audit capability to
managed file transfer scenario.

In this scenario, you create a logger to audit file transfers. The logger finds most parallels with an agent
process, and so you can use the existing ftagent user to start and stop the logger. You might want to
create your own user or group to manage the logger.

Prerequisites and licenses
You need a working configuration from the “Two computer file transfer in detail” on page 164 scenario.

Implementing the solution
Modifying computer 1 to configure a file logger for the IBM WebSphere MQ adding audit capability to the
managed file transfer scenario.

Procedure
1. Check that the ftagent group has appropriate access to IBM WebSphere MQ objects when running

the logger process. Enter the following commands:

setmqaut -m hubQM -n "SYSTEM.FTE.LOG.RJCT.MYFILELOGGER" -t q -g FTAGENTS +put

setmqaut -m hubQM -n "SYSTEM.FTE.LOG.CMD.MYFILELOGGER" -t q -g FTAGENTS +get

For more details, see Authorities for the database logger.
2. As an IBM WebSphere MQ administrator, create a file logger, use hubQM as the logger queue manager.

About IBM WebSphere MQ 173

fteCreateLogger -loggerType FILE -loggerQMgr hubQM -fileLoggerMode LINEAR -fileSize 5MB
myFileLogger

runmqsc hubQM < <MYFILELOGGER_create.mqsc>

For more details, see fteCreateLogger (create a WebSphere MQ Managed File Transfer logger). You
might want to consider the use of a database logger in production.

3. As the user ftagent, start the logger.

fteStartLogger MYFILELOGGER

4. Confirm the logger started.

To confirm the logger started, inspect the file system. After you configured the file logger with
the commands above, the logs can be found in <MQ INSTALL>/mqft/logs/hubQM/loggers/
MYFILELOGGER/logs. Confirm output0.log contains the message "BFGDB0023I: The logger
has completed startup activities and is now running.".

5. Delete the transferred file from the earlier demonstration, for example, /home/end/myfile.txt.
6. As user ftuser, use the fteCreateTransfer (create new file transfer) command from computer

1 to start the transfer of your file from C:\start\myfile.txt on computer 1 to /home/end/
myfile.txt on computer 2. Enter the following command:

fteCreateTransfer -sa AGENT1 -sm hubQM -da AGENT3 -dm hubQM -w -dd "/home/end/"
"C:\start\myfile.txt"

7. Confirm that the logger captures this transfer, and understand the contents of the log entry.

a. Open the file <MQ INSTALL>/mqft/logs/hubQM/loggers/MYFILELOGGER/MYFILELOGGER-
XXXXXXXX.log

b. The log entry shows the transfer that you initiated, including the file source and destination
locations, and date, time, and requestor ID. For example:

2012-03-23T16:42:21;414d5120514d312020202020202020207a556b4f2000aa03;[TSTR]; ;
AGENT1;hubQM;STANDARD;AGENT3;hubQM;User;;;com.ibm.wmqfte.SourceAgent=AGENT1,
com.ibm.wmqfte.DestinationAgent=AGENT3, com.ibm.wmqfte.MqmdUser=User,
com.ibm.wmqfte.OriginatingUser=User, com.ibm.wmqfte.OriginatingHost=
dhcp-9-10-123-123.hursley.ibm.com., com.ibm.wmqfte.TransferId=
414d5120514d312020202020202020207a556b4f2000aa03, com.ibm.wmqfte.Priority=0;

2012-03-23T16:42:21;414d5120514d312020202020202020207a556b4f2000aa03;[TPRO];0 ;
C:\start\myfile.txt;51447;file;leave ;;;;;;/home/end/myfile.txt;51447;file;
 ;;;;;;;

2012-03-23T16:42:21;414d5120514d312020202020202020207a556b4f2000aa03;[TCOM];0 ;
AGENT1;hubQM;STANDARD;AGENT3;hubQM;STANDARD;User;;BFGRP0032I: The file transfer
request has successfully completed.;com.ibm.wmqfte.SourceAgent=AGENT1,
com.ibm.wmqfte.DestinationAgent=AGENT3, com.ibm.wmqfte.MqmdUser=User,
com.ibm.wmqfte.OriginatingUser=User, com.ibm.wmqfte.OriginatingHost=
dhcp-9-20-123-123.hursley.ibm.com.,
com.ibm.wmqfte.TransferId=414d5120514d312020202020202020207a556b4f2000aa03,
com.ibm.wmqfte.Priority=0;

Glossary
This glossary includes terms and definitions for IBM WebSphere MQ.

The following cross-references are used in this glossary:

• See refers you from a term to a preferred synonym, or from an acronym or abbreviation to the defined
full form.

• See also refers you to a related or contrasting term.

“A” on page 175 “B” on page 178 “C” on page 178 “D” on page 183 “E” on page 185 “F” on page 186 “G”
on page 187 “H” on page 188 “I” on page 188 “J” on page 190 “K” on page 191 “L” on page 191 “M” on
page 193 “N” on page 197 “O” on page 198 “P” on page 199 “Q” on page 202 “R” on page 203 “S” on
page 206 “T” on page 210 “U” on page 213 “V” on page 214 “W” on page 214 “X” on page 215

174 IBM WebSphere MQ Overview

A
abend reason code

A 4-byte hexadecimal code that uniquely identifies a problem with a program that runs on the z/OS
operating system..

abstract class
In object-oriented programming, a class that represents a concept; classes derived from it represent
implementations of the concept. An object cannot be constructed from an abstract class; that is, it
cannot be instantiated. See also parent class.

access control
In computer security, the process of ensuring that users can access only those resources of a
computer system for which they are authorized.

access control list (ACL)
In computer security, a list associated with an object that identifies all the subjects that can access
the object and their access rights.

accountability
The quality of being responsible for one's actions.

ACL
See access control list.

active log
A data set with a fixed size where recovery events are recorded as they occur. When the active log is
full, the contents of the active log are copied to the archive log.

active queue manager instance
The instance of a running multi-instance queue manager that is processing requests. There is only one
active instance of a multi-instance queue manager.

adapter
An intermediary software component that allows two other software components to communicate
with one another.

address space (ASID)
The range of addresses available to a computer program or process. Address space can refer to
physical storage, virtual storage, or both. See also allied address space, buffer pool.

administration bag
In the WebSphere MQ Administration Interface (MQAI), a type of data bag that is created for
administering WebSphere MQ by implying that it can change the order of data items, create lists,
and check selectors within a message.

administrative topic object
An object that allows you to assign specific, non-default attributes to topics.

administrator command
A command used to manage WebSphere MQ objects, such as queues, processes, and namelists.

Advanced Program-to-Program Communication (APPC)
An implementation of the SNA LU 6.2 protocol that allows interconnected systems to communicate
and share the processing of programs.

advanced telemetry client
See telemetry advanced client.

affinity
An association between objects that have some relationship or dependency upon each other.

alert
A message or other indication that signals an event or an impending event.

alert monitor
In WebSphere MQ for z/OS, a component of the CICS adapter that handles unscheduled events
occurring as a result of connection requests to WebSphere MQ for z/OS.

About IBM WebSphere MQ 175

alias queue
A WebSphere MQ object, the name of which is an alias for a base queue or topic that is defined to the
local queue manager. When an application or a queue manager uses an alias queue, the alias name is
resolved and the requested operation is performed on the associated base object.

alias queue object
A WebSphere MQ object, the name of which is an alias for a base queue defined to the local queue
manager. When an application or a queue manager uses an alias queue, the alias name is resolved and
the requested operation is performed on the associated base queue.

allied address space
A z/OS address space that is connected to WebSphere MQ for z/OS.

ally
See allied address space.

alternate user authority
The ability of a user ID to supply a different user ID for security checks. When an application opens
a WebSphere MQ object, it can supply a user ID on the MQOPEN, MQPUT1, or MQSUB call that the
queue manager uses for authority checks instead of the one associated with the application.

alternate user security
On z/OS, the authority checks that are performed when an application requests alternate user
authority when opening a WebSphere MQ object.

APAR
See authorized program analysis report.

APF
See authorized program facility.

API-crossing exit
A user written program that is similar in concept to an API exit. It is supported only for CICS
applications on WebSphere MQ for z/OS.

API exit
A user-written program that monitors or modifies the function of an MQI call. For each MQI call
issued by an application, the API exit is invoked before the queue manager starts to process the call
and again after the queue manager has completed processing the call. The API exit can inspect and
modify any of the parameters on the MQI call.

APPC
See Advanced Program-to-Program Communication.

application-defined format
Application data in a message for which the user application defines the meaning. See also built-in
format.

application environment
The environment that includes the software and the server or network infrastructure that supports it.

application level security
The security services that are invoked when an application issues an MQI call.

application log
In Windows systems, a log that records significant application events.

application queue
A local queue which, when it has triggering set on and when the triggering conditions are met,
requires that trigger messages are written.

archive log
A data set on a storage device to which WebSphere MQ copies the contents of each active log data set
when the active log reaches its size limit. See also recovery log.

ARM
See automatic restart manager.

ASID
See address space.

176 IBM WebSphere MQ Overview

asymmetric key cryptography
A system of cryptography that uses two keys: a public key known to everyone and a private key known
only to the receiver or sender of the message. See also symmetric key cryptography.

asynchronous consumption
A process that uses a set of MQI calls that allow an application to consume messages from a set
of queues. Messages are delivered to the application by invoking a unit of code identified by the
application, passing either the message or a token representing the message.

asynchronous messaging
A method of communication between programs in which a program places a message on a message
queue, then proceeds with its own processing without waiting for a reply to its message. See also
synchronous messaging.

asynchronous put
A put of a message by an application, without waiting for a response from the queue manager.

attribute

1. In object oriented programming, a property of an object or class that can be distinguished distinctly
from any other properties. Attributes often describe state information.

2. A characteristic or trait of an entity that describes the entity; for example, the telephone number of
an employee is one of the employee attributes. See also entity.

authentication
A security service that provides proof that a user of a computer system is genuinely who that
person claims to be. Common mechanisms for implementing this service are passwords and digital
signatures.

authentication information object
An object that provides the definitions needed to check certificate revocation lists (CRLs) using LDAP
servers, in support for Secure Sockets Layer (SSL) security.

authority check
See authorization check.

authorization
The process of granting a user, system, or process either complete or restricted access to an object,
resource, or function.

authorization check
A security check that is performed when a user or application attempts to access a system resource;
for example, when an administrator attempts to issue a command to administer WebSphere MQ or
when an application attempts to connect to a queue manager.

authorization file
A file that provides security definitions for an object, a class of objects, or all classes of objects.

authorization service
In WebSphere MQ on UNIX and Linux systems and WebSphere MQ for Windows, a service that
provides authority checking of commands and MQI calls for the user identifier associated with the
command or call.

authorized program analysis report (APAR)
A request for correction of a defect in a supported release of a program supplied by IBM.

authorized program facility (APF)
In a z/OS environment, a facility that permits the identification of programs that are authorized to use
restricted functions.

automatic restart manager (ARM)
A z/OS recovery function that can automatically restart batch jobs and started tasks after they or the
system on which they are running end unexpectedly.

About IBM WebSphere MQ 177

B
backout

An operation that reverses all changes to resources made during the current unit of work. See also
commit.

bag
See data bag.

bar
A z/OS memory limit, which in 64-bit systems is set at 2GB. The bar separates storage below the
2-gigabyte address from storage above the 2-gigabyte address. The area above the bar is intended for
data; no programs run above the bar.

basic mapping support (BMS)
An interface between CICS and application programs that formats input and output display data
and routes multiple-page output messages without regard for control characters used by various
terminals.

behavior
In object-oriented programming, the functionality embodied within a method.

BMS
See basic mapping support.

Booch methodology
An object-oriented methodology that helps users design systems using the object-oriented paradigm.

bootstrap data set (BSDS)
A VSAM data set that contains an inventory of all active and archived log data sets known to
WebSphere MQ for z/OS, and a wrap-around inventory of all recent WebSphere MQ for z/OS activity.
The BSDS is required to restart the WebSphere MQ for z/OS subsystem.

browse
In message queuing, to copy a message without removing it from the queue. See also get, put.

browse cursor
In message queuing, an indicator used when browsing a queue to identify the message that is next in
sequence.

BSDS
See bootstrap data set.

buffer pool
An area of memory into which data pages are read and in which they are modified and held during
processing. See also address space.

built-in format
Application data in a message for which the queue manager defines the meaning. See also
application-defined format.

C
CA

See certificate authority.
CAF

See Client Attachment feature.
callback

A message consumer or an event handler routine.
CCDT

See client channel definition table.
CCF

See channel control function.

178 IBM WebSphere MQ Overview

CCSID
See coded character set identifier.

CDF
See channel definition file.

certificate authority (CA)
A trusted third-party organization or company that issues the digital certificates in response to a
certificate signing request. The certificate authority verifies the identity of the individuals who are
granted the unique certificate. See also Secure Sockets Layer.

certificate chain
A hierarchy of certificates that are cryptographically related to one another, starting with the personal
certificate and ending with root at the top of the chain.

certificate expiration
A digital certificate contains a date range when the certificate is valid. Outside the valid date range,
the certificate is said to be "expired".

certificate revocation list (CRL)
A list of certificates that have been revoked before their scheduled expiration date. Certificate
revocation lists are maintained by the certificate authority and used, during a Secure Sockets Layer
(SSL) handshake to ensure that the certificates involved have not been revoked.

certificate store
The Windows name for a key repository.

certificate signing request (CSR)
A request that contains the public key and subject distinguished name of a utility or organization. Sent
to the CA so that the CA issues a digital signature to that utility.

CF
See coupling facility.

CFSTRUCT
A WebSphere MQ object used to describe the queue manager's use of a Coupling Facility list structure

channel
A WebSphere MQ object that defines a communication link between two queue managers (message
channel) or between a client and a queue manager (MQI channel). See also message channel, MQI
channel.

channel callback
A mechanism that ensures that the channel connection is established to the correct machine. In
a channel callback, a sender channel calls back the original requester channel using the sender's
definition.

channel control function (CCF)
A program to move messages from a transmission queue to a communication link, and from a
communication link to a local queue, together with an operator panel interface to allow the setup
and control of channels.

channel definition file (CDF)
A file containing communication channel definitions that associate transmission queues with
communication links.

channel event
An event reporting conditions detected during channel operations, such as when a channel instance is
started or stopped. Channel events are generated on the queue managers at both ends of the channel.

channel exit program
A user-written program that is called from one of a defined number of places in the processing
sequence of a message channel agent (MCA).

channel initiator
A component of WebSphere MQ distributed queuing that monitors the initiation queue to see when
triggering criteria have been met and then starts the sender channel.

About IBM WebSphere MQ 179

channel listener
A component of WebSphere MQ distributed queuing that monitors the network for a startup request
and then starts the receiving channel.

checkpoint
A place in a program at which a check is made, or at which a recording of data is made to allow the
program to be restarted in case of interruption.

CI
See control interval.

CipherSpec
The combination of encryption algorithm and hash function applied to an SSL message after
authentication completes.

cipher suite
The combination of authentication, key exchange algorithm, and the Secure Sockets Layer (SSL)
cipher specification used for the secure exchange of data.

ciphertext
Data that has been encrypted. Ciphertext is unreadable until it has been converted into plaintext
(decrypted) with a key. See also cleartext.

circular logging
In WebSphere MQ on UNIX and Linux systems and WebSphere MQ for Windows, the process of
keeping all restart data in a ring of log files. See also linear logging.

CL
See Command Language.

class
In object-oriented design or programming, a model or template that can be used to create objects
with a common definition and common properties, operations, and behavior. An object is an instance
of a class.

class hierarchy
The relationships between classes that share a single inheritance.

class library
In object-oriented programming, a collection of prewritten classes or coded templates, any of which
can be specified and used by a programmer when developing an application.

cleartext
A string of characters sent over a network in readable form. They may be encoded for the purposes of
compression, but can easily be decoded. See also ciphertext.

client
A runtime component that provides access to queuing services on a server for local user applications.
The queues used by the applications reside on the server. See also WebSphere MQ MQI client,
WebSphere MQ Java client, WebSphere MQ fully-managed .NET client.

client application
An application, running on a workstation and linked to a client, that gives the application access to
queuing services on a server.

Client Attachment feature (CAF)
An option that supports the attachment of clients to z/OS.

client channel definition table (CCDT)
A file that contains one or more client-connection channel definitions.

client-connection channel type
The type of MQI channel definition associated with a WebSphere MQ client. See also server-
connection channel type.

CLUSRCVR
See cluster-receiver channel.

CLUSSDR
See cluster-sender channel.

180 IBM WebSphere MQ Overview

cluster
In WebSphere MQ, a group of two or more queue managers on one or more computers, providing
automatic interconnection, and allowing queues and topics to be advertised among them for load
balancing and redundancy.

cluster queue
A local queue that is hosted by a cluster queue manager, and defined as a target for messages being
put from an application connected to any queue manager within the cluster. All applications retrieving
messages must be locally connected.

cluster queue manager
A queue manager that is a member of a cluster. A queue manager can be a member of more than one
cluster.

cluster-receiver channel (CLUSRCVR)
A channel on which a cluster queue manager can receive messages from other queue managers in the
cluster, and cluster information from the repository queue managers.

cluster-sender channel (CLUSSDR)
A channel on which a cluster queue manager can send messages to other queue managers in the
cluster, and cluster information to the repository queue managers.

cluster topic
An administrative topic that is defined on a cluster queue manager and made available to other queue
managers in the cluster.

cluster transmission queue
A transmission queue that holds all messages from a queue manager destined for another queue
manager that is in the same cluster. The queue is called SYSTEM.CLUSTER.TRANSMIT.QUEUE.

CMS key database
A CMS key database is the format of the Database supported by Windows systems, UNIX systems,
Linux, and the clients of those platforms. Files ending with .kdb are CMS format. The .kdb files
contain the certificates and the keys.

coded character set identifier (CCSID)
A 16-bit number that includes a specific set of encoding scheme identifiers, character set identifiers,
code page identifiers, and other information that uniquely identifies the coded graphic-character
representation.

coexistence
The ability of two or more different versions of WebSphere MQ to function on the same computer.

command
A statement used to initiate an action or start a service. A command consists of the command name
abbreviation, and its parameters and flags if applicable.

command bag
In the MQAI, a type of bag that is created for administering WebSphere MQ objects, but cannot
change the order of data items or create lists within a message.

command event
A notification that an MQSC or PCF command has been executed successfully.

Command Language (CL)
In WebSphere MQ for iSeries, a language that can be used to issue commands, either at the command
line or by writing a CL program.

command prefix

1. A 1- to 8-character command identifier. The command prefix distinguishes the command as
belonging to an application or subsystem rather than to z/OS.

2. In WebSphere MQ for z/OS, a character string that identifies the queue manager to which
WebSphere MQ for z/OS commands are directed, and from which WebSphere MQ for z/OS operator
messages are received.

About IBM WebSphere MQ 181

command server
The WebSphere MQ component that reads commands from the system-command input queue,
verifies them, and passes valid commands to the command processor.

commit
To apply all the changes made during the current unit of recovery (UR) or unit of work (UOW). After the
operation is complete, a new UR or UOW can begin.

common name (CN)
The component in a Distinguished Name (DN) attribute of an X.509 certificate that represents the
name normally associated with the owner of the certificate. For people, the CN is usually their
actual name. For web servers, the CN is the fully qualified host and domain name of the server. For
WebSphere MQ there are no specific requirements on this field, however many administrators use the
name of the queue manager.
See also Distinguished Name

completion code
A return code indicating how a message queue interface (MQI) call has ended.

confidentiality
The security service that protects sensitive information from unauthorized disclosure. Encryption is a
common mechanism for implementing this service.

configuration event
Notifications about the attributes of an object. The notifications are generated when the object is
created, changed, or deleted and also by explicit requests.

connection affinity
A channel attribute that specifies the client channel definition that client applications use to connect
to the queue manager, if multiple connections are available.

connection factory
A set of configuration values that produces connections that enable a Java EE component to access
a resource. Connection factories provide on-demand connections from an application to an enterprise
information system (EIS) and allow an application server to enroll the EIS in a distributed transaction.

connection handle
The identifier or token by which a program accesses the queue manager to which it is connected.

constructor
In object-oriented programming, a special method used to initialize an object.

consume
To remove a message from a queue and return its contents to the calling application.

consumer
An application that receives and processes messages. See also message consumer.

context security
On z/OS, the authority checks that are performed when an application opens a queue and specifies
that it will set the context in messages that it puts on the queue, or pass the context from messages
that it has received to messages that it puts on the queue.

control command
In WebSphere MQ on UNIX and Linux systems and WebSphere MQ for Windows, a command that can
be entered interactively from the operating system command line. Such a command requires only that
the WebSphere MQ product be installed; it does not require a special utility or program to run it.

control interval (CI)
A fixed-length area of direct access storage in which VSAM stores records and creates distributed free
space. The control interval is the unit of information that VSAM transmits to or from direct access
storage. A control interval always includes an integral number of physical records.

controlled shutdown
See quiesced shutdown.

182 IBM WebSphere MQ Overview

correlation identifier
A field in a message that provides a means of identifying related messages. Correlation identifiers are
used, for example, to match request messages with their corresponding reply message.

coupling facility (CF)
A special logical partition that provides high-speed caching, list processing, and locking functions in a
sysplex.

CPF
See command prefix.

CR (certificate request)
Synonym for certificate signing request.

CRL
See certificate revocation list.

cross-system coupling facility (XCF)
A component that provides functions to support cooperation between authorized programs running
within a sysplex.

cryptography
Protecting information by transforming it (encrypting it) into an unreadable format, called ciphertext.
Only those who possess a secret key can decipher (or decrypt) the message into plaintext.

D
DAE

See dump analysis and elimination.
daemon

A program that runs unattended to perform continuous or periodic functions, such as network control.
data bag

A container of object properties that the MQAI uses in administering queue managers. There are three
types of data bag: user (for user data), administration (for administration with assumed options), and
command (for administration with no options assumed).

data-conversion interface (DCI)
The WebSphere MQ interface to which customer- or vendor-written programs that convert application
data between different machine encodings and CCSIDs must conform. A part of the WebSphere MQ
Framework.

data-conversion service
A service that converts application data to the character set and encoding that are required by
applications on other platforms.

datagram
A form of asynchronous messaging in which an application sends a message, but does not require a
response. See also request/reply.

data integrity
The security service that detects whether there has been unauthorized modification of data, or
tampering. The service detects only whether data has been modified; it does not restore data to its
original state if it has been modified.

data item
In the MQAI, an item contained within a data bag. This can be an integer item or a character-string
item, and a user item or a system item.

DCE
See Distributed Computing Environment.

DCE principal
A user ID that uses the distributed computing environment.

DCI
See data-conversion interface.

About IBM WebSphere MQ 183

DCM
See Digital Certificate Manager.

dead-letter queue (DLQ)
A queue to which a queue manager or application sends messages that cannot be delivered to their
correct destination.

dead-letter queue handler
A utility that monitors a dead-letter queue (DLQ) and processes messages on the queue in accordance
with a user-written rules table. A sample dead letter queue handler is provided by WebSphere MQ.

decryption
The process of decoding data that has been encrypted into a secret format. Decryption requires a
secret key or password.

default object
A definition of an object (for example, a queue) with all attributes defined. If a user defines an object
but does not specify all possible attributes for that object, the queue manager uses default attributes
in place of any that were not specified.

deferred connection
A pending event that is activated when a CICS subsystem tries to connect to WebSphere MQ for z/OS
before it has started.

derivation
In object-oriented programming, the refinement or extension of one class from another.

destination

1. In JMS, an object that specifies where and how messages should be sent and received.

2. An end point to which messages are sent, such as a queue or topic.

Diffie-Hellman key exchange
A public, key-exchange algorithm that is used for securely establishing a shared secret over an
insecure channel.

digital certificate
An electronic document used to identify an individual, a system, a server, a company, or some other
entity, and to associate a public key with the entity. A digital certificate is issued by a certification
authority and is digitally signed by that authority.

Digital Certificate Manager (DCM)
On IBM i systems, the method of managing digital certificates and using them in secure applications
on the iSeries server. Digital Certificate Manager requests and processes digital certificates from
certification authorities (CAs) or other third-parties.

digital signature
Information that is encrypted with a private key and is appended to a message or object to assure
the recipient of the authenticity and integrity of the message or object. The digital signature proves
that the message or object was signed by the entity that owns, or has access to, the private key or
shared-secret symmetric key.

disconnect
To break the connection between an application and a queue manager.

distinguished name (DN)
A set of name-value pairs (such as CN=person name and C=country) that uniquely identifies an entity
in a digital certificate. Note that the Distinguished Name is unique only within the namespace of a
given certificate authority. It is entirely possible that certificates with identical distinguished names
can be issued by different certificate authorities. Therefore, ensure that a key repository contains
as few trusted root CA certificates as possible, preferably no more than one. See also certificate
authority, digital certificate, X509.

distributed application
In message queuing, a set of application programs that can each be connected to a different queue
manager, but that collectively comprise a single application.

184 IBM WebSphere MQ Overview

Distributed Computing Environment (DCE)
In network computing, a set of services and tools that supports the creation, use, and maintenance of
distributed applications across heterogeneous operating systems and networks.

distributed queue management
In message queuing, the setup and control of message channels to queue managers on other
systems.

distribution list
A list of queues to which a message can be put with a single statement.

DLQ
See dead-letter queue.

DN
See distinguished name.

dual logging
A method of recording WebSphere MQ for z/OS activity, where each change is recorded on two data
sets, so that if a restart is necessary and one data set is unreadable, the other can be used. See also
single logging.

dual mode
See dual logging.

dump analysis and elimination (DAE)
A z/OS service that enables an installation to suppress SVC dumps and ABEND SYSUDUMP dumps
that are not needed because they duplicate previously written dumps.

durable subscription
A subscription that is retained when a subscribing application's connection to the queue manager
is closed. When the subscribing application disconnects, the durable subscription remains in place
and publications continue to be delivered. When the application reconnects, it can use the same
subscription by specifying the unique subscription name. See also nondurable subscription.

dynamic queue
A local queue created when a program opens a model queue object.

E
eavesdropping

A breach of communication security in which the information remains intact, but its privacy is
compromised. See also impersonation, tampering.

Eclipse
An open-source initiative that provides independent software vendors (ISVs) and other tool
developers with a standard platform for developing plug-compatible application development tools.

encapsulation
In object-oriented programming, the technique that is used to hide the inherent details of an object,
function, or class from client programs.

encryption
In computer security, the process of transforming data into an unintelligible form in such a way that
the original data either cannot be obtained or can be obtained only by using a decryption process.

enqueue
To put a message or item in a queue.

entity
A user, group, or resource that is defined to a security service, such as RACF

environment variable
A variable that specifies how an operating system or another program runs, or the devices that the
operating system recognizes.

ESM
See external security manager.

About IBM WebSphere MQ 185

ESTAE
See extended specify task abnormal exit.

event data
In an event message, the part of the message data that contains information about the event (such as
the queue manager name, and the application that gave rise to the event). See also event header.

event header
In an event message, the part of the message data that identifies the event type of the reason code for
the event. See also event data.

event message
A message that contains information (such as the category of event, the name of the application that
caused the event, and queue manager statistics) relating to the origin of an instrumentation event in a
network of WebSphere MQ systems.

event queue
The queue onto which the queue manager puts an event message after it detects an event. Each
category of event (queue manager, performance, configuration, instrumentation, or channel event)
has its own event queue.

Event Viewer
A tool provided by Windows systems to examine and manage log files.

exception listener
An instance of a class that can be registered by an application and for which the onException()
method is called to pass a JMS exception to the application asynchronously.

exclusive method
In object-oriented programming, a method that is not intended to exhibit polymorphism; one with
specific effect.

extended specify task abnormal exit (ESTAE)
A z/OS macro that provides recovery capability and gives control to the user-specified exit routine for
processing, diagnosing an abend, or specifying a retry address.

external security manager (ESM)
A security product that performs security checking on users and resources. RACF is an example of an
ESM.

F
failover

An automatic operation that switches to a redundant or standby system in the event of a software,
hardware, or network interruption.

FAP
See Formats and Protocols.

FFDC
See first-failure data capture.

FFST
See First Failure Support Technology.

FFST file
See First Failure Support Technology file.

FIFO
See first-in first-out.

FIPS
United States Federal Information Processing Standards

first-failure data capture (FFDC)

1. A problem diagnosis aid that identifies errors, gathers and logs information about these errors, and
returns control to the affected runtime software.

186 IBM WebSphere MQ Overview

2. The IBM i implementation of the FFST architecture providing problem recognition, selective dump
of diagnostic data, symptom string generation, and problem log entry.

First Failure Support Technology (FFST)
An IBM architecture that defines a single approach to error detection through defensive programming
techniques. These techniques provide proactive (passive until required) problem recognition and a
description of diagnostic output required to debug a software problem.

First Failure Support Technology file (FFST file)
A file containing information for use in detecting and diagnosing software problems. In WebSphere
MQ, FFST files have a file type of FDC.

first-in first-out (FIFO)
A queuing technique in which the next item to be retrieved is the item that has been in the queue for
the longest time.

forced shutdown
A type of shutdown of the CICS adapter where the adapter immediately disconnects from WebSphere
MQ for z/OS, regardless of the state of any currently active tasks. See also quiesced shutdown.

format
In message queuing, a term used to identify the nature of application data in a message.

Formats and Protocols (FAP)
In message queuing, a definition of how queue managers communicate with each other, and of how
clients communicate with server queue managers.

Framework
In WebSphere MQ, a collection of programming interfaces that allow customers or vendors to
write programs that extend or replace certain functions provided in WebSphere MQ products. The
interfaces are the following: data conversion interface (DCI), message channel interface (MCI), name
service interface (NSI), security enabling interface (SEI), trigger monitor interface (TMI).

friend class
A class in which all member functions are granted access to the private and protected members of
another class. It is named in the declaration of another class and uses the keyword friend as a prefix
to the class.

FRR
See functional recovery routine.

full repository
A complete set of information about every queue manager in a cluster. This set of information is called
the repository or sometimes the full repository and is usually held by two of the queue managers in
the cluster. See also partial repository.

function
A named group of statements that can be called and evaluated and can return a value to the calling
statement.

functional recovery routine (FRR)
A z/OS recovery and termination manager that enables a recovery routine to gain control in the event
of a program interrupt.

G
gateway queue manager

A cluster queue manager that is used to route messages from an application to other queue managers
in the cluster.

generalized trace facility (GTF)
A z/OS service program that records significant system events such as I/O interrupts, SVC interrupts,
program interrupts, and external interrupts.

Generic Security Services API
See Generic Security Services application programming interface.

About IBM WebSphere MQ 187

Generic Security Services application programming interface (Generic Security Services API, GSS
API)

A common application programming interface (API) for accessing security services.
get

In message queuing, to use the MQGET call to remove a message from a queue and return its
contents to the calling application. See also browse, put.

globally defined object
On z/OS, an object whose definition is stored in the shared repository. The object is available to all
queue managers in the queue-sharing group. See also locally defined object.

global trace
A WebSphere MQ for z/OS trace option where the trace data comes from the entire WebSphere MQ for
z/OS subsystem.

global transaction
A recoverable unit of work performed by one or more resource managers in a distributed transaction
environment and coordinated by an external transaction manager.

GSS API
See Generic Security Services application programming interface.

GTF
See generalized trace facility.

H
handshake

The exchange of messages at the start of a Secure Sockets Layer session that allows the client to
authenticate the server using public key techniques (and, optionally, for the server to authenticate the
client) and then allows the client and server to cooperate in creating symmetric keys for encryption,
decryption, and detection of tampering.

hardened message
A message that is written to auxiliary (disk) storage so that the message is not lost in the event of a
system failure.

header
See message header.

heartbeat
A signal that one entity sends to another to convey that it is still active.

heartbeat flow
A pulse that is passed from a sending message channel agent (MCA) to a receiving MCA when there
are no messages to send. The pulse unblocks the receiving MCA, which would otherwise remain in a
wait state until a message arrived or the disconnect interval expired.

heartbeat interval
The time, in seconds, that is to elapse between heartbeat flows.

hierarchy
In publish/subscribe messaging topology, a local queue manager connected to a parent queue
manager.

HTTP
See Hypertext Transfer Protocol.

Hypertext Transfer Protocol (HTTP)
An Internet protocol that is used to transfer and display hypertext and XML documents on the web.

I
idenitity context

Information that identifies the user of the application that puts the message on a queue first.

188 IBM WebSphere MQ Overview

identification
The security service that enables each user of a computer system to be identified uniquely. A common
mechanism for implementing this service is to associate a user ID with each user.

identity context
Information that identifies the user of the application that first puts the message on a queue

IFCID
See instrumentation facility component identifier.

ILE
See Integrated Language Environment.

immediate shutdown
In WebSphere MQ, a shutdown of a queue manager that does not wait for applications to disconnect.
Current message queue interface (MQI) calls are allowed to complete, but new MQI calls fail after an
immediate shutdown has been requested. See also preemptive shutdown, quiesced shutdown.

impersonation
A breach of communication security in which the information is passed to a person posing as the
intended receiver or information is sent by a person posing as someone else. See also eavesdropping,
tampering.

inbound channel
A channel that receives messages from another queue manager.

in-built format
See built-in format.

index
In the WebSphere MQ Administration Interface (MQAI), a means of referencing data items.

in-doubt unit of recovery
The status of a unit of recovery for which a syncpoint has been requested but not yet confirmed.

inflight
The state of a resource or unit of recovery that has not yet completed the prepare phase of the
commit process.

inheritance
An object-oriented programming technique in which existing classes are used as a basis for creating
other classes. Through inheritance, more specific elements incorporate the structure and behavior of
more general elements.

initialization input data set
A data set used by WebSphere MQ for z/OS when it starts up.

initiation queue
A local queue on which the queue manager puts trigger messages.

initiator
In distributed queueing, a program that requests network connections on another system. See also
responder.

input parameter
A parameter of an MQI call in which you supply information when you make the call.

insertion order
In the WebSphere MQ Administration Interface (MQAI), the order that data items are placed into a
data bag.

installable service
In WebSphere MQ on UNIX and Linux systems and WebSphere MQ for Windows, additional
functionality provided as independent component. The installation of each component is optional:
in-house or third-party components can be used instead.

instance
A specific occurrence of an object that belongs to a class. See also object.

About IBM WebSphere MQ 189

instance data
In object-oriented programming, state information associated with an object.

instrumentation event
A way of monitoring queue manager resource definitions, performance conditions, and channel
conditions in a network of WebSphere MQ systems.

instrumentation facility component identifier (IFCID)
In Db2 for z/OS, a value that names and identifies a trace record of an event. As a parameter on
the START TRACE and MODIFY TRACE commands, it specifies that the corresponding event is to be
traced.

Integrated Language Environment (ILE)
A set of constructs and interfaces that provides a common runtime environment and run-time
bindable application program interfaces (APIs) for all ILE-conforming high-level languages.

Interactive Problem Control System (IPCS)
A component of MVS and z/OS that permits online problem management, interactive problem
diagnosis, online debugging for disk-resident abend dumps, problem tracking, and problem reporting.

Interactive System Productivity Facility (ISPF)
An IBM licensed program that serves as a full-screen editor and dialog manager. Used for writing
application programs, it provides a means of generating standard screen panels and interactive
dialogs between the application programmer and terminal user.

Intermediate certificate
A signer certificate that is not the root certificate.

interface
In object-oriented programming, an abstract model of behavior; a collection of functions or methods.

Internet Protocol (IP)
A protocol that routes data through a network or interconnected networks. This protocol acts as an
intermediary between the higher protocol layers and the physical network. See also Transmission
Control Protocol.

interprocess communication (IPC)
The process by which programs send messages to each other. Sockets, semaphores, signals, and
internal message queues are common methods of interprocess communication. See also client.

intersystem communication (ISC)
A CICS facility that provides inbound and outbound support for communication from other computer
systems.

IP
See Internet Protocol.

IPC
See interprocess communication.

IPCS
See Interactive Problem Control System.

ISC
See intersystem communication.

ISPF
See Interactive System Productivity Facility.

J
JAAS

See Java Authentication and Authorization Service.
Java Authentication and Authorization Service (JAAS)

In Java EE technology, a standard API for performing security-based operations. Through JAAS,
services can authenticate and authorize users while enabling the applications to remain independent
from underlying technologies.

190 IBM WebSphere MQ Overview

Java Message Service (JMS)
An application programming interface that provides Java language functions for handling messages.
See also Message Queue Interface.

Java runtime environment (JRE)
A subset of a Java developer kit that contains the core executable programs and files that constitute
the standard Java platform. The JRE includes the Java virtual machine (JVM), core classes, and
supporting files.

JMS
See Java Message Service.

JMSAdmin
An administration tool that enables administrators to define the properties of JMS objects and to store
them within a JNDI namespace

journal
A feature of OS/400 that WebSphere MQ for iSeries uses to control updates to local objects. Each
queue manager library contains a journal for that queue manager.

JRE
See Java runtime environment.

K
keepalive

A TCP/IP mechanism where a small packet is sent across the network at predefined intervals to
determine whether the socket is still working correctly.

Kerberos
A network authentication protocol that is based on symmetric key cryptography. Kerberos assigns
a unique key, called a ticket, to each user who logs on to the network. The ticket is embedded in
messages that are sent over the network. The receiver of a message uses the ticket to authenticate
the sender.

key authentication
See authentication.

key repository
Generic term for a store for digital certificates and their associated keys. Different types of key
repository include Certificate Management System (CMS), Java Keystore (JKS), Java Cryptography
Extension Keystore (JCEKS), Public Key Cryptography Standard 12 (PKCS12) Keystore, and RACF key
rings. When it is important to differentiate between key repository types, the documentation refers
to the key repository type by its specific name. In contexts applicable to multiple keystore types, the
generic term key repository is used.

key ring
In computer security, a file that contains public keys, private keys, trusted roots, and certificates.

key store
The place for a private key and corresponding personal certificate. See also trust store

L
last will and testament

An object that is registered by a client with a monitor, and used by the monitor if the client ends
unexpectedly.

LDAP
See Lightweight Directory Access Protocol.

Lightweight Directory Access Protocol (LDAP)
An open protocol that uses TCP/IP to provide access to directories that support an X.500 model and
that does not incur the resource requirements of the more complex X.500 Directory Access Protocol
(DAP). For example, LDAP can be used to locate people, organizations, and other resources in an
Internet or intranet directory.

About IBM WebSphere MQ 191

linear logging
In WebSphere MQ on UNIX and Linux systems, and WebSphere MQ for Windows, the process of
keeping restart data in a sequence of files. New files are added to the sequence as necessary. The
space in which the data is written is not reused. See also circular logging.

link level security
The security services that are invoked, directly or indirectly, by a message channel agent (MCA), the
communications subsystem, or a combination of the two working together.

listener
A program that detects incoming requests and starts the associated channel.

local definition of a remote queue
A WebSphere MQ object belonging to a local queue manager that defines the attributes of a queue
that is owned by another queue manager. In addition, it is used for queue-manager aliasing and
reply-to-queue aliasing.

locale
A setting that identifies language or geography and determines formatting conventions such as
collation, case conversion, character classification, the language of messages, date and time
representation, and numeric representation.

locally defined object
On z/OS, an object whose definition is stored on page set zero. The definition can be accessed only by
the queue manager that defined it. See also globally defined object.

local queue
A queue that belongs to the local queue manager. A local queue can contain a list of messages waiting
to be processed. See also remote queue.

local queue manager
The queue manager to which the program is connected and that provides message queuing services
to the program. See also remote queue manager.

log
In WebSphere MQ, a file recording the work done by queue managers while they receive, transmit,
and deliver messages, to enable them to recover in the event of failure.

log control file
In WebSphere MQ on UNIX and Linux systems, and WebSphere MQ for Windows, the file containing
information needed to monitor the use of log files (for example, their size and location, and the name
of the next available file).

log file
In WebSphere MQ on UNIX an Linux systems, and WebSphere MQ for Windows, a file in which all
significant changes to the data controlled by a queue manager are recorded. If the primary log files
become full, WebSphere MQ allocates secondary log files.

logical unit (LU)
An access point through which a user or application program accesses the SNA network to
communicate with another user or application program.

logical unit 6.2 (LU 6.2)
An SNA logical unit that supports general communication between programs in a distributed
processing environment.

logical unit of work identifier (LUWID)
A name that uniquely identifies a thread within a network. This name consists of a fully qualified
logical unit network name, a logical unit of work instance number, and a logical unit of work sequence
number.

log record
A set of data that is treated as a single unit in a log file.

log record sequence number (LRSN)
A unique identifier for a log record that is associated with a data sharing member. Db2 for z/OS uses
the LRSN for recovery in the data sharing environment.

192 IBM WebSphere MQ Overview

LRSN
See log record sequence number.

LU
See logical unit.

LU 6.2
See logical unit 6.2.

LU 6.2 conversation
In SNA, a logical connection between two transaction programs over an LU 6.2 session that enables
them to communicate with each other.

LU 6.2 conversation level security
In SNA, a conversation level security protocol that enables a partner transaction program to
authenticate the transaction program that initiated the conversation. LU 6.2 conversation level
security is also known as end user verification.

LU 6.2 session
In SNA, a session between two logical units (LUs) of type 6.2.

LU name
The name by which VTAM refers to a node in a network.

LUWID
See logical unit of work identifier.

M
managed destination

A queue that is provided by the queue manager, as the destination to which published messages
are to be sent, for an application that elects to use a managed subscription. See also managed
subscription.

managed handle
An identifier that is returned by the MQSUB call when a queue manager is specified to manage the
storage of messages that are sent to the subscription.

managed subscription
A subscription for which the queue manager creates a subscriber queue to receive publications
because the application does not require a specific queue to be used. See also managed destination.

marshalling
See serialization.

MCA
See message channel agent.

MCI
See message channel interface.

media image
In WebSphere MQ on UNIX and Linux systems and WebSphere MQ for Windows, the sequence of log
records that contain an image of an object. The object can be re-created from this image.

message

1. A communication sent from a person or program to another person or program.

2. In system programming, information intended for the terminal operator or system administrator.

message affinity
The relationship between conversational messages that are exchanged between two applications,
where the messages must be processed by a particular queue manager or in a particular sequence.

message channel
In distributed message queuing, a mechanism for moving messages from one queue manager to
another. A message channel comprises two message channel agents (a sender at one end and a
receiver at the other end) and a communication link. See also channel.

About IBM WebSphere MQ 193

message channel agent (MCA)
A program that transmits prepared messages from a transmission queue to a communication link, or
from a communication link to a destination queue. See also Message Queue Interface.

message channel interface (MCI)
The WebSphere MQ interface to which customer- or vendor-written programs that transmit messages
between a WebSphere MQ queue manager and another messaging system must conform. A part of
the WebSphere MQ Framework. See also Message Queue Interface.

message consumer

1. A program or function that gets and processes messages. See also consumer.

2. In JMS, an object that is created within a session to receive messages from a destination.

message context
Information about the originator of a message that is held in fields in the message descriptor. There
are two categories of context information: identity context and origin context.

message descriptor
Control information describing the message format and presentation that is carried as part of a
WebSphere MQ message. The format of the message descriptor is defined by the MQMD structure.

message exit
A type of channel exit program that is used to modify the contents of a message. Message exits
usually work in pairs, one at each end of a channel. At the sending end of a channel, a message exit is
called after the message channel agent (MCA) has got a message from the transmission queue. At the
receiving end of a channel, a message exit is called before the message channel agent (MCA) puts a
message on its destination queue.

message flow control
A distributed queue management task that involves setting up and maintaining message routes
between queue managers.

Message Format Service (MFS)
An IMS editing facility that allows application programs to deal with simple logical messages instead
of device-dependent data, thus simplifying the application development process.

message group
A logical group of related messages. The relationship is defined by the application putting the
messages, and ensures that the messages will be retrieved in the sequence put if both the producer
and consumer honor the grouping.

message handle
A reference to a message. The handle can be used to obtain access to the message properties of the
message.

message header
The part of a message that contains control information such as a unique message ID, the sender and
receiver of the message, the message priority, and the type of message.

message input descriptor (MID)
The Message Format Service (MFS) control block that describes the format of the data presented to
the application program. See also message output descriptor.

message listener
An object that acts as an asynchronous message consumer.

message output descriptor (MOD)
The Message Format Service (MFS) control block that describes the format of the output data
produced by the application program. See also message input descriptor.

message priority
In WebSphere MQ, an attribute of a message that can affect the order in which messages on a queue
are retrieved, and whether a trigger event is generated.

message producer
In JMS, an object that is created by a session and that is used to send messages to a destination.

194 IBM WebSphere MQ Overview

message property
Data associated with a message, in name-value pair format. Message properties can be used
as message selectors to filter publications or to selectively get messages from queues. Message
properties can be used to include business data or state information about processing without having
to alter the message body.

Message Queue Interface (MQI)
The programming interface provided by WebSphere MQ queue managers. The programming interface
allows application programs to access message queuing services. See also Java Message Service,
message channel agent, message channel interface.

message queue management (MQM)
In WebSphere MQ for HP Integrity NonStop Server, a facility that provides access to PCF command
formats and control commands to manage queue managers, queues, and channels.

message queuing
A programming technique in which each program within an application communicates with the other
programs by putting messages on queues.

message-retry
An option available to an MCA that is unable to put a message. The MCA can wait for a predefined
amount of time and then try to put the message again.

message segment
One of a number of segments of a message that is too large either for the application or for the queue
manager to handle.

message selector
In application programming, a variable-length string that is used by an application to register its
interest in only those messages whose properties satisfy the Structured Query Language (SQL) query
that the selection string represents.The syntax of a message selector is based on a subset of the
SQL92 conditional expression syntax.

message sequence numbering
A programming technique in which messages are given unique numbers during transmission over a
communication link. This enables the receiving process to check whether all messages are received,
to place them in a queue in the original order, and to discard duplicate messages.

message token
A unique identifier of a message within an active queue manager.

method
In object-oriented design or programming, the software that implements the behavior specified by an
operation.

MFS
See Message Format Service.

MGAS
See mostly global address space.

Microsoft Cluster Server (MSCS)
A technology that provides high availability by grouping computers running Windows into MSCS
clusters. If one of the computers in the cluster hits any one of a range of problems, MSCS shuts down
the disrupted application in an orderly manner, transfers its state data to another computer in the
cluster, and re-initiates the application there.

Microsoft Transaction Server (MTS)
A facility that helps Windows users run business logic applications in a middle tier server. MTS divides
work up into activities, which are short independent chunks of business logic.

MID
See message input descriptor.

MOD
See message output descriptor.

About IBM WebSphere MQ 195

model queue object
A set of queue attributes that act as a template when a program creates a dynamic queue.

mostly global address space (MGAS)
A flexible virtual address space model, used in systems such as HP-UX, that preserves most of the
address space for shared applications. This can enhance performance for processes that share a lot of
data. See also mostly private address space.

mostly private address space (MPAS)
A flexible virtual address space model, used in systems such as HP-UX, that can allocate larger
address space blocks to processes. This can enhance performance for processes that require a lot of
data space. See also mostly global address space.

MPAS
See mostly private address space.

MQAI
See WebSphere MQ Administration Interface.

MQI
See Message Queue Interface.

MQI channel
A connection between a WebSphere MQ client and a queue manager on a server system. An MQI
channel transfers only MQI calls and responses in a bidirectional manner. See also channel.

MQM
See message queue management.

MQSC
See WebSphere MQ script commands.

MQSeries
A previous name for WebSphere MQ.

MQ Telemetry Transport
MQ Telemetry Transport (MQTT) is an open, lightweight publish/subscribe protocol flowing over
TCP/IP to connect large numbers of devices such as servos, actuators, smart phones, vehicles,
homes, health, remote sensors, and control devices. MQTT is designed to work in environments where
the network might be constrained by bandwidth, or the device might be constrained by memory or
processors for example.

MQTT
See MQ Telemetry Transport.

MQTT client
An MQTT client application connects to MQTT capable servers such as WebSphere MQ Telemetry
channels. You can write your own clients to use the published protocol, or use one of the clients
supplied with the installation of WebSphere MQ Telemetry. A typical client is responsible for collecting
information from a telemetry device and publishing the information to the server. It can also subscribe
to topics, receive messages, and use this information to control the telemetry device. Some clients are
provided with WebSphere MQ Telemetry; see Telemetry clients and Telemetry advanced clients.

MQTT server
An MQTT server handles the server side of the MQTT protocol. It typically allows many MQTT clients
to connect to it at the same time, and provides a hub for messages distribution to the MQTT clients. A
WebSphere MQ queue manager with the telemetry (MQXR) service is an MQTT server.

MSCS
See Microsoft Cluster Server.

MTS
See Microsoft Transaction Server.

multi-hop
To pass through one or more intermediate queue managers when there is no direct communication
link between a source queue manager and the target queue manager.

196 IBM WebSphere MQ Overview

multi-instance queue manager
A queue manager that is configured to share the use of queue manager data with other queue
manager instances. One instance of a running multi-instance queue manager is active, other instances
are on standby ready to take over from the active instance. See also single instance queue manager.

N
namelist

A WebSphere MQ object that contains a list of object names, for example, queue names.
name service

In WebSphere MQ on UNIX and Linux systems and WebSphere MQ for Windows, the facility that
determines which queue manager owns a specified queue.

name service interface (NSI)
The WebSphere MQ interface to which customer- or vendor-written programs that resolve queue-
name ownership must conform. A part of the WebSphere MQ Framework.

name transformation
In WebSphere MQ on UNIX and Linux systems and WebSphere MQ for Windows, an internal process
that changes a queue manager name so that it is unique and valid for the system being used.
Externally, the queue manager name remains unchanged.

nested bag
In the WebSphere MQ Administration Interface (MQAI), a system bag that is inserted into another
data bag

nesting
In the WebSphere MQ Administration Interface (MQAI), a means of grouping information returned
from WebSphere MQ.

NetBIOS (Network Basic Input/Output System)
A standard interface to networks and personal computers that is used on local area networks to
provide message, print-server, and file-server functions. Application programs that use NetBIOS do
not have to handle the details of LAN data link control (DLC) protocols.

Network Basic Input/Output System
See NetBIOS.

New Technology File System (NTFS)
One of the native file systems in Windows operating environments.

node
In Microsoft Cluster Server (MSCS), each computer in the cluster.

nondurable subscription
A subscription that exists only as long as the subscribing application's connection to the queue
manager remains open. The subscription is removed when the subscribing application disconnects
from the queue manager either deliberately or by loss of connection. See also durable subscription.

nonpersistent message
A message that does not survive a restart of the queue manager. See also persistent message.

NSI
See name service interface.

NTFS
See New Technology File System.

NUL
See null character.

null character (NUL)
A control character with the value of X'00' that represents the absence of a displayed or printed
character.

About IBM WebSphere MQ 197

O
OAM

See object authority manager.
object

1. In WebSphere MQ, a queue manager, queue, process definition, channel, namelist, authentication
information object, administrative topic object, listener, service object, or (on z/OS only) a CF structure
object or storage class.

2. In object-oriented design or programming, a concrete realization (instance) of a class that consists
of data and the operations associated with that data. An object contains the instance data that is
defined by the class, but the class owns the operations that are associated with the data.

object authority manager (OAM)
In WebSphere MQ on UNIX and Linux systems, WebSphere MQ for IBM i, and WebSphere MQ for
Windows, the default authorization service for command and object management. The OAM can be
replaced by, or run in combination with, a customer-supplied security service.

object descriptor
A data structure that identifies a particular WebSphere MQ object. Included in the descriptor are the
name of the object and the object type.

object handle
The identifier or token by which a program accesses the WebSphere MQ object with which it is
working.

object-oriented programming
A programming approach based on the concepts of data abstraction and inheritance. Unlike
procedural programming techniques, object-oriented programming concentrates not on how
something is accomplished but instead on what data objects comprise the problem and how they
are manipulated.

OCSP
Online Certificate Status Protocol. A method of checking if a certificate is revoked.

offloading
In WebSphere MQ for z/OS, an automatic process whereby a queue manager's active log is
transferred to its archive log.

one way authentication
In this method of authentication, the queue manager presents the certificate to the client, but the
authentication is not checked from the client to the queue manager.

open
To establish access to an object, such as a queue or a topic

open systems interconnection (OSI)
The interconnection of open systems in accordance with standards of the International Organization
for Standardization (ISO) for the exchange of information.

Open Transaction Manager Access (OTMA)
A component of IMS that implements a transaction-based, connectionless client/server protocol in
an MVS sysplex environment. The domain of the protocol is restricted to the domain of the z/OS
Cross-System Coupling Facility (XCF). OTMA connects clients to servers so that the client can support
a large network (or a large number of sessions) while maintaining high performance.

OPM
See original program model.

original program model (OPM)
The set of functions for compiling source code and creating high-level language programs before the
Integrated Language Environment (ILE) model was introduced.

OSGi Alliance
A consortium of more than 20 companies, including IBM, that creates specifications to outline open
standards for the management of voice, data and multimedia wireless and wired networks.

198 IBM WebSphere MQ Overview

OSI
See open systems interconnection.

OSI directory standard
The standard, known as X.500, that defines a comprehensive directory service, including an
information model, a namespace, a functional model, and an authentication framework. X.500 also
defines the Directory Access Protocol (DAP) used by clients to access the directory. The Lightweight
Directory Access Protocol (LDAP) removes some of the burden of X.500 access from directory clients,
making the directory available to a wider variety of machines and applications.

OTMA
See Open Transaction Manager Access.

outbound channel
A channel that takes messages from a transmission queue and sends them to another queue
manager.

output log-buffer
In WebSphere MQ for z/OS, a buffer that holds recovery log records before they are written to the
archive log.

output parameter
A parameter of an MQI call in which the queue manager returns information when the call completes
or fails.

overloading
In object-oriented programming, the capability of an operator or method to have different meanings
depending on the context. For example, in C++, a user can redefine functions and most standard
operators when the functions and operators are used with class types. The method name or operator
remains the same, but the method parameters differ in type, number, or both. This difference is
collectively called the function's or the operator's signature and each signature requires a separate
implementation.

P
page set

A VSAM data set used when WebSphere MQ for z/OS moves data (for example, queues and messages)
from buffers in main storage to permanent backing storage (DASD).

parent class
A class from which another class inherits instance methods, attributes, and instance variables. See
also abstract class.

partial repository
A partial set of information about queue managers in a cluster. A partial repository is maintained by all
cluster queue managers that do not host a full repository. See also full repository.

partner queue manager
See remote queue manager.

PassTicket
In RACF secured sign-on, a dynamically generated, random, one-time-use, password substitute that a
workstation or other client can use to sign on to the host rather than sending a RACF password across
the network.

PCF
See programmable command format.

pending event
An unscheduled event that occurs as a result of a connect request from a CICS adapter.

percolation
In error recovery, the passing along a preestablished path of control from a recovery routine to a
higher-level recovery routine.

performance event
A category of event indicating that a limit condition has occurred.

About IBM WebSphere MQ 199

performance trace
A WebSphere MQ trace option where the trace data is to be used for performance analysis and tuning.

permanent dynamic queue
A dynamic queue that is deleted when it is closed only if deletion is explicitly requested. Permanent
dynamic queues are recovered if the queue manager fails, so they can contain persistent messages.
See also temporary dynamic queue.

persistent message
A message that survives a restart of the queue manager. See also nonpersistent message.

personal certificate
Certificate for which you own the corresponding private key. Associated with queue managers or
applications.

PGM
See Pragmatic General Multicast.

PID
See process ID.

ping
The command that sends an Internet Control Message Protocol (ICMP) echo-request packet to a
gateway, router, or host with the expectation of receiving a reply.

PKCS
Public Key Cryptography Standards. A set of standards for cryptography, of which:

• 7 is for messages
• 11 is for hardware security modules
• 12 is for the file format used in the key repository

PKI
See public key infrastructure.

plain text
See cleartext.

point of recovery
In WebSphere MQ for z/OS, a set of backup copies of WebSphere MQ for z/OS page sets and the
corresponding log data sets required to recover these page sets. These backup copies provide a
potential restart point in the event of page set loss (for example, page set I/O error).

poison message
In a queue, an incorrectly formatted message that the receiving application cannot process. The
message can be repeatedly delivered to the input queue and repeatedly backed out by the
application.

polymorphism
An object-oriented programming characteristic that allows a method to perform differently, depending
on the class that implements it. Polymorphism allows a subclass to override an inherited method
without affecting the parent class's method. Polymorphism also enables a client to access two or
more implementations of an object from a single interface.

Pragmatic General Multicast (PGM)
A reliable multicast transport protocol that provides a reliable sequence of packets to multiple
recipients simultaneously.

preemptive shutdown
In WebSphere MQ, a shutdown of a queue manager that does not wait for connected applications to
disconnect, or for current MQI calls to complete. See also immediate shutdown, quiesced shutdown.

preferred computer
The primary computer used by an application running under Microsoft Cluster Server control. After a
failover to another computer, MSCS monitors the preferred computer until it is repaired, and as soon
as it is running correctly again, moves the application back to it.

200 IBM WebSphere MQ Overview

principal
An entity that can communicate securely with another entity. A principal is identified by its associated
security context, which defines its access rights.

privately defined object
See locally defined object.

private methods and instance data
In object-oriented programming, methods and instance data that are only accessible to the
implementation of the same class.

process definition object
A WebSphere MQ object that contains the definition of a WebSphere MQ application. For example, a
queue manager uses the definition when it works with trigger messages.

process ID (PID)
The unique identifier that represents a process. A process ID is a positive integer and is not reused
until the process lifetime ends.

producer
An application that creates and sends messages. See also publisher, message producer.

programmable command format (PCF)
A type of WebSphere MQ message used by the following applications: user administration
applications, to put PCF commands onto the system command input queue of a specified queue
manager, user administration applications, to get the results of a PCF command from a specified
queue manager, and a queue manager, as a notification that an event has occurred. See also
WebSphere MQ script commands.

program temporary fix (PTF)
For System i, System p, and System z products, a package containing individual or multiple fixes that
is made available to all licensed customers. A PTF resolves defects and might provide enhancements.

property
A characteristic of an object that describes the object. A property can be changed or modified.
Properties can describe an object name, type, value, or behavior, among other things.

protected methods and instance data
In object-oriented programming, methods and instance data that are only accessible to the
implementations of the same or derived classes, or from friend classes.

proxy subscription
A proxy subscription is a subscription made by one queue manager for topics published on another
queue manager. A proxy subscription flows between queue managers for each individual topic string
that is subscribed to by a subscription. You do not create proxy subscriptions explicitly, the queue
manager does so on your behalf.

PTF
See program temporary fix.

public key
The key known to everyone. This key is usually embedded in a digital certificate that specifies the
owner of the public key.

public key cryptography
A cryptography system that uses two keys: a public key known to everyone and a private or secret key
known only to the recipient of the message. The public and private keys are related in such a way, that
anything encrypted with one key can be decrypted only by the corresponding private key.

public key infrastructure (PKI)
A system of digital certificates, certification authorities, and other registration authorities that verify
and authenticate the validity of each party involved in a network transaction.

public methods and instance data
In object oriented programming, methods and instance data that are accessible to all classes.

About IBM WebSphere MQ 201

publish
To make information about a specified topic available to a queue manager in a publish/subscribe
system.

publisher
An application that makes information about a specified topic available to a broker in a publish/
subscribe system.

publish/subscribe
A type of messaging interaction in which information, provided by publishing applications, is delivered
by an infrastructure to all subscribing applications that have expressed interest in that type of
information.

publish/subscribe cluster
A set of queue managers that are fully interconnected and that form part of a multi-queue manager
network for publish/subscribe applications.

put
In message queuing, to use the MQPUT or MQPUT1 calls to place messages on a queue. See also
browse, get.

Q
queue

An object that holds messages for message-queueing applications. A queue is owned and maintained
by a queue manager.

queue index
In WebSphere MQ for z/OS, a list of message identifiers or a list of correlation identifiers that can be
used to increase the speed of MQGET operations on the queue.

queue manager
A component of a message queuing system that provides queuing services to applications.

queue manager event
An event that indicates one of the following: an error condition has occurred in relation to the
resources used by a queue manager. For example, a queue is unavailable, or a significant change has
occurred in the queue manager. For example, a queue manager has stopped or started.

queue manager group
In a client channel definition table (CCDT), the group of queue managers a client tries to connect to
when a connection is established to a server.

queue manager level security
In WebSphere MQ for z/OS, the authorization checks that are performed using RACF profiles specific
to a queue manager.

queue manager set
A grouping of queue managers in WebSphere MQ Explorer that allows a user to perform actions on all
of the queue managers in the group.

queue-sharing group
In WebSphere MQ for z/OS, a group of queue managers in the same sysplex that can access a single
set of object definitions stored in the shared repository, and a single set of shared queues stored in
the coupling facility. See also shared queue.

queue-sharing group level security
In WebSphere MQ for z/OS, the authorization checks that are performed using RACF profiles that are
shared by all queue managers in a queue-sharing group.

quiesce
To end a process or shut down a system after allowing normal completion of active operations.

quiesced shutdown

1. A type of shutdown of the CICS adapter where the adapter disconnects from WebSphere MQ, but
only after all the currently active tasks have been completed. See also forced shutdown.

202 IBM WebSphere MQ Overview

2. In WebSphere MQ, a shutdown of a queue manager that allows all connected applications to
disconnect. See also immediate shutdown, preemptive shutdown.

quiescing
In WebSphere MQ, the state of a queue manager before it stops. In this state, programs are allowed to
finish processing, but no new programs are allowed to start.

quorum disk
The disk accessed exclusively by Microsoft Cluster Server to store the cluster recovery log, and to
determine whether a server is up or down. Only one server can own the quorum disk at a time. Servers
in the cluster can negotiate for the ownership.

R
RACF

See Resource Access Control Facility.
RAID

See Redundant Array of Independent Disks.
RBA

See relative byte address.
RC

See return code.
read ahead

An option that allows messages to be sent to a client before an application requests them.
reason code

A return code that describes the reason for the failure or partial success of a Message Queue Interface
(MQI) call.

receive exit
A type of channel exit program that is called just after the message channel agent (MCA) has regained
control following a communications receive and has received a unit of data from a communications
connection. See also send exit.

receiver channel
In message queuing, a channel that responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

recovery log
In WebSphere MQ for z/OS, data sets containing information needed to recover messages, queues,
and the WebSphere MQ subsystem. See also archive log.

recovery termination manager (RTM)
A program that handles all normal and abnormal termination of tasks by passing control to a recovery
routine associated with the terminating function.

Redundant Array of Independent Disks (RAID)
A collection of two or more physical disk drives that present to the host an image of one or more
logical disk drives. In the event of a physical device failure, the data can be read or regenerated from
the other disk drives in the array due to data redundancy.

reference message
A message that refers to a piece of data that is to be transmitted. The reference message is handled
by message exit programs, which attach and detach the data from the message so allowing the data
to be transmitted without having to be stored on any queues.

registry
A repository that contains access and configuration information for users, systems, and software.

Registry Editor
In Windows, the program item that allows the user to edit the registry.

registry hive
In Windows systems, the structure of the data stored in the registry.

About IBM WebSphere MQ 203

relative byte address (RBA)
The offset of a data record or control interval from the beginning of the storage space that is allocated
to the data set or file to which it belongs.

reliable multicast messaging (RMM)
A high-throughput low-latency transport fabric designed for one-to-many data delivery or many-to-
many data exchange, in a message-oriented middleware publish/subscribe fashion. RMM exploits
the IP multicast infrastructure to ensure scalable resource conservation and timely information
distribution.

remote queue
A queue that belongs to a remote queue manager. Programs can put messages on remote queues, but
they cannot get messages from remote queues. See also local queue.

remote queue manager
A queue manager to which a program is not connected, even if it is running on the same system as the
program. See also local queue manager.

remote queue object
A WebSphere MQ object belonging to a local queue manager. This object defines the attributes of a
queue that is owned by another queue manager. In addition, it is used for queue-manager aliasing and
reply-to-queue aliasing.

remote queuing
In message queuing, the provision of services to enable applications to put messages on queues
belonging to other queue managers.

reply message
A type of message used for replies to request messages. See also report message, request message.

reply-to queue
The name of a queue to which the program that issued an MQPUT call wants a reply message or
report message sent.

report message
A type of message that gives information about another message. A report message can indicate that
a message has been delivered, has arrived at its destination, has expired, or could not be processed
for some reason. See also reply message, request message.

repository
A collection of information about the queue managers that are members of a cluster. This information
includes queue manager names, their locations, their channels, and what queues they host.

repository queue manager
A queue manager that hosts the full repository of information about a cluster.

requester channel
In message queuing, a channel that can be started locally to initiate operation of a server channel. See
also server channel.

request message
A type of message used to request a reply from another program. See also reply message, report
message.

request/reply
A type of messaging application in which a request message is used to request a reply from another
application. See also datagram.

RESLEVEL
In WebSphere MQ for z/OS, an option that controls the number of user IDs checked for API-resource
security.

resolution path
The set of queues that are opened when an application specifies an alias or a remote queue on input
to an MQOPEN call.

204 IBM WebSphere MQ Overview

resource
A facility of a computing system or operating system required by a job, task, or running program.
Resources include main storage, input/output devices, the processing unit, data sets, files, libraries,
folders, application servers, and control or processing programs.

Resource Access Control Facility (RACF)
An IBM licensed program that provides access control by identifying users to the system; verifying
users of the system; authorizing access to protected resources; logging unauthorized attempts to
enter the system; and logging accesses to protected resources.

resource adapter
An implementation of the Java Enterprise Edition Connector Architecture that allows JMS applications
and message driven beans, running in an application server, to access the resources of a WebSphere
MQ queue manager.

resource manager
An application, program, or transaction that manages and controls access to shared resources such as
memory buffers and data sets. WebSphere MQ, CICS, and IMS are resource managers.

Resource Recovery Services (RRS)
A component of z/OS that uses a sync point manager to coordinate changes among participating
resource managers.

responder
In distributed queuing, a program that replies to network connection requests from another system.
See also initiator.

resynch
In WebSphere MQ, an option to direct a channel to start up and resolve any in-doubt status messages,
but without restarting message transfer.

return code (RC)
A value returned by a program to indicate the result of its processing. Completion codes and reason
codes are examples of return codes.

return-to-sender
An option available to an MCA that is unable to deliver a message. The MCA can send the message
back to the originator.

Rivest-Shamir-Adleman algorithm (RSA)
A public-key encryption technology developed by RSA Data Security, Inc, and used in the IBM
implementation of SSL.

RMM
See reliable multicast messaging.

rollback
See backout.

root certificate
The top certificate in the chain. If this is a self-signed certificate, it is used only for signing other
certificates. See also self-signed certificate

RRS
See Resource Recovery Services.

RSA
See Rivest-Shamir-Adleman algorithm.

RTM
See recovery termination manager.

rules table
A control file containing one or more rules that the dead-letter queue handler applies to messages on
the dead letter queue (DLQ).

About IBM WebSphere MQ 205

S
Scalable Parallel 2 (SP2)

IBM's parallel UNIX system: effectively parallel AIX systems on a high-speed network.
SDK

See software development kit.
SDWA

See system diagnostic work area.
SECMEC

See security mechanism.
Secure Sockets Layer (SSL)

A security protocol that provides communication privacy. With SSL, client/server applications can
communicate in a way that is designed to prevent eavesdropping, tampering, and message forgery.
See also certificate authority.

security enabling interface (SEI)
The WebSphere MQ interface to which customer- or vendor-written programs that check
authorization, supply a user identifier, or perform authentication must conform. A part of the
WebSphere MQ Framework.

security exit
A channel exit program that is called immediately after the initial data negotiation has completed on
channel startup. Security exits normally work in pairs and can be called on both message channels
and MQI channels. The primary purpose of the security exit is to enable the message channel agent
(MCA) at each end of a channel to authenticate its partner.

security identifier (SID)
On Windows systems, a supplement to the user ID that identifies the full user account details on the
Windows security account manager database where the user is defined.

security mechanism (SECMEC)
A technical tool or technique that is used to implement a security service. A mechanism might
operate by itself, or in conjunction with others, to provide a particular service. Examples of security
mechanisms include access control lists, cryptography, and digital signatures.

security message
One of the messages, sent by security exits that are called at both ends of a channel, to communicate
with each other. The format of a security message is not defined and is determined by the user.

security service
A service within a computer system that protect its resources. Access control is an example of a
security service.

Security Support Provider Interface (SSI)
The means for networked applications to call one of several security support providers (SSPs) to
establish authenticated connections and to exchange data securely over those connections. It is
available for use on Windows systems.

self-signed certificate
The digital signature in the certificate is generated using the private key corresponding to the public
key in the certificate.

segmentation
The division of a message that is too large for a queue manager, queue, or application, into a
number of smaller physical messages, which are then reassembled by the receiving queue manager or
application.

SEI
See security enabling interface.

selector
An identifier for a data item. In the WebSphere MQ Administration Interface (MQAI), there are two
types of selector: a user selector and a system selector.

206 IBM WebSphere MQ Overview

semaphore
In UNIX and Linux systems, a general method of communication between two processes that extends
the features of signals.

sender channel
In message queuing, a channel that initiates transfers, removes messages from a transmission queue,
and moves them over a communication link to a receiver or requester channel.

send exit
A type of channel exit program that is called just before a message channel agent (MCA) issues a
communications send to send a unit of data over a communications connection. See also receive exit.

Sequenced Packet Exchange protocol (SPX)
A session-oriented network protocol that provides connection-oriented services between two nodes
on the network, and is used primarily by client/server applications. It relies on the Internet Packet
Exchange (IPX) protocol, provides flow control and error recovery, and guarantees reliability of the
physical network.

sequence number wrap value
In WebSphere MQ, a method of ensuring that both ends of a communication link reset their current
message sequence numbers at the same time. Transmitting messages with a sequence number
ensures that the receiving channel can reestablish the message sequence when storing the messages.

serialization
In object-oriented programming, the writing of data in sequential fashion to a communications
medium from program memory.

server

1. A queue manager that provides queue services to client applications running on a remote
workstation.

2. A software program or a computer that provides services to other software programs or other
computers. See also client.

server channel
In message queuing, a channel that responds to a requester channel, removes messages from a
transmission queue, and moves them over a communication link to the requester channel. See also
requester channel.

server-connection channel type
The type of MQI channel definition associated with the server that runs a queue manager. See also
client-connection channel type.

service interval
A time interval, against which the elapsed time between a put or a get and a subsequent get is
compared by the queue manager in deciding whether the conditions for a service interval event have
been met. The service interval for a queue is specified by a queue attribute.

service interval event
An event related to the service interval.

service object
An object that can start additional processes when the queue manager starts and can stop the
processes when the queue manager stops.

session
A logical or virtual connection between two stations, software programs, or devices on a network that
allows the two elements to communicate and exchange data for the duration of the session.

session ID
In WebSphere MQ for z/OS, the CICS-unique identifier that defines the communication link to be used
by a message channel agent when moving messages from a transmission queue to a link.

session-level authentication
In Systems Network Architecture (SNA), a session level security protocol that enables two logical
units (LUs) to authenticate each other while they are activating a session. Session level authentication
is also known as LU-LU verification.

About IBM WebSphere MQ 207

session-level cryptography
In Systems Network Architecture (SNA), a method of encrypting and decrypting data that flows on a
session between two logical units (LUs).

shared inbound channel
In WebSphere MQ for z/OS, a channel that was started by a listener using the group port. The
channel definition of a shared channel can be stored either on page set zero (private) or in the shared
repository (global).

shared outbound channel
In WebSphere MQ for z/OS, a channel that moves messages from a shared transmission queue. The
channel definition of a shared channel can be stored either on page set zero (private) or in the shared
repository (global).

shared queue
In WebSphere MQ for z/OS, a type of local queue. The messages on the queue are stored in the
coupling facility and can be accessed by one or more queue managers in a queue-sharing group. The
definition of the queue is stored in the shared repository. See also queue-sharing group.

shared repository
In WebSphere MQ for z/OS, a shared Db2 database that is used to hold object definitions that have
been defined globally.

sharing conversations
The facility for more than one conversation to share a channel instance, or the conversations that
share a channel instance.

shell
A software interface between users and an operating system. Shells generally fall into one of two
categories: a command line shell, which provides a command line interface to the operating system;
and a graphical shell, which provides a graphical user interface (GUI).

SID
See security identifier.

signal
A mechanism by which a process can be notified of, or affected by, an event occurring in the system.
Examples of such events include hardware exceptions and specific actions by processes.

signaling
In WebSphere MQ for z/OS and WebSphere MQ for Windows, a feature that allows the operating
system to notify a program when an expected message arrives on a queue.

signature
The collection of types associated with a method. The signature includes the type of the return value,
if any, as well as the number, order, and type of each of the method's arguments.

signer certificate
A certificate that is used for encipherment or signing.

single instance queue manager
A queue manager that does not have multiple instances. See also multi-instance queue manager.

single logging
A method of recording WebSphere MQ for z/OS activity where each change is recorded on one data
set only. See also dual logging.

single-phase backout
A method in which an action in progress must not be allowed to finish, and all changes that are part of
that action must be undone.

single-phase commit
A method in which a program can commit updates to a commitment resource without coordinating
those updates with updates the program has made to resources controlled by another resource
manager.

SIT
See system initialization table.

208 IBM WebSphere MQ Overview

SMF
See System Management Facilities.

SNA
See Systems Network Architecture.

software development kit (SDK)
A set of tools, APIs, and documentation to assist with the development of software in a specific
computer language or for a particular operating environment.

source queue manager
See local queue manager.

SP2
See Scalable Parallel 2.

SPX
See Sequenced Packet Exchange protocol.

SSI
See Security Support Provider Interface.

SSL
See Secure Sockets Layer.

SSLPeer
The value in the issuer represents the distinguished name of the remote personal certificate.

SSL or TLS client
The initiating end of the connection. One outbound channel from a queue manager is also an SSL or
TLS client.

standby queue manager instance
An instance of a running multi-instance queue manager ready to take over from the active instance.
There are one or more standby instances of a multi-instance queue manager.

stanza
A group of lines in a file that together have a common function or define a part of the system. Stanzas
are usually separated by blank lines or colons, and each stanza has a name.

star-connected communications network
A network in which all nodes are connected to a central node.

storage class
In WebSphere MQ for z/OS, the page set that is to hold the messages for a particular queue. The
storage class is specified when the queue is defined.

store and forward
The temporary storing of packets, messages, or frames in a data network before they are
retransmitted toward their destination.

streaming
In object-oriented programming, the serialization of class information and object instance data.

subscribe
To request information about a topic.

subsystem
In z/OS, a service provider that performs one or many functions but does nothing until a request
is made. For example, each WebSphere MQ for z/OS queue manager or instance of a Db2 for z/OS
database management system is a z/OS subsystem.

supervisor call (SVC)
An instruction that interrupts the program being run and passes control to the supervisor so that it can
perform the specific service indicated by the instruction.

SVC
See supervisor call.

About IBM WebSphere MQ 209

switchover
The change from the active multi-instance queue manager instance to a standby instance. A
switchover results from an operator intentionally stopping the active multi-instance queue manager
instance.

switch profile
In WebSphere MQ for z/OS, a RACF profile used when WebSphere MQ starts up or when a refresh
security command is issued. Each switch profile that WebSphere MQ detects turns off checking for the
specified resource.

symmetric key cryptography
A system of cryptography in which the sender and receiver of a message share a single, common,
secret key that is used to encrypt and decrypt the message. This system does not offer any
authentication. See also asymmetric key cryptography.

symptom string
Diagnostic information displayed in a structured format designed for searching the IBM software
support database.

synchronous messaging
A method of communication between programs in which a program places a message on a message
queue and then waits for a reply to its message before resuming its own processing. See also
asynchronous messaging.

sync point
A point during the processing of a transaction at which protected resources are consistent.

sysplex
A set of z/OS systems that communicate with each other through certain multisystem hardware
components and software services.

system bag
A type of data bag that is created by the MQAI.

system control commands
Commands used to manipulate platform-specific entities such as buffer pools, storage classes, and
page sets.

system diagnostic work area (SDWA)
In a z/OS environment, the data that is recorded in a SYS1.LOGREC entry that describes a program or
hardware error.

system initialization table (SIT)
A table containing parameters used by CICS on start up.

system item
A type of data item that is created by the MQAI.

System Management Facilities (SMF)
A component of z/OS that collects and records a variety of system and job-related information.

system selector
In the WebSphere MQ Administration Interface (MQAI), a system item identifier that is included in the
data bag when it is created.

Systems Network Architecture (SNA)
The description of the logical structure, formats, protocols, and operational sequences for
transmitting information through and controlling the configuration and operation of networks.

T
tampering

A breach of communication security in which information in transit is changed or replaced and then
sent on to the recipient. See also eavesdropping, impersonation.

target library high-level qualifier (thlqual)
A high-level qualifier for z/OS target data set names.

210 IBM WebSphere MQ Overview

target queue manager
See remote queue manager.

task control block (TCB)
A z/OS control block that is used to communicate information about tasks within an address space
that is connected to a subsystem.

task switching
The overlapping of I/O operations and processing between several tasks.

TCB
See task control block.

TCP
See Transmission Control Protocol.

TCP/IP
See Transmission Control Protocol/Internet Protocol.

technote
A short document about a single topic.

telemetry channel
A Telemetry channel is a communication link between a queue manager on WebSphere MQ, and
MQTT clients. Each channel might have one or more telemetry devices connected to it.

telemetry advance client
The Advanced telemetry client is installed in the mqxr subfolder of the main WebSphere MQ
installation. They are small footprint, MQTT servers allowing multiple MQTT clients to connect to
it and provide an uplink or bridge to WebSphere MQ. Advanced clients can start messages on behalf of
the clients when the uplink connection is broken.

telemetry client
Telemetry clients are MQTT clients installed within the mqxr subfolder of the main WebSphere MQ
installation. The telemetry clients use the MQTT protocol to connect to MQ.

telemetry (MQXR) service
An MQ service that handles the server half of the MQTT protocol (see MWTT Server). The telemetry
(MQXR) service hosts telemetry channels.

temporary dynamic queue
A dynamic queue that is deleted when it is closed. Temporary dynamic queues are not recovered if the
queue manager fails, so they can contain nonpersistent messages only. See also permanent dynamic
queue.

teraspace
A one terabyte temporary storage area that provides storage that is private to a process.

termination notification
A pending event that is activated when a CICS subsystem successfully connects to WebSphere MQ for
z/OS.

thlqual
See target library high-level qualifier.

thread
A stream of computer instructions that is in control of a process. In some operating systems, a
thread is the smallest unit of operation in a process. Several threads can run concurrently, performing
different jobs.

TID
See transaction identifier.

time-independent messaging
See asynchronous messaging.

TLS
Transport Layer Security - successor to SSL.

About IBM WebSphere MQ 211

TMF
See Transaction Manager Facility.

TMI
See trigger monitor interface.

TP
See transaction program.

trace
A record of the processing of a computer program or transaction. The information collected from a
trace can be used to assess problems and performance.

transaction ID
See transaction identifier.

transaction identifier (TID, transaction ID, XID)
A unique name that is assigned to a transaction and is used to identify the actions associated with that
transaction.

transaction manager
A software unit that coordinates the activities of resource managers by managing global transactions
and coordinating the decision to commit them or roll them back.

Transaction Manager Facility (TMF)
In IBM WebSphere MQ for HP Integrity NonStop Server, a subsystem to protect your business
transactions and the integrity of your databases. Often used synonymously with NonStop Transaction
Manager/MP.

transaction program (TP)
A program that processes transactions in an SNA network.

Transmission Control Protocol (TCP)
A communication protocol used in the Internet and in any network that follows the Internet
Engineering Task Force (IETF) standards for internetwork protocol. TCP provides a reliable host-to-
host protocol in packet-switched communication networks and in interconnected systems of such
networks. See also Internet Protocol.

Transmission Control Protocol/Internet Protocol (TCP/IP)
An industry-standard, nonproprietary set of communication protocols that provides reliable end-to-
end connections between applications over interconnected networks of different types.

transmission program
See message channel agent.

transmission queue
A local queue on which prepared messages destined for a remote queue manager are temporarily
stored.

triggered queue
A local queue which, when it has triggering set on and when the triggering conditions are met,
requires that trigger messages are written.

trigger event
An event, such as a message arriving on a queue, that causes a queue manager to create a trigger
message on an initiation queue.

triggering
In WebSphere MQ, a facility that allows a queue manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message
A message that contains information about the program that a trigger monitor is to start.

trigger monitor
A continuously running application that serves one or more initiation queues. When a trigger message
arrives on an initiation queue, the trigger monitor retrieves the message. It uses the information in the
trigger message to start a process that serves the queue on which a trigger event occurred.

212 IBM WebSphere MQ Overview

trigger monitor interface (TMI)
The WebSphere MQ interface to which customer- or vendor-written trigger monitor programs must
conform. A part of the WebSphere MQ Framework.

trust store
The place where CA certificates are put to validate certificates from a remote system. See also key
store

two way authentication
In this method of authentication, the queue manager and the client, present the certificate to each
other. Also known as mutual authentication.

two-phase commit
A two-step process by which recoverable resources and an external subsystem are committed. During
the first step, the database manager subsystems are polled to ensure that they are ready to commit. If
all subsystems respond positively, the database manager instructs them to commit.

type
A characteristic that specifies the internal format of data and determines how the data can be used.

U
UDP

See User Datagram Protocol.
unauthorized access

Gaining access to resources within a computer system without permission.
undelivered message queue

See dead-letter queue.
undo/redo record

A log record used in recovery. The redo part of the record describes a change to be made to a
WebSphere MQ object. The undo part describes how to back out the change if the work is not
committed.

unit of recovery
A recoverable sequence of operations within a single resource manager, such as an instance of Db2
for z/OS. See also unit of work.

unit of work (UOW)
A recoverable sequence of operations performed by an application between two points of
consistency. A unit of work begins when a transaction starts or at a user-requested syncpoint. It
ends either at a user-requested syncpoint or at the end of a transaction.

UOW
See unit of work.

user bag
In the MQAI, a type of data bag that is created by the user.

User Datagram Protocol (UDP)
An Internet protocol that provides unreliable, connectionless datagram service. It enables an
application program on one machine or process to send a datagram to an application program on
another machine or process.

user item
In the MQAI, a type of data item that is created by the user.

user selector
In the WebSphere MQ Administration Interface (MQAI), the identifier that is placed with a data item
into a data bag to identify the data item. WebSphere MQ provides predefined user selectors for
WebSphere MQ objects.

user token (UTOKEN)
The RACF security token that encapsulates or represents the security characteristics of a user. RACF
assigns a UTOKEN to each user in the system.

About IBM WebSphere MQ 213

utility
In WebSphere MQ, a supplied set of programs that provide the system operator or system
administrator with facilities in addition to those provided by the WebSphere MQ commands.

UTOKEN
See user token.

V
value

The content of a data item. This can be an integer, a string, or the handle of another data bag.
virtual method

In object-oriented programming, a method that exhibits polymorphism.

W
WebSphere MQ

A family of IBM licensed programs that provides message queuing services.
WebSphere MQ Administration Interface (MQAI)

A programming interface that performs administration tasks on a WebSphere MQ queue manager
through the use of data bags. Data bags allow the user to handle properties (or parameters) of
WebSphere MQ objects.

WebSphere MQ classes for .NET
A set of classes that allow a program written in the .NET programming framework to connect to
WebSphere MQ as a WebSphere MQ client or to connect directly to a WebSphere MQ server.

WebSphere MQ classes for C++
A set of classes that encapsulate the WebSphere MQ Message Queue Interface (MQI) in the C++
programming language.

WebSphere MQ classes for Java
A set of classes that encapsulate the WebSphere MQ Message Queue Interface (MQI) in the Java
programming language.

WebSphere MQ fully-managed .NET client
Part of a WebSphere MQ product that can be installed on a system without installing the full
queue manager. The WebSphere MQ .NET client is used by fully-managed .NET applications and
communicates with a queue manager on a server system. A .NET application that is not fully managed
uses the WebSphere MQ MQI client. See also client, WebSphere MQ MQI client, WebSphere MQ Java
client.

WebSphere MQ Java client
Part of a WebSphere MQ product that can be installed on a system without installing the full queue
manager. The WebSphere MQ Java client is used by Java applications (both WebSphere MQ classes
for Java and WebSphere MQ classes for JMS) and communicates with a queue manager on a server
system. See also client, WebSphere MQ MQI client, WebSphere MQ fully-managed .NET client.

WebSphere MQ MQI client
Part of a WebSphere MQ product that can be installed on a system without installing the full queue
manager. The WebSphere MQ MQI client accepts MQI calls from applications and communicates with
a queue manager on a server system. See also client, WebSphere MQ Java client, WebSphere MQ
fully-managed .NET client.

WebSphere MQ script commands (MQSC)
Human readable commands, uniform across all platforms, that are used to manipulate WebSphere
MQ objects. See also programmable command format.

WebSphere MQ server
A queue manager that provides queuing services to one or more clients. All the WebSphere MQ
objects, for example queues, exist only on the queue manager system, that is, on the MQI server
machine. A server can support normal local MQI applications as well.

214 IBM WebSphere MQ Overview

WebSphere MQ Telemetry
WebSphere MQ Telemetry provides small client libraries that can be embedded into smart devices
running on a number of different device platforms. Applications built with the clients use MQ
Telemetry Transport (MQTT) and the WebSphere MQ Telemetry (MQXR) service to publish and
subscribe messages reliably with WebSphere MQ. When the WebSphere MQ custom installation
option to install Telemetry is selected, it installs: 1) Telemetry (MQXR) service 2) Telemetry clients
and 3) Telemetry Advanced clients.

WebSphere MQ Telemetry daemon for devices
The WebSphere MQ Telemetry daemon for devices is an advanced MQTT V3 client. It is a very small
footprint MQTT server designed for embedded systems.

Windows NT Challenge/Response
The authentication protocol that is used on networks that include Windows NT systems and on
standalone systems.

wiretapping
The act of gaining access to information that is flowing along a wire or any other type of conductor
used in communications. The objective of wiretapping is to gain unauthorized access to information
without being detected.

X
X509

International Telecommunications Union standard for PKI. Specifies the format of the public key
certificate and the public key cryptography.

XCF
See cross-system coupling facility.

XID
See transaction identifier.

X/Open XA
The X/Open Distributed Transaction Processing XA interface. A proposed standard for distributed
transaction communication. The standard specifies a bidirectional interface between resource
managers that provide access to shared resources within transactions, and between a transaction
service that monitors and resolves transactions.

Accessibility features for IBM WebSphere MQ
Accessibility features assist users who have a disability, such as restricted mobility or limited vision, to
use information technology content successfully.

Accessibility features
IBM WebSphere MQ includes the following major accessibility features:

• Keyboard-only operation
• Operations that use a screen reader

IBM WebSphere MQ uses the latest W3C Standard, WAI-ARIA 1.0 (https://www.w3.org/TR/wai-aria/),
to ensure compliance to US Section 508 (https://www.access-board.gov/guidelines-and-standards/
communications-and-it/about-the-section-508-standards/section-508-standards), and Web Content
Accessibility Guidelines (WCAG) 2.0 (https://www.w3.org/TR/WCAG20/). To take advantage of
accessibility features, use the latest release of your screen reader in combination with the latest web
browser that is supported by this product.

The IBM WebSphere MQ online product information in IBM Documentation is enabled for accessibility.
The accessibility features of IBM Documentation are described at https://www.ibm.com/docs/about/
releasenotes.html.

About IBM WebSphere MQ 215

https://www.w3.org/TR/wai-aria/
https://www.w3.org/TR/wai-aria/
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.ibm.com/docs/about/releasenotes.html
https://www.ibm.com/docs/about/releasenotes.html

Keyboard navigation
This product uses standard navigation keys.

Interface information
The fully accessible way of using IBM WebSphere MQ is to use the command line interface. For
more information about using commands, see How to use IBM WebSphere MQ control commands and
Administration using MQSC commands.

For Windows, the accessible way to install IBM WebSphere MQ is by using a non interactive installation.
For further information, see Advanced installation using msiexec.

The IBM WebSphere MQ user interfaces do not have content that flashes 2 - 55 times per second.

The IBM WebSphere MQ web user interface does not rely on cascading style sheets to render content
properly and to provide a usable experience. However, the product documentation does rely on cascading
style sheets. IBM WebSphere MQ provides an equivalent way for low-vision users to use a user's system
display settings, including high-contrast mode. You can control font size by using the device or browser
settings.

Related accessibility information
In addition to standard IBM help desk and support websites, IBM has established a TTY telephone
service for use by deaf or hard of hearing customers to access sales and support services:

TTY service
800-IBM-3383 (800-426-3383)
(within North America)

IBM and accessibility
For more information about the commitment that IBM has to accessibility, see IBM Accessibility
(www.ibm.com/able).

Accessibility on Windows
The IBM WebSphere MQ user interfaces do not use any special keys, but instead follow the Windows user
interface guidelines for accelerator keys on items such as context menus, dialogs, and dialog controls
such as buttons. Access the accelerator keys in the usual way. See the Windows help for more information
(look in the Windows help index for keyboard; for accessibility features look for Accessibility).

Special features for accessibility
Some of the user interfaces in IBM WebSphere MQ are normally visual, but they behave differently when
accessibility features are activated, as follows:

• High Contrast Mode

In this mode Launchpad, Prepare IBM WebSphere MQ Wizard, Postcard, and Default Configuration all
hide their background bitmaps and ensure that they use the system text colors so that they are easily
visible and readable.

• Screen Reader Mode

When a screen reader is active, Prepare IBM WebSphere MQ Wizard, Default Configuration, and
Postcard, simplify their appearance by hiding background bitmaps, raised effects, shadow boxes, and
other effects that can otherwise confuse the screen reader.

• Explorer Object Status

216 IBM WebSphere MQ Overview

https://www.ibm.com/able
https://www.ibm.com/able

The Explorer component of IBM WebSphere MQ uses icons to indicate the status of objects, such as
queue managers. Screen readers cannot interpret these icons, so there is an option to show a textual
description of the icon. To select this option, from within the Explorer click Window > Preferences >
WebSphere MQ Explorer and select Show status of objects after object name.

About IBM WebSphere MQ 217

218 IBM WebSphere MQ Overview

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2007, 2025 219

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of IBM WebSphere MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information"www.ibm.com/legal/copytrade.shtml. Other product and service names might be trademarks
of IBM or other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

220 Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

This product includes software developed by the Eclipse Project (http://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 221

222 IBM WebSphere MQ Overview

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	About IBM WebSphere MQ
	Introduction to IBM WebSphere MQ
	IBM WebSphere MQ license information
	Introduction to IBM WebSphere MQ Telemetry
	IBM WebSphere MQ Version 7.5 information roadmap
	IBM WebSphere MQ Version 7.5 in the IBM Documentation Offline app
	IBM WebSphere MQ 7.5 PDF documentation
	What's new in IBM WebSphere MQ Version 7.5
	IBM WebSphere MQ client for HP Integrity NonStop Server

	What's changed in IBM WebSphere MQ Version 7.5
	What's changed in IBM WebSphere MQ Version 7.5 Fix Packs
	What was new and changed in earlier versions
	Mappings between earlier IBM WebSphere MQ publications and the current information structure
	Quick beginnings for AIX
	Quick beginnings for HP-UX
	Quick beginnings for Linux
	Quick beginnings for Solaris
	Quick beginnings for Windows
	Application programming guide
	Application programming reference
	Clients
	Constants
	Intercommunication
	Messages and codes
	Migration
	Monitoring
	Programmable Command Formats and Administration Interface
	Publish/Subscribe User's Guide
	Queue manager clusters
	Script (MQSC) Command Reference
	Security
	System Administration Guide
	Using .NET
	Using C++
	Using Java
	Web services
	Using the Component Object Model Interface

	IBM WebSphere MQ Version 7.5, IBM i and z/OS
	Notices
	Technical overview
	Introduction to message queuing
	Main features of message queuing
	Message queuing terminology
	Messages and queues

	Concepts of intercommunication
	Distributed queuing components
	Dead-letter queues
	Remote queue definitions
	How to get to the remote queue manager
	Addressing information
	What are aliases?
	Queue manager alias definitions
	Reply-to queue alias definitions
	How clusters work

	IBM WebSphere MQ Telemetry
	Telemetry concepts and scenarios
	Home patient monitoring
	Home energy monitoring and control
	Radio Frequency Identification (RFID)
	Environment sensing
	Mobile applications

	Connecting telemetry devices to a queue manager
	Connection protocols
	Telemetry (MQXR) service
	Telemetry channels
	MQTT protocol
	MQTT clients
	Send a message to an MQTT client
	Publishing a message using IBM WebSphere MQ Explorer
	Start task with no telemetry (MQXR) service yet defined
	Start task with a running telemetry (MQXR) service
	Using a queue manager alias

	Sending a message using IBM WebSphere MQ Explorer
	Publish a message to a specific client
	Using the WebSphere MQ Telemetry daemon for devices as the publish/subscribe broker

	Send a message to an IBM WebSphere MQ application
	Publishing a message to IBM WebSphere MQ

	Transfer messages between the telemetry daemon and IBM WebSphere MQ
	Publish/subscribe
	Telemetry applications
	Integration with queue managers
	Telemetry daemon for devices
	Stateless and stateful sessions
	When a client is not connected
	Loose coupling
	Security
	Globalization
	Performance and scalability
	Supported devices

	Administering objects
	Objects
	Queues
	Local queues
	Remote queues
	Alias queues
	Shared and Cluster queues
	Dynamic and Model queues
	Defining queues
	Queues used by IBM WebSphere MQ

	IBM WebSphere MQ queue managers
	Process definitions
	Namelists
	Authentication information objects
	Communication information objects
	Channels
	What is a channel?
	Message Channels
	MQI Channels
	Stopping channels

	Communications

	Client connection channels
	Listeners
	Services
	Topic objects

	Object names
	Rules for naming IBM WebSphere MQ objects
	Understanding IBM WebSphere MQ file names

	Managing objects
	Object attributes
	Clusters
	System default objects

	IBM WebSphere MQ Multicast
	Initial multicast concepts

	Security
	Clients and servers
	Overview of IBM WebSphere MQ clients
	Why use IBM WebSphere MQ clients?
	What applications run on an IBM WebSphere MQ client?
	Platform support for IBM WebSphere MQ clients

	How do I set up an IBM WebSphere MQ client?
	What is an extended transactional client?
	Platform support for extended transactional clients

	How the client connects to the server
	Client and queue manager on the same machine
	Clients on different platforms
	Using different versions of client and server software

	Transaction management and support
	Extending queue manager facilities
	IBM WebSphere MQ client for HP Integrity NonStop Server technical overview
	IBM WebSphere MQ client for HP Integrity NonStop Server supported environments and features

	Scenarios
	Getting started with IBM WebSphere MQ 7.5
	Basic concepts and key terms
	Creating a queue manager called QM1
	Creating the queue manager by using the command-line interface
	Creating the queue manager by using WebSphere MQ Explorer

	Creating a queue called LQ1
	Creating a queue by using the command-line interface
	Creating a queue by using WebSphere MQ Explorer

	Putting a message to the queue LQ1
	Putting a message to the queue by using the command-line interface
	Putting a message to the queue by using IBM WebSphere MQ Explorer

	Getting a message from the queue LQ1
	Getting a message from the queue using the command-line interface
	Getting a message from the queue by using IBM WebSphere MQ Explorer

	What to do next

	Basic file transfer using the scripts
	Planning the solution
	Configure IBM WebSphere MQ for file transfers
	Implementing the solution
	Using the command line to transfer a file

	Basic file transfer in detail
	Planning the solution
	Implementing the solution
	Using the command line to transfer a file

	Two computer file transfer using the scripts
	Planning the solution
	Add a new agent AGENT3 as a spoke on computer 2
	Implementing the solution
	Using the command line to transfer a file

	Two computer file transfer in detail
	Planning the solution
	Modify computer 1 to support the extended topology
	Prepare computer 2 for file transfers
	Implementing the solution
	Using the command line to transfer a file

	Adding audit capability to managed file transfer
	Planning the solution
	Implementing the solution

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Accessibility
	Accessibility on Windows

	Notices
	Programming interface information
	Trademarks

