IBM WebSphere MQ

Reference

Version 7 Release 1

<|ll



Note
Before using this information and the product it supports, read the information in [“Notices” on page 6143| (WebSphere MQ
V7.1 Installing Guide).

This edition applies to version 7 release 1 of WebSphere MQ and to all subsequent releases and modifications until
otherwise indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2007, 2019.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.




Contents
Figures .
Tables

Reference .

Configuration reference. .
Example configuration 1nf0rmat1on
Queue names.

Other object names .

Queue name resolution

System and default objects

Stanza information .

Channel attributes .

WebSphere MQ cluster commands
Channel programs. Lo
Environment Variables
Intercommunication jobs

Channel states on IBM i . .
Message channel planning example for
distributed platforms . .
Message channel planning example for
WebSphere MQ for IBM i

Message channel planning example for z/ OS

Message channel planning example for z/OS
using queue-sharing groups
Administration reference
Syntax diagrams .
WebSphere MQ Control commands . .
WebSphere MQ for IBM i CL commands .
MQSC reference
Programmable command formats reference
Using the WebSphere MQ Utilities .
WebSphere MQ Administration Interface .
Developing applications reference .
MQI applications reference .
IBM i Application Programming Reference
(ILE/RPG) .
SOAP reference
User exits, API exits, and 1nstallable services
reference
Reference mater1al for WebSphere MQ br1clge
for HTTP
The WebSphere MQ NET classes and
interfaces . S
WebSphere MQ C++ classes .

© Copyright IBM Corp. 2007, 2019

.V

. 78

. 81
. 83
.91
. 95

. 129
. 165
. 166
. 170
. 170

. 171

. 175

179

. 183
. 187
. 187
. 189
. 336
. 755

1397

. 1931
. 2004
. 2089
. 2089

. 3073
. 3530

. 3582

. 3846

. 3881
. 3943

The WebSphere MQ classes for Java libraries 4052
Properties of IBM WebSphere MQ classes for
JMS objects. . . . .4053
IBM WebSphere MQ Telemetry Reference . 4110
MQ Telemetry Transport format and protocol ~ 4110
WebSphere MQ Telemetry daemon for devices
reference information ... ..o 4110
Security reference . 4126
The API exit . 4127
The API-crossing ex1t . 4128
Certificate validation and trust polrcy desrgn
on UNIX, Linux, and Windows systems . . 4129
Cryptographic hardware . . 4143
WebSphere MQ rules for SSLPEER Values . 4144
GSKit: Digital certificate signature algorithms
compliant with FIPS 140-2. . 4145
Migrating with AltGSKit from WebSphere MQ
V7.0.1 to WebSphere MQ V7.1 . . 4145
CipherSpec mismatches . 4148
Authentication failures . . 4148
Monitoring reference . 4150
Structure data types. . . 4150
Object attributes for event data . . 4175
Event message reference . 4210
Troubleshooting and support reference . 4306
An example of WebSphere MQ for Wlndows
trace data .. 4306
Example trace data for WebSphere MQ for
UNIX and Linux systems . . 4307
Examples of trace output . . 4308
Examples of CEDF output. . 4310
Messages . . . 4321
Diagnostic messages AMQ4000 9999 . . 4321
AMOQXR Messages . 4970
IBM WebSphere MQ for z / OS messages,
completion, and reason codes . . 4982
MQJMS Messages . 6067
Index . 6077
Notices C e . 6143
Programming interface information . 6144
Trademarks . 6145
Sending your comments to IBM 6147
iii



iv IBM WebSphere MQ: Reference



Figures

1. WebSphere MQ channel to be set up in the
example configuration .
2. Configuration 1: z/OS using 1ntra—group
queuing. .
3. Configuration 2 .
4. Configuration 3 .
5. Name resolution . .
6. gqm.ini stanzas for d1str1buted queumg
7. The message channel example for Windows,
UNIX and Linux systems
8. The message channel example for WebSphere
MQ for IBM i .
9. The first example for WebSphere l\/IQ for
z/0S
10. Message channel plann1ng example for
WebSphere MQ for z/OS using
queue-sharing groups.
11. Equivalent definitions of V6COMPAT
12. Equivalent definitions of V6COMPAT .
13. How to invoke the CSQUTIL utility program
14. Sample JCL for the FORMAT function of
CSQUTIL
15. Sample JCL for the FORMAT functlon of
CSQUTIL with the TYPE option .
16. Sample JCL showing the use of the
PAGEINFO function .
17. Sample JCL showing the use of the
COPYPAGE function.
18. Sample JCL showing the use of the
RESETPAGE function
19. Sample JCL for issuing IBM WebSphere MQ
commands using CSQUTIL
20. Sample JCL for using the MAKEDEF opt1on
of the COMMAND function .
21. Sample JCL for using the MAKEALT 0pt10n
of the COMMAND function . . .
22. Sample JCL for using the MAKECLNT
option of the COMMAND function.
23. Sample JCL for the SDEFS function of
CSQUTIL
24. Sample JCL for the SDEFS funct1on of
CSQUTIL for objects in the Db2 shared
repository .
25. Sample JCL for the CSQUTIL COPY
functions.
26. Sample JCL for the CSQUTIL SCOPY
functions. .
27. Sample JCL for the CSQUTIL ANALYZE
function .
28. Sample JCL for the CSQUTIL EMPTY
function .
29. Sample JCL for the CSQUTIL LOAD
function .
30. Sample JCL for the CSQUTIL SLOAD
function . . e

© Copyright IBM Corp. 2007, 2019

.2

. 52
. 54
. 56
. 81
. 94

. 172

. 175

. 180

. 184

. 891
. 1043

1936

. 1940

. 1940

. 1941

. 1943

. 1945

. 1948

. 1949

. 1950

. 1950

. 1954

. 1954

. 1956

. 1958

. 1959

. 1960

. 1962

. 1964

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

42.

43.

44.

45.

46.
47.
48.
49.

50.

51.

52.
53.
54.
55.
56.
57.
58.
59.
60.

61.
62.
63.
64.

65.

Sample JCL for the CSQUTIL XPARM

function . . 1966
Sample JCL to 1nvol<e the CSQ]UOO3 ut1hty 1966
Sample JCL to invoke the CSQJU004 utility 1974
Sample JCL to invoke the CSQ1LOGP utility
using a BSDS . . 1976
Sample JCL to invoke the CSQlLOGP ut1l1ty
using active log data sets . . . 1977
Sample JCL to invoke the CSQlLOGP ut1l1ty
using archive log data sets. . 1977
Sample JCL showing additional statements
for the EXTRACT keyword . 1977
Accumulating bytes put to each queue 1981
Sample JCL to invoke the CSQ5PQSG utility 1985
Using the queue-sharing group utility to add
a queue manager into a queue-sharing
group. . . 1988
Example of the JCL used to 1nvoke the
CSQJUEFMT utility . . 1989
Specifying the queue manager and
dead-letter queue names for the dead-letter
queue handler in the JCL . . 1990
Specifying the queue manager and
dead-letter queue names for the dead-letter
queue handler in the rules table . . 1990
Sample JCL to invoke the CSQUDLQH
utility . . 1991
An example rule from a DLQ handler rules
table . . . 1992
How to invoke the CSQUMGMB ut1l1ty 2000
Indexing . .. 2084
Us1ng mgqExecute to Create a local queue 2088
Using mqExecute to inquire about queue
attributes . . . 2088
Correct uses of groups and name / Value
pairs . .. 2606
Incorrect use of groups and name / value
pairs . . . 2606
Example of a folder and a property folder 2607
Folderl namespace . . 2607
Folder2 namespace . . 2607
Folder3 namespace . . 2607
Data type attribute . . 2612
Single property name mapplng . . 2612

Multiple properties with the same root name 2613

Multiple property name mapping . 2613
Sample Client/Server (Echo) program
flowchart . . . 3513
Example deployrnent of Ax1s service 3534
Example deployment of .NET service 3535
Example URI in generated .NET client to call
.NET service . 3539
Example URI in generated NET cl1ent to call
Axis 1 service . . 3539
WebSphere MQ conflguratlon Commands to
trigger a SOAP listener. . . 3540
A\



66.
67.
68.

69.
70.
71.
72.
73.
74.

75.

76.

77.

78.
79.
80.

81.

82.

83.

84.

85.
86.
87.

88.
89.
90.
91.
92.

93.
94.
95.
96.

97.

98.

99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
1009.
110.
111.
112.

vi

Starting Axis SOAP listener on Windows
Starting .NET SOAP listener on Windows
Starting Axis SOAP listener on UNIX and

Linux systems .

run all the default tests .

run a specific test from the default tests
run a set of custom tests

Starting Java client using a conf1gurat10n f1le

myjms.config .

URI for an Axis service, supplylng only
required parameters .

URI for a .NET service, supplylng only
required parameters .

URI for an Axis service, supplymg some

optional connectionFactory parameters.
URI for an Axis service, supplying the
sslPeerName option of the
connectionFactory parameter .

Use jms:jndi to send a SOAP/JMS request
Use jms:queue to send a SOAP/JMS request
Service definition for .NET Framework 2:

Quote.asmx .

Service 1mplementat1on for NET Framework
. 3579

2: Quote.asmx.cs .
Java JAX-RPC service 1nterface usrng a
complex type .

Java JAX-RPC service 1mplementat10n usmg

a complex type

Java JAX-RPC service bean 1mplementat10n

of a complex type. .
C# Web service client sample
Java Web service client example .

Sample JCL used to invoke the CSQUCVX

utility . .

Example of an HTTP DELETE request
Example of an HTTP DELETE response
Example of an HTTP GET request
Example of an HTTP GET response
Example of an HTTP POST request toa
queue. .
Example of an HTTP POST response
Client connection . . .
Overriding MQEnV1ronment propertles
Automatically reconnecting a client to a
queue manager
IquuthentlcatmnRecord class
ImqBinary class

ImqgCache class

ImqgChannel class . .
ImqCICSBridgeHeader class .
ImgDeadLetterHeader class
ImqgDistributionList class

ImgqError class .

ImqGetMessageOptions Class
ImqgHeader class .
ImqIMSBridgeHeader class

Imgltem class . .

ImgMessage class.

ImgMessageTracker class

ImgNamelist class

ImqObject class

IBM WebSphere MQ: Reference

3540
3540

. 3540
. 3552

3552
. 3552
3564

. 3564

. 3570

. 3570

. 3570

. 3570

3576
3576

. 3579

. 3579
. 3579
. 3580
. 3582
. 3582

. 3588

3848
3848

. 3851

3851

. 3854

3854

. 3932

3932

. 3932
. 3957
. 3960
. 3962
. 3965
. 3970
. 3977
. 3979
. 3980
. 3982
. 3985
. 3987
. 3990
. 3991
. 3998
. 4001
. 4002

113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.

148.

ImgProcess class .
ImqPutMessageOptions class
ImqQueue class .
ImgQueueManager class
ImqgReferenceHeader class .
ImgqString class

ImqTrigger class .
ImgWorkHeader class

Sample WebSphere MQ for Wmdows trace

Sample WebSphere MQ for Solaris trace
Sample WebSphere MQ for Linux trace
Sample WebSphere MQ for AIX trace

Example trace data from an entry trace of an
. 4309

MQPUT1 request .

Example trace data from an ex1t trace of an

MQPUT1 request . .
Example CEDF output on entry to an
MQOPEN call (hexadecimal) .

Example CEDF output on exit from an
MQOPEN call (hexadecimal) .
Example CEDF output on entry to an
MQOPEN call (character) . -
Example CEDF output on exit from an
MQOPEN call (character) .

Example CEDF output on entry to an
MQCLOSE call (hexadecimal).

Example CEDF output on exit from an
MQCLOSE call (hexadecimal).
Example CEDF output on entry to an
MQCLOSE call (character) . .o
Example CEDF output on exit from an
MQCLOSE call (character) . .
Example CEDF output on entry to an
MQPUT call (hexadecimal)

Example CEDF output on exit from an
MQPUT call (hexadecimal)

Example CEDF output on entry to an
MQPUT call (character). .o
Example CEDF output on exit from an
MQPUT call (character). .o
Example CEDF output on entry to an
MQPUT1 call (hexadecimal)

Example CEDF output on exit from an
MQPUT1 call (hexadecimal) .
Example CEDF output on entry to an
MQPUT1 call (character) .o
Example CEDF output on exit from an
MQPUT1 call (character) .
Example CEDF output on entry to an
MQGET call (hexadecimal)

Example CEDF output on exit from an
MQGET call (hexadecimal)

Example CEDF output on entry to an
MQGET call (character). .o
Example CEDF output on exit from an
MQGET call (character). .
Example CEDF output on entry to an
MQINQ call (hexadecimal). .
Example CEDF output on exit from an
MOQINQ call (hexadecimal).

. 4008
. 4009
. 4011
. 4023
. 4040
. 4043
. 4048
. 4051

4306
4307
4307
4308

. 4310

. 4311

. 4311

. 4311

. 4312

. 4312

. 4312

. 4313

. 4313

. 4313

. 4314

. 4314

. 4314

. 4315

. 4315

. 4315

. 4315

. 4316

. 4316

. 4317

. 4317

. 4318

. 4318



149. Example CEDF output on entry to an 152. Example CEDF output on exit from an

MQINQ call (character). . . .. . .4318 MQSET call (hexadecimal). . . . . . . 4320
150. Example CEDF output on exit from an 153. Example CEDF output on entry to an

MOQINQ call (character). . . .. . .4319 MQSET call (character) . . . ... . 4320
151. Example CEDF output on entry to an 154. Example CEDF output on exit from an

MQSET call (hexadecimal). . . . . . . 4319 MQSET call (character) . . . . . . . .4320

Figures vii



viii IBM WebSphere MQ: Reference



Tables

10.

11.
12.
13.
14.

15.
16.
17.
18.
19.

20.
21.
22.
23.

24.
25.
26.
27.
28.
29.

30.

31.

32.
33.
34.
35.
36.
37.
38.
39.
40.

Configuration worksheet for WebSphere MQ
for Windows .

Configuration worksheet for WebSphere MQ
for AIX . .

Configuration worksheet for WebSphere MQ
for HP-UX .

Configuration worksheet for WebSphere MQ
for Solaris .

Configuration worksheet for WebSphere MQ
for Linux

Configuration worksheet for WebSphere MQ
for z/OS

Configuration worksheet for z/ OS usrng LU
62 . . .

Configuration worksheet for WebSphere MQ
for z/OS using queue-sharing groups.
Configuration worksheet for SNA on an IBM i
system . .

Configuration worksheet for WebSphere MQ
for IBM i S
System and default ob]ects:
System and default objects:
System and default objects:
System and default objects:
information objects .

queues.

topics .
channels .
authentication

System and default objects:
System and default objects:
System and default objects:
System and default objects:

listeners
namelists .
processes .
services

Objects created by the Windows default

configuration application .

Default values of SYSTEM.BASE. TOPIC .

System and default objects:
System and default objects:
System and default objects:

information objects .

System and default objects:
System and default objects:
System and default objects:
System and default objects:

queues.
channels .
authentication

listeners
namelists .
processes .
services

Channel attributes for the channel types
Negotiated HBINT value and the
corresponding KAINT value

Examples of how the LOCLADDR parameter

can be used .

PCF equivalents of MQSC commands
specifically to work with clusters .
Attributes for cluster workload management

Fields in MQWXP .

Actions taken by the queue manager
Initial values of fields in MQWXP.

Fields in MQWDR .

Initial values of fields in MQwDR

Fields in MQWQR .

Initial values of fields in MQWQR

Fields in MQWCR .

© Copyright IBM Corp. 2007, 2019

. 10

.17

.23

. 29

. 35

. 40

.44

. 50

. 60

.75
. 83
. 84
. 84

. 85
. 85
. 85
. 85
. 85

. 86
. 87
. 88
. 89

. 90
. 90
.90
.90
.90

95

11

. 112

. 130

138

. 148

150

. 153
. 155
. 158
. 159
. 162
. 164

41.
42.

43.
44.
45.
46.
47.
48.
49.
50.

51.
52.

53.
54.

55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.
78.

79.

Initial values of fields in MQWCR.

Channel programs for Windows, UNIX and

Linux systems e

Job names. .

Channel states on IBM i.

How to read railroad diagrams

Categories of control commands .

QueueManager stanza attributes .

Standby values .

Instance values .

Specifying authorities for drfferent ob]ect

types .

endmqgm actions

Specifying authorities for drfferent ob]ect

types e .

Queue manager commands

Commands for command server

administration .

Commands for authority admrnrstratlon

Cluster commands .

Authentication information commands

Channel commands

Listener commands

Namelist commands .

Process commands .

Queue commands .

Service commands .

Other commands

Options that can be used w1th runchkm and

runmgakm .

ALTER CHANNEL parameters

Automatic reconnection depends on the

values set in the application and in the

channel definition .

Examples of how the LOCLADDR parameter
can be used . Lo

How the IP stack to be used for

communication is determined .

Examples of how the LOCLADDR parameter

can be used . . ..

How the IP stack to be used for

communication is determined .

DEFINE and ALTER QUEUE parameters

DEFINE and ALTER CHANNEL parameters

Automatic reconnection depends on the

values set in the application and in the

channel definition .

Examples of how the LOCLADDR parameter

can be used . o

How the IP stack to be used for

communication is determined .

Message exit format and length

Examples of how the LOCLADDR

parameter can be used . .

How the IP stack to be used for

communication is determined.

. 165

. 166
. 170
. 170
. 187
. 190
. 192
. 223
. 223

. 226
. 251

. 283
. 307

. 308

308

. 308

309

. 309
. 310
. 310
.31
. 311
. 312
. 312

. 328

. 772

. 784

. 787

. 788

. 825

. 826

877
947

. 958

. 961

. 962
. 968

. 1002

. 1003

ix



80.
81.

82.

83.

84.

85.
86.

87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
1009.
110.
111.

112.

113.

X

DEFINE and ALTER QUEUE parameters

Parameters that result in data being returned
. 1126

from the DISPLAY CHANNEL command .
CHLDISP and CMDSCOPE for DISPLAY
CHSTATUS CURRENT . . .
CHLDISP and CMDSCOPE for DISPLAY
CHSTATUS SHORT . .
CHLDISP and CMDSCOPE for DISPLAY
CHSTATUS SAVED .

Product Identifier values

Parameters that can be returned by the
DISPLAY QUEUE command .
Parameters that can be returned by the
DISPLAY TOPIC command

CHLDISP and CMDSCOPE for PING
CHANNEL .

CHLDISP and CMDSCOPE for RESET
CHANNEL . . .
CHLDISP and CMDSCOPE for RESOLVE
CHANNEL .

CHLDISP and CMDSCOPE for START
CHANNEL .

Destinations allowed for each trace type
Constraints allowed for each trace type
Descriptions of trace events and classes
Resource Manager identifiers that are
allowed . . .
CHLDISP and CMDSCOPE for STOP
CHANNEL . .
MQIACF_COMMAND_ INFO values
Change, Copy, Create Channel parameters
Automatic reconnection depends on the
values set in the application and in the
channel definition.

ChannelDisposition and CommandSCOpe for
Inquire Channel Status, Current .
ChannelDisposition and CommandScope for
Inquire Channel Status, Short .
ChannelDisposition and CommandScope for
Inquire Channel Status, Saved

Product Identifier values

Inquire Queue command, queue attrlbutes
ChannelDisposition and CommandScope for
PING CHANNEL. .
ChannelDisposition and CommandScope for
RESET CHANNEL .
ChannelDisposition and CommandScope for
RESOLVE CHANNEL .
ChannelDisposition and CommandScope for
START CHANNEL .
ChannelDisposition and CommandScope for
STOP CHANNEL. . . . .

The WebSphere MQ CSQUTIL ut111ty
program: Managing page sets. .

The WebSphere MQ CSQUTIL utility
program: Issuing commands . .o

The WebSphere MQ CSQUTIL utility
program: Managing queues .

The WebSphere MQ CSQUTIL ut111ty
program: Migrating CSQXPARM.

IBM WebSphere MQ: Reference

1029

. 1147

. 1147

. 1148
. 1159

. 1250

. 1293

. 1311

. 1326

. 1338

. 1365

1377
1377
1377

. 1378

. 1381

1402
1421

. 1432

. 1627

. 1627

. 1627
. 1644

1705

. 1831

. 1842

. 1850

. 1872

. 1879

. 1932

. 1932

. 1932

. 1933

114.

115.
116.

117.
118.
119.

120.
121.

122.

123.

124.

125.

126.

127.

128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.

144.

145.
146.
147.
148.

149.
150.
151.
152.
153.
154.
155.
156.

157.
158.
159.

The WebSphere MQ CSQJU003 Change log
inventory utility . . .
The remaining WebSphere MQ ut111t1es
SDEFS QSGDISP parameters and their
actions e e
CCsID processmg

PCF command type .

Format and MsgType parameters of the
MQMD . .o

Message descrlptor values

C header files — call prototypes, data types
return codes, constants, and structures.
COBOL copy files - return codes, constants,
and structures .

PL/I include files — data types return
codes, constants, and structures .

RPG copy files - return codes, constants, and
structures . .

Visual Basic module f11es — call
declarations, data types, return codes,
constants, and structures

z/0OS Assembler copy files - data types,
return codes, constants, and structures.
Structure data types used on MQI calls (or
exit functions):. .

Structure data types used in message data
C header files .

COBOL COPY files .

Assembler macros

Fields in MQAIR .

Initial values of fields in MQAIR

Fields in MQBMHO . .

Initial values of fields in MQBMHO
Fields in MQBO .

Initial values of fields in MQBO for MQBO
Fields in MQCBC .

ReconnectDelay values .

Fields in MQCBD.

Initial values of fields in MQCBD

Fields in MQCIH .

Contents of error information f1elds in
MQCIH structure for MQCIH.

Initial values of fields in MQCIH for
MQCIH .

Fields in MQCMHO

Initial values of fields in MQCMHO
Fields in MQCNO .
Initial values of fields in MQCNO for
MQCNO.

Fields in MQCSP .

Initial values of fields in MQCSP for MQCSP
. 2402

Fields in MQCTLO

Initial values of fields in MQCTLO

Fields in MQDH . .o

Initial values of fields in MQDH for MQDH
Fields in MQDLH. .
Initial values of fields in MQDLH for
MQDLH.

Fields in MQDMHO .

Initial values of fields in MQDMHO
Fields in MQDMPO .

. 1933

1933

. 1953
. 2085
. 2086

. 2087

. 2087

. 2160

. 2160

. 2162

. 2163

. 2164

. 2165

. 2319

2320

. 2322
. 2325
. 2328
. 2331
. 2335
. 2336

2338
. 2339
2340

. 2341
. 2348
. 2350
. 2355
. 2361

. 2363

. 2374
. 2380

2382

. 2383

. 2395

. 2398
2400

2404
. 2405
2410

. 2412

. 2418
. 2422

2423

. 2424



160.
161.
162.
163.

164.
165.

166.

167.

168.

169.
170.
171.
172.
173.
174.
175.
176.
177.

178.

179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.

192.

193.

194.

195.

196.

197.

198.

199.
200.

201.

Initial values of fields in MQDPMO

Fields in MQEPH. .

Initial values of fields in MQDH

Initial values of fields in MQEPH for
MQEPH .

Fields in MQGMO

Rules for activating MQGET calls on a
shared queue. . .
MQGET options relatmg to messages in
groups and segments of logical messages .
Outcome when MQGET or MQCLOSE call
is not consistent with group and segment
information .

Initial values of frelds in MQGMO for
MQGMO .

Fields in MQIIH .

Initial values of fields in MQHH for MQIIH
Fields in MQIMPO

Initial values of fields in MQIPMO

Fields in MQMD .

Fields in MQMD .

Initial values of fields in MQMD for MQMD
Fields in MQMDE

Queue-manager action when MQMDE
specified on MQPUT or MQPUT1 for
MQMDE. . .
Initial values of f1elds in MQMDE for
MQMDE.

Fields in MQMHBO .

Initial values of fields in MQMHBO

Fields in MQOR . .

Initial values of fields in MQOR for MQOR
Fields in MQPD .

Initial values of fields in MQPD

MQPMO structure .
Reply message handle transformatron
Report message handle transformation
Source of user data . .

Initial values of fields in MQPMO .

Fields in MQPMR. .
Initial values of fields in MQRFH for
MQRFH .

Jjms property name, synonym data type and
folder. .

mcd property name, synonym data type and
folder.

usr property name, synonym data type and
folder. .

ibm property name, synonym data type and
folder.

mgext property name, synonym data type,
and folder

mgps property name, synonym data type
and folder .

mgtt property name, synonym data type,
and folder e
Data type mappmgs .

Initial values of fields in MQRFHZ for
MQRFH2

Fields in MQRMH

2425

. 2427
. 2428

. 2429
. 2432

. 2438

. 2452

. 2453

. 2461

. 2465
2470

. 2473

2480

. 2482

. 2485
2532

. 2536

. 2538

. 2541
. 2544

2545

. 2562

2563

. 2564
. 2568
. 2569

2572
2573

. 2575
. 2588
. 2592

. 2598

. 2608

. 2609

. 2610

. 2610

. 2611

. 2611

. 2611
. 2614

. 2618
. 2620

202.

203.
204.
205.
206.
207.

208.
209.
210.
211.
212.
213.
214.
215.
216.

217.
218.

219.
220.
221.

222.
223.
224.

225.

226.

227.
228.
229.

230.

231.
232.
233.
234.

235.

236.
237.
238.

239.
240.
241.
242.

243.
244.
245.

Initial values of fields in MQRMH for
MQRMH

Fields in MQRR .

Initial values of fields in MQRR for MQRR
Fields in MQSCO. .

Initial values of fields in MQSCO

altered .

Topic string concatenatlon examples
Fields in MQSMPO .

Initial values of fields in MQSMPO

Fields in MQSTS . .

Initial values of fields in MQSTS

Fields in MQTM . .

Initial values of fields in MQTM for MQTM
Fields in MQTMC2 . .

Initial values of fields in MQTMC2 for
MQTMC2

Fields in MQWIH. .
Initial values of fields in MQWIH for
MQWIH .

Fields in MQXP

Fields in MQXQH . .
Initial values of fields in MQXQH for
MQXQH. .

MQCTL verb def1n1t10ns

MQCTL verb definitions .
Scope of nonshared handles on various
platforms .
Scope of nonshared handles on various
platforms

MOQGET options permrtted when read ahead
is enabled .o
MQINQ attribute selectors for queues
MQINQ attribute selectors for namelists
MQINQ attribute selectors for process
definitions . .
MQINQ attribute selectors for the queue
manager . .
MQSET attribute selectors for queues
Attributes for the queue manager
Attributes for queues

Suggested or required values of queue mdex
type when MQGMO_LOGICAL_ORDER not
specified .

Suggested or requrred Values of queue 1ndex
type when MQGMO_LOGICAL_ORDER
specified . . e
Attributes for namel1sts

Attributes for process definitions

Summary of encodings for machine
architectures .

Fields in MQDXP . .
Supported MQRFH?2 data types .

Codeset names and CCSIDs

WebSphere MQ for z/OS CCSID conversion
support .
Elementary data types .

RPG COPY files .
ILE RPG bound calls supported by each
service program

Tables

. 2626
. 2630

2631

. 2632
. 2637
Attributes in MQSD and MQSUB that can be

. 2645

2656

. 2661

2663

. 2667
. 2674

. 2677
2682

. 2684

. 2687
. 2689

. 2692
. 2694
. 2699

. 2703
. 2727
. 2728

. 2745

. 2751

. 2785

2789
2791

. 2791

. 2791

2856

. 2880
. 2919

. 2935

. 2935
. 2954
. 2956

. 2988
. 2998
. 3015

. 3024

. 3048
. 3073
. 3087

. 3090

xi



246.
247.
248.
249.
250.
251.
252.

253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.

265.

266.
267.
268.
269.
270.

271.
272.
273.
274.
275.
276.

277.

278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.

292.
293.
294.

295.

xii

Initial values of fields in MQAIR for MQAIR 3093

Initial values of fields in MQBMHO
Initial values of fields in MQBO .

CBCRCD values .

Initial values of fields in MQCBC

Initial values of fields in MQCBD
Contents of error information fields in
MQCIH structure .

Initial values of fields in MQCIH

Initial values of fields in MQCMHO
Initial values of fields in MQCNO .
Initial values of fields in MQCNO .
Initial values of fields in MQCTLO

Initial values of fields in MQDH.

Initial values of fields in MQDLH

Initial values of fields in MQDMHO
Initial values of fields in MQDPMO
Initial values of fields in EPPCFH

Initial values of fields in MQEPH
MOQGET options relating to messages in
groups and segments of logical messages .
Outcome when MQGET or MQCLOSE call
is not consistent with group and segment
information .

Initial values of f1elds in MQGMO

Initial values of fields in MQIIH .

Initial values of fields in MQIPMO

Initial values of fields in MQMD.
Queue-manager action when MQMDE
specified on MQPUT or MQPUT1

Initial values of fields in MQMDE .
Initial values of fields in MQMHBO
Initial values of fields in MQOD.

Initial values of fields in MQOR .

Initial values of fields in MQPD .
MQPUT options relating to messages in
groups and segments of logical messages .
Outcome when MQPUT or MQCLOSE call
is not consistent with group and segment
information . .
Initial values of flelds in MQPMO .
Initial values of fields in MQRFH

Initial values of fields in MQRFH2

Initial values of fields in MQRMH

Initial values of fields in MQRR .

Initial values of fields in MQSCO

Initial values of fields in MQSMPO

Initial values of fields in MQSTS.

Initial values of fields in MQTM..

Initial values of fields in MQTMC2

Initial values of fields in MQWIH

Initial values of fields in MQXQH
MQCTL verb definitions

Valid close options for use with retamed or
deleted objects . .
MQINQ attribute selectors for queues
MOQINQ attribute selectors for namelists
MQINQ attribute selectors for process
definitions . .
MQINQ attribute selectors for the queue
manager .

IBM WebSphere MQ: Reference

3095

. 3096
. 3101
. 3102
. 3108

. 3112
. 3121

3125

. 3131
. 3133

3136

. 3140
. 3146

3148
3150

. 3152
. 3152

. 3167

. 3168

3175

. 3180

3187

. 3231

. 3234
. 3237

3239

. 3248
. 3251
. 3254

. 3259

. 3261

. 3269
. 3275

3281
3287

. 3289
. 3292

3309

. 3314
. 3319

3322

. 3325
. 3330
. 3342

. 3352

3392
3393

. 3394

. 3394

296.
297.
298.
299.
300.
301.

302.
303.

304.
305.
306.

307.

308.
309.
310.
311.
312.
313.

314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.

338.

Valid MQOPEN options for each queue type 3416

MQSET attribute selectors for queues
Attributes for queues

Attributes for the queue manager

Names of the sample programs .

Sample programs demonstratmg use of the
MQI . . .
Client/Server sample program detalls
Summary of encodings for machine
architectures .
Output files from amqwdeployWMQSerwce
MQMD SOAP settings . .
Listener behavior resulting from

MQRO_EXCEPTION_* and MQRO_DISCARD settings.

Command scripts generated by the
deployment utility

queue validation

Skeleton source files .

Fields in MQPSXP

Fields in MQPBC .

Fields in MQSBC. .

Automatic reconnection depends on the
values set in the apphcatlon and in the
channel definition.

MQXR_BEFORE exit processmg .
Valid combinations of function identifiers
and ExitReasons . .
API exit errors and approprlate actlons to
take .

Fields in MQZAC

Fields in MQZAD.

Fields in MQZED.

Fields in MQZFP .

Fields in MQZIC .

Example of how the allowed contexts is
documented.

Mapping between x-msg- c1 ass and HTTP
Content-Type

Mapping message types to X- msg c] ass and
Content-Type

Mapping content-type and X-msg- c1 ass to
message format

Mapping between x- msg c] ass and HTTP
Content-Type .
Mapping between x-msg- c1 ass and ]MS
message types.. . .
Mapping between x-msg- c]ass and
WebSphere MQ message format . .
Mapping message types to x-msg-class and
Content-Type

Read and Write message methods
SetProperty and GetProperty methods
Data structure, class, and include-file cross
reference.

IquutMessageOptrons Cross reference
ImqgQueue cross reference .

ImqTrigger cross reference . .
ImqCICSBridgeHeader class return codes
The location of the WebSphere MQ classes
for Java libraries for each platform . .
Property names and applicable object types

3437

. 3456
. 3489
. 3508

. 3508

3513

. 3526

3538

. 3543

3548

. 3559
. 3567
. 3587
. 3591
. 3595
. 3596

. 3613
. 3678

. 3687

. 3734
. 3794
. 3796
. 3799
. 3802
. 3803

. 3855

. 3858

. 3858

. 3861

. 3879

. 3879

. 3879

. 3880
. 3902

3904

. 3944

3951

. 3951
. 3957

3976

. 4053

4054



339.

340.
341.

342.

343.

Event message structure for queue service
interval events .

Message type codes . .

Format of identification mformatlon w1th1n
the data set header record.. .

Convert from four-character codes to
CipherSpec names

Component identifiers used in WebSphere
MQ messages and codes

. 4211
. 4982

. 5087

. 5626

. 6051

344.
345.
346.

347.
348.
349.
350.
351.

UNIX System Services sockets return codes
APPC return codes and their meanings
APPC allocate services return codes and
their meanings. . .
APPC reason codes and thelr meamngs
SSL return codes . .

SSL return codes from 'gsk_. flps state set
Message prefixes .

MQJMS Messages

Tables

6052
6055

. 6060

6060

. 6062

6063

. 6066
. 6067

xiii



xiv IBM WebSphere MQ: Reference



Reference

Use the reference information in this section to accomplish the tasks that address your business needs.

* [“Syntax diagrams” on page 187]

* [“Troubleshooting and support reference” on page 4306|

Configuration reference

Use the reference information in this section to help you configure WebSphere MQ.

+ [“Example configuration information”|

+ [“Message channel planning example for distributed platforms” on page 171

* [“Message channel planning example for WebSphere MQ for IBM i” on page 175|

* [“Message channel planning example for z/OS” on page 179

+ [“Message channel planning example for z/OS using queue-sharing groups” on page 183)|

[‘System and default objects” on page 83|

+ [“Configuration file stanzas for distributed queuing” on page 94|

[“Channel attributes” on page 95|

[“WebSphere MQ cluster commands” on page 129

* [“Channel programs” on page 165|

* [“Environment Variables” on page 166|

+ [“Intercommunication jobs” on page 170|

+ [“Channel states on IBM i” on page 170

Related information:

(WebSphere MQ V7.1 Installing Guide)

[Configuring z/OS| (WebSphere MQ V7.1 Installing Guide)

Example configuration information

The configuration examples describe tasks performed to establish a working WebSphere® MQ network.
The tasks are to establish WebSphere MQ sender and receiver channels to enable bidirectional message
flow between the platforms over all supported protocols.

To use channel types other than sender-receiver, see the DEFINE CHANNEL command in
MQ Script (MQSC) Command Reference}

Figure 1 on page 2|is a conceptual representation of a single channel and the WebSphere MQ objects
associated with it.

© Copyright IBM Corp. 2007, 2019



MQPUT 1 MQGET

Appl1 Appl2
Sender Receiver
‘ ‘ ‘ ‘ | Channel |

Remote
queue [ |

i) L

Transmission Local
queue queue
Queue manager 1 Queue manager?2

Figure 1. WebSphere MQ channel to be set up in the example configuration

This example is a simple one, intended to introduce only the basic elements of the WebSphere MQ

network. It does not demonstrate the use of triggering which is described in k4 [Triggering channels|
(WebSphere MQ V7.1 Installing Guide).

The objects in this network are:
* A remote queue

* A transmission queue

* Alocal queue

* A sender channel

* A receiver channel

Appll and Appl2 are both application programs; Appll is putting messages and Appl2 is receiving them.

Appll puts messages to a remote queue. The definition for this remote queue specifies the name of a
target queue manager, a local queue on that queue manager, and a transmission queue on this local
queue manager.

When the queue manager receives the request from Appll to put a message to the remote queue, the
queue manager determines from the queue definition that the destination is remote. It therefore puts the
message, along with a transmission header, straight onto the transmission queue specified in the
definition. The message remains on the transmission queue until the channel becomes available, which
might happen immediately.

A sender channel has in its definition a reference to one, and one only, transmission queue. When a
channel is started, and at other times during its normal operation, it looks at this transmission queue and
send any messages on it to the target system. The message has in its transmission header details of the
destination queue and queue manager.

The intercommunication examples describe in detail the creation of each of the preceding objects
described, for various platform combinations.

On the target queue manager, definitions are required for the local queue and the receiver side of the
channel. These objects operate independently of each other and so can be created in any sequence.

2 IBM WebSphere MQ: Reference



On the local queue manager, definitions are required for the remote queue, the transmission queue, and
the sender side of the channel. Since both the remote queue definition and the channel definition refer to
the transmission queue name, it is advisable to create the transmission queue first.

Network infrastructure in the example

The configuration examples assume that particular network infrastructures are in place for particular
platforms:

* z/0OS communicates using a 3745 network controller (or equivalent) that is attached to a token ring

* Solaris is on an adjacent local area network (LAN) also attached to a 3745 network controller (or
equivalent)

+ All other platforms are connected to a token-ring network

It is also assumed that, for SNA, all the required definitions in VTAM® and network control program

(NCP) are in place and activated for the LAN-attached platforms to communicate over the wide area
network (WAN).

Similarly, for TCP, it is assumed that name server function is available, either by using a domain name
server or by using locally held tables (for example a host file).

Communications software in the example

Working configurations are given in the examples for the following network software products:
* SNA
— IBM® Personal Communications for Windows V5.9
— IBM Communications Server for AIX, V6.3
— Hewlett-Packard SNAplus2
- IBMi
— Data Connection SNAP-IX Version 7 or later
- 0S/390® Version 2 Release 4
« TCP
— Microsoft Windows XP Professional, Windows Server 2003, Windows Vista, Windows Server 2008
— AIX® Version 4 Release 1.4
— HP-UX Version 10.2 or later
— Sun Solaris Release 2.4 or later
- IBMi
— TCP for z/0S®
— HP Tru64 UNIX
* NetBIOS
* SPX

Reference 3



Related concepts:

['How to use the communication examples”|

Related information:

(WebSphere MQ V7.1 Installing Guide)

[Configuring z/OS| (WebSphere MQ V7.1 Installing Guide)

How to use the communication examples

The example-configurations describe the tasks that are carried out on a single platform to set up
communication to another of the platforms. Then they describe the tasks to establish a working channel
to that platform.

Wherever possible, the intention is to make the information as generic as possible. Thus, to connect any
two queue managers on different platforms, you need to refer to only the relevant two sections. Any
deviations or special cases are highlighted as such. You can also connect two queue managers running on
the same platform (on different machines or on the same machine). In this case, all the information can be
derived from the one section.

If you are using a Windows, UNIX or Linux system, before you begin to follow the instructions for your
platform, you must set various environment variables. Set the environment variables by entering one of
the following commands :

¢ On Windows:
MQ_INSTALLATION_PATH/bin/setmgenv

where MQ_INSTALLATION_PATH refers to the location where IBM WebSphere MQ is installed.
* On UNIX and Linux systems:
. MQ INSTALLATION PATH/bin/setmgenv

where MQ_INSTALLATION_PATH refers to the location where IBM WebSphere MQ is installed. This
command sets the environment variables for the shell you are currently working in. If you open
another shell, you must enter the command again.

There are worksheets in which you can find the parameters used in the example configurations. There is
a short description of each parameter and some guidance on where to find the equivalent values in your
system. When you have a set of values of your own, record these values in the spaces on the worksheet.
As you proceed through the section, you will find cross-references to these values as you need them.

The examples do not cover how to set up communications where clustering is being used. For

information about setting up communications while using clustering, see k| [Configuring a queue]
manager cluster] (WebSphere MQ V7.1 Installing Guide). The communication configuration values given
here still apply.

There are example configurations for the following platforms:

+ [“Example configuration - IBM WebSphere MQ for Windows” on page 5|
+ [“Example configuration - IBM WebSphere MQ for AIX” on page 15|

* [“Example configuration - IBM WebSphere MQ for HP-UX” on page 21|
+ [“Example configuration - IBM WebSphere MQ for Solaris” on page 27|

* |“Example configuration - IBM WebSphere MQ for Linux” on page 32|
+ [“Example configuration - IBM WebSphere MQ for z/0S” on page 39|
+ [“Example configuration - IBM WebSphere MQ for z/OS using queue-sharing groups” on page 44|

[“Example configuration — WebSphere MQ for z/OS using intra-group queuing” on page 52|

4 1BM WebSphere MQ: Reference



+ [“Example configuration - IBM WebSphere MQ for IBM i” on page 59|

IT responsibilities

To understand the terminology used in the examples, consider the following guidelines as a starting

point.

* System administrator: The person (or group of people) who installs and configures the software for a
specific platform.

* Network administrator: The person who controls LAN connectivity, LAN address assignments,
network naming conventions, and other network tasks. This person can be in a separate group or can
be part of the system administration group.

In most z/OS installations, there is a group responsible for updating the ACF/VTAM, ACF/NCP, and
TCP/IP software to support the network configuration. The people in this group are the main source of
information needed when connecting any WebSphere MQ platform to WebSphere MQ for z/OS. They
can also influence or mandate network naming conventions on LANs and you must verify their span
of control before creating your definitions.

* A specific type of administrator, for example CICS® administrator, is indicated in cases where we can
more clearly describe the responsibilities of the person.

The example-configuration sections do not attempt to indicate who is responsible for and able to set each
parameter. In general, several different people might be involved.

Related concepts:

['Example configuration information” on page 1|

Related reference:

[‘'setmgenv” on page 288

Example configuration - IBM WebSphere MQ for Windows
This section gives an example of how to set up communication links from WebSphere MQ for Windows
to WebSphere MQ products.

Set up of communication links are shown on the following platforms:
+ AIX

¢ HP Tru64 UNIX

+ HP-UX

* Solaris

* Linux

+ IBMi

* z/0S

* VSE/ESA

Choose from the following types of connection:

* |“Establishing an LU 6.2 connection” on page 6|

» [“Establishing a TCP connection” on page 6|

+ |“Establishing a NetBIOS connection” on page 6|

* |“Establishing an SPX connection” on page 7|

When the connection is established, you must define some channels to complete the configuration.
Example programs and commands for configuration are described in [“WebSphere MQ for Windows|
konfiguration” on page 9/

Reference 5



See [“Example configuration information” on page 1| for background information about this section and
how to use it.

This section first describes the parameters needed for an LU 6.2 connection, then it guides you through
the following tasks:

Establishing an LU 6.2 connection:
Reference to information about configuring AnyNet SNA over TCP/IP.

For the latest information about configuring AnyNet SNA over TCP/IP, see the following online IBM

documentation: [#* [AnyNet® SNA over TCP/IP| [# [SNA Node Operations| and [ [Communications|
Berver for Windows|

Establishing a TCP connection:
The TCP stack that is shipped with Windows systems does not include an inet daemon or equivalent.

The WebSphere MQ command used to start the WebSphere MQ for TCP listener is:
runmglsr -t tcp

The listener must be started explicitly before any channels are started. It enables receiving channels to
start automatically in response to a request from an inbound sending channel.

What next?

When the TCP/IP connection is established, you are ready to complete the configuration. Go to
['WebSphere MQ for Windows configuration” on page 9.

Establishing a NetBIOS connection:

A NetBIOS connection is initiated from a queue manager that uses the ConnectionName parameter on its
channel definition to connect to a target listener.

To set up a NetBIOS connection, follow these steps:

1. At each end of the channel specify the local NetBIOS name to be used by the IBM WebSphere MQ
channel processes in the queue manager configuration file qm.ini. For example, the NETBIOS stanza
in Windows at the sending end might look like the following:

NETBIOS:
LocalName=WNTNETB1

and at the receiving end:

NETBIOS:
LocalName=WNTNETB2

Each IBM WebSphere MQ process must use a different local NetBIOS name. Do not use your system
name as the NetBIOS name because Windows already uses it.

2. At each end of the channel, verify the LAN adapter number being used on your system. The IBM
WebSphere MQ for Windows default for logical adapter number 0 is NetBIOS running over an
Internet Protocol network. To use native NetBIOS you must select logical adapter number 1. See

[Establishing the LAN adapter number| (WebSphere MQ V7.1 Installing Guide).

Specify the correct LAN adapter number in the NETBIOS stanza of the Windows registry. For
example:

6 IBM WebSphere MQ: Reference



NETBIOS:
AdapterNum=1

3. So that sender channel initiation works, specify the local NetBIOS name by the MONAME
environment variable:
SET MQNAME=WNTNETB1I
This name must be unique.
4. At the sending end, define a channel specifying the NetBIOS name being used at the other end of the
channel. For example:

DEFINE CHANNEL (WINNT.0S2.NET) CHLTYPE(SDR) +

TRPTYPE(NETBIOS) +

CONNAME (WNTNETB2) +

XMITQ(0S2) +

MCATYPE (THREAD) +

REPLACE
You must specify the option MCATYPE (THREAD) because, on Windows, sender channels must be run as
threads.

5. At the receiving end, define the corresponding receiver channel. For example:

DEFINE CHANNEL (WINNT.0S2.NET) CHLTYPE(RCVR) +
TRPTYPE(NETBIOS) +
REPLACE

6. Start the channel initiator because each new channel is started as a thread rather than as a new
process.

runmqchi
7. At the receiving end, start the IBM WebSphere MQ listener:
runmglsr -t netbios
Optionally you can specify values for the queue manager name, NetBIOS local name, number of

sessions, number of names, and number of commands. See [ [Defining a NetBIOS connection on|
(WebSphere MQ V7.1 Installing Guide) for more information about setting up NetBIOS
connections.

Establishing an SPX connection:
An SPX connection applies only to a client and server running Windows XP and Windows 2003 Server.

This section contains information about:
» IPX/SPX parameters

* SPX addressing

* Receiving on SPX

IPX/SPX parameters

Refer to the Microsoft documentation for full details of the use and setting of the NWLink IPX and SPX
parameters. The IPX/SPX parameters are in the following paths in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkSPX\Parameters
HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkIPX\Parameters

SPX addressing

WebSphere MQ uses the SPX address of each machine to establish connectivity. The SPX address is
specified in the following form:

network.node (socket)

Reference 7



where

network
Is the 4-byte network address of the network on which the remote machine resides,

node Is the 6-byte node address, which is the LAN address of the LAN adapter in the remote machine

socket Is the 2-byte socket number on which the remote machine listens.

The default socket number used by WebSphere MQ is 5E86. You can change the default socket number
by specifying it in the Windows registry or in the queue manager configuration file qm.ini. The lines in
the Windows registry might read:

SPX:
SOCKET=n

For more information about values you can set in qm.ini, see [‘Configuration file stanzas for distributed|
ueuing” on page 94|

The SPX address is later specified in the CONNAME parameter of the sender channel definition. If the

WebSphere MQ systems being connected reside on the same network, the network address need not be
specified. Similarly, if the remote system is listening on the default socket number (5E86), it need not be
specified. A fully qualified SPX address in the CONNAME parameter is:

CONNAME ('network.node(socket) ')

but if the systems reside on the same network and the default socket number is used, the parameter is:
CONNAME (node)

A detailed example of the channel configuration parameters is given in [“WebSphere MQ for Windows|
fonfiguration” on page 9.

Receiving on SPX

Receiving channel programs are started in response to a startup request from the sending channel. To do
this, a listener program has to be started to detect incoming network requests and start the associated
channel.

You should use the WebSphere MQ listener.

Using the WebSphere MQ listener

To run the Listener supplied with WebSphere MQ, that starts new channels as threads, use the
RUNMOQLSR command. For example:

RUNMQLSR -t spx

Optionally you can specify the queue manager name or the socket number if you are not using the
defaults.

8 1BM WebSphere MQ: Reference



WebSphere MQ for Windows configuration:

Example programs and commands for configuration.

Note:

1.

You can use the sample program, AMQSBCG, to show the contents and headers of all the messages in
a queue. For example:

AMQSBCG g_name gmgr_name

shows the contents of the queue q_name defined in queue manager gmgr_name.
Alternatively, you can use the message browser in the WebSphere MQ Explorer.
You can start any channel from the command prompt using the command
runmqchl -c channel.name

Error logs can be found in the directories Mg_INSTALLATION_PATH\qmgrs\gmgrname\errors and
MQ_INSTALLATION_PATH\qmgrs\@system\errors. In both cases, the most recent messages are at the end
of amgerr01.log.

MQ_INSTALLATION_PATH represents the high-level directory in which WebSphere MQ is installed.

When you are using the command interpreter runmgqsc to enter administration commands, a + at the
end of a line indicates that the next line is a continuation. Ensure that there is a space between the
last parameter and the continuation character.

Default configuration:

You can create a default configuration by using the WebSphere MQ Postcard application to guide you
through the process.

For information about using the Postcard application, see k4 [Verify the installation using the Postcard]

(WebSphere MQ V7.1 Installing Guide).

Basic configuration:

You can create and start a queue manager from the WebSphere MQ Explorer or from the command
prompt.

If you choose the command prompt:

1.

Create the queue manager using the command:
crtmgm -u dlgname -q winnt

where:
winnt Is the name of the queue manager
-q Indicates that this is to become the default queue manager

-u dlgname
Specifies the name of the undeliverable message queue
This command creates a queue manager and a set of default objects.
Start the queue manager using the command:
strmgm winnt

where winnt is the name given to the queue manager when it was created.

Reference 9



Channel configuration:
Example configuration to be performed on the Windows queue manager to implement a given channel.

The following sections detail the configuration to be performed on the Windows queue manager to
implement the channel described in [Figure 1 on page 2|

In each case the MQSC command is shown. Either start runmgsc from a command prompt and enter
each command in turn, or build the commands into a command file.

Examples are given for connecting WebSphere MQ for Windows and WebSphere MQ for AIX. To connect
to WebSphere MQ on another platform use the appropriate set of values from the table in place of those
for Windows.

Note: The words in bold are user-specified and reflect the names of WebSphere MQ objects used
throughout these examples. If you change the names used here, ensure that you also change the other
references made to these objects throughout this section. All others are keywords and should be entered
as shown.

Table 1. Configuration worksheet for WebSphere MQ for Windows

| Parameter Name | Reference Example Used |User Value
Definition for local node
A Queue Manager Name WINNT
B Local queue name WINNT.LOCALQ

Connection to WebSphere MQ for AIX

The values in this section of the table must match those used in [Table 2 on page 17} as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ
E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name WINNT.AIX.SNA
H Sender (TCP) channel name WINNT.AIX.TCP
I Receiver (SNA) channel name G AIX.WINNT.SNA
] Receiver (TCP) channel name H AIX.WINNT.TCP

Connection to MQSeries® for HP Tru64 UNIX

The values in this section of the table must match those used in your HP Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ
E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.WINNT.TCP
] Receiver (TCP) channel name H WINNT.DECUX.TCP

Connection to WebSphere MQ for HP-UX

The values in this section of the table must match those used in [Table 3 on page 23} as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

10 1BM WebSphere MQ: Reference



Table 1. Configuration worksheet for WebSphere MQ for Windows (continued)

Parameter Name Reference Example Used User Value
E Queue name at remote system B HPUX.LOCALQ
F Transmission queue name HPUX
G Sender (SNA) channel name WINNT.HPUX.SNA
H Sender (TCP) channel name WINNT.HPUX.TCP
I Receiver (SNA) channel name G HPUX.WINNT.SNA
] Receiver (TCP/IP) channel name H HPUX.WINNT.TCP

Connection to WebSphere MQ for Solaris

The values in this section of the table must match those used in [Table 4 on page 29} as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ
E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name SOLARIS

G Sender (SNA) channel name WINNT.SOLARIS.SNA
H Sender (TCP) channel name WINNT.SOLARIS.TCP
I Receiver (SNA) channel name G SOLARIS.WINNT.SNA
] Receiver (TCP) channel name H SOLARIS.WINNT.TCP

Connection to WebSphere MQ for Linux

The values in this section of the table must match those used in [Table 5 on page 35} as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ
E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name WINNT.LINUX.SNA
H Sender (TCP) channel name WINNT.LINUX.TCP
I Receiver (SNA) channel name G LINUX.WINNT.SNA
J Receiver (TCP) channel name H LINUX.WINNT.TCP

Connection to WebSphere MQ for IBM i

The values in this section of the table must match those used in [Table 10 on page 75| as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ
E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name WINNT.AS400.SNA
H Sender (TCP) channel name WINNT.AS400.TCP
I Receiver (SNA) channel name G AS400.WINNT.SNA
] Receiver (TCP) channel name H AS400.WINNT.TCP

Connection to WebSphere MQ for z/OS

The values in this section of the table must match those used in [Table 6 on page 40} as indicated.

C Remote queue manager name

A

| MVS™

Reference

11



Table 1. Configuration worksheet for WebSphere MQ for Windows (continueq)

Parameter Name Reference Example Used User Value
D Remote queue name MVS.REMOTEQ
E Queue name at remote system B MVS.LOCALQ
F Transmission queue name MVS
G Sender (SNA) channel name WINNT.MVS.SNA
H Sender (TCP) channel name WINNT.MVS.TCP
I Receiver (SNA) channel name G MVS.WINNT.SNA
J Receiver (TCP/IP) channel name H MVS.WINNT.TCP

Connection to WebSphere MQ for z/OS using queue-sharing groups

The values in this section of the table must match those used in [Table 8 on page 50} as indicated.

C Remote queue manager name A QSG

D Remote queue name QSG.REMOTEQ
E Queue name at remote system B QSG.SHAREDQ

F Transmission queue name QSG

G Sender (SNA) channel name WINNT.QSG.SNA
H Sender (TCP) channel name WINNT.QSG.TCP
I Receiver (SNA) channel name G QSG.WINNT.SNA
] Receiver (TCP/IP) channel name H QSG.WINNT.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ
E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name WINNT.VSE.SNA
I Receiver channel name G VSE.WINNT.SNA

WebSphere MQ for Windows sender-channel definitions using SNA:

A code sample.

def q1 (AIX) + F
usage(xmitq) +
replace

def qr (AIX.REMOTEQ) +
rname (AIX.LOCALQ) +
rgmname (AIX) +
xmitq(AIX) +
replace

MmO mo

def chl (WINNT.AIX.SNA) chltype(sdr) + G
trptype(lu62) +
conname (AIXCPIC) + 18
xmitq(AIX) + F
replace

12 1BM WebSphere MQ: Reference




WebSphere MQ for Windows receiver-channel definitions using SNA:

A code sample.

def g1 (WINNT.LOCALQ) replace B
def chl (AIX.WINNT.SNA) chltype(rcvr) + I
trptype(T1u62) +
replace

WebSphere MQ for Windows sender-channel definitions using TCP/IP:

A code sample.

def g1 (AIX) + F
usage(xmitq) +
replace

def qr (AIX.REMOTEQ) +
rname (AIX.LOCALQ) +
rgmname (AIX) +
xmitq (AIX) +
replace

MmO Mmoo

def chl (WINNT.AIX.TCP) chltype(sdr) + H
trptype(tcp) +
conname(remote _tcpip_hostname) +
xmitq(AIX) + F
replace

WebSphere MQ for Windows receiver-channel definitions using TCP:

A code sample.

def g1 (WINNT.LOCALQ) replace B
def chl (AIX.WINNT.TCP) chltype(rcvr) + J
trptype(tcp) +
replace

Automatic startup:

WebSphere MQ for Windows allows you to automate the startup of a queue manager and its channel

initiator, channels, listeners, and command servers.

Use the IBM WebSphere MQ Services snap-in to define the services for the queue manager. When you
have successfully completed testing of your communications setup, set the relevant services to automatic
within the snap-in. This file can be read by the supplied WebSphere MQ service when the system is

started.

For more information, see [Administering IBM WebSphere MQ| (WebSphere MQ V7.1 Administering

Guide).

Reference 13



Running channels as processes or threads:

WebSphere MQ for Windows provides the flexibility to run sending channels as Windows processes or
Windows threads. This is specified in the MCATYPE parameter on the sender channel definition.

Most installations run their sending channels as threads, because the virtual and real memory required to
support many concurrent channel connections is reduced. However, a NetBIOS connection needs a
separate process for the sending Message Channel Agent.

Multiple thread support — pipelining:

You can optionally allow a message channel agent (MCA) to transfer messages using multiple threads.
This process, called pipelining, enables the MCA to transfer messages more efficiently, with fewer wait
states, which improves channel performance. Each MCA is limited to a maximum of two threads.

You control pipelining with the PipeLineLength parameter in the qm.ini file. This parameter is added to
the CHANNELS stanza:

PipeLineLength=1 | number
This attribute specifies the maximum number of concurrent threads a channel uses. The default is
1. Any value greater than 1 is treated as 2.

With WebSphere MQ for Windows, use the WebSphere MQ Explorer to set the PipeLineLength parameter

in the registry. See [The Channels stanza| (WebSphere MQ V7.1 Installing Guide) for a complete
description of the CHANNELS stanza.

Note:
1. PipeLineLength applies only to V5.2 or later products.
2. Pipelining is effective only for TCP/IP channels.

When you use pipelining, the queue managers at both ends of the channel must be configured to have a
PipeLineLength greater than 1.

Channel exit considerations

Pipelining can cause some exit programs to fail, because:
* Exits might not be called serially.
* Exits might be called alternately from different threads.

Check the design of your exit programs before you use pipelining:
 Exits must be reentrant at all stages of their execution.

* When you use MQI calls, remember that you cannot use the same MQI handle when the exit is
invoked from different threads.

Consider a message exit that opens a queue and uses its handle for MQPUT calls on all subsequent
invocations of the exit. This fails in pipelining mode because the exit is called from different threads. To
avoid this failure, keep a queue handle for each thread and check the thread identifier each time the exit
is invoked.

14 1BM WebSphere MQ: Reference



Example configuration - IBM WebSphere MQ for AIX

This section gives an example of how to set up communication links from WebSphere MQ for AIX to
WebSphere MQ products.

The following platforms are covered in the examples:
* Windows

* HP Tru64 UNIX

* HP-UX

* Solaris

* Linux

* IBMi

* z/0S

* VSE/ESA

Choose from the following types of connection:

+ [“Establishing an LU 6.2 connection”|

* |“Establishing a TCP connection”]

See [“Example configuration information” on page 1| for background information about this section and
how to use it.

Establishing an LU 6.2 connection:
Describes the parameters needed for an LU 6.2 connection.

For the latest information about configuring SNA over TCP/IP, refer to the following online IBM

documentation: [ [Communications Server for AIX]

Establishing a TCP connection:

The listener must be started explicitly before any channels are started. It enables receiving channels to
start automatically in response to a request from an inbound sending channel.

The WebSphere MQ command used to start the WebSphere MQ for TCP listener is:
runmglsr -t tcp

Alternatively, if you want to use the UNIX supplied TCP/IP listener, complete the following steps:
1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or root. If you do not have
the following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add it as shown,
replacing MQ_INSTALLATION_PATH with the high-level directory in which WebSphere MQ is installed:

MQSeries stream tcp nowait root MQ INSTALLATION_PATH/bin/amgcrsta amgcrsta
[-m queue.manager.name]

3. Enter the command refresh -s inetd.
Note: You must add root to the mgm group. You need not have the primary group set to mqm. As long

as mqm is in the set of groups, you can use the commands. If you are running only applications that use
the queue manager you do not need mgm group authority.

Reference


http://www-01.ibm.com/software/network/commserver/aix/library/index.html

What next?

The connection is now established. You are ready to complete the configuration. Go to [“WebSphere MQ)

for AIX configuration.”|

WebSphere MQ for AIX configuration:

Defining channels to complete the configuration.

Note:

1.

Before beginning the installation process ensure that you have first created the mgm user and group,
and set the password.

If installation fails as a result of insufficient space in the file system you can increase the size as
follows, using the command smit C sna. (Use df to display the status of the file system. This indicates
the logical volume that is full.)

-- Physical and Logical Storage
-- File Systems
-- Add / Change / Show / Delete File Systems
-- Journaled File Systems
-- Change/Show Characteristics of a Journaled File System

Start any channel using the command:
runmgchl -c channel.name

Sample programs are installed in MQ_INSTALLATION_PATH/samp, where MQ_INSTALLATION_PATH
represents the high-level directory in which WebSphere MQ is installed.

Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.

On AIX, you can start a trace of the WebSphere MQ components by using standard WebSphere MQ
trace commands, or using AIX system trace. See (WebSphere MQ V7.1 Administering
Guide) for more information about WebSphere MQ Trace and AIX system trace.

When you are using the command interpreter runmgqsc to enter administration commands, a + at the
end of a line indicates that the next line is a continuation. Ensure that there is a space between the
last parameter and the continuation character.

Basic configuration

1.

16

Create the queue manager from the AIX command line using the command:
crtmgm -u dlgname -q aix

where:
aix Is the name of the queue manager
-q Indicates that this is to become the default queue manager
-u dlgname
Specifies the name of the undeliverable message queue
This command creates a queue manager and a set of default objects.
Start the queue manager from the AIX command line using the command:
strmgm aix

where agix is the name given to the queue manager when it was created.

Start runmgqsc from the AIX command line and use it to create the undeliverable message queue by
entering the command:

def q1 (dlgname)

IBM WebSphere MQ: Reference



where dlgname is the name given to the undeliverable message queue when the queue manager was
created.

Channel configuration:
Includes information about configuring a queue manager for a given channel and platform.

The following section details the configuration to be performed on the AIX queue manager to implement
the channel described in [Figure 1 on page 2|

In each case the MQSC command is shown. Either start runmqsc from an AIX command line and enter
each command in turn, or build the commands into a command file.

Examples are given for connecting WebSphere MQ for AIX and WebSphere MQ for Windows. To connect
to WebSphere MQ on another platform use the appropriate set of values from the table in place of those
for Windows.

Note: The words in bold are user-specified and reflect the names of WebSphere MQ objects used
throughout these examples. If you change the names used here, ensure that you also change the other
references made to these objects throughout this section. All others are keywords and should be entered
as shown.

Table 2. Configuration worksheet for WebSphere MQ for AIX

ID | Parameter Name Reference Example Used User Value

Definition for local node

A Queue Manager Name AIX

B Local queue name AIX.LOCALQ
Connection to WebSphere MQ for Windows

The values in this section of the table must match those used in [Table 1 on page 10} as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ
E Queue name at remote system B WINNT.LOCALQ
F Transmission queue name WINNT

G Sender (SNA) channel name AIX.WINNT.SNA
H Sender (TCP/IP) channel name AIX.WINNT. TCP

I Receiver (SNA) channel name G WINNT.AIX.SNA

] Receiver (TCP) channel name H WINNT.AIX.TCP

Connection to WebSphere MQ for HP Tru64 UNIX

The values in this section of the table must match those used in your HP Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ
E Queue name at remote system B DECUX.LOCALQ
F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.AIX.TCP

] Receiver (TCP) channel name H AIX.DECUX.TCP

Connection to WebSphere MQ for HP-UX

The values in this section of the table must match those used in [Table 3 on page 23| as indicated.

Reference 17



Table 2. Configuration worksheet for WebSphere MQ for AIX (continued)

ID Parameter Name Reference Example Used User Value
C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name AIX.HPUX.SNA

H Sender (TCP) channel name AIX.HPUX.TCP

I Receiver (SNA) channel name G HPUX.AIX.SNA

] Receiver (TCP) channel name H HPUX.AIX.TCP

Connection to WebSphere MQ for Solaris

The values in this section of the table must match those used in [Table 4 on page 29} as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ
E Queue name at remote system B SOLARIS.LOCALQ
F Transmission queue name SOLARIS

G Sender (SNA) channel name AIX.SOLARIS.SNA
H Sender (TCP/IP) channel name AIX.SOLARIS.TCP

I Receiver (SNA) channel name G SOLARIS.AIX.SNA

J Receiver (TCP/IP) channel name H SOLARIS.AIX.TCP

Connection to WebSphere MQ for Linux

The values in this section of the table must match those used in [Table 5 on page 35} as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ
E Queue name at remote system B LINUX.LOCALQ
F Transmission queue name LINUX

G Sender (SNA) channel name AIX.LINUX.SNA
H Sender (TCP/IP) channel name AIX.LINUX.TCP

I Receiver (SNA) channel name G LINUX.AIX.SNA

] Receiver (TCP/IP) channel name H LINUX.AIX.TCP

Connection to WebSphere MQ for IBM i

The values in this section of the table must match those used in [Table 10 on page 75} as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ
E Queue name at remote system B AS400.LOCALQ
F Transmission queue name AS400

G Sender (SNA) channel name AIX.AS400.SNA
H Sender (TCP) channel name AIX.AS400.TCP

I Receiver (SNA) channel name G AS400.AIX.SNA

] Receiver (TCP) channel name H AS400.AIX.TCP

18 1BM WebSphere MQ: Reference




Table 2. Configuration worksheet for WebSphere MQ for AIX (continued)

ID Parameter Name

Reference

| Example Used

| User Value

Connection to WebSphere MQ for z/OS

The values in this section of the table must match those used in [Table 6 on page 40} as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ
E Queue name at remote system B MVS.LOCALQ
F Transmission queue name MVS

G Sender (SNA) channel name AIX.MVS.SNA
H Sender (TCP) channel name AIX.MVS.TCP

I Receiver (SNA) channel name G MVS.AIX.SNA

] Receiver (TCP) channel name H MVS.AIX.TCP

Connection to WebSphere MQ for z/OS using queue-sharing groups

The values in this section of the table must match those used in [Table 8 on page 50} as indicated.

C Remote queue manager name A QSG

D Remote queue name QSG.REMOTEQ
E Queue name at remote system B QSG.SHAREDQ
F Transmission queue name QSsG

G Sender (SNA) channel name AIX.QSG.SNA
H Sender (TCP) channel name AIX.QSG.TCP

I Receiver (SNA) channel name G QSG.AIX.SNA

] Receiver (TCP) channel name H QSG.AIX.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ
E Queue name at remote system B VSE.LOCALQ
F Transmission queue name VSE

G Sender channel name AIX.VSE.SNA

I Receiver channel name G VSE.AIX.SNA

WebSphere MQ for AIX sender-channel definitions using SNA:

Example commands.

def g1 (WINNT) +
usage(xmitqg) +
replace

def qr (WINNT.REMOTEQ) +
rname (WINNT.LOCALQ) +
rgmname (WINNT) +
xmitq(WINNT) +
replace

def chl (AIX.WINNT.SNA) chltype(sdr) +

MmO mo

Reference

19



trptype(Tu62) +

conname ('WINNTCPIC') + 17
xmitq (WINNT) + F
replace

WebSphere MQ for AIX receiver-channel definitions using SNA:

Example commands.
def g1 (AIX.LOCALQ) replace B

def chl (WINNT.AIX.SNA) chltype(rcvr) + I
trptype(T1u62) +
replace

WebSphere MQ for AIX TPN setup:

Alternative ways of ensuring that SNA receiver channels activate correctly when a sender channel
initiates a conversation.

During the AIX Communications Server configuration process, an LU 6.2 TPN profile was created, which
contained the full path to a TP executable program. In the example, the file was called
u/interops/AlX.crs6a. You can choose a name, but consider including the name of your queue manager
in it. The contents of the executable file must be:

#!/bin/sh

MQ_INSTALLATION_PATH/bin/amqcrs6a -m aix

where aix is the queue manager name (A) and MQ_INSTALLATION_PATH is the high-level directory in which
WebSphere MQ is installed. After creating this file, enable it for execution by running the command:

chmod 755 /u/interops/AIX.crsb6a

As an alternative to creating an executable file, you can specify the path on the Add LU 6.2 TPN Profile
panel, using command-line parameters.

Specifying a path in one of these two ways ensures that SNA receiver channels activate correctly when a
sender channel initiates a conversation.

WebSphere MQ for AIX sender-channel definitions using TCP:

Example commands.

def g1 (WINNT) + F
usage(xmitq) +
replace

def qr (WINNT.REMOTEQ) +
rname (WINNT.LOCALQ) +
rgmname (WINNT) +
xmitq(WINNT) +
replace

MmO mo

def chl (AIX.WINNT.TCP) chltype(sdr) + H
trptype(tcp) +
conname(remote _tcpip_hostname) +
xmitq (WINNT) + F
replace

20 1BM WebSphere MQ: Reference



WebSphere MQ for AIX receiver-channel definitions using TCP:

Example commands.
def g1 (AIX.LOCALQ) replace B

def chl (WINNT.AIX.TCP) chltype(rcvr) + J
trptype(tcp) +
replace

Example configuration - IBM WebSphere MQ for HP-UX

This section gives an example of how to set up communication links from WebSphere MQ for HP-UX to

WebSphere MQ products.

The following platforms are included:
* Windows

+ AIX

* HP Tru64 UNIX

* Solaris

* Linux

« IBMi

+ 2z/0S

* VSE/ESA

Choose from the following types of connection:

* |“Establishing an LU 6.2 connection”|

* |“Establishing a TCP connection”]

See [“Example configuration information” on page 1 for background information about this section and
how to use it.

Establishing an LU 6.2 connection:
Describes the parameters needed for an LU 6.2 connection

For the latest information about configuring SNA over TCP/IP, refer to the following online IBM

documentation: [# [Communications Server] and the following online HP documentation: [
BN Aplus? Installation Guide|

Establishing a TCP connection:
Alternative ways of establishing a connection and next steps.

The listener must be started explicitly before any channels are started. It enables receiving channels to
start automatically in response to a request from an inbound sending channel.

Alternatively, if you want to use the UNIX supplied TCP/IP listener, complete the following steps:
1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or root. If you do not have

the following line in that file, add it as shown:
MQSeries 1414/tcp # MQSeries channel Tistener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add it as shown,
replacing MQ_INSTALLATION_PATH with the high-level directory in which WebSphere MQ is installed.

Reference

21


http://www-01.ibm.com/software/network/commserver/library/index.html
http://docs.hp.com/en/J2740-90001/index.html
http://docs.hp.com/en/J2740-90001/index.html

MQSeries stream tcp nowait root MQ INSTALLATION _PATH/bin/amgcrsta amgcrsta
[-m queue.manager.name]

3. Find the process ID of the inetd with the command:
ps -ef | grep inetd

4. Run the command:
ki1l -1 inetd processid

Note: You must add root to the mgm group. You do not need not have the primary group set to mqm.
As long as mqm is in the set of groups, you can use the commands. If you are running only applications
that use the queue manager you do not need to have mgm group authority.

What next?

The connection is now established. You are ready to complete the configuration. Go to [“WebSphere MQJ
for HP-UX configuration.”]

WebSphere MQ for HP-UX configuration:
Describes defining the channels to complete the configuration.

Before beginning the installation process ensure that you have first created the mgm user and group, and
set the password.

Start any channel using the command:
runmgchl -c channel.name

Note:

1. Sample programs are installed in MQ_INSTALLATION_PATH/samp, where MQ_INSTALLATION_PATH
represents the high-level directory in which WebSphere MQ is installed.

2. Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.

3. When you are using the command interpreter runmgsc to enter administration commands, a + at the
end of a line indicates that the next line is a continuation. Ensure that there is a space between the
last parameter and the continuation character.

Basic configuration
1. Create the queue manager from the UNIX prompt using the command:
crtmgm -u dlgname -q hpux

where:
hpux s the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlgname
Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects. It sets the DEADQ attribute of
the queue manager but does not create the undeliverable message queue.

2. Start the queue manager from the UNIX prompt using the command:
strmgm hpux

where hpux is the name given to the queue manager when it was created.

22 IBM WebSphere MQ: Reference



Channel configuration:
Includes information about configuring a queue manager for a given channel and platform.

The following section details the configuration to be performed on the HP-UX queue manager to
implement the channel described in [Figure 1 on page 2|

In each case the MQSC command is shown. Either start runmgqsc from a UNIX prompt and enter each
command in turn, or build the commands into a command file.

Examples are given for connecting WebSphere MQ for HP-UX and WebSphere MQ for Windows. To
connect to WebSphere MQ on another platform use the appropriate set of values from the table in place
of those for Windows.

Note: The words in bold are user-specified and reflect the names of WebSphere MQ objects used
throughout these examples. If you change the names used here, ensure that you also change the other
references made to these objects throughout this section. All others are keywords and should be entered
as shown.

Table 3. Configuration worksheet for WebSphere MQ for HP-UX

ID | Parameter Name | Reference Example Used | User Value
Definition for local node

A Queue Manager Name HPUX

B Local queue name HPUX.LOCALQ

Connection to WebSphere MQ for Windows

The values in this section of the table must match those used in [Table 1 on page 10} as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ
E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name HPUX.WINNT.SNA
H Sender (TCP/IP) channel name HPUX.WINNT.TCP
I Receiver (SNA) channel name G WINNT.HPUX.SNA
] Receiver (TCP) channel name H WINNT.HPUX.TCP

Connection to WebSphere MQ for AIX

The values in this section of the table must match those used in [Table 2 on page 17} as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ
E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name HPUX.AIX.SNA
H Sender (TCP) channel name HPUX.AIX.TCP
I Receiver (SNA) channel name G AIX.HPUX.SNA
] Receiver (TCP) channel name H AIX.HPUX.TCP

Connection to WebSphere MQ for HP Tru64 UNIX

The values in this section of the table must match those used in your HP Tru64 UNIX system.

Reference 23



Table 3. Configuration worksheet for WebSphere MQ for HP-UX (continued)

ID Parameter Name Reference Example Used User Value
C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ

E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.HPUX.TCP

] Receiver (TCP) channel name H HPUX.DECUX.TCP

Connection to WebSphere MQ for Solaris

The values in this section of the table must match those used in [Table 4 on page 29} as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ
E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name SOLARIS

G Sender (SNA) channel name HPUX.SOLARIS.SNA
H Sender (TCP/IP) channel name HPUX.SOLARIS.TCP
I Receiver (SNA) channel name G SOLARIS.HPUX.SNA
J Receiver (TCP/IP) channel name H SOLARIS.HPUX. TCP

Connection to WebSphere MQ for Linux

The values in this section of the table must match those used in [Table 5 on page 35} as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ
E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name HPUX.LINUX.SNA
H Sender (TCP/IP) channel name HPUX.LINUX.TCP
I Receiver (SNA) channel name G LINUX.HPUX.SNA
] Receiver (TCP/IP) channel name H LINUX.HPUX.TCP

Connection to WebSphere MQ for IBM i

The values in this section of the table must match those used in [Table 10 on page 75} as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ
E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name HPUX.AS400.SNA
H Sender (TCP/IP) channel name HPUX.AS400.TCP
I Receiver (SNA) channel name G AS400.HPUX.SNA
] Receiver (TCP) channel name H AS400.HPUX.TCP

Connection to WebSphere MQ for z/OS

The values in this section of the table must match those used in [Table 6 on page 40} as indicated.

C Remote queue manager name

A

| MVS

24 1BM WebSphere MQ: Reference




Table 3. Configuration worksheet for WebSphere MQ for HP-UX (continued)

ID Parameter Name Reference Example Used User Value
D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name HPUX.MVS.SNA

H Sender (TCP) channel name HPUX.MVS.TCP

I Receiver (SNA) channel name G MVS.HPUX.SNA

] Receiver (TCP) channel name H MVS.HPUX.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ
E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name HPUX.VSE.SNA
I Receiver channel name G VSE.HPUX.SNA

WebSphere MQ for HP-UX sender-channel definitions using SNA:

Example commands.

def

def

def

ql (WINNT) +
usage(xmitq) +
replace

gr (WINNT.REMOTEQ) +
rname (WINNT.LOCALQ) +
rgmname (WINNT) +
xmitq(WINNT) +
replace

chl (HPUX.WINNT.SNA) chltype(sdr) +
trptype(lu62) +

conname ('WINNTCPIC') +

xmitq (WINNT) +

replace

MmO Mmoo

WebSphere MQ for HP-UX receiver-channel definitions using SNA:

Example commands.

def

ql (HPUX.LOCALQ) replace

def chl (WINNT.HPUX.SNA) chltype(rcvr) +

trptype(1u62) +
replace

Reference

25



WebSphere MQ for HP-UX invokable TP setup:
Ensuring that SNA receiver channels activate correctly when a sender channel initiates a conversation.
This is not required for HP SNAplus2 Release 6.

During the HP SNAplus2 configuration process, you created an invokable TP definition, which points to
an executable file. In the example, the file was called /users/interops/HPUX.crs6a. You can choose what
you call this file, but consider including the name of your queue manager in the name. The contents of
the executable file must be:

#1/bin/sh

MQ_INSTALLATION_PATH/bin/amqcrs6a -m hpux

where hpux is the name of your queue manager A and MQ_INSTALLATION_PATH is the high-level directory
in which WebSphere MQ is installed.

This ensures that SNA receiver channels activate correctly when a sender channel initiates a conversation.
WebSphere MQ for HP-UX sender-channel definitions using TCP:

Example commands.

def g1 (WINNT) + F
usage(xmitq) +
replace

def qr (WINNT.REMOTEQ) +
rname (WINNT.LOCALQ) +
rgmname (WINNT) +
xmitq (WINNT) +
replace

MmO mo

def chl (HPUX.WINNT.TCP) chltype(sdr) + H
trptype(tcp) +
conname(remote tcpip_hostname) +
xmitq (WINNT) + F
replace

WebSphere MQ for HP-UX receiver-channel definitions using TCP/IP:

Example commands.
def g1 (HPUX.LOCALQ) replace B

def chl (WINNT.HPUX.TCP) chltype(rcvr) + J

trptype(tcp) +
replace

26 IBM WebSphere MQ: Reference



Example configuration - IBM WebSphere MQ for Solaris
This section gives an example of how to set up communication links from WebSphere MQ for Solaris to
WebSphere MQ products.

Examples are given on the following platforms:

Windows

AIX

HP Tru64 UNIX
HP-UX

Linux

IBM i

z/0S

VSE/ESA

Choose from the following types of connection:
* [“Establishing an LU 6.2 connection using SNAP-IX"|
* |“Establishing a TCP connection”]

See [“Example configuration information” on page 1| for background information about this section and

how to use it.

Establishing an LU 6.2 connection using SNAP-IX:

Parameters for configuring an LU 6.2 connection using SNAP-IX.

For the latest information about configuring SNA over TCP/IP, refer to the following online IBM

documentation: [# [Communications Server] the following online MetaSwitch documentation:
[# SNAP-IX Administration Guide} and the following online Sun documentation: [

[ntersystem Communications (ISC)|

Establishing a TCP connection:

Information about configuring a TCP connection and next steps.

To establish a TCP connection, follow these steps.

1.

Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or root. If you do not have

the following line in that file, add it as shown:
MQSeries 1414/tcp # MQSeries channel Tistener
Edit the file /etc/inetd.conf. If you do not have the following line in that file, add it as shown:

MQSeries stream tcp nowait mqm MQ_INSTALLATION_PATH/bin/amqgcrsta amgcrsta
[-m queue.manager.name]

MQ_INSTALLATION_PATH represents the high-level directory in which WebSphere MQ is installed.
Find the process ID of the inetd with the command:
ps -ef | grep inetd
Run the appropriate command, as follows:
* For Solaris 9:
ki1l -1 inetd processid
* For Solaris 10 or later:

Reference

27


http://www-01.ibm.com/software/network/commserver/library/index.html
http://www.metaswitch.com/snapix/sxdocs/admin.htm
http://docs.sun.com/source/816-5328-11/cfgcomms.html
http://docs.sun.com/source/816-5328-11/cfgcomms.html

inetconv

What next?

The TCP/IP connection is now established. You are ready to complete the configuration. Go to

['WebSphere MQ for Solaris configuration.”

WebSphere MQ for Solaris configuration:

Describes channels to be defined to complete the configuration.

Before beginning the installation process ensure that you have first created the mgm user and group, and
set the password.

Start any channel using the command:

runmqchl -c channel.name

Note:

1.

Sample programs are installed in MQ_INSTALLATION_PATH/samp.
MQ_INSTALLATION_PATH represents the high-level directory in which WebSphere MQ is installed.
Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.

When you are using the command interpreter runmgqsc to enter administration commands, a + at the
end of a line indicates that the next line is a continuation. Ensure that there is a space between the
last parameter and the continuation character.

For an SNA or LU6.2 channel, if you experience an error when you try to load the communications
library, probably file liblu62.so cannot be found. A likely solution to this problem is to add its
location, which is probably /opt/SUNWIu62, to LD_LIBRARY_PATH.

Basic configuration

1.

28

Create the queue manager from the UNIX prompt using the command:
crtmgm -u dlgname -q solaris

where:

solaris
Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlgname

Specifies the name of the undeliverable message queue
This command creates a queue manager and a set of default objects.
Start the queue manager from the UNIX prompt using the command:
strmgm solaris

where solaris is the name given to the queue manager when it was created.

IBM WebSphere MQ: Reference



Channel configuration:

The following section details the configuration to be performed on the Solaris queue manager to
implement a channel.

The configuration described is to implement the channel described in [Figure 1 on page 2|

The MQSC command to create each object is shown. Either start runmqsc from a UNIX prompt and enter
each command in turn, or build the commands into a command file.

Examples are given for connecting WebSphere MQ for Solaris and WebSphere MQ for Windows. To
connect to WebSphere MQ on another platform use the appropriate set of values from the table in place
of those for Windows.

Note: The words in bold are user-specified and reflect the names of WebSphere MQ objects used
throughout these examples. If you change the names used here, ensure that you also change the other
references made to these objects throughout this section. All others are keywords and should be entered
as shown.

Table 4. Configuration worksheet for WebSphere MQ for Solaris

ID | Parameter Name | Reference Example Used | User Value
Definition for local node

A Queue Manager Name SOLARIS

B Local queue name SOLARIS.LOCALQ

Connection to WebSphere MQ for Windows

The values in this section of the table must match those used in [Table 1 on page 10} as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name SOLARIS.WINNT.SNA
H Sender (TCP/IP) channel name SOLARIS.WINNT.TCP
I Receiver (SNA) channel name G WINNT.SOLARIS.SNA
] Receiver (TCP) channel name H WINNT.SOLARIS.TCP

Connection to WebSphere MQ for AIX

The values in this section of the table must match those used in [Table 2 on page 17} as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name SOLARIS.AIX.SNA
H Sender (TCP) channel name SOLARIS.AIX.TCP
I Receiver (SNA) channel name G AIX.SOLARIS.SNA
] Receiver (TCP) channel name H AIX.SOLARIS.TCP

Connection to MQSeries for Compaq Tru64 Unix

The values in this section of the table must match those used in your Compaq Tru64 UNIX system.

Reference 29



Table 4. Configuration worksheet for WebSphere MQ for Solaris (continued)

ID Parameter Name Reference Example Used User Value
C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ

E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.SOLARIS.TCP

] Receiver (TCP) channel name H SOLARIS.DECUX.TCP

Connection to WebSphere MQ for HP-UX

The values in this section of the table must match those used in [Table 3 on page 23} as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name SOLARIS.HPUX.SNA
H Sender (TCP) channel name SOLARIS.HPUX. TCP
I Receiver (SNA) channel name G HPUX.SOLARIS.SNA
J Receiver (TCP/IP) channel name H HPUX.SOLARIS. TCP

Connection to WebSphere MQ for Linux

The values in this section of the table must match those used in [Table 5 on page 35} as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name SOLARIS.LINUX.SNA
H Sender (TCP/IP) channel name SOLARIS.LINUX.TCP
I Receiver (SNA) channel name G LINUX.SOLARIS.SNA
] Receiver (TCP/IP) channel name H LINUX.SOLARIS.TCP

Connection to WebSphere MQ for IBM i

The values in this section of the table must match those used in [Table 10 on page 75} as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name SOLARIS.AS400.SNA
H Sender (TCP) channel name SOLARIS.AS400.TCP
I Receiver (SNA) channel name G AS400.SOLARIS.SNA
] Receiver (TCP) channel name H AS400.SOLARIS.TCP

Connection to WebSphere MQ for z/OS

The values in this section of the table must match those used in [Table 6 on page 40} as indicated.

C Remote queue manager name

A

| MVS

30 1BM WebSphere MQ: Reference




Table 4. Configuration worksheet for WebSphere MQ for Solaris (continued)

ID Parameter Name Reference Example Used User Value
D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name SOLARIS.MVS.SNA

H Sender (TCP) channel name SOLARIS.MVS.TCP

I Receiver (SNA) channel name G MVS.SOLARIS.SNA

] Receiver (TCP) channel name H MVS.SOLARIS.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ

E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name SOLARIS.VSE.SNA
I Receiver channel name G VSE.SOLARIS.SNA

WebSphere MQ for Solaris sender-channel definitions using SNAP-IX SNA:

Example coding.

def

def

def

ql (WINNT) +
usage(xmitq) +
replace

gr (WINNT.REMOTEQ) +
rname (WINNT.LOCALQ) +
rgmname (WINNT) +
xmitq(WINNT) +
replace

chl (SOLARIS.WINNT.SNA) chltype(sdr) +
trptype(lu62) +

conname ('NTCPIC') + 14
xmitq (WINNT) +

replace

MmO mo

WebSphere MQ for Solaris receiver-channel definitions using SNA:

Example coding.

def

ql (SOLARIS.LOCALQ) replace

def chl (WINNT.SOLARIS.SNA) chltype(rcvr) +

trptype(1u62) +
replace

Reference

31



WebSphere MQ for Solaris sender-channel definitions using TCP:

Example coding.

def q1 (WINNT) + F
usage(xmitqg) +
replace

def qr (WINNT.REMOTEQ) +
rname (WINNT.LOCALQ) +
rgmname (WINNT) +
xmitq (WINNT) +
replace

MmO Mmoo

def chl (SOLARIS.WINNT.TCP) chltype(sdr) + H
trptype(tcp) +
conname (remote_tcpip_hostname) +
xmitq(WINNT) + F
replace

WebSphere MQ for Solaris receiver-channel definitions using TCP/IP:

Example coding.
def g1 (SOLARIS.LOCALQ) replace B

def chl (WINNT.SOLARIS.TCP) chltype(rcvr) + J
trptype(tcp) +
replace

Example configuration - IBM WebSphere MQ for Linux
This section gives an example of how to set up communication links from WebSphere MQ for Linux to
WebSphere MQ products.

The examples given are on the following platforms:
* Windows

+ AIX

* Compaq Tru64 UNIX

* HP-UX

* Solaris

- IBMi

e 7z/0S

* VSE/ESA

Choose from the following types of connection:

+ [“Establishing an LU 6.2 connection” on page 33|

+ |“Establishing a TCP connection on Linux” on page 33|

See [“Example configuration information” on page 1| for background information about this section and
how to use it.

32 IBM WebSphere MQ: Reference



Establishing an LU 6.2 connection:

Use this worksheet to record the values you use for your configuration.

Note: The information in this section applies only to WebSphere MQ for Linux (x86 platform). It does not
apply to WebSphere MQ for Linux (x86-64 platform), WebSphere MQ for Linux (zSeries s390x platform),
or WebSphere MQ for Linux (POWER®).

For the latest information about configuring SNA over TCP/ID, refer to the Administration Guide for

your version of Linux from the following documentation: [+ [Communications Server for Linux libraryl

Establishing a TCP connection on Linux:

Some Linux® distributions now use the extended inet daemon (XINETD) instead of the inet daemon
(INETD). The following instructions tell you how to establish a TCP connection using either the inet
daemon or the extended inet daemon.

Using the inet daemon (INETD)
MQ_INSTALLATION_PATH represents the high-level directory in which WebSphere MQ is installed.

To establish a TCP connection, follow these steps.
1. Edit the file /etc/services. If you do not have the following line in the file, add it as shown:
MQSeries 1414/tcp # MQSeries channel Tistener

Note: To edit this file, you must be logged in as a superuser or root.
2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add it as shown:

MQSeries stream tcp nowait mqm MQ_INSTALLATION_PATH/bin/amqgcrsta amgcrsta
[-m queue.manager.name]

3. Find the process ID of the inetd with the command:
ps -ef | grep inetd

4. Run the command:
ki1l -1 inetd processid

If you have more than one queue manager on your system, and therefore require more than one service,
you must add a line for each additional queue manager to both /etc/services and inetd.conf.

For example:

MQSeriesl 1414/tcp
MQSeries2 1822/tcp

MQSeriesl stream tcp nowait mgm MQ_INSTALLATION_PATH/bin/amgcrsta amgcrsta -m QM1
MQSeries2 stream tcp nowait mqm MQ INSTALLATION PATH/bin/amgcrsta amgcrsta -m QM2

This avoids error messages being generated if there is a limitation on the number of outstanding
connection requests queued at a single TCP port. For information about the number of outstanding

connection requests, see [Using the TCP listener backlog option| (WebSphere MQ V7.1 Installing Guide).

The inetd process on Linux can limit the rate of inbound connections on a TCP port. The default is 40
connections in a 60 second interval. If you need a higher rate, specify a new limit on the number of
inbound connections in a 60 second interval by appending a period (.) followed by the new limit to the
nowait parameter of the appropriate service in inetd.conf. For example, for a limit of 500 connections in a
60 second interval use:

MQSeries stream tcp nowait.500 mqm /MQ_INSTALLATION _PATH/bin/amgcrsta amgcrsta -m QM1

Reference 33


http://www-01.ibm.com/support/docview.wss?rs=1006&uid=swg27005371

MQ_INSTALLATION_PATH represents the high-level directory in which WebSphere MQ is installed.
Using the extended inet daemon (XINETD)

The following instructions describe how the extended inet daemon is implemented on Red Hat Linux. If
you are using a different Linux distribution, you might have to adapt these instructions.

To establish a TCP connection, follow these steps.
1. Edit the file /etc/services. If you do not have the following line in the file, add it as shown:
MQSeries 1414/tcp # MQSeries channel Tistener

Note: To edit this file, you must be logged in as a superuser or root.

2. Create a file called WebSphere MQ in the XINETD configuration directory, /etc/xinetd.d. Add the
following stanza to the file:
# WebSphere MQ service for XINETD
service MQSeries

{

disable = no

flags = REUSE

socket_type = stream

wait = no

user = mgm

server = MQ_INSTALLATION_PATH/bin/amqcrsta
server_args = -m queue.manager.name

Tog_on_failure += USERID
}

3. Restart the extended inet daemon by issuing the following command:
/etc/rc.d/init.d/xinetd restart

If you have more than one queue manager on your system, and therefore require more than one service,
you must add a line to /etc/services for each additional queue manager. You can create a file in the
/etc/xinetd.d directory for each service, or you can add additional stanzas to the WebSphere MQ file you
created previously.

The xinetd process on Linux can limit the rate of inbound connections on a TCP port. The default is 50
connections in a 10 second interval. If you need a higher rate, specify a new limit on the rate of inbound
connections by specifying the 'cps' attribute in the xinetd configuration file. For example, for a limit of
500 connections in a 60 second interval use:

cps = 500 60
What next?

The TCP/IP connection is now established. You are ready to complete the configuration. Go to
['WebSphere MQ for Linux configuration.”|

WebSphere MQ for Linux configuration:

Before beginning the installation process ensure that you have first created the mqm user ID and the
mqgm group, and set the password.

Start any channel using the command:
runmgchl -c channel.name

Note:

34 1BM WebSphere MQ: Reference



1. Sample programs are installed in MQ_INSTALLATION_PATH/samp, where MQ_INSTALLATION_PATH
represents the high-level directory in which WebSphere MQ is installed.

2. Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.

3. When you are using the command interpreter runmgsc to enter administration commands, a + at the
end of a line indicates that the next line is a continuation. Ensure that there is a space between the
last parameter and the continuation character.

Basic configuration
1. Create the queue manager from the UNIX prompt using the command:
crtmgm -u dlgname -q linux

where:
linux Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlgname
Specifies the name of the dead letter queue
This command creates a queue manager and a set of default objects.
2. Start the queue manager from the UNIX prompt using the command:
strmgm linux

where linux is the name given to the queue manager when it was created.

Channel configuration:

The following section details the configuration to be performed on the Linux queue manager to
implement the channel described in [Figure 1 on page 2|

The MQSC command to create each object is shown. Either start runmgsc from a UNIX prompt and enter
each command in turn, or build the commands into a command file.

Examples are given for connecting WebSphere MQ for Linux and WebSphere MQ for HP-UX. To connect
to WebSphere MQ on another platform use the appropriate set of values from the table in place of those
for HP-UX.

Note: The words in bold are user-specified and reflect the names of WebSphere MQ objects used
throughout these examples. If you change the names used here, ensure that you also change the other
references made to these objects throughout this section. All others are keywords and should be entered
as shown.

Table 5. Configuration worksheet for WebSphere MQ for Linux

ID | Parameter Name Reference Example Used | User Value

Definition for local node

A Queue Manager Name LINUX
B Local queue name LINUX.LOCALQ
Connection to WebSphere MQ for Windows

The values in this section of the table must match those used in [Table 1 on page 10} as indicated.

C Remote queue manager name A WINNT
D Remote queue name WINNT.REMOTEQ
E Queue name at remote system B WINNT.LOCALQ

Reference 35



Table 5. Configuration worksheet for WebSphere MQ for Linux (continued)

ID Parameter Name Reference Example Used User Value
F Transmission queue name WINNT

G Sender (SNA) channel name LINUX.WINNT.SNA

H Sender (TCP/IP) channel name LINUX.WINNT.TCP

I Receiver (SNA) channel name G WINNT.LINUX.SNA

] Receiver (TCP) channel name H WINNT.LINUX.TCP

Connection to WebSphere MQ for AIX

The values in this section of the table must match those used in [Table 2 on page 17} as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name LINUX.AIX.SNA
H Sender (TCP) channel name LINUX.AIX.TCP
I Receiver (SNA) channel name G AIX.LINUX.SNA
] Receiver (TCP) channel name H AIX.LINUX.TCP
Connection to MQSeries for Compaq Tru64 UNIX

The values in this section of the table must match those used in your Compaq Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ
E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.LINUX.TCP
] Receiver (TCP) channel name H LINUX.DECUX.TCP

Connection to WebSphere MQ for HP-UX

The values in this section of the table must match those used in [Table 3 on page 23} as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ
E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name LINUX.HPUX.SNA
H Sender (TCP) channel name LINUX.HPUX.TCP
I Receiver (SNA) channel name G HPUX.LINUX.SNA
J Receiver (TCP/IP) channel name H HPUX.LINUX.TCP

Connection to WebSphere MQ for Solaris

The values in this section of the table must match those used in [Table 4 on page 29} as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ
E Queue name at remote system B SOLARIS.LOCALQ
F Transmission queue name GIS

36 IBM WebSphere MQ: Reference




Table 5. Configuration worksheet for WebSphere MQ for Linux (continued)

ID Parameter Name Reference Example Used User Value
G Sender (SNA) channel name LINUX.SOLARIS.SNA
H Sender (TCP/IP) channel name LINUX.SOLARIS.TCP
I Receiver (SNA) channel name G SOLARIS.LINUX.SNA
] Receiver (TCP/IP) channel name H SOLARIS.LINUX.TCP

Connection to WebSphere MQ for IBM i

The values in this section of the table must match those used in [Table 10 on page 75| as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name LINUX.AS400.SNA
H Sender (TCP) channel name LINUX.AS400.TCP
I Receiver (SNA) channel name G AS400.LINUX.SNA
] Receiver (TCP) channel name H AS400.LINUX.TCP

Connection to WebSphere MQ for z/OS

The values in this section of the table must match those used in [Table 6 on page 40} as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name LINUX.MVS.SNA
H Sender (TCP) channel name LINUX.MVS.TCP
I Receiver (SNA) channel name G MVS.LINUX.SNA
J Receiver (TCP) channel name H MVS.LINUX. TCP

Connection to MQSeries for VSE/[ESA (WebSphere MQ for Linux (x86 platform) only)

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ
E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name LINUX.VSE.SNA
I Receiver channel name G VSE.LINUX.SNA

Reference

37



WebSphere MQ for Linux (x86 platform) sender-channel definitions using SNA:

Example coding.

def g1 (HPUX) + F
usage(xmitqg) +
replace

def qr (HPUX.REMOTEQ) +
rname (HPUX.LOCALQ) +
rgmname (HPUX) +
xmitq (HPUX) +
replace

MmO mo

def chl (LINUX.HPUX.SNA) chltype(sdr) + G
trptype(lu62) +
conname (' HPUXCPIC') + 14
xmitq(HPUX) + F
replace

WebSphere MQ for Linux (x86 platform) receiver-channel definitions using SNA:

Example coding.

def g1 (LINUX.LOCALQ) replace B
def chl (HPUX.LINUX.SNA) chltype(rcvr) + I
trptype(Tu62) +
replace

WebSphere MQ for Linux sender-channel definitions using TCP:

Example coding.

def g1 (HPUX) + F
usage(xmitq) +
replace

def qr (HPUX.REMOTEQ) +
rname (HPUX.LOCALQ) +
rgmname (HPUX) +
xmitq (HPUX) +
replace

MmO mo

def chl (LINUX.HPUX.TCP) chltype(sdr) + H
trptype(tcp) +
conname (remote_tcpip_hostname) +
xmitq(HPUX) + F
replace

38 1BM WebSphere MQ: Reference



WebSphere MQ for Linux receiver-channel definitions using TCP/IP:

Example coding.

def g1 (LINUX.LOCALQ) replace B
def chl (HPUX.LINUX.TCP) chltype(rcvr) + J
trptype(tcp) +
replace

Example configuration - IBM WebSphere MQ for z/0S

This section gives an example of how to set up communication links from WebSphere MQ for z/OS to
WebSphere MQ products on other platforms.

The following are the other platforms covered by this example:
* Windows

+ AIX

* Compaq Tru64 UNIX

+ HP-UX

* Solaris

¢ Linux

+ IBMi

* VSE/ESA

You can also connect any of the following;:
e 7z/0S to z/OS

* z/0S to MVS

* MVS to MVS

See [“Example configuration information” on page 1| for background information about this section and
how to use it.

Establishing a connection:
To establish a connection there are a number of things to configure.
Establishing an LU 6.2 connection

For the latest information about configuring SNA over TCP/IP, refer to the following online IBM

documentation: [ [Communications Server for z/OS|

Establishing a TCP connection

Alter the queue manager object to use the correct distributed queuing parameters using the following
command. You must add the name of the TCP address space to the TCPNAME queue manager attribute.

ALTER QMGR TCPNAME(TCPIP)

The TCP connection is now established. You are ready to complete the configuration.

Reference 39


http://www-01.ibm.com/software/network/commserver/zos/library/

WebSphere MQ for z/OS configuration:

The following steps outline how to configure WebSphere MQ); starting and configuring channels and
listeners.

1. Start the channel initiator using the command:
/cpf START CHINIT 1

2. Start an LU 6.2 listener using the command:
/cpf START LSTR LUNAME(M1) TRPTYPE(LU62)

The LUNAME of M1 refers to the symbolic name you gave your LU (5). You must specify
TRPTYPE(LU62), otherwise the listener assumes that you want TCP.

3. Start a TCP listener using the command:
/cpf START LSTR

If you want to use a port other than 1414 (the default WebSphere MQ port), use the command:
/cpf START LSTR PORT(1555)

WebSphere MQ channels do not initialize successfully if the channel negotiation detects that the message
sequence number is different at each end. You might need to reset these channels manually.

Channel configuration:
To implement the example channels, there is some configuration necessary on the z/OS queue manager.

The following sections detail the configuration to be performed on the z/OS queue manager to
implement the channel described in [Figure 1 on page 2|

Examples are given for connecting WebSphere MQ for z/OS and WebSphere MQ for Windows. To
connect to WebSphere MQ on another platform use the appropriate set of values from the table in place
of the values for Windows.

Note: The words in bold are user-specified and reflect the names of WebSphere MQ objects used
throughout these examples. If you change the names used here, ensure that you also change the other
references made to these objects throughout this section. All others are keywords and must be entered as
shown.

Table 6. Configuration worksheet for WebSphere MQ for z/0S

ID | Parameter Name Reference Example Used User Value
Definition for local node

A Queue Manager Name MVS

B Local queue name MVS.LOCALQ

Connection to WebSphere MQ for Windows

The values in this section of the table must match the values used in [Table 1 on page 10} as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ
E Queue name at remote system B WINNT.LOCALQ
F Transmission queue name WINNT

G Sender (LU 6.2) channel name MVS.WINNT.SNA
H Sender (TCP) channel name MVS.WINNT.TCP
I Receiver (LU 6.2) channel name G WINNT.MVS.SNA

40 1BM WebSphere MQ: Reference



Table 6. Configuration worksheet for WebSphere MQ for z/OS (continued)

ID Parameter Name

Reference

Example Used

User Value

] Receiver (TCP/IP) channel name

H

WINNT.MVS.TCP

Connection to WebSphere MQ for AIX

The values in this section of the table must match the values used in [Table 2 on page 17} as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ
E Queue name at remote system B AIX.LOCALQ
F Transmission queue name AIX

G Sender (LU 6.2) channel name MVS.AIX.SNA
H Sender (TCP/IP) channel name MVS.AIX.TCP
I Receiver (LU 6.2) channel name G AIX.MVS.SNA
] Receiver (TCP/IP) channel name H AIX.MVS.TCP

Connection to MQSeries for Compaq Tru64 Unix

The values in this section of the table must match the values used in your Compaq Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ
E Queue name at remote system B DECUX.LOCALQ
F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.MVS.TCP
] Receiver (TCP) channel name H MVS.DECUX. TCP

Connection to WebSphere MQ for HP-UX

The values in this section of the table must match the values used in [Table 3 on page 23} as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ
E Queue name at remote system B HPUX.LOCALQ
F Transmission queue name HPUX

G Sender (LU 6.2) channel name MVS.HPUX.SNA
H Sender (TCP) channel name MVS.HPUX. TCP
I Receiver (LU 6.2) channel name G HPUX.MVS.SNA
] Receiver (TCP) channel name H HPUX.MVS. TCP

Connection to WebSphere MQ for Solaris

The values in this section of the table must match the values used in [Table 4 on page 29} as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ
E Queue name at remote system B SOLARIS.LOCALQ
F Transmission queue name SOLARIS

G Sender (LU 6.2) channel name MVS.SOLARIS.SNA
H Sender (TCP) channel name MVS.SOLARIS. TCP
I Receiver (LU 6.2) channel name G SOLARIS.MVS.SNA
J Receiver (TCP/IP) channel name H SOLARIS.MVS.TCP

Reference

41



Table 6. Configuration worksheet for WebSphere MQ for z/OS (continued)

ID Parameter Name Reference | Example Used |User Value

Connection to WebSphere MQ for Linux

The values in this section of the table must match the values used in [Table 5 on page 35} as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ
E Queue name at remote system B LINUX.LOCALQ
F Transmission queue name LINUX

G Sender (LU 6.2) channel name MVS.LINUX.SNA
H Sender (TCP) channel name MVS.LINUX.TCP
I Receiver (LU 6.2) channel name G LINUX.MVS.SNA
J Receiver (TCP/IP) channel name H LINUX.MVS. TCP

Connection to WebSphere MQ for IBM i

The values in this section of the table must match the values used in [Table 10 on page 75| as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ
E Queue name at remote system B AS400.LOCALQ
F Transmission queue name AS400

G Sender (LU 6.2) channel name MVS.AS400.SNA
H Sender (TCP/IP) channel name MVS.AS400.TCP
I Receiver (LU 6.2) channel name G AS400.MVS.SNA
J Receiver (TCP/IP) channel name H AS400.MVS.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match the values used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ
E Queue name at remote system B VSE.LOCALQ
F Transmission queue name VSE

G Sender channel name MVS.VSE.SNA
I Receiver channel name G VSE.MVS.SNA

WebSphere MQ for z/OS sender-channel definitions:

This topic details the sender-channel definitions required to configure WebSphere MQ for z/OS using LU

6.2 or TCP.

For LU 6.2:

Local Queue

Object type :  QLOCAL
Name :  WINNT
Usage : X (XmitQ)
Remote Queue
Object type :  QREMOTE
Name :  WINNT.REMOTEQ

42 1BM WebSphere MQ: Reference




Name on remote system :
Remote system name :
Transmission queue :

Sender Channel

Channel name :

Transport type :
Transmission queue name :
Connection name :

For TCP:
Local Queue

Object type :
Name :
Usage :

Remote Queue

Object type :

Name :

Name on remote system :
Remote system name :
Transmission queue :

Sender Channel

Channel name :

Transport type :
Transmission queue name :
Connection name :

WebSphere MQ for z/OS receiver-channel definitions:

This topic details the receiver-channel definitions required to configure WebSphere MQ for z/OS using

LU6.2 or TCP.

For LU 6.2:
Local Queue

Object type :
Name :
Usage :

Receiver Channel

Channel name :

For TCP:
Local Queue

Object type :
Name :
Usage :

Receiver Channel

Channel name :

WINNT.LOCALQ
WINNT
WINNT

MVS.WINNT.SNA
L (LU6.2)
WINNT

M3

QLOCAL
WINNT
X (XmitQ)

QREMOTE
WINNT.REMOTEQ
WINNT.LOCALQ
WINNT

WINNT

MVS.WINNT.TCP
T (TCP)
WINNT

(]

13

MmO mo

H

F

winnt.tcpip.hostname

QLOCAL
MVS. LOCALQ
N (Normal)

WINNT.MVS.SNA

QLOCAL
MVS.LOCALQ
N (Normal)

WINNT.MVS.TCP

Reference

43



Example configuration - IBM WebSphere MQ for z/OS using queue-sharing groups
This section gives an example of how to set up communication links to a queue-sharing group on
WebSphere MQ for z/OS from WebSphere MQ products on Windows and AIX. You can also connect
from z/0S to z/OS.

Setting up communication links from a queue-sharing group to a platform other than z/OS is the same
as described in [“Example configuration - IBM WebSphere MQ for z/OS” on page 39, There are examples
to other platforms in that section.

When the connection is established, you must define some channels to complete the configuration. This
process is described in [“WebSphere MQ for z/OS shared channel configuration” on page 49,

See [“Example configuration information” on page 1| for background information about this section and
how to use it.

Configuration parameters for an LU 6.2 connection:

The following worksheet lists all the parameters required to set up communication from a z/OS system
to one of the other WebSphere MQ platforms. The worksheet shows examples of the parameters, which
have been tested in a working environment, and leaves space for you to enter your own values.

Use the worksheet in this section with the worksheet in the section for the platform to which you are
connecting.

The steps required to set up an LU 6.2 connection are described in [“Establishing an LU 6.2 connection|
into a queue-sharing group” on page 46, with numbered cross-references to the parameters on the
worksheet.

Numbers in the Reference column indicate that the value must match that in the appropriate worksheet
elsewhere in this section. The examples that follow in this section refer to the values in the ID column.
The entries in the Parameter Name column are explained in [“Explanation of terms” on page 45|

Table 7. Configuration worksheet for z/OS using LU 6.2

ID | Parameter Name Reference | Example Used User Value

Definition for local node using generic resources

1 Command prefix lepf

2 Network ID NETID

3 Node name MVSPU

6 Modename #INTER

7 Local Transaction Program name MQSERIES

8 LAN destination address 400074511092

9 Local LU name MVSLU1

10 Generic resource name MVSGR

11 Symbolic destination G1

12 Symbolic destination for generic G2
resource name

Connection to a Windows system

13 Symbolic destination M3

14 Modename 21 #INTER

15 Remote Transaction Program name 7 MOQSERIES

44 1BM WebSphere MQ: Reference



Table 7. Configuration worksheet for z/OS using LU 6.2 (continued)

ID Parameter Name Reference Example Used User Value
16 Partner LU name 5 WINNTLU
21 Remote node ID 4 05D 30F65

Connection to an AIX system

13 Symbolic Destination M4

14 Modename 18 #INTER

15 Remote Transaction Program name 6 MOQSERIES
16 Partner LU name 4 AIXLU

Explanation of terms:

An explanation of the terms used in the configuration worksheet.

1 Command prefix
This term is the unique command prefix of your WebSphere MQ for z/OS queue-manager
subsystem. The z/OS system programmer defines this value at installation time, in
SYS1.PARMLIB(IEFSSNss), and can tell you the value.

2 Network ID
The VTAM startup procedure in your installation is partly customized by the ATCSTRxx member
of the data set referenced by the DDNAME VTAMLST. The Network ID is the value specified for
the NETID parameter in this member. For Network ID, you must specify the name of the NETID
that owns the WebSphere MQ communications subsystem. Your network administrator can tell
you the value.

3 Node name
VTAM, being a low-entry network node, does not have a Control Point name for Advanced
Peer-to-Peer Networking (APPN) use. It does however have a system services control point name
(SSCPNAME). For node name, you must specify the name of the SSCP that owns the WebSphere
MQ communications subsystem. This value is defined in the same ATCSTRxx member as the
Network ID. Your network administrator can tell you the value.

9 Local LU name
A logical unit (LU) is software that serves as an interface or translator between a transaction
program and the network. It manages the exchange of data between transaction programs. The
local LU name is the unique VTAM APPLID of this WebSphere MQ subsystem. Your network
administrator can tell you this value.

11 12 13 Symbolic destination
This term is the name you give to the CPI-C side information profile. You need a side
information entry for each LU 6.2 listener.

6 14 Modename
This term is the name given to the set of parameters that control the LU 6.2 conversation. An
entry with this name and similar attributes must be defined at each end of the session. In VTAM,
this corresponds to a mode table entry. You network administrator can assign this table entry to
you.

7 15 Transaction Program name
WebSphere MQ applications trying to converse with this queue manager specify a symbolic name
for the program to be run at the receiving end. This has been specified in the TPNAME attribute
on the channel definition at the sender. For simplicity, wherever possible use a transaction
program name of MQSERIES, or in the case of a connection to VSE/ESA, where the length is
limited to 4 bytes, use MQTP.

Reference 45



See & [Defining an LU6.2 connection for z/OS using APPC/MVS| (WebSphere MQ V7.1 Installing
Guide) for more information.

8 LAN destination address
This term is the LAN destination address that your partner nodes use to communicate with this
host. When you are using a 3745 network controller, it is the value specified in the LOCADD
parameter for the line definition to which your partner is physically connected. If your partner
nodes use other devices such as 317X or 6611 devices, the address is set during the customization
of those devices. Your network administrator can tell you this value.

10 Generic resource name
A generic resource name is a unique name assigned to a group of LU names used by the channel
initiators in a queue-sharing group.

16 Partner LU name
This term is the LU name of the WebSphere MQ queue manager on the system with which you
are setting up communication. This value is specified in the side information entry for the remote
partner.

21 Remote node ID
For a connection to Windows, this ID is the ID of the local node on the Windows system with
which you are setting up communication.

Establishing an LU 6.2 connection into a queue-sharing group:

There are two steps to establish an LU 6.2 connection. Defining yourself to the network and defining a
connection to the partner.

Defining yourself to the network using generic resources:

You can use VTAM Generic Resources to have one connection name to connect to the queue-sharing

group.

1. SYS1.PARMLIB(APPCPMxx) contains the start-up parameters for APPC. You must add a line to this
file to tell APPC where to locate the sideinfo. This line must be of the form:

SIDEINFO
DATASET (APPC.APPCSI)

2. Add another line to SYS1.PARMLIB(APPCPMxx) to define the local LU name you intend to use for
the WebSphere MQ LU 6.2 group listener. The line you add must take the form

LUADD ACBNAME (mvslul)
NOSCHED
TPDATA(csq.appctp)
GRNAME (mvsgr)

Specify values for ACBNAME (9), TPDATA and GRNAME(10).

The NOSCHED parameter tells APPC that our new LU is not using the LU 6.2 scheduler (ASCH), but
has one of its own. TPDATA refers to the Transaction Program data set in which LU 6.2 stores
information about transaction programs. Again, WebSphere MQ does not use this parameter, but it is
required by the syntax of the LUADD command.

3. Start the APPC subsystem with the command:
START APPC,SUB=MSTR,APPC=xx

where xx is the suffix of the PARMLIB member in which you added the LU in step 1.

Note: If APPC is already running, it can be refreshed with the command:
SET APPC=xx

46 1BM WebSphere MQ: Reference



The effect of this is cumulative, that is, APPC does not lose its knowledge of objects already defined
to it in this member or another PARMLIB member.

. Add the new LU to a suitable VTAM major node definition. These are typically in SYSI.VTAMLST.
The APPL definition will look like the sample shown.

MVSLU APPL ACBNAME=MVSLU1, 9
APPXC=YES,
AUTOSES=0,
DDRAINL=NALLOW,
DLOGMOD=#INTER, 6
DMINWML=10,
DMINWNR=10,
DRESPL=NALLOW,
DSESLIM=60,
LMDENT=19,
MODETAB=MTCICS,
PARSESS=YES,
VERIFY=NONE,
SECACPT=ALREADYV,
SRBEXIT=YES

. Activate the major node. This activation can be done with the command:
V,NET,ACT ,majornode

. Add entries defining your LU and generic resource name to the CPI-C side information data set. Use
the APPC utility program ATBSDFMU to do so. Sample JCL is in thlqual SCSQPROC(CSQ4SIDE)
(where thlqual is the target library high-level qualifier for WebSphere MQ data sets in your
installation.)

The entries you add will look like this example:

SIADD
DESTNAME (61) 11
MODENAME (#INTER)
TPNAME (MQSERIES
PARTNER_LU(MVSLU1) 9
SIADD
DESTNAME (62) 12
MODENAME (#INTER)
TPNAME (MQSERIES)
PARTNER_LU(MVSGR) 10

. Alter the queue manager object to use the correct distributed queuing parameters using the following
command. You must specify the local LU (9) assigned to your queue manager in the LUGROUP
attribute of the queue manager.

ALTER QMGR LUGROUP(MVSLU1)

Defining a connection to a partner:

You can define a connection to a partner by adding an entry to the CPI-C side information data set.

Note: This example is for a connection to a Windows system but the task is the same for other platforms.

Add an entry to the CPI-C side information data set to define the connection. Sample JCL to do this
definition is in thlqual.SCSQPROC(CSQA4SIDE).

The entry you add will look like this:

SIADD
DESTNAME (M3) 13
MODENAME (#INTER) 14
TPNAME (MQSERIES) 15
PARTNER_LU(WINNTLU) 16

Reference 47



What next?:

The connection is now established. You are ready to complete the configuration.

Go to|“WebSphere MQ for z/OS shared channel configuration” on page 49|

Establishing a TCP connection into a queue-sharing group:
You need to alter the queue manager object to use the correct distributed queuing parameters.

The following topics explain how to alter the queue manager object to use the correct distributed queuing
parameters. You must add the name of the TCP address space to the TCPNAME queue manager
attribute.

+ [“Using WLM/DNS"|
+ |“Using Sysplex Distributor” on page 49|

When you have completed the tasks in either of these topics, the TCP connection is established. You are
ready to complete the configuration.

Go to[“WebSphere MQ for z/0S shared channel configuration” on page 49|

Using WLM/DNS:

You can use WLM/DNS to alter the queue manager object to use the correct distributed queuing
parameters.

You must set DNSWLM(YES); optionally you can add the name of the group name to be used as a host
name to the DNSGROUP attribute. If you leave the name blank, the queue-sharing group name is used.

ALTER QMGR TCPNAME(TCPIP) DNSWLM(YES) DNSGROUP(MYGROUP)

WLM/DNS does not offer any support for mapping one incoming port number to a different outgoing
port number. This means that each channel initiator must use a different host name, by one of the
following methods:

* Run each channel initiator on a different MVS image

* Run each channel initiator with a different TCP stack on the same MVS image.

* Have multiple Virtual IP addresses (VIPAs) on one TCP stack.

* Use the TCP/IP SHAREPORT option to allow the same port to be used for multiple listeners.

See z/0S Communications Server: IP User's Guide and Commands, SC31-8780 for more information
about VIPA.

See z/OS Communications Server IP Configuration Reference, SC31-8776 for more information about
SHAREPORT.

See TCP/IP in a sysplex, SG24-5235, an IBM Redbooks® publication, for more information about
WLM/DNS.

48 1BM WebSphere MQ: Reference



Using Sysplex Distributor:

You can set up Sysplex distributor to use one connection name to connect to the queue-sharing group.
1. Define a Distributed DVIPA address as follows:

a. Add a DYNAMICXCEF statement to the IPCONFIG. This statement is used for inter-image
connectivity using dynamically created XCF TCP/IP links.

b. Use the VIPADYNAMIC block on each image in the Sysplex.

1) On the owning image, code a VIPADEFINE statement to create the DVIPA Then code a
VIPADISTRIBUTE statement to distribute it to all other or selected images.

2) On the backup image, code a VIPABACKUP statement for the DVIPA address.

2. If more than one channel initiator will be started on any LPAR in the sysplex then add the
SHAREPORT option for the port to be shared in the PORT reservation list in the PROFILE data set.

See z/OS CS: IP Configuration Guide and z/OS CS: IP Configuration Reference for more information.

Sysplex Distributor balances the inbound connections between each LPAR. If there is more than one
channel initiator on an LPAR, then the use of SHAREPORT passes that inbound connection to the listener
port with the smallest number of connections.

WebSphere MQ for z/OS shared channel configuration:

Configure the shared channel by starting the channel initiator and issuing appropriate commands for
your configuration.

1. Start the channel initiator using the command:
/cpf START CHINIT 1
2. Start an LU6.2 group listener using the command:
/cpf START LSTR LUNAME(G1) TRPTYPE(LU62) INDISP(GROUP)
The LUNAME of G1 refers to the symbolic name you gave your LU (11).

3. If you are using Virtual IP Addressing, either with WLM/DNS os Sysplex Distributor and want to
listen on a specific address, use the command:

/cpf START LSTR PORT(1555) INDISP(GROUP) IPADDR(mvsvipa)
There can be only one instance of the shared channel running at a time. If you try to start a second
instance of the channel it fails (the error message varies depending on other factors). The shared

synchronization queue tracks the channel status.

WebSphere MQ channels do not initialize successfully if the channel negotiation detects that the message
sequence number is different at each end. You might need to reset this manually.

Shared channel configuration example:
To configure a shared channel, a number of steps must be completed.

The subsequent topics detail the configuration to be performed on the z/OS queue manager to
implement the channel described in [“Example configuration information” on page 1/

Examples are given for connecting WebSphere MQ for z/OS and Windows. To connect to WebSphere MQ
on another platform use the appropriate set of values from the table in place of the values for Windows.

Note: The words in bold are user-specified and reflect the names of WebSphere MQ objects used
throughout these examples. If you change the names used here, ensure that you also change the other
references made to these objects throughout this section. All others are keywords and must be entered as
shown.

Reference 49



Table 8. Configuration worksheet for WebSphere MQ for z/OS using queue-sharing groups

ID | Parameter Name

Reference

| Example Used

| User Value

Definition for local node

A Queue Manager Name

QSG

B Local queue name

QSG.SHAREDQ

Connection to WebSphere MQ for Windows

The values in this section of the table must match the values used in [Table 1 on page 10} as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ
E Queue name at remote system B WINNT.LOCALQ
F Transmission queue name WINNT

G Sender (LU 6.2) channel name QSG.WINNT.SNA
H Sender (TCP) channel name QSG.WINNT.TCP
I Receiver (LU 6.2) channel name G WINNT.QSG.SNA
] Receiver (TCP/IP) channel name H WINNT.QSG.TCP

Connection to WebSphere MQ for AIX

The values in this section of the table must match the values used in [Table 2 on page 17} as indicated.

C Remote queue manager name AIX

D Remote queue name AIX.REMOTEQ
E Queue name at remote system B AIX.LOCALQ
F Transmission queue name AIX

G Sender (LU 6.2) channel name QOSG.AIX.SNA
H Sender (TCP/IP) channel name QSG.AIX.TCP
I Receiver (LU 6.2) channel name G AIX.QSG.SNA
] Receiver (TCP/IP) channel name H AIX.QSG.TCP

WebSphere MQ for z/OS shared sender-channel definitions:

An example definition of shared sender-channels for LU 6.2 and TCP.

Using LU 6.2
Local Queue
Object type : QLOCAL
Name : WINNT
Usage : X (XmitQ)
Disposition :  SHARED
Remote Queue
Object type : QREMOTE
Name :  WINNT.REMOTEQ
Name on remote system :  WINNT.LOCALQ
Remote system name :  WINNT
Transmission queue :  WINNT
Disposition :  GROUP
Sender Channel
Channel name :  MVS.WINNT.SNA

50

IBM WebSphere MQ: Reference

MmO Mmoo




Transport type :
Transmission queue name :
Connection name :
Disposition :

Using TCP
Local Queue

Object type :
Name :
Usage :
Disposition :

Remote Queue

Object type :

Name :

Name on remote system :
Remote system name :
Transmission queue :
Disposition :

Sender Channel

Channel name :

Transport type :
Transmission queue name :
Connection name :
Disposition :

WebSphere MQ for z/OS shared receiver-channel definitions:

An example definition of shared receiver-channels for LU 6.2 and TCP.

Using LU 6.2
Local Queue

Object type :
Name :
Usage :
Disposition :

Receiver Channel

Channel name :
Disposition :

Using TCP
Local Queue

Object type :
Name :
Usage :
Disposition :

Receiver Channel

Channel name :
Disposition :

L (LU6.2)
WINNT

M3

GROUP

QLOCAL
WINNT
X (XmitQ)
SHARED

QREMOTE
WINNT.REMOTEQ
WINNT.LOCALQ
WINNT

WINNT

GROUP

QSG.WINNT.TCP
T (TCP)
WINNT

13

MmO mo

H

F

winnt.tcpip.hostname

GROUP

QLOCAL

QSG. SHAREDQ
N (Normal)
SHARED

WINNT.QSG.SNA
GROUP

QLOCAL
QSG. SHAREDQ
N (Normal)
SHARED

WINNT.QSG.TCP
GROUP

Reference

51



Example configuration — WebSphere MQ for z/OS using intra-group queuing

This section describes how a typical payroll query application, that currently uses distributed queuing to
transfer small messages between queue managers, could be migrated to use queue sharing groups and
shared queues.

Three configurations are described to illustrate the use of distributed queuing, intra-group queuing with
shared queues, and shared queues. The associated diagrams show only the flow of data in one direction,
that is, from queue manager QMGI1 to queue manager QMG3.

Configuration 1:

Configuration 1 describes how distributed queuing is currently used to transfer messages between queue
managers QMG1 and QMGS3.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

— | S/390 | —
P Windows NT i ! P
0 | TCP/IP | A
Y PAYROLL. | | Y
R QUERY | () | R
© TCP/IP | | o)
L F’@ T®TT] R A
L ! | L
| : | D |
R QMG2 1 QMG3 PAYROLL | ! S
E (xmitq) | (xmitq) i \
Q } | R
el QMG1 | CHINIT2 QMG2 CHINIT3 QMG3 | L

Figure 2. Configuration 1: z/OS using intra-group queuing

The flow of operations is as follows:
1. A query is entered using the payroll request application connected to queue manager QMGI.

2. The payroll request application puts the query on to remote queue PAYROLL.QUERY. As queue
PAYROLL.QUERY resolves to transmission queue QMG2, the query is put on to transmission queue
OMG2.

3. Sender channel (S) on queue manager QMGT1 delivers the query to the partner receiver channel (R) on
queue manager QMG2.

4. Receiver channel (R) on queue manager QMG2 puts the query on to queue PAYROLL on queue
manager QMG3. As queue PAYROLL on QMGS3 resolves to transmission queue QMGS3, the query is
put on to transmission queue QMGS3.

5. Sender channel (S) on queue manager QMG2 delivers the query to the partner receiver channel (R) on
queue manager QMGS3.

6. Receiver channel (R) on queue manager QMGS3 puts the query on to local queue PAYROLL.

7. The payroll server application connected to queue manager QMGS3 retrieves the query from local
queue PAYROLL, processes it, and generates a suitable reply.

52 1BM WebSphere MQ: Reference



Configuration 1 definitions:

The definitions required for Configuration 1 are as follows (note that the definitions do not take into

account triggering, and that only channel definitions for communication using TCP/IP are provided).

On OMG1

Remote queue definition:

DEFINE QREMOTE (PAYROLL.QUERY) DESCR('Remote queue for QMG3') REPLACE +
PUT (ENABLED) RNAME (PAYROLL) RQMNAME (QMG3) XMITQ(QMG2)

Transmission queue definition:

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT (ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.T0.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG2') XMITQ(QMG2) CONNAME ('MVSQMG2(1415)")

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2')

Reply-to queue definition:

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to payroll queries sent to QMG3')

On QMG2

Transmission queue definition:

DEFINE QLOCAL(QMG1) DESCR('Transmission queue to QMG1') REPLACE +
PUT (ENABLED) USAGE(XMITQ) GET(ENABLED)

DEFINE QLOCAL(QMG3) DESCR('Transmission queue to QMG3') REPLACE +
PUT (ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definitions (for TCP/IP):

DEFINE CHANNEL(QMG2.T0.QMG1) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG1') XMITQ(QMG1) CONNAME('WINTQMG1(1414)')

Here you replace WINTQMG1(1414) with your queue manager connection name and port.

DEFINE CHANNEL(QMG2.T0.QMG3) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG3') XMITQ(QMG3) CONNAME('MVSQMG3(1416)')

Here you replace MVSQMG3(1416) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.T0.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG1')

DEFINE CHANNEL(QMG3.T70.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG3')

Reference

53



On QMG3

Local queue definition:

DEFINE QLOCAL(PAYROLL) DESCR('Payroll query request queue') REPLACE +
PUT (ENABLED) USAGE(NORMAL) GET(ENABLED) SHARE

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT (ENABLED) USAGE (XMITQ) GET(ENABLED)

Sender channel definitions (for TCP/IP):

DEFINE CHANNEL(QMG3.T0.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG2) XMITQ(QMG2) CONNAME ('MVSQMG2(1415)"')

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG2.T70.QMG3) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2)

Configuration 2:
Configuration 2 describes how queue-sharing groups and intra-group queuing can be used, with no effect
on the back-end payroll server application, to transfer messages between queue managers QMG1 and

QMGS3.

This configuration removes the need for channel definitions between queue managers QMG2 and QMG3
because intra-group queuing is used to transfer messages between these two queue managers.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

— | 0SG=S026 S/390 | —
P Windows NT i ! P
A ! ! A
Y » PAYROLL. | ca ||| Y
R QUERY | CF Aot | | R
0 | 9 | o

TCP/IP | % !
L S —» R ; » L
| ! | | |
R QMG2 i SYSTEM.QSG.TRANSMIT.QYEUE | PAYROLL | ! S
E (xmitq) | i v
Q } | R
il QMG | CHINIT2 QMG2 QMG3 | i

Figure 3. Configuration 2

The flow of operations is as follows:
1. A query is entered using the payroll request application connected to queue manager QMGI.

2. The payroll request application puts the query on to remote queue PAYROLL.QUERY. As queue
PAYROLL.QUERY resolves to transmission queue QMG2, the query is put on to transmission queue
QMG2.

3. Sender channel (S) on queue manager QMG1 delivers the query to the partner receiver channel (R) on
queue manager QMG2.

4. Receiver channel (R) on queue manager QMG2 puts the query on to queue PAYROLL on queue
manager QMG3. As queue PAYROLL on QMGS3 resolves to shared transmission queue
SYSTEM.QSG.TRANSMIT.QUEUE, the query is put on to shared transmission queue
SYSTEM.QSG.TRANSMIT.QUEUE.

54 1BM WebSphere MQ: Reference



5. IGQ agent on queue manager QMGS3 retrieves the query from shared transmission queue
SYSTEM.QSG.TRANSMIT.QUEUE, and puts it on to local queue PAYROLL on queue manager QMGS3.

6. The payroll server application connected to queue manager QMG3 retrieves the query from local
queue PAYROLL, processes it, and generates a suitable reply.

Note: The payroll query example transfers small messages only. If you need to transfer both persistent
and non-persistent messages, a combination of Configuration 1 and Configuration 2 can be established,
so that large messages can be transferred using the distributed queuing route, while small messages can
be transferred using the potentially faster intra-group queuing route.

Configuration 2 definitions:

The definitions required for Configuration 2 are as follows (note that the definitions do not take into
account triggering, and that only channel definitions for communication using TCP/IP are provided).

It is assumed that queue managers QMG2 and QMG3 are already configured to be members of the same
queue-sharing group.

On OMGI1

Remote queue definition:

DEFINE QREMOTE (PAYROLL.QUERY) DESCR('Remote queue for QMG3') REPLACE +
PUT (ENABLED) RNAME (PAYROLL) RQMNAME (QMG3) XMITQ(QMG2)

Transmission queue definition:

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT (ENABLED) USAGE (XMITQ) GET(ENABLED)

Sender channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.T0.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG2') XMITQ(QMG2) CONNAME ('MVSQMG2(1415)")

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG2.T0.QMG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2')

Reply-to queue definition:

DEFINE QLOCAL (PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to payroll queries sent to QMG3')

On OMG2

Transmission queue definition:

DEFINE QLOCAL(QMG1) DESCR('Transmission queue to QMG1') REPLACE +
PUT (ENABLED) USAGE (XMITQ) GET(ENABLED)

DEFINE QLOCAL(SYSTEM.QSG.TRANSMIT.QUEUE) QSGDISP(SHARED) +
DESCR('IGQ Transmission queue') REPLACE PUT(ENABLED) USAGE(XMITQ) +
GET(ENABLED) INDXTYPE(CORRELID) CFSTRUCT('APPLICATION1') +

DEFSOPT (SHARED) DEFPSIST(NO)

Here you replace APPLICATION1 with your defined CF structure name. Also note that this queue, being
a shared queue, need only be defined on one of the queue managers in the queue sharing group.

Reference 55



Sender channel definitions (for TCP/IP):

DEFINE CHANNEL(QMG2.T0.QMG1) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMGL1') XMITQ(QMG1) CONNAME('WINTQMG1(1414)')

Here you replace WINTQMG1(1414) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG1')

Queue Manager definition:
ALTER QMGR IGQ(ENABLED)

On OMG3

Local queue definition:

DEFINE QLOCAL(PAYROLL) DESCR('Payroll query request queue') REPLACE +
PUT (ENABLED) USAGE(NORMAL) GET(ENABLED) SHARE

Queue Manager definition:
ALTER QMGR IGQ(ENABLED)

Configuration 3:
Configuration 3 describes how queue-sharing groups and shared queues can be used, with no effect on

the back-end payroll server application, to transfer messages between queue managers QMG1 and
QMGS3.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Windows NT

» PAYROLL.
QUERY

‘ TCPAP%
{‘”@9 :
I 1

v

QMG2
(xmitq)

‘:U<(I) I—I—O:U-<J>'U‘

‘OI‘I‘I:D |—|—O:U-<>'U‘

QMG1

Figure 4. Configuration 3

The flow of operations is:
1. A query is entered using the payroll request application connected to queue manager QMGI.

2. The payroll request application puts the query on to remote queue PAYROLL.QUERY. As queue
PAYROLL.QUERY resolves to transmission queue QMG2, the query is put on to transmission queue
QMG2.

3. Sender channel (S) on queue manager QMG1 delivers the query to the partner receiver channel (R) on
queue manager QMG2.

4. Receiver channel (R) on queue manager QMG2 puts the query on to shared queue PAYROLL.

56 1BM WebSphere MQ: Reference



5. The payroll server application connected to queue manager QMG3 retrieves the query from shared
queue PAYROLL, processes it, and generates a suitable reply.

This configuration is certainly the simplest to configure. However, distributed queuing or intra-group
queuing would need to be configured to transfer replies (generated by the payroll server application
connected to queue manager QMG3) from queue manager QMG3 to queue manager QMG2, and then on
to queue manager QMG1. (See [“What this example shows” on page 184| for the configuration used to
transfer replies back to the payroll request application.)

No definitions are required on QMG3.
Configuration 3 definitions:

The definitions required for Configuration 3 are as follows (note that the definitions do not take into
account triggering, and that only channel definitions for communication using TCP/IP are provided).

It is assumed that queue managers QMG2 and QMG3 are already configured to be members of the same
queue-sharing group.

On QOMGI1

Remote queue definition:

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QMG3') REPLACE +
PUT (ENABLED) RNAME(PAYROLL) RQMNAME(QMG3) XMITQ(QMG2)

Transmission queue definition:

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT (ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.T0.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QMG2') XMITQ(QMG2) CONNAME('MVSQMG2(1415)")

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL (QMG2.T70.QMG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2')

Reply-to queue definition:

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to payroll queries sent to QMG3')
On QMG2

Transmission queue definition:

DEFINE QLOCAL(QMG1) DESCR('Transmission queue to QMG1') REPLACE +
PUT (ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definitions (for TCP/IP):
DEFINE CHANNEL(QMG2.T0.QMG1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QMGL') XMITQ(QMGL) CONNAME ('WINTQMGL(1414)")

Here you replace WINTQMG1(1414) with your queue manager connection name and port.

Reference 57



Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG1')

Local queue definition:

DEFINE QLOCAL(PAYROLL) QSGDISP(SHARED) DESCR('Payroll query request queue') +
REPLACE PUT(ENABLED) USAGE (NORMAL) GET(ENABLED) SHARE +
DEFSOPT (SHARED) DEFPSIST(NO) CFSTRUCT(APPLICATIONI)

Here you replace APPLICATION1 with your defined CF structure name. Also note that this queue, being
a shared queue, need only be defined on one of the queue managers in the queue sharing group.

On OMG3

No definitions are required on QMG3.

Running the example:

After setting up the sample, you can run the sample.

For Configuration 1:
1. Start queue managers QMG1, QMG2, and QMGS3.
2. Start channel initiators for QMG2 and QMGS3.

3. Start the listeners on QMGI1 to listen to port 1414, QMG?2 to listen on port 1415, and QMGS3 to listen
on port 1416.

Start sender channels on QMG1, QMG2, and QMGS3.
Start the payroll query requesting application connected to QMGI.
Start the payroll server application connected to QMG3.

N o o s

Submit a payroll query request to QMG3 and wait for the payroll reply.

For Configuration 2:

Start queue managers QMG1, QMG2, and QMGS3.

Start the channel initiator for QMG2.

Start the listeners on QMGI to listen on port 1414, and QMG2 to listen on port 1415.
Start the sender channel on QMG1 and QMG?2.

Start the payroll query requesting application connected to QMGI.

Start the payroll server application connected to QMG3.

N oo~ =

Submit a payroll query request to QMG3 and wait for the payroll reply.

For Configuration 3:

Start queue managers QMG1, QMG2, and QMGS3.

Start the channel initiator for QMG2.

Start the listeners on QMGT1 to listen on port 1414, and QMG?2 to listen on port 1415.
Start sender channels on QMG1 and QMG?2.

Start the payroll query requesting application connected to QMGI.

Start the payroll server application connected to QMG3.

No oo k~owbd =

Submit a payroll query request to QMG3 and wait for the payroll reply.

58 1BM WebSphere MQ: Reference



Expanding the example:
The example can be expanded in a number of ways.

The example can be:

* Expanded to use channel triggering as well as application (PAYROLL and PAYROLL.REPLY queue)
triggering.

* Configured for communication using LU6.2.

* Expanded to configure more queue managers to the queue sharing group. Then the server application
can be cloned to run on other queue manager instances to provide multiple servers for the PAYROLL
query queue.

* Expanded to increase the number of instances of the payroll query requesting application to
demonstrate the processing of requests from multiple clients.

* Expanded to use security (IGQAUT and IGQUSER).

Example configuration - IBM WebSphere MQ for IBM i
This section gives an example of how to set up communication links from WebSphere MQ for IBM i to
WebSphere MQ products on other platforms.

Other platforms covered are the following platforms:
* Windows

+ AIX

* Compaq Tru64 UNIX

+ HP-UX

* Solaris

¢ Linux

* z/0S or MVS

* VSE/ESA

See |“Example configuration information” on page 1| for background information about this section and
how to use it.

Configuration parameters for an LU 6.2 connection:

The following worksheet lists all the parameters needed to set up communication from IBM i system to
one of the other WebSphere MQ platforms. The worksheet shows examples of the parameters, which
have been tested in a working environment, and leaves space for you to enter your own values.

Use the worksheet in this section to record the values for this configuration. Use the worksheet with the
worksheet in the section for the platform to which you are connecting.

Where numbers appear in the Reference column they indicate that the value must match that in the
appropriate worksheet elsewhere in this section. The examples that follow in this section refer to the
values in the ID column of this table.

The entries in the Parameter Name column are explained in [“Explanation of terms” on page 62

Reference 59



Table 9. Configuration worksheet for SNA on an IBM i system

ID | Parameter Name Reference Example Used User Value
Definition for local node

1 Local network ID NETID

2 Local control point name AS400PU

3 LU name AS400LU

4 LAN destination address 10005A5962EF
5 Subsystem description QCMN

6 Line description TOKENRINGL
7 Resource name LIN041

8 Local Transaction Program name MQSERIES
Connection to a Windows system

9 Network ID 2 NETID

10 Control point name 3 WINNTCP

11 LU name 5 WINNTLU

12 Controller description WINNTCP

13 Device WINNTLU

14 Side information NTCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 9 08005A A5FAB9
17 Mode 17 #INTER
Connection to an AIX system

9 Network ID 1 NETID

10 Control point name AIXPU

11 LU name 4 AIXLU

12 Controller description AIXPU

13 Device AIXLU

14 Side information AIXCPIC

15 Transaction Program 6 MOQSERIES

16 LAN adapter address 8 123456789012
17 Mode 14 #INTER
Connection to an HP-UX system

9 Network ID 4 NETID

10 Control point name 2 HPUXPU

11 LU name 5 HPUXLU

12 Controller description HPUXPU

13 Device HPUXLU

14 Side information HPUXCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 8 100090DC2C7C
17 Mode 17 #INTER

Connection to a Solaris system

60 1BM WebSphere MQ: Reference




Table 9. Configuration worksheet for SNA on an IBM i system (continued)

ID Parameter Name Reference Example Used User Value
9 Network ID 2 NETID

10 Control point name 3 SOLARPU

11 LU name 7 SOLARLU

12 Controller description SOLARPU

13 Device SOLARLU

14 Side information SOLCPIC

15 Transaction Program 8 MQSERIES

16 LAN adapter address 5 08002071CC8A
17 Mode 17 #INTER
Connection to a Linux (x86 platform) system

9 Network ID 4 NETID

10 Control point name 2 LINUXPU

11 LU name 5 LINUXLU

12 Controller description LINUXPU

13 Device LINUXLU

14 Side information LXCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 8 08005AC6DF33
17 Mode 6 #INTER
Connection to an z/OS system

9 Network ID 2 NETID

10 Control point name 3 MVSPU

11 LU name 4 MVSLU

12 Controller description MVSPU

13 Device MVSLU

14 Side information MVSCPIC

15 Transaction Program 7 MOQSERIES

16 LAN adapter address 8 400074511092
17 Mode 6 #INTER
Connection to a VSE/ESA system ed

9 Network ID 1 NETID

10 Control point name 2 VSEPU

11 LU name 3 VSELU

12 Controller description VSEPU

13 Device VSELU

14 Side information VSECPIC

15 Transaction Program 4 MQO01 MQO01
16 LAN adapter address 5 400074511092
17 Mode #INTER

Reference

61



Explanation of terms:

An explanation of the terms used in the configuration worksheet.

123 See[How to find network attributes”| for the details of how to find the configured values.

4 LAN destination address
The hardware address of the IBM i system token-ring adapter. You can find the value using the
command DSPLIND Line description (6).

5 Subsystem description
This parameter is the name of any IBM i subsystem that is active while using the queue manager.
The name QCMN has been used because it is the IBM i communications subsystem.

6 Line description
If this parameter has been specified it is indicated in the Description field of the resource
Resource name. See [“How to find the value of Resource name” on page 63| for details. If the
value is not specified you need to create a line description.

7 Resource name
See [“How to find the value of Resource name” on page 63| for details of how to find the
configured value.

8 Local Transaction Program name
WebSphere MQ applications trying to converse with this workstation specify a symbolic name for
the program to be run at the receiving end. This name is defined on the channel definition at the
sender. For simplicity, wherever possible use a transaction program name of MQSERIES, or in the
case of a connection to VSE/ESA, where the length is limited to 4 bytes, use MQTP.

See [Settings on the local IBM i system for a remote queue manager platform| for more
information.

12 Controller description
This parameter is an alias for the Control Point name (or Node name) of the partner system. For
convenience, we have used the actual name of the partner in this example.

13 Device
This parameter is an alias for the LU of the partner system. For convenience, we have used the
LU name of the partner in this example.

14 Side information
This parameter is the name given to the CPI-C side information profile. You specify your own
8-character name.

How to find network attributes:

The local node has been partially configured as part of the IBM i installation. To display the current
network attributes enter the command DSPNETA.

If you need to change these values use the command CHGNETA. An IPL might be required to apply
your changes.

62 IBM WebSphere MQ: Reference



Display Network Attributes

Current systemname . . . . . . . . . . ... .:

Pending systemname . . . . . . . . . . . . .
Local network ID . . . . . . . . . . . . . ...
Local control point name . . . . . . . . . . . . :
Default local location . . . . . . . . . . . . .:
Default mode . . . . . . . . . . o . o oo ..
APPN node type . . . . . . . . . . . . ... ..
Data compression . . . . . . . . ... 0. ...
Intermediate data compression . . . . . . . . . :
Maximum number of intermediate sessions . . . . :
Route addition resistance . . . . . . . . . . .:
Server network ID/control point name . . . . . . :

Press Enter to continue.

F3=Exit F12=Cancel

System:  AS400PU

AS400PU

NETID
AS400PU
AS400LU
BLANK
*ENDNODE
*NONE

128

NETCP

More...

~

%

Check that the values for Local network ID (1), Local control point name (2), and Default local location

(3), correspond to the values on your worksheet.

How to find the value of Resource name:

To find the value of resource name, type WRKHDWRSC TYPE(*CMN) and press enter.

The Work with Communication Resources panel is displayed. The value for Resource name is found as

the token-ring Port. It is LIN0O41 in this example.

Reference

63



4 N

Work with Communication Resources
System:  AS400PU
Type options, press Enter.
2=Edit  4=Remove 5=Work with configuration description
7=Add configuration description ...
Configuration
Opt Resource Description Type Description
ccoz 2636 Comm Processor
LINOA 2636 LAN Adapter
LINO41 TOKEN-RING 2636 Token-ring Port
Bottom
F3=Exit F5=Refresh  F6=Print  Fll=Display resource addresses/statuses
F12=Cancel F23=More options
o %

Establishing an LU 6.2 connection:

This section describes how to establish an LU 6.2 connection.

Local node configuration:

To configure the local node you need to create a line description and add a routing entry.

Creating a line description
1. If the line description has not already been created use the command CRTLINTRN.

2. Specify values for Line description (6) and Resource name (7).

@ Create Line Desc (token-ring) (CRTLINTRN) h
Type choices, press Enter.
Line description . . . . . . .. TOKENRINGL Name
Resource name . . . . . . . .. LINO41 Name, *NWID
NWI type . . . . . . . . . . .. *FR *FR, *ATM
Online at IPL . . . . . . . . . *YES *YES, *NO
Vary on wait . . . . . . . . .. *NOWAIT *NOWAIT, 15-180 (1 second)
Maximum controllers . . . . . . 40 1-256
Attached NWI . . . . . . . . .. *NONE Name, *NONE
Bottom
F3=Exit  F4=Prompt F5=Refresh  F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter LIND required. + )

64 1BM WebSphere MQ: Reference



Adding a routing entry

1. Type the command ADDRTGE and press enter.

/

Type choices, press Enter.

Subsystem description . . . . .
Library . . . . . . o oL L.
Routing entry sequence number
Comparison data:
Compare value . . . . . . ..

Starting position . . . . . .
Program to call . . . . . . ..
Library . . . . . . . oo ..
Class v v v v v v v v v v v v

Library . . . . . o o oL L.
Maximum active routing steps . .
Storage pool identifier

F3=Exit  F4=Prompt F5=Refresh
F24=More keys
Parameter SBSD required.

'MQSERIES'

37
AMQCRC6B
QMAS400
*SBSD
*LIBL
*NOMAX

1

F12=Cancel

Add Routing Entry (ADDRTGE)

Name
Name, *LIBL, *CURLIB
1-9999

1-80

Name, *RTGDTA

Name, * LI BL, *CURLIB
Name, *SBSD

Name, *LIBL, *CURLIB
0-1000, *NOMAX

1-10

Bottom

F13=How to use this display

+

%

2. Specify your value for Subsystem description (5), and the values shown here for Routing entry
sequence number, Compare value (8), Starting position, Program to call, and the Library containing

the program to call.

3. Type the command STRSBS subsystem description (5) and press enter.

Connection to partner node:

To connect to a partner node, you need to: create a controller description, create a device description,

create CPI-C side information, add a communications entry for APPC, and add a configuration list entry.

This example is for a connection to a Windows system, but the steps are the same for other nodes.

Creating a controller description

1. At a command-line, type CRTCTLAPPC and press enter.

Reference

65



4 N

Create Ct1 Desc (APPC) (CRTCTLAPPC)
Type choices, press Enter.
Controller description . . . . . WINNTCP Name
Link type . . . . . . . .. .. *LAN *FAX, *FR, *IDLC,
*LAN...
Online at IPL . . . . . . . .. *NO *YES, *NO

Bottom

F3=Exit  F4=Prompt F5=Refresh  Fl0=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter CTLD required. +/

2. Specify a value for Controller description (12), set Link type to *LAN, and set Online at IPL to *NO.
3. Press enter twice, followed by F10.

4 Create Ct1 Desc (APPC) (CRTCTLAPPC) A
Type choices, press Enter.
Controller description . . . . . > WINNTCP Name
Link type . . . . . ... ... > xLAN *FAX, *FR, *IDLC, =*LAN...
Online at IPL . . . . . . . .. > *NO *YES, *NO
APPN-capable . . . . . . . . .. *YES *YES, *NO
Switched Tine 1ist . . . . . . . TOKENRINGL Name
+ for more values
Maximum frame size . . . . . . . *LINKTYPE 265-16393, 256, 265, 512...
Remote network identifier . . . NETID Name, *NETATR, *NONE, *ANY
Remote control point . . . . . . WINNTCP Name, *ANY
Exchange identifier . . . . . . 00000000-FFFFFFFF
Initial connection . . . . . . . *DIAL *DIAL, *ANS
Dial initiation . . . . . . .. *LINKTYPE *LINKTYPE, *IMMED, *DELAY
LAN remote adapter address . . . 10005AFC5D83 000000000001-FFFFFFFFFFFF
APPN CP session support . . . .  *YES *YES, *NO
APPN node type . . . . . . . .. *ENDNODE *ENDNODE, *LENNODE. ..
APPN transmission group number 1 1-20, *CALC
More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

- J

4. Specify values for Switched line list (6), Remote network identifier (9), Remote control point (10),
and LAN remote adapter address (16).

5. Press enter.

Creating a device description
1. Type the command CRTDEVAPPC and press enter.

66 IBM WebSphere MQ: Reference



Create Device
Type choices, press Enter.

Device description . . . . . . .
Remote Tocation . . . . . . . .
Online at IPL . . . . . . . ..
Local Tocation . . . . . . . ..
Remote network identifier

Attached controller . . . . ..
Mode . . . . . . . . ... ...

Message queue . . . . . . . . .
Library . . . . . . . . ...
APPN-capable . . . . . . . . ..
Single session:
Single session capable . . . .
Number of conversations

F3=Exit  F4=Prompt F5=Refresh
F13=How to use this display
Parameter DEVD required.

Desc (APPC) (CRTDEVAPPC)

WINNTLU Name
WINNTLU Name
*YES *YES, *NO
AS400LU Name, *NETATR
NETID Name, *NETATR, *NONE
WINNTCP Name
*NETATR Name, *NETATR
QSYSOPR Name, QSYSOPR

*LIBL Name, *LIBL, *CURLIB
*YES *YES, *NO
*NO *NO, *YES

1-512

Bottom
F10=Additional parameters Fl12=Cancel
F24=More keys
+

%

2. Specify values for Device description (13), Remote location (11), Local location (3), Remote network
identifier (9), and Attached controller (12).

Note: You can avoid having to create controller and device descriptions manually by taking advantage of
the IBM i auto-configuration service. Consult the IBM i documentation for details.

Creating CPI-C side information

1.

Type CRTCSI and press F10.

Reference

67



4 Create Comm Side Information (CRTCSI) h
Type choices, press Enter.
Side information . . . . . . . . NTCPIC Name
Library . . . . . . . . . .. *CURLIB Name, *CURLIB
Remote Tocation . . . . . . .. WINNTLU Name
Transaction program . . . . . . MQSERIES
Text 'description' . . . . . . . *BLANK
Additional Parameters
Device . . . . . . . . . . ... *L0C Name, *LOC
Local Tocation . . . . . . . .. AS400LU Name, *LOC, *NETATR
Mode . . . . . . . ... ... #INTER Name, *NETATR
Remote network identifier . . . NETID Name, *LOC, *NETATR, *NONE
Authority . . . . . . . . . .. *IBCRTAUT Name, *LIBCRTAUT, *CHANGE...
Bottom
F3=Exit  F4=Prompt F5=Refresh  Fl2=Cancel F13=How to use this display
F24=More keys
Parameter CSI required. )

2. Specify values for Side information (14), Remote location (11), Transaction program (15), Local
location (3), Mode, and Remote network identifier (9).

3. Press enter.

Adding a communications entry for APPC

1. At a command-line, type ADDCMNE and press enter.

é Add Communications Entry (ADDCMNE) A

Type choices, press Enter.

Subsystem description . . . . . QCMN Name
Library . . . . . . . . . .. *IBL Name, *LIBL, *CURLIB
Device . . . . . . . . . ... WINNTLU Name, genericx, *ALL...
Remote Tocation . . . . . . .. Name
Job description . . . . . . .. *USRPRF Name, *USRPRF, *SBSD
Library . . . . . . . . . .. Name, *LIBL, *CURLIB
Default user profile . . . . . . *NONE Name, *NONE, *SYS
Mode . . . . . . ... *ANY Name, *ANY
Maximum active jobs . . . . . . *NOMAX 0-1000, *NOMAX

Bottom
F3=Exit  F4=Prompt F5=Refresh  Fl2=Cancel F13=How to use this display
F24=More keys
Parameter SBSD required.

%

2. Specify values for Subsystem description (5) and Device (13), and press enter.

Adding a configuration list entry
1. Type ADDCFGLE *APPNRMT and press F4.

68 1BM WebSphere MQ: Reference



-

Type choices, press Enter.

Configuration 1ist type

APPN remote location entry:
Remote Tocation name . . . . .
Remote network identifier
Local location name . . . . .
Remote control point . . . . .
Control point net ID . . . . .
Location password . . . . . .
Secure Tocation . . . . . . .
Single session . . . . . . . .
Locally controlled session . .
Pre-established session
Entry 'description' . . . . .
Number of conversations

+ for more values

F3=Exit  F4=Prompt F5=Refresh
F24=More keys

\

. > *APPNRMT

WINNTLU
NETID
AS400LU
WINNTCP
NETID
*NONE
*NO

*NO

*NO

*NO
*BLANK
10

F12=Cancel

*APPNLCL, *APPNRMT...

Name, generic*, *ANY

Name,
Name,
Name,
Name,

*YES,
*YES,
*YES,
*YES,

1-512

Add Configuration List Entries (ADDCFGLE)

*NETATR, *NONE
*NETATR

*NONE

*NETATR, *NONE

*NO
*NO
*NO
*NO

F13=How to use this display

%

2. Specify values for Remote location name (11), Remote network identifier (9), Local location name

(3), Remote control point (10), and Control point net ID (9).

3. DPress enter.

What next?:

The LU 6.2 connection is now established. You are ready to complete the configuration.

Go to |[“WebSphere MQ for IBM i configuration” on page 71

Establishing a TCP connection:

If TCP is already configured there are no extra configuration tasks. If TCP/IP is not configured you need

to: add a TCP/IP interface, add a TCP/IP loopback interface, and add a default route.

Adding a TCP/IP interface

1. At a command-line, type ADDTCPIFC and press enter.

Reference

69



4 Add TCP/IP Interface (ADDTCPIFC) h
Type choices, press Enter.
Internet address . . . . . . . . 19.22.11.55
Line description . . . . . . .. TOKENRINGL Name, *LOOPBACK
Subnet mask . . . . . . . . .. 255.255.0.0
Type of service . . . . . . .. *NORMAL *MINDELAY, *MAXTHRPUT..
Maximum transmission unit . . . *LIND 576-16388, *LIND
Autostart . . . . . . . .. .. *YES *YES, *NO
PVC Togical channel identifier 001-FFF
+ for more values
X.25 idle circuit timeout . . . 60 1-600
X.25 maximum virtual circuits . 64 0-64
X.25 DDN interface . . . . . . . *NO *YES, *NO
TRLAN bit sequencing . . . . . . *MSB *MSB, *LSB
Bottom
F3=Exit  F4=Prompt F5=Refresh  Fl2=Cancel F13=How to use this display
F24=More keys
o %

2. Specify the IP address and Line description, and a Subnet mask of the machine.
3. Press enter.

Adding a TCP/IP loopback interface
1. At a command-line, type ADDTCPIFC and press enter.

4 Add TCP Interface (ADDTCPIFC) A

Type choices, press Enter.

Internet address . . . . . . . . 127.0.0.1
Line description . . . . . . .. *LOOPBACK Name, *LOOPBACK
Subnet mask . . . . . . . . .. 255.0.0.0
Type of service . . . . . . .. *NORMAL *MINDELAY, *MAXTHRPUT..
Maximum transmission unit . . . *LIND 576-16388, *LIND
Autostart . . . . . . . .. L. *YES *YES, *NO
PVC logical channel identifier 001-FFF
+ for more values
X.25 idle circuit timeout . . . 60 1-600
X.25 maximum virtual circuits . 64 0-64
X.25 DDN interface . . . . . . . *NO *YES, *NO
TRLAN bit sequencing . . . . . . *MSB *MSB, *LSB

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

(& %

2. Specify the values for IP address, Line description, and Subnet mask.

Adding a default route
1. At a command-line, type ADDTCPRTE and press enter.

70 1BM WebSphere MQ: Reference



Add TCP Route (ADDTCPRTE)

Type choices, press Enter.

Route destination . . . . . . . *DFTROUTE

Subnet mask . . . . . . . . .. *NONE

Type of service . . . . . . .. *NORMAL *MINDELAY, *MAXTHRPUT.
Next hop . . . . . . . . . . .. 19.2.3.4

Maximum transmission unit . . . 576 576-16388, *IFC

Bottom
F3=Exit  F4=Prompt F5=Refresh  Fl12=Cancel F13=How to use this display
F24=More keys
Command prompting ended when user pressed F12.

%

2. Enter values appropriate to your network and press enter to create a default route entry.
What next?

The TCP connection is now established. You are ready to complete the configuration. Go to [“WebSphere
MQ for IBM i configuration.”|

WebSphere MQ for IBM i configuration:

To configure WebSphere MQ for IBM i, use the WRKMQMQ command to display the configuration
menu.

Start the TCP channel listener using the command STRMQMLSR.

Start any sender channel using the command STRMQMCHL CHLNAME(channel_name).

Use the WRKMQMOQ command to display the WebSphere MQ configuration menu.

Note: AMQ* errors are placed in the log relating to the job that found the error. Use the WRKACTJOB
command to display the list of jobs. Under the subsystem name QSYSWRK, locate the job and enter 5
against it to work with that job. WebSphere MQ logs are prefixed ‘AMQ'.

Creating a queue manager:

Use the following steps to set up the basic configuration queue manager.

1. First you need to create a queue manager. Type CRTMQM and press enter.

Reference 71



4 Create Message Queue Manager (CRTMQM) h
Type choices, press Enter.
Message Queue Manager name .
Text 'description' . . . . . . . *BLANK
Trigger interval . . . . . . . . 999999999 0-999999999
Undelivered message queue . . .  *NONE
Default transmission queue . . .  *NONE
Maximum handle limit . . . . . . 256 1-999999999
Maximum uncommitted messages . . 1000 1-10000
Default Queue manager . . . . . *NO *YES, *NO
Bottom
F3=Exit  F4=Prompt F5=Refresh  Fl2=Cancel F13=How to use this display
F24=More keys
o %

2. In the Message Queue Manager name field, type AS400. In the Undelivered message queue field,
type DEAD.LETTER.QUEUE.

3. Press enter.
4. Now start the queue manager by entering STRMQM MQMNAME (AS400).

5. Create the undelivered message queue using the following parameters. (For details and an example
refer to [“Defining a queue.”)

Local Queue
Queue name :  DEAD.LETTER.QUEUE
Queue type : *LCL

Defining a queue:
You can define a queue using the CRTMQMOQ command.

Type CRTMQMQ on the command line.

72 IBM WebSphere MQ: Reference



4 N

Create MQM Queue (CRTMQMQ)
Type choices, press Enter.

Queue name . . . . . . . ...

Queue type . . . . . . . . ... *ALS, *LCL, *RMT

Bottom
F3=Exit  F4=Prompt F5=Refresh  Fl2=Cancel F13=How to use this display
F24=More keys
Parameter QNAME required.

\

%

Complete the two fields of this panel and press enter. Another panel is shown, with entry fields for the

other parameters you have. Defaults can be taken for all other queue attributes.
Defining a channel:
You can define a channel using the CRTMQMCHL command.

Type CRTMQMCHL on the command line.

Reference

73



/

&

Type choices, press Enter.

Channel name . . . . . . . . ..
Channel type . . . . . . . . .. *RCVR, *SDR, *SVR, *RQSTR

F3=Exit  F4=Prompt F5=Refresh  Fl2=Cancel F13=How to use this display
F24=More keys
Parameter CHLNAME required.

Create MQM Channel (CRTMQMCHL)

Bottom

/

Complete the two fields of this panel and press enter. Another panel is displayed on which you can
specify the values for the other parameters given earlier. Defaults can be taken for all other channel
attributes.

Channel configuration:

You need to configure your channels to implement the example configuration channels.

This section details the configuration to be performed on the IBM i queue manager to implement the
channel described in [Figure 1 on page 2|

Examples are given for connecting WebSphere MQ for IBM i and WebSphere MQ for Windows. To
connect to WebSphere MQ on another platform, use the appropriate values from the table in place of
those values for Windows

Note:

1.

The words in bold are user-specified and reflect the names of WebSphere MQ objects used throughout
these examples. If you change the names used here, ensure that you also change the other references
made to these objects throughout this section. All others are keywords and must be entered as shown.

The WebSphere MQ channel ping command (PNGMQMCHL) runs interactively, whereas starting a
channel causes a batch job to be submitted. If a channel ping completes successfully but the channel
does not start, the network and WebSphere MQ definitions are probably correct, but that the IBM i
environment for the batch job is not. For example, make sure that QSYS2 is included in the system
portion of the library list and not just your personal library list.

For details and examples of how to create the objects listed refer to [“Defining a queue” on page 72| and

['Defining a channel” on page 73/

74

IBM WebSphere MQ: Reference



Table 10. Configuration worksheet for WebSphere MQ for IBM i

ID | Parameter Name Reference Example Used User Value
Definition for local node

A Queue Manager Name AS400

B Local queue name AS400.LOCALQ

Connection to WebSphere MQ for Windows

The values in this section of the table must match the values used in[Table 1 on page 10} as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ
E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name AS400.WINNT.SNA
H Sender (TCP/IP) channel name AS400.WINNT.TCP
I Receiver (SNA) channel name G WINNT.AS400.SNA
] Receiver (TCP/IP) channel name H WINNT.AS400.TCP

Connection to WebSphere MQ for AIX

The values in this section of the table must match the values used in [Table 2 on page 17} as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ
E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name AS400.AIX.SNA
H Sender (TCP/IP) channel name AS400.AIX.TCP
I Receiver (SNA) channel name G ATIX.AS400.SNA
] Receiver (TCP) channel name H AIX.AS400.TCP

Connection to MQSeries for Compaq Tru64 Unix

The values in this section of the table must match the values used in your Compaq Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ
E Queue name at remote system B DECUX.LOCALQ
F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.AS400.TCP
] Receiver (TCP) channel name H AS400.DECUX.TCP

Connection to WebSphere MQ for HP-UX

The values in this section of the table must match the values used in [Table 3 on page 23} as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ
E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name AS400.HPUX.SNA
H Sender (TCP) channel name AS400.HPUX. TCP

Reference

75



Table 10. Configuration worksheet for WebSphere MQ for IBM i (continued)

ID Parameter Name Reference Example Used User Value
I Receiver (SNA) channel name G HPUX.AS400.SNA
J Receiver (TCP) channel name H HPUX.AS400.TCP

Connection to WebSphere MQ for Solaris

The values in this section of the table must match the values used in [Table 4 on page 29} as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ
E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name SOLARIS

G Sender (SNA) channel name AS400.SOLARIS.SNA
H Sender (TCP/IP) channel name AS400.SOLARIS.TCP
I Receiver (SNA) channel name G SOLARIS.AS400.SNA
J Receiver (TCP/IP) channel name H SOLARIS.AS400.TCP

Connection to WebSphere MQ for Linux

The values in this section of the table must match the values used in [Table 5 on page 35} as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ
E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name AS400.LINUX.SNA
H Sender (TCP/IP) channel name AS400.LINUX.TCP
I Receiver (SNA) channel name G LINUX.AS400.SNA
J Receiver (TCP/IP) channel name H LINUX.AS400.TCP

Connection to WebSphere MQ for z/OS

The values in this section of the table must match the values used in [Table 6 on page 40} as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ
E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name AS400.MVS.SNA
H Sender (TCP) channel name AS400.MVS.TCP
I Receiver (SNA) channel name G MVS.AS400.SNA
] Receiver (TCP) channel name H MVS.AS400.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match the values used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ
E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name AS400.VSE.SNA
76  1BM WebSphere MQ: Reference




Table 10. Configuration worksheet for WebSphere MQ for IBM i (continued)

ID Parameter Name Reference Example Used User Value
I Receiver channel name G VSE.AS400.SNA
WebSphere MQ for IBM i sender-channel definitions:
Example sender-channel definitions for SNA and TCP.
Using SNA
Local Queue
Queue name :  WINNT F
Queue type : *LCL
Usage : *TMQ
Remote Queue
Queue name :  WINNT.REMOTEQ D
Queue type :  *RMT
Remote queue : WINNT.LOCALQ E
Remote Queue Manager :  WINNT C
Transmission queue :  WINNT F
Sender Channel
Channel Name :  AS400.WINNT.SNA G
Channel Type :  *SDR
Transport type :  *LU62
Connection name :  WINNTCPIC 14
Transmission queue : WINNT F
Using TCP
Local Queue
Queue name : WINNT F
Queue type : *LCL
Usage : *TMQ
Remote Queue
Queue name : WINNT.REMOTEQ D
Queue type :  *RMT
Remote queue :  WINNT.LOCALQ E
Remote Queue Manager :  WINNT C
Transmission queue : WINNT F
Sender Channel
Channel Name :  AS400.WINNT.TCP H
Channel Type :  *SDR
Transport type :  *TCP
Connection name :  WINNT.tcpip.hostname
Transmission queue :  WINNT F

Reference

77



WebSphere MQ for IBM i receiver-channel definitions:
Example receiver-channel definitions for SNA and TCP

Using SNA

Local Queue
Queue name :  AS400.LOCALQ B
Queue type : *LCL

Receiver Channel
Channel Name :  WINNT.AS400.SNA I
Channel Type :  *RCVR
Transport type :  *LU62

Using TCP

Local Queue
Queue name :  AS400.LOCALQ B
Queue type : *LCL

Receiver Channel
Channel Name : WINNT.AS400.TCP J
Channel Type :  *RCVR
Transport type : *TCP

Queue names

Use this information to understand the restrictions of queue names and reserved queue names.

Queues can have names up to 48 characters long.

Reserved Queue names

Names that start with “SYSTEM.” are reserved for queues defined by the queue manager. You can use the

ALTER or DEFINE REPLACE commands to change these queue definitions to suit your installation. The
following names are defined for IBM WebSphere MQ:

Queue Name Description

SYSTEM.ADMIN.ACTIVITY.QUEUE Queue for activity reports

SYSTEM.ADMIN.CHANNEL.EVENT Queue for channel events

SYSTEM.ADMIN.COMMAND.EVENT Queue for command events

SYSTEM.ADMIN.COMMAND.QUEUE Queue to which PCF command messages are sent

SYSTEM.ADMIN.CONFIG.EVENT Queue for configuration events

SYSTEM.ADMIN.PERFM.EVENT Queue for performance events

SYSTEM.ADMIN.PUBSUB.EVENT System publish/subscribe related event queue

SYSTEM.ADMIN.QMGR.EVENT Queue for queue manager events

SYSTEM.ADMIN.TRACE.ROUTE.QUEUE Queue for trace-route reply messages

SYSTEM.AUTH.DATA.QUEUE The queue that holds access control lists for the queue manager. (Not for
z/0S)

SYSTEM.CHANNEL.INITQ Initiation queue for channels

SYSTEM. CHANNEL.SYNCQ The queue that holds the synchronization data for channels

SYSTEM. CHLAUTH.DATA.QUEUE IBM WebSphere MQ channel authentication data queue

SYSTEM.CICS.INITIATION.QUEUE Queue used for triggering (not for z/OS)

78 IBM WebSphere MQ: Reference



Queue Name Description

SYSTEM.CLUSTER.COMMAND . QUEUE Queue used to communicate repository changes between queue managers
(AIX, HP-UX, Linux, IBM i, Solaris, Windows, and z/OS only)

SYSTEM.CLUSTER.HISTORY.QUEUE The queue is used to store the history of cluster state information for service
purposes.

SYSTEM.CLUSTER.REPOSITORY.QUEUE Queue used to hold information about the repository (AIX, HP-UX, Linux,
IBM i, Solaris, Windows, and z/OS only)

SYSTEM.CLUSTER.TRANSMIT.QUEUE Transmission queue for all destinations managed by cluster support (AIX,
HP-UX, Linux, IBM i, Solaris, Windows, and z/OS only)

SYSTEM. COMMAND. INPUT Queue to which command messages are sent on z/OS

SYSTEM. COMMAND. REPLY .MODEL Model queue definition for command replies (for z/OS)

SYSTEM.DEAD.LETTER.QUEUE Dead-letter queue (not for z/OS)

SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue definition

SYSTEM.DEFAULT.INITIATION.QUEUE Queue used to trigger a specified process (not for z/OS)

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue definition

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue definition

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue definition

SYSTEM.DURABLE. SUBSCRIBER.QUEUE A local queue used to hold a persistent copy of the durable subscriptions in
the queue manager

SYSTEM.HIERARCHY.STATE Queue used to hold information about the state of inter-queue manager
relationships in a publish/subscribe hierarchy

SYSTEM.JMS.TEMPQ.MODEL Model for JMS temporary queues

SYSTEM. INTERNAL.REPLY.QUEUE IBM WebSphere MQ internal reply queue (not for z/OS)

SYSTEM. INTER.QMGR.CONTROL Queue used in a publish/subscribe hierarchy to receive requests from a
remote queue manager to create a proxy subscription

SYSTEM. INTER.QMGR.PUBS Queue used in a publish/subscribe hierarchy to receive publications from a
remote queue manager

SYSTEM. INTER.QMGR. FANREQ Queue used in a publish/subscribe hierarchy to process requests to create a
proxy subscription on a remote queue manager

SYSTEM.MQEXPLORER.REPLY.MODEL Model queue definition for replies for IBM WebSphere MQ Explorer

SYSTEM.MQSC.REPLY.QUEUE Model queue definition for MQSC command replies (not for z/OS)

SYSTEM.QSG.CHANNEL.SYNCQ Shared local queue used for storing messages that contain the
synchronization information for shared channels (z/OS only)

SYSTEM.QSG.TRANSMIT.QUEUE Shared local queue used by the intra-group queuing agent when transmitting
messages between queue managers in the same queue-sharing group (z/OS
only)

SYSTEM.RETAINED.PUB.QUEUE A local queue used to hold a copy of each retained publication in the queue
manager.

SYSTEM.SELECTION.EVALUATION.QUEUE |IBM WebSphere MQ internal selection evaluation queue (not for z/OS)

SYSTEM.SELECTION.VALIDATION.QUEUE |IBM WebSphere MQ internal selection validation queue (not for z/OS)

Reference 79



Other object names

Processes, namelists, clusters, topics, services, and authentication information objects can have names up
to 48 characters long. Channels can have names up to 20 characters long. Storage classes can have names
up to 8 characters long. CF structures can have names up to 12 characters long.

Reserved object names

Names that start with “SYSTEM.” are reserved for objects defined by the queue manager. You can use the
ALTER or DEFINE REPLACE commands to change these object definitions to suit your installation. The
following names are defined for IBM WebSphere MQ:

Object Name

Description

SYSTEM.ADMIN.SVRCONN Server-connection channel used for remote administration of a
queue manager

SYSTEM.AUTO.RECEIVER Default receiver channel for auto definition (Windows, UNIX
and Linux systems only)

SYSTEM.AUTO.SVRCONN Default server-connection channel for auto definition (IBM i,
Windows, UNIX and Linux systems only)

SYSTEM.BASE.TOPIC Base topic for ASPARENT resolution. If a particular
administrative topic object has no parent administrative topic
objects, any ASPARENT attributes are inherited from this object

SYSTEM.DEF.CLNTCONN Default client-connection channel definition

SYSTEM.DEF.CLUSRCVR Default cluster-receiver channel definition

SYSTEM.DEF.CLUSSDR Default cluster-sender channel definition

SYSTEM.DEF.RECEIVER Default receiver channel definition

SYSTEM.DEE.REQUESTER Default requester channel definition

SYSTEM.DEF.SENDER Default sender channel definition

SYSTEM.DEF.SERVER Default server channel definition

SYSTEM.DEF.SVRCONN Default server-connection channel definition

SYSTEM.DEFAULT.AUTHINFO.CRLLDAP

Default authentication information object definition for defining
authentication information objects of type CRLLDAP

SYSTEM.DEFAULT.AUTHINFO.OCSP

Default authentication information object definition for defining
authentication information objects of type OCSP

SYSTEM.DEFAULT.LISTENER.LU62

Default SNA listener (Windows only)

SYSTEM.DEFAULT.LISTENER.NETBIOS

Default NetBIOS listener (Windows only)

SYSTEM.DEFAULT.LISTENER.SPX

Default SPX listener (Windows only)

SYSTEM.DEFAULT.LISTENER.TCP

Default TCP/IP listener (IBM i, Windows, UNIX and Linux
systems only)

SYSTEM.DEFAULT.NAMELIST

Default namelist definition

SYSTEM.DEFAULT.PROCESS Default process definition

SYSTEM.DEFAULT.SEVICE Default service (IBM i, Windows, UNIX and Linux systems
only)

SYSTEM.DEFAULT.TOPIC Default topic definition

SYSTEM.QPUBSUB.QUEUE.NAMELIST

A list of queues for the Queued Publish/Subscribe interface to
monitor

SYSTEMST

Default storage class definition (z/OS only)

80 1BM WebSphere MQ: Reference




Queue name resolution

This topic contains information about queue name resolution as performed by queue managers at both
sending and receiving ends of a channel.

In larger networks, the use of queue managers has a number of advantages over other forms of
communication. These advantages derive from the name resolution function in DQM and the main
benefits are:

* Applications do not need to make routing decisions

* Applications do not need to know the network structure

* Network links are created by systems administrators

* Network structure is controlled by network planners

* Multiple channels can be used between nodes to partition traffic

4+— MachineA——» 4+— MachineB———»
Application Application
Putting Getting
application application
MQPUT MQGET
call call
A v
Queue Manager Queue Manager
Queue name __ _____  Channe| ———— Queue name
resolution resolution
process process
call call
Queue | 'transmission’ Sending [ Network [ Receiving Queue | 'Target'
File | Channeldefinition File Channel definition

Figure 5. Name resolution

Referring to the basic mechanism for putting messages on a remote queue, as far as the
application is concerned, is the same as for putting messages on a local queue:

* The application putting the message issues MQOPEN and MQPUT calls to put messages on the target
queue.

* The application getting the messages issues MQOPEN and MQGET calls to get the messages from the
target queue.

If both applications are connected to the same queue manager then no inter-queue manager
communication is required, and the target queue is described as local to both applications.

However, if the applications are connected to different queue managers, two MCAs and their associated

network connection are involved in the transfer, as shown in the figure. In this case, the target queue is
considered to be a remote queue to the putting application.

Reference 81



The sequence of events is as follows:
1. The putting application issues MQOPEN and MQPUT calls to put messages to the target queue.

2. During the MQOPEN call, the name resolution function detects that the target queue is not local, and
decides which transmission queue is appropriate. Thereafter, on the MQPUT calls associated with the
MQOPEN call, all messages are placed on this transmission queue.

3. The sending MCA gets the messages from the transmission queue and passes them to the receiving
MCA at the remote computer.

4. The receiving MCA puts the messages on the target queue, or queues.
5. The getting application issues MQOPEN and MQGET calls to get the messages from the target queue.

Note: Only step 1 and step 5 involve application code; steps 2 through 4 are performed by the local
queue managers and the MCA programs. The putting application is unaware of the location of the target
queue, which could be in the same processor, or in another processor on another continent.

The combination of sending MCA, the network connection, and the receiving MCA, is called a message
channel, and is inherently a unidirectional device. Normally, it is necessary to move messages in both
directions, and two channels are set up for this movement, one in each direction.

What is queue name resolution?
Queue name resolution is vital to DQM. It removes the need for applications to be concerned with the
physical location of queues, and insulates them against the details of networks.

A systems administrator can move queues from one queue manager to another, and change the routing
between queue managers without applications needing to know anything about it.

In order to uncouple from the application design the exact path over which the data travels, it is
necessary to introduce a level of indirection between the name used by the application when it refers to
the target queue, and the naming of the channel over which the flow occurs. This indirection is achieved
using the queue name resolution mechanism.

In essence, when an application refers to a queue name, the name is mapped by the resolution
mechanism either to a transmission queue or to a local queue that is not a transmission queue. For
mapping to a transmission queue, a second name resolution is needed at the destination, and the
received message is placed on the target queue as intended by the application designer. The application
remains unaware of the transmission queue and channel used for moving the message.

Note: The definition of the queue and channel is a system management responsibility and can be
changed by an operator or a system management utility, without the need to change applications.

An important requirement for the system management of message flows is that alternative paths need to
be provided between queue managers. For example, business requirements might dictate that different
classes of service are sent over different channels to the same destination. This decision is a system
management decision and the queue name resolution mechanism provides a flexible way to achieve it.
The Application Programming Guide describes this in detail, but the basic idea is to use queue name
resolution at the sending queue manager to map the queue name supplied by the application to the
appropriate transmission queue for the type of traffic involved. Similarly at the receiving end, queue
name resolution maps the name in the message descriptor to a local (not a transmission) queue or again
to an appropriate transmission queue.

Not only is it possible for the forward path from one queue manager to another to be partitioned into
different types of traffic, but the return message that is sent to the reply-to queue definition in the
outbound message can also use the same traffic partitioning. Queue name resolution satisfies this
requirement and the application designer need not be involved in these traffic partitioning decisions.

82 1BM WebSphere MQ: Reference



The point that the mapping is carried out at both the sending and receiving queue managers is an
important aspect of the way name resolution works. This mapping allows the queue name supplied by
the putting application to be mapped to a local queue or a transmission queue at the sending queue
manager, and again remapped to a local queue or a transmission queue at the receiving queue manager.

Reply messages from receiving applications or MCAs have the name resolution carried out in the same
way, allowing return routing over specific paths with queue definitions at all the queue managers on
route.

System and default objects

Lists the system and default objects created by the crtmgm command.

When you create a queue manager using the crtmgm control command, the system objects and the default
objects are created automatically.

* The system objects are those IBM WebSphere MQ objects needed to operate a queue manager or
channel.

* The default objects define all the attributes of an object. When you create an object, such as a local
queue, any attributes that you do not specify explicitly are inherited from the default object.

The following tables list the system and default objects created by crtmgm:

* [Table 11| lists the system and default queue objects.
* [Table 12 on page 84|lists the system and default topic objects.

* [Table 13 on page 84| lists the system and default channel objects.

* [Table 14 on page 85|lists the system and default authentication information objects.

* [Table 15 on page 85|lists the system and default listener objects.

* [Table 16 on page 85|lists the system and default namelist objects.

* [Table 17 on page 85|lists the system and default process objects.

* [Table 18 on page 85|lists the system and default service objects.

Table 11. System and default objects: queues

Object name Description

SYSTEM.ADMIN.ACCOUNTING.QUEUE The queue that holds accounting monitoring data.

SYSTEM.ADMIN.ACTIVITY.QUEUE The queue that holds returned activity reports.

SYSTEM.ADMIN.CHANNEL.EVENT Event queue for channels.

SYSTEM.ADMIN.COMMAND.EVENT Event queue for command events.

SYSTEM.ADMIN.COMMAND. QUEUE Administration command queue. Used for remote MQSC
commands and PCF commands.

SYSTEM.ADMIN.CONFIG.EVENT Event queue for configuration events.

SYSTEM.ADMIN.PERFM.EVENT Event queue for performance events.

SYSTEM.ADMIN.PUBSUB.EVENT System publish/subscribe related event queue

SYSTEM.ADMIN.QMGR.EVENT Event queue for queue manager events.

SYSTEM.ADMIN.STATISTICS.QUEUE The queue that holds statistics monitoring data.

SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE The queue that displays trace activity.

SYSTEM.ADMIN.TRACE.ROUTE.QUEUE The queue that holds returned trace-route reply messages.

SYSTEM.AUTH.DATA.QUEUE The queue that holds access control lists for the queue
manager.

SYSTEM.CHANNEL.INITQ Channel initiation queue.

SYSTEM. CHANNEL.SYNCQ The queue that holds the synchronization data for channels.

Reference 83



Table 11. System and default objects: queues (continued)

Object name

Description

SYSTEM.CHLAUTH.DATA.QUEUE

IBM WebSphere MQ channel authentication data queue

SYSTEM.CICS.INITIATION.QUEUE

Default CICS initiation queue.

SYSTEM.CLUSTER.COMMAND.QUEUE

The queue used to carry messages to the repository queue
manager.

SYSTEM.CLUSTER.HISTORY.QUEUE

The queue is used to store the history of cluster state
information for service purposes.

SYSTEM.CLUSTER.REPOSITORY.QUEUE

The queue used to store all repository information.

SYSTEM.CLUSTER. TRANSMIT.QUEUE

The transmission queue for all messages to all clusters.

SYSTEM.DEAD.LETTER.QUEUE

Dead-letter (undelivered-message) queue.

SYSTEM.DEFAULT.ALIAS.QUEUE

Default alias queue.

SYSTEM.DEFAULT.INITIATION.QUEUE

Default initiation queue.

SYSTEM.DEFAULT.LOCAL.QUEUE

Default local queue.

SYSTEM.DEFAULT.MODEL.QUEUE

Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE

Default remote queue.

SYSTEM.JMS.TEMPQ.MODEL

Model for JMS temporary queues

SYSTEM.MQEXPLORER.REPLY.MODEL

The IBM WebSphere MQ Explorer reply-to queue. This is a
model queue that creates a temporary dynamic queue for
replies to the IBM WebSphere MQ Explorer.

SYSTEM.MQSC.REPLY.QUEUE

MQSC command reply-to queue. This is a model queue that
creates a temporary dynamic queue for replies to remote
MQSC commands.

SYSTEM.PENDING.DATA.QUEUE

Support deferred messages in JMS.

Table 12. System and default objects: topics

Object name

Description

[SYSTEM.BASE.TOPIC|

Base topic for ASPARENT resolution. If a particular topic has no
parent administrative topic objects, or those parent objects
also have ASPARENT, any remaining ASPARENT attributes are
inherited from this object.

SYSTEM.DEFAULT.TOPIC

Default topic definition.

Table 13. System and default objects: channels

Object name

Description

SYSTEM.AUTO.RECEIVER

Dynamic receiver channel.

SYSTEM.AUTO. SVRCONN

Dynamic server-connection channel.

SYSTEM.DEF.CLUSRCVR

Default receiver channel for the cluster, used to supply
default values for any attributes not specified when a
CLUSRCVR channel is created on a queue manager in the
cluster.

SYSTEM.DEF.CLUSSDR

Default sender channel for the cluster, used to supply default
values for any attributes not specified when a CLUSSDR
channel is created on a queue manager in the cluster.

SYSTEM.DEF.RECEIVER

Default receiver channel.

SYSTEM.DEF.REQUESTER

Default requester channel.

84 1BM WebSphere MQ: Reference




Table 13. System and default objects: channels (continued)

Object name

Description

SYSTEM.DEF.SENDER

Default sender channel.

SYSTEM.DEF.SERVER

Default server channel.

SYSTEM.DEF.SVRCONN

Default server-connection channel.

SYSTEM.DEF.CLNTCONN

Default client-connection channel.

Table 14. System and default objects: authentication information objects

Object name

Description

SYSTEM.DEFAULT.AUTHINFO.CRLLDAP

Default authentication information object for defining
authentication information objects of type CRLLDAP.

SYSTEM.DEFAULT.AUTHINFO.0CSP

Default authentication information object for defining
authentication information objects of type 0CSP.

Table 15. System and default objects: listeners

Object name

Description

SYSTEM.DEFAULT.LISTENER.TCP

Default TCP listener.

SYSTEM.DEFAULT. LISTENER. LU6ZT

Default LU62 listener.

SYSTEM.DEFAULT. LISTENER.NETBIOSY

Default NETBIOS listener.

SYSTEM.DEFAULT. LISTENER. SPYE

Default SPX listener.

1. Windows only

Table 16. System and default objects: namelists

Object name

Description

SYSTEM.DEFAULT.NAMELIST

Default namelist.

Table 17. System and default objects: processes

Object name

Description

SYSTEM.DEFAULT.PROCESS

Default process definition.

Table 18. System and default objects: services

Object name

Description

SYSTEM.DEFAULT.SERVICE

Default service.

SYSTEM.BROKER

Publish/subscribe broker

Reference

85



Windows default configuration objects
On Windows systems, you can set up a default configuration using the WebSphere MQ Postcard
application.

Note: You cannot set up a default configuration if other queue managers exist on your computer.

Many of the names used for the Windows default configuration objects involve the use of a short TCP/IP
name. This is the TCP/IP name of the computer, without the domain part; for example the short TCP/IP
name for the computer mycomputer.hursley.ibm.com is mycomputer. In all cases, where this name has to
be truncated, if the last character is a period (.), it is removed.

Any characters within the short TCP/IP name that are not valid for WebSphere MQ object names (for
example, hyphens) are replaced by an underscore character.

Valid characters for WebSphere MQ object names are: a to z, A to Z, 0 to 9, and the four special
characters / % . and _.

The cluster name for the Windows default configuration is DEFAULT_CLUSTER.

If the queue manager is not a repository queue manager, the objects listed in [Table 19| are created.

Table 19. Objects created by the Windows default configuration application

Object Name

Queue manager The short TCP/IP name prefixed with the characters QM_. The maximum
length of the queue manager name is 48 characters. Names exceeding this
limit are truncated at 48 characters. If the last character of the name is a
period (.), this is replaced by a space ().

The queue manager has a command server, a channel listener, and channel
initiator associated with it. The channel listener listens on the standard
WebSphere MQ port, port number 1414. Any other queue managers created
on this machine must not use port 1414 while the default configuration
queue manager still exists.

Generic cluster receiver channel The short TCP/IP name prefixed with the characters TO_QM_. The
maximum length of the generic cluster receiver name is 20 characters. Names
exceeding this limit are truncated at 20 characters. If the last character of the
name is a period (.), this is replaced by a space ().

Cluster sender channel The cluster sender channel is initially created with the name
TO_+QMNAME+. Once WebSphere MQ has established a connection to the
repository queue manager for the default configuration cluster, this name is
replaced with the name of the repository queue manager for the default
configuration cluster, prefixed with the characters TO_. The maximum length
of the cluster sender channel name is 20 characters. Names exceeding this
limit are truncated at 20 characters. If the last character of the name is a
period (.), this is replaced by a space ().

Local message queue The local message queue is called default.

Local message queue for use by the |The local message queue for use by the WebSphere MQ Postcard application
WebSphere MQ Postcard application |is called postcard.

Server connection channel The server connection channel allows clients to connect to the queue
manager. Its name is the short TCP/IP name, prefixed with the characters S_.
The maximum length of the server connection channel name is 20 characters.
Names exceeding this limit are truncated at 20 characters. If the last character
of the name is a period (.), this is replaced by a space ().

86 1BM WebSphere MQ: Reference



If the queue manager is a repository queue manager, the default configuration is similar to that described
in [Table 19 on page 86} but with the following differences:

* The queue manager is defined as a repository queue manager for the default configuration cluster.
* There is no cluster-sender channel defined.

* Alocal cluster queue that is the short TCP/IP name prefixed with the characters clq_default_ is
created. The maximum length of this name is 48 characters. Names exceeding this length are truncated
at 48 characters.

If you request remote administration facilities, the server connection channel,
SYSTEM.ADMIN.SVRCONN is also created.

SYSTEM.BASE.TOPIC

Base topic for ASPARENT resolution. If a particular topic has no parent administrative topic objects, or those
parent objects also have ASPARENT, any remaining ASPARENT attributes are inherited from this object.

The default values of the SYSTEM.BASE.TOPIC are:
Table 20. Default values of SYSTEM. BASE. TOPIC

Parameter Value

TOPICSTR !

COMMINFO SYSTEM.DEFAULT.COMMINFO.MULTICAST
DEFPRTY 0

DEFPRESP SYNC

DEFPSIST NO

DESCR 'Base topic for resolving attributes'
DURSUB YES

MDURMDL SYSTEM.DURABLE .MODEL.QUEUE
MNDURMDL SYSTEM.NDURABLE.MODEL.QUEUE
MASTER YES

MCAST DISABLED

NPMSGDLV ALLAVATIL

PMSGDLV ALLDUR

PUB ENABLE

SUB ENABLE

USEDLQ YES

If this object does not exist, its default values are still used by IBM WebSphere MQ for ASPARENT
attributes that are not resolved by parent topics further up the topic tree.

Setting the PUB or SUB attributes of SYSTEM.BASE.TOPIC to DISABLED prevents applications publishing or
subscribing to topics in the topic tree, with two exceptions:

1. Any topic objects in the topic tree that have PUB or SUB explicitly set to ENABLE. Applications can
publish or subscribe to those topics, and their children.

2. Publication and subscription to SYSTEM.BROKER.ADMIN.STREAM is not disabled by the setting the PUB or
SUB attributes of SYSTEM.BASE.TOPIC to DISABLED.

Reference 87



IBM WebSphere MQ for IBM i system and default objects

When you create a queue manager using the CRTMQM command, the system objects and the default
objects are created automatically.

* The system objects are those IBM WebSphere MQ objects required for the operation of a queue
manager or channel.

* The default objects define all the attributes of an object. When you create an object, such as a local
queue, any attributes that you do not specify explicitly are inherited from the default object.

The following tables list the system and default objects created by CRTMQM:

* [Table 21|lists the system and default queue objects.
« [Table 22 on page 89 lists the system and default channel objects.

» [Table 23 on page 90| gives the system and default authentication information objects.

* [Table 24 on page 90| gives the system and default listener object.

[Table 25 on page 90| gives the system and default namelist object.

[Table 26 on page 90| gives the system and default process object.

* [Table 27 on page 90| gives the system and default service object.

Table 21. System and default objects: queues

Object name Description

SYSTEM.ADMIN.ACCOUNTING.QUEUE Accounting message data generated when an application
disconnects from the queue manager.

SYSTEM.ADMIN.ACTIVITY.QUEUE Activity report message data.

SYSTEM.ADMIN.CHANNEL.EVENT Event queue for channels.

SYSTEM.ADMIN.COMMAND.QUEUE Administration command queue. Used for remote MQSC
commands and PCF commands.

SYSTEM.ADMIN.LOGGER.EVENT Logger event (journal receiver) message data.

SYSTEM.ADMIN.PERFM. EVENT Event queue for performance events.

SYSTEM.ADMIN.PUBSUB.EVENT System publish/subscribe related event queue

SYSTEM.ADMIN.QMGR.EVENT Event queue for queue manager events.

SYSTEM.ADMIN.STATISTICS.QUEUE MQI, queue and channel statistics message data queue.

SYSTEM.ADMIN.TRACE.ROUTE.QUEUE Trace-route reply message data queue.

SYSTEM.AUTH.DATA.QUEUE Used by the object authority manager (OAM).

SYSTEM.BROKER.ADMIN.STREAM Admin stream used by the queued publish/subscribe
interface.

SYSTEM.BROKER.CONTROL.QUEUE Publish/subscribe interface control queue.

SYSTEM.BROKER.DEFAULT.STREAM The default stream used by the queued
publish/subscribe interface.

SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS Broker to broker communications queue.

SYSTEM. CHANNEL.INITQ Channel initiation queue.

SYSTEM. CHANNEL. SYNCQ The queue that holds the synchronization data for
channels.

SYSTEM. CHLAUTH.DATA.QUEUE IBM WebSphere MQ channel authentication data queue

SYSTEM.DURABLE.MODEL .QUEUE A queue used as a model for managed durable
subscriptions.

SYSTEM.DURABLE. SUBSCRIBER.QUEUE A queue used to hold a persistent copy of the durable
subscriptions in the queue manager.

SYSTEM.CICS.INITIATION.QUEUE Default CICS initiation queue.

88 1BM WebSphere MQ: Reference



Table 21. System and default objects: queues (continued)

Object name

Description

SYSTEM.CLUSTER.COMMAND.QUEUE

The queue used to carry messages to the repository
queue manager.

SYSTEM.CLUSTER.HISTORY.QUEUE

The queue is used to store the history of cluster state
information for service purposes.

SYSTEM.CLUSTER.REPOSITORY.QUEUE

The queue used to store all repository information.

SYSTEM.CLUSTER. TRANSMIT.QUEUE

The transmission queue for all messages to all clusters.

SYSTEM.DEAD.LETTER.QUEUE

Dead-letter (undelivered message) queue.

SYSTEM.DEFAULT.ALIAS.QUEUE

Default alias queue.

SYSTEM.DEFAULT.AUTHINFO.CRLLDAP

Default authentication information definition.

SYSTEM.DEFAULT.INITIATION.QUEUE

Default initiation queue.

SYSTEM.DEFAULT.LOCAL.QUEUE

Default local queue.

SYSTEM.DEFAULT.MODEL.QUEUE

Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE

Default remote queue.

SYSTEM.JMS.TEMPQ.MODEL

Model for JMS temporary queues

SYSTEM.HIERARCHY.STATE

IBM WebSphere MQ distributed publish/subscribe
hierarchy relationship state.

SYSTEM. INTER.QMGR.CONTROL

IBM WebSphere MQ distributed publish/subscribe
control queue.

SYSTEM. INTER.QMGR. FANREQ

IBM WebSphere MQ distributed publish/subscribe
internal proxy subscription fan-out process input queue.

SYSTEM. INTER.QMGR. PUBS

IBM WebSphere MQ distributed publish/subscribe
publications.

SYSTEM.MQEXPLORER.REPLY.MODEL

IBM WebSphere MQ Explorer reply-to queue. This is a
model queue that creates a temporary dynamic queue for
replies to the IBM WebSphere MQ Explorer.

SYSTEM.MQSC.REPLY.QUEUE

MQSC command reply-to queue. This is a model queue
that creates a temporary dynamic queue for replies to
remote MQSC commands.

SYSTEM.NDURABLE .MODEL.QUEUE

A queue used as a model for managed non durable
subscriptions.

SYSTEM.PENDING.DATA.QUEUE

Support deferred messages in JMS.

SYSTEM.RETAINED.PUB.QUEUE

A queue used to hold a copy of each retained publication
in the queue manager.

Table 22. System and default objects: channels

Object name

Description

SYSTEM.AUTO.RECEIVER

Dynamic receiver channel.

SYSTEM.AUTO.SVRCONN

Dynamic server-connection channel.

SYSTEM.DEF.CLNTCONN

Default client connection channel, used to supply default
values for any attributes not specified when a CLNTCONN
channel is created on a queue manager.

SYSTEM.DEF.CLUSRCVR

Default receiver channel for the cluster used to supply
default values for any attributes not specified when a
CLUSRCVR channel is created on a queue manager in the
cluster.

89

Reference



Table 22. System and default objects: channels (continued)

Object name

Description

SYSTEM.DEF.CLUSSDR

Default sender channel for the cluster used to supply
default values for any attributes not specified when a
CLUSSDR channel is created on a queue manager in the
cluster.

SYSTEM.DEF.RECEIVER

Default receiver channel.

SYSTEM.DEF.REQUESTER

Default requester channel.

SYSTEM.DEF.SENDER

Default sender channel.

SYSTEM.DEF.SERVER

Default server channel.

SYSTEM.DEF.SVRCONN

Default server-connection channel.

Table 23. System and default objects: authentication information objects

Object name

Description

SYSTEM.DEFAULT.AUTHINFO.CRLLDAP

Default authentication information object for
authentication type CRLLDAP.

SYSTEM.DEFAULT.AUTHINFO0.0CSP

Default authentication information object for
authentication type 0CSP.

Table 24. System and default objects: listeners

Object name

Description

SYSTEM.DEFAULT.LISTENER.TCP

Default listener for TCP transport.

Table 25. System and default objects: namelists

Object name

Description

SYSTEM.DEFAULT .NAMELIST

Default namelist definition.

SYSTEM.QPUBSUB.QUEUE.NAMELIST

A list of queue names monitored by the queued
publish/subscribe interface.

SYSTEM.QPUBSUB.SUBPOINT.NAMELIST

A list of topic objects used by the queued
publish/subscribe interface to match topic objects to
subscription points.

Table 26. System and default objects: processes

Object name

Description

SYSTEM.DEFAULT.PROCESS

Default process definition.

Table 27. System and default objects: services

Object name

Description

SYSTEM.DEFAULT.SERVICE

Default service.

90 1BM WebSphere MQ: Reference




Stanza information

The following information helps you configure the information within stanzas, and lists the contents of
the mgs.ini, gm.ini, and mqclient.ini files.

Configuring stanzas

Use the links to help you configure the system, or systems, in your enterprise:

[Changing IBM WebSphere MQ configuration information| (WebSphere MQ V7.1 Installing Guide)
helps you configure the:

- AllQueueManagers stanza

DefaultQueueManager stanza

ExitProperties stanza

LogDefaults stanza

Security stanza in the gm.ini file

[Changing queue manager configuration information| (WebSphere MQ V7.1 Installing Guide) helps you
configure the:

— AccessMode stanza (Windows only)

— Service stanza - for Installable services

— Log stanza

— RestrictedMode stanza (UNIX and Linux systems only)
— XAResourceManager stanza

— TCP, LU62, and NETBIOS stanzas

— ExitPath stanza

— QMErrorLog stanza

— SSL stanza

— ExitPropertiesLocal stanza

[Configuring services and components| (WebSphere MQ V7.1 Programming Guide) helps you configure
the:

— Service stanza

— ServiceComponent stanza

and contains links to how they are used for different services on UNIX and Linux, and Windows
platforms.

[Configuring API exits (WebSphere MQ V7.1 Programming Guide) helps you configure the:
— AllActivityTrace stanza

- AppplicationTrace stanza

[Configuring activity trace behavior| (WebSphere MQ V7.1 Administering Guide) helps you configure
the:

— ApiExitCommon stanza

— ApiExitlemplate stanza
— ApiExitLocal stanza

[Configuration information for clients| (WebSphere MQ V7.1 Installing Guide) helps you configure the:
— CHANNELS stanza

— ClientExitPath stanza

— LU62, NETBIOS and SPX stanza (Windows only)

Reference 91



— MessageBuffer stanza
— SSL stanza
— TCP stanza
* [“Configuration file stanzas for distributed queuing” on page 94| helps you configure the:
— CHANNELS stanza
— TCP stanza
— LU62 stanza
— NETBIOS
— ExitPath stanza

. [Setting queued publish/subscribe message attributes| (WebSphere MQ V7.1 Installing Guide) helps
you configure the:

— PersistentPublishRetry attribute

— NonPersistentPublishRetry attribute
— PublishBatchSize attribute

— PublishRetrylInterval attribute

in the Broker stanza.
Attention: You must create a Broker stanza if you need one.
Configuration files

See:
* Imgs.ini fﬂe
¢ [gm.ini file

* Imqclient.ini file|

for a list of the possible stanzas in each configuration file.

mgqs.ini file

[Example of an IBM WebSphere MQ configuration file for UNIX and Linux systems| shows an
example mgs.ini file.

An mgs.ini file can contain the following stanzas:

. [AllQueueManagers| (WebSphere MQ V7.1 Installing Guide)

. [DefaultQueueManager| (WebSphere MQ V7.1 Installing Guide)

. (WebSphere MQ V7.1 Installing Guide)

. (WebSphere MQ V7.1 Installing Guide)

In addition, there is one (WebSphere MQ V7.1 Installing Guide) stanza for each

queue manager.

qm.ini file

[Example queue manager configuration file for IBM WebSphere MQ fo UNIX and Linux|
lsystems| shows an example gm.ini file.

A gm.ini file can contain the following stanzas:

. (WebSphere MQ V7.1 Installing Guide)

92 IBM WebSphere MQ: Reference



(WebSphere MQ V7.1 Installing Guide)

OMErrorLogl (WebSphere MQ V7.1 Installing Guide)
(WebSphere MQ V7.1 Installing Guide)
(WebSphere MQ V7.1 Installing Guide)

(WebSphere MQ V7.1 Programming Guide) and 4 |ServiceComponent| (WebSphere MQ
V7.1 Installing Guide)

To configure B4 |InstallableServices| (WebSphere MQ V7.1 Installing Guide)on:
— UNIX and Linux platforms, use the Service and ServiceComponent stanzas.

— Windows, use regedit.

Connection for DefaultBindType| (WebSphere MQ V7.1 Installing Guide)

Attention: You must create a Connection stanza if you need one.

SSL and TLS| (WebSphere MQ V7.1 Installing Guide
P 8

[TCP, LU62, and NETBIOS| (WebSphere MQ V7.1 Installing Guide)

[XAResourceManager| (WebSphere MQ V7.1 Installing Guide)

In addition, you can change the:

AccessMode (Windows only)
RestrictedMode (UNIX and Linux systems only)

by using the command.

mqclient.ini file

Anmqclient.ini file can contain the following stanzas:

CHANNELS| (WebSphere MQ V7.1 Installing Guide)
ClientExitPath| (WebSphere MQ V7.1 Installing Guide)

[LU62, NETBIOS, and SPX] (WebSphere MQ V7.1 Installing Guide)

(WebSphere MQ V7.1 Installing Guide)
(WebSphere MQ V7.1 Installing Guide)

(WebSphere MQ V7.1 Installing Guide)

In addition, you might need a (WebSphere MQ V7.1 Programming Guide) stanza to

configure a preconnect exit.

Reference

93



Configuration file stanzas for distributed queuing
A description of the stanzas of the queue manager configuration file, qm.ini, related to distributed
queuing.

This topic shows the stanzas in the queue manager configuration file that relate to distributed queuing. It
applies to the queue manager configuration file for IBM WebSphere MQ on IBM i, Windows, UNIX, and
Linux systems. The file is called qm.ini on all platforms.

The stanzas that relate to distributed queuing are:

» CHANNELS

« TCP

+ LU62

* NETBIOS

* SPX (Windows XP and Windows 2003 Server only)
* EXITPATH

shows the values that you can set using these stanzas. When you are defining one of these
stanzas, you do not need to start each item on a new line. You can use either a semicolon (;) or a hash
character (#) to indicate a comment.

CHANNELS :
MAXCHANNELS=n Maximum number of channels allowed, the

default value is 100.

Maximum number of channels allowed to be active at

any time, the default is the value of MaxChannels.

Maximum number of initiators allowed, the default

and maximum value is 3.

MQIBINDTYPE=typém s Whether the binding for applications is to be

; "fastpath" or "standard".

; The default is "standard".

; Stops previous process if channel fails to start.

; The default is "NO".

; Specifies the amount of time that the new

; process should wait for the old process to end.

; The default is 60.

MAXACTIVECHANNELS=n

MAXINITIATORS=n

e we e we we we

ADOPTNEWMCA=chTtype

ADOPTNEWMCATIMEOUT=n

ADOPTNEWMCACHECK= Specifies the type checking required.
typecheck The default is "NAME","ADDRESS", and "QM".

TCP: TCP entries

PORT=n Port number, the default is 1414

KEEPALIVE=Yes Switch TCP/IP KeepAlive on

LIBRARY2=DLLName2 Used if code is in two libraries

EXITPATH:E ; Location of user exits (MQSeries for AIX,
; HP-UX, and Solaris only)

EXITPATHS= String of directory paths.

..

Figure 6. gm.ini stanzas for distributed queuing

Note:

1. MQIBINDTYPE applies only to IBM WebSphere MQ for AIX, IBM WebSphere MQ for IBM i, IBM
WebSphere MQ for HP-UX, and IBM WebSphere MQ for Solaris.

2. EXITPATH applies only to IBM WebSphere MQ for AIX, IBM WebSphere MQ for HP-UX, and IBM
WebSphere MQ for Solaris.

94 1BM WebSphere MQ: Reference



Related information:

(WebSphere MQ V7.1 Installing Guide)

[Configuring z/OS| (WebSphere MQ V7.1 Installing Guide)

[Changing configuration information on Windows, UNIX, and Linux systems| (WebSphere MQ V7.1
Installing Guide)

[Changing configuration information on IBM i (WebSphere MQ V7.1 Installing Guide)

Channel attributes
This section describes the channel attributes held in the channel definitions.

This information is product-sensitive programming interface information.

You choose the attributes of a channel to be optimal for a particular set of circumstances for each channel.
However, when the channel is running, the actual values might have changed during startup

negotiations. See [Preparing channels| (WebSphere MQ V7.1 Installing Guide).

Many attributes have default values, and you can use these values for most channels. However, in those
circumstances where the defaults are not optimal, see this section for guidance in selecting the correct
values.

Note: In WebSphere MQ for IBM i, most attributes can be specified as *SYSDFTCHL, which means that the
value is taken from the system default channel in your system.

Channel attributes and channel types
Different types of channel support different channel attributes.

The channel types for WebSphere MQ channel attributes are listed in [Table 28

Table 28. Channel attributes for the channel types

Attribute field MQSC SDR | SVR | RCVR |RQSTR | CLNT- | SVR- | CLUS- | CLUS-
command CONN | CONN SDR RCVR
parameter

[Alter date| ALTDATE Yes Yes Yes Yes Yes Yes Yes Yes

|[Alter time] ALTTIME Yes Yes Yes Yes Yes Yes Yes Yes

Batch heartbea BATCHHB Yes Yes Yes Yes

linterval
[Batch interval BATCHINT | Yes | Yes Yes | Yes
[Batch Timi BATCHLIM | Yes | Yes Yes Yes
| BATCHSZ Yes Yes Yes Yes Yes Yes
| CHANNEL Yes Yes Yes Yes Yes Yes Yes Yes
ilChannel statistics| STATCHL Yes Yes Yes Yes Yes Yes
| CHLTYPE Yes Yes Yes Yes Yes Yes Yes Yes
ilClient channel weight{| CLNTWGHT Yes

[Clusted CLUSTER Yes Yes

| CLUSNL Yes Yes

ilCluster workload| CLWLPRTY Yes Yes
llpriority]

Reference 95



Table 28. Channel attributes for the channel types (continued)

Attribute field MQSC SDR | SVR | RCVR |RQSTR | CLNT- | SVR- | CLUS- | CLUS-
command CONN | CONN SDR RCVR
parameter

[Cluster workload| CLWLRANK Yes Yes

||ranl§|

I|Cluster workload| CLWLWGHT Yes Yes

Meigh’_cl

[Connection affinity]| AFFINITY Yes

[[Connection namel| CONNAME Yes Yes Yes Yes Yes Yes

[[Convert messagel CONVERT Yes Yes Yes Yes

[[Data compression| COMPMSG Yes Yes Yes Yes Yes Yes Yes Yes

| DESCR Yes Yes Yes Yes Yes Yes Yes Yes

([Disconnect intervall DISCINT Yes Yes Yes' Yes Yes

| QSGDISP Yes Yes Yes Yes Yes Yes Yes Yes

[[Header compression| COMPHDR Yes Yes Yes Yes Yes Yes Yes Yes

[[Heartbeat interval| HBINT Yes Yes Yes Yes Yes Yes Yes Yes

[[Keepalive intervall KAINT Yes Yes Yes Yes Yes Yes Yes Yes

|L0ca1 address LOCLADDR Yes Yes Yes Yes Yes Yes

[Cong retry coun{] LONGRTY | Yes | Yes Yes Yes

[Long retry interval| LONGTMR Yes Yes Yes Yes

ilLU 6.2 mode name]| MODENAME Yes Yes Yes Yes Yes Yes

ilLU 6.2 transaction| TPNAME Yes Yes Yes Yes Yes Yes
||Erogram name]|

iIMaximum instances| MAXINST Yes

iIMaximum instances| MAXINSTC Yes

||Eer clien’_cl

[Maximum message] MAXMSGL Yes Yes Yes Yes Yes Yes Yes Yes

||1engtt_1|

MCANAME Yes Yes Yes Yes Yes

MCATYPE Yes Yes Yes Yes Yes

MCAUSER Yes Yes Yes Yes Yes Yes Yes

[Message exit name] MSGEXIT Yes Yes Yes Yes Yes Yes

[Message exit user| MSGDATA Yes Yes Yes Yes Yes Yes

|data|

[Message-retry exit] MREXIT Yes Yes Yes

| ame)

[Message-retry exit] MRDATA Yes Yes Yes

||user date_l]

[Message retry count MRRTY Yes Yes Yes

MRTMR Yes Yes Yes

| MONCHL Yes Yes Yes Yes Yes Yes Yes

96 IBM WebSphere MQ: Reference




Table 28. Channel attributes for the channel types (continued)

Attribute field MQSC SDR | SVR | RCVR | RQSTR | CLNT- SVR- | CLUS- | CLUS-
command CONN | CONN SDR RCVR
parameter

[Network-connection] NETPRTY Yes

||Erioritxl

NPMSPEED Yes Yes Yes Yes Yes Yes

I|Pass.w0rd| PASSWORD Yes Yes Yes Yes Yes

Property control PROPCTL Yes Yes Yes Yes

I|PUT authority| PUTAUT Yes Yes Yes! Yes

QMNAME Yes

name

"Receive exit namel RCVEXIT Yes Yes Yes Yes Yes Yes Yes Yes

[Receive exit user data|| RCVDATA Yes Yes Yes Yes Yes Yes Yes Yes

|Security exit namel SCYEXIT Yes Yes Yes Yes Yes Yes Yes Yes

[Security exit user| SCYDATA Yes Yes Yes Yes Yes Yes Yes Yes

|datal

[Send exit name] SENDEXIT Yes Yes Yes Yes Yes Yes Yes Yes

[Send exit user datal SENDDATA Yes Yes Yes Yes Yes Yes Yes Yes

Sequence number| SEQWRAP Yes Yes Yes Yes Yes Yes

wrap|

Sequence number]| SEQWRAP Yes Yes Yes Yes Yes Yes

wrap|

Shared connections SHARECNV Yes Yes

[Short retry interval| SHORTTMR Yes Yes Yes Yes

SSL Cipher] SSLCIPH Yes Yes Yes Yes Yes Yes Yes Yes

Specification|

SSL Client| SSLCAUTH Yes Yes Yes Yes Yes

[Authentication|

[SSL Peer SSLPEER Yes Yes Yes Yes Yes Yes Yes Yes

ITransmission queue| XMITQ Yes Yes

[name]

[Transport type] TRPTYPE Yes Yes Yes Yes Yes Yes Yes Yes

se Dead-Lette USEDLQ Yes Yes Yes Yes Yes Yes

[Queue

|ijser IlSl USERID Yes Yes Yes Yes Yes

Note:

1. Valid on z/OS only.

Reference 97



Related concepts:

[‘Channel attributes in alphabetical order”|
['MQSC reference” on page 755|

Channel attributes in alphabetical order
This section describes each attribute of a channel object, with its valid values and notes on its use where
appropriate.

WebSphere MQ for some platforms might not implement all the attributes shown in this section.
Exceptions and platform differences are mentioned in the individual attribute descriptions, where
relevant.

The keyword that you can specify in MQSC is shown in brackets for each attribute.

The attributes are arranged in alphabetical order.

Alter date (ALTDATE):

This attribute is the date on which the definition was last altered, in the form yyyy-mm-dd.

This attribute is valid for all channel types.

Alter time (ALTTIME):

This attribute is the time at which the definition was last altered, in the form hh:mm:ss.

This attribute is valid for all channel types.

Batch Heartbeat Interval (BATCHHB):

This attribute allows a sending channel to verify that the receiving channel is still active just before
committing a batch of messages.

The batch heartbeat interval thus allows the batch to be backed out rather than becoming in-doubt if the
receiving channel is not active. By backing out the batch, the messages remain available for processing so
they could, for example, be redirected to another channel.

If the sending channel has had a communication from the receiving channel within the batch heartbeat
interval, the receiving channel is assumed to be still active, otherwise a 'heartbeat' is sent to the receiving
channel to check.

The value is in milliseconds and must be in the range zero through 999999. A value of zero indicates that
batch heart beating is not used.

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

* Cluster receiver

98 I1BM WebSphere MQ: Reference



Batch interval (BATCHINT):

This attribute is a period, in milliseconds, during which the channel keeps a batch open even if there are
no messages on the transmission queue.

You can specify any number of milliseconds, from zero through 999 999 999. The default value is zero.

If you do not specify a batch interval, the batch closes when the number of messages specified in
BATCHSZ has been sent or when the transmission queue becomes empty. On lightly loaded channels,
where the transmission queue frequently becomes empty the effective batch size might be much smaller
than BATCHSZ.

You can use the BATCHINT attribute to make your channels more efficient by reducing the number of
short batches. Be aware, however, that you can slow down the response time, because batches last longer
and messages remain uncommitted for longer.

If you specify a BATCHINT, batches close only when one of the following conditions is met:
* The number of messages specified in BATCHSZ have been sent.

* There are no more messages on the transmission queue and a time interval of BATCHINT has elapsed
while waiting for messages (since the first message of the batch was retrieved).

Note: BATCHINT specifies the total amount of time that is spent waiting for messages. It does not
include the time spent retrieving messages that are already available on the transmission queue, or the
time spent transferring messages.

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

* Cluster receiver
Batch limit (BATCHLIM):

This attribute is the limit, in kilobytes, of the amount of data that can be sent through a channel before
taking a sync point.

A sync point is taken after the message that caused the limit to be reached has flowed across the channel.
The value must be in the range 0 - 999999. The default value is 5000.
A value of zero in this attribute means that no data limit is applied to batches over this channel.

The batch is terminated when one of the following conditions is met:
* BATCHSZ messages have been sent.

* BATCHLIM bytes have been sent.

* The transmission queue is empty and BATCHINT is exceeded.

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

e Cluster receiver

Reference 99



This parameter is supported on all platforms.
Batch size (BATCHSZ):
This attribute is the maximum number of messages to be sent before a sync point is taken.

The batch size does not affect the way the channel transfers messages; messages are always transferred
individually, but are committed or backed out as a batch.

To improve performance, you can set a batch size to define the maximum number of messages to be
transferred between two sync points. The batch size to be used is negotiated when a channel starts, and
the lower of the two channel definitions is taken. On some implementations, the batch size is calculated
from the lowest of the two channel definitions and the two queue manager MAXUMSGS values. The
actual size of a batch can be less; for example, a batch completes when there are no messages left on the
transmission queue or the batch interval expires.

A large value for the batch size increases throughput, but recovery times are increased because there are
more messages to back out and send again. The default BATCHSZ is 50, and you are advised to try that
value first. You might choose a lower value for BATCHSZ if your communications are unreliable, making
the need to recover more likely.

Sync point procedure needs a unique logical unit of work identifier to be exchanged across the link every
time a sync point is taken, to coordinate batch commit procedures.

If the synchronized batch commit procedure is interrupted, an in-doubt situation might arise. In-doubt
situations are resolved automatically when a message channel starts. If this resolution is not successful,
manual intervention might be necessary, using the RESOLVE command.

Some considerations when choosing the number for batch size:

* If the number is too large, the amount of queue space taken up on both ends of the link becomes
excessive. Messages take up queue space when they are not committed, and cannot be removed from
queues until they are committed.

s If there is likely to be a steady flow of messages, you can improve the performance of a channel by
increasing the batch size because fewer confirm flows are needed to transfer the same quantity of
bytes.

* If message flow characteristics indicate that messages arrive intermittently, a batch size of 1 with a
relatively large disconnect time interval might provide a better performance.

* The number can be in the range 1 through 9999. However, for data integrity reasons, channels
connecting to any of the current platforms must specify a batch size greater than 1. A value of 1 is for
use with Version 1 products, apart from WebSphere MQ for MVS.

* Even though nonpersistent messages on a fast channel do not wait for a sync point, they do contribute
to the batch-size count.

This attribute is valid for channel types of:
* Sender

* Server

* Receiver

* Requester

* Cluster sender

¢ Cluster receiver

100 1BM WebSphere MQ: Reference



Channel name (CHANNEL):

This attribute specifies the name of the channel definition.

The name can contain up to 20 characters, although as both ends of a message channel must have the
same name, and other implementations might have restrictions on the size, the actual number of

characters might have to be smaller.

Where possible, channel names are unique to one channel between any two queue managers in a
network of interconnected queue managers.

The name must contain characters from the following list:

Alphabetic (A-Z, a-z; note that uppercase and lowercase are significant)
Numerics (0-9)

Period 0]

Forward slash /)

Underscore Q)

Percentage sign (%)

Note:

1. Embedded blanks are not allowed, and leading blanks are ignored.
2. On systems using EBCDIC Katakana, you cannot use lowercase characters.

This attribute is valid for all channel types.
Channel statistics (STATCHL):
This attribute controls the collection of statistics data for channels.

The possible values are:

OMGR

Statistics data collection for this channel is based upon the setting of the queue manager attribute

STATCHL. This value is the default value.
OFF  Statistics data collection for this channel is disabled.
LOW  Statistics data collection for this channel is enabled with a low ratio of data collection.

MEDIUM
Statistics data collection for this channel is enabled with a moderate ratio of data collection.

HIGH Statistics data collection for this channel is enabled with a high ratio of data collection.

For more information about channel statistics, see [Monitoring WebSphere MQ|

This attribute is not supported on z/OS.

This attribute is valid for channel types of:
* Sender

* Server

* Receiver

* Requester

* Cluster sender

* Cluster receiver

Reference

101



Channel type (CHLTYPE):
This attribute specifies the type of the channel being defined.

The possible channel types are:

Message channel types:
* Sender
* Server
* Receiver
* Requester
* Cluster-sender
* Cluster-receiver

MOQI channel types:
* Client-connection (WebSphere MQ for Windows systems, and UNIX systems only)

Note: Client-connection channels can also be defined on z/OS for use on other platforms.
* Server-connection

The two ends of a channel must have the same name and have compatible types:
* Sender with receiver

* Requester with server

* Requester with sender (for callback)

» Server with receiver (server is used as a sender)

* Client-connection with server-connection

* Cluster-sender with cluster-receiver
Client channel weight (CLNTWGHT):
This attribute specifies a weighting to influence which client-connection channel definition is used.

The client channel weighting attribute is used so that client channel definitions can be selected at random
based on their weighting when more than one suitable definition is available.

When a client issues an MQCONN requesting connection to a queue manager group, by specifying a
queue manager name starting with an asterisk, which enables client weight balancing across several
queue managers, and more than one suitable channel definition is available in the client channel
definition table (CCDT), the definition to use is randomly selected based on the weighting, with any
applicable CLNTWGHT(0) definitions selected first in alphabetical order.

Specify a value in the range 0 — 99. The default is 0.

A value of 0 indicates that no load balancing is performed and applicable definitions are selected in
alphabetical order. To enable load balancing choose a value in the range 1 - 99 where 1 is the lowest
weighting and 99 is the highest. The distribution of connections between two or more channels with
non-zero weightings is proportional to the ratio of those weightings. For example, three channels with
CLNTWGHT values of 2, 4, and 14 are selected approximately 10%, 20%, and 70% of the time. This
distribution is not guaranteed. If the AFFINITY attribute of the connection is set to PREFERRED, the first
connection chooses a channel definition according to client weightings, and then subsequent connections
continue to use the same channel definition.

This attribute is valid for the client-connection channel type only.

102 1BM WebSphere MQ: Reference



Cluster (CLUSTER):
This attribute is the name of the cluster to which the channel belongs.
The maximum length is 48 characters conforming to the rules for naming WebSphere MQ objects.

Up to one of the resultant values of CLUSTER or CLUSNL can be non-blank. If one of the values is
non-blank, the other must be blank.

This attribute is valid for channel types of:
* Cluster sender

* Cluster receiver
Cluster namelist (CLUSNL):
This attribute is the name of the namelist that specifies a list of clusters to which the channel belongs.

Up to one of the resultant values of CLUSTER or CLUSNL can be nonblank. If one of the values is
nonblank, the other must be blank.

This attribute is valid for channel types of:
* Cluster sender

* Cluster receiver

Cluster workload priority (CLWLPRTY):

This attribute specifies the priority of the channel.

The value must be in the range 0 through 9, where 0 is the lowest priority and 9 is the highest.

This attribute is valid for channel types of:
* Cluster sender

* Cluster receiver

Cluster workload rank (CLWLRANK):

This attribute specifies the rank of the channel.

The value must be in the range 0 through 9, where 0 is the lowest rank and 9 is the highest.

This attribute is valid for channel types of:
* Cluster sender

* Cluster receiver

Reference 103



Cluster workload weight (CLWLWGHT):

This attribute applies a weighting factor to the channel so the proportion of messages sent down that
channel can be controlled.

The value must be in the range 1 through 99, where 1 is the lowest weighting and 99 is the highest.

This attribute is valid for channel types of:
¢ Cluster sender
¢ Cluster receiver

Connection affinity (AFFINITY):

This attribute specifies whether client applications that connect multiple times using the same queue
manager name, use the same client channel.

Use this attribute when multiple applicable channel definitions are available.

The possible values are:

PREFERRED
The first connection in a process reading a client channel definition table (CCDT) creates a list of
applicable definitions based on the client channel weight, with any definitions having a weight of 0
first and in alphabetical order. Each connection in the process attempts to connect using the first
definition in the list. If a connection is unsuccessful the next definition is used. Unsuccessful
definitions with client channel weight values other than 0 are moved to the end of the list. Definitions
with a client channel weight of 0 remain at the start of the list and are selected first for each
connection.

Each client process with the same host name always creates the same list.

For client applications written in C, C++, or the .NET programming framework (including fully
managed .NET), and for applications that use the IBM WebSphere MQ classes for Java" and IBM
WebSphere MQ classes for JMS, the list is updated if the CCDT has been modified since the list was
created.

This value is the default value.

NONE
The first connection in a process reading a CCDT creates a list of applicable definitions. All
connections in a process select an applicable definition based on the client channel weight, with any
definitions having a weight of 0 selected first in alphabetical order.

For client applications written in C, C++, or the .NET programming framework (including fully
managed .NET), and for applications that use the IBM WebSphere MQ classes for Java and IBM
WebSphere MQ classes for JMS, the list is updated if the CCDT has been modified since the list was
created.

This attribute is valid for the client-connection channel type only.

104 1BM WebSphere MQ: Reference



Connection name (CONNAME):

This attribute is the communications connection identifier. It specifies the particular communications links
to be used by this channel.

It is optional for server channels, unless the server channel is triggered, in which case it must specify a
connection name.

Specify CONNAME as a comma-separated list of names of machines for the stated TRPTYPE. Typically
only one machine name is required. You can provide multiple machine names to configure multiple
connections with the same properties. The connections are usually tried in the order they are specified in
the connection list until a connection is successfully established. The order is modified for clients if the
CLNTWGHT attribute is provided. If no connection is successful, the channel attempts the connection
again, as determined by the attributes of the channel. With client channels, a connection-list provides an
alternative to using queue manager groups to configure multiple connections. With message channels, a
connection list is used to configure connections to the alternative addresses of a multi-instance queue
manager.

Providing multiple connection names in a list was first supported in IBM WebSphere MQ Version 7.0.1. It
changes the syntax of the CONNAME parameter. Earlier clients and queue managers connect using the
first connection name in the list, and do not read the rest of the connection names in the list. In order for
the earlier clients and queue managers to parse the new syntax, you must specify a port number on the
first connection name in the list. Specifying a port number avoids problems when connecting to the
channel from a client or queue manager that is running at a level earlier than IBM WebSphere MQ
Version 7.0.1.

On AIX, HP-UX, IBM i, Linux, Solaris, and Windows platforms, the TCP/IP connection name parameter
of a cluster-receiver channel is optional. If you leave the connection name blank, WebSphere MQ
generates a connection name for you, assuming the default port and using the current IP address of the
system. You can override the default port number, but still use the current IP address of the system. For
each connection name leave the IP name blank, and provide the port number in parentheses; for example:

(1415)

The generated CONNAME is always in the dotted decimal (IPv4) or hexadecimal (IPv6) form, rather than in
the form of an alphanumeric DNS host name.

The name is up to 48 characters (see note 1) for z/OS, 264 characters for other platforms, and:

If the transport type is TCP
CONNAME is either the host name or the network address of the remote machine (or the local
machine for cluster-receiver channels). For example, (ABC.EXAMPLE.COM), (2001:DB8:0:0:0:0:0:0)
or (127.0.0.1). It can include the port number, for example (MACHINE(123)). It can include the
IP_name of a z/OS dynamic DNS group or a Network Dispatcher input port.

If you use an IPV6 address in a network that only supports IPV4, the connection name is not
resolved. In a network which uses both IPV4 and IPV6, Connection name interacts with Local
Address to determine which IP stack is used. See [“Local Address (LOCLADDR)” on page 111| for
further information.

If the transport type is LU 6.2
For WebSphere MQ for IBM i, Windows systems, and UNIX systems, give the fully-qualified
name of the partner LU if the TPNAME and MODENAME are specified. For other versions or if
the TPNAME and MODENAME are blank, give the CPI-C side information object name for your
specific platform.

On z/0S, there are two forms in which to specify the value:

* Logical unit name

Reference 105



The logical unit information for the queue manager, comprising the logical unit name, TP
name, and optional mode name. This name can be specified in one of three forms:

Form Example

luname IGY12355
luname/TPname IGY12345/APING
luname/TPname/modename 1GY12345/APINGD/#INTER

For the first form, the TP name and mode name must be specified for the TPNAME and
MODENAME attributes; otherwise these attributes must be blank.

Note: For client-connection channels, only the first form is allowed.
* Symbolic name

The symbolic destination name for the logical unit information for the queue manager, as
defined in the side information data set. The TPNAME and MODENAME attributes must be
blank.

Note: For cluster-receiver channels, the side information is on the other queue managers in the
cluster. Alternatively, in this case it can be a name that a channel auto-definition exit can
resolve into the appropriate logical unit information for the local queue manager.

The specified or implied LU name can be that of a VTAM generic resources group.

If the transmission protocol is NetBIOS

CONNAME is the NetBIOS name defined on the remote machine.

If the transmission protocol is SPX

CONNAME is an SPX-style address consisting of a 4 byte network address, a 6 byte node
address and a 2 byte socket number. Enter these values in hexadecimal, with the network and
node addresses separated by a period and the socket number in brackets. For example:

CONNAME ('0a0b0c0Od.804abcde23al(5e86) ')

If the socket number is omitted, the default WebSphere MQ SPX socket number is used. The
default is X'5E86'.

This attribute is valid for channel types of:

I

Sender

Server

Requester

Client connection
Cluster sender

Cluster receiver

t is optional for server channels, unless the server channel is triggered, in which case it must specify a

connection name.

Note:

1.

A workaround to the 48 character limit might be one of the following suggestions:

* Set up your DNS servers so that you use, for example, host name of "myserver" instead of
"myserver.location.company.com", ensuring you can use the short host name.

e Use IP addresses.

2. The definition of transmission protocol is contained in [“Transport type (TRPTYPE)” on page 128

106 1BM WebSphere MQ: Reference




Convert message (CONVERT):

This attribute specifies that the message must be converted into the format required by the receiving
system before transmission.

Application message data is typically converted by the receiving application. However, if the remote
queue manager is on a platform that does not support data conversion, use this channel attribute to
specify that the message must be converted into the format required by the receiving system before
transmission.

The possible values are ‘yes' and ‘no'. If you specify ‘yes', the application data in the message is
converted before sending if you have specified one of the built-in format names, or a data conversion exit

is available for a user-defined format (See K [Writing data-conversion exits| (WebSphere MQ V7.1
Programming Guide)). If you specify ‘no’, the application data in the message is not converted before
sending.

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

* Cluster receiver

Data compression (COMPMSG):
This attribute is a list of message data compression techniques supported by the channel.

For sender, server, cluster-sender, cluster-receiver, and client-connection channels the values specified are
in order of preference. The first compression technique supported by the remote end of the channel is
used. The channels' mutually supported compression techniques are passed to the sending channel's
message exit where the compression technique used can be altered on a per message basis. Compression
alters the data passed to send and receive exits. See [“Header compression (COMPHDR)” on page 109| for
compression of the message header.

The possible values are:

NONE
No message data compression is performed. This value is the default value.

RLE Message data compression is performed using run-length encoding.

ZLIBFAST
Message data compression is performed using the zlib compression technique. A fast compression
time is preferred.

ZLIBHIGH
Message data compression is performed using the zlib compression technique. A high level of
compression is preferred.

ANY Allows the channel to support any compression technique that the queue manager supports.
Only supported for Receiver, Requester and Server-Connection channels.

This attribute is valid for all channel types.

Reference 107



Description (DESCR):
This attribute describes the channel definition and contains up to 64 bytes of text.

Note: The maximum number of characters is reduced if the system is using a double byte character set
(DBCS).

Use characters from the character set identified by the coded character set identifier (CCSID) for the
queue manager to ensure that the text is translated correctly if it is sent to another queue manager.

This attribute is valid for all channel types.
Disconnect interval (DISCINT):

This attribute is the length of time after which a channel closes down, if no message arrives during that
period.

This attribute is a time-out attribute, specified in seconds, for the server, cluster-sender, sender, and
cluster-receiver channels. The interval is measured from the point at which a batch ends, that is when the
batch size is reached or when the batch interval expires and the transmission queue becomes empty. If no
messages arrive on the transmission queue during the specified time interval, the channel closes down.
(The time is approximate.)

The close-down exchange of control data between the two ends of the channel includes an indication of
the reason for closing. This ensures that the corresponding end of the channel remains available to start
again.

You can specify any number of seconds from zero through 999 999 where a value of zero means no
disconnect; wait indefinitely.

For server-connection channels using the TCP protocol, the interval represents the client inactivity
disconnect value, specified in seconds. If a server-connection has received no communication from its
partner client for this duration, it terminates the connection. The server-connection inactivity interval
applies under the following circumstances:

* between WebSphere MQ API calls from a client
* between an MQGET call, only if:
— client application executes an MQGET with WaitInterval

— the DISCINT parameter is set on the server-connection channel and is smaller than the MQGET
WaitInterval

— the SHARECNYV parameter of the server-connection channel is greater than 0.

This attribute is valid for channel types of:
* Sender

* Server

* Server connection

* Cluster sender

* Cluster receiver
This attribute is not applicable for server-connection channels using protocols other than TCP.
Note: Performance is affected by the value specified for the disconnect interval.

A low value (for example a few seconds) can be detrimental to system performance by constantly starting
the channel. A large value (more than an hour) might mean that system resources are needlessly held up.

108 1BM WebSphere MQ: Reference



You can also specify a heartbeat interval, so that when there are no messages on the transmission queue,
the sending MCA sends a heartbeat flow to the receiving MCA, thus giving the receiving MCA an
opportunity to quiesce the channel without waiting for the disconnect interval to expire. For these two
values to work together effectively, the heartbeat interval value must be significantly lower than the
disconnect interval value.

The default DISCINT value is set to 100 minutes. However, a value of a few minutes is often a reasonable
value to use without impacting performance or keeping channels running for unnecessarily long periods
of time. If it is appropriate for your environment you can change this value, either on each individual
channel or through changing the value in the default channel definitions, for example
SYSTEM.DEESENDER.

For more information, see 4 |Stopping and quiescing channels| (WebSphere MQ V7.1 Installing Guide).

Disposition (QSGDISP):
This attribute specifies the disposition of the channel in a queue-sharing group. It is valid on z/OS only.

Values are:

OMGR
The channel is defined on the page set of the queue manager that executes the command. This
value is the default.

GROUP
The channel is defined in the shared repository. This value is allowed only if there is a shared
queue manager environment. When a channel is defined with QSGDISP(GROUP), the command
DEFINE CHANNEL(name) NOREPLACE QSGDISP(COPY) is generated automatically and sent
to all active queue managers to cause them to make local copies on page set 0. For queue
managers which are not active, or which join the queue sharing group at a later date, the
command is generated when the queue manager starts.

COPY The channel is defined on the page set of the queue manager that executes the command,
copying its definition from the QSGDISP(GROUP) channel of the same name. This value is
allowed only if there is a shared queue manager environment.

This attribute is valid for all channel types.

Header compression (COMPHDR):
This attribute is a list of header data compression techniques supported by the channel.

For sender, server, cluster-sender, cluster-receiver, and client-connection channels the values specified are
in order of preference with the first compression technique supported by the remote end of the channel
being used. The channels' mutually supported compression techniques are passed to the sending
channel's message exit where the compression technique used can be altered on a per message basis.
Compression alters the data passed to send and receive exits.

Possible values are:

NONE
No header data compression is performed. This value is the default value.

SYSTEM
Header data compression is performed.

This attribute is valid for all channel types.

Reference 109



Heartbeat interval (HBINT):

This attribute specifies the approximate time between heartbeat flows that are to be passed from a
sending message channel agent (MCA) when there are no messages on the transmission queue.

Heartbeat flows unblock the receiving MCA, which is waiting for messages to arrive or for the disconnect
interval to expire. When the receiving MCA is unblocked it can disconnect the channel without waiting
for the disconnect interval to expire. Heartbeat flows also free any storage buffers that have been
allocated for large messages and close any queues that have been left open at the receiving end of the
channel.

The value is in seconds and must be in the range 0 - 999 999. A value of zero means that no heartbeat
flows are to be sent. The default value is 300. To be most useful, the value must be significantly less than
the disconnect interval value.

With applications that use IBM WebSphere MQ classes for Java, JMS or .NET APIs, the HBINT value is
determined in one of the following ways:

* Either by the value on the SVRCONN channel that is used by the application.
* Or by the value on the CLNTCONN channel, if the application has been configured to use a CCDT.

For server-connection and client-connection channels, heartbeats can flow from both the server side as
well as the client side independently. If no data has been transferred across the channel for the heartbeat
interval, the client-connection MQI agent sends a heartbeat flow and the server-connection MQI agent
responds to it with another heartbeat flow. This happens irrespective of the state of the channel, for
example, irrespective of whether it is inactive while making an API call, or is inactive waiting for client
user input. The server-connection MQI agent is also capable of initiating a heartbeat to the client, again
irrespective of the state of the channel. To prevent both server-connection and client-connection MQI
agents heart beating to each other at the same time, the server heartbeat is flowed after no data has been
transferred across the channel for the heartbeat interval plus 5 seconds.

For server-connection and client-connection channels working in the channel mode before IBM
WebSphere MQ Version 7.0, heartbeats flow only when a server MCA is waiting for an MQGET
command with the WAIT option specified, which it has issued on behalf of a client application.

For more information about making MQI channels work in the two modes, see [SharingConversations|
(MQLONG)” on page 3631

Keepalive Interval (KAINT):
This attribute is used to specify a timeout value for a channel.

The Keepalive Interval attribute is a value passed to the communications stack specifying the Keepalive
timing for the channel. It allows you to specify a different keepalive value for each channel.

You can set the Keepalive Interval (KAINT) attribute for channels on a per-channel basis. On platforms
other than z/OS, you can access and modify the parameter, but it is only stored and forwarded; there is
no functional implementation of the parameter. If you need the functionality provided by the KAINT
parameter, use the Heartbeat Interval (HBINT) parameter, as described in [“Heartbeat interval (HBINT).”|

For this attribute to have any effect, TCP/IP keepalive must be enabled. On z/OS, you do enable
keepalive by issuing the ALTER QMGR TCPKEEP(YES) MQSC command. On other platforms, it occurs
when the KEEPALIVE=YES parameter is specified in the TCP stanza in the distributed queuing
configuration file, qm.ini, or through the IBM WebSphere MQ Explorer. Keepalive must also be switched
on within TCP/IP itself, using the TCP profile configuration data set.

110 1BM WebSphere MQ: Reference



The value indicates a time, in seconds, and must be in the range 0 - 99999. A Keepalive Interval value of
0 indicates that channel-specific Keepalive is not enabled for the channel and only the system-wide
Keepalive value set in TCP/IP is used. You can also set KAINT to a value of AUTO (this value is the
default). If KAINT is set to AUTO, the Keepalive value is based on the value of the negotiated heartbeat
interval (HBINT) as follows:

Table 29. Negotiated HBINT value and the corresponding KAINT value

Negotiated HBINT KAINT
>0 Negotiated HBINT + 60 seconds
0 0

This attribute is valid for all channel types.
The value is ignored for all channels that have a TransportType (TRPTYPE) other than TCP or SPX

Local Address (LOCLADDR):
This attribute specifies the local communications address for the channel.

This attribute only applies if the transport type (TRPTYPE) is TCP/IP. For all other transport types, it is
ignored.

When a LOCLADDR value is specified, a channel that is stopped and then restarted continues to use the
TCP/IP address specified in LOCLADDR. In recovery scenarios, this attribute might be useful when the
channel is communicating through a firewall. It is useful because it removes problems caused by the
channel restarting with the IP address of the TCP/IP stack to which it is connected. LOCLADDR can also
force a channel to use an IPv4 or IPv6 stack on a dual stack system, or a dual-mode stack on a single
stack system.

This attribute is valid for channel types of:
* Sender

* Server

* Requester

* Client connection

* Cluster sender

* Cluster receiver

When LOCLADDR includes a network address, the address must be a network addresses belonging to a
network interface on the system where the channel is run. For example, when defining a sender channel
on queue manager ALPHA to queue manager BETA with the following MSQC command:

DEFINE CHANNEL(TO.BETA) CHLTYPE(SDR) CONNAME(192.0.2.0) XMITQ(BETA) LOCLADDR(192.0.2.1)

The LOCLADDR address is the IPv4 address 192.0.2.1. This sender channel runs on the system of queue
manager ALPHA, so the IPv4 address must belong to one of the network interfaces its system.

The value is the optional IP address, and optional port or port range used for outbound TCP/IP
communications. The format for this information is as follows:

Reference 111



[Table 75 on page 961|shows how the LOCLADDR parameter can be used:
LOCLADDR( [ip-addr] [(Tow-port[,high-port])]/, [ip-addr][(low-port[,high-port])]])

The maximum length of LOCLADDR, including multiple addresses, is MQ_LOCAL_ADDRESS_LENGTH.
If you omit LOCLADDR, a local address is automatically allocated.

All the parameters are optional. Omitting the ip-addr part of the address is useful to enable the configuration of a
fixed port number for an IP firewall. Omitting the port number is useful to select a particular network adapter
without having the identify a unique local port number. The TCP/IP stack generates a unique port number.

Specify [, [ip-addr][(low-port[, high-port])]] multiple times for each additional local address. Use multiple local
addresses if you want to specify a specific subset of local network adapters. You can also use [, [ip-addr][(low-
port[,high-port])]] to represent a particular local network address on different servers that are part of a
multi-instance queue manager configuration.

ip-addr
ip-addr is specified in one of three forms:

IPv4 dotted decimal
For example 192.0.2.1

IPv6 hexadecimal notation
For example 2001:DB8:0:0:0:0:0:0

Alphanumeric host name form
For example WWW.EXAMPLE.COM

Tow-port and high-port
Tow-port and high-port are port numbers enclosed in parentheses.

Table 30. Examples of how the LOCLADDR parameter can be used

LOCLADDR Meaning

9.20.4.98 Channel binds to this address locally

9.20.4.98, 9.20.4.99 Channel binds to either IP address. The address might be two network adapters on
one server, or a different network adapter on two different servers in a multi-instance
configuration.

9.20.4.98(1000) Channel binds to this address and port 1000 locally

9.20.4.98(1000,2000) Channel binds to this address and uses a port in the range 1000 - 2000 locally

(1000) Channel binds to port 1000 locally

(1000,2000) Channel binds to port in range 1000 - 2000 locally

When a channel is started the values specified for connection name (CONNAME) and local address
(LOCLADDR) determine which IP stack is used for communication. The IP stack used is determined as
follows:

* If the system has only an IPv4 stack configured, the IPv4 stack is always used. If a local address
(LOCLADDR) or connection name (CONNAME) is specified as an IPv6 network address, an error is
generated and the channel fails to start.

* If the system has only an IPv6 stack configured, the IPv6 stack is always used. If a local address
(LOCLADDR) is specified as an IPv4 network address, an error is generated and the channel fails to
start. On platforms supporting IPv6 mapped addressing, if a connection name (CONNAME) is
specified as an IPv4 network address, the address is mapped to an IPv6 address. For example,

XXX XXX . XXX. XXX is mapped to ::ffff:xxx.xxx.xxx.xxx. The use of mapped addresses might require
protocol translators. Avoid the use of mapped addresses where possible.

* If a local address (LOCLADDR) is specified as an IP address for a channel, the stack for that IP address
is used. If the local address (LOCLADDR) is specified as a host name resolving to both IPv4 and IPv6

112 1BM WebSphere MQ: Reference



addresses, the connection name (CONNAME) determines which of the stacks is used. If both the local
address (LOCLADDR) and connection name (CONNAME) are specified as host names resolving to
both IPv4 and IPv6 addresses, the stack used is determined by the queue manager attribute IPADDRV.

* If the system has dual IPv4 and IPv6 stacks configured and a local address (LOCLADDR) is not
specified for a channel, the connection name (CONNAME) specified for the channel determines which
IP stack to use. If the connection name (CONNAME) is specified as a host name resolving to both IPv4
and IPv6 addresses, the stack used is determined by the queue manager attribute IPADDRV.

On distributed platforms, it is possible to set a default local address value that will be used for all sender
channels that do not have a local address defined. The default value is defined by setting the
MQ_LCLADDR environment variable prior to starting the queue manager. The format of the value
matches that of MQSC attribute LOCLADDR.

Local addresses with cluster sender channels

Cluster sender channels always inherit the configuration of the corresponding cluster receiver channel as
defined on the target queue manager. This is true even if there is a locally defined cluster sender channel
of the same name, in which case the manual definition is only used for initial communication.

For this reason, it is not possible to depend on the LOCLADDR defined in the cluster receiver channel as
it is likely that the IP address is not owned by the system where the cluster senders are created. For this
reason the LOCLADDR on the cluster receiver should not be used unless there is a reason to restrict only
the ports for all potential cluster senders and it is known that those ports are available on all systems
where a cluster sender channel may be created.

If a cluster must use LOCLADDR to get the outbound communication channels to bind to a specific IP
address, either use a [Channel Auto-Definition Exit} or use the default LOCLADDR for the queue manager
when possible. When using a channel exit, it forces the LOCLADDR value from the exit into any of the
automatically defined CLUSSDR channels.

If using a non-default LOCLADDR for cluster sender channels through the use of an exit or a default
value, any matching manually defined cluster sender channel, for example to a full repository queue
manager, must also have the LOCLADDR value set to enable initial communication over the channel.

Note: If the operating system returns a bind error for the port supplied in LOCLADDR (or all ports, if a
port range is supplied), the channel does not start; the system issues an error message.

Related concepts:

|[Auto-definition of cluster channels|

Long retry count (LONGRTY):

This attribute specifies the maximum number of times that the channel is to try allocating a session to its
partner.

If the initial allocation attempt fails, the short retry count number is decremented and the channel
retries the remaining number of times. If it still fails, it retries a long retry count number of times with
an interval of long retry interval between each try. If it is still unsuccessful, the channel closes down.
The channel must then be restarted with a command (it is not started automatically by the channel
initiator).

(Retry is not attempted if the cause of failure is such that a retry is not likely to be successful.)

If the channel initiator (on z/OS) or the channel (on distributed platforms) is stopped while the channel
is retrying, the short retry count and long retry count are reset when the channel initiator or the channel is
restarted, or when a message is successfully put at the sender channel. However, if the channel initiator

Reference 113



(on z/0OS) or queue manager (on distributed platforms) is shut down and restarted, the short retry count
and long retry count are not reset. The channel retains the retry count values it had before the queue
manager restart or the message being put.

Note: For IBM i, UNIX systems, and Windows systems:

1. When a channel goes from RETRYING state to RUNNING state, the short retry count and long retry
count are not reset immediately. They are reset only once the first message flows across the channel
successfully after the channel went into RUNNING state, that is; once the local channel confirms the
number of messages sent to the other end.

2. The short retry count and long retry count are reset when the channel is restarted.
The long retry count attribute can be set from zero through 999 999 999.

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

* Cluster receiver

Note: For IBM i, UNIX systems, and Windows systems, in order for retry to be attempted a channel
initiator must be running. The channel initiator must be monitoring the initiation queue specified in the
definition of the transmission queue that the channel is using.

Long retry interval (LONGTMR):

This attribute is the approximate interval in seconds that the channel is to wait before retrying to
establish connection, during the long retry mode.

The interval between retries can be extended if the channel has to wait to become active.

The channel tries to connect long retry count number of times at this long interval, after trying the
short retry count number of times at the short retry interval.

This attribute can be set from zero through 999 999.

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

¢ Cluster receiver
LU 6.2 mode name (MODENAME):

This attribute is for use with LU 6.2 connections. It gives extra definition for the session characteristics of
the connection when a communication session allocation is performed.

When using side information for SNA communications, the mode name is defined in the CPI-C
Communications Side Object or APPC side information, and this attribute must be left blank; otherwise,
it must be set to the SNA mode name.

The name must be one to eight alphanumeric characters long.

This attribute is valid for channel types of:

114 1BM WebSphere MQ: Reference



* Sender

* Server

* Requester

* Client connection
* Cluster sender

* Cluster receiver

It is not valid for receiver or server-connection channels.
LU 6.2 transaction program name (TPNAME):

This attribute is for use with LU 6.2 connections. It is the name, or generic name, of the transaction
program (MCA) to be run at the far end of the link.

When using side information for SNA communications, the transaction program name is defined in the
CPI-C Communications Side Object or APPC side information and this attribute must be left blank.
Otherwise, this name is required by sender channels and requester channels.

The name can be up to 64 characters long.
The name must be set to the SNA transaction program name, unless the CONNAME contains a

side-object name in which case it must be set to blanks. The actual name is taken instead from the CPI-C
Communications Side Object, or the APPC side information data set.

This information is set in different ways on different platforms; see [Connecting applications using|
distributed queuing| (WebSphere MQ V7.1 Installing Guide) for more information about setting up
communication for your platform.

This attribute is valid for channel types of:
* Sender

* Server

* Requester

* Client connection

* Cluster sender

e Cluster receiver
Maximum instances (MAXINST):

This attribute specifies the maximum number of simultaneous instances of a server-connection channel
that can be started.

This attribute can be set from zero through 999 999 999. A value of zero indicates that no client
connections are allowed on this channel. The default value is 999 999 999.

The Client Attachment feature (CAF) is an option of WebSphere MQ for z/OS that supports the
attachment of clients to z/OS. If you do not have the Client Attachment feature (CAF) installed, the
attribute can be set from zero to five only on the SYSTEM.ADMIN.SVRCONN channel. A value greater
than five is interpreted as zero without the CAF installed.

If the value is reduced below the number of instances of the server-connection channel that are currently

running, then the running channels are not affected. However, new instances are not able to start until
sufficient existing ones have ceased to run.

Reference 115



This attribute is valid for server-connection channels only.
Maximum instances per client (MAXINSTC):

This attribute specifies the maximum number of simultaneous instances of a server-connection channel
that can be started from a single client.

This attribute can be set from zero through 999 999 999. A value of zero indicates that no client
connections are allowed on this channel. The default value is 999 999 999.

The Client Attachment feature (CAF) is an option of WebSphere MQ for z/OS that supports the
attachment of clients to z/OS. If you do not have the Client Attachment feature (CAF) installed, the
attribute can be set from zero to five only on the SYSTEM.ADMIN.SVRCONN channel. A value greater
than five is interpreted as zero without the CAF installed.

If the value is reduced below the number of instances of the server-connection channel that are currently
running from individual clients, then the running channels are not affected. However, new instances from
those clients are not able to start until sufficient existing ones have ceased to run.

This attribute is valid for server-connection channels only.
Maximum message length (MAXMSGL):
This attribute specifies the maximum length of a message that can be transmitted on the channel.

On WebSphere MQ for IBM i, UNIX systems, and Windows systems, specify a value greater than or
equal to zero, and less than or equal to the maximum message length for the queue manager. See the

MAXMSGL parameter of the ALTER QMGR command in [Script (MQSC) Commands| (WebSphere MQ
V7.1 Administering Guide) for more information. On WebSphere MQ for z/OS, specify a value greater than
or equal to zero, and less than or equal to 104 857 600 bytes.

Because various implementations of WebSphere MQ systems exist on different platforms, the size
available for message processing might be limited in some applications. This number must reflect a size
that your system can handle without stress. When a channel starts, the lower of the two numbers at each
end of the channel is taken.

Note:

1. You can use a maximum message size of 0 which is taken to mean that the size is to be set to the
local queue manager maximum value.

This attribute is valid for all channel types.
Message channel agent name (MCANAME):
This attribute is reserved and if specified must only be set to blanks.

Its maximum length is 20 characters.

116 1BM WebSphere MQ: Reference



Message channel agent type (MCATYPE):
This attribute can specify the message channel agent as a process or a thread.
On WebSphere MQ for z/0OS, it is supported only for channels with a channel type of cluster-receiver.

Advantages of running as a process include:

* Isolation for each channel providing greater integrity
* Job authority specific for each channel

* Control over job scheduling

Advantages of threads include:

* Much reduced use of storage

 Easier configuration by typing on the command line

* Faster execution - it is quicker to start a thread than to instruct the operating system to start a process

For channel types of sender, server, and requester, the default is “process'. For channel types of
cluster-sender and cluster-receiver, the default is ‘thread'. These defaults can change during your
installation.

If you specify “process' on the channel definition, a RUNMQCHL process is started. If you specify
‘thread’, the MCA runs on a thread of the AMQRMPPA process, or of the RUNMQCHI process if
MQNOREMPOOL is specified. On the machine that receives the inbound allocates, the MCA runs as a
thread if you use RUNMSLSR. It runs as a process if you use inetd.

On WebSphere MQ for z/OS, this attribute is supported only for channels with a channel type of
cluster-receiver. On other platforms, it is valid for channel types of:

* Sender

* Server

* Requester

* Cluster sender
* Cluster receiver

Message channel agent user identifier (MCAUSER):

This attribute is the user identifier (a string) to be used by the MCA for authorization to access IBM
WebSphere MQ resources.

Note: An alternative way of providing a user ID for a channel to run under is to use channel
authentication records. With channel authentication records, different connections can use the same
channel while using different credentials. If both MCAUSER on the channel is set and channel
authentication records are used to apply to the same channel, the channel authentication records take
precedence. The MCAUSER on the channel definition is only used if the channel authentication record
uses USERSRC(CHANNEL).

This authorization includes (if PUT authority is DEF) putting the message to the destination queue for
receiver or requester channels.

On IBM WebSphere MQ for Windows, the user identifier can be domain-qualified by using the format,

user@domain, where the domain must be either the Windows systems domain of the local system, or a
trusted domain.

Reference 117



If this attribute is blank, the MCA uses its default user identifier. For more information, see ["DEFINE
CHANNEL” on page 946

This attribute is valid for channel types of:
* Receiver

* Requester

* Server connection

* Cluster receiver

Related concepts:

[Channel authentication records| (WebSphere MQ V7.1 Administering Guide)

Message exit name (MSGEXIT):
This attribute specifies the name of the user exit program to be run by the channel message exit.

This attribute can be a list of names of programs that are to be run in succession. Leave blank, if no
channel message exit is in effect.

The format and maximum length of this attribute depend on the platform, as for [‘Receive exit name]
(RCVEXIT)” on page 123

This attribute is valid for channel types of:
* Sender

* Server

* Receiver

* Requester

* Cluster sender

* Cluster receiver

Message exit user data (MSGDATA):

This attribute specifies user data that is passed to the channel message exits.

You can run a sequence of message exits. The limitations on the user data length and an example of how

to specify MSGDATA for more than one exit are as shown for RCVDATA. See [“Receive exit user datal
(RCVDATA)” on page 124

This attribute is valid for channel types of:
* Sender

* Server

* Receiver

* Requester

* Cluster sender

* Cluster receiver

118 1BM WebSphere MQ: Reference



Message-retry exit name (MREXIT):
This attribute specifies the name of the user exit program to be run by the message-retry user exit.

Leave blank if no message-retry exit program is in effect.

The format and maximum length of the name depend on the platform, as for [“Receive exit name|
(RCVEXIT)” on page 123|However, there can only be one message-retry exit specified

This attribute is valid for channel types of:
* Receiver

* Requester

* Cluster receiver

Message-retry exit user data (MRDATA):
This attribute specifies data passed to the channel message-retry exit when it is called.

This attribute is valid for channel types of:
* Receiver

* Requester

* Cluster receiver

Message retry count (MRRTY):

This attribute specifies the number of times the channel tries to redeliver the message.

This attribute controls the action of the MCA only if the message-retry exit name is blank. If the exit
name is not blank, the value of MRRTY is passed to the exit, but the number of attempts made (if any) is

controlled by the exit, and not by this attribute.

The value must be in the range 0 - 999 999 999. A value of zero means that no additional attempts are
made. The default is 10.

This attribute is valid for channel types of:
* Receiver

* Requester

* Cluster receiver

Message retry interval (MRTMR):

This attribute specifies the minimum interval of time that must pass before the channel can retry the
MQPUT operation.

This time interval is in milliseconds.

This attribute controls the action of the MCA only if the message-retry exit name is blank. If the exit
name is not blank, the value of MRTMR is passed to the exit for use by the exit, but the retry interval is
controlled by the exit, and not by this attribute.

The value must be in the range 0 - 999 999 999. A value of zero means that the retry is performed as
soon as possible (if the value of MRRTY is greater than zero). The default is 1000.

This attribute is valid for the following channel types:

Reference 119



Receiver
Requester
Cluster receiver

Monitoring (MONCHL):

This attribute controls the collection of online Monitoring data.

Possible values are:

OMGR

The collection of Online Monitoring Data is inherited from the setting of the MONCHL attribute
in the queue manager object. This value is the default value.

OFF  Online Monitoring Data collection for this channel is switched off.

LOW A low ratio of data collection with a minimal effect on performance. However, the monitoring

results shown might not be up to date.

MEDIUM

A moderate ratio of data collection with limited effect on the performance of the system.

HIGH A high ratio of data collection with the possibility of an effect on performance. However, the

monitoring results shown are the most current.

This attribute is valid for channel types of:

Sender

Server

Receiver
Requester

Server connection
Cluster sender
Cluster receiver

For more information about monitoring data, see k4 [Displaying queue and channel monitoring datal
(WebSphere MQ V7.1 Administering Guide).

Network-connection priority (NETPRTY):

This attribute specifies the priority for the network connection.

Distributed queuing chooses the path with the highest priority if there are multiple paths available. The
value must be in the range 0 through 9; 0 is the lowest priority.

This attribute is valid for channel types of:

Cluster receiver

120 1BM WebSphere MQ: Reference



Nonpersistent message speed (NPMSPEED):
This attribute specifies the speed at which nonpersistent messages are to be sent.

Possible values are:

NORMAL
Nonpersistent messages on a channel are transferred within transactions.

FAST Nonpersistent messages on a channel are not transferred within transactions.
The default is FAST. The advantage of this is that nonpersistent messages become available for retrieval
far more quickly. The disadvantage is that because they are not part of a transaction, messages might be

lost if there is a transmission failure or if the channel stops when the messages are in transit. See
honpersistent messages|

This attribute is valid for channel types of:
* Sender

* Server

* Receiver

* Requester

* Cluster sender

e Cluster receiver
Password (PASSWORD):

This attribute specifies a password that can be used by the MCA when attempting to initiate a secure LU
6.2 session with a remote MCA.

You can specify a password of maximum length 12 characters, although only the first 10 characters are
used.

It is valid for channel types of sender, server, requester, or client-connection.

On WebSphere MQ for z/OS, this attribute is valid only for client connection channels. On other
platforms, it is valid for channel types of:

* Sender

* Server

* Requester

* Client connection

* Cluster sender
PUT authority (PUTAUT):
This attribute specifies the type of security processing to be carried out by the MCA.

This attribute is valid for channel types of:
* Receiver

* Requester

* Server connection (z/OS only)

* Cluster receiver

Use this attribute to choose the type of security processing to be carried out by the MCA when executing:

Reference 121



* An MQPUT command to the destination queue (for message channels), or
* An MQI call (for MQI channels).

You can choose one of the following:

Process security, also called default authority (DEF)
The default user ID is used.

On platforms other than z/OS, the user ID used to check open authority on the queue is that of
the process or user running the MCA at the receiving end of the message channel.

On z/0S, both the user ID received from the network, and the user ID derived from [MCAUSE
might be used, depending on the number of user IDs that are to be checked.

The queues are opened with this user ID and the open option MQOO_SET_ALL_CONTEXT.

Context security (CTX)
The user ID from the context information associated with the message is used as an alternate user
ID.

The UserlIdentifier in the message descriptor is moved into the AlternateUserlId field in the
object descriptor. The queue is opened with the open options MQOO_SET_ALL_CONTEXT and
MQOO_ALTERNATE_USER_AUTHORITY.

On platforms other than z/OS, the user ID used to check open authority on the queue for
MQOO_SET_ALL_CONTEXT and MQOO_ALTERNATE_USER_AUTHORITY is that of the
process or user running the MCA at the receiving end of the message channel. The user ID used
to check open authority on the queue for MQOO_OUTPUT is the UserlIdentifier in the message
descriptor.

On z/0S, the user ID received from the network or that derived from [MCAUSER|might be used,
as well as the user ID from the context information in the message descriptor, depending on the
number of user IDs that are to be checked.

Context security (CTX) is not supported on server-connection channels.
Only Message Channel Agent security (ONLYMCA)

The user ID derived from [MCAUSER|is used.

Queues are opened with the open option MQOO_SET_ALL_CONTEXT.

This value only applies to z/OS.

Alternate Message Channel Agent security (ALTMCA)
The user ID from the context information (the UserIdentifier field) in the message descriptor
might be used, as well as the user ID derived from depending on the number of user
IDs that are to be checked.

This value only applies to z/OS.

Further details about context fields and open options can be found in k= |[Controlling context information|
(WebSphere MQ V7.1 Programming Guide).

More information about security can be found in:

. (WebSphere MQ V7.1 Administering Guide)

. [Setting up security on Windows, UNIX and Linux systems| (WebSphere MQ V7.1 Administering
Guide) for WebSphere MQ UNIX systems and Windows systems,

. [Setting up security on IBM il (WebSphere MQ V7.1 Administering Guide) for WebSphere MQ for IBM i

. [Setting up security on z/OS| (WebSphere MQ V7.1 Administering Guide) for WebSphere MQ for z/OS

122 1BM WebSphere MQ: Reference



Note: On WebSphere MQ for z/OS, it is possible for two user Ids to be checked. Specific details of user

Ids used by the channel initiator on z/OS can be found in k4 [The channel initiator on z/OS| (WebSphere
MQ V7.1 Product Overview Guide) .

Queue manager name (QMNAME):

This attribute specifies the name of the queue manager or queue manager group to which a WebSphere
MQ MQI client application can request connection.

This attribute is valid for channel types of:
* Client connection

Receive exit name (RCVEXIT):
This attribute specifies the name of the user exit program to be run by the channel receive user exit.

This attribute can be a list of names of programs that are to be run in succession. Leave blank, if no
channel receive user exit is in effect.

The format and maximum length of this attribute depend on the platform:

* On z/0S it is a load module name, maximum length 8 characters, except for client-connection channels
where the maximum length is 128 characters.

¢ On IBM i, it is of the form:
Libname /progname

when specified in CL commands.
When specified in WebSphere MQ Commands (MQSC) it has the form:
progname libname

where progname occupies the first 10 characters, and libname the second 10 characters (both
blank-padded to the right if necessary). The maximum length of the string is 20 characters.

¢ On Windows, it is of the form:
dllname (functionname)

where dllname is specified without the suffix “.DLL”. The maximum length of the string is 40
characters.

* On UNIX systems, it is of the form:
Libraryname (functionname)

The maximum length of the string is 40 characters.

During cluster sender channel auto-definition on z/OS, channel exit names are converted to z/OS format.
If you want to control how exit names are converted, you can write a channel auto-definition exit. For

more information, see k& [Channel auto-definition exit program|

You can specify a list of receive, send, or message exit program names. The names must be separated by
a comma, a space, or both. For example:
RCVEXIT(exitl exit2)

MSGEXIT (exitl,exit2)
SENDEXIT(exitl, exit2)

Reference 123



The total length of the string of exit names and strings of user data for a particular type of exit is limited
to 500 characters. In WebSphere MQ for IBM i, you can list up to 10 exit names. In WebSphere MQ for
z/0S, you can list up to eight exit names.

This attribute is valid for all channel types.
Receive exit user data (RCVDATA):
This attribute specifies user data that is passed to the receive exit.

You can run a sequence of receive exits. The string of user data for a series of exits must be separated by
a comma, spaces, or both. For example:

RCVDATA(exitl data exit2 data)
MSGDATA(exitl data,exit2_data)
SENDDATA (exitl_data, exit2_data)

In WebSphere MQ for UNIX systems, and Windows systems, the length of the string of exit names and
strings of user data is limited to 500 characters. In WebSphere MQ for IBM i, you can specify up to 10
exit names and the length of user data for each is limited to 32 characters. In WebSphere MQ for z/OS,
you can specify up to eight strings of user data each of length 32 characters.

This attribute is valid for all channel types.

Security exit name (SCYEXIT):

This attribute specifies the name of the exit program to be run by the channel security exit.

Leave blank if no channel security exit is in effect.

The format and maximum length of the name depend on the platform, as for [‘Receive exit name]
(RCVEXIT)” on page 123 However, you can only specify one security exit.

This attribute is valid for all channel types.

Security exit user data (SCYDATA):

This attribute specifies user data that is passed to the security exit.

The maximum length is 32 characters.

This attribute is valid for all channel types.

Send exit name (SENDEXIT):

This attribute specifies the name of the exit program to be run by the channel send exit.

This attribute can be a list of names of programs that are to be run in sequence. Leave blank if no
channel send exit is in effect.

The format and maximum length of this attribute depend on the platform, as for [“Receive exit name]
(RCVEXIT)” on page 123

This attribute is valid for all channel types.

124 1BM WebSphere MQ: Reference



Send exit user data (SENDDATA):
This attribute specifies user data that is passed to the send exit.
You can run a sequence of send exits. The limitations on the user data length and an example of how to

specify SENDDATA for more than one exit, are as shown for RCVDATA. See [“Receive exit user datal
(RCVDATA)” on page 124

This attribute is valid for all channel types.
Sequence number wrap (SEQWRAP):
This attribute specifies the highest number the message sequence number reaches before it restarts at 1.

The value of the number must be high enough to avoid a number being reissued while it is still being
used by an earlier message. The two ends of a channel must have the same sequence number wrap value
when a channel starts; otherwise, an error occurs.

The value can be set from 100 through 999 999 999.

This attribute is valid for channel types of:
* Sender

* Server

* Receiver

* Requester

* Cluster sender

* Cluster receiver

Short retry count (SHORTRTY):

This attribute specifies the maximum number of times that the channel is to try allocating a session to its
partner.

If the initial allocation attempt fails, the short retry count is decremented and the channel retries the
remaining number of times with an interval, defined in the short retry interval attribute, between each
attempt. If it still fails, it retries long retry count number of times with an interval of long retry
interval between each attempt. If it is still unsuccessful, the channel terminates.

(Retry is not attempted if the cause of failure is such that a retry is not likely to be successful.)

If the channel initiator (on z/OS) or the channel (on distributed platforms) is stopped while the channel
is retrying, the short retry count and long retry count are reset when the channel initiator or the channel is
restarted, or when a message is successfully put at the sender channel. However, if the channel initiator
(on z/0S) or queue manager (on distributed platforms) is shut down and restarted, the short retry count
and long retry count are not reset. The channel retains the retry count values it had before the queue
manager restart or the message being put.

Note: For IBM i, UNIX systems, and Windows systems:

1. When a channel goes from RETRYING state to RUNNING state, the short retry count and long retry
count are not reset immediately. They are reset only once the first message flows across the channel
successfully after the channel went into RUNNING state, that is; once the local channel confirms the
number of messages sent to the other end.

2. The short retry count and long retry count are reset when the channel is restarted.

Reference 125



This attribute can be set from zero through 999 999 999.

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

¢ Cluster receiver

Note: On IBM i, UNIX systems, and Windows systems, in order for retry to be attempted a channel
initiator must be running. The channel initiator must be monitoring the initiation queue specified in the
definition of the transmission queue that the channel is using.

Short retry interval (SHORTTMR):

This attribute specifies the approximate interval in seconds that the channel is to wait before retrying to
establish connection, during the short retry mode.

The interval between retries might be extended if the channel has to wait to become active.
This attribute can be set from zero through 999 999.

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

* Cluster receiver

SSL Cipher Specification (SSLCIPH):

This attribute specifies a single CipherSpec for an SSL connection.

Both ends of a WebSphere MQ SSL channel definition must include the SSLCIPH attribute and its values
must specify the same CipherSpec on both ends of the channel. The value is a string with a maximum
length of 32 characters.

SSLCIPH is an optional attribute.

It is valid only for channels with a transport type (TRPTYPE) of TCP. If the TRPTYPE is not TCP, the data
is ignored and no error message is issued.

For more information about SSLCIPH, see [WebSphere MQ Script (MQSC) Command Reference| and
|WebSphere MQ Security| (WebSphere MQ V7.1 Administering Guide).

SSL Client Authentication (SSLCAUTH):

This attribute specifies whether the channel needs to receive and authenticate an SSL certificate from an
SSL client.

Possible values are:

OPTIONAL
If the peer SSL client sends a certificate, the certificate is processed as normal but authentication
does not fail if no certificate is sent.

126 1BM WebSphere MQ: Reference



REQUIRED
If the SSL client does not send a certificate, authentication fails.

The default value is REQUIRED.

You can specify a value for SSLCAUTH on a non-SSL channel definition, one on which SSLCIPH is
missing or blank. You can use this to temporarily disable SSL for debugging without first having to clear
and then reinput the SSL parameters.

SSLCAUTH is an optional attribute.

This attribute is valid on all channel types that can ever receive a channel initiation flow, except for
sender channels.

This attribute is valid for channel types of:
¢ Server

* Receiver

* Requester

* Server connection

e Cluster receiver

For more information about SSLCAUTH, see [WebSphere MQ Script (MQSC) Command Reference| and

[WebSphere MQ Security| (WebSphere MQ V7.1 Administering Guide).
SSL Peer (SSLPEEK):

This attribute is used to check the Distinguished Name (DN) of the certificate from the peer queue
manager or client at the other end of a IBM WebSphere MQ channel.

Note: An alternative way of restricting connections into channels by matching against the SSL or TLS
Subject Distinguished Name, is to use channel authentication records. With channel authentication
records, different SSL or TLS Subject Distinguished Name patterns can be applied to the same channel. If
both SSLPEER on the channel and a channel authentication record are used to apply to the same channel,
the inbound certificate must match both patterns in order to connect.

If the DN received from the peer does not match the SSLPEER value, the channel does not start.

SSLPEER is an optional attribute. If a value is not specified, the peer DN is not checked when the
channel is started.

On z/0S, the maximum length of the attribute is 256 bytes. On all other platforms, it is 1024 bytes.

On z/0S, the attribute values used are not checked. If you enter incorrect values, the channel fails at
startup, and error messages are written to the error log at both ends of the channel. A Channel SSL Error
event is also generated at both ends of the channel. On platforms that support SSLPEER, other than
z/0S, the validity of the string is checked when it is first entered.

You can specify a value for SSLPEER on a non-SSL channel definition, one on which SSLCIPH is missing
or blank. You can use this to temporarily disable SSL for debugging without having to clear and later
reinput the SSL parameters.

For more information about using SSLPEER, see [WebSphere MQ Script (MQSC) Command Reference] and
[WebSphere MQ Security| (WebSphere MQ V7.1 Administering Guide).

Reference 127



This attribute is valid for all channel types.
Related concepts:

[Channel authentication records| (WebSphere MQ V7.1 Administering Guide)

Transmission queue name (XMITQ):

This attribute specifies the name of the transmission queue from which messages are retrieved.

This attribute is required for channels of type sender or server, it is not valid for other channel types.
Provide the name of the transmission queue to be associated with this sender or server channel, that
corresponds to the queue manager at the far side of the channel. You can give the transmission queue the

same name as the queue manager at the remote end.

This attribute is valid for channel types of:
* Sender
* Server

Transport type (TRPTYPE):
This attribute specifies the transport type to be used.

The possible values are:

LU62 LU 6.2

TCP TCP/IP

NETBIOS NetBIOS

SPX SPX

Notes:

1. For use on Windows. Can also be used on z/OS for defining client-connection channels for use on Windows.

This attribute is valid for all channel types.
Use Dead-Letter Queue (USEDLQ):

This attribute determines whether the dead-letter queue (or undelivered message queue) is used when
messages cannot be delivered by channels.

Possible values are:

NO  Messages that cannot be delivered by a channel are treated as a failure. The channel either
discards these messages, or the channel ends, in accordance with the setting of NPMSPEED.

YES (default)
If the queue manager DEADQ attribute provides the name of a dead-letter queue, then it is used,
otherwise the behaviour is as for NO.

128 1BM WebSphere MQ: Reference



User ID (USERID):

This attribute specifies the user ID to be used by the MCA when attempting to initiate a secure SNA
session with a remote MCA.

You can specify a task user identifier of 20 characters.
It is valid for channel types of sender, server, requester, or client-connection.
This attribute does not apply to WebSphere MQ for z/OS except for client-connection channels.

On the receiving end, if passwords are kept in encrypted format and the LU 6.2 software is using a
different encryption method, an attempt to start the channel fails with invalid security details. You can
avoid this failure by modifying the receiving SNA configuration to either:

* Turn off password substitution, or
* Define a security user ID and password.

On WebSphere MQ for z/OS, this attribute is valid only for client connection channels. On other
platforms, it is valid for channel types of:

* Sender

* Server

* Requester

* Client connection

e Cluster sender

WebSphere MQ cluster commands

The WebSphere MQ runmgsc commands have special attributes and parameters that apply to clusters.
There are other administrative interfaces you can use to manager clusters.

The MQSC commands are shown as they would be entered by the system administrator at the command
console. Remember that you do not have to issue the commands in this way. There are a number of other
methods, depending on your platform; for example:

¢ On WebSphere MQ for IBM i, you run MQSC commands interactively from option 26 of WRKMQM. You
can also use CL commands or you can store MQSC commands in a file and use the STRMQMMQSC CL
command.

* On z/0S you can use the COMMAND function of the CSQUTIL utility, the operations and control panels or
you can use the z/OS console.

* On all other platforms, you can store the commands in a file and use runmgsc.

In a MQSC command, a cluster name, specified using the CLUSTER attribute, can be up to 48 characters
long.

A list of cluster names, specified using the CLUSNL attribute, can contain up to 256 names. To create a
cluster namelist, use the DEFINE NAMELIST command.

WebSphere MQ Explorer

The Explorer GUI can administer a cluster with repository queue managers on WebSphere MQ for z/OS
Version 6 or later. You do not need to nominate an additional repository on a separate system. For earlier
versions of WebSphere MQ for z/OS, the WebSphere MQ Explorer cannot administer a cluster with
repository queue managers. You must therefore nominate an additional repository on a system that the
WebSphere MQ Explorer can administer.

Reference 129



On WebSphere MQ for Windows and WebSphere MQ for Linux, you can also use WebSphere MQ
Explorer to work with clusters. You can also use the stand-alone WebSphere MQ Explorer client.

Using the WebSphere MQ Explorer you can view cluster queues and inquire about the status of
cluster-sender and cluster-receiver channels. WebSphere MQ Explorer includes two wizards, which you
can use to guide you through the following tasks:

* Create a cluster
* Join an independent queue manager to a cluster
Programmable command formats (PCF)

Table 31. PCF equivalents of MQSC commands specifically to work with clusters

runmgsc command PCF equivalent

DISPLAY CLUSQMGR MQCMD_INQUIRE_CLUSTER_Q_MGR
SUSPEND QMGR MQCMD_SUSPEND_Q_MGR_CLUSTER
RESUME QMGR MQCMD_RESUME_Q_MGR_CLUSTER
REFRESH CLUSTER MQCMD_REFRESH_CLUSTER
RESET CLUSTER MQCMD_RESET_CLUSTER

Related concepts:

[Clustering: Using REFRESH CLUSTER best practices)

Queue-manager definition commands
Cluster attributes that can be specified on queue manager definition commands.

To specify that a queue manager holds a full repository for a cluster, use the ALTER QMGR command
specifying the attribute REPOS (clustername). To specify a list of several cluster names, define a cluster
namelist and then use the attribute REPOSNL (namelist) on the ALTER QMGR command:

DEFINE NAMELIST(CLUSTERLIST)
DESCR('List of clusters whose repositories I host')
NAMES (CLUS1, CLUS2, CLUS3)

ALTER QMGR REPOSNL (CLUSTERLIST)

You can provide additional cluster attributes on the ALTER QMGR command

CLWLEXIT (name)
Specifies the name of a user exit to be called when a message is put to a cluster queue.

CLWLDATA(data)
Specifies the data to be passed to the cluster workload user exit.

CLWLLEN(Iength)
Specifies the maximum amount of message data to be passed to the cluster workload user exit

CLWLMRUC (channels)
Specifies the maximum number of outbound cluster channels.

CLWLMRUC is a local queue manager attribute that is not propagated around the cluster. It is made
available to cluster workload exits and the cluster workload algorithm that chooses the
destination for messages.

CLWLUSEQ(LOCAL | ANY)
Specifies the behavior of MQPUT when the target queue has both a local instance and at least
one remote cluster instance. If the put originates from a cluster channel, this attribute does not
apply. It is possible to specify CLWLUSEQ as both a queue attribute and a queue manager attribute.

130 1BM WebSphere MQ: Reference



If you specify ANY, both the local queue and the remote queues are possible targets of the
MQPUT.

If you specify LOCAL, the local queue is the only target of the MQPUT.

The equivalent PCFs are MQCMD_CHANGE_Q_MGR and MQCMD_INQUIRE_Q_MGR.

Channel definition commands
Cluster attributes that can be specified on channel definition commands.

The DEFINE CHANNEL, ALTER CHANNEL, and DISPLAY CHANNEL commands have two specific CHLTYPE
parameters for clusters: CLUSRCVR and CLUSSDR. To define a cluster-receiver channel you use the DEFINE
CHANNEL command, specifying CHLTYPE(CLUSRCVR). Many attributes on a cluster-receiver channel definition
are the same as the attributes on a receiver or sender-channel definition. To define a cluster-sender
channel you use the DEFINE CHANNEL command, specifying CHLTYPE(CLUSSDR), and many of the same
attributes as you use to define a sender-channel.

It is no longer necessary to specify the name of the full repository queue manager when you define a
cluster-sender channel. If you know the naming convention used for channels in your cluster, you can
make a CLUSSDR definition using the +QMNAME+ construction. The +QMNAME+ construction is not supported
on z/OS. After connection, WebSphere MQ changes the name of the channel and substitutes the correct
full repository queue manager name in place of +QUNAME+. The resulting channel name is truncated to 20
characters.

For more information on naming conventions, see [Cluster naming conventions| (WebSphere MQ V7.1
Installing Guide).

The technique works only if your convention for naming channels includes the name of the queue
manager. For example, you define a full repository queue manager called QM1 in a cluster called CLUSTER1
with a cluster-receiver channel called CLUSTER1.QM1.ALPHA. Every other queue manager can define a
cluster-sender channel to this queue manager using the channel name, CLUSTERL.+QMNAME+. ALPHA.

If you use the same naming convention for all your channels, be aware that only one +QMNAME+ definition
can exist at one time.

The following attributes on the DEFINE CHANNEL and ALTER CHANNEL commands are specific to cluster
channels:

CLUSTER
The CLUSTER attribute specifies the name of the cluster with which this channel is associated.
Alternatively use the CLUSNL attribute.

CLUSNL The CLUSNL attribute specifies a namelist of cluster names.

NETPRTY
Cluster-receivers only.

The NETPRTY attribute specifies a network priority for the channel. NETPRTY helps the workload
management routines. If there is more than one possible route to a destination, the workload
management routine selects the one with the highest priority.

CLWLPRTY
The CLWLPRTY parameter applies a priority factor to channels to the same destination for workload
management purposes. This parameter specifies the priority of the channel for the purposes of
cluster workload distribution. The value must be in the range zero through 9, where zero is the
lowest priority and 9 is the highest.

CLWLRANK
The CLWLRANK parameter applies a ranking factor to a channel for workload management

Reference 131



purposes. This parameter specifies the rank of a channel for the purposes of cluster workload
distribution. The value must be in the range zero through 9, where zero is the lowest rank and 9
is the highest.

CLWLWGHT
The CLWLWGHT parameter applies a weighting factor to a channel for workload management
purposes.CLHLWGHT weights the channel so that the proportion of messages sent down that
channel can be controlled. The cluster workload algorithm uses CLWLWGHT to bias the destination
choice so that more messages can be sent over a particular channel. By default all channel weight
attributes are the same default value. The weight attribute allows you to allocate a channel on a
powerful UNIX machine a larger weight than another channel on small desktop PC. The greater
weight means that the cluster workload algorithm selects the UNIX machine more frequently
than the PC as the destination for messages.

CONNAME
The CONNAME specified on a cluster-receiver channel definition is used throughout the cluster to
identify the network address of the queue manager. Take care to select a value for the CONNAME
parameter that resolves throughout your WebSphere MQ cluster. Do not use a generic name.
Remember that the value specified on the cluster-receiver channel takes precedence over any
value specified in a corresponding cluster-sender channel.

These attributes on the DEFINE CHANNEL command and ALTER CHANNEL command also apply to the DISPLAY
CHANNEL command.

Note: Auto-defined cluster-sender channels take their attributes from the corresponding cluster-receiver
channel definition on the receiving queue manager. Even if there is a manually defined cluster-sender
channel, its attributes are automatically modified to ensure that they match the attributes on the
corresponding cluster-receiver definition. Beware that you can, for example, define a CLUSRCVR without
specifying a port number in the CONNAME parameter, while manually defining a CLUSSDR that does specify
a port number. When the auto-defined CLUSSDR replaces the manually defined one, the port number
(taken from the CLUSRCVR) becomes blank. The default port number would be used and the channel
would fail.

Note: The DISPLAY CHANNEL command does not display auto-defined channels. However, you can use the
DISPLAY CLUSQMGR command to examine the attributes of auto-defined cluster-sender channels.

Use the DISPLAY CHSTATUS command to display the status of a cluster-sender or cluster-receiver channel.
This command gives the status of both manually defined channels and auto-defined channels.

The equivalent PCFs are MQCMD_CHANGE_CHANNEL, MQCMD_COPY_CHANNEL, MQCMD_CREATE_CHANNEL, and
MQCMD_INQUIRE_CHANNEL.

Omitting the CONNAME value on a CLUSRCVR definition

In some circumstances you can omit the CONNAME value on a CLUSRCVR definition. You must not omit the
CONNAME value on z/OS.

On AIX, HP-UX, IBM i, Linux, Solaris, and Windows platforms, the TCP/IP connection name parameter
of a cluster-receiver channel is optional. If you leave the connection name blank, WebSphere MQ
generates a connection name for you, assuming the default port and using the current IP address of the
system. You can override the default port number, but still use the current IP address of the system. For
each connection name leave the IP name blank, and provide the port number in parentheses; for example:

(1415)

The generated CONNAME is always in the dotted decimal (IPv4) or hexadecimal (IPv6) form, rather than in
the form of an alphanumeric DNS host name.

132 1BM WebSphere MQ: Reference



This facility is useful when you have machines using Dynamic Host Configuration Protocol (DHCP). If
you do not supply a value for the CONNAME on a CLUSRCVR channel, you do not need to change the
CLUSRCVR definition. DHCP allocates you a new IP address.

If you specify a blank for the CONNAME on the CLUSRCVR definition, WebSphere MQ generates a CONNAME
from the IP address of the system. Only the generated CONNAME is stored in the repositories. Other queue
managers in the cluster do not know that the CONNAME was originally blank.

If you issue the DISPLAY CLUSQMGR command you see the generated CONNAME. However, if you issue the
DISPLAY CHANNEL command from the local queue manager, you see that the CONNAME is blank.

If the queue manager is stopped and restarted with a different IP address, because of DHCP, WebSphere
MQ regenerates the CONNAME and updates the repositories accordingly.

Queue definition commands
Cluster attributes that can be specified on the queue definition commands.

The cluster attributes on the DEFINE QLOCAL, DEFINE QREMOTE, and DEFINE QALIAS commands, and the
three equivalent ALTER commands, are:

CLUSTER
Specifies the name of the cluster to which the queue belongs.

CLUSNL Specifies a namelist of cluster names.

DEFBIND
Specifies the binding to be used when an application specifies MQOO_BIND_AS_Q DEF on the
MQOPEN call. The options for this attribute are:

* Specify DEFBIND(OPEN) to bind the queue handle to a specific instance of the cluster queue
when the queue is opened. DEFBIND (OPEN) is the default for this attribute.

* Specify DEFBIND (NOTFIXED) so that the queue handle is not bound to any instance of the cluster
queue.

* Specify DEFBIND(GROUP) to allow an application to request that a group of messages are all
allocated to the same destination instance.

When multiple queues with the same name are advertised in a Queue Manager Cluster,
applications can choose whether to send all messages from this application to a single instance
(MQOO_BIND_ON_OPEN), to allow the workload management algorithm to select the most
suitable destination on a per message basis (MQOO_BIND_NOT_FIXED), or allow an application
to request that a ‘group’ of messages be all allocated to the same destination instance
(MQOO_BIND_ON_GROUP). The workload balancing is re-driven between groups of messages
(without requiring an MQCLOSE and MQOPEN of the queue).

When you specify DEFBIND on a queue definition, the queue is defined with one of the attributes,
MQBND_BIND_ON_OPEN, MQBND_BIND_NOT_FIXED, or MQBND_BIND_ON_GROUP. Either MQBND_BIND_ON_OPEN
or MQBND_BIND_ON_GROUP must be specified when using groups with clusters.

We recommend that you set the DEFBIND attribute to the same value on all instances of the same
cluster queue. Because MQOO_BIND_ON_GROUP is new in IBM WebSphere MQ Version 7.1, it
must not be used if any of the applications opening this queue are connecting to IBM WebSphere
MQ Version 7.0.1 or earlier queue managers.

CLWLRANK
Applies a ranking factor to a queue for workload management purposes. CLWLRANK parameter is
not supported on model queues. The cluster workload algorithm selects a destination queue with
the highest rank. By default CLWLRANK for all queues is set to zero.

If the final destination is a queue manager on a different cluster, you can set the rank of any
intermediate gateway queue managers at the intersection of neighboring clusters. With the

Reference 133



intermediate queue managers ranked, the cluster workload algorithm correctly selects a
destination queue manager nearer the final destination.

The same logic applies to alias queues. The rank selection is made before the channel status is
checked, and therefore even non-accessible queue managers are available for selection. This has
the effect of allowing a message to be routed through a network, rather than having it select
between two possible destinations (as the priority would). So, if a channel is not started to the
place where the rank has indicated, the message is not routed to the next highest rank, but waits
until a channel is available to that destination (the message is held on the transmit queue).

CLWLPRTY
Applies a priority factor to a queue for workload management purposes. The cluster workload
algorithm selects a destination queue with the highest priority. By default priority for all queues
is set to zero.

If there are two possible destination queues, you can use this attribute to make one destination
failover to the other destination. The priority selection is made after the channel status is checked.
All messages are sent to the queue with the highest priority unless the status of the channel to
that destination is not as favorable as the status of channels to other destinations. This means that
only the most accessible destinations are available for selection. This has the effect of prioritizing
between multiple destinations that are all available.

CLWLUSEQ
Specifies the behavior of an MQPUT operation for a queue. This parameter specifies the behavior
of an MQPUT operation when the target queue has a local instance and at least one remote
cluster instance (except where the MQPUT originates from a cluster channel). This parameter is
only valid for local queues.

Possible values are: QMGR (the behavior is as specified by the CLWLUSEQ parameter of the queue
manager definition), ANY (the queue manager treats the local queue as another instance of the
cluster queue, for the purposes of workload distribution), LOCAL (the local queue is the only target
of the MQPUT operation, providing the local queue is put enabled). The MQPUT behavior
depends upon the [cluster workload management algorithm|

The attributes on the DEFINE QLOCAL, DEFINE QREMOTE, and DEFINE QALIAS commands also apply to the
DISPLAY QUEUE command.

To display information about cluster queues, specify a queue type of QCLUSTER or the keyword CLUSINFO
on the DISPLAY QUEUE command, or use the command DISPLAY QCLUSTER.

The DISPLAY QUEUE or DISPLAY QCLUSTER command return the name of the queue manager that hosts the
queue (or the names of all queue managers if there is more than one instance of the queue). It also
returns the system name for each queue manager that hosts the queue, the queue type represented, and
the date and time at which the definition became available to the local queue manager. This information
is returned using the CLUSQMGR, QMID, CLUSQT, CLUSDATE, and CLUSTIME attributes.

The system name for the queue manager (QMID), is a unique, system-generated name for the queue
manager.

You can define a cluster queue that is also a shared queue. For example. on z/OS you can define:
DEFINE QLOCAL(MYQUEUE) CLUSTER(MYCLUSTER) QSGDISP(SHARED) CFSTRUCT(STRUCTURE)

The equivalent PCFs are MQCMD_CHANGE_Q, MQCMD_COPY_Q, MQCMD_CREATE_Q, and MQCMD_INQUIRE_Q.

134 1BM WebSphere MQ: Reference



DISPLAY CLUSQMGR

Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.

If you issue this command from a queue manager with a full repository, the information returned applies
to every queue manager in the cluster. Otherwise the information returned applies only to the queue
managers in which it has an interest. That is, every queue manager to which it has tried to send a
message and every queue manager that holds a full repository.

The information includes most channel attributes that apply to cluster-sender and cluster-receiver
channels. In addition, the following attributes can be displayed:

DEFTYPE
How the queue manager was defined. DEFTYPE can be one of the following values:

CLUSSDR
A cluster sender-channel has been administratively defined on the local queue manager
but not yet recognized by the target queue manager. To be in this state the local queue
manager has defined a manual cluster-sender channel but the receiving queue manager
has not accepted the cluster information. This may be due to the channel never having
been established due to availability or to an error in the cluster-sender configuration, for
example a mismatch in the CLUSTER property between the sender and receiver
definitions. This is a transitory condition or error state and should be investigated.

CLUSSDRA

This value represents an automatically discovered cluster queue manager, no

cluster-sender channel is defined locally. This is the DEFTYPE for cluster queue managers

for which the local queue manager has no local configuration but has been informed of.

For example

* If the local queue manager is a full repository queue manager it should be the
DEFTYPE value for all partial repository queue managers in the cluster.

* If the local queue manager is a partial repository, this could be the host of a cluster
queue that is being used from this local queue manager or from a second full
repository queue manager that this queue manager has been told to work with.

If the DEFTYPE value is CLUSSDRA and the local and remote queue managers are both
full repositories for the named cluster, the configuration is not correct as a locally defined
cluster-sender channel must be defined to convert this to a DEFTYPE of
CLUSSDRB
A cluster sender-channel has been administratively defined on the local queue manager
and accepted as a valid cluster channel by the target queue manager. This is the expected
DEFTYPE of a partial repository queue manager's manually configured full repository
queue manager. It should also be the DEFTYPE of any CLUSQMGR from one full
repository to another full repository in the cluster. Manual cluster-sender channels should
not be configured to partial repositories or from a partial repository queue manager to

more than one full repository. If a DEFTYPE of CLUSSDRB is seen in either of these
situations it should be investigated and corrected.

CLUSRCVR
Administratively defined as a cluster-receiver channel on the local queue manager. This
represents the local queue manager in the cluster.

Note: To identify which CLUSQMGRs are full repository queue managers for the cluster, see the

property.

For more information on defining cluster channels, see k4 |Cluster channels| (WebSphere MQ V7.1
Installing Guide).

QMTYPE Whether it holds a full repository or only a partial repository.

Reference 135



CLUSDATE
The date at which the definition became available to the local queue manager.

CLUSTIME
The time at which the definition became available to the local queue manager.

STATUS The status of the cluster-sender channel for this queue manager.

SUSPEND
Whether the queue manager is suspended.

CLUSTER
What clusters the queue manager is in.

CHANNEL
The cluster-receiver channel name for the queue manager.

SUSPEND QMGR, RESUME QMGR and clusters

Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity to
this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.

While a queue manager is suspended from a cluster, it does not receive messages on cluster queues that
it hosts if there is an available queue of the same name on an alternative queue manager in the cluster.
However, messages that are explicitly targeted at this queue manager, or where the target queue is only
available on this queue manager, are still directed to this queue manager.

Receiving further inbound messages while the queue manager is suspended can be prevented by
stopping the cluster receiver channels for this cluster. To stop the cluster receiver channels for a cluster,
use the FORCE mode of the ["'SUSPEND QMGR” on page 1394| command.

Related tasks:

[Maintaining a queue manager| (WebSphere MQ V7.1 Installing Guide)
Related reference:

BUSPEND QMGR]

RESUME QMGR|

REFRESH CLUSTER

Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information about
a cluster. You are unlikely to need to use this command, except in exceptional circumstances.

There are three forms of this command:

REFRESH CLUSTER(clustername) REPOS(NO)
The default. The queue manager retains knowledge of all locally defined cluster queue manager
and cluster queues and all cluster queue managers that are full repositories. In addition, if the
queue manager is a full repository for the cluster it also retains knowledge of the other cluster
queue managers in the cluster. Everything else is removed from the local copy of the repository
and rebuilt from the other full repositories in the cluster. Cluster channels are not stopped if
REPOS (NO) is used. A full repository uses its CLUSSDR channels to inform the rest of the cluster that
it has completed its refresh.

REFRESH CLUSTER(clustername) REPOS(YES)
In addition to the default behavior, objects representing full repository cluster queue managers
are also refreshed. It is not valid to use this option if the queue manager is a full repository, if
used the command will fail with an error AMQ9406/CSQX406E logged. If it is a full repository,
you must first alter it so that it is not a full repository for the cluster in question. The full

136 1BM WebSphere MQ: Reference



repository location is recovered from the manually defined CLUSSDR definitions. After refreshing
with REPOS(YES) has been issued the queue manager can be altered so that it is once again a full
repository, if required.

REFRESH CLUSTER(*)
Refreshes the queue manager in all the clusters it is a member of. If used with REPOS(YES), the
REFRESH CLUSTER(*) command has the additional effect of forcing the queue manager to restart its
search for full repositories from the information in the local CLUSSDR definitions. The search takes
place even if the CLUSSDR channel connects the queue manager to several clusters.

Note: For large clusters, use of the REFRESH CLUSTER command can be disruptive to the cluster while it is
in progress, and again at 27 day intervals thereafter when the cluster objects automatically send status

updates to all interested queue managers. See k= [Refreshing in a large cluster can affect performance and|
hvailability of the cluster|

Related concepts:

[Clustering: Using REFRESH CLUSTER best practices| (WebSphere MQ V7.1 Installing Guide)
RESET CLUSTER

Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.

You are unlikely to need to use this command, except in exceptional circumstances.

You can issue the RESET CLUSTER command only from full repository queue managers. The command
takes two forms, depending on whether you reference the queue manager by name or identifier.
1.
RESET CLUSTER(clustername) QMNAME (gmname) ACTION(FORCEREMOVE) QUEUES(NO)
2.
RESET CLUSTER(clustername) QMID(gmid) ACTION(FORCEREMOVE) QUEUES(NO)

You cannot specify both QMNAME and QMID. If you use QMNAME, and there is more than one queue manager
in the cluster with that name, the command is not run. Use QMID instead of QMNAME to ensure the RESET
CLUSTER command is run.

Specifying QUEUES(NO) on a RESET CLUSTER command is the default. Specifying QUEUES(YES) removes
references to cluster queues owned by the queue manager from the cluster. The references are removed in
addition to removing the queue manager from the cluster itself.

The references are removed even if the cluster queue manager is not visible in the cluster; perhaps
because it was previously forcibly removed, without the QUEUES option.

You might use the RESET CLUSTER command if, for example, a queue manager has been deleted but still
has cluster-receiver channels defined to the cluster. Instead of waiting for WebSphere MQ to remove these
definitions (which it does automatically) you can issue the RESET CLUSTER command to tidy up sooner. All
other queue managers in the cluster are then informed that the queue manager is no longer available.

If a queue manager is temporarily damaged, you might want to inform the other queue managers in the
cluster before they try to send it messages. RESET CLUSTER removes the damaged queue manager. Later,
when the damaged queue manager is working again, use the REFRESH CLUSTER command to reverse the
effect of RESET CLUSTER and return the queue manager to the cluster.

Note: For large clusters, use of the REFRESH CLUSTER command can be disruptive to the cluster while it is
in progress, and again at 27 day intervals thereafter when the cluster objects automatically send status

updates to all interested queue managers. See [Refreshing in a large cluster can affect performance and|
hvailability of the cluster|

Reference 137



Using the RESET CLUSTER command is the only way to delete auto-defined cluster-sender channels. You
are unlikely to need this command in normal circumstances. The IBM Support Center might advise you
to issue the command to tidy up the cluster information held by cluster queue managers. Do not use this
command as a short cut to removing a queue manager from a cluster. The correct way to remove a queue

manager from a cluster is described in [Removing a queue manager from a cluster: Alternative method|

(WebSphere MQ V7.1 Installing Guide), and [Removing a queue manager from a cluster| (WebSphere MQ
V7.1 Installing Guide).

Because repositories retain information for only 90 days, after that time a queue manager that was
forcibly removed can reconnect to a cluster. It reconnects automatically, unless it has been deleted. If you
want to prevent a queue manager from rejoining a cluster, you need to take appropriate security
measures.

All cluster commands, except DISPLAY CLUSQMGR, work asynchronously. Commands that change object
attributes involving clustering update the object and send a request to the repository processor.
Commands for working with clusters are checked for syntax, and a request is sent to the repository
processor.

The requests sent to the repository processor are processed asynchronously, along with cluster requests
received from other members of the cluster. Processing might take a considerable time if they have to be
propagated around the whole cluster to determine if they are successful or not.

Workload balancing

If a cluster contains more than one instance of the same queue, WebSphere MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm to determine the best queue
manager to use. You can provide the workload balancing algorithm to select the queue manager by
writing a cluster workload exit program.

Suitable destinations are chosen based on the availability of the queue manager and queue, and on a
number of cluster workload-specific attributes associated with queue managers, queues and channels.

If the results of the workload balancing algorithm do not meet your needs, you can write a cluster
workload user exit program. Use the exit to route messages to the queue of your choice in the cluster.

The cluster workload management algorithm:

The workload management algorithm uses workload balancing attributes and many rules to select the
final destination for messages being put onto cluster queues.

This section lists the workload management algorithm used when determining the final destination for
messages being put onto cluster queues. These rules are influenced by the settings applied to the
following attributes for queues, queue managers, and channels:

Table 32. Attributes for cluster workload management

Queues Queue managers Channels

e CLWLPRTY * CLWLUSEQ e CLWLPRTY

e CLWLRANK e CLWLMRUC e CLWLRANK

e CLWLUSEQ e CLWLWGHT
* NETPRTY

Initially, the queue manager builds a list of possible destinations from two procedures:

* Matching the target ObjectName and ObjectQmgrName with queue manager alias definitions that are
shared in the same clusters as the queue manager.

138 1BM WebSphere MQ: Reference



* Finding unique routes, or in other words, channels, to a queue manager that hosts a queue with the
name ObjectName and is in one of the clusters that the queue manager is a member of.

The steps of the algorithm that follow eliminate destinations from the list of possible destinations.

1.

10.

11.

If a queue name is specified:
a. Queues that are not put enabled are eliminated as possible destinations.

b. Remote instances of queues that do not share a cluster with the local queue manager are
eliminated.

c. Remote CLUSRCVR channels that are not in the same cluster as the queue are eliminated.
If a queue manager name is specified,
a. Queue manager aliases that are not put enabled are eliminated.

b. Remote CLUSRCVR channels that are not in the same cluster as the local queue manager are
eliminated.

If the resulting set of queues contains the local instance of the queue, the local instance of a queue is
typically used. The local instance of the queue is used if one of these three conditions are true:

* The use-queue attribute of the queue, CLWLUSEQ is set to LOCAL.
* Both the following are true:
a. The use-queue attribute of the queue, CLWLUSEQ is set to QMGR.
b. The use-queue attribute of the queue manager, CLWLUSEQ is set to LOCAL.
* The message is received over a cluster channel rather than by being put by a local application.

Note: You can detect a message from a cluster channel in a user exit if the both the
MQWXP_PUT_BY_CLUSTER_CH and MQQF_CLWL_USEQ_ANY flags are not set:
— MQWXP.Flags flag MQWXP_PUT BY CLUSTER CH.
— MQWQR.QFTags flag MQQF_CLWL_USEQ_ANY.
If the message is a cluster PCF message, any queue manager to which a publication or subscription
has already been sent is eliminated.

All channels to queue managers or queue manager alias with a CLWLRANK less than the maximum
rank of all remaining channels or queue manager aliases are eliminated.

All queues (not queue manager aliases) with a CLWLRANK less than the maximum rank of all
remaining queues are eliminated.

If only remote instances of a queue remain, resumed queue managers are chosen in preference to
suspended ones.

If more than one remote instance of a queue remains, all channels that are inactive or running are
included. The state constants are listed:

* MQCHS_INACTIVE

* MQCHS_RUNNING

If no remote instance of a queue remains, all channels that are in binding, initializing, starting, or
stopping state are included. The state constants are listed:

* MQCHS_BINDING

* MQCHS_INITIALIZING

* MQCHS_STARTING

* MQCHS_STOPPING

If no remote instance of a queue remains, all channels that are being tried again, MQCHS_RETRYING are
included.

If no remote instance of a queue remains, all channels in requesting, paused, or stopped state are
included. The state constants are listed:

* MQCHS_REQUESTING

* MQCHS_PAUSED

* MQCHS_STOPPED

Reference 139



12. If more than one remote instance of a queue remains and the message is a cluster PCF message,
locally defined CLUSSDR channels are chosen.

13. If more than one remote instance of a queue to any queue manager remains, channels with the
highest NETPRTY value for each queue manager are chosen.

14. If a queue manager is being chosen:

* All remaining channels and queue manager aliases other than channels and aliases with the
highest priority, CLWLPRTY, are eliminated. If any queue manager aliases remain, channels to the
queue manager are kept.

15. If a queue is being chosen:

* All queues other than queues with the highest priority, CLWLPRTY, are eliminated, and channels are
kept.
16. All channels, except a number of channels with the highest values in MQWDR.DestSegNumber are
eliminated. The elimination stops when the number of remaining channels is no greater than the
maximum allowed number of most recently used channels, CLWLMRUC.

17. If more than one remote instance of a queue remains, the least recently used channel is chosen. The
least recently used channel has the lowest value of MQWDR.DestSeqFactor.

o If there is more than one channel with the lowest value, one of the channels with the lowest value
in MQWDR.DestSegNumber is chosen.

* The destination sequence factor of the choice is increased by the queue manager, by approximately
1000/CLWLWGHT.

Note:

a. The destination sequence factors of all destinations are reset to zero if the cluster workload
attributes of available CLUSRCVR channels are altered. The sequence factors are zeroed if new
CLUSRCVR channels become available.

b. Modifications to workload attributes of manually defined CLUSSDR channels do not reset the
Destination Sequence Factor.

The distribution of user messages is not always exact, because administration and maintenance of the
cluster causes messages to flow across channels. The result is an uneven distribution of user messages
which can take some time to stabilize. Because of the admixture of administration and user messages,
place no reliance on the exact distribution of messages during workload balancing.

CLWLPRTY queue attribute:

The CLWLPRTY queue attribute specifies the priority of local, remote, or alias queues for cluster workload
distribution. The value must be in the range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the CLWLPRTY queue attribute to set a preference for destination queues. WebSphere MQ selects the
destinations with the highest priority before selecting destinations with the lowest cluster destination
priority. If there are multiple destinations with the same priority, it selects the least recently used
destination.

If there are two possible destinations, you can use this attribute to allow failover. The highest priority
queue manager receives requests, lower priority queue managers act as reserves. If the highest priority

queue manager fails, then the next highest priority queue manager that is available, takes over.

WebSphere MQ obtains the priority of queue managers after checking channel status. Only available
queue managers are candidates for selection.

Note:

140 1BM WebSphere MQ: Reference



The availability of a remote queue manager is based on the status of the channel to that queue manager.
When channels start, their state changes several times, with some of the states being less preferential to
the cluster workload management algorithm. In practice this means that lower priority (backup)
destinations can be chosen while the channels to higher priority (primary) destinations are starting.

If you need to ensure that no messages go to a backup destination, do not use CLWLPRTY. Consider using
separate queues, or CLWLRANK with a manual switch over from the primary to backup.

CLWLRANK queue attribute:

The CLWLRANK queue attribute specifies the rank of a local, remote, or alias queue for cluster workload
distribution. The value must be in the range 0-9, where 0 is the lowest rank and 9 is the highest.

Use the CLWLRANK queue attribute if you want control over the final destination for messages sent to a
queue manager in another cluster. When you set CLWLRANK, messages take a specified route through the
interconnected clusters towards a higher ranked destination.

For example, you might have defined two identically configured gateway queue managers to improve the
availability of a gateway. Suppose you have defined cluster alias queues at the gateways for a local queue
defined in the cluster. If the local queue becomes unavailable, you intend the message to be held at one
of the gateways pending the queue becoming available again. To hold the queue at a gateway, you must
define the local queue with a higher rank than the cluster alias queues at the gateway.

If you define the local queue with the same rank as the queue aliases and the local queue is unavailable,
the message travels between the gateways. On finding the local queue unavailable the first gateway
queue manager routes the message to the other gateway. The other gateway tries to deliver the message
to the target local queue again. If the local queue is still unavailable, it routes the message back to the
first gateway. The message keeps being moved back and forth between the gateways until the target local
queue became available again. By giving the local queue a higher rank, even if the queue is unavailable,
the message is not rerouted to a destination of lower rank.

WebSphere MQ obtains the rank of queues before checking channel status. Obtaining the rank before
checking channel status means that even non-accessible queues are available for selection. It allows
messages to be routed through the network even if the final destination is unavailable.

If you used the priority attribute WebSphere MQ selects between available destinations. If a channel is
not available to the destination with the highest rank, the message is held on the transmission queue. It is
released when the channel becomes available. The message does not get sent to the next available
destination in the rank order.

CLWLUSEQ queue attribute:

The CLWLUSEQ queue attribute specifies whether a local instance of a queue is given preference as a
destination over other instances in a cluster.

The CLWLUSEQ queue attribute is valid only for local queues. It only applies if the message is put by an
application, or a channel that is not a cluster channel.

LOCAL The local queue is the only target of MQPUT, providing the local queue is put enabled. MQPUT
behavior depends upon the [cluster workload managemen

QMGR  The behavior is as specified by the CLWLUSEQ queue manager attribute.

ANY MQPUT treats the local queue the same as any other instance of the queue in the cluster for
workload distribution.

Reference 141



CLWLUSEQ queue manager attribute:

The CLWLUSEQ queue manager attribute specifies whether a local instance of a queue is given preference as
a destination over other instances of the queue in a cluster. The attribute applies if the CLWNLUSEQ queue
attribute is set to QMGR.

The CLWLUSEQ queue attribute is valid only for local queues. It only applies if the message is put by an
application, or a channel that is not a cluster channel.

LOCAL The local queue is the only target of MQPUT. LOCAL is the default.

ANY MQPUT treats the local queue the same as any other instance of the queue in the cluster for
workload distribution.

CLWLMRUC queue manager attribute:

The CLWLMRUC queue manager attribute sets the number of most recently chosen channels. The cluster
workload management algorithm uses CLWLMRUC to restrict the number of active outbound cluster
channels. The value must be in the range 1 - 999 999 999.

The initial default value is 999 999 999.
CLWLPRTY channel attribute:

The CLWLPRTY channel attribute specifies the priority of CLUSSDR or CLUSRCVR channels for cluster
workload distribution. The value must be in the range 0-9, where 0 is the lowest priority and 9 is the
highest.

Use the CLWLPRTY channel attribute to set a preference for a CLUSSDR or CLUSRCVR channel. WebSphere®
MQ selects the destinations with the highest priority before selecting destinations with the lowest cluster
destination priority. If there are multiple destinations with the same priority, it selects the least recently
used destination.

If there are two possible destinations, you can use this attribute to allow failover. Messages go to the
queue manager with the highest priority channel. If it becomes unavailable then messages go to the next
highest priority queue manager. Lower priority queue managers act as reserves.

WebSphere MQ obtains the priority of channels after checking channel status. Only available queue
managers are candidates for selection.

Note:

The availability of a remote queue manager is based on the status of the channel to that queue manager.
When channels start, their state changes several times, with some of the states being less preferential to
the cluster workload management algorithm. In practice this means that lower priority (backup)

destinations can be chosen while the channels to higher priority (primary) destinations are starting.

If you need to ensure that no messages go to a backup destination, do not use CLWLPRTY. Consider using
separate queues, or CLWLRANK with a manual switch over from the primary to backup.

142 1BM WebSphere MQ: Reference



CLWLRANK channel attribute:

The CLWLRANK channel attribute specifies the rank of CLUSSDR or CLUSRCVR channels for cluster workload
distribution. The value must be in the range 0-9, where 0 is the lowest rank and 9 is the highest.

Use the CLWLRANK channel attribute if you want control over the final destination for messages sent to a
queue manager in another cluster. Control the choice of final destination by setting the rank of the
channels connecting a queue manager to the gateway queue managers at the intersection of the clusters.
When you set CLWLRANK, messages take a specified route through the interconnected clusters towards a
higher ranked destination. For example, messages arrive at a gateway queue manager that can send them
to either of two queue managers using channels ranked 1 and 2. They are automatically sent to the queue
manager connected by a channel with the highest rank, in this case the channel to the queue manager
ranked 2.

WebSphere MQ obtains the rank of channels before checking channel status. Obtaining the rank before
checking channel status means that even non-accessible channels are available for selection. It allows
messages to be routed through the network even if the final destination is unavailable.

If you used the priority attribute WebSphere MQ selects between available destinations. If a channel is
not available to the destination with the highest rank, the message is held on the transmission queue. It is
released when the channel becomes available. The message does not get sent to the next available
destination in the rank order.

CLWLWGHT channel attribute:

The CLWLWGHT channel attribute specifies the weight applied to CLUSSDR and CLUSRCVR channels for cluster
workload distribution. The value must be in the range 1-99, where 1 is the lowest weight and 99 is the
highest.

Use CLWLWGHT to send servers with more processing power more messages. The higher the channel
weight, the more messages are sent over that channel.

NETPRTY channel attribute:

The NETPRTY channel attribute specifies the priority for a CLUSRCVR channel. The value must be in the
range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the NETPRTY attribute to make one network the primary network, and another network the backup
network. Given a set of equally ranked channels, clustering chooses the path with the highest priority

when multiple paths are available.

A typical example of using the NETPRTY channel attribute is to differentiate between networks that have
different costs or speeds and connect the same destinations.

(New) Cluster commands

Reference 143



MQ_CLUSTER_WORKLOAD_EXIT - Call description:

The cluster workload exit is called by the queue manager to route a message to an available queue
manager.

Note: No entry point called MQ_CLUSTER_WORKLOAD_EXIT is provided by the queue manager. Instead, the
name of the cluster workload exit is defined by the ClusterWorkloadExit queue-manager attribute.

The MQ_CLUSTER_WORKLOAD_EXIT exit is supported on all platforms.

Syntax
MQ_CLUSTER_WORKLOAD_EXIT (ExitParms)

Parameters for MQ_CLUSTER_WORKLOAD_EXIT:

Description of the parameters in the MQ_CLUSTER_WORKLOAD_EXIT call.

ExitParms (MQWXP) - input/output
Exit parameter block.

* The exit sets information in MQWXP to indicate how to manage the workload.
Usage notes:

The function performed by the cluster workload exit is defined by the provider of the exit. The exit,
however, must conform to the rules defined in the associated control block MQWXP.

No entry point called MQ_CLUSTER_WORKLOAD_EXIT is provided by the queue manager. However, a

typedef is provided for the name MQ_CLUSTER_WORKLOAD_EXIT in the C programming language. Use the
typedef to declare the user-written exit, to ensure that the parameters are correct.

Language invocations for MQ_CLUSTER_WORKLOAD_EXIT:

The MQ_CLUSTER_WORKLOAD_EXIT supports two languages, C and High Level Assembler.

C invocation
MQ_CLUSTER WORKLOAD EXIT (&ExitParms);

Replace MQ_CLUSTER_WORKLOAD_EXIT with the name of your cluster workload exit function.

Declare the MQ_CLUSTER_WORKLOAD_EXIT parameters as follows:
MQWXP ExitParms; /x Exit parameter block */

High Level Assembler invocation
CALL EXITNAME, (EXITPARMS)

Declare the parameters as follows:
EXITPARMS CMQWXPA Exit parameter block

144 1BM WebSphere MQ: Reference



MQXCLWLN - Navigate Cluster workload records:

The MQXCLWLN call is used to navigate through the chains of MQWDR, MQWQR, and MQWCR records stored in
the cluster cache.

The cluster cache is an area of main storage used to store information relating to the cluster.

If the cluster cache is static, it has a fixed size. If you set it to dynamic, the cluster cache can expand as
required.

Set the type of cluster cache to STATIC or DYNAMIC using either a system parameter or macro.
* The system parameter ClusterCacheType on platforms other than z/OS
* The CLCACHE parameter in the CSQ6SYSP macro on z/OS.

Syntax
MQXCLWLN (ExitParms, CurrentRecord, NextOffset, NextRecord, Compcode, Reason)

Parameters for MQXCLWLN - Navigate Cluster workload records:

Description of the parameters in the MOQXCLWLN call.

ExitParms (MQWXP) — input/output
Exit parameter block.

This structure contains information relating to the invocation of the exit. The exit sets information in
this structure to indicate how to manage the workload.

CurrentRecord (MQPTR) — input
Address of current record.

This structure contains information relating to the address of the record currently being examined by
the exit. The record must be one of the following types:

* Cluster workload destination record (MQWDR)

* Cluster workload queue record (MQWQR)

* Cluster workload cluster record (MQWCR)

NextOffset (MQLONG) — input
Offset of next record.

This structure contains information relating to the offset of the next record or structure. NextOffset is
the value of the appropriate offset field in the current record, and must be one of the following fields:
* ChannelDefOffset field in MQWDR
* ClusterRecOffset field in MQWDR
* ClusterRecOffset field in MQWQR
* ClusterRecOffset field in MQWCR

NextRecord (MQPTR) — output
Address of next record or structure.

This structure contains information relating to the address of the next record or structure. If
CurrentRecord is the address of an MQWDR, and NextOffset is the value of the ChannelDefOffset field,
NextRecord is the address of the channel definition structure (MQCD).

If there is no next record or structure, the queue manager sets NextRecord to the null pointer, and the
call returns completion code MQCC_WARNING and reason code MQRC_NO_RECORD_AVAILABLE.

CompCode (MQLONG) — output
Completion code.

Reference 145



The completion code has one of the following values:
MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason (MQLONG) — output

146

Reason code qualifying CompCode
If CompCode is MQCC_OK:

MQRC_NONE
(0, X'0000')
No reason to report.

If CompCode is MQCC_WARNING:

MQRC_NO_RECORD AVAILABLE

(2359, X'0937")
No record available. An MQXCLWLN call was issued from a cluster workload exit to obtain
the address of the next record in the chain. The current record is the last record in the chain.
Corrective action: None.

If CompCode is MQCC_FAILED:

MQRC_CURRENT_RECORD_ERROR

(2357, X'0935"')
CurrentRecord parameter not valid. An MQXCLWLN call was issued from a cluster workload
exit to obtain the address of the next record in the chain. The address specified by the
CurrentRecord parameter is not the address of a valid record.

CurrentRecord must be the address of a destination record, MQWDR, queue record (MQWQR), or
cluster record (MQWCR) residing within the cluster cache. Corrective action: Ensure that the
cluster workload exit passes the address of a valid record residing in the cluster cache.

MQRC_ENVIRONMENT_ERROR

(2012, X'e7DC')
Call not valid in environment. An MQXCLWLN call was issued, but not from a cluster
workload exit.

MQRC_NEXT_OFFSET_ERROR

(2358, X'0936')
NextOffset parameter not valid. An MQXCLWLN call was issued from a cluster workload
exit to obtain the address of the next record in the chain. The offset specified by the

NextOffset parameter is not valid. NextOffset must be the value of one of the following
fields:

* ChannelDefOffset field in MQWDR
* ClusterRecOffset field in MQWDR
* ClusterRecOffset field in MQWQR
* ClusterRecOffset field in MQWCR

Corrective action: Ensure that the value specified for the NextOffset parameter is the value of
one of the fields listed previously.

MQRC_NEXT_RECORD_ERROR
(2361, X'0939")
NextRecord parameter not valid.

IBM WebSphere MQ: Reference



MQRC_WXP_ERROR

(2356, X'0934")
Workload exit parameter structure not valid. An MQXCLWLN call was issued from a cluster
workload exit to obtain the address of the next record in the chain. The workload exit
parameter structure ExitParms is not valid, for one of the following reasons:

* The parameter pointer is not valid. It is not always possible to detect parameter pointers
that are not valid; if not detected, unpredictable results occur.

* The Strucld field is not MQWXP_STRUC_ID.
* The Version field is not MQWXP_VERSION_2.

* The Context field does not contain the value passed to the exit by the queue manager.

Corrective action: Ensure that the parameter specified for ExitParms is the MQWXP structure
that was passed to the exit when the exit was invoked.

Usage notes for MQXCLWLN - Navigate Cluster workload records:
Use MQXCLWLN to navigate through cluster records, even if the cache is static.

If the cluster cache is dynamic, the MOQXCLWLN call must be used to navigate through the records. The
exit ends abnormally if simple pointer-and-offset arithmetic is used to navigate through the records.

If the cluster cache is staticc MOQXCLWLN need not be used to navigate through the records. Typically use
MQXCLWLN even when the cache is static. You can then change the cluster cache to being dynamic
without needing to change the workload exit.

Language invocations of MQXCLWLN:

MQXCLWLN supports two languages, C and High Level Assembler.

C invocation
MQXCLWLN (&ExitParms, CurrentRecord, NextOffset, &NextRecord, &CompCode, &Reason) ;

Declare the parameters as follows:
Typedef struct tagMQXCLWLN {

MQWXP ExitParms; /* Exit parameter block =*/

MQPTR CurrentRecord; /* Address of current record=*/

MQLONG NextOffset; /* 0ffset of next record */

MQPTR NextRecord; /* Address of next record or structure */
MQLONG CompCode; /* Completion code =*/

MQLONG Reason; /* Reason code qualifying CompCode */

High Level Assembler invocation
CALL MQXCLWLN, (CLWLEXITPARMS,CURRENTRECORD,NEXTOFFSET,NEXTRECORD,COMPCODE ,REASON)

Declare the parameters as follows:

CLWLEXITPARMS CMQWXPA, Cluster workload exit parameter block
CURRENTRECORD CMQWDRA, Current record

NEXTOFFSET DS F Next offset

NEXTRECORD DS F Next record

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Reference 147



MQWXP - Cluster workload exit

parameter structure:

The following table summarizes the fields in the MQWXP - Cluster workload exit parameter structure.

Table 33. Fields in MQWXP

Field Description Page

Strucld Structure identifier

Version Structure version number

Exitld Type of exit

ExitReason Reason for invoking exit

ExitResponse Response from exit

ExitResponse2 Secondary response from exit

Feedback Feedback code

Flags Flags values. These bit flags are used to indicate
information about the message being put

ExitUserArea Exit user area

ExitData Bxit data

MsgDescPtr Address of message descriptor (MQMD)

MsgBufferPtr Address of buffer containing some or all the message |[MsgBufferPtr
data

MsgBufferLength Length of buffer containing message data [MsgBufferLength|

Msglength Length of complete message

QName Name of queue

QMgrName Name of local queue manager QMgrName)

DestinationCount Number of possible destinations [DestinationCount]

DestinationChosen Destination chosen [DestinationChosen|

DestinationArrayPtr Address of an array of pointers to destination records [DestinationArrayPtr|
(MQUWDR)

QArrayPtr Address of an array of pointers to queue records
(MQWQR)

Note: The remaining fields are ignored if Version is less than MQWXP_VERSION_2.

CacheContext Context information

CacheType Type of cluster cache

Note: The remaining fields are ignored if Version is less than MQWXP_VERSION_3.

CLWLMRUChannels Maximum number of allowed active outbound cluster |[[CLWLMRUChannels|
channels

Note: The remaining fields are ignored if Version is less than MQWXP_VERSION_4.

pEntryPoints Address of the MQIEP structure to allow MQI and
DCI calls to be made

The cluster workload exit parameter structure describes the information that is passed to the cluster

workload exit.

The cluster workload exit par

ameter structure is supported on all platforms

Additionally, the MQWXP1, MQWXP2 and MQWXP3 structures are available for backwards compatibility.

148

IBM WebSphere MQ: Reference




Fields in MQWXP - Cluster workload exit parameter structure:

Description of the fields in the MQWXP - Cluster workload exit parameter structure

StrucId (MQCHAR4) - input
The structure identifier for the cluster workload exit parameter structure.
* The Strucld value is MQWXP_STRUC_ID.
* For the C programming language, the constant MQWXP_STRUC_ID_ARRAY is also defined. It has the
same value as MQWXP_STRUC_ID. It is an array of characters instead of a string.

Version (MQLONG) - input
Indicates the structure version number. Version takes one of the following values:

MQWXP_VERSION_1
Version-1 cluster workload exit parameter structure.

MQWXP_VERSION_1 is supported in all environments.

MQWXP_VERSION_2
Version-2 cluster workload exit parameter structure.

MQWXP_VERSION_2 is supported in the following environments: AIX, HP-UX, Linux, IBM i,
Solaris and Windows.

MQWXP_VERSION_3
Version-3 cluster workload exit parameter structure.

MQWXP_VERSION_3 is supported in the following environments: AIX, HP-UX, Linux, IBM i,
Solaris and Windows.

MQWXP_VERSION 4
Version-4 cluster workload exit parameter structure.

MQWXP_VERSION_4 is supported in the following environments: AIX, HP-UX, Linux, IBM i,
Solaris and Windows.

MQWXP_CURRENT_VERSION
Current version of cluster workload exit parameter structure.

ExitId (MQLONG) - input
Indicates the type of exit being called. The cluster workload exit is the only supported exit.
* The ExitId value must be MQXT_CLUSTER_WORKLOAD_EXIT
ExitReason (MQLONG) - input
Indicates the reason for invoking the cluster workload exit. ExitReason takes one of the following
values:

MQXR_INIT
Indicates that the exit is being invoked for the first time.

Acquire and initialize any resources that the exit might need, such as main storage.

MQXR_TERM
Indicates that the exit is about to be terminated.

Free any resources that the exit might have acquired since it was initialized, such as main
storage.

MQXR_CLWL_OPEN
Called by MQOPEN.

MQXR_CLWL_PUT
Called by MQPUT or MQPUT1.

Reference 149



MQXR_CLWL_MOVE
Called by MCA when the channel state has changed.

MQXR_CLWL_REPOS
Called by MQPUT or MQPUT1 for a repository-manager PCF message.

MQXR_CLWL_REPOS_MOVE
Called by MCA for a repository-manager PCF message if the channel state has changed.

ExitResponse (MQLONG) - output
Set ExitResponse to indicate whether processing of the message continues. It must be one of the
following values:

MQXCC_OK

Continue processing the message normally.

* DestinationChosen identifies the destination to which the message is to be sent.
MQXCC_SUPPRESS_FUNCTION

Discontinue processing the message.

* The actions taken by the queue manager depend on the reason the exit was invoked:

Table 34. Actions taken by the queue manager

ExitReason Action taken

* MQXR_CLWL_OPEN MQOPEN, MQPUT, or MQPUTT1 call fail with completion code MQCC_FAILED
* MQXR_CLWL_REPOS and reason code MQRC_STOPPED_BY_CLUSTER_EXIT.

« MQXR_CLWL_PUT

* MQXR_CLWL_MOVE The message is placed on the dead-letter queue.

« MQXR_CLWL_REPOS_MOVE

MQXCC_SUPPRESS_EXIT
Continue processing the current message normally. Do not invoke the exit again until the
queue manager shuts down.

The queue manager processes subsequent messages as if the ClusterWorkloadExit
queue-manager attribute is blank. DestinationChosen identifies the destination to which the
current message is sent.

Any other value
Process the message as if MQXCC_SUPPRESS_FUNCTION is specified.

ExitResponse2 (MQLONG) - input/output
Set ExitResponse2 to provide the queue manager with more information.
* MQXR2_STATIC_CACHE is the default value, and is set on entry to the exit.
* When ExitReason has the value MQXR_INIT, the exit can set one of the following values in
ExitResponse2:
MQXR2_STATIC_CACHE
The exit requires a static cluster cache.

— If the cluster cache is static, the exit need not use the MQXCLWLN call to navigate the
chains of records in the cluster cache.

— If the cluster cache is dynamic, the exit cannot navigate correctly through the records in
the cache.

Note: The queue manager processes the return from the MQXR_INIT call as though the
exit had returned MQXCC_SUPPRESS_EXIT in the ExitResponse field.

MQXR2_DYNAMIC_CACHE
The exit can operate with either a static or dynamic cache.

150 1BM WebSphere MQ: Reference



— If the exit returns this value, the exit must use the MQXCLWLN call to navigate the
chains of records in the cluster cache.

Feedback (MQLONG) - input
A reserved field. The value is zero.

Flags (MQLONG) - input
Indicates information about the message being put.

* The value of Flags is MQWXP_PUT_BY_CLUSTER_CHL. The message originates from a cluster channel,
rather than locally or from a non-cluster channel. In other words, the message has come from
another cluster queue manager.

Reserved (MQLONG) - input
A reserved field. The value is zero.

ExitUserArea (MQBYTE16) - input/output
Set ExitUserArea to communicate between calls to the exit.

* ExitUserArea is initialized to binary zero before the first invocation of the exit. Any changes made
to this field by the exit are preserved across the invocations of the exit that occur between the
MQCONN call and the matching MQDISC call. The field is reset to binary zero when the MQDISC
call occurs.

* The first invocation of the exit is indicated by the ExitReason field having the value MQXR_INIT.
* The following constants are defined:
MQXUA_NONE - string

MQXUA_NONE_ARRAY - character array
No user information. Both constants are binary zero for the length of the field.

MQ_EXIT_USER_AREA LENGTH
The length of ExitUserArea.

ExitData (MQCHAR32) - input
The value of the ClusterWorkloadData queue-manager attribute. If no value has been defined for that
attribute, this field is all blanks.

* The length of ExitData is given by MQ_EXIT_DATA_LENGTH.
MsgDescPtr (PMQMD) - input
The address of a copy of the message descriptor (MQMD) for the message being processed.
* Any changes made to the message descriptor by the exit are ignored by the queue manager.

 If ExitReason has one of the following values MsgDescPtr is set to the null pointer, and no message
descriptor is passed to the exit:

— MQXR_INIT
— MQXR_TERM
— MQXR_CLWL_OPEN
MsgBufferPtr (PMQVOID) - input
The address of a buffer containing a copy of the first MsgBufferLength bytes of the message data.
* Any changes made to the message data by the exit are ignored by the queue manager.
* No message data is passed to the exit when:
— MsgDescPtr is the null pointer.
— The message has no data.
— The ClusterWorkloadLength queue-manager attribute is zero.

In these cases, MsgBufferPtr is the null pointer.

MsgBufferLength (MQLONG) - input
The length of the buffer containing the message data passed to the exit.

Reference 151



* The length is controlled by the ClusterWorkloadLength queue-manager attribute.

* The length might be less than the length of the complete message, see MsglLength.
MsgLength (MQLONG) - input

The length of the complete message passed to the exit.

* MsgBufferLength might be less than the length of the complete message.

* Msglength is zero if ExitReason is MQXR_INIT, MQXR_TERM, or MQXR_CLWL_OPEN.
QName (MQCHAR48) - input

The name of the destination queue. The queue is a cluster queue.

¢ The length of QName is MQ_Q_NAME_LENGTH.
QMgrName (MQCHAR48) - input

The name of the local queue manager that has invoked the cluster workload exit.

* The length of QMgrName is MQ_Q MGR_NAME_LENGTH.
DestinationCount (MQLONG) - input

The number of possible destinations. Destinations are instances of the destination queue and are
described by destination records.

* A destination record is a MQWDR structure. There is one structure for each possible route to each
instance of the queue.

* MQWDR structures are addressed by an array of pointers, see DestinationArrayPtr.
DestinationChosen (MQLONG) - input/output
The chosen destination.

¢ The number of the MQWDR structure that identifies the route and queue instance where the message
is to be sent.

* The value is in the range 1 - DestinationCount.

* On input to the exit, DestinationChosen indicates the route and queue instance that the queue
manager has selected. The exit can accept this choice, or choose a different route and queue
instance.

* The value set by the exit must be in the range 1 - DestinationCount. If any other value is returned,
the queue manager uses the value of DestinationChosen on input to the exit.
DestinationArrayPtr (PPMQWDR) - input
The address of an array of pointers to destination records (MQWDR).
* There are DestinationCount destination records.
QArrayPtr (PPMQWQR) - input
The address of an array of pointers to queue records (MQWQR).
* If queue records are available, there are DestinationCount of them.
* If no queue records are available, QArrayPtr is the null pointer.

Note: QArrayPtr can be the null pointer even when DestinationCount is greater than zero.

CacheContext (MQPTR) : Version 2 - input

The CacheContext field is reserved for use by the queue manager. The exit must not alter the value of
this field.

CacheType (MQLONG) : Version 2 - input
The cluster cache has one of the following types:

MQCLCT_STATIC
The cache is static.
* The size of the cache is fixed, and cannot grow as the queue manager operates.
* You do not need to use the MOQXCLWLN call to navigate the records in this type of cache.

152 1BM WebSphere MQ: Reference



MQCLCT_DYNAMIC
The cache is dynamic.

* The size of the cache can increase in order to accommodate the varying cluster information.
* You must use the MQXCLWLN call to navigate the records in this type of cache.

CLWLMRUChannels (MQLONG) : Version 3 - input

Indicates the maximum number of active outbound cluster channels, to be considered for use by the

cluster workload choice algorithm.
* CLWLMRUChannels is a value 1 - 999 999 999.

pEntryPoints (PMQIEP) : Version 4

The address of an MQIEP structure through which MQI and DCI calls can be made.

Initial values and language declarations for MQWXP:

Initial values and C and High Level Assembler Language declarations for MQWXP - Cluster workload exit

parameter structure.

Table 35. Initial values of fields in MQWXP

Field name Name of constant Value of constant
Strucld MQWXP_STRUC_ID "WXPb '
Version MQWXP_VERSION_2 2
Exitld None 0
ExitReason MQXCC_OK 0
ExitResponse None 0
ExitResponse2 None 0
Flags None 0
ExitUserArea {MQXUA_NONE_ARRAY} 0
ExitData None "
MsgDescPtr None NULL
MsgBufferPtr None NULL
MsgBufferLength None 0
MsgBufferPtr None 0
QName None .
QMgriName None e
DestinationCount None 0
DestinationChosen None 0
DestinationArrayPtr None NULL
QArrayPtr None NULL
CacheContext None NULL
CacheType MQCLCT_DYNAMIC 1
CLWLMRUChannels None 0
pEntryPoints None NULL

Reference

153



Table 35. Initial values of fields in MQWXP (continued)

Field name

Name of constant

Value of constant

Notes:

1. The symbol b represents a single blank character.

2. In the C programming language, the macro variable MQWXP_DEFAULT contains the default values. Use it in the
following way to provide initial values for the fields in the structure:

MQWDR MyWXP = {MQWXP_DEFAULT};

C declaration
typedef struct tagMQWXP {

MQCHAR4  Strucld;

MQLONG Version;

MQLONG ExitId;

MQLONG ExitReason;
MQLONG ExitResponse;
MQLONG ExitResponse?2;
MQLONG Feedback;

MQLONG Flags;

MQBYTE16 ExitUserArea;
MQCHAR32 ExitData;

PMQMD MsgDescPtr;
PMQVOID  MsgBufferPtr;
MQLONG MsgBufferLength;
MQLONG MsglLength;
MQCHAR48 (QName;

MQCHAR48 QMgrName;

MQLONG DestinationCount;
MQLONG DestinationChosen;
PPMQWDR  DestinationArrayPtr;
PPMQWQR  QArrayPtr;

/* version 1 */

MQPTR CacheContext;
MQLONG CacheType;

/* version 2 */

MQLONG CLWLMRUChannnels;

/* version 3 */
PMQIEP pEntryPoints;
/* version 4 x/

}s

High Level Assembler

MQWXP
MQWXP_STRUCID
MQWXP_VERSION
MQWXP_EXITID
MQWXP_EXITREASON
MQWXP_EXITRESPONSE
MQWXP_EXITRESPONSE?2
MQWXP_FEEDBACK
MQWXP_RESERVED

154 1BM WebSphere MQ: Reference

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

/*

DSECT

DS
DS
DS
DS
DS
DS
DS
DS

b e W o B M o B M N )

Structure identifier */

Structure version number */

Type of exit =/

Reason for invoking exit =/
Response from exit */

Reserved */

Reserved =*/

Flags =/

Exit user area */

Exit data */

Address of message descriptor */
Address of buffer containing some
or all of the message data */
Length of buffer containing message
data */

Length of complete message x/
Queue name */

Name of local queue manager =*/
Number of possible destinations */
Destination chosen */

Address of an array of pointers to
destination records */

Address of an array of pointers to
queue records */

Context information x/
Type of cluster cache */

Maximum number of most recently
used cluster channels */

Address of the MQIEP structure =*/

—
=Y

Structure identifier
Structure version number
Type of exit

Reason for invoking exit
Response from exit
Reserved

Reserved

Reserved




MQWXP_EXITUSERAREA
MQWXP_EXITDATA
MQWXP_MSGDESCPTR

*

MQWXP_MSGBUFFERPTR

*

*

MQWXP_MSGBUFFERLENGTH

*

MQWXP_MSGLENGTH
MQWXP_QNAME
MQWXP_QMGRNAME
MQWXP_DESTINATIONCOUNT
*
MQWXP_DESTINATIONCHOSEN
MQWXP_DESTINATIONARRAYPTR

*

*

MQWXP_QARRAYPTR

*

MQWXP_CACHECONTEXT
MQWXP_CACHETYPE
MQWXP_CLWLMRUCHANNELS

*

MQWXP_LENGTH

MQWXP_AREA

DS
DS
DS

DS

DS

DS
DS
DS
DS

DS
DS

DS

DS
DS
DS

EQU
ORG
DS

XL16 Exit user area

CL32 Exit data

F Address of message
descriptor

F Address of buffer containing
some or all of the message
data

F Length of buffer containing
message data

F Length of complete message

CL48 Queue name

CL48 Name of Tocal queue manager

F Number of possible
destinations

F Destination chosen

F Address of an array of
pointers to destination
records

F Address of an array of
pointers to queue records

F Context information

F Type of cluster cache

F Number of most recently used

channels for workload balancing
*-MQWXP Length of structure
MQWXP
CL (MQWXP_LENGTH)

MQWDR - Cluster workload destination record structure:

The following table summarizes the fields in the MQWDR - Cluster workload destination record structure.

Table 36. Fields in MQWDR

Field Description Page

Strucld Structure identifier

Version Structure version number
Struclength Length of MQWDR structure
QMgrFlags Queue-manager flags QMg o
QMgridentifier Queue-manager identifier
QMgriName Queue-manager name (OMgrName)
ClusterRecOffset Logical offset of first cluster record (MQWCR)
ChannelState Channel state
ChannelDefOffset Logical offset of channel-definition structure (MQCD) |ChannelDefOffset|
Note: The remaining fields are ignored if Version is less than MQWDR_VERSION_2.

DestSeqNumber Channel destination sequence number
DestSeqFactor Channel destination sequence factor for weighting

The cluster workload destination record structure contains information relating to one of the possible

destinations for the message. There is one cluster workload destination record structure for each instance

of the destination queue.

The cluster workload destination record structure is supported in all environments.

Reference




Additionally, the MQWDR1 and MQWDR2 structures are available for backwards compatibility.

Fields in MQWDR - Cluster workload destination record structure:

Description of the parameters in the MQWDR - Cluster workload destination record structure.
StrucId (MQCHAR4) - input
The structure identifier for the cluster workload destination record structure.
* The Strucld value is MQWDR_STRUC_ID.
* For the C programming language, the constant MQWDR_STRUC_ID_ARRAY is also defined. It has the
same value as MQWDR_STRUC_ID. It is an array of characters instead of a string.
Version (MQLONG) - input
The structure version number. Version takes one of the following values:

MQWDR_VERSION_1
Version-1 cluster workload destination record.

MQWDR_VERSION 2
Version-2 cluster workload destination record.

MQWDR_CURRENT_VERSION
Current® version of cluster workload destination record.
StrucLength (MQLONG) - input
The length of MQWDR structure. StrucLength takes one of the following values:

MQWDR_LENGTH_1
Length of version-1 cluster workload destination record.

MQWDR_LENGTH_2
Length of version-2 cluster workload destination record.

MQWDR_CURRENT_LENGTH
Length of current version of cluster workload destination record.
QMgrFlags (MQLONG) - input
Queue manager flags indicating properties of the queue manager that hosts the instance of the
destination queue described by the MQWDR structure. The following flags are defined:

MQQMF_REPOSITORY Q_MGR
Destination is a full repository queue manager.

MQQMF_CLUSSDR_USER_DEFINED
Cluster-sender channel was defined manually.

MQQMF_CLUSSDR_AUTO_DEFINED
Cluster-sender channel was defined automatically.

MQQMF_AVAILABLE
Destination queue manager is available to receive messages.

Other values
Other flags in the field might be set by the queue manager for internal purposes.
QMgrIdentifier (MQCHAR48) - input
The queue manager identifier is a unique identifier for the queue manager that hosts the instance of
the destination queue described by the MQWDR structure.

* The identifier is generated by the queue manager.
* The length of QMgrIdentifier is MQ_Q MGR_IDENTIFIER_LENGTH.
QMgrName (MQCHAR48) - input

The name of the queue manager that hosts the instance of the destination queue described by the
MQWDR structure.

156 1BM WebSphere MQ: Reference



* QMgrName can be the name of the local queue manager, as well another queue manager in the
cluster.

* The length of QMgrName is MQ_Q MGR_NAME_LENGTH.
ClusterRecOffset (MQLONG) - input
The logical offset of the first MQWCR structure that belongs to the MQWDR structure.

* For static caches, ClusterRecOffset is the offset of the first MQWCR structure that belongs to the
MQWDR structure.

* The offset is measured in bytes from the start of the MQWDR structure.
* Do not use the logical offset for pointer arithmetic with dynamic caches. To obtain the address of
the next record, the MQXCLWLN call must be used.

ChannelState (MQLONG) - input
The state of the channel that links the local queue manager to the queue manager identified by the
MQWDR structure. The following values are possible:

MQCHS_INACTIVE
Channel is not active.

MQCHS_BINDING
Channel is negotiating with the partner.

MQCHS_STARTING
Channel is waiting to become active.

MQCHS_RUNNING
Channel is transferring or waiting for messages.

MQCHS_STOPPING
Channel is stopping.

MQCHS_RETRYING
Channel is reattempting to establish connection.

MQCHS_STOPPED
Channel has stopped.

MQCHS_REQUESTING
Requester channel is requesting connection.

MQCHS_PAUSED
Channel has paused.

MQCHS_INITIALIZING
Channel is initializing.

ChannelDefOffset (MQLONG) - input
The logical offset of the channel definition (MQCD) for the channel that links the local queue manager
to the queue manager identified by the MQWDR structure.

* ChannelDefOffset is like ClusterRecOffset

* The logical offset cannot be used in pointer arithmetic. To obtain the address of the next record, the
MQXCLWLN call must be used.

DestSeqFactor (MQLONG) - input

The destination sequence factor that allows a choice of the channel based on weight.

* DestSeqFactor is used before the queue manager changes it.

* The workload manager increases DestSeqFactor in a way that ensures messages are distributed
down channels according to their weight.

DestSeqNumber (MQLONG) - input
The cluster channel destination value before the queue manager changes it.

Reference 157



* The workload manager increases DestSegNumber every time a message is put down that channel.

* Workload exits can use DestSegNumber to decide which channel to put a message down.

Initial values and language declarations for MQWDR:

Initial values and C and High Level Assembler Language declarations for MQWDR - Cluster workload

destination record.

Table 37. Initial values of fields in MQWDR

Field name Name of constant Value of constant
Strucld MQWDR_STRUC_ID "WDRb '
Version MQWDR_VERSION_1 1
Struclength MQWDR_CURRENT_LENGTHE 136
QMgrflags MQWDR_NONE 0
QMgridentifier None o
QMgrName None e
ClusterRecOffset None 0
ChannelState None 0
ChannelDefOffset None 0
DestSeqNumber None 0
DestSeqFactor None 0
Notes:

1. The symbol b represents a single blank character.

2. In the C programming language, the macro variable MQWDR_DEFAULT contains the default values. Use it in the
following way to provide initial values for the fields in the structure:
MQWDR MyWDR = {MQWDR_DEFAULT};

3. The initial values intentionally set the length of the structure to the length of the current version, and not
version 1 of the structure.

High Level Assembler

MQWDR DSECT
MQWDR_STRUCID DS CL4 Structure identifier
MQWDR_VERSION DS F Structure version number
MQWDR_STRUCLENGTH DS F Length of MQWDR structure
MQWDR_QMGRFLAGS DS F Queue-manager flags
MQWDR_QMGRIDENTIFIER DS CL48 Queue-manager identifier
MQWDR_QMGRNAME DS CL48 Queue-manager name
MQWDR_CLUSTERRECOFFSET DS F Offset of first cluster
* record
MQWDR_CHANNELSTATE DS F Channel state
MQWDR_CHANNELDEFOFFSET DS F Offset of channel definition
* structure
MQWDR_LENGTH EQU *-MQWDR Length of structure

ORG MQWDR
MQWDR_AREA DS CL(MQWDR_LENGTH)

C declaration
typedef struct tagMQWDR {

MQCHAR4  Strucld; /* Structure identifier =/
MQLONG Version; /* Structure version number =/
MQLONG StruclLength; /* Length of MQWDR structure =*/

158 1BM WebSphere MQ: Reference



MQLONG QMgrFlags; /* Queue-manager flags */
MQCHAR48 (QMgrlIdentifier; /* Queue-manager identifier */

MQCHAR48 QMgrName; /* Queue-manager name */
MQLONG ClusterRecOffset; /* Offset of first cluster record x/
MQLONG ChannelState; /* Channel state =/

MQLONG ChannelDefOffset; /% Offset of channel definition structure */
/* Ver:1 x/

MQLONG DestSegNumbers; /* Cluster channel destination sequence number =*/
MQINT64  DestSeqFactor; /* Cluster channel factor sequence number */
[* Ver:2 */

bs
MQWQR - Cluster workload queue record structure:

The following table summarizes the fields in the MQWQR - Cluster workload queue record structure.

Table 38. Fields in MQWQR

Field Description Page

Strucld Structure identifier

Version Structure version number
StruclLength Length of MQWQR structure
QFlags Queue flags QFlag

QName Queue name QName)
QMgrIdentifier Queue-manager identifier
ClusterRecOffset Offset of first cluster record (MQWCR)
QType Queue type OTvpe

QDesc Queue description

DefBind Default binding DefBind
DefPersistence Default message persistence
DefPriority Default message priority DefPriority]
InhibitPut Whether put operations on the queue are allowed InhibitPut

Note: The remaining fields are ignored if Version is less than MQWQR_VERSION_2.

CWLQueuePriority A value 0 - 9 representing the priority of the queue |CLWLQueuePriority|
CLWLQueueRank A value 0 - 9 representing the rank of the queue [CLWLQueueRank|
Note: The remaining fields are ignored if Version is less than MQWQR_VERSION_3.

DefPutResponse Default put response |

The cluster workload queue record structure contains information relating to one of the possible
destinations for the message. There is one cluster workload queue record structure for each instance of
the destination queue.

The cluster workload queue record structure is supported in all environments.

Additionally, the MQWQR1 and MQWQR2 structures are available for backwards compatibility.

Reference 159



Fields in MOWQR - Cluster workload queue record structure:

Description of the fields in the MQWQR - Cluster workload queue record structure.
StrucId (MQCHAR4) - input
The structure identifier for the cluster workload queue record structure.
* The Strucld value is MQWQR_STRUC_ID.
* For the C programming language, the constant MQWQR_STRUC_ID_ARRAY is also defined. It has the
same value as MQWQR_STRUC_ID. It is an array of characters instead of a string.
Version (MQLONG) - input
The structure version number. Version takes one of the following values:
MQWQR_VERSION 1
Version-1 cluster workload queue record.

MQWQR_VERSION 2
Version-2 cluster workload queue record.
MQWQR_VERSION 3
Version-3 cluster workload queue record.
MQWQR_CURRENT_VERSION
Current version of cluster workload queue record.
StrucLength (MQLONG) - input
The length of MQWQR structure. StrucLength takes one of the following values:
MQWQR_LENGTH_1
Length of version-1 cluster workload queue record.
MQWQR_LENGTH_2
Length of version-2 cluster workload queue record.
MQWQR_LENGTH_3
Length of version-3 cluster workload queue record.
MQWQR_CURRENT_LENGTH
Length of current version of cluster workload queue record.
QFlags (MQLONG) - input
The queue flags indicate properties of the queue. The following flags are defined:

MQQF_LOCAL_Q
Destination is a local queue.

MQQF_CLWL_USEQ_ANY
Allow use of local and remote queues in puts.

MQQF_CLWL_USEQ_LOCAL
Allow only local queue puts.

Other values
Other flags in the field might be set by the queue manager for internal purposes.
QName (MQCHAR48) - input
The name of the queue that is one of the possible destinations of the message.
* The length of QName is MQ_Q_NAME_LENGTH.
QMgrIdentifier (MQCHAR48) - input

The queue manager identifier is a unique identifier for the queue manager that hosts the instance of
the queue described by the MQWQR structure.

* The identifier is generated by the queue manager.
* The length of QMgrIdentifier is MQ_Q_MGR_IDENTIFIER_LENGTH.

160 1BM WebSphere MQ: Reference



ClusterRecOffset (MQLONG) - input
The logical offset of the first MQWCR structure that belongs to the MQWQR structure.

* For static caches, ClusterRecOffset is the offset of the first MQWCR structure that belongs to the
MQWQR structure.

* The offset is measured in bytes from the start of the MQWQR structure.
* Do not use the logical offset for pointer arithmetic with dynamic caches. To obtain the address of
the next record, the MQXCLWLN call must be used.
QType (MQLONG) - input
The queue type of the destination queue. The following values are possible:
MQCQT_LOCAL_Q
Local queue.
MQCQT_ALIAS_Q
Alias queue.
MQCQT_REMOTE_Q
Remote queue.
MQCQT_Q_MGR_ALIAS
Queue-manager alias.
QDesc (MQCHAR64) - input

The queue description queue attribute defined on the queue manager that hosts the instance of the
destination queue described by the MQWQR structure.

* The length of QDesc is MQ_Q_DESC_LENGTH.

DefBind (MQLONG) - input
The default binding queue attribute defined on the queue manager that hosts the instance of the
destination queue described by the MQWQR structure. Either MQBND_BIND_ON_OPEN or

MQBND_BIND_ON_GROUP must be specified when using groups with clusters. The following values are
possible:

MQBND_BIND_ON_OPEN
Binding fixed by MQOPEN call.

MQBND_BIND_NOT_FIXED
Binding not fixed.

MQBND_BIND ON_GROUP
Allows an application to request that a group of messages are all allocated to the same
destination instance.

DefPersistence (MQLONG) - input
The default message persistence queue attribute defined on the queue manager that hosts the
instance of the destination queue described by the MQWQR structure. The following values are possible:

MQPER_PERSISTENT
Message is persistent.

MQPER_NOT_PERSISTENT
Message is not persistent.

DefPriority (MQLONG) - input
The default message priority queue attribute defined on the queue manager that hosts the instance of
the destination queue described by the MQWQR structure. The priority range is 0 - MaxPriority.
* 0 is the lowest priority.

* MaxPriority is the queue manager attribute of the queue manager that hosts this instance of the
destination queue.

Reference 161



InhibitPut (MQLONG) - input
The put inhibited queue attribute defined on the queue manager that hosts the instance of the
destination queue described by the MQWQR structure. The following values are possible:

MQQA_PUT_INHIBITED
Put operations are inhibited.

MQQA_PUT_ALLOWED
Put operations are allowed.
CLWLQueuePriority (MQLONG) - input
The cluster workload queue priority attribute defined on the queue manager that hosts the instance
of the destination queue described by the MQWQR structure.

CLWLQueueRank (MQLONG) - dinput
The cluster workload queue rank defined on the queue manager that hosts the instance of the
destination queue described by the MQWQR structure.

DefPutResponse (MQLONG) - input
The default put response queue attribute defined on the queue manager that hosts the instance of the
destination queue described by the MQWQR structure. The following values are possible:

MQPRT_SYNC_RESPONSE
Synchronous response to MQPUT or MQPUT1 calls.

MQPRT_ASYNC_RESPONSE
Asynchronous response to MQPUT or MQPUTT1 calls.
Initial values and language declarations for MQWQR:
Initial values and C and High Level Assembler Language declarations for MQWQR - Cluster workload
queue record.

Table 39. Initial values of fields in MQWQR

Field name Name of constant Value of constant
Strucld MQWQR_STRUC_ID_ARRAY "WQRb '
Version MQWQR_VERSION_1 1
StrucLength MQWQR_CURRENT LENGTHE 212
QFlags None 0

QName None e
QMgrldentifier None .
ClusterRecOffset None 0
QType None 0

QDesc None e
DefBind None 0
DefPersistence None 0
DefPriority None 0
InhibitPut None 0
CLWLQueuePriority None 0
CLWLQueueRank None 0
DefPutResponse None 1

162 1BM WebSphere MQ: Reference



Table 39. Initial values of fields in MWQR (continued)

Field name Name of constant Value of constant

Notes:

version 1 of the structure.

1. The symbol b represents a single blank character.

2. In the C programming language, the macro variable MQWQR_DEFAULT contains the default values. Use it in the
following way to provide initial values for the fields in the structure:

MQWQR MyWQR = {MQWQR_DEFAULT};
3. The initial values intentionally set the length of the structure to the length of the current version, and not

C declaration

typedef struct tagMQWQR {
MQCHAR4  Strucld;
MQLONG Version;
MQLONG StruclLength;
MQLONG QFTags;
MQCHAR48 (QName;
MQCHAR48 QMgrldentifier;
MQLONG ClusterRecOffset;
MQLONG QType;
MQCHAR64 QDesc;
MQLONG DefBind;
MQLONG DefPersistence;
MQLONG DefPriority;
MQLONG InhibitPut;

/* version 2 */

MQLONG CLWLQueuePriority;
MQLONG CLWLQueueRank;

/* version 3 x/

MQLONG DefPutResponse;

High Level Assembler

MQWQR

MQWQR_STRUCID
MQWQR_VERSION
MQWQR_STRUCLENGTH
MQWQR_QFLAGS
MQWQR_QNAME
MQWQR_QMGRIDENTIFIER
MQWQR_CLUSTERRECOFFSET
*

MQWQR_QTYPE
MQWQR_QDESC
MQWQR_DEFBIND
MQWQR_DEFPERSISTENCE
MQWQR_DEFPRIORITY
MQWQR_INHIBITPUT

*
MQWQR_DEFPUTRESPONSE
MQWQR_LENGTH

MQWQR_AREA

/* Structure identifier =/

/* Structure version number x*/

/* Length of MQWQR structure */

/* Queue flags =*/

/* Queue name */

/* Queue-manager identifier */

/* 0ffset of first cluster record */

/* Queue type */

/* Queue description */

/* Default binding */

/* Default message persistence */

/* Default message priority =*/

/* Whether put operations on the queue
are allowed =*/

/* Queue priority =*/
/* Queue rank */

/* Default put response */};

DSECT

DS CL4 Structure identifier

DS F Structure version number

DS F Length of MQWQR structure

DS F Queue flags

DS CL48 Queue name

DS CL48 Queue-manager identifier

DS F Offset of first cluster
record

DS F Queue type

DS CL64 Queue description

DS F Default binding

DS F Default message persistence

DS F Default message priority

DS F Whether put operations on
the queue are allowed

DS F Default put response

EQU *-MQWQR Length of structure

ORG  MQWQR

DS  CL(MQWQR _LENGTH)

Reference

163



MQWCR - Cluster workload cluster record structure:

The following table summarizes the fields in the MQWCR cluster workload record structure.

Table 40. Fields in MQWCR

Field Description Page

ClusterName Name of cluster

ClusterRecOffset Offset of next cluster record (MQWCR) lusterRecOffset

ClusterFlags Cluster flags

The cluster workload cluster record structure contains information about a cluster. For each cluster the
destination queue belongs to, there is one cluster workload cluster record structure.

The cluster workload cluster record structure is supported in all environments.
Fields in the MQWCR - Cluster workload cluster record structure.:

Description of the fields in the MQWCR - Cluster workload cluster record structure.

ClusterName (MQCHAR48) - input
The name of a cluster to which the instance of the destination queue that owns the MQWCR structure

belongs. The destination queue instance is described by an MQWDR structure.
* The length of ClusterName is MQ_CLUSTER_NAME_LENGTH.
ClusterRecOffset (MQLONG) - input
The logical offset of the next MQWCR structure.
* If there are no more MQWCR structures, ClusterRecOffset is zero.
* The offset is measured in bytes from the start of the MQWCR structure.
ClusterFlags (MQLONG) - input
The cluster flags indicate properties of the queue manager identified by the MQWCR structure. The
following flags are defined:

MQQMF_REPOSITORY_Q_MGR
Destination is a full repository queue manager.

MQQMF_CLUSSDR_USER_DEFINED
Cluster-sender channel was defined manually.

MQQMF_CLUSSDR_AUTO_DEFINED
Cluster-sender channel was defined automatically.

MQQMF_AVAILABLE
Destination queue manager is available to receive messages.

Other values
Other flags in the field might be set by the queue manager for internal purposes.

164 1BM WebSphere MQ: Reference



Initial values and language declarations for MQWCR:

Initial values and C and High Level Assembler Language declarations for MQWCR - Cluster workload
cluster record structure.

Table 41. Initial values of fields in MQWCR

Field name Name of constant Value of constant
ClusterName None "
ClusterRecOffset None 0

ClusterFlags None 0

C declaration
typedef struct tagMQWCR {

MQCHAR48 ClusterName; /* Cluster name */
MQLONG ClusterRecOffset; /* Offset of next cluster record */

MQLONG ClusterFlags; /* Cluster flags =*/
bs

High Level Assembler

MQWCR DSECT

MQWCR_CLUSTERNAME DS  CL48 Cluster name

MQWCR_CLUSTERRECOFFSET DS F 0ffset of next cluster

* record

MQWCR_CLUSTERFLAGS DS F Cluster flags

MQWCR_LENGTH EQU *-MQWCR Length of structure
ORG  MQWCR

MQWCR_AREA DS  CL(MQWCR_LENGTH)

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.

For both REFRESH CLUSTER and RESET CLUSTER, message CSQM130I is sent to the command issuer
indicating that a request has been sent. This message is followed by message CSQ9022I to indicate that
the command has completed successfully, in that a request has been sent. It does not indicate that the
cluster request has been completed successfully.

Any errors are reported to the z/OS console on the system where the channel initiator is running, they
are not sent to the command issuer.

The asynchronous behavior is in contrast to CHANNEL commands. A message indicating that a channel

command has been accepted is issued immediately. At some later time, when the command has been
completed, a message indicating either normal or abnormal completion is sent to the command issuer.

Channel programs
This section looks at the different types of channel programs (MCAs) available for use at the channels.

The names of the MCAs are shown in the following tables.

Reference 165



Table 42. Channel programs for Windows, UNIX and Linux systems

Program name Direction of connection Communication
amqgrmppa Any

runmglsr Inbound Any

amgcrs6a Inbound LU 6.2

amqcrsta Inbound TCP

runmgqchl Outbound Any

runmgqchi Outbound Any

runmglsr (Run WebSphere MQ listener), runmqchl (Run WebSphere MQ channel), and runmgqchi (Run
WebSphere MQ channel initiator) are control commands that you can enter at the command line.

amgqcrsta is invoked for TCP channels on UNIX and Linux systems using inetd, where no listener is
started.

amgqcrs6a is invoked as a transaction program when using LU6.2

Environment Variables

A list of all the server and client Environment Variables. Example of use, on UNIX and Linux systems
use: export [environment variable]=filename. On Windows Systems, use: Set [environment
variable]=filename. On IBM i systems use: ADDENVVAR ENVVAR(environment variable) VALUE(xx)

AMQ_MQS_INI_LOCATION
On UNIX and Linux systems, you can alter the location used for the mgs.ini file by setting the
location of the mgs.ini file in this variable. This variable must be set at the system level.

GMQ_MQ _LIB
When both the IBM WebSphere MQ MQI client and IBM WebSphere MQ server are installed on
your system, MQAX applications run against the server by default. To run MQAX against the
client, the client bindings library must be specified in the GMQ_MQ_LIB environment variable,
for example, set GMQ_MQ_LIB=mqic.d11. For a client only installation, it is not necessary to set the
GMQ_MQ_LIB environment variable. When this variable is not set, WebSphere MQ attempts to
load amgzst.d11. If this DLL is not present (as is the case in a client only installation), WebSphere
MQ attempts to load mqic.d11.

HOME
This variable contains the name of the directory which is searched for the mqclient.ini file. This
file contains configuration information used by IBM WebSphere MQ MQI clients on IBM i, UNIX
and Linux systems.

HOMEDRIVE and HOMEPATH
To be used both of these variables must be set. They are used to contain the name of the
directory which is searched for the mqclient.ini file. This file contains configuration information
used by IBM WebSphere MQ MQI clients on Windows systems.

LDAP_BASEDN
The required environment variable for running an LDAP sample program. It specifies the base
Distinguished Name for the directory search.

LDAP_HOST
An optional variable for running an LDAP sample program. It specifies the name of the host
where the LDAP server is running; it defaults to the local host if it is not specified

LDAP_VERSION
An optional variable for running an LDAP sample program. It specifies the version of the LDAP
protocol to be used, and can be either 2 or 3. Most LDAP servers now support version 3 of the

166 1BM WebSphere MQ: Reference



protocol; they all support the older version 2. This sample works equally well with either version
of the protocol, and if it is not specified it defaults to version 2.

MQAPI_TRACE_LOGFILE
The sample API exit program generates an MQI trace to a user-specified file with a prefix defined
in the MQAPI_TRACE_LOGFILE environment variable.

MQCCSID
Specifies the coded character set number to be used and overrides the native CCSID of the
application.

MQCERTVPOL
Determines the type of certificate validation used:

ANY Use any certificate validation policy supported by the underlying secure sockets library.
This setting is the default setting.

RFC5280
Use only certificate validation which complies with the RFC 5280 standard.

MQCHLLIB
Specifies the directory path to the file containing the client channel definition table (CCDT). The
file is created on the server, but can be copied across to the WebSphere MQ MOQI client
workstation.

MQCHLTAB
MQCHLTAB specifies the name of the file containing the client channel definition table (ccdt).
The default file name is AMQCLCHL.TAB.

MQC_IPC_HOST
When sharing IBM WebSphere MQ files and the generated value of myHostName creates a problem
set myHostName using the environment variable MQC_IPC_HOST

MQCLNTCF
Use this environment variable to modify the mqclient.ini file path.

MQ_CONNECT_TYPE
On IBM WebSphere MQ for IBM i, Windows, UNIX and Linux systems, use this environment
variable in combination with the type of binding specified in the Options field of the MQCNO

structure used on an MQCONNX call. See [MQCONNX environment variable| (WebSphere MQ
V7.1 Programming Guide)

MQ_FILE_PATH
During the installation of the runtime package on the Windows platform, a new environment
variable called MQ_FILE_PATH is configured. This environment variable contains the same data
as the following key in the Windows Registry:

HKEY_LOCAL_MACHINE\SOFTWARE\IBM\WebSphere MQ\Installation\<InstallationName>
\FilePath

MOQIPADDRV
MOQIPADDRYV specifies which IP protocol to use for a channel connection. It has the possible
string values of "MQIPADDR_IPV4" or "MQIPADDR_IPV6". These values have the same
meanings as IPV4 and IPV6 in ALTER QMGR IPADDRV. If it is not set, '"MQIPADDR_IPV4" is
assumed.

MQ_JAVA_DATA_PATH
Specifies the directory for log and trace output.

MQ_JAVA_INSTALL_PATH
Specifies the directory where IBM WebSphere MQ classes for Java are installed, as shown in IBM
WebSphere MQ classes for Java installation directories.

Reference 167



MOQ_JAVA_LIB_PATH
Specifies the directory where the IBM WebSphere MQ classes for Java libraries are stored. Some
scripts supplied with IBM WebSphere MQ classes for Java, such as IVTRun, use this environment
variable.

MQNAME
MQNAME specifies the local NetBIOS name that the IBM WebSphere MQ processes can use.

MQNOREMPOOL
When you set this variable, it switches off channel pooling and causes channels to run as threads
of the listener.

MQPSE_TRACE_LOGFILE
Use when you Publish the Exit Sample Program. In the application process to be traced, this

environment variable describes where the trace files must be written to. See [ [The Publish Exit|
lsample program| (WebSphere MQ V7.1 Programming Guide)

MQSERVER
MQSERVER environment variable is used to define a minimal channel. You cannot use
MQSERVER to define an SSL channel or a channel with channel exits. MQSERVER specifies the
location of the WebSphere MQ server and the communication method to be used.

MQ_SET_NODELAYACK
When you set this variable, it switches off TCP delayed acknowledgment

When you set this variable on AIX, the setting switches off TCP delayed acknowledgment by
calling the operating system's setsockopt call with the TCP_NODELAYACK option. Only AIX
supports this function, so the MQ_SET_NODELAYACK environment variable only has an effect
on AIX.

MQSNOAUT
MQSNOAUT disables the object authority manager (OAM) and prevents any security checking.
The MQSNOAUT variable only takes effect when a queue manager is created.

MQSPREFIX
As an alternative to changing the default prefix, you can use the environment variable
MQSPREFIX to override the DefaultPrefix for the crtmgm command.

MQSSLCRYP
MQSSLCRYP holds a parameter string that you can use to configure the cryptographic hardware
present on the system. The permitted values are the same as for the SSLCRYP parameter of the
ALTER QMGR command.

MQSSLFIPS
MQSSLFIPS specifies whether only FIPS-certified algorithms are to be used if cryptography is
carried out in IBM WebSphere MQ. The values are the same as for the SSLFIPS parameter of the
ALTER QMGR command.

MQSSLKEYR
MQSSLKEYR specifies the location of the key repository that holds the digital certificate
belonging to the user, in stem format. Stem format means that it includes the full path and the
file name without an extension. For full details, see the SSLKEYR parameter of the ALTER QMGR
command.

MQSSLPROXY
MQSSLPROXY specifies the host name and port number of the HTTP proxy server to be used by
GSKit for OCSP checks.

MOQSSLRESET
MQSSLRESET represents the number of unencrypted bytes sent and received on an SSL channel
before the SSL secret key is renegotiated.

168 1BM WebSphere MQ: Reference



MQS_TRACE_OPTIONS
Use the environment variable MQS_TRACE_OPTIONS to activate the high detail and parameter
tracing functions individually.

MQTCPTIMEOUT
This variable specifies how long IBM WebSphere MQ waits for a TCP connect call.

MQSUITEB
This variable specifies whether Suite B compliant cryptography is to be used. In the instance that

Suite B cryptography is used you can specify the strength of the cryptography by setting
MQSUITEB to one of the following:

+ NONE
+ 128_BIT, 192_BIT
+ 128_BIT
+ 192 _BIT
ODQ_MSG
If you use a dead-letter queue handler that is different from RUNMQDLQ the source of the
sample is available for you to use as your base. The sample is like the dead-letter handler
provided within the product but trace and error reporting are different. Use the ODQ_MSG

environment variable to set the name of the file containing error and information messages. The
file provided is called amqgsdlg.msg.

ODQ_TRACE
If you use a dead-letter queue handler that is different from RUNMQDLQ the source of the
sample is available for you to use as your base. The sample is like the dead-letter handler
provided within the product but trace and error reporting are different. Set the ODQ_TRACE
environment variable to YES or yes to switch on tracing

OMQ_PATH
This environment variable is where you can find the First Failure Symptom report if your IBM
WebSphere MQ automation classes for ActiveX script fails.

OMQ_TRACE
MQAX includes a trace facility to help the service organization identify what is happening when
you have a problem. It shows the paths taken when you run your MQAX script. Unless you have
a problem, run with tracing set off to avoid any unnecessary use of system resources.
OMOQ_TRACE is one of the three environment variables set to control trace. Specifying any value
for OMQ_TRACE switches the trace facility on. Even if you set OMQ_TRACE to OFF, trace is still

active. See (WebSphere MQ V7.1 Programming Guide)
OMQ_TRACE_PATH

One of the three environment variables set to control trace. See (WebSphere MQ
V7.1 Programming Guide)

OMQ_TRACE_LEVEL

One of the three environment variables set to control trace. See (WebSphere MQ
V7.1 Programming Guide)

ONCONFIG

The name of the Informix server configuration file. For example, on UNIX and Linux systems,
use:

export ONCONFIG=onconfig.hostname 1

On Windows systems, use:
set ONCONFIG=onconfig.hostname_ 1

Reference 169



WCF_TRACE_ON
Two different trace methods are available for the WCF custom channel, the two trace methods are

activated independently or together. Each method produces its own trace file, so when both trace
methods have been activated, two trace output files are generated. There are four combinations
for enabling and disabling the two different trace methods. As well as these combinations to
enable WCF trace, the XMS .NET trace can also be enabled using the WCF_TRACE_ON

environment variable. See [WCF trace configuration and trace file names| (WebSphere MQ V7.1
Programming Guide)
WMQSOAP_HOME

Use when making additional configuration steps after the .NET SOAP over JMS service hosting
environment is correctly installed and configured in IBM WebSphere MQ. It is accessible from a

local queue manager. See k= [WCF client to a .NET service hosted by WebSphere MQ sample

(WebSphere MQ V7.1 Programming Guide) and [WCEF client to an Axis Java service hosted by|
[WebSphere MQ sample| (WebSphere MQ V7.1 Programming Guide)

Also use when you install WebSphere MQ web transport for SOAP. See - [Installing WebSphere]
[MQ Web transport for SOAP| (WebSphere MQ V7.1 Programming Guide)

Intercommunication jobs
The following jobs are associated with Intercommunication on IBM i. The names are contained in the
following table.

Table 43. Job names

Job name Description

AMQCLMAA Non-threaded Listener
AMOQCRSTA Non-threaded Responder Job
AMQRMPPA Channel Pool Job
RUNMQCHI Channel Initiator
RUNMQCHL Channel Job

RUNMQLSR Threaded Listener

Channel states on IBM i
Channel states are displayed on the Work with Channels panel

Table 44. Channel states on IBM i

State name Meaning

STARTING Channel is ready to begin negotiation with target MCA
BINDING Establishing a session and initial data exchange
REQUESTING Requester channel initiating a connection

RUNNING Transferring or ready to transfer

PAUSED Waiting for message-retry interval

STOPPING Establishing whether to retry or stop

RETRYING Waiting until next retry attempt

STOPPED Channel stopped because of an error or because an end-channel command is issued
INACTIVE Channel ended processing normally or channel never started
*None No state (for server-connection channels only)

170 1BM WebSphere MQ: Reference



Table 44. Channel states on IBM i (continued)

State name | Meaning

Message channel planning example for distributed platforms

This section provides a detailed example of how to connect two queue managers together so that
messages can be sent between them.

The example illustrates the preparations required to enable an application using queue manager QM1 to
put messages on a queue at queue manager QM2. An application running on QM2 can retrieve these
messages, and send responses to a reply queue on QM1.

The example illustrates the use of TCP/IP connections. The example assumes that channels are to be
triggered to start when the first message arrives on the transmission queue they are servicing. You must
start the channel initiator in order for triggering to work.

This example uses SYSTEM.CHANNEL.INITQ as the initiation queue. This queue is already defined by
WebSphere MQ. You can use a different initiation queue, but you must define it yourself and specify the
name of the queue when you start the channel initiator.

What the example shows
The example shows the WebSphere MQ commands (MQSC) that you can use.

In all the examples, the MQSC commands are shown as they would appear in a file of commands, and as
they would be typed at the command line. The two methods look identical, but, to issue a command at
the command line, you must first type runmgsc, for the default queue manager, or runmgsc gmname where
gmname is the name of the required queue manager. Then type any number of commands, as shown in the
examples.

An alternative method is to create a file containing these commands. Any errors in the commands are
then easy to correct. If you called your file mgsc.in then to run it on queue manager QMNAME use:

runmgsc QMNAME < mgsc.in > mgsc.out

You could verify the commands in your file before running it using:
runmgsc -v QMNAME < mgsc.in > mgsc.out

For portability, you should restrict the line length of your commands to 72 characters. Use a
concatenation character to continue over more than one line. On Windows use Ctrl-z to end the input at
the command line. On UNIX and Linux systems use Ctrl-d. Alternatively, use the end command.

Figure 7 on page 172|shows the example scenario.

Reference 171



Application Queue manager'QM1' Queue manager'QM2' Application
Query
message | [T T T T TTToo oo omm oo ;
» Queue remote 'PAYROLL.QUERY",
777777777777777777777777 |
£ Channel Query
| | message
Payroll ‘ Queue transmission'QM2' —% QM1.TO.QM2 }—*‘ Queuelocal 'PAYROLL' | P Payroll
uer rocessin
query * Reply p g
| | message
‘ 'SYSTEM.CHANNEL.INITQ' Queue transmission'QM1' ‘1
Reply Channel ¢
message | |
< ‘ Queuelocal'PAYROLL.REPLY' F——{ QM2.T0.QM1 F— 'SYSTEM.CHANNEL.INITQ'

Figure 7. The message channel example for Windows, UNIX and Linux systems

The example involves a payroll query application connected to queue manager QM1 that sends payroll
query messages to a payroll processing application running on queue manager QM2. The payroll query
application needs the replies to its queries sent back to QM1. The payroll query messages are sent from
QM1 to QM2 on a sender-receiver channel called QM1.TO.QM2, and the reply messages are sent back
from QM2 to QM1 on another sender-receiver channel called QM2.TO.QM1. Both of these channels are
triggered to start as soon as they have a message to send to the other queue manager.

The payroll query application puts a query message to the remote queue “PAYROLL.QUERY” defined on
QM1. This remote queue definition resolves to the local queue “PAYROLL” on QM2. In addition, the
payroll query application specifies that the reply to the query is sent to the local queue
“PAYROLL.REPLY” on QM1. The payroll processing application gets messages from the local queue
“PAYROLL” on QM2, and sends the replies to wherever they are required; in this case, local queue
“PAYROLL.REPLY” on QM1.

In the example definitions for TCP/IP, QM1 has a host address of 192.0.2.0 and is listening on port 1411,
and QM2 has a host address of 192.0.2.1 and is listening on port 1412. The example assumes that these
are already defined on your system and available for use.

The object definitions that need to be created on QM1 are:

* Remote queue definition, PAYROLL.QUERY

* Transmission queue definition, QM2 (default=remote queue manager name)
* Sender channel definition, QM1.TO.QM?2

* Receiver channel definition, QM2.TO.QM1

* Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

* Local queue definition, PAYROLL

* Transmission queue definition, QM1 (default=remote queue manager name)
* Sender channel definition, QM2.TO.QM1

* Receiver channel definition, QM1.TO.QM2

The connection details are supplied in the CONNAME attribute of the sender channel definitions.

You can see a diagram of the arrangement in

172 1BM WebSphere MQ: Reference



Queue manager QM1 example:

The following object definitions allow applications connected to queue manager QM1 to send request
messages to a queue called PAYROLL on QM2, and to receive replies on a queue called PAYROLL.REPLY
on QM.

All the object definitions have been provided with the DESCR and REPLACE attributes. The other
attributes supplied are the minimum required to make the example work. The attributes that are not
supplied take the default values for queue manager QM1.

Run the following commands on queue manager QM1.

Remote queue definition

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QM2') REPLACE +
PUT (ENABLED) XMITQ(QM2) RNAME(PAYROLL) RQMNAME (QM2)

Note: The remote queue definition is not a physical queue, but a means of directing messages to
the transmission queue, QM2, so that they can be sent to queue manager QM2.

Transmission queue definition

DEFINE QLOCAL(QM2) DESCR('Transmission queue to QM2') REPLACE +
USAGE (XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM1.T0.QM2.PROCESS)

When the first message is put on this transmission queue, a trigger message is sent to the
initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the
initiation queue and starts the channel identified in the named process.

Sender channel definition

DEFINE CHANNEL(QM1.T0.QM2) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +
CONNAME ('192.0.2.1(1412) ")

Receiver channel definition

DEFINE CHANNEL(QM2.T0.QM1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM2')

Reply-to queue definition
DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to query messages sent to QM2')

The reply-to queue is defined as PUT(ENABLED). This ensures that reply messages can be put to
the queue. If the replies cannot be put to the reply-to queue, they are sent to the dead-letter
queue on QM1 or, if this queue is not available, remain on transmission queue QM1 on queue
manager QM2. The queue has been defined as GET(ENABLED) to allow the reply messages to be
retrieved.

Reference 173



Queue manager QM2 example:

The following object definitions allow applications connected to queue manager QM2 to retrieve request
messages from a local queue called PAYROLL, and to put replies to these request messages to a queue
called PAYROLL.REPLY on queue manager QM1.

You do not need to provide a remote queue definition to enable the replies to be returned to QM1. The
message descriptor of the message retrieved from local queue PAYROLL contains both the reply-to queue
and the reply-to queue manager names. Therefore, as long as QM2 can resolve the reply-to queue
manager name to that of a transmission queue on queue manager QM?2, the reply message can be sent. In
this example, the reply-to queue manager name is QM1 and so queue manager QM2 requires a
transmission queue of the same name.

All the object definitions have been provided with the DESCR and REPLACE attributes and are the
minimum required to make the example work. The attributes that are not supplied take the default
values for queue manager QM2.

Run the following commands on queue manager QM2.

Local queue definition

DEFINE QLOCAL(PAYROLL) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Local queue for QM1 payroll details')

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same reason as the
reply-to queue definition on queue manager QM1.

Transmission queue definition

DEFINE QLOCAL(QM1) DESCR('Transmission queue to QM1') REPLACE +
USAGE (XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM2.TO.QM1.PROCESS)

When the first message is put on this transmission queue, a trigger message is sent to the
initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the
initiation queue and starts the channel identified in the named process.

Sender channel definition

DEFINE CHANNEL(QM2.T0.QM1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +
CONNAME('192.0.2.0(1411)")

Receiver channel definition

DEFINE CHANNEL(QM1.T0.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM1')

Running the example
Information about starting the channel initiator and listener and suggestions for expanding on this
scenario.

Once these definitions have been created, you need to:
* Start the channel initiator on each queue manager.

* Start the listener for each queue manager.

For information about starting the channel initiator and listener, see k4 [Setting up communication for]

Windows| (WebSphere MQ V7.1 Installing Guide) and [ [Setting up communication on UNIX and Linux
systems| (WebSphere MQ V7.1 Installing Guide).

174 1BM WebSphere MQ: Reference



Expanding this example

This simple example could be expanded with:
* The use of LU 6.2 communications for interconnection with CICS systems, and transaction processing.

* Adding more queue, process, and channel definitions to allow other applications to send messages
between the two queue managers.

* Adding user-exit programs on the channels to allow for link encryption, security checking, or
additional message processing.

* Using queue-manager aliases and reply-to queue aliases to understand more about how these can be
used in the organization of your queue manager network.

Message channel planning example for WebSphere MQ for IBM i

This section provides a detailed example of how to connect two IBM i queue managers together so that
messages can be sent between them.

The example illustrates the preparations needed to allow an application using queue manager QM1 to
put messages on a queue at queue manager QM2. An application running on QM2 can retrieve these
messages, and send responses to a reply queue on QM1.

The example illustrates the use of TCP/IP connections. The example assumes that channels are to be
triggered to start when the first message arrives on the transmission queue they are servicing.

This example uses SYSTEM.CHANNEL.INITQ as the initiation queue. This queue is already defined by
WebSphere MQ. You can use a different initiation queue, but you have to define it yourself, start a new
instance of the channel initiator using the STRMQMCHLI command, and provide it with the name of

your initiation queue. For more information about triggering channels, see [ [Triggering channels|
(WebSphere MQ V7.1 Installing Guide).

What the example shows

This example involves a payroll query application connected to queue manager QM1 that sends payroll
query messages to a payroll processing application running on queue manager QM2. The payroll query
application needs the replies to its queries sent back to QM.

Application Queue manager'QM1" Queue manager'QM2' Application
Query
message | ;""" T T T TTooo oo ommmm o I
» Queue remote 'PAYROLL.QUERY"|
,,,,,,,,,,,,,,,,,,,,,,,,, |
; Channel Query
| | message
Payroll ‘ Queuetransmission'QM2' —% QM1.TO.QM2 }—ﬂ Queuelocal 'PAYROLL' | P Payroll
uer rocessin
query * Reply p g
| | message
‘ 'SYSTEM.CHANNEL.INITQ' Queue transmission'QM1' ‘1
Reply Channel ¢
message | |
< ‘ Queuelocal'PAYROLL.REPLY' F——{ QM2.TO.QM1 F— 'SYSTEM.CHANNEL.INITQ'

Figure 8. The message channel example for WebSphere MQ for IBM i

The payroll query messages are sent from QM1 to QM2 on a sender-receiver channel called
OM1.TO.QM2, and the reply messages are sent back from QM2 to QM1 on another sender-receiver
channel called QM2.TO.QM1. Both of these channels are triggered to start as soon as they have a message
to send to the other queue manager.

Reference 175



The payroll query application puts a query message to the remote queue “PAYROLL.QUERY” defined on
QM1. This remote queue definition resolves to the local queue “PAYROLL” on QM2. In addition, the
payroll query application specifies that the reply to the query is sent to the local queue
“PAYROLL.REPLY” on QM1. The payroll processing application gets messages from the local queue
“PAYROLL” on QM2, and sends the replies to wherever they are required; in this case, local queue
“PAYROLL.REPLY” on QM1.

Both queue managers are assumed to be running on IBM i. In the example definitions, QM1 has a host
address of 192.0.2.0 and is listening on port 1411. QM2 has a host address of 192.0.2.1 and is listening on
port 1412. The example assumes that these queue managers are already defined on your IBM i system,
and are available for use.

The object definitions that need to be created on QM1 are:

* Remote queue definition, PAYROLL.QUERY

* Transmission queue definition, QM2 (default=remote queue manager name)
* Sender channel definition, QM1.TO.QM2

* Receiver channel definition, QM2.TO.QM1

* Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

* Local queue definition, PAYROLL

* Transmission queue definition, QM1 (default=remote queue manager name)
* Sender channel definition, QM2.TO.QM1

* Receiver channel definition, QM1.TO.QM2

The connection details are supplied in the CONNAME attribute of the sender channel definitions.

You can see a diagram of the arrangement in [Figure 8 on page 175

Queue manager QM1 example:

The following object definitions allow applications connected to queue manager QM1 to send request
messages to a queue called PAYROLL on QM2, and to receive replies on a queue called PAYROLL.REPLY
on QM1.

All the object definitions have been provided with the TEXT attributes. The other attributes supplied are
the minimum required to make the example work. The attributes that are not supplied take the default
values for queue manager QM1.

Run the following commands on queue manager QM1:

Remote queue definition
The CRTMQMQ command with the following attributes:

QONAME ‘PAYROLL.QUERY'

QTYPE *RMT

TEXT ‘Remote queue for QM2'

PUTENBL *YES

TMQNAME ‘OM2' (default = remote queue manager name)
RMTQNAME ‘PAYROLL'

RMTMQMNAME ‘QM2'

Note: The remote queue definition is not a physical queue, but a means of directing messages to
the transmission queue, QM2, so that they can be sent to queue manager QM2.

176 1BM WebSphere MQ: Reference



Transmission queue definition
The CRTMQMQ command with the following attributes:

ONAME oM2

QTYPE *LCL

TEXT ‘Transmission queue to QM2
USAGE *TMQ

PUTENBL *YES

GETENBL *YES

TRGENBL *YES

TRGTYPE *FIRST

INITONAME SYSTEM.CHANNEL.INITQ
TRIGDATA OM1.TO.QM2

When the first message is put on this transmission queue, a trigger message is sent to the
initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the
initiation queue and starts the channel identified in the named process.

Sender channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME OM1.TO.QM2

CHLTYPE *SDR

TRPTYPE *TCP

TEXT ‘Sender channel to QM?2'
TMQNAME QM2

CONNAME 192.0.2.1(1412)'

Receiver channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QOM2.TO.QM1

CHLTYPE *RCVR

TRPTYPE *TCP

TEXT ‘Receiver channel from QM?2'

Reply-to queue definition
The CRTMQMOQ command with the following attributes:

QNAME PAYROLL.REPLY

QTYPE *LCL

TEXT ‘Reply queue for replies to query messages sent to QM2'
PUTENBL *YES

GETENBL *YES

The reply-to queue is defined as PUT(ENABLED). This definition ensures that reply messages can

be put to the queue. If the replies cannot be put to the reply-to queue, they are sent to the

dead-letter queue on QM1 or, if this queue is not available, remain on transmission queue QM1

on queue manager QM2. The queue has been defined as GET(ENABLED) to allow the reply
messages to be retrieved.

Reference

177



Queue manager QM2 example:

The following object definitions allow applications connected to queue manager QM2 to retrieve request
messages from a local queue called PAYROLL, and to put replies to these request messages to a queue
called PAYROLL.REPLY on queue manager QM1.

You do not need to provide a remote queue definition to enable the replies to be returned to QM1. The
message descriptor of the message retrieved from local queue PAYROLL contains both the reply-to queue
and the reply-to queue manager names. Therefore, as long as QM2 can resolve the reply-to queue
manager name to that of a transmission queue on queue manager QM?2, the reply message can be sent. In
this example, the reply-to queue manager name is QM1 and so queue manager QM2 requires a
transmission queue of the same name.

All the object definitions have been provided with the TEXT attribute and are the minimum required to
make the example work. The attributes that are not supplied take the default values for queue manager
QM2.

Run the following commands on queue manager QM2:

Local queue definition
The CRTMQMQ command with the following attributes:

QNAME PAYROLL

QTYPE *LCL

TEXT ‘Local queue for QM1 payroll details'
PUTENBL *YES

GETENBL *YES

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same reason as the
reply-to queue definition on queue manager QM1.

Transmission queue definition
The CRTMQMQ command with the following attributes:

QNAME QM1

QTYPE *LCL

TEXT ‘Transmission queue to QM1'
USAGE *TMQ

PUTENBL *YES

GETENBL *YES

TRGENBL *YES

TRGTYPE *FIRST

INITQNAME SYSTEM.CHANNEL.INITQ
TRIGDATA QM2.TO.QM1

When the first message is put on this transmission queue, a trigger message is sent to the
initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the
initiation queue and starts the channel identified in the trigger data.

Sender channel definition
The CRTMQMCHL command with the following attributes:

178 1BM WebSphere MQ: Reference



CHLNAME QM2.TO.QM1

CHLTYPE *SDR

TRPTYPE *TCP

TEXT ‘Sender channel to QM1'
TMQNAME QM1

CONNAME 192.0.2.0(1411)'

Receiver channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME OM1.TO.QM2

CHLTYPE *RCVR

TRPTYPE *TCP

TEXT ‘Receiver channel from QM1'

Running the example
When you have created the required objects you must start the channel initiators and listeners for both
queue managers.

The applications can then send messages to each other. The channels are triggered to start by the first
message arriving on each transmission queue, so you do not need to issue the STRMQMCHL command.

For details about starting a channel initiator and a listener, see k= [Monitoring and controlling channels|

(WebSphere MQ V7.1 Installing Guide).

Expanding this example
The example can be expanded in a number of ways.

This example can be expanded by:

* Adding more queue and channel definitions to allow other applications to send messages between the
two queue managers.

* Adding user exit programs on the channels to allow for link encryption, security checking, or
additional message processing.

* Using queue manager aliases and reply-to queue aliases to understand more about how these objects
can be used in the organization of your queue manager network.

For a version of this example that uses MQSC commands, see [“Message channel planning example for|

Message channel planning example for z/OS

This section provides a detailed example of how to connect z/OS or MVS queue managers together so
that messages can be sent between them.

The example illustrates the preparations needed to allow an application using queue manager QM1 to
put messages on a queue at queue manager QM2. An application running on QM2 can retrieve these
messages, and send responses to a reply queue on QM1.

The example illustrates the use of both TCP/IP and LU 6.2 connections. The example assumes that

channels are to be triggered to start when the first message arrives on the transmission queue they are
servicing.

Reference 179



What the example shows

This example involves a payroll query application connected to queue manager QM1 that sends payroll
query messages to a payroll processing application running on queue manager QM2. The payroll query
application needs the replies to its queries sent back to QM1.

Application Queue manager'QM1' Queue manager'QM2' Application
Query
message | [T T T oo To oo omm oo ;
> Queue remote 'PAYROLL.QUERY",
7777777777777777777777777 |
£ Channel Query
| | message
Payroll ‘ Queue transmission'QM2' —% QM1.TO.QM2 }—-b‘ Queuelocal 'PAYROLL' | P Payroll
query ¢ Reply processing
| | message
‘ 'SYSTEM.CHANNEL.INITQ' Queue transmission'QM1’ ‘:
Reply Channel ¢
message| |
< ‘ Queuelocal'PAYROLL.REPLY' F——{ QM2.T0.QM1 F— 'SYSTEM.CHANNEL.INITQ'

Figure 9. The first example for WebSphere MQ for z/OS

The payroll query messages are sent from QM1 to QM2 on a sender-receiver channel called
QOM1.TO.QM2, and the reply messages are sent back from QM2 to QM1 on another sender-receiver
channel called QM2.TO.QML1. Both of these channels are triggered to start as soon as they have a message
to send to the other queue manager.

The payroll query application puts a query message to the remote queue “PAYROLL.QUERY” defined on
QM1. This remote queue definition resolves to the local queue “PAYROLL” on QM2. In addition, the
payroll query application specifies that the reply to the query is sent to the local queue
“PAYROLL.REPLY” on QM1. The payroll processing application gets messages from the local queue
“PAYROLL” on QM2, and sends the replies to wherever they are required; in this case, local queue
“PAYROLL.REPLY” on QM1.

Both queue managers are assumed to be running on z/0S. In the example definitions for TCP/IP, QM1
has a host address of 192.0.2.0 and is listening on port 1411, and QM2 has a host address of 192.0.2.1 and
is listening on port 1412. In the definitions for LU 6.2, QM1 is listening on a symbolic luname called
LUNAME1 and QM2 is listening on a symbolic luname called LUNAME?2. The example assumes that
these lunames are already defined on your z/OS system and available for use. To define them, see
[‘Example configuration - IBM WebSphere MQ for z/0S” on page 39

The object definitions that need to be created on QM1 are:

* Remote queue definition, PAYROLL.QUERY

* Transmission queue definition, QM2 (default=remote queue manager name)
* Sender channel definition, QM1.TO.QM2

* Receiver channel definition, QM2.TO.QM1

* Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

* Local queue definition, PAYROLL

* Transmission queue definition, QM1 (default=remote queue manager name)
* Sender channel definition, QM2.TO.QM1

* Receiver channel definition, QM1.TO.QM2

180 1BM WebSphere MQ: Reference



The example assumes that all the SYSTEM.COMMAND.* and SYSTEM.CHANNEL.* queues required to
run DQM have been defined as shown in the supplied sample definitions, CSQ4INSG and CSQ4INSX.

The connection details are supplied in the CONNAME attribute of the sender channel definitions.

You can see a diagram of the arrangement in [Figure 9 on page 180}

Queue manager QM1 example:

The following object definitions allow applications connected to queue manager QM1 to send request
messages to a queue called PAYROLL on QM2. It also allows applications to receive replies on a queue
called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the DESCR and REPLACE attributes. The other
attributes supplied are the minimum required to make the example work. The attributes that are not
supplied take the default values for queue manager QM1.

Run the following commands on queue manager QM1.

Remote queue definition

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QM2') REPLACE +
PUT (ENABLED) XMITQ(QM2) RNAME(PAYROLL) RQMNAME (QM2)

Note: The remote queue definition is not a physical queue, but a means of directing messages to the
transmission queue, QM2, so that they can be sent to queue manager QM2.

Transmission queue definition

DEFINE QLOCAL(QM2) DESCR('Transmission queue to QM2') REPLACE +
USAGE (XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QM1.T0.QM2) INITQ(SYSTEM.CHANNEL.INITQ)

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the trigger data. The channel initiator can only get trigger messages from
the SYSTEM.CHANNEL.INITQ queue, so do not use any other queue as the initiation queue.

Sender channel definition

For a TCP/IP connection:

DEFINE CHANNEL(QM1.T0.QM2) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +
CONNAME('192.0.2.1(1412)")

For an LU 6.2 connection:

DEFINE CHANNEL(QM1.T0.QM2) CHLTYPE(SDR) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +
CONNAME (' LUNAME2 ")

Receiver channel definition

For a TCP/IP connection:
DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM2')

For an LU 6.2 connection:

Reference 181



DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QM2')

Reply-to queue definition
DEFINE QLOCAL (PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to query messages sent to QM2')

The reply-to queue is defined as PUT(ENABLED) which ensures that reply messages can be put to the
queue. If the replies cannot be put to the reply-to queue, they are sent to the dead-letter queue on QM1
or, if this queue is not available, remain on transmission queue QM1 on queue manager QM2. The queue
has been defined as GET(ENABLED) to allow the reply messages to be retrieved.

QueueManager QM2 example:

The following object definitions allow applications connected to queue manager QM2 to retrieve request
messages from a local queue called PAYROLL and to put replies to these request messages to a queue
called PAYROLL.REPLY on queue manager QM1.

You do not need to provide a remote queue definition to enable the replies to be returned to QM1. The
message descriptor of the message retrieved from local queue PAYROLL contains both the reply-to queue
and the reply-to queue manager names. Therefore, as long as QM2 can resolve the reply-to queue
manager name to that of a transmission queue on queue manager QM2, the reply message can be sent. In
this example, the reply-to queue manager name is QM1 and so queue manager QM2 requires a
transmission queue of the same name.

All the object definitions have been provided with the DESCR and REPLACE attributes and are the
minimum required to make the example work. The attributes that are not supplied take the default
values for queue manager QM?2.

Run the following commands on queue manager QM2.

Local queue definition

DEFINE QLOCAL(PAYROLL) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Local queue for QM1 payroll details')

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same reason as the reply-to queue
definition on queue manager QM1.

Transmission queue definition

DEFINE QLOCAL(QM1) DESCR('Transmission queue to QM1') REPLACE +
USAGE (XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QM2.T0.QM1) INITQ(SYSTEM.CHANNEL.INITQ)

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the trigger data. The channel initiator can only get trigger messages from
SYSTEM.CHANNEL.INITQ so do not use any other queue as the initiation queue.

Sender channel definition

For a TCP/IP connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +
CONNAME ('192.0.2.0(1411) ")

For an LU 6.2 connection:

182 1BM WebSphere MQ: Reference



DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +
CONNAME (' LUNAME1")

Receiver channel definition

For a TCP/IP connection:

DEFINE CHANNEL(QM1.T0.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM1')

For an LU 6.2 connection:

DEFINE CHANNEL(QM1.T0.QM2) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QM1')

Running the example
When you have created the required objects, you must start the channel initiators and listeners for both
queue managers.

The applications can then send messages to each other. Because the channels are triggered to start by the
arrival of the first message on each transmission queue, you do not need to issue the START CHANNEL
MQSC command.

For details about starting a channel initiator see [ [Starting a channel initiator] (WebSphere MQ V7.1

Installing Guide), and for details about starting a listener see [Starting a channel listener| (WebSphere MQ
V7.1 Installing Guide).

Expanding the example
The example can be expanded in a number of ways.

The example can be expanded by:

* Adding more queue, and channel definitions to allow other applications to send messages between the
two queue managers.

* Adding user exit programs on the channels to allow for link encryption, security checking, or
additional message processing.

* Using queue manager aliases and reply-to queue aliases to understand more about how these aliases
can be used in the organization of your queue manager network.

Message channel planning example for z/OS using queue-sharing
groups

This example illustrates the preparations needed to allow an application using queue manager QM3 to
put a message on a queue in a queue-sharing group that has queue members QM4 and QMS5.

Ensure you are familiar with the example in [“Message channel planning example for z/OS” on page 179
before trying this example.

Reference 183



What this example shows

This example shows the WebSphere MQ commands (MQSC) that you can use in WebSphere MQ for
z/OS for distributed queuing with queue-sharing groups.

This example expands the payroll query scenario of the example in|“Message channel planning example|

for z/OS” on page 179|to show how to add higher availability of query processing by adding more

serving applications to serve a shared queue.

The payroll query application is now connected to queue manager QM3 and puts a query to the remote
queue 'PAYROLL QUERY"' defined on QM3. This remote queue definition resolves to the shared queue
PAYROLL' hosted by the queue managers in the queue-sharing group QSG1. The payroll processing

application now has two instances running, one connected to QM4 and one connected to QMS.

Application Queuemanager'QM3’
Query Channel
message | i TT T T TT T ToTmmmo T [
P Queue remote 'PAYROLL.QUERY" QM3.TO.QSG1
L,,,,,,,,,,,I ,,,,,,,,,,,, |
Payroll ‘ Queuetransmission'QSG1’
query ¢
‘ 'SYSTEM.CHANNEL.INITQ'
Reply Channel
message | |
< ‘ Queuelocal 'PAYROLL.REPLY" F——{ QSG1.T0.QM3
WLM /DNS
|
| Queue sharinggroup named'QSG1’
t Get
|
£ | request
S o—% QM3.TO.QSG1 Queue manager ‘QM4' r_ T £
o o Trig ‘ | I
& chan ¢—¢ | SYSTEM.CHANNEL.INITQ I Query |
—1 QSG1.T0.QM3 c I message .
| |
| |
Coupling Facility : !
| IS |
€ :‘ Queue local ‘PAYROLL }——o—l— Rep] |
o eply |
. o message I
G G ari) P \ ‘ Queue transmission ‘QM3’ (g——— |
|
|
A 4
QM3.TO.QSG1 Queue manager ‘QM5’ Query
| message _
>
< } SYSTEM.CHANNEL.INITQ
£ QSG".TO.QMS}‘— TI‘IQ Rep/y
chan message

Figure 10. Message channel planning example for WebSphere MQ for z/OS using queue-sharing groups

184 1BM WebSphere MQ: Reference

Application

Payroll
processing

Query

Reply

Application

Payroll
processing

Query

Reply



All three queue managers are assumed to be running on z/OS. In the example definitions for TCP/IP,
QM4 has a host name of MVSIP01 and QM5 has a host name of MVSIP02. Both queue managers are
listening on port 1414 and have registered to use WLM/DNS. The generic address that WLM/DNS
provides for this group is QSG1.MVSIP. QM3 has a host address of 192.0.2.0 and is listening on port 1411.

In the example definitions for LU6.2, QM3 is listening on a symbolic luname called LUNAMEL. The
name of the generic resource defined for VTAM for the lunames listened on by QM4 and QM5 is
LUQSG1. The example assumes that they are already defined on your z/OS system and are available for
use. To define them see [“Defining yourself to the network using generic resources” on page 46|

In this example QSG1 is the name of a queue-sharing group, and queue managers QM4 and QM5 are the
names of members of the group.

Queue-sharing group definitions
Producing the following object definitions for one member of the queue-sharing group makes them
available to all the other members.

Queue managers QM4 and QM5 are members of the queue sharing group. The definitions produced for
QM4 are also available for QMB5.

It is assumed that the coupling facility list structure is called 'APPLICATIONT'". If it is not called
'APPLICATIONT', you must use your own coupling facility list structure name for the example.

Shared objects

The shared object definitions are stored in DB2® and their associated messages are stored within the
coupling facility.

DEFINE QLOCAL(PAYROLL) QSGDISP(SHARED) REPLACE PUT(ENABLED) GET(ENABLED) +

CFSTRUCT (APPLICATION1) +

DESCR('Shared queue for payroll details')

DEFINE QLOCAL(QM3) QSGDISP(SHARED) REPLACE USAGE(XMITQ) PUT(ENABLED) +
CFSTRUCT (APPLICATION1) +

DESCR('Transmission queue to QM3') TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QSG1.T0.QM3) GET(ENABLED) INITQ(SYSTEM.CHANNEL.INITQ)

Group objects

The group object definitions are stored in Db2, and each queue manager in the queue-sharing group
creates a local copy of the defined object.

Sender channel definition for a TCP/IP connection:

DEFINE CHANNEL(QSG1.T0.QM3) CHLTYPE(SDR) QSGDISP(GROUP) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM3') XMITQ(QM3) +
CONNAME('192.0.2.0(1411)")

Sender channel definition for an LU 6.2 connection:

DEFINE CHANNEL(QSG1.T0.QM3) CHLTYPE(SDR) QSGDISP(GROUP) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QM3') XMITQ(QM3) +
CONNAME (' LUNAME1")

Receiver channel definition for a TCP/IP connection:

DEFINE CHANNEL(QM3.T0.QSG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM3') QSGDISP(GROUP)

Receiver channel definition for an LU 6.2 connection:

Reference 185



DEFINE CHANNEL(QM3.T0.QSG1) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QM3') QSGDISP(GROUP)

Related reference:
[‘Disposition (QSGDISP)” on page 109|

Queue manager QM3 example
QM3 is not a member of the queue-sharing group. The following object definitions allow it to put
messages to a queue in the queue-sharing group.

The CONNAME for this channel is the generic address of the queue-sharing group, which varies
according to transport type.

For a TCP/IP connection:

DEFINE CHANNEL(QM3.T0.QSG1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QSG1') XMITQ(QSG1l) +
CONNAME ('QSG1.MVSIP(1414)")

For an LU 6.2 connection:

DEFINE CHANNEL(QM3.T0.QSG1) CHLTYPE(SDR) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QSG1') XMITQ(QSG1) +
CONNAME ('LUQSG1') TPNAME ('MQSERIES') MODENAME ('#INTER')

Other definitions

These definitions are required for the same purposes as the definitions in the first example.

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QSGl') REPLACE +
PUT (ENABLED) XMITQ(QSG1) RNAME(APPL) RQMNAME(QSG1)

DEFINE QLOCAL(QSG1) DESCR('Transmission queue to QSG1') REPLACE +
USAGE (XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QM3.T0.QSG1) INITQ(SYSTEM.CHANNEL.INITQ)

DEFINE CHANNEL(QSG1.T0.QM3) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QSG1')

DEFINE CHANNEL(QSG1.70.QM3) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QSG1')

DEFINE QLOCAL (PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to query messages sent to QSG1')

Running the example
When you have created the required objects you need to start the channel initiators for all three queue
managers. You also need to start the listeners for both queue managers in the queue-sharing group.

For a TCP/IP connection, each member of the group must have a group listener started that is listening
on port 1414.

STA LSTR PORT(1414) IPADDR(MVSIPO1) INDISP(GROUP)
The previous entry starts the listener on QM4, for example.

For an LU6.2 connection, each member of the group must have a group listener started that is listening
on a symbolic luname. This luname must correspond to the generic resource LUQSG1.

* Start the listener on QM3
STA LSTR PORT(1411)

186 1BM WebSphere MQ: Reference



Administration reference

Use the links to reference information in this section to help you operate and administer WebSphere MQ.

* [“Queue names” on page 78|

[“Other object names” on page 80|

[“TBM WebSphere MQ for IBM i system and default objects” on page 88|
[“WebSphere MQ Administration Interface” on page 2004|

» [“Using the WebSphere MQ Utilities” on page 1931|

Related concepts:

['WebSphere MQ Control commands” on page 189

"‘MQSC reference” on page 755

[ pag

['Programmable command formats reference” on page 1397

Related reference:
['WebSphere MQ for IBM i CL commands” on page 336|

Syntax diagrams

The syntax for a command and its options is presented in the form of a syntax diagram called a railroad
diagram.

Railroad diagrams are a visual format suitable for sighted users; see, ["How to read railroad diagrams.”|It
tells you what options you can supply with the command, how to enter them, indicates relationships
between different options, and sometimes different values of an option.

How to read railroad diagrams

Each railroad diagram begins with a double right arrow and ends with a right and left arrow pair. Lines
beginning with a single right arrow are continuation lines. You read a railroad diagram from left to right
and from top to bottom, following the direction of the arrows.

Other conventions used in railroad diagrams are:

Table 45. How to read railroad diagrams

Convention Meaning

You must specify values A, B, and C. Required values are shown on the main line of a
»»—A—B—(— »«|railroad diagram.

You may specify value A. Optional values are shown below the main line of a railroad

»—L——I—>< diagram.
A

Values A, B, and C are alternatives, one of which you must specify.

Reference 187



Table 45. How to read railroad diagrams (continued)

Convention Meaning

Values A, B, and C are alternatives, one of which you might specify.

o =

188 1BM WebSphere MQ: Reference



Table 45. How to read railroad diagrams (continued)

Convention Meaning

F,—
Y

A
| B—|
L ¢

You might specify one or more of the values A, B, and C. Any required separator for
multiple or repeated values (in this example, the comma (,)) is shown on the arrow.

A\
A

You might specify value A multiple times. The separator in this example is optional.

Values A, B, and C are alternatives, one of which you might specify. If you specify none of
A the values shown, the default A (the value shown above the main line) is used.

4
y
A\
A

The railroad fragment Name is shown separately from the main railroad diagram.
> Name <

Name:

—A ] I

Punctuation and Specify exactly as shown.
uppercase values

WebSphere MQ Control commands

Find out how to use the WebSphere MQ control commands.

If you want to issue control commands, your user ID must be a member of the mqm group. For more

information, see [Authority to administer WebSphere MQ on UNIX, Linux and Windows systems|
(WebSphere MQ V7.1 Administering Guide).

When using control commands that operate on a queue manager, you must use the command from the
installation associated with the queue manager you are working with.

In addition, note the following environment-specific information:

* On Windows, all control commands can be issued from a command line. Command names and their
flags are not case-sensitive: you can enter them in uppercase, lowercase, or a combination of uppercase
and lowercase. However, arguments to control commands (such as queue names) are case-sensitive.

In the syntax descriptions, the hyphen (-) is used as a flag indicator. You can use the forward slash (/)
instead of the hyphen.

* On UNIX and Linux systems, all WebSphere MQ control commands can be issued from a shell. All
commands are case-sensitive.

* A subset of the control commands can be issued using the WebSphere MQ Explorer.

Reference 189



For a list of the control commands see, [*The control commands” on page 191 |

For a comparison of the different administration command sets, see [‘Comparing command sets” on page|
-07.

For information about commands for managing keys and certificates, see ["Managing keys and|
kertificates” on page 313.|

Related concepts:
['MQSC reference” on page 755
[‘Programmable command formats reference” on page 1397

Related reference:
['WebSphere MQ for IBM i CL commands” on page 336|

Using control commands
The table in this topic shows the three categories of control commands: queue manager commands,
channel commands, and utility commands.

Control commands can be divided into three categories, as shown in [Table 46

Table 46. Categories of control commands

Category Description

Queue manager commands | Queue manager control commands include commands for creating, starting, stopping,
and deleting queue managers and command servers

Channel commands Channel commands include commands for starting and ending channels and channel
initiators
Utility commands Utility commands include commands associated with:

* Running MQSC commands

* Conversion exits

* Authority management

* Recording and recovering media images of queue manager resources
* Displaying and resolving transactions

* Trigger monitors

 Displaying the file names of WebSphere MQ objects

For more information, see [“WebSphere MQ Control commands” on page 189

Using control commands on Windows systems:
In WebSphere MQ for Windows, you enter control commands at a command prompt.

In Windows environments, control commands and their flags are not case-sensitive, but arguments to
those commands (such as queue names and queue-manager names) are case-sensitive.

For example, in the command:
crtmgm /u SYSTEM.DEAD.LETTER.QUEUE jupiter.queue.manager

* The command name can be entered in uppercase or lowercase, or a mixture of the two. These are all
valid: crtmgm, CRTMQM, and CRTmgm.

* The flag can be entered as -u, -U, /u, or /U.
* SYSTEM.DEAD.LETTER.QUEUE and jupiter.queue.manager must be entered exactly as shown.

For more information, see [WebSphere MQ control commands]

190 1BM WebSphere MQ: Reference



Using control commands on UNIX and Linux systems:
In WebSphere MQ for UNIX and Linux systems, you enter control commands in a shell window.

In UNIX environments, control commands, including the command name itself, the flags, and any
arguments, are case-sensitive. For example, in the command:

crtmgm -u SYSTEM.DEAD.LETTER.QUEUE jupiter.queue.manager

* The command name must be crtmgm, not CRTMQM.

* The flag must be -u, not -U.

¢ The dead-letter queue is called SYSTEM.DEAD.LETTER.QUEUE.

* The argument is specified as jupiter.queue.manager, which is different from JUPITER.queue.manager.

Take care to type the commands exactly as you see them in the examples.

For more information about the crtmgm command, see [“crtmgm” on page 204.|

For more information on control commands, see [“WebSphere MQ Control commands” on page 189

The control commands

This collection of topics provides reference information for each of the WebSphere MQ control
commands. These control commands require that the ID is in the mgm group.

addmgqinf:

Add WebSphere MQ configuration information (Windows and UNIX platforms only).

Purpose

Use the addmqinf command to add information to the WebSphere MQ configuration data.

For example, use dspmqinf and addmqinf to copy configuration data from the system where a queue
manager was created, to other systems where the same multi-instance queue manager is also to be

started.

Syntax

|—-s—QueueManager—
»»—addmginf: |_

A

v— Attribute= Value »><

-s—StanzaType—

Required parameters

-v Attribute=Value
The name and value of the stanza attributes to be placed in the stanza specified in the command.

[Table 47 on page 192|lists the QueueManager stanza attribute values. The queue manager stanza is
the only stanza that is currently supported.

Reference 191



Table 47. QueueManager stanza attributes

Attribute

Value Required or optional

Name

The name of the queue manager. Required

You must provide a different name from any other queue manager
stanza on the system.

Prefix

The directory path under which this queue manager data directory is Required
stored by default.

You can use Prefix to modify the location of the queue manager data
directories. The value of Directory is automatically appended to this
path.

Directory

The name of the queue manager data directory. Required

Sometimes the name must be provided (as in [“Example”), because it is
different from the queue manager name. Copy the directory name from
the value returned by dspmqinf.

The rules for transforming queue manager names into directory names

are described in [Understanding WebSphere MQ file names}

DataPath

The directory path where the queue manager data files are placed. The |UNIX: Optional
value of Directory is not automatically appended to this path - you Windows: Required
must provide the transformed queue manager name as part of DataPath.

If the DataPath attribute is omitted on UNIX, the queue manager data
directory path is defined as Prefix/Directory.

Optional parameters

-s StanzaType
A stanza of the type StanzaType is added to the WebSphere MQ configuration.

The default value of StanzaType is QueueManager.

The only supported value of StanzaType is QueueManager.

Return codes

Return code Description

0

1
39
45
46
58
69
71
72
100

Example

Successful operation

Queue manager location is invalid (either Prefix or DataPath)
Bad command-line parameters

Stanza already exists

Required configuration attribute is missing

Inconsistent use of installations detected

Storage is not available

Unexpected error

Queue manager name error

Log location is invalid

addmginf —v DataPath=/MQHA/gmgrs/QM!NAME +
-v Prefix=/var/mgm +
-v Directory=QM!NAME +
-v Name=QM.NAME

192 1BM WebSphere MQ: Reference




Creates the following stanza in mgs.ini:

QueueManager:
Name=QM.NAME
Prefix=/var/mgm
Directory=QM!NAME
DataPath=/MQHA/qmgrs/QM!NAME

Usage notes

Use dspmgqinf with addmgqinf to create an instance of a multi-instance queue manager on a different
server.

To use this command you must be a WebSphere MQ administrator and a member of the mgm group.

Related commands

Command Description

"dspmginf” on page 231| Display WebSphere MQ configuration information
‘rmvmginf” on page 262| Remove WebSphere MQ configuration information
amqmdain:

amgmdain is used to configure or control some Windows specific administrative tasks.

Purpose

The amgmdain command applies to IBM WebSphere MQ for Windows only.

Use amgmdain to perform some Windows specific administrative tasks.

Starting a queue manager with amgmdain is equivalent to using the strmgm command with the option -ss.
amgmdain makes the queue manager run in a non-interactive session under a different user account.
However, to ensure that all queue manager startup feedback is returned to the command line, use the
strmgm -ss command rather than amgmdain.

You must use the amgmdain command from the installation associated with the queue manager that you
are working with. You can find out which installation a queue manager is associated with using the

dspmg -0 installation command.

To administer and define IBM WebSphere MQ service and listener objects, use MQSC commands, PCF
commands, or the IBM WebSphere MQ Explorer.

The amgmdain command has been updated to modify either the .1ini files or the registry as appropriate.

Syntax

Reference 193



v
A

»>—amgmdain—— qmgr start —QMgrihame
— -C

— gmgr end —QMgrName
i: -Sj
_r‘

— gmgr alter —QMgriName

— -1 —Initiation
— -x—Multi-instance—

— refresh
— auto —QMgrName
— manual —QMgrName

status
i:OMngame—
all

— regsec

— spn —QMngame—Eset

unset

reg RegParams
i:OMngame—

*

Keywords and parameters
All parameters are required unless the description states they are optional.

In every case, QMgrName is the name of the queue manager to which the command applies.

qmgr start QMgrName
Starts a queue manager.

This parameter can also be written in the form start QMgrName.

If you start your queue manager as a service and need the queue manager to continue to run after

logoff, use strmqm -ss gmgr instead of amgmdain start gqmgr.

qmgr end QMgrName
Ends a queue manager.

This parameter can also be written in the form end QMgrName.

For consistency across platforms, use endmqm gmgr instead of amqmdain end gmgr.

For fuller descriptions of the options, see[‘endmgm” on page 248

-c¢ Controlled (or quiesced) shutdown.

-w Wait shutdown.

-i Immediate shut down.

-p Pre-emptive shut down.

-r Reconnect clients.

-s Switch over to a standby queue manager instance.

-x End the standby instance of the queue manager without ending the active instance.

qmgr alter QMgriName
Alters a queue manager.

-i Initiation
Specifies the initiation type. Possible values are:

194 1BM WebSphere MQ: Reference



auto Sets the queue manager to automatic startup (when the machine starts, or more
precisely when the IBM WebSphere MQ service starts). The syntax is:

amgmdain gmgr alter QmgrName —i auto
interactive Sets the queue manager to manual startup that then runs under the logged on
(interactive) user. The syntax is:

amgmdain gmgr alter QmgrName —i interactive

service Sets the queue manager to manual startup that then runs as a service. The syntax is:

amgmdain gmgr alter QmgrName —i service

-X Multi-instance
Specifies if auto queue manager start by the IBM WebSphere MQ service permits multiple instances.
Equivalent to the -sax option on the crtmgm command. Also specifies if the amqmdain start qmgr
command permits standby instances. Possible values are:

set Sets automatic queue manager startup to permit multiple instances. Issues strmqm
-x. The set option is ignored for queue managers that are initiated interactively or
as a manual service startup. The syntax of the command is:

amgmdain gmgr alter QmgrName —x set
unset Sets automatic queue manager startup to single instance. Issues strmgm. The unset

option is ignored for queue managers that are initiated interactively or as a manual
service startup. The syntax of the command is:

amgmdain gmgr alter QmgrName —x unset

refresh
Refreshes or checks the status of a queue manager. You will not see anything returned on the screen
after executing this command.

auto QMgrName
Sets a queue manager to automatic startup.

manual QMgrName
Sets a queue manager to manual startup.

status QMgrihame | all
These parameters are optional.

If no parameter is supplied: Displays the status of the IBM WebSphere MQ services.

If a QMgrName is supplied: Displays the status of the named queue manager.

If the parameter all is supplied: Displays the status of the IBM WebSphere MQ services and all queue
managers.

regsec

Ensures that the security permissions assigned to the Registry keys containing installation
information are correct.

spn QMgrName set | unset
You can set or unset the service principal name for a queue manager.

reg QMgrName | * RegParams
Parameters QMgrName, and * are optional.

Reference 195



If RegParams is specified alone: Modifies queue manager configuration information related to the
default queue manager.

If QMgrName and RegParams are specified: =~ Modifies queue manager configuration information related to the
queue manager specified by QMgrName.

If * and RegParams are specified: Modifies IBM WebSphere MQ configuration information.

The parameter, RegParams, specifies the stanzas to change, and the changes that are to be made.
RegParams takes one of the following forms:

* -c add -s stanza -v attribute=value
* -c remove -s stanza -v [attribute|*]
e -c display -s stanza -v [attribute]|x]

If you are specifying queue manager configuration information, the valid values for stanza are:

XAResourceManager\name
ApiExitLocal\name
Channels

ExitPath
InstanceData

Log
QueueManagerStartup
TCP

LU62

SPX

NetBios

Connection
QMErrorLog

Broker

ExitPropertieslLocal
SSL

If you are modifying IBM WebSphere MQ configuration information, the valid values for stanza are:

ApiExitCommon\name

ApiExitTemplate\name

ACPI

AT1QueueManagers

Channels

DefaultQueueManager

LogDefaults

ExitProperties

The following are usage considerations:

+ amgmdain does not validate the values you specify for name, attribute, or value.
* When you specify add, and an attribute exists, it is modified.

» If a stanza does not exist, amgmdain creates it.

* When you specify remove, you can use the value * to remove all attributes.

* When you specify display, you can use the value * to display all attributes which have been
defined. This value only displays the attributes which have been defined and not the complete list
of valid attributes.

 If you use remove to delete the only attribute in a stanza, the stanza itself is deleted.
* Any modification you make to the Registry re-secures all IBM WebSphere MQ Registry entries.

Examples

The following example adds an XAResourceManager to queue manager TEST. The commands issued are:

196 1BM WebSphere MQ: Reference



amgmdain reg TEST -c add -s XAResourceManager\Sample -v SwitchFile=sfl
amgmdain reg TEST -c add -s XAResourceManager\Sample -v ThreadOfControl=THREAD
amgmdain reg TEST -c add -s XAResourceManager\Sample -v XAOpenString=openit
amgmdain reg TEST -c add -s XAResourceManager\Sample -v XACloseString=closeit

To display the values set by the commands above, use:
amgmdain reg TEST -c display -s XAResourceManager\Sample -v =*

The display would look something like the following:

0784726, 5639-B43 (C) Copyright IBM Corp. 1994, 2019. ALL RIGHTS RESERVED.
Displaying registry value for Queue Manager 'TEST'

Attribute = Name, Value = Sample

Attribute = SwitchFile, Value = sfl

Attribute = ThreadOfControl, Value = THREAD

Attribute = XAOpenString, Value = openit

Attribute = XACloseString, Value = closeit

To remove the XAResourceManager from queue manager TEST, use:
amgmdain reg TEST -c remove -s XAResourceManager\Sample -v *

Return codes

Return code Description

0 Command completed normally

-2 Syntax error

-3 Failed to initialize MFC

-6 Feature no longer supported

-7 Configuration failed

-9 Unexpected Registry error

-16 Failed to configure service principal name
-29 Inconsistent use of installations detected
62 The queue manager is associated with a different installation
71 Unexpected error

119 Permission denied (Windows only)

Note:

1. If the gmgr start QMgrName command is issued, all return codes that can be returned with strmqm,
can be returned here also. For a list of these return codes, see [“strmgm” on page 297

2. If the gmgr end QMgrName command is issued, all return codes that can be returned with endmqm,
can be returned here also. For a list of these return codes, see [“endmgm” on page 248 |

amgmfsck (file system check):

amgmfsck checks whether a shared file system on UNIX and IBM® i systems meets the requirements for
storing the queue manager data of a multi-instance queue manager.

Purpose
The amgmfsck command applies only to UNIX and IBM i systems. You do not need to check the network
drive on Windows. amgmfsck tests that a file system correctly handles concurrent writes to a file and the

waiting for and releasing of locks.

Syntax

Reference 197



v
A

»»—amgmfsck |_ _| DirectoryName
=V

262144ﬂ
-p PageCount

=d

ot

Required parameters
DirectoryName

The name of the directory to check.
Optional parameters

-a Perform the second phase of the data integrity test.
Run this on two machines at the same time. You must have formatted the test file using the —f
option previously

-c Test writing to a file in the directory concurrently.

-f Perform the first phase of the data integrity test.
Formats a file in the directory in preparation for data integrity testing.

-i Perform the third phase of the data integrity test.
Checks the integrity of the file after the failure to discover whether the test worked.

-p Specifies the size of the test file used in the data integrity test in pages. .

The size is rounded up to the nearest multiple of 16 pages. The file is formatted with PageCount
pages of 4 KB.

The optimum size of the file depends on the speed of the filesystem and the nature of the test you
perform. If this parameter is omitted, the test file is 262144 pages, or 1 GB.

The size is automatically reduced so that the formatting completes in about 60 seconds even on a
very slow filesystem.

-v Verbose output.
-w Test waiting for and releasing locks.

-x Deletes any files created by amqmfsck during the testing of the directory.

Do not use this option until you have completed the testing, or if you need to change the number
of pages used in the integrity test.

Usage

You must be a WebSphere MQ Administrator to run the command. You must have read/write access to
the directory being checked.

On IBM i, use QSH to run the program. There is no CL command.

The command returns an exit code of zero if the tests complete successfully.

The task, [ |Verifying shared file system behavior| (WebSphere MQ V7.1 Installing Guide), describes how to
use amgmfsck to check the whether of a file system is suitable for multi-instance queue managers.

198 1BM WebSphere MQ: Reference



Interpreting your results

If the check fails, the file system is not capable of being used by WebSphere MQ queue managers. If the
tests fail, choose verbose mode to help you to interpret the errors. The output from the verbose option
helps you understand why the command failed, and if the problem can be solved by reconfiguring the
file system.

Sometimes the failure might be an access control problem that can be fixed by changing directory
ownership or permissions. Sometimes the failure can be fixed by reconfiguring the file system to behave
in a different way. For example, some file systems have performance options that might need to be
changed. It is also possible that the file system protocol does not support concurrency sufficiently
robustly, and you must use a different file system. For example, you must use NFSv4 rather than NFSv3.

If the check succeeds, the command reports The tests on the directory completed successfully. If
your environment is not listed as supported in the testing and support statement, this result does not
necessarily mean that you can run IBM WebSphere MQ multi-instance queue managers successfully. You
must plan and run a variety of tests to satisfy yourself that you have covered all foreseeable
circumstances. Some failures are intermittent, and there is a better chance of discovering them if you run
the tests more than once.

Related tasks:

|Verifying shared file system behavior| (WebSphere MQ V7.1 Installing Guide)

crtmqcevx:
Create data conversion code from data type structures.
Purpose

Use the crtmqcvx command to create a fragment of code that performs data conversion on data type
structures. The command generates a C function that can be used in an exit to convert C structures.

The command reads an input file containing structures to be converted, and writes an output file
containing code fragments to convert those structures.

For information about using this command, see [“Utility for creating conversion-exit code” on page 3588

Syntax

»»—crtmqcvx—SourceFile—TargetFile

A\
A

Required parameters

Sourcefile
The input file containing the C structures to convert.

TargetFile
The output file containing the code fragments generated to convert the structures.

Return codes

Reference 199



Return code Description

0 Command completed normally

10 Command completed with unexpected results
20 An error occurred during processing
Examples

The following example shows the results of using the data conversion command against a source C
structure. The command issued is:

crtmgcvx source.tmp target.c

The input file, source.tmp, looks like this:

/* This is a test C structure which can be converted by the */
/* crtmgcvx utility x/

struct my_structure
{
int code;
MQLONG value;

1

The output file, target.c, produced by the command, looks like this:

MQLONG Convertmy structure(
PMQDXP pExitParms,
PMQBYTE =*in_cursor,
PMQBYTE =*out_cursor,
PMQBYTE in_lastbyte,
PMQBYTE out_lastbyte,
MQHCONN hConn,
MQLONG opts,

MQLONG MsgEncoding,
MQLONG RegEncoding,
MQLONG MsgCCSID,
MQLONG ReqCCSID,
MQLONG CompCode,
MQLONG Reason)

MQLONG ReturnCode = MQRC_NONE;
Convertlong(1); /* code =/

AlignLong();
ConvertLong(1); /* value */

Fail:
return(ReturnCode) ;
1

You can use these code fragments in your applications to convert data structures. However, if you do so,
the fragment uses macros supplied in the header file amgsvmha.h.

crtmgenv:

Create a list of environment variables for an installation of IBM WebSphere MQ, on UNIX, Linux, and
Windows.

200 1BM WebSphere MQ: Reference



Purpose

You can use the crtmgenv command to create a list of environment variables with the appropriate values
for an installation of IBM WebSphere MQ. The list of environment variables is displayed on the command
line, and any variables that exist on the system have the IBM WebSphere MQ values added to them. This
command does not set the environment variables for you, but gives you the appropriate strings to set the
variables yourself, for example, within your own scripts.

If you want the environment variables set for you in a shell environment, you can use the
command instead of using the crtmgenv command.

You can specify which installation the environment is created for by specifying a queue manager name,
an installation name, or an installation path. You can also create the environment for the installation that
issues the crtmgenv command by issuing the command with the -s parameter.

This command lists the following environment variables, and their values, appropriate to your system:
* CLASSPATH

+ INCLUDE

+ LIB

* MANPATH

* MQ_DATA_PATH

* MQ_ENV_MODE

* MQ_FILE_PATH

* MQ_JAVA_INSTALL_PATH
* MQ_JAVA_DATA_PATH

* MQ_JAVA_LIB_PATH

* MQ_JAVA_JVM_FLAG

* MQ_JRE_PATH

* PATH

On UNIX and Linux systems, if the -1 or -k flag is specified, the LIBPATH environment variable is set on
AIX, and the LD_LIBRARY_PATH environment variable is set on HP-UX, Linux, and Solaris.

Usage notes

The crtmgenv command removes all directories for all IBM WebSphere MQ installations from the
environment variables before adding new references to the installation for which you are setting up the
environment. Therefore, if you want to set any additional environment variables that reference IBM
WebSphere MQ), set the variables after issuing the crtmgenv command. For example, if you want to add
MQ_INSTALLATION_PATH/java/1ib to LD_LIBRARY_PATH, you must do so after running crtmgenv.

Syntax

»»—crtmgenv -m—QMgriName >
-n—InstallationName—| i:— k:‘ |——x—Mode—| l—— i —|
-p—InstallationPath— -1

-r
)

Required Parameters

-m QMgrName
Create the environment for the installation associated with the queue manager QMgrName.

Reference 201



-n InstallationName
Create the environment for the installation named InstallationName.

-p InstallationPath
Create the environment for the installation in the path InstallationPath.

-r Remove all installations from the environment.

-s Create the environment for the installation that issued the command.

Optional Parameters
-k UNIX and Linux only.

Include the LD_LIBRARY_PATH , or LIBPATH, environment variable in the environment, adding the
path to the IBM WebSphere MQ libraries at the start of the current LD_LIBRARY_PATH, or LIBPATH,
variable.

-1 UNIX and Linux only.

Include the LD_LIBRARY_PATH, or LIBPATH, environment variable in the environment, adding the
path to the IBM WebSphere MQ libraries at the end of the current LD_LIBRARY_PATH, or LIBPATH,
variable.

-X Mode
Mode can take the value 32, or 64.

Create a 32-bit or 64-bit environment. If this parameter is not specified, the environment matches that
of the queue manager or installation specified in the command.

Any attempt to display a 64-bit environment with a 32-bit installation fails.
-i List only the additions to the environment.
When this parameter is specified, the environment variables set for previous installations remain in

the environment variable path and must be manually removed.

Return codes

Return code Description

0 Command completed normally.

10 Command completed with unexpected results.
20 An error occurred during processing.
Examples

The following examples assume that a copy of IBM WebSphere MQ is installed in /opt/mgm on a UNIX or
Linux system.

1. This command creates a list of environment variables for an installation installed in /opt/mgm:
/opt/mgm/bin/crtmgenv -s

2. This command creates a list of environment variables for an installation installed in /opt/mgm2, and
includes the path to the installation at the end of the current value of the LD_LIBRARY_PATH
variable:

/opt/mgm/bin/crtmgenv -p /opt/mgm2 -1

3. This command creates a list of environment variables for the queue manager QM1, in a 32-bit
environment:

/opt/mgm/bin/crtmgenv -m QM1 -x 32

The following example assumes that a copy of IBM WebSphere MQ is installed in c:\Program
Files\IBM\WebSphere MQ on a Windows system.

202 1BM WebSphere MQ: Reference



1. This command creates a list of environment variables for an installation called installationl:
"c:\Program Files\IBM\WebSphere MQ\crtmgenv" -n installationl

Related reference:

[‘'setmgenv” on page 288

Related information:

[Choosing a primary installation| (WebSphere MQ V7.1 Installing Guide)

Multiple installations| (WebSphere MQ V7.1 Installing Guide)

crtmqinst:
Create installation entries in mginst.ini on UNIX and Linux systems.
Purpose

File mqinst.ini contains information about all IBM WebSphere MQ installations on a system. For more

information about mgqinst.ini, see [[nstallation configuration file, mqinst.ini| (WebSphere MQ V7.1
Installing Guide).

The first IBM WebSphere MQ Version 7.1 installation is automatically given an installation name of
Installationl because the crtmqinst command is not available until an installation of IBM WebSphere
MQ is on the system. Subsequent installations can have an installation name set before installation occurs,
by using the crtmginst command. The installation name cannot be changed after installation. For more

information about installation names, see [Choosing an installation name| (WebSphere MQ V7.1
Installing Guide).

Syntax
»»—crtmginst -p—InstallationPath |_ _| ><
-n—InstallationName -d—DescriptiveText
(1)
-p—InstallationPath—-n—1InstallationName
(1)
-n—InstallationName—-p—InstallationPath
Notes:
1 When specified together, the installation name and installation path must refer to the same
installation.
Parameters

-d Text that describes the installation.

The text can be up to 64 single-byte characters, or 32 double-byte characters. The default value is all
blanks. You must use quotation marks around the text if it contains spaces.

-n InstallationName
The name of the installation.

The name can contain up to 16 single-byte characters and must be a combination of alphabetic and
numeric characters in the ranges a-z, A-Z, and 0-9. The installation name must be unique, regardless
of whether uppercase or lowercase characters are used. For example, the names INSTALLATIONNAME
and InstallationName are not unique. If you do not supply the installation name, the next available
name in the series Installation1, Installation2... is used.

Reference 203



-p InstallationPath
The installation path. If you do not supply the installation path, /opt/mgm is used on UNIX and Linux
systems, and /usr/mgm is used on AIX.

Return codes

Return code Description

0 Entry created without error
10 Invalid installation level

36 Invalid arguments supplied
37 Descriptive text was in error
45 Entry already exists

59 Invalid installation specified
71 Unexpected error

89 .ini file error

96 Could not lock .ini file

98 Insufficient authority to access .ini file
131 Resource problem

Example

1. This command creates an entry with an installation name of myInstallation, an installation path of
/opt/myInstallation, and a description “My WebSphere MQ installation”:

crtmginst -n MyInstallation -p /opt/myInstallation -d "My WebSphere MQ installation"
Quotation marks are needed because the descriptive text contains spaces.

Note: On UNIX systems, the crtmginst command must be run by the root user because full access
permissions are required to write to the mqinst.ini configuration file.

crtmqgm:

Create a queue manager.

Purpose

Use the crtmgm command to create a queue manager and define the default and system objects. The

objects created by the crtmgm command are listed in [“System and default objects” on page 83| When a
queue manager has been created, use the strmqgm command to start it.

The queue manager is automatically associated with the installation from which the crtmgm command
was issued. To change the associated installation, use the setmgm command. Note that the Windows
installer does not automatically add the user that performs the installation to the mgm group. For more

details, see [Authority to administer WebSphere MQ on UNIX, Linux and Windows systems|
(WebSphere MQ V7.1 Administering Guide).

Syntax

204 1BM WebSphere MQ: Reference



v

»>—Ccrtmgm
L (1) l—- c—Tex t—l |—-d—Defaul tTransmiss ion()ueue—|

-a [r]—<access group>

7 R

L-h—MaximumHandZeLimitJ |—-11J |—-1d—LogPat‘hJ |—-11’—LogF1’ZePagesJ

Yy

=SS

=-Sax

|—-1p—LogPrimar‘yFilesJ |—-1s—LogSecondar*yFilesJ |—-qJ E-sa |—-md—DataPathJ
-Si

\
4

|—-g—AppZ icationGr‘oup—| l—- t—Interval Value—| l—- u—Dea‘dLetter()ueue—|

\

A\
A

QMgrName
l—- x—Max imumUncommit 1.‘edMessages—| l—- z—|

Notes:

1 Windows only

Required parameters

QMgrName
The name of the queue manager that you want to create. The name can contain up to 48 characters.
This parameter must be the last item in the command.

Note: WebSphere MQ checks if the queue manager name exists. If the name already exists in the
directory, then a suffix of .000,.001,.002, and so on, is added to the queue manager name. For
example, if a queue manager QM1 is added to the directory and if QM1 already exists, then a queue
manager with the name QM1.000 (suffix .000) is created.

Optional parameters

-a[rlaccess group

Use the access group parameter to specify a Windows security group, members of which will be
granted full access to all queue manager data files. The group can either be a local or global group,
depending on the syntax used.
Valid syntax for the group name is as follows:

LocalGroup

Domain name \ GlobalGroup name

GlobalGroup name@Domain name
You must define the additional access group before running the crtmgm command with the -a [r]
option.

If you specify the group using -ar instead of --a , the local mqm group is not granted access to the
queue manager data files. Use this option if the file system hosting the queue manager data files does
not support access control entries for locally defined groups.

Reference 205



The group is typically a global security group, which is used to provide multi-instance queue
managers with access to a shared queue manager data and logs folder. Use the additional security
access group to set read and write permissions on the folder or to share containing queue manager
data and log files.

The additional security access group is an alternative to using the local group named mgm to set
permissions on the folder containing queue manager data and logs. Unlike the local group mgm, you
can make the additional security access group a local or a global group. It must be a global group to
set permissions on the shared folders that contain the data and log files used by multi-instance queue
managers.

The Windows operating system checks the access permissions to read and write queue manager data
and log files. It checks the permissions of the user ID that is running queue manager processes. The
user ID that is checked depends on whether you started the queue manager as a service or you
started it interactively. If you started the queue manager as a service, the user ID checked by the
Windows system is the user ID you configured with the Prepare IBM WebSphere MQ wizard. If you
started the queue manager interactively, the user ID checked by the Windows system is the user ID
that ran the strmgm command.

The user ID must be a member of the local mqm group to start the queue manager. If the user ID is a
member of the additional security access group, the queue manager can read and write files that are
given permissions by using the group.

Restriction: You can specify an additional security access group only on Windows operating system.
If you specify an additional security access group on other operating systems, the crtmgm command
returns an error.

-c Text
Descriptive text for this queue manager. You can use up to 64 characters; the default is all blanks.

If you include special characters, enclose the description in single quotation marks. The maximum
number of characters is reduced if the system is using a double-byte character set (DBCS).

-d DefaultTransmissionQueue
The name of the local transmission queue where remote messages are put if a transmission queue is
not explicitly defined for their destination. There is no default.

-g ApplicationGroup
The name of the group that contains members that are allowed to perform the following actions:

* Run MQI applications
* Update all IPCC resources
* Change the contents of some queue manager directories

This option applies to IBM WebSphere MQ for AIX, Solaris, HP-UX, and Linux.
The default value is -g all , which allows unrestricted access.
The -g ApplicationGroup value is recorded in the queue manager configuration file named, gm.ini.

The mgm user ID and the user running the command must belong to the specified Application

Group. For further details of the operation of restricted mode, see [Restricted mode| (WebSphere MQ
V7.1 Installing Guide).

-h MaximumHandlelimit
The maximum number of handles that an application can open at the same time.

Specify a value in the range 1 - 999999999. The default value is 256.

The next set of parameter descriptions relate to logging, which is described in k4 [Using the log for|
(WebSphere MQ V7.1 Installing Guide).

206 1BM WebSphere MQ: Reference



Note: Choose the logging arrangements with care, because some cannot be changed after they are
committed.

-Tc
Use circular logging. This method is the default logging method.

-1d LogPath
The directory used to store log files. The default directory to store log paths is defined when you
install IBM WebSphere MQ.

If the volume containing the log file directory supports file security, the log file directory must have
access permissions. The permissions allow the user IDs, under whose authority the queue manager
runs, read and write access to the directory and its s