
7.5

Monitoring and Performance for IBM
WebSphere MQ

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
283.

This edition applies to version 7 release 5 of IBM® WebSphere® MQ and to all subsequent releases and modifications until
otherwise indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 2007, 2025.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Monitoring and performance.. 5
Event monitoring.. 5

Instrumentation events..6
Performance events... 19
Configuration events.. 36
Command events..40
Logger events... 42
Sample program to monitor instrumentation events..48

Message monitoring...54
Activities and operations..54
Message route techniques... 56
Activity recording..58
Trace-route messaging.. 62
IBM WebSphere MQ display route application..76
Activity report reference.. 94
Trace-route message reference...120
Trace-route reply message reference... 130

Accounting and statistics messages... 132
Accounting messages.. 133
Statistics messages..136
Displaying accounting and statistics information... 141
Accounting and statistics message reference...147

Application activity trace...195
Collecting application activity trace information.. 195
amqsact sample program.. 203
Application activity trace message reference... 205

Real-time monitoring...269
Attributes that control real-time monitoring...269
Displaying queue and channel monitoring data..271
Monitoring queues... 272
Monitoring channels...275
The Windows performance monitor.. 281

Notices..283
Programming interface information..284
Trademarks.. 284

 iii

iv

Monitoring and performance

A number of monitoring techniques are available in IBM WebSphere MQ to obtain statistics and other
specific information about how your queue manager network is running. Use the monitoring information
and guidance in this section to help improve the performance of your queue manager network.

Depending on the size and complexity of your queue manager network, you can obtain a range of
information from monitoring your queue manager network. The following list provides examples of
reasons for monitoring your queue manager network:

• Detect problems in your queue manager network.
• Assist in determining the causes of problems in your queue manager network.
• Improve the efficiency of your queue manager network.
• Familiarize yourself with the running of your queue manager network.
• Confirm that your queue manager network is running correctly.
• Generate messages when certain events occur.
• Record message activity.
• Determine the last known location of a message.
• Check various statistics of a queue manager network in real time.
• Generate an audit trail.
• Account for application resource usage.
• Capacity planning.

Related tasks
Configuring
Administering WebSphere MQ

Event monitoring
Event monitoring is the process of detecting occurrences of instrumentation events in a queue manager
network. An instrumentation event is a logical combination of events that is detected by a queue manager
or channel instance. Such an event causes the queue manager or channel instance to put a special
message, called an event message, on an event queue.

IBM WebSphere MQ instrumentation events provide information about errors, warnings, and other
significant occurrences in a queue manager. Use these events to monitor the operation of the queue
managers in your queue manager network to achieve the following goals:

• Detect problems in your queue manager network.
• Assist in determining the causes of problems in your queue manager network.
• Generate an audit trail.
• React to queue manager state changes

Related reference
Event message reference
“Event types” on page 8
Use this page to view the types of instrumentation event that a queue manager or channel instance can
report
Event message format

© Copyright IBM Corp. 2007, 2025 5

Instrumentation events
An instrumentation event is a logical combination of conditions that a queue manager or channel instance
detects and puts a special message, called an event message, on an event queue.

IBM WebSphere MQ instrumentation events provide information about errors, warnings, and other
significant occurrences in a queue manager. You can use these events to monitor the operation of queue
managers (with other methods such as Tivoli® NetView for z/OS®).

Figure 1 on page 7 illustrates the concept of instrumentation events.

6 Monitoring and Performance for IBM WebSphere MQ

Figure 1. Understanding instrumentation events

Event monitoring applications
Applications that use events to monitor queue managers must include the following provisions:

1. Set up channels between the queue managers in your network.

Monitoring and performance 7

2. Implement the required data conversions. The normal rules of data conversion apply. For example, if
you are monitoring events on a UNIX system queue manager from a z/OS queue manager, ensure that
you convert EBCDIC to ASCII.

Event notification through event queues
When an event occurs, the queue manager puts an event message on the appropriate event queue,
if defined. The event message contains information about the event that you can retrieve by writing a
suitable MQI application program that performs the following steps:

• Get the message from the queue.
• Process the message to extract the event data.

The related information describes the format of event messages.

Conditions that cause events
The following list gives examples of conditions that can cause instrumentation events:

• A threshold limit for the number of messages on a queue is reached.
• A channel instance is started or stopped.
• A queue manager becomes active, or is requested to stop.
• An application tries to open a queue specifying a user ID that is not authorized on IBM WebSphere MQ

for IBM i, Windows, UNIX and Linux® systems.
• Objects are created, deleted, changed, or refreshed.
• An MQSC or PCF command runs successfully.
• A queue manager starts writing to a new log extent.
• Putting a message on the dead-letter queue, if the event conditions are met.

Related concepts
“Performance events” on page 19
Performance events relate to conditions that can affect the performance of applications that use a
specified queue. The scope of performance events is the queue. MQPUT calls and MQGET calls on one
queue do not affect the generation of performance events on another queue.
“Sample program to monitor instrumentation events” on page 48
Use this page to view a sample C program for monitoring instrumentation events

Event types
Use this page to view the types of instrumentation event that a queue manager or channel instance can
report

IBM WebSphere MQ instrumentation events have the following types:

• Queue manager events
• Channel and bridge events
• Performance events
• Configuration events
• Command events
• Logger events
• Local events

For each queue manager, each category of event has its own event queue. All events in that category
result in an event message being put onto the same queue.

8 Monitoring and Performance for IBM WebSphere MQ

This event queue: Contains messages from:

SYSTEM.ADMIN.QMGR.EVENT Queue manager events

SYSTEM.ADMIN.CHANNEL.EVENT Channel events

SYSTEM.ADMIN.PERFM.EVENT Performance events

SYSTEM.ADMIN.CONFIG.EVENT Configuration events

SYSTEM.ADMIN.COMMAND.EVENT Command events

SYSTEM.ADMIN.LOGGER.EVENT Logger events

SYSTEM.ADMIN.PUBSUB.EVENT Gets events related to Publish/Subscribe. Only
used with Multicast. For more information see,
Multicast application monitoring.

By incorporating instrumentation events into your own system management application, you can
monitor the activities across many queue managers, across many different nodes, and for multiple IBM
WebSphere MQ applications. In particular, you can monitor all the nodes in your system from a single
node (for those nodes that support IBM WebSphere MQ events) as shown in Figure 2 on page 9.

Instrumentation events can be reported through a user-written reporting mechanism to an administration
application that can present the events to an operator.

Figure 2. Monitoring queue managers across different platforms, on a single node

Instrumentation events also enable applications acting as agents for other administration networks, for
example Tivoli NetView for z/OS, to monitor reports and create the appropriate alerts.

Monitoring and performance 9

Queue manager events
Queue manager events are related to the use of resources within queue managers. For example, a queue
manager event is generated if an application tries to put a message on a queue that does not exist.

The following examples are conditions that can cause a queue manager event:

• An application issues an MQI call that fails. The reason code from the call is the same as the reason
code in the event message.

A similar condition can occur during the internal operation of a queue manager; for example, when
generating a report message. The reason code in an event message might match an MQI reason code,
even though it is not associated with any application. Do not assume that, because an event message
reason code looks like an MQI reason code, the event was necessarily caused by an unsuccessful MQI
call from an application.

• A command is issued to a queue manager and processing this command causes an event. For example:

– A queue manager is stopped or started.
– A command is issued where the associated user ID is not authorized for that command.

WebSphere MQ puts messages for queue manager events on the SYSTEM.ADMIN.QMGR.EVENT queue,
and supports the following queue manager event types:

Authority (on Windows, and UNIX systems only)
Authority events report an authorization, such as an application trying to open a queue for which it
does not have the required authority, or a command being issued from a user ID that does not have
the required authority. The authority event message can contain the following event data:

• Not Authorized (type 1)
• Not Authorized (type 2)
• Not Authorized (type 3)
• Not Authorized (type 4)
• Not Authorized (type 5)
• Not Authorized (type 6)

All authority events are valid on Windows, and UNIX systems only.

Inhibit
Inhibit events indicate that an MQPUT or MQGET operation has been attempted against a queue
where the queue is inhibited for puts or gets, or against a topic where the topic is inhibited for
publishes. The inhibit event message can contain the following event data:

• Get Inhibited
• Put Inhibited

Local
Local events indicate that an application (or the queue manager) has not been able to access a local
queue or other local object. For example, an application might try to access an object that has not
been defined. The local event message can contain the following event data:

• Alias Base Queue Type Error
• Unknown Alias Base Queue
• Unknown Object Name

Remote
Remote events indicate that an application or the queue manager cannot access a remote queue
on another queue manager. For example, the transmission queue to be used might not be correctly
defined. The remote event message can contain the following event data:

• Default Transmission Queue Type Error
• Default Transmission Queue Usage Error

10 Monitoring and Performance for IBM WebSphere MQ

• Queue Type Error
• Remote Queue Name Error
• Transmission Queue Type Error
• Transmission Queue Usage Error
• Unknown Default Transmission Queue
• Unknown Remote Queue Manager
• Unknown Transmission Queue

Start and stop
Start and stop events indicate that a queue manager has been started or has been requested to stop
or quiesce.

z/OS supports only start events.

Stop events are not recorded unless the default message-persistence of the
SYSTEM.ADMIN.QMGR.EVENT queue is defined as persistent. The start and stop event message can
contain the following event data:

• Queue Manager Active
• Queue Manager Not Active

For each event type in this list, you can set a queue manager attribute to enable or disable the event type.

Channel and bridge events
Channels report these events as a result of conditions detected during their operation. For example, when
a channel instance is stopped.

Channel events are generated in the following circumstances:

• When a command starts or stops a channel.
• When a channel instance starts or stops.
• When a channel receives a conversion error warning when getting a message.
• When an attempt is made to create a channel automatically; the event is generated whether the attempt

succeeds or fails.

Note: Client connections do not cause Channel Started or Channel Stopped events.

When a command is used to start a channel, an event is generated. Another event is generated when the
channel instance starts. However, starting a channel by a listener, the runmqchl command, or a queue
manager trigger message does not generate an event. In these cases, an event is generated only when the
channel instance starts.

A successful start or stop channel command generates at least two events. These events are generated
for both queue managers connected by the channel (providing they support events).

If a channel event is put on an event queue, an error condition causes the queue manager to create an
event.

The event messages for channel and bridge events are put on the SYSTEM.ADMIN.CHANNEL.EVENT
queue.

The channel event messages can contain the following event data:

• Channel Activated
• Channel Auto-definition Error
• Channel Auto-definition OK
• Channel Conversion Error
• Channel Not Activated
• Channel Started

Monitoring and performance 11

• Channel Stopped
• Channel Stopped By User
• Channel Blocked

SSL events
The only Secure Sockets Layer (SSL or TLS) event is the Channel SSL Error event. This event is reported
when a channel using SSL or TLS fails to establish an SSL connection.

The SSL event messages can contain the following event data:

• Channel SSL Error
• Channel SSL Warning

Performance events
Performance events are notifications that a resource has reached a threshold condition. For example, a
queue depth limit has been reached.

Performance events relate to conditions that can affect the performance of applications that use a
specified queue. They are not generated for the event queues themselves.

The event type is returned in the command identifier field in the message data.

If a queue manager tries to put a queue manager event or performance event message on an event queue
and an error that would typically create an event is detected, another event is not created and no action is
taken.

MQGET and MQPUT calls within a unit of work can generate performance events regardless of whether
the unit of work is committed or backed out.

The event messages for performance events are put on the SYSTEM.ADMIN.PERFM.EVENT queue.

There are two types of performance event:

Queue depth events
Queue depth events relate to the number of messages on a queue; that is, how full or empty the
queue is. These events are supported for shared queues. The queue depth event messages can
contain the following event data:

• Queue Depth High
• Queue Depth Low
• Queue Full

Queue service interval events
Queue service interval events relate to whether messages are processed within a user-specified time
interval. These events are not supported for shared queues.

Configuration events
Configuration events are generated when a configuration event is requested explicitly, or automatically
when an object is created, modified, or deleted.

A configuration event message contains information about the attributes of an object. For example, a
configuration event message is generated if a namelist object is created, and contains information about
the attributes of the namelist object.

The event messages for configuration events are put on the SYSTEM.ADMIN.CONFIG.EVENT queue.

There are four types of configuration event:

Create object events
Create object events are generated when an object is created. The event message contains the
following event data: Create object .

12 Monitoring and Performance for IBM WebSphere MQ

Change object events
Change object events are generated when an object is changed. The event message contains the
following event data: Change object .

Delete object events
Delete object events are generated when an object is deleted. The event message contains the
following event data: Delete object .

Refresh object events
Refresh object events are generated by an explicit request to refresh. The event message contains the
following event data: Refresh object .

Command events
Command events are reported when an MQSC or PCF command runs successfully.

A command event message contains information about the origin, context, and content of a command.
For example, a command event message is generated with such information if the MQSC command,
ALTER QLOCAL, runs successfully.

The event messages for command events are put on the SYSTEM.ADMIN.COMMAND.EVENT queue.

Command events contain the following event data: Command .

Logger events
Logger events are reported when a queue manager that uses linear logging starts writing log records to a
new log extent.

A logger event message contains information specifying the log extents required by the queue manager to
restart the queue manager, or for media recovery.

The event messages for logger events are put on the SYSTEM.ADMIN.LOGGER.EVENT queue.

The logger event message contains the following event data: Logger .

Event message data summary
Use this summary to obtain information about the event data that each type of event message can
contain.

Event type See these topics

Authority events Not Authorized (type 1)

Not Authorized (type 2)

Not Authorized (type 3)

Not Authorized (type 4)

Not Authorized (type 5)

Not Authorized (type 6)

Monitoring and performance 13

Event type See these topics

Channel events Channel Activated

Channel Auto-definition Error

Channel Auto-definition OK

Channel Blocked

Channel Conversion Error

Channel Not Activated

Channel Started

Channel Stopped

Channel Stopped By User

Command events Command

Configuration events Create object

Change object

Delete object

Refresh object

IMS Bridge events Bridge Started

Bridge Stopped

Inhibit events Get Inhibited

Put Inhibited

Local events Alias Base Queue Type Error

Unknown Alias Base Queue

Unknown Object Name

Logger events Logger

Performance events Queue Depth High

Queue Depth Low

Queue Full

Queue Service Interval High

Queue Service Interval OK

14 Monitoring and Performance for IBM WebSphere MQ

Event type See these topics

Remote events Default Transmission Queue Type Error

Default Transmission Queue Usage Error

Queue Type Error

Remote Queue Name Error

Transmission Queue Type Error

Transmission Queue Usage Error

Unknown Default Transmission Queue

Unknown Remote Queue Manager

Unknown Transmission Queue

SSL events Channel SSL Error

Start and stop events Queue Manager Active

Queue Manager Not Active

Controlling events
You enable and disable events by specifying the appropriate values for queue manager, queue attributes,
or both, depending on the type of event.

You must enable each instrumentation event that you want to be generated. For example, the conditions
causing a Queue Full event are:

• Queue Full events are enabled for a specified queue, and
• An application issues an MQPUT request to put a message on that queue, but the request fails because

the queue is full.

Enable and disable events by using any of the following techniques:

• IBM WebSphere MQ script commands (MQSC).
• The corresponding IBM WebSphere MQ PCF commands.
• The IBM WebSphere MQ Explorer.

Note: You can set attributes related to events for both queues and queue managers only by command.
The MQI call MQSET does not support attributes related to events.

Related concepts
“Instrumentation events” on page 6
An instrumentation event is a logical combination of conditions that a queue manager or channel instance
detects and puts a special message, called an event message, on an event queue.
Related tasks
Automating administration tasks
Using Programmable Command Formats
Related reference
“Event types” on page 8
Use this page to view the types of instrumentation event that a queue manager or channel instance can
report
The MQSC commands

Monitoring and performance 15

Controlling queue manager events
You control queue manager events by using queue manager attributes. To enable queue manager events,
set the appropriate queue manager attribute to ENABLED. To disable queue manager events, set the
appropriate queue manager attribute to DISABLED.

To enable or disable queue manager events, use the MQSC command ALTER QMGR, specifying the
appropriate queue manager attribute. Table 1 on page 16 summarizes how to enable queue manager
events. To disable a queue manager event, set the appropriate parameter to DISABLED.

Table 1. Enabling queue manager events using MQSC commands

Event ALTER QMGR parameter

Authority
Inhibit
Local
Remote
Start and Stop

AUTHOREV (ENABLED)
INHIBTEV (ENABLED)
LOCALEV (ENABLED)
REMOTEEV (ENABLED)
STRSTPEV (ENABLED)

Controlling channel and bridge events
You control channel events by using queue manager attributes. To enable channel events, set the
appropriate queue manager attribute to ENABLED. To disable channel events, set the appropriate queue
manager attribute to DISABLED.

To enable or disable channels events use the MQSC command ALTER QMGR, specifying the appropriate
queue manager attribute. Table 2 on page 16 summarizes how you enable channel and bridge events. To
disable a queue manager event, set the appropriate parameter to DISABLED.

Table 2. Enabling channel and bridge events using MQSC commands

Event ALTER QMGR parameter

Channel
Related to channel errors only
IMS Bridge
SSL
Channel auto-definition

CHLEV (ENABLED)
CHLEV (EXCEPTION)
BRIDGEEV (ENABLED)
SSLEV (ENABLED)
CHADEV(ENABLED)

With CHLEV set to exception, the following return codes, and corresponding reason qualifiers are
generated:

• MQRC_CHANNEL_ACTIVATED
• MQRC_CHANNEL_CONV_ERROR
• MQRC_CHANNEL_NOT_ACTIVATED
• MQRC_CHANNEL_STOPPED

– with the following ReasonQualifiers:

- MQRQ_CHANNEL_STOPPED_ERROR
- MQRQ_CHANNEL_STOPPED_RETRY
- MQRQ_CHANNEL_STOPPED_DISABLED

• MQRC_CHANNEL_STOPPED_BY_USER
• MQRC_CHANNEL_BLOCKED

– with the following ReasonQualifiers:

- MQRQ_CHANNEL_BLOCKED_NOACCESS
- MQRQ_CHANNEL_BLOCKED_USERID

16 Monitoring and Performance for IBM WebSphere MQ

- MQRQ_CHANNEL_BLOCKED_ADDRESS

Controlling performance events
You control performance events using the PERFMEV queue manager attribute. To enable performance
events, set PERFMEV to ENABLED. To disable performance events, set the PERFMEV queue manager
attribute to DISABLED.

To set the PERFMEV queue manager attribute to ENABLED, use the following MQSC command:

ALTER QMGR PERFMEV (ENABLED)

To enable specific performance events, set the appropriate queue attribute. Also, specify the conditions
that cause the event.

Queue depth events
By default, all queue depth events are disabled. To configure a queue for any of the queue depth
events:

1. Enable performance events on the queue manager.
2. Enable the event on the required queue.
3. Set the limits, if required, to the appropriate levels, expressed as a percentage of the maximum

queue depth.

Queue service interval events
To configure a queue for queue service interval events you must:

1. Enable performance events on the queue manager.
2. Set the control attribute for a Queue Service Interval High or OK event on the queue as required.
3. Specify the service interval time by setting the QSVCINT attribute for the queue to the appropriate

length of time.

Note: When enabled, a queue service interval event can be generated at any appropriate time, not
necessarily waiting until an MQI call for the queue is issued. However, if an MQI call is used on a
queue to put or remove a message, any applicable performance event is generated at that time. The
event is not generated when the elapsed time becomes equal to the service interval time.

Controlling configuration, command, and logger events
You control configuration, command, and logger events by using the queue manager attributes
CONFIGEV, CMDEV, and LOGGEREV. To enable these events, set the appropriate queue manager attribute
to ENABLED. To disable these events, set the appropriate queue manager attribute to DISABLED.
Configuration events

To enable configuration events, set CONFIGEV to ENABLED. To disable configuration events, set
CONFIGEV to DISABLED. For example, you can enable configuration events by using the following
MQSC command:

ALTER QMGR CONFIGEV (ENABLED)

Command events
To enable command events, set CMDEV to ENABLED. To enable command events for commands
except DISPLAY MQSC commands and Inquire PCF commands, set the CMDEV to NODISPLAY. To
disable command events, set CMDEV to DISABLED. For example, you can enable command events by
using the following MQSC command:

ALTER QMGR CMDEV (ENABLED)

Monitoring and performance 17

Logger events
To enable logger events, set LOGGEREV to ENABLED. To disable logger events, set LOGGEREV to
DISABLED. For example, you can enable logger events by using the following MQSC command:

ALTER QMGR LOGGEREV(ENABLED)

Event queues
When an event occurs, the queue manager puts an event message on the defined event queue. The event
message contains information about the event.

You can define event queues either as local queues, alias queues, or as local definitions of remote
queues. If you define all your event queues as local definitions of the same remote queue on one queue
manager, you can centralize your monitoring activities.

You must not define event queues as transmission queues, because event messages have formats that
are incompatible with the message format that is required for transmission queues.

Shared event queues are local queues defined with the QSGDISP(SHARED) value.

When an event queue is unavailable
If an event occurs when the event queue is not available, the event message is lost. For example, if you do
not define an event queue for a category of event, all event messages for that category are lost. The event
messages are not, for example, saved on the dead-letter (undelivered-message) queue.

However, you can define the event queue as a remote queue. Then, if there is a problem on the remote
system putting messages to the resolved queue, the event message arrives on the dead-letter queue of
the remote system.

An event queue might be unavailable for many different reasons including:

• The queue has not been defined.
• The queue has been deleted.
• The queue is full.
• The queue has been put-inhibited.

The absence of an event queue does not prevent the event from occurring. For example, after a
performance event, the queue manager changes the queue attributes and resets the queue statistics.
This change happens whether the event message is put on the performance event queue or not. The same
is true in the case of configuration and command events.

Using triggered event queues
You can set up the event queues with triggers so that when an event is generated, the event message
being put onto the event queue starts a user-written monitoring application. This application can
process the event messages and take appropriate action. For example, certain events might require an
operator to be informed, other events might start an application that performs some administration tasks
automatically.

Event queues can have trigger actions associated with them and can create trigger messages. However,
if these trigger messages in turn cause conditions that would normally generate an event, no event is
generated. not generating an event in this instance ensures that looping does not occur.

Related concepts
“Controlling events” on page 15
You enable and disable events by specifying the appropriate values for queue manager, queue attributes,
or both, depending on the type of event.
“Format of event messages” on page 19

18 Monitoring and Performance for IBM WebSphere MQ

Event messages contain information about an event and its cause. Like other WebSphere MQ messages,
an event message has two parts: a message descriptor and the message data.
Conditions for a trigger event
Related reference
QSGDisp (MQLONG)

Format of event messages
Event messages contain information about an event and its cause. Like other WebSphere MQ messages,
an event message has two parts: a message descriptor and the message data.

• The message descriptor is based on the MQMD structure.
• The message data consists of an event header and the event data. The event header contains the reason

code that identifies the event type. Putting the event message, and any subsequent action, does not
affect the reason code returned by the MQI call that caused the event. The event data provides further
information about the event.

Typically, you process event messages with a system management application tailored to meet the
requirements of the enterprise at which it runs.

When the queue managers in a queue sharing group detect the conditions for generating an event
message, several queue managers can generate an event message for the shared queue, resulting in
several event messages. To ensure that a system can correlate multiple event messages from different
queue managers, these event messages have a unique correlation identifier (CorrelId) set in the message
descriptor (MQMD).

Related reference
“Activity report MQMD (message descriptor)” on page 96
Use this page to view the values contained by the MQMD structure for an activity report
“Activity report MQEPH (Embedded PCF header)” on page 100
Use this page to view the values contained by the MQEPH structure for an activity report
“Activity report MQCFH (PCF header)” on page 101
Use this page to view the PCF values contained by the MQCFH structure for an activity report
Event message reference
Event message format
Event message MQMD (message descriptor)
Event message MQCFH (PCF header)
Event message descriptions

Performance events
Performance events relate to conditions that can affect the performance of applications that use a
specified queue. The scope of performance events is the queue. MQPUT calls and MQGET calls on one
queue do not affect the generation of performance events on another queue.

Performance event messages can be generated at any appropriate time, not necessarily waiting until an
MQI call for the queue is issued. However, if you use an MQI call on a queue to put or remove a message,
any appropriate performance events are generated at that time.

Every performance event message that is generated is placed on the queue,
SYSTEM.ADMIN.PERFM.EVENT.

The event data contains a reason code that identifies the cause of the event, a set of performance event
statistics, and other data. The types of event data that can be returned in performance event messages
are described in the following list:

• Queue Depth High
• Queue Depth Low

Monitoring and performance 19

• Queue Full
• Queue Service Interval High
• Queue Service Interval OK

Examples that illustrate the use of performance events assume that you set queue attributes by using
the appropriate IBM WebSphere MQ commands (MQSC). On , you can also set queue attributes using the
operations and controls panels for queue managers.

Related reference
“Event types” on page 8
Use this page to view the types of instrumentation event that a queue manager or channel instance can
report

Performance event statistics
The performance event data in the event message contains statistics about the event. Use the statistics to
analyze the behavior of a specified queue.

The event data in the event message contains information about the event for system management
programs. For all performance events, the event data contains the names of the queue manager and the
queue associated with the event. The event data also contains statistics related to the event. Table 3 on
page 20 summarizes the event statistics that you can use to analyze the behavior of a queue. All the
statistics refer to what has happened since the last time the statistics were reset.

Table 3. Performance event statistics

Parameter Description

TimeSinceReset The elapsed time since the statistics were last reset.

HighQDepth The maximum number of messages on the queue since the statistics
were last reset.

MsgEnqCount The number of messages enqueued (the number of MQPUT calls to
the queue), since the statistics were last reset.

MsgDeqCount The number of messages dequeued (the number of MQGET calls to
the queue), since the statistics were last reset.

Performance event statistics are reset when any of the following changes occur:

• A performance event occurs (statistics are reset on all active queue managers).
• A queue manager stops and restarts.
• The PCF command, Reset Queue Statistics, is issued from an application program.

Related concepts
“Performance events” on page 19
Performance events relate to conditions that can affect the performance of applications that use a
specified queue. The scope of performance events is the queue. MQPUT calls and MQGET calls on one
queue do not affect the generation of performance events on another queue.
“The service timer” on page 22
Queue service interval events use an internal timer, called the service timer, which is controlled by the
queue manager. The service timer is used only if a queue service interval event is enabled.
“Rules for queue service interval events” on page 23
Formal rules control when the service timer is set and queue service interval events are generated.
Related tasks
“Enabling queue service interval events” on page 23

20 Monitoring and Performance for IBM WebSphere MQ

To configure a queue for queue service interval events you set the appropriate queue manager and queue
attributes.
Related reference
Queue Depth High
Reset Queue Statistics

Queue service interval events
Queue service interval events indicate whether an operation was performed on a queue within a user-
defined time interval called the service interval. Depending on your installation, you can use queue service
interval events to monitor whether messages are being taken off queues quickly enough.

Queue service interval events are not supported on shared queues.

The following types of queue service interval events can occur, where the term get operation refers to
an MQGET call or an activity that removes a messages from a queue, such as using the CLEAR QLOCAL
command:

Queue Service Interval OK
Indicates that after one of the following operations:

• An MQPUT call
• A get operation that leaves a non-empty queue

a get operation was performed within a user-defined time period, known as the service interval.

Only a get operation can cause the Queue Service Interval OK event message. Queue Service Interval
OK events are sometimes described as OK events.

Queue Service Interval High
Indicates that after one of the following operations:

• An MQPUT call
• A get operation that leaves a non-empty queue

a get operation was not performed within a user-defined service interval.

Either a get operation or an MQPUT call can cause the Queue Service Interval High event message.
Queue Service Interval High events are sometimes described as High events.

To enable both Queue Service Interval OK and Queue Service Interval High events, set the
QServiceIntervalEvent control attribute to High. Queue Service Interval OK events are automatically
enabled when a Queue Service Interval High event is generated. You do not need to enable Queue Service
Interval OK events independently.

OK and High events are mutually exclusive, so if one is enabled the other is disabled. However, both
events can be simultaneously disabled.

Figure 3 on page 22 shows a graph of queue depth against time. At time P1, an application issues an
MQPUT, to put a message on the queue. At time G1, another application issues an MQGET to remove the
message from the queue.

Monitoring and performance 21

Figure 3. Understanding queue service interval events

The possible outcomes of queue service interval events are as follows:

• If the elapsed time between the put and the get is less than or equal to the service interval:

– A Queue Service Interval OK event is generated at time G1, if queue service interval events are
enabled

• If the elapsed time between the put and get is greater than the service interval:

– A Queue Service Interval High event is generated at time G1, if queue service interval events are
enabled.

The algorithm for starting the service timer and generating events is described in “Rules for queue service
interval events” on page 23.

Related reference
Queue Service Interval OK
Queue Service Interval High
QServiceIntervalEvent (MQLONG)
ServiceIntervalEvent property

The service timer
Queue service interval events use an internal timer, called the service timer, which is controlled by the
queue manager. The service timer is used only if a queue service interval event is enabled.
What precisely does the service timer measure?

The service timer measures the elapsed time between an MQPUT call to an empty queue or a
get operation, and the next put or get, provided the queue depth is nonzero between these two
operations.

When is the service timer active?
The service timer is always active (running), if the queue has messages on it (depth is nonzero) and a
queue service interval event is enabled. If the queue becomes empty (queue depth zero), the timer is
put into an OFF state, to be restarted on the next put.

When is the service timer reset?
The service timer is always reset after a get operation . It is also reset by an MQPUT call to an empty
queue. However, it is not necessarily reset on a queue service interval event.

How is the service timer used?
Following a get operation or an MQPUT call, the queue manager compares the elapsed time as
measured by the service timer, with the user-defined service interval. The result of this comparison is
that:

• An OK event is generated if there is a get operation and the elapsed time is less than or equal to the
service interval, AND this event is enabled.

22 Monitoring and Performance for IBM WebSphere MQ

• A high event is generated if the elapsed time is greater than the service interval, AND this event is
enabled.

Can applications read the service timer?
No, the service timer is an internal timer that is not available to applications.

What about the TimeSinceReset parameter?
The TimeSinceReset parameter is returned as part of the event statistics in the event data. It specifies
the time between successive queue service interval events, unless the event statistics are reset.

Rules for queue service interval events
Formal rules control when the service timer is set and queue service interval events are generated.

Rules for the service timer

The service timer is reset to zero and restarted as follows:

• After an MQPUT call to an empty queue.
• After an MQGET call, if the queue is not empty after the MQGET call.

The resetting of the timer does not depend on whether an event has been generated.

At queue manager startup the service timer is set to startup time if the queue depth is greater than zero.

If the queue is empty following a get operation, the timer is put into an OFF state.

Queue Service Interval High events

The Queue Service Interval event must be enabled (set to HIGH).

Queue Service Interval High events are automatically enabled when a Queue Service Interval OK event is
generated.

If the service time is greater than the service interval, an event is generated on, or before, the next
MQPUT or get operation.

Queue Service Interval OK events

Queue Service Interval OK events are automatically enabled when a Queue Service Interval High event is
generated.

If the service time (elapsed time) is less than or equal to the service interval, an event is generated on, or
before, the next get operation.

Related tasks
“Enabling queue service interval events” on page 23
To configure a queue for queue service interval events you set the appropriate queue manager and queue
attributes.

Enabling queue service interval events
To configure a queue for queue service interval events you set the appropriate queue manager and queue
attributes.

About this task
The high and OK events are mutually exclusive; that is, when one is enabled, the other is automatically
disabled:

• When a high event is generated on a queue, the queue manager automatically disables high events and
enables OK events for that queue.

Monitoring and performance 23

• When an OK event is generated on a queue, the queue manager automatically disables OK events and
enables high events for that queue.

Table 4. Enabling queue service interval events using MQSC

Queue service interval event Queue attributes

Queue Service Interval High
Queue Service Interval OK
No queue service interval events

QSVCIEV (HIGH)
QSVCIEV (OK)
QSVCIEV (NONE)

Service interval QSVCINT (tt
) where tt is the service
interval time in milliseconds.

Perform the following steps to enable queue service interval events:

Procedure
1. Set the queue manager attribute PERFMEV to ENABLED.

Performance events are enabled on the queue manager.
2. Set the control attribute, QSVCIEV, for a Queue Service Interval High or OK event on the queue, as

required.
3. Set the QSVCINT attribute for the queue to specify the appropriate service interval time.

Example
To enable Queue Service Interval High events with a service interval time of 10 seconds (10 000
milliseconds) use the following MQSC commands:

 ALTER QMGR PERFMEV(ENABLED)

 ALTER QLOCAL('MYQUEUE') QSVCINT(10000) QSVCIEV(HIGH)

.

Queue service interval events examples
Use these examples to understand the information that you can obtain from queue service interval events

The three examples provide progressively more complex illustrations of the use of queue service interval
events.

The figures accompanying the examples have the same structure:

• Figure 1 is a graph of queue depth against time, showing individual MQGET calls and MQPUT calls.
• The Commentary section shows a comparison of the time constraints. There are three time periods that

you must consider:

– The user-defined service interval.
– The time measured by the service timer.
– The time since event statistics were last reset (TimeSinceReset in the event data).

• The Event statistics summary section shows which events are enabled at any instant and what events
are generated.

The examples illustrate the following aspects of queue service interval events:

• How the queue depth varies over time.
• How the elapsed time as measured by the service timer compares with the service interval.

24 Monitoring and Performance for IBM WebSphere MQ

• Which event is enabled.
• Which events are generated.

Remember: Example 1 shows a simple case where the messages are intermittent and each message is
removed from the queue before the next one arrives. From the event data, you know that the maximum
number of messages on the queue was one. You can, therefore, work out how long each message was on
the queue.

However, in the general case, where there is more than one message on the queue and the sequence
of MQGET calls and MQPUT calls is not predictable, you cannot use queue service interval events to
calculate how long an individual message remains on a queue. The TimeSinceReset parameter, which is
returned in the event data, can include a proportion of time when there are no messages on the queue.
Therefore any results you derive from these statistics are implicitly averaged to include these times.

Related concepts
“Queue service interval events” on page 21
Queue service interval events indicate whether an operation was performed on a queue within a user-
defined time interval called the service interval. Depending on your installation, you can use queue service
interval events to monitor whether messages are being taken off queues quickly enough.
“The service timer” on page 22

Monitoring and performance 25

Queue service interval events use an internal timer, called the service timer, which is controlled by the
queue manager. The service timer is used only if a queue service interval event is enabled.

Queue service interval events: example 1
A basic sequence of MQGET calls and MQPUT calls, where the queue depth is always one or zero.

Figure 4. Queue service interval events - example 1

Commentary
1. At P1, an application puts a message onto an empty queue. This starts the service timer.

Note that T0 might be queue manager startup time.
2. At G1, another application gets the message from the queue. Because the elapsed time between P1

and G1 is greater than the service interval, a Queue Service Interval High event is generated on the
MQGET call at G1. When the high event is generated, the queue manager resets the event control
attribute so that:

a. The OK event is automatically enabled.
b. The high event is disabled.

Because the queue is now empty, the service timer is switched to an OFF state.
3. At P2, a second message is put onto the queue. This restarts the service timer.

26 Monitoring and Performance for IBM WebSphere MQ

4. At G2, the message is removed from the queue. However, because the elapsed time between P2 and
G2 is less than the service interval, a Queue Service Interval OK event is generated on the MQGET call
at G2. When the OK event is generated, the queue manager resets the control attribute so that:

a. The high event is automatically enabled.
b. The OK event is disabled.

Because the queue is empty, the service timer is again switched to an OFF state.

Event statistics summary

Table 5 on page 27 summarizes the event statistics for this example.

Table 5. Event statistics summary for example 1

Event 1 Event 2

Time of event T(G1) T(G2)

Type of event High OK

TimeSinceReset T(G1) - T(0) T(G2) - T(G1)

HighQDepth 1 1

MsgEnqCount 1 1

MsgDeqCount 1 1

The middle part of Figure 4 on page 26 shows the elapsed time as measured by the service timer
compared to the service interval for that queue. To see whether a queue service interval event might
occur, compare the length of the horizontal line representing the service timer (with arrow) to that of the
line representing the service interval. If the service timer line is longer, and the Queue Service Interval
High event is enabled, a Queue Service Interval High event occurs on the next get. If the timer line is
shorter, and the Queue Service Interval OK event is enabled, a Queue Service Interval OK event occurs on
the next get.

Queue service interval events: example 2
A sequence of MQPUT calls and MQGET calls, where the queue depth is not always one or zero.

This example also shows instances of the timer being reset without events being generated, for example,
at time P2.

Monitoring and performance 27

Figure 5. Queue service interval events - example 2

Commentary
In this example, OK events are enabled initially and queue statistics were reset at time T0.

1. At P1, the first put starts the service timer.
2. At P2, the second put does not generate an event because a put cannot cause an OK event.
3. At G1, the service interval has now been exceeded and therefore an OK event is not generated.

However, the MQGET call causes the service timer to be reset.
4. At G2, the second get occurs within the service interval and this time an OK event is generated. The

queue manager resets the event control attribute so that:

a. The high event is automatically enabled.
b. The OK event is disabled.

Because the queue is now empty, the service timer is switched to an OFF state.

28 Monitoring and Performance for IBM WebSphere MQ

Event statistics summary

Table 6 on page 29 summarizes the event statistics for this example.

Table 6. Event statistics summary for example 2

Event 2

Time of event T(G2)

Type of event OK

TimeSinceReset T(G2) - T(0)

HighQDepth 2

MsgEnqCount 2

MsgDeqCount 2

Queue service interval events: example 3
A sequence of MQGET calls and MQPUT calls that is more sporadic than the previous examples.

Figure 6. Queue service interval events - example 3

Monitoring and performance 29

Commentary
1. At time T(0), the queue statistics are reset and Queue Service Interval High events are enabled.
2. At P1, the first put starts the service timer.
3. At P2, the second put increases the queue depth to two. A high event is not generated here because

the service interval time has not been exceeded.
4. At P3, the third put causes a high event to be generated. (The timer has exceeded the service interval.)

The timer is not reset because the queue depth was not zero before the put. However, OK events are
enabled.

5. At G1, the MQGET call does not generate an event because the service interval has been exceeded and
OK events are enabled. The MQGET call does, however, reset the service timer.

6. At G2, the MQGET call does not generate an event because the service interval has been exceeded and
OK events are enabled. Again, the MQGET call resets the service timer.

7. At G3, the third get empties the queue and the service timer is equal to the service interval. Therefore
an OK event is generated. The service timer is reset and high events are enabled. The MQGET call
empties the queue, and this puts the timer in the OFF state.

Event statistics summary
Table 7 on page 30 summarizes the event statistics for this example.

Table 7. Event statistics summary for example 3

Event 1 Event 2

Time of event T(P3) T(G3)

Type of event High OK

TimeSinceReset T(P3) - T(0) T(G3) - T(P3)

HighQDepth 3 3

MsgEnqCount 3 0

MsgDeqCount 0 3

Queue depth events
Queue depth events are related to the queue depth, that is, the number of messages on the queue.

In WebSphere MQ applications, queues must not become full. If they do, applications can no longer put
messages on the queue that they specify. Although the message is not lost if this occurs, a full queue can
cause considerable inconvenience. The number of messages can build up on a queue if the messages are
being put onto the queue faster than the applications that process them can take them off.

The solution to this problem depends on the particular circumstances, but might involve:

• Diverting some messages to another queue.
• Starting new applications to take more messages off the queue.
• Stopping nonessential message traffic.
• Increasing the queue depth to overcome a transient maximum.

Advance warning that problems might be on their way makes it easier to take preventive action. For this
purpose, WebSphere MQ provides the following queue depth events:

Queue Depth High events
Indicate that the queue depth has increased to a predefined threshold called the Queue Depth High
limit.

30 Monitoring and Performance for IBM WebSphere MQ

Queue Depth Low events
Indicate that the queue depth has decreased to a predefined threshold called the Queue Depth Low
limit.

Queue Full events
Indicate that the queue has reached its maximum depth, that is, the queue is full.

A Queue Full Event is generated when an application attempts to put a message on a queue that has
reached its maximum depth. Queue Depth High events give advance warning that a queue is filling up.
This means that having received this event, the system administrator needs to take some preventive
action. You can configure the queue manager such that, if the preventive action is successful and the
queue depth drops to a safer level, the queue manager generates a Queue Depth Low event.

The first queue depth event example illustrates the effect of presumed action preventing the queue
becoming full.

Related concepts
“Queue depth events examples” on page 32
Use these examples to understand the information that you can obtain from queue depth events
Related reference
Queue Full
Queue Depth High
Queue Depth Low

Enabling queue depth events
To configure a queue for any of the queue depth events you set the appropriate queue manager and
queue attributes.

About this task
By default, all queue depth events are disabled. When enabled, queue depth events are generated as
follows:

• A Queue Depth High event is generated when a message is put on the queue, causing the queue depth
to be greater than or equal to the value determined by the Queue Depth High limit.

– A Queue Depth High event is automatically enabled by a Queue Depth Low event on the same queue.
– A Queue Depth High event automatically enables both a Queue Depth Low and a Queue Full event on

the same queue.
• A Queue Depth Low event is generated when a message is removed from a queue by a get operation

causing the queue depth to be less than or equal to the value determined by the Queue Depth Low limit.

– A Queue Depth Low event is automatically enabled by a Queue Depth High event or a Queue Full
event on the same queue.

– A Queue Depth Low event automatically enables both a Queue Depth High and a Queue Full event on
the same queue.

• A Queue Full event is generated when an application is unable to put a message onto a queue because
the queue is full.

– A Queue Full event is automatically enabled by a Queue Depth High or a Queue Depth Low event on
the same queue.

– A Queue Full event automatically enables a Queue Depth Low event on the same queue.

Perform the following steps to configure a queue for any of the queue depth events:

Procedure
1. Enable performance events on the queue manager, using the queue manager attribute PERFMEV.
2. Set one of the following attributes to enable the event on the required queue:

Monitoring and performance 31

• QDepthHighEvent (QDPHIEV in MQSC)
• QDepthLowEvent (QDPLOEV in MQSC)
• QDepthMaxEvent (QDPMAXEV in MQSC)

3. Optional: To set the limits, assign the following attributes, as a percentage of the maximum queue
depth:

• QDepthHighLimit (QDEPTHHI in MQSC)
• QDepthLowLimit (QDEPTHLO in MQSC)

Restriction: QDEPTHHI must not be less than QDEPTHLO.

If QDEPTHHI equals QDEPTHLO an event message is generated every time the queue depth passes
the value in either direction, because the high threshold is enabled when the queue depth is below the
value and the low threshold is enabled when the depth is above the value.

Results
Note:

A Queue Depth Low event is not generated when expired messages are removed from a queue by a get
operation causing the queue depth to be less than, or equal to, the value determined by the Queue Depth
Low limit.

IBM WebSphere MQgenerates the low event message only during a successful get operation. Therefore,
when the expired messages are removed from the queue, no queue depth low event message is
generated.

Additionally, after the removal of these expired messages from the queue, queue depth high event and
queue depth low event are not reset.

Example

To enable Queue Depth High events on the queue MYQUEUE with a limit set at 80%, use the following
MQSC commands:

 ALTER QMGR PERFMEV(ENABLED)
 ALTER QLOCAL('MYQUEUE') QDEPTHHI(80) QDPHIEV(ENABLED)

To enable Queue Depth Low events on the queue MYQUEUE with a limit set at 20%, use the following
MQSC commands:

 ALTER QMGR PERFMEV(ENABLED)
 ALTER QLOCAL('MYQUEUE') QDEPTHLO(20) QDPLOEV(ENABLED)

To enable Queue Full events on the queue MYQUEUE, use the following MQSC commands:

 ALTER QMGR PERFMEV(ENABLED)
 ALTER QLOCAL('MYQUEUE') QDPMAXEV(ENABLED)

Queue depth events examples
Use these examples to understand the information that you can obtain from queue depth events

The first example provides a basic illustration of queue depth events. The second example is more
extensive, but the principles are the same as for the first example. Both examples use the same queue
definition, as follows:

The queue, MYQUEUE1, has a maximum depth of 1000 messages. The high queue depth limit is 80% and
the low queue depth limit is 20%. Initially, Queue Depth High events are enabled, while the other queue
depth events are disabled.

32 Monitoring and Performance for IBM WebSphere MQ

The WebSphere MQ commands (MQSC) to configure this queue are:

 ALTER QMGR PERFMEV(ENABLED)

 DEFINE QLOCAL('MYQUEUE1') MAXDEPTH(1000) QDPMAXEV(DISABLED) QDEPTHHI(80)
 QDPHIEV(ENABLED) QDEPTHLO(20) QDPLOEV(DISABLED)

Related concepts
“Queue depth events” on page 30
Queue depth events are related to the queue depth, that is, the number of messages on the queue.
Related tasks
“Enabling queue depth events” on page 31
To configure a queue for any of the queue depth events you set the appropriate queue manager and
queue attributes.
Related reference
The MQSC commands

Queue depth events: example 1
A basic sequence of queue depth events.

Figure 7 on page 33 shows the variation of queue depth over time.

Figure 7. Queue depth events (1)

Monitoring and performance 33

Commentary
1. At T(1), the queue depth is increasing (more MQPUT calls than MQGET calls) and crosses the Queue

Depth Low limit. No event is generated at this time.
2. The queue depth continues to increase until T(2), when the depth high limit (80%) is reached and a

Queue Depth High event is generated.

This enables both Queue Full and Queue Depth Low events.
3. The (presumed) preventive actions instigated by the event prevent the queue from becoming full. By

time T(3), the Queue Depth High limit has been reached again, this time from above. No event is
generated at this time.

4. The queue depth continues to fall until T(4), when it reaches the depth low limit (20%) and a Queue
Depth Low event is generated.

This enables both Queue Full and Queue Depth High events.

Event statistics summary
Table 8 on page 34 summarizes the queue event statistics and Table 9 on page 34 summarizes which
events are enabled.

Table 8. Event statistics summary for queue depth events (example 1)

Event 2 Event 4

Time of event T(2) T(4)

Type of event Queue Depth High Queue Depth Low

TimeSinceReset T(2) - T(0) T(4) - T(2)

HighQDepth (Maximum queue depth since
reset)

800 900

MsgEnqCount 1157 1220

MsgDeqCount 357 1820

Table 9. Summary showing which events are enabled

Time period Queue Depth High
event

Queue Depth Low event Queue Full event

Before T(1) ENABLED - -

T(1) to T(2) ENABLED - -

T(2) to T(3) - ENABLED ENABLED

T(3) to T(4) - ENABLED ENABLED

After T(4) ENABLED - ENABLED

Queue depth events: example 2
A more extensive sequence of queue depth events.

Figure 8 on page 35 shows the variation of queue depth over time.

34 Monitoring and Performance for IBM WebSphere MQ

Figure 8. Queue depth events (2)

Commentary
1. No Queue Depth Low event is generated at the following times:

• T(1) (Queue depth increasing, and not enabled)
• T(2) (Not enabled)
• T(3) (Queue depth increasing, and not enabled)

2. At T(4) a Queue Depth High event occurs. This enables both Queue Full and Queue Depth Low events.
3. At T(9) a Queue Full event occurs after the first message that cannot be put on the queue because the

queue is full.
4. At T(12) a Queue Depth Low event occurs.

Monitoring and performance 35

Event statistics summary
Table 10 on page 36 summarizes the queue event statistics and Table 11 on page 36 summarizes
which events are enabled at different times for this example.

Table 10. Event statistics summary for queue depth events (example 2)

Event 4 Event 6 Event 8 Event 9 Event 12

Time of event T(4) T(6) T(8) T(9) T(12)

Type of event Queue Depth
High

Queue Depth
Low

Queue Depth
High

Queue Full Queue
Depth Low

TimeSinceReset T(4) - T(0) T(6) - T(4) T(8) - T(6) T(9) - T(8) T(12) - T(9)

HighQDepth 800 855 800 1000 1000

MsgEnqCount 1645 311 1377 324 221

MsgDeqCount 845 911 777 124 1021

Table 11. Summary showing which events are enabled

Time period Queue Depth High
event

Queue Depth Low event Queue Full event

T(0) to T(4) ENABLED - -

T(4) to T(6) - ENABLED ENABLED

T(6) to T(8) ENABLED - ENABLED

T(8) to T(9) - ENABLED ENABLED

T(9) to T(12) - ENABLED -

After T(12) ENABLED - ENABLED

Note: Events are out of syncpoint. Therefore you could have an empty queue, then fill it up causing
an event, then roll back all of the messages under the control of a syncpoint manager. However, event
enabling has been automatically set, so that the next time the queue fills up, no event is generated.

Configuration events
Configuration events are notifications that are generated when an object is created, changed, or deleted,
and can also be generated by explicit requests.

Configuration events notify you about changes to the attributes of an object. There are four types of
configuration events:

• Create object events
• Change object events
• Delete object events
• Refresh object events

The event data contains the following information:

Origin information
comprises the queue manager from where the change was made, the ID of the user that made the
change, and how the change came about, for example by a console command.

Context information
a replica of the context information in the message data from the command message.

36 Monitoring and Performance for IBM WebSphere MQ

Context information is included in the event data only when the command was entered as a message
on the SYSTEM.COMMAND.INPUT queue.

Object identity
comprises the name, type and disposition of the object.

Object attributes
comprises the values of all the attributes in the object.

In the case of change object events, two messages are generated, one with the information before the
change, the other with the information after.

Every configuration event message that is generated is placed on the queue
SYSTEM.ADMIN.CONFIG.EVENT.

Related concepts
“Configuration events” on page 12
Configuration events are generated when a configuration event is requested explicitly, or automatically
when an object is created, modified, or deleted.
Related reference
Create object
Change object
Delete object
Refresh object
“Event types” on page 8
Use this page to view the types of instrumentation event that a queue manager or channel instance can
report

Configuration event generation
Use this page to view the commands that cause configuration events to be generated and to understand
the circumstances in which configuration events are not generated

A configuration event message is put to the configuration event queue when the CONFIGEV queue
manager attribute is ENABLED and

• any of the following commands, or their PCF equivalent, are issued:

– DELETE AUTHINFO
– DELETE CFSTRUCT
– DELETE CHANNEL
– DELETE NAMELIST
– DELETE PROCESS
– DELETE QMODEL/QALIAS/QREMOTE
– DELETE STGCLASS
– DELETE TOPIC
– REFRESH QMGR

• any of the following commands, or their PCF equivalent, are issued even if there is no change to the
object:

– DEFINE/ALTER AUTHINFO
– DEFINE/ALTER CFSTRUCT
– DEFINE/ALTER CHANNEL
– DEFINE/ALTER NAMELIST
– DEFINE/ALTER PROCESS
– DEFINE/ALTER QMODEL/QALIAS/QREMOTE

Monitoring and performance 37

– DEFINE/ALTER STGCLASS
– DEFINE/ALTER TOPIC
– DEFINE MAXSMSGS
– SET CHLAUTH
– ALTER QMGR, unless the CONFIGEV attribute is DISABLED and is not changed to ENABLED

• any of the following commands, or their PCF equivalent, are issued for a local queue that is not
temporary dynamic, even if there is no change to the queue.

– DELETE QLOCAL
– DEFINE/ALTER QLOCAL

• an MQSET call is issued, other than for a temporary dynamic queue, even if there is no change to the
object.

When configuration events are not generated
Configuration events messages are not generated in the following circumstances:

• When a command or an MQSET call fails
• When a queue manager encounters an error trying to put a configuration event on the event queue, in

which case the command or MQSET call completes, but no event message is generated
• For a temporary dynamic queue
• When internal changes are made to the TRIGGER queue attribute
• For the configuration event queue SYSTEM.ADMIN.CONFIG.EVENT, except by the REFRESH QMGR

command
• For REFRESH/RESET CLUSTER and RESUME/SUSPEND QMGR commands that cause clustering changes
• When Creating or deleting a queue manager

Related concepts
Introduction to Programmable Command Formats
“Configuration events” on page 36
Configuration events are notifications that are generated when an object is created, changed, or deleted,
and can also be generated by explicit requests.
Related reference
The MQSC commands
MQSET - Set object attributes

Configuration event usage
Use this page to view how you can use configuration events to obtain information about your system, and
to understand the factors, such as CMDSCOPE, that can affect your use of configuration events.

You can use configuration events for the following purposes:

1. To produce and maintain a central configuration repository, from which reports can be produced and
information about the structure of the system can be generated.

2. To generate an audit trail. For example, if an object is changed unexpectedly, information regarding
who made the alteration and when it was done can be stored.

This can be particularly useful when command events are also enabled. If an MQSC or PCF command
causes a configuration event and a command event to be generated, both event messages will share
the same correlation identifier in their message descriptor.

For an MQSET call or any of the following commands:

• DEFINE object
• ALTER object

38 Monitoring and Performance for IBM WebSphere MQ

• DELETE object

if the queue manager attribute CONFIGEV is enabled, but the configuration event message cannot be put
on the configuration event queue, for example the event queue has not been defined, the command or
MQSET call is executed regardless.

Effects of CMDSCOPE
For commands where CMDSCOPE is used, the configuration event message or messages will be
generated on the queue manager or queue managers where the command is executed, not where the
command is entered. However, all the origin and context information in the event data will relate to the
original command as entered, even where the command using CMDSCOPE is one that has been generated
by the source queue manager.

Where a queue sharing group includes queue managers that are not at the current version, events will be
generated for any command that is executed by means of CMDSCOPE on a queue manager that is at the
current version, but not on those that are at a previous version. This happens even if the queue manager
where the command is entered is at the previous version, although in such a case no context information
is included in the event data.

Related concepts
Introduction to Programmable Command Formats
“Configuration events” on page 36
Configuration events are notifications that are generated when an object is created, changed, or deleted,
and can also be generated by explicit requests.
Related reference
MQSET - Set object attributes

Refresh Object configuration event
The Refresh Object configuration event is different from the other configuration events, because it occurs
only when explicitly requested.

The create, change, and delete events are generated by an MQSET call or by a command to change
an object but the refresh object event occurs only when explicitly requested by the MQSC command,
REFRESH QMGR, or its PCF equivalent.

The REFRESH QMGR command is different from all the other commands that generate configuration
events. All the other commands apply to a particular object and generate a single configuration event for
that object. The REFRESH QMGR command can produce many configuration event messages potentially
representing every object definition stored by a queue manager. One event message is generated for each
object that is selected.

The REFRESH QMGR command uses a combination of three selection criteria to filter the number of
objects involved:

• Object Name
• Object Type
• Refresh Interval

If you specify none of the selection criteria on the REFRESH QMGR command, the default values are
used for each selection criteria and a refresh configuration event message is generated for every object
definition stored by the queue manager. This might cause unacceptable processing times and event
message generation. Consider specifying some selection criteria.

The REFRESH QMGR command that generates the refresh events can be used in the following situations:

• When configuration data is wanted about all or some of the objects in a system regardless of whether
the objects have been recently manipulated, for example, when configuration events are first enabled.

Consider using several commands, each with a different selection of objects, but such that all are
included.

Monitoring and performance 39

• If there has been an error in the SYSTEM.ADMIN.CONFIG.EVENT queue. In this circumstance, no
configuration event messages are generated for Create, Change, or Delete events. When the error on
the queue has been corrected, the Refresh Queue Manager command can be used to request the
generation of event messages, which were lost while there was an error in the queue. In this situation
consider setting the refresh interval to the time for which the queue was unavailable.

Related concepts
“Configuration events” on page 36
Configuration events are notifications that are generated when an object is created, changed, or deleted,
and can also be generated by explicit requests.
Related reference
REFRESH QMGR
Refresh Queue Manager

Command events
Command events are notifications that an MQSC, or PCF command has run successfully.

The event data contains the following information:

Origin information
comprises the queue manager from where the command was issued, the ID of the user that issued
the command, and how the command was issued, for example by a console command.

Context information
a replica of the context information in the message data from the command message. If a command is
not entered using a message, context information is omitted.

Context information is included in the event data only when the command was entered as a message
on the SYSTEM.COMMAND.INPUT queue.

Command information
the type of command that was issued.

Command data

• for PCF commands, a replica of the command data
• for MQSC commands, the command text

The command data format does not necessarily match the format of the original command. For
example, on distributed platforms the command data format is always in PCF format, even if the
original request was an MQSC command.

Every command event message that is generated is placed on the command event queue,
SYSTEM.ADMIN.COMMAND.EVENT.

Related reference
Command
“Event types” on page 8
Use this page to view the types of instrumentation event that a queue manager or channel instance can
report

Command event generation
Use this page to view the situations that cause command events to be generated and to understand the
circumstances in which command events are not generated

When command events are not generated
A command event message is generated in the following situations:

• When the CMDEV queue manager attribute is specified as ENABLED and an MQSC or PCF command
runs successfully.

40 Monitoring and Performance for IBM WebSphere MQ

• When the CMDEV queue manager attribute is specified as NODISPLAY and any command runs
successfully, with the exception of DISPLAY commands (MQSC), and Inquire commands (PCF).

• When you run the MQSC command, ALTER QMGR, or the PCF command, Change Queue Manager, and
the CMDEV queue manager attribute meets either of the following conditions:

– CMDEV is not specified as DISABLED after the change
– CMDEV was not specified as DISABLED before the change

If a command runs against the command event queue, SYSTEM.ADMIN.COMMAND.EVENT, a command
event is generated if the queue still exists and it is not put-inhibited.

When command events are not generated
A command event message is not generated in the following circumstances:

• When a command fails
• When a queue manager encounters an error trying to put a command event on the event queue, in

which case the command runs regardless, but no event message is generated
• For the MQSC command REFRESH QMGR TYPE (EARLY)
• For the MQSC command START QMGR MQSC
• For the MQSC command SUSPEND QMGR, if the parameter LOG is specified
• For the MQSC command RESUME QMGR, if the parameter LOG is specified

Related concepts
“Command events” on page 40
Command events are notifications that an MQSC, or PCF command has run successfully.
Related reference
REFRESH QMGR
SUSPEND QMGR
RESUME QMGR
SUSPEND QMGR, RESUME QMGR and clusters

Command event usage
Use this page to view how you can use command events to generate an audit trail of the commands that
have run

For example, if an object is changed unexpectedly, information regarding who made the alteration
and when it was done can be stored. This can be particularly useful when configuration events are
also enabled. If an MQSC or PCF command causes a command event and a configuration event to be
generated, both event messages will share the same correlation identifier in their message descriptor.

If a command event message is generated, but cannot be put on the command event queue, for example
if the command event queue has not been defined, the command for which the command event was
generated still runs regardless.

Effects of CMDSCOPE
For commands where CMDSCOPE is used, the command event message or messages will be generated
on the queue manager or queue managers where the command runs, not where the command is entered.
However, all the origin and context information in the event data will relate to the original command as
entered, even where the command using CMDSCOPE is one that has been generated by the source queue
manager.

Related concepts
“Command events” on page 40

Monitoring and performance 41

Command events are notifications that an MQSC, or PCF command has run successfully.
“Command event generation” on page 40
Use this page to view the situations that cause command events to be generated and to understand the
circumstances in which command events are not generated
Related reference
The MQSC commands
PCF commands and responses in groups

Logger events
Logger events are notifications that a queue manager has started writing to a new log extent.

The event data contains the following information:

• The name of the current log extent.
• The name of the earliest log extent needed for restart recovery.
• The name of the earliest log extent needed for media recovery.
• The directory in which the log extents are located.

Every logger event message that is generated is placed on the logger event queue,
SYSTEM.ADMIN.LOGGER.EVENT.

Related reference
Logger
“Event types” on page 8
Use this page to view the types of instrumentation event that a queue manager or channel instance can
report

Logger event generation
Use this page to view the situations that cause logger events to be generated and to understand the
circumstances in which logger events are not generated

A logger event message is generated in the following situations:

• When the LOGGEREV queue manager attribute is specified as ENABLED and the queue manager starts
writing to a new log extent or, on IBM i, a journal receiver.

• When the LOGGEREV queue manager attribute is specified as ENABLED and the queue manager starts.
• When the LOGGEREV queue manager attribute is changed from DISABLED to ENABLED.

Tip: You can use the RESET QMGR MQSC command to request a queue manager to start writing to a new
log extent.

When logger events are not generated
A logger event message is not generated in the following circumstances:

• When a queue manager is configured to use circular logging.

In this case, the LOGGEREV queue manager attribute is set as DISABLED and cannot be altered.
• When a queue manager encounters an error trying to put a logger event on the event queue, in which

case the action that caused the event completes, but no event message is generated.

Related concepts
“Logger events” on page 42
Logger events are notifications that a queue manager has started writing to a new log extent.
Related reference
LoggerEvent (MQLONG)
RESET QMGR

42 Monitoring and Performance for IBM WebSphere MQ

Logger event usage
Use this page to view how you can use logger events to determine the log extents that are no longer
required for queue manager restart, or media recovery.

You can archive superfluous log extents to a medium such as tape for disaster recovery before removing
them from the active log directory. Regular removal of superfluous log extents keeps disk space usage to
a minimum.

If the LOGGEREV queue manager attribute is enabled, but a logger event message cannot be put on the
logger event queue, for example because the event queue has not been defined, the action that caused
the event continues regardless.

Related concepts
“Logger events” on page 42
Logger events are notifications that a queue manager has started writing to a new log extent.
Related reference
LoggerEvent (MQLONG)
“Logger event generation” on page 42
Use this page to view the situations that cause logger events to be generated and to understand the
circumstances in which logger events are not generated

Sample program to monitor the logger event queue
Use this page to view a sample C program that monitors the logger event queue for new event messages,
reads those messages, and puts the contents of the message to stdout.

/**/
/* */
/* Program name: AMQSLOG0.C */
/* */
/* Description: Sample C program to monitor the logger event queue and output*/
/* a message to stdout when a logger event occurs */
/* <N_OCO_COPYRIGHT> */
/* Licensed Materials - Property of IBM */
/* */
/* 63H9336 */
/* (c) Copyright IBM Corp. 2005, 2025. All Rights Reserved. */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with */
/* IBM Corp. */
/* <NOC_COPYRIGHT> */
/**/
/* */
/* Function: AMQSLOG is a sample program which monitors the logger event */
/* queue for new event messages, reads those messages, and puts the contents */
/* of the message to stdout. */
/* */
/**/
/* */
/* AMQSLOG has 1 parameter - the queue manager name (optional, if not */
/* specified then the default queue manager is implied) */
/* */
/**/

/**/
/* Includes */
/**/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <cmqc.h> /* MQI constants*/
#include <cmqcfc.h> /* PCF constants*/

/**/
/* Constants */
/**/

#define MAX_MESSAGE_LENGTH 8000

Monitoring and performance 43

typedef struct _ParmTableEntry
{
 MQLONG ConstVal;
 PMQCHAR Desc;
} ParmTableEntry;

ParmTableEntry ParmTable[] =
{
 0 ,"",
 MQCA_Q_MGR_NAME ,"Queue Manager Name",
 MQCMD_LOGGER_EVENT ,"Logger Event Command",
 MQRC_LOGGER_STATUS ,"Logger Status",
 MQCACF_CURRENT_LOG_EXTENT_NAME,"Current Log Extent",
 MQCACF_RESTART_LOG_EXTENT_NAME,"Restart Log Extent",
 MQCACF_MEDIA_LOG_EXTENT_NAME ,"Media Log Extent",
 MQCACF_LOG_PATH ,"Log Path"};

/**/
/* Function prototypes */
/**/

static void ProcessPCF(MQHCONN hConn,
 MQHOBJ hEventQueue,
 PMQCHAR pBuffer);

static PMQCHAR ParmToString(MQLONG Parameter);

/**/
/* Function: main */
/**/
int main(int argc, char * argv[])
{
 MQLONG CompCode;
 MQLONG Reason;
 MQHCONN hConn = MQHC_UNUSABLE_HCONN;
 MQOD ObjDesc = { MQOD_DEFAULT };
 MQCHAR QMName[MQ_Q_MGR_NAME_LENGTH+1] = "";
 MQCHAR LogEvQ[MQ_Q_NAME_LENGTH] = "SYSTEM.ADMIN.LOGGER.EVENT";
 MQHOBJ hEventQueue;
 PMQCHAR pBuffer = NULL;

 printf("\n/*************************************/\n");
 printf("/* Sample Logger Event Monitor start */\n");
 printf("/*************************************/\n");

 /**/
 /* Parse any command line options */
 /**/

 if (argc > 1)
 strncpy(QMName, argv[1], (size_t)MQ_Q_MGR_NAME_LENGTH);

 pBuffer = (char *)malloc(MAX_MESSAGE_LENGTH);
 if (!pBuffer)
 {
 printf("Can't allocate %d bytes\n",MAX_MESSAGE_LENGTH);
 goto MOD_EXIT;
 }

 /**/
 /* Connect to the specified (or default) queue manager */
 /**/

 MQCONN(QMName,
 &hConn,
 &CompCode,
 &Reason);

 if (Reason != MQCC_OK)
 {
 printf("Error in call to MQCONN, Reason %d, CompCode %d\n", Reason,
 CompCode);
 goto MOD_EXIT;
 }

 /* Open the logger event queue for input */

 strncpy(ObjDesc.ObjectQMgrName,QMName, MQ_Q_MGR_NAME_LENGTH);
 strncpy(ObjDesc.ObjectName, LogEvQ, MQ_Q_NAME_LENGTH);

 MQOPEN(hConn,
 &ObjDesc,

44 Monitoring and Performance for IBM WebSphere MQ

 MQOO_INPUT_EXCLUSIVE,
 &hEventQueue,
 &CompCode,
 &Reason);
 if (Reason)
 {
 printf("MQOPEN failed for queue manager %.48s Queue %.48s Reason: %d\n",
 ObjDesc.ObjectQMgrName,
 ObjDesc.ObjectName,
 Reason);
 goto MOD_EXIT;
 }
 else
 {
 ProcessPCF(hConn, hEventQueue, pBuffer);
 }

 MOD_EXIT:

 if (pBuffer != NULL) {
 free(pBuffer);
 }

 /**/
 /* Disconnect */
 /**/
 if (hConn != MQHC_UNUSABLE_HCONN) {
 MQDISC(&hConn, &CompCode, &Reason);
 }

 return 0;
}

/**/
/* Function: ProcessPCF */
/**/
/* */
/* Input Parameters: Handle to queue manager connection */
/* Handle to the opened logger event queue object */
/* Pointer to a memory buffer to store the incoming PCF msg*/
/* */
/* Output Parameters: None */
/* */
/* Logic: Wait for messages to appear on the logger event queue and display */
/* their contents. */
/* */
/**/

static void ProcessPCF(MQHCONN hConn,
 MQHOBJ hEventQueue,
 PMQCHAR pBuffer)
{
 MQCFH * pCfh;
 MQCFST * pCfst;
 MQGMO Gmo = { MQGMO_DEFAULT };
 MQMD Mqmd = { MQMD_DEFAULT };
 PMQCHAR pPCFCmd;
 MQLONG Reason = 0;
 MQLONG CompCode;
 MQLONG MsgLen;
 PMQCHAR Parm = NULL;
 /* Set timeout value */
 Gmo.Options |= MQGMO_WAIT;
 Gmo.Options |= MQGMO_CONVERT;
 Gmo.WaitInterval = MQWI_UNLIMITED;
 /**/
 /* Process response Queue */
 /**/
 while (Reason == MQCC_OK)
 {
 memcpy(&Mqmd.MsgId; , MQMI_NONE, sizeof(Mqmd.MsgId));
 memset(&Mqmd.CorrelId, 0, sizeof(Mqmd.CorrelId));

 MQGET(hConn,
 hEventQueue,
 &Mqmd,
 &Gmo,
 MAX_MESSAGE_LENGTH,
 pBuffer,
 &MsgLen,
 &CompCode,
 &Reason);

Monitoring and performance 45

 if (Reason != MQCC_OK)
 {
 switch(Reason)
 {
 case MQRC_NO_MSG_AVAILABLE:
 printf("Timed out");
 break;

 default:
 printf("MQGET failed RC(%d)\n", Reason);
 break;
 }
 goto MOD_EXIT;
 }

 /**/
 /* Only expect PCF event messages on this queue */
 /**/
 if (memcmp(Mqmd.Format, MQFMT_EVENT, sizeof(Mqmd.Format)))
 {
 printf("Unexpected message format '%8.8s' received\n",Mqmd.Format);
 continue;
 }

 /***/
 /* Build the output by parsing the received PCF message, first the */
 /* header, then each of the parameters */
 /***/

 pCfh = (MQCFH *)pBuffer;

 if (pCfh -> Reason)
 {
 printf("---\n");
 printf("Event Message Received\n");

 Parm = ParmToString(pCfh->Command);
 if (Parm != NULL) {
 printf("Command :%s \n",Parm);
 }
 else
 {
 printf("Command :%d \n",pCfh->Command);
 }

 printf("CompCode :%d\n" ,pCfh->CompCode);

 Parm = ParmToString(pCfh->Reason);
 if (Parm != NULL) {
 printf("Reason :%s \n",Parm);
 }
 else
 {
 printf("Reason :%d \n",pCfh->Reason);
 }
 }

 pPCFCmd = (char *) (pCfh+1);
 printf("---\n");
 while(pCfh -> ParameterCount--)
 {
 pCfst = (MQCFST *) pPCFCmd;
 switch(pCfst -> Type)
 {
 case MQCFT_STRING:
 Parm = ParmToString(pCfst -> Parameter);
 if (Parm != NULL) {
 printf("%-32s",Parm);
 }
 else
 {
 printf("%-32d",pCfst -> Parameter);
 }

 fwrite(pCfst -> String, pCfst -> StringLength, 1, stdout);
 pPCFCmd += pCfst -> StrucLength;
 break;
 default:
 printf("Unrecoginised datatype %d returned\n",pCfst->Type);
 goto MOD_EXIT;
 }

46 Monitoring and Performance for IBM WebSphere MQ

 putchar('\n');
 }
 printf("---\n");
 }
MOD_EXIT:

 return;
}

/**/
/* Function: ParmToString */
/**/
/* */
/* Input Parameters: Parameter for which to get string description */
/* */
/* Output Parameters: None */
/* */
/* Logic: Takes a parameter as input and returns a pointer to a string */
/* description for that parameter, or NULL if the parameter does not */
/* have an associated string description */
/**/

static PMQCHAR ParmToString(MQLONG Parameter){
 long i;
 for (i=0 ; i< sizeof(ParmTable)/sizeof(ParmTableEntry); i++)
 {
 if (ParmTable[i].ConstVal == Parameter ParmTable[i].Desc)
 return ParmTable[i].Desc;
 }
 return NULL;
}

Sample output
This application produces the following form of output:

/*************************************/
/* Sample Logger Event Monitor start */
/*************************************/

Event Message Received
Command :Logger Event Command
CompCode :0
Reason :Logger Status

Queue Manager Name CSIM

Current Log Extent AMQA000001
Restart Log Extent AMQA000001
Media Log Extent AMQA000001
Log Path QMCSIM

Related concepts
“Logger event usage” on page 43
Use this page to view how you can use logger events to determine the log extents that are no longer
required for queue manager restart, or media recovery.
“Command event usage” on page 41
Use this page to view how you can use command events to generate an audit trail of the commands that
have run
Related reference
“Logger event generation” on page 42

Monitoring and performance 47

Use this page to view the situations that cause logger events to be generated and to understand the
circumstances in which logger events are not generated

Sample program to monitor instrumentation events
Use this page to view a sample C program for monitoring instrumentation events

This sample program is not part of any IBM WebSphere MQ product and is therefore not supplied as an
actual physical item. The example is incomplete in that it does not enumerate all the possible outcomes
of specified actions. However, you can use this sample as a basis for your own programs that use events,
in particular, the PCF formats used in event messages. However, you need to modify this program before
running it on your own systems.

 /**/
 /* */
 /* Program name: EVMON */
 /* */
 /* Description: C program that acts as an event monitor */
 /* */
 /* */
 /**/
 /* */
 /* Function: */
 /* */
 /* */
 /* EVMON is a C program that acts as an event monitor - reads an */
 /* event queue and tells you if anything appears on it */
 /* */
 /* Its first parameter is the queue manager name, the second is */
 /* the event queue name. If these are not supplied it uses the */
 /* defaults. */
 /* */
 /**/
 #include <time.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #ifndef min
 #define min(a,b) (((a) < (b)) ? (a) : (b))
 #endif

 /**/
 /* includes for MQI */
 /**/
 #include <cmqc.h>
 #include <cmqcfc.h>
 void printfmqcfst(MQCFST* pmqcfst);
 void printfmqcfin(MQCFIN* pmqcfst);
 void printreas(MQLONG reason);

 #define PRINTREAS(param) \
 case param: \
 printf("Reason = %s\n",#param); \
 break;

 /**/
 /* global variable */
 /**/
 MQCFH *evtmsg; /* evtmsg message buffer */

 int main(int argc, char **argv)
 {
 /**/
 /* declare variables */
 /**/
 int i; /* auxiliary counter */
 /**/
 /* Declare MQI structures needed */
 /**/
 MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
 MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
 /**/
 /* note, uses defaults where it can */

48 Monitoring and Performance for IBM WebSphere MQ

 /**/

 MQHCONN Hcon; /* connection handle */
 MQHOBJ Hobj; /* object handle */
 MQLONG O_options; /* MQOPEN options */
 MQLONG C_options; /* MQCLOSE options */
 MQLONG CompCode; /* completion code */
 MQLONG OpenCode; /* MQOPEN completion code */
 MQLONG Reason; /* reason code */
 MQLONG CReason; /* reason code for MQCONN */
 MQLONG buflen; /* buffer length */
 MQLONG evtmsglen; /* message length received */
 MQCHAR command[1100]; /* call command string ... */
 MQCHAR p1[600]; /* ApplId insert */
 MQCHAR p2[900]; /* evtmsg insert */
 MQCHAR p3[600]; /* Environment insert */
 MQLONG mytype; /* saved application type */
 char QMName[50]; /* queue manager name */
 MQCFST *paras; /* the parameters */
 int counter; /* loop counter */
 time_t ltime;

 /**/
 /* Connect to queue manager */
 /**/
 QMName[0] = 0; /* default queue manager */
 if (argc > 1)
 strcpy(QMName, argv[1]);
 MQCONN(QMName, /* queue manager */
 &Hcon, /* connection handle */
 &CompCode, /* completion code */
 &CReason); /* reason code */

 /**/
 /* Initialize object descriptor for subject queue */
 /**/
 strcpy(od.ObjectName, "SYSTEM.ADMIN.QMGR.EVENT");
 if (argc > 2)
 strcpy(od.ObjectName, argv[2]);

 /**/
 /* Open the event queue for input; exclusive or shared. Use of */
 /* the queue is controlled by the queue definition here */
 /**/

 O_options = MQOO_INPUT_AS_Q_DEF /* open queue for input */
 + MQOO_FAIL_IF_QUIESCING /* but not if qmgr stopping */
 + MQOO_BROWSE;
 MQOPEN(Hcon, /* connection handle */
 &od, /* object descriptor for queue*/
 O_options, /* open options */
 &Hobj, /* object handle */
 &CompCode, /* completion code */
 &Reason); /* reason code */

 /**/
 /* Get messages from the message queue */
 /**/
 while (CompCode != MQCC_FAILED)
 {
 /**/
 /* I don't know how big this message is so just get the */
 /* descriptor first */
 /**/
 gmo.Options = MQGMO_WAIT + MQGMO_LOCK
 + MQGMO_BROWSE_FIRST + MQGMO_ACCEPT_TRUNCATED_MSG;
 /* wait for new messages */
 gmo.WaitInterval = MQWI_UNLIMITED;/* no time limit */
 buflen = 0; /* amount of message to get */

 /**/
 /* clear selectors to get messages in sequence */
 /**/
 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

 /**/
 /* wait for event message */
 /**/
 printf("...>\n");

Monitoring and performance 49

 MQGET(Hcon, /* connection handle */
 Hobj, /* object handle */
 &md, /* message descriptor */
 &gmo, /* get message options */
 buflen, /* buffer length */
 evtmsg, /* evtmsg message buffer */
 &evtmsglen, /* message length */
 &CompCode, /* completion code */
 &Reason); /* reason code */

 /**/
 /* report reason, if any */
 /**/
 if (Reason != MQRC_NONE && Reason != MQRC_TRUNCATED_MSG_ACCEPTED)
 {
 printf("MQGET ==> %ld\n", Reason);
 }
 else
 {
 gmo.Options = MQGMO_NO_WAIT + MQGMO_MSG_UNDER_CURSOR;
 buflen = evtmsglen; /* amount of message to get */
 evtmsg = malloc(buflen);
 if (evtmsg != NULL)
 {
 /**/
 /* clear selectors to get messages in sequence */
 /**/
 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

 /**/
 /* get the event message */
 /**/
 printf("...>\n");
 MQGET(Hcon, /* connection handle */
 Hobj, /* object handle */
 &md, /* message descriptor */
 &gmo, /* get message options */
 buflen, /* buffer length */
 evtmsg, /* evtmsg message buffer */
 &evtmsglen, /* message length */
 &CompCode, /* completion code */
 &Reason); /* reason code */

 /**/
 /* report reason, if any */
 /**/
 if (Reason != MQRC_NONE)
 {
 printf("MQGET ==> %ld\n", Reason);
 }
 }
 else
 {
 CompCode = MQCC_FAILED;
 }
 }

 /**/
 /* . . . process each message received */
 /**/

 if (CompCode != MQCC_FAILED)
 {
 /**/
 /* announce a message */
 /**/
 printf("\a\a\a\a\a\a\a");
 time(<ime);
 printf(ctime(<ime));

 if (evtmsglen != buflen)
 printf("DataLength = %ld?\n", evtmsglen);
 else
 {
 /**/
 /* right let's look at the data */
 /**/
 if (evtmsg->Type != MQCFT_EVENT)

50 Monitoring and Performance for IBM WebSphere MQ

 {
 printf("Something's wrong this isn't an event message,"
 " its type is %ld\n",evtmsg->Type);
 }
 else
 {
 if (evtmsg->Command == MQCMD_Q_MGR_EVENT)
 {
 printf("Queue Manager event: ");
 }
 else
 if (evtmsg->Command == MQCMD_CHANNEL_EVENT)
 {
 printf("Channel event: ");
 }
 else
 ⋮

 {
 printf("Unknown Event message, %ld.",
 evtmsg->Command);
 }

 if (evtmsg->CompCode == MQCC_OK)
 printf("CompCode(OK)\n");
 else if (evtmsg->CompCode == MQCC_WARNING)
 printf("CompCode(WARNING)\n");
 else if (evtmsg->CompCode == MQCC_FAILED)
 printf("CompCode(FAILED)\n");
 else
 printf("* CompCode wrong * (%ld)\n",
 evtmsg->CompCode);

 if (evtmsg->StrucLength != MQCFH_STRUC_LENGTH)
 {
 printf("it's the wrong length, %ld\n",evtmsg->StrucLength);
 }

 if (evtmsg->Version != MQCFH_VERSION_1)
 {
 printf("it's the wrong version, %ld\n",evtmsg->Version);
 }

 if (evtmsg->MsgSeqNumber != 1)
 {
 printf("it's the wrong sequence number, %ld\n",
 evtmsg->MsgSeqNumber);
 }

 if (evtmsg->Control != MQCFC_LAST)
 {
 printf("it's the wrong control option, %ld\n",
 evtmsg->Control);
 }

 printreas(evtmsg->Reason);
 printf("parameter count is %ld\n", evtmsg->ParameterCount);
 /**/
 /* get a pointer to the start of the parameters */
 /**/

 paras = (MQCFST *)(evtmsg + 1);
 counter = 1;
 while (counter <= evtmsg->ParameterCount)
 {
 switch (paras->Type)
 {
 case MQCFT_STRING:
 printfmqcfst(paras);
 paras = (MQCFST *)((char *)paras
 + paras->StrucLength);
 break;
 case MQCFT_INTEGER:
 printfmqcfin((MQCFIN*)paras);
 paras = (MQCFST *)((char *)paras
 + paras->StrucLength);
 break;
 default:
 printf("unknown parameter type, %ld\n",
 paras->Type);

Monitoring and performance 51

 counter = evtmsg->ParameterCount;
 break;
 }
 counter++;
 }
 }
 } /* end evtmsg action */
 free(evtmsg);
 evtmsg = NULL;
 } /* end process for successful GET */
 } /* end message processing loop */

 /**/
 /* close the event queue - if it was opened */
 /**/
 if (OpenCode != MQCC_FAILED)
 {
 C_options = 0; /* no close options */
 MQCLOSE(Hcon, /* connection handle */
 &Hobj, /* object handle */
 C_options,
 &CompCode, /* completion code */
 &Reason); /* reason code */
 /**/
 /* Disconnect from queue manager (unless previously connected) */
 /**/
 if (CReason != MQRC_ALREADY_CONNECTED)
 {
 MQDISC(&Hcon, /* connection handle */
 &CompCode, /* completion code */
 &Reason); /* reason code */

 /**/
 /* */
 /* END OF EVMON */
 /* */
 /**/
 }

#define PRINTPARAM(param) \
 case param: \
 { \
 char *p = #param; \
 strncpy(thestring,pmqcfst->String,min(sizeof(thestring), \
 pmqcfst->StringLength)); \
 printf("%s %s\n",p,thestring); \
 } \
 break;

#define PRINTAT(param) \
 case param: \
 printf("MQIA_APPL_TYPE = %s\n",#param); \
 break;

void printfmqcfst(MQCFST* pmqcfst)
{
 char thestring[100];

 switch (pmqcfst->Parameter)
 {
 PRINTPARAM(MQCA_BASE_Q_NAME)
 PRINTPARAM(MQCA_PROCESS_NAME)
 PRINTPARAM(MQCA_Q_MGR_NAME)
 PRINTPARAM(MQCA_Q_NAME)
 PRINTPARAM(MQCA_XMIT_Q_NAME)
 PRINTPARAM(MQCACF_APPL_NAME)
 ⋮
 default:
 printf("Invalid parameter, %ld\n",pmqcfst->Parameter);
 break;
 }
}

void printfmqcfin(MQCFIN* pmqcfst)
{
 switch (pmqcfst->Parameter)
 {

52 Monitoring and Performance for IBM WebSphere MQ

 case MQIA_APPL_TYPE:
 switch (pmqcfst->Value)
 {
 PRINTAT(MQAT_UNKNOWN)
 PRINTAT(MQAT_OS2)
 PRINTAT(MQAT_DOS)
 PRINTAT(MQAT_UNIX)
 PRINTAT(MQAT_QMGR)
 PRINTAT(MQAT_OS400)
 PRINTAT(MQAT_WINDOWS)
 PRINTAT(MQAT_CICS_VSE)
 PRINTAT(MQAT_VMS)
 PRINTAT(MQAT_GUARDIAN)
 PRINTAT(MQAT_VOS)
 }
 break;
 case MQIA_Q_TYPE:
 if (pmqcfst->Value == MQQT_ALIAS)
 {
 printf("MQIA_Q_TYPE is MQQT_ALIAS\n");
 }
 else
 ⋮
{
 if (pmqcfst->Value == MQQT_REMOTE)
 {
 printf("MQIA_Q_TYPE is MQQT_REMOTE\n");
 if (evtmsg->Reason == MQRC_ALIAS_BASE_Q_TYPE_ERROR)
 {
 printf("but remote is not valid here\n");
 }
 }
 else
 {
 printf("MQIA_Q_TYPE is wrong, %ld\n",pmqcfst->Value);
 }
 }
 break;

 case MQIACF_REASON_QUALIFIER:
 printf("MQIACF_REASON_QUALIFIER %ld\n",pmqcfst->Value);
 break;

 case MQIACF_ERROR_IDENTIFIER:
 printf("MQIACF_ERROR_INDENTIFIER %ld (X'%lX')\n",
 pmqcfst->Value,pmqcfst->Value);
 break;

 case MQIACF_AUX_ERROR_DATA_INT_1:
 printf("MQIACF_AUX_ERROR_DATA_INT_1 %ld (X'%lX')\n",
 pmqcfst->Value,pmqcfst->Value);
 break;

 case MQIACF_AUX_ERROR_DATA_INT_2:
 printf("MQIACF_AUX_ERROR_DATA_INT_2 %ld (X'%lX')\n",
 pmqcfst->Value,pmqcfst->Value);
 break;
⋮
default :
 printf("Invalid parameter, %ld\n",pmqcfst->Parameter);
 break;
 }
}

 void printreas(MQLONG reason)
{
 switch (reason)
 {
 PRINTREAS(MQRCCF_CFH_TYPE_ERROR)
 PRINTREAS(MQRCCF_CFH_LENGTH_ERROR)
 PRINTREAS(MQRCCF_CFH_VERSION_ERROR)
 PRINTREAS(MQRCCF_CFH_MSG_SEQ_NUMBER_ERR)
 ⋮
 PRINTREAS(MQRC_NO_MSG_LOCKED)
 PRINTREAS(MQRC_CONNECTION_NOT_AUTHORIZED)
 PRINTREAS(MQRC_MSG_TOO_BIG_FOR_CHANNEL)
 PRINTREAS(MQRC_CALL_IN_PROGRESS)
 default:
 printf("It's an unknown reason, %ld\n",
 reason);
 break;

Monitoring and performance 53

 }
}

Related concepts
“Instrumentation events” on page 6
An instrumentation event is a logical combination of conditions that a queue manager or channel instance
detects and puts a special message, called an event message, on an event queue.
“Event monitoring” on page 5
Event monitoring is the process of detecting occurrences of instrumentation events in a queue manager
network. An instrumentation event is a logical combination of events that is detected by a queue manager
or channel instance. Such an event causes the queue manager or channel instance to put a special
message, called an event message, on an event queue.
Related reference
C programming
“Sample program to monitor the logger event queue” on page 43
Use this page to view a sample C program that monitors the logger event queue for new event messages,
reads those messages, and puts the contents of the message to stdout.

Message monitoring
Message monitoring is the process of identifying the route a message has taken through a queue manager
network. By identifying the types of activities, and the sequence of activities performed on behalf of a
message, the message route can be determined.

As a message passes through a queue manager network, various processes perform activities on behalf of
the message. Use one of the following techniques to determine a message route:

• The IBM WebSphere MQ display route application (dspmqrte)
• Activity recording
• Trace-route messaging

These techniques all generate special messages that contain information about the activities performed
on the message as it passed through a queue manager network. Use the information returned in these
special messages to achieve the following objectives:

• Record message activity.
• Determine the last known location of a message.
• Detect routing problems in your queue manager network.
• Assist in determining the causes of routing problems in your queue manager network.
• Confirm that your queue manager network is running correctly.
• Familiarize yourself with the running of your queue manager network.
• Trace published messages.

Related concepts
Types of message

Activities and operations
Activities are discrete actions that an application performs on behalf of a message. Activities consist of
operations, which are single pieces of work that an application performs.

The following actions are examples of activities:

• A message channel agent (MCA) sends a message from a transmission queue down a channel
• An MCA receives a message from a channel and puts it on its target queue

54 Monitoring and Performance for IBM WebSphere MQ

• An application getting a message from a queue, and putting a reply message in response.
• The WebSphere MQ publish/subscribe engine processes a message.

Activities consist of one or more operations. Operations are single pieces of work that an application
performs. For example, the activity of an MCA sending a message from a transmission queue down a
channel consists of the following operations:

1. Getting a message from a transmission queue (a Get operation).
2. Sending the message down a channel (a Send operation).

In a publish/subscribe network, the activity of the WebSphere MQ publish/subscribe engine processing a
message can consist of the following multiple operations:

1. Putting a message to a topic string (a Put operation).
2. Zero or more operations for each of the subscribers that are considered for receipt of the message (a

Publish operation, a Discarded Publish operation or an Excluded Publish operation).

Information from activities
You can identify the sequence of activities performed on a message by recording information as the
message is routed through a queue manager network. You can determine the route of a message through
the queue manager network from the sequence of activities performed on the message, and can obtain
the following information:

The last known location of a message
If a message does not reach its intended destination, you can determine the last known location of
the message from a complete or partial message route.

Configuration issues with a queue manager network
When studying the route of a message through a queue manager network, you might see that the
message has not gone where expected. There are many reasons why this can occur, for example, if a
channel is inactive, the message might take an alternative route.

For a publish/subscribe application, you can also determine the route of a message being published
to a topic and any messages that flow in a queue manager network as a result of being published to
subscribers.

In such situations, a system administrator can determine whether there are any problems in the
queue manager network, and if appropriate, correct them.

Message routes
Depending on your reason for determining a message route, you can use the following general
approaches:

Using activity information recorded for a trace-route message
Trace-route messages record activity information for a specific purpose. You can use them to
determine configuration issues with a queue manager network, or to determine the last known
location of a message. If a trace-route message is generated to determine the last known location
of a message that did not reach its intended destination, it can mimic the original message. This gives
the trace-route message the greatest chance of following the route taken by the original message.

The WebSphere MQ display route application can generate trace-route messages.

Using activity information recorded for the original message
You can enable any message for activity recording and have activity information recorded on its
behalf. If a message does not reach its intended destination, you can use the recorded activity
information to determine the last known location of the message. By using activity information from
the original message, the most accurate possible message route can be determined, leading to the
last known location. To use this approach, the original message must be enabled for activity recording.

Warning: Avoid enabling all messages in a queue manager network for activity recording. Messages
enabled for activity recording can have many activity reports generated on their behalf. If every

Monitoring and performance 55

message in a queue manager network is enabled for activity recording, the queue manager network
traffic can increase to an unacceptable level.

Related concepts
“Message monitoring” on page 54
Message monitoring is the process of identifying the route a message has taken through a queue manager
network. By identifying the types of activities, and the sequence of activities performed on behalf of a
message, the message route can be determined.
“Message route techniques” on page 56
Activity recording and trace-route messaging are techniques that allow you to record activity information
for a message as it is routed through a queue manager network.
“Trace-route messaging” on page 62
Trace-route messaging is a technique that uses trace-route messages to record activity information for a
message. Trace-route messaging involves sending a trace-route message into a queue manager network.
Related tasks
Writing your own message channel agents

Message route techniques
Activity recording and trace-route messaging are techniques that allow you to record activity information
for a message as it is routed through a queue manager network.
Activity recording

If a message has the appropriate report option specified, it requests that applications generate
activity reports as it is routed through a queue manager network. When an application performs an
activity on behalf of a message, an activity report can be generated, and delivered to an appropriate
location. An activity report contains information about the activity that was performed on the
message.

The activity information collected using activity reports must be arranged in order before a message
route can be determined.

Trace-route messaging
Trace-route messaging is a technique that involves sending a trace-route message into a queue
manager network. When an application performs an activity on behalf of the trace-route message,
activity information can be accumulated in the message data of the trace-route message, or activity
reports can be generated. If activity information is accumulated in the message data of the trace-
route message, when it reaches its target queue a trace-route reply message containing all the
information from the trace-route message can be generated and delivered to an appropriate location.

Because a trace-route message is dedicated to recording the sequence of activities performed on its
behalf, there are more processing options available compared with normal messages that request
activity reports.

Comparison of activity recording and trace-route messaging
Both activity recording and trace-route messaging can provide activity information to determine the route
a message has taken through a queue manager network. Both methods have their own advantages.

Benefit Activity
recording

Trace-route
messaging

Can determine the last known location of a message Yes Yes

Can determine configuration issues with a queue manager network Yes Yes

Can be requested by any message
(is not restricted to use with trace-route messages)

Yes No

Message data is left unmodified Yes No

56 Monitoring and Performance for IBM WebSphere MQ

Benefit Activity
recording

Trace-route
messaging

Message processed normally Yes No

Activity information can be accumulated in the message data No Yes

Optional message delivery to target queue No Yes

If a message is caught in an infinite loop, it can be detected and
dealt with

No Yes

Activity information can be put in order reliably No Yes

Application provided to display the activity information No Yes

Message route completeness
In some cases it is not possible to identify the full sequence of activities performed on behalf of a
message, so only a partial message route can be determined. The completeness of a message route
is directly influenced by the queue manager network that the messages are routed through. The
completeness of a message route depends on the level of the queue managers in the queue manager
network, as follows:

Queue managers at WebSphere MQ Version 6.0 and subsequent releases
MCAs and user-written applications connected to queue managers at WebSphere MQ Version 6.0
or subsequent releases can record information related to the activities performed on behalf of
a message. The recording of activity information is controlled by the queue manager attributes
ACTIVREC and ROUTEREC. If a queue manager network consists of queue managers at WebSphere
MQ Version 6.0 or subsequent releases only, complete message routes can be determined.

WebSphere MQ queue managers before Version 6.0
Applications connected to WebSphere MQ queue managers before Version 6.0 do not record the
activities that they have performed on behalf of a message. If a queue manager network contains any
WebSphere MQ queue manager prior to Version 6.0, only a partial message route can be determined.

How activity information is stored
WebSphere MQ stores activity information in activity reports, trace-route messages, or trace-route reply
messages. In each case the information is stored in a structure called the Activity PCF group. A trace-
route message or trace-route reply message can contain many Activity PCF groups, depending on the
number of activities performed on the message. Activity reports contain one Activity PCF group because a
separate activity report is generated for every recorded activity.

With trace-route messaging, additional information can be recorded. This additional information is stored
in a structure called the TraceRoute PCF group. The TraceRoute PCF group contains a number of PCF
structures that are used to store additional activity information, and to specify options that determine
how the trace-route message is handled as it is routed through a queue manager network.

Related concepts
“Activity recording” on page 58
Activity recording is a technique for determining the routes that messages take through a queue manager
network. To determine the route that a message has taken, the activities performed on behalf of the
message are recorded.
“Trace-route messaging” on page 62
Trace-route messaging is a technique that uses trace-route messages to record activity information for a
message. Trace-route messaging involves sending a trace-route message into a queue manager network.
Related reference
“The TraceRoute PCF group” on page 68

Monitoring and performance 57

Attributes in the TraceRoute PCF group control the behavior of a trace-route message. The TraceRoute PCF
group is in the message data of every trace-route message.
“Activity report message data” on page 102
Use this page to view the parameters contained by the Activity PCF group in an activity report message.
Some parameters are returned only when specific operations have been performed.

Activity recording
Activity recording is a technique for determining the routes that messages take through a queue manager
network. To determine the route that a message has taken, the activities performed on behalf of the
message are recorded.

When using activity recording, each activity performed on behalf of a message can be recorded in an
activity report. An activity report is a type of report message. Each activity report contains information
about the application that performed the activity on behalf of the message, when the activity took place,
and information about the operations that were performed as part of the activity. Activity reports are
typically delivered to a reply-to queue where they are collected together. By studying the activity reports
related to a message, you can determine the route that the message took through the queue manager
network.

Activity report usage
When messages are routed through a queue manager network, activity reports can be generated. You can
use activity report information in the following ways:
Determine the last known location of a message

If a message that is enabled for activity recording does not reach its intended destination, activity
reports generated for the message as it was routed through a queue manager network can be studied
to determine the last known location of the message.

Determine configuration issues with a queue manager network
A number of messages enabled for activity recording can be sent into a queue manager network. By
studying the activity reports related to each message it can become apparent that they have not taken
the expected route. There are many reasons why this can occur, for example, a channel could have
stopped, forcing the message to take an alternative route. In these situations, a system administrator
can determine whether there are any problems in the queue manager network, and if there are,
correct them.

Note: You can use activity recording in conjunction with trace-route messages by using the WebSphere
MQ display route application.

Activity report format
Activity reports are PCF messages generated by applications that have performed an activity on behalf
of a message. Activity reports are standard WebSphere MQ report messages containing a message
descriptor and message data, as follows:

The message descriptor

• An MQMD structure

Message data

• An embedded PCF header (MQEPH)
• Activity report message data

Activity report message data consists of the Activity PCF group, and if generated for a trace-route
message, the TraceRoute PCF group.

Related reference
MQMD - Message descriptor
MQEPH - Embedded PCF header

58 Monitoring and Performance for IBM WebSphere MQ

Controlling activity recording
Enable activity recording at the queue manager level. To enable an entire queue manager network,
individually enable every queue manager in the network for activity recording. If you enable more queue
managers, more activity reports are generated.

About this task
To generate activity reports for a message as it is routed through a queue manager: define the message
to request activity reports; enable the queue manager for activity recording; and ensure that applications
performing activities on the message are capable of generating activity reports.

If you do not want activity reports to be generated for a message as it is routed through a queue manager,
disable the queue manager for activity recording.

Procedure
1. Request activity reports for a message

a) In the message descriptor of the message, specify MQRO_ACTIVITY in the Report field.
b) In the message descriptor of the message, specify the name of a reply-to queue in the ReplyToQ

field.

Warning: Avoid enabling all messages in a queue manager network for activity recording. Messages
enabled for activity recording can have many activity reports generated on their behalf. If every
message in a queue manager network is enabled for activity recording, the queue manager network
traffic can increase to an unacceptable level.

2. Enable or disable the queue manager for activity recording.
Use the MQSC command ALTER QMGR, specifying the parameter ACTIVREC, to change the value of
the queue manager attribute. The value can be:
MSG

The queue manager is enabled for activity recording. Any activity reports generated are delivered
to the reply-to queue specified in the message descriptor of the message. This is the default value.

QUEUE
The queue manager is enabled for activity recording. Any activity reports generated are delivered
to the local system queue SYSTEM.ADMIN.ACTIVITY.QUEUE. The system queue can also be used
to forward activity reports to a common queue.

DISABLED
The queue manager is disabled for activity recording. No activity reports are generated while in the
scope of this queue manager.

For example, to enable a queue manager for activity recording and specify that any activity
reports generated are delivered to the local system queue SYSTEM.ADMIN.ACTIVITY.QUEUE, use the
following MQSC command:

ALTER QMGR ACTIVREC(QUEUE)

Remember: When you modify the ACTIVREC queue manager attribute, a running MCA does not detect
the change until the channel is restarted.

3. Ensure that your application uses the same algorithm as MCAs use to determine whether to generate
an activity report for a message:
a) Verify that the message has requested activity reports to be generated
b) Verify that the queue manager where the message currently resides is enabled for activity recording
c) Put the activity report on the queue determined by the ACTIVREC queue manager attribute

Monitoring and performance 59

Setting up a common queue for activity reports
To determine the locations of the activity reports related to a specific message when the reports are
delivered to the local system queue, it is more efficient to use a common queue on a single node

Before you begin
Set the ACTIVREC parameter to enable the queue manager for activity recording and to specify that any
activity reports generated are delivered to the local system queue SYSTEM.ADMIN.ACTIVITY.QUEUE.

About this task
If a number of queue managers in a queue manager network are set to deliver activity reports to the local
system queue, it can be time consuming to determine the locations of the activity reports related to a
specific message. Alternatively, use a single node, which is a queue manager that hosts a common queue.
All the queue managers in a queue manager network can deliver activity reports to this common queue.
The benefit of using a common queue is that queue managers do not have to deliver activity reports to the
reply-to queue specified in a message and, when determining the locations of the activity reports related
to a message, you query one queue only.

To set up a common queue, perform the following steps:

Procedure
1. Select or define a queue manager as the single node
2. On the single node, select or define a queue for use as the common queue
3. On all queue managers where activity reports are to be delivered to the common queue, redefine the

local system queue SYSTEM.ADMIN.ACTIVITY.QUEUE as a remote queue definition:
a) Specify the name of the single node as the remote queue manager name
b) Specify the name of the common queue as the remote queue name

Determining message route information
To determine a message route, obtain the information from the activity reports collected. Determine
whether enough activity reports are on the reply-to queue to enable you to determine the required
information and arrange the activity reports in order.

About this task
The order that activity reports are put on the reply-to queue does not necessarily correlate to the order in
which the activities were performed. You must order activity reports manually, unless they are generated
for a trace-route message, in which case you can use the WebSphere MQ display route application to
order the activity reports.

Determine whether enough activity reports are on the reply-to queue for you to obtain the necessary
information:

Procedure
1. Identify all related activity reports on the reply-to queue by comparing identifiers of the activity reports

and the original message. Ensure you set the report option of the original message such that the
activity reports can be correlated with the original message.

2. Order the identified activity reports from the reply-to queue.
You can use the following parameters from the activity report:

OperationType

The types of operations performed might enable you to determine the activity report that was
generated directly before, or after, the current activity report.

60 Monitoring and Performance for IBM WebSphere MQ

For example, an activity report details that an MCA sent a message from a transmission queue
down a channel. The last operation detailed in the activity report has an OperationType of send
and details that the message was sent using the channel, CH1, to the destination queue manager,
QM1. This means that the next activity performed on the message will have occurred on queue
manager, QM1, and that it will have begun with a receive operation from channel, CH1. By using
this information you can identify the next activity report, providing it exists and has been acquired.

OperationDate and OperationTime

You can determine the general order of the activities from the dates and times of the operations in
each activity report.

Warning: Unless every queue manager in the queue manager network has their system clocks
synchronized, ordering by date and time does not guarantee that the activity reports are in the
correct sequence. You must establish the order manually.

The order of the activity reports represents the route, or partial route, that the message took through
the queue manager network.

3. Obtain the information you need from the activity information in the ordered activity reports.
If you have insufficient information about the message, you might be able to acquire further activity
reports.

Retrieving further activity reports
To determine a message route, sufficient information must be available from the activity reports
collected. If you retrieve the activity reports related to a message from the reply-to queue that the
message specified, but you not have the necessary information, look for further activity reports.

About this task
To determine the locations of any further activity reports, perform the following steps:

Procedure
1. For any queue managers in the queue manager network that deliver activity reports to a common

queue, retrieve activity reports from the common queue that have a CorrelId that matches the MsgId of
the original message.

2. For any queue managers in the queue manager network that do not deliver activity reports to a
common queue, retrieve activity reports as follows:
a) Examine the existing activity reports to identify queue managers through which the message was

routed.
b) For these queue managers, identify the queue managers that are enabled for activity recording.
c) For these queue managers, identify any that did not return activity reports to the specified reply-to

queue.
d) For each of the queue managers that you identify, check the system queue

SYSTEM.ADMIN.ACTIVITY.QUEUE and retrieve any activity reports that have a CorrelId that
matches the MsgId of the original message.

e) If you find no activity reports on the system queue, check the queue manager dead letter queue, if
one exists.
An activity report can only be delivered to a dead letter queue if the report option,
MQRO_DEAD_LETTER_Q, is set.

3. Arrange all the acquired activity reports in order.
The order of the activity reports then represents the route, or partial route, that the message took.

4. Obtain the information you need from the activity information in the ordered activity reports.
In some circumstances, recorded activity information cannot reach the specified reply-to queue, a
common queue, or a system queue.

Monitoring and performance 61

Circumstances where activity information is not acquired
To determine the complete sequence of activities performed on behalf of a message, information related
to every activity must be acquired. If the information relating to any activity has not been recorded, or has
not been acquired, you can determine only a partial sequence of activities.

Activity information is not recorded in the following circumstances:

• The message is processed by a WebSphere MQ queue manager earlier than Version 6.0.
• The message is processed by a queue manager that is not enabled for activity recording.
• The application that expected to process the message is not running.

Recorded activity information is unable to reach the specified reply-to queue in the following
circumstances:

• There is no channel defined to route activity reports to the reply-to queue.
• The channel to route activity reports to the reply-to queue is not running.
• The remote queue definition to route activity reports back to the queue manager where the reply-to

queue resides (the queue manager alias), is not defined.
• The user that generated the original message does not have open, or put, authority to the queue

manager alias.
• The user that generated the original message does not have open, or put, authority to the reply-to

queue.
• The reply-to queue is put inhibited.

Recorded activity information is unable to reach the system queue, or a common queue, in the following
circumstances:

• If a common queue is to be used and there is no channel defined to route activity reports to the
common queue.

• If a common queue is to be used and the channel to route activity reports to the common queue is not
running.

• If a common queue is to be used and the system queue is incorrectly defined.
• The user that generated the original message does not have open, or put, authority to the system queue.
• The system queue is put inhibited.
• If a common queue is to be used and the user that generated the original message does not have open,

or put, authority to the common queue.
• If a common queue is to be used and the common queue is put inhibited.

In these circumstances, providing the activity report does not have the report option
MQRO_DISCARD_MSG specified, the activity report can be retrieved from a dead letter queue if one
was defined on the queue manager where the activity report was rejected. An activity report will only have
this report option specified if the original message, from which the activity report was generated, had
both MQRO_PASS_DISCARD_AND_EXPIRY and MQRO_DISCARD_MSG specified in the Report field of the
message descriptor.

Trace-route messaging
Trace-route messaging is a technique that uses trace-route messages to record activity information for a
message. Trace-route messaging involves sending a trace-route message into a queue manager network.

As the trace-route message is routed through the queue manager network, activity information is
recorded. This activity information includes information about the applications that performed the
activities, when they were performed, and the operations that were performed as part of the activities.
You can use the information recorded using trace-route messaging for the following purposes:

62 Monitoring and Performance for IBM WebSphere MQ

To determine the last known location of a message
If a message does not reach its intended destination, you can use the activity information recorded for
a trace-route message to determine the last known location of the message. A trace-route message
is sent into a queue manager network with the same target destination as the original message,
intending that it follows the same route. Activity information can be accumulated in the message data
of the trace-route message, or recorded using activity reports. To increase the probability that the
trace-route message follows the same route as the original message, you can modify the trace-route
message to mimic the original message.

To determine configuration issues with a queue manager network
Trace-route messages are sent into a queue manager network and activity information is recorded.
By studying the activity information recorded for a trace-route message, it can become apparent that
the trace-route message did not follow the expected route. There are many reasons why this can
occur, for example, a channel might be inactive, forcing the message to take an alternative route. In
these situations, a system administrator can determine whether there are any problems in the queue
manager network, and if there are, correct them.

You can use the WebSphere MQ display route application to configure, generate, and put trace-route
messages into a queue manager network.

Warning: If you put a trace-route message to a distribution list, the results are undefined.

Related concepts
“Trace-route message reference” on page 120
Use this page to obtain an overview of the trace-route message format. The trace-route message data
includes parameters that describe the activities that the trace-route message has caused

How activity information is recorded
With trace-route messaging, you can record activity information in the message data of the trace-route
message, or use activity reports. Alternatively, you can use both techniques.

Accumulating activity information in the message data of the trace-route message
As a trace-route message is routed through a queue manager network, information about the activities
performed on behalf of the trace-route message can be accumulated in the message data of the trace-
route message. The activity information is stored in Activity PCF groups. For every activity performed on
behalf of the trace-route message, an Activity PCF group is written to the end of the PCF block in the
message data of the trace-route message.

Additional activity information is recorded in trace-route messaging, in a PCF group called the TraceRoute
PCF group. The additional activity information is stored in this PCF group, and can be used to help
determine the sequence of recorded activities. This technique is controlled by the Accumulate parameter
in the TraceRoute PCF group.

Recording activity information using activity reports
As a trace-route message is routed through a queue manager network, an activity report can be generated
for every activity that was performed on behalf of the trace-route message. The activity information is
stored in the Activity PCF group. For every activity performed on behalf of a trace-route message, an
activity report is generated containing an Activity PCF group. Activity recording for trace-route messages
works in the same way as for any other message.

Activity reports generated for trace-route messages contain additional activity information compared to
the those generated for any other message. The additional information is returned in a TraceRoute PCF
group. The information contained in the TraceRoute PCF group is accurate only from the time the activity
report was generated. You can use the additional information to help determine the sequence of activities
performed on behalf of the trace-route message.

Monitoring and performance 63

Acquiring recorded activity information
When a trace-route message has reached its intended destination, or is discarded, the method that you
use to acquire the activity information depends on how that information was recorded.

Before you begin
If you are unfamiliar with activity information, refer to “How activity information is recorded” on page 63.

About this task
Use the following methods to acquire the activity information after the trace-route message has reached
its intended destination, or is discarded:

Procedure
• Retrieve the trace-route message.

The Deliver parameter, in the TraceRoute PCF group, controls whether a trace-route message is placed
on the target queue on arrival, or whether it is discarded. If the trace-route message is delivered to
the target queue, you can retrieve the trace-route message from this queue. Then, you can use the
WebSphere MQ display route application to display the activity information.

To request that activity information is accumulated in the message data of a trace-route message, set
the Accumulate parameter in the TraceRoute PCF group to MQROUTE_ACCUMULATE_IN_MSG.

• Use a trace-route reply message.
When a trace-route message reaches its intended destination, or the trace-route message cannot
be routed any further in a queue manager network, a trace-route reply message can be generated.
A trace-route reply message contains a duplicate of all the activity information from the trace-
route message, and is either delivered to a specified reply-to queue, or the system queue
SYSTEM.ADMIN.TRACE.ROUTE.QUEUE. You can use the WebSphere MQ display route application to
display the activity information.

To request a trace-route reply message, set the Accumulate parameter in the TraceRoute PCF group to
MQROUTE_ACCUMULATE_AND_REPLY.

• Use activity reports.
If activity reports are generated for a trace-route message, you must locate the activity reports before
you can acquire the activity information. Then, to determine the sequence of activities, you must order
the activity reports.

Controlling trace-route messaging
Enable trace-route messaging at the queue manager level, so that applications in the scope of that queue
manager can write activity information to a trace-route message. To enable an entire queue manager
network, individually enable every queue manager in the network for trace-route messaging. If you
enable more queue managers, more activity reports are generated.

Before you begin
If you are using activity reports to record activity information for a trace-route message, refer to
“Controlling activity recording” on page 59.

About this task
To record activity information for a trace-route message as it is routed through a queue manager, perform
the following steps:

Procedure
• Define how activity information is to be recorded for the trace-route message.

Refer to “Generating and configuring a trace-route message” on page 67

64 Monitoring and Performance for IBM WebSphere MQ

• If you want to accumulate activity information in the trace-route message, ensure that the queue
manager is enabled for trace-route messaging

• If you want to accumulate activity information in the trace-route message, ensure that applications
performing activities on the trace-route message are capable of writing activity information to the
message data of the trace-route message

Related concepts
“Generating and configuring a trace-route message” on page 67
A trace-route message comprises specific message descriptor and message data parts. To generate
a trace-route message, either create the message manually or use the WebSphere MQ display route
application.
Related tasks
“Controlling activity recording” on page 59
Enable activity recording at the queue manager level. To enable an entire queue manager network,
individually enable every queue manager in the network for activity recording. If you enable more queue
managers, more activity reports are generated.

Enabling queue managers for trace-route messaging
To control whether queue managers are enabled or disabled for trace-route messaging use the queue
manager attribute ROUTEREC.

Use the MQSC command ALTER QMGR, specifying the parameter ROUTEREC to change the value of the
queue manager attribute. The value can be:
MSG

The queue manager is enabled for trace-route messaging. Applications within the scope of the queue
manager can write activity information to the trace-route message.

If the Accumulate parameter in the TraceRoute PCF group is set as
MQROUTE_ACCUMULATE_AND_REPLY, and the next activity to be performed on the trace-route
message:

• is a discard
• is a put to a local queue (target queue or dead-letter queue)
• will cause the total number of activities performed on the trace-route message to exceed the value

of parameter the MaxActivities, in the TraceRoute PCF group .

a trace-route reply message is generated, and delivered to the reply-to queue specified in the
message descriptor of the trace-route message.

QUEUE
The queue manager is enabled for trace-route messaging. Applications within the scope of the queue
manager can write activity information to the trace-route message.

If the Accumulate parameter in the TraceRoute PCF group is set as
MQROUTE_ACCUMULATE_AND_REPLY, and the next activity to be performed on the trace-route
message:

• is a discard
• is a put to a local queue (target queue or dead-letter queue)
• will cause the total number of activities performed on the trace-route message to exceed the value

of parameter the MaxActivities, in the TraceRoute PCF group .

a trace-route reply message is generated, and delivered to the local system queue
SYSTEM.ADMIN.TRACE.ROUTE.QUEUE.

DISABLED
The queue manager is disabled for trace-route messaging. Activity information is not accumulated in
the the trace-route message, however the TraceRoute PCF group can be updated while in the scope of
this queue manager.

Monitoring and performance 65

For example, to disable a queue manager for trace-route messaging, use the following MQSC command:

ALTER QMGR ROUTEREC(DISABLED)

Remember: When you modify the ROUTEREC queue manager attribute, a running MCA does not detect
the change until the channel is restarted.

Enabling applications for trace-route messaging
To enable trace-route messaging for a user application, base your algorithm on the algorithm used by
message channel agents (MCAs)

Before you begin
If you are not familiar with the format of a trace-route message, see “Trace-route message reference” on
page 120.

About this task
Message channel agents (MCAs) are enabled for trace-route messaging. To enable a user application for
trace-route messaging, use the following steps from the algorithm that MCAs use:

Procedure
1. Determine whether the message being processed is a trace-route message.

If the message does not conform to the format of a trace-route message, the message is not
processed as a trace-route message.

2. Determine whether activity information is to be recorded.
If the detail level of the performed activity is not less than the level of detail specified by the
Detail parameter, activity information is recorded under specific circumstances. This information is
only recorded if the trace-route message requests accumulation, and the queue manager is enabled
for trace-route messaging, or if the trace-route message requests an activity report and the queue
manager is enabled for activity recording.

• If activity information is to be recorded, increment the RecordedActivities parameter.
• If activity information is not to be recorded, increment the UnrecordedActivities parameter.

3. Determine whether the total number of activities performed on the trace-route message exceeds the
value of the MaxActivities parameter.

The total number of activities is the sum of RecordedActivities, UnrecordedActivities, and
DiscontinuityCount.

If the total number of activities exceeds MaxActivities, reject the message with feedback
MQFB_MAX_ACTIVITIES.

4. If value of Accumulate is set as MQROUTE_ACCUMULATE_IN_MSG or
MQROUTE_ACCUMULATE_AND_REPLY, and the queue manager is enabled for trace-route messaging,
write an Activity PCF group to the end of the PCF block in the message data of a trace-route message.

5. Deliver the trace-route message to a local queue.

• If the parameter, Deliver, is specified as MQROUTE_DELIVER_NO, reject the trace-route message
with feedback MQFB_NOT_DELIVERED.

• If the parameter, Deliver, is specified as MQROUTE_DELIVER_YES, deliver the trace-route message
to the local queue.

6. Generate a trace-route reply message if all the following conditions are true:

• The trace-route message was delivered to a local queue or rejected
• The value of the parameter, Accumulate, is MQROUTE_ACCUMULATE_AND_REPLY
• The queue manager is enabled for trace-route messaging

66 Monitoring and Performance for IBM WebSphere MQ

The trace-route reply message is put on the queue determined by the ROUTEREC queue manager
attribute.

7. If the trace-route message requested an activity report and the queue manager is enabled for activity
recording, generate an activity report.
The activity report is put on the queue determined by the ACTIVREC queue manager attribute.

Generating and configuring a trace-route message
A trace-route message comprises specific message descriptor and message data parts. To generate
a trace-route message, either create the message manually or use the WebSphere MQ display route
application.

A trace-route message consists of the following parts:
Message descriptor

An MQMD structure, with the Format field set to MQFMT_ADMIN or MQFMT_EMBEDDED_PCF.
Message data

One of the following combinations:

• A PCF header (MQCFH) and trace-route message data, if Format is set to MQFMT_ADMIN
• An embedded PCF header (MQEPH), trace-route message data, and additional user-specified

message data, if Format is set to MQFMT_EMBEDDED_PCF

The trace-route message data consists of the TraceRoute PCF group and one or more Activity PCF groups.

Manual generation
When generating a trace-route message manually, an Activity PCF group is not required. Activity PCF
groups are written to the message data of the trace-route message when an MCA or user-written
application performs an activity on its behalf.

The WebSphere MQ display route application
Use the WebSphere MQ display route application, dspmqrte, to configure, generate and put a trace-
route message into a queue manager network. Set the Format parameter in the message descriptor to
MQFMT_ADMIN. You cannot add user data to the trace-route message generated by the WebSphere MQ
display route application.

Restriction: dspmqrte cannot be issued on queue managers before WebSphere MQ Version 6.0 or on
WebSphere MQ for z/OS queue managers. If you want the first queue manager the trace-route message
is routed through to be a queue manager of this type, connect to the queue manager as a WebSphere MQ
Version 6.0 or later client using the optional parameter -c.

Mimicking the original message
When using a trace-route message to determine the route another message has taken through a queue
manager network, the more closely a trace-route message mimics the original message, the greater the
chance that the trace-route message will follow the same route as the original message.

The following message characteristics can affect where a message is forwarded to within a queue
manager network:

Priority
The priority can be specified in the message descriptor of the message.

Persistence
The persistence can be specified in the message descriptor of the message.

Expiration
The expiration can be specified in the message descriptor of the message.

Report options
Report options can be specified in the message descriptor of the message.

Monitoring and performance 67

Message size
To mimic the size of a message, additional data can be written to the message data of the message.
For this purpose, additional message data can be meaningless.

Tip: The WebSphere MQ display route application cannot specify message size.

Message data
Some queue manager networks use content based routing to determine where messages are
forwarded. In these cases the message data of the trace-route message needs to be written to mimic
the message data of the original message.

Tip: The WebSphere MQ display route application cannot specify message data.

The TraceRoute PCF group
Attributes in the TraceRoute PCF group control the behavior of a trace-route message. The TraceRoute PCF
group is in the message data of every trace-route message.

The following table lists the parameters in the TraceRoute group that an MCA recognizes. Further
parameters can be added if user-written applications are written to recognize them, as described in
“Additional activity information” on page 73.

Table 12. TraceRoute PCF group

Parameter Type

TraceRoute
 Detail
 RecordedActivities
 UnrecordedActivities
 DiscontinuityCount
 MaxActivities
 Accumulate
 Forward
 Deliver

MQCFGR
MQCFIN
MQCFIN
MQCFIN
MQCFIN
MQCFIN
MQCFIN
MQCFIN
MQCFIN

Descriptions of each parameter in the TraceRoute PCF group follows:
Detail

Specifies the detail level of activity information that is to be recorded. The value can be:
MQROUTE_DETAIL_LOW

Only activities performed by user application are recorded.
MQROUTE_DETAIL_MEDIUM

Activities specified in MQROUTE_DETAIL_LOW should be recorded. Additionally, activities
performed by MCAs are recorded.

MQROUTE_DETAIL_HIGH
Activities specified in MQROUTE_DETAIL_LOW, and MQROUTE_DETAIL_MEDIUM should be
recorded. MCAs do not record any further activity information at this level of detail. This option is
only available to user applications that are to record further activity information. For example,
if a user application determines the route a message takes by considering certain message
characteristics, the information about the routing logic could be included with this level of detail.

RecordedActivities
Specifies the number of recorded activities performed on behalf of the trace-route message. An
activity is considered to be recorded if information about it has been written to the trace-route
message, or if an activity report has been generated. For every recorded activity, RecordedActivities
increments by one.

68 Monitoring and Performance for IBM WebSphere MQ

UnrecordedActivities
Specifies the number of unrecorded activities performed on behalf of the trace-route message. An
activity is considered to be unrecorded if an application that is enabled for trace-route messaging
neither accumulates, nor writes the related activity information to an activity report.

An activity performed on behalf of a trace-route message is unrecorded in the following
circumstances:

• The detail level of the performed activity is less than the level of detail specified by the parameter
Detail.

• The trace-route message requests an activity report but not accumulation, and the queue manager
is not enabled for activity recording.

• The trace-route message requests accumulation but not an activity report, and the queue manager
is not enabled for trace-route messaging.

• The trace-route message requests both accumulation and an activity report, and the queue
manager is not enabled for activity recording and trace route messaging.

• The trace-route message requests neither accumulation nor an activity report.

For every unrecorded activity the parameter, UnrecordedActivities, increments by one.

DiscontinuityCount
Specifies the number of times the trace-route message has been routed through a queue manager
with applications that were not enabled for trace-route messaging. This value is incremented by the
queue manager. If this value is greater than 0, only a partial message route can be determined.

MaxActivities
Specifies the maximum number of activities that can be performed on behalf of the trace-route
message.

The total number of activities is the sum of RecordedActivities, UnrecordedActivities, and
DiscontinuityCount. The total number of activities must not exceed the value of MaxActivities.

The value of MaxActivities can be:
A positive integer

The maximum number of activities.

If the maximum number of activities is exceeded, the trace-route message is rejected with
feedback MQFB_MAX_ACTIVITIES. This can prevent the trace-route message from being
forwarded indefinitely if caught in an infinite loop.

MQROUTE_UNLIMITED_ACTIVITIES
An unlimited number of activities can be performed on behalf of the trace-route message.

Accumulate
Specifies the method used to accumulate activity information. The value can be:
MQROUTE_ACCUMULATE_IN_MSG

If the queue manager is enabled for trace-route messaging, activity information is accumulated in
the message data of the trace-route message.

If this value is specified, the trace-route message data consists of the following:

• The TraceRoute PCF group.
• Zero or more Activity PCF groups.

MQROUTE_ACCUMULATE_AND_REPLY
If the queue manager is enabled for trace-route messaging, activity information is accumulated in
the message data of the trace-route message, and a trace-route reply message is generated if any
of the following occur:

• The trace-route message is discarded by a WebSphere MQ Version 6 (or later) queue manager.
• The trace-route message is put to a local queue (target queue or dead-letter queue) by a

WebSphere MQ Version 6 (or later) queue manager.

Monitoring and performance 69

• The number of activities performed on the trace-route message exceeds the value of
MaxActivities.

If this value is specified, the trace-route message data consists of the following:

• The TraceRoute PCF group.
• Zero or more Activity PCF groups.

MQROUTE_ACCUMULATE_NONE
Activity information is not accumulated in the message data of the trace-route message.

If this value is specified, the trace-route message data consists of the following:

• The TraceRoute PCF group.

Forward
Specifies where a trace-route message can be forwarded to. The value can be:
MQROUTE_FORWARD_IF_SUPPORTED

The trace-route message is only forwarded to queue managers that will honor the value of the
Deliver parameter from the TraceRoute group.

MQROUTE_FORWARD_ALL
The trace-route message is forwarded to any queue manager, regardless of whether the value of
the Deliver parameter will be honored.

Queue managers use the following algorithm when determining whether to forward a trace-route
message to a remote queue manager:

1. Determine whether the remote queue manager is capable of supporting trace-route messaging.

• If the remote queue manager is capable of supporting trace-route messaging, the algorithm
continues to step “4” on page 70.

• If the remote queue manager is not capable of supporting trace-route messaging, the algorithm
continues to step “2” on page 70

2. Determine whether the Deliver parameter from the TraceRoute group contains any unrecognized
delivery options in the MQROUTE_DELIVER_REJ_UNSUP_MASK bit mask.

• If any unrecognized delivery options are found, the trace-route message is rejected with
feedback MQFB_UNSUPPORTED_DELIVERY.

• If no unrecognized delivery options are found, the algorithm continues to step “3” on page 70.
3. Determine the value of the parameter Deliver from the TraceRoute PCF group in the trace-route

message.

• If Deliver is specified as MQROUTE_DELIVER_YES, the trace-route message is forwarded to the
remote queue manager.

• If Deliver is specified as MQROUTE_DELIVER_NO, the algorithm continues to step “4” on page
70.

4. Determine whether the Forward parameter from the TraceRoute group contains any unrecognized
forwarding options in the MQROUTE_FORWARDING_REJ_UNSUP_MASK bit mask.

• If any unrecognized forwarding options are found, the trace-route message is rejected with
feedback MQFB_UNSUPPORTED_FORWARDING.

• If no unrecognized forwarding options are found, the algorithm continues to step “5” on page
70.

5. Determine the value of the parameter Forward from the TraceRoute PCF group in the trace-route
message.

• If Forward is specified as MQROUTE_FORWARD_IF_SUPPORTED, the trace-route message is
rejected with feedback MQFB_NOT_FORWARDED.

• If Forward is specified as MQROUTE_FORWARD_ALL, trace-route message can be forwarded to
the remote queue manager.

70 Monitoring and Performance for IBM WebSphere MQ

Deliver
Specifies the action to be taken if the trace-route message reaches its intended destination. User-
written applications must check this attribute before placing a trace-route message on its target
queue. The value can be:
MQROUTE_DELIVER_YES

On arrival, the trace-route message is put on the target queue. Any application performing a get
operation on the target queue can retrieve the trace-route message.

MQROUTE_DELIVER_NO
On arrival, the trace-route message is not delivered to the target queue. The message is
processed according to its report options.

Setting up a common queue for trace-route reply messages
To determine the locations of the trace-route reply messages related to a specific message when the
reports are delivered to the local system queue, it is more efficient to use a common queue on a single
node

Before you begin
Set the ROUTEREC parameter to enable the queue manager for trace-route messaging and to
specify that any trace-route reply messages generated are delivered to the local system queue
SYSTEM.ADMIN.TRACE.ROUTE.QUEUE.

About this task
If a number of queue managers in a queue manager network are set to deliver trace-route reply messages
to the local system queue, it can be time consuming to determine the locations of the trace-route reply
messages related to a specific message. Alternatively, use a single node, which is a queue manager that
hosts a common queue. All the queue managers in a queue manager network can deliver trace-route
reply messages to this common queue. The benefit of using a common queue is that queue managers do
not have to deliver trace-route reply messages to the reply-to queue specified in a message and, when
determining the locations of the trace-route reply messages related to a message, you query one queue
only.

To set up a common queue, perform the following steps:

Procedure
1. Select or define a queue manager as the single node
2. On the single node, select or define a queue for use as the common queue
3. On all queue managers that forward trace-route reply messages to the common queue, redefine the

local system queue SYSTEM.ADMIN.TRACE.ROUTE.QUEUE as a remote queue definition
a) Specify the name of the single node as the remote queue manager name
b) Specify the name of the common queue as the remote queue name

Acquiring and using recorded information
Use any of the following techniques to acquire recorded activity information for a trace-route message

Note that the circumstances in which activity information is not acquired apply also to trace-route reply
messages.

Activity information is not recorded when a trace-route message is processed by a queue manager that is
disabled for both activity recording and trace-route messaging.

Monitoring and performance 71

Acquiring information from trace-route reply messages
To acquire activity information you locate the trace-route reply message. Then you retrieve the message
and analyze the activity information.

About this task
You can acquire activity information from a trace-route reply message only if you know the location of the
trace-route reply message. Locate the message and process the activity information as follows:

Procedure
1. Check the reply-to queue that was specified in the message descriptor of the trace-route message. If

the trace-route reply message is not on the reply-to queue, check the following locations:

• The local system queue, SYSTEM.ADMIN.TRACE.ROUTE.QUEUE, on the target queue manager of
the trace-route message

• The common queue, if you have set up a common queue for trace-route reply messages
• The local system queue, SYSTEM.ADMIN.TRACE.ROUTE.QUEUE, on any other queue manager in the

queue manager network, which can occur if the trace-route message has been put to a dead-letter
queue, or the maximum number of activities was exceeded

2. Retrieve the trace-route reply message
3. Use the WebSphere MQ display route application to display the recorded activity information
4. Study the activity information and obtain the information that you need

Acquiring information from trace-route messages
To acquire activity information you locate the trace-route message, which must have the appropriate
parameters in the TraceRoute PCF group. Then you retrieve the message and analyze the activity
information.

About this task
You can acquire activity information from a trace-route message only if you know the location of the
trace-route message and it has the parameter Accumulate in the TraceRoute PCF group specified as either
MQROUTE_ACCUMULATE_IN_MSG or MQROUTE_ACCUMULATE_AND_REPLY.

For the trace-route message to be delivered to the target queue the Deliver parameter in the TraceRoute
PCF group must be specified as MQROUTE_DELIVER_YES.

Procedure
1. Check the target queue. If the trace-route message is not on the target queue, you can try to locate the

trace-route message using a trace-route message enabled for activity recording. With the generated
activity reports try to determine the last known location of the trace-route message.

2. Retrieve the trace-route message
3. Use the WebSphere MQ display route application to display the recorded activity information
4. Study the activity information and obtain the information that you need

Acquiring information from activity reports
To acquire activity information you locate the activity report, which must have the report option specified
in the message descriptor. Then you retrieve the activity report and analyze the activity information.

About this task
You can acquire activity information from an activity report only if you know the location of the activity
report and the report option MQRO_ACTIVITY was specified in the message descriptor of the trace-route
message.

72 Monitoring and Performance for IBM WebSphere MQ

Procedure
1. Locate and order the activity reports generated for a trace-route message.

When you have located the activity reports, you can order them manually or use the WebSphere MQ
display route application to order and display the activity information automatically.

2. Study the activity information and obtain the information that you need

Additional activity information
As a trace-route message is routed through a queue manager network, user applications can record
additional information by including one or more additional PCF parameters when writing the Activity group
to the message data of the trace-route message or activity report.

Additional activity information can help system administrators to identify the route taken by a trace-route
message took, or why that route was taken.

If you use the IBM WebSphere MQ display route application to display the recorded information for a
trace-route message, any additional PCF parameters can only be displayed with a numeric identifier,
unless the parameter identifier of each parameter is recognized by the IBM WebSphere MQ display
route application. To recognize a parameter identifier, additional information must be recorded using the
following PCF parameters. Include these PCF parameters in an appropriate place in the Activity PCF
group.
GroupName

Table 13. Group name

Description Grouped parameters specifying the additional information.

Identifier MQGACF_VALUE_NAMING.

Data type MQCFGR

Parameters in
group

ParameterName
ParameterValue

ParameterName

Table 14. Parameter name

Description Contains the name to be displayed by the IBM WebSphere MQ display route
application, which puts the value of ParameterValue into context.

Identifier MQCA_VALUE_NAME.

Data type MQCFST

Included in PCF
group:

GroupName.

Value: The name to be displayed.

ParameterValue

Table 15. Parameter value

Description Contains the value to be displayed by the IBM WebSphere MQ display route
application.

Identifier: The PCF structure identifier for the additional information.

Data type: The PCF structure data type for the additional information.

Monitoring and performance 73

Table 15. Parameter value (continued)

Description Contains the value to be displayed by the IBM WebSphere MQ display route
application.

Included in PCF
group:

GroupName.

Value: The value to be displayed.

Examples of recording additional activity information
The following examples illustrate how a user application can record additional information when
performing an activity on behalf of a trace-route message. In both examples, the IBM WebSphere MQ
display route application is used to generate a trace-route message, and display the activity information
returned to it.

Example 1
Additional activity information is recorded by a user application in a format where the parameter identifier
is not recognized by the WebSphere MQ display route application.

1. The WebSphere MQ display route application is used to generate and put a trace-route message into a
queue manager network. The necessary options are set to request the following:

• Activity information is accumulated in the message data of the trace-route message.
• On arrival at the target queue the trace-route message is discarded, and a trace-route reply message

is generated and delivered to a specified reply-to queue.
• On receipt of the trace-route reply message, the WebSphere MQ display route application displays

the accumulated activity information.

The trace-route message is put into the queue manager network.
2. As the trace-route message is routed through the queue manager network a user application, that is

enabled for trace-route messaging, performs a low detail activity on behalf of the message. In addition
to writing the standard activity information to the trace-route message, the user application writes the
following PCF parameter to the end of the Activity group:
ColorValue

Identifier
65536

Data type
MQCFST

Value
'Red'

This additional PCF parameter gives further information about the activity that was performed,
however it is written in a format where the parameter identifier is not recognized by the WebSphere
MQ display route application.

3. The trace-route messages reaches the target queue and a trace-route reply message is returned to the
WebSphere MQ display route application. The additional activity information is displayed as follows:

65536: 'Red'

The WebSphere MQ display route application does not recognize the parameter identifier of the PCF
parameter and displays it as a numeric value. The context of the additional information is not clear.

For an example of when the WebSphere MQ display route application does recognize the parameter
identifier of the PCF parameter, see “Example 2” on page 75.

74 Monitoring and Performance for IBM WebSphere MQ

Example 2
Additional activity information is recorded by a user application in a format where the parameter identifier
is recognized by the IBM WebSphere MQ display route application.

1. TheIBM WebSphere MQ display route application is used to generate and put a trace-route message
into a queue manager network in the same fashion as in “Example 1” on page 74.

2. As the trace-route message is routed through the queue manager network a user application, that is
enabled for trace-route messaging, performs a low detail activity on behalf of the message. In addition
to writing the standard activity information to the trace-route message, the user application writes the
following PCF parameters to the end of the Activity group:
ColorInfo

Table 16. Color information

Description Grouped parameters specifying information about a color.

Identifier: MQGACF_VALUE_NAMING.

Data type: MQCFGR.

Parameters in
group:

ColorName
ColorValue

ColorName

Table 17. Color name

Description Contains the name to be displayed by the IBM WebSphere MQ display
route application which puts the value of ColorValue into context.

Identifier: MQCA_VALUE_NAME.

Data type: MQCFST.

Included in PCF
group:

ColorInfo.

Value: 'Color'

ColorValue

Table 18. Color value

Description Contains the value to be displayed by the IBM WebSphere MQ display
route application.

Identifier: 65536.

Data type: MQCFST.

Included in PCF
group:

ColorInfo.

Value: 'Red'

These additional PCF parameters gives further information about the activity that was performed.
These PCF parameters are written in a format where the parameter identifier is recognized by the IBM
WebSphere MQ display route application.

Monitoring and performance 75

3. The trace-route messages reaches the target queue and a trace-route reply message is returned to
the IBM WebSphere MQ display route application. The additional activity information is displayed as
follows:

Color: 'Red'

The IBM WebSphere MQ display route application recognizes that the parameter identifier of the PCF
structure containing the value of the additional activity information has a corresponding name. The
corresponding name is displayed instead of the numeric value.

WebSphere MQ display route application
Use the WebSphere MQ display route application (dspmqrte) to work with trace-route messages and
activity information related to a trace-route message, using a command-line interface.

Note: To run a Client Application against a queue manager, the Client Attachment feature must be
installed.

You can use the WebSphere MQ display route application for the following purposes:

• To configure, generate, and put a trace-route message into a queue manager network.

By putting a trace-route message into a queue manager network, activity information can be collected
and used to determine the route that the trace-route message took. You can specify the characteristics
of the trace-route messages as follows:

– The destination of the trace-route message.
– How the trace-route message mimics another message.
– How the trace-route message should be handled as it is routed through a queue manager network.
– Whether activity recording or trace-route messaging are used to record activity information.

• To order and display activity information related to a trace-route message.

If the WebSphere MQ display route application has put a trace-route message into a queue manager
network, after the related activity information has been returned, the information can be ordered and
displayed immediately. Alternatively, the WebSphere MQ display route application can be used to order,
and display, activity information related to a trace-route message that was previously generated.

Related reference
dspmqrte

Parameters for trace-route messages
Use this page to obtain an overview of the parameters provided by the WebSphere MQ display route
application, dspmqrte, to determine the characteristics of a trace-route message, including how it is
treated as it is routed through a queue manager network.
Related reference
dspmqrte

Queue manager connection
Use this page to specify the queue manager that the WebSphere MQ display route application connects to

-c
Specifies that the WebSphere MQ display route application connects as a client application.

If you do not specify this parameter, the WebSphere MQ display route application does not connect as
a client application.

-m QMgrName
The name of the queue manager to which the WebSphere MQ display route application connects. The
name can contain up to 48 characters.

If you do not specify this parameter, the default queue manager is used.

76 Monitoring and Performance for IBM WebSphere MQ

The target destination
Use this page to specify the target destination of a trace-route message

-q TargetQName
If the WebSphere MQ display route application is being used to send a trace-route message into a
queue manager network, TargetQName specifies the name of the target queue.

-ts TargetTopicString
Specifies the topic string.

-qm TargetQMgr
Qualifies the target destination; normal queue manager name resolution will then apply. The target
destination is specified with -q TargetQName or -ts TargetTopicString.

If you do not specify this parameter, the queue manager to which the WebSphere MQ display route
application is connected is used as the target queue manager.

-o
Specifies that the target destination is not bound to a specific destination. Typically this parameter is
used when the trace-route message is to be put across a cluster. The target destination is opened with
option MQOO_BIND_NOT_FIXED.

If you do not specify this parameter, the target destination is bound to a specific destination.

The publication topic
For publish/subscribe applications, use this page to specify the topic string of a trace-route message for
the WebSphere MQ display route application to publish

-ts TopicName
Specifies a topic string to which the WebSphere MQ display route application is to publish a trace-
route message, and puts this application into topic mode. In this mode, the application traces all of
the messages that result from the publish request.

You can also use the WebSphere MQ display route application to display the results from an activity report
that was generated for publish messages.

Message mimicking
Use this page to configure a trace-route message to mimic a message, for example when the original
message did not reach its intended destination

One use of trace-route messaging is to help determine the last known location of a message that did not
reach its intended destination. The IBM WebSphere MQ display route application provides parameters
that can help configure a trace-route message to mimic the original message. When mimicking a
message, you can use the following parameters:
-l Persistence

Specifies the persistence of the generated trace-route message. Possible values for Persistence are:
yes

The generated trace-route message is persistent. (MQPER_PERSISTENT).
no

The generated trace-route message is not persistent. (MQPER_NOT_PERSISTENT).
q

The generated trace-route message inherits its persistence value from the destination specified
by -q TargetQName or -ts TargetTopicString. (MQPER_PERSISTENCE_AS_Q_DEF).

A trace-route reply message, or any report messages, returned will share the same persistence value
as the original trace-route message.

If Persistence is specified as yes, you must specify the parameter -rq ReplyToQ. The reply-to queue
must not resolve to a temporary dynamic queue.

If you do not specify this parameter, the generated trace-route message is not persistent.

Monitoring and performance 77

-p Priority
Specifies the priority of the trace-route message. The value of Priority is either greater than or equal
to 0, or MQPRI_PRIORITY_AS_Q_DEF. MQPRI_PRIORITY_AS_Q_DEF specifies that the priority value
is taken from the destination specified by -q TargetQName or -ts TargetTopicString.

If you do not specify this parameter, the priority value is taken from the destination specified by -q
TargetQName or -ts TargetTopicString.

-xs Expiry
Specifies the expiry time for the trace-route message, in seconds.

If you do not specify this parameter, the expiry time is specified as 60 seconds.

-ro none | ReportOption
none

Specifies no report options are set.
ReportOption

Specifies report options for the trace-route message. Multiple report options can be specified
using a comma as a separator. Possible values for ReportOption are:
activity

The report option MQRO_ACTIVITY is set.
coa

The report option MQRO_COA_WITH_FULL_DATA is set.
cod

The report option MQRO_COD_WITH_FULL_DATA is set.
exception

The report option MQRO_EXCEPTION_WITH_FULL_DATA is set.
expiration

The report option MQRO_EXPIRATION_WITH_FULL_DATA is set.
discard

The report option MQRO_DISCARD_MSG is set.

If neither -ro ReportOption nor -ro none are specified, then the MQRO_ACTIVITY and
MQRO_DISCARD_MSG report options are specified.

The IBM WebSphere MQ display route application does not allow you to add user data to the trace-route
message. If you require user data to be added to the trace-route message you must generate the
trace-route message manually.

Recorded activity information
Use this page to specify the method used to return recorded activity information, which you can then use
to determine the route that a trace-route message has taken

Recorded activity information can be returned as follows:

• In activity reports
• In a trace-route reply message
• In the trace-route message itself (having been put on the target queue)

When using dspmqrte, the method used to return recorded activity information is determined using the
following parameters:
The activity report option, specified using -ro

Specifies that activity information is returned using activity reports. By default activity recording is
enabled.

-ac -ar
Specifies that activity information is accumulated in the trace-route message, and that a trace-route
reply message is to be generated.

78 Monitoring and Performance for IBM WebSphere MQ

-ac
Specifies that activity information is to be accumulated within the trace-route message.

If you do not specify this parameter, activity information is not accumulated within the trace-route
message.

-ar
Requests that a trace-route reply message containing all accumulated activity information is
generated in the following circumstances:

• The trace-route message is discarded by a IBM WebSphere MQ queue manager.
• The trace-route message is put to a local queue (target queue or dead-letter queue) by a IBM

WebSphere MQ queue manager.
• The number of activities performed on the trace-route message exceeds the value of specified in

-s Activities.

-ac -d yes
Specifies that activity information is accumulated in the trace-route message, and that on arrival, the
trace-route message will be put on the target queue.
-ac

Specifies that activity information is to be accumulated within the trace-route message.

If you do not specify this parameter, activity information is not accumulated within the trace-route
message.

-d yes
On arrival, the trace-route message is put to the target queue, even if the queue manager does not
support trace-route messaging.

If you do not specify this parameter, the trace-route message is not put to the target queue.

The trace-route message can then be retrieved from the target queue, and the recorded activity
information acquired.

You can combine these methods as required.

Additionally, the detail level of the recorded activity information can be specified using the following
parameter:
-t Detail

Specifies the activities that are recorded. The possible values for Detail are:
low

Activities performed by user-defined application are recorded only.
medium

Activities specified in low are recorded. Additionally, publish activities and activities performed
by MCAs are recorded.

high

Activities specified in low, and medium are recorded. MCAs do not expose any further activity
information at this level of detail. This option is available to user-defined applications that are
to expose further activity information only. For example, if a user-defined application determines
the route a message takes by considering certain message characteristics, the routing logic could
be included with this level of detail.

If you do not specify this parameter, medium level activities are recorded.

By default the IBM WebSphere MQ display route application uses a temporary dynamic queue to store the
returned messages. When the IBM WebSphere MQ display route application ends, the temporary dynamic
queue is closed, and any messages are purged. If the returned messages are required beyond the current

Monitoring and performance 79

execution of the IBM WebSphere MQ display route application ends, then a permanent queue must be
specified using the following parameters:
-rq ReplyToQ

Specifies the name of the reply-to queue that all responses to the trace-route message are sent to.
If the trace-route message is persistent, or if the -n parameter is specified, a reply-to queue must be
specified that is not a temporary dynamic queue.

If you do not specify this parameter then a dynamic reply-to queue is created using the system default
model queue, SYSTEM.DEFAULT.MODEL.QUEUE.

-rqm ReplyToQMgr
Specifies the name of the queue manager where the reply-to queue resides. The name can contain up
to 48 characters.

If you do not specify this parameter, the queue manager to which the IBM WebSphere MQ display
route application is connected is used as the reply-to queue manager.

How the trace-route message is handled
Use this page to control how a trace-route message is handled as it is routed through a queue manager
network.

The following parameters can restrict where the trace-route message can be routed in the queue
manager network:

-d Deliver
Specifies whether the trace-route message is to be delivered to the target queue on arrival. Possible
values for Deliver are:

yes On arrival, the trace-route message is put to the target queue, even
if the queue manager does not support trace-route messaging.

no On arrival, the trace-route message is not put to the target queue.

If you do not specify this parameter, the trace-route message is not put to the target queue.

-f Forward
Specifies the type of queue manager that the trace-route message can be forwarded to. For details
of the algorithm that queue managers use to determine whether to forward a message to a remote
queue manager, refer to“The TraceRoute PCF group” on page 68. The possible values for Forward are:
all

The trace-route message is forwarded to any queue manager.

Warning: If forwarded to a IBM WebSphere MQ queue manager earlier than Version 6.0, the
trace-route message will not be recognized and can be delivered to a local queue despite the
value of the -d Deliver parameter.

supported
The trace-route message is only forwarded to a queue manager that will honor the Deliver
parameter from the TraceRoute PCF group

If you do not specify this parameter, the trace-route message will only be forwarded to a queue
manager that will honor the Deliver parameter.

The following parameters can prevent a trace-route message from remaining in a queue manager network
indefinitely:

-s Activities
Specifies the maximum number of recorded activities that can be performed on behalf of the trace-
route message before it is discarded. This prevents the trace-route message from being forwarded
indefinitely if caught in an infinite loop. The value of Activities is either greater than or equal to 1, or
MQROUTE_UNLIMITED_ACTIVITIES. MQROUTE_UNLIMITED_ACTIVITIES specifies that an unlimited
number of activities can be performed on behalf of the trace-route message.

80 Monitoring and Performance for IBM WebSphere MQ

If you do not specify this parameter, an unlimited number of activities can be performed on behalf of
the trace-route message.

-xs Expiry
Specifies the expiry time for the trace-route message, in seconds.

If you do not specify this parameter, the expiry time is specified as 60 seconds.

-xp PassExpiry
Specifies whether the expiry time from the trace-route message is passed on to a trace-route reply
message. Possible values for PassExpiry are:
yes

The report option MQRO_PASS_DISCARD_AND_EXPIRY is specified in the message descriptor of
the trace-route message.

If a trace-route reply message, or activity reports, are generated for the trace-route message, the
MQRO_DISCARD report option (if specified), and the remaining expiry time are passed on.

This is the default value.

no
The report option MQRO_PASS_DISCARD_AND_EXPIRY is not specified.

If a trace-route reply message is generated for the trace-route message, the discard option and
expiry time from the trace-route message are not passed on.

If you do not specify this parameter, MQRO_PASS_DISCARD_AND_EXPIRY is not specified.
The discard report option, specified using -ro

Specifies the MQRO_DISCARD_MSG report option. This can prevent the trace-route message
remaining in the queue manager network indefinitely.

Display of activity information
The IBM WebSphere MQ display route application can display activity information for a trace-route
message that it has just put into a queue manager network, or it can display activity information for
a previously generated trace-route message. It can also display additional information recorded by user-
written applications.

To specify whether activity information returned for a trace-route message is displayed, specify the
following parameter:
-n

Specifies that activity information returned for the trace-route message is not to be displayed.

If this parameter is accompanied by a request for a trace-route reply message, (-ar), or any of the
report generating options from (-ro ReportOption), then a specific (non-model) reply-to queue
must be specified using -rq ReplyToQ. By default, only activity report messages are requested.

After the trace-route message is put to the specified target queue, a 48 character hexadecimal string
is displayed containing the message identifier of the trace-route message. The message identifier can
be used by the IBM WebSphere MQ display route application to display the activity information for the
trace-route message at a later time, using the -i CorrelId parameter.

If you do not specify this parameter, activity information returned for the trace-route message is
displayed in the form specified by the -v parameter.

When displaying activity information for a trace-route message that has just been put into a queue
manager network, the following parameter can be specified:
-w WaitTime

Specifies the time, in seconds, that the IBM WebSphere MQ display route application will wait for
activity reports, or a trace-route reply message, to return to the specified reply-to queue.

If you do not specify this parameter, the wait time is specified as the expiry time of the trace-route
message, plus 60 seconds.

Monitoring and performance 81

When displaying previously accumulated activity information the following parameters must be set:
-q TargetQName

If the IBM WebSphere MQ display route application is being used to view previously gathered activity
information, TargetQName specifies the name of the queue where the activity information is stored.

-i CorrelId
This parameter is used when the IBM WebSphere MQ display route application is used to display
previously accumulated activity information only. There can be many activity reports and trace-route
reply messages on the queue specified by -q TargetQName. CorrelId is used to identify the activity
reports, or a trace-route reply message, related to a trace-route message. Specify the message
identifier of the original trace-route message in CorrelId.

The format of CorrelId is a 48 character hexadecimal string.

The following parameters can be used when displaying previously accumulated activity information, or
when displaying current activity information for a trace-route message:
-b

Specifies that the IBM WebSphere MQ display route application will only browse activity reports or a
trace-route reply message related to a message. This allows activity information to be displayed again
at a later time.

If you do not specify this parameter, the IBM WebSphere MQ display route application will
destructively get activity reports or a trace-route reply message related to a message.

-v summary | all | none | outline DisplayOption
summary

The queues that the trace-route message was routed through are displayed.
all

All available information is displayed.
none

No information is displayed.
outline DisplayOption

Specifies display options for the trace-route message. Multiple display options can be specified
using a comma as a separator.

If no values are supplied the following is displayed:

• The application name
• The type of each operation
• Any operation specific parameters

Possible values for DisplayOption are:
activity

All non-PCF group parameters in Activity PCF groups are displayed.
identifiers

Values with parameter identifiers MQBACF_MSG_ID or MQBACF_CORREL_ID are displayed.
This overrides msgdelta.

message
All non-PCF group parameters in Message PCF groups are displayed. When this value is
specified, you cannot specify msgdelta.

msgdelta
All non-PCF group parameters in Message PCF groups, that have changed since the last
operation, are displayed. When this value is specified, you cannot specify message.

operation
All non-PCF group parameters in Operation PCF groups are displayed.

traceroute
All non-PCF group parameters in TraceRoute PCF groups are displayed.

82 Monitoring and Performance for IBM WebSphere MQ

If you do not specify this parameter, a summary of the message route is displayed.

Display of additional information
As a trace-route message is routed through a queue manager network, user-written applications can
record additional information by writing one or more additional PCF parameters to the message data of
the trace-route message or to the message data of an activity report. For the IBM WebSphere MQ display
route application to display additional information in a readable form it must be recorded in a specific
format, as described in “Additional activity information” on page 73.

WebSphere MQ display route application examples
The following examples show how you can use the WebSphere MQ display route application. In each
example, two queue managers (QM1 and QM2) are inter-connected by two channels (QM2.TO.QM1 and
QM1.TO.QM2).

Example 1 - Requesting activity reports
Display activity information from a trace-route message delivered to the target queue

In this example the WebSphere MQ display route application connects to queue manager, QM1, and is
used to generate and deliver a trace-route message to the target queue, TARGET.Q, on remote queue
manager, QM2. The necessary report option is specified so that activity reports are requested as the
trace-route reply message is routed. On arrival at the target queue the trace-route message is discarded.
Activity information returned to the WebSphere MQ display route application using activity reports is put
in order and displayed.

Figure 9. Requesting activity reports, Diagram 1

• The ACTIVREC attribute of each queue manager (QM1 and QM2) is set to MSG.
• The following command is issued:

dspmqrte -m QM1 -q TARG.AT.QM2 -rq ACTIV.REPLY.Q

QM1 is the name of the queue manager to which the WebSphere MQ display route application connects,
TARG.AT.QM2 is the name of the target queue, and ACTIV.REPLY.Q is the name of the queue to which it
is requested that all responses to the trace-route message are sent.

Default values are assumed for all options that are not specified, but note in particular the -f option
(the trace-route message is forwarded only to a queue manager that honors the Deliver parameter of

Monitoring and performance 83

the TraceRoute PCF group), the -d option (on arrival, the trace-route message is not put on the target
queue), the -ro option (MQRO_ACTIVITY and MQRO_DISCARD_MSG report options are specified), and
the -t option (medium detail level activity is recorded).

• DSPMQRTE generates the trace-route message and puts it on the remote queue TARG.AT.QM2.
• DSPMQRTE then looks at the value of the ACTIVREC attribute of queue manager QM1. The value is MSG,

therefore DSPMQRTE generates an activity report and puts it on the reply queue ACTIV.REPLY.Q.

Figure 10. Requesting activity reports, Diagram 2

• The sending message channel agent (MCA) gets the trace-route message from the transmission queue.
The message is a trace-route message, therefore the MCA begins to record the activity information.

• The ACTIVREC attribute of the queue manager (QM1) is MSG, and the MQRO_ACTIVITY option is
specified in the Report field of the message descriptor, therefore the MCA will later generate an activity
report. The RecordedActivities parameter value in the TraceRoute PCF group is incremented by 1.

• The MCA checks that the MaxActivities value in the TraceRoute PCF group has not been exceeded.
• Before the message is forwarded to QM2 the MCA follows the algorithm that is described in Forwarding

(steps “1” on page 70, “4” on page 70, and “5” on page 70) and the MCA chooses to send the message.
• The MCA then generates an activity report and puts it on the reply queue (ACTIV.REPLY.Q).

84 Monitoring and Performance for IBM WebSphere MQ

Figure 11. Requesting activity reports, Diagram 3

• The receiving MCA receives the trace-route message from the channel. The message is a trace-route
message, therefore the MCA begins to record the information about the activity.

• If the queue manager that the trace-route message has come from is Version 5.3.1 or earlier, the MCA
increments the DiscontinuityCount parameter of the TraceRoute PCF by 1. This is not the case here.

• The ACTIVREC attribute of the queue manager (QM2) is MSG, and the MQRO_ACTIVITY option is
specified, therefore the MCA will generate an activity report. The RecordedActivities parameter value is
incremented by 1.

• The target queue is a local queue, therefore the message is discarded with feedback
MQFB_NOT_DELIVERED, in accordance with the Deliver parameter value in the TraceRoute PCF group.

• The MCA then generates the final activity report and puts it on the reply queue. This resolves to the
transmission queue that is associated with queue manager QM1 and the activity report is returned to
queue manager QM1 (ACTIV.REPLY.Q).

Figure 12. Requesting activity reports, Diagram 4

Monitoring and performance 85

• Meanwhile, DSPMQRTE has been continually performing MQGETs on the reply queue (ACTIV.REPLY.Q),
waiting for activity reports. It will wait for up to 120 seconds (60 seconds longer than the expiry time of
the trace-route message) since -w was not specified when DSPMQRTE was started.

• DSPMQRTE gets the 3 activity reports off the reply queue.
• The activity reports are ordered using the RecordedActivities, UnrecordedActivities, and

DiscontinuityCount parameters in the TraceRoute PCF group for each of the activities. The only value
that is non-zero in this example is RecordedActivities, therefore this is the only parameter that is
actually used.

• The program ends as soon as the discard operation is displayed. Even though the final operation was a
discard, it is treated as though a put took place because the feedback is MQFB_NOT_DELIVERED.

The output that is displayed follows:

AMQ8653: DSPMQRTE command started with options '-m QM1 -q TARG.AT.QM2
 -rq ACTIV.REPLY.Q'.
AMQ8659: DSPMQRTE command successfully put a message on queue 'QM2',
 queue manager 'QM1'.
AMQ8674: DSPMQRTE command is now waiting for information to display.
AMQ8666: Queue 'QM2' on queue manager 'QM1'.
AMQ8666: Queue 'TARGET.Q' on queue manager 'QM2'.
AMQ8652: DSPMQRTE command has finished.

Example 2 - Requesting a trace-route reply message
Generate and deliver a trace-route message to the target queue

In this example the WebSphere MQ display route application connects to queue manager, QM1, and is
used to generate and deliver a trace-route message to the target queue, TARGET.Q, on remote queue
manager, QM2. The necessary option is specified so that activity information is accumulated in the
trace-route message. On arrival at the target queue a trace-route reply message is requested, and the
trace-route message is discarded.

Figure 13. Requesting a trace-route reply message, Diagram 1

• The ROUTEREC attribute of each queue manager (QM1 and QM2) is set to MSG.
• The following command is issued:

dspmqrte -m QM1 -q TARG.AT.QM2 -rq TR.REPLY.Q -ac -ar -ro discard

86 Monitoring and Performance for IBM WebSphere MQ

QM1 is the name of the queue manager to which the WebSphere MQ display route application
connects, TARG.AT.QM2 is the name of the target queue, and ACTIV.REPLY.Q is the name of the
queue to which it is requested that all responses to the trace-route message are sent. The -ac option
specifies that activity information is accumulated in the trace-route message, the -ar option specifies
that all accumulated activity is sent to the reply-to queue that is specified by the -rq option (that is,
TR.REPLY.Q). The -ro option specifies that report option MQRO_DISCARD_MSG is set which means that
activity reports are not generated in this example.

• DSPMQRTE accumulates activity information in the trace-route message before the message is put on
the target route. The queue manager attribute ROUTEREC must not be DISABLED for this to happen.

Figure 14. Requesting a trace-route reply message, Diagram 2

• The message is a trace-route message, therefore the sending MCA begins to record information about
the activity.

• The queue manager attribute ROUTEREC on QM1 is not DISABLED, therefore the MCA accumulates the
activity information within the message, before the message is forwarded to queue manager QM2.

Monitoring and performance 87

Figure 15. Requesting a trace-route reply message, Diagram 3

• The message is a trace-route message, therefore the receiving MCA begins to record information about
the activity.

• The queue manager attribute ROUTEREC on QM2 is not DISABLED, therefore the MCA accumulates the
information within the message.

• The target queue is a local queue, therefore the message is discarded with feedback
MQFB_NOT_DELIVERED, in accordance with the Deliver parameter value in the TraceRoute PCF group.

• This is the last activity that will take place on the message, and because the queue manager attribute
ROUTEREC on QM1 is not DISABLED, the MCA generates a trace-route reply message in accordance
with the Accumulate value. The value of ROUTEREC is MSG, therefore the reply message is put on the
reply queue. The reply message contains all the accumulated activity information from the trace-route
message.

Figure 16. Requesting a trace-route reply message, Diagram 4

88 Monitoring and Performance for IBM WebSphere MQ

• Meanwhile DSPMQRTE is waiting for the trace-route reply message to return to the reply queue. When it
returns, DSPMQRTE parses each activity that it contains and prints it out. The final operation is a discard
operation. DSPMQRTE ends after it has been printed.

The output that is displayed follows:

AMQ8653: DSPMQRTE command started with options '-m QM1 -q TARG.AT.QM2 -rq
 TR.REPLY.Q'.
AMQ8659: DSPMQRTE command successfully put a message on queue 'QM2', queue
 manager 'QM1'.
AMQ8674: DSPMQRTE command is now waiting for information to display.
AMQ8666: Queue 'QM2' on queue manager 'QM1'.
AMQ8666: Queue 'TARGET.Q' on queue manager 'QM2'.
AMQ8652: DSPMQRTE command has finished.

Example 3 - Delivering activity reports to the system queue
Detect when activity reports are delivered to queues other than the reply-to queue and use the
WebSphere MQ display route application to read activity reports from the other queue.

This example is the same as “Example 1 - Requesting activity reports” on page 83, except that QM2 now
has the value of the ACTIVREC queue manage attribute set to QUEUE. Channel QM1.TO.QM2 must have
been restarted for this to take effect.

This example demonstrates how to detect when activity reports are delivered to queues other than the
reply-to queue. Once detected, the WebSphere MQ display route application is used to read activity
reports from another queue.

Figure 17. Delivering activity reports to the system queue, Diagram 1

• The message is a trace-route message, therefore the receiving MCA begins to record information about
the activity.

• The value of the ACTIVREC queue manager attribute on QM2 is now QUEUE, therefore the MCA
generates an activity report, but puts it on the system queue (SYSTEM.ADMIN.ACTIVITY.QUEUE) and
not on the reply queue (ACTIV.REPLY.Q).

Monitoring and performance 89

Figure 18. Delivering activity reports to the system queue, Diagram 2
• Meanwhile DSPMQRTE has been waiting for activity reports to arrive on ACTIV.REPLY.Q. Only two arrive.

DSPMQRTE continues waiting for 120 seconds because it seems that the route is not yet complete.

The output that is displayed follows:

90 Monitoring and Performance for IBM WebSphere MQ

AMQ8653: DSPMQRTE command started with options '-m QM1 -q TARG.AT.QM2 -rq
 ACTIV.REPLY.Q -v outline identifiers'.
AMQ8659: DSPMQRTE command successfully put a message on queue 'QM2', queue
 manager 'QM1'.
AMQ8674: DSPMQRTE command is now waiting for information to display.
--
Activity:
 ApplName: 'cann\output\bin\dspmqrte.exe'

 Operation:
 OperationType: Put

 Message:

 MQMD:
 MsgId: X'414D51204C4152474551202020202020A3C9154220001502'
 CorrelId: X'414D51204C4152474551202020202020A3C9154220001503'
 QMgrName: 'QM1 '
 QName: 'TARG.AT.QM2 '
 ResolvedQName: 'QM2 '
 RemoteQName: 'TARGET.Q '
 RemoteQMgrName: 'QM2 '
--
Activity:
 ApplName: 'cann\output\bin\runmqchl.EXE'

 Operation:
 OperationType: Get

 Message:

 MQMD:
 MsgId: X'414D51204C4152474551202020202020A3C9154220001505'
 CorrelId: X'414D51204C4152474551202020202020A3C9154220001502'

 EmbeddedMQMD:
 MsgId: X'414D51204C4152474551202020202020A3C9154220001502'
 CorrelId: X'414D51204C4152474551202020202020A3C9154220001503'
 QMgrName: 'QM1 '
 QName: 'QM2 '
 ResolvedQName: 'QM2 '

 Operation:
 OperationType: Send

 Message:

 MQMD:
 MsgId: X'414D51204C4152474551202020202020A3C9154220001502'
 CorrelId: X'414D51204C4152474551202020202020A3C9154220001503'
 QMgrName: 'QM1 '
 RemoteQMgrName: 'QM2 '
 ChannelName: 'QM1.TO.QM2 '
 ChannelType: Sender
 XmitQName: 'QM2 '
--
AMQ8652: DSPMQRTE command has finished.

• The last operation that DSPMQRTE observed was a Send, therefore the channel is running. Now we
must work out why we did not receive any more activity reports from queue manager QM2 (as identified
in RemoteQMgrName).

• To check whether there is any activity information on the system queue, start DSPMQRTE on QM2 to try
and collect more activity reports. Use the following command to start DSPMQRTE:

dspmqrte -m QM2 -q SYSTEM.ADMIN.ACTIVITY.QUEUE
 -i 414D51204C4152474551202020202020A3C9154220001502 -v outline

where 414D51204C4152474551202020202020A3C9154220001502 is the MsgId of the trace-route
message that was put.

• DSPMQRTE then performs a sequence of MQGETs again, waiting for responses on the system activity
queue related to the trace-route message with the specified identifier.

Monitoring and performance 91

• DSPMQRTE gets one more activity report, which it displays. DSPMQRTE determines that the preceding
activity reports are missing, and displays a message saying this. We already know about this part of the
route, however.

The output that is displayed follows:

AMQ8653: DSPMQRTE command started with options '-m QM2
 -q SYSTEM.ADMIN.ACTIVITY.QUEUE
 -i 414D51204C4152474551202020202020A3C915420001502 -v outline'.
AMQ8674: DSPMQRTE command is now waiting for information to display.
--

Activity:
 Activity information unavailable.

--
Activity:
 ApplName: 'cann\output\bin\AMQRMPPA.EXE'

 Operation:
 OperationType: Receive
 QMgrName: 'QM2 '
 RemoteQMgrName: 'QM1 '
 ChannelName: 'QM1.TO.QM2 '
 ChannelType: Receiver

 Operation:
 OperationType: Discard
 QMgrName: 'QM2 '
 QName: 'TARGET.Q '
 Feedback: NotDelivered

--
AMQ8652: DSPMQRTE command has finished.

• This activity report indicates that the route information is now complete. No problem occurred.
• Just because route information is unavailable, or because DSPMQRTE cannot display all of the route,

this does not mean that the message was not delivered. For example, the queue manager attributes of
different queue managers might be different, or a reply queue might not be defined to get the response
back.

Example 4 - Diagnosing a channel problem
Diagnose a problem in which the trace-route message does not reach the target queue

In this example the WebSphere MQ display route application connects to queue manager, QM1, generates
a trace-route message, then attempts to deliver it to the target queue, TARGET.Q, on remote queue
manager, QM2. In this example the trace-route message does not reach the target queue. The available
activity report is used to diagnose the problem.

92 Monitoring and Performance for IBM WebSphere MQ

Figure 19. Diagnosing a channel problem

• In this example, the channel QM1.TO.QM2 is not running.
• DSPMQRTE puts a trace-route message (as in example 1) to the target queue and generates an activity

report.
• There is no MCA to get the message from the transmission queue (QM2), therefore this is the only

activity report that DSPMQRTE gets back from the reply queue. This time the fact that the route is
not complete does indicate a problem. The administrator can use the transmission queue found in
ResolvedQName to investigate why the transmission queue is not being serviced.

The output that is displayed follows:

AMQ8653: DSPMQRTE command started with options '-m QM1 -q TARG.AT.QM2
 -rq ACTIV.REPLY.Q -v outline'.
AMQ8659: DSPMQRTE command successfully put a message on queue 'QM2',
 queue manager 'QM1'.
AMQ8674: DSPMQRTE command is now waiting for information to display.
--
Activity:
 ApplName: 'cann\output\bin\dspmqrte.exe'

 Operation:
 OperationType: Put
 QMgrName: 'QM1 '
 QName: 'TARG.AT.QM2 '
 ResolvedQName: 'QM2 '
 RemoteQName: 'TARGET.Q '
 RemoteQMgrName: 'QM2 '

--
 AMQ8652: DSPMQRTE command has finished.

Monitoring and performance 93

Activity report reference
Use this page to obtain an overview of the activity report message format. The activity report message
data contains the parameters that describe the activity.

Activity report format
Activity reports are standard IBM WebSphere MQ report messages containing a message descriptor and
message data. Activity reports are PCF messages generated by applications that have performed an
activity on behalf of a message as it has been routed through a queue manager network.

Activity reports contain the following information:
A message descriptor

An MQMD structure
Message data

Consists of the following:

• An embedded PCF header (MQEPH).
• Activity report message data.

Activity report message data consists of the Activity PCF group and, if generated for a trace-route
message, the TraceRoute PCF group.

Table 19 on page 95 shows the structure of these reports, including parameters that are returned only
under certain conditions.

94 Monitoring and Performance for IBM WebSphere MQ

Table 19. Activity report format

MQMD structure Embedded PCF header
MQEPH structure

Activity report message data

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback
Encoding
Coded character set ID
Message format
Priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name
Put date
Put time
Application origin data
Group identifier
Message sequence number
Offset
Message flags
Original length

Structure identifier
Structure version
Structure length
Encoding
Coded character set ID
Message format
Flags
PCF header (MQCFH)
 Structure type
 Structure length
 Structure version
 Command identifier
 Message sequence number
 Control options
 Completion code
 Reason code
 Parameter count

Activity
 Activity application name
 Activity application type
 Activity description
 Operation
 Operation type
 Operation date
 Operation time
 Message
 Message length
 MQMD 8
 EmbeddedMQMD
 Queue manager name
 Queue sharing group name
 Queue name 1
2 3
7

 Resolved queue name 1
3
7

 Remote queue name 3
7

 Remote queue manager name 2
3 4
5
7

 Subscription level 9
 Subscription identifier
9

 Feedback 2
10
 Channel name 4
5

 Channel type 4
5

 Transmission queue name 5
 TraceRoute 6
 Detail
 Recorded activities
 Unrecorded activities
 Discontinuity count
 Max activities
 Accumulate
 Deliver

Notes:

1. Returned for Get and Browse operations.
2. Returned for Discard operations.
3. Returned for Put, Put Reply, and Put Report operations.
4. Returned for Receive operations.

Monitoring and performance 95

5. Returned for Send operations.
6. Returned for trace-route messages.
7. Not returned for Put operations to a topic, contained within Publish activities.
8. Not returned for Excluded Publish operations. For Publish and Discarded Publish operations, returned

containing a subset of parameters.
9. Returned for Publish, Discarded Publish, and Excluded Publish operations.

10. Returned for Discarded Publish and Excluded Publish operations.

Activity report MQMD (message descriptor)
Use this page to view the values contained by the MQMD structure for an activity report

StrucId
Structure identifier:
Data type

MQCHAR4
Value

MQMD_STRUC_ID.
Version

Structure version number
Data type

MQLONG
Values

Copied from the original message descriptor. Possible values are:
MQMD_VERSION_1

Version-1 message descriptor structure, supported in all environments.
MQMD_VERSION_2

Version-2 message descriptor structure, supported on AIX®, HP-UX, z/OS, IBM i, Solaris, Linux,
Windows, and all WebSphere MQ MQI clients connected to these systems.

Report
Options for further report messages
Data type

MQLONG
Value

If MQRO_PASS_DISCARD_AND_EXPIRY or MQRO_DISCARD_MSG were specified in the Report
field of the original message descriptor:
MQRO_DISCARD

The report is discarded if it cannot be delivered to the destination queue.
Otherwise:
MQRO_NONE

No reports required.
MsgType

Indicates type of message
Data type

MQLONG
Value

MQMT_REPORT
Expiry

Report message lifetime

96 Monitoring and Performance for IBM WebSphere MQ

Data type
MQLONG

Value
If the Report field in the original message descriptor is specified as
MQRO_PASS_DISCARD_AND_EXPIRY, the remaining expiry time from the original message is
used.

Otherwise:
MQEI_UNLIMITED

The report does not have an expiry time.

Feedback

Description: Feedback or reason code.

Data type: MQLONG.

Value: MQFB_ACTIVITY
Activity report.

Encoding

Description: Numeric encoding of report message data.

Data type: MQLONG.

Value: MQENC_NATIVE.

CodedCharSetId

Description: Character set identifier of report message data.

Data type: MQLONG.

Value: Set as appropriate.

Format

Description: Format name of report message data

Data type: MQCHAR8.

Value: MQFMT_EMBEDDED_PCF
Embedded PCF message.

Priority

Description: Report message priority.

Data type: MQLONG.

Value: Copied from the original message descriptor.

Persistence

Description: Report message persistence.

Data type: MQLONG.

Value: Copied from the original message descriptor.

MsgId

Description: Message identifier.

Monitoring and performance 97

Data type: MQBYTE24.

Values: If the Report field in the original message descriptor is specified as
MQRO_PASS_MSG_ID, the message identifier from the original message is used.

Otherwise, a unique value will be generated by the queue manager.

CorrelId

Description: Correlation identifier.

Data type: MQBYTE24.

Value: If the Report field in the original message descriptor is specified as
MQRO_PASS_CORREL_ID, the correlation identifier from the original message
is used.

Otherwise, the message identifier is copied from the original message.

BackoutCount

Description: Backout counter.

Data type: MQLONG.

Value: 0.

ReplyToQ

Description: Name of reply queue.

Data type: MQCHAR48.

Values: Blank.

ReplyToQMgr

Description: Name of reply queue manager.

Data type: MQCHAR48.

Value: The queue manager name that generated the report message.

UserIdentifier

Description: The user identifier of the application that generated the report message.

Data type: MQCHAR12.

Value: Copied from the original message descriptor.

AccountingToken

Description: Accounting token that allows an application to charge for work done as a result
of the message.

Data type: MQBYTE32.

Value: Copied from the original message descriptor.

ApplIdentityData

Description: Application data relating to identity.

Data type: MQCHAR32.

Values: Copied from the original message descriptor.

98 Monitoring and Performance for IBM WebSphere MQ

PutApplType

Description: Type of application that put the report message.

Data type: MQLONG.

Value: MQAT_QMGR
Queue manager generated message.

PutApplName

Description: Name of application that put the report message.

Data type: MQCHAR28.

Value: Either the first 28 bytes of the queue manager name, or the name of the MCA
that generated the report message.

PutDate

Description: Date when message was put.

Data type: MQCHAR8.

Value: As generated by the queue manager.

PutTime

Description: Time when message was put.

Data type: MQCHAR8.

Value: As generated by the queue manager.

ApplOriginData

Description: Application data relating to origin.

Data type: MQCHAR4.

Value: Blank.

If Version is MQMD_VERSION_2, the following additional fields are present:
GroupId

Description: Identifies to which message group or logical message the physical message
belongs.

Data type: MQBYTE24.

Value: Copied from the original message descriptor.

MsgSeqNumber

Description: Sequence number of logical message within group.

Data type: MQLONG.

Value: Copied from the original message descriptor.

Offset

Description: Offset of data in physical message from start of logical message.

Data type: MQLONG.

Value: Copied from the original message descriptor.

Monitoring and performance 99

MsgFlags

Description: Message flags that specify attributes of the message or control its processing.

Data type: MQLONG.

Value: Copied from the original message descriptor.

OriginalLength

Description: Length of original message.

Data type: MQLONG.

Value: Copied from the original message descriptor.

Activity report MQEPH (Embedded PCF header)
Use this page to view the values contained by the MQEPH structure for an activity report

The MQEPH structure contains a description of both the PCF information that accompanies the message
data of an activity report, and the application message data that follows it.

For an activity report, the MQEPH structure contains the following values:
StrucId

Description: Structure identifier.

Data type: MQCHAR4.

Value: MQEPH_STRUC_ID.

Version

Description: Structure version number.

Data type: MQLONG.

Values: MQEPH_VERSION_1.

StrucLength

Description: Structure length.

Data type: MQLONG.

Value: Total length of the structure including the PCF parameter structures that follow
it.

Encoding

Description: Numeric encoding of the message data that follows the last PCF parameter
structure.

Data type: MQLONG.

Value: If any data from the original application message data is included in the report
message, the value will be copied from the Encoding field of the original
message descriptor.

Otherwise, 0.

CodedCharSetId

Description: Character set identifier of the message data that follows the last PCF parameter
structure.

100 Monitoring and Performance for IBM WebSphere MQ

Data type: MQLONG.

Value: If any data from the original application message data is included in the report
message, the value will be copied from the CodedCharSetId field of the original
message descriptor.

Otherwise, MQCCSI_UNDEFINED.

Format

Description: Format name of message data that follows the last PCF parameter structure.

Data type: MQCHAR8.

Value: If any data from the original application message data is included in the report
message, the value will be copied from the Format field of the original message
descriptor.

Otherwise, MQFMT_NONE.

Flags

Description: Flags that specify attributes of the structure or control its processing.

Data type: MQLONG.

Value: MQEPH_CCSID_EMBEDDED
Specifies that the character set of the parameters containing character data
is specified individually within the CodedCharSetId field in each structure.

PCFHeader

Description: Programmable Command Format Header

Data type: MQCFH.

Value: See “Activity report MQCFH (PCF header)” on page 101.

Activity report MQCFH (PCF header)
Use this page to view the PCF values contained by the MQCFH structure for an activity report

For an activity report, the MQCFH structure contains the following values:
Type

Description: Structure type that identifies the content of the report message.

Data type: MQLONG.

Value: MQCFT_REPORT
Message is a report.

StrucLength

Description: Structure length.

Data type: MQLONG.

Value: MQCFH_STRUC_LENGTH
Length in bytes of MQCFH structure.

Version

Description: Structure version number.

Monitoring and performance 101

Data type: MQLONG.

Values: MQCFH_VERSION_3

Command

Description: Command identifier. This identifies the category of the message.

Data type: MQLONG.

Values: MQCMD_ACTIVITY_MSG
Message activity.

MsgSeqNumber

Description: Message sequence number. This is the sequence number of the message within
a group of related messages.

Data type: MQLONG.

Values: 1.

Control

Description: Control options.

Data type: MQLONG.

Values: MQCFC_LAST.

CompCode

Description: Completion code.

Data type: MQLONG.

Values: MQCC_OK.

Reason

Description: Reason code qualifying completion code.

Data type: MQLONG.

Values: MQRC_NONE.

ParameterCount

Description: Count of parameter structures. This is the number of parameter structures that
follow the MQCFH structure. A group structure (MQCFGR), and its included
parameter structures, are counted as one structure only.

Data type: MQLONG.

Values: 1 or greater.

Activity report message data
Use this page to view the parameters contained by the Activity PCF group in an activity report message.
Some parameters are returned only when specific operations have been performed.

Activity report message data consists of the Activity PCF group and, if generated for a trace-route
message, the TraceRoute PCF group. The Activity PCF group is detailed in this topic.

Some parameters, which are described as Operation-specific activity report message data, are returned
only when specific operations have been performed.

102 Monitoring and Performance for IBM WebSphere MQ

For an activity report, the activity report message data contains the following parameters:
Activity

Description: Grouped parameters describing the activity.

Identifier: MQGACF_ACTIVITY.

Data type: MQCFGR.

Included in PCF
group:

None.

Parameters in PCF
group:

ActivityApplName
ActivityApplType
ActivityDescription
Operation
TraceRoute

Returned: Always.

ActivityApplName

Description: Name of application that performed the activity.

Identifier: MQCACF_APPL_NAME.

Data type: MQCFST.

Included in PCF
group:

Activity.

Maximum length: MQ_APPL_NAME_LENGTH.

Returned: Always.

ActivityApplType

Description: Type of application that performed the activity.

Identifier: MQIA_APPL_TYPE.

Data type: MQCFIN.

Included in PCF
group:

Activity.

Returned: Always.

ActivityDescription

Description: Description of activity performed by the application.

Identifier: MQCACF_ACTIVITY_DESCRIPTION.

Data type: MQCFST.

Included in PCF
group:

Activity.

Maximum length: 64

Returned: Always.

Operation

Description: Grouped parameters describing an operation of the activity.

Monitoring and performance 103

Identifier: MQGACF_OPERATION.

Data type: MQCFGR.

Included in PCF
group:

Activity.

Parameters in PCF
group:

OperationType
OperationDate
OperationTime
Message
QMgrName
QSGName

Note: Additional parameters are returned in this group depending on the
operation type. These additional parameters are described as Operation-
specific activity report message data.

Returned: One Operation PCF group per operation in the activity.

OperationType

Description: Type of operation performed.

Identifier: MQIACF_OPERATION_TYPE.

Data type: MQCFIN.

Included in PCF
group:

Operation.

Values: MQOPER_*.

Returned: Always.

OperationDate

Description: Date when the operation was performed.

Identifier: MQCACF_OPERATION_DATE.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_DATE_LENGTH.

Returned: Always.

OperationTime

Description: Time when the operation was performed.

Identifier: MQCACF_OPERATION_TIME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_TIME_LENGTH.

Returned: Always.

104 Monitoring and Performance for IBM WebSphere MQ

Message

Description: Grouped parameters describing the message that caused the activity.

Identifier: MQGACF_MESSAGE.

Data type: MQCFGR.

Included in PCF
group:

Operation.

Parameters in
group:

MsgLength
MQMD
EmbeddedMQMD

Returned: Always, except for Excluded Publish operations.

MsgLength

Description: Length of the message that caused the activity, before the activity occurred.

Identifier: MQIACF_MSG_LENGTH.

Data type: MQCFIN.

Included in PCF
group:

Message.

Returned: Always.

MQMD

Description: Grouped parameters related to the message descriptor of the message that
caused the activity.

Identifier: MQGACF_MQMD.

Data type: MQCFGR.

Included in PCF
group:

Message.

Monitoring and performance 105

Parameters in
group:

StrucId
Version
Report
MsgType
Expiry
Feedback
Encoding
CodedCharSetId
Format
Priority
Persistence
MsgId
CorrelId
BackoutCount
ReplyToQ
ReplyToQMgr
UserIdentifier
AccountingToken
ApplIdentityData
PutApplType
PutApplName
PutDate
PutTime
ApplOriginData
GroupId
MsgSeqNumber
Offset
MsgFlags
OriginalLength

Returned: Always, except for Excluded Publish operations.

EmbeddedMQMD

Description: Grouped parameters describing the message descriptor embedded within a
message on a transmission queue.

Identifier: MQGACF_EMBEDDDED_MQMD.

Data type: MQCFGR.

Included in PCF
group:

Message.

106 Monitoring and Performance for IBM WebSphere MQ

Parameters in
group:

StrucId
Version
Report
MsgType
Expiry
Feedback
Encoding
CodedCharSetId
Format
Priority
Persistence
MsgId
CorrelId
BackoutCount
ReplyToQ
ReplyToQMgr
UserIdentifier
AccountingToken
ApplIdentityData
PutApplType
PutApplName
PutDate
PutTime
ApplOriginData
GroupId
MsgSeqNumber
Offset
MsgFlags
OriginalLength

Returned: For Get operations where the queue resolves to a transmission queue.

StrucId

Description: Structure identifier

Identifier: MQCACF_STRUC_ID.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: 4.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

Version

Description: Structure version number.

Identifier: MQIACF_VERSION.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Monitoring and performance 107

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

Report

Description: Options for report messages.

Identifier: MQIACF_REPORT.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

MsgType

Description: Indicates type of message.

Identifier: MQIACF_MSG_TYPE.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

Expiry

Description: Message lifetime.

Identifier: MQIACF_EXPIRY.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

Feedback

Description: Feedback or reason code.

Identifier: MQIACF_FEEDBACK.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

Encoding

Description: Numeric encoding of message data.

Identifier: MQIACF_ENCODING.

Data type: MQCFIN.

108 Monitoring and Performance for IBM WebSphere MQ

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

CodedCharSetId

Description: Character set identifier of message data.

Identifier: MQIA_CODED_CHAR_SET_ID.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

Format

Description: Format name of message data

Identifier: MQCACH_FORMAT_NAME.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_FORMAT_LENGTH.

Returned: Always, except for Excluded Publish operations.

Priority

Description: Message priority.

Identifier: MQIACF_PRIORITY.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations.

Persistence

Description: Message persistence.

Identifier: MQIACF_PERSISTENCE.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations.

MsgId

Description: Message identifier.

Identifier: MQBACF_MSG_ID.

Data type: MQCFBS.

Monitoring and performance 109

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_MSG_ID_LENGTH.

Returned: Always, except for Excluded Publish operations.

CorrelId

Description: Correlation identifier.

Identifier: MQBACF_CORREL_ID.

Data type: MQCFBS.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_CORREL_ID_LENGTH.

Returned: Always, except for Excluded Publish operations.

BackoutCount

Description: Backout counter.

Identifier: MQIACF_BACKOUT_COUNT.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for Publish and
Discarded Publish operations.

ReplyToQ

Description: Name of reply queue.

Identifier: MQCACF_REPLY_TO_QUEUE.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_Q_NAME_LENGTH.

Returned: Always, except for Excluded Publish Operations and in MQMD for Publish and
Discarded Publish operations.

ReplyToQMgr

Description: Name of reply queue manager.

Identifier: MQCACF_REPLY_TO_Q_MGR.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_Q_MGR_NAME_LENGTH.

Returned: Always, except for Excluded Publish Operations and in MQMD for Publish and
Discarded Publish Operations.

110 Monitoring and Performance for IBM WebSphere MQ

UserIdentifier

Description: The user identifier of the application that originated the message.

Identifier: MQCACF_USER_IDENTIFIER.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_USER_ID_LENGTH.

Returned: Always, except for Excluded Publish Operations.

AccountingToken

Description: Accounting token that allows an application to charge for work done as a result
of the message.

Identifier: MQBACF_ACCOUNTING_TOKEN.

Data type: MQCFBS.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_ACCOUNTING_TOKEN_LENGTH.

Returned: Always, except for Excluded Publish Operations.

ApplIdentityData

Description: Application data relating to identity.

Identifier: MQCACF_APPL_IDENTITY_DATA.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_APPL_IDENTITY_DATA_LENGTH.

Returned: Always, except for Excluded Publish Operations.

PutApplType

Description: Type of application that put the message.

Identifier: MQIA_APPL_TYPE.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish Operations and in MQMD for Publish and
Discarded Publish Operations.

PutApplName

Description: Name of application that put the message.

Identifier: MQCACF_APPL_NAME.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Monitoring and performance 111

Maximum length: MQ_APPL_NAME_LENGTH.

Returned: Always, except for Excluded Publish Operations and in MQMD for Publish and
Discarded Publish Operations.

PutDate

Description: Date when message was put.

Identifier: MQCACF_PUT_DATE.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_PUT_DATE_LENGTH.

Returned: Always, except for Excluded Publish Operations and in MQMD for Publish and
Discarded Publish Operations.

PutTime

Description: Time when message was put.

Identifier: MQCACF_PUT_TIME.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_PUT_TIME_LENGTH.

Returned: Always, except for Excluded Publish Operations and in MQMD for Publish and
Discarded Publish Operations.

ApplOriginData

Description: Application data relating to origin.

Identifier: MQCACF_APPL_ORIGIN_DATA.

Data type: MQCFST.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_APPL_ORIGIN_DATA_LENGTH.

Returned: Always, except for Excluded Publish Operations and in MQMD for Publish and
Discarded Publish Operations.

GroupId

Description: Identifies to which message group or logical message the physical message
belongs.

Identifier: MQBACF_GROUP_ID.

Data type: MQCFBS.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_GROUP_ID_LENGTH.

Returned: If the Version is specified as MQMD_VERSION_2. Not returned in Excluded
Publish Operations and in MQMD for Publish and Discarded Publish Operations.

112 Monitoring and Performance for IBM WebSphere MQ

MsgSeqNumber

Description: Sequence number of logical message within group.

Identifier: MQIACH_MSG_SEQUENCE_NUMBER.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: If Version is specified as MQMD_VERSION_2. Not returned in Excluded Publish
Operations and in MQMD for Publish and Discarded Publish Operations.

Offset

Description: Offset of data in physical message from start of logical message.

Identifier: MQIACF_OFFSET.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: If Version is specified as MQMD_VERSION_2. Not returned in Excluded Publish
Operations and in MQMD for Publish and Discarded Publish Operations.

MsgFlags

Description: Message flags that specify attributes of the message or control its processing.

Identifier: MQIACF_MSG_FLAGS.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: If Version is specified as MQMD_VERSION_2. Not returned in Excluded Publish
Operations and in MQMD for Publish and Discarded Publish Operations.

OriginalLength

Description: Length of original message.

Identifier: MQIACF_ORIGINAL_LENGTH.

Data type: MQCFIN.

Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: If Version is specified as MQMD_VERSION_2. Not returned in Excluded Publish
Operations and in MQMD for Publish and Discarded Publish Operations.

QMgrName

Description: Name of the queue manager where the activity was performed.

Identifier: MQCA_Q_MGR_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_MGR_NAME_LENGTH

Monitoring and performance 113

Returned: Always.

QSGName

Description: Name of the queue-sharing group to which the queue manager where the
activity was performed belongs.

Identifier: MQCA_QSG_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_QSG_NAME_LENGTH

Returned: If the activity was performed on a WebSphere MQ for z/OS queue manager.

TraceRoute

Description: Grouped parameters specifying attributes of the trace-route message.

Identifier: MQGACF_TRACE_ROUTE.

Data type: MQCFGR.

Contained in PCF
group:

Activity.

Parameters in
group:

Detail
RecordedActivities
UnrecordedActivities
DiscontinuityCount
MaxActivities
Accumulate
Forward
Deliver

Returned: If the activity was performed on behalf of the trace-route message.

The values of the parameters in the TraceRoute PCF group are those from the trace-route message at
the time the activity report was generated.

Operation-specific activity report message data
Use this page to view the additional PCF parameters that might be returned in the PCF group Operation in
an activity report, depending on the value of the OperationType parameter

The additional parameters vary depending on the following operation types:

Get/Browse (MQOPER_GET/MQOPER_BROWSE)
The additional activity report message data parameters that are returned in the PCF group Operation for
the Get/Browse (MQOPER_GET/MQOPER_BROWSE) operation type (a message on a queue was got, or
browsed).

QName

Description: The name of the queue that was opened.

Identifier: MQCA_Q_NAME.

Data type: MQCFST.

114 Monitoring and Performance for IBM WebSphere MQ

Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH

Returned: Always.

ResolvedQName

Description: The name that the opened queue resolves to.

Identifier: MQCACF_RESOLVED_Q_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH

Returned: Always.

Discard (MQOPER_DISCARD)
The additional activity report message data parameters that are returned in the PCF group Operation for
the Discard (MQOPER_DISCARD) operation type (a message was discarded).

Feedback

Description: The reason for the message being discarded.

Identifier: MQIACF_FEEDBACK.

Data type: MQCFIN.

Included in PCF
group:

Operation.

Returned: Always.

QName

Description: The name of the queue that was opened.

Identifier: MQCA_Q_NAME.

Data type: MQCFST.

Maximum length: MQ_Q_NAME_LENGTH

Included in PCF
group:

Operation.

Returned: If the message was discarded because it was unsuccessfully put to a queue.

RemoteQMgrName

Description: The name of the queue manager to which the message was destined.

Identifier: MQCA_REMOTE_Q_MGR_NAME.

Data type: MQCFST.

Maximum length: MQ_Q_MGR_NAME_LENGTH

Included in PCF
group:

Operation.

Returned: If the value of Feedback is MQFB_NOT_FORWARDED.

Monitoring and performance 115

Publish/Discarded Publish/Excluded Publish (MQOPER_PUBLISH/
MQOPER_DISCARDED_PUBLISH/MQOPER_EXCLUDED_PUBLISH)
The additional activity report message data parameters that are returned in the PCF group Operation for
the Publish/Discarded Publish/Excluded Publish (MQOPER_PUBLISH/MQOPER_DISCARDED_PUBLISH/
MQOPER_EXCLUDED_PUBLISH) operation type (a publish/subscribe message was delivered, discarded,
or excluded).

SubId

Description: The subscription identifier.

Identifier: MQBACF_SUB_ID.

Data type: MQCFBS.

Included in PCF
group:

Operation.

Returned: Always.

SubLevel

Description: The subscription level.

Identifier: MQIACF_SUB_LEVEL.

Data type: MQCFIN.

Included in PCF
group:

Operation.

Returned: Always.

Feedback

Description: The reason for discarding the message.

Identifier: MQIACF_FEEDBACK.

Data type: MQCFIN.

Included in PCF
group:

Operation.

Returned: If the message was discarded because it was not delivered to a subscriber, or
the message was not delivered because the subscriber was excluded.

The Publish operation MQOPER_PUBLISH provides information about a message delivered to a particular
subscriber. This operation describes the elements of the onward message that might have changed from
the message described in the associated Put operation. Similarly to a Put operation, it contains a message
group MQGACF_MESSAGE and, inside that, an MQMD group MQGACF_MQMD. However, this MQMD group
contains only the following fields, which can be overridden by a subscriber: Format, Priority, Persistence,
MsgId, CorrelId, UserIdentifier, AccountingToken, ApplIdentityData.

The SubId and SubLevel of the subscriber are included in the operation information. You can use the
SubID with the MQCMD_INQUIRE_SUBSCRIBER PCF command to retrieve all other attributes for a
subscriber.

The Discarded Publish operation MQOPER_DISCARDED_PUBLISH is analogous to the Discard operation
that is used when a message is not delivered in point-to-point messaging. A message is not delivered to
a subscriber if the message was explicitly requested not to be delivered to a local destination and this
subscriber specifies a local destination. A message is also considered not delivered if there is a problem
getting the message to the destination queue, for example, because the queue is full.

116 Monitoring and Performance for IBM WebSphere MQ

The information in a Discarded Publish operation is the same as for a Publish operation, with the addition
of a Feedback field that gives the reasons why the message was not delivered. This feedback field
contains MQFB_* or MQRC_* values that are common with the MQOPER_DISCARD operation. The reason
for discarding a publish, as opposed to excluding it, are the same as the reasons for discarding a put.

The Excluded Publish operation MQOPER_EXCLUDED_PUBLISH provides information about a subscriber
that was considered for delivery of the message, because the topic on which the subscriber is subscribing
matches that of the associated Put operation, but the message was not delivered to the subscriber
because other selection criteria do not match with the message that is being put to the topic. As
with a Discarded Publish operation, the Feedback field provides information about the reason why
this subscription was excluded. However, unlike the Discarded Publish operation, no message-related
information is provided because no message was generated for this subscriber.

Put/Put Reply/Put Report (MQOPER_PUT/MQOPER_PUT_REPLY/
MQOPER_PUT_REPORT)
The additional activity report message data parameters that are returned in the PCF group Operation for
the Put/Put Reply/Put Report (MQOPER_PUT/MQOPER_PUT_REPLY/MQOPER_PUT_REPORT) operation
type (a message, reply message, or report message was put to a queue).

QName

Description: The name of the queue that was opened.

Identifier: MQCA_Q_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH

Returned: Always, apart from one exception: not returned if the Put operation is to a topic,
contained within a publish activity.

ResolvedQName

Description: The name that the opened queue resolves to.

Identifier: MQCACF_RESOLVED_Q_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH

Returned: When the opened queue could be resolved. Not returned if the Put operation is
to a topic, contained within a publish activity.

RemoteQName

Description: The name of the opened queue, as it is known on the remote queue manager.

Identifier: MQCA_REMOTE_Q_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH

Monitoring and performance 117

Returned: If the opened queue is a remote queue. Not returned if the Put operation is to a
topic, contained within a publish activity.

RemoteQMgrName

Description: The name of the remote queue manager on which the remote queue is defined.

Identifier: MQCA_REMOTE_Q_MGR_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: If the opened queue is a remote queue. Not returned if the Put operation is to a
topic, contained within a publish activity.

TopicString

Description: The full topic string to which the message is being put.

Identifier: MQCA_TOPIC_STRING.

Data type: MQCFST.

Included in PCF
group:

Operation.

Returned: If the Put operation is to a topic, contained within a publish activity.

Feedback

Description: The reason for the message being put on the dead-letter queue.

Identifier: MQIACF_FEEDBACK.

Data type: MQCFIN.

Included in PCF
group:

Operation.

Returned: If the message was put on the dead-letter queue.

Receive (MQOPER_RECEIVE)
The additional activity report message data parameters that are returned in the PCF group Operation for
the Receive (MQOPER_RECEIVE) operation type (a message was received on a channel).

ChannelName

Description: The name of the channel on which the message was received.

Identifier: MQCACH_CHANNEL_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_CHANNEL_NAME_LENGTH

Returned: Always.

ChannelType

Description: The type of channel on which the message was received.

118 Monitoring and Performance for IBM WebSphere MQ

Identifier: MQIACH_CHANNEL_TYPE.

Data type: MQCFIN.

Included in PCF
group:

Operation.

Returned: Always.

RemoteQMgrName

Description: The name of the queue manager from which the message was received.

Identifier: MQCA_REMOTE_Q_MGR_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: Always.

Send (MQOPER_SEND)
The additional activity report message data parameters that are returned in the PCF group Operation for
the Send (MQOPER_SEND) operation type (a message was sent on a channel).

ChannelName

Description: The name of the channel where the message was sent.

Identifier: MQCACH_CHANNEL_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_CHANNEL_NAME_LENGTH.

Returned: Always.

ChannelType

Description: The type of channel where the message was sent.

Identifier: MQIACH_CHANNEL_TYPE.

Data type: MQCFIN.

Included in PCF
group:

Operation.

Returned: Always.

XmitQName

Description: The transmission queue from which the message was retrieved.

Identifier: MQCACH_XMIT_Q_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH.

Monitoring and performance 119

Returned: Always.

RemoteQMgrName

Description: The name of the remote queue manager to which the message was sent.

Identifier: MQCA_REMOTE_Q_MGR_NAME.

Data type: MQCFST.

Included in PCF
group:

Operation.

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: Always.

Trace-route message reference
Use this page to obtain an overview of the trace-route message format. The trace-route message data
includes parameters that describe the activities that the trace-route message has caused

Trace-route message format
Trace-route messages are standard WebSphere MQ messages containing a message descriptor and
message data. The message data contains information about the activities performed on a trace-route
message as it has been routed through a queue manager network.

Trace-route messages contain the following information:
A message descriptor

An MQMD structure, with the Format field set to MQFMT_ADMIN or MQFMT_EMBEDDED_PCF.
Message data

Consists of either:

• A PCF header (MQCFH) and trace-route message data, if Format is set to MQFMT_ADMIN, or
• An embedded PCF header (MQEPH), trace-route message data, and additional user-specified

message data, if Format is set to MQFMT_EMBEDDED_PCF.

When using the WebSphere MQ display route application to generate a trace-route message, Format is set
to MQFMT_ADMIN.

The content of the trace-route message data is determined by the Accumulate parameter from the
TraceRoute PCF group, as follows:

• If Accumulate is set to MQROUTE_ACCUMULATE_NONE, the trace-route message data contains the
TraceRoute PCF group.

• If Accumulate is set to either MQROUTE_ACCUMULATE_IN_MSG or
MQROUTE_ACCUMULATE_AND_REPLY, the trace-route message data contains the TraceRoute PCF
group and zero or more Activity PCF groups.

Table 20 on page 121 shows the structure of a trace-route message.

120 Monitoring and Performance for IBM WebSphere MQ

Table 20. Trace-route message format

MQMD structure Embedded PCF header MQEPH
structure

Trace-route message data

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback
Encoding
Coded character set ID
Message format
Priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name
Put date
Put time
Application origin data
Group identifier
Message sequence number
Offset
Message flags
Original length

Structure identifier
Structure version
Structure length
Encoding
Coded character set ID
Message format
Flags
PCF header (MQCFH)
 Structure type
 Structure length
 Structure version
 Command identifier
 Message sequence number
 Control options
 Completion code
 Reason code
 Parameter count

TraceRoute
 Detail
 Recorded activities
 Unrecorded activities
 Discontinuity count
 Max activities
 Accumulate
 Deliver

Trace-route message MQMD (message descriptor)
Use this page to view the values contained by the MQMD structure for a trace-route message

StrucId

Description: Structure identifier.

Data type: MQCHAR4.

Value: MQMD_STRUC_ID.

Version

Description: Structure version number.

Data type: MQLONG.

Values: MQMD_VERSION_1.

Report

Description: Options for report messages.

Data type: MQLONG.

Monitoring and performance 121

Value: Set according to requirements. Common report options follow:
MQRO_DISCARD_MSG

The message is discarded on arrival to a local queue.
MQRO_PASS_DISCARD_AND_EXPIRY

Every response (activity reports or trace-route reply message) will have the
report option MQRO_DISCARD_MSG set, and the remaining expiry passed
on. This ensures that responses do not remain in the queue manager
network indefinitely.

MsgType

Description: Type of message.

Data type: MQLONG.

Value: If the Accumulate parameter in the TraceRoute group is specified as
MQROUTE_ACCUMULATE_AND_REPLY, then message type is MQMT_REQUEST

Otherwise:
MQMT_DATAGRAM.

Expiry

Description: Message lifetime.

Data type: MQLONG.

Value: Set according to requirements. This parameter can be used to ensure trace-
route messages are not left in a queue manager network indefinitely.

Feedback

Description: Feedback or reason code.

Data type: MQLONG.

Value: MQFB_NONE.

Encoding

Description: Numeric encoding of message data.

Data type: MQLONG.

Value: Set as appropriate.

CodedCharSetId

Description: Character set identifier of message data.

Data type: MQLONG.

Value: Set as appropriate.

Format

Description: Format name of message data

Data type: MQCHAR8.

122 Monitoring and Performance for IBM WebSphere MQ

Value: MQFMT_ADMIN
Admin message. No user data follows the TraceRoute PCF group.

MQFMT_EMBEDDED_PCF
Embedded PCF message. User data follows the TraceRoute PCF group.

Priority

Description: Message priority.

Data type: MQLONG.

Value: Set according to requirements.

Persistence

Description: Message persistence.

Data type: MQLONG.

Value: Set according to requirements.

MsgId

Description: Message identifier.

Data type: MQBYTE24.

Value: Set according to requirements.

CorrelId

Description: Correlation identifier.

Data type: MQBYTE24.

Value: Set according to requirements.

BackoutCount

Description: Backout counter.

Data type: MQLONG.

Value: 0.

ReplyToQ

Description: Name of reply queue.

Data type: MQCHAR48.

Values: Set according to requirements.

If MsgType is set to MQMT_REQUEST or if Report has any report generating
options set, then this parameter must be non-blank.

ReplyToQMgr

Description: Name of reply queue manager.

Data type: MQCHAR48.

Value: Set according to requirements.

Monitoring and performance 123

UserIdentifier

Description: The user identifier of the application that originated the message.

Data type: MQCHAR12.

Value: Set as normal.

AccountingToken

Description: Accounting token that allows an application to charge for work done as a result
of the message.

Data type: MQBYTE32.

Value: Set as normal.

ApplIdentityData

Description: Application data relating to identity.

Data type: MQCHAR32.

Values: Set as normal.

PutApplType

Description: Type of application that put the message.

Data type: MQLONG.

Value: Set as normal.

PutApplName

Description: Name of application that put the message.

Data type: MQCHAR28.

Value: Set as normal.

PutDate

Description: Date when message was put.

Data type: MQCHAR8.

Value: Set as normal.

PutTime

Description: Time when message was put.

Data type: MQCHAR8.

Value: Set as normal.

ApplOriginData

Description: Application data relating to origin.

Data type: MQCHAR4.

Value: Set as normal..

124 Monitoring and Performance for IBM WebSphere MQ

Trace-route message MQEPH (Embedded PCF header)
Use this page to view the values contained by the MQEPH structure for a trace-route message

The MQEPH structure contains a description of both the PCF information that accompanies the message
data of a trace-route message, and the application message data that follows it. An MQEPH structure is
used only if additional user message data follows the TraceRoute PCF group.

For a trace-route message, the MQEPH structure contains the following values:
StrucId

Description: Structure identifier.

Data type: MQCHAR4.

Value: MQEPH_STRUC_ID.

Version

Description: Structure version number.

Data type: MQLONG.

Values: MQEPH_VERSION_1.

StrucLength

Description: Structure length.

Data type: MQLONG.

Value: Total length of the structure including the PCF parameter structures that follow
it.

Encoding

Description: Numeric encoding of the message data that follows the last PCF parameter
structure.

Data type: MQLONG.

Value: The encoding of the message data.

CodedCharSetId

Description: Character set identifier of the message data that follows the last PCF parameter
structure.

Data type: MQLONG.

Value: The character set of the message data.

Format

Description: Format name of the message data that follows the last PCF parameter structure.

Data type: MQCHAR8.

Value: The format name of the message data.

Flags

Description: Flags that specify attributes of the structure or control its processing.

Data type: MQLONG.

Monitoring and performance 125

Value: MQEPH_NONE
No flags specified.

MQEPH_CCSID_EMBEDDED
Specifies that the character set of the parameters containing character data
is specified individually within the CodedCharSetId field in each structure.

PCFHeader

Description: Programmable Command Format Header

Data type: MQCFH.

Value: See “Trace-route message MQCFH (PCF header)” on page 126.

Trace-route message MQCFH (PCF header)
Use this page to view the PCF values contained by the MQCFH structure for a trace-route message

For a trace-route message, the MQCFH structure contains the following values:
Type

Description: Structure type that identifies the content of the message.

Data type: MQLONG.

Value: MQCFT_TRACE_ROUTE
Message is a trace-route message.

StrucLength

Description: Structure length.

Data type: MQLONG.

Value: MQCFH_STRUC_LENGTH
Length in bytes of MQCFH structure.

Version

Description: Structure version number.

Data type: MQLONG.

Values: MQCFH_VERSION_3

Command

Description: Command identifier. This identifies the category of the message.

Data type: MQLONG.

Values: MQCMD_TRACE_ROUTE
Trace-route message.

MsgSeqNumber

Description: Message sequence number. This is the sequence number of the message within
a group of related messages.

Data type: MQLONG.

Values: 1.

126 Monitoring and Performance for IBM WebSphere MQ

Control

Description: Control options.

Data type: MQLONG.

Values: MQCFC_LAST.

CompCode

Description: Completion code.

Data type: MQLONG.

Values: MQCC_OK.

Reason

Description: Reason code qualifying completion code.

Data type: MQLONG.

Values: MQRC_NONE.

ParameterCount

Description: Count of parameter structures. This is the number of parameter structures that
follow the MQCFH structure. A group structure (MQCFGR), and its included
parameter structures, are counted as one structure only.

Data type: MQLONG.

Values: 1 or greater.

Trace-route message data
Use this page to view the parameters that make up the TraceRoute PCF group part of trace-route message
data

The content of trace-route message data depends on the Accumulate parameter from the TraceRoute PCF
group. Trace-route message data consists of the TraceRoute PCF group, and zero or more Activity PCF
groups. The TraceRoute PCF group is detailed in this topic. Refer to the related information for details of
the Activity PCF group.

Trace-route message data contains the following parameters:

TraceRoute

Description: Grouped parameters specifying attributes of the trace-route message. For a
trace-route message, some of these parameters can be altered to control how it
is processed.

Identifier: MQGACF_TRACE_ROUTE.

Data type: MQCFGR.

Contained in PCF
group:

None.

Monitoring and performance 127

Parameters in
group:

Detail
RecordedActivities
UnrecordedActivities
DiscontinuityCount
MaxActivities
Accumulate
Forward
Deliver

Detail

Description: The detail level that will be recorded for the activity.

Identifier: MQIACF_ROUTE_DETAIL.

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

Values: MQROUTE_DETAIL_LOW
Activities performed by user-written application are recorded.

MQROUTE_DETAIL_MEDIUM
Activities specified in MQROUTE_DETAIL_LOW are recorded. Additionally,
activities performed by MCAs are recorded.

MQROUTE_DETAIL_HIGH
Activities specified in MQROUTE_DETAIL_LOW, and
MQROUTE_DETAIL_MEDIUM are recorded. MCAs do not record any further
activity information at this level of detail. This option is only available to
user-written applications that are to record further activity information.

RecordedActivities

Description: The number of activities that the trace-route message has caused, where
information was recorded.

Identifier: MQIACF_RECORDED_ACTIVITIES.

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

UnrecordedActivities

Description: The number of activities that the trace-route message has caused, where
information was not recorded.

Identifier: MQIACF_UNRECORDED_ACTIVITIES.

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

DiscontinuityCount

Description: The number of times a trace-route message has been received from a queue
manager that does not support trace-route messaging.

Identifier: MQIACF_DISCONTINUITY_COUNT.

128 Monitoring and Performance for IBM WebSphere MQ

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

MaxActivities

Description: The maximum number of activities the trace-route message can be involved in
before it stops being processed.

Identifier: MQIACF_MAX_ACTIVITIES.

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

Value: A positive integer
The maximum number of activities.

MQROUTE_UNLIMITED_ACTIVITIES
An unlimited number of activities.

Accumulate

Description: Specifies whether activity information is accumulated within the trace-route
message, and whether a reply message containing the accumulated activity
information is generated before the trace-route message is discarded or is put
on a non-transmission queue.

Identifier: MQIACF_ROUTE_ACCUMULATION.

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

Value: MQROUTE_ACCUMULATE_NONE
Activity information is not accumulated in the message data of the trace-
route message.

MQROUTE_ACCUMULATE_IN_MSG
Activity information is accumulated in the message data of the trace-route
message.

MQROUTE_ACCUMULATE_AND_REPLY
Activity information is accumulated in the message data of the trace-route
message, and a trace-route reply message will be generated.

Forward

Description: Specifies queue managers that the trace-route message can be forwarded to.
When determining whether to forward a message to a remote queue manager,
queue managers use the algorithm that is described in Forwarding.

Identifier: MQIACF_ROUTE_FORWARDING.

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

Monitoring and performance 129

Value: MQROUTE_FORWARD_IF_SUPPORTED
The trace-route message is only forwarded to queue managers that will
honor the value of the Deliver parameter from the TraceRoute group.

MQROUTE_FORWARD_ALL
The trace-route message is forwarded to any queue manager, regardless of
whether the value of the Deliver parameter will be honored.

Deliver

Description: Specifies the action to be taken if the trace-route message arrives at the
destination queue successfully.

Identifier: MQIACF_ROUTE_DELIVERY.

Data type: MQCFIN.

Contained in PCF
group:

TraceRoute.

Value: MQROUTE_DELIVER_YES
On arrival, the trace-route message is put on the target queue. Any
application performing a destructive get on the target queue can receive
the trace-route message.

MQROUTE_DELIVER_NO
On arrival, the trace-route message is discarded.

Trace-route reply message reference
Use this page to obtain an overview of the trace-route reply message format. The trace-route reply
message data is a duplicate of the trace-route message data from the trace-route message for which it
was generated

Trace-route reply message format
Trace-route reply messages are standard WebSphere MQ messages containing a message descriptor and
message data. The message data contains information about the activities performed on a trace-route
message as it has been routed through a queue manager network.

Trace-route reply messages contain the following information:
A message descriptor

An MQMD structure
Message data

A PCF header (MQCFH) and trace-route reply message data
Trace-route reply message data consists of one or more Activity PCF groups.

When a trace-route message reaches its target queue, a trace-route reply message can be generated that
contains a copy of the activity information from the trace-route message. The trace-route reply message
will be delivered to a reply-to queue or to a system queue.

Table 21 on page 131 shows the structure of a trace-route reply message, including parameters that are
only returned under certain conditions.

130 Monitoring and Performance for IBM WebSphere MQ

Table 21. Trace-route reply message format

MQMD structure PCF header MQCFH structure Trace-route reply message data

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback
Encoding
Coded character set ID
Message format
Priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name
Put date
Put time
Application origin data
Group identifier
Message sequence number
Offset
Message flags
Original length

PCF header (MQCFH)
 Structure type
 Structure length
 Structure version
 Command identifier
 Message sequence number
 Control options
 Completion code
 Reason code
 Parameter count

Activity
 Activity application name
 Activity application type
 Activity description
 Operation
 Operation type
 Operation date
 Operation time
 Message
 Message length
 MQMD
 EmbeddedMQMD
 Queue manager name
 Queue sharing group name
 Queue name 1 2 3
 Resolved queue name 1 3
 Remote queue name 3
 Remote queue manager-
 name 2 3 4 5
 Feedback 2
 Channel name 4 5
 Channel type 4 5
 Transmission queue name 5
 TraceRoute
 Detail
 Recorded activities
 Unrecorded activities
 Discontinuity count
 Max activities
 Accumulate
 Deliver

Note:

1. Returned for Get and Browse operations.
2. Returned for Discard operations.
3. Returned for Put, Put Reply, and Put Report operations.
4. Returned for Receive operations.
5. Returned for Send operations.

Trace-route reply message MQMD (message descriptor)
Use this page to view the values contained by the MQMD structure for a trace-route reply message

For a trace-route reply message, the MQMD structure contains the parameters described in Activity report
message descriptor. Some of the parameter values in a trace-route reply message descriptor are different
from those in an activity report message descriptor, as follows:
MsgType

Description: Type of message.

Data type: MQLONG.

Monitoring and performance 131

Value: MQMT_REPLY

Feedback

Description: Feedback or reason code.

Data type: MQLONG.

Value: MQFB_NONE

Encoding

Description: Numeric encoding of message data.

Data type: MQLONG.

Value: Copied from trace-route message descriptor.

CodedCharSetId

Description: Character set identifier of message data.

Data type: MQLONG.

Value: Copied from trace-route message descriptor.

Format

Description: Format name of message data

Data type: MQCHAR8.

Value: MQFMT_ADMIN
Admin message.

Trace-route reply message MQCFH (PCF header)
Use this page to view the PCF values contained by the MQCFH structure for a trace-route reply message

The PCF header (MQCFH) for a trace-route reply message is the same as for a trace-route message.

Trace-route reply message data
The trace-route reply message data is a duplicate of the trace-route message data from the trace-route
message for which it was generated

The trace-route reply message data contains one or more Activity groups. The parameters are described
in “Activity report message data” on page 102.

Accounting and statistics messages
Queue managers generate accounting and statistics messages to record information about the MQI
operations performed by IBM WebSphere MQ applications, or to record information about the activities
occurring in an IBM WebSphere MQ system.
Accounting messages

Accounting messages are used to record information about the MQI operations performed by IBM
WebSphere MQ applications, see “Accounting messages” on page 133.

Statistics messages
Statistics messages are used to record information about the activities occurring in an IBM
WebSphere MQ system, see “Statistics messages” on page 136. Some activity recorded in statistics
messages relates to internal queue manager operations.

132 Monitoring and Performance for IBM WebSphere MQ

Accounting and statistics messages are delivered to one of two system queues. User applications can
retrieve the messages from these system queues and use the recorded information for various purposes:

• Account for application resource use.
• Record application activity.
• Capacity planning.
• Detect problems in your queue manager network.
• Assist in determining the causes of problems in your queue manager network.
• Improve the efficiency of your queue manager network.
• Familiarize yourself with the running of your queue manager network.
• Confirm that your queue manager network is running correctly.

Accounting messages
Accounting messages record information about the MQI operations performed by WebSphere MQ
applications. An accounting message is a PCF message that contains a number of PCF structures.

When an application disconnects from a queue manager, an accounting message is generated and
delivered to the system accounting queue (SYSTEM.ADMIN.ACCOUNTING.QUEUE). For long running
WebSphere MQ applications, intermediate accounting messages are generated as follows:

• When the time since the connection was established exceeds the configured interval.
• When the time since the last intermediate accounting message exceeds the configured interval.

Accounting messages are in the following categories:

MQI accounting messages
MQI accounting messages contain information relating to the number of MQI calls made using a
connection to a queue manager.

Queue accounting messages
Queue accounting messages contain information relating to the number of MQI calls made using
connections to a queue manager, grouped by queue.

Each queue accounting message can contain up to 100 records, with every record relating to an
activity performed by the application with respect to a specific queue.

Accounting messages are recorded only for local queues. If an application makes an MQI call against
an alias queue, the accounting data is recorded against the base queue, and, for a remote queue, the
accounting data is recorded against the transmission queue.

Related reference
“MQI accounting message data” on page 150
Use this page to view the structure of an MQI accounting message
“Queue accounting message data” on page 161
Use this page to view the structure of a queue accounting message

Accounting message format
Accounting messages comprise a set of PCF fields that consist of a message descriptor and message
data.
Message descriptor

• An accounting message MQMD (message descriptor)

Accounting message data

• An accounting message MQCFH (PCF header)
• Accounting message data that is always returned
• Accounting message data that is returned if available

Monitoring and performance 133

The accounting message MQCFH (PCF header) contains information about the application, and the
interval for which the accounting data was recorded.

Accounting message data comprises PCF parameters that store the accounting information. The content
of accounting messages depends on the message category as follows:

MQI accounting message
MQI accounting message data consists of a number of PCF parameters, but no PCF groups.

Queue accounting message
Queue accounting message data consists of a number of PCF parameters, and in the range 1 through
100 QAccountingData PCF groups.

There is one QAccountingData PCF group for every queue that had accounting data collected. If
an application accesses more than 100 queues, multiple accounting messages are generated. Each
message has the SeqNumber in the MQCFH (PCF header) updated accordingly, and the last message
in the sequence has the Control parameter in the MQCFH specified as MQCFC_LAST.

Accounting information collection
Use queue and queue manager attributes to control the collection of accounting information. You can also
use MQCONNX options to control collection at the connection level.

MQI accounting information
Use the queue manager attribute ACCTMQI to control the collection of MQI accounting information

To change the value of this attribute, use the MQSC command, ALTER QMGR, and specify the parameter
ACCTMQI. Accounting messages are generated only for connections that begin after accounting is
enabled. The ACCTMQI parameter can have the following values:

ON
MQI accounting information is collected for every connection to the queue manager.

OFF
MQI accounting information is not collected. This is the default value.

For example, to enable MQI accounting information collection use the following MQSC command:

ALTER QMGR ACCTMQI(ON)

Queue accounting information
Use the queue attribute ACCTQ and the queue manager attribute ACCTQ to control the collection of queue
accounting information.

To change the value of the queue attribute, use the MQSC command, ALTER QLOCAL and specify the
parameter ACCTQ. Accounting messages are generated only for connections that begin after accounting is
enabled. The queue attribute ACCTQ can have the following values:

ON
Queue accounting information for this queue is collected for every connection to the queue manager
that opens the queue.

OFF
Queue accounting information for this queue is not collected.

QMGR
The collection of queue accounting information for this queue is controlled according to the value of
the queue manager attribute ACCTQ. This is the default value.

To change the value of the queue manager attribute, use the MQSC command, ALTER QMGR and specify
the parameter ACCTQ. The queue manager attribute ACCTQ can have the following values:

ON
Queue accounting information is collected for queues that have the queue attribute ACCTQ set as
QMGR.

134 Monitoring and Performance for IBM WebSphere MQ

OFF
Queue accounting information is not collected for queues that have the queue attribute ACCTQ set as
QMGR. This is the default value.

NONE
The collection of queue accounting information is disabled for all queues, regardless of the queue
attribute ACCTQ.

If the queue manager attribute, ACCTQ, is set to NONE, the collection of queue accounting information is
disabled for all queues, regardless of the queue attribute ACCTQ.

For example, to enable accounting information collection for the queue, Q1, use the following MQSC
command:

ALTER QLOCAL(Q1) ACCTQ(ON)

To enable accounting information collection for all queues that specify the queue attribute ACCTQ as
QMGR, use the following MQSC command:

ALTER QMGR ACCTQ(ON)

MQCONNX options
Use the ConnectOpts parameter on the MQCONNX call to modify the collection of both MQI and queue
accounting information at the connection level by overriding the effective values of the queue manager
attributes ACCTMQI and ACCTQ

The ConnectOpts parameter can have the following values:

MQCNO_ACCOUNTING_MQI_ENABLED
If the value of the queue manager attribute ACCTMQI is specified as OFF, MQI accounting is enabled
for this connection. This is equivalent of the queue manager attribute ACCTMQI being specified as ON.

If the value of the queue manager attribute ACCTMQI is not specified as OFF, this attribute has no
effect.

MQCNO_ACCOUNTING_MQI_DISABLED
If the value of the queue manager attribute ACCTMQI is specified as ON, MQI accounting is disabled
for this connection. This is equivalent of the queue manager attribute ACCTMQI being specified as
OFF.

If the value of the queue manager attribute ACCTMQI is not specified as ON, this attribute has no
effect.

MQCNO_ACCOUNTING_Q_ENABLED
If the value of the queue manager attribute ACCTQ is specified as OFF, queue accounting is enabled
for this connection. All queues with ACCTQ specified as QMGR, are enabled for queue accounting. This
is equivalent of the queue manager attribute ACCTQ being specified as ON.

If the value of the queue manager attribute ACCTQ is not specified as OFF, this attribute has no effect.

MQCNO_ACCOUNTING_Q_DISABLED
If the value of the queue manager attribute ACCTQ is specified as ON, queue accounting is disabled
for this connection. This is equivalent of the queue manager attribute ACCTQ being specified as OFF.

If the value of the queue manager attribute ACCTQ is not specified as ON, this attribute has no effect.

These overrides are by disabled by default. To enable them, set the queue manager attribute ACCTCONO
to ENABLED. To enable accounting overrides for individual connections use the following MQSC
command:

ALTER QMGR ACCTCONO(ENABLED)

Monitoring and performance 135

Accounting message generation
Accounting messages are generated when an application disconnects from the queue manager.
Intermediate accounting messages are also written for long running WebSphere MQ applications.

Accounting messages are generated in either of the following ways when an application disconnects:

• The application issues an MQDISC call
• The queue manager recognises that the application has terminated

Intermediate accounting messages are written for long running WebSphere MQ applications when the
interval since the connection was established or since the last intermediate accounting message that
was written exceeds the configured interval. The queue manager attribute, ACCTINT, specifies the time,
in seconds, after which intermediate accounting messages can be automatically written. Accounting
messages are generated only when the application interacts with the queue manager, so applications
that remain connected to the queue manager for long periods without executing MQI requests do not
generate accounting messages until the execution of the first MQI request following the completion of the
accounting interval.

The default accounting interval is 1800 seconds (30 minutes). For example, to change the accounting
interval to 900 seconds (15 minutes) use the following MQSC command:

ALTER QMGR ACCTINT(900)

Statistics messages
Statistics messages record information about the activities occurring in a WebSphere MQ system. An
statistics messages is a PCF message that contains a number of PCF structures.

Statistics messages are delivered to the system queue (SYSTEM.ADMIN.STATISTICS.QUEUE) at
configured intervals, whenever there is some activity.

Statistics messages are in the following categories:

MQI statistics messages
MQI statistics messages contain information relating to the number of MQI calls made during a
configured interval. For example, the information can include the number of MQI calls issued by a
queue manager.

Queue statistics messages
Queue statistics messages contain information relating to the activity of a queue during a configured
interval. The information includes the number of messages put on, and retrieved from, the queue, and
the total number of bytes processed by a queue.

Each queue statistics message can contain up to 100 records, with each record relating to the activity
per queue for which statistics were collected.

Statistics messages are recorded only for local queues. If an application makes an MQI call against
an alias queue, the statistics data is recorded against the base queue, and, for a remote queue, the
statistics data is recorded against the transmission queue.

Channel statistics messages
Channel statistics messages contain information relating to the activity of a channel during a
configured interval. For example the information might be the number of messages transferred by
the channel, or the number of bytes transferred by the channel.

Each channel statistics message contains up to 100 records, with each record relating to the activity
per channel for which statistics were collected.

Related reference
“MQI statistics information” on page 137
Use the queue manager attribute STATMQI to control the collection of MQI statistics information
“Queue statistics information” on page 138

136 Monitoring and Performance for IBM WebSphere MQ

Use the queue attribute STATQ and the queue manager attribute STATQ to control the collection of queue
statistics information
“Channel statistics information” on page 139
Use the channel attribute STATCHL to control the collection of channel statistics information. You can
also set queue manager attributes to control information collection. These attributes are available on
distributed platforms and on IBM i.

Statistics messages format
Statistics messages comprise a set of PCF fields that consist of a message descriptor and message data.
Message descriptor

• A statistics message MQMD (message descriptor)

Accounting message data

• A statistics message MQCFH (PCF header)
• Statistics message data that is always returned
• Statistics message data that is returned if available

The statistics message MQCFH (PCF header) contains information about the interval for which the
statistics data was recorded.

Statistics message data comprises PCF parameters that store the statistics information. The content of
statistics messages depends on the message category as follows:

MQI statistics message
MQI statistics message data consists of a number of PCF parameters, but no PCF groups.

Queue statistics message
Queue statistics message data consists of a number of PCF parameters, and in the range 1 through
100 QStatisticsData PCF groups.

There is one QStatisticsData PCF group for every queue was active in the interval. If more than 100
queues were active in the interval, multiple statistics messages are generated. Each message has the
SeqNumber in the MQCFH (PCF header) updated accordingly, and the last message in the sequence
has the Control parameter in the MQCFH specified as MQCFC_LAST.

Channel statistics message
Channel statistics message data consists of a number of PCF parameters, and in the range 1 through
100 ChlStatisticsData PCF groups.

There is one ChlStatisticsData PCF group for every channel that was active in the interval. If more than
100 channels were active in the interval, multiple statistics messages are generated. Each message
has the SeqNumber in the MQCFH (PCF header) updated accordingly, and the last message in the
sequence has the Control parameter in the MQCFH specified as MQCFC_LAST.

Statistics information collection
Use queue, queue manager, and channel attributes to control the collection of statistics information

MQI statistics information
Use the queue manager attribute STATMQI to control the collection of MQI statistics information

To change the value of this attribute, use the MQSC command, ALTER QMGR and specify the parameter
STATMQI. Statistics messages are generated only for queues that are opened after statistics collection
has been enabled. The STATMQI parameter can have the following values:

ON
MQI statistics information is collected for every connection to the queue manager.

OFF
MQI statistics information is not collected. This is the default value.

Monitoring and performance 137

For example, to enable MQI statistics information collection use the following MQSC command:

ALTER QMGR STATMQI(ON)

Queue statistics information
Use the queue attribute STATQ and the queue manager attribute STATQ to control the collection of queue
statistics information

You can enable or disable queue statistics information collection for individual queues or for multiple
queues. To control individual queues, set the queue attribute STATQ. You enable or disable queue
statistics information collection at the queue manager level by using the queue manager attribute STATQ.
For all queues that have the queue attribute STATQ specified with the value QMGR, queue statistics
information collection is controlled at the queue manager level.

Queue statistics are incremented only for operations using IBM WebSphere MQ MQI Object Handles that
were opened after statistics collection has been enabled.

Queue Statistics messages are generated only for queues for which statistics data has been collected in
the previous time period.

The same queue can have several put operations and get operations through several Object Handles.
Some Object Handles might have been opened before statistics collection was enabled, but others were
opened afterwards. Therefore, it is possible for the queue statistics to record the activity of some put
operations and get operations, and not all.

To ensure that the Queue Statistics are recording the activity of all applications, you must close and
reopen new Object Handles on the queue, or queues, that you are monitoring. The best way to achieve
this, is to end and restart all applications after enabling statistics collection.

To change the value of the queue attribute STATQ, use the MQSC command, ALTER QLOCAL and specify
the parameter STATQ. The queue attribute STATQ can have the following values:

ON
Queue statistics information is collected for every connection to the queue manager that opens the
queue.

OFF
Queue statistics information for this queue is not collected.

QMGR
The collection of queue statistics information for this queue is controlled according to the value of the
queue manager attribute, STATQ. This is the default value.

To change the value of the queue manager attribute STATQ, use the MQSC command, ALTER QMGR and
specify the parameter STATQ. The queue manager attribute STATQ can have the following values:
ON

Queue statistics information is collected for queues that have the queue attribute STATQ set as QMGR
OFF

Queue statistics information is not collected for queues that have the queue attribute STATQ set as
QMGR. This is the default value.

NONE
The collection of queue statistics information is disabled for all queues, regardless of the queue
attribute STATQ.

If the queue manager attribute STATQ is set to NONE, the collection of queue statistics information is
disabled for all queues, regardless of the queue attribute STATQ.

For example, to enable statistics information collection for the queue, Q1, use the following MQSC
command:

ALTER QLOCAL(Q1) STATQ(ON)

138 Monitoring and Performance for IBM WebSphere MQ

To enable statistics information collection for all queues that specify the queue attribute STATQ as QMGR,
use the following MQSC command:

ALTER QMGR STATQ(ON)

Channel statistics information
Use the channel attribute STATCHL to control the collection of channel statistics information. You can
also set queue manager attributes to control information collection. These attributes are available on
distributed platforms and on IBM i.

You can enable or disable channel statistics information collection for individual channels, or for multiple
channels. To control individual channels, you must set the channel attribute STATCHL to enable or
disable channel statistic information collection. To control many channels together, you enable or disable
channel statistics information collection at the queue manager level by using the queue manager attribute
STATCHL. For all channels that have the channel attribute STATCHL specified with the value QMGR,
channel statistics information collection is controlled at the queue manager level.

Automatically defined cluster-sender channels are not WebSphere MQ objects, so do not have attributes
in the same way as channel objects. To control automatically defined cluster-sender channels, use
the queue manager attribute STATACLS. This attribute determines whether automatically defined cluster-
sender channels within a queue manager are enabled or disabled for channel statistics information
collection.

You can set channel statistics information collection to one of the three monitoring levels: low, medium or
high. You can set the monitoring level at either object level or at the queue manager level. The choice of
which level to use is dependent on your system. Collecting statistics information data might require some
instructions that are relatively expensive computationally, so to reduce the impact of channel statistics
information collection, the medium and low monitoring options measure a sample of the data at regular
intervals rather than collecting data all the time. Table 22 on page 139 summarizes the levels available
with channel statistics information collection:

Table 22. Detail level of channel statistics information collection

Level Description Usage

Low Measure a small sample of the data, at
regular intervals.

For objects that process a high volume of
messages.

Medium Measure a sample of the data, at regular
intervals.

For most objects.

High Measure all data, at regular intervals. For objects that process only a few messages
per second, on which the most current
information is important.

To change the value of the channel attribute STATCHL, use the MQSC command, ALTER CHANNEL and
specify the parameter STATCHL.

To change the value of the queue manager attribute STATCHL, use the MQSC command, ALTER QMGR and
specify the parameter STATCHL.

To change the value of the queue manager attribute STATACLS, use the MQSC command, ALTER QMGR
and specify the parameter STATACLS.

The channel attribute, STATCHL, can have the following values:
LOW

Channel statistics information is collected with a low level of detail.
MEDIUM

Channel statistics information is collected with a medium level of detail.

Monitoring and performance 139

HIGH
Channel statistics information is collected with a high level of detail.

OFF
Channel statistics information is not collected for this channel.

QMGR
The channel attribute is set as QMGR. The collection of statistics information for this channel is
controlled by the value of the queue manager attribute, STATCHL.

This is the default value.

The queue manager attribute, STATCHL, can have the following values:
LOW

Channel statistics information is collected with a low level of detail, for all channels that have the
channel attribute STATCHL set as QMGR.

MEDIUM
Channel statistics information is collected with a medium level of detail, for all channels that have the
channel attribute STATCHL set as QMGR.

HIGH
Channel statistics information is collected with a high level of detail, for all channels that have the
channel attribute STATCHL set as QMGR.

OFF
Channel statistics information is not collected for all channels that have the channel attribute
STATCHL set as QMGR.

This is the default value.

NONE
The collection of channel statistics information is disabled for all channel, regardless of the channel
attribute STATCHL.

The queue manager attribute, STATACLS, can have the following values:
LOW

Statistics information is collected with a low level of detail for automatically defined cluster-sender
channels.

MEDIUM
Statistics information is collected with a medium level of detail for automatically defined cluster-
sender channels.

HIGH
Statistics information is collected with a high level of detail for automatically defined cluster-sender
channels.

OFF
Statistics information is not for automatically defined cluster-sender channels.

QMGR
The collection of statistics information for automatically defined cluster-sender channels is controlled
by the value of the queue manager attribute, STATCHL.

This is the default value.

For example, to enable statistics information collection, with a medium level of detail, for the sender
channel QM1.TO.QM2, use the following MQSC command:

ALTER CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) STATCHL(MEDIUM)

To enable statistics information collection, at a medium level of detail, for all channels that specify the
channel attribute STATCHL as QMGR, use the following MQSC command:

140 Monitoring and Performance for IBM WebSphere MQ

ALTER QMGR STATCHL(MEDIUM)

To enable statistics information collection, at a medium level of detail, for all automatically defined
cluster-sender channels, use the following MQSC command:

ALTER QMGR STATACLS(MEDIUM)

Statistics message generation
Statistics messages are generated at configured intervals, and when a queue manager shuts down in a
controlled fashion.

The configured interval is controlled by the STATINT queue manager attribute, which specifies the
interval, in seconds, between the generation of statistics messages. The default statistics interval is
1800 seconds (30 minutes). To change the statistics interval, use the MQSC command ALTER QMGR
and specify the STATINT parameter. For example, to change the statistics interval to 900 seconds (15
minutes) use the following MQSC command:

ALTER QMGR STATINT(900)

To write the currently collected statistics data to the statistics queue before the statistics collection
interval is due to expire, use the MQSC command RESET QMGR TYPE(STATISTICS). Issuing this
command causes the collected statistics data to be written to the statistics queue and a new statistics
data collection interval to begin.

Displaying accounting and statistics information
To use the information recorded in accounting and statistics messages, run an application such as the
amqsmon sample program to transform the recorded information into a suitable format

Accounting and statistics messages are written to the system accounting and statistics queues. amqsmon
is a sample program supplied with WebSphere MQ that processes messages from the accounting and
statistics queues and displays the information to the screen in a readable form.

Because amqsmon is a sample program, you can use the supplied source code as template for writing
your own application to process accounting or statistics messages, or modify the amqsmon source code to
meet your own particular requirements.

amqsmon (Display formatted monitoring information)
Use the amqsmon sample program to display in a readable format the information contained within
accounting and statistics messages. The amqsmon program reads accounting messages from the

Monitoring and performance 141

accounting queue, SYSTEM.ADMIN.ACCOUNTING.QUEUE. and reads statistics messages from the
statistics queue, SYSTEM.ADMIN.STATISTICS.QUEUE.

Syntax

amqsmon

 -m QMgrName

 -t Type
 -a

 -i ConnectionId

 -c

ChannelName

 -q

QueueName

 -b -d Depth -w TimeOut -s StartTime

 -e EndTime

 -l

,

Parameter

Required parameters
-t Type

The type of messages to process. Specify Type as one of the following:
accounting

Accounting records are processed. Messages are read from the system queue,
SYSTEM.ADMIN.ACCOUNTING.QUEUE.

statistics
Statistics records are processed. Messages are read from the system queue,
SYSTEM.ADMIN.STATISTICS.QUEUE.

Optional Parameters
-m QMgrName

The name of the queue manager from which accounting or statistics messages are to be processed.

If you do not specify this parameter, the default queue manager is used.

-a
Process messages containing MQI records only.

Only display MQI records. Messages not containing MQI records will always be left on the queue they
were read from.

-q QueueName
QueueName is an optional parameter.

If QueueName is not supplied: Displays queue accounting and queue statistics records
only.

142 Monitoring and Performance for IBM WebSphere MQ

If QueueName is supplied: Displays queue accounting and queue statistics records
for the queue specified by QueueName only.

If -b is not specified then the accounting and statistics
messages from which the records came are discarded.
Since accounting and statistics messages can also
contain records from other queues, if -b is not specified
then unseen records can be discarded.

-c ChannelName
ChannelName is an optional parameter.

If ChannelName is not supplied: Displays channel statistics records only.

If ChannelName is supplied: Displays channel statistics records for the channel
specified by ChannelName only.

If -b is not specified then the statistics messages from
which the records came are discarded. Since statistics
messages can also contain records from other channels,
if -b is not specified then unseen records can be
discarded.

This parameter is available when displaying statistics messages only, (-t statistics).

-i ConnectionId
Displays records related to the connection identifier specified by ConnectionId only.

This parameter is available when displaying accounting messages only, (-t accounting).

If -b is not specified then the statistics messages from which the records came are discarded. Since
statistics messages can also contain records from other channels, if -b is not specified then unseen
records can be discarded.

-b
Browse messages.

Messages are retrieved non-destructively.

-d Depth
The maximum number of messages that can be processed.

If you do not specify this parameter, then an unlimited number of messages can be processed.

-w TimeOut
Time maximum number of seconds to wait for a message to become available.

If you do not specify this parameter, amqsmon will end once there are no more messages to process.

-s StartTime
Process messages put after the specified StartTime only.

StartTime is specified in the format yyyy-mm-dd hh.mm.ss. If a date is specified without a time,
then the time will default to 00.00.00 on the date specified. Times are in GMT.

For the effect of not specifying this parameter, see Note 1.

-e EndTime
Process messages put before the specified EndTime only.

The EndTime is specified in the format yyyy-mm-dd hh.mm.ss. If a date is specified without a time,
then the time will default to 23.59.59 on the date specified. Times are in GMT.

For the effect of not specifying this parameter, see Note 1.

Monitoring and performance 143

-l Parameter
Only display the selected fields from the records processed. Parameter is a comma-separated list
of integer values, with each integer value mapping to the numeric constant of a field, see amqsmon
example 5.

If you do not specify this parameter, then all available fields are displayed.

Note:

1. If you do not specify -s StartTime or -e EndTime, the messages that can be processed are not restricted
by put time.

amqsmon examples
Use this page to view examples of running the amqsmon (Display formatted monitoring information)
sample program

1. The following command displays all MQI statistics messages from queue manager
saturn.queue.manager:

amqsmon -m saturn.queue.manager -t statistics -a

The output from this command follows:

 RecordType: MQIStatistics
 QueueManager: 'saturn.queue.manager'
 IntervalStartDate: '2005-04-30'
 IntervalStartTime: '15.09.02'
 IntervalEndDate: '2005-04-30'
 IntervalEndTime: '15.39.02'
 CommandLevel: 600
 ConnCount: 23
 ConnFailCount: 0
 ConnsMax: 8
 DiscCount: [17, 0, 0]
 OpenCount: [0, 80, 1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0]
 OpenFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 CloseCount: [0, 73, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
 CloseFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 InqCount: [4, 2102, 0, 0, 0, 46, 0, 0, 0, 0, 0, 0, 0]
 InqFailCount: [0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 SetCount: [0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
 SetFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 PutCount: [26, 1]
 PutFailCount: 0
 Put1Count: [40, 0]
 Put1FailCount: 0
 PutBytes: [57064, 12320]
 GetCount: [18, 1]
 GetBytes: [52, 12320]
 GetFailCount: 2254
 BrowseCount: [18, 60]
 BrowseBytes: [23784, 30760]
 BrowseFailCount: 9
 CommitCount: 0
 CommitFailCount: 0
 BackCount: 0
 ExpiredMsgCount: 0
 PurgeCount: 0

2. The following command displays all queue statistics messages for queue LOCALQ on queue manager
saturn.queue.manager:

amqsmon -m saturn.queue.manager -t statistics -q LOCALQ

The output from this command follows:

 RecordType: QueueStatistics
 QueueManager: 'saturn.queue.manager'

144 Monitoring and Performance for IBM WebSphere MQ

 IntervalStartDate: '2005-04-30'
 IntervalStartTime: '15.09.02'
 IntervalEndDate: '2005-04-30'
 IntervalEndTime: '15.39.02'
 CommandLevel: 600
 ObjectCount: 3
 QueueStatistics:
 QueueName: 'LOCALQ'
 CreateDate: '2005-03-08'
 CreateTime: '17.07.02'
 QueueType: Predefined
 QueueDefinitionType: Local
 QMinDepth: 0
 QMaxDepth: 18
 AverageQueueTime: [29827281, 0]
 PutCount: [26, 0]
 PutFailCount: 0
 Put1Count: [0, 0]
 Put1FailCount: 0
 PutBytes: [88, 0]
 GetCount: [18, 0]
 GetBytes: [52, 0]
 GetFailCount: 0
 BrowseCount: [0, 0]
 BrowseBytes: [0, 0]
 BrowseFailCount: 1
 NonQueuedMsgCount: 0
 ExpiredMsgCount: 0
 PurgedMsgCount: 0

3. The following command displays all of the statistics messages recorded since 15:30 on 30 April 2005
from queue manager saturn.queue.manager.

amqsmon -m saturn.queue.manager -t statistics -s "2005-04-30 15.30.00"

The output from this command follows:

 RecordType: MQIStatistics
 QueueManager: 'saturn.queue.manager'
 IntervalStartDate: '2005-04-30'
 IntervalStartTime: '15.09.02'
 IntervalEndDate: '2005-04-30'
 IntervalEndTime: '15.39.02'
 CommandLevel: 600
 ConnCount: 23
 ConnFailCount: 0
 ConnsMax: 8
 DiscCount: [17, 0, 0]
 OpenCount: [0, 80, 1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0]
 ...
 RecordType: QueueStatistics
 QueueManager: 'saturn.queue.manager'
 IntervalStartDate: '2005-04-30'
 IntervalStartTime: '15.09.02'
 IntervalEndDate: '2005-04-30'
 IntervalEndTime: '15.39.02'
 CommandLevel: 600
 ObjectCount: 3
 QueueStatistics: 0
 QueueName: 'LOCALQ'
 CreateDate: '2005-03-08'
 CreateTime: '17.07.02'
 QueueType: Predefined
 ...
 QueueStatistics: 1
 QueueName: 'SAMPLEQ'
 CreateDate: '2005-03-08'
 CreateTime: '17.07.02'
 QueueType: Predefined
 ...

Monitoring and performance 145

4. The following command displays all accounting messages recorded on 30 April 2005 from queue
manager saturn.queue.manager:

amqsmon -m saturn.queue.manager -t accounting -s "2005-04-30" -e "2005-04-30"

The output from this command follows:

 RecordType: MQIAccounting
 QueueManager: 'saturn.queue.manager'
 IntervalStartDate: '2005-04-30'
 IntervalStartTime: '15.09.29'
 IntervalEndDate: '2005-04-30'
 IntervalEndTime: '15.09.30'
 CommandLevel: 600
 ConnectionId: x'414d51435452455631202020202020208d0b3742010a0020'
 SeqNumber: 0
 ApplicationName: 'amqsput'
 ApplicationPid: 8572
 ApplicationTid: 1
 UserId: 'admin'
 ConnDate: '2005-03-16'
 ConnTime: '15.09.29'
 DiscDate: '2005-03-16'
 DiscTime: '15.09.30'
 DiscType: Normal
 OpenCount: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 OpenFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 CloseCount: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 CloseFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 PutCount: [1, 0]
 PutFailCount: 0
 PutBytes: [4, 0]
 GetCount: [0, 0]
 GetFailCount: 0
 GetBytes: [0, 0]
 BrowseCount: [0, 0]
 BrowseFailCount: 0
 BrowseBytes: [0, 0]
 CommitCount: 0
 CommitFailCount: 0
 BackCount: 0
 InqCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 InqFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 SetCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 SetFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 RecordType: MQIAccounting
 QueueManager: 'saturn.queue.manager'
 IntervalStartDate: '2005-03-16'
 IntervalStartTime: '15.16.22'
 IntervalEndDate: '2005-03-16'
 IntervalEndTime: '15.16.22'
 CommandLevel: 600
 ConnectionId: x'414d51435452455631202020202020208d0b3742010c0020'
 SeqNumber: 0
 ApplicationName: 'runmqsc'
 ApplicationPid: 8615
 ApplicationTid: 1
 ...

5. The following command browses the accounting queue and displays the application name and
connection identifier of every application for which MQI accounting information is available:

amqsmon -m saturn.queue.manager -t accounting -b -a -l 7006,3024

The output from this command follows:

 ConnectionId: x'414d51435452455631202020202020208d0b374203090020'
 ApplicationName: 'runmqsc'

 ConnectionId: x'414d51435452455631202020202020208d0b3742010a0020'
 ApplicationName: 'amqsput'

146 Monitoring and Performance for IBM WebSphere MQ

 ConnectionId: x'414d51435452455631202020202020208d0b3742010c0020'
 ApplicationName: 'runmqsc'

 ConnectionId: x'414d51435452455631202020202020208d0b3742010d0020'
 ApplicationName: 'amqsput'

 ConnectionId: x'414d51435452455631202020202020208d0b3742150d0020'
 ApplicationName: 'amqsget'

 5 Records Processed.

Accounting and statistics message reference
Use this page to obtain an overview of the format of accounting and statistics messages and the
information returned in these messages

Accounting and statistics message messages are standard WebSphere MQ messages containing a
message descriptor and message data. The message data contains information about the MQI operations
performed by WebSphere MQ applications, or information about the activities occurring in a WebSphere
MQ system.

Message descriptor

• An MQMD structure

Message data

• A PCF header (MQCFH)
• Accounting or statistics message data that is always returned
• Accounting or statistics message data that is returned if available

Monitoring and performance 147

Accounting and statistics message format
Use this page as an example of the structure of an MQI accounting message

Table 23. MQI accounting message structure

MQMD structure Accounting message header
MQCFH structure

MQI accounting message data 1

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback code
Encoding
Coded character set ID
Message format
Message priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name
Put date
Put time
Application origin data
Group identifier
Message sequence number
Offset
Message flags
Original length

Structure type
Structure length
Structure version
Command identifier
Message sequence number
Control options
Completion code
Reason code
Parameter count

Queue manager
Interval start date
Interval start time
Interval end date
Interval end time
Command level
Connection identifier
Sequence number
Application name
Application process identifier
Application thread identifier
User identifier
Connection date
Connection time
Connection name
Channel name
Disconnect date
Disconnect time
Disconnect type
Open count
Open fail count
Close count
Close fail count
Put count
Put fail count
Put1 count
Put1 fail count
Put bytes
Get count
Get fail count
Get bytes
Browse count
Browse fail count
Browse bytes
Commit count
Commit fail count
Backout count
Inquire count
Inquire fail count
Set count
Set fail count

Note:

1. The parameters shown are those returned for an MQI accounting message. The actual accounting or
statistics message data depends on the message category.

148 Monitoring and Performance for IBM WebSphere MQ

Accounting and statistics message MQMD (message descriptor)
Use this page to understand the differences between the message descriptor of accounting and statistics
messages and the message descriptor of event messages

The parameters and values in the message descriptor of accounting and statistics message are the same
as in the message descriptor of event messages, with the following exception:
Format

Description: Format name of message data.

Data type: MQCHAR8.

Value: MQFMT_ADMIN
Admin message.

Some of the parameters contained in the message descriptor of accounting and statistics message
contain fixed data supplied by the queue manager that generated the message.

The MQMD also specifies the name of the queue manager (truncated to 28 characters) that put the
message, and the date and time when the message was put on the accounting, or statistics, queue.

Message data in accounting and statistics messages
The message data in accounting and statistics messages is based on the programmable command format
(PCF), which is used in PCF command inquiries and responses. The message data in accounting and
statistics messages consists of a PCF header (MQCFH) and an accounting or statistics report.

Accounting and statistics message MQCFH (PCF header)
The message header of accounting and statistics messages is an MQCFH structure. The parameters and
values in the message header of accounting and statistics message are the same as in the message
header of event messages, with the following exceptions:
Command

Description: Command identifier. This identifies the accounting or statistics message
category.

Data type: MQLONG.

Values: MQCMD_ACCOUNTING_MQI
MQI accounting message.

MQCMD_ACCOUNTING_Q
Queue accounting message.

MQCMD_STATISTICS_MQI
MQI statistics message.

MQCMD_STATISTICS_Q
Queue statistics message.

MQCMD_STATISTICS_CHANNEL
Channel statistics message.

Version

Description: Structure version number.

Data type: MQLONG.

Value: MQCFH_VERSION_3
Version-3 for accounting and statistics messages.

Monitoring and performance 149

Accounting and statistics message data
The content of accounting and statistics message data is dependent on the category of the accounting or
statistics message, as follows:
MQI accounting message

MQI accounting message data consists of a number of PCF parameters, but no PCF groups.
Queue accounting message

Queue accounting message data consists of a number of PCF parameters, and in the range 1 through
100 QAccountingData PCF groups.

MQI statistics message
MQI statistics message data consists of a number of PCF parameters, but no PCF groups.

Queue statistics message
Queue statistics message data consists of a number of PCF parameters, and in the range 1 through
100 QStatisticsData PCF groups.

Channel statistics message
Channel statistics message data consists of a number of PCF parameters, and in the range 1 through
100 ChlStatisticsData PCF groups.

MQI accounting message data
Use this page to view the structure of an MQI accounting message

Message name: MQI accounting message.

Platforms: All, except WebSphere MQ for z/OS.

System queue: SYSTEM.ADMIN.ACCOUNTING.QUEUE.

QueueManager

Description: The name of the queue manager

Identifier: MQCA_Q_MGR_NAME

Data type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: Always

IntervalStartDate

Description: The date of the start of the monitoring period

Identifier: MQCAMO_START_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

Returned: Always

IntervalStartTime

Description: The time of the start of the monitoring period

Identifier: MQCAMO_START_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: Always

150 Monitoring and Performance for IBM WebSphere MQ

IntervalEndDate

Description: The date of the end of the monitoring period

Identifier: MQCAMO_END_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

Returned: Always

IntervalEndTime

Description: The time of the end of the monitoring period

Identifier: MQCAMO_END_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: Always

CommandLevel

Description: The queue manager command level

Identifier: MQIA_COMMAND_LEVEL

Data type: MQCFIN

Returned: Always

ConnectionId

Description: The connection identifier for the WebSphere MQ connection

Identifier: MQBACF_CONNECTION_ID

Data type: MQCFBS

Maximum length: MQ_CONNECTION_ID_LENGTH

Returned: Always

SeqNumber

Description: The sequence number. This value is incremented for each subsequent record for
long running connections.

Identifier: MQIACF_SEQUENCE_NUMBER

Data type: MQCFIN

Returned: Always

ApplicationName

Description: The name of the application. The contents of this field are equivalent to the
contents of the PutApplName field in the message descriptor.

Identifier: MQCACF_APPL_NAME

Data type: MQCFST

Maximum length: MQ_APPL_NAME_LENGTH

Returned: Always

Monitoring and performance 151

ApplicationPid

Description: The operating system process identifier of the application

Identifier: MQIACF_PROCESS_ID

Data type: MQCFIN

Returned: Always

ApplicationTid

Description: The WebSphere MQ thread identifier of the connection in the application

Identifier: MQIACF_THREAD_ID

Data type: MQCFIN

Returned: Always

UserId

Description: The user identifier context of the application

Identifier: MQCACF_USER_IDENTIFIER

Data type: MQCFST

Maximum length: MQ_USER_ID_LENGTH

Returned: Always

ConnDate

Description: Date of MQCONN operation

Identifier: MQCAMO_CONN_DATE

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: When available

ConnTime

Description: Time of MQCONN operation

Identifier: MQCAMO_CONN_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: When available

ConnName

Description: Connection name for client connection

Identifier: MQCACH_CONNECTION_NAME

Data type: MQCFST

Maximum length: MQ_CONN_NAME_LENGTH

Returned: When available

152 Monitoring and Performance for IBM WebSphere MQ

ChannelName

Description: Channel name for client connection

Identifier: MQCACH_CHANNEL_NAME

Data type: MQCFST

Maximum length: MQ_CHANNEL_NAME_LENGTH

Returned: When available

DiscDate

Description: Date of MQDISC operation

Identifier: MQCAMO_DISC_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

Returned: When available

DiscTime

Description: Time of MQDISC operation

Identifier: MQCAMO_DISC_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: When available

DiscType

Description: Type of disconnect

Identifier: MQIAMO_DISC_TYPE

Data type: MQCFIN

Values: The possible values are:
MQDISCONNECT_NORMAL

Requested by application
MQDISCONNECT_IMPLICIT

Abnormal application termination
MQDISCONNECT_Q_MGR

Connection broken by queue manager

Returned: When available

OpenCount

Description: The number of objects opened. This parameter is an integer list indexed by
object type, see Reference note 1.

Identifier: MQIAMO_OPENS

Data type: MQCFIL

Returned: When available

Monitoring and performance 153

OpenFailCount

Description: The number of unsuccessful attempts to open an object. This parameter is an
integer list indexed by object type, see Reference note 1.

Identifier: MQIAMO_OPENS_FAILED

Data type: MQCFIL

Returned: When available

CloseCount

Description: The number of objects closed. This parameter is an integer list indexed by
object type, see Reference note 1.

Identifier: MQIAMO_CLOSES

Data type: MQCFIL

Returned: When available

CloseFailCount

Description: The number of unsuccessful attempts to close an object. This parameter is an
integer list indexed by object type, see Reference note 1.

Identifier: MQIAMO_CLOSES_FAILED

Data type: MQCFIL

Returned: When available

PutCount

Description: The number persistent and nonpersistent messages successfully put to a queue,
with the exception of messages put using the MQPUT1 call. This parameter is an
integer list indexed by persistence value, see Reference note 2.

Identifier: MQIAMO_PUTS

Data type: MQCFIL

Returned: When available

PutFailCount

Description: The number of unsuccessful attempts to put a message

Identifier: MQIAMO_PUTS_FAILED

Data type: MQCFIN

Returned: When available

Put1Count

Description: The number of persistent and nonpersistent messages successfully put to
the queue using MQPUT1 calls. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Identifier: MQIAMO_PUT1S

Data type: MQCFIL

Included in PCF
group:

QAccountingData

154 Monitoring and Performance for IBM WebSphere MQ

Returned: When available

Put1FailCount

Description: The number of unsuccessful attempts to put a message using MQPUT1 calls

Identifier: MQIAMO_PUT1S_FAILED

Data type: MQCFIN

Included in PCF
group:

QAccountingData

Returned: When available

PutBytes

Description: The number bytes written using put calls for persistent and nonpersistent
messages. This parameter is an integer list indexed by persistence value, see
Reference note 2.

Identifier: MQIAMO64_PUT_BYTES

Data type: MQCFIL64

Returned: When available

GetCount

Description: The number of successful destructive MQGET calls for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Identifier: MQIAMO_GETS

Data type: MQCFIL

Returned: When available

GetFailCount

Description: The number of failed destructive MQGET calls

Identifier: MQIAMO_GETS_FAILED

Data type: MQCFIN

Returned: When available

GetBytes

Description: Total number of bytes retrieved for persistent and nonpersistent messages. This
parameter is an integer list indexed by persistence value, see Reference note 2.

Identifier: MQIAMO64_GET_BYTES

Data type: MQCFIL64

Returned: When available

BrowseCount

Description: The number of successful non-destructive MQGET calls for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Identifier: MQIAMO_BROWSES

Monitoring and performance 155

Data type: MQCFIL

Returned: When available

BrowseFailCount

Description: The number of unsuccessful non-destructive MQGET calls

Identifier: MQIAMO_BROWSES_FAILED

Data type: MQCFIN

Returned: When available

BrowseBytes

Description: Total number of bytes browsed for persistent and nonpersistent messages. This
parameter is an integer list indexed by persistence value, see Reference note 2.

Identifier: MQIAMO64_BROWSE_BYTES

Data type: MQCFIL64

Returned: When available

CommitCount

Description: The number of successful transactions. This number includes those
transactions committed implicitly by the connected application. Commit
requests where there is no outstanding work are included in this count.

Identifier: MQIAMO_COMMITS

Data type: MQCFIN

Returned: When available

CommitFailCount

Description: The number of unsuccessful attempts to complete a transaction

Identifier: MQIAMO_COMMITS_FAILED

Data type: MQCFIN

Returned: When available

BackCount

Description: The number of backouts processed, including implicit backouts due to abnormal
disconnection

Identifier: MQIAMO_BACKOUTS

Data type: MQCFIN

Returned: When available

InqCount

Description: The number of successful objects inquired upon. This parameter is an integer
list indexed by object type, see Reference note 1.

Identifier: MQIAMO_INQS

Data type: MQCFIL

Returned: When available

156 Monitoring and Performance for IBM WebSphere MQ

InqFailCount

Description: The number of unsuccessful object inquire attempts. This parameter is an
integer list indexed by object type, see Reference note 1.

Identifier: MQIAMO_INQS_FAILED

Data type: MQCFIL

Returned: When available

SetCount

Description: The number of successful MQSET calls. This parameter is an integer list indexed
by object type, see Reference note 1.

Identifier: MQIAMO_SETS

Data type: MQCFIL

Returned: When available

SetFailCount

Description: The number of unsuccessful MQSET calls. This parameter is an integer list
indexed by object type, see Reference note 1.

Identifier: MQIAMO_SETS_FAILED

Data type: MQCFIL

Returned: When available

SubCountDur

Description: The number of succesful subscribe requests which created, altered or resumed
durable subscriptions. This is an array of values indexed by the type of operation

0 = The number of subscriptions created

1 = The number of subscriptions altered

2 = The number of subscriptions resumed

Identifier: MQIAMO_SUBS_DUR

Data type: MQCFIL

Returned: When available.

SubCountNDur

Description: The number of succesful subscribe requests which created, altered or resumed
non-durable subscriptions. This is an array of values indexed by the type of
operation

0 = The number of subscriptions created

1 = The number of subscriptions altered

2 = The number of subscriptions resumed

Identifier: MQIAMO_SUBS_NDUR

Data type: MQCFIL

Returned: When available.

Monitoring and performance 157

SubFailCount

Description: The number of unsuccessful Subscribe requests.

Identifier: MQIAMO_SUBS_FAILED

Data type: MQCFIN

Returned: When available.

UnsubCountDur

Description: The number of succesful unsubscribe requests for durable subscriptions. This is
an array of values indexed by the type of operation

0 - The subscription was closed but not removed

1 - The subscription was closed and removed

Identifier: MQIAMO_UNSUBS_DUR

Data type: MQCFIL

Returned: When available.

UnsubCountNDur

Description: The number of succesful unsubscribe requests for durable subscriptions. This is
an array of values indexed by the type of operation

0 - The subscription was closed but not removed

1 - The subscription was closed and removed

Identifier: MQIAMO_UNSUBS_NDUR

Data type: MQCFIL

Returned: When available.

UnsubFailCount

Description: The number of unsuccessful unsubscribe requests.

Identifier: MQIAMO_UNSUBS_FAILED

Data type: MQCFIN

Returned: When available.

SubRqCount

Description: The number of successful MQSUBRQ requests.

Identifier: MQIAMO_SUBRQS

Data type: MQCFIN

Returned: When available.

SubRqFailCount

Description: The number of unsuccessful MQSUB requests.

Identifier: MQIAMO_SUBRQS_FAILED

Data type: MQCFIN

Returned: When available.

158 Monitoring and Performance for IBM WebSphere MQ

CBCount

Description: The number of successful MQCB requests. This is an array of values indexed by
the type of operation

0 - A callback was created or altered

1 - A callback was removed

2 - A callback was resumed

3 - A callback was suspended

Identifier: MQIAMO_CBS

Data type: MQCFIN

Returned: When available.

CBFailCount

Description: The number of unsuccessful MQCB requests.

Identifier: MQIAMO_CBS_FAILED

Data type: MQCFIN

Returned: When available.

CtlCount

Description: The number of successful MQCTL requests. This is an array of values indexed by
the type of operation

0 - The connection was started

1 - The connection was stopped

2 - The connection was resumed

3 - The connection was suspended

Identifier: MQIAMO_CTLS

Data type: MQCFIL

Returned: When available.

CtlFailCount

Description: The number of unsuccessful MQCTL requests.

Identifier: MQIAMO_CTLS_FAILED

Data type: MQCFIN

Returned: When available.

StatCount

Description: The number of successful MQSTAT requests.

Identifier: MQIAMO_STATS.

Data type: MQCFIN

Returned: When available.

Monitoring and performance 159

StatFailCount

Description: The number of unsuccessful MQSTAT requests.

Identifier: MQIAMO_STATS_FAILED

Data type: MQCFIN

Returned: When available.

PutTopicCount

Description: The number persistent and nonpersistent messages successfully put to a topic,
with the exception of messages put using the MQPUT1 call. This parameter is an
integer list indexed by persistence value, see Reference note 2.

Note: Messages put using a queue alias which resolve to a topic are included in
this value.

Identifier: MQIAMO_TOPIC_PUTS

Data type: MQCFIL

Returned: When available.

PutTopicFailCount

Description: The number of unsuccessful attempts to put a message to a topic.

Identifier: MQIAMO_TOPIC_PUTS_FAILED

Data type: MQCFIN

Returned: When available.

Put1TopicCount

Description: The number of persistent and nonpersistent messages successfully put to
a topic using MQPUT1 calls. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Note: Messages put using a queue alias which resolve to a topic are included in
this value.

Identifier: MQIAMO_TOPIC_PUT1S

Data type: MQCFIL

Returned: When available.

Put1TopicFailCount

Description: The number of unsuccessful attempts to put a message to a topic using
MQPUT1 calls.

Identifier: MQIAMO_TOPIC_PUT1S_FAILED

Data type: MQCFIN

Returned: When available.

160 Monitoring and Performance for IBM WebSphere MQ

PutTopicBytes

Description: The number bytes written using put calls for persistent and nonpersistent
messages which resolve to a publish operation. This is number of bytes put by
the application and not the resultant number of bytes delivered to subscribers.
This parameter is an integer list indexed by persistence value, see Reference
note 2.

Identifier: MQIAMO64_TOPIC_PUT_BYTES

Data type: MQCFIL64

Returned: When available.

Queue accounting message data
Use this page to view the structure of a queue accounting message

Message name: Queue accounting message.

Platforms: All, except WebSphere MQ for z/OS.

System queue: SYSTEM.ADMIN.ACCOUNTING.QUEUE.

QueueManager

Description: The name of the queue manager

Identifier: MQCA_Q_MGR_NAME

Data type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: Always

IntervalStartDate

Description: The date of the start of the monitoring period

Identifier: MQCAMO_START_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

Returned: Always

IntervalStartTime

Description: The time of the start of the monitoring period

Identifier: MQCAMO_START_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: Always

IntervalEndDate

Description: The date of the end of the monitoring period

Identifier: MQCAMO_END_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

Monitoring and performance 161

Returned: Always

IntervalEndTime

Description: The time of the end of the monitoring period

Identifier: MQCAMO_END_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: Always

CommandLevel

Description: The queue manager command level

Identifier: MQIA_COMMAND_LEVEL

Data type: MQCFIN

Returned: Always

ConnectionId

Description: The connection identifier for the WebSphere MQ connection

Identifier: MQBACF_CONNECTION_ID

Data type: MQCFBS

Maximum length: MQ_CONNECTION_ID_LENGTH

Returned: Always

SeqNumber

Description: The sequence number. This value is incremented for each subsequent record for
long running connections.

Identifier: MQIACF_SEQUENCE_NUMBER

Data type: MQCFIN

Returned: Always

ApplicationName

Description: The name of the application. The contents of this field are equivalent to the
contents of the PutApplName field in the message descriptor.

Identifier: MQCACF_APPL_NAME

Data type: MQCFST

Maximum length: MQ_APPL_NAME_LENGTH

Returned: Always

ApplicationPid

Description: The operating system process identifier of the application

Identifier: MQIACF_PROCESS_ID

Data type: MQCFIN

Returned: Always

162 Monitoring and Performance for IBM WebSphere MQ

ApplicationTid

Description: The WebSphere MQ thread identifier of the connection in the application

Identifier: MQIACF_THREAD_ID

Data type: MQCFIN

Returned: Always

UserId

Description: The user identifier context of the application

Identifier: MQCACF_USER_IDENTIFIER

Data type: MQCFST

Maximum length: MQ_USER_ID_LENGTH

Returned: Always

ObjectCount

Description: The number of queues accessed in the interval for which accounting data has
been recorded. This value is set to the number of QAccountingData PCF groups
contained in the message.

Identifier: MQIAMO_OBJECT_COUNT

Data type: MQCFIN

Returned: Always

QAccountingData

Description: Grouped parameters specifying accounting details for a queue

Identifier: MQGACF_Q_ACCOUNTING_DATA

Data type: MQCFGR

Monitoring and performance 163

Parameters in
group:

QName
CreateDate
CreateTime
QType
QDefinitionType
OpenCount
OpenDate
OpenTime
CloseDate
CloseTime
PutCount
PutFailCount
Put1Count
Put1FailCount
PutBytes
PutMinBytes
PutMaxBytes
GetCount
GetFailCount
GetBytes
GetMinBytes
GetMaxBytes
BrowseCount
BrowseFailCount
BrowseBytes
BrowseMinBytes
BrowseMaxBytes
TimeOnQMin
TimeOnQAvg
TimeOnQMax

Returned: Always

QName

Description: The name of the queue

Identifier: MQCA_Q_NAME

Data type: MQCFST

Included in PCF
group:

QAccountingData

Maximum length: MQ_Q_NAME_LENGTH

Returned: When available

CreateDate

Description: The date the queue was created

Identifier: MQCA_CREATION_DATE

Data type: MQCFST

Included in PCF
group:

QAccountingData

164 Monitoring and Performance for IBM WebSphere MQ

Maximum length: MQ_DATE_LENGTH

Returned: When available

CreateTime

Description: The time the queue was created

Identifier: MQCA_CREATION_TIME

Data type: MQCFST

Included in PCF
group:

QAccountingData

Maximum length: MQ_TIME_LENGTH

Returned: When available

QType

Description: The type of the queue

Identifier: MQIA_Q_TYPE

Data type: MQCFIN

Included in PCF
group:

QAccountingData

Value: MQQT_LOCAL

Returned: When available

QDefinitionType

Description: The queue definition type

Identifier: MQIA_DEFINITION_TYPE

Data type: MQCFIN

Included in PCF
group:

QAccountingData

Values: Possible values are:
MQQDT_PREDEFINED
MQQDT_PERMANENT_DYNAMIC
MQQDT_TEMPORARY_DYNAMIC

Returned: When available

OpenCount

Description: The number of times this queue was opened by the application in this interval

Identifier: MQIAMO_OPENS

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

Monitoring and performance 165

OpenDate

Description: The date the queue was first opened in this recording interval. If the queue was
already open at the start of this interval, this value reflects the date the queue
was originally opened.

Identifier: MQCAMO_OPEN_DATE

Data type: MQCFST

Included in PCF
group:

QAccountingData

Returned: When available

OpenTime

Description: The time the queue was first opened in this recording interval. If the queue was
already open at the start of this interval, this value reflects the time the queue
was originally opened.

Identifier: MQCAMO_OPEN_TIME

Data type: MQCFST

Included in PCF
group:

QAccountingData

Returned: When available

CloseDate

Description: The date of the final close of the queue in this recording interval. If the queue is
still open then the value is not returned.

Identifier: MQCAMO_CLOSE_DATE

Data type: MQCFST

Included in PCF
group:

QAccountingData

Returned: When available

CloseTime

Description: The time of final close of the queue in this recording interval. If the queue is still
open then the value is not returned.

Identifier: MQCAMO_CLOSE_TIME

Data type: MQCFST

Included in PCF
group:

QAccountingData

Returned: When available

PutCount

Description: The number of persistent and nonpersistent messages successfully put to the
queue, with the exception of MQPUT1 calls. This parameter is an integer list
indexed by persistence value, see Reference note 2.

Identifier: MQIAMO_PUTS

Data type: MQCFIL

166 Monitoring and Performance for IBM WebSphere MQ

Included in PCF
group:

QAccountingData

Returned: When available

PutFailCount

Description: The number of unsuccessful attempts to put a message, with the exception of
MQPUT1 calls

Identifier: MQIAMO_PUTS_FAILED

Data type: MQCFIN

Included in PCF
group:

QAccountingData

Returned: When available

Put1Count

Description: The number of persistent and nonpersistent messages successfully put to
the queue using MQPUT1 calls. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Identifier: MQIAMO_PUT1S

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

Put1FailCount

Description: The number of unsuccessful attempts to put a message using MQPUT1 calls

Identifier: MQIAMO_PUT1S_FAILED

Data type: MQCFIN

Included in PCF
group:

QAccountingData

Returned: When available

PutBytes

Description: The total number of bytes put for persistent and nonpersistent messages. This
parameter is an integer list indexed by persistence value, see Reference note 2.

Identifier: MQIAMO64_PUT_BYTES

Data type: MQCFIL64

Included in PCF
group:

QAccountingData

Returned: When available

PutMinBytes

Description: The smallest persistent and nonpersistent message size placed on the queue.
This parameter is an integer list indexed by persistence value, see Reference
note 2.

Monitoring and performance 167

Identifier: MQIAMO_PUT_MIN_BYTES

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

PutMaxBytes

Description: The largest persistent and nonpersistent message size placed on the queue.
This parameter is an integer list indexed by persistence value, see Reference
note 2.

Identifier: MQIAMO_PUT_MAX_BYTES

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

GeneratedMsgCount

Description: The number of generated messages. Generated messages are

• Queue Depth Hi Events
• Queue Depth Low Events

Identifier: MQIAMO_GENERATED_MSGS

Data type: MQCFIN

Included in PCF
group:

QAccountingData

Returned: When available

GetCount

Description: The number of successful destructive MQGET calls for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Identifier: MQIAMO_GETS

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

GetFailCount

Description: The number of failed destructive MQGET calls

Identifier: MQIAMO_GETS_FAILED

Data type: MQCFIN

Included in PCF
group:

QAccountingData

Returned: When available

168 Monitoring and Performance for IBM WebSphere MQ

GetBytes

Description: The number of bytes read in destructive MQGET calls for persistent and
nonpersistent messages. This parameter is an integer list indexed by persistence
value, see Reference note 2.

Identifier: MQIAMO64_GET_BYTES

Data type: MQCFIL64

Included in PCF
group:

QAccountingData

Returned: When available

GetMinBytes

Description: The size of the smallest persistent and nonpersistent message retrieved rom
the queue. This parameter is an integer list indexed by persistence value, see
Reference note 2.

Identifier: MQIAMO_GET_MIN_BYTES

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

GetMaxBytes

Description: The size of the largest persistent and nonpersistent message retrieved rom
the queue. This parameter is an integer list indexed by persistence value, see
Reference note 2.

Identifier: MQIAMO_GET_MAX_BYTES

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

BrowseCount

Description: The number of successful non-destructive MQGET calls for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Identifier: MQIAMO_BROWSES

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

BrowseFailCount

Description: The number of unsuccessful non-destructive MQGET calls

Identifier: MQIAMO_BROWSES_FAILED

Data type: MQCFIN

Monitoring and performance 169

Included in PCF
group:

QAccountingData

Returned: When available

BrowseBytes

Description: The number of bytes read in non-destructive MQGET calls that returned
persistent messages

Identifier: MQIAMO64_BROWSE_BYTES

Data type: MQCFIL64

Included in PCF
group:

QAccountingData

Returned: When available

BrowseMinBytes

Description: The size of the smallest persistent and nonpersistent message browsed from
the queue. This parameter is an integer list indexed by persistence value, see
Reference note 2.

Identifier: MQIAMO_BROWSE_MIN_BYTES

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

BrowseMaxBytes

Description: The size of the largest persistent and nonpersistent message browsed from
the queue. This parameter is an integer list indexed by persistence value, see
Reference note 2.

Identifier: MQIAMO_BROWSE_MAX_BYTES

Data type: MQCFIL

Included in PCF
group:

QAccountingData

Returned: When available

CBCount

Description: The number of successful MQCB requests. This is an array of values indexed by
the type of operation

0 - A callback was created or altered

1 - A callback was removed

2 - A callback was resumed

3 - A callback was suspended

Identifier: MQIAMO_CBS

Data type: MQCFIN

Returned: When available.

170 Monitoring and Performance for IBM WebSphere MQ

CBFailCount

Description: The number of unsuccessful MQCB requests.

Identifier: MQIAMO_CBS_FAILED

Data type: MQCFIN

Returned: When available.

TimeOnQMin

Description: The shortest time a persistent and nonpersistent message remained on the
queue before being destructively retrieved, in microseconds. For messages
retrieved under syncpoint this value does not included the time before the get
operation is committed. This parameter is an integer list indexed by persistence
value, see Reference note 2.

Identifier: MQIAMO64_Q_TIME_MIN

Data type: MQCFIL64

Included in PCF
group:

QAccountingData

Returned: When available

TimeOnQAvg

Description: The average time a persistent and nonpersistent message remained on the
queue before being destructively retrieved, in microseconds. For messages
retrieved under syncpoint this value does not included the time before the get
operation is committed. This parameter is an integer list indexed by persistence
value, see Reference note 2.

Identifier: MQIAMO64_Q_TIME_AVG

Data type: MQCFIL64

Included in PCF
group:

QAccountingData

Returned: When available

TimeOnQMax

Description: The longest time a persistent and nonpersistent message remained on the
queue before being destructively retrieved, in microseconds. For messages
retrieved under syncpoint this value does not included the time before the get
operation is committed. This parameter is an integer list indexed by persistence
value, see Reference note 2.

Identifier: MQIAMO64_Q_TIME_MAX

Data type: MQCFIL64

Included in PCF
group:

QAccountingData

Returned: When available

MQI statistics message data
Use this page to view the structure of an MQI statistics message

Message name: MQI statistics message.

Monitoring and performance 171

Platforms: All, except WebSphere MQ for z/OS.

System queue: SYSTEM.ADMIN.STATISTICS.QUEUE.

QueueManager

Description: Name of the queue manager.

Identifier: MQCA_Q_MGR_NAME.

Data type: MQCFST.

Maximum length: MQ_Q_MGR_NAME_LENGTH.

Returned: Always.

IntervalStartDate

Description: The date at the start of the monitoring period.

Identifier: MQCAMO_START_DATE.

Data type: MQCFST.

Maximum length: MQ_DATE_LENGTH

Returned: Always.

IntervalStartTime

Description: The time at the start of the monitoring period.

Identifier: MQCAMO_START_TIME.

Data type: MQCFST.

Maximum length: MQ_TIME_LENGTH

Returned: Always.

IntervalEndDate

Description: The date at the end of the monitoring period.

Identifier: MQCAMO_END_DATE.

Data type: MQCFST.

Maximum length: MQ_DATE_LENGTH

Returned: Always.

IntervalEndTime

Description: The time at the end of the monitoring period.

Identifier: MQCAMO_END_TIME.

Data type: MQCFST.

Maximum length: MQ_TIME_LENGTH

Returned: Always.

CommandLevel

Description: The queue manager command level.

Identifier: MQIA_COMMAND_LEVEL.

172 Monitoring and Performance for IBM WebSphere MQ

Data type: MQCFIN.

Returned: Always.

ConnCount

Description: The number of successful connections to the queue manager.

Identifier: MQIAMO_CONNS.

Data type: MQCFIN.

Returned: When available.

ConnFailCount

Description: The number of unsuccessful connection attempts.

Identifier: MQIAMO_CONNS_FAILED.

Data type: MQCFIN.

Returned: When available.

ConnsMax

Description: The maximum number of concurrent connections in the recording interval.

Identifier: MQIAMO_CONNS_MAX.

Data type: MQCFIN.

Returned: When available.

DiscCount

Description: The number of disconnects from the queue manager. This is an integer array,
indexed by the following constants:

• MQDISCONNECT_NORMAL
• MQDISCONNECT_IMPLICIT
• MQDISCONNECT_Q_MGR

Identifier: MQIAMO_DISCS.

Data type: MQCFIL.

Returned: When available.

OpenCount

Description: The number of objects successfully opened. This parameter is an integer list
indexed by object type, see Reference note 1.

Identifier: MQIAMO_OPENS.

Data type: MQCFIL.

Returned: When available.

OpenFailCount

Description: The number of unsuccessful open object attempts. This parameter is an integer
list indexed by object type, see Reference note 1.

Identifier: MQIAMO_OPENS_FAILED.

Monitoring and performance 173

Data type: MQCFIL.

Returned: When available.

CloseCount

Description: The number of objects successfully closed. This parameter is an integer list
indexed by object type, see Reference note 1.

Identifier: MQIAMO_CLOSES.

Data type: MQCFIL.

Returned: When available.

CloseFailCount

Description: The number of successful close object attempts. This parameter is an integer
list indexed by object type, see Reference note 1.

Identifier: MQIAMO_CLOSES_FAILED.

Data type: MQCFIL.

Returned: When available.

InqCount

Description: The number of objects successfully inquired upon. This parameter is an integer
list indexed by object type, see Reference note 1.

Identifier: MQIAMO_INQS.

Data type: MQCFIL.

Returned: When available.

InqFailCount

Description: The number of unsuccessful object inquire attempts. This parameter is an
integer list indexed by object type, see Reference note 1.

Identifier: MQIAMO_INQS_FAILED.

Data type: MQCFIL.

Returned: When available.

SetCount

Description: The number of objects successfully updated (SET). This parameter is an integer
list indexed by object type, see Reference note 1.

Identifier: MQIAMO_SETS.

Data type: MQCFIL.

Returned: When available.

SetFailCount

Description: The number of unsuccessful SET attempts. This parameter is an integer list
indexed by object type, see Reference note 1.

Identifier: MQIAMO_SETS_FAILED.

Data type: MQCFIL.

174 Monitoring and Performance for IBM WebSphere MQ

Returned: When available.

PutCount

Description: The number of persistent and nonpersistent messages successfully put to a
queue, with the exception of MQPUT1 requests. This parameter is an integer list
indexed by persistence value, see Reference note 2.

Identifier: MQIAMO_PUTS.

Data type: MQCFIL.

Returned: When available.

PutFailCount

Description: The number of unsuccessful put message attempts.

Identifier: MQIAMO_PUTS_FAILED.

Data type: MQCFIN.

Returned: When available.

Put1Count

Description: The number of persistent and nonpersistent messages successfully put to a
queue using MQPUT1 requests. This parameter is an integer list indexed by
persistence value, see Reference note 2

Identifier: MQIAMO_PUT1S.

Data type: MQCFIL.

Returned: When available.

Put1FailCount

Description: The number of unsuccessful attempts to put a persistent and nonpersistent
message to a queue using MQPUT1 requests. This parameter is an integer list
indexed by persistence value, see Reference note 2

Identifier: MQIAMO_PUT1S_FAILED.

Data type: MQCFIL.

Returned: When available.

PutBytes

Description: The number bytes for persistent and nonpersistent messages written in using
put requests. This parameter is an integer list indexed by persistence value, see
Reference note 2

Identifier: MQIAMO64_PUT_BYTES.

Data type: MQCFIL64.

Returned: When available.

GetCount

Description: The number of successful destructive get requests for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2

Identifier: MQIAMO_GETS.

Monitoring and performance 175

Data type: MQCFIL.

Returned: When available.

GetFailCount

Description: The number of unsuccessful destructive get requests.

Identifier: MQIAMO_GETS_FAILED.

Data type: MQCFIN.

Returned: When available.

GetBytes

Description: The number of bytes read in destructive gets requests for persistent
and nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2

Identifier: MQIAMO64_GET_BYTES.

Data type: MQCFIL64.

Returned: When available.

BrowseCount

Description: The number of successful non-destructive get requests for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2

Identifier: MQIAMO_BROWSES.

Data type: MQCFIL.

Returned: When available.

BrowseFailCount

Description: The number of unsuccessful non-destructive get requests.

Identifier: MQIAMO_BROWSES_FAILED.

Data type: MQCFIN.

Returned: When available.

BrowseBytes

Description: The number of bytes read in non-destructive get requests for persistent
and nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Reference note 2

Identifier: MQIAMO64_BROWSE_BYTES.

Data type: MQCFIL64.

Returned: When available.

CommitCount

Description: The number of transactions successfully completed. This number includes
transactions committed implicitly by the application disconnecting, and commit
requests where there is no outstanding work.

Identifier: MQIAMO_COMMITS.

176 Monitoring and Performance for IBM WebSphere MQ

Data type: MQCFIN.

Returned: When available.

CommitFailCount

Description: The number of unsuccessful attempts to complete a transaction.

Identifier: MQIAMO_COMMITS_FAILED.

Data type: MQCFIN.

Returned: When available.

BackCount

Description: The number of backouts processed, including implicit backout upon abnormal
disconnect.

Identifier: MQIAMO_BACKOUTS.

Data type: MQCFIN.

Returned: When available.

ExpiredMsgCount

Description: The number of persistent and nonpersistent messages that were discarded
because they had expired, before they could be retrieved.

Identifier: MQIAMO_MSGS_EXPIRED.

Data type: MQCFIN.

Returned: When available.

PurgeCount

Description: The number of times the queue has been cleared.

Identifier: MQIAMO_MSGS_PURGED.

Data type: MQCFIN.

Returned: When available.

SubCountDur

Description: The number of successful Subscribe requests which created, altered or
resumed durable subscriptions. This is an array of values indexed by the type of
operation

0 = The number of subscriptions created

1 = The number of subscriptions altered

2 = The number of subscriptions resumed

Identifier: MQIAMO_SUBS_DUR.

Data type: MQCFIL

Returned: When available.

Monitoring and performance 177

SubCountNDur

Description: The number of successful Subscribe requests which created, altered or
resumed non-durable subscriptions. This is an array of values indexed by the
type of operation

0 = The number of subscriptions created

1 = The number of subscriptions altered

2 = The number of subscriptions resumed

Identifier: MQIAMO_SUBS_NDUR.

Data type: MQCFIL.

Returned: When available.

SubFailCount

Description: The number of unsuccessful Subscribe requests.

Identifier: MQIAMO_SUBS_FAILED.

Data type: MQCFIN.

Returned: When available.

UnsubCountDur

Description: The number of succesful unsubscribe requests for durable subscriptions. This is
an array of values indexed by the type of operation

0 - The subscription was closed but not removed

1 - The subscription was closed and removed

Identifier: MQIAMO_UNSUBS_DUR.

Data type: MQCFIL.

Returned: When available.

UnsubCountNDur

Description: The number of succesful unsubscribe requests for non-durable subscriptions.
This is an array of values indexed by the type of operation

0 - The subscription was closed but not removed

1 - The subscription was closed and removed

Identifier: MQIAMO_UNSUBS_NDUR.

Data type: MQCFIL.

Returned: When available.

UnsubFailCount

Description: The number of failed unsubscribe requests.

Identifier: MQIAMO_UNSUBS_FAILED.

Data type: MQCFIN.

Returned: When available.

178 Monitoring and Performance for IBM WebSphere MQ

SubRqCount

Description: The number of successful MQSUBRQ requests.

Identifier: MQIAMO_SUBRQS

Data type: MQCFIN

Returned: When available.

SubRqFailCount

Description: The number of unsuccessful MQSUBRQ requests.

Identifier: MQIAMO_SUBRQS_FAILED.

Data type: MQCFIN.

Returned: When available.

CBCount

Description: The number of successful MQCB requests. This is an array of values indexed by
the type of operation

0 - A callback was created or altered

1 - A callback was removed

2 - A callback was resumed

3 - A callback was suspended

Identifier: MQIAMO_CBS.

Data type: MQCFIL.

Returned: When available.

CBFailCount

Description: The number of unsuccessful MQCB requests.

Identifier: MQIAMO_CBS_FAILED.

Data type: MQCFIN.

Returned: When available.

CtlCount

Description: The number of successful MQCTL requests. This is an array of values indexed by
the type of operation:

0 - The connection was started

1 - The connection was stopped

2 - The connection was resumed

3 - The connection was suspended

Identifier: MQIAMO_CTLS.

Data type: MQCFIL.

Returned: When available.

Monitoring and performance 179

CtlFailCount

Description: The number of unsuccessful MQCTL requests.

Identifier: MQIAMO_CTLS_FAILED.

Data type: MQCFIN.

Returned: When available.

StatCount

Description: The number of successful MQSTAT requests.

Identifier: MQIAMO_STATS.

Data type: MQCFIN.

Returned: When available.

StatFailCount

Description: The number of unsuccessful MQSTAT requests.

Identifier: MQIAMO_STATS_FAILED.

Data type: MQCFIN.

Returned: When available.

SubCountDurHighWater

Description: The high-water mark on the number of durable subscriptions during the time
interval. This is an array of values indexed by SUBTYPE

0 - The high-water mark for all durable subscriptions in the system

1 - The high-water mark for durable application subscriptions
(MQSUBTYPE_API)

2 - The high-water mark for durable admin subscription (MQSUBTYPE_ADMIN)

3 - The high-water mark for durable proxy subscriptions (MQSUBTYPE_PROXY)

Identifier: MQIAMO_SUB_DUR_HIGHWATER

Data type: MQCFIL.

Returned: When available.

SubCountDurLowWater

Description: The low-water mark on the number of durable subscriptions during the time
interval. This is an array of values indexed by SUBTYPE.

0 - The low-water mark for all durable subscriptions in the system

1 - The low-water mark for durable application subscriptions
(MQSUBTYPE_API)

2 - The low-water mark for durable admin subscriptions (MQSUBTYPE_ADMIN)

3 - The low-water mark for durable proxy subscriptions (MQSUBTYPE_PROXY)

Identifier: MQIAMO_SUB_DUR_LOWWATER

Data type: MQCFIL.

Returned: When available.

180 Monitoring and Performance for IBM WebSphere MQ

SubCountNDurHighWater

Description: The high-water mark on the number of non-durable subscriptions during the
time interval. This is an array of values indexed by SUBTYPE

0 - The high-water mark for all non-durable subscriptions in the system

1 - The high-water mark for non-durable application subscriptions
(MQSUBTYPE_API)

2 - The high-water mark for non-durable admin subscription
(MQSUBTYPE_ADMIN)

3 - The high-water mark for non-durable proxy subscriptions
(MQSUBTYPE_PROXY)

Identifier: MQIAMO_SUB_NDUR_HIGHWATER

Data type: MQCFIL.

Returned: When available.

SubCountNDurLowWater

Description: The low-water mark on the number of non-durable subscriptions during the
time interval. This is an array of values indexed by SUBTYPE.

0 - The low-water mark for all non-durable subscriptions in the system

1 - The low-water mark for non-durable application subscriptions
(MQSUBTYPE_API)

2 - The low-water mark for non-durable admin subscriptions
(MQSUBTYPE_ADMIN)

3 - The low-water mark for non-durable proxy subscriptions
(MQSUBTYPE_PROXY)

Identifier: MQIAMO_SUB_NDUR_LOWWATER

Data type: MQCFIL.

Returned: When available.

PutTopicCount

Description: The number persistent and nonpersistent messages successfully put to a topic,
with the exception of messages put using the MQPUT1 call. This parameter is an
integer list indexed by persistence value, see Reference note 2.

Note: Messages put using a queue alias which resolve to a topic are included in
this value.

Identifier: MQIAMO_TOPIC_PUTS.

Data type: MQCFIL.

Returned: When available.

PutTopicFailCount

Description: The number of unsuccessful attempts to put a message to a topic.

Identifier: MQIAMO_TOPIC_PUTS_FAILED.

Data type: MQCFIN.

Returned: When available.

Monitoring and performance 181

Put1TopicCount

Description: The number of persistent and nonpersistent messages successfully put to
a topic using MQPUT1 calls. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Note: Messages put using a queue alias which resolve to a topic are included in
this value.

Identifier: MQIAMO_TOPIC_PUT1S.

Data type: MQCFIL.

Returned: When available.

Put1TopicFailCount

Description: The number of unsuccessful attempts to put a message to a topic using
MQPUT1 calls.

Identifier: MQIAMO_TOPIC_PUT1S_FAILED.

Data type: MQCFIN.

Returned: When available.

PutTopicBytes

Description: The number bytes written using put calls for persistent and nonpersistent
messages which resolve to a publish operation. This is number of bytes put by
the application and not the resultant number of bytes delivered to subscribers,
see PublishMsgBytes for this value. This parameter is an integer list indexed by
persistence value, see Reference note 2.

Identifier: MQIAMO64_TOPIC_PUT_BYTES.

Data type: MQCFIL64.

Returned: When available.

PublishMsgCount

Description: The number of messages delivered to subscriptions in the time interval. This
parameter is an integer list indexed by persistence value, see Reference note 2.

Identifier: MQIAMO64_PUBLISH_MSG_COUNT

Data type: MQCFIL.

Returned: When available.

PublishMsgBytes

Description: The number of bytes delivered to subscriptions in the time interval. This
parameter is an integer list indexed by persistence value, see Reference note
2.

Identifier: MQIAMO64_PUBLISH_MSG_BYTES

Data type: MQCFIL64.

Returned: When available.

182 Monitoring and Performance for IBM WebSphere MQ

Queue statistics message data
Use this page to view the structure of a queue statistics message

Message name: Queue statistics message.

Platforms: All, except WebSphere MQ for z/OS.

System queue: SYSTEM.ADMIN.STATISTICS.QUEUE.

QueueManager

Description: Name of the queue manager

Identifier: MQCA_Q_MGR_NAME

Data type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: Always

IntervalStartDate

Description: The date at the start of the monitoring period

Identifier: MQCAMO_START_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

Returned: Always

IntervalStartTime

Description: The time at the start of the monitoring period

Identifier: MQCAMO_START_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: Always

IntervalEndDate

Description: The date at the end of the monitoring period

Identifier: MQCAMO_END_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

Returned: Always

IntervalEndTime

Description: The time at the end of the monitoring period

Identifier: MQCAMO_END_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: Always

Monitoring and performance 183

CommandLevel

Description: The queue manager command level

Identifier: MQIA_COMMAND_LEVEL

Data type: MQCFIN

Returned: Always

ObjectCount

Description: The number of queue objects accessed in the interval for which statistics data
has been recorded. This value is set to the number of QStatisticsData PCF
groups contained in the message.

Identifier: MQIAMO_OBJECT_COUNT

Data type: MQCFIN

Returned: Always

QStatisticsData

Description: Grouped parameters specifying statistics details for a queue

Identifier: MQGACF_Q_STATISTICS_DATA

Data type: MQCFGR

Parameters in
group:

QName
CreateDate
CreateTime
QType
QDefinitionType
QMinDepth
QMaxDepth
AvgTimeOnQ
PutCount
PutFailCount
Put1Count
Put1FailCount
PutBytes
GetCount
GetFailCount
GetBytes
BrowseCount
BrowseFailCount
BrowseBytes
NonQueuedMsgCount
ExpiredMsgCount
PurgeCount

Returned: Always

QName

Description: The name of the queue

Identifier: MQCA_Q_NAME

184 Monitoring and Performance for IBM WebSphere MQ

Data type: MQCFST

Maximum length: MQ_Q_NAME_LENGTH

Returned: Always

CreateDate

Description: The date when the queue was created

Identifier: MQCA_CREATION_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

Returned: Always

CreateTime

Description: The time when the queue was created

Identifier: MQCA_CREATION_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

Returned: Always

QType

Description: The type of the queue

Identifier: MQIA_Q_TYPE

Data type: MQCFIN

Value: MQOT_LOCAL

Returned: Always

QDefinitionType

Description: The queue definition type

Identifier: MQIA_DEFINITION_TYPE

Data type: MQCFIN

Values: Possible values are

• MQQDT_PREDEFINED
• MQQDT_PERMANENT_DYNAMIC
• MQQDT_TEMPORARY_DYNAMIC

Returned: When available

QMinDepth

Description: The minimum queue depth during the monitoring period

Identifier: MQIAMO_Q_MIN_DEPTH

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Monitoring and performance 185

Returned: When available

QMaxDepth

Description: The maximum queue depth during the monitoring period

Identifier: MQIAMO_Q_MAX_DEPTH

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

AvgTimeOnQ

Description: The average latency, in microseconds, of messages destructively retrieved from
the queue during the monitoring period. This parameter is an integer list indexed
by persistence value, see Reference note 2.

Identifier: MQIAMO64_AVG_Q_TIME

Data type: MQCFIL64

Included in PCF
group:

QStatisticsData

Returned: When available

PutCount

Description: The number of persistent and nonpersistent messages successfully put to the
queue, with exception of MQPUT1 requests. This parameter is an integer list
indexed by persistence value. See Reference note 2.

Identifier: MQIAMO_PUTS

Data type: MQCFIL

Included in PCF
group:

QStatisticsData

Returned: When available

PutFailCount

Description: The number of unsuccessful attempts to put a message to the queue

Identifier: MQIAMO_PUTS_FAILED

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

Put1Count

Description: The number of persistent and nonpersistent messages successfully put to
the queue using MQPUT1 calls. This parameter is an integer list indexed by
persistence value. See Reference note 2.

Identifier: MQIAMO_PUT1S

Data type: MQCFIL

186 Monitoring and Performance for IBM WebSphere MQ

Included in PCF
group:

QStatisticsData

Returned: When available

Put1FailCount

Description: The number of unsuccessful attempts to put a message using MQPUT1 calls

Identifier: MQIAMO_PUT1S_FAILED

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

PutBytes

Description: The number of bytes written in put requests to the queue

Identifier: MQIAMO64_PUT_BYTES

Data type: MQCFIL64

Included in PCF
group:

QStatisticsData

Returned: When available

GetCount

Description: The number of successful destructive get requests for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value. See Reference note 2.

Identifier: MQIAMO_GETS

Data type: MQCFIL

Included in PCF
group:

QStatisticsData

Returned: When available

GetFailCount

Description: The number of unsuccessful destructive get requests

Identifier: MQIAMO_GETS_FAILED

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

GetBytes

Description: The number of bytes read in destructive put requests for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value. See Reference note 2.

Identifier: MQIAMO64_GET_BYTES

Data type: MQCFIL64

Monitoring and performance 187

Included in PCF
group:

QStatisticsData

Returned: When available

BrowseCount

Description: The number of successful non-destructive get requests for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value. See Reference note 2.

Identifier: MQIAMO_BROWSES

Data type: MQCFIL

Included in PCF
group:

QStatisticsData

Returned: When available

BrowseFailCount

Description: The number of unsuccessful non-destructive get requests

Identifier: MQIAMO_BROWSES_FAILED

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

BrowseBytes

Description: The number of bytes read in non-destructive get requests for persistent
and nonpersistent messages. This parameter is an integer list indexed by
persistence value. See Reference note 2.

Identifier: MQIAMO64_BROWSE_BYTES

Data type: MQCFIL64

Included in PCF
group:

QStatisticsData

Returned: When available

NonQueuedMsgCount

Description: The number of messages that bypassed the queue and were transferred directly
to a waiting application.

Bypassing a queue can only occur in certain circumstances. This number
represents how many times WebSphere MQ was able to bypass the queue, and
not the number of times an application was waiting.

Identifier: MQIAMO_MSGS_NOT_QUEUED

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

188 Monitoring and Performance for IBM WebSphere MQ

ExpiredMsgCount

Description: The number of persistent and nonpersistent messages that were discarded
because they had expired before they could be retrieved.

Identifier: MQIAMO_MSGS_EXPIRED

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

PurgeCount

Description: The number of messages purged.

Identifier: MQIAMO_MSGS_PURGED

Data type: MQCFIN

Included in PCF
group:

QStatisticsData

Returned: When available

CBCount

Description: The number of successful MQCB requests. This is an array of values indexed by
the type of operation

0 - A callback was created or altered

1 - A callback was removed

2 - A callback was resumed

3 - A callback was suspended

Identifier: MQIAMO_CBS

Data type: MQCFIN

Returned: When available.

CBFailCount

Description: The number of unsuccessful MQCB requests.

Identifier: MQIAMO_CBS_FAILED

Data type: MQCFIN

Returned: When available.

Channel statistics message data
Use this page to view the structure of a channel statistics message

Message name: Channel statistics message.

Platforms: All, except WebSphere MQ for z/OS.

System queue: SYSTEM.ADMIN.STATISTICS.QUEUE.

QueueManager

Description: The name of the queue manager.

Monitoring and performance 189

Identifier: MQCA_Q_MGR_NAME.

Data type: MQCFST.

Maximum length: MQ_Q_MGR_NAME_LENGTH.

Returned: Always.

IntervalStartDate

Description: The date at the start of the monitoring period.

Identifier: MQCAMO_START_DATE.

Data type: MQCFST.

Maximum length: MQ_DATE_LENGTH.

Returned: Always.

IntervalStartTime

Description: The time at the start of the monitoring period.

Identifier: MQCAMO_START_TIME.

Data type: MQCFST.

Maximum length: MQ_TIME_LENGTH.

Returned: Always.

IntervalEndDate

Description: The date at the end of the monitoring period

Identifier: MQCAMO_END_DATE.

Data type: MQCFST.

Maximum length: MQ_DATE_LENGTH.

Returned: Always.

IntervalEndTime

Description: The time at the end of the monitoring period

Identifier: MQCAMO_END_TIME.

Data type: MQCFST.

Maximum length: MQ_TIME_LENGTH

Returned: Always.

CommandLevel

Description: The queue manager command level.

Identifier: MQIA_COMMAND_LEVEL.

Data type: MQCFIN.

Returned: Always.

190 Monitoring and Performance for IBM WebSphere MQ

ObjectCount

Description: The number of Channel objects accessed in the interval for which statistics data
has been recorded. This value is set to the number of ChlStatisticsData PCF
groups contained in the message.

Identifier: MQIAMO_OBJECT_COUNT

Data type: MQCFIN.

Returned: Always.

ChlStatisticsData

Description: Grouped parameters specifying statistics details for a channel.

Identifier: MQGACF_CHL_STATISTICS_DATA.

Data type: MQCFGR.

Parameters in
group:

ChannelName
ChannelType
RemoteQmgr
ConnectionName
MsgCount
TotalBytes
NetTimeMin
NetTimeAvg
NetTimeMax
ExitTimeMin
ExitTimeAvg
ExitTimeMax
FullBatchCount
IncmplBatchCount
AverageBatchSize
PutRetryCount

Returned: Always.

ChannelName

Description: The name of the channel.

Identifier: MQCACH_CHANNEL_NAME.

Data type: MQCFST.

Maximum length: MQ_CHANNEL_NAME_LENGTH.

Returned: Always.

ChannelType

Description: The channel type.

Identifier: MQIACH_CHANNEL_TYPE.

Data type: MQCFIN.

Monitoring and performance 191

Values: Possible values are:
MQCHT_SENDER

Sender channel.
MQCHT_SERVER

Server channel.
MQCHT_RECEIVER

Receiver channel.
MQCHT_REQUESTER

Requester channel.
MQCHT_CLUSRCVR

Cluster receiver channel.
MQCHT_CLUSSDR

Cluster sender channel.

Returned: Always.

RemoteQmgr

Description: The name of the remote queue manager.

Identifier: MQCA_REMOTE_Q_MGR_NAME.

Data type: MQCFST.

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: When available.

ConnectionName

Description: Connection name of remote queue manager.

Identifier: MQCACH_CONNECTION_NAME.

Data type: MQCFST

Maximum length: MQ_CONN_NAME_LENGTH

Returned: When available.

MsgCount

Description: The number of persistent and nonpersistent messages sent or received.

Identifier: MQIAMO_MSGS.

Data type: MQCFIN

Returned: When available.

TotalBytes

Description: The number of bytes sent or received for persistent and nonpersistent
messages.

Identifier: MQIAMO64_BYTES.

Data type: MQCFIN64.

Returned: When available.

192 Monitoring and Performance for IBM WebSphere MQ

NetTimeMin

Description: The shortest recorded channel round trip measured in the recording interval, in
microseconds.

Identifier: MQIAMO_NET_TIME_MIN.

Data type: MQCFIN.

Returned: When available.

NetTimeAvg

Description: The average recorded channel round trip measured in the recording interval, in
microseconds.

Identifier: MQIAMO_NET_TIME_AVG.

Data type: MQCFIN.

Returned: When available.

NetTimeMax

Description: The longest recorded channel round trip measured in the recording interval, in
microseconds.

Identifier: MQIAMO_NET_TIME_MAX.

Data type: MQCFIN.

Returned: When available.

ExitTimeMin

Description: The shortest recorded time, in microseconds, spent executing a user exit in the
recording interval,

Identifier: MQIAMO_EXIT_TIME_MIN.

Data type: MQCFIN.

Returned: When available.

ExitTimeAvg

Description: The average recorded time, in microseconds, spent executing a user exit in the
recording interval. Measured in microseconds.

Identifier: MQIAMO_EXIT_TIME_AVG.

Data type: MQCFIN.

Returned: When available.

ExitTimeMax

Description: The longest recorded time, in microseconds, spent executing a user exit in the
recording interval. Measured in microseconds.

Identifier: MQIAMO_EXIT_TIME_MAX.

Data type: MQCFIN.

Returned: When available.

Monitoring and performance 193

FullBatchCount

Description: The number of batches processed by the channel that were sent because the
value of the channel attributes BATCHSZ or BATCHLIM was reached.

Identifier: MQIAMO_FULL_BATCHES.

Data type: MQCFIN.

Returned: When available.

IncmplBatchCount

Description: The number of batches processed by the channel, that were sent without the
value of the channel attribute BATCHSZ being reached.

Identifier: MQIAMO_INCOMPLETE_BATCHES.

Data type: MQCFIN.

Returned: When available.

AverageBatchSize

Description: The average batch size of batches processed by the channel.

Identifier: MQIAMO_AVG_BATCH_SIZE.

Data type: MQCFIN.

Returned: When available.

PutRetryCount

Description: The number of times in the time interval that a message failed to be put, and
entered a retry loop.

Identifier: MQIAMO_PUT_RETRIES.

Data type: MQCFIN.

Returned: When available.

Reference notes
Use this page to view the notes to which descriptions of the structure of accounting and statistics
messages refer

The following message data descriptions refer to these notes:

• “MQI accounting message data” on page 150
• “Queue accounting message data” on page 161
• “MQI statistics message data” on page 171
• “Queue statistics message data” on page 183
• “Channel statistics message data” on page 189

1. This parameter relates to WebSphere MQ objects. This parameter is an array of values (MQCFIL or
MQCFIL64) indexed by the following constants:

Table 24. Array indexed by object type

Object type Value context

MQOT_Q (1) Contains the value relating to queue objects.

MQOT_NAMELIST (2) Contains the value relating to namelist objects.

194 Monitoring and Performance for IBM WebSphere MQ

Table 24. Array indexed by object type (continued)

Object type Value context

MQOT_PROCESS (3) Contains the value relating to process objects.

MQOT_Q_MGR (5) Contains the value relating to queue manager
objects.

MQOT_CHANNEL (6) Contains the value relating to channel objects.

MQOT_AUTH_INFO (7) Contains the value relating to authentication
information objects.

MQOT_TOPIC (8) Contains the value relating to topic objects.

Note: An array of 13 MQCFIL or MQCFIL64 values are returned but only those listed are meaningful.
2. This parameter relates to WebSphere MQ messages. This parameter is an array of values (MQCFIL or

MQCFIL64) indexed by the following constants:

Table 25. Array indexed by persistence value

Constant Value

1 Contains the value for nonpersistent messages.

2 Contains the value for persistent messages.

Note: The index for each of these arrays starts at zero, so an index of 1 refers to the second row of the
array. Elements of these arrays not listed in these tables contain no accounting or statistics information.

Application activity trace
Application activity trace produces detailed information about the behavior of applications connected to
a queue manager. It traces the behavior of an application and provides a detailed view of the parameters
used by an application as it interacts with IBM WebSphere MQ resources. It also shows the sequence of
MQI calls issued by an application.

Use Application activity trace when you require more information than is provided by Event monitoring,
Message monitoring, Accounting and statistics messages, and Real-time monitoring.

Collecting application activity trace information
An application activity trace message is a PCF message. You configure activity trace using a configuration
file. To collect application activity trace information you set the ACTVTRC queue manager attribute. You
can override this setting at connection level using MQCONNX options, or at application stanza level using
the activity trace configuration file.

About this task
Activity trace messages are composed of an MQMD structure: a PCF (MQCFH) header structure, followed
by a number of PCF parameters. A sequence of ApplicationTraceData PCF groups follows the PCF
parameters. These PCF groups collect information about the MQI operations that an application performs
while connected to a queue manager. You configure activity trace using a configuration file called
mqat.ini.

To control whether or not application activity trace information is collected, you configure one or more of
the following settings:

1. The ACTVTRC queue manager attribute.
2. The ACTVCONO settings (in the MQCNO structure passed in MQCONNX).
3. The matching stanza for the application in the activity trace configuration file mqat.ini.

Monitoring and performance 195

The previous sequence is significant. The ACTVTRC attribute is overridden by the ACTVCONO settings,
which are overridden by the settings in the mqat.ini file.

Trace entries are written after each operation has completed, unless otherwise stated. These entries are
first written to the system queue SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE, then written to application
activity trace messages when the application disconnects from the queue manager. For long running
applications, intermediate messages are written if any of the following events occurs:

• The lifetime of the connection reaches a defined timeout value.
• The number of operations reaches a specified number.
• The amount of data collected in memory reaches the maximum message length allowed for the queue.

You set the timeout value using the ActivityInterval parameter. You set the number of operations
using the ActivityCount parameter. Both parameters are specified in the activity trace configuration
file mqat.ini.

Enabling application activity trace can affect performance. The overhead can be reduced by tuning
the ActivityCount and the ActivityInterval settings. See “Tuning the performance impact of
application activity trace” on page 203.

The simplest way to view the contents of application activity trace messages is to use the “amqsact
sample program” on page 203.

Procedure
1. “Setting ACTVTRC to control collection of activity trace information” on page 196.
2. “Setting MQCONNX options to control collection of activity trace information” on page 197.
3. “Configuring activity trace behavior using mqat.ini” on page 197.
4. “Tuning the performance impact of application activity trace” on page 203.

Setting ACTVTRC to control collection of activity trace information
Use the queue manager attribute ACTVTRC to control the collection of MQI application activity trace
information

About this task
Application activity trace messages are generated only for connections that begin after application activity
trace is enabled. The ACTVTRC parameter can have the following values:
ON

API activity trace collection is switched on
OFF

API activity trace collection is switched off

Note: The ACTVTRC setting can be overridden by the queue manager ACTVCONO parameter. If you set the
ACTVCONO parameter to ENABLED, then the ACTVTRC setting can be overridden for a given connection
using the Options field in the MQCNO structure. See “Setting MQCONNX options to control collection of
activity trace information” on page 197.

Example

To change the value of the ACTVTRC parameter, you use the MQSC command ALTER QMGR. For example,
to enable MQI application activity trace information collection use the following MQSC command:

ALTER QMGR ACTVTRC(ON)

196 Monitoring and Performance for IBM WebSphere MQ

What to do next
The simplest way to view the contents of application activity trace messages is to use the “amqsact
sample program” on page 203.

Enabling application activity trace can affect performance. The overhead can be reduced by tuning
the ActivityCount and the ActivityInterval settings. See “Tuning the performance impact of
application activity trace” on page 203.

Setting MQCONNX options to control collection of activity trace information
If the queue manager attribute ACTVCONO is set to ENABLED, you can use the ConnectOpts parameter
on the MQCONNX call to enable or disable application activity reports on a per connection basis. These
options override the activity trace behavior defined by the queue manager attribute ACTVTRC, and can be
overridden by settings in the activity trace configuration file mqat.ini.

Procedure
1. Set the queue manager attribute ACTVCONO to ENABLED.

Note: If an application attempts to modify the accounting behavior of an application using the
ConnectOpts parameter, and the QMGR attribute ACTVCONO is set to DISABLED, then no error is
returned to the application, and activity trace collection is defined by the queue manager attributes or
the activity trace configuration file mqat.ini.

2. Set the ConnectOpts parameter on the MQCONNX call to MQCNO_ ACTIVITY_ TRACE_ENABLED.

The ConnectOpts parameter on the MQCONNX call can have the following values:

MQCNO_ACTIVITY_ TRACE_DISABLED
Activity trace is switched off for the connection.

MQCNO_ ACTIVITY_ TRACE_ENABLED
Activity trace is switched on for the connection.

Note: If an application selects both MQCNO_ ACTIVITY_ TRACE_ENABLED and MQCNO_ACTIVITY_
TRACE_DISABLED for MQCONNX, the call fails with a reason code of MQRC_OPTIONS_ERROR.

3. Check that these activity trace settings are not being overridden by settings in the activity trace
configuration file mqat.ini.

See “Configuring activity trace behavior using mqat.ini” on page 197.

What to do next
The simplest way to view the contents of application activity trace messages is to use the “amqsact
sample program” on page 203.

Enabling application activity trace can affect performance. The overhead can be reduced by tuning
the ActivityCount and the ActivityInterval settings. See “Tuning the performance impact of
application activity trace” on page 203.

Configuring activity trace behavior using mqat.ini
The activity trace behavior is configured using a configuration file called mqat.ini. This file follows the
same stanza key and parameter-value pair format as the mqs.ini and qm.ini files.

About this task

On UNIX and Linux systems, mqat.ini is located in the queue manager data
directory, which is the same location as the qm.ini file.

Monitoring and performance 197

On Windows systems, mqat.ini is located in the queue manager data directory
C:\Program Files\IBM\WebSphere MQ\qmgrs\queue_manager_name. Users running applications
to be traced need permission to read this file.

Note: Queue managers migrated from IBM WebSphere MQ Version 7.1 or earlier will have the mqat.ini
file missing. In such cases, the mqat.ini file needs to be created manually and 660 permissions need to
be set on the file.

The syntax rules for the format of the file are:

• Text beginning with a hash or semi-colon is considered to be a comment which extends to the end of
the line.

• The first significant (non-comment) line must be a stanza key.
• A stanza key consists of the name of the stanza followed by a colon.
• A parameter-value pair consists of the name of a parameter followed by an equals sign and then the

value.
• Only a single parameter-value pair can appear on a line. (A parameter-value must not wrap onto another

line).
• Leading and trailing whitespace is ignored. There is no limit on the amount of white space between

stanza names, parameter names and values, or parameter/value pairs. Line breaks are significant and
not ignored

• The maximum length for any line is 2048 characters
• The stanza keys, parameter names, and constant parameter values are not case-sensitive, but the

variable parameter values (ApplName and DebugPath) are case-sensitive.

Stanza keys

Two stanza key types are allowed in the configuration file: the AllActivityTrace stanza, and the
ApplicationTrace stanza

AllActivityTrace stanza

The AllActivityTrace stanza defines settings for the activity trace that is applied to all IBM WebSphere MQ
connections unless overridden.

Individual values in the AllActivityTrace stanza can be overridden by more specific information in an
ApplicationTrace stanza.

If more than one AllActivityTrace stanza is specified then the values in the last stanza is used. Parameters
missing from the chosen AllActivityTrace take default values. Parameters and values from previous
AllActivityTrace stanzas are ignored

ApplicationTrace stanza

The ApplicationTrace stanza defines settings which can be applied to a specific name, type or both of IBM
WebSphere MQ connection.

This stanza includes ApplName and ApplClass values which are used according to the matching rules
defined in Connection Matching Rules to determine whether the stanza applies to a particular connection.

Parameter/Value Pairs

The following table lists the parameter/value pairs which may be used in the activity trace configuration
file.

198 Monitoring and Performance for IBM WebSphere MQ

Table 26. Parameter/value pairs that can be used in the activity trace configuration file

Name Stanza Type Values (default in bold type) Description

Trace ApplicationTrace ON / OFF Activity trace switch.
This switch can be
used in the application-
specific stanza to
determine whether
activity trace is
active for the scope
of the current
application stanza.
Note that this value
overrides ACTVTRC and
ACTVCONO settings for
the queue manager.

ActivityInterval AllActivityTrace
ApplicationTrace

0-99999999 (0=off) Time interval in
seconds between trace
messages. Activity trace
does not use a timer
thread, so the trace
message will not be
written at the exact
instant that the time
elapses - rather it will
be written when the
first MQI operation is
executed after the time
interval has elapsed. If
this value is 0 then the
trace message is written
when the connection
disconnects (or when
the activity count is
reached).

ActivityCount AllActivityTrace
ApplicationTrace

0-99999999 (0=off) Number of MQI or
XA operations between
trace messages. If this
value is 0 then the
trace message is written
when the connection
disconnects (or when
the activity interval has
elapsed).

TraceLevel AllActivityTrace
ApplicationTrace

LOW / MEDIUM / HIGH Amount of parameter
detail traced for
each operation. The
description of individual
operations details which
parameters are included
for each trace level.

Monitoring and performance 199

Table 26. Parameter/value pairs that can be used in the activity trace configuration file (continued)

Name Stanza Type Values (default in bold type) Description

TraceMessageDa
ta

AllActivityTrace
ApplicationTrace

0- 104 857 600 (100Mb) Amount of message
data traced in bytes
for MQGET, MQPUT,
MQPUT1, and Callback
operations

ApplName ApplicationTrace Character string (Required
parameter - no default)

This value is
used to determine
which applications the
ApplicationTrace stanza
applies to. It is matched
to the ApplName value
from the API exit
context structure (which
is equivalent to the
MQMD.PutApplName).
The content of
the ApplName value
varies according
to the application
environment. For
distributed platforms,
only the filename
portion of the
MQAXC.ApplName is
matched to the
value in the stanza.
Characters to the left
of the rightmost path
separator are ignored
when the comparison
is made. For z/OS
applications, the entire
MQAXC.ApplName is
matched to the value
in the stanza. A single
wildcard character (*)
can be used at the
end of the ApplName
value to match any
number of characters
after that point are.
If the ApplName value
is set to a single
wildcard character (*)
then the ApplName
value matches all
applications.

200 Monitoring and Performance for IBM WebSphere MQ

Table 26. Parameter/value pairs that can be used in the activity trace configuration file (continued)

Name Stanza Type Values (default in bold type) Description

ApplClass ApplicationTrace USER / MCA / INTERNAL /
ALL

The class of application.
See the following table
for an explanation
of how the AppType
values correspond to
IBM WebSphere MQ
connections

The following table shows how the AppClass values correspond to the APICallerType and APIEnvironment
fields in the connection API exit context structure.

Table 27. Appclass values and how they correspond to the APICallerType and APIEnvironment fields

APPLCLASS API Caller Type: API Environment: Description

USER MQXACT_EXTERNAL MQXE_OTHER Only user applications are traced

MCA (Any value) MQXE_MCA
MQXE_MCA_CLNTCONN
MQXE_MCA_SVRCONN

Clients and channels (amqrmppa)

INTERNAL MQXACT_EXTERNAL MQXE_COMMAND_SERVER
MQXE_MQSC

'runmqsc' and command server

INTERNAL MQXACT_INTERNAL (Any value) "trusted" and internal applications
and processes; for example,
amqzdmaa

ALL (Any value) (Any value) All user and internal connections are
traced

Attention: You must use an APPLCLASS of MCA for client user applications, as a class of USER
does not match these.

For example, to trace the amqsputc sample application, you could use the following code:

ApplicationTrace:
ApplClass=MCA # Application type
 # Values: (USER | MCA | INTERNAL | ALL)
 # Default: USER
ApplName=amqsputc # Application name (may be wildcarded)
 # (matched to app name without path)
 # Default: *
Trace=ON # Activity trace switch for application
 # Values: (ON | OFF)
 # Default: OFF
ActivityInterval=30 # Time interval between trace messages
 # Values: 0-99999999 (0=off)
 # Default: 0
ActivityCount=1 # Number of operations between trace msgs
 # Values: 0-99999999 (0=off)
 # Default: 0
TraceLevel=MEDIUM # Amount of data traced for each operation
 # Values: LOW | MEDIUM | HIGH
 # Default: MEDIUM
TraceMessageData=1000 # Amount of message data traced
 # Values: 0-100000000
 # Default: 0

Connection Matching Rules

The queue manager applies the following rules to determine which stanzas settings to use for a
connection.

Monitoring and performance 201

1. A value specified in the AllActivityTrace stanza is used for the connection unless the value also occurs
in an ApplicationTrace stanza and the stanza fulfills the matching criteria for the connection described
in points 2, 3, and 4.

2. The ApplClass is matched against the type of the IBM WebSphere MQ connection. If the ApplClass
does not match the connection type then the stanza is ignored for this connection.

3. The ApplName value in the stanza is matched against the file name portion of the ApplName field from
the API exit context structure (MQAXC) for the connection. The file name portion is derived from the
characters to the right of the final path separator (/ or \) character. If the stanza ApplName includes
a wildcard (*) then only the characters to the left of the wildcard are compared with the equivalent
number of characters from the connections ApplName. For example, if a stanza value of "FRE*" is
specified then only the first three characters are used in the comparison, so "path/FREEDOM" and
"path\FREDDY" match, but "path/FRIEND" does not. If the stanzas ApplName value does not match
the connection ApplName then the stanza is ignored for this connection.

4. If more than one stanza matches the connections ApplName and ApplClass, then the stanza with
the most specific ApplName is used. The most specific ApplName is defined as the one which uses
the most characters to match the connections ApplName. For example, if the ini file contains a
stanza with ApplName="FRE*" and another stanza with ApplName="FREE*" then the stanza with
ApplName="FREE*" is chosen as the best match for a connection with ApplName="path/FREEDOM"
because it matches four characters (whereas ApplName="FRE*" matches only three).

5. If after applying the rules in points 2, 3, and 4, there is more than one stanza that matches the
connections ApplName and ApplClass, then the values from the last matching will be used and all
other stanzas will be ignored.

Application Activity Trace File Example

The following example shows how the configuration data is specified in the Activity Trace ini file. This
example is shipped as a sample called mqat.ini in the C samples directory (the same directory as the
amqsact.c file)

AllActivityTrace:
 ActivityInterval=0 # Time interval between trace messages
 # Values: 0-99999999 (0=off)
 # Default: 0
 ActivityCount=0 # Number of operations between trace msgs
 # Values: 0-99999999 (0=off)
 # Default: 0
 TraceLevel=MEDIUM # Amount of data traced for each operation
 # Values: LOW | MEDIUM | HIGH
 # Default: MEDIUM
 TraceMessageData=0 # Amount of message data traced
 # Values: 0-100000000
 # Default: 0

ApplicationTrace:
 ApplClass=USER # Application type
 # Values: (USER | MCA | INTERNAL | ALL)
 # Default: USER
 ApplName=AppName* # Application name (may be wildcarded)
 # (matched to app name without path)
 # Default: *
 Trace=OFF # Activity trace switch for application
 # Values: (ON | OFF)
 # Default: OFF
ActivityInterval=0 # Time interval between trace messages
 # Values: 0-99999999 (0=off)
 # Default: 0
 ActivityCount=0 # Number of operations between trace msgs
 # Values: 0-99999999 (0=off)
 # Default: 0
 TraceLevel=MEDIUM # Amount of data traced for each operation
 # Values: LOW | MEDIUM | HIGH
 # Default: MEDIUM
 TraceMessageData=0 # Amount of message data traced
 # Values: 0-100000000
 # Default: 0

202 Monitoring and Performance for IBM WebSphere MQ

What to do next
Enabling application activity trace can affect performance. The overhead can be reduced by tuning
the ActivityCount and the ActivityInterval settings. See “Tuning the performance impact of
application activity trace” on page 203.

Tuning the performance impact of application activity trace
Enabling application activity trace can incur a performance penalty. This can be reduced by only tracing
the applications that you need, by increasing the number of applications draining the queue, and by
tuning ActivityInterval, ActivityCount and TraceLevel in mqat.ini.

About this task
Enabling application activity trace selectively for an application or for all queue manager applications
can result in additional messaging activity, and in the queue manager requiring additional storage space.
In environments where messaging performance is critical, for example, in high workload applications
or where a service level agreement (SLA) requires a minimum response time from the messaging
provider, it might not be appropriate to collect application activity trace or it might be necessary to
adjust the detail or frequency of trace activity messages that are produced. The preset values of
ActivityInterval, ActivityCount and TraceLevel in the mqat.ini file give a default balance
of detail and performance. However, you can tune these values to meet the precise functional and
performance requirements of your system.

Procedure
• Only trace the applications that you need.

Do this by creating an ApplicationTrace application-specific stanza in mqat.ini, or by changing the
application to specify MQCNO_ACTIVITY_TRACE_ENABLED in the options field on the MQCNO structure
on an MQCONNX call. See “Configuring activity trace behavior using mqat.ini” on page 197 and
“Setting MQCONNX options to control collection of activity trace information” on page 197.

• Before starting trace, check that at least one application is running and is ready to retrieve the activity
trace message data from the SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE.

• Keep the queue depth as low as possible, by increasing the number of applications draining the queue.
• Set the TraceLevel value in the mqat.ini file to collect the minimum amount of data required.

TraceLevel=LOW has the lowest impact to messaging performance. See “Configuring activity trace
behavior using mqat.ini” on page 197.

• Tune the ActivityCount and ActivityInterval values in mqat.ini, to adjust how often activity
trace messages are generated.

If you are tracing multiple applications, the activity trace messages might be being produced faster
than they can be removed from the SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE. However, when you
reduce how often activity trace messages are generated, you are also increasing the storage space
required by the queue manager and the size of the messages when they are written to the queue.

What to do next

amqsact sample program
amqsact formats Application Activity Trace messages for you and is provided with WebSphere MQ.

The compiled program is located in the samples directory:

• On UNIX and Linux MQ_INSTALLATION_PATH/samp/bin
• On Windows MQ_INSTALLATION_PATH\tools\c\Samples\Bin

Monitoring and performance 203

Display mode
By default, amqsact in display mode processes messages on SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE.
You can override this behavior by specifying a queue name or topic string.

You can also control the trace period displayed and specify whether the activity trace messages are
removed or retained after display.

amqsact -m QMgrName

 -q QName -t TopicString

 -b Browse -v Verbose

 -d Depth -w Timeout -s

StartTime -e EndTime

Required parameters for display mode
-m QMgrName

Name of the queue manager.
-d Depth

Number of records to display.
-w Timeout

Time to wait, in seconds. If no trace messages appear in the specified period, amqsact exits.
-s StartTime

Start time of record to process.
-e EndTime

End time of record to process.

Optional parameters for display mode
-q QName

Specify a specific queue to override the default queue name
-t TopicString

Subscribe to an event topic
-b

Browse records only
-v

Verbose output

Example output for display mode
Use amqsact on queue manager TESTQM, with verbose output, on an MQCONN API call:

amqsact –m TESTQM -v

The preceding command gives the following example output:

MonitoringType: MQI Activity Trace
Correl_id:
00000000: 414D 5143 5445 5354 514D 2020 2020 2020 'AMQCTESTQM '
00000010: B5F6 4251 2000 E601 ' '
QueueManager: 'TESTQM'
Host Name: 'ADMINIB-1VTJ6N1'
IntervalStartDate: '2014-03-15'
IntervalStartTime: '12:08:10'
IntervalEndDate: '2014-03-15'

204 Monitoring and Performance for IBM WebSphere MQ

IntervalEndTime: '12:08:10'
CommandLevel: 750
SeqNumber: 0
ApplicationName: 'MQ_1\bin\amqsput.exe'
Application Type: MQAT_WINDOWS_7
ApplicationPid: 14076
UserId: 'Emma_Bushby'
API Caller Type: MQXACT_EXTERNAL
API Environment: MQXE_OTHER
Application Function: ''
Appl Function Type: MQFUN_TYPE_UNKNOWN
Trace Detail Level: 2
Trace Data Length: 0
Pointer size: 4
Platform: MQPL_WINDOWS_7
MQI Operation: 0
Operation Id: MQXF_CONN
ApplicationTid: 1
OperationDate: '2014-03-15'
OperationTime: '12:08:10'
ConnectionId:
00000000: 414D 5143 5445 5354 514D 2020 2020 2020 'AMQCTESTQM '
00000010: FFFFFFB5FFFFFFF6 4251 2000 FFFFFFE601 ' '
QueueManager: 'TESTQM'
Completion Code: MQCC_OK
Reason Code: 0

Application activity trace message reference
Use this page to obtain an overview of the format of application activity trace messages and the
information returned in these messages

Application activity trace messages are standard IBM WebSphere MQ messages containing a message
descriptor and message data. The message data contains information about the MQI operations
performed by IBM WebSphere MQ applications, or information about the activities occurring in an IBM
WebSphere MQ system.

Message descriptor

• An MQMD structure

Message data

• A PCF header (MQCFH)
• Application activity trace message data that is always returned
• Application activity trace message data that is operation-specific

Application activity trace message MQMD (message descriptor)
Use this page to understand the differences between the message descriptor of application activity trace
messages and the message descriptor of event messages

The parameters and values in the message descriptor of application activity trace message are the same
as in the message descriptor of event messages, with the following exception:
Format

Description: Format name of message data.

Value: MQFMT_ADMIN
Admin message.

CorrelId

Description: Correlation identifier.

Value: Initialized with the ConnectionId of the application

Monitoring and performance 205

MQCFH (PCF Header)
Use this page to view the PCF values contained by the MQCFH structure for an activity trace message

For an activity trace message, the MQCFH structure contains the following values:
Type

Description: Structure type that identifies the content of the message.

Data type: MQLONG.

Value: MQCFT_APP_ACTIVITY

StrucLength

Description: Length in bytes of MQCFH structure.

Data type: MQLONG.

Value: MQCFH_STRUC_LENGTH

Version

Description: Structure version number.

Data type: MQLONG.

Values: MQCFH_VERSION_3

Command

Description: Command identifier. This field identifies the category of the message.

Data type: MQLONG.

Values: MQCMD_ACTIVITY_TRACE

MsgSeqNumber

Description: Message sequence number. This field is the sequence number of the message
within a group of related messages.

Data type: MQLONG.

Values: 1

Control

Description: Control options.

Data type: MQLONG.

Values: MQCFC_LAST.

CompCode

Description: Completion code.

Data type: MQLONG.

Values: MQCC_OK.

Reason

Description: Reason code qualifying completion code.

Data type: MQLONG.

206 Monitoring and Performance for IBM WebSphere MQ

Values: MQRC_NONE.

ParameterCount

Description: Count of parameter structures. This field is the number of parameter structures
that follow the MQCFH structure. A group structure (MQCFGR), and its included
parameter structures, are counted as one structure only.

Data type: MQLONG.

Values: 1 or greater

Application activity trace message data
Immediately following the PCF header is a set of parameters describing the time interval for the activity
trace. These parameters also indicate the sequence of messages in the event of messages being written.
The order and number of fields following the header is not guaranteed, allowing additional information to
be added in the future.

Message name: Activity trace message.

System queue: SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE.

QueueManager

Description: The name of the queue manager

Identifier: MQCA_Q_MGR_NAME

Data type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

QSGName
HostName

Description: The host name of the machine the Queue Manager is running on

Identifier: MQCACF_HOST_NAME

Data type: MQCFST

IntervalStartDate

Description: The date of the start of the monitoring period

Identifier: MQCAMO_START_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

IntervalStartTime

Description: The time of the start of the monitoring period

Identifier: MQCAMO_START_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

IntervalEndDate

Description: The date of the end of the monitoring period

Monitoring and performance 207

Identifier: MQCAMO_END_DATE

Data type: MQCFST

Maximum length: MQ_DATE_LENGTH

IntervalEndTime

Description: The time of the end of the monitoring period

Identifier: MQCAMO_END_TIME

Data type: MQCFST

Maximum length: MQ_TIME_LENGTH

CommandLevel

Description: The IBM WebSphere MQ command level

Identifier: MQIA_COMMAND_LEVEL

Data type: MQCFIN

SeqNumber

Description: The sequence number normally zero. This value is incremented for each
subsequent record for long running connections.

Identifier: MQIACF_SEQUENCE_NUMBER

Data type: MQCFIN

ApplicationName

Description: The name of the application. (program name)

Identifier: MQCACF_APPL_NAME

Data type: MQCFST

Maximum length: MQ_APPL_NAME_LENGTH

ApplClass

Description: Type of application that performed the activity. Possible values: MQAT_*

Identifier: MQIA_APPL_TYPE

Data type: MQCFIN

ApplicationPid

Description: The operating system Process ID of the application

Identifier: MQIACF_PROCESS_ID

Data type: MQCFIN

UserId

Description: The user identifier context of the application

Identifier: MQCACF_USER_IDENTIFIER

Data type: MQCFST

Maximum length: MQ_USER_ID_LENGTH

208 Monitoring and Performance for IBM WebSphere MQ

APICallerType

Description: The type of the application. Possible values: MQXACT_EXTERNAL or
MQXACT_INTERNAL

Identifier: MQIACF_API_CALLER_TYPE

Data type: MQCFIN

Environment

Description: The runtime environment of the application. Possible values: MQXE_OTHER
MQXE_MCA MQXE_MCA_SVRCONN MQXE_COMMAND_SERVER MQXE_MQSC

Identifier: MQIACF_API_ENVIRONMENT

Data type: MQCFIN

Detail

Description: The detail level that is recorded for the connection. Possible values: 1=LOW
2=MEDIUM 3=HIGH

Identifier: MQIACF_TRACE_DETAIL

Data type: MQCFIN

TraceDataLength

Description: The length of message data (in bytes) that is traced for this connection.

Identifier: MQIACF_TRACE_DATA_LENGTH

Data type: MQCFIN

Pointer Size

Description: The length (in bytes) of pointers on the platform the application is running (to
assist in interpretation of binary structures)

Identifier: MQIACF_POINTER_SIZE

Data type: MQCFIN

Platform

Description: The platform on which the queue manager is running. Value is one of the
MQPL_* values.

Identifier: MQIA_PLATFORM

Data type: MQCFIN

Variable parameters for application activity MQI operations
The application activity data MQCFGR structure is followed by the set of PCF parameters which
corresponds to the operation being performed . The parameters for each operation are defined in the
following section.

The trace level indicates the level of trace granularity that is required for the parameters to be included in
the trace. The possible trace level values are:

1. Low

The parameter is included when "low", "medium" or "high" activity tracing is configured for an
application. This setting means that a parameter is always included in the AppActivityData group

Monitoring and performance 209

for the operation. This set of parameters is sufficient to trace the MQI calls an application makes, and
to see if they are successful.

2. Medium

The parameter is only included in the AppActivityData group for the operation when "medium" or
"high" activity tracing is configured for an application. This set of parameters adds information about
the resources, for example, queue and topic names used by the application.

3. High

The parameter is only included in the AppActivityData group for the operation when "high"
activity tracing is configured for an application. This set of parameters includes memory dumps of
the structures passed to the MQI and XA functions. For this reason, it contains more information about
the parameters used in MQI and XA calls. The structure memory dumps are shallow copies of the
structures. To avoid erroneous attempts to dereference pointers, the pointer values in the structures
are set to NULL.

Note: The version of the structure that is dumped is not necessarily identical to the version used by
an application. The structure can be modified by an API crossing exit, by the activity trace code, or by
the queue manager. A queue manager can modify a structure to a later version, but the queue manager
never changes it to an earlier version of the structure. To do so, would risk losing data.

MQBACK
Application has started the MQBACK MQI function

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type MQCFIN

MQBEGIN
Application has started the MQBEGIN MQI function

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type MQCFIN

210 Monitoring and Performance for IBM WebSphere MQ

MQBO

Description: The MQBEGIN options structure. This parameter is not included if a NULL
pointer is used on the MQBEGIN call.

PCF Parameter: MQBACF_MQBO_STRUCT

Trace level: 3

Type MQCFBS

Length: The length in bytes of the MQBO structure.

MQCALLBACK
Application has started the MQCALLBACK function

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type MQCFIN

CallType

Description: Why function has been called. One of the MQCBCT_* values

PCF Parameter: MQIACF_CALL_TYPE

Trace level: 1

Type MQCFIN

MsgBuffer

Description: Message data.

PCF Parameter: MQBACF_MESSAGE_DATA

Trace level: 1

Type MQCFBS

Length: Length is governed by the TRACEDATA() parameter set in the APPTRACE
configuration. If TRACEDATA=NONE then this parameter is omitted.

MsgLength

Description: Length of the message. (Taken from the DataLength field in the MQCBC
structure).

PCF Parameter: MQIACF_MSG_LENGTH

Trace level: 1

Type MQCFIN

HighResTime

Description: Time of operation in microseconds since midnight, January 1st 1970 (UTC)

Note: The accuracy of this timer varies according to platform support for high a
resolution timer

PCF Parameter: MQIAMO64_HIGHRES_TIME

Monitoring and performance 211

Trace level: 2

Type MQCFIN64

ReportOptions

Description: Options for report messages

PCF Parameter: MQIACF_REPORT

Trace level: 2

Type MQCFIN

MsgType

Description: Type of message

PCF Parameter: MQIACF_MSG_TYPE

Trace level: 2

Type MQCFIN

Expiry

Description: Message lifetime

PCF Parameter: MQIACF_EXPIRY

Trace level: 2

Type MQCFIN

Format

Description: Format name of message data

PCF Parameter: MQCACH_FORMAT_NAME

Trace level: 2

Type MQCFST

Length: MQ_FORMAT_LENGTH

Priority

Description: Message priority

PCF Parameter: MQIACF_PRIORITY

Trace level: 2

Type MQCFIN

Persistence

Description: Message persistence

PCF Parameter: MQIACF_PERSISTENCE

Trace level: 2

Type MQCFIN

MsgId

Description: Message identifier

212 Monitoring and Performance for IBM WebSphere MQ

PCF Parameter: MQBACF_MSG_ID

Trace level: 2

Type MQCFBS

Length: MQ_MSG_ID_LENGTH

CorrelId

Description: Correlation identifier

PCF Parameter: MQBACF_CORREL_ID

Trace level: 2

Type MQCFBS

Length: MQ_CORREL_ID_LENGTH

ObjectName

Description: The name of the opened object.

PCF Parameter: MQCACF_OBJECT_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH

ResolvedQName

Description: The local name of the queue from which the message was retrieved.

PCF Parameter: MQCACF_RESOLVED_Q_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH

ReplyToQueue

Description: MQ_Q_NAME_LENGTH

PCF Parameter: MQCACF_REPLY_TO_Q

Trace level: 2

Type MQCFST

ReplyToQMgr

Description: MQ_Q_MGR_NAME_LENGTH

PCF Parameter: MQCACF_REPLY_TO_Q_MGR

Trace level: 2

Type MQCFST

CodedCharSetId

Description: Character set identifier of message data

PCF Parameter: MQIA_CODED_CHAR_SET_ID

Monitoring and performance 213

Trace level: 2

Type MQCFIN

Encoding

Description: Numeric encoding of message data.

PCF Parameter: MQIACF_ENCODING

Trace level: 2

Type MQCFIN

PutDate

Description: MQ_PUT_DATE_LENGTH

PCF Parameter: MQCACF_PUT_DATE

Trace level: 2

Type MQCFST

PutTime

Description: MQ_PUT_TIME_LENGTH

PCF Parameter: MQCACF_PUT_TIME

Trace level: 2

Type MQCFST

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_LOCAL _Q_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH.

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type MQCFST

Length: Length varies.

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

214 Monitoring and Performance for IBM WebSphere MQ

Type MQCFIN

PolicyName

Description: The policy name that was applied to this message.

Note: AMS protected messages only

PCF Parameter: MQCA_POLICY_NAME

Trace level: 2

Type MQCFST

Length: MQ_OBJECT_NAME_LENGTH

XmitqMsgId

Description: The message ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_MSG_ID

Trace level: 2

Type MQCFBS

Length: MQ_MSG_ID_LENGTH

XmitqCorrelId

Description: The correlation ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_CORREL_ID

Trace level: 2

Type MQCFBS

Length: MQ_CORREL_ID_LENGTH

XmitqPutTime

Description: The put time of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_TIME

Trace level: 2

Type MQCFST

Length: MQ_PUT_TIME_LENGTH

XmitqPutDate

Description: The put date of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_DATE

Trace level: 2

Type MQCFST

Monitoring and performance 215

Length: MQ_PUT_DATE_LENGTH

XmitqRemoteQName

Description: The remote queue destination of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_REMOTE_Q_Name

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH

XmitqRemoteQMgr

Description: The message ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_REMOTE_Q_MGR

Trace level: 2

Type MQCFST

Length: MQ_MSG_ID_LENGTH

MsgDescStructure

Description: The MQMD structure. This parameter is omitted if a version 4 MQGMO was used
to request that a Message Handle be returned instead of an MQMD

PCF Parameter: MQBACF_MQMD_STRUCT

Trace level: 3

Type MQCFBS

Length: The length in bytes of the MQMD structure (actual size is dependent on
structure version)

GetMsgOptsStructure

Description: The MQGMO structure.

PCF Parameter: MQBACF_MQGMO_STRUCT

Trace level: 3

Type MQCFBS

Length: The length in bytes of the MQGMO structure (actual size is dependent on
structure version)

MQCBContextStructure

Description: The MQCBC structure.

PCF Parameter: MQBACF_MQCBC_STRUCT

Trace level: 3

Type MQCFBS

Length: The length in bytes of the MQCBC structure (actual size is dependent on
structure version)

216 Monitoring and Performance for IBM WebSphere MQ

MQCB
Application has started the manage callback MQI function

CallbackOperation

Description: The manage callback function operation. Set to one of the MQOP_* values

PCF Parameter: MQIACF_MQCB_OPERATION

Trace level: 1

Type MQCFIN

CallbackType

Description: The type of the callback function (CallbackType field from the MQCBD
structure). Set to one of the MQCBT_* values

PCF Parameter: MQIACF_MQCB_TYPE

Trace level: 1

Type MQCFIN

CallbackOptions

Description: The callback options. Set to one of the MQCBDO_* values

PCF Parameter: MQIACF_MQCB_OPTIONS

Trace level: 1

Type MQCFIN

CallbackFunction

Description: The pointer to the callback function if started as a function call.

PCF Parameter: MQBACF_MQCB_FUNCTION

Trace level: 1

Type MQCFBS

Length: Size of MQPTR

CallbackName

Description: The name of the callback function if started as a dynamically linked program.

PCF Parameter: MQCACF_MQCB_NAME

Trace level: 1

Type MQCFST

Length: Size of MQCHAR128

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type MQCFIN

Monitoring and performance 217

MaxMsgLength

Description: Maximum message length. Set to an integer, or the special value
MQCBD_FULL_MSG_LENGTH

PCF Parameter: MQIACH_MAX_MSG_LENGTH

Trace level: 2

Type MQCFIN

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type MQCFIN

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH.

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type MQCFST

Length: Length varies.

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type MQCFIN

218 Monitoring and Performance for IBM WebSphere MQ

CallBack DescriptorStructure

Description: The MQCBD structure. This parameter is omitted if a NULL MQCBC value is
passed to the MQCB call.

PCF Parameter: MQBACF_MQCBD_STRUCT

Trace level: 3

Type MQCFBS

Length: The length in bytes of the MQCBC structure

MsgDescStructure

Description: The MQMD structure. The MsgDescStructure parameter is omitted if a NULL
MQMD value is passed to the MQCB call.

PCF Parameter: MQBACF_MQMD_STRUCT

Trace level: 3

Type MQCFBS

Length: The length in bytes of the MQMD structure (actual size depends on structure
version)

GetMsgOptsStructure

Description: The MQGMO structure. This parameter is omitted if a NULL MQGMO value is
passed to the MQCB call.

PCF Parameter: MQBACF_MQGMO_STRUCT

Trace level: 3

Type MQCFBS

Length: The length in bytes of the MQGMO structure (actual size depends on structure
version)

MQCLOSE
Application has started the MQCLOSE MQI function

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type MQCFIN

CloseOptions

Description: Close options

PCF Parameter: MQIACF_CLOSE_OPTIONS

Trace level: 1

Type MQCFIN

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Monitoring and performance 219

Trace level: 1

Type MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type MQCFIN

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH.

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type MQCFST

Length: Length varies.

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type MQCFIN

MQCMIT
Application has started the MQCMIT MQI function

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type MQCFIN

Reason

Description: The reason code result of the operation

220 Monitoring and Performance for IBM WebSphere MQ

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type MQCFIN

MQCONN and MQCONNX
Application has started the MQCONN or MQCONNX MQI function

ConnectionId

Description: The Connection ID if available or MQCONNID_NONE if not

PCF Parameter: MQBACF_CONNECTION_ID

Trace level: 1

Type: MQCFBS

Maximum length: MQ_CONNECTION_ID_LENGTH

QueueManagerName

Description: The (unresolved) name of the queue manager used in the MQCONN(X) call

PCF Parameter: MQCA_Q_MGR_NAME

Trace level: 1

Type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

ConnectOptions

Description: Connect Options Derived from MQCNO_* values

Note: MQCONNX only

PCF Parameter: MQIACF_CONNECT_OPTIONS

Trace level: 2

Type: MQCFIN

Monitoring and performance 221

ConnectionOptionsStructure

Description: The MQCNO structure.

Note: MQCONNX only)

PCF Parameter: MQBACF_MQCNO_STRUCT

Trace level: 3

Type: MQCFBS

Maximum length: The length in bytes of the MQCNO structure (actual size depends on structure
version)

ChannelDefinitionStructure

Description: The MQCD structure.

Note: Client connections only

PCF Parameter: MQBACF_MQCD_STRUCT

Trace level: 3

Type: MQCFBS

Maximum length: The length in bytes of the MQCD structure (actual size depends on structure
version)

MQCTL
Application has started the MQCTL MQI function

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

CtlOperation

Description: One of MQOP_* values

PCF Parameter: MQIACF_CTL_OPERATION

Trace level: 1

Type: MQCFIN

222 Monitoring and Performance for IBM WebSphere MQ

MQDISC
Application has started the MQDISC MQI function

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

MQGET
Application has started the MQGET MQI function

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type: MQCFIN

GetOptions

Description: The get options from MQGMO.Options

PCF Parameter: MQIACF_GET_OPTIONS

Trace level: 1

Type: MQCFIN

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

MsgBuffer

Description: Message data. If TRACEDATA=NONE then this parameter is omitted

Monitoring and performance 223

PCF Parameter: MQBACF_MESSAGE_DATA

Trace level: 1

Type: MQCFBS

Maximum length: Length is governed by the TRACEDATA() parameter set in the
APPTRACE configuration. (Included in the trace message as
MQIACF_TRACE_DATA_LENGTH).

MsgLength

Description: Length of the message.

PCF Parameter: MQIACF_MSG_LENGTH

Trace level: 1

Type: MQCFIN

HighResTime

Description: Time of operation in microseconds since midnight, January 1 1970 (UTC)

Note: The accuracy of this timer varies according to platform support for high a
resolution timer

PCF Parameter: MQIAMO64_HIGHRES_TIME

Trace level: 2

Type: MQCFIN64

BufferLength

Description: Length of the buffer provided by the application

PCF Parameter: MQIACF_BUFFER_LENGTH

Trace level: 2

Type: MQCFIN

ObjectName

Description: The name of the opened object

PCF Parameter: MQCACF_OBJECT_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

ResolvedQName

Description: The local name of the queue from which the message was retrieved.

PCF Parameter: MQCACF_RESOLVED_Q_NAME

Trace level: 2

Type: MQCFST

Maximum length: MQ_Q_NAME_LENGTH

224 Monitoring and Performance for IBM WebSphere MQ

ReportOptions

Description: Message report options

PCF Parameter: MQIACF_REPORT

Trace level: 2

Type: MQCFIN

MsgType

Description: Type of message

PCF Parameter: MQIACF_MSG_TYPE

Trace level: 2

Type: MQCFIN

Expiry

Description: Message lifetime

PCF Parameter: MQIACF_EXPIRY

Trace level: 2

Type: MQCFIN

Format

Description: Format name of message data

PCF Parameter: MQCACH_FORMAT_NAME

Trace level: 2

Type: MQCFST

Maximum length: MQ_FORMAT_LENGTH

Priority

Description: Message priority

PCF Parameter: MQIACF_PRIORITY

Trace level: 2

Type: MQCFIN

Persistence

Description: Message persistence

PCF Parameter: MQIACF_PERSISTENCE

Trace level: 2

Type: MQCFIN

MsgId

Description: Message identifier

PCF Parameter: MQBACF_MSG_ID

Trace level: 2

Monitoring and performance 225

Type: MQCFBS

Maximum length: MQ_MSG_ID_LENGTH

CorrelId

Description: Correlation identifier

PCF Parameter: MQBACF_CORREL_ID

Trace level: 2

Type: MQCFBS

Maximum length: MQ_CORREL_ID_LENGTH

ReplyToQueue

Description:

PCF Parameter: MQCACF_REPLY_TO_Q

Trace level: 2

Type: MQCFST

Maximum length: MQ_Q_NAME_LENGTH

ReplyToQMgr

Description:

PCF Parameter: MQCACF_REPLY_TO_Q_MGR

Trace level: 2

Type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

CodedCharSetId

Description: Character set identifier of message data

PCF Parameter: MQIA_CODED_CHAR_SET_ID

Trace level: 2

Type: MQCFIN

Encoding

Description: Numeric encoding of message data.

PCF Parameter: MQIACF_ENCODING

Trace level: 2

Type: MQCFIN

PutDate

Description:

PCF Parameter: MQCACF_PUT_DATE

Trace level: 2

Type: MQCFST

226 Monitoring and Performance for IBM WebSphere MQ

Maximum length: MQ_PUT_DATE_LENGTH

PutTime

Description:

PCF Parameter: MQCACF_PUT_TIME

Trace level: 2

Type: MQCFST

Maximum length: MQ_PUT_TIME_LENGTH

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH.

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type MQCFST

Length: Length varies.

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type MQCFIN

PolicyName

Description: The policy name that was applied to this message.

Note: AMS protected messages only

PCF Parameter: MQCA_POLICY_NAME

Trace level: 2

Type: MQCFST

Length: MQ_OBJECT_NAME_LENGTH

Monitoring and performance 227

XmitqMsgId

Description: The message ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_MSG_ID

Trace level: 2

Type: MQCFBS

Length: MQ_MSG_ID_LENGTH

XmitqCorrelId

Description: The correlation ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_CORREL_ID

Trace level: 2

Type: MQCFBS

Length: MQ_CORREL_ID_LENGTH

XmitqPutTime

Description: The put time of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_TIME

Trace level: 2

Type: MQCFST

Length: MQ_PUT_TIME_LENGTH

XmitqPutDate

Description: The put date of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_DATE

Trace level: 2

Type: MQCFST

Length: MQ_PUT_DATE_LENGTH

XmitqRemoteQName

Description: The remote queue destination of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_REMOTE_Q_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

228 Monitoring and Performance for IBM WebSphere MQ

XmitqRemoteQMgr

Description: The remote queue manager destination of the message in the transmission
queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_REMOTE_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

MsgDescStructure

Description: The MQMD structure.

PCF Parameter: MQBACF_MQMD_STRUCT

Trace level: 3

Type: MQCFBS

Maximum length: The length in bytes of the MQMD structure (actual size depends on structure
version)

GetMsgOptsStructure

Description: The MQGMO structure.

PCF Parameter: MQBACF_MQGMO_STRUCT

Trace level: 3

Type: MQCFBS

Maximum length: The length in bytes of the MQGMO structure (actual size depends on structure
version)

MQINQ
Application has started the MQINQ MQI function

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type: MQCFIN

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Monitoring and performance 229

Trace level: 1

Type: MQCFIN

SelectorCount

Description: The count of selectors that are supplied in the Selectors array.

PCF Parameter: MQIACF_SELECTOR_COUNT

Trace level: 2

Type: MQCFIN

Selectors

Description: The list of attributes (integer or character) whose values must be returned by
MQINQ.

PCF Parameter: MQIACF_SELECTORS

Trace level: 2

Type: MQCFIL

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_Q_NAME

Trace level: 2

Type: MQCFST

Maximum length: MQ_Q_NAME_LENGTH

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type: MQCFST

Maximum length: Length varies

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type: MQCFIN

IntAttrCount

Description: The number of integer attributes returned by the inquire operation

PCF Parameter: MQIACF_INTATTR_COUNT

Trace level: 3

230 Monitoring and Performance for IBM WebSphere MQ

Type: MQCFIN

IntAttrs

Description: The integer attribute values returned by the inquire operation. This parameter is
only present if IntAttrCount is > 0 when MQINQ returns.

PCF Parameter: MQIACF_INT_ATTRS

Trace level: 3

Type: MQCFIL

CharAttrs

Description: The character attributes returned by the inquire operation. The values are
concatenated together. This parameter is only included if CharAttrLength is >
0 when MQINQ returns.

PCF Parameter: MQCACF_CHAR_ATTRS

Trace level: 3

Type: MQCFST

MQOPEN
Application has started the MQOPEN MQI function

ObjectType

Description: The object type passed in MQOT.ObjectType

PCF Parameter: MQIACF_OBJECT_TYPE

Trace level: 1

Type: MQCFIN

ObjectName

Description: The name of the object passed to the MQI call before any queue name
resolution is attempted.

PCF Parameter: MQCACF_OBJECT_NAME

Trace level: 1

Type: MQCFST

Maximum length: MQ_Q_NAME_LENGTH

ObjectQMgrName

Description: The name of the object queue manager passed to the MQI call before any queue
name resolution is attempted.

PCF Parameter: MQCACF_OBJECT_Q_MGR_NAME

Trace level: 1

Type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

ObjectHandle

Description: The object handle

Monitoring and performance 231

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type: MQCFIN

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

OpenOptions

Description: Options used to open the object

PCF Parameter: MQIACF_OPEN_OPTIONS

Trace level: 1

Type: MQCFIN

AlternateUserId

Description: Only included if MQOO_ALTERNATE_USER_AUTHORITY is specified

PCF Parameter: MQCACF_ALTERNATE_USERID

Trace level: 2

Type: MQCFST

Maximum length: MQ_USER_ID_LENGTH

RecsPresent

Description: The number of object name records present. Only included if MQOD Version >=
MQOD_VERSION_2

PCF Parameter: MQIACF_RECS_PRESENT

Trace level: 1

Type: MQCFIN

KnownDestCount

Description: Number of local queues opened successfully Only included if MQOD Version >=
MQOD_VERSION_2

PCF Parameter: MQIACF_KNOWN_DEST_COUNT

Trace level: 1

Type: MQCFIN

232 Monitoring and Performance for IBM WebSphere MQ

UnknownDestCount

Description: Number of remote queues opened successfully Only included if MQOD Version
>= MQOD_VERSION_2

PCF Parameter: MQIACF_UNKNOWN_DEST_COUNT

Trace level: 1

Type: MQCFIN

InvalidDestCount

Description: Number of queues that failed to open Only included if MQOD Version >=
MQOD_VERSION_2

PCF Parameter: MQIACF_INVALID_DEST_COUNT

Trace level: 1

Type: MQCFIN

DynamicQName

Description: The dynamic queue name passed as input to the MQOPEN call.

PCF Parameter: MQCACF_DYNAMIC_Q_NAME

Trace level: 2

Type: MQCFST

Maximum length: MQ_Q_NAME_LENGTH

ResolvedLocalQName12

Description: Contains the local queue name after name resolution has been carried out. (e.g.
for remote queues this will be the name of the transmit queue)

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type: MQCFST

Range: If MQOD.Version is less than MQOD_VERSION_3 this contains the value of the
MQOD.ObjectName field after the MQOPEN call has completed. If MQOD.Version
is equal or greater than MQOD_VERSION_3 this contains the value in the MQOD.
ResolvedQName field.

Maximum length: MQ_Q_NAME_LENGTH

ResolvedLocalQMgrName12

Description: The local queue manager name after name resolution has been performed.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_MGR

Trace level: 2

Type: MQCFST

Range: Only if MQOD.Version >= MQOD_VERSION_3

Maximum length: MQ_Q_MGR_NAME_LENGTH

ResolvedQName12

Description: The queue name after name resolution has been carried out.

Monitoring and performance 233

PCF Parameter: MQCACF_RESOLVED_Q_NAME

Trace level: 2

Type: MQCFST

Range: If MQOD.Version is less than MQOD_VERSION_3 this contains the value of the
MQOD.ObjectName field after the MQOPEN call has completed. If MQOD.Version
is equal or greater than MQOD_VERSION_3 this contains the value in the MQOD.
ResolvedQName field.

Maximum length: MQ_Q_NAME_LENGTH

ResolvedQMgrName12

Description: Contains the queue manager name after name resolution has been carried
out. If MQOD.Version is less than MQOD_VERSION_3 this contains the value
of the MQOD. ObjectQMgrName field after the MQOPEN call has completed.
If MQOD.Version is equal or greater than MQOD_VERSION_3 this contains the
value in the MQOD. ResolvedQMgrName field.

PCF Parameter: MQCACF_RESOLVED_Q_MGR

Trace level: 2

Type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

AlternateSecurityId

Description: Alternative security identifier. Only present if MQOD.Version is equal or greater
than MQOD_VERSION_3, MQOO_ALTERNATE_USER_AUTHORITY is specified,
and MQOD.AlternateSecurityId is not equal to MQSID_NONE.

PCF Parameter: MQBACF_ALTERNATE_SECURITYID

Trace level: 2

Type: MQCFBS

Maximum length: MQ_SECURITY_ID_LENGTH

ObjectString

Description: Long object name. Only included if MQOD.Version is equal or greater
than MQOD_VERSION_4 and the VSLength field of MQOD.ObjectString is
MQVS_NULL_TERMINATED or greater than zero.

PCF Parameter: MQCACF_OBJECT_STRING

Trace level: 2

Type: MQCFST

Maximum length: Length varies.

SelectionString

Description: Selection string. Only included if MQOD.Version is equal or greater than
MQOD_VERSION_4 and the VSLength field of MQOD. SelectionString is
MQVS_NULL_TERMINATED or greater than zero.

PCF Parameter: MQCACF_SELECTION_STRING

Trace level: 2

Type: MQCFST

234 Monitoring and Performance for IBM WebSphere MQ

Maximum length: Length varies.

ResObjectString

Description: The long object name after the queue manager resolves the name provided in
the ObjectName field. Only included for topics and queue aliases that reference
a topic object if MQOD.Version is equal or greater than MQOD_VERSION_4 and
VSLength is MQVS_NULL_TERMINATED or greater than zero.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type: MQCFST

Maximum length: Length varies.

ResolvedType

Description: The type of the resolved (base) object being opened. Only included if
MQOD.Version is equal or greater than MQOD_VERSION_4. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type: MQCFIN

Application Activity Distribution List PCF Group Header Structure
If the MQOPEN function opens a distribution list, then the MQOPEN parameters includes one
AppActivityDistList PCF group for each of the queues in the distribution list up to the number of structures
numbered in RecsPresent. The Ap-pActivityDistList PCF group combines information from the MQOR, and
MQRR structures to identify the queue name, and indicate the result of the open operation on the queue.
An AppActivityDistList group always starts with the following MQCFGR structure:

Table 28. AppActivityDistList group MQCFGR structure

MQCFGR field Value Description

Type MQCFT_GROUP

StrucLength Length in bytes of the MQCFGR
structure

Parameter MQGACF_APP_DIST_LIST Distribution list group parameter

ParameterCount 4 The number of parameter
structures following the MQCFGR
structure that are contained
within this group.

ObjectName

Description: The name of a queue in the distribution list MQ_Q_NAME_LENGTH. Only
included if MQOR structures are provided.

PCF Parameter: MQCACF_OBJECT_NAME

1 This parameter is only included if the object being opened resolves to a queue, and the queue is opened for
MQOO_INPUT_*, MQOO_OUTPUT, or MQOO_BROWSE

2 The ResolvedLocalQName parameter is only included if it is different from the ResolvedQName parameter.

Monitoring and performance 235

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH. Only included if MQOR structures are provided.

ObjectQMgrName

Description: The name of the queue manager on which the queue named in ObjectName is
defined.

PCF Parameter: MQCACF_OBJECT_Q_MGR_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_MGR_NAME_LENGTH. Only included if MQOR structures are provided.

CompCode

Description: The completion code indicating the result of the open for this object. Only
included if MQRR structures are provided and the reason code for the MQOPEN
is MQRC_MULTIPLE_REASONS

PCF Parameter: MQIACF_COMP_CODE

Trace level: 2

Type: MQCFIN

Reason

Description: The reason code indicating the result of the open for this object. Only included
if MQRR structures are provided and the reason code for the MQOPEN is
MQRC_MULTIPLE_REASONS

PCF Parameter: MQIACF_REASON_CODE

Trace level: 2

Type: MQCFIN

MQPUT
Application has started the MQPUT MQI function.

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type: MQCFIN

PutOptions

Description: The put options from MQPMO.Options

PCF Parameter: MQIACF_PUT_OPTIONS

Trace level: 1

Type: MQCFIN

236 Monitoring and Performance for IBM WebSphere MQ

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

MsgBuffer

Description: Message data.

PCF Parameter: MQBACF_MESSAGE_DATA

Trace level: 1

Type: MQCFBS

Length: Length is governed by the TRACEDATA() parameter set in the APPTRACE
configuration. If TRACEDATA=NONE then this parameter is omitted.

MsgLength

Description: Length of the message.

PCF Parameter: MQIACF_MSG_LENGTH

Trace level: 1

Type: MQCFIN

RecsPresent

Description: The number of put message records or response records present. Only included
if MQPMO Version >= MQPMO_VERSION_2

PCF Parameter: MQIACF_RECS_PRESENT

Trace level: 1

Type: MQCFIN

KnownDestCount

Description: Number of messages sent successfully to local queues

PCF Parameter: MQIACF_KNOWN_DEST_COUNT

Trace level: 1

Type: MQCFIN

UnknownDestCount

Description: Number of messages sent successfully to remote queues

PCF Parameter: MQIACF_UNKNOWN_DEST_COUNT

Monitoring and performance 237

Trace level: 1

Type: MQCFIN

InvalidDestCount

Description: Number of messages that could not be sent

PCF Parameter: MQIACF_INVALID_DEST_COUNT

Trace level: 1

Type: MQCFIN

HighResTime

Description: Time of operation in microseconds since midnight, January 1st 1970 (UTC)

Note: The accuracy of this timer varies according to platform support for high a
resolution timer.

PCF Parameter: MQIAMO64_HIGHRES_TIME

Trace level: 2

Type: MQCFIN64

ObjectName

Description: The name of the opened object.

PCF Parameter: MQCACF_OBJECT_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

ResolvedQName

Description: The name of the queue after queue name resolution has been performed.

PCF Parameter: MQCACF_RESOLVED_Q_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

ResolvedQMgrName

Description: The queue manager name after name resolution has been performed.

PCF Parameter: MQCACF_RESOLVED_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_MGR_NAME_LENGTH

ResolvedLocalQName3

Description: Contains the local queue name after name resolution has been carried out.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

238 Monitoring and Performance for IBM WebSphere MQ

Trace level: 2

Type: MQCFST

ResolvedLocalQMgrName3

Description: Contains the local queue manager name after name resolution has been carried
out.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_MGR_NAME_LENGTH

ReportOptions

Description: Message report options

PCF Parameter: MQIACF_REPORT

Trace level: 2

Type: MQCFIN

MsgType

Description: Type of message

PCF Parameter: MQIACF_MSG_TYPE

Trace level: 2

Type: MQCFIN

Expiry

Description: Message lifetime

PCF Parameter: MQIACF_EXPIRY

Trace level: 2

Type: MQCFIN

Format

Description: Format name of message data

PCF Parameter: MQCACH_FORMAT_NAME

Trace level: 2

Type: MQCFST

Length: MQ_FORMAT_LENGTH

Priority

Description: Message priority

PCF Parameter: MQIACF_PRIORITY

Trace level: 2

Type: MQCFIN

Monitoring and performance 239

Persistence

Description: Message persistence

PCF Parameter: MQIACF_PERSISTENCE

Trace level: 2

Type: MQCFIN

MsgId

Description: Message identifier

PCF Parameter: MQBACF_MSG_ID

Trace level: 2

Type: MQCFBS

Length: MQ_MSG_ID_LENGTH

CorrelId

Description: Correlation identifier

PCF Parameter: MQBACF_CORREL_ID

Trace level: 2

Type: MQCFBS

Length: MQ_CORREL_ID_LENGTH

ReplyToQueue

Description:

PCF Parameter: MQCACF_REPLY_TO_Q

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

ReplyToQMgr

Description:

PCF Parameter: MQCACF_REPLY_TO_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_MGR_NAME_LENGTH

CodedCharSetId

Description: Character set identifier of message data

PCF Parameter: MQIA_CODED_CHAR_SET_ID

Trace level: 2

Type: MQCFIN

240 Monitoring and Performance for IBM WebSphere MQ

Encoding

Description: Numeric encoding of message data.

PCF Parameter: MQIACF_ENCODING

Trace level: 2

Type: MQCFIN

PutDate

Description:

PCF Parameter: MQCACF_PUT_DATE

Trace level: 2

Type: MQCFST

Length: MQ_PUT_DATE_LENGTH

PutTime

Description:

PCF Parameter: MQCACF_PUT_TIME

Trace level: 2

Type: MQCFST

Length: MQ_PUT_TIME_LENGTH

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH.

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type: MQCFST

Length: Length varies.

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type: MQCFIN

Monitoring and performance 241

PolicyName

Description: The policy name that was applied to this message.

Note: AMS protected messages only

PCF Parameter: MQCA_POLICY_NAME

Trace level: 2

Type: MQCFST

Length: MQ_OBJECT_NAME_LENGTH

XmitqMsgId

Description: The message ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_MSG_ID

Trace level: 2

Type: MQCFBS

Length: MQ_MSG_ID_LENGTH

XmitqCorrelId

Description: The correlation ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_CORREL_ID

Trace level: 2

Type: MQCFBS

Length: MQ_CORREL_ID_LENGTH

XmitqPutTime

Description: The put time of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_TIME

Trace level: 2

Type: MQCFST

Length: MQ_PUT_TIME_LENGTH

XmitqPutDate

Description: The put date of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_DATE

Trace level: 2

Type: MQCFST

Length: MQ_PUT_DATE_LENGTH

242 Monitoring and Performance for IBM WebSphere MQ

XmitqRemoteQName

Description: The remote queue destination of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_REMOTE_Q_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

XmitqRemoteQMgr

Description: The remote queue manager destination of the message in the transmission
queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_REMOTE_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

PutMsgOptsStructure

Description: The MQPMO structure.

PCF Parameter: MQBACF_MQPMO_STRUCT

Trace level: 3

Type: MQCFBS

Length: The length in bytes of the MQPMO structure (actual size depends on structure
version)

MQPUT Application Activity Distribution List PCF Group Header Structure

If the MQPUT function is putting to a distribution list, then the MQPUT parameters include one
AppActivityDistList PCF group. For each of the queues in the distribution list, see “Application Activity
Distribution List PCF Group Header Structure” on page 235. The AppActivityDistList PCF group combines
information from the MQPMR, and MQRR structures to identify the PUT parameters, and indicate the
result of the PUT operation on each queue. For MQPUT operations the AppActivityDistList group contains
some or all of the following parameters (the CompCode and Reason is present if the reason code is
MQRC_MULTIPLE_REASONS and the other parameters are determined by the MQPMO.PutMsgRecFields
field):

CompCode

Description: The completion code indicating the result of the operation. Only included
if MQRR structures are provided and the reason code for the MQPUT is
MQRC_MULTIPLE_REASONS

PCF Parameter: MQIACF_COMP_CODE

Trace level: 2

Type: MQCFIN

3 The ResolvedLocalQName parameter is only included if it is different from the ResolvedQName parameter.

Monitoring and performance 243

Reason

Description: The reason code indicating the result of the put for this object. Only included
if MQRR structures are provided and the reason code for the MQPUT is
MQRC_MULTIPLE_REASONS

PCF Parameter: MQIACF_REASON_CODE

Trace level: 2

Type: MQCFIN

MsgId

Description: Message identifier. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_MSG_ID

PCF Parameter: MQBACF_MSG_ID

Trace level: 2

Type: MQCFBS

Length: MQ_MSG_ID_LENGTH

CorrelId

Description: Correlation identifier. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_CORREL_ID

PCF Parameter: MQBACF_CORREL_ID

Trace level: 2

Type: MQCFBS

Length: MQ_CORREL_ID_LENGTH

GroupId

Description: Group identifier. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_GROUP_ID

PCF Parameter: MQBACF_GROUP_ID

Trace level: 2

Type: MQCFBS

Length: MQ_GROUP_ID_LENGTH

Feedback

Description: Feedback. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_FEEDBACK

PCF Parameter: MQIACF_FEEDBACK

Trace level: 2

Type: MQCFIN

AccountingToken

Description: AccountingToken. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_ACCOUNTING_TOKEN

PCF Parameter: MQBACF_ACCOUNTING_TOKEN

244 Monitoring and Performance for IBM WebSphere MQ

Trace level: 2

Type: MQCFBS

Length: MQ_ACCOUNTING_TOKEN_LENGTH.

MQPUT1
Application has started the MQPUT1 MQI function

ObjectType

Description: The object type passed in MQOT.ObjectType

PCF Parameter: MQIACF_OBJECT_TYPE

Trace level: 1

Type: MQCFIN

ObjectName

Description: The name of the object passed to the MQI call before any queue name
resolution is attempted.

PCF Parameter: MQCACF_OBJECT_NAME

Trace level: 1

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

ObjectQMgrName

Description: The name of the object queue manager passed to the MQI call before any queue
name resolution is attempted.

PCF Parameter: MQCACF_OBJECT_Q_MGR_NAME

Trace level: 1

Type: MQCFST

Length: MQ_Q_MGR_NAME_LENGTH

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

PutOptions

Description: The put options from MQPMO.Options

Monitoring and performance 245

PCF Parameter: MQIACF_PUT_OPTIONS

Trace level: 1

Type: MQCFIN

AlternateUserId

Description: Only included if MQPMO_ALTERNATE_USER_AUTHORITY is specified.

PCF Parameter: MQCACF_ALTERNATE_USERID

Trace level: 2

Type: MQCFST

Length: MQ_USER_ID_LENGTH

RecsPresent

Description: The number of object name records present

PCF Parameter: MQIACF_RECS_PRESENT

Trace level: 1

Type: MQCFIN

KnownDestCount

Description: Number of local queues opened successfully

PCF Parameter: MQIACF_KNOWN_DEST_COUNT

Trace level: 1

Type: MQCFIN

UnknownDestCount

Description: Number of remote queues opened successfully

PCF Parameter: MQIACF_UNKNOWN_DEST_COUNT

Trace level: 1

Type: MQCFIN

InvalidDestCount

Description: Number of queues that failed to open

PCF Parameter: MQIACF_INVALID_DEST_COUNT

Trace level: 1

Type: MQCFIN

MsgBuffer

Description: Message data.

PCF Parameter: MQBACF_MESSAGE_DATA

Trace level: 1

Type: MQCFBS

Length: Length is governed by the TRACEDATA() parameter set in the APPTRACE
configuration. If TRACEDATA=NONE then this parameter is omitted.

246 Monitoring and Performance for IBM WebSphere MQ

MsgLength

Description: Length of the message.

PCF Parameter: MQIACF_MSG_LENGTH

Trace level: 1

Type: MQCFIN

HighResTime

Description: Time of operation in microseconds since midnight, January 1st 1970 (UTC)

Note: The accuracy of this timer will vary according to platform support for high
a resolution timer.

PCF Parameter: MQIAMO64_HIGHRES_TIME

Trace level: 2

Type: MQCFIN64

ResolvedQName

Description: The name of the queue after queue name resolution has been performed.

PCF Parameter: MQCACF_RESOLVED_Q_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

ResolvedQMgrName

Description: The queue manager name after name resolution has been performed.

PCF Parameter: MQCACF_RESOLVED_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_MGR_NAME_LENGTH

ResolvedLocalQName4

Description: Contains the local queue name after name resolution has been carried out

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type: MQCFST

ResolvedLocalQMgrName4

Description: Contains the local queue manager name after name resolution has been carried
out.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_MGR_NAME_LENGTH

Monitoring and performance 247

AlternateSecurityId

Description: Alternate security identifier. Only present if MQOD.Version is equal or
greater than MQOD_VERSION_3 and MQOD.AlternateSecurityId is not equal to
MQSID_NONE.

PCF Parameter: MQBACF_ALTERNATE_SECURITYID

Trace level: 2

Type: MQCFBS

Length: MQ_SECURITY_ID_LENGTH

ObjectString

Description: Long object name. Only included if MQOD.Version is equal or greater
than MQOD_VERSION_4 and the VSLength field of MQOD.ObjectString is
MQVS_NULL_TERMINATED or greater than zero.

PCF Parameter: MQCACF_OBJECT_STRING

Trace level: 2

Type: MQCFST

Length: Length varies.

ResObjectString

Description: The long object name after the queue manager resolves the name provided in
the ObjectName field. Only included for topics and queue aliases that reference
a topic object if MQOD.Version is equal or greater than MQOD_VERSION_4 and
VSLength is MQVS_NULL_TERMINATED or greater than zero.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type: MQCFST

Length: Length varies.

ResolvedType

Description: The type of the resolved (base) object being opened. Only included if
MQOD.Version is equal or greater than MQOD_VERSION_4. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type: MQCFIN

ReportOptions

Description: Message report options

PCF Parameter: MQIACF_REPORT

Trace level: 2

Type: MQCFIN

MsgType

Description: Type of message

248 Monitoring and Performance for IBM WebSphere MQ

PCF Parameter: MQIACF_MSG_TYPE

Trace level: 2

Type: MQCFIN

Expiry

Description: Message lifetime

PCF Parameter: MQIACF_EXPIRY

Trace level: 2

Type: MQCFIN

Format

Description: Format name of message data

PCF Parameter: MQCACH_FORMAT_NAME

Trace level: 2

Type: MQCFST

Length: MQ_FORMAT_LENGTH

Priority

Description: Message priority

PCF Parameter: MQIACF_PRIORITY

Trace level: 2

Type: MQCFIN

Persistence

Description: Message persistence

PCF Parameter: MQIACF_PERSISTENCE

Trace level: 2

Type: MQCFIN

MsgId

Description: Message identifier

PCF Parameter: MQBACF_MSG_ID

Trace level: 2

Type: MQCFBS

Length: MQ_MSG_ID_LENGTH

CorrelId

PCF Parameter: Correlation identifier

Description: MQBACF_CORREL_ID

Trace level: 2

Type: MQCFBS

Monitoring and performance 249

Length: MQ_CORREL_ID_LENGTH

ReplyToQueue

Description:

PCF Parameter: MQCACF_REPLY_TO_Q

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

ReplyToQMgr

Description:

PCF Parameter: MQCACF_REPLY_TO_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQCFST

CodedCharSetId

Description: Character set identifier of message data

PCF Parameter: MQIA_CODED_CHAR_SET_ID

Trace level: 2

Type: MQCFIN

Encoding

Description: Numeric encoding of message data.

PCF Parameter: MQIACF_ENCODING

Trace level: 2

Type: MQCFIN

PutDate

Description:

PCF Parameter: MQCACF_PUT_DATE

Trace level: 2

Type: MQCFST

Length: MQ_PUT_DATE_LENGTH

PutTime

Description:

PCF Parameter: MQCACF_PUT_TIME

Trace level: 2

Type: MQCFST

Length: MQ_PUT_TIME_LENGTH

250 Monitoring and Performance for IBM WebSphere MQ

PolicyName

Description: The policy name that was applied to this message.

Note: AMS protected messages only

PCF Parameter: MQCA_POLICY_NAME

Trace level: 2

Type: MQCFST

Length: MQ_OBJECT_NAME_LENGTH

XmitqMsgId

Description: The message ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_MSG_ID

Trace level: 2

Type: MQCFBS

Length: MQ_MSG_ID_LENGTH

XmitqCorrelId

Description: The correlation ID of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQBACF_XQH_CORREL_ID

Trace level: 2

Type: MQCFBS

Length: MQ_CORREL_ID_LENGTH

XmitqPutTime

Description: The put time of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_TIME

Trace level: 2

Type: MQCFST

Length: MQ_PUT_TIME_LENGTH

XmitqPutDate

Description: The put date of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_PUT_DATE

Trace level: 2

Type: MQCFST

Length: MQ_PUT_DATE_LENGTH

Monitoring and performance 251

XmitqRemoteQName

Description: The remote queue destination of the message in the transmission queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_REMOTE_Q_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

XmitqRemoteQMgr

Description: The remote queue manager destination of the message in the transmission
queue header.

Note: Only when Format is MQFMT_XMIT_Q_HEADER

PCF Parameter: MQCACF_XQH_REMOTE_Q_MGR

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

PutMsgOptsStructure

Description: The MQPMO structure.

PCF Parameter: MQBACF_MQPMO_STRUCT

Trace level: 3

Type: MQCFBS

Length: The length in bytes of the MQPMO structure (actual size depends on structure
version)

MQPUT1 AppActivityDistList PCF Group Header Structure

If the MQPUT1 function is putting to a distribution list, then the variable parameters include one
AppActivityDistList PCF group. For each of the queues in the distribution list, see “Application Activity
Distribution List PCF Group Header Structure” on page 235. The AppActivityDistList PCF group combines
information from the MQOR, MQPMR, and MQRR structures to identify the objects, and the PUT
parameters , and indicate the result of the PUT operation on each queue. For MQPUT1 operations the
AppActivityDistList group contains some or all of the following parameters (the CompCode, Reason,
ObjectName, and ObjectQMgrName is present if the reason code is MQRC_MULTIPLE_REASONS and the
other parameters is determined by the MQPMO.PutMsgRecFields field):

CompCode

Description: The completion code indicating the result of the put for this object. Only
included if MQRR structures are provided and the reason code for the MQPUT1
is MQRC_MULTIPLE_REASONS

PCF Parameter: MQIACF_COMP_CODE

Trace level: 2

Type: MQCFIN

4 The ResolvedLocalQName parameter is only included if it is different from the ResolvedQName parameter.

252 Monitoring and Performance for IBM WebSphere MQ

Reason

Description: The reason code indicating the result of the put for this object. Only included
if MQRR structures are provided and the reason code for the MQPUT1 is
MQRC_MULTIPLE_REASONS

PCF Parameter: MQIACF_REASON_CODE

Trace level: 2

Type: MQCFIN

ObjectName

Description: The name of a queue in the distribution list. Only included if MQOR structures
are provided.

PCF Parameter: MQCACF_OBJECT_NAME

Trace level: 2

Type: MQCFST

Length: MQ_Q_NAME_LENGTH

MsgId

Description: Message identifier. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_MSG_ID

PCF Parameter: MQBACF_MSG_ID

Trace level: 2

Type: MQCFBS

Length: MQ_MSG_ID_LENGTH

CorrelId

Description: Correlation identifier. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_CORREL_ID

PCF Parameter: MQBACF_CORREL_ID

Trace level: 2

Type: MQCFBS

Length: MQ_CORREL_ID_LENGTH

GroupId

Description: Group identifier. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_GROUP_ID

PCF Parameter: MQBACF_GROUP_ID

Trace level: 2

Type: MQCFBS

Length: MQ_GROUP_ID_LENGTH

Feedback

Description: Feedback. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_FEEDBACK

Monitoring and performance 253

PCF Parameter: MQIACF_FEEDBACK

Trace level: 2

Type: MQCFIN

AccountingToken

Description: AccountingToken. Only included if MQPMR structures are provided.and
PutMsgRecFields includes MQPMRF_ACCOUNTING_TOKEN

PCF Parameter: MQBACF_ACCOUNTING_TOKEN

Trace level: 2

Type: MQCFBS

Length: MQ_ACCOUNTING_TOKEN_LENGTH.

MQSET
Application has started the MQSET MQI function

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type: MQCFIN

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

SelectorCount

Description: The count of selectors that are supplied in the Selectors array.

PCF Parameter: MQIACF_SELECTOR_COUNT

Trace level: 2

Type: MQCFIN

Selectors

Description: The list of attributes (integer or character) whose values are being updated by
MQSET.

PCF Parameter: MQIACF_SELECTORS

254 Monitoring and Performance for IBM WebSphere MQ

Trace level: 2

Type: MQCFIL

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH.

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type MQCFST

Length: Length varies.

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type MQCFIN

IntAttrCount

Description: The number of integer attributes to be updated by the set operation.

PCF Parameter: MQIACF_INTATTR_COUNT

Trace level: 3

Type: MQCFIN

IntAttrs

Description: The integer attribute values

PCF Parameter: MQIACF_INT_ATTRS

Trace level: 3

Type: MQCFIL

Range: This parameter is only present if IntAttrCount is > 0

CharAttrs

Description: The character attributes to be updated by the set operation. The values are
concatenated together.

PCF Parameter: MQCACF_CHAR_ATTRS

Monitoring and performance 255

Trace level: 3

Type: MQCFST

Range: This parameter is only included if CharAttrLength is > 0

MQSUB
Application has started the MQSUB MQI function

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

SubHandle

Description: The subscription handle

PCF Parameter: MQIACF_HSUB

Trace level: 1

Type: MQCFIN

ObjectHandle

Description: The object handle

PCF Parameter: MQIACF_HOBJ

Trace level: 1

Type: MQCFIN

Options

Description: Subscription options

PCF Parameter: MQIACF_SUB_OPTIONS

Trace level: 1

Type: MQCFIN

ObjectName

Description: The name of the object.

PCF Parameter: MQCACF_OBJECT_NAME

Trace level: 1

Type: MQCFST

256 Monitoring and Performance for IBM WebSphere MQ

Length: MQ_Q_NAME_LENGTH

ObjectString

Description: Long object name.

PCF Parameter: MQCACF_OBJECT_STRING

Trace level: 1

Type: MQCFST

Range: Only included if the VSLength field of MQSD.ObjectString is greater than zero or
MQVS_NULL_TERMINATED.

Length: Length varies.

AlternateUserId

Description:

PCF Parameter: MQCACF_ALTERNATE_USERID

Trace level: 2

Type: MQCFST

Range: Only included if MQSO_ALTERNATE_USER_AUTHORITY is specified.

Length: MQ_USER_ID_LENGTH

AlternateSecurityId

Description: Alternate security identifier.

PCF Parameter: MQBACF_ALTERNATE_SECURITYID

Trace level: 2

Type: MQCFBS

Range: Only present if MQSO_ALTERNATE_USER_AUTHORITY is specified and
MQSD.AlternateSecurityId is not equal to MQSID_NONE.

Length: MQ_SECURITY_ID_LENGTH

SubName

Description: Subscription Name

PCF Parameter: MQCACF_SUB_NAME

Trace level: 2

Type: MQCFST

Range: Only included if the VSLength field of MQSD.SubName is greater than zero or
MQVS_NULL_TERMINATED.

Length: Length varies.

SubUserData

Description: Subscription User Data

PCF Parameter: MQCACF_SUB_USER_DATA

Trace level: 2

Type: MQCFST

Monitoring and performance 257

Range: Only included if the VSLength field of MQSD.SubName is greater than zero or
MQVS_NULL_TERMINATED.

Length: Length varies.

SubCorrelId

Description: Subscription Correlation identifier

PCF Parameter: MQBACF_SUB_CORREL_ID

Trace level: 2

Type: MQCFBS

Length: MQ_CORREL_ID_LENGTH

SelectionString

Description: Selection string.

PCF Parameter: MQCACF_SELECTION_STRING

Trace level: 2

Type: MQCFST

Range: Only included if the VSLength field of MQSD. SelectionString is
MQVS_NULL_TERMINATED or greater than zero.

Length: Length varies.

ResolvedQName

Description: The queue name referred to by the ObjectHandle, when ResolvedType is
MQOT_Q.

PCF Parameter: MQCACF_RESOLVED_LOCAL_Q_NAME

Trace level: 2

Type MQCFST

Length: MQ_Q_NAME_LENGTH.

ResObjectString

Description: The object name referred to by the ObjectHandle, when ResolvedType is
MQOT_TOPIC.

PCF Parameter: MQCACF_RESOLVED_OBJECT_STRING

Trace level: 2

Type MQCFST

Length: Length varies.

ResolvedType

Description: The type of the object referred to by the ObjectHandle. Possible values are
MQOT_Q, MQOT_TOPIC, or MQOT_NONE.

PCF Parameter: MQIACF_RESOLVED_TYPE

Trace level: 2

Type MQCFIN

258 Monitoring and Performance for IBM WebSphere MQ

SubDescriptorStructure

Description: The MQSD structure.

PCF Parameter: MQBACF_MQSD_STRUCT

Trace level: 3

Type: MQCFBS

Length: The length in bytes of the MQSD structure.

MQSUBRQ
Application has started the MQSUBRQ MQI function

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

SubHandle

Description: The subscription handle

PCF Parameter: MQIACF_HSUB

Trace level: 1

Type: MQCFIN

SubOptions

Description: The sub options from MQSB.Options

PCF Parameter: MQIACF_SUBRQ_OPTIONS

Trace level: 2

Type: MQCFIN

Action

Description: The subscription request action (MQSR_*)

PCF Parameter: MQIACF_SUBRQ_ACTION

Trace level: 2

Type: MQCFIN

NumPubs

Description: The number of publications sent as a result of this call (from MQSB.NumPubs)

Monitoring and performance 259

PCF Parameter: MQIACF_NUM_PUBS

Trace level: 2

Type: MQCFIN

MQSTAT
Application has started the MQSTAT MQI function

CompCode

Description: The completion code indicating the result of the operation

PCF Parameter: MQIACF_COMP_CODE

Trace level: 1

Type: MQCFIN

Reason

Description: The reason code result of the operation

PCF Parameter: MQIACF_REASON_CODE

Trace level: 1

Type: MQCFIN

Type

Description: Type of status information being requested

PCF Parameter: MQIACF_STATUS_TYPE

Trace level: 2

Type: MQCFIN

StatusStructure

Description: The MQSTS structure.

PCF Parameter: MQBACF_MQSTS_STRUCT

Trace level: 3

Type: MQCFBS

Length: The length in bytes of the MQSTS structure (actual size depends on structure
version)

Variable Parameters for Application Activity XA Operations
XA operations are API calls that applications can make to enable MQ to participate in a transaction. The
parameters for each operation are defined in the following section.

The trace level indicates the level of trace granularity that is required for the parameters to be included in
the trace. The possible trace level values are:

1. Low

The parameter is included when "low", "medium" or "high" activity tracing is configured for an
application. This setting means that a parameter is always included in the AppActivityData group
for the operation. This set of parameters is sufficient to trace the MQI calls an application makes, and
to see if they are successful.

2. Medium

260 Monitoring and Performance for IBM WebSphere MQ

The parameter is only included in the AppActivityData group for the operation when "medium" or
"high" activity tracing is configured for an application. This set of parameters adds information about
the resources, for example, queue and topic names used by the application.

3. High

The parameter is only included in the AppActivityData group for the operation when "high"
activity tracing is configured for an application. This set of parameters includes memory dumps of
the structures passed to the MQI and XA functions. For this reason, it contains more information about
the parameters used in MQI and XA calls. The structure memory dumps are shallow copies of the
structures. To avoid erroneous attempts to dereference pointers, the pointer values in the structures
are set to NULL.

Note: The version of the structure that is dumped is not necessarily identical to the version used by
an application. The structure can be modified by an API crossing exit, by the activity trace code, or by
the queue manager. A queue manager can modify a structure to a later version, but the queue manager
never changes it to an earlier version of the structure. To do so, would risk losing data.

AXREG
Application has started the AXREG AX function

XID

Description: The XID structure

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

Monitoring and performance 261

AXUNREG
Application has started the AXUNREG AX function

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XACLOSE
Application has started the XACLOSE AX function

Xa_info

Description: Information used to initialize the resource manager.

PCF Parameter: MQCACF_XA_INFO

Trace level: 1

Type: MQCFST

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

262 Monitoring and Performance for IBM WebSphere MQ

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XACOMMIT
Application has started the XACOMMIT AX function

XID

Description: The XID structure

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XACOMPLETE
Application has started the XACOMPLETE AX function

Handle

Description: Handle to async operation

PCF Parameter: MQIACF_XA_HANDLE

Trace level: 1

Type: MQCFIN

Retval

Description: Return value of the asynchronous function

PCF Parameter: MQIACF_XA_RETVAL

Monitoring and performance 263

Trace level: 1

Type: MQCFINMQCFBS

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XAEND
Application has started the XAEND AX function

XID

Description: The XID structure

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

264 Monitoring and Performance for IBM WebSphere MQ

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XAFORGET
Application has started the AXREG AX function

XID

Description: The XID structure

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XAOPEN
Application has started the XAOPEN AX function

Xa_info

Description: Information used to initialize the resource manager.

PCF Parameter: MQCACF_XA_INFO

Trace level: 1

Type: MQCFST

Monitoring and performance 265

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XAPREPARE
Application has started the XAPREPARE AX function

XID

Description: The XID structure

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

266 Monitoring and Performance for IBM WebSphere MQ

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XARECOVER
Application has started the XARECOVER AX function

Count

Description: Count of XIDs

PCF Parameter: MQIACF_XA_COUNT

Trace level: 1

Type: MQCFIN

XIDs

Description: The XID structures

Note: There are multiple instances of this PCF parameter - one for every XID
structure up to Count XIDs

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

Monitoring and performance 267

XAROLLBACK
Application has started the XAROLLBACK AX function

XID

Description: The XID structure

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

XASTART
Application has started the XASTART AX function

XID

Description: The XID structure

PCF Parameter: MQBACF_XA_XID

Trace level: 1

Type: MQCFBS

Length: Sizeof(XID)

Rmid

Description: Resource manager identifier

PCF Parameter: MQIACF_XA_RMID

Trace level: 1

Type: MQCFIN

268 Monitoring and Performance for IBM WebSphere MQ

Flags

Description: Flags

PCF Parameter: MQIACF_XA_FLAGS

Trace level: 1

Type: MQCFIN

XARetCode

Description: Return code

PCF Parameter: MQIACF_XA_RETCODE

Trace level: 1

Type: MQCFIN

Real-time monitoring
Real-time monitoring is a technique that allows you to determine the current state of queues and
channels within a queue manager. The information returned is accurate at the moment the command
was issued.

A number of commands are available that when issued return real-time information about queues and
channels. Information can be returned for one or more queues or channels and can vary in quantity.
Real-time monitoring can be used in the following tasks:

• Helping system administrators understand the steady state of their IBM WebSphere MQ system. This
helps with problem diagnosis if a problem occurs in the system.

• Determining the condition of your queue manager at any moment, even if no specific event or problem
has been detected.

• Assisting with determining the cause of a problem in your system.

With real-time monitoring, information can be returned for either queues or channels. The amount of
real-time information returned is controlled by queue manager, queue, and channel attributes.

• You monitor a queue by issuing commands to ensure that the queue is being serviced properly. Before
you can use some of the queue attributes, you must enable them for real-time monitoring.

• You monitor a channel by issuing commands to ensure that the channel is running properly. Before you
can use some of the channel attributes, you must enable them for real-time monitoring.

Real-time monitoring for queues and channels is in addition to, and separate from, performance and
channel event monitoring.

Attributes that control real-time monitoring
Some queue and channel status attributes hold monitoring information, if real-time monitoring is enabled.
If real-time monitoring is not enabled, no monitoring information is held in these monitoring attributes.
Examples demonstrate how you can use these queue and channel status attributes.

You can enable or disable real-time monitoring for individual queues or channels, or for multiple queues
or channels. To control individual queues or channels, set the queue attribute MONQ or the channel
attribute MONCHL, to enable or disable real-time monitoring. To control many queues or channels
together, enable or disable real-time monitoring at the queue manager level by using the queue manager
attributes MONQ and MONCHL. For all queue and channel objects with a monitoring attribute that is
specified with the default value, QMGR, real-time monitoring is controlled at the queue manager level.

Automatically defined cluster-sender channels are not WebSphere MQ objects, so do not have attributes
in the same way as channel objects. To control automatically defined cluster-sender channels, use the

Monitoring and performance 269

queue manager attribute, MONACLS. This attribute determines whether automatically defined cluster-
sender channels within a queue manager are enabled or disabled for channel monitoring.

For real-time monitoring of channels, you can set the MONCHL attribute to one of the three monitoring
levels: low, medium, or high. You can set the monitoring level either at the object level or at the queue
manager level. The choice of level is dependent on your system. Collecting monitoring data might require
some instructions that are relatively expensive computationally, such as obtaining system time. To reduce
the effect of real-time monitoring, the medium and low monitoring options measure a sample of the
data at regular intervals rather than collecting data all the time. Table 29 on page 270 summarizes the
monitoring levels available for real-time monitoring of channels:

Table 29. Monitoring levels

Level Description Usage

Low Measure a small sample of the data, at
regular intervals.

For objects that process a high volume of
messages.

Medium Measure a sample of the data, at regular
intervals.

For most objects.

High Measure all data, at regular intervals. For objects that process only a few messages
per second, on which the most current
information is important.

For real-time monitoring of queues, you can set the MONQ attribute to one of the three monitoring levels,
low, medium or high. However, there is no distinction between these values. The values all enable data
collection, but do not affect the size of the sample.

Examples
The following examples demonstrate how to set the necessary queue, channel, and queue manager
attributes to control the level of monitoring. For all of the examples, when monitoring is enabled, queue
and channel objects have a medium level of monitoring.

1. To enable both queue and channel monitoring for all queues and channels at the queue manager level,
use the following commands:

ALTER QMGR MONQ(MEDIUM) MONCHL(MEDIUM)
ALTER QL(Q1) MONQ(QMGR)
ALTER CHL(QM1.TO.QM2) CHLTYPE(SDR) MONCHL(QMGR)

2. To enable monitoring for all queues and channels, with the exception of local queue, Q1, and sender
channel, QM1.TO.QM2, use the following commands:

ALTER QMGR MONQ(MEDIUM) MONCHL(MEDIUM)
ALTER QL(Q1) MONQ(OFF)
ALTER CHL(QM1.TO.QM2) CHLTYPE(SDR) MONCHL(OFF)

3. To disable both queue and channel monitoring for all queues and channels, with the exception of local
queue, Q1, and sender channel, QM1.TO.QM2, use the following commands:

ALTER QMGR MONQ(OFF) MONCHL(OFF)
ALTER QL(Q1) MONQ(MEDIUM)
ALTER CHL(QM1.TO.QM2) CHLTYPE(SDR) MONCHL(MEDIUM)

4. To disable both queue and channel monitoring for all queues and channels, regardless of individual
object attributes, use the following command:

270 Monitoring and Performance for IBM WebSphere MQ

ALTER QMGR MONQ(NONE) MONCHL(NONE)

5. To control the monitoring capabilities of automatically defined cluster-sender channels use the
following command:

ALTER QMGR MONACLS(MEDIUM)

6. To specify that automatically defined cluster-sender channels are to use the queue manager setting for
channel monitoring, use the following command:

ALTER QMGR MONACLS(QMGR)

Related concepts
“Real-time monitoring” on page 269
Real-time monitoring is a technique that allows you to determine the current state of queues and
channels within a queue manager. The information returned is accurate at the moment the command
was issued.
Working with queue managers
Related tasks
“Displaying queue and channel monitoring data” on page 271
To display real-time monitoring information for a queue or channel, use either the IBM WebSphere MQ
Explorer or the appropriate MQSC command. Some monitoring fields display a comma-separated pair of
indicator values, which help you to monitor the operation of your queue manager. Examples demonstrate
how you can display monitoring data.
Monitoring (MONCHL)

Displaying queue and channel monitoring data
To display real-time monitoring information for a queue or channel, use either the IBM WebSphere MQ
Explorer or the appropriate MQSC command. Some monitoring fields display a comma-separated pair of
indicator values, which help you to monitor the operation of your queue manager. Examples demonstrate
how you can display monitoring data.

About this task
Monitoring fields that display a pair of values separated by a comma provide short term and long term
indicators for the time measured since monitoring was enabled for the object, or from when the queue
manager was started:

• The short term indicator is the first value in the pair and is calculated in a way such that more recent
measurements are given a higher weighting and will have a greater effect on this value. This gives an
indication of recent trend in measurements taken.

• The long term indicator in the second value in the pair and is calculated in a way such that more recent
measurements are not given such a high weighting. This gives an indication of the longer term activity
on performance of a resource.

These indicator values are most useful to detect changes in the operation of your queue manager. This
requires knowledge of the times these indicators show when in normal use, in order to detect increases in
these times. By collecting and checking these values regularly you can detect fluctuations in the operation
of your queue manager. This can indicate a change in performance.

Obtain real-time monitoring information as follows:

Procedure
1. To display real-time monitoring information for a queue, use either the IBM WebSphere MQ Explorer or

the MQSC command DISPLAY QSTATUS, specifying the optional parameter MONITOR.

Monitoring and performance 271

2. To display real-time monitoring information for a channel, use either the IBM WebSphere MQ Explorer
or the MQSC command DISPLAY CHSTATUS, specifying the optional parameter MONITOR.

Example

The queue, Q1, has the attribute MONQ set to the default value, QMGR, and the queue manager that
owns the queue has the attribute MONQ set to MEDIUM. To display the monitoring fields collected for this
queue, use the following command:

DISPLAY QSTATUS(Q1) MONITOR

The monitoring fields and monitoring level of queue, Q1 are displayed as follows:

QSTATUS(Q1)
TYPE(QUEUE)
MONQ(MEDIUM)
QTIME(11892157,24052785)
MSGAGE(37)
LPUTDATE(2005-03-02)
LPUTTIME(09.52.13)
LGETDATE(2005-03-02)
LGETTIME(09.51.02)

The sender channel, QM1.TO.QM2, has the attribute MONCHL set to the default value, QMGR, and the
queue manager that owns the queue has the attribute MONCHL set to MEDIUM. To display the monitoring
fields collected for this sender channel, use the following command:

DISPLAY CHSTATUS(QM1.TO.QM2) MONITOR

The monitoring fields and monitoring level of sender channel, QM1.TO.QM2 are displayed as follows:

CHSTATUS(QM1.TO.QM2)
XMITQ(Q1)
CONNAME(127.0.0.1)
CURRENT
CHLTYPE(SDR)
STATUS(RUNNING)
SUBSTATE(MQGET)
MONCHL(MEDIUM)
XQTIME(755394737,755199260)
NETTIME(13372,13372)
EXITTIME(0,0)
XBATCHSZ(50,50)
COMPTIME(0,0)
STOPREQ(NO)
RQMNAME(QM2)

Related concepts
“Real-time monitoring” on page 269
Real-time monitoring is a technique that allows you to determine the current state of queues and
channels within a queue manager. The information returned is accurate at the moment the command
was issued.
Related reference
DISPLAY QSTATUS

Monitoring queues
Use this page to view tasks that help you to resolve a problem with a queue and the application that
services that queue. Various monitoring options are available to determine the problem

Frequently, the first sign of a problem with a queue that is being serviced is that the number of messages
on the queue (CURDEPTH) increases. If you expect an increase at certain times of day or under certain

272 Monitoring and Performance for IBM WebSphere MQ

workloads, an increasing number of messages might not indicate a problem. However, if you have no
explanation for the increasing number of messages, you might want to investigate the cause.

You might have an application queue where there is a problem with the application, or a transmission
queue where there is a problem with the channel. Additional monitoring options are available when the
application that services the queue is a channel.

The following examples investigate problems with a particular queue, called Q1, and describe the fields
that you look at in the output of various commands:

Determining whether your application has the queue open
If you have a problem with a queue, check whether your application has the queue open

About this task
Perform the following steps to determine whether your application has the queue open:

Procedure
1. Ensure that the application that is running against the queue is the application that you expect. Issue

the following command for the queue in question:

DISPLAY QSTATUS(Q1) TYPE(HANDLE) ALL

In the output, look at the APPLTAG field, and check that the name of your application is shown. If the
name of your application is not shown, or if there is no output at all, start your application.

2. If the queue is a transmission queue, look in the output at the CHANNEL field.
If the channel name is not shown in the CHANNEL field, determine whether the channel is running.

3. Ensure that the application that is running against the queue has the queue open for input. Issue the
following command:

DISPLAY QSTATUS(Q1) TYPE(QUEUE) ALL

In the output, look at the IPPROCS field to see if any application has the queue open for input. If the
value is 0 and this is a user application queue, make sure that the application opens the queue for
input to get the messages off the queue.

Checking that messages on the queue are available
If you have a large number of messages on the queue and your application is not processing any of those
messages, check whether the messages on the queue are available to your application

About this task
Perform the following steps to investigate why your application is not processing messages from the
queue:

Procedure
1. Ensure that your application is not asking for a specific message ID or correlation ID when it should be

processing all the messages on the queue.
2. Although the current depth of the queue might show that there is an increasing number of messages

on the queue, some messages on the queue might not be available to be got by an application,
because they are not committed; the current depth includes the number of uncommitted MQPUTs of
messages to the queue. Issue the following command:

DISPLAY QSTATUS(Q1) TYPE(QUEUE) ALL

Monitoring and performance 273

In the output, look at the UNCOM field to see whether there are any uncommitted messages on the
queue.

3. If your application is attempting to get any messages from the queue, check whether the putting
application is committing the messages correctly. Issue the following command to find out the names
of applications that are putting messages to this queue:

DISPLAY QSTATUS(Q1) TYPE(HANDLE) OPENTYPE(OUTPUT)

4. Then issue the following command, inserting in <appltag> the APPLTAG value from the output of the
previous command:

DISPLAY CONN(*) WHERE(APPLTAG EQ <appltag>) UOWSTDA UOWSTTI

This shows when the unit of work was started and will help you discover whether the application
is creating a long running unit of work. If the putting application is a channel, you might want to
investigate why a batch is taking a long time to complete.

Checking whether your application is getting messages off the queue
If you have a problem with a queue and the application that services that queue, check whether your
application is getting messages off the queue

About this task
To check whether your application is getting messages off the queue, perform the following checks:

Procedure
1. Ensure that the application that is running against the queue is actually processing messages from the

queue. Issue the following command:

DISPLAY QSTATUS(Q1) TYPE(QUEUE) ALL

In the output, look at the LGETDATE and LGETTIME fields which show when the last get was done from
the queue.

2. If the last get from this queue was longer ago than expected, ensure that the application is processing
messages correctly.
If the application is a channel, check whether messages are moving through that channel

Determining whether the application can process messages fast enough
If messages are building up on the queue, but your other checks have not found any processing problems,
check that the application can process messages fast enough. If the application is a channel, check that
the channel can process messages fast enough.

About this task
To determine whether the application is processing messages fast enough, perform the following tests:

Procedure
1. Issue the following command periodically to gather performance data about the queue:

DISPLAY QSTATUS(Q1) TYPE(QUEUE) ALL

If the values in the QTIME indicators are high, or are increasing over the period, and you have already
ruled out the possibility of long running Units of Work by checking that messages on the queue are
available, the getting application might not be keeping up with the putting applications.

274 Monitoring and Performance for IBM WebSphere MQ

2. If your getting application cannot keep up with the putting applications, consider adding another
getting application to process the queue.
Whether you can add another getting application depends on the design of the application and
whether the queue can be shared by more than one application. Features such as message grouping
or getting by correlation ID might help to ensure that two applications can process a queue
simultaneously.

Checking the queue when the current depth is not increasing
Even if the current depth of your queue is not increasing, it might still be useful to monitor the queue to
check whether your application is processing messages correctly.

About this task
To gather performance data about the queue: Issue the following command periodically:

Procedure
Issue the following command periodically:

DISPLAY QSTATUS(Q1) TYPE(QUEUE) MSGAGE QTIME

In the output, if the value in MSGAGE increases over the period of time, and your application is designed
to process all messages, this might indicate that some messages are not being processed at all.

Monitoring channels
Use this page to view tasks that help you to resolve a problem with a transmission queue and the channel
that services that queue. Various channel monitoring options are available to determine the problem.

Frequently, the first sign of a problem with a queue that is being serviced is that the number of messages
on the queue (CURDEPTH) increases. If you expect an increase at certain times of day or under certain
workloads, an increasing number of messages might not indicate a problem. However, if you have no
explanation for the increasing number of messages, you might want to investigate the cause.

You might have a problem with the channel that services a transmission queue. Various channel
monitoring options are available to help you to determine the problem.

The following examples investigate problems with a transmission queue called QM2 and a channel called
QM1.TO.QM2. This channel is used to send messages from queue manager, QM1, to queue manager,
QM2. The channel definition at queue manager QM1 is either a sender or server channel, and the channel
definition at queue manager, QM2, is either a receiver or requester channel.

Determining whether the channel is running
If you have a problem with a transmission queue, check whether the channel is running.

About this task
Perform the following steps to check the status of the channel that is servicing the transmission queue:

Procedure
1. Issue the following command to find out which channel you expect to process the transmission queue

QM2:

DIS CHANNEL(*) WHERE(XMITQ EQ QM2)

In this example, the output of this command shows that the channel servicing the transmission queue
is QM1.TO.QM2

Monitoring and performance 275

2. Issue the following command to determine the status of the channel, QM1.TO.QM2:

DIS CHSTATUS(QM1.TO.QM2) ALL

3. Inspect the STATUS field of the output from the CHSTATUS command:

• If the value of the STATUS field is RUNNING, check that the channel is moving messages
• If the output from the command shows no status, or the value of the STATUS field is STOPPED,

RETRY, BINDING, or REQUESTING, perform the appropriate step, as follows:
4. Optional: If the value of the STATUS field shows no status, the channel is inactive, so perform the

following steps:
a) If the channel should have been started automatically by a trigger, check that the messages on the

transmission queue are available.
If there are messages available on the transmission queue, check that the trigger settings on the
transmission queue are correct.

b) Issue the following command to start the channel again manually:

START CHANNEL(QM1.TO.QM2)

5. Optional: If the value of the STATUS field is STOPPED, perform the following steps:
a) Check the error logs to determine why the channel stopped. If the channel stopped owing to an

error, correct the problem.
Ensure also that the channel has values specified for the retry attributes: SHORTRTY and LONGRTY.
In the event of transient failures such as network errors, the channel will then attempt to restart
automatically.

b) Issue the following command to start the channel again manually:

START CHANNEL(QM1.TO.QM2)

6. Optional: If the value of the STATUS field is RETRY, perform the following steps:
a) Check the error logs to identify the error, then correct the problem.
b) Issue the following command to start the channel again manually:

START CHANNEL(QM1.TO.QM2)

or wait for the channel to connect successfully on its next retry.
7. Optional: If the value of the STATUS field is BINDING or REQUESTING, the channel has not yet

successfully connected to the partner. Perform the following steps:
a) Issue the following command, at both ends of the channel, to determine the substate of the

channel:

DIS CHSTATUS(QM1.TO.QM2) ALL

Note:

i) In some cases there might be a substate at one end of the channel only.
ii) Many substates are transitory, so issue the command a few times to detect whether a channel is

stuck in a particular substate.
b) Check Table 30 on page 277 to determine what action to take:

276 Monitoring and Performance for IBM WebSphere MQ

Table 30. Substates seen with status binding or requesting

Initiating MCA
substate 1

Responding MCA
substate 2 Notes

NAMESERVER The initiating MCA is waiting for a name server request
to complete. Ensure that the correct host name has been
specified in the channel attribute, CONNAME, and that your
name servers are set up correctly.

SCYEXIT SCYEXIT The MCAs are currently in conversation through a security
exit. For more information, see “Determining whether the
channel can process messages fast enough” on page 279.

CHADEXIT The channel autodefinition exit is currently executing. For
more information, see “Determining whether the channel can
process messages fast enough” on page 279.

RCVEXIT
SENDEXIT
MSGEXIT
MREXIT

RCVEXIT
SENDEXIT
MSGEXIT
MREXIT

Exits are called at channel startup for MQXR_INIT. Review
the processing in this part of your exit if this takes a long time.
For more information, see “Determining whether the channel
can process messages fast enough” on page 279.

SERIALIZE SERIALIZE This substate only applies to channels with a disposition of
SHARED.

NETCONNECT This substate is shown if there is a delay in connecting due to
incorrect network configuration.

SSLHANDSHAKE SSLHANDSHAKE An SSL handshake consists of a number of sends and
receives. If network times are slow, or connection to lookup
CRLs are slow, this affects the time taken to do the
handshake.

Notes:

i) The initiating MCA is the end of the channel which started the conversation. This can be senders,
cluster-senders, fully-qualified servers and requesters. In a server-requester pair, it is the end
from which you started the channel.

ii) The responding MCA is the end of the channel which responded to the request to start the
conversation. This can be receivers, cluster-receivers, requesters (when the server or sender is
started), servers (when the requester is started) and senders (in a requester-sender call-back
pair of channels).

Checking that the channel is moving messages
If you have a problem with a transmission queue, check that the channel is moving messages

Before you begin
Issue the command DIS CHSTATUS(QM1.TO.QM2) ALL. If the value of the STATUS field is RUNNING,
the channel has successfully connected to the partner system.

Check that there are no uncommitted messages on the transmission queue, as described in “Checking
that messages on the queue are available” on page 273.

About this task
If there are messages available for the channel to get and send, perform the following checks:

Monitoring and performance 277

Procedure
1. In the output from the display channel status command, DIS CHSTATUS(QM1.TO.QM2) ALL, look at

the following fields:
MSGS

Number of messages sent or received (or, for server-connection channels, the number of MQI calls
handled) during this session (since the channel was started).

BUFSSENT
Number of transmission buffers sent. This includes transmissions to send control information only.

BYTSSENT
Number of bytes sent during this session (since the channel was started). This includes control
information sent by the message channel agent.

LSTMSGDA
Date when the last message was sent or MQI call was handled, see LSTMSGTI.

LSTMSGTI
Time when the last message was sent or MQI call was handled. For a sender or server, this is the
time the last message (the last part of it if it was split) was sent. For a requester or receiver, it is the
time the last message was put to its target queue. For a server-connection channel, it is the time
when the last MQI call completed.

CURMSGS
For a sending channel, this is the number of messages that have been sent in the current batch.
For a receiving channel, it is the number of messages that have been received in the current batch.
The value is reset to zero, for both sending and receiving channels, when the batch is committed.

2. Determine whether the channel has sent any messages since it started. If any have been sent,
determine when the last message was sent.

3. If the channel has started a batch that has not yet completed, as indicated by a non-zero value in
CURMSGS, the channel might be waiting for the other end of the channel to acknowledge the batch.
Look at the SUBSTATE field in the output and refer to Table 31 on page 278:

Table 31. Sender and receiver MCA substates

Sender SUBSTATE Receiver SUBSTATE Notes

MQGET RECEIVE Normal states of a channel at rest.

SEND RECEIVE SEND is usually a transitory state. If SEND is seen it indicates
that the communication protocol buffers have filled. This can
indicate a network problem.

RECEIVE If the sender is seen in RECEIVE substate for any length of
time, it is waiting on a response, either to a batch completion
or a heartbeat. You might want to check why a batch takes a
long time to complete.

Note: You might also want to determine whether the channel can process messages fast enough,
especially if the channel has a substate associated with exit processing.

Checking why a batch takes a long time to complete
Use this page to view some reasons why a batch can take a long time to complete.

About this task
When a sender channel has sent a batch of messages it waits for confirmation of that batch from the
receiver, unless the channel is pipelined. The following factors can affect how long the sender channel
waits:

278 Monitoring and Performance for IBM WebSphere MQ

Procedure
• Check whether the network is slow.

A slow network can affect the time it takes to complete a batch. The measurements that result in
the indicators for the NETTIME field are measured at the end of a batch. However, the first batch
affected by a slowdown in the network is not indicated with a change in the NETTIME value because it
is measured at the end of the batch.

• Check whether the channel is using message retry.
If the receiver channel fails to put a message to a target queue, it might use message retry processing,
rather than put the message to a dead-letter queue immediately. Retry processing can cause the batch
to slow down. In between MQPUT attempts, the channel will have STATUS(PAUSED), indicating that it
is waiting for the message retry interval to pass.

Determining whether the channel can process messages fast enough
If there messages are building up on the transmission queue, but you have found no processing problems,
determine whether the channel can process messages fast enough.

Before you begin
Issue the following command repeatedly over a period of time to gather performance data about the
channel:

DIS CHSTATUS(QM1.TO.QM2) ALL

About this task
Confirm that there are no uncommitted messages on the transmission queue, as described in “Checking
that messages on the queue are available” on page 273, then check the XQTIME field in the output from
the display channel status command. When the values of the XQTIME indicators are consistently high,
or increase over the measurement period, the indication is that the channel is not keeping pace with the
putting applications.

Perform the following tests:

Procedure
1. Check whether exits are processing.

If exits are used on the channel that is delivering these messages, they might add to the time spent
processing messages. To identify if this is the case, do the following checks:
a) In the output of the command DIS CHSTATUS(QM1.TO.QM2) ALL, check the EXITTIME field.

If the time spent in exits is higher than expected, review the processing in your exits for any
unnecessary loops or extra processing, especially in message, send, and receive exits. Such
processing affects all messages moved across the channel.

b) In the output of the command DIS CHSTATUS(QM1.TO.QM2) ALL, check the SUBSTATE field.
If the channel has of one of the following substates for a significant time, review the processing in
your exits:

• SCYEXIT
• RCVEXIT
• SENDEXIT
• MSGEXIT
• MREXIT

2. Check whether the network is slow.

Monitoring and performance 279

If messages are not moving fast enough across a channel, it might be because the network is slow. To
identify if this is the case, do the following checks:
a) In the output of the command DIS CHSTATUS(QM1.TO.QM2) ALL, check the NETTIME field.

These indicators are measured when the sending channel asks its partner for a response. This
happens at the end of each batch and, when a channel is idle during heartbeating.

b) If this indicator shows that round trips are taking longer than expected, use other network
monitoring tools to investigate the performance of your network.

3. Check whether the channel is using compression.
If the channel is using compression, this adds to the time spent processing messages. If the channel is
using only one compression algorithm, do the following checks:
a) In the output of the command DIS CHSTATUS(QM1.TO.QM2) ALL, check the COMPTIME field.

These indicators show the time spent during compression or decompression.
b) If the chosen compression is not reducing the amount of data to send by the expected amount,

change the compression algorithm.
4. If the channel is using multiple compression algorithms, do the following checks:

a) In the output of the command DIS CHSTATUS(QM1.TO.QM2) ALL, check the COMPTIME,
COMPHDR, and COMPMSG fields.

b) Change the compression algorithms specified on the channel definition, or consider writing a
message exit to override the channel's choice of compression algorithm for particular messages
if the rate of compression, or choice of algorithm, is not providing the required compression or
performance.

Solving problems with cluster channels
If you have a build up of messages on the SYSTEM.CLUSTER.TRANSMIT.QUEUE queue, the first step
in diagnosing the problem is discovering which channel, or channels, are having a problem delivering
messages.

About this task
To discover which channel, or channels, using the SYSTEM.CLUSTER.TRANSMIT.QUEUE are having a
problem delivering messages. Perform the following checks:

Procedure
1. Issue the following command:

DIS CHSTATUS(*) WHERE(XQMSGSA GT 1)

Note: If you have a busy cluster that has many messages moving, consider issuing this command with
a higher number to eliminate the channels that have only a few messages available to deliver.

2. Look through the output for the channel, or channels, that have large values in the field XQMSGSA.
Determine why the channel is not moving messages, or is not moving them fast enough. Use the tasks
outlined in “Monitoring channels” on page 275 to diagnose the problems with the channels found to
be causing the build up.

Monitoring transmission queue switching
It is important that you monitor the process of cluster-sender channels switching transmission queues so
that the impact on your enterprise is minimized. For example, you should not attempt this process when
the workload is high or by switching many channels simultaneously.

The process of switching channels
The process used to switch channels is:

280 Monitoring and Performance for IBM WebSphere MQ

1. The channel opens the new transmission queue for input and starts getting messages from it (using
get by correlation ID)

2. A background process is initiated by the queue manager to move any messages queued for the
channel from its old transmission queue to its new transmission queue. While messages are being
moved any new messages for the channel are queued to the old transmission queue to preserve
sequencing. This process might take a while to complete if there are a large number of messages for
the channel on its old transmission queue, or new messages are rapidly arriving.

3. When no committed or uncommitted messages remain queued for the channel on its old transmission
queue then the switch is completed. New messages are now put directly to the new transmission
queue.

To avoid the eventuality of numerous channels switching simultaneously IBM WebSphere MQ provides
the ability to switch the transmission queue of one or more channels that are not running by using the
runswchl command.

Monitoring the status of switch operations
To understand the status of switch operations administrators can perform the following actions:

• Monitor the queue manager error log (AMQERR01.LOG) where messages are output to indicate the
following stages during the operation:

– The switch operation has started
– The moving of messages has started
– Periodic updates on how many messages are left to move (if the switch operation does not complete

quickly)
– The moving of messages has completed
– The switch operation has completed

.
• Use the DISPLAY CLUSQMGR command to query the transmission queue that each cluster-sender

channel is currently using.
• Run the runswchl command in query mode to ascertain the switching status of one or more channels.

The output of this command identifies the following for each channel:

– Whether the channel has a switch operation pending
– Which transmission queue the channel is switching from and to
– How many messages remain on the old transmission queue

Each command is really useful, because in one invocation you can determine the status of every
channel, the impact a configuration change has had and whether all switch operations have completed.

Potential issues that might occur
See Potential issues when switching transmission queues for a list of some issues that might be
encountered when switching transmission queue, their causes, and most likely solutions.

The Windows performance monitor
In WebSphere MQ Version 7.0 and earlier versions, it was possible to monitor the performance of local
queues on Windows systems by using the Windows performance monitor. As of WebSphere MQ Version
7.1, this method of performance monitoring is no longer available.

You can monitor queues on all supported platforms by using methods described in “Real-time
monitoring” on page 269.

Monitoring and performance 281

282 Monitoring and Performance for IBM WebSphere MQ

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2007, 2025 283

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of IBM WebSphere MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information"www.ibm.com/legal/copytrade.shtml. Other product and service names might be trademarks
of IBM or other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

284 Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

This product includes software developed by the Eclipse Project (http://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 285

286 Monitoring and Performance for IBM WebSphere MQ

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Monitoring and performance
	Event monitoring
	Instrumentation events
	Types of event
	Queue manager events
	Channel and bridge events
	Performance events
	Configuration events
	Command events
	Logger events
	Event message data summary

	Controlling events
	Controlling queue manager events
	Controlling channel and bridge events
	Controlling performance events
	Controlling configuration, command, and logger events

	Event queues
	Format of event messages

	Performance events
	Performance event statistics
	Queue service interval events
	The service timer
	Rules for queue service interval events
	Enabling queue service interval events

	Queue service interval events examples
	Queue service interval events: example 1
	Queue service interval events: example 2
	Queue service interval events: example 3

	Queue depth events
	Enabling queue depth events

	Queue depth events examples
	Queue depth events: example 1
	Queue depth events: example 2

	Configuration events
	Configuration event generation
	Configuration event usage
	Refresh Object configuration event

	Command events
	Command event generation
	Command event usage

	Logger events
	Logger event generation
	Logger event usage
	Sample program to monitor the logger event queue

	Sample program to monitor instrumentation events

	Message monitoring
	Activities and operations
	Message route techniques
	Activity recording
	Controlling activity recording
	Setting up a common queue for activity reports
	Determining message route information
	Retrieving further activity reports
	Circumstances where activity information is not acquired

	Trace-route messaging
	How activity information is recorded
	Acquiring recorded activity information
	Controlling trace-route messaging
	Enabling queue managers for trace-route messaging
	Enabling applications for trace-route messaging

	Generating and configuring a trace-route message
	Mimicking the original message
	The TraceRoute PCF group

	Setting up a common queue for trace-route reply messages
	Acquiring and using recorded information
	Acquiring information from trace-route reply messages
	Acquiring information from trace-route messages
	Acquiring information from activity reports

	Additional activity information
	Example 1
	Example 2

	IBM WebSphere MQ display route application
	Parameters for trace-route messages
	Queue manager connection
	The target destination
	The publication topic
	Message mimicking
	Recorded activity information
	How the trace-route message is handled

	Display of activity information
	IBM WebSphere MQ display route application examples
	Example 1 - Requesting activity reports
	Example 2 - Requesting a trace-route reply message
	Example 3 - Delivering activity reports to the system queue
	Example 4 - Diagnosing a channel problem

	Activity report reference
	Activity report format
	Activity report MQMD (message descriptor)
	Activity report MQEPH (Embedded PCF header)
	Activity report MQCFH (PCF header)
	Activity report message data
	Operation-specific activity report message data
	Get/Browse (MQOPER_GET/MQOPER_BROWSE)
	Discard (MQOPER_DISCARD)
	Publish/Discarded Publish/Excluded Publish (MQOPER_PUBLISH/MQOPER_DISCARDED_PUBLISH/MQOPER_EXCLUDED_PUBLISH)
	Put/Put Reply/Put Report (MQOPER_PUT/MQOPER_PUT_REPLY /MQOPER_PUT_REPORT)
	Receive (MQOPER_RECEIVE)
	Send (MQOPER_SEND)

	Trace-route message reference
	Trace-route message format
	Trace-route message MQMD (message descriptor)
	Trace-route message MQEPH (Embedded PCF header)
	Trace-route message MQCFH (PCF header)
	Trace-route message data

	Trace-route reply message reference
	Trace-route reply message format
	Trace-route reply message MQMD (message descriptor)
	Trace-route reply message MQCFH (PCF header)
	Trace-route reply message data

	Accounting and statistics messages
	Accounting messages
	Accounting message format
	Accounting information collection
	MQI accounting information
	Queue accounting information
	MQCONNX options
	Accounting message generation

	Statistics messages
	Statistics message format
	Statistics information collection
	MQI statistics information
	Queue statistics information
	Channel statistics information
	Statistics message generation

	Displaying accounting and statistics information
	amqsmon (Display formatted monitoring information)
	amqsmon examples

	Accounting and statistics message reference
	Accounting and statistics message format
	Accounting and statistics message MQMD (message descriptor)
	Message data in accounting and statistics messages
	MQI accounting message data
	Queue accounting message data
	MQI statistics message data
	Queue statistics message data
	Channel statistics message data
	Reference notes

	Application activity trace
	Collecting application activity trace information
	Setting ACTVTRC to control collection of activity trace information
	Setting MQCONNX options to control collection of activity trace information
	Configuring activity trace behavior using mqat.ini
	Tuning the performance impact of application activity trace

	amqsact sample program
	Application activity trace message reference
	Application activity trace message MQMD (message descriptor)
	MQCFH (PCF header)
	Activity trace message data
	Variable parameters for application activity MQI operations
	MQBACK
	MQBEGIN
	MQCALLBACK
	MQCB
	MQCLOSE
	MQCMIT
	MQCONN and MQCONNX
	MQCTL
	MQDISC
	MQGET
	MQINQ
	MQOPEN
	Applicaton Activity Distribution List PCF Group Header Structure

	MQPUT
	MQPUT AppActivityDistList PCF Group Header Structure

	MQPUT1
	MQPUT1 AppActivityDistList PCF Group Header Structure

	MQSET
	MQSUB
	MQSUBRQ
	MQSTAT

	Variable Parameters for Application Activity XA Operations
	AXREG
	AXUNREG
	XACLOSE
	XACOMMIT
	XACOMPLETE
	XAEND
	XAFORGET
	XAOPEN
	XAPREPARE
	XARECOVER
	XAROLLBACK
	XASTART

	Real-time monitoring
	Attributes that control real-time monitoring
	Displaying queue and channel monitoring data
	Monitoring queues
	Determining whether your application has the queue open
	Checking that messages on the queue are available
	Checking whether your application is getting messages off the queue
	Determining whether the application can process messages fast enough
	Checking the queue when the current depth is not increasing

	Monitoring channels
	Determining whether the channel is running
	Checking that the channel is moving messages
	Checking why a batch takes a long time to complete
	Determining whether the channel can process messages fast enough
	Solving problems with cluster channels
	Monitoring transmission queue switching

	The Windows performance monitor

	Notices
	Programming interface information
	Trademarks

