
WebSphere MQ

Monitoring WebSphere MQ
Version 7.0

SC34-6937-01

���





WebSphere MQ

Monitoring WebSphere MQ
Version 7.0

SC34-6937-01

���



Note
Before using this information and the product it supports, be sure to read the general information under notices at the back
of this book.

Second edition (January 2009)

This edition of the book applies to the following products:
v IBM WebSphere MQ, Version 7.0

v IBM WebSphere MQ for z/OS, Version 7.0

and to any subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1994, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Figures . . . . . . . . . . . . . . vii

Tables . . . . . . . . . . . . . . . ix

Chapter 1. Introduction . . . . . . . . 1
An introduction to monitoring WebSphere MQ . . . 1

Monitoring WebSphere MQ . . . . . . . . 1
Event monitoring . . . . . . . . . . . . 2
Message monitoring . . . . . . . . . . . 2
Accounting and statistics messages . . . . . . 3
Real-time monitoring . . . . . . . . . . 3

Chapter 2. Event monitoring . . . . . . 5
An introduction to instrumentation events . . . . 5

What instrumentation events are. . . . . . . 5
Types of event . . . . . . . . . . . . . 7
Controlling events . . . . . . . . . . . 14
Event queues . . . . . . . . . . . . . 17
When an event queue is unavailable . . . . . 18
Using triggered event queues . . . . . . . 18
Format of event messages . . . . . . . . 18
Using event monitoring in a WebSphere MQ
network . . . . . . . . . . . . . . 19

Understanding performance events . . . . . . 19
What performance events are . . . . . . . 19
Understanding queue service interval events . . 20
Queue service interval events examples . . . . 24
Understanding queue depth events . . . . . 29
Queue depth events examples . . . . . . . 34

Understanding configuration events . . . . . . 37
What configuration events are . . . . . . . 37
When configuration events are generated . . . 38
When configuration events are not generated . . 39
How configuration events are used . . . . . 39

Understanding command events . . . . . . . 40
What command events are . . . . . . . . 40
When command events are generated . . . . 41
When command events are not generated . . . 41
How command events are used . . . . . . 42

Understanding logger events . . . . . . . . 42
What logger events are . . . . . . . . . 42
When logger events are generated . . . . . . 42
When logger events are not generated . . . . 43
How logger events are used . . . . . . . . 43
Monitor the logger event queue (amqslog0.c) . . 43

Event message reference . . . . . . . . . . 48
Event message format . . . . . . . . . . 50
Event message MQMD (message descriptor) . . 51
Event message MQCFH (PCF header) . . . . 56
Event message descriptions . . . . . . . . 57
Alias Base Queue Type Error . . . . . . . 59
Bridge Started . . . . . . . . . . . . 61
Bridge Stopped . . . . . . . . . . . . 62
Change object . . . . . . . . . . . . 64
Channel Activated . . . . . . . . . . . 68

Channel Auto-definition Error . . . . . . . 69
Channel Auto-definition OK . . . . . . . . 71
Channel Conversion Error . . . . . . . . 72
Channel Not Activated . . . . . . . . . 74
Channel SSL Error . . . . . . . . . . . 76
Channel Started . . . . . . . . . . . . 79
Channel Stopped . . . . . . . . . . . 80
Channel Stopped By User . . . . . . . . 83
Command . . . . . . . . . . . . . . 84
Create object . . . . . . . . . . . . . 91
Default Transmission Queue Type Error . . . . 95
Default Transmission Queue Usage Error . . . 97
Delete object . . . . . . . . . . . . . 99
Get Inhibited . . . . . . . . . . . . 103
Logger . . . . . . . . . . . . . . 104
Not Authorized (type 1) . . . . . . . . . 106
Not Authorized (type 2) . . . . . . . . . 107
Not Authorized (type 3) . . . . . . . . . 110
Not Authorized (type 4) . . . . . . . . . 112
Not Authorized (type 5) . . . . . . . . . 113
Not Authorized (type 6) . . . . . . . . . 115
Put Inhibited . . . . . . . . . . . . 117
Queue Depth High . . . . . . . . . . 119
Queue Depth Low. . . . . . . . . . . 121
Queue Full . . . . . . . . . . . . . 123
Queue Manager Active . . . . . . . . . 125
Queue Manager Not Active . . . . . . . 126
Queue Service Interval High . . . . . . . 127
Queue Service Interval OK . . . . . . . . 129
Queue Type Error . . . . . . . . . . . 131
Refresh object . . . . . . . . . . . . 133
Remote Queue Name Error. . . . . . . . 137
Transmission Queue Type Error . . . . . . 139
Transmission Queue Usage Error . . . . . . 141
Unknown Alias Base Queue . . . . . . . 143
Unknown Default Transmission Queue . . . . 145
Unknown Object Name . . . . . . . . . 147
Unknown Remote Queue Manager . . . . . 149
Unknown Transmission Queue . . . . . . 151

Example of using instrumentation events . . . . 152

Chapter 3. Message monitoring . . . 161
An introduction to message monitoring . . . . 161

Activities and operations . . . . . . . . 161
How activities are used . . . . . . . . . 161
How to determine a message route . . . . . 162
Message route completeness . . . . . . . 164
How activity information is stored . . . . . 165

Activity recording . . . . . . . . . . . . 165
An introduction to activity recording . . . . 165
Controlling activity recording . . . . . . . 166
Using a common queue for activity reports . . 168
Using activity reports. . . . . . . . . . 168

Trace-route messaging . . . . . . . . . . 171
An introduction to trace-route messaging . . . 171

© Copyright IBM Corp. 1994, 2009 iii

||

||
||



Controlling trace-route messaging . . . . . 174
Configuring and generating a trace-route
message . . . . . . . . . . . . . . 177
Using a common queue for trace-route reply
messages . . . . . . . . . . . . . . 182
Acquiring and using recorded information . . 183
Recording additional information. . . . . . 184

WebSphere MQ display route application . . . . 187
An introduction to the WebSphere MQ display
route application . . . . . . . . . . . 187
Using the WebSphere MQ display route
application . . . . . . . . . . . . . 188
Displaying additional information . . . . . 196
Examples . . . . . . . . . . . . . . 196

Activity report reference. . . . . . . . . . 208
Activity report format . . . . . . . . . 208
Activity report MQMD (message descriptor) 209
Activity report MQEPH (Embedded PCF
header) . . . . . . . . . . . . . . 213
Activity report MQCFH (PCF header) . . . . 215
Activity report message data . . . . . . . 216

Trace-route message reference . . . . . . . . 232
Trace-route message format. . . . . . . . 232
Trace-route message MQMD (message
descriptor) . . . . . . . . . . . . . 234
Trace-route message MQEPH (Embedded PCF
header) . . . . . . . . . . . . . . 237
Trace-route message MQCFH (PCF header) . . 239
Trace-route message data . . . . . . . . 240

Trace-route reply message reference . . . . . . 243
Trace-route reply message format. . . . . . 243
Trace-route reply message MQMD (message
descriptor) . . . . . . . . . . . . . 244
Trace-route reply message MQCFH (PCF
header) . . . . . . . . . . . . . . 245
Trace-route reply message data . . . . . . 245

Chapter 4. Accounting and statistics
messages . . . . . . . . . . . . . 247
Accounting and statistics messages . . . . . . 247

Accounting messages. . . . . . . . . . 247
Statistics messages. . . . . . . . . . . 251
Displaying accounting and statistics information 256

Accounting and statistics message reference . . . 262
Accounting and statistics message format . . . 262
Accounting and statistics message MQMD
(message descriptor) . . . . . . . . . . 264
Message data in accounting and statistics
messages . . . . . . . . . . . . . . 264
MQI accounting message data . . . . . . . 266
Queue accounting message data . . . . . . 272
MQI statistics message data . . . . . . . 281
Queue statistics message data . . . . . . . 286
Channel statistics message data . . . . . . 292
Reference notes. . . . . . . . . . . . 297

Chapter 5. Real-time monitoring . . . 299
An introduction to real-time monitoring . . . . 299

Controlling real-time monitoring . . . . . . 299
Displaying queue and channel monitoring data 301

Monitoring queues . . . . . . . . . . . 302
Does your application have the queue open? 303
Are the messages on the queue available? . . . 303
Is your application getting messages off the
queue? . . . . . . . . . . . . . . 304
Can the application process messages fast
enough? . . . . . . . . . . . . . . 304
What about when the current depth is not
increasing? . . . . . . . . . . . . . 304

Monitoring channels . . . . . . . . . . . 305
Is the channel running? . . . . . . . . . 305
Is the channel moving messages? . . . . . . 307
Does a batch take a long time to complete? . . 308
Can the channel process messages fast enough? 309
Cluster channels . . . . . . . . . . . 310

The Windows performance monitor . . . . . . 310

Chapter 6. Structure datatypes . . . . 313
MQCFBS - Byte string parameter . . . . . . . 313

C language declaration (MQCFBS) . . . . . 314
COBOL language declaration (MQCFBS) . . . 314
PL/I language declaration (MQCFBS) (z/OS
only) . . . . . . . . . . . . . . . 314
RPG/ILE language declaration (MQCFBS)
(i5/OS only). . . . . . . . . . . . . 314
System/390 assembler-language declaration
(MQCFBS) (z/OS only) . . . . . . . . . 314

MQCFGR - Group parameter . . . . . . . . 315
C language declaration (MQCFGR) . . . . . 315
COBOL language declaration (MQCFGR) . . . 315
PL/I language declaration (MQCFGR) (z/OS
and Windows only) . . . . . . . . . . 316
RPG/ILE declaration (MQCFGR) (i5/OS only) 316
System/390 assembler-language declaration
(MQCFGR) (z/OS only) . . . . . . . . . 316
Visual Basic language declaration (MQCFGR)
(Windows only) . . . . . . . . . . . 316

MQCFH - PCF header . . . . . . . . . . 316
Language declarations . . . . . . . . . 318

MQCFIL - Integer list parameter . . . . . . . 320
C language declaration (MQCFIL) . . . . . 321
COBOL language declaration (MQCFIL) . . . 321
PL/I language declaration (MQCFIL) . . . . 321
RPG/ILE declaration (MQCFIL) (i5/OS only) 321
System/390 assembler-language declaration
(MQCFIL) . . . . . . . . . . . . . 322
Visual Basic language declaration (MQCFIL) 322

MQCFIL64 - 64–bit integer list parameter . . . . 322
C language declaration (MQCFIL64). . . . . 323
COBOL language declaration (MQCFIL64) . . 323
PL/I language declaration (MQCFIL64) . . . 323
RPG/ILE language declaration (MQCFIL64)
(i5/OS only). . . . . . . . . . . . . 323
System/390 assembler-language declaration
(MQCFIL64) (z/OS only) . . . . . . . . 324

MQCFIN - Integer parameter . . . . . . . . 324
C language declaration (MQCFIN) . . . . . 324
COBOL language declaration (MQCFIN) . . . 324
PL/I language declaration (MQCFIN) . . . . 325
RPG/ILE declaration (MQCFIN) (i5/OS only) 325

iv WebSphere MQ: Monitoring WebSphere MQ



System/390 assembler-language declaration
(MQCFIN) . . . . . . . . . . . . . 325
Visual Basic language declaration (MQCFIN) 325

MQCFIN64 - 64–bit integer parameter . . . . . 325
C language declaration (MQCFIN64) . . . . 326
COBOL language declaration (MQCFIN64) . . 326
PL/I language declaration (MQCFIN64) . . . 326
RPG/ILE language declaration (MQCFIN64)
(i5/OS only). . . . . . . . . . . . . 326
System/390 assembler-language declaration
(MQCFIN64) (z/OS only) . . . . . . . . 327

MQCFSL - String list parameter . . . . . . . 327
COBOL language declaration (MQCFSL) . . . 328
PL/I language declaration (MQCFSL) . . . . 328
RPG/ILE declaration (MQCFSL) (i5/OS only) 328
System/390 assembler-language declaration
(MQCFSL) (z/OS only) . . . . . . . . . 329
Visual Basic language declaration (MQCFSL)
(Windows systems only). . . . . . . . . 329

MQCFST - String parameter . . . . . . . . 329
C language declaration (MQCFST) . . . . . 330
COBOL language declaration (MQCFST) . . . 331
PL/I language declaration (MQCFST) . . . . 331
RPG/ILE declaration (MQCFST) (i5/OS only) 331

System/390 assembler-language declaration
(MQCFST) . . . . . . . . . . . . . 331
Visual Basic language declaration (MQCFST) 331

MQEPH - Embedded PCF header . . . . . . 332
Language declarations . . . . . . . . . 333

Chapter 7. Event data for object
attributes . . . . . . . . . . . . . 337
Authentication information attributes . . . . . 337
CF structure attributes . . . . . . . . . . 337
Channel attributes . . . . . . . . . . . . 338
Namelist attributes . . . . . . . . . . . 345
Process attributes . . . . . . . . . . . . 345
Queue attributes . . . . . . . . . . . . 346
Queue manager attributes . . . . . . . . . 352
Storage class attributes . . . . . . . . . . 363

Notices . . . . . . . . . . . . . . 365

Index . . . . . . . . . . . . . . . 369

Sending your comments to IBM . . . 373

Contents v



vi WebSphere MQ: Monitoring WebSphere MQ



Figures

1. Understanding instrumentation events . . . . 6
2. Monitoring queue managers across different

platforms, on a single node . . . . . . . 8
3. Understanding queue service interval events 21
4. Queue service interval events - example 1 25
5. Queue service interval events - example 2 27
6. Queue service interval events - example 3 29
7. Queue depth events (1) . . . . . . . . 34
8. Queue depth events (2) . . . . . . . . 36
9. Requesting activity reports, Diagram 1 197

10. Requesting activity reports, Diagram 2 198
11. Requesting activity reports, Diagram 3 199
12. Requesting activity reports, Diagram 4 200

13. Requesting a trace-route reply message,
Diagram 1 . . . . . . . . . . . . 201

14. Requesting a trace-route reply message,
Diagram 2 . . . . . . . . . . . . 202

15. Requesting a trace-route reply message,
Diagram 3 . . . . . . . . . . . . 202

16. Requesting a trace-route reply message,
Diagram 4 . . . . . . . . . . . . 203

17. Delivering activity reports to the system
queue, Diagram 1 . . . . . . . . . . 204

18. Delivering activity reports to the system
queue, Diagram 2 . . . . . . . . . . 204

19. Diagnosing a channel problem . . . . . . 207

© Copyright IBM Corp. 1994, 2009 vii



viii WebSphere MQ: Monitoring WebSphere MQ



Tables

1. Event message data summary . . . . . . 13
2. Enabling queue manager events using MQSC

commands . . . . . . . . . . . . . 15
3. Enabling channel and bridge events using

MQSC commands . . . . . . . . . . 16
4. Performance event statistics . . . . . . . 20
5. Enabling queue service interval events using

MQSC . . . . . . . . . . . . . . 24
6. Event statistics summary for example 1 26
7. Event statistics summary for example 2 27
8. Event statistics summary for example 3 29
9. Enabling queue depth events using MQSC 33

10. Event statistics summary for queue depth
events (example 1) . . . . . . . . . . 35

11. Summary showing which events are enabled 35
12. Event statistics summary for queue depth

events (example 2) . . . . . . . . . . 36
13. Summary showing which events are enabled 37

14. Event message structure for queue service
interval events . . . . . . . . . . . 50

15. Comparing activity recording and trace-route
messaging . . . . . . . . . . . . 163

16. TraceRoute PCF group . . . . . . . . 179
17. Activity report format. . . . . . . . . 208
18. Trace-route message format . . . . . . . 233
19. Trace-route reply message format . . . . . 243
20. Detail level of channel statistics information

collection . . . . . . . . . . . . . 254
21. MQI accounting message structure . . . . 263
22. Array indexed by object type . . . . . . 297
23. Array indexed by persistence value . . . . 297
24. Monitoring levels . . . . . . . . . . 300
25. Substates seen with status binding or

requesting . . . . . . . . . . . . 306
26. Sender and receiver MCA substates . . . . 308

© Copyright IBM Corp. 1994, 2009 ix



x WebSphere MQ: Monitoring WebSphere MQ



Chapter 1. Introduction

An introduction to monitoring WebSphere MQ

This section describes:
v “Monitoring WebSphere MQ”
v “Event monitoring” on page 2
v “Message monitoring” on page 2
v “Accounting and statistics messages” on page 3
v “Real-time monitoring” on page 3

Monitoring WebSphere MQ

There are many reasons for monitoring a queue manager network. Depending on
the size and complexity of your queue manager network, you can benefit in
different ways from the techniques available with WebSphere® MQ for monitoring
your queue manager network. By applying monitoring techniques available with
WebSphere MQ you can do the following:
v Detect problems in your queue manager network.
v Assist in determining the causes of problems in your queue manager network.
v Improve the efficiency of your queue manager network.
v Familiarize yourself with the running of your queue manager network.
v Confirm that your queue manager network is running correctly.
v Generate messages when certain events occur.
v Record message activity.
v Determine the last known location of a message.
v Check various statistics of a queue manager network in real time.
v Generate an audit trail.
v Account for application resource usage.
v Capacity planning.

Approaches to monitoring WebSphere MQ

There are various approaches to monitoring WebSphere MQ. Each approach is
applied and used in a different way, and each approach returns monitoring
information in a different form. Depending on how you intend to monitor your
WebSphere MQ system you will use one, or a combination of, the following
approaches:
v Event monitoring, see “Event monitoring” on page 2.
v Message monitoring, see “Message monitoring” on page 2.
v Accounting and statistics message, see “Accounting and statistics messages” on

page 3.
v Real-time monitoring, see “Real-time monitoring” on page 3.

© Copyright IBM Corp. 1994, 2009 1



Event monitoring

Event monitoring is the process of detecting occurrences of instrumentation events in
a queue manager network. An instrumentation event is a logical combination of
events that is detected by a queue manager or channel instance. Such an event
causes the queue manager or channel instance to put a special message, called an
event message, on an event queue.

WebSphere MQ instrumentation events provide information about errors,
warnings, and other significant occurrences in a queue manager. You can use these
events to monitor the operation of the queue managers in your queue manager
network, allowing you to do the following:
v Detect problems in your queue manager network.
v Assist in determining the causes of problems in your queue manager network.
v Generate an audit trail.
v React to queue manager state changes

For more information on event monitoring, see “An introduction to
instrumentation events” on page 5.

Message monitoring

Message monitoring is the process of identifying the route a message has taken
through a queue manager network. As a message passes through a queue manager
network, various processes perform activities on behalf of the message. By
identifying the types of activities, and the sequence of activities performed on
behalf of a message, the message route can be determined.

The following techniques are available for determining a message route:
v The WebSphere MQ display route application (dspmqrte), see “WebSphere MQ

display route application” on page 187.
v Trace-route messaging, see “Trace-route messaging” on page 171.
v Activity recording, see “Activity recording” on page 165.

These techniques all generate special messages that contain information about the
activities performed on the message as it passed through a queue manager
network. The information returned in these special messages can be used to do the
following:
v Record message activity.
v Determine the last known location of a message.
v Detect routing problems in your queue manager network.
v Assist in determining the causes of routing problems in your queue manager

network.
v Confirm that your queue manager network is running correctly.
v Familiarize yourself with the running of your queue manager network.
v Trace published messages.

2 WebSphere MQ: Monitoring WebSphere MQ

|



Accounting and statistics messages

Accounting and statistics messages are generated intermittently by queue
managers to record information about the MQI operations performed by
WebSphere MQ applications, or to record information about the activities occurring
in a WebSphere MQ system.

Accounting messages
Accounting messages are used to record information about the MQI
operations performed by WebSphere MQ applications, see “Accounting
messages” on page 247.

Statistics messages
Statistics messages are used to record information about the activities
occurring in a WebSphere MQ system, see “Statistics messages” on page
251.

Accounting and statistics messages are delivered to one of two system queues.
User applications can retrieve the messages from these system queues and use the
recorded information to do the following:
v Account for application resource use.
v Record application activity.
v Capacity planning.
v Detect problems in your queue manager network.
v Assist in determining the causes of problems in your queue manager network.
v Improve the efficiency of your queue manager network.
v Familiarize yourself with the running of your queue manager network.
v Confirm that your queue manager network is running correctly.

For more information on accounting and statistics monitoring, see “Accounting
and statistics messages” on page 247.

Real-time monitoring

Real-time monitoring is a technique that allows you to determine the current state
of queues and channels within a queue manager. A number of commands are
available that when issued return real-time information about queues and
channels. Varying amounts of information can be returned for a single queue or
channel, or for multiple queues or channels. The information returned is accurate
at the moment the command was issued. Real-time monitoring can be used to:
v Help system administrators understand the steady state of their WebSphere MQ

system. This helps with problem diagnosis if a problem occurs in the system.
v Determine the condition of your queue manager at any moment, even if no

specific event or problem has been detected.
v Assist in determining the cause of a problem in your system.

When using real-time monitoring, information can be returned for either queues or
channels. The amount of real-time information returned is controlled by queue
manager, queue, and channel attributes. For more information see “An
introduction to real-time monitoring” on page 299.

Real-time monitoring for queues and channels is in addition to, and separate from,
performance and channel event monitoring.

Chapter 1. Introduction 3



4 WebSphere MQ: Monitoring WebSphere MQ



Chapter 2. Event monitoring

An introduction to instrumentation events

This chapter discusses:

What instrumentation events are

In WebSphere MQ, an instrumentation event is a logical combination of conditions
that is detected by a queue manager or channel instance. Such an event causes the
queue manager or channel instance to put a special message, called an event
message, on an event queue.

WebSphere MQ instrumentation events provide information about errors,
warnings, and other significant occurrences in a queue manager. You can use these
events to monitor the operation of queue managers (in conjunction with other
methods such as NetView®). This chapter tells you what these events are, and how
you use them.

Figure 1 on page 6 illustrates the concept of instrumentation events.

© Copyright IBM Corp. 1994, 2009 5



Event notification through event queues

When an event occurs, the queue manager puts an event message on the
appropriate event queue, if defined. The event message contains information about
the event that you can retrieve by writing a suitable MQI application program that:
v Gets the message from the queue.
v Processes the message to extract the event data. For an overview of event

message formats, see “Format of event messages” on page 18. For detailed
descriptions of the format of each event message, see “Event message format”
on page 50.

Queue Manager

For example:
Queue full

+ event enabled1. Event conditions

2. Event message
put on event queue

3. Event message
processed by a
user application

Event message

Event queue

User Application

Figure 1. Understanding instrumentation events

6 WebSphere MQ: Monitoring WebSphere MQ



Conditions that cause events

Conditions that can give rise to instrumentation events include:
v A threshold limit for the number of messages on a queue is reached.
v A channel instance is started or stopped.
v A queue manager becomes active, or is requested to stop.
v An application tries to open a queue specifying a user ID that is not authorized

on WebSphere MQ for i5/OS®, Linux®, Windows®, and UNIX® systems.
v Objects are created, deleted, changed or refreshed.
v An MQSC, or PCF, command that successfully executes.
v A queue manager starts writing to a new log extent.

Note: Putting a message on the dead-letter queue can cause an event to be
generated if the event conditions are met.

Types of event

WebSphere MQ instrumentation events come in the following types:

Queue manager events
These events are related to the definitions of resources within queue
managers. For example, an application tries to put a message to a queue
that does not exist.

Channel and bridge events
These events are reported by channels as a result of conditions detected
during their operation. For example, when a channel instance is stopped.

Performance events
These events are notifications that a threshold condition has been reached
by a resource. For example, a queue depth limit has been reached.

Configuration events
These events are notifications that some action has been performed on an
object. They are generated automatically when an object is created,
changed, or deleted, or when they are explicitly requested for. For
example, when a namelist is created.

Configuration events are available with WebSphere MQ for z/OS® only.

Command events
These events are notifications that a WebSphere MQ command has been
performed successfully.

Command events are available with WebSphere MQ for z/OS only.

Logger events
These events are notifications that the queue manager has started writing
to a new log extent. Logger events are only available on queue managers
that use linear logging.

Logger events are not available with WebSphere MQ for z/OS.

For each queue manager, each category of event has its own event queue. All
events in that category result in an event message being put onto the same queue.

This event queue: Contains messages from:
SYSTEM.ADMIN.QMGR.EVENT Queue manager events

Chapter 2. Event monitoring 7



SYSTEM.ADMIN.CHANNEL.EVENT Channel events
SYSTEM.ADMIN.PERFM.EVENT Performance events
SYSTEM.ADMIN.CONFIG.EVENT Configuration events
SYSTEM.ADMIN.COMMAND.EVENT Command events
SYSTEM.ADMIN.LOGGER.EVENT Logger events

By incorporating instrumentation events into your own system management
application, you can monitor the activities across many queue managers, across
many different nodes, for multiple WebSphere MQ applications. In particular, you
can monitor all the nodes in your system from a single node (for those nodes that
support WebSphere MQ events) as shown in Figure 2.

Instrumentation events can be reported through a user-written reporting
mechanism to an administration application that can present the events to an
operator.

Instrumentation events also enable applications acting as agents for other
administration networks, for example NetView, to monitor reports and create the
appropriate alerts.

Logger events are not available on WebSphere MQ for z/OS.

Queue manager events

Queue manager events are related to the use of resources within queue managers,
such as an application trying to put a message to a queue that does not exist. The
event messages for queue manager events are put on the
SYSTEM.ADMIN.QMGR.EVENT queue. The following queue manager event types
are supported:

Event monitoring
from a single node

Event
messages

WebSphere MQ
for z/OS

WebSphere MQ
for AIX

WebSphere MQ
for Solaris

Figure 2. Monitoring queue managers across different platforms, on a single node

8 WebSphere MQ: Monitoring WebSphere MQ



v Authority (on Windows, HP OpenVMS, and UNIX systems only)
v Inhibit
v Local
v Remote
v Start and stop (z/OS supports only start)

For each event type in this list, there is a queue manager attribute that enables or
disables the event type. See the WebSphere MQ Script (MQSC) Command
Reference for more information.

The conditions that give rise to the event include:
v An application issues an MQI call that fails. The reason code from the call is the

same as the reason code in the event message.
A similar condition can occur during the internal operation of a queue manager,
for example, when generating a report message. The reason code in an event
message might match an MQI reason code, even though it is not associated with
any application. Do not assume that, because an event message reason code
looks like an MQI reason code, the event was necessarily caused by an
unsuccessful MQI call from an application.

v A command is issued to a queue manager and processing this command causes
an event. For example:
– A queue manager is stopped or started.
– A command is issued where the associated user ID is not authorized for that

command.

Authority events:

Authority events report an authorization, such as an application trying to open a
queue for which it does not have the required authority, or a command being
issued from a user ID that does not have the required authority.

All authority events are valid on HP OpenVMS, Windows, and UNIX systems only.

For more information about the event data returned in authority event messages
see:
v “Not Authorized (type 1)” on page 106
v “Not Authorized (type 2)” on page 107
v “Not Authorized (type 3)” on page 110
v “Not Authorized (type 4)” on page 112
v “Not Authorized (type 5)” on page 113
v “Not Authorized (type 6)” on page 115

Inhibit events:

Inhibit events indicate that an MQPUT or MQGET operation has been attempted
against a queue where the queue is inhibited for puts or gets, or against a topic
where the topic is inhibited for publishes.

For more information about the event data returned in inhibit event messages, see:
v “Get Inhibited” on page 103
v “Put Inhibited” on page 117

Chapter 2. Event monitoring 9

|

|

|
|



Local events:

Local events indicate that an application (or the queue manager) has not been able
to access a local queue or other local object. For example, an application might try
to access an object that has not been defined.

For more information about the event data returned in local event messages, see:
v “Alias Base Queue Type Error” on page 59
v “Unknown Alias Base Queue” on page 143
v “Unknown Object Name” on page 147

Remote events:

Remote events indicate that an application (or the queue manager) cannot access a
(remote) queue on another queue manager. For example, the transmission queue to
be used might not be correctly defined.

For more information about the event data returned in the remote event messages,
see:
v “Default Transmission Queue Type Error” on page 95
v “Default Transmission Queue Usage Error” on page 97
v “Queue Type Error” on page 131
v “Remote Queue Name Error” on page 137
v “Transmission Queue Type Error” on page 139
v “Transmission Queue Usage Error” on page 141
v “Unknown Default Transmission Queue” on page 145
v “Unknown Remote Queue Manager” on page 149
v “Unknown Transmission Queue” on page 151

Start and stop events:

Start and stop events (z/OS supports only start) indicate that a queue manager has
been started or has been requested to stop or quiesce.

Stop events are not recorded unless the default message-persistence of the
SYSTEM.ADMIN.QMGR.EVENT queue is defined as persistent.

For more information about the event data returned in the start and stop event
messages, see:
v “Queue Manager Active” on page 125
v “Queue Manager Not Active” on page 126

Channel and bridge events

Channel events are reported by channels as a result of conditions detected during
their operation, such as when a channel instance is stopped. The event messages
for channel and bridge events are put on the SYSTEM.ADMIN.CHANNEL.EVENT
queue. Channel events are generated:
v By a command to start or stop a channel.
v When a channel instance starts or stops.
v When a channel receives a conversion error warning when getting a message.

10 WebSphere MQ: Monitoring WebSphere MQ



v When an attempt is made to create a channel automatically; the event is
generated whether the attempt succeeds or fails.

Note: Client connections do not cause Channel Started or Channel Stopped events.

When a command is used to start a channel, an event is generated. Another event
is generated when the channel instance starts. However, starting a channel by a
listener, runmqchl, or a queue manager trigger message does not generate an
event; in this case the only event generated is when the channel instance starts.

A successful start or stop channel command generates at least two events. These
events are generated for both queue managers connected by the channel (providing
they support events).

If a channel event is put on to an event queue, an error condition causes the queue
manager to create an event as usual.

For more information about the event data returned in the channel event messages,
see:
v “Channel Activated” on page 68
v “Channel Auto-definition Error” on page 69
v “Channel Auto-definition OK” on page 71
v “Channel Conversion Error” on page 72
v “Channel Not Activated” on page 74
v “Channel Started” on page 79
v “Channel Stopped” on page 80
v “Channel Stopped By User” on page 83

IMS bridge events (z/OS only):

These events are reported when an IMS™ bridge starts or stops.

For more information about the event data returned in the messages specific to
IMS bridge events, see
v “Bridge Started” on page 61
v “Bridge Stopped” on page 62

SSL events:

The only SSL event is the Channel SSL Error event. This event is reported when a
channel using the Secure Sockets Layer (SSL) fails to establish an SSL connection.

For more information about the event data returned in the message specific to the
SSL event, see “Channel SSL Error” on page 76

Performance events

These events report that a resource has reached a threshold condition. For example,
a queue depth limit might have been reached. The event messages for performance
events are put on the SYSTEM.ADMIN.PERFM.EVENT queue. For further details
on performance events, see “Understanding performance events” on page 19.

Chapter 2. Event monitoring 11



Performance events relate to conditions that can affect the performance of
applications that use a specified queue. They are not generated for the event
queues themselves.

The event type is returned in the command identifier field in the message data.

If a queue manager tries to put a queue manager event or performance event
message on an event queue and an error that would normally create an event is
detected, another event is not created and no action is taken.

MQGET and MQPUT calls within a unit of work can generate performance events
regardless of whether the unit of work is committed or backed out.

There are two types of performance event:

Queue depth events:

Queue depth events relate to the number of messages on a queue; that is how full,
or empty, the queue is. These events are supported for shared queues.

Queue service interval events:

Queue service interval events relate to whether messages are processed within a
user-specified time interval. These events are not supported for shared queues.

WebSphere MQ for z/OS supports queue depth events for QSGDISP (SHARED)
queues, but not service interval events. Queue manager and channel events remain
unaffected by shared queues.

Configuration events

Configuration events are reported when objects are created, or modified. A
configuration event message contains information about the attributes of an object.
For example, a configuration event message is generated if a namelist object is
created, and will contain information about the attributes of the namelist object.
The event messages for configuration events are put on the
SYSTEM.ADMIN.CONFIG.EVENT queue. For more information see
“Understanding configuration events” on page 37.

Configuration events are available on WebSphere MQ for z/OS only.

There are four types of configuration event:

Create object events:

Create object events are generated when an object is created. For more information
see “Create object” on page 91.

Change object events:

Change object events are generated when an object is changed. For more
information see “Change object” on page 64.

Delete object events:

Delete object events are generated when an object is deleted. For more information
see “Delete object” on page 99.

12 WebSphere MQ: Monitoring WebSphere MQ



Refresh object events:

Refresh object events are generated by an explicit request to refresh. For more
information see “Refresh object” on page 133.

Command events

A command event is reported when an MQSC or PCF command is executed
successfully. For example, a command event message is generated if the MQSC
command, ALTER QLOCAL, is executed successfully. A command event message
contains information about the origin, context, and content of a command. The
event messages for command events are put on the
SYSTEM.ADMIN.COMMAND.EVENT queue. For more information, see
“Understanding command events” on page 40.

Command events are available on WebSphere MQ for z/OS only.

Logger events

A logger event is reported when a queue manager, that employs linear logging,
starts writing log records to a new log extent, or on i5/OS, a new journal receiver.
A logger event message contains information specifying the log extents required by
the queue manager for queue manager restart, or media recovery. The event
messages for logger events are put on the SYSTEM.ADMIN.LOGGER.EVENT
queue. For more information, see “Understanding logger events” on page 42.

Event message data summary

Table 1 is a full list of events. Use it to find information about a particular type of
event message:

Table 1. Event message data summary

Event type Event name Refer to...

Authority events Not Authorized (type 1) “Not Authorized (type 1)” on page 106

Not Authorized (type 2) “Not Authorized (type 2)” on page 107

Not Authorized (type 3) “Not Authorized (type 3)” on page 110

Not Authorized (type 4) “Not Authorized (type 4)” on page 112

Not Authorized (type 5) “Not Authorized (type 5)” on page 113

Not Authorized (type 6) “Not Authorized (type 6)” on page 115

Channel events Channel Activated “Channel Activated” on page 68

Channel Auto-definition Error “Channel Auto-definition Error” on page 69

Channel Auto-definition OK “Channel Auto-definition OK” on page 71

Channel Conversion Error “Channel Conversion Error” on page 72

Channel Not Activated “Channel Not Activated” on page 74

Channel Started “Channel Started” on page 79

Channel Stopped “Channel Stopped” on page 80

Channel Stopped By User “Channel Stopped By User” on page 83

Command events Command “Command” on page 84

Chapter 2. Event monitoring 13



Table 1. Event message data summary (continued)

Event type Event name Refer to...

Configuration events Create object “Create object” on page 91

Change object “Change object” on page 64

Delete object “Delete object” on page 99

Refresh object “Refresh object” on page 133

IMS Bridge events Bridge started “Bridge Started” on page 61

Bridge stopped “Bridge Stopped” on page 62

Inhibit events Get inhibited “Get Inhibited” on page 103

Put inhibited “Put Inhibited” on page 117

Local events Alias base queue type error “Alias Base Queue Type Error” on page 59

Unknown alias base queue “Unknown Alias Base Queue” on page 143

Unknown object name “Unknown Object Name” on page 147

Logger events Logger “Command” on page 84

Performance events Queue Depth High “Queue Depth High” on page 119

Queue Depth Low “Queue Depth Low” on page 121

Queue Full “Queue Full” on page 123

Queue Service Interval High “Queue Service Interval High” on page 127

Queue Service Interval OK “Queue Service Interval OK” on page 129

Remote events Default Transmission Queue Type Error “Default Transmission Queue Type Error” on
page 95

Default Transmission Queue Usage Error “Default Transmission Queue Usage Error” on
page 97

Queue Type Error “Queue Type Error” on page 131

Remote Queue Name Error “Remote Queue Name Error” on page 137

Transmission Queue Type Error “Transmission Queue Type Error” on page 139

Transmission Queue Usage Error “Transmission Queue Usage Error” on page
141

Unknown Default Transmission Queue “Unknown Default Transmission Queue” on
page 145

Unknown Remote Queue Manager “Unknown Remote Queue Manager” on page
149

Unknown Transmission Queue “Unknown Transmission Queue” on page 151

SSL events Channel SSL Error “Channel SSL Error” on page 76

Start and stop events Queue Manager Active “Queue Manager Active” on page 125

Queue Manager Not Active “Queue Manager Not Active” on page 126

Controlling events

All instrumentation events must be enabled before they can be generated. For
example, the conditions giving rise to a Queue Full event are:
v Queue Full events are enabled for a specified queue and
v An application issues an MQPUT request to put a message on that queue, but

the request fails because the queue is full.

14 WebSphere MQ: Monitoring WebSphere MQ



You can enable and disable events by specifying the appropriate values for queue
manager or queue attributes (or both) depending on the type of event. You do this
using:
v WebSphere MQ script commands (MQSC). For more information, see the

WebSphere MQ Script (MQSC) Command Reference manual.
v The corresponding WebSphere MQ PCF commands. For more information see

the WebSphere MQ Programmable Command Formats and Administration
Interface.

v The operations and control panels for queue managers on z/OS. For more
information, see the WebSphere MQ for z/OS System Administration Guide.

v The WebSphere MQ Explorer. For more information, see the WebSphere MQ
System Administration Guide.

Note: Attributes related to events for both queues and queue managers can be set
by command only. They are not supported by the MQI call MQSET.

Controlling queue manager events

Queue manager events are controlled using queue manager attributes. To enable
queue manager events, set the appropriate queue manager attribute to ENABLED.
To disable queue manager events, set the appropriate queue manager attribute to
DISABLED. To enable or disable queue manager events you can use the MQSC
command ALTER QMGR specifying the appropriate queue manager attribute, as
follows:

Authority events
Set the queue manager attribute AUTHOREV.

Inhibit events
Set the queue manager attribute INHIBITEV.

Local events
Set the queue manager attribute LOCALEV.

Remote events
Set the queue manager attribute REMOTEEV.

Start and stop events
Set the queue manager attribute STRSTPEV.

Enabling queue manager events summary:

Table 2 summarizes how to enable queue manager events:

Table 2. Enabling queue manager events using MQSC commands

Event ALTER QMGR parameter

Authority
Inhibit
Local
Remote
Start and Stop

AUTHOREV (ENABLED)
INHIBTEV (ENABLED)
LOCALEV (ENABLED)
REMOTEEV (ENABLED)
STRSTPEV (ENABLED)

Controlling channel and bridge events

Channel events are controlled using queue manager attributes. To enable channel
events, set the appropriate queue manager attribute to ENABLED. To disable
channel events, set the appropriate queue manager attribute to DISABLED. To

Chapter 2. Event monitoring 15



enable or disable channels events you can use the MQSC command ALTER QMGR
specifying the appropriate queue manager attribute, as follows:

Channel events
Set the queue manager attribute CHLEV.

To specify that only the events related to channel errors are to be recorded,
set CHLEV to EXCEPTION.

IMS Bridge events
Set the queue manager attribute BRIDGEEV.

SSL events
Set the queue manager attribute SSLEV.

Channel auto-definition events
Set the queue manager attribute CHADEV.

Channel auto-definition events are not available on WebSphere MQ for
z/OS.

Enabling channel and bridge events summary:

Table 3 summarizes how to enable channel and bridge events:

Table 3. Enabling channel and bridge events using MQSC commands

Event ALTER QMGR parameter

Channel
Channel errors only

IMS Bridge
SSL
Channel auto-definition

CHLEV (ENABLED)
CHLEV (EXCEPTION)
BRIDGEEV (ENABLED)
SSLEV (ENABLED)
CHADEV(ENABLED)

Controlling performance events

Performance events as a whole are controlled using the PERFMEV queue manager
attribute. To enable performance events, set PERFMEV to ENABLED. To disable
performance events, set the PERFMEV queue manager attribute to DISABLED. For
example, to set the PERFMEV queue manager attribute to ENABLED, you can use
the following MQSC command:
ALTER QMGR PERFMEV (ENABLED)

You can then enable specific performance events by setting the appropriate queue
attribute. You also have to specify the conditions that give rise to the event.

Controlling queue depth events:

By default, all queue depth events are disabled. To configure a queue for any of
the queue depth events you must:
1. Enable performance events on the queue manager.
2. Enable the event on the required queue.
3. Set the limits, if required, to the appropriate levels, expressed as a percentage

of the maximum queue depth.

For more information, see “Understanding queue depth events” on page 29.

Controlling queue service interval events:

16 WebSphere MQ: Monitoring WebSphere MQ



To configure a queue for queue service interval events you must:
1. Enable performance events on the queue manager.
2. Set the control attribute for a Queue Service Interval High or OK event on the

queue as required.
3. Specify the service interval time by setting the QSVCINT attribute for the

queue to the appropriate length of time.

For more information, see “Enabling queue service interval events” on page 23.

Note: When enabled, a queue service interval event can be generated at any
appropriate time, not necessarily waiting until an MQI call for the queue is issued.
However, if an MQI call is used on a queue to put or remove a message, any
applicable performance event will be generated at that time. The event is not
generated when the elapsed time becomes equal to the service interval time.

Controlling configuration events

Configuration events as a whole are controlled using the CONFIGEV queue
manager attribute. To enable configuration events, set CONFIGEV to ENABLED.
To disable configuration events, set CONFIGEV to DISABLED. For example, you
can enable configuration events by using the following MQSC command:
ALTER QMGR CONFIGEV (ENABLED)

Controlling command events

Command events as a whole are controlled using the CMDEV queue manager
attribute. To enable command events, set CMDEV to ENABLED. To enable
command events for commands except DISPLAY MQSC commands and Inquire
PCF commands, set the CMDEV to NODISPLAY. To disable command events, set
CMDEV to DISABLED. For example, you can enable command events by using the
following MQSC command:
ALTER QMGR CMDEV (ENABLED)

Controlling logger events

Logger events as a whole are controlled using the LOGGEREV queue manager
attribute. To enable logger events, set LOGGEREV to ENABLED. To disable logger
events, set LOGGEREV to DISABLED. For example, you can enable logger events
by using the following MQSC command:
ALTER QMGR LOGGEREV(ENABLED)

Event queues

You can define event queues either as local queues, alias queues, or as local
definitions of remote queues. If you define all your event queues as local
definitions of the same remote queue on one queue manager, you can centralize
your monitoring activities.

You must not define event queues as transmission queues, because event messages
have formats that are incompatible with the format of messages required for
transmission queues.

Shared event queues are local queues defined with the QSGDISP(SHARED) value.
For more information about defining shared queues, see the WebSphere MQ for
z/OS System Setup Guide.

Chapter 2. Event monitoring 17



When an event queue is unavailable

If an event occurs when the event queue is not available, the event message is lost.
For example, if you do not define an event queue for a category of event, all event
messages for that category will be lost. The event messages are not, for example,
saved on the dead-letter (undelivered-message) queue.

However, you can define the event queue as a remote queue. Then, if there is a
problem on the remote system putting messages to the resolved queue, the event
message will appear on the remote system’s dead-letter queue.

An event queue might be unavailable for many different reasons including:
v The queue has not been defined.
v The queue has been deleted.
v The queue is full.
v The queue has been put-inhibited.

The absence of an event queue does not prevent the event from occurring. For
example, after a performance event, the queue manager changes the queue
attributes and resets the queue statistics. This happens whether the event message
is put on the performance event queue or not.

In the case of configuration and command events the same is true again. In the
absence of an event queue, an event message is not generated, however the
command or call is executed regardless.

Using triggered event queues

You can set up the event queues with triggers so that when an event is generated,
the event message being put onto the event queue starts a user-written monitoring
application. This application can process the event messages and take appropriate
action. For example, certain events might require that an operator be informed,
other events may start off an application that performs some administration tasks
automatically.

Event queues can have trigger actions associated with them and can create trigger
messages. However, if these trigger messages in turn cause conditions that would
normally generate an event, no event is generated. This ensures that looping does
not occur.

Format of event messages

Event messages contain information about the event and its origin. Typically, these
messages are processed by a system management application program tailored to
meet the requirements of the enterprise at which it runs. As with all WebSphere
MQ messages, an event message has two parts: a message descriptor and the
message data.
v The message descriptor is based on the MQMD structure, which is defined in

the WebSphere MQ Application Programming Reference manual.
v The message data is also made up of an event header and the event data. The

event header contains the reason code that identifies the event type. Putting the
event message, and any subsequent actions following that, do not affect the

18 WebSphere MQ: Monitoring WebSphere MQ



reason code returned by the MQI call that caused the event. The event data
provides further information about the event.

When the conditions are met to generate an event message to be generated for a
shared queue, the queue managers in the queue sharing group decide whether to
generate an event message. Several queue managers can generate an event
message for one shared queue, resulting in several event messages being produced.
To ensure that a system can correlate multiple event messages from different queue
managers, these event messages have a unique correlation identifier (CorrelId) set
in the message descriptor (MQMD). For further details of the MQMD see
“Message descriptor (MQMD) in event messages” on page 51.

Using event monitoring in a WebSphere MQ network

If you write an application using events to monitor queue managers, you need to:
1. Set up channels between the queue managers in your network.
2. Implement the required data conversions. The normal rules of data conversion

apply. For example, if you are monitoring events on a UNIX system queue
manager from a z/OS queue manager, you must ensure that you convert
EBCDIC to ASCII.

See the WebSphere MQ Application Programming Guide for more information.

Understanding performance events

This chapter describes what performance events are, how they are generated, how
they can be enabled, and how they are used. The chapter includes:
v “What performance events are”
v “Understanding queue service interval events” on page 20
v “Queue service interval events examples” on page 24
v “Understanding queue depth events” on page 29
v “Queue depth events examples” on page 34

In this chapter, the examples assume that you set queue attributes by using the
appropriate WebSphere MQ commands (MQSC). See the WebSphere MQ Script
(MQSC) Command Reference manual for more information. You can also set them
using the operations and controls panels, for queue managers, on z/OS.

What performance events are

Performance events are related to conditions that can affect the performance of
applications that use a specified queue.

The scope of performance events is the queue, so that MQPUT calls and MQGET
calls on one queue do not affect the generation of performance events on another
queue.

Performance event messages can be generated at any appropriate time, not
necessarily waiting until an MQI call for the queue is issued. However, if an MQI
call is used on a queue to put or remove a message, any appropriate performance
events are generated at that time.

Chapter 2. Event monitoring 19



Every performance event message that is generated is placed on the queue,
SYSTEM.ADMIN.PERFM.EVENT.

The event data contains a reason code that identifies the cause of the event, a set of
performance event statistics, and other data. For more information about the event
data returned in performance event messages, see:
v “Queue Depth High” on page 119
v “Queue Depth Low” on page 121
v “Queue Full” on page 123
v “Queue Service Interval High” on page 127
v “Queue Service Interval OK” on page 129

Performance event statistics

The event data in the event message contains information about the event for
system management programs. For all performance events, the event data contains
the names of the queue manager and the queue associated with the event. Also,
the event data contains statistics related to the event. You can use these statistics to
analyze the behavior of a specified queue. Table 4 summarizes the event statistics.
All the statistics refer to what has happened since the last time the statistics were
reset.

Table 4. Performance event statistics

Parameter Description

TimeSinceReset The elapsed time since the statistics were last reset.

HighQDepth The maximum number of messages on the queue since the
statistics were last reset.

MsgEnqCount The number of messages enqueued (the number of MQPUT
calls to the queue), since the statistics were last reset.

MsgDeqCount The number of messages dequeued (the number of MQGET
calls to the queue), since the statistics were last reset.

Performance event statistics are reset when any of the following occur:
v A performance event occurs (statistics are reset on all active queue managers).
v A queue manager stops and restarts.
v On z/OS only, the RESET QSTATS command is issued at the console.
v The PCF command, Reset Queue Statistics, is issued from an application

program.

Understanding queue service interval events

Queue service interval events indicate whether a queue was ‘serviced’ within a
user-defined time interval called the service interval. Depending on the
circumstances at your installation, you can use queue service interval events to
monitor whether messages are being taken off queues quickly enough.

Throughout this section where the term get operation is used, it refers to an MQGET
call or an activity that removes a messages from a queue, such as using the
CLEAR QLOCAL command.

Note: Queue service interval events are not supported on shared queues.

20 WebSphere MQ: Monitoring WebSphere MQ



What queue service interval events are

The following are types of queue service interval events:
1. Queue Service Interval OK event indicates that after one of the following:
v An MQPUT call
v A get operation that leaves a non-empty queue

a get operation was performed within a user-defined time period, known as the
service interval.
The Queue Service Interval OK event message can only be caused by a get
operation.

Note: In this section, Queue Service Interval OK events are referred to as OK
events.

2. Queue Service Interval High event indicates that after one of the following:
v An MQPUT call
v A get operation that leaves a non-empty queue

a get operation was not performed within a user-defined service interval.
The Queue Service Interval High event message can be caused by a get
operation or an MQPUT call.

Note: In this section, Queue Service Interval High events are referred to as
high events.

To enable both Queue Service Interval OK and Queue Service Interval High events
you need to set the QServiceIntervalEvent control attribute to High. Queue
Service Interval OK events are automatically enabled when a Queue Service
Interval High event is generated. You do not need to enable Queue Service Interval
OK events independently.

These events are mutually exclusive, which means that if one is enabled the other
is disabled. However, both events can be simultaneously disabled.

Figure 3 shows a graph of queue depth against time. At P1, an application issues
an MQPUT, to put a message on the queue. At G1, another application issues an
MQGET to remove the message from the queue.

In terms of queue service interval events, these are the possible outcomes:
v If the elapsed time between the put and get is less than or equal to the service

interval:

P1

Q
u

eu
e

d
ep

th

TimeG1

GETPUT

Figure 3. Understanding queue service interval events

Chapter 2. Event monitoring 21



– A Queue Service Interval OK event is generated at G1, if queue service interval
events are enabled

v If the elapsed time between the put and get is greater than the service interval:
– A Queue Service Interval High event is generated at G1, if queue service

interval events are enabled.

The actual algorithm for starting the service timer and generating events is
described in “Queue service interval events algorithm.”

Understanding the service timer

Queue service interval events use an internal timer, called the service timer, which
is controlled by the queue manager. The service timer is used only if one or other
of the queue service interval events is enabled.

What precisely does the service timer measure?
The service timer measures the elapsed time between an MQPUT call to an
empty queue or a get operation, and the next put or get, provided the
queue depth is nonzero between these two operations.

When is the service timer active?
The service timer is always active (running), if the queue has messages on
it (depth is nonzero) and a queue service interval event is enabled. If the
queue becomes empty (queue depth zero), the timer is put into an OFF
state, to be restarted on the next put.

When is the service timer reset?
The service timer is always reset after a get operation . It is also reset by an
MQPUT call to an empty queue. However, it is not necessarily reset on a
queue service interval event.

How is the service timer used?
Following a get operation or an MQPUT call, the queue manager compares
the elapsed time as measured by the service timer, with the user-defined
service interval. The result of this comparison is that:
v An OK event is generated if there is a get operation and the elapsed

time is less than or equal to the service interval, AND this event is
enabled.

v A high event is generated if the elapsed time is greater than the service
interval, AND this event is enabled.

Can applications read the service timer?
No, the service timer is an internal timer that is not available to
applications.

What about the TimeSinceReset parameter?
The TimeSinceReset parameter is returned as part of the event statistics in
the event data. It specifies the time between successive queue service
interval events, unless the event statistics are reset.

Queue service interval events algorithm

This section gives the formal rules associated with the timer and the queue service
interval events.

Service timer:

The service timer is reset to zero and restarted:

22 WebSphere MQ: Monitoring WebSphere MQ



v Following an MQPUT call to an empty queue.
v Following an MQGET call, if the queue is not empty after the MQGET call.

The resetting of the timer does not depend on whether an event has been
generated.

At queue manager startup the service timer is set to startup time if the queue
depth is greater than zero.

If the queue is empty following a get operation, the timer is put into an OFF state.

Queue Service Interval High events:

The Queue Service Interval event must be enabled (set to HIGH).

If the service time is greater than the service interval, an event is generated on, or
before, the next MQPUT or get operation.

Queue Service Interval OK events:

Queue Service Interval OK events are automatically enabled when a Queue Service
Interval High event is generated.

If the service time (elapsed time) is less than or equal to the service interval, an
event is generated on, or before, the next get operation.

Enabling queue service interval events

To configure a queue for queue service interval events you must:
1. Enable performance events on the queue manager, by setting the queue

manager attribute PERFMEV to ENABLED.
2. Set the control attribute, QSVCIEV, for a Queue Service Interval High or OK

event on the queue, as required.
3. Specify the service interval time by setting the QSVCINT attribute for the

queue to the appropriate length of time.

For example, to enable Queue Service Interval High events with a service interval
time of 10 seconds (10 000 milliseconds) use the following MQSC commands:

Automatic enabling of queue service interval events:

The high and OK events are mutually exclusive; that is, when one is enabled, the
other is automatically disabled.

When a high event is generated on a queue, the queue manager automatically
disables high events and enables OK events for that queue.

Similarly, when an OK event is generated on a queue, the queue manager
automatically disables OK events and enables high events for that queue.

All performance events must be enabled using the queue manager attribute
PERFMEV.

ALTER QMGR PERFMEV(ENABLED)

ALTER QLOCAL('MYQUEUE') QSVCINT(10000) QSVCIEV(HIGH)

Chapter 2. Event monitoring 23



Table 5. Enabling queue service interval events using MQSC

Queue service interval event Queue attributes

Queue Service Interval High
Queue Service Interval OK
No queue service interval events

QSVCIEV (HIGH)
QSVCIEV (OK)
QSVCIEV (NONE)

Service interval QSVCINT (tt) where tt is the service
interval time in milliseconds.

Queue service interval events examples

This section provides progressively more complex examples to illustrate the use of
queue service interval events.

The figures accompanying the examples have the same structure:
v The top section is a graph of queue depth against time, showing individual

MQGET calls and MQPUT calls.
v The middle section shows a comparison of the time constraints. There are three

time periods that you must consider:
– The user-defined service interval.
– The time measured by the service timer.
– The time since event statistics were last reset (TimeSinceReset in the event

data).
v The bottom section of each figure shows which events are enabled at any instant

and what events are generated.

The following examples illustrate:
v How the queue depth varies over time.
v How the elapsed time as measured by the service timer compares with the

service interval.
v Which event is enabled.
v Which events are generated.

Example 1 (queue service interval events)

This example shows a simple sequence of MQGET calls and MQPUT calls, where
the queue depth is always one or zero.

24 WebSphere MQ: Monitoring WebSphere MQ



Commentary:

1. At P1, an application puts a message onto an empty queue. This starts the
service timer.
Note that T0 may be queue manager startup time.

2. At G1, another application gets the message from the queue. Because the
elapsed time between P1 and G1 is greater than the service interval, a Queue
Service Interval High event is generated on the MQGET call at G1. When the
high event is generated, the queue manager resets the event control attribute so
that:
a. The OK event is automatically enabled.
b. The high event is disabled.
Because the queue is now empty, the service timer is switched to an OFF state.

3. At P2, a second message is put onto the queue. This restarts the service timer.
4. At G2, the message is removed from the queue. However, because the elapsed

time between P2 and G2 is less than the service interval, a Queue Service
Interval OK event is generated on the MQGET call at G2. When the OK event
is generated, the queue manager resets the control attribute so that:
a. The high event is automatically enabled.
b. The OK event is disabled.
Because the queue is empty, the service timer is again switched to an OFF state.

Event statistics summary for example 1:

High

OK

High event OK event

TO P1 P2 G2

Q
u

e
u

e
d

e
p

th

Time

Key:

Service interval

Service timer ON

Service timer OFF

Time since reset

G1

GET GETPUT PUT

Enabled events

Figure 4. Queue service interval events - example 1

Chapter 2. Event monitoring 25



Table 6 summarizes the event statistics for this example.

Table 6. Event statistics summary for example 1

Event 1 Event 2

Time of event T(G1) T(G2)

Type of event High OK

TimeSinceReset T(G1) - T(0) T(G2) - T(P2)

HighQDepth 1 1

MsgEnqCount 1 1

MsgDeqCount 1 1

The middle part of Figure 4 on page 25 shows the elapsed time as measured by the
service timer compared to the service interval for that queue. To see whether a
queue service interval event will occur, compare the length of the horizontal line
representing the service timer (with arrow) to that of the line representing the
service interval. If the service timer line is longer, and the Queue Service Interval
High event is enabled, a Queue Service Interval High event will occur on the next
get. If the timer line is shorter, and the Queue Service Interval OK event is enabled,
a Queue Service Interval OK event will occur on the next get.

What queue service interval events tell you

You must exercise some caution when you look at queue statistics. Figure 4 on
page 25 shows a simple case where the messages are intermittent and each
message is removed from the queue before the next one arrives. From the event
data, you know that the maximum number of messages on the queue was one.
You can, therefore, work out how long each message was on the queue.

However, in the general case, where there is more than one message on the queue
and the sequence of MQGET calls and MQPUT calls is not predictable, you cannot
use queue service interval events to calculate how long an individual message
remains on a queue. The TimeSinceReset parameter, which is returned in the event
data, can include a proportion of time when there are no messages on the queue.
Therefore any results you derive from these statistics are implicitly averaged to
include these times.

Example 2 (queue service interval events)

This example illustrates a sequence of MQPUT calls and MQGET calls, where the
queue depth is not always one or zero. It also shows instances of the timer being
reset without events being generated, for example, at T(P2)

26 WebSphere MQ: Monitoring WebSphere MQ



Commentary:

In this example, OK events are enabled initially and queue statistics were reset at
T(0).
1. At P1, the first put starts the service timer.
2. At P2, the second put does not generate an event because a put cannot cause

an OK event.
3. At G1, the service interval has now been exceeded and therefore an OK event

is not generated. However, the MQGET call causes the service timer to be reset.
4. At G2, the second get occurs within the service interval and this time an OK

event is generated. The queue manager resets the event control attribute so
that:
a. The high event is automatically enabled.
b. The OK event is disabled.
Because the queue is now empty, the service timer is switched to an OFF state.

Event statistics summary for example 2:

Table 7 summarizes the event statistics for this example.

Table 7. Event statistics summary for example 2

Time of event T(G2)

High
OK

OK event

T0 P1

Q
u

e
u

e
 d

e
p

th

Time

Key:
Service interval

Service timer ON

Service timer OFF

Time since reset

Enabled events

P2 G1 G2

Figure 5. Queue service interval events - example 2

Chapter 2. Event monitoring 27



Table 7. Event statistics summary for example 2 (continued)

Type of event OK

TimeSinceReset T(G2) - T(0)

HighQDepth 2

MsgEnqCount 2

MsgDeqCount 2

Example 3 (queue service interval events)

This example shows a sequence of MQGET calls and MQPUT calls that is more
sporadic than the previous examples.

Commentary:

1. At time T(0), the queue statistics are reset and Queue Service Interval High
events are enabled.

2. At P1, the first put starts the service timer.
3. At P2, the second put increases the queue depth to two. A high event is not

generated here because the service interval time has not been exceeded.
4. At P3, the third put causes a high event to be generated. (The timer has

exceeded the service interval.) The timer is not reset because the queue depth
was not zero before the put. However, OK events are enabled.

5. At G1, the MQGET call does not generate an event because the service interval
has been exceeded and OK events are enabled. The MQGET call does, however,
reset the service timer.

6. At G2, the MQGET call does not generate an event because the service interval
has been exceeded and OK events are enabled. Again, the MQGET call resets
the service timer.

7. At G3, the third get empties the queue and the service timer is equal to the
service interval. Therefore an OK event is generated. The service timer is reset
and high events are enabled. The MQGET call empties the queue, and this puts
the timer in the OFF state.

28 WebSphere MQ: Monitoring WebSphere MQ



Event statistics summary for example 3:

Table 8 summarizes the event statistics for this example.

Table 8. Event statistics summary for example 3

Event 1 Event 2

Time of event T(P3) T(G3)

Type of event High OK

TimeSinceReset T(P3) - T(0) T(G3) - T(P3)

HighQDepth 3 3

MsgEnqCount 3 0

MsgDeqCount 0 3

Understanding queue depth events

In WebSphere MQ applications, queues must not become full. If they do,
applications can no longer put messages on the queue that they specify. Although
the message is not lost if this occurs, it can be a considerable inconvenience. The
number of messages can build up on a queue if the messages are being put onto
the queue faster than the applications that process them can take them off.

High

OK

High event OK event

TO P1 P2 P3 G1 G2 G3

Q
u

e
u

e
d

e
p

th

Time

Key:

Service interval

Service timer ON

Service timer OFF

Time since reset

Enabled events

Figure 6. Queue service interval events - example 3

Chapter 2. Event monitoring 29



The solution to this problem depends on the particular circumstances, but may
involve:
v Diverting some messages to another queue.
v Starting new applications to take more messages off the queue.
v Stopping nonessential message traffic.
v Increasing the queue depth to overcome a transient maximum.

Clearly, having advanced warning that problems may be on their way makes it
easier to take preventive action. For this purpose, queue depth events are
provided.

What queue depth events are

Queue depth events are related to the queue depth, that is, the number of
messages on the queue. The types of queue depth events are:
v Queue Depth High events, which indicate that the queue depth has increased

to a predefined threshold called the Queue Depth High limit.
v Queue Depth Low events, which indicate that the queue depth has decreased to

a predefined threshold called the Queue Depth Low limit.
v Queue Full events, which indicate that the queue has reached its maximum

depth, that is, the queue is full.

A Queue Full Event is generated when an application attempts to put a message
on a queue that has reached its maximum depth. Queue Depth High events give
advance warning that a queue is filling up. This means that having received this
event, the system administrator should take some preventive action. If this action
is successful and the queue depth drops to a ‘safe’ level, the queue manager can be
configured to generate a Queue Depth Low event indicating an ‘all clear’ state.

Figure 7 on page 34 shows a graph of queue depth against time in such a case. The
preventive action was (presumably) taken between T(2) and T(3) and continues to
have effect until T(4) when the queue depth is well inside the ‘safe’ zone.

Shared queues and queue depth events (WebSphere MQ for z/OS):

When a queue depth event occurs on a shared queue, the queue managers in the
queue-sharing group produce an event message, if the queue manager attribute
PERFMEV is set to ENABLED. If PERFMEV is set to DISABLED on some of the
queue managers, event messages are not produced by those queue managers,
making event monitoring from an application more difficult. To avoid this, give
each queue manager the same setting for the PERFMEV attribute. This event
message represents the individual usage of the shared queue by each queue
manager. If a queue manager performs no activity on the shared queue, various
values in the event message are null or zero. Null event messages:
v Allow you to ensure there is one event message for each active queue manager

in a queue-sharing group
v Can highlight cases where there has been no activity on a shared queue for a

queue manager that produced the event message

Enabling queue depth events

By default, all queue depth events are disabled. To configure a queue for any of
the queue depth events you must:

30 WebSphere MQ: Monitoring WebSphere MQ



1. Enable performance events on the queue manager, using the queue manager
attribute PERFMEV.

2. Enable the event on the required queue by setting the following as required:
v QDepthHighEvent(QDPHIEV in MQSC)
v QDepthLowEvent(QDPLOEV in MQSC)
v QDepthMaxEvent(QDPMAXEV in MQSC)

3. Set the limits, if required, to the appropriate levels, expressed as a percentage
of the maximum queue depth, by setting either:
v QDepthHighLimit(QDEPTHHI in MQSC), and
v QDepthLowLimit(QDEPTHLO in MQSC).

Enabling queue depth events on shared queues (WebSphere MQ for z/OS):

When a queue manager determines that an event should be issued, the shared
queue object definition is updated to toggle the active performance event
attributes. For example, depending on the definition of the queue attributes, a
Queue Depth High event enables a Queue Depth Low and a Queue Full event.
After the shared queue object has been updated successfully, the queue manager
that detected the performance event initially becomes the coordinating queue
manager.

If enabled for performance events, the coordinating queue manager does the
following:
1. Issues an event message that captures all shared queue performance data it has

gathered since the last time an event message was created, or since the queue
statistics were last reset. The message descriptor (MQMD) of this message
contains a unique correlation identifier (CorrelId) created by the coordinating
queue manager.

2. Broadcasts to all other active queue managers in the same queue-sharing group
to request the production of an event message for the shared queue. The
broadcast contains the correlation identifier created by the coordinating queue
manager for the set of event messages.

Having received a request from the coordinating queue manager, if there is a
performance event enabled active queue manager in the queue-sharing group, it
issues an event message for the shared queue. The issued event message contains
information about all the operations performed by the receiving (active) queue
manager since the last time an event message was created, or since the last
statistics reset. The message descriptor (MQMD) of this event message contains the
unique correlation identifier (CorrelId) specified by the coordinating queue
manager.

When performance events occur on a shared queue, n event messages are
produced, where n is 1 to the number of active queue managers in the
queue-sharing group. Each event message contains data that relates to the shared
queue activity for the queue manager where the event message was generated.

You can view event message data for a shared queue using the:
v Queue-sharing view.

All data from event messages with the same correlation identifier is collected
here.

v Queue manager view.

Chapter 2. Event monitoring 31



Each event message shows how much it has been used by its originating queue
manager.

Differences between shared and nonshared queues:

Enabling queue depth events on shared queues differs from enabling them on
nonshared queues. A key difference is that events are switched on for shared
queues even if PERFMEV is DISABLED on the queue manager. This is not the case
for nonshared queues.

Consider the following example which illustrates this difference.
v QM1 is a queue manager with PerformanceEvent (PERFMEV in MQSC) set to

DISABLED.
v SQ1 is a shared queue with QSGDISP set to (SHARED) QLOCAL in MQSC.
v LQ1 is a nonshared queue with QSGDISP set to (QMGR) QLOCAL in MQSC.

Both queues have the following attributes set on their definitions:
v QDPHIEV (ENABLED)
v QDPLOEV (DISABLED)
v QDPMAXEV (DISABLED)

If messages are placed on both queues so that the depth meets or exceeds the
QDEPTHHI threshold, the QDPHIEV value on SQ1 switches to DISABLED. Also,
QDPLOEV and QDPMAXEV are switched to ENABLED. SQ1’s attributes are
automatically switched for each performance event at the time the event criteria
are met.

In contrast the attributes for LQ1 remain unchanged until PERFMEV on the queue
manager is ENABLED. This means that if the queue manager’s PERFMEV attribute
is ENABLED, DISABLED and then re-ENABLED for instance, the performance
event settings on shared queues might not be consistent with those of nonshared
queues, even though they might have initially been the same.

Enabling Queue Depth High events:

When enabled, a Queue Depth High event is generated when a message is put on
the queue, causing the queue depth to be greater than or equal to the value
determined by the Queue Depth High limit.

To enable Queue Depth High events on the queue MYQUEUE with a limit set at
80%, use the following MQSC commands:

Automatically enabling Queue Depth High events:

A Queue Depth High event is automatically enabled by a Queue Depth Low event
on the same queue.

A Queue Depth High event automatically enables both a Queue Depth Low and a
Queue Full event on the same queue.

Enabling Queue Depth Low events:

ALTER QMGR PERFMEV(ENABLED)
ALTER QLOCAL('MYQUEUE') QDEPTHHI(80) QDPHIEV(ENABLED)

32 WebSphere MQ: Monitoring WebSphere MQ



When enabled, a Queue Depth Low event is generated when a message is
removed from a queue by a get operation causing the queue depth to be less than
or equal to the value determined by the Queue Depth Low limit.

To enable Queue Depth Low events on the queue MYQUEUE with a limit set at
20%, use the following MQSC commands:

Automatically enabling Queue Depth Low events:

A Queue Depth Low event is automatically enabled by a Queue Depth High event
or a Queue Full event on the same queue.

A Queue Depth Low event automatically enables both a Queue Depth High and a
Queue Full event on the same queue.

Enabling Queue Full events:

When enabled, a Queue Full event is generated when an application is unable to
put a message onto a queue because the queue is full.

To enable Queue Full events on the queue MYQUEUE, use the following MQSC
commands:

Automatically enabling Queue Full events:

A Queue Full event is automatically enabled by a Queue Depth High or a Queue
Depth Low event on the same queue.

A Queue Full event automatically enables a Queue Depth Low event on the same
queue.

Table 9. Enabling queue depth events using MQSC

Queue depth event Queue attributes

Queue depth high

Queue depth low

Queue full

QDPHIEV (ENABLED)
QDEPTHHI (hh) where hh is the queue depth
high limit.

QDPLOEV (ENABLED)
QDEPTHLO (ll) where ll is the Queue depth
low limit. (Both values are expressed as a
percentage of the maximum queue depth, which is
specified by the queue
attribute MAXDEPTH.)

QDPMAXEV (ENABLED)

Note: All performance events must be enabled using the queue manager attribute
PERFMEV.

ALTER QMGR PERFMEV(ENABLED)
ALTER QLOCAL('MYQUEUE') QDEPTHLO(20) QDPLOEV(ENABLED)

ALTER QMGR PERFMEV(ENABLED)
ALTER QLOCAL('MYQUEUE') QDPMAXEV(ENABLED)

Chapter 2. Event monitoring 33



Queue depth events examples

This section contains some examples of queue depth events. The following
examples illustrate how queue depth varies over time.

Example 1 (queue depth events)

The queue, MYQUEUE1, has a maximum depth of 1000 messages, and the high
and low queue depth limits are 80% and 20% respectively. Initially, Queue Depth
High events are enabled, while the other queue depth events are disabled.

The WebSphere MQ commands (MQSC) to configure this queue are:
ALTER QMGR PERFMEV(ENABLED)

DEFINE QLOCAL('MYQUEUE1') MAXDEPTH(1000) QDPMAXEV(DISABLED) QDEPTHHI(80)
QDPHIEV(ENABLED) QDEPTHLO(20) QDPLOEV(DISABLED)

Commentary:

Figure 7 shows how the queue depth changes over time:
1. At T(1), the queue depth is increasing (more MQPUT calls than MQGET calls)

and crosses the Queue Depth Low limit. No event is generated at this time.
2. The queue depth continues to increase until T(2), when the depth high limit

(80%) is reached and a Queue Depth High event is generated.
This enables both Queue Full and Queue Depth Low events.

High

Enabled events

100

80

20

0
T0 T1 T2 T3 T4

Depth high
limit

Depth low
limitQ

u
eu

e
ca

p
ac

it
y

(%
)

Time

Queue Depth High Queue Depth Low

Low
Full

Figure 7. Queue depth events (1)

34 WebSphere MQ: Monitoring WebSphere MQ



3. The (presumed) preventive actions instigated by the event prevent the queue
from becoming full. By time T(3), the Queue Depth High limit has been
reached again, this time from above. No event is generated at this time.

4. The queue depth continues to fall until T(4), when it reaches the depth low
limit (20%) and a Queue Depth Low event is generated.
This enables both Queue Full and Queue Depth High events.

Table 10 summarizes the queue event statistics and Table 11 summarizes which
events are

Table 10. Event statistics summary for queue depth events (example 1)

Event 2 Event 4

Time of event T(2) T(4)

Type of event Queue Depth High Queue Depth Low

TimeSinceReset T(2) - T(0) T(4) - T(2)

HighQDepth (Maximum queue depth
since reset)

800 900

MsgEnqCount 1157 1220

MsgDeqCount 357 1820

Table 11. Summary showing which events are enabled

Time period Queue Depth High
event

Queue Depth Low
event

Queue Full event

Before T(1) ENABLED - -

T(1) to T(2) ENABLED - -

T(2) to T(3) - ENABLED ENABLED

T(3) to T(4) - ENABLED ENABLED

After T(4) ENABLED - ENABLED

Example 2 (queue depth events)

This is a more extensive example. However, the principles remain the same. This
example assumes the use of the same queue MYQUEUE1 as defined in Definition
of MYQUEUE1.

Table 12 on page 36 summarizes the queue event statistics and Table 13 on page 37
summarizes which events are enabled at different times for this example.

Figure 8 on page 36 shows the variation of queue depth over time.

Chapter 2. Event monitoring 35



Commentary:

Some points to note are:
1. No Queue Depth Low event is generated at:
v T(1) (Queue depth increasing, and not enabled)
v T(2) (Not enabled)
v T(3) (Queue depth increasing, and not enabled)

2. At T(4) a Queue Depth High event occurs. This enables both Queue Full and
Queue Depth Low events.

3. At T(9) a Queue Full event occurs after the first message that cannot be put on
the queue because the queue is full.

4. At T(12) a Queue Depth Low event occurs.

Event statistics summary (example 2):

Table 12. Event statistics summary for queue depth events (example 2)

Event 4 Event 6 Event 8 Event 9 Event 12

Time of event T(4) T(6) T(8) T(9) T(12)

Type of event Queue Depth
High

Queue Depth
Low

Queue Depth
High

Queue Full Queue
Depth Low

100

80

20

0
T0 T1 T2 T3 T4 T5 T8 T9 T10 T11 T12T6 T7

Queue Depth High event
Queue Depth Low event
Queue Depth High event
Queue Full event
Queue Depth Low event

Low
Full

Time

Q
u

eu
e

ca
p

ac
it

y
(%

)

High

Figure 8. Queue depth events (2)

36 WebSphere MQ: Monitoring WebSphere MQ



Table 12. Event statistics summary for queue depth events (example 2) (continued)

TimeSinceReset T(4) - T(0) T(6) - T(4) T(8) - T(6) T(9) - T(8) T(12) - T(9)

HighQDepth 800 855 800 1000 1000

MsgEnqCount 1645 311 1377 324 221

MsgDeqCount 845 911 777 124 1021

Table 13. Summary showing which events are enabled

Time period Queue Depth High
event

Queue Depth Low
event

Queue Full event

T(0) to T(4) ENABLED - -

T(4) to T(6) - ENABLED ENABLED

T(6) to T(8) ENABLED - ENABLED

T(8) to T(9) - ENABLED ENABLED

T(9) to T(12) - ENABLED -

After T(12) ENABLED - ENABLED

Note: Events are out of syncpoint. Therefore you could have an empty queue, then
fill it up causing an event, then roll back all of the messages under the control of a
syncpoint manager. However, event enabling has been automatically set, so that
the next time the queue fills up, no event is generated.

Understanding configuration events

This chapter describes what configuration events are, when they are generated,
when they are not generated, and how they are used. The chapter includes:
v What configuration events are
v When configuration events are generated
v When configuration events are not generated
v How configuration events are used

Configuration event messages are only available with WebSphere MQ for z/OS.

What configuration events are

Configuration events are notifications about the attributes of an object. They are
generated when an object is created, changed, or deleted and are also generated by
explicit requests. There are four types of configuration events:
v Create object events
v Change object events
v Delete object events
v Refresh object events

The event data contains the following information:
1. Origin information, describes the queue manager from where the change was

made, the ID of the user that made the change, and how the change came
about, for example by a console command.

Chapter 2. Event monitoring 37



2. Context information, is a replica of the context information in the message data
from the command message.

Note: Context information will only be included in the event data if the
command was entered as a message on the SYSTEM.COMMAND.INPUT
queue.

3. Object identity, describes the name, type and disposition of the object.
4. Object attributes, describes the values of all the attributes in the object.

In the case of change object events, two messages are generated, one with the
information before the change, the other with the information after.

Every configuration event message that is generated is placed on the queue
SYSTEM.ADMIN.CONFIG.EVENT.

For more information about the event data returned in configuration event
messages see: “Event message reference” on page 48.

When configuration events are generated

A configuration event message is put to the configuration event queue when the
CONFIGEV queue manager attribute is ENABLED and:
v any of the following commands, or their PCF equivalent, are issued:

– DELETE AUTHINFO
– DELETE CFSTRUCT
– DELETE CHANNEL
– DELETE NAMELIST
– DELETE PROCESS
– DELETE QMODEL/QALIAS/QREMOTE
– DELETE STGCLASS
– REFRESH QMGR

v any of the following commands, or their PCF equivalent, are issued even if there
is no change to the object:
– DEFINE/ALTER AUTHINFO
– DEFINE/ALTER CFSTRUCT
– DEFINE/ALTER CHANNEL
– DEFINE/ALTER NAMELIST
– DEFINE/ALTER PROCESS
– DEFINE/ALTER QMODEL/QALIAS/QREMOTE
– DEFINE/ALTER STGCLASS
– DEFINE MAXSMSGS
– ALTER QMGR unless the CONFIGEV attribute is DISABLED and is not

changed to ENABLED
v any of the following commands, or their PCF equivalent, are issued for a local

queue that is not temporary dynamic, even if there is no change to the queue.
– DELETE QLOCAL
– DEFINE/ALTER QLOCAL

v an MQSET call is issued, other than for a temporary dynamic queue, even if
there is no change to the object.

38 WebSphere MQ: Monitoring WebSphere MQ



When configuration events are not generated

Configuration events messages are not generated for:
v Commands or MQSET calls that fail.
v A queue manager that encounters an error trying to put a configuration event on

the event queue. In this situation, the command or MQSET call completes, but
no event message is generated.

v Temporary dynamic queues.
v Internal changes to the TRIGGER queue attribute.
v The configuration event queue SYSTEM.ADMIN.CONFIG.EVENT, except by the

REFRESH QMGR command.
v REFRESH/RESET CLUSTER and RESUME/SUSPEND QMGR commands that

cause clustering changes.
v Creating or deleting a queue manager.

How configuration events are used

Configuration events can be used for the following purposes:
1. To produce and maintain a central configuration repository, from which reports

can be produced and information about the structure of the system can be
generated.

2. To generate an audit trail. For example, if an object is changed unexpectedly,
information regarding who made the alteration and when it was done can be
stored.
This can be particularly useful when command events are also enabled. If an
MQSC or PCF command causes a configuration event and a command event to
be generated, both event messages will share the same correlation identifier in
their message descriptor.

For an MQSET call or any of the following commands:
v DEFINE object
v ALTER object
v DELETE object

if the queue manager attribute CONFIGEV is enabled, but the configuration event
message cannot be put on the configuration event queue, for example the event
queue has not been defined, the command or MQSET call is executed regardless.

The Refresh Object configuration event

The Refresh Object configuration event is different from the other configuration
events. The create, change, and delete events are generated by an MQSET call or
by a command to change an object but the refresh object event occurs only when it
is explicitly requested by the MQSC command, REFRESH QMGR, or its PCF
equivalent.

The REFRESH QMGR command is different from all the other commands that
generate configuration events. All the other commands apply to a particular object
and generate a single configuration event for that object. The REFRESH QMGR
command can produce many configuration event messages potentially representing
every object definition stored by a queue manager. One event message is generated
for each object that is selected.

Chapter 2. Event monitoring 39



The REFRESH QMGR command uses a combination of three selection criteria to
filter the number of objects involved:
v Object Name
v Object Type
v Refresh Interval

If you specify none of the selection criteria on the REFRESH QMGR command, the
default values are used for each selection criteria and a refresh configuration event
message is generated for every object definition stored by the queue manager. This
may well involve excessive processing time and event message generation. It is
recommended to always use some selection criteria.

The REFRESH QMGR command that generates the refresh events can be used in
the following situations:
v When configuration data is wanted about all or some of the objects in a system

regardless of whether the objects have been recently manipulated, for example,
when configuration events are first enabled.
It is recommended to use several commands each with a different selection of
objects, but such that all are included.

v If there has been an error in the SYSTEM.ADMIN.CONFIG.EVENT queue. In
this circumstance, no configuration event messages are generated for Create,
Change, or Delete events. When the error on the queue has been corrected, the
Refresh Queue Manager command can be used to request the generation of
event messages, which were lost whilst there was an error in the queue. In this
situation it is recommended that you use the refresh selection criteria, with the
refresh interval being the time for which the queue was unavailable.

Effects of CMDSCOPE

For commands where CMDSCOPE is used, the configuration event message or
messages will be generated on the queue manager or queue managers where the
command is executed, not where the command is entered. However, all the origin
and context information in the event data will relate to the original command as
entered, even where the command using CMDSCOPE is one that has been
generated by the source queue manager.

Where a queue sharing group includes queue managers that are not at the current
version, events will be generated for any command that is executed by means of
CMDSCOPE on a queue manager that is at the current version, but not on those
that are at a previous version. This happens even if the queue manager where the
command is entered is at the previous version, although in such a case no context
information is included in the event data.

Understanding command events
This collection of topics describes what command events are, when they are
generated, when they are not generated, and how they are used.

Command event messages are only available with WebSphere MQ for z/OS.

What command events are

Command events are notifications that an MQSC, or PCF command has been
executed successfully.

40 WebSphere MQ: Monitoring WebSphere MQ



The event data of a command event message contains the following information:
v Origin information, describes the queue manager from where the command was

executed, the ID of the user that executed the command, and how the command
was executed, for example by a console command.

v Context information, is a replica of the context information in the message data
from the command message. If a command is not entered using a message,
context information is omitted.

Note: Context information will only be included in the event data if the
command was entered as a message on the SYSTEM.COMMAND.INPUT queue.

v Command information, describes the type of command that was executed.
v Command data, for PCF commands is a replica of the command data, or for

MQSC commands is the command text.

Every command event message that is generated is placed on the command event
queue, SYSTEM.ADMIN.COMMAND.EVENT.

For more information about the event data returned in command event messages
see: “Event message reference” on page 48.

When command events are generated

A command event message is generated for the following:
v When the queue manager attribute, CMDEV, is specified as ENABLED and an

MQSC or PCF command is successfully executed.
v When the queue manager attribute, CMDEV, is specified as NODISPLAY and

any command is successfully executed, with the exception of DISPLAY
commands (MQSC), and Inquire commands (PCF).

v When the MQSC command, ALTER QMGR, or the PCF command, Change
Queue Manager, is executed and either:
– the queue manager attribute, CMDEV, after the change is not specified as

DISABLED.
– the queue manager attribute, CMDEV, before the change was not specified as

DISABLED.

If a command is executed against the command event queue,
SYSTEM.ADMIN.COMMAND.EVENT, a command event is generated providing
the queue still exists and it is not put inhibited.

When command events are not generated

A command event message is not generated for:
v A command that fails.
v A queue manager that encounters an error trying to put a command event on

the event queue. In this situation, the command executes regardless, but no
event message is generated.

v The MQSC command REFRESH QMGR TYPE (EARLY).
v The MQSC command START QMGR MQSC.
v The MQSC command SUSPEND QMGR, if the parameter LOG is specified.
v The MQSC command RESUME QMGR, if the parameter LOG is specified.

Chapter 2. Event monitoring 41



How command events are used

Command event messages can be used to generate an audit trail. For example, if
an object is changed unexpectedly, information regarding who made the alteration
and when it was done can be stored. This can be particularly useful when
configuration events are also enabled. If an MQSC or PCF command causes a
command event and a configuration event to be generated, both event messages
will share the same correlation identifier in their message descriptor.

If a command event message is generated, but cannot be put on the command
event queue, for example the if the command event queue has not been defined,
then the command for which the command event was generated is still executed
regardless.

Effects of CMDSCOPE

For commands where CMDSCOPE is used, the command event message or
messages will be generated on the queue manager or queue managers where the
command is executed, not where the command is entered. However, all the origin
and context information in the event data will relate to the original command as
entered, even where the command using CMDSCOPE is one that has been
generated by the source queue manager.

Understanding logger events
This collection of topics describes what logger events are, when they are generated,
when they are not generated, and how they are used.

Logger event messages are not available with WebSphere MQ for z/OS.

What logger events are

Logger events are notifications that a queue manager has started writing to a new
log extent, or on i5/OS a journal receiver.

The event data of a logger event message contains the following:
v The name of the current log extent.
v The name of the earliest log extent needed for restart recovery.
v The name of the earliest log extent needed for media recovery.
v The directory in which the log extents are located.

For information on restart and media recovery, see the WebSphere MQ System
Administration Guide.

Every logger event message that is generated is placed on the logger event queue,
SYSTEM.ADMIN.LOGGER.EVENT.

For more information about the event data returned in logger event messages see:
“Event message reference” on page 48.

When logger events are generated

A logger event message is generated for the following:

42 WebSphere MQ: Monitoring WebSphere MQ



v When the queue manager attribute, LOGGEREV, is specified as ENABLED and
the queue manager starts writing to a new log extent, or on i5/OS a journal
receiver.

v When the queue manager attribute, LOGGEREV, is specified as ENABLED and
the queue manager starts.

v When the queue manager attribute, LOGGEREV, is changed from DISABLED to
ENABLED.

Note: The MQSC command, RESET QMGR, can be used to request that a queue
manager start writing to a new log extent.

When logger events are not generated

A logger event message is not generated when:
v A queue manager is configured to use circular logging.

In this case, the queue manager attribute, LOGGEREV, is set as DISABLED and
cannot be altered.

v A queue manager that encounters an error trying to put a logger event on the
event queue. In this situation, the action that caused the event completes, but no
event message is generated.

How logger events are used

Logger event message can be used to determine the log extents that are no longer
required for queue manager restart, or media recovery. Superfluous log extents can
be archived to a medium such as tape for disaster recovery, then removed from the
active log directory. Regular removal of superfluous log extents keeps disk space
usage to a minimum.

If the queue manager attribute LOGGEREV is enabled, but a logger event message
cannot be put on the logger event queue, for example the event queue has not
been defined, the action that caused the event continues regardless.

Monitor the logger event queue (amqslog0.c)
/******************************************************************************/
/* */
/* Program name: AMQSLOG0.C */
/* */
/* Description: Sample C program to monitor the logger event queue and output*/
/* a message to stdout when a logger event occurs */
/* <N_OCO_COPYRIGHT> */
/* Licensed Materials - Property of IBM */
/* */
/* 63H9336 */
/* (c) Copyright IBM Corp. 2005 All Rights Reserved. */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with */
/* IBM Corp. */
/* <NOC_COPYRIGHT> */
/******************************************************************************/
/* */
/* Function: AMQSLOG is a sample program which monitors the logger event */
/* queue for new event messages, reads those messages, and puts the contents */
/* of the message to stdout. */
/* */
/******************************************************************************/

Chapter 2. Event monitoring 43

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



/* */
/* AMQSLOG has 1 parameter - the queue manager name (optional, if not */
/* specified then the default queue manager is implied) */
/* */
/******************************************************************************/

/******************************************************************************/
/* Includes */
/******************************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <cmqc.h> /* MQI constants*/
#include <cmqcfc.h> /* PCF constants*/

/******************************************************************************/
/* Constants */
/******************************************************************************/

#define MAX_MESSAGE_LENGTH 8000

typedef struct _ParmTableEntry
{

MQLONG ConstVal;
PMQCHAR Desc;

} ParmTableEntry;

ParmTableEntry ParmTable[] =
{

0 ,"",
MQCA_Q_MGR_NAME ,"Queue Manager Name",
MQCMD_LOGGER_EVENT ,"Logger Event Command",
MQRC_LOGGER_STATUS ,"Logger Status",
MQCACF_CURRENT_LOG_EXTENT_NAME,"Current Log Extent",
MQCACF_RESTART_LOG_EXTENT_NAME,"Restart Log Extent",
MQCACF_MEDIA_LOG_EXTENT_NAME ,"Media Log Extent",
MQCACF_LOG_PATH ,"Log Path"};

/******************************************************************************/
/* Function prototypes */
/******************************************************************************/

static void ProcessPCF(MQHCONN hConn,
MQHOBJ hEventQueue,
PMQCHAR pBuffer);

static PMQCHAR ParmToString(MQLONG Parameter);

/**********************************************************************/
/* Function: main */
/**********************************************************************/
int main(int argc, char * argv[])
{

MQLONG CompCode;
MQLONG Reason;
MQHCONN hConn = MQHC_UNUSABLE_HCONN;
MQOD ObjDesc = { MQOD_DEFAULT };
MQCHAR QMName[MQ_Q_MGR_NAME_LENGTH+1] = "";
MQCHAR LogEvQ[MQ_Q_NAME_LENGTH] = "SYSTEM.ADMIN.LOGGER.EVENT";
MQHOBJ hEventQueue;
PMQCHAR pBuffer = NULL;

printf("\n/*************************************/\n");
printf("/* Sample Logger Event Monitor start */\n");
printf("/*************************************/\n");

44 WebSphere MQ: Monitoring WebSphere MQ

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



/********************************************************************/
/* Parse any command line options */
/********************************************************************/

if (argc > 1)
strncpy(QMName, argv[1], (size_t)MQ_Q_MGR_NAME_LENGTH);

pBuffer = (char *)malloc(MAX_MESSAGE_LENGTH);
if (!pBuffer)
{

printf("Can't allocate %d bytes\n",MAX_MESSAGE_LENGTH);
goto MOD_EXIT;

}

/********************************************************************/
/* Connect to the specified (or default) queue manager */
/********************************************************************/

MQCONN(QMName,
&hConn;,
&CompCode;,
&Reason;);

if (Reason != MQCC_OK)
{

printf("Error in call to MQCONN, Reason %d, CompCode %d\n", Reason,
CompCode);
goto MOD_EXIT;

}

/* Open the logger event queue for input */

strncpy(ObjDesc.ObjectQMgrName,QMName, MQ_Q_MGR_NAME_LENGTH);
strncpy(ObjDesc.ObjectName, LogEvQ, MQ_Q_NAME_LENGTH);

MQOPEN( hConn,
&ObjDesc;,
MQOO_INPUT_EXCLUSIVE,
&hEventQueue;,
&CompCode;,
&Reason; );

if (Reason)
{

printf("MQOPEN failed for queue manager %.48s Queue %.48s Reason: %d\n",
ObjDesc.ObjectQMgrName,

ObjDesc.ObjectName,
Reason);

goto MOD_EXIT;
}
else
{

ProcessPCF(hConn, hEventQueue, pBuffer);
}

MOD_EXIT:

if (pBuffer != NULL) {
free(pBuffer);

}

/********************************************************************/
/* Disconnect */
/********************************************************************/
if (hConn != MQHC_UNUSABLE_HCONN) {

MQDISC(&hConn;, &CompCode;, &Reason; );
}

Chapter 2. Event monitoring 45

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



return 0;
}

/******************************************************************************/
/* Function: ProcessPCF */
/******************************************************************************/
/* */
/* Input Parameters: Handle to queue manager connection */
/* Handle to the opened logger event queue object */
/* Pointer to a memory buffer to store the incoming PCF msg*/
/* */
/* Output Parameters: None */
/* */
/* Logic: Wait for messages to appear on the logger event queue and display */
/* their contents. */
/* */
/******************************************************************************/

static void ProcessPCF(MQHCONN hConn,
MQHOBJ hEventQueue,
PMQCHAR pBuffer)

{
MQCFH * pCfh;
MQCFST * pCfst;
MQGMO Gmo = { MQGMO_DEFAULT };
MQMD Mqmd = { MQMD_DEFAULT };
PMQCHAR pPCFCmd;
MQLONG Reason = 0;
MQLONG CompCode;
MQLONG MsgLen;
PMQCHAR Parm = NULL;

/* Set timeout value */
Gmo.Options |= MQGMO_WAIT;
Gmo.Options |= MQGMO_CONVERT;
Gmo.WaitInterval = MQWI_UNLIMITED;
/********************************************************************/
/* Process response Queue */
/********************************************************************/
while (Reason == MQCC_OK)
{

memcpy(&Mqmd.MsgId; , MQMI_NONE, sizeof(Mqmd.MsgId));
memset(&Mqmd.CorrelId;, 0, sizeof(Mqmd.CorrelId));

MQGET( hConn,
hEventQueue,
&Mqmd;,
&Gmo;,
MAX_MESSAGE_LENGTH,
pBuffer,
&MsgLen;,
&CompCode;,
&Reason; );

if (Reason != MQCC_OK)
{

switch(Reason)
{

case MQRC_NO_MSG_AVAILABLE:
printf("Timed out");
break;

default:
printf("MQGET failed RC(%d)\n", Reason);
break;

}
goto MOD_EXIT;

}

46 WebSphere MQ: Monitoring WebSphere MQ

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



/******************************************************************/
/* Only expect PCF event messages on this queue */
/******************************************************************/
if (memcmp(Mqmd.Format, MQFMT_EVENT, sizeof(Mqmd.Format)))
{
printf("Unexpected message format '%8.8s' received\n",Mqmd.Format);
continue;
}

/*******************************************************************/
/* Build the output by parsing the received PCF message, first the */
/* header, then each of the parameters */
/*******************************************************************/

pCfh = (MQCFH *)pBuffer;

if (pCfh -> Reason)
{
printf("-----------------------------------------------------------------\n");
printf("Event Message Received\n");

Parm = ParmToString(pCfh->Command);
if (Parm != NULL) {

printf("Command :%s \n",Parm);
}
else
{

printf("Command :%d \n",pCfh->Command);
}

printf("CompCode :%d\n" ,pCfh->CompCode);

Parm = ParmToString(pCfh->Reason);
if (Parm != NULL) {

printf("Reason :%s \n",Parm);
}
else
{

printf("Reason :%d \n",pCfh->Reason);
}
}

pPCFCmd = (char *) (pCfh+1);
printf("-----------------------------------------------------------------\n");
while(pCfh -> ParameterCount--)
{

pCfst = (MQCFST *) pPCFCmd;
switch(pCfst -> Type)
{

case MQCFT_STRING:
Parm = ParmToString(pCfst -> Parameter);
if (Parm != NULL) {

printf("%-32s",Parm);
}
else
{

printf("%-32d",pCfst -> Parameter);
}

fwrite( pCfst -> String, pCfst -> StringLength, 1, stdout);
pPCFCmd += pCfst -> StrucLength;
break;

default:
printf("Unrecoginised datatype %d returned\n",pCfst->Type);
goto MOD_EXIT;

}

Chapter 2. Event monitoring 47

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



putchar('\n');
}
printf("-----------------------------------------------------------------\n");

}
MOD_EXIT:

return;
}

/******************************************************************************/
/* Function: ParmToString */
/******************************************************************************/
/* */
/* Input Parameters: Parameter for which to get string description */
/* */
/* Output Parameters: None */
/* */
/* Logic: Takes a parameter as input and returns a pointer to a string */
/* description for that parameter, or NULL if the parameter does not */
/* have an associated string description */
/******************************************************************************/

static PMQCHAR ParmToString(MQLONG Parameter){
long i;
for (i=0 ; i< sizeof(ParmTable)/sizeof(ParmTableEntry); i++)
{

if (ParmTable[i].ConstVal == Parameter &amp;&amp; ParmTable[i].Desc)
return ParmTable[i].Desc;

}
return NULL;

}

Sample output

This application produces the following form of output:
/*************************************/
/* Sample Logger Event Monitor start */
/*************************************/
-----------------------------------------------------------------
Event Message Received
Command :Logger Event Command
CompCode :0
Reason :Logger Status
-----------------------------------------------------------------
Queue Manager Name CSIM

Current Log Extent AMQA000001
Restart Log Extent AMQA000001
Media Log Extent AMQA000001
Log Path QMCSIM
-----------------------------------------------------------------

Event message reference

This chapter provides an overview of the event message format. It describes the
information returned in the event message for each instrumentation event,
including returned parameters.

The chapter includes:
v “Event message format” on page 50
v “Event message MQMD (message descriptor)” on page 51
v “Event message MQCFH (PCF header)” on page 56

48 WebSphere MQ: Monitoring WebSphere MQ

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|



v “Alias Base Queue Type Error” on page 59
v “Bridge Started” on page 61
v “Bridge Stopped” on page 62
v “Change object” on page 64
v “Channel Activated” on page 68
v “Channel Auto-definition Error” on page 69
v “Channel Auto-definition OK” on page 71
v “Channel Conversion Error” on page 72
v “Channel Not Activated” on page 74
v “Channel SSL Error” on page 76
v “Channel Started” on page 79
v “Channel Stopped” on page 80
v “Channel Stopped By User” on page 83
v “Command” on page 84
v “Create object” on page 91
v “Default Transmission Queue Type Error” on page 95
v “Default Transmission Queue Usage Error” on page 97
v “Delete object” on page 99
v “Get Inhibited” on page 103
v “Logger” on page 104
v “Not Authorized (type 1)” on page 106
v “Not Authorized (type 2)” on page 107
v “Not Authorized (type 3)” on page 110
v “Not Authorized (type 4)” on page 112
v “Not Authorized (type 5)” on page 113
v “Not Authorized (type 6)” on page 115
v “Put Inhibited” on page 117
v “Queue Depth High” on page 119
v “Queue Depth Low” on page 121
v “Queue Full” on page 123
v “Queue Manager Active” on page 125
v “Queue Manager Not Active” on page 126
v “Queue Service Interval High” on page 127
v “Queue Service Interval OK” on page 129
v “Queue Type Error” on page 131
v “Refresh object” on page 133
v “Remote Queue Name Error” on page 137
v “Transmission Queue Type Error” on page 139
v “Transmission Queue Usage Error” on page 141
v “Unknown Alias Base Queue” on page 143
v “Unknown Default Transmission Queue” on page 145
v “Unknown Object Name” on page 147
v “Unknown Remote Queue Manager” on page 149
v “Unknown Transmission Queue” on page 151

Chapter 2. Event monitoring 49

|

|



Event message format

Event messages are standard WebSphere MQ messages containing a message
descriptor and message data.

Table 14 shows the basic structure of these messages, and the names of the fields in
an event message for queue service interval events.

Table 14. Event message structure for queue service interval events

Message descriptor Message data

MQMD structure PCF header
MQCFH structure

Event data 1

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback code
Encoding
Coded character set ID
Message format
Message priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name
Put date
Put time
Application origin data
Group identifier
Message sequence number
Offset
Message flags
Original length

Structure type
Structure length
Structure version
Command identifier
Message sequence number
Control options
Completion code
Reason code
Parameter count

Queue manager name
Queue name
Time since last reset
Maximum number of

messages on queue
Number of messages

put to queue
Number of messages

retrieved from queue

Note:

1. The parameters shown are those returned for a queue service interval event. The actual
event data depends on the specific event.

In general, you need only a subset of this information for any system management
programs that you write. For example, your application might need the following
data:
v The name of the application causing the event
v The name of the queue manager on which the event occurred
v The queue on which the event was generated

50 WebSphere MQ: Monitoring WebSphere MQ



v The event statistics

Message descriptor (MQMD) in event messages

The message descriptor for an event message contains information that can be
used by a system monitoring application, such as:
v The message type
v The format type
v The date and time that the message was put on the event queue

In particular, the information in the descriptor informs a system management
application that the message type is MQMT_DATAGRAM, and the message format
is MQFMT_EVENT.

In an event message, many of these fields contain fixed data, which is supplied by
the queue manager that generated the message. The fields that make up the
MQMD structure are described in “Event message MQMD (message descriptor)”
below. The MQMD also specifies the name of the queue manager (truncated to 28
characters) that put the message, and the date and time when the event message
was put on the event queue.

Message data in event messages

The event message data is in programmable command format (PCF), as is used in
PCF command inquiries and responses.

The event message consists of two parts: the event header and the event data.

Event header (MQCFH):

The information in MQCFH specifies:
v The category of event. Whether the event is a queue manager, performance,

channel, configuration, command, or logger event.
v A reason code specifying the cause of the event. For events caused by MQI calls,

this reason code is the same as the reason code for the MQI call.

Reason codes have names that begin with the characters MQRC_. For example, the
reason code MQRC_PUT_INHIBITED is generated when an application attempts to
put a message on a queue that is not enabled for puts.

MQCFH is described in “Event message MQCFH (PCF header)” on page 56.

Event data:

See “Event message descriptions” on page 57.

Event message MQMD (message descriptor)

The MQMD structure describes the information that accompanies the message data
of an event message. For a full description of MQMD, including a description of
the elementary datatype of each parameter, see the WebSphere MQ Application
Programming Reference manual.

For an event message, the MQMD structure contains these values:

Chapter 2. Event monitoring 51



StrucId

Description: Structure identifier.
Datatype: MQCHAR4.
Value: MQMD_STRUC_ID

Version

Description: Structure version number.
Datatype: MQLONG.
Values:

MQMD_VERSION_1
Version-1 message descriptor structure, supported in all
environments.

MQMD_VERSION_2
Version-2 message descriptor structure, supported on AIX®,
HP-UX, z/OS, HP OpenVMS, i5/OS, Solaris, Linux, Windows,
and all WebSphere MQ clients connected to these systems.

Report

Description: Options for report messages.
Datatype: MQLONG.
Value:

MQRO_NONE
No reports required.

MsgType

Description: Indicates type of message.
Datatype: MQLONG.
Value: MQMT_DATAGRAM.

Expiry

Description: Message lifetime.
Datatype: MQLONG.
Value:

MQEI_UNLIMITED
The message does not have an expiry time.

Feedback

Description: Feedback or reason code.
Datatype: MQLONG.
Value: MQFB_NONE.

Encoding

Description: Numeric encoding of message data.
Datatype: MQLONG.
Value: MQENC_NATIVE.

CodedCharSetId

Description: Character set identifier of event message data.
Datatype: MQLONG.

52 WebSphere MQ: Monitoring WebSphere MQ



Value: Coded character set ID (CCSID) of the queue manager generating the
event.

Format

Description: Format name of message data.
Datatype: MQCHAR8.
Value:

MQFMT_EVENT
Event message.

Priority

Description: Message priority.
Datatype: MQLONG.
Value:

MQPRI_PRIORITY_AS_Q_DEF
The priority is that of the event queue.

Persistence

Description: Message persistence.
Datatype: MQLONG.
Value:

MQPER_PERSISTENCE_AS_Q_DEF
The priority is that of the event queue.

MsgId

Description: Message identifier.
Datatype: MQBYTE24.
Value: A unique value generated by the queue manager.

CorrelId

Description: Correlation identifier.
Datatype: MQBYTE24.
Value:

For performance, queue manager, logger, channel, bridge, and SSL
events:

MQCI_NONE
No correlation identifier is specified. This is for private queues
only.

For such events on a shared queue, a nonzero correlation identifier is
set. This parameter is set so that you can track multiple event
messages from different queue managers. The characters are specified
below:

1–4 Product identifier (’CSQ ’)

5–8 Queue-sharing group name

9 Queue manager identifier

10–17 Time stamp

18–24 Nulls

Chapter 2. Event monitoring 53



For configuration and command events:

A unique nonzero correlation identifier
All messages relating to the same event have the same CorrelId.

BackoutCount

Description: Backout counter.
Datatype: MQLONG.
Value: 0.

ReplyToQ

Description: Name of reply queue.
Datatype: MQCHAR48.
Values: Blank.

ReplyToQMgr

Description: Name of reply queue manager.
Datatype: MQCHAR48.
Value: The queue manager name at the originating system.

UserIdentifier

Description: Identifies the application that originated the message.
Datatype: MQCHAR12.
Value: Blank.

AccountingToken

Description: Accounting token that allows an application to charge for work done as
a result of the message.

Datatype: MQBYTE32.
Value: MQACT_NONE.

ApplIdentityData

Description: Application data relating to identity.
Datatype: MQCHAR32.
Values: Blank.

PutApplType

Description: Type of application that put the message.
Datatype: MQLONG.
Value:

MQAT_QMGR
Queue manager generated message.

PutApplName

Description: Name of application that put the message.
Datatype: MQCHAR28.
Value: The queue manager name at the originating system.

54 WebSphere MQ: Monitoring WebSphere MQ



PutDate

Description: Date when message was put.
Datatype: MQCHAR8.
Value: As generated by the queue manager.

PutTime

Description: Time when message was put.
Datatype: MQCHAR8.
Value: As generated by the queue manager.

ApplOriginData

Description: Application data relating to origin.
Datatype: MQCHAR4.
Value: Blank.

Note: If Version is MQMD_VERSION_2, the following additional fields are present:

GroupId

Description: Identifies to which message group or logical message the physical
message belongs.

Datatype: MQBYTE24.
Value:

MQGI_NONE
No group identifier specified.

MsgSeqNumber

Description: Sequence number of logical message within group.
Datatype: MQLONG.
Value: 1.

Offset

Description: Offset of data in physical message from start of logical message.
Datatype: MQLONG.
Value: 0.

MsgFlags

Description: Message flags that specify attributes of the message or control its
processing.

Datatype: MQLONG.
Value: MQMF_NONE.

OriginalLength

Description: Length of original message.
Datatype: MQLONG.
Value: MQOL_UNDEFINED.

Chapter 2. Event monitoring 55



Event message MQCFH (PCF header)

For an event, the MQCFH structure contains the following values:

Type

Description: Structure type that identifies the content of the message.
Datatype: MQLONG.
Value:

MQCFH_EVENT
Message is reporting an event.

StrucLength

Description: Structure length.
Datatype: MQLONG.
Value:

MQCFH_STRUC_LENGTH
Length in bytes of MQCFH structure.

Version

Description: Structure version number.
Datatype: MQLONG.
Values:

MQCFH_VERSION_1
Version-1 in all events except configuration and command
events.

MQCFH_VERSION_2
Version-2 for configuration events.

MQCFH_VERSION_3
Version-3 for command events.

Command

Description: Command identifier. This identifies the event category.
Datatype: MQLONG.
Values:

MQCMD_Q_MGR_EVENT
Queue manager event.

MQCMD_PERFM_EVENT
Performance event.

MQCMD_CHANNEL_EVENT
Channel event.

MQCMD_CONFIG_EVENT
Configuration event.

MQCMD_COMMAND_EVENT
Command event.

MQCMD_LOGGER_EVENT
Logger event.

MsgSeqNumber

Description: Message sequence number. This is the sequence number of the message
within a group of related messages.

Datatype: MQLONG.

56 WebSphere MQ: Monitoring WebSphere MQ



Values:
1 For change object configuration events with attribute values

before the changes, and for all other types of events.

2 For change object configuration events with the attribute values
after the changes

Control

Description: Control options.
Datatype: MQLONG.
Values:

MQCFC_LAST
For change object configuration events with attribute values
after the changes, and for all other types of events.

MQCFC_NOT_LAST
For Change Object configurations events only, with the attribute
values from before the changes.

CompCode

Description: Completion code.
Datatype: MQLONG.
Values:

MQCC_OK
Event reporting OK condition.

MQCC_WARNING
Event reporting warning condition. All events have this
completion code, unless otherwise specified.

Reason

Description: Reason code qualifying completion code.
Datatype: MQLONG.
Values: MQRC_* Dependent on the event being reported.

Note: Events with the same reason code are further identified by the
ReasonQualifier parameter in the event data.

ParameterCount

Description: Count of parameter structures. This is the number of parameter
structures that follow the MQCFH structure. A group structure
(MQCFGR), and its included parameter structures, are counted as one
structure only.

Datatype: MQLONG.
Values: 0 or greater.

Event message descriptions

The event message data contains information specific to the event. This includes
the name of the queue manager and, where appropriate, the name of the queue.

The data structures returned depend on which particular event was generated. In
addition, for some events, certain parameters of the structures are optional, and are
returned only if they contain information that is relevant to the circumstances
giving rise to the event. The values in the data structures depend on the
circumstances that caused the event to be generated.

Chapter 2. Event monitoring 57



Note:

1. The PCF structures in the message data are not returned in a defined order.
They must be identified from the parameter identifiers shown in the
description.

2. The events described in the reference section are available on all platforms,
unless specific limitations are shown at the start of an event.

3. The structure datatypes of each parameter are described in Chapter 6,
“Structure datatypes,” on page 313.

58 WebSphere MQ: Monitoring WebSphere MQ



Alias Base Queue Type Error

Event name: Alias Base Queue Type Error.

Reason code in MQCFH:
MQRC_ALIAS_BASE_Q_TYPE_ERROR (2001, X’7D1’).
Alias base queue not a valid type.

Event description: An MQOPEN or MQPUT1 call was issued specifying an alias queue as the
destination, but the BaseObjectName in the alias queue definition resolves to a
queue that is not a local queue, or local definition of a remote queue.

Event type: Local.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

BaseObjectName

Description: Object name to which the alias resolves.
Identifier: MQCA_BASE_OBJECT_NAME. For compatibility with existing

applications you can still use MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

QType

Description: Type of queue to which the alias resolves.
Identifier: MQIA_Q_TYPE.
Datatype: MQCFIN.
Values:

MQQT_ALIAS
Alias queue definition.

MQQT_MODEL
Model queue definition.

Returned: Always.

Chapter 2. Event monitoring 59

|

|

|||
||
|
||
||
||
|

|



ApplType

Description: Type of the application making the call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

60 WebSphere MQ: Monitoring WebSphere MQ



Bridge Started

Event name: Bridge Started.

Reason code in MQCFH:
MQRC_BRIDGE_STARTED (2125, X’84D’).
Bridge started.

Event description: The IMS bridge has been started.

Event type: IMS Bridge.

Platforms: WebSphere MQ for z/OS only.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Data type: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

BridgeType

Description: Bridge type.
Identifier: MQIACF_BRIDGE_TYPE.
Data type: MQCFIN.
Values:

MQBT_OTMA
OTMA bridge.

Returned: Always.

BridgeName

Description: Bridge name. For bridges of type MQBT_OTMA, the name is of the form
XCFgroupXCFmember, where XCFgroup is the XCF group name to which
both IMS and WebSphere MQ belong. XCFmember is the XCF member
name of the IMS system.

Identifier: MQCACF_BRIDGE_NAME.
Data type: MQCFST.
Maximum length: MQ_BRIDGE_NAME_LENGTH.
Returned: Always.

Chapter 2. Event monitoring 61



Bridge Stopped

Event name: Bridge Stopped.

Reason code in MQCFH:
MQRC_BRIDGE_STOPPED (2126, X’84E’).
Bridge stopped.

Event description: The IMS bridge has been stopped.

Event type: IMS Bridge.

Platforms: WebSphere MQ for z/OS only.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier that qualifies the reason code in MQCFH.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_BRIDGE_STOPPED_OK
Bridge has been stopped with either a zero return code or a
warning return code. For MQBT_OTMA bridges, one side or
the other issued a normal IXCLEAVE request.

MQRQ_BRIDGE_STOPPED_ERROR
Bridge has been stopped but there is an error reported.

Returned: Always.

BridgeType

Description: Bridge type.
Identifier: MQIACF_BRIDGE_TYPE.
Datatype: MQCFIN.
Value:

MQBT_OTMA
OTMA bridge.

Returned: Always.

BridgeName

Description: Bridge name. For bridges of type MQBT_OTMA, the name is of the form
XCFgroupXCFmember, where XCFgroup is the XCF group name to which
both IMS and WebSphere MQ belong. XCFmember is the XCF member
name of the IMS system.

Identifier: MQCACF_BRIDGE_NAME.
Datatype: MQCFST.
Maximum length: MQ_BRIDGE_NAME_LENGTH.
Returned: Always.

62 WebSphere MQ: Monitoring WebSphere MQ



ErrorIdentifier

Description: When a bridge is stopped due to an error, this code identifies the error.
If the event reports a bridge stop failure, the IMS sense code is set.

Identifier: MQIACF_ERROR_IDENTIFIER.
Datatype: MQCFIN.
Returned: If ReasonQualifier is MQRQ_BRIDGE_STOPPED_ERROR.

Chapter 2. Event monitoring 63



Change object

Event name: Change object.

Reason code in MQCFH:
MQRC_CONFIG_CHANGE_OBJECT (2368, X’940’).
Existing object changed.

Event description: An ALTER or DEFINE REPLACE command or an MQSET call was issued that
successfully changed an existing object.

Event type: Configuration.

Platforms: WebSphere MQ for z/OS only.

Event queue: SYSTEM.ADMIN.CONFIG.EVENT.

Note: Two event messages are generated for the change object event. The first has
the object attribute values before the change, the second has the attribute values
after the change.

Event data

EventUserId

Description: The user id that issued the command or call that generated the event.
(This is the same user id that is used to check the authority to issue the
command or call; for commands received from a queue, this is also the
user identifier (UserIdentifier) from the MD of the command message).

Identifier: MQCACF_EVENT_USER_ID.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

EventOrigin

Description: The origin of the action causing the event.
Identifier: MQIACF_EVENT_ORIGIN.
Datatype: MQCFIN.
Values:

MQEVO_CONSOLE
Console command.

MQEVO_INIT
Initialization input data set command.

MQEVO_INTERNAL
Directly by queue manager.

MQEVO_MQSET
MQSET call.

MQEVO_MSG
Command message on SYSTEM.COMMAND.INPUT.

MQEVO_OTHER
None of the above.

Returned: Always.

64 WebSphere MQ: Monitoring WebSphere MQ



EventQMgr

Description: The queue manager where the command or call was entered. (The
queue manager where the command is executed and that generates the
event is in the MD of the event message).

Identifier: MQCACF_EVENT_Q_MGR.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

EventAccountingToken

Description: For commands received as a message (MQEVO_MSG), the accounting
token (AccountingToken) from the MD of the command message.

Identifier: MQBACF_EVENT_ACCOUNTING_TOKEN.
Datatype: MQCFBS.
Maximum length: MQ_ACCOUNTING_TOKEN_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplIdentity

Description: For commands received as a message (MQEVO_MSG), application
identity data (ApplIdentityData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_IDENTITY.
Datatype: MQCFST.
Maximum length: MQ_APPL_IDENTITY_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplType

Description: For commands received as a message (MQEVO_MSG), the type of
application (PutApplType) from the MD of the command message.

Identifier: MQIACF_EVENT_APPL_TYPE.
Datatype: MQCFIN.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplName

Description: For commands received as a message (MQEVO_MSG), the name of the
application (PutApplName) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplOrigin

Description: For commands received as a message (MQEVO_MSG), the application
origin data (ApplOriginData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_ORIGIN.
Datatype: MQCFST.
Maximum length: MQ_APPL_ORIGIN_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

Chapter 2. Event monitoring 65



ObjectType

Description: Object type:
Identifier: MQIACF_OBJECT_TYPE.
Datatype: MQCFIN.
Values:

MQOT_CHANNEL
Channel.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_STORAGE_CLASS
Storage class.

MQOT_AUTH_INFO
Authentication information.

MQOT_TOPIC
Topic.

Returned: Always.

ObjectName

Description: Object name:
Identifier : Identifier will be according to object type.

v MQCACH_CHANNEL_NAME

v MQCA_NAMELIST_NAME

v MQCA_PROCESS_NAME

v MQCA_Q_NAME

v MQCA_Q_MGR_NAME

v MQCA_STORAGE_CLASS

v MQCA_AUTH_INFO_NAME

v MQCA_CF_STRUC_NAME

v MQCA_TOPIC_NAME
Datatype: MQCFST.
Maximum length: MQ_OBJECT_NAME_LENGTH.
Returned: Always

Disposition

Description: Object disposition:
Identifier: MQIA_QSG_DISP.
Datatype: MQCFIN.

66 WebSphere MQ: Monitoring WebSphere MQ

|
|

|



Values:
MQQSGD_Q_MGR

Object resides on page set of queue manager.

MQQSGD_SHARED
Object resides in shared repository and messages are shared in
coupling facility.

MQQSGD_GROUP
Object resides in shared repository.

MQQSGD_COPY
Object resides on page set of queue manager and is a local copy
of a GROUP object.

Returned: Always, except for queue manager and CF structure objects.

Chapter 2. Event monitoring 67



Channel Activated

Event name: Channel Activated.

Reason code in MQCFH:
MQRC_CHANNEL_ACTIVATED (2295, X’8F7’).
Channel activated.

Event description: This condition is detected when a channel that has been waiting to become active,
and for which a Channel Not Activated event has been generated, is now able to
become active, because an active slot has been released by another channel.

This event is not generated for a channel that is able to become active without
waiting for an active slot to be released.

Event type: Channel.

Platforms: All.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ChannelName

Description: Channel Name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: For sender, server, cluster-sender, and cluster-receiver channels only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Only for commands that do not contain a generic name.

68 WebSphere MQ: Monitoring WebSphere MQ



Channel Auto-definition Error

Event name: Channel Auto-definition Error.

Reason code in MQCFH:
MQRC_CHANNEL_AUTO_DEF_ERROR (2234, X’8BA’).
Automatic channel definition failed.

Event description: This condition is detected when the automatic definition of a channel fails; this
may be because an error occurred during the definition process, or because the
channel automatic-definition exit inhibited the definition. Additional information
indicating the reason for the failure is returned in the event message.

Event type: Channel.

Platforms: All, except WebSphere MQ for z/OS.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ChannelName

Description: Name of the channel for which the auto-definiton has failed.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

ChannelType

Description: Channel Type. This specifies the type of channel for which the
auto-definition has failed.

Identifier: MQIACH_CHANNEL_TYPE.
Datatype: MQCFIN.
Values:

MQCHT_RECEIVER
Receiver.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLUSSDR
Cluster-sender.

Returned: Always.

ErrorIdentifier

Description: Identifier of the cause of the error. This contains either the reason code
(MQRC_* or MQRCCF_*) resulting from the channel definition attempt
or the value MQRCCF_SUPPRESSED_BY_EXIT if the attempt to create
the definition was disallowed by the exit.

Identifier: MQIACF_ERROR_IDENTIFIER.

Chapter 2. Event monitoring 69



Datatype: MQCFIN.
Returned: Always.

ConnectionName

Description: Name of the partner attempting to establish connection.
Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Always.

AuxErrorDataInt1

Description: Auxiliary error data. This contains the value returned by the exit in the
Feedback field of the MQCXP to indicate why the auto definition has
been disallowed.

Identifier: MQIACF_AUX_ERROR_DATA_INT_1.
Datatype: MQCFIN.
Returned: Only if ErrorIdentifier contains MQRCCF_SUPPRESSED_BY_EXIT.

70 WebSphere MQ: Monitoring WebSphere MQ



Channel Auto-definition OK

Event name: Channel Auto-definition OK.

Reason code in MQCFH:
MQRC_CHANNEL_AUTO_DEF_OK (2233, X’8B9’).
Automatic channel definition succeeded.

Event description: This condition is detected when the automatic definition of a channel is successful.
The channel is defined by the MCA.

Event type: Channel.

Platforms: All, except WebSphere MQ for z/OS.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ChannelName

Description: Name of the channel being defined.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

ChannelType

Description: Type of channel being defined.
Identifier: MQIACH_CHANNEL_TYPE.
Datatype: MQCFIN.
Values:

MQCHT_RECEIVER
Receiver.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLUSSDR
Cluster-sender.

Returned: Always.

ConnectionName

Description: Name of the partner attempting to establish connection.
Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Always.

Chapter 2. Event monitoring 71



Channel Conversion Error

Event name: Channel Conversion Error.

Reason code in MQCFH:
MQRC_CHANNEL_CONV_ERROR (2284, X’8EC’).
Channel conversion error.

Event description: This condition is detected when a channel is unable to carry out data conversion
and the MQGET call to get a message from the transmission queue resulted in a
data conversion error. The reason for the failure is identified by
ConversionReasonCode.

Event type: Channel.

Platforms: All.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ConversionReasonCode

Description: Identifier of the cause of the conversion error.
Identifier: MQIACF_CONV_REASON_CODE.
Datatype: MQCFIN.
Values:

MQRC_CONVERTED_MSG_TOO_BIG (2120, X’848’)
Converted message too big for application buffer.

MQRC_FORMAT_ERROR (2110, X’83E’)
Message format not valid.

MQRC_NOT_CONVERTED (2119, X’847’)
Application message data not converted.

MQRC_SOURCE_CCSID_ERROR (2111, X’83F’)
Source coded character set identifier not valid.

MQRC_SOURCE_DECIMAL_ENC_ERROR (2113, X’841’)
Packed-decimal encoding in message not recognized.

MQRC_SOURCE_FLOAT_ENC_ERROR (2114, X’842’)
Floating-point encoding in message not recognized.

MQRC_SOURCE_INTEGER_ENC_ERROR (2112, X’840’)
Integer encoding in message not recognized.

MQRC_TARGET_CCSID_ERROR (2115, X’843’)
Target coded character set identifier not valid.

MQRC_TARGET_DECIMAL_ENC_ERROR (2117, X’845’)
Packed-decimal encoding specified by receiver not recognized.

72 WebSphere MQ: Monitoring WebSphere MQ



MQRC_TARGET_FLOAT_ENC_ERROR (2118, X’846’)
Floating-point encoding specified by receiver not recognized.

MQRC_TARGET_INTEGER_ENC_ERROR (2116, X’844’)
Integer encoding specified by receiver not recognized.

MQRC_TRUNCATED_MSG_ACCEPTED (2079, X’81F’)
Truncated message returned (processing completed).

MQRC_TRUNCATED_MSG_FAILED (2080, X’820’)
Truncated message returned (processing not completed).

Returned: Always.

ChannelName

Description: Channel name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

Format

Description: Format name.
Identifier: MQCACH_FORMAT_NAME.
Datatype: MQCFST.
Maximum length: MQ_FORMAT_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Always.

Chapter 2. Event monitoring 73



Channel Not Activated

Event name: Channel Not Activated.

Reason code in MQCFH:
MQRC_CHANNEL_NOT_ACTIVATED (2296, X’8F8’).
Channel cannot be activated.

Event description: This condition is detected when a channel is required to become active, either
because it is starting, or because it is about to make another attempt to establish
connection with its partner. However, it is unable to do so because the limit on the
number of active channels has been reached. See the following:

v MaxActiveChannels parameter in the qm.ini file for AIX, HP-UX, and Solaris

v MaxActiveChannels parameter in the Registry for Windows.

v ACTCHL parameter on the ALTER QMGR command for z/OS

The channel waits until it is able to take over an active slot released when another
channel ceases to be active. At that time a Channel Activated event is generated.

Event type: Channel.

Platforms: All.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ChannelName

Description: Channel name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: For sender, server, cluster-sender, and cluster-receiver channel types

only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.

74 WebSphere MQ: Monitoring WebSphere MQ



Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Only for commands that do not contain a generic name.

Chapter 2. Event monitoring 75



Channel SSL Error

Event name: Channel SSL Error.

Reason code in MQCFH:
MQRC_CHANNEL_SSL_ERROR (2371, X’943’).
Channel SSL Error.

Event description: This condition is detected when a channel using Secure Sockets Layer (SSL) fails to
establish an SSL connection. ReasonQualifier identifies the nature of the error.

Event type: SSL.

Platforms: All.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier that qualifies the reason code.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_SSL_HANDSHAKE_ERROR
The key exchange / authentication failure arose during the SSL
handshake.

MQRQ_SSL_CIPHER_SPEC_ERROR
This error can mean any one of the following:

v The SSL client CipherSpec does not match that on the SSL
server channel definition.

v An invalid CipherSpec has been specified.

v A CipherSpec has only been specified on one end of the SSL
channel.

MQRQ_SSL_PEER_NAME_ERROR
The Distinguished Name in the certificate sent by one end of
the SSL channel does not match the peer name on the end of
the channel definition at the other end of the SSL channel.

MQRQ_SSL_CLIENT_AUTH_ERROR
The SSL server channel definition specified either
SSLCAUTH(REQUIRED) or a SSLPEER value that was not
blank, but the SSL client did not provide a certificate.

Returned: Always.

ChannelName

Description: Channel Name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.

76 WebSphere MQ: Monitoring WebSphere MQ



Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: The ChannelName may not be available if the channel has not yet got far

enough through its start-up process, in this case the channel name will
not be returned. Otherwise always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Returned: For sender, server, cluster-sender and cluster-receiver channels only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName
field in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: The ConnectionName may not be available if the channel has not yet got

far enough through its start-up process, in this case the connection name
will not be returned. Otherwise always.

SSLHandshakeStage

Description: The name of the SSL function call giving the error. Details of these
function names for specific platforms can be found as follows:

v For z/OS, see the System Secure Sockets Layer Programming Guide and
Reference, SC24-5877.

v For other platforms, see WebSphere MQ Messages, GC34-6057.
Identifier: MQCACH_SSL_HANDSHAKE_STAGE.
Datatype: MQCFST.
Maximum length: MQ_SSL_HANDSHAKE_STAGE_LENGTH.
Returned: This field is only present if ReasonQualifier is set to

MQRQ_SSL_HANDSHAKE_ERROR.

SSLReturnCode

Description: A numeric return code from a failing SSL call.

Details of SSL Return Codes for specific platforms can be found as
follows:

v For z/OS, see WebSphere MQ for z/OS Messages and Codes,
GC34-6056.

v For other platforms, see WebSphere MQ Messages, GC34-6057.
Identifier: MQIACH_SSL_RETURN_CODE.
Datatype: MQCFIN.
Returned: This field is only present if ReasonQualifier is set to

MQRQ_SSL_HANDSHAKE_ERROR.

SSLPeerName

Description: The Distinguished Name in the certificate sent from the remote system.
Identifier: MQCACH_SSL_PEER_NAME.
Datatype: MQCFST.

Chapter 2. Event monitoring 77



Maximum length: MQ_DISTINGUISHED_NAME_LENGTH.
Returned: This field is only present if ReasonQualifier is set to

MQRQ_SSL_PEER_NAME_ERROR and is not always present for this
reason qualifier.

78 WebSphere MQ: Monitoring WebSphere MQ



Channel Started

Event name: Channel Started.

Reason code in MQCFH:
MQRC_CHANNEL_STARTED (2282, X’8EA’).
Channel started.

Event description: Either an operator has issued a Start Channel command, or an instance of a
channel has been successfully established. This condition is detected when Initial
Data negotiation is complete and resynchronization has been performed where
necessary, such that message transfer can proceed.

Event type: Channel.

Platforms: All. Client connections do not produce this event.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ChannelName

Description: Channel name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: For sender, server, cluster-sender, and cluster-receiver channels only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Only for commands that do not contain a generic name.

Chapter 2. Event monitoring 79



Channel Stopped

Event name: Channel Stopped.

Reason code in MQCFH:
MQRC_CHANNEL_STOPPED (2283, X’8EB’).
Channel stopped.

Event description: This is issued when a channel instance stops. It will only be issued if the channel
instance previously issued a channel started event.

Event type: Channel.

Platforms: All. Client connections do not produce this event.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier that qualifies the reason code.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_CHANNEL_STOPPED_OK
Channel has been closed with either a zero return code or a
warning return code.

MQRQ_CHANNEL_STOPPED_ERROR
Channel has been closed but there is an error reported and the
channel is not in stopped or retry state.

MQRQ_CHANNEL_STOPPED_RETRY
Channel has been closed and it is in retry state.

MQRQ_CHANNEL_STOPPED_DISABLED
Channel has been closed and it is in a stopped state.

Returned: Always.

ChannelName

Description: Channel name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

80 WebSphere MQ: Monitoring WebSphere MQ



ErrorIdentifier

Description: Identifier of the cause of the error. If a channel is stopped due to an
error, this is the code that identifies the error. If the event message is
because of a channel stop failure, the following fields are set:

1. ReasonQualifier, containing the value
MQRQ_CHANNEL_STOPPED_ERROR

2. ErrorIdentifier, containing the code number of an error message
that describes the error

3. AuxErrorDataInt1, containing error message integer insert 1

4. AuxErrorDataInt2, containing error message integer insert 2

5. AuxErrorDataStr1, containing error message string insert 1

6. AuxErrorDataStr2, containing error message string insert 2

7. AuxErrorDataStr3, containing error message string insert 3

The meanings of the error message inserts depend on the code number
of the error message. Details of error-message code numbers and the
inserts for specific platforms can be found as follows:

v For z/OS, see the section “Distributed queuing message codes” in the
WebSphere MQ for z/OS Messages and Codes book.

v For other platforms, the last four digits of ErrorIdentifier when
displayed in hexadecimal notation indicate the decimal code number
of the error message.

For example, if ErrorIdentifier has the value X’xxxxyyyy’, the
message code of the error message explaining the error is AMQyyyy.
See the WebSphere MQ Messages book for a description of these error
messages.

Identifier: MQIACF_ERROR_IDENTIFIER.
Datatype: MQCFIN.
Returned: Always.

AuxErrorDataInt1

Description: First integer of auxiliary error data for channel errors. If a channel is
stopped due to an error, this is the first integer parameter that qualifies
the error. This information is for use by IBM® service personnel; include
it in any problem report that you submit to IBM regarding this event
message.

Identifier: MQIACF_AUX_ERROR_DATA_INT_1.
Datatype: MQCFIN.
Returned: Always.

AuxErrorDataInt2

Description: Second integer of auxiliary error data for channel errors. If a channel is
stopped due to an error, this is the second integer parameter that
qualifies the error. This information is for use by IBM service personnel;
include it in any problem report that you submit to IBM regarding this
event message.

Identifier: MQIACF_AUX_ERROR_DATA_INT_2.
Datatype: MQCFIN.
Returned: Always.

Chapter 2. Event monitoring 81



AuxErrorDataStr1

Description: First string of auxiliary error data for channel errors. If a channel is
stopped due to an error, this is the first string parameter that qualifies
the error. This information is for use by IBM service personnel; include it
in any problem report that you submit to IBM regarding this event
message.

Identifier: MQCACF_AUX_ERROR_DATA_STR_1.
Datatype: MQCFST.
Returned: Always.

AuxErrorDataStr2

Description: Second string of auxiliary error data for channel errors. If a channel is
stopped due to an error, this is the second string parameter that qualifies
the error. This information is for use by IBM service personnel; include it
in any problem report that you submit to IBM regarding this event
message.

Identifier: MQCACF_AUX_ERROR_DATA_STR_2.
Datatype: MQCFST.
Returned: Always.

AuxErrorDataStr3

Description: Third string of auxiliary error data for channel errors. If a channel is
stopped due to an error, this is the third string parameter that qualifies
the error. This information is for use by IBM service personnel; include it
in any problem report that you submit to IBM regarding this event
message.

Identifier: MQCACF_AUX_ERROR_DATA_STR_3.
Datatype: MQCFST.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: For sender, server, cluster-sender, and cluster-receiver channels only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Only for commands that do not contain a generic name.

82 WebSphere MQ: Monitoring WebSphere MQ



Channel Stopped By User

Event name: Channel Stopped By User.

Reason code in MQCFH:
MQRC_CHANNEL_STOPPED_BY_USER (2279, X’8E7’).
Channel stopped by user.

Event description: This is issued when a user issues a STOP CHL command. ReasonQualifier
identifies the reasons for stopping.

Event type: Channel.

Platforms: All.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier that qualifies the reason code.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_CHANNEL_STOPPED_DISABLED
Channel has been closed and it is in a stopped state.

Returned: Always.

ChannelName

Description: Channel name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

Chapter 2. Event monitoring 83



Command

Event name: Command.

Reason code in MQCFH:
MQRC_COMMAND_MQSC (2412, X’96C’).
MQSC command successfully issued, or,
MQRC_COMMAND_PCF (2413, X’96D’).
PCF command successfully issued.

Event description: Command successfully issued.

Event type: Command.

Platforms: WebSphere MQ for z/OS only.

Event queue: SYSTEM.ADMIN.COMMAND.EVENT.

Event data

The event data consists of two groups, CommandContext and CommandData.

CommandContext

Description: PCF group containing the elements related to the context of the issued
command.

Identifier: MQGACF_COMMAND_CONTEXT.
Datatype: MQCFGR.
PCF elements in
group:

v EventUserId

v EventOrigin

v EventQMgr

v EventAccountingToken

v EventIdentityData

v EventApplType

v EventApplName

v EventApplOrigin

v Command
Returned: Always.

EventUserId

Description: The user id that issued the command or call that generated the event.
(This is the same user id that is used to check the authority to issue the
command; for commands received from a queue, this is also the user
identifier (UserIdentifier) from the MD of the command message).

Identifier: MQCACF_EVENT_USER_ID.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

EventOrigin

Description: The origin of the action causing the event.
Identifier: MQIACF_EVENT_ORIGIN.
Datatype: MQCFIN.

84 WebSphere MQ: Monitoring WebSphere MQ



Values:
MQEVO_CONSOLE

Console command.

MQEVO_INIT
Initialization input data set command.

MQEVO_MSG
Command message on SYSTEM.COMMAND.INPUT.

MQEVO_INTERNAL
Directly by queue manager.

MQEVO_OTHER
None of the above.

Returned: Always.

EventQMgr

Description: The queue manager where the command was entered. (The queue
manager where the command is executed and that generates the event is
in the MD of the event message).

Identifier: MQCACF_EVENT_Q_MGR.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

EventAccountingToken

Description: For commands received as a message (MQEVO_MSG), the accounting
token (AccountingToken) from the MD of the command message.

Identifier: MQBACF_EVENT_ACCOUNTING_TOKEN.
Datatype: MQCFBS.
Maximum length: MQ_ACCOUNTING_TOKEN_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventIdentityData

Description: For commands received as a message (MQEVO_MSG), application
identity data (ApplIdentityData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_IDENTITY.
Datatype: MQCFST.
Maximum length: MQ_APPL_IDENTITY_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplType

Description: For commands received as a message (MQEVO_MSG), the type of
application (PutApplType) from the MD of the command message.

Identifier: MQIACF_EVENT_APPL_TYPE.
Datatype: MQCFIN.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplName

Description: For commands received as a message (MQEVO_MSG), the name of the
application (PutApplName) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_NAME.
Datatype: MQCFST.

Chapter 2. Event monitoring 85



Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplOrigin

Description: For commands received as a message (MQEVO_MSG), the application
origin data (ApplOriginData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_ORIGIN.
Datatype: MQCFST.
Maximum length: MQ_APPL_ORIGIN_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

Command

Description: The command code.
Identifier: MQIACF_COMMAND.
Datatype: MQCFIN.
Values: v If the event relates to a PCF command, then the value is that of the

Command parameter in the MQCFH structure in the command
message.

v If the event relates to an MQSC command, then the value is as
follows:

MQCMD_ARCHIVE_LOG
ARCHIVE LOG

MQCMD_BACKUP_CF_STRUC
BACKUP CFSTRUCT

MQCMD_CHANGE_AUTH_INFO
ALTER AUTHINFO

MQCMD_CHANGE_BUFFER_POOL
ALTER BUFFPOOL

MQCMD_CHANGE_CF_STRUC
ALTER CFSTRUCT

MQCMD_CHANGE_CHANNEL
ALTER CHANNEL

MQCMD_CHANGE_NAMELIST
ALTER NAMELIST

MQCMD_CHANGE_PAGE_SET
ALTER PSID

MQCMD_CHANGE_PROCESS
ALTER PROCESS

MQCMD_CHANGE_Q
ALTER QLOCAL/QREMOTE/QALIAS/QMODEL

MQCMD_CHANGE_Q_MGR
ALTER QMGR, DEFINE MAXSMSGS

MQCMD_CHANGE_SECURITY
ALTER SECURITY

MQCMD_CHANGE_STG_CLASS
ALTER STGCLASS

MQCMD_CHANGE_TRACE
ALTER TRACE

86 WebSphere MQ: Monitoring WebSphere MQ



MQCMD_CLEAR_Q
CLEAR QLOCAL

MQCMD_CREATE_AUTH_INFO
DEFINE AUTHINFO

MQCMD_CREATE_BUFFER_POOL
DEFINE BUFFPOOL

MQCMD_CREATE_CF_STRUC
DEFINE CFSTRUCT

MQCMD_CREATE_CHANNEL
DEFINE CHANNEL

MQCMD_CREATE_LOG
DEFINE LOG

MQCMD_CREATE_NAMELIST
DEFINE NAMELIST

MQCMD_CREATE_PAGE_SET
DEFINE PSID

MQCMD_CREATE_PROCESS
DEFINE PROCESS

MQCMD_CREATE_Q
DEFINE QLOCAL/QREMOTE/QALIAS/QMODEL

MQCMD_CREATE_STG_CLASS
DEFINE STGCLASS

MQCMD_DELETE_AUTH_INFO
DELETE AUTHINFO

MQCMD_DELETE_BUFFER_POOL
DELETE BUFFPOOL

MQCMD_DELETE_CF_STRUC
DELETE CFSTRUCT

MQCMD_DELETE_CHANNEL
DELETE CHANNEL

MQCMD_DELETE_NAMELIST
DELETE NAMELIST

MQCMD_DELETE_PAGE_SET
DELETE PSID

MQCMD_DELETE_PROCESS
DELETE PROCESS

MQCMD_DELETE_Q
DELETE QLOCAL/QREMOTE/QALIAS/QMODEL

MQCMD_DELETE_STG_CLASS
DELETE STGCLASS

MQCMD_INQUIRE_ARCHIVE
DISPLAY ARCHIVE

MQCMD_INQUIRE_AUTH_INFO
DISPLAY AUTHINFO

MQCMD_INQUIRE_CF_STRUC
DISPLAY CFSTRUCT

Chapter 2. Event monitoring 87



MQCMD_INQUIRE_CF_STRUC_STATUS
DISPLAY CFSTATUS

MQCMD_INQUIRE_CHANNEL
DISPLAY CHANNEL

MQCMD_INQUIRE_CHANNEL_INIT
DISPLAY CHINIT

MQCMD_INQUIRE_CHANNEL_STATUS
DISPLAY CHSTATUS

MQCMD_INQUIRE_CLUSTER_Q_MGR
DISPLAY CLUSQMGR

MQCMD_INQUIRE_CMD_SERVER
DISPLAY CMDSERV

MQCMD_INQUIRE_CONNECTION
DISPLAY CONN

MQCMD_INQUIRE_LOG
DISPLAY LOG

MQCMD_INQUIRE_NAMELIST
DISPLAY NAMELIST

MQCMD_INQUIRE_PROCESS
DISPLAY PROCESS

MQCMD_INQUIRE_Q
DISPLAY QUEUE

MQCMD_INQUIRE_Q_MGR
DISPLAY QMGR, DISPLAY MAXSMSGS

MQCMD_INQUIRE_QSG
DISPLAY GROUP

MQCMD_INQUIRE_Q_STATUS
DISPLAY QSTATUS

MQCMD_INQUIRE_SECURITY
DISPLAY SECURITY

MQCMD_INQUIRE_STG_CLASS
DISPLAY STGCLASS

MQCMD_INQUIRE_SYSTEM
DISPLAY SYSTEM

MQCMD_INQUIRE_THREAD
DISPLAY THREAD

MQCMD_INQUIRE_TRACE
DISPLAY TRACE

MQCMD_INQUIRE_USAGE
DISPLAY USAGE

88 WebSphere MQ: Monitoring WebSphere MQ



MQCMD_MOVE_Q
MOVE QLOCAL

MQCMD_PING_CHANNEL
PING CHANNEL

MQCMD_RECOVER_BSDS
RECOVER BSDS

MQCMD_RECOVER_CF_STRUC
RECOVER CFSTRUCT

MQCMD_REFRESH_CLUSTER
REFRESH CLUSTER

MQCMD_REFRESH_Q_MGR
REFRESH QMGR

MQCMD_REFRESH_SECURITY
REFRESH SECURITY

MQCMD_RESET_CHANNEL
RESET CHANNEL

MQCMD_RESET_CLUSTER
RESET CLUSTER

MQCMD_RESET_Q_STATS
RESET QSTATS

MQCMD_RESET_TPIPE
RESET TPIPE

MQCMD_RESOLVE_CHANNEL
RESOLVE CHANNEL

MQCMD_RESOLVE_INDOUBT
RESOLVE INDOUBT

MQCMD_RESUME_Q_MGR
RESUME QMGR other than CLUSTER/CLUSNL

MQCMD_RESUME_Q_MGR_CLUSTER
RESUME QMGR CLUSTER/CLUSNL

MQCMD_REVERIFY_SECURITY
REVERIFY SECURITY

MQCMD_SET_ARCHIVE
SET ARCHIVE

MQCMD_SET_LOG
SET LOG

MQCMD_SET_SYSTEM
SET SYSTEM

MQCMD_START_CHANNEL
START CHANNEL

MQCMD_START_CHANNEL_INIT
START CHINIT

MQCMD_START_CHANNEL_LISTENER
START LISTENER

MQCMD_START_CMD_SERVER
START CMDSERV

Chapter 2. Event monitoring 89



MQCMD_START_TRACE
START TRACE

MQCMD_STOP_CHANNEL
STOP CHANNEL

MQCMD_STOP_CHANNEL_INIT
STOP CHINIT

MQCMD_STOP_CHANNEL_LISTENER
STOP LISTENER

MQCMD_STOP_CMD_SERVER
STOP CMDSERV

MQCMD_STOP_Q_MGR
STOP QMGR

MQCMD_STOP_TRACE
STOP TRACE

MQCMD_SUSPEND_Q_MGR
SUSPEND QMGR other than CLUSTER/CLUSNL

MQCMD_SUSPEND_Q_MGR_CLUSTER
SUSPEND QMGR CLUSTER/CLUSNL

Returned: Always.

CommandData

Description: PCF group containing the elements related to the command data.
Identifier: MQGACF_COMMAND_DATA.
Datatype: MQCFGR.
PCF elements in
group:

v If generated for an MQSC command, this group only contains the PCF
element CommandMQSC.

v If generated for a PCF command, this group contains the PCF
elements that comprised the PCF command, exactly as in the
command message.

Returned: Always.

CommandMQSC

Description: The text of the MQSC command.
Identifier: MQCACF_COMMAND_MQSC.
Datatype: MQCFST.
Maximum length: MQ_COMMAND_MQSC_LENGTH.
Returned: Only if Reason in the message descriptor is MQRC_COMMAND_MQSC.

90 WebSphere MQ: Monitoring WebSphere MQ



Create object

Event name: Create object.

Reason code in MQCFH:
MQRC_CONFIG_CREATE_OBJECT (2367, X’93F’).
New object created.

Event description: A DEFINE or DEFINE REPLACE command was issued which successfully created
a new object.

Event type: Configuration.

Platforms: WebSphere MQ for z/OS only.

Event queue: SYSTEM.ADMIN.CONFIG.EVENT.

Event data

EventUserId

Description: The user id that issued the command or call that generated the event.
(This is the same user id that is used to check the authority to issue the
command or call; for commands received from a queue, this is also the
user identifier (UserIdentifier) from the MD of the command message).

Identifier: MQCACF_EVENT_USER_ID.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

EventOrigin

Description: The origin of the action causing the event.
Identifier: MQIACF_EVENT_ORIGIN.
Datatype: MQCFIN.
Values:

MQEVO_CONSOLE
Console command.

MQEVO_INIT
Initialization input data set command.

MQEVO_INTERNAL
Directly by queue manager.

MQEVO_MQSET
MQSET call.

MQEVO_MSG
Command message on SYSTEM.COMMAND.INPUT.

MQEVO_OTHER
None of the above.

Returned: Always.

EventQMgr

Description: The queue manager where the command or call was entered. (The
queue manager where the command is executed and that generates the
event is in the MD of the event message).

Identifier: MQCACF_EVENT_Q_MGR.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.

Chapter 2. Event monitoring 91



Returned: Always.

EventAccountingToken

Description: For commands received as a message (MQEVO_MSG), the accounting
token (AccountingToken) from the MD of the command message.

Identifier: MQBACF_EVENT_ACCOUNTING_TOKEN.
Datatype: MQCFBS.
Maximum length: MQ_ACCOUNTING_TOKEN_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplIdentity

Description: For commands received as a message (MQEVO_MSG), application
identity data (ApplIdentityData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_IDENTITY.
Datatype: MQCFST.
Maximum length: MQ_APPL_IDENTITY_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplType

Description: For commands received as a message (MQEVO_MSG), the type of
application (PutApplType) from the MD of the command message.

Identifier: MQIACF_EVENT_APPL_TYPE.
Datatype: MQCFIN.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplName

Description: For commands received as a message (MQEVO_MSG), the name of the
application (PutApplName) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplOrigin

Description: For commands received as a message (MQEVO_MSG), the application
origin data (ApplOriginData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_ORIGIN.
Datatype: MQCFST.
Maximum length: MQ_APPL_ORIGIN_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

ObjectType

Description: Object type:
Identifier: MQIACF_OBJECT_TYPE.
Datatype: MQCFIN.

92 WebSphere MQ: Monitoring WebSphere MQ



Values:
MQOT_CHANNEL

Channel.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process.

MQOT_Q
Queue.

MQOT_STORAGE_CLASS
Storage class.

MQOT_AUTH_INFO
Authentication information.

MQOT_CF_STRUC
CF structure.

MQOT_TOPIC
Topic.

Returned: Always.

ObjectName

Description: Object name:
Identifier : Identifier will be according to object type.

v MQCACH_CHANNEL_NAME

v MQCA_NAMELIST_NAME

v MQCA_PROCESS_NAME

v MQCA_Q_NAME

v MQCA_STORAGE_CLASS

v MQCA_AUTH_INFO_NAME

v MQCA_CF_STRUC_NAME

v MQCA_TOPIC_NAME
Datatype: MQCFST.
Maximum length: MQ_OBJECT_NAME_LENGTH.
Returned: Always

Disposition

Description: Object disposition:
Identifier: MQIA_QSG_DISP.
Datatype: MQCFIN.
Values:

MQQSGD_Q_MGR
Object resides on page set of queue manager.

MQQSGD_SHARED
Object resides in shared repository and messages are shared in
coupling facility.

MQQSGD_GROUP
Object resides in shared repository.

MQQSGD_COPY
Object resides on page set of queue manager and is a local copy
of a GROUP object.

Returned: Always, except for CF structure objects.

Chapter 2. Event monitoring 93

|
|

|



94 WebSphere MQ: Monitoring WebSphere MQ



Default Transmission Queue Type Error

Event name: Default Transmission Queue Type Error.

Reason code in MQCFH:
MQRC_DEF_XMIT_Q_TYPE_ERROR (2198, X’896’).
Default transmission queue not local.

Event description: An MQOPEN or MQPUT1 call was issued specifying a remote queue as the
destination. Either a local definition of the remote queue was specified, or a
queue-manager alias was being resolved, but in either case the XmitQName attribute
in the local definition is blank.

No transmission queue is defined with the same name as the destination queue
manager, so the local queue manager has attempted to use the default
transmission queue. However, although there is a queue defined by the
DefXmitQName queue-manager attribute, it is not a local queue. See the WebSphere
MQ Application Programming Guide for more information.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Default transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

QType

Description: Type of default transmission queue.
Identifier: MQIA_Q_TYPE.
Datatype: MQCFIN.

Chapter 2. Event monitoring 95



Values:
MQQT_ALIAS

Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

96 WebSphere MQ: Monitoring WebSphere MQ



Default Transmission Queue Usage Error

Event name: Default Transmission Queue Usage Error.

Reason code in MQCFH:
MQRC_DEF_XMIT_Q_USAGE_ERROR (2199, X’897’).
Default transmission queue usage error.

Event description: An MQOPEN or MQPUT1 call was issued specifying a remote queue as the
destination. Either a local definition of the remote queue was specified, or a
queue-manager alias was being resolved, but in either case the XmitQName attribute
in the local definition is blank.

No transmission queue is defined with the same name as the destination queue
manager, so the local queue manager has attempted to use the default
transmission queue. However, the queue defined by the DefXmitQName
queue-manager attribute does not have a Usage attribute of
MQUS_TRANSMISSION. See the WebSphere MQ Application Programming Guide
for more information.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Default transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

Chapter 2. Event monitoring 97



ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

98 WebSphere MQ: Monitoring WebSphere MQ



Delete object

Event name: Delete object.

Reason code in MQCFH:
MQRC_CONFIG_DELETE_OBJECT (2369, X’941’).
Object deleted.

Event description: A DELETE command or MQCLOSE call was issued that successfully deleted an
object.

Event type: Configuration.

Platforms: WebSphere MQ for z/OS only.

Event queue: SYSTEM.ADMIN.CONFIG.EVENT.

Event data

EventUserId

Description: The user id that issued the command or call that generated the event.
(This is the same user id that is used to check the authority to issue the
command or call; for commands received from a queue, this is also the
user identifier (UserIdentifier) from the MD of the command message).

Identifier: MQCACF_EVENT_USER_ID.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

EventOrigin

Description: The origin of the action causing the event.
Identifier: MQIACF_EVENT_ORIGIN.
Datatype: MQCFIN.
Values:

MQEVO_CONSOLE
Console command.

MQEVO_INIT
Initialization input data set command.

MQEVO_INTERNAL
Directly by queue manager.

MQEVO_MSG
Command message on SYSTEM.COMMAND.INPUT.

MQEVO_OTHER
None of the above.

Returned: Always.

EventQMgr

Description: The queue manager where the command or call was entered. (The
queue manager where the command is executed and that generates the
event is in the MD of the event message).

Identifier: MQCACF_EVENT_Q_MGR.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

Chapter 2. Event monitoring 99



EventAccountingToken

Description: For commands received as a message (MQEVO_MSG), the accounting
token (AccountingToken) from the MD of the command message.

Identifier: MQBACF_EVENT_ACCOUNTING_TOKEN.
Datatype: MQCFBS.
Maximum length: MQ_ACCOUNTING_TOKEN_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplIdentity

Description: For commands received as a message (MQEVO_MSG), application
identity data (ApplIdentityData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_IDENTITY.
Datatype: MQCFST.
Maximum length: MQ_APPL_IDENTITY_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplType

Description: For commands received as a message (MQEVO_MSG), the type of
application (PutApplType) from the MD of the command message.

Identifier: MQIACF_EVENT_APPL_TYPE.
Datatype: MQCFIN.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplName

Description: For commands received as a message (MQEVO_MSG), the name of the
application (PutApplName) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplOrigin

Description: For commands received as a message (MQEVO_MSG), the application
origin data (ApplOriginData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_ORIGIN.
Datatype: MQCFST.
Maximum length: MQ_APPL_ORIGIN_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

ObjectType

Description: Object type:
Identifier: MQIACF_OBJECT_TYPE.
Datatype: MQCFIN.

100 WebSphere MQ: Monitoring WebSphere MQ



Values:
MQOT_CHANNEL

Channel.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process.

MQOT_Q
Queue.

MQOT_STORAGE_CLASS
Storage class.

MQOT_AUTH_INFO
Authentication information.

MQOT_CF_STRUC
CF structure.

MQOT_TOPIC
Topic.

Returned: Always.

ObjectName

Description: Object name:
Identifier : Identifier will be according to object type.

v MQCACH_CHANNEL_NAME

v MQCA_NAMELIST_NAME

v MQCA_PROCESS_NAME

v MQCA_Q_NAME

v MQCA_STORAGE_CLASS

v MQCA_AUTH_INFO_NAME

v MQCA_CF_STRUC_NAME

v MQCA_TOPIC_NAME
Datatype: MQCFST.
Maximum length: MQ_OBJECT_NAME_LENGTH.
Returned: Always

Disposition

Description: Object disposition:
Identifier: MQIA_QSG_DISP.
Datatype: MQCFIN.
Values:

MQQSGD_Q_MGR
Object resides on page set of queue manager.

MQQSGD_SHARED
Object resides in shared repository and messages are shared in
coupling facility.

MQQSGD_GROUP
Object resides in shared repository.

MQQSGD_COPY
Object resides on page set of queue manager and is a local copy
of a GROUP object.

Returned: Always, except for CF structure objects.

Chapter 2. Event monitoring 101

|
|

|



102 WebSphere MQ: Monitoring WebSphere MQ



Get Inhibited

Event name: Get Inhibited.

Reason code in MQCFH:
MQRC_GET_INHIBITED (2016, X’7E0’).
Gets inhibited for the queue.

Event description: MQGET calls are currently inhibited for the queue (see the InhibitGet queue
attribute in the WebSphere MQ Application Programming Reference manual) or
for the queue to which this queue resolves.

Event type: Inhibit.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application that issued the get.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application that issued the get.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Chapter 2. Event monitoring 103



Logger

Event name: Logger.

Reason code in MQCFH:
MQRC_LOGGER_STATUS (2411, X’96B’)
New log extent started.

Event description: Issued when a queue manager starts writing to a new log extent or on i5/OS a
new journal receiver.

Event type: Logger.

Platforms: All, except WebSphere MQ for z/OS.

Event queue: SYSTEM.ADMIN.LOGGER.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

CurrentLogExtent

Description: Name of the log extent, or on i5/OS the journal receiver being written,
when the event message was generated.

Identifier: MQCACF_CURRENT_LOG_EXTENT_NAME.
Datatype: MQCFST.
Maximum length: MQ_LOG_EXTENT_NAME_LENGTH.
Returned: Always.

RestartRecoveryLogExtent

Description: Name of the oldest log extent, or on i5/OS the oldest journal receiver,
required by the queue manager to perform restart recovery.

Identifier: MQCACF_RESTART_LOG_EXTENT_NAME.
Datatype: MQCFST.
Maximum length: MQ_LOG_EXTENT_NAME_LENGTH.
Returned: Always.

MediaRecoveryLogExtent

Description: Name of the oldest log extent, or on i5/OS the oldest journal receiver,
required by the queue manager to perform media recovery.

Identifier: MQCACF_MEDIA_LOG_EXTENT_NAME.
Datatype: MQCFST.
Maximum length: MQ_LOG_EXTENT_NAME_LENGTH.
Returned: Always.

LogPath

Description: The directory where log files are created by the queue manager.
Identifier: MQCACF_LOG_PATH.
Datatype: MQCFST.

104 WebSphere MQ: Monitoring WebSphere MQ



Maximum length: MQ_LOG_PATH_LENGTH.
Returned: Always.

Chapter 2. Event monitoring 105



Not Authorized (type 1)

Event name: Not Authorized (type 1).

Reason code in MQCFH:
MQRC_NOT_AUTHORIZED (2035, X’7F3’).
Not authorized for access.

Event description: On an MQCONN call, the user is not authorized to connect to the queue manager.

Event type: Authority.

Platforms: All, except WebSphere MQ for z/OS.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier for type 1 authority events.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_CONN_NOT_AUTHORIZED
Connection not authorized.

Returned: Always.

UserIdentifier

Description: User identifier that caused the authorization check.
Identifier: MQCACF_USER_IDENTIFIER.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

ApplType

Description: Type of application causing the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application causing the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

106 WebSphere MQ: Monitoring WebSphere MQ



Not Authorized (type 2)

Event name: Not Authorized (type 2).

Reason code in MQCFH:
MQRC_NOT_AUTHORIZED (2035, X’7F3’).
Not authorized for access.

Event description: On an MQOPEN or MQPUT1 call, the user is not authorized to open the object for
the options specified.

Event type: Authority.

Platforms: All, except WebSphere MQ for z/OS.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier for type 2 authority events.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_OPEN_NOT_AUTHORIZED
Open not authorized.

Returned: Always.

Options

Description: Options specified on the MQOPEN call.
Identifier: MQIACF_OPEN_OPTIONS.
Datatype: MQCFIN.
Returned: Always.

UserIdentifier

Description: User identifier that caused the authorization check.
Identifier: MQCACF_USER_IDENTIFIER.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

ApplType

Description: Type of application that caused the authorization check.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

Chapter 2. Event monitoring 107



ApplName

Description: Name of the application that caused the authorization check.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Object queue manager name from object descriptor (MQOD).
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectQMgrName in the object descriptor (MQOD) when the object

was opened is not the queue manager currently connected.

QName

Description: Object name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: If the object opened is a queue object.

ProcessName

Description: Name of process object from object descriptor (MQOD).
Identifier: MQCA_PROCESS_NAME.
Datatype: MQCFST.
Maximum length: MQ_PROCESS_NAME_LENGTH.
Returned: If the object opened is a process object.

TopicString

Description: Topic string being subscribed to, or opened.
Identifier: MQCA_TOPIC_STRING.
Datatype: MQCFST.
Maximum length: MQ_TOPIC_STR_LENGTH.
Returned: If the object opened is a topic object.

AdminTopicNames

Description: List of topic admin objects against which authority is checked.
Identifier: MQCA_ADMIN_TOPIC_NAMES.
Datatype: MQCFSL.
Maximum length: MQ_TOPIC_NAME_LENGTH.
Returned: If the object opened is a topic object.

NamelistName

Description: Object name from object descriptor.
Identifier: MQCA_NAMELIST_NAME.
Datatype: MQCFST.
Maximum length: MQ_NAMELIST_NAME_LENGTH.

108 WebSphere MQ: Monitoring WebSphere MQ

|||
||
||
||
||
|

|

|||
||
||
||
||
|

|

|||
||
||
||
||
|

|

|||
||
||
||



Returned: If the object opened is a namelist object.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Chapter 2. Event monitoring 109

||
|

|



Not Authorized (type 3)

Event name: Not Authorized (type 3).

Reason code in MQCFH:
MQRC_NOT_AUTHORIZED (2035, X’7F3’).
Not authorized for access.

Event description: When closing a queue using the MQCLOSE call, the user is not authorized to
delete the object, which is a permanent dynamic queue, and the Hobj parameter
specified on the MQCLOSE call is not the handle returned by the MQOPEN call
that created the queue.

When closing a subscription using an MQCLOSE call, the user has requested that
the subscription be removed using the MQCO_REMOVE_SUB option, but the user
is not the creator of the subscription or does not have sub authority on the TOPIC
associated with the subscription.

Event type: Authority.

Platforms: All, except WebSphere MQ for z/OS.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier for type 3 authority events.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_SUB_NOT_AUTHORIZED
Subscribe not authorized.

Returned: Always.

Options

Description: Options specified on the MQSUB call
Identifier: MQIACF_SUB_OPTIONS
Datatype: MQCFIN.
Returned: Always.

UserIdentifier

Description: User identifier that caused the authorization check
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

110 WebSphere MQ: Monitoring WebSphere MQ

|
|
|
|

|
|
|
|



ApplType

Description: Type of application causing the authorization check.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application causing the authorization check.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

QName

Description: Object name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: If the handle being closed is to a queue

SubName

Description: Name of subscription being removed.
Identifier: MQCACF_SUB_NAME.
Datatype: MQCFST.
Maximum length: MQ_SUB_NAME_LENGTH.
Returned: If the handle being closed is to a subscription.

TopicString

Description: Topic string being opened.
Identifier: MQCA_TOPIC_STRING
Datatype: MQCFST.
Maximum length: MQ_TOPIC_STR_LENGTH.
Returned: If the handle being closed is to a subscription.

AdminTopicNames

Description: List of topic administration objects against which authority was checked.
Identifier: MQCA_ADMIN_TOPIC_NAMES
Datatype: MQCFSL.
Maximum length: MQ_TOPIC_NAME_LENGTH.
Returned: If the handle being closed is to a subscription.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Chapter 2. Event monitoring 111



Not Authorized (type 4)

Event name: Not Authorized (type 4).

Reason code in MQCFH:
MQRC_NOT_AUTHORIZED (2035, X’7F3’).
Not authorized for access.

Event description: Indicates that a command has been issued from a user ID that is not authorized to
access the object specified in the command.

Event type: Authority.

Platforms: All, except WebSphere MQ for z/OS.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier for type 4 authority events.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_CMD_NOT_AUTHORIZED
Command not authorized.

Returned: Always.

Command

Description: Command identifier. See the MQCFH header structure, described in
“Event message MQCFH (PCF header)” on page 56.

Identifier: MQIACF_COMMAND.
Datatype: MQCFIN.
Returned: Always.

UserIdentifier

Description: User identifier that caused the authorization check.
Identifier: MQCACF_USER_IDENTIFIER.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

112 WebSphere MQ: Monitoring WebSphere MQ



Not Authorized (type 5)

Event name: Not Authorized (type 5).

Reason code in MQCFH:
MQRC_NOT_AUTHORIZED (2035, X’7F3’).
Not authorized for access.

Event description: On an MQSUB call, the user is not authorized to subscribe to the specified topic.

Event type: Authority.

Platforms: All, except WebSphere MQ for z/OS.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier for type 5 authority events.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_SUB_NOT_AUTHORIZED
Subscribe not authorized.

Returned: Always.

Options

Description: Options specified on the MQSUB call.
Identifier: MQIACF_SUB_OPTIONS
Datatype: MQCFIN.
Returned: Always.

UserIdentifier

Description: User identifier that caused the authorization check.
Identifier: MQCACF_USER_IDENTIFIER.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

ApplType

Description: Type of application that caused the authorization check.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

Chapter 2. Event monitoring 113

|

|||

|
|
|

||

||

||

||
|

|

|

|||
||
||
||
||
|

|

|||
||
||
|
|
|
||
|

|

|||
||
||
||
|

|

|||
||
||
||
||
|

|

|||
||
||
||
|



ApplName

Description: Name of the application that caused the authorization check.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

TopicString

Description: Topic string being opened or subscribed to.
Identifier: MQCA_TOPIC_STRING.
Datatype: MQCFST.
Maximum length: MQ_TOPIC_STR_LENGTH.
Returned: Always.

AdminTopicNames

Description: List of topic administration objects against which authority is checked.
Identifier: MQCA_ADMIN_TOPIC_NAMES.
Datatype: MQCFSL.
Maximum length: MQ_TOPIC_NAME_LENGTH.
Returned: Always.

Note, that if the application is a server for clients, the ApplName and ApplType
parameters identify the server not the client.

114 WebSphere MQ: Monitoring WebSphere MQ

|

|||
||
||
||
||
|

|

|||
||
||
||
||
|

|

|||
||
||
||
||
|

|
|



Not Authorized (type 6)

Event name: Not Authorized (type 6).

Reason code in MQCFH:
MQRC_NOT_AUTHORIZED (2035, X’7F3’).
Not authorized for access.

Event description: On an MQSUB call, the user is not authorized to use the destination queue with
the required level of access. This event is only returned for subscriptions using
non-managed destination queues.

When creating, altering, or resuming a subscription, and a handle to the
destination queue is supplied on the request, the user does not have PUT
authority on the destination queue provided.

When resuming or alerting a subscription and the handle to the destination queue
is to be returned on the MQSUB call, and the user does not have PUT, GET and
BROWSE authority on the destination queue.

Event type: Authority.

Platforms: All, except WebSphere MQ for z/OS.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier for type 6 authority events.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRO_SUB_DEST_NOT_AUTHORIZED
Subscription destination queue usage not authorized.

Returned: Always.

Options

Description: Options specified on the MQSUB call.
Identifier: MQIACF_SUB_OPTIONS
Datatype: MQCFIN.
Returned: Always.

UserIdentifier

Description: User identifier that caused the authorization check.
Identifier: MQCACF_USER_IDENTIFIER.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

Chapter 2. Event monitoring 115

|

|||

|
|
|

||
|
|

|
|
|

|
|
|

||

||

||
|

|

|

|||
||
||
||
||
|

|

|||
||
||
|
|
|
||
|

|

|||
||
||
||
|

|

|||
||
||
||
||
|



ApplType

Description: Type of application that caused the authorization check.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application that caused the authorization check.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

TopicString

Description: Topic string being subscribed to.
Identifier: MQCA_TOPIC_STRING.
Datatype: MQCFST.
Maximum length: MQ_TOPIC_STR_LENGTH.
Returned: Always.

DestQMgrName

Description: Hosting queue manager name of the subscription’s destination queue.
Identifier: MQCACF_OBJECT_Q_MGR_NAME
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the queue manager hosting the destination queue is not the queue

manager to which the application is currently connected.

DestQName

Description: The subscription’s destination queue.
Identifier: MQCA_Q_NAME
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

DestOpenOptions

Description: The open options requested for the destination queue.
Identifier: MQIACF_OPEN_OPTIONS
Datatype: MQCFIN.
Returned: Always.

Note, that if the application is a server for clients, the ApplName and ApplType
parameters identify the server not the client.

116 WebSphere MQ: Monitoring WebSphere MQ

|

|||
||
||
||
|

|

|||
||
||
||
||
|

|

|||
||
||
||
||
|

|

|||
||
||
||
||
|
|

|

|||
||
||
||
||
|

|

|||
||
||
||
|

|
|



Put Inhibited

Event name: Put Inhibited.

Reason code in MQCFH:
MQRC_PUT_INHIBITED (2051, X’803’).
Put calls inhibited for the queue or topic.

Event description: MQPUT and MQPUT1 calls are currently inhibited for the queue or topic (see the
InhibitPut queue attribute or the InhibitPublications topic attribute in the
WebSphere MQ Application Programming Reference manual) or for the queue to
which this queue resolves.

Event type: Inhibit.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: If the object opened is a queue object

ApplType

Description: Type of application that issued the put.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application that issued the put.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of queue manager from object descriptor (MQOD).
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.

Chapter 2. Event monitoring 117

|||

|
|
|

||
|
|
|

||

||

||
|

||



Returned: Only if this parameter has a value different from QMgrName. This occurs
when the ObjectQMgrName field in the object descriptor provided by the
application on the MQOPEN or MQPUT1 call is neither blank nor the
name of the application’s local queue manager. However, it can also
occur when ObjectQMgrName in the object descriptor is blank, but a name
service provides a queue-manager name that is not the name of the
application’s local queue manager.

TopicString

Description: Topic String being opened
Identifier: MQCA_TOPIC_STRING
Datatype: MQCFST.
Maximum length: MQ_TOPIC_STR_LENGTH.
Returned: If the object opened is a topic.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

118 WebSphere MQ: Monitoring WebSphere MQ

|

|||
||
||
||
||
|

|



Queue Depth High

Event name: Queue Depth High.

Reason code in MQCFH:
MQRC_Q_DEPTH_HIGH (2224, X’8B0’).
Queue depth high limit reached or exceeded.

Event description: An MQPUT or MQPUT1 call has caused the queue depth to be incremented to or
above the limit specified in the QDepthHighLimit attribute.

Event type: Performance.

Platforms: All.

Event queue: SYSTEM.ADMIN.PERFM.EVENT.

Note:

1. WebSphere MQ for z/OS supports queue depth events on shared queues. You
might receive a NULL event message for a shared queue if a queue manager
has performed no activity on that shared queue.

2. For shared queues, the correlation identifier, CorrelId in the message descriptor
(MQMD) is set. See “Event message MQMD (message descriptor)” on page 51
for more information.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Name of the queue on which the limit has been reached.
Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

TimeSinceReset

Description: Time, in seconds, since the statistics were last reset. The value recorded
by this timer is also used as the interval time in queue service interval
events.

Identifier: MQIA_TIME_SINCE_RESET.
Datatype: MQCFIN.
Returned: Always.

HighQDepth

Description: Maximum number of messages on the queue since the queue statistics
were last reset.

Identifier: MQIA_HIGH_Q_DEPTH.
Datatype: MQCFIN.

Chapter 2. Event monitoring 119



Returned: Always.

MsgEnqCount

Description: Number of messages enqueued. This is the number of messages put on
the queue since the queue statistics were last reset.

Identifier: MQIA_MSG_ENQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

MsgDeqCount

Description: Number of messages removed from the queue since the queue statistics
were last reset.

Identifier: MQIA_MSG_DEQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

120 WebSphere MQ: Monitoring WebSphere MQ



Queue Depth Low

Event name: Queue Depth Low.

Reason code in MQCFH:
MQRC_Q_DEPTH_LOW (2225, X’8B1’).
Queue depth low limit reached or exceeded.

Event description: A get operation has caused the queue depth to be decremented to or below the
limit specified in the QDepthLowLimit attribute.

Event type: Performance.

Platforms: All.

Event queue: SYSTEM.ADMIN.PERFM.EVENT.

Note:

1. WebSphere MQ for z/OS supports queue depth events on shared queues. You
might receive a NULL event message for a shared queue if a queue manager
has performed no activity on that shared queue.

2. For shared queues, the correlation identifier, CorrelId in the message descriptor
(MQMD) is set. See “Event message MQMD (message descriptor)” on page 51
for more information.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Name of the queue on which the limit has been reached.
Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

TimeSinceReset

Description: Time, in seconds, since the statistics were last reset. The value recorded
by this timer is also used as the interval time in queue service interval
events.

Identifier: MQIA_TIME_SINCE_RESET.
Datatype: MQCFIN.
Returned: Always.

HighQDepth

Description: Maximum number of messages on the queue since the queue statistics
were last reset.

Identifier: MQIA_HIGH_Q_DEPTH.
Datatype: MQCFIN.

Chapter 2. Event monitoring 121



Returned: Always.

MsgEnqCount

Description: Number of messages enqueued. This is the number of messages put on
the queue since the queue statistics were last reset.

Identifier: MQIA_MSG_ENQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

MsgDeqCount

Description: Number of messages removed from the queue since the queue statistics
were last reset.

Identifier: MQIA_MSG_DEQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

122 WebSphere MQ: Monitoring WebSphere MQ



Queue Full

Event name: Queue Full.

Reason code in MQCFH:
MQRC_Q_FULL (2053, X’805’).
Queue already contains maximum number of messages.

Event description: On an MQPUT or MQPUT1 call, the call failed because the queue is full. That is, it
already contains the maximum number of messages possible (see the MaxQDepth
local-queue attribute

Event type: Performance.

Platforms: All.

Event queue: SYSTEM.ADMIN.PERFM.EVENT.

Note:

1. WebSphere MQ for z/OS supports queue depth events on shared queues. You
might receive a NULL event message for a shared queue if a queue manager
has performed no activity on that shared queue.

2. For shared queues, the correlation identifier, CorrelId in the message descriptor
(MQMD) is set. See “Event message MQMD (message descriptor)” on page 51
for more information.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Name of the queue on which the put was rejected.
Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

TimeSinceReset

Description: Time, in seconds, since the statistics were last reset.
Identifier: MQIA_TIME_SINCE_RESET.
Datatype: MQCFIN.
Returned: Always.

HighQDepth

Description: Maximum number of messages on a queue.
Identifier: MQIA_HIGH_Q_DEPTH.
Datatype: MQCFIN.
Returned: Always.

Chapter 2. Event monitoring 123



MsgEnqCount

Description: Number of messages enqueued. This is the number of messages put on
the queue since the queue statistics were last reset.

Identifier: MQIA_MSG_ENQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

MsgDeqCount

Description: Number of messages removed from the queue since the queue statistics
were last reset.

Identifier: MQIA_MSG_DEQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

124 WebSphere MQ: Monitoring WebSphere MQ



Queue Manager Active

Event name: Queue Manager Active.

Reason code in MQCFH:
MQRC_Q_MGR_ACTIVE (2222, X’8AE’).
Queue manager created.

Event description: This condition is detected when a queue manager becomes active.

Event type: Start And Stop.

Platforms: All, except the first start of a WebSphere MQ for z/OS queue manager. In this case
it is produced only on subsequent restarts.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

Chapter 2. Event monitoring 125



Queue Manager Not Active

Event name: Queue Manager Not Active.

Reason code in MQCFH:
MQRC_Q_MGR_NOT_ACTIVE (2223, X’8AF’).
Queue manager unavailable.

Event description: This condition is detected when a queue manager is requested to stop or quiesce.

Event type: Start And Stop.

Platforms: All, except WebSphere MQ for z/OS.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier of causes of this reason code. This specifies the type of stop
that was requested.

Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_Q_MGR_STOPPING
Queue manager stopping.

MQRQ_Q_MGR_QUIESCING
Queue manager quiescing.

Returned: Always.

126 WebSphere MQ: Monitoring WebSphere MQ



Queue Service Interval High

Event name: Queue Service Interval High.

Reason code in MQCFH:
MQRC_Q_SERVICE_INTERVAL_HIGH (2226, X’8B2’).
Queue service interval high.

Event description: No successful get operations or MQPUT calls have been detected within an
interval greater than the limit specified in the QServiceInterval attribute.

Event type: Performance.

Platforms: All.

Event queue: SYSTEM.ADMIN.PERFM.EVENT.

Note: WebSphere MQ for z/OS does not support service interval events on shared
queues.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Name of the queue specified on the command that caused this queue
service interval event to be generated.

Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

TimeSinceReset

Description: Time, in seconds, since the statistics were last reset. For a service interval
high event, this value is greater than the service interval.

Identifier: MQIA_TIME_SINCE_RESET.
Datatype: MQCFIN.
Returned: Always.

HighQDepth

Description: Maximum number of messages on the queue since the queue statistics
were last reset.

Identifier: MQIA_HIGH_Q_DEPTH.
Datatype: MQCFIN.
Returned: Always.

MsgEnqCount

Description: Number of messages enqueued. This is the number of messages put on
the queue since the queue statistics were last reset.

Chapter 2. Event monitoring 127



Identifier: MQIA_MSG_ENQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

MsgDeqCount

Description: Number of messages removed from the queue since the queue statistics
were last reset.

Identifier: MQIA_MSG_DEQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

128 WebSphere MQ: Monitoring WebSphere MQ



Queue Service Interval OK

Event name: Queue Service Interval OK.

Reason code in MQCFH:
MQRC_Q_SERVICE_INTERVAL_OK (2227, X’8B3’).
Queue service interval OK.

Event description: A successful get operation has been detected within an interval less than or equal
to the limit specified in the QServiceInterval attribute.

Event type: Performance.

Platforms: All.

Event queue: SYSTEM.ADMIN.PERFM.EVENT.

Note: WebSphere MQ for z/OS does not support service interval events on shared
queues.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name specified on the command that caused this queue service
interval event to be generated.

Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

TimeSinceReset

Description: Time, in seconds, since the statistics were last reset.
Identifier: MQIA_TIME_SINCE_RESET.
Datatype: MQCFIN.
Returned: Always.

HighQDepth

Description: Maximum number of messages on the queue since the queue statistics
were last reset.

Identifier: MQIA_HIGH_Q_DEPTH.
Datatype: MQCFIN.
Returned: Always.

MsgEnqCount

Description: Number of messages enqueued. This is the number of messages put on
the queue since the queue statistics were last reset.

Identifier: MQIA_MSG_ENQ_COUNT.

Chapter 2. Event monitoring 129



Datatype: MQCFIN.
Returned: Always.

MsgDeqCount

Description: Number of messages removed from the queue since the queue statistics
were last reset.

Identifier: MQIA_MSG_DEQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

130 WebSphere MQ: Monitoring WebSphere MQ



Queue Type Error

Event name: Queue Type Error.

Reason code in MQCFH:
MQRC_Q_TYPE_ERROR (2057, X’809’).
Queue type not valid.

Event description: On an MQOPEN call, the ObjectQMgrName field in the object descriptor specifies
the name of a local definition of a remote queue (in order to specify a
queue-manager alias). In that local definition the RemoteQMgrName attribute is the
name of the local queue manager. However, the ObjectName field specifies the
name of a model queue on the local queue manager, which is not allowed. See the
WebSphere MQ Application Programming Guide for more information.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.

Chapter 2. Event monitoring 131



Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

132 WebSphere MQ: Monitoring WebSphere MQ



Refresh object

Event name: Refresh object.

Reason code in MQCFH:
MQRC_CONFIG_REFRESH_OBJECT (2370, X’942’).
Refresh queue manager configuration.

Event description: A REFRESH QMGR command specifying TYPE (CONFIGEV) was issued.

Event type: Configuration.

Platforms: WebSphere MQ for z/OS only.

Event queue: SYSTEM.ADMIN.CONFIG.EVENT.

Note: The REFRESH QMGR command can produce many configuration events;
one event is generated for each object that is selected by the command.

Event data

EventUserId

Description: The user id that issued the command or call that generated the event.
(This is the same user id that is used to check the authority to issue the
command or call; for commands received from a queue, this is also the
user identifier (UserIdentifier) from the MD of the command message).

Identifier: MQCACF_EVENT_USER_ID.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

EventOrigin

Description: The origin of the action causing the event.
Identifier: MQIACF_EVENT_ORIGIN.
Datatype: MQCFIN.
Values:

MQEVO_CONSOLE
Console command.

MQEVO_INIT
Initialization input data set command.

MQEVO_INTERNAL
Directly by queue manager.

MQEVO_MSG
Command message on SYSTEM.COMMAND.INPUT.

MQEVO_OTHER
None of the above.

Returned: Always.

EventQMgr

Description: The queue manager where the command or call was entered. (The
queue manager where the command is executed and that generates the
event is in the MD of the event message).

Identifier: MQCACF_EVENT_Q_MGR.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.

Chapter 2. Event monitoring 133



Returned: Always.

EventAccountingToken

Description: For commands received as a message (MQEVO_MSG), the accounting
token (AccountingToken) from the MD of the command message.

Identifier: MQBACF_EVENT_ACCOUNTING_TOKEN.
Datatype: MQCFBS.
Maximum length: MQ_ACCOUNTING_TOKEN_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplIdentity

Description: For commands received as a message (MQEVO_MSG), application
identity data (ApplIdentityData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_IDENTITY.
Datatype: MQCFST.
Maximum length: MQ_APPL_IDENTITY_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplType

Description: For commands received as a message (MQEVO_MSG), the type of
application (PutApplType) from the MD of the command message.

Identifier: MQIACF_EVENT_APPL_TYPE.
Datatype: MQCFIN.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplName

Description: For commands received as a message (MQEVO_MSG), the name of the
application (PutApplName) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplOrigin

Description: For commands received as a message (MQEVO_MSG), the application
origin data (ApplOriginData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_ORIGIN.
Datatype: MQCFST.
Maximum length: MQ_APPL_ORIGIN_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

ObjectType

Description: Object type:
Identifier: MQIACF_OBJECT_TYPE.
Datatype: MQCFIN.

134 WebSphere MQ: Monitoring WebSphere MQ



Values:
MQOT_CHANNEL

Channel.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_STORAGE_CLASS
Storage class.

MQOT_AUTH_INFO
Authentication information.

MQOT_CF_STRUC
CF structure.

MQOT_TOPIC
Topic.

Returned: Always.

ObjectName

Description: Object name:
Identifier : Identifier will be according to object type.

v MQCACH_CHANNEL_NAME

v MQCA_NAMELIST_NAME

v MQCA_PROCESS_NAME

v MQCA_Q_NAME

v MQCA_Q_MGR_NAME

v MQCA_STORAGE_CLASS

v MQCA_AUTH_INFO_NAME

v MQCA_CF_STRUC_NAME

v MQCA_TOPIC_NAME
Datatype: MQCFST.
Maximum length: MQ_OBJECT_NAME_LENGTH.
Returned: Always

Disposition

Description: Object disposition:
Identifier: MQIA_QSG_DISP.
Datatype: MQCFIN.

Chapter 2. Event monitoring 135

|
|

|



Values:
MQQSGD_Q_MGR

Object resides on page set of queue manager.

MQQSGD_SHARED
Object resides in shared repository and messages are shared in
coupling facility.

MQQSGD_GROUP
Object resides in shared repository.

MQQSGD_COPY
Object resides on page set of queue manager and is a local copy
of a GROUP object.

Returned: Always, except for queue manager and CF structure objects.

136 WebSphere MQ: Monitoring WebSphere MQ



Remote Queue Name Error

Event name: Remote Queue Name Error.

Reason code in MQCFH:
MQRC_REMOTE_Q_NAME_ERROR (2184, X’888’).
Remote queue name not valid.

Event description: On an MQOPEN or MQPUT1 call one of the following occurs:

v A local definition of a remote queue (or an alias to one) was specified, but the
RemoteQName attribute in the remote queue definition is blank. Note that this
error occurs even if the XmitQName in the definition is not blank.

v The ObjectQMgrName field in the object descriptor is not blank and not the name
of the local queue manager, but the ObjectName field is blank.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.

Chapter 2. Event monitoring 137



Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients the ApplType and ApplName
parameters identify the server not the client.

138 WebSphere MQ: Monitoring WebSphere MQ



Transmission Queue Type Error

Event name: Transmission Queue Type Error.

Reason code in MQCFH:
MQRC_XMIT_Q_TYPE_ERROR (2091, X’82B’).
Transmission queue not local.

Event description: On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue
manager. The ObjectName or ObjectQMgrName field in the object descriptor specifies
the name of a local definition of a remote queue but one of the following applies
to the XmitQName attribute of the definition. Either:

v XmitQName is not blank, but specifies a queue that is not a local queue, or

v XmitQName is blank, but RemoteQMgrName specifies a queue that is not a local
queue

This also occurs if the queue name is resolved through a cell directory, and the
remote queue manager name obtained from the cell directory is the name of a
queue, but this is not a local queue.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

QType

Description: Type of transmission queue.
Identifier: MQIA_Q_TYPE.
Datatype: MQCFIN.

Chapter 2. Event monitoring 139



Values:
MQQT_ALIAS

Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

140 WebSphere MQ: Monitoring WebSphere MQ



Transmission Queue Usage Error

Event name: Transmission Queue Usage Error.

Reason code in MQCFH:
MQRC_XMIT_Q_USAGE_ERROR (2092, X’82C’).
Transmission queue with wrong usage.

Event description: On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue
manager, but one of the following occurred. Either:

v ObjectQMgrName specifies the name of a local queue, but it does not have a Usage
attribute of MQUS_TRANSMISSION.

v The ObjectName or ObjectQMgrName field in the object descriptor specifies the
name of a local definition of a remote queue but one of the following applies to
the XmitQName attribute of the definition:

– XmitQName is not blank, but specifies a queue that does not have a Usage
attribute of MQUS_TRANSMISSION

– XmitQName is blank, but RemoteQMgrName specifies a queue that does not have a
Usage attribute of MQUS_TRANSMISSION

v The queue name is resolved through a cell directory, and the remote queue
manager name obtained from the cell directory is the name of a local queue, but
it does not have a Usage attribute of MQUS_TRANSMISSION.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.

Chapter 2. Event monitoring 141



Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

142 WebSphere MQ: Monitoring WebSphere MQ



Unknown Alias Base Queue

Event name: Unknown Alias Base Queue.

Reason code in MQCFH:
MQRC_UNKNOWN_ALIAS_BASE_Q (2082, X’822’).
Unknown alias base queue or topic.

Event description: An MQOPEN or MQPUT1 call was issued specifying an alias queue as the
destination, but the BaseObjectName in the alias queue attributes is not recognized
as a queue or topic name.

Event type: Local.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

BaseObjectName

Description: Object name to which the alias resolves.
Identifier: MQCA_BASE_OBJECT_NAME. For compatibility with existing

applications you can still use MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

Chapter 2. Event monitoring 143

|

|
|

|

|||
||
|
||
||
||
|

|



ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

BaseType

Description: Type of object to which the alias resolves.
Identifier: MQIA_BASE_TYPE.
Datatype: MQCFIN.
Values:

MQOT_Q
Base object type is a queue

MQOT_TOPIC
Base object type is a topic

Returned: Always.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

144 WebSphere MQ: Monitoring WebSphere MQ

|

|||
||
||
|
|
|

|
|
||
|

|



Unknown Default Transmission Queue

Event name: Unknown Default Transmission Queue.

Reason code in MQCFH:
MQRC_UNKNOWN_DEF_XMIT_Q (2197, X’895’).
Unknown default transmission queue.

Event description: An MQOPEN or MQPUT1 call was issued specifying a remote queue as the
destination. If a local definition of the remote queue was specified, or if a
queue-manager alias is being resolved, the XmitQName attribute in the local
definition is blank.

No queue is defined with the same name as the destination queue manager. The
queue manager has therefore attempted to use the default transmission queue.
However, the name defined by the DefXmitQName queue-manager attribute is not
the name of a locally-defined queue.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Default transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application attempting to open the remote queue.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

Chapter 2. Event monitoring 145



ApplName

Description: Name of the application attempting to open the remote queue.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

146 WebSphere MQ: Monitoring WebSphere MQ



Unknown Object Name

Event name: Unknown Object Name.

Reason code in MQCFH:
MQRC_UNKNOWN_OBJECT_NAME (2085, X’825’).
Unknown object name.

Event description: On an MQOPEN or MQPUT1 call, the ObjectQMgrName field in the object
descriptor MQOD is set to one of the following. It is either:

v Blank

v The name of the local queue manager

v The name of a local definition of a remote queue (a queue-manager alias) in
which the RemoteQMgrName attribute is the name of the local queue manager

However, the ObjectName in the object descriptor is not recognized for the
specified object type.

Event type: Local.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: If the object opened is a queue object. Either QName or TopicName is

returned.

Chapter 2. Event monitoring 147

|
|



ProcessName

Description: Process object name from object descriptor (MQOD).
Identifier: MQCA_PROCESS_NAME.
Datatype: MQCFST.
Maximum length: MQ_PROCESS_NAME_LENGTH.
Returned: If the object opened is a process object. One of ProcessName, QName, or

TopicName is returned.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

TopicName

Description: Topic object name from object descriptor (MQOD).
Identifier: MQCA_TOPIC_NAME.
Datatype: MQCFST.
Maximum length: MQ_TOPIC_NAME_LENGTH.
Returned: If the object opened is a topic object. One of ProcessName, QName, or

TopicName is returned.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

148 WebSphere MQ: Monitoring WebSphere MQ

|

|

|||
||
||
||
||
|
|

|



Unknown Remote Queue Manager

Event name: Unknown Remote Queue Manager.

Reason code in MQCFH:
MQRC_UNKNOWN_REMOTE_Q_MGR (2087, X’827’).
Unknown remote queue manager.

Event description: On an MQOPEN or MQPUT1 call, an error occurred with the queue-name
resolution, for one of the following reasons:

v ObjectQMgrName is either blank or the name of the local queue manager, and
ObjectName is the name of a local definition of a remote queue that has a blank
XmitQName. However, there is no (transmission) queue defined with the name of
RemoteQMgrName, and the DefXmitQName queue-manager attribute is blank.

v ObjectQMgrName is the name of a queue-manager alias definition (held as the
local definition of a remote queue) that has a blank XmitQName. However, there is
no (transmission) queue defined with the name of RemoteQMgrName, and the
DefXmitQName queue-manager attribute is blank.

v ObjectQMgrName specified is not:

– Blank

– The name of the local queue manager

– The name of a local queue

– The name of a queue-manager alias definition (that is, a local definition of a
remote queue with a blank RemoteQName)

and the DefXmitQName queue-manager attribute is blank.

v ObjectQMgrName is blank or is the name of the local queue manager, and
ObjectName is the name of a local definition of a remote queue (or an alias to
one), for which RemoteQMgrName is either blank or is the name of the local queue
manager. Note that this error occurs even if the XmitQName is not blank.

v ObjectQMgrName is the name of a local definition of a remote queue. In this case,
it should be a queue-manager alias definition, but the RemoteQName in the
definition is not blank.

v ObjectQMgrName is the name of a model queue.

v The queue name is resolved through a cell directory. However, there is no queue
defined with the same name as the remote queue manager name obtained from
the cell directory. Also, the DefXmitQName queue-manager attribute is blank.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.

Chapter 2. Event monitoring 149



Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application attempting to open the remote queue.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application attempting to open the remote queue.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

150 WebSphere MQ: Monitoring WebSphere MQ



Unknown Transmission Queue

Event name: Unknown Transmission Queue.

Reason code in MQCFH:
MQRC_UNKNOWN_XMIT_Q (2196, X’894’).
Unknown transmission queue.

Event description: On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue
manager. The ObjectName or the ObjectQMgrName in the object descriptor specifies
the name of a local definition of a remote queue (in the latter case queue-manager
aliasing is being used). However, the XmitQName attribute of the definition is not
blank and not the name of a locally-defined queue.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data

QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.

Chapter 2. Event monitoring 151



Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Example of using instrumentation events

This example shows how to write a program for instrumentation events. It is
written for queue managers in C, for information about which platforms support C
see the WebSphere MQ Application Programming Reference manual. It is not part
of any WebSphere MQ product and is therefore not supplied as an actual physical
item. The example is incomplete in that it does not enumerate all the possible
outcomes of specified actions. Bearing this in mind, you can use this sample as a
basis for your own programs that use events, in particular, the PCF formats used
in event messages. However, you will need to modify this program to get it to run
on your systems.
/********************************************************************/
/* */
/* Program name: EVMON */
/* */
/* Description: C program that acts as an event monitor */
/* */
/* */
/********************************************************************/
/* */
/* Function: */
/* */
/* */
/* EVMON is a C program that acts as an event monitor - reads an */
/* event queue and tells you if anything appears on it */
/* */
/* Its first parameter is the queue manager name, the second is */
/* the event queue name. If these are not supplied it uses the */
/* defaults. */
/* */
/********************************************************************/
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef min

#define min(a,b) (((a) < (b)) ? (a) : (b))
#endif

/********************************************************************/
/* includes for MQI */
/********************************************************************/
#include <cmqc.h>
#include <cmqcfc.h>
void printfmqcfst(MQCFST* pmqcfst);
void printfmqcfin(MQCFIN* pmqcfst);

152 WebSphere MQ: Monitoring WebSphere MQ



void printreas(MQLONG reason);

#define PRINTREAS(param) \
case param: \

printf("Reason = %s\n",#param); \
break;

/********************************************************************/
/* global variable */
/********************************************************************/
MQCFH *evtmsg; /* evtmsg message buffer */

int main(int argc, char **argv)
{

/******************************************************************/
/* declare variables */
/******************************************************************/
int i; /* auxiliary counter */
/******************************************************************/
/* Declare MQI structures needed */
/******************************************************************/
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
/******************************************************************/
/* note, uses defaults where it can */
/******************************************************************/

MQHCONN Hcon; /* connection handle */
MQHOBJ Hobj; /* object handle */
MQLONG O_options; /* MQOPEN options */
MQLONG C_options; /* MQCLOSE options */
MQLONG CompCode; /* completion code */
MQLONG OpenCode; /* MQOPEN completion code */
MQLONG Reason; /* reason code */
MQLONG CReason; /* reason code for MQCONN */
MQLONG buflen; /* buffer length */
MQLONG evtmsglen; /* message length received */
MQCHAR command[1100]; /* call command string ... */
MQCHAR p1[600]; /* ApplId insert */
MQCHAR p2[900]; /* evtmsg insert */
MQCHAR p3[600]; /* Environment insert */
MQLONG mytype; /* saved application type */
char QMName[50]; /* queue manager name */
MQCFST *paras; /* the parameters */
int counter; /* loop counter */
time_t ltime;

/******************************************************************/
/* Connect to queue manager */
/******************************************************************/
QMName[0] = 0; /* default queue manager */
if (argc > 1)

strcpy(QMName, argv[1]);
MQCONN(QMName, /* queue manager */

&Hcon, /* connection handle */
&CompCode, /* completion code */
&CReason); /* reason code */

/******************************************************************/
/* Initialize object descriptor for subject queue */
/******************************************************************/
strcpy(od.ObjectName, "SYSTEM.ADMIN.QMGR.EVENT");

Chapter 2. Event monitoring 153



if (argc > 2)
strcpy(od.ObjectName, argv[2]);

/******************************************************************/
/* Open the event queue for input; exclusive or shared. Use of */
/* the queue is controlled by the queue definition here */
/******************************************************************/

O_options = MQOO_INPUT_AS_Q_DEF /* open queue for input */
+ MQOO_FAIL_IF_QUIESCING /* but not if qmgr stopping */
+ MQOO_BROWSE;

MQOPEN(Hcon, /* connection handle */
&od, /* object descriptor for queue*/
O_options, /* open options */
&Hobj, /* object handle */
&CompCode, /* completion code */
&Reason); /* reason code */

/******************************************************************/
/* Get messages from the message queue */
/******************************************************************/
while (CompCode != MQCC_FAILED)
{

/****************************************************************/
/* I don't know how big this message is so just get the */
/* descriptor first */
/****************************************************************/
gmo.Options = MQGMO_WAIT + MQGMO_LOCK

+ MQGMO_BROWSE_FIRST + MQGMO_ACCEPT_TRUNCATED_MSG;
/* wait for new messages */

gmo.WaitInterval = MQWI_UNLIMITED;/* no time limit */
buflen = 0; /* amount of message to get */

/****************************************************************/
/* clear selectors to get messages in sequence */
/****************************************************************/
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

/****************************************************************/
/* wait for event message */
/****************************************************************/
printf("...>\n");
MQGET(Hcon, /* connection handle */

Hobj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
evtmsg, /* evtmsg message buffer */
&evtmsglen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

/****************************************************************/
/* report reason, if any */
/****************************************************************/
if (Reason != MQRC_NONE && Reason != MQRC_TRUNCATED_MSG_ACCEPTED)
{

printf("MQGET ==> %ld\n", Reason);
}
else
{

gmo.Options = MQGMO_NO_WAIT + MQGMO_MSG_UNDER_CURSOR;
buflen = evtmsglen; /* amount of message to get */
evtmsg = malloc(buflen);

154 WebSphere MQ: Monitoring WebSphere MQ



if (evtmsg != NULL)
{

/************************************************************/
/* clear selectors to get messages in sequence */
/************************************************************/
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

/************************************************************/
/* get the event message */
/************************************************************/
printf("...>\n");
MQGET(Hcon, /* connection handle */

Hobj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
evtmsg, /* evtmsg message buffer */
&evtmsglen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

/************************************************************/
/* report reason, if any */
/************************************************************/
if (Reason != MQRC_NONE)
{

printf("MQGET ==> %ld\n", Reason);
}

}
else
{

CompCode = MQCC_FAILED;
}

}

/****************************************************************/
/* . . . process each message received */
/****************************************************************/

if (CompCode != MQCC_FAILED)
{

/**************************************************************/
/* announce a message */
/**************************************************************/
printf("\a\a\a\a\a\a\a");
time(&ltime);
printf(ctime(&ltime));

if (evtmsglen != buflen)
printf("DataLength = %ld?\n", evtmsglen);

else
{

/************************************************************/
/* right let's look at the data */
/************************************************************/
if (evtmsg->Type != MQCFT_EVENT)
{

printf("Something's wrong this isn't an event message,"
" its type is %ld\n",evtmsg->Type);

}
else
{

if (evtmsg->Command == MQCMD_Q_MGR_EVENT)
{

printf("Queue Manager event: ");

Chapter 2. Event monitoring 155



}
else

if (evtmsg->Command == MQCMD_CHANNEL_EVENT)
{

printf("Channel event: ");
}
else

...

{
printf("Unknown Event message, %ld.",

evtmsg->Command);
}

if (evtmsg->CompCode == MQCC_OK)
printf("CompCode(OK)\n");

else if (evtmsg->CompCode == MQCC_WARNING)
printf("CompCode(WARNING)\n");

else if (evtmsg->CompCode == MQCC_FAILED)
printf("CompCode(FAILED)\n");

else
printf("* CompCode wrong * (%ld)\n",

evtmsg->CompCode);

if (evtmsg->StrucLength != MQCFH_STRUC_LENGTH)
{

printf("it's the wrong length, %ld\n",evtmsg->StrucLength);
}

if (evtmsg->Version != MQCFH_VERSION_1)
{

printf("it's the wrong version, %ld\n",evtmsg->Version);
}

if (evtmsg->MsgSeqNumber != 1)
{

printf("it's the wrong sequence number, %ld\n",
evtmsg->MsgSeqNumber);

}

if (evtmsg->Control != MQCFC_LAST)
{

printf("it's the wrong control option, %ld\n",
evtmsg->Control);

}

printreas(evtmsg->Reason);
printf("parameter count is %ld\n", evtmsg->ParameterCount);
/**********************************************************/
/* get a pointer to the start of the parameters */
/**********************************************************/

paras = (MQCFST *)(evtmsg + 1);
counter = 1;
while (counter <= evtmsg->ParameterCount)
{

switch (paras->Type)
{

case MQCFT_STRING:
printfmqcfst(paras);
paras = (MQCFST *)((char *)paras

+ paras->StrucLength);
break;

case MQCFT_INTEGER:

156 WebSphere MQ: Monitoring WebSphere MQ



printfmqcfin((MQCFIN*)paras);
paras = (MQCFST *)((char *)paras

+ paras->StrucLength);
break;

default:
printf("unknown parameter type, %ld\n",

paras->Type);
counter = evtmsg->ParameterCount;
break;

}
counter++;

}
}

} /* end evtmsg action */
free(evtmsg);
evtmsg = NULL;

} /* end process for successful GET */
} /* end message processing loop */

/******************************************************************/
/* close the event queue - if it was opened */
/******************************************************************/
if (OpenCode != MQCC_FAILED)
{

C_options = 0; /* no close options */
MQCLOSE(Hcon, /* connection handle */

&Hobj, /* object handle */
C_options,
&CompCode, /* completion code */
&Reason); /* reason code */

/******************************************************************/
/* Disconnect from queue manager (unless previously connected) */
/******************************************************************/
if (CReason != MQRC_ALREADY_CONNECTED)
{

MQDISC(&Hcon, /* connection handle */
&CompCode, /* completion code */
&Reason); /* reason code */

/********************************************************************/
/* */
/* END OF EVMON */
/* */
/********************************************************************/
}

#define PRINTPARAM(param) \
case param: \

{ \
char *p = #param; \

strncpy(thestring,pmqcfst->String,min(sizeof(thestring), \
pmqcfst->StringLength)); \

printf("%s %s\n",p,thestring); \
} \
break;

#define PRINTAT(param) \
case param: \

printf("MQIA_APPL_TYPE = %s\n",#param); \
break;

void printfmqcfst(MQCFST* pmqcfst)
{

char thestring[100];

Chapter 2. Event monitoring 157



switch (pmqcfst->Parameter)
{

PRINTPARAM(MQCA_BASE_Q_NAME)
PRINTPARAM(MQCA_PROCESS_NAME)
PRINTPARAM(MQCA_Q_MGR_NAME)
PRINTPARAM(MQCA_Q_NAME)
PRINTPARAM(MQCA_XMIT_Q_NAME)
PRINTPARAM(MQCACF_APPL_NAME)

...
default:
printf("Invalid parameter, %ld\n",pmqcfst->Parameter);
break;

}
}

void printfmqcfin(MQCFIN* pmqcfst)
{

switch (pmqcfst->Parameter)
{

case MQIA_APPL_TYPE:
switch (pmqcfst->Value)
{

PRINTAT(MQAT_UNKNOWN)
PRINTAT(MQAT_OS2)
PRINTAT(MQAT_DOS)
PRINTAT(MQAT_UNIX)
PRINTAT(MQAT_QMGR)
PRINTAT(MQAT_OS400)
PRINTAT(MQAT_WINDOWS)
PRINTAT(MQAT_CICS_VSE)
PRINTAT(MQAT_VMS)
PRINTAT(MQAT_GUARDIAN)
PRINTAT(MQAT_VOS)

}
break;

case MQIA_Q_TYPE:
if (pmqcfst->Value == MQQT_ALIAS)
{

printf("MQIA_Q_TYPE is MQQT_ALIAS\n");
}
else

...
{

if (pmqcfst->Value == MQQT_REMOTE)
{

printf("MQIA_Q_TYPE is MQQT_REMOTE\n");
if (evtmsg->Reason == MQRC_ALIAS_BASE_Q_TYPE_ERROR)
{

printf("but remote is not valid here\n");
}

}
else
{

printf("MQIA_Q_TYPE is wrong, %ld\n",pmqcfst->Value);
}

}
break;

case MQIACF_REASON_QUALIFIER:
printf("MQIACF_REASON_QUALIFIER %ld\n",pmqcfst->Value);
break;

158 WebSphere MQ: Monitoring WebSphere MQ



case MQIACF_ERROR_IDENTIFIER:
printf("MQIACF_ERROR_INDENTIFIER %ld (X'%lX')\n",

pmqcfst->Value,pmqcfst->Value);
break;

case MQIACF_AUX_ERROR_DATA_INT_1:
printf("MQIACF_AUX_ERROR_DATA_INT_1 %ld (X'%lX')\n",

pmqcfst->Value,pmqcfst->Value);
break;

case MQIACF_AUX_ERROR_DATA_INT_2:
printf("MQIACF_AUX_ERROR_DATA_INT_2 %ld (X'%lX')\n",

pmqcfst->Value,pmqcfst->Value);
break;...

default :
printf("Invalid parameter, %ld\n",pmqcfst->Parameter);
break;

}
}

void printreas(MQLONG reason)
{

switch (reason)
{

PRINTREAS(MQRCCF_CFH_TYPE_ERROR)
PRINTREAS(MQRCCF_CFH_LENGTH_ERROR)
PRINTREAS(MQRCCF_CFH_VERSION_ERROR)
PRINTREAS(MQRCCF_CFH_MSG_SEQ_NUMBER_ERR)

...
PRINTREAS(MQRC_NO_MSG_LOCKED)
PRINTREAS(MQRC_CONNECTION_NOT_AUTHORIZED)
PRINTREAS(MQRC_MSG_TOO_BIG_FOR_CHANNEL)
PRINTREAS(MQRC_CALL_IN_PROGRESS)
default:

printf("It's an unknown reason, %ld\n",
reason);

break;
}

}

Chapter 2. Event monitoring 159



160 WebSphere MQ: Monitoring WebSphere MQ



Chapter 3. Message monitoring

An introduction to message monitoring

Message monitoring is used to identify the route a message has taken through a
queue manager network. As a message is routed through a queue manager
network, various applications perform activities on behalf of the message. These
activities are used to determine the message route.

This section describes:
v “Activities and operations”
v “How activities are used”
v “How to determine a message route” on page 162
v “Message route completeness” on page 164
v “How activity information is stored” on page 165

Activities and operations
Activities are discrete actions performed on behalf of a message by an application,
and consist of operations, which are single pieces of work that are performed by
an application.

The following are examples of activities:
v A message channel agent (MCA) sending a message from a transmission queue

down a channel.
v An MCA receiving a message from a channel and putting it on its target queue.
v An application getting a message from a queue, and putting a reply message in

response.
v The WebSphere MQ publish/subscribe engine processing a message.

Activities consist of one or more operations. Operations are single pieces of work
that are performed by an application. For example, the activity of an MCA sending
a message from a transmission queue down a channel, consists of the following
operations:
1. Getting a message from a transmission queue (a Get operation).
2. Sending the message down a channel (a Send operation).

In a publish/subscribe network, the activity of a message being processed by the
WebSphere MQ publish/subscribe engine can consist of the following multiple
operations:
1. Putting a message to a topic string (a Put operation).
2. Zero or more operations for each of the subscribers that are considered for

receipt of the message (a Publish operation, a Discarded Publish operation or an
Excluded Publish operation).

How activities are used
By recording information related to the activities performed on behalf of a message
as it is routed through a queue manager network, you can identify the sequence of

© Copyright IBM Corp. 1994, 2009 161

|

|
|
|

|

|
|
|



activities performed on a message. From the sequence of activities performed on a
message you can determine the route that it took through the queue manager
network.

By determining a message route it is possible to determine the following
information:

The last known location of a message
If a message does not reach its intended destination, having a complete, or
partial, message route allows the last known location of the message to be
determined.

Configuration issues with a queue manager network
By studying the route a message takes through a queue manager network,
it can become apparent that it has not gone where expected. There are
many reasons why this can occur, for example, a channel could be inactive
forcing the message to take an alternative route.

In the case of a publish/subscribe application, it is also possible to
determine the route of a message being published to a topic and any
messages that flow in a queue manager network as a result of being
published to subscribers.In these situations, a system administrator can
determine whether there are any problems in the queue manager network,
and if there are, correct them.

How to determine a message route

WebSphere MQ provides techniques that allow activity information to be recorded
for a message as it is routed through a queue manager network. The techniques
available follow.

Activity recording

If a message has the appropriate report option specified, it requests that
applications generate activity reports as it is routed through a queue
manager network. When an application performs an activity on behalf of a
message, an activity report can be generated, and delivered to an
appropriate location. An activity report contains information about the
activity that was performed on the message. For more information, see
“Activity recording” on page 165.

The activity information collected using activity reports must be arranged
in order before a message route can be determined.

Trace-route messaging
Trace-route messaging is a technique that involves sending a trace-route
message into a queue manager network. When an application performs an
activity on behalf of the trace-route message, activity information can be
accumulated in the message data of the trace-route message, or activity
reports can be generated. If activity information is accumulated in the
message data of the trace-route message, when it reaches its target queue a
trace-route reply message containing all the information from the
trace-route message can be generated and delivered to an appropriate
location.

Because a trace-route message is dedicated to recording the sequence of
activities performed on its behalf, there are more processing options
available compared with normal messages that request activity reports. For
comparisons between these techniques, see Table 15 on page 163.

162 WebSphere MQ: Monitoring WebSphere MQ

|
|
|
|



Trace-route messaging is described in “Trace-route messaging” on page
171.

Only certain applications record activity information, see “Message route
completeness” on page 164.

Comparing activity recording and trace-route messaging

Both activity recording and trace-route messaging can provide activity information
to determine the route a message has taken through a queue manager network.
Both methods have their own advantages. Table 15 shows the benefits of each
method:

Table 15. Comparing activity recording and trace-route messaging

Benefit Activity
recording

Trace-route
messaging

Can determine the last known location of a message Yes Yes

Can determine configuration issues with a queue
manager network

Yes Yes

Can be requested by any message
(is not restricted to use with trace-route messages)

Yes No

Message data is left unmodified Yes No

Message processed normally Yes No

Activity information can be accumulated in the message
data

No Yes

Optional message delivery to target queue No Yes

If a message is caught in an infinite loop, it can be
detected and dealt with

No Yes

Activity information can be put in order reliably No Yes

Application provided to display the activity information No Yes

The WebSphere MQ display route application

All WebSphere MQ platforms, with the exception of WebSphere MQ for z/OS,
provide an application called the WebSphere MQ display route application, which
is available by way of the command dspmqrte. The WebSphere MQ display route
application provides a command line interface that allows you to do the following:

Configure, generate, and put trace-route messages into a queue manager
network.

Characteristics of the trace-route messages can be specified such as:
v The destination of the trace-route message.
v How the trace-route message mimics another message.
v How the trace-route message should be handled as it is routed through

a queue manager network.
v Whether activity recording or trace-route messaging are used to record

activity information.

Order and display activity information related to a trace-route message.
The WebSphere MQ display route application can arrange in order and
display any activity information returned to it.

Chapter 3. Message monitoring 163



For more information on the WebSphere MQ display route application, see
“WebSphere MQ display route application” on page 187.

Approaches to message monitoring

There are various reasons for determining a message route as described in “How
activities are used” on page 161. Depending on the reason for determining a
message route, there are two general approaches that you can use, as follows:

Using activity information recorded for a trace-route message
Trace-route messages are used to record activity information for a specific
purpose. They can be used to determine configuration issues with a queue
manager network, or used to determine the last known location of a
message. If a trace-route message is generated to determine the last known
location of a message that did not reach its intended destination, it can
mimic the original message. This gives the trace-route message the greatest
chance of following the route the original message took. For information
on how to mimic a message, see “Mimicking a message” on page 177.

The WebSphere MQ display route application can generate trace-route
messages.

Using activity information recorded for the original message
Any message can be enabled for activity recording and have activity
information recorded on its behalf. If a message doesn’t reach its intended
destination then the recorded activity information can be used to
determine the last known location of the message. By using activity
information from the original message, the most accurate possible message
route can be determined, leading to the last known location. To use this
approach, the original message must be enabled for activity recording.

Warning: It is recommended that you do not enable all messages in a
queue manager network for activity recording. Messages enabled for
activity recording can have many activity reports generated on their behalf.
If every message in a queue manager network is enabled for activity
recording, the queue manager network traffic can increase many times
over.

Message route completeness

In some cases it is not possible to identify the full sequence of activities performed
on behalf of a message. If this is the case then only a partial message route can be
determined. The completeness of a message route is directly influenced by the
queue manager network that the messages are routed through. The way in which
the completeness of a message route is influenced depends on the level of the
queue managers in the queue manager network, as follows:

Queue managers at WebSphere MQ Version 6.0 and subsequent releases
MCAs and user-written applications connected to queue managers at
WebSphere MQ Version 6.0 or subsequent releases, can record information
related to the activities performed on behalf of a message. The recording of
activity information is controlled by the queue manager attributes
ACTIVREC and ROUTEREC. If a queue manager network consists of
queue managers at WebSphere MQ Version 6.0 or subsequent releases only,
complete message routes can be determined.

WebSphere MQ queue managers before Version 6.0
Applications connected to WebSphere MQ queue managers before Version

164 WebSphere MQ: Monitoring WebSphere MQ

|



6.0 do not record the activities that they have performed on behalf of a
message. If a queue manager network contains any WebSphere MQ queue
manager prior to Version 6.0, then only a partial message route can be
determined.

How activity information is stored

Activity information can be stored in activity reports, trace-route messages, or
trace-route reply messages. In all cases the information is stored in exactly the
same format; in a structure called the Activity PCF group. A trace-route message or
trace-route reply message can contain many Activity PCF groups depending on the
number of activities performed on the message. Activity reports contain one
Activity PCF group because a separate activity report is generated for every
recorded activity. For details of the fields in the Activity PCF group, see “Activity
report reference” on page 208.

When using trace-route messaging, additional information can be recorded. This
additional information is stored in a structure called the TraceRoute PCF group. The
TraceRoute PCF group contains a number of PCF structures that are used to store
additional activity information, and to specify options that determine how the
trace-route message is handled as it is routed through a queue manager network.
For more information on the TraceRoute PCF group, see “The TraceRoute PCF
group” on page 178.

Activity recording

This chapter contains the following:
v “An introduction to activity recording”
v “Controlling activity recording” on page 166
v “Using a common queue for activity reports” on page 168
v “Using activity reports” on page 168

An introduction to activity recording

Activity recording is a technique that is used to determine the routes messages
take through a queue manager network. To determine the route a message has
taken, the activities performed on behalf of the message are recorded. When using
activity recording, each activity performed on behalf of a message can be recorded
in an activity report. An activity report is a type of report message. Each activity
report contains information about the application that performed the activity on
behalf of the message, when the activity took place, and information about the
operations that were performed as part of the activity. For information on
activities, and operations, see “Activities and operations” on page 161. Activity
reports are typically delivered to a reply-to queue where they are collected
together. By studying the activity reports related to a message, the route that the
message took through the queue manager network can be determined. For more
information on activity information recorded with activity reports, see “Activity
report reference” on page 208.

What activity reports are used for

When messages are routed through a queue manager network, activity reports can
be generated. The information returned in activity reports can be used in the
following ways:

Chapter 3. Message monitoring 165



Determine the last known location of a message
If a message that is enabled for activity recording does not reach its
intended destination, activity reports generated for the message as it was
routed through a queue manager network can be studied to determine the
last known location of the message.

Determine configuration issues with a queue manager network
A number of messages enabled for activity recording can be sent into a
queue manager network. By studying the activity reports related to each
message it can become apparent that they have not taken the expected
route. There are many reasons why this can occur, for example, a channel
could have stopped, forcing the message to take an alternative route. In
these situations, a system administrator can determine whether there are
any problems in the queue manager network, and if there are, correct
them.

Note: You can use activity recording in conjunction with trace-route messages by
using the WebSphere MQ display route application. For more information, see
“WebSphere MQ display route application” on page 187.

Activity report format

Activity reports are PCF messages generated by applications that have performed
an activity on behalf of a message. Activity reports are standard WebSphere MQ
report messages containing a message descriptor and message data, as follows:

The message descriptor
An MQMD structure

Message data
Consists of the following:
v An embedded PCF header (MQEPH).
v Activity report message data.

Activity report message data consists of the Activity PCF group, and if generated
for a trace-route message, the TraceRoute PCF group.

For more information on the format of activity reports, see “Activity report
reference” on page 208.

Controlling activity recording

Activity recording is controlled at the queue manager level. Therefore, to enable an
entire queue manager network, every queue manager in this network must be
enabled for activity recording individually. The more enabled queue managers, the
more activity reports that can be generated.

For activity reports to be generated for a message as it is routed through a queue
manager, the following are required:
v The message must be defined to request activity reports, see “Requesting activity

reports for a message” on page 167.
v The queue manager must be enabled for activity recording, see “Controlling

queue managers for activity recording” on page 167.
v Applications performing activities on the message must be capable of generating

activity reports, see“Enabling applications for activity recording” on page 167.

166 WebSphere MQ: Monitoring WebSphere MQ



Alternatively, to specify that activity reports are not to be generated for a message
as it is routed through a queue manager, the queue manager can be disabled for
activity recording, see “Controlling queue managers for activity recording.”

Requesting activity reports for a message

To request that activity reports be generated for a message, do the following:
1. In the message descriptor of the message, specify MQRO_ACTIVITY in the

Report field.
2. In the message descriptor of the message, specify the name of a reply-to queue

in the ReplyToQ field.

Warning: It is recommended that you do not enable all messages in a queue
manager network for activity recording. Messages enabled for activity recording
can have many activity reports generated on their behalf. If every message in a
queue manager network is enabled for activity recording, the queue manager
network traffic can increase many times over.

Controlling queue managers for activity recording

To control whether queue managers are enabled or disabled for activity recording,
use the queue manager attribute ACTIVREC. You can use the MQSC command
ALTER QMGR specifying the parameter ACTIVREC to change the value of the queue
manager attribute. The value can be:

MSG The queue manager is enabled for activity recording. Any activity reports
generated are delivered to the reply-to queue specified in the message
descriptor of the message. This is the default value.

QUEUE
The queue manager is enabled for activity recording. Any activity reports
generated are delivered to the local system queue
SYSTEM.ADMIN.ACTIVITY.QUEUE. The system queue can also be used
to forward activity reports to a common queue, see “Using a common
queue for activity reports” on page 168.

DISABLED
The queue manager is disabled for activity recording. No activity reports
are generated while in the scope of this queue manager.

For example, to enable a queue manager for activity recording and specify that any
activity reports generated are delivered to the local system queue
SYSTEM.ADMIN.ACTIVITY.QUEUE, use the following MQSC command:
ALTER QMGR ACTIVREC(QUEUE)

Note: If the queue manager attribute ACTIVREC is modified, a running MCA will
not pick up the updates until the channel is restarted.

Enabling applications for activity recording

Message channel agents (MCAs) are enabled for activity recording. MCAs use the
following algorithm to determine whether to generate an activity report for a
message:
1. Verify that the message has requested activity reports to be generated, see

“Requesting activity reports for a message.”

Chapter 3. Message monitoring 167



2. Verify that the queue manager where the message currently resides is enabled
for activity recording, see “Controlling queue managers for activity recording”
on page 167.

3. Generate an activity report. For the format and content of activity reports, see
“Activity report reference” on page 208.

4. Put the activity report on the queue determined by the queue manager
attribute ACTIVREC.

Other user applications should follow this algorithm to be enabled for activity
recording.

Using a common queue for activity reports

Depending on the queue manager attribute, ACTIVREC, activity reports are
delivered to either:
v The reply-to queue specified in the message.
v The local system queue SYSTEM.ADMIN.ACTIVITY.QUEUE.

In some cases a system administrator might prefer for activity information not to
be returned the reply-to queue specified in the message. If this is the case then
activity reports can be delivered to the local system queue. If a number of queue
managers in a queue manager network are set this way, then it can be time
consuming determining the locations of the activity reports related to a specific
message. An alternative is to use a common queue on a single node.

A single node is a queue manager that hosts a common queue. All the queue
managers in a queue manager network can deliver activity reports to this common
queue. For an example of this configuration, see Figure 2 on page 8. The benefit of
using a common queue is that queue managers do not have to deliver activity
reports to the reply-to queue specified in a message, and when determining the
locations of the activity reports related to a message only one queue need be
queried.

To set up a common queue, do the following:
1. Select, or define, a queue manager as the single node.
2. On the single node select, or define, a queue for use as the common queue.
3. On all queue managers where activity reports are to be delivered to the

common queue, redefine the local system queue
SYSTEM.ADMIN.ACTIVITY.QUEUE as a remote queue definition specifying
the following:
v The name of the single node as the remote queue manager name.
v The name of the common queue as the remote queue name.

Using activity reports

Activity reports are used to determine route information about a message. For
common uses see “What activity reports are used for” on page 165. The activity
information collected using activity reports must be arranged in order before a
message route can be determined. Initially you must determine whether there are
enough activity reports on the reply-to queue to enable you to determine the
required information. The order that activity reports are put on the reply-to queue
does not necessarily correlate to the order in which the activities were performed.

168 WebSphere MQ: Monitoring WebSphere MQ



Activity reports must be ordered manually, unless they are generated for a
trace-route message, in which case the WebSphere MQ display route application
can be used to order the activity reports. For more information on the WebSphere
MQ display route application, see “WebSphere MQ display route application” on
page 187.

To determine whether there are enough activity reports on the reply-to queue to
enable you to determine the necessary information, do the following:
1. Identify all related activity reports on the reply-to queue, by comparing

identifiers of the activity reports and the original message. You should set the
report option of the original message such that the activity reports can be
correlated with the original message.

2. Order the identified activity reports from the reply-to queue so that the route,
or partial route, that the message took through the queue manager network can
be determined. The following parameters from the activity report can be used
when ordering them:

OperationType
The operations detailed in an activity report indicate the operations that
were performed as part of the activity. By considering the types of
operations that were performed, it can be possible to determine the
activity report that was generated directly before, or after, the current
activity report.

For example, an activity report details that an MCA sent a message
from a transmission queue down a channel. The last operation detailed
in the activity report has an OperationType of send and details that the
message was sent using the channel, CH1, to the destination queue
manager, QM1. This means that the next activity performed on the
message will have occurred on queue manager, QM1, and that it will
have begun with a receive operation from channel, CH1. By using this
information you can identify the next activity report, providing it exists
and has been acquired.

OperationDate and OperationTime
By looking at the dates and times of the operations in each activity
report, the general order of the activities can be determined.

Warning: Unless every queue manager in the queue manager network
has their system clocks synchronized, ordering this way does not
guarantee the activity reports are ordered correctly. The order must be
established manually.

Once ordered, the route, or partial route, that the message took is represented
by the order of the activity reports.

3. Study the activity information from the ordered activity reports, and try to
determine the information you need.

If the necessary information about the message has not been determined, it might
be possible to acquire further activity reports.

Retrieving further activity reports

If the activity reports related to a message have been retrieved from the reply-to
queue that the message specified, but the necessary information has not been
determined, then further activity reports might be available. To determine the
locations of any further activity reports, do the following:

Chapter 3. Message monitoring 169



1. If there are any queue managers in the queue manager network that deliver
activity reports to a common queue, do the following. For information on using
a common queue, see “Using a common queue for activity reports” on page
168.
a. Retrieve any activity reports from the common queue that have a CorrelId

that matches the MsgId of the original message.
2. If there are any queue managers in the queue manager network that do not

deliver activity reports to a common queue, do the following:
a. By studying the existing activity reports, identify queue managers that the

message was routed through.
b. From these queue managers, identify the queue managers that are enabled

for activity recording.
c. From these queue managers, identify any that did not return activity reports

to the specified reply-to queue.
d. From each of the identified queue managers, check the system queue

SYSTEM.ADMIN.ACTIVITY.QUEUE and retrieve any activity reports that
have a CorrelId that matches the MsgId of the original message.

e. If no activity reports are found on the system queue, check the queue
manager dead letter queue if one exists.

Note: An activity report can only be delivered to a dead letter queue if the
report option, MQRO_DEAD_LETTER_Q, is set.

3. Arrange all the acquired activity reports in order.
Once ordered the route, or partial route, that the message took is represented
by the order of the activity reports.

4. Study the activity information from the ordered activity reports, and try to
determine the information you need.

There are certain circumstances where recorded activity information cannot reach
the specified reply-to queue, a common queue, or a system queue. For more
information, see “Circumstances where activity information is not acquired.”

Circumstances where activity information is not acquired

To determine the complete sequence of activities performed on behalf of a
message, information related to every activity must be acquired. If the information
relating to any activity has not been recorded, or has not been acquired, then only
a partial sequence of activities can be determined.

The following are circumstances where activity information is not recorded:
v The message is processed by a WebSphere MQ queue manager prior to Version

6.0.
v The message is processed by a queue manager that is not enabled for activity

recording.
v The application expected to process the message is not running.

The following are circumstances where recorded activity information is unable to
reach the specified reply-to queue:
v There is no channel defined to route activity reports to the reply-to queue.
v The channel to route activity reports to the reply-to queue is not running.
v The remote queue definition to route activity reports back to the queue manager

where the reply-to queue resides (the queue manager alias), is not defined.

170 WebSphere MQ: Monitoring WebSphere MQ



v The user that generated the original message does not have open, or put,
authority to the queue manager alias.

v The user that generated the original message does not have open, or put,
authority to the reply-to queue.

v The reply-to queue is put inhibited.

The following are circumstances where recorded activity information is unable to
reach the system queue, or a common queue:
v If a common queue is to be used and there is no channel defined to route

activity reports to the common queue.
v If a common queue is to be used and the channel to route activity reports to the

common queue is not running.
v If a common queue is to be used and the system queue is incorrectly defined.
v The user that generated the original message does not have open, or put,

authority to the system queue.
v The system queue is put inhibited.
v If a common queue is to be used and the user that generated the original

message does not have open, or put, authority to the common queue.
v If a common queue is to be used and the common queue is put inhibited.

In these circumstances, providing the activity report does not have the report
option MQRO_DISCARD_MSG specified, the activity report can be retrieved from
a dead letter queue if one was defined on the queue manager where the activity
report was rejected. An activity report will only have this report option specified if
the original message, from which the activity report was generated, had both
MQRO_PASS_DISCARD_AND_EXPIRY and MQRO_DISCARD_MSG specified in
the Report field of the message descriptor.

Trace-route messaging
This section contains information about trace-route messaging and how to use it
for collecting activity information.

An introduction to trace-route messaging

Trace-route messaging is a technique that uses trace-route messages to record activity
information for a message. Trace-route messaging involves sending a trace-route
message into a queue manager network. As the trace-route message is routed
through the queue manager network, activity information is recorded. This activity
information includes information about the applications that performed the
activities, when they were performed, and the operations that were performed as
part of the activities. For more information on activity information recorded for
trace-route messages, see “Trace-route message reference” on page 232.

What trace-route messaging is used for

The information recorded using trace-route messaging can be used in the following
ways:

To determine the last known location of a message
If a message does not reach its intended destination, trace-route messaging
can be used to help determine the last known location of the message. A
trace-route message is sent into a queue manager network with the same
target destination as the original message, in the hope that it will follow
the same route. Activity information can be accumulated in the message

Chapter 3. Message monitoring 171



data of the trace-route message, or recorded using activity reports. To
increase the chance that the trace-route message will follow the same route
as the original message, the trace-route message can be modified to mimic
the original message, see “Mimicking a message” on page 177. The activity
information recorded for a trace-route message can be used to determine
the last known location of the original message.

To determine configuration issues with a queue manager network
Trace-route messages are sent into a queue manager network and activity
information is recorded. By studying the activity information recorded for
a trace-route message, it can become apparent that the trace-route message
did not follow the expected route. There are many reasons why this can
occur, for example, a channel could be inactive forcing the message to take
an alternative route. In these situations, a system administrator can
determine whether there are any problems in the queue manager network,
and if there are, correct them.

Note:

1. Trace-route messages can be configured, generated, and put in to a queue
manager network using the WebSphere MQ display route application, see
“WebSphere MQ display route application” on page 187.

2. If you put a trace-route message to a distribution list, the results are undefined.

How activity information is recorded

When using trace-route messaging, activity information can be recorded using
either, or both, of the following techniques:

Accumulating activity information in the message data of the trace-route
message

As a trace-route message is routed through a queue manager network,
information about the activities performed on behalf of the trace-route
message can be accumulated in the message data of the trace-route
message. The activity information is stored in Activity PCF groups, see
“How activity information is stored” on page 165. For every activity
performed on behalf of the trace-route message, an Activity PCF group is
written to the end of the PCF block in the message data of the trace-route
message.

Additional activity information is recorded in trace-route messaging, in a
PCF group called the TraceRoute PCF group. The additional activity
information is stored in this PCF group, and can be used to help determine
the sequence of recorded activities. For information on the parameters
contained in the TraceRoute PCF group, see “The TraceRoute PCF group”
on page 178.

This technique is controlled by the Accumulate parameter in the TraceRoute
PCF group, see Accumulate.

Recording activity information using activity reports
As a trace-route message is routed through a queue manager network, an
activity report can be generated for every activity that was performed on
behalf of the trace-route message. The activity information is stored in the
Activity PCF group, see “How activity information is stored” on page 165.
For every activity performed on behalf of a trace-route message, an activity
report is generated containing an Activity PCF group. Activity recording for

172 WebSphere MQ: Monitoring WebSphere MQ



trace-route messages works in the same way as for any other message. For
more information on activity recording, see “Activity recording” on page
165.

Activity reports generated for trace-routes messages contain additional
activity information compared to the those generated for any other
message. The additional information is returned in a TraceRoute PCF group.
The information contained in the TraceRoute PCF group is only accurate
from the time the activity report was generated. The additional information
can be used to help determine the sequence of activities performed on
behalf of the trace-route message. For information on the parameters
contained in the TraceRoute PCF group, see “The TraceRoute PCF group”
on page 178.

How recorded activity information is acquired

Activity information can be recorded in two ways, see “How activity information
is recorded” on page 172. Depending on how activity information has been
recorded, the method of acquiring the activity information once the trace-route
message has reached its intended destination, or has been discarded, varies as
follows:

Accumulating activity information
Once the trace-route message has reached its intended destination, or is
discarded, the activity information needs to be acquired. This can be done
using the following methods:

Retrieving the trace-route message
The Deliver parameter, in the TraceRoute PCF group, controls
whether a trace-route message is placed on the target queue on
arrival, or whether it is discarded, see Deliver. If the trace-route
message is delivered to the target queue, then the trace-route
message can be retrieved from this queue. Once retrieved, the
WebSphere MQ display route application can be used to display
the activity information, see “WebSphere MQ display route
application” on page 187.

To request activity information be accumulated in the message data
of a trace-route message, set the Accumulate parameter in the
TraceRoute PCF group to MQROUTE_ACCUMULATE_IN_MSG.

Using a trace-route reply message
Once a trace-route message reaches its intended destination, or the
trace-route message cannot be routed any further in a queue
manager network, a trace-route reply message can be generated. A
trace-route reply message contains a duplicate of all the activity
information from the trace-route message, and is either delivered
to a specified reply-to queue, or the system queue
SYSTEM.ADMIN.TRACE.ROUTE.QUEUE. The WebSphere MQ
display route application can be used to display the activity
information, see “WebSphere MQ display route application” on
page 187.

To request a trace-route reply message, set the Accumulate
parameter in the TraceRoute PCF group to
MQROUTE_ACCUMULATE_AND_REPLY.

Using activity reports
If activity reports are generated for a trace-route message, the activity
reports must be initially located so that the activity information can be

Chapter 3. Message monitoring 173



acquired. Once located, the activity reports must be ordered so that the
sequence of activities can be determined. For information on how to locate
and order activity reports, see “Acquiring and using recorded information”
on page 183.

Once located, an alternative to manually ordering activity reports
generated for a trace-route message, is to use the WebSphere MQ display
route application. Given the location of the activity reports, the WebSphere
MQ display route application can automatically order and display the
activity information, see “WebSphere MQ display route application” on
page 187.

For more information on how to acquire and use activity information for a
trace-route message, see “Acquiring and using recorded information” on page 183.

Controlling trace-route messaging

Enabling a queue manager for trace-route messaging means that applications in the
scope of that queue manager can write activity information to a trace-route
message. To enable an entire queue manager network for trace-route messaging,
every queue manager in the network must be enabled for trace-route messaging
individually. The more enabled queue managers, the more recorded activity
information.

When using activity reports to record activity information for a trace-route
message there are further considerations, see “Controlling activity recording” on
page 166.

For activity information to be recorded for a trace-route message as it is routed
through a queue manager, the following are required:
v The trace-route message must define how activity information is to be recorded,

see “Configuring and generating a trace-route message” on page 177.
v If accumulating activity information in the trace-route message, then the queue

manager must be enabled for trace-route messaging, see “Controlling queue
managers for trace-route messaging.”

v If accumulating activity information in the trace-route message, then applications
performing activities on the trace-route message must be capable of writing
activity information to the message data of the trace-route message, see
“Enabling applications for trace-route messaging” on page 175.

Controlling queue managers for trace-route messaging

To control whether queue managers are enabled or disabled for trace-route
messaging use the queue manager attribute ROUTEREC. You can use the MQSC
command ALTER QMGR specifying the parameter ROUTEREC to change the value of the
queue manager attribute. The value can be:

MSG The queue manager is enabled for trace-route messaging. Applications
within the scope of the queue manager can write activity information to
the trace-route message.

If the Accumulate parameter in the TraceRoute PCF group is set as
MQROUTE_ACCUMULATE_AND_REPLY, and the next activity to be performed on
the trace-route message:
v is a discard
v is a put to a local queue (target queue or dead-letter queue)

174 WebSphere MQ: Monitoring WebSphere MQ



v will cause the total number of activities performed on the trace-route
message to exceed the value of parameter the MaxActivities, in the
TraceRoute PCF group .

Then a trace-route reply message is generated, and delivered to the
reply-to queue specified in the message descriptor of the trace-route
message.

For information on the TraceRoute PCF group, see “The TraceRoute PCF
group” on page 178.

QUEUE
The queue manager is enabled for trace-route messaging. Applications
within the scope of the queue manager can write activity information to
the trace-route message.

If the Accumulate parameter in the TraceRoute PCF group is set as
MQROUTE_ACCUMULATE_AND_REPLY, and the next activity to be performed on
the trace-route message:
v is a discard
v is a put to a local queue (target queue or dead-letter queue)
v will cause the total number of activities performed on the trace-route

message to exceed the value of parameter the MaxActivities, in the
TraceRoute PCF group .

then a trace-route reply message is generated, and delivered to the local
system queue SYSTEM.ADMIN.TRACE.ROUTE.QUEUE.

For information on the TraceRoute PCF group, see “The TraceRoute PCF
group” on page 178.

DISABLED
The queue manager is disabled for trace-route messaging. Activity
information is not accumulated in the the trace-route message, however the
TraceRoute PCF group can be updated while in the scope of this queue
manager.

For example, to disable a queue manager for trace-route messaging, use the
following MQSC command:
ALTER QMGR ROUTEREC(DISABLED)

Note: If the queue manager attribute ROUTEREC is modified a running MCA will
not pick up the updates until the channel is restarted.

Enabling applications for trace-route messaging

Message channel agents (MCAs) are enabled for trace-route messaging. The
algorithm that MCAs use is detailed below. To enable a user application for
trace-route messaging, use this algorithm with the exception of steps 2 on page 176
and 6 on page 176.

Note: Enabling a user application for trace-route messaging can be complicated,
only enable user applications where necessary.
1. Determine whether the message being processed is a trace-route message.

Compare the format of the message with the format of a trace-route message as
detailed in “Trace-route message reference” on page 232.
v If the message conforms to the format of a trace-route message, then the

algorithm continues to step 2 on page 176.

Chapter 3. Message monitoring 175



v If the message does not conform to the format of a trace-route message, then
the message is not processed as a trace-route message.

2. If the trace-route message is received from a queue manager prior to
WebSphere MQ Version 6.0, increment the parameter, DiscontinuityCount, in the
trace-route message data.

Note: User applications do not perform this step.
3. Determine whether activity information is to be recorded.

Providing the detail level of the performed activity is not less than the level of
detail specified by the parameter Detail, activity information will be recorded if
the trace-route message requests accumulation and the queue manager is
enabled for trace-route messaging, or if the trace-route message requests an
activity report and the queue manager is enabled for activity recording.
v If activity information is to be recorded, increment the parameter

RecordedActivities. For information, see RecordedActivities.
v If activity information is not to be recorded, increment the parameter

UnrecordedActivities. For information, see UnrecordedActivities.
4. Determine whether the total number of activities performed on the trace-route

message exceeds the value of the parameter MaxActivities.
The total number of activities is the sum of RecordedActivities,
UnrecordedActivities, and DiscontinuityCount.
v If the total number of activities exceeds MaxActivities, then reject the message

with feedback MQFB_MAX_ACTIVITIES.
v If the total number of activities does not exceed MaxActivities, then the

algorithm continues to step 5.
5. If both of the following conditions are true:
v The value of Accumulate is set as MQROUTE_ACCUMULATE_IN_MSG or

MQROUTE_ACCUMULATE_AND_REPLY, and
v The queue manager is enabled for trace-route messaging

then write an Activity PCF group to the end of the PCF block in the message
data of a trace-route message.
The format of the Activity PCF group is detailed in “Activity report message
data” on page 216.

6. If delivering the trace-route message to a transmission queue, then follow the
algorithm specified in Forwarding.

Note: User applications do not perform this step.
7. If delivering the trace-route message to a local queue, then do one of the

following:
v If the parameter, Deliver, is specified as MQROUTE_DELIVER_NO, then

reject the trace-route message with feedback MQFB_NOT_DELIVERED.
v If the parameter, Deliver, is specified as MQROUTE_DELIVER_YES, then

deliver the trace-route message to the local queue.
8. If all the following conditions are true:
v The trace-route message was delivered to a local queue or rejected, and
v The value of the parameter, Accumulate, is

MQROUTE_ACCUMULATE_AND_REPLY, and
v The queue manager is enabled for trace-route messaging

then generate a trace-route reply message.

176 WebSphere MQ: Monitoring WebSphere MQ



The format of the trace-route reply message is detailed in “Trace-route reply
message reference” on page 243. The trace-route reply message is put on the
queue determined by the queue manager attribute, ROUTEREC. For
information on this queue manager attribute, see “Controlling queue managers
for trace-route messaging” on page 174.

9. If the trace-route message requested an activity report and the queue manager
is enabled for activity recording, then generate an activity report.
The format of the activity report is detailed in “Activity report reference” on
page 208. The activity report is put on the queue determined by the queue
manager attribute, ACTIVREC. For information on this queue manager
attribute, see “Controlling queue managers for activity recording” on page 167.

Configuring and generating a trace-route message

To generate a trace-route message, use one of the following methods:
v Use the WebSphere MQ display route application.
v Manually configure and generate a trace-route message.

Mimicking a message

When using a trace-route message to determine the route another message has
taken through a queue manager network, it is important to mimic the original
message. The more closely a trace-route message mimics the original message, the
greater the chance that the trace-route message will follow the same route as the
original message. Many characteristics can effect where a message is forwarded to
within a queue manager network. The following are influential message
characteristics:

Priority
The priority can be specified in the message descriptor of the message.

Persistence
The persistence can be specified in the message descriptor of the message.

Expiration
The expiration can be specified in the message descriptor of the message.

Report options
Report options can be specified in the message descriptor of the message.

Message size
To mimic the size of a message, additional data can be written to the
message data of the message. For this purpose, additional message data
can be meaningless. The WebSphere MQ display route application cannot
specify message size.

Message data
Some queue manager networks use content based routing to determine
where messages are forwarded. In these cases the message data of the
trace-route message needs to be written to mimic the message data of the
original message. The WebSphere MQ display route application cannot
specify message data.

For details of all the fields available in the message descriptor of a trace-route
message, see “Trace-route message reference” on page 232.

Chapter 3. Message monitoring 177



Using the WebSphere MQ display route application

The WebSphere MQ display route application, dspmqrte, can be used to configure,
generate and put a trace-route message into a queue manager network. dspmqrte
cannot be issued on queue managers before WebSphere MQ Version 6.0 or on
WebSphere MQ for z/OS queue managers. If you want the first queue manager the
trace-route message is routed through to be a queue manager of this type, connect
to the queue manager as a WebSphere MQ Version 6.0 or later client using the
optional parameter -c.

Note: When using the WebSphere MQ display route application to generate a
trace-route message, the Format parameter in the message descriptor is set to
MQFMT_ADMIN. The implication of this is that you cannot add user data to the
trace-route message generated by the WebSphere MQ display route application.

For more information on how to use the WebSphere MQ display route application,
see “WebSphere MQ display route application” on page 187.

Manual generation

A trace-route message consists of the following:

The message descriptor
An MQMD structure, with the Format field set to MQFMT_ADMIN or
MQFMT_EMBEDDED_PCF.

Message data
Consists of either:
v A PCF header (MQCFH) and trace-route message data, if Format is set to

MQFMT_ADMIN, or
v An embedded PCF header (MQEPH), trace-route message data, and

additional user-specified message data, if Format is set to
MQFMT_EMBEDDED_PCF.

The trace-route message data consists of the TraceRoute PCF group and one or
more Activity PCF groups. When generating a trace-route message manually, an
Activity PCF group is not required. Activity PCF groups are written to the message
data of the trace-route message when an MCA or user-written application performs
an activity on its behalf. The TraceRoute group is detailed in “The TraceRoute PCF
group.”

For information on the parameters contained in the message descriptor and
message data of a trace-route message, see “Trace-route message reference” on
page 232.

The TraceRoute PCF group:

The behavior of a trace-route message is controlled by attributes in the TraceRoute
PCF group. The TraceRoute group is a PCF group that resides in the message data
of every trace-route message. The following table details the parameters in the
TraceRoute group, that an MCA will recognize. Further parameters can be added if
user-written applications are written to recognize them, see “Recording additional
information” on page 184.

178 WebSphere MQ: Monitoring WebSphere MQ

|



Table 16. TraceRoute PCF group

parameter Type

TraceRoute
Detail
RecordedActivities
UnrecordedActivities
DiscontinuityCount
MaxActivities
Accumulate
Forward
Deliver

MQCFGR
MQCFIN
MQCFIN
MQCFIN
MQCFIN
MQCFIN
MQCFIN
MQCFIN
MQCFIN

Descriptions of each parameter in the TraceRoute PCF group follows:

Detail Specifies the detail level of activity information that is to be recorded. The
value can be:

MQROUTE_DETAIL_LOW
Only activities performed by user application are recorded.

MQROUTE_DETAIL_MEDIUM
Activities specified in MQROUTE_DETAIL_LOW should be
recorded. Additionally, activities performed by MCAs are recorded.

MQROUTE_DETAIL_HIGH
Activities specified in MQROUTE_DETAIL_LOW, and
MQROUTE_DETAIL_MEDIUM should be recorded. MCAs do not
record any further activity information at this level of detail. This
option is only available to user applications that are to record
further activity information. For example, if a user application
determines the route a message takes by considering certain
message characteristics, the information about the routing logic
could be included with this level of detail.

RecordedActivities
Specifies the number of recorded activities performed on behalf of the
trace-route message. An activity is considered to be recorded if information
about it has been written to the trace-route message, or if an activity report
has been generated. For every recorded activity, RecordedActivities
increments by one.

UnrecordedActivities
Specifies the number of unrecorded activities performed on behalf of the
trace-route message. An activity is considered to be unrecorded if an
application that is enabled for trace-route messaging neither accumulates,
nor writes the related activity information to an activity report.

An activity performed on behalf of a trace-route message is unrecorded in
the following circumstances:
v The detail level of the performed activity is less than the level of detail

specified by the parameter Detail. For more information, see Detail.
v The trace-route message requests an activity report but not

accumulation, and the queue manager is not enabled for activity
recording.

v The trace-route message requests accumulation but not an activity
report, and the queue manager is not enabled for trace-route messaging.

Chapter 3. Message monitoring 179



v The trace-route message requests both accumulation and an activity
report, and the queue manager is not enabled for activity recording and
trace route messaging.

v The trace-route message requests neither accumulation nor an activity
report.

For every unrecorded activity the parameter, UnrecordedActivities,
increments by one.

DiscontinuityCount
Specifies the number of times the trace-route message has been routed
through a queue manager whose applications were not enabled for
trace-route messaging. This value is incremented by the queue manager. If
this value is greater than 0, then only a partial message route can be
determined.

MaxActivities
Specifies the maximum number of activities that can be performed on
behalf of the trace-route message.

The total number of activities is the sum of RecordedActivities,
UnrecordedActivities, and DiscontinuityCount. The total number of activities
must not exceed the value of MaxActivities.

The value of MaxActivities can be:

A positive integer
The maximum number of activities.

If the maximum number of activities is exceeded, then the
trace-route message is rejected with feedback
MQFB_MAX_ACTIVITIES. This can prevent the trace-route
message from being forwarded indefinitely if caught in an infinite
loop.

MQROUTE_UNLIMITED_ACTIVITIES
An unlimited number of activities can be performed on behalf of
the trace-route message.

Accumulate
Specifies the method used to accumulate activity information. The value
can be:

MQROUTE_ACCUMULATE_IN_MSG
If the queue manager is enabled for trace-route messaging, activity
information is accumulated in the message data of the trace-route
message.

If this value is specified, the trace-route message data consists of
the following:
v The TraceRoute PCF group.
v Zero or more Activity PCF groups.

MQROUTE_ACCUMULATE_AND_REPLY
If the queue manager is enabled for trace-route messaging, activity
information is accumulated in the message data of the trace-route
message, and a trace-route reply message is generated if any of the
following occur:
v The trace-route message is discarded by a WebSphere MQ

Version 6 (or later) queue manager.

180 WebSphere MQ: Monitoring WebSphere MQ

|



v The trace-route message is put to a local queue (target queue or
dead-letter queue) by a WebSphere MQ Version 6 (or later)
queue manager.

v The number of activities performed on the trace-route message
exceeds the value of MaxActivities.

If this value is specified, the trace-route message data consists of
the following:
v The TraceRoute PCF group.
v Zero or more Activity PCF groups.

MQROUTE_ACCUMULATE_NONE
Activity information is not accumulated in the message data of the
trace-route message.

If this value is specified, the trace-route message data consists of
the following:
v The TraceRoute PCF group.

Forward
Specifies where a trace-route message can be forwarded to. The value can
be:

MQROUTE_FORWARD_IF_SUPPORTED
The trace-route message is only forwarded to queue managers that
will honor the value of the Deliver parameter from the TraceRoute
group.

MQROUTE_FORWARD_ALL
The trace-route message is forwarded to any queue manager,
regardless of whether the value of the Deliver parameter will be
honored.

Queue managers use the following algorithm when determining whether
to forward a trace-route message to a remote queue manager:
1. Determine whether the remote queue manager is capable of supporting

trace-route messaging.
v If the remote queue manager is capable of supporting trace-route

messaging, then the algorithm continues to step 4 on page 182.
v If the remote queue manager is not capable of supporting trace-route

messaging, then the algorithm continues to step 2
2. Determine whether the Deliver parameter from the TraceRoute group

contains any unrecognized delivery options in the
MQROUTE_DELIVER_REJ_UNSUP_MASK bit mask.
v If any unrecognized delivery options are found, then the trace-route

message is rejected with feedback
MQFB_UNSUPPORTED_DELIVERY.

v If no unrecognized delivery options are found, then the algorithm
continues to step 3.

3. Determine the value of the parameter Deliver from the TraceRoute PCF
group in the trace-route message.
v If Deliver is specified as MQROUTE_DELIVER_YES, then the

trace-route message is forwarded to the remote queue manager.
v If Deliver is specified as MQROUTE_DELIVER_NO, then the

algorithm continues to step 4 on page 182.

Chapter 3. Message monitoring 181

|
|



4. Determine whether the Forward parameter from the TraceRoute group
contains any unrecognized forwarding options in the
MQROUTE_FORWARDING_REJ_UNSUP_MASK bit mask.
v If any unrecognized forwarding options are found, then the

trace-route message is rejected with feedback
MQFB_UNSUPPORTED_FORWARDING.

v If no unrecognized forwarding options are found, then the algorithm
continues to step 5.

5. Determine the value of the parameter Forward from the TraceRoute PCF
group in the trace-route message.
v If Forward is specified as MQROUTE_FORWARD_IF_SUPPORTED,

then the trace-route message is rejected with feedback
MQFB_NOT_FORWARDED.

v If Forward is specified as MQROUTE_FORWARD_ALL, then
trace-route message can be forwarded to the remote queue manager.

Deliver Specifies the action to be taken if the trace-route message reaches its
intended destination. User-written applications must check this attribute
before placing a trace-route message on its target queue. The value can be:

MQROUTE_DELIVER_YES
On arrival, the trace-route message is put on the target queue. Any
application performing a get operation on the target queue can
retrieve the trace-route message.

MQROUTE_DELIVER_NO
On arrival, the trace-route message is not delivered to the target
queue. The message is processed according to its report options.

Using a common queue for trace-route reply messages

Depending on the queue manager attribute, ROUTEREC, trace-route reply
messages are delivered to either:
v The reply-to queue specified in the message.
v The local system queue SYSTEM.ADMIN.TRACE.ROUTE.QUEUE.

In some cases a system administrator might prefer trace-route reply messages not
to be returned to the reply-to queues specified in the message descriptor of the
trace-route messages. If this is the case then queue managers can be set to deliver
trace-route reply messages to local system queues. If a number of queue managers
in a queue manager network are set this way, then it can be time consuming
determining the locations of the trace-route reply messages. An alternative is to use
a common queue on a single node.

A single node is a queue manager that hosts a common queue. All the queue
managers in a queue manager network can deliver trace-route reply messages to
this common queue. For an example of this configuration, see Figure 2 on page 8.
The benefit of using a common queue is that queue managers do not have to
deliver trace-route reply messages to the reply-to queue specified in a message,
and when determining the locations of trace-route reply messages, only one queue
need be queried.

To set up a common queue, do the following:
1. Select, or define, a queue manager as the single node.
2. On the single node select, or define, a queue for use as the common queue.

182 WebSphere MQ: Monitoring WebSphere MQ



3. On all queue managers that will forward trace-route reply messages are to the
common queue, redefine the local system queue
SYSTEM.ADMIN.TRACE.ROUTE.QUEUE as a remote queue definition
specifying the following:
v The name of the single node as the remote queue manager name.
v The name of the common queue as the remote queue name.

Acquiring and using recorded information

For a trace-route message, recorded activity information can be acquired using the
following:
v A trace-route reply message.
v The trace-route message itself (having been put on a local queue).
v Activity reports.

Activity information is used to determine route information about the trace-route
message, for common uses see “What trace-route messaging is used for” on page
171.

Trace-route reply messages

Activity information can only be acquired from a trace-route reply message if the
location of the trace-route reply message is known.

If the trace-route reply message is not on the reply-to queue that was specified in
the message descriptor of the trace-route message, check the following locations:
v The local system queue, SYSTEM.ADMIN.TRACE.ROUTE.QUEUE, on the target

queue manager of the trace-route message.
v A common queue, see “Using a common queue for trace-route reply messages”

on page 182.
v The local system queue, SYSTEM.ADMIN.TRACE.ROUTE.QUEUE, on any

queue manager in the queue manager network.
This can occur if the trace-route message has been put to a dead-letter queue, or
the maximum number of activities was exceeded.

To use the recorded activity information in a trace-route reply message, do the
following:
1. Retrieve the trace-route reply message from its known location.
2. Use the WebSphere MQ display route application to display the recorded

activity information.
3. Study the activity information and determine the information you need.

Trace-route messages

Activity information can only be acquired from a trace-route message if both of the
following are true:
v The trace-route message has the parameter Accumulate in the TraceRoute PCF

group specified as either MQROUTE_ACCUMULATE_IN_MSG or
MQROUTE_ACCUMULATE_AND_REPLY.

v The location of the trace-route message is known.
For the trace-route message to be delivered to the target queue the Deliver
parameter in the TraceRoute PCF group must be specified as
MQROUTE_DELIVER_YES.

Chapter 3. Message monitoring 183



If the trace-route message is not on the target queue, you can try to locate the
trace-route message using a trace-route message enabled for activity recording.
With the generated activity reports try to determine the last known location of
the trace-route message.

To use the recorded activity information in a trace-route message, do the following:
1. Retrieve the trace-route message from its known location.
2. Use the WebSphere MQ display route application to display the recorded

activity information.
3. Study the activity information and determine the information you need.

Activity reports

Activity information can only be acquired from activity reports if both of the
following are true:
v The report option MQRO_ACTIVITY was specified in the message descriptor of

the trace-route message.
v The location of the activity reports is known.

To use the recorded activity information from activity reports, do the following:
1. Locate and order the activity reports, see “Using activity reports” on page 168.

Once located, an alternative to manually ordering activity reports generated for
a trace-route message, is to use the WebSphere MQ display route application.
Given the location of the activity reports, the WebSphere MQ display route
application can automatically order and display the activity information. For
more information, see “WebSphere MQ display route application” on page 187.

2. Study the activity information and determine the information you need.

Circumstances where activity information is not acquired

For information on circumstances when activity information is not acquired for a
trace-route message see, “Circumstances where activity information is not
acquired” on page 170. When reading this section in relation to trace-route
messaging, note the following exceptions:

Applicable to the entire section

v The message being processed is always a trace-route message.
v Situations that affect activity reports are applicable to trace-route reply

messages also.

Applicable to circumstances where activity information is not recorded only

v Activity information is not recorded when a trace-route message is
processed by a queue manager that is disabled for both activity
recording and trace-route messaging.

Recording additional information

As a trace-route message is routed through a queue manager network, user
applications can record additional information by including one or more additional
PCF parameters when writing the Activity group to the message data of the
trace-route message or activity report. This additional information can help system
administrators to identify the route a trace-route message took, or why it was
taken.

184 WebSphere MQ: Monitoring WebSphere MQ



If the WebSphere MQ display route application is used to display the recorded
information for a trace-route message, any additional PCF parameters can only be
displayed with a numeric identifier, unless the parameter identifier of each
parameter is recognized by the WebSphere MQ display route application. To
recognize a parameter identifier, additional information must be recorded using the
following PCF parameters. Include these PCF parameters in an appropriate place
in the Activity PCF group.

GroupName

Description: Grouped parameters specifying the additional information.
Identifier: MQGACF_VALUE_NAMING.
Datatype: MQCFGR.
Parameters in
group:

ParameterName

ParameterValue

ParameterName

Description: Contains the name to be displayed by the WebSphere MQ display route
application, which puts the value of ParameterValue into context.

Identifier: MQCA_VALUE_NAME.
Datatype: MQCFST.
Included in PCF
group:

GroupName.

Value: The name to be displayed.

ParameterValue

Description: Contains the value to be displayed by the WebSphere MQ display route
application.

Identifier: The PCF structure identifier for the additional information.
Datatype: The PCF structure datatype for the additional information.
Included in PCF
group:

GroupName.

Value: The value to be displayed.

Examples of recording additional information

This section contains two examples of how a user application can record additional
information when performing an activity on behalf of a trace-route message. In
both examples, the WebSphere MQ display route application is used to generate a
trace-route message, and display the activity information returned to it.
1. In “Example 1,” additional activity information is recorded by a user

application in a format where the parameter identifier is not recognized by the
WebSphere MQ display route application.

2. In “Example 2” on page 186, additional activity information is recorded by a
user application in a format where the parameter identifier is recognized by the
WebSphere MQ display route application.

Example 1:

1. The WebSphere MQ display route application is used to generate and put a
trace-route message into a queue manager network. The necessary options are
set to request the following:
v Activity information is accumulated in the message data of the trace-route

message.

Chapter 3. Message monitoring 185



v On arrival at the target queue the trace-route message is discarded, and a
trace-route reply message is generated and delivered to a specified reply-to
queue.

v On receipt of the trace-route reply message, the WebSphere MQ display route
application displays the accumulated activity information.

The trace-route message is put into the queue manager network.
2. As the trace-route message is routed through the queue manager network a

user application, that is enabled for trace-route messaging, performs a low
detail activity on behalf of the message. In addition to writing the standard
activity information to the trace-route message, the user application writes the
following PCF parameter to the end of the Activity group:

ColorValue

Identifier: 65536.
Datatype: MQCFST.
Value: ’Red’

This additional PCF parameter gives further information about the activity that
was performed, however it is written in a format where the parameter
identifier will not be recognized by the WebSphere MQ display route
application.

3. The trace-route messages reaches the target queue and a trace-route reply
message is returned to the WebSphere MQ display route application. The
additional activity information is displayed as follows:
65536: 'Red'

The WebSphere MQ display route application does not recognize the parameter
identifier of the PCF parameter and displays it as a numerical value. The
context of the additional information is not clear.
For an example of when the WebSphere MQ display route application does
recognize the parameter identifier of the PCF parameter, see “Example 2.”

Example 2:

1. The WebSphere MQ display route application is used to generate and put a
trace-route message into a queue manager network in the same fashion as in
“Example 1” on page 185.

2. As the trace-route message is routed through the queue manager network a
user application, that is enabled for trace-route messaging, performs a low
detail activity on behalf of the message. In addition to writing the standard
activity information to the trace-route message, the user application writes the
following PCF parameters to the end of the Activity group:

ColorInfo

Description: Grouped parameters specifying information about a color.
Identifier: MQGACF_VALUE_NAMING.
Datatype: MQCFGR.
Parameters in
group:

ColorName

ColorValue

186 WebSphere MQ: Monitoring WebSphere MQ



ColorName

Description: Contains the name to be displayed by the WebSphere MQ
display route application which puts the value of ColorValue
into context.

Identifier: MQCA_VALUE_NAME.
Datatype: MQCFST.
Included in
PCF group:

ColorInfo.

Value: ’Color’

ColorValue

Description: Contains the value to be displayed by the WebSphere MQ
display route application.

Identifier: 65536.
Datatype: MQCFST.
Included in
PCF group:

ColorInfo.

Value: ’Red’

These additional PCF parameters gives further information about the activity
that was performed. These PCF parameters are written in a format where the
parameter identifier will be recognized by the WebSphere MQ display route
application.

3. The trace-route messages reaches the target queue and a trace-route reply
message is returned to the WebSphere MQ display route application. The
additional activity information is displayed as follows:
Color: 'Red'

The WebSphere MQ display route application recognizes that the parameter
identifier of the PCF structure containing the value of the additional activity
information has a corresponding name. The corresponding name is displayed
instead of the numerical value.

WebSphere MQ display route application
This section contains information about the display route application (dspmqrte) its
purpose and how to use it.

An introduction to the WebSphere MQ display route
application

The WebSphere MQ display route application (dspmqrte) can be executed on all
WebSphere MQ Version 7.0 queue managers, with the exception of WebSphere MQ
for z/OS queue managers. You can execute the WebSphere MQ display route
application as a client to a WebSphere MQ for z/OS Version 7.0 queue manager by
specifying the -c parameter when issuing the dspmqrte command.

Note: To run a Client Application against a WebSphere MQ for z/OS queue
manager, the Client Attachment feature must be installed.

The WebSphere MQ display route application is started by the command
dspmqrte, and is used for the following:

Chapter 3. Message monitoring 187



v To configure, generate, and put a trace-route message into a queue manager
network.
By putting a trace-route message into a queue manager network, activity
information can be collected and used to determine the route that the trace-route
message took.

v To order and display activity information related to a trace-route message.
If the WebSphere MQ display route application has put a trace-route message
into a queue manager network, after the related activity information has been
returned, the information can be ordered and displayed immediately.
Alternatively, the WebSphere MQ display route application can be used to order,
and display, activity information related to a trace-route message that was
previously generated.

For more information about trace-route messages, see “Trace-route messaging” on
page 171.

Using the WebSphere MQ display route application

The WebSphere MQ display route application can be used to generate a trace-route
message, and to display activity information recorded for a trace-route message.

This section details the parameters that are available with the WebSphere MQ
display route application when generating trace-route messages, or displaying
activity information. For information on how to form a syntactically valid
command, see the dspmqrte command in the WebSphere MQ System
Administration Guide.

Generating trace-route messages

The WebSphere MQ display route application, dspmqrte, provides many
parameters that determine characteristics of the trace-route message itself, and how
the trace-route message should be treated as it is routed through a queue manager
network. This section gives an overview of the parameters available with the
WebSphere MQ display route application that are related to the generation,
configuration, and use of trace-route messages.

Connecting to a queue manager:

The queue manager that the WebSphere MQ display route application connects to
is specified using the following parameters:

-c Specifies that the WebSphere MQ display route application connects as a client
application. For more information on how to set up client machines, see the
WebSphere MQ Clients book.

If you do not specify this parameter, the WebSphere MQ display route
application does not connect as a client application.

-m QMgrName
The name of the queue manager to which the WebSphere MQ display route
application connects. The name can contain up to 48 characters.

If you do not specify this parameter, the default queue manager is used.

The target destination:

188 WebSphere MQ: Monitoring WebSphere MQ



The target destination of a trace-route message is specified using the following
parameters:

-q TargetQName
If the WebSphere MQ display route application is being used to send a
trace-route message into a queue manager network, TargetQName specifies the
name of the target queue.

-ts TargetTopicString
Specifies the topic string.

-qm TargetQMgr
Qualifies the target destination; normal queue manager name resolution will
then apply. The target destination is specified with -q TargetQName or -ts
TargetTopicString.

If you do not specify this parameter, the queue manager to which the
WebSphere MQ display route application is connected is used as the target
queue manager.

-o Specifies that the target destination is not bound to a specific destination.
Typically this parameter is used when the trace-route message is to be put
across a cluster. The target destination is opened with option
MQOO_BIND_NOT_FIXED.

If you do not specify this parameter, the target destination is bound to a
specific destination.

The publication topic:

For publish/subscribe applications, you can use the WebSphere MQ display route
application to publish a trace-route message (that is, put it to a topic) and follow
the results of the put through the network.

The topic string of a trace-route message is specified using the following
parameter:

-ts TopicName
Specifies a topic string to which the WebSphere MQ display route application
is to publish a trace-route message, and puts this application into topic mode.
In this mode, the application traces all of the messages that result from the
publish request.

You can also use the WebSphere MQ display route application to display the
results from an activity report that was generated for publish messages.

Mimicking a message:

One use of trace-route messaging is to help determine the last known location of a
message that did not reach its intended destination. The WebSphere MQ display
route application provides parameters that can help configure a trace-route
message to mimic the original message. For information on the importance of
mimicking the original message, see “Mimicking a message” on page 177. When
mimicking a message, you can use the following parameters:

-l Persistence
Specifies the persistence of the generated trace-route message. Possible values
for Persistence are:

Chapter 3. Message monitoring 189

|
|

|

|
|
|

|
|

|
|
|
|
|

|
|



yes The generated trace-route message is persistent.
(MQPER_PERSISTENT).

no The generated trace-route message is not persistent.
(MQPER_NOT_PERSISTENT).

q The generated trace-route message inherits its persistence
value from the destination specified by -q TargetQName or
-ts TargetTopicString. (MQPER_PERSISTENCE_AS_Q_DEF).

A trace-route reply message, or any report messages, returned will share the
same persistence value as the original trace-route message.

If Persistence is specified as yes, you must specify the parameter -rq ReplyToQ.
The reply-to queue must not resolve to a temporary dynamic queue.

If you do not specify this parameter, the generated trace-route message is not
persistent.

-p Priority
Specifies the priority of the trace-route message. The value of Priority is either
greater than or equal to 0, or MQPRI_PRIORITY_AS_Q_DEF.
MQPRI_PRIORITY_AS_Q_DEF specifies that the priority value is taken from
the destination specified by -q TargetQName or -ts TargetTopicString.

If you do not specify this parameter, the priority value is taken from the
destination specified by -q TargetQName or -ts TargetTopicString.

-xs Expiry
Specifies the expiry time for the trace-route message, in seconds.

If you do not specify this parameter, the expiry time is specified as 60 seconds.

-ro none | ReportOption

none Specifies no report options are set.

ReportOption Specifies report options for the trace-route message.
Multiple report options can be specified using a comma as a
separator. Possible values for ReportOption are:

activity The report option MQRO_ACTIVITY is set.

coa The report option
MQRO_COA_WITH_FULL_DATA is set.

cod The report option
MQRO_COD_WITH_FULL_DATA is set.

exception
The report option
MQRO_EXCEPTION_WITH_FULL_DATA is set.

expiration
The report option
MQRO_EXPIRATION_WITH_FULL_DATA is set.

discard The report option MQRO_DISCARD_MSG is set.

If neither -ro ReportOption nor -ro none are specified, then the
MQRO_ACTIVITY and MQRO_DISCARD_MSG report options are specified.

The WebSphere MQ display route application does not allow you to add user data
to the trace-route message. If you require user data to be added to the trace-route
message then manually generate a trace-route message, see “Configuring and
generating a trace-route message” on page 177.

190 WebSphere MQ: Monitoring WebSphere MQ

|

|

|



Accumulating activity information:

The route a trace-route message has taken is determined using recorded activity
information. Recorded activity information can be returned using the following:
v Activity reports.
v A trace-route reply message.
v The trace-route message itself (having been put on the target queue).

For more information, see “How recorded activity information is acquired” on
page 173.

When using dspmqrte, the method used to return recorded activity information is
determined using the following parameters:

The activity report option, specified using -ro
Specifies that activity information is returned using activity reports. By default
activity recording is enabled.

-ac -ar
Specifies that activity information is accumulated in the trace-route message,
and that a trace-route reply message is to be generated.

-ac
Specifies that activity information is to be accumulated within the
trace-route message.

If you do not specify this parameter, activity information is not
accumulated within the trace-route message.

-ar Requests that a trace-route reply message containing all accumulated
activity information is generated in the following circumstances:
v The trace-route message is discarded by a WebSphere MQ queue

manager.
v The trace-route message is put to a local queue (target queue or

dead-letter queue) by a WebSphere MQ queue manager.
v The number of activities performed on the trace-route message exceeds

the value of specified in -s Activities.

-ac -d yes
Specifies that activity information is accumulated in the trace-route message,
and that on arrival, the trace-route message will be put on the target queue.

-ac
Specifies that activity information is to be accumulated within the
trace-route message.

If you do not specify this parameter, activity information is not
accumulated within the trace-route message.

-d yes
On arrival, the trace-route message is put to the target queue, even if the
queue manager does not support trace-route messaging.

If you do not specify this parameter, the trace-route message is not put to
the target queue.

The trace-route message can then be retrieved from the target queue, and the
recorded activity information acquired.

You can combine these methods as required.

Chapter 3. Message monitoring 191



Additionally, the detail level of the recorded activity information can be specified
using the following parameter:

-t Detail
Specifies the activities that are recorded. The possible values for Detail are:

low Activities performed by user-defined application are
recorded only.

medium Activities specified in low are recorded. Additionally,
publish activities and activities performed by MCAs are
recorded.

high Activities specified in low, and medium are recorded.
MCAs do not expose any further activity information at this
level of detail. This option is available to user-defined
applications that are to expose further activity information
only. For example, if a user-defined application determines
the route a message takes by considering certain message
characteristics, the routing logic could be included with this
level of detail.

If you do not specify this parameter, medium level activities are recorded.

By default the WebSphere MQ display route application uses a temporary dynamic
queue to store the returned messages. When the WebSphere MQ display route
application ends, the temporary dynamic queue is closed, and any messages are
purged. If the returned messages are required beyond the current execution of the
WebSphere MQ display route application ends, then a permanent queue must be
specified using the following parameters:

-rq ReplyToQ
Specifies the name of the reply-to queue that all responses to the trace-route
message are sent to. If the trace-route message is persistent, or if the -n
parameter is specified, a reply-to queue must be specified that is not a
temporary dynamic queue.

If you do not specify this parameter then a dynamic reply-to queue is created
using the system default model queue, SYSTEM.DEFAULT.MODEL.QUEUE.

-rqm ReplyToQMgr
Specifies the name of the queue manager where the reply-to queue resides. The
name can contain up to 48 characters.

If you do not specify this parameter, the queue manager to which the
WebSphere MQ display route application is connected is used as the reply-to
queue manager.

How the trace-route message is handled:

There are various parameters that are used to control how a trace-route message is
handled as it is routed through a queue manager network. The following
parameters can restrict where the trace-route message can be routed in the queue
manager network:

-d Deliver
Specifies whether the trace-route message is to be delivered to the target queue
on arrival. Possible values for Deliver are:

192 WebSphere MQ: Monitoring WebSphere MQ

|



yes On arrival, the trace-route message is put to the target
queue, even if the queue manager does not support
trace-route messaging.

no On arrival, the trace-route message is not put to the target
queue.

If you do not specify this parameter, the trace-route message is not put to the
target queue.

-f Forward
Specifies the type of queue manager that the trace-route message can be
forwarded to. Queue managers use an algorithm when determining whether to
forward a message to a remote queue manager. For details of this algorithm,
see “The TraceRoute PCF group” on page 178. The possible values for Forward
are:

all The trace-route message is forwarded to any queue
manager.
Warning: If forwarded to a WebSphere MQ queue manager
prior to Version 6.0, the trace-route message will not be
recognized and can be delivered to a local queue despite
the value of the -d Deliver parameter.

supported The trace-route message is only forwarded to a queue
manager that will honor the Deliver parameter from the
TraceRoute PCF group.

If you do not specify this parameter, the trace-route message will only be
forwarded to a queue manager that will honor the Deliver parameter.

The following parameters can prevent a trace-route message from remaining in a
queue manager network indefinitely:

-s Activities
Specifies the maximum number of recorded activities that can be performed on
behalf of the trace-route message before it is discarded. This prevents the
trace-route message from being forwarded indefinitely if caught in an infinite
loop. The value of Activities is either greater than or equal to 1, or
MQROUTE_UNLIMITED_ACTIVITIES. MQROUTE_UNLIMITED_ACTIVITIES
specifies that an unlimited number of activities can be performed on behalf of
the trace-route message.

If you do not specify this parameter, an unlimited number of activities can be
performed on behalf of the trace-route message.

-xs Expiry
Specifies the expiry time for the trace-route message, in seconds.

If you do not specify this parameter, the expiry time is specified as 60 seconds.

-xp PassExpiry
Specifies whether the expiry time from the trace-route message is passed on to
a trace-route reply message. Possible values for PassExpiry are:

Chapter 3. Message monitoring 193



yes The report option MQRO_PASS_DISCARD_AND_EXPIRY is
specified in the message descriptor of the trace-route
message.

If a trace-route reply message, or activity reports, are
generated for the trace-route message, the
MQRO_DISCARD report option (if specified), and the
remaining expiry time are passed on.

This is the default value.

no The report option MQRO_PASS_DISCARD_AND_EXPIRY is
not specified.

If a trace-route reply message is generated for the
trace-route message, the discard option and expiry time
from the trace-route message are not passed on.

If you do not specify this parameter, MQRO_PASS_DISCARD_AND_EXPIRY is
not specified.

The discard report option, specified using -ro
Specifies the MQRO_DISCARD_MSG report option. This can prevent the
trace-route message remaining in the queue manager network indefinitely.

Displaying activity information

The WebSphere MQ display route application can display activity information for a
trace-route message that it has just put into a queue manager network, or it can
display activity information for a previously generated trace-route message.

To specify whether activity information returned for a trace-route message is
displayed, specify the following parameter:

-n Specifies that activity information returned for the trace-route message is not to
be displayed.

If this parameter is accompanied by a request for a trace-route reply message,
(-ar), or any of the report generating options from (-ro ReportOption), then a
specific (non-model) reply-to queue must be specified using -rq ReplyToQ. By
default, only activity report messages are requested.

After the trace-route message is put to the specified target queue, a 48
character hexadecimal string is displayed containing the message identifier of
the trace-route message. The message identifier can be used by the WebSphere
MQ display route application to display the activity information for the
trace-route message at a later time, using the -i CorrelId parameter.

If you do not specify this parameter, activity information returned for the
trace-route message is displayed in the form specified by the -v parameter.

When displaying activity information for a trace-route message that has just been
put into a queue manager network, the following parameter can be specified:

-w WaitTime
Specifies the time, in seconds, that the WebSphere MQ display route
application will wait for activity reports, or a trace-route reply message, to
return to the specified reply-to queue.

If you do not specify this parameter, the wait time is specified as the expiry
time of the trace-route message, plus 60 seconds.

194 WebSphere MQ: Monitoring WebSphere MQ



When displaying previously accumulated activity information the following
parameters must be set:

-q TargetQName
If the WebSphere MQ display route application is being used to view
previously gathered activity information, TargetQName specifies the name of
the queue where the activity information is stored.

-i CorrelId
This parameter is used when the WebSphere MQ display route application is
used to display previously accumulated activity information only. There can be
many activity reports and trace-route reply messages on the queue specified by
-q TargetQName. CorrelId is used to identify the activity reports, or a trace-route
reply message, related to a trace-route message. Specify the message identifier
of the original trace-route message in CorrelId.

The format of CorrelId is a 48 character hexadecimal string.

The following parameters can be used when displaying previously accumulated
activity information, or when displaying current activity information for a
trace-route message:

-b Specifies that the WebSphere MQ display route application will only browse
activity reports or a trace-route reply message related to a message. This allows
activity information to be displayed again at a later time.

If you do not specify this parameter, the WebSphere MQ display route
application will destructively get activity reports or a trace-route reply message
related to a message.

-v summary | all | none | outline DisplayOption

summary The queues that the trace-route message was routed
through are displayed.

all All available information is displayed.

none No information is displayed.

Chapter 3. Message monitoring 195



outline DisplayOption Specifies display options for the trace-route message.
Multiple display options can be specified using a comma as
a separator.

If no values are supplied the following is displayed:

v The application name

v The type of each operation

v Any operation specific parameters

Possible values for DisplayOption are:

activity All non-PCF group parameters in Activity PCF
groups are displayed.

identifiers
Values with parameter identifiers
MQBACF_MSG_ID or MQBACF_CORREL_ID are
displayed. This overrides msgdelta.

message
All non-PCF group parameters in Message PCF
groups are displayed. When this value is specified,
you cannot specify msgdelta.

msgdelta
All non-PCF group parameters in Message PCF
groups, that have changed since the last operation,
are displayed. When this value is specified, you
cannot specify message.

operation
All non-PCF group parameters in Operation PCF
groups are displayed.

traceroute
All non-PCF group parameters in TraceRoute PCF
groups are displayed.

If you do not specify this parameter, a summary of the message route is
displayed.

Displaying additional information

As a trace-route message is routed through a queue manager network, user-written
applications can record additional information by writing one or more additional
PCF parameters to the message data of the trace-route message or to the message
data of an activity report. For the WebSphere MQ display route application to
display additional information in a readable form it must be recorded in a specific
format detailed in “Recording additional information” on page 184.

Examples

The following examples show how you can use the WebSphere MQ display route
application. In each example, there are two queue managers (QM1 and QM2) that
are inter-connected by two channels (QM2.TO.QM1 and QM1.TO.QM2).

Example 1 - Requesting activity reports

In this example the WebSphere MQ display route application connects to queue
manager, QM1, and is used to generate and deliver a trace-route message to the

196 WebSphere MQ: Monitoring WebSphere MQ



target queue, TARGET.Q, on remote queue manager, QM2. The necessary report
option is specified so that activity reports are requested as the trace-route reply
message is routed. On arrival at the target queue the trace-route message is
discarded. Activity information returned to the WebSphere MQ display route
application using activity reports is put in order and displayed.

v The ACTIVREC attribute of each queue manager (QM1 and QM2) is set to MSG.
v The following command is issued:

dspmqrte -m QM1 -q TARG.AT.QM2 -rq ACTIV.REPLY.Q

QM1 is the name of the queue manager to which the WebSphere MQ display
route application connects, TARG.AT.QM2 is the name of the target queue, and
ACTIV.REPLY.Q is the name of the queue to which it is requested that all
responses to the trace-route message are sent.
Default values are assumed for all options that are not specified, but note in
particular the -f option (the trace-route message is forwarded only to a queue
manager that honors the Deliver parameter of the TraceRoute PCF group), the -d
option (on arrival, the trace-route message is not put on the target queue), the
-ro option (MQRO_ACTIVITY and MQRO_DISCARD_MSG report options are
specified), and the -t option (medium detail level activity is recorded).

v DSPMQRTE generates the trace-route message and puts it on the remote queue
TARG.AT.QM2.

v DSPMQRTE then looks at the value of the ACTIVREC attribute of queue
manager QM1. The value is MSG, therefore DSPMQRTE generates an activity
report and puts it on the reply queue ACTIV.REPLY.Q.

QM1 QM2

M
C
A

M
C
A

M
C
A

M
C
A

QREMOTE:
TARG.AT.QM2

QLOCAL:
TARGET.Q

QM2.TO.QM1

QM1.TO.QM2

DSPMQRTE QLOCAL:
ACTIV.REPLY.Q

XMITQ:
QM1

XMITQ:
QM2

TR

TR Trace-route message generated

AR

AR Activity report generated

Put

QREMOTE:
QM1

Figure 9. Requesting activity reports, Diagram 1

Chapter 3. Message monitoring 197



v The sending message channel agent (MCA) gets the trace-route message from
the transmission queue. The message is a trace-route message, therefore the
MCA begins to record the activity information.

v The ACTIVREC attribute of the queue manager (QM1) is MSG, and the
MQRO_ACTIVITY option is specified in the Report field of the message
descriptor, therefore the MCA will later generate an activity report. The
RecordedActivities parameter value in the TraceRoute PCF group is incremented
by 1.

v The MCA checks that the MaxActivities value in the TraceRoute PCF group has
not been exceeded.

v Before the message is forwarded to QM2 the MCA follows the algorithm that is
described in Forwarding (points 1 on page 181, 4 on page 182 and 5 on page
182) and the MCA chooses to send the message.

v The MCA then generates an activity report and puts it on the reply queue
(ACTIV.REPLY.Q).

QM1 QM2

M
C
A

M
C
A

M
C
A

M
C
A

QREMOTE:
TARG.AT.QM2

QLOCAL:
TARGET.Q

QM2.TO.QM1

QM1.TO.QM2

DSPMQRTE XMITQ:
QM1

XMITQ:
QM2

AR

AR Activity report generated

Existing trace-route message

Get Send

QREMOTE:
QM1

QLOCAL:
ACTIV.REPLY.Q

TR

TR

Figure 10. Requesting activity reports, Diagram 2

198 WebSphere MQ: Monitoring WebSphere MQ



v The receiving MCA receives the trace-route message from the channel. The
message is a trace-route message, therefore the MCA begins to record the
information about the activity.

v If the queue manager that the trace-route message has come from is Version 5.3.1
or earlier, the MCA increments the DiscontinuityCount parameter of the
TraceRoute PCF by 1. This is not the case here.

v The ACTIVREC attribute of the queue manager (QM2) is MSG, and the
MQRO_ACTIVITY option is specified, therefore the MCA will generate an
activity report. The RecordedActivities parameter value is incremented by 1.

v The target queue is a local queue, therefore the message is discarded with
feedback MQFB_NOT_DELIVERED, in accordance with the Deliver parameter
value in the TraceRoute PCF group.

v The MCA then generates the final activity report and puts it on the reply queue.
This resolves to the transmission queue that is associated with queue manager
QM1 and the activity report is returned to queue manager QM1
(ACTIV.REPLY.Q).

QM1 QM2

M
C
A

M
C
A

M
C
A

M
C
A

QREMOTE:
TARG.AT.QM2

QREMOTE:
QM1

QLOCAL:
TARGET.Q

QM2.TO.QM1

QM1.TO.QM2

DSPMQRTE XMITQ:
QM1

XMITQ:
QM2

AR

AR Activity report generated

Existing trace-route message

Receive Discard

QLOCAL:
ACTIV.REPLY.Q

TR

TR

Figure 11. Requesting activity reports, Diagram 3

Chapter 3. Message monitoring 199



v Meanwhile, DSPMQRTE has been continually performing MQGETs on the reply
queue (ACTIV.REPLY.Q), waiting for activity reports. It will wait for up to 120
seconds (60 seconds longer than the expiry time of the trace-route message)
since -w was not specified when DSPMQRTE was started.

v DSPMQRTE gets the 3 activity reports off the reply queue.
v The activity reports are ordered using the RecordedActivities,

UnrecordedActivities, and DiscontinuityCount parameters in the TraceRoute PCF
group for each of the activities. The only value that is non-zero in this example
is RecordedActivities, therefore this is the only parameter that is actually used.

v The program ends as soon as the discard operation is displayed. Even though
the final operation was a discard, it is treated as though a put took place
because the feedback is MQFB_NOT_DELIVERED.
The output that is displayed follows:

Example 2 - Requesting a trace-route reply message

In this example the WebSphere MQ display route application connects to queue
manager, QM1, and is used to generate and deliver a trace-route message to the
target queue, TARGET.Q, on remote queue manager, QM2. The necessary option is
specified so that activity information is accumulated in the trace-route message. On
arrival at the target queue a trace-route reply message is requested, and the
trace-route message is discarded.

QM1 QM2

M
C
A

M
C
A

M
C
A

M
C
A

QREMOTE:
TARG.AT.QM2

QREMOTE:
QM1

QLOCAL:
TARGET.Q

QM2.TO.QM1

QM1.TO.QM2

DSPMQRTE XMITQ:
QM1

XMITQ:
QM2

QLOCAL:
ACTIV.REPLY.Q

Existing activity reportsAR

AR

Figure 12. Requesting activity reports, Diagram 4

AMQ8653: DSPMQRTE command started with options '-m QM1 -q TARG.AT.QM2
-rq ACTIV.REPLY.Q'.
AMQ8659: DSPMQRTE command successfully put a message on queue 'QM2',
queue manager 'QM1'.
AMQ8674: DSPMQRTE command is now waiting for information to display.
AMQ8666: Queue 'QM2' on queue manager 'QM1'.
AMQ8666: Queue 'TARGET.Q' on queue manager 'QM2'.
AMQ8652: DSPMQRTE command has finished.

200 WebSphere MQ: Monitoring WebSphere MQ



v The ROUTEREC attribute of each queue manager (QM1 and QM2) is set to
MSG.

v The following command is issued:
dspmqrte -m QM1 -q TARG.AT.QM2 -rq TR.REPLY.Q -ac -ar -ro discard

QM1 is the name of the queue manager to which the WebSphere MQ display
route application connects, TARG.AT.QM2 is the name of the target queue, and
ACTIV.REPLY.Q is the name of the queue to which it is requested that all
responses to the trace-route message are sent. The -ac option specifies that
activity information is accumulated in the trace-route message, the -ar option
specifies that all accumulated activity is sent to the reply-to queue that is
specified by the -rq option (that is, TR.REPLY.Q). The -ro option specifies that
report option MQRO_DISCARD_MSG is set which means that activity reports
are not generated in this example.

v DSPMQRTE accumulates activity information in the trace-route message before
the message is put on the target route. The queue manager attribute ROUTEREC
must not be DISABLED for this to happen.

QM1 QM2

M
C
A

M
C
A

M
C
A

M
C
A

QREMOTE:
TARG.AT.QM2

QLOCAL:
TARGET.Q

QM2.TO.QM1

QM1.TO.QM2

DSPMQRTE QLOCAL:
TR.REPLY.Q

XMITQ:
QM1

XMITQ:
QM2

TR Put

QREMOTE:
QM1

TR Trace-route message generated

Accumulated activity info

Figure 13. Requesting a trace-route reply message, Diagram 1

Chapter 3. Message monitoring 201



v The message is a trace-route message, therefore the sending MCA begins to
record information about the activity.

v The queue manager attribute ROUTEREC on QM1 is not DISABLED, therefore
the MCA accumulates the activity information within the message, before the
message is forwarded to queue manager QM2.

v The message is a trace-route message, therefore the receiving MCA begins to
record information about the activity.

TR Existing trace-route message

Accumulated activity info

QM1 QM2

M
C
A

M
C
A

M
C
A

M
C
A

QREMOTE:
TARG.AT.QM2

QLOCAL:
TARGET.Q

QM2.TO.QM1

QM1.TO.QM2

DSPMQRTE XMITQ:
QM1

XMITQ:
QM2

TR

QREMOTE:
QM1

Send

Get

QLOCAL:
TR.REPLY.Q

Figure 14. Requesting a trace-route reply message, Diagram 2

QM1 QM2

M
C
A

M
C
A

QREMOTE:
TARG.AT.QM2

QLOCAL:
TARGET.Q

QM2.TO.QM1

DSPMQRTE XMITQ:
QM1

XMITQ:
QM2

TR

RM

RM Trace-route reply message generated

QREMOTE:
QM1

M
C
A

M
C
A

QM1.TO.QM2

Receive Discard

TR Existing trace-route message

Accumulated activity info

QLOCAL:
TR.REPLY.Q

Figure 15. Requesting a trace-route reply message, Diagram 3

202 WebSphere MQ: Monitoring WebSphere MQ



v The queue manager attribute ROUTEREC on QM2 is not DISABLED, therefore
the MCA accumulates the information within the message.

v The target queue is a local queue, therefore the message is discarded with
feedback MQFB_NOT_DELIVERED, in accordance with the Deliver parameter
value in the TraceRoute PCF group.

v This is the last activity that will take place on the message, and because the
queue manager attribute ROUTEREC on QM1 is not DISABLED, the MCA
generates a trace-route reply message in accordance with the Accumulate value.
The value of ROUTEREC is MSG, therefore the reply message is put on the
reply queue. The reply message contains all the accumulated activity
information from the trace-route message.

v Meanwhile DSPMQRTE is waiting for the trace-route reply message to return to
the reply queue. When it returns, DSPMQRTE parses each activity that it
contains and prints it out. The final operation is a discard operation.
DSPMQRTE ends after it has been printed.

The output that is displayed follows:

Example 3 - Delivering activity reports to the system queue

This example is the same as “Example 1 - Requesting activity reports” on page 196,
except that QM2 now has the value of the ACTIVREC queue manage attribute set
to QUEUE. Channel QM1.TO.QM2 must have been restarted for this to take effect.

This example demonstrates how to detect when activity reports are delivered to
queues other than the reply-to queue. Once detected, the WebSphere MQ display

QM1 QM2

M
C
A

M
C
A

QREMOTE:
TARG.AT.QM2

QLOCAL:
TARGET.Q

QM2.TO.QM1

DSPMQRTE QLOCAL:
TR.REPLY.Q

XMITQ:
QM1

XMITQ:
QM2

QREMOTE:
QM1

M
C
A

M
C
A

QM1.TO.QM2

Existing trace-route reply messageRM

RM

Figure 16. Requesting a trace-route reply message, Diagram 4

AMQ8653: DSPMQRTE command started with options '-m QM1 -q TARG.AT.QM2 -rq
TR.REPLY.Q'.
AMQ8659: DSPMQRTE command successfully put a message on queue 'QM2', queue
manager 'QM1'.
AMQ8674: DSPMQRTE command is now waiting for information to display.
AMQ8666: Queue 'QM2' on queue manager 'QM1'.
AMQ8666: Queue 'TARGET.Q' on queue manager 'QM2'.
AMQ8652: DSPMQRTE command has finished.

Chapter 3. Message monitoring 203



route application is used to read activity reports from another queue.

v The message is a trace-route message, therefore the receiving MCA begins to
record information about the activity.

v The value of the ACTIVREC queue manager attribute on QM2 is now QUEUE,
therefore the MCA generates an activity report, but puts it on the system queue
(SYSTEM.ADMIN.ACTIVITY.QUEUE) and not on the reply queue
(ACTIV.REPLY.Q).

QM1 QM2

M
C
A

M
C
A

M
C
A

M
C
A

QREMOTE:
TARG.AT.QM2

QREMOTE:
QM1

QLOCAL:
TARGET.Q

QM2.TO.QM1

QM1.TO.QM2

DSPMQRTE QLOCAL:
ACTIV.REPLY.Q

XMITQ:
QM1

XMITQ:
QM2

AR

AR Activity report generated

Receive Discard

QLOCAL:
SYSTEM.
ADMIN.

ACTIVITY.
QUEUE

Existing trace-route messageTR

TR

Figure 17. Delivering activity reports to the system queue, Diagram 1

QM1 QM2

M
C
A

M
C
A

M
C
A

M
C
A

QREMOTE:
TARG.AT.QM2

QREMOTE:
QM1

QLOCAL:
TARGET.Q

QM2.TO.QM1

QM1.TO.QM2

DSPMQRTEQLOCAL:
ACTIVE.REPLY.Q

XMITQ:
QM1

XMITQ:
QM2

QLOCAL:
SYSTEM.
ADMIN.

ACTIVITY.
QUEUE

AR

AR Existing activity report

Figure 18. Delivering activity reports to the system queue, Diagram 2

204 WebSphere MQ: Monitoring WebSphere MQ



v Meanwhile DSPMQRTE has been waiting for activity reports to arrive on
ACTIV.REPLY.Q. Only two arrive. DSPMQRTE continues waiting for the whole
120 seconds because it seems that the route is not yet complete.

The output that is displayed follows:

AMQ8653: DSPMQRTE command started with options '-m QM1 -q TARG.AT.QM2 -rq
ACTIV.REPLY.Q -v outline identifiers'.

AMQ8659: DSPMQRTE command successfully put a message on queue 'QM2', queue
manager 'QM1'.

AMQ8674: DSPMQRTE command is now waiting for information to display.
--------------------------------------------------------------------------------
Activity:
ApplName: 'cann\output\bin\dspmqrte.exe'

Operation:
OperationType: Put

Message:

MQMD:
MsgId: X'414D51204C4152474551202020202020A3C9154220001502'
CorrelId: X'414D51204C4152474551202020202020A3C9154220001503'

QMgrName: 'QM1 '
QName: 'TARG.AT.QM2 '
ResolvedQName: 'QM2 '
RemoteQName: 'TARGET.Q '
RemoteQMgrName: 'QM2 '

--------------------------------------------------------------------------------
Activity:
ApplName: 'cann\output\bin\runmqchl.EXE'

Operation:
OperationType: Get

Message:

MQMD:
MsgId: X'414D51204C4152474551202020202020A3C9154220001505'
CorrelId: X'414D51204C4152474551202020202020A3C9154220001502'

EmbeddedMQMD:
MsgId: X'414D51204C4152474551202020202020A3C9154220001502'
CorrelId: X'414D51204C4152474551202020202020A3C9154220001503'

QMgrName: 'QM1 '
QName: 'QM2 '
ResolvedQName: 'QM2 '

Operation:
OperationType: Send

Message:

MQMD:
MsgId: X'414D51204C4152474551202020202020A3C9154220001502'
CorrelId: X'414D51204C4152474551202020202020A3C9154220001503'

QMgrName: 'QM1 '
RemoteQMgrName: 'QM2 '
ChannelName: 'QM1.TO.QM2 '
ChannelType: Sender
XmitQName: 'QM2 '

--------------------------------------------------------------------------------
AMQ8652: DSPMQRTE command has finished.

Chapter 3. Message monitoring 205



v The last operation that DSPMQRTE observed was a Send, therefore the channel
is running. Now we must work out why we did not receive any more activity
reports from queue manager QM2 (as identified in RemoteQMgrName).

v To check whether there is any activity information on the system queue, start
DSPMQRTE on QM2 to try and collect more activity reports. Use the following
command to start DSPMQRTE:
dspmqrte -m QM2 -q SYSTEM.ADMIN.ACTIVITY.QUEUE

-i 414D51204C4152474551202020202020A3C9154220001502 -v outline

where 414D51204C4152474551202020202020A3C9154220001502 is the MsgId of
the trace-route message that was put.

v DSPMQRTE then performs a sequence of MQGETs again, waiting for responses
on the system activity queue related to the trace-route message with the
specified identifier.

v DSPMQRTE gets one more activity report, which it displays. DSPMQRTE
determines that the preceding activity reports are missing, and displays a
message saying this. We already know about this part of the route, however.

The output that is displayed follows:

v This activity report indicates that the route information is now complete. No
problem occurred.

v Just because route information is unavailable, or because DSPMQRTE cannot
display all of the route, this does not mean that the message was not delivered.
For example, the queue manager attributes of different queue managers might
be different, or a reply queue might not be defined to get the response back. See
“Circumstances where activity information is not acquired” on page 170.

AMQ8653: DSPMQRTE command started with options '-m QM2
-q SYSTEM.ADMIN.ACTIVITY.QUEUE
-i 414D51204C4152474551202020202020A3C915420001502 -v outline'.

AMQ8674: DSPMQRTE command is now waiting for information to display.
--------------------------------------------------------------------------------

Activity:
Activity information unavailable.

--------------------------------------------------------------------------------
Activity:
ApplName: 'cann\output\bin\AMQRMPPA.EXE'

Operation:
OperationType: Receive
QMgrName: 'QM2 '
RemoteQMgrName: 'QM1 '
ChannelName: 'QM1.TO.QM2 '
ChannelType: Receiver

Operation:
OperationType: Discard
QMgrName: 'QM2 '
QName: 'TARGET.Q '
Feedback: NotDelivered

--------------------------------------------------------------------------------
AMQ8652: DSPMQRTE command has finished.

206 WebSphere MQ: Monitoring WebSphere MQ



Example 4 - Diagnosing a channel problem

In this example the WebSphere MQ display route application connects to queue
manager, QM1, generates a trace-route message, then attempts to deliver it to the
target queue, TARGET.Q, on remote queue manager, QM2. In this example the
trace-route message does not reach the target queue. The available activity report is
used to diagnose the problem.

v In this example, the channel QM1.TO.QM2 is not running.
v DSPMQRTE puts a trace-route message (as in example 1) to the target queue

and generates an activity report.
v There is no MCA to get the message from the transmission queue (QM2),

therefore this is the only activity report that DSPMQRTE gets back from the
reply queue. This time the fact that the route is not complete does indicate a
problem. The administrator can use the transmission queue found in
ResolvedQName to investigate why the transmission queue is not being
serviced.

The output that is displayed follows:

QM1 QM2

M
C
A

M
C
A

QREMOTE:
TARG.AT.QM2

QLOCAL:
TARGET.Q

QM2.TO.QM1

DSPMQRTE QLOCAL:
ACTIV.REPLY.Q

XMITQ:
QM1

XMITQ:
QM2

TR

TR Trace-route message generated

AR

AR Activity report generated

QREMOTE:
QM1

Put

Figure 19. Diagnosing a channel problem

Chapter 3. Message monitoring 207



Activity report reference

This chapter provides an overview of the activity report message format. It
describes the information returned in activity reports, including returned
parameters.

Activity report format
Activity reports are standard WebSphere MQ report messages containing a
message descriptor and message data.

Activity reports are PCF messages generated by applications that have performed
an activity on behalf of a message as it has been routed through a queue manager
network. For information on activity recording see, “Activity recording” on page
165.

Activity reports contain the following:

A message descriptor
An MQMD structure

Message data
Consists of the following:
v An embedded PCF header (MQEPH).
v Activity report message data.

Activity report message data consists of the Activity PCF group and, if generated
for a trace-route message, the TraceRoute PCF group.

Table 17 shows the structure of these reports, including parameters that are only
returned under certain conditions.

Table 17. Activity report format

Message descriptor Message data

AMQ8653: DSPMQRTE command started with options '-m QM1 -q TARG.AT.QM2
-rq ACTIV.REPLY.Q -v outline'.

AMQ8659: DSPMQRTE command successfully put a message on queue 'QM2',
queue manager 'QM1'.

AMQ8674: DSPMQRTE command is now waiting for information to display.
--------------------------------------------------------------------------------
Activity:
ApplName: 'cann\output\bin\dspmqrte.exe'

Operation:
OperationType: Put
QMgrName: 'QM1 '
QName: 'TARG.AT.QM2 '
ResolvedQName: 'QM2 '
RemoteQName: 'TARGET.Q '
RemoteQMgrName: 'QM2 '

--------------------------------------------------------------------------------
AMQ8652: DSPMQRTE command has finished.

208 WebSphere MQ: Monitoring WebSphere MQ



Table 17. Activity report format (continued)

MQMD structure Embedded PCF header
MQEPH structure

Activity report message data

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback
Encoding
Coded character set ID
Message format
Priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name
Put date
Put time
Application origin data
Group identifier
Message sequence number
Offset
Message flags
Original length

Structure identifier
Structure version
Structure length
Encoding
Coded character set ID
Message format
Flags
PCF header (MQCFH)

Structure type
Structure length
Structure version
Command identifier
Message sequence number
Control options
Completion code
Reason code
Parameter count

Activity
Activity application name
Activity application type
Activity description
Operation

Operation type
Operation date
Operation time
Message

Message length
MQMD 8

EmbeddedMQMD
Queue manager name
Queue sharing group name
Queue name 1 2 3 7

Resolved queue name 1 3 7

Remote queue name 3 7

Remote queue manager name 2 3 4 5 7

Subscription level 9

Subscription identifier 9

Feedback 2 10

Channel name 4 5

Channel type 4 5

Transmission queue name 5

TraceRoute 6

Detail
Recorded activities
Unrecorded activities
Discontinuity count
Max activities
Accumulate
Deliver

Note:

1. Returned for Get and Browse operations.

2. Returned for Discard operations.

3. Returned for Put, Put Reply, and Put Report operations.

4. Returned for Receive operations.

5. Returned for Send operations.

6. Returned for trace-route messages.

7. Not returned for Put operations to a topic, contained within Publish activities.

8. Not returned for Excluded Publish operations. For Publish and Discarded Publish operations, returned
containing a subset of parameters.

9. Returned for Publish, Discarded Publish, and Excluded Publish operations.

10. Returned for Discarded Publish and Excluded Publish operations.

Activity report MQMD (message descriptor)

For an activity report, the MQMD structure contains these values:

Chapter 3. Message monitoring 209

|

|
|

|

|



StrucId

Description: Structure identifier.
Datatype: MQCHAR4.
Value: MQMD_STRUC_ID.

Version

Description: Structure version number.
Datatype: MQLONG.
Values: Copied from the original message descriptor. Possible values are:

MQMD_VERSION_1
Version-1 message descriptor structure, supported in all
environments.

MQMD_VERSION_2
Version-2 message descriptor structure, supported on AIX,
HP-UX, z/OS, HP OpenVMS, i5/OS, Solaris, Linux, Windows,
and all WebSphere MQ clients connected to these systems.

Report

Description: Options for further report messages.
Datatype: MQLONG.
Value: If MQRO_PASS_DISCARD_AND_EXPIRY or MQRO_DISCARD_MSG

were specified in the Report field of the original message descriptor:

MQRO_DISCARD
The report is discarded if it cannot be delivered to the
destination queue.

Otherwise:

MQRO_NONE
No reports required.

MsgType

Description: Indicates type of message.
Datatype: MQLONG.
Value: MQMT_REPORT.

Expiry

Description: Report message lifetime.
Datatype: MQLONG.
Value: If the Report field in the original message descriptor is specified as

MQRO_PASS_DISCARD_AND_EXPIRY, the remaining expiry time from
the original message is used.

Otherwise:

MQEI_UNLIMITED
The report does not have an expiry time.

Feedback

Description: Feedback or reason code.
Datatype: MQLONG.

210 WebSphere MQ: Monitoring WebSphere MQ



Value:
MQFB_ACTIVITY

Activity report.

Encoding

Description: Numeric encoding of report message data.
Datatype: MQLONG.
Value: MQENC_NATIVE.

CodedCharSetId

Description: Character set identifier of report message data.
Datatype: MQLONG.
Value: Set as appropriate.

Format

Description: Format name of report message data
Datatype: MQCHAR8.
Value:

MQFMT_EMBEDDED_PCF
Embedded PCF message.

Priority

Description: Report message priority.
Datatype: MQLONG.
Value: Copied from the original message descriptor.

Persistence

Description: Report message persistence.
Datatype: MQLONG.
Value: Copied from the original message descriptor.

MsgId

Description: Message identifier.
Datatype: MQBYTE24.
Values: If the Report field in the original message descriptor is specified as

MQRO_PASS_MSG_ID, the message identifier from the original message
is used.

Otherwise, a unique value will be generated by the queue manager.

CorrelId

Description: Correlation identifier.
Datatype: MQBYTE24.
Value: If the Report field in the original message descriptor is specified as

MQRO_PASS_CORREL_ID, the correlation identifier from the original
message is used.

Otherwise, the message identifier is copied from the original message.

Chapter 3. Message monitoring 211



BackoutCount

Description: Backout counter.
Datatype: MQLONG.
Value: 0.

ReplyToQ

Description: Name of reply queue.
Datatype: MQCHAR48.
Values: Blank.

ReplyToQMgr

Description: Name of reply queue manager.
Datatype: MQCHAR48.
Value: The queue manager name that generated the report message.

UserIdentifier

Description: The user identifier of the application that generated the report message.
Datatype: MQCHAR12.
Value: Copied from the original message descriptor.

AccountingToken

Description: Accounting token that allows an application to charge for work done as
a result of the message.

Datatype: MQBYTE32.
Value: Copied from the original message descriptor.

ApplIdentityData

Description: Application data relating to identity.
Datatype: MQCHAR32.
Values: Copied from the original message descriptor.

PutApplType

Description: Type of application that put the report message.
Datatype: MQLONG.
Value:

MQAT_QMGR
Queue manager generated message.

PutApplName

Description: Name of application that put the report message.
Datatype: MQCHAR28.
Value: Either the first 28 bytes of the queue manager name, or the name of the

MCA that generated the report message.

PutDate

Description: Date when message was put.
Datatype: MQCHAR8.

212 WebSphere MQ: Monitoring WebSphere MQ



Value: As generated by the queue manager.

PutTime

Description: Time when message was put.
Datatype: MQCHAR8.
Value: As generated by the queue manager.

ApplOriginData

Description: Application data relating to origin.
Datatype: MQCHAR4.
Value: Blank.

If Version is MQMD_VERSION_2, the following additional fields are present:

GroupId

Description: Identifies to which message group or logical message the physical
message belongs.

Datatype: MQBYTE24.
Value: Copied from the original message descriptor.

MsgSeqNumber

Description: Sequence number of logical message within group.
Datatype: MQLONG.
Value: Copied from the original message descriptor.

Offset

Description: Offset of data in physical message from start of logical message.
Datatype: MQLONG.
Value: Copied from the original message descriptor.

MsgFlags

Description: Message flags that specify attributes of the message or control its
processing.

Datatype: MQLONG.
Value: Copied from the original message descriptor.

OriginalLength

Description: Length of original message.
Datatype: MQLONG.
Value: Copied from the original message descriptor.

Activity report MQEPH (Embedded PCF header)

The MQEPH structure contains a description of both the PCF information that
accompanies the message data of an activity report, and the application message

Chapter 3. Message monitoring 213



data that follows it. For a full description of the MQEPH structure, including a
description of the elementary datatype of each parameter, see “MQEPH -
Embedded PCF header” on page 332.

For an activity report, the MQEPH structure contains the following values:

StrucId

Description: Structure identifier.
Datatype: MQCHAR4.
Value: MQEPH_STRUC_ID.

Version

Description: Structure version number.
Datatype: MQLONG.
Values: MQEPH_VERSION_1.

StrucLength

Description: Structure length.
Datatype: MQLONG.
Value: Total length of the structure including the PCF parameter structures that

follow it.

Encoding

Description: Numeric encoding of the message data that follows the last PCF
parameter structure.

Datatype: MQLONG.
Value: If any data from the original application message data is included in the

report message, the value will be copied from the Encoding field of the
original message descriptor.

Otherwise, 0.

CodedCharSetId

Description: Character set identifier of the message data that follows the last PCF
parameter structure.

Datatype: MQLONG.
Value: If any data from the original application message data is included in the

report message, the value will be copied from the CodedCharSetId field of
the original message descriptor.

Otherwise, MQCCSI_UNDEFINED.

Format

Description: Format name of message data that follows the last PCF parameter
structure.

Datatype: MQCHAR8.
Value: If any data from the original application message data is included in the

report message, the value will be copied from the Format field of the
original message descriptor.

Otherwise, MQFMT_NONE.

214 WebSphere MQ: Monitoring WebSphere MQ



Flags

Description: Flags that specify attributes of the structure or control its processing.
Datatype: MQLONG.
Value:

MQEPH_CCSID_EMBEDDED
Specifies that the character set of the parameters containing
character data is specified individually within the
CodedCharSetId field in each structure.

PCFHeader

Description: Programmable Command Format Header
Datatype: MQCFH.
Value: See “Activity report MQCFH (PCF header).”

Activity report MQCFH (PCF header)

The MQCFH structure describes the PCF information available in the activity
report. For a full description of MQCFH, including a description of the elementary
datatype of each parameter, see “MQCFH - PCF header” on page 316.

For an activity report, the MQCFH structure contains the following values:

Type

Description: Structure type that identifies the content of the report message.
Datatype: MQLONG.
Value:

MQCFT_REPORT
Message is a report.

StrucLength

Description: Structure length.
Datatype: MQLONG.
Value:

MQCFH_STRUC_LENGTH
Length in bytes of MQCFH structure.

Version

Description: Structure version number.
Datatype: MQLONG.
Values: MQCFH_VERSION_3

Command

Description: Command identifier. This identifies the category of the message.
Datatype: MQLONG.
Values:

MQCMD_ACTIVITY_MSG
Message activity.

MsgSeqNumber

Description: Message sequence number. This is the sequence number of the message
within a group of related messages.

Chapter 3. Message monitoring 215



Datatype: MQLONG.
Values: 1.

Control

Description: Control options.
Datatype: MQLONG.
Values: MQCFC_LAST.

CompCode

Description: Completion code.
Datatype: MQLONG.
Values: MQCC_OK.

Reason

Description: Reason code qualifying completion code.
Datatype: MQLONG.
Values: MQRC_NONE.

ParameterCount

Description: Count of parameter structures. This is the number of parameter
structures that follow the MQCFH structure. A group structure
(MQCFGR), and its included parameter structures, are counted as one
structure only.

Datatype: MQLONG.
Values: 1 or greater.

Activity report message data
Activity report message data contains the Activity PCF group, which contains the
parameters listed here.

Activity report message data consists of the Activity PCF group and, if generated
for a trace-route message, the TraceRoute PCF group. The Activity PCF group is
detailed in this topic. For details of the TraceRoute PCF group, see “Trace-route
message data” on page 240.

There are certain parameters, not listed here, that are returned only when specific
operations have been performed. For details of these parameters, see
“Operation-specific activity report message data” on page 227.

For an activity report, the activity report message data contains the following
parameters:

Activity

Description: Grouped parameters describing the activity.
Identifier: MQGACF_ACTIVITY.
Datatype: MQCFGR.
Included in PCF
group:

None.

216 WebSphere MQ: Monitoring WebSphere MQ



Parameters in
PCF group:

ActivityApplName

ActivityApplType

ActivityDescription

Operation

TraceRoute
Returned: Always.

ActivityApplName

Description: Name of application that performed the activity.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Included in PCF
group:

Activity.

Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ActivityApplType

Description: Type of application that performed the activity.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Included in PCF
group:

Activity.

Returned: Always.

ActivityDescription

Description: Description of activity performed by the application.
Identifier: MQCACF_ACTIVITY_DESCRIPTION.
Datatype: MQCFST.
Included in PCF
group:

Activity.

Maximum length: 64
Returned: Always.

Operation

Description: Grouped parameters describing an operation of the activity.
Identifier: MQGACF_OPERATION.
Datatype: MQCFGR.
Included in PCF
group:

Activity.

Parameters in
PCF group:

OperationType

OperationDate

OperationTime

Message

QMgrName

QSGName

Note: Additional parameters are returned in this group depending on
the operation type. For information on the additional parameters, see
“Operation-specific activity report message data” on page 227.

Returned: One Operation PCF group per operation in the activity.

Chapter 3. Message monitoring 217



OperationType

Description: Type of operation performed.
Identifier: MQIACF_OPERATION_TYPE.
Datatype: MQCFIN.
Included in PCF
group:

Operation.

Values: MQOPER_*.
Returned: Always.

OperationDate

Description: Date when the operation was performed.
Identifier: MQCACF_OPERATION_DATE.
Datatype: MQCFST.
Included in PCF
group:

Operation.

Maximum length: MQ_DATE_LENGTH.
Returned: Always.

OperationTime

Description: Time when the operation was performed.
Identifier: MQCACF_OPERATION_TIME.
Datatype: MQCFST.
Included in PCF
group:

Operation.

Maximum length: MQ_TIME_LENGTH.
Returned: Always.

Message

Description: Grouped parameters describing the message that caused the activity.
Identifier: MQGACF_MESSAGE.
Datatype: MQCFGR.
Included in PCF
group:

Operation.

Parameters in
group:

MsgLength

MQMD

EmbeddedMQMD
Returned: Always, except for Excluded Publish operations.

MsgLength

Description: Length of the message that caused the activity, before the activity
occurred.

Identifier: MQIACF_MSG_LENGTH.
Datatype: MQCFIN.
Included in PCF
group:

Message.

Returned: Always.

218 WebSphere MQ: Monitoring WebSphere MQ

|



MQMD

Description: Grouped parameters related to the message descriptor of the message
that caused the activity.

Identifier: MQGACF_MQMD.
Datatype: MQCFGR.
Included in PCF
group:

Message.

Parameters in
group:

StrucId

Version

Report

MsgType

Expiry

Feedback

Encoding

CodedCharSetId

Format

Priority

Persistence

MsgId

CorrelId

BackoutCount

ReplyToQ

ReplyToQMgr

UserIdentifier

AccountingToken

ApplIdentityData

PutApplType

PutApplName

PutDate

PutTime

ApplOriginData

GroupId

MsgSeqNumber

Offset

MsgFlags

OriginalLength
Returned: Always, except for Excluded Publish operations.

EmbeddedMQMD

Description: Grouped parameters describing the message descriptor embedded
within a message on a transmission queue.

Identifier: MQGACF_EMBEDDDED_MQMD.
Datatype: MQCFGR.
Included in PCF
group:

Message.

Chapter 3. Message monitoring 219

|



Parameters in
group:

StrucId

Version

Report

MsgType

Expiry

Feedback

Encoding

CodedCharSetId

Format

Priority

Persistence

MsgId

CorrelId

BackoutCount

ReplyToQ

ReplyToQMgr

UserIdentifier

AccountingToken

ApplIdentityData

PutApplType

PutApplName

PutDate

PutTime

ApplOriginData

GroupId

MsgSeqNumber

Offset

MsgFlags

OriginalLength
Returned: For Get operations where the queue resolves to a transmission queue.

StrucId

Description: Structure identifier
Identifier: MQCACF_STRUC_ID.
Datatype: MQCFST.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: 4.
Returned: Always, except for Excluded Publish operations and in MQMD for

Publish and Discarded Publish operations.

Version

Description: Structure version number.
Identifier: MQIACF_VERSION.
Datatype: MQCFIN.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for
Publish and Discarded Publish operations.

220 WebSphere MQ: Monitoring WebSphere MQ

|
|

|
|



Report

Description: Options for report messages.
Identifier: MQIACF_REPORT.
Datatype: MQCFIN.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for
Publish and Discarded Publish operations.

MsgType

Description: Indicates type of message.
Identifier: MQIACF_MSG_TYPE.
Datatype: MQCFIN.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for
Publish and Discarded Publish operations.

Expiry

Description: Message lifetime.
Identifier: MQIACF_EXPIRY.
Datatype: MQCFIN.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for
Publish and Discarded Publish operations.

Feedback

Description: Feedback or reason code.
Identifier: MQIACF_FEEDBACK.
Datatype: MQCFIN.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for
Publish and Discarded Publish operations.

Encoding

Description: Numeric encoding of message data.
Identifier: MQIACF_ENCODING.
Datatype: MQCFIN.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for
Publish and Discarded Publish operations.

CodedCharSetId

Description: Character set identifier of message data.
Identifier: MQIA_CODED_CHAR_SET_ID.
Datatype: MQCFIN.

Chapter 3. Message monitoring 221

|
|

|
|

|
|

|
|

|
|



Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for
Publish and Discarded Publish operations.

Format

Description: Format name of message data
Identifier: MQCACH_FORMAT_NAME.
Datatype: MQCFST.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_FORMAT_LENGTH.
Returned: Always, except for Excluded Publish operations.

Priority

Description: Message priority.
Identifier: MQIACF_PRIORITY.
Datatype: MQCFIN.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations.

Persistence

Description: Message persistence.
Identifier: MQIACF_PERSISTENCE.
Datatype: MQCFIN.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations.

MsgId

Description: Message identifier.
Identifier: MQBACF_MSG_ID.
Datatype: MQCFBS.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_MSG_ID_LENGTH.
Returned: Always, except for Excluded Publish operations.

CorrelId

Description: Correlation identifier.
Identifier: MQBACF_CORREL_ID.
Datatype: MQCFBS.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_CORREL_ID_LENGTH.
Returned: Always, except for Excluded Publish operations.

222 WebSphere MQ: Monitoring WebSphere MQ

|
|

|

|

|

|

|



BackoutCount

Description: Backout counter.
Identifier: MQIACF_BACKOUT_COUNT.
Datatype: MQCFIN.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish operations and in MQMD for
Publish and Discarded Publish operations.

ReplyToQ

Description: Name of reply queue.
Identifier: MQCACF_REPLY_TO_QUEUE.
Datatype: MQCFST.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always, except for Excluded Publish Operations and in MQMD for

Publish and Discarded Publish operations.

ReplyToQMgr

Description: Name of reply queue manager.
Identifier: MQCACF_REPLY_TO_Q_MGR.
Datatype: MQCFST.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always, except for Excluded Publish Operations and in MQMD for

Publish and Discarded Publish Operations.

UserIdentifier

Description: The user identifier of the application that originated the message.
Identifier: MQCACF_USER_IDENTIFIER.
Datatype: MQCFST.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_USER_ID_LENGTH.
Returned: Always, except for Excluded Publish Operations.

AccountingToken

Description: Accounting token that allows an application to charge for work done as
a result of the message.

Identifier: MQBACF_ACCOUNTING_TOKEN.
Datatype: MQCFBS.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_ACCOUNTING_TOKEN_LENGTH.
Returned: Always, except for Excluded Publish Operations.

ApplIdentityData

Description: Application data relating to identity.

Chapter 3. Message monitoring 223

|
|

|
|

|
|

|

|



Identifier: MQCACF_APPL_IDENTITY_DATA.
Datatype: MQCFST.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_APPL_IDENTITY_DATA_LENGTH.
Returned: Always, except for Excluded Publish Operations.

PutApplType

Description: Type of application that put the message.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: Always, except for Excluded Publish Operations and in MQMD for
Publish and Discarded Publish Operations.

PutApplName

Description: Name of application that put the message.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always, except for Excluded Publish Operations and in MQMD for

Publish and Discarded Publish Operations.

PutDate

Description: Date when message was put.
Identifier: MQCACF_PUT_DATE.
Datatype: MQCFST.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_PUT_DATE_LENGTH.
Returned: Always, except for Excluded Publish Operations and in MQMD for

Publish and Discarded Publish Operations.

PutTime

Description: Time when message was put.
Identifier: MQCACF_PUT_TIME.
Datatype: MQCFST.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_PUT_TIME_LENGTH.
Returned: Always, except for Excluded Publish Operations and in MQMD for

Publish and Discarded Publish Operations.

ApplOriginData

Description: Application data relating to origin.
Identifier: MQCACF_APPL_ORIGIN_DATA.
Datatype: MQCFST.

224 WebSphere MQ: Monitoring WebSphere MQ

|

|
|

|
|

|
|

|
|



Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_APPL_ORIGIN_DATA_LENGTH.
Returned: Always, except for Excluded Publish Operations and in MQMD for

Publish and Discarded Publish Operations.

GroupId

Description: Identifies to which message group or logical message the physical
message belongs.

Identifier: MQBACF_GROUP_ID.
Datatype: MQCFBS.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Maximum length: MQ_GROUP_ID_LENGTH.
Returned: If the Version is specified as MQMD_VERSION_2. Not returned in

Excluded Publish Operations and in MQMD for Publish and Discarded
Publish Operations.

MsgSeqNumber

Description: Sequence number of logical message within group.
Identifier: MQIACH_MSG_SEQUENCE_NUMBER.
Datatype: MQCFIN.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: If Version is specified as MQMD_VERSION_2. Not returned in Excluded
Publish Operations and in MQMD for Publish and Discarded Publish
Operations.

Offset

Description: Offset of data in physical message from start of logical message.
Identifier: MQIACF_OFFSET.
Datatype: MQCFIN.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: If Version is specified as MQMD_VERSION_2. Not returned in Excluded
Publish Operations and in MQMD for Publish and Discarded Publish
Operations.

MsgFlags

Description: Message flags that specify attributes of the message or control its
processing.

Identifier: MQIACF_MSG_FLAGS.
Datatype: MQCFIN.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: If Version is specified as MQMD_VERSION_2. Not returned in Excluded
Publish Operations and in MQMD for Publish and Discarded Publish
Operations.

OriginalLength

Description: Length of original message.

Chapter 3. Message monitoring 225

|
|

|
|
|

|
|
|

|
|
|

|
|
|



Identifier: MQIACF_ORIGINAL_LENGTH.
Datatype: MQCFIN.
Included in PCF
group:

MQMD or EmbeddedMQMD.

Returned: If Version is specified as MQMD_VERSION_2. Not returned in Excluded
Publish Operations and in MQMD for Publish and Discarded Publish
Operations.

QMgrName

Description: Name of the queue manager where the activity was performed.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Included in PCF
group:

Operation.

Maximum length: MQ_Q_MGR_NAME_LENGTH
Returned: Always.

QSGName

Description: Name of the queue-sharing group to which the queue manager where
the activity was performed belongs.

Identifier: MQCA_QSG_NAME.
Datatype: MQCFST.
Included in PCF
group:

Operation.

Maximum length: MQ_QSG_NAME_LENGTH
Returned: If the activity was performed on a WebSphere MQ for z/OS queue

manager.

TraceRoute

Description: Grouped parameters specifying attributes of the trace-route message.
Identifier: MQGACF_TRACE_ROUTE.
Datatype: MQCFGR.
Contained in PCF
group:

Activity.

Parameters in
group:

Detail

RecordedActivities

UnrecordedActivities

DiscontinuityCount

MaxActivities

Accumulate

Forward

Deliver

For details of these parameter structures, see “Trace-route message data”
on page 240.

Returned: If the activity was performed on behalf of the trace-route message.

The values of the parameters in the TraceRoute PCF group are those from
the trace-route message at the time the activity report was generated. For
details of the TraceRoute PCF group, see “The TraceRoute PCF group” on
page 178.

226 WebSphere MQ: Monitoring WebSphere MQ

|
|
|



Operation-specific activity report message data

Additional PCF parameters are returned in the PCF group Operation, depending on
the value of the OperationType parameter. For more information on the
OperationType parameter, see OperationType, and for more information on the PCF
group Operation, see Operation.

The additional parameters vary depending on the following operation types:
v “Get/Browse (MQOPER_GET/MQOPER_BROWSE).”
v “Discard (MQOPER_DISCARD).”
v “Publish/Discarded Publish/Excluded Publish

(MQOPER_PUBLISH/MQOPER_DISCARDED_PUBLISH/MQOPER_EXCLUDED_PUBLISH)”
on page 228

v “Put/Put Reply/Put Report
(MQOPER_PUT/MQOPER_PUT_REPLY/MQOPER_PUT_REPORT)” on page
229.

v “Receive (MQOPER_RECEIVE)” on page 231.
v “Send (MQOPER_SEND)” on page 231.

Get/Browse (MQOPER_GET/MQOPER_BROWSE):

The additional activity report message data parameters that are returned in the
PCF group Operation for the Get/Browse (MQOPER_GET/MQOPER_BROWSE)
operation type (a message on a queue was got, or browsed).

QName

Description: The name of the queue that was opened.
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH
Returned: Always.

ResolvedQName

Description: The name that the opened queue resolves to.
Identifier: MQCACF_RESOLVED_Q_NAME.
Datatype: MQCFST.
Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH
Returned: Always.

Discard (MQOPER_DISCARD):

The additional activity report message data parameters that are returned in the
PCF group Operation for the Discard (MQOPER_DISCARD) operation type (a
message was discarded).

Feedback

Description: The reason for the message being discarded.
Identifier: MQIACF_FEEDBACK.

Chapter 3. Message monitoring 227

|
|
|



Datatype: MQCFIN.
Included in PCF
group:

Operation.

Returned: Always.

QName

Description: The name of the queue that was opened.
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH
Included in PCF
group:

Operation.

Returned: If the message was discarded because it was unsuccessfully put to a
queue.

RemoteQMgrName

Description: The name of the queue manager to which the message was destined.
Identifier: MQCA_REMOTE_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH
Included in PCF
group:

Operation.

Returned: If the value of Feedback is MQFB_NOT_FORWARDED.

Publish/Discarded Publish/Excluded Publish (MQOPER_PUBLISH/
MQOPER_DISCARDED_PUBLISH/MQOPER_EXCLUDED_PUBLISH):

The additional activity report message data parameters that are returned in the
PCF group Operation for the Publish/Discarded Publish/Excluded Publish
(MQOPER_PUBLISH/MQOPER_DISCARDED_PUBLISH/
MQOPER_EXCLUDED_PUBLISH) operation type (a publish/subscribe message
was delivered, discarded, or excluded).

SubId

Description: The subscription identifier.
Identifier: MQBACF_SUB_ID.
Datatype: MQCFBS.
Included in PCF
group:

Operation.

Returned: Always.

SubLevel

Description: The subscription level.
Identifier: MQIACF_SUB_LEVEL.
Datatype: MQCFIN.
Included in PCF
group:

Operation.

Returned: Always.

Feedback

Description: The reason for discarding the message.

228 WebSphere MQ: Monitoring WebSphere MQ

|
|

|
|
|
|
|

|

|||
||
||
|
|
|

||
|

|

|||
||
||
|
|
|

||
|

|

|||



Identifier: MQIACF_FEEDBACK.
Datatype: MQCFIN.
Included in PCF
group:

Operation.

Returned: If the message was discarded because it was not delivered to a
subscriber, or the message was not delivered because the subscriber was
excluded.

The Publish operation MQOPER_PUBLISH provides information about a message
delivered to a particular subscriber. This operation describes the elements of the
onward message that might have changed from the message described in the
associated Put operation. Similarly to a Put operation, it contains a message group
MQGACF_MESSAGE and, inside that, an MQMD group MQGACF_MQMD.
However, this MQMD group contains only the following fields, which can be
overridden by a subscriber: Format, Priority, Persistence, MsgId, CorrelId,
UserIdentifier, AccountingToken, ApplIdentityData.

The SubId and SubLevel of the subscriber are included in the operation information.
You can use the SubID with the MQCMD_INQUIRE_SUBSCRIBER PCF command
to retrieve all other attributes for a subscriber.

The Discarded Publish operation MQOPER_DISCARDED_PUBLISH is analogous
to the Discard operation that is used when a message is not delivered in
point-to-point messaging. A message is not delivered to a subscriber if the message
was explicitly requested not to be delivered to a local destination and this
subscriber specifies a local destination. A message is also considered not delivered
if there is a problem getting the message to the destination queue, for example,
because the queue is full.

The information in a Discarded Publish operation is the same as for a Publish
operation, with the addition of a Feedback field that gives the reasons why the
message was not delivered. This feedback field contains MQFB_* or MQRC_*
values that are common with the MQOPER_DISCARD operation. The reason for
discarding a publish, as opposed to excluding it, are the same as the reasons for
discarding a put.

The Excluded Publish operation MQOPER_EXCLUDED_PUBLISH provides
information about a subscriber that was considered for delivery of the message,
because the topic on which the subscriber is subscribing matches that of the
associated Put operation, but the message was not delivered to the subscriber
because other selection criteria do not match with the message that is being put to
the topic. As with a Discarded Publish operation, the Feedback field provides
information about the reason why this subscription was excluded. However, unlike
the Discarded Publish operation, no message-related information is provided
because no message was generated for this subscriber.

Put/Put Reply/Put Report (MQOPER_PUT/MQOPER_PUT_REPLY/
MQOPER_PUT_REPORT):

The additional activity report message data parameters that are returned in the
PCF group Operation for the Put/Put Reply/Put Report (MQOPER_PUT/
MQOPER_PUT_REPLY/MQOPER_PUT_REPORT) operation type (a message, reply
message, or report message was put to a queue).

Chapter 3. Message monitoring 229

||
||
|
|
|

||
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|



QName

Description: The name of the queue that was opened.
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH
Returned: Always, apart from one exception: not returned if the Put operation is to

a topic, contained within a publish activity.

ResolvedQName

Description: The name that the opened queue resolves to.
Identifier: MQCACF_RESOLVED_Q_NAME.
Datatype: MQCFST.
Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH
Returned: When the opened queue could be resolved. Not returned if the Put

operation is to a topic, contained within a publish activity.

RemoteQName

Description: The name of the opened queue, as it is known on the remote queue
manager.

Identifier: MQCA_REMOTE_Q_NAME.
Datatype: MQCFST.
Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH
Returned: If the opened queue is a remote queue. Not returned if the Put operation

is to a topic, contained within a publish activity.

RemoteQMgrName

Description: The name of the remote queue manager on which the remote queue is
defined.

Identifier: MQCA_REMOTE_Q_MGR_NAME.
Datatype: MQCFST.
Included in PCF
group:

Operation.

Maximum length: MQ_Q_MGR_NAME_LENGTH
Returned: If the opened queue is a remote queue. Not returned if the Put operation

is to a topic, contained within a publish activity.

TopicString

Description: The full topic string to which the message is being put.
Identifier: MQCA_TOPIC_STRING.
Datatype: MQCFST.
Included in PCF
group:

Operation.

Returned: If the Put operation is to a topic, contained within a publish activity.

230 WebSphere MQ: Monitoring WebSphere MQ

|
|

|
|

|
|

|
|

|

|||
||
||
|
|
|

||
|



Feedback

Description: The reason for the message being put on the dead-letter queue.
Identifier: MQIACF_FEEDBACK.
Datatype: MQCFIN.
Included in PCF
group:

Operation.

Returned: If the message was put on the dead-letter queue.

Receive (MQOPER_RECEIVE):

The additional activity report message data parameters that are returned in the
PCF group Operation for the Receive (MQOPER_RECEIVE) operation type (a
message was received on a channel).

ChannelName

Description: The name of the channel on which the message was received.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Included in PCF
group:

Operation.

Maximum length: MQ_CHANNEL_NAME_LENGTH
Returned: Always.

ChannelType

Description: The type of channel on which the message was received.
Identifier: MQIACH_CHANNEL_TYPE.
Datatype: MQCFIN.
Included in PCF
group:

Operation.

Returned: Always.

RemoteQMgrName

Description: The name of the queue manager from which the message was received.
Identifier: MQCA_REMOTE_Q_MGR_NAME.
Datatype: MQCFST.
Included in PCF
group:

Operation.

Maximum length: MQ_Q_MGR_NAME_LENGTH
Returned: Always.

Send (MQOPER_SEND):

The additional activity report message data parameters that are returned in the
PCF group Operation for the Send (MQOPER_SEND) operation type (a message
was sent on a channel).

ChannelName

Description: The name of the channel where the message was sent.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.

Chapter 3. Message monitoring 231

|



Included in PCF
group:

Operation.

Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

ChannelType

Description: The type of channel where the message was sent.
Identifier: MQIACH_CHANNEL_TYPE.
Datatype: MQCFIN.
Included in PCF
group:

Operation.

Returned: Always.

XmitQName

Description: The transmission queue from which the message was retrieved.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Included in PCF
group:

Operation.

Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

RemoteQMgrName

Description: The name of the remote queue manager to which the message was sent.
Identifier: MQCA_REMOTE_Q_MGR_NAME.
Datatype: MQCFST.
Included in PCF
group:

Operation.

Maximum length: MQ_Q_MGR_NAME_LENGTH
Returned: Always.

Trace-route message reference

This chapter provides an overview of the trace-route message format. It describes
the information returned in trace-route messages, including returned parameters.

Trace-route message format

Trace-route messages are standard WebSphere MQ messages containing a message
descriptor and message data. The message data contains information about the
activities performed on a trace-route message as it has been routed through a
queue manager network. For information on trace-route messaging, see
“Trace-route messaging” on page 171.

Trace-route messages contain the following:

A message descriptor
An MQMD structure, with the Format field set to MQFMT_ADMIN or
MQFMT_EMBEDDED_PCF.

Message data
Consists of either:

232 WebSphere MQ: Monitoring WebSphere MQ



v A PCF header (MQCFH) and trace-route message data, if Format is set to
MQFMT_ADMIN, or

v An embedded PCF header (MQEPH), trace-route message data, and
additional user-specified message data, if Format is set to
MQFMT_EMBEDDED_PCF.

When using the WebSphere MQ display route application to generate a trace-route
message, Format is set to MQFMT_ADMIN.

Trace-route message data format

The content of the trace-route message data is determined by the Accumulate
parameter from the TraceRoute PCF group, as follows:
v If Accumulate is set to MQROUTE_ACCUMULATE_NONE, then the trace-route

message data contains the following:
– The TraceRoute PCF group.

v If Accumulate is set to either MQROUTE_ACCUMULATE_IN_MSG or
MQROUTE_ACCUMULATE_AND_REPLY, then the trace-route message data
contains the following:
– The TraceRoute PCF group.
– Zero or more Activity PCF groups.

Example of a trace-route message

Table 18 shows the structure of a trace-route message.

Table 18. Trace-route message format

Message descriptor Message data

MQMD structure Embedded PCF header
MQEPH structure

Trace-route message data

Chapter 3. Message monitoring 233



Table 18. Trace-route message format (continued)

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback
Encoding
Coded character set ID
Message format
Priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name
Put date
Put time
Application origin data
Group identifier
Message sequence number
Offset
Message flags
Original length

Structure identifier
Structure version
Structure length
Encoding
Coded character set ID
Message format
Flags
PCF header (MQCFH)

Structure type
Structure length
Structure version
Command identifier
Message sequence number
Control options
Completion code
Reason code
Parameter count

TraceRoute
Detail
Recorded activities
Unrecorded activities
Discontinuity count
Max activities
Accumulate
Deliver

Trace-route message MQMD (message descriptor)

The MQMD structure describes the information that accompanies the message data
of a trace-route message. For a full description of MQMD, including a description
of the elementary datatype of each parameter, see the WebSphere MQ Application
Programming Reference manual.

For a trace-route message, the MQMD structure contains these values:

StrucId

Description: Structure identifier.
Datatype: MQCHAR4.
Value: MQMD_STRUC_ID.

Version

Description: Structure version number.
Datatype: MQLONG.
Values:

MQMD_VERSION_1.

Report

Description: Options for report messages.

234 WebSphere MQ: Monitoring WebSphere MQ



Datatype: MQLONG.
Value: Set according to requirements. Common report options follow:

MQRO_DISCARD_MSG
The message is discarded on arrival to a local queue.

MQRO_PASS_DISCARD_AND_EXPIRY
Every response (activity reports or trace-route reply message)
will have the report option MQRO_DISCARD_MSG set, and the
remaining expiry passed on. This ensures that responses do not
remain in the queue manager network indefinitely.

MsgType

Description: Type of message.
Datatype: MQLONG.
Value: If the Accumulate parameter in the TraceRoute group is specified as

MQROUTE_ACCUMULATE_AND_REPLY, then message type is
MQMT_REQUEST

Otherwise:

MQMT_DATAGRAM.

Expiry

Description: Message lifetime.
Datatype: MQLONG.
Value: Set according to requirements. This parameter can be used to ensure

trace-route messages are not left in a queue manager network
indefinitely.

Feedback

Description: Feedback or reason code.
Datatype: MQLONG.
Value:

MQFB_NONE.

Encoding

Description: Numeric encoding of message data.
Datatype: MQLONG.
Value: Set as appropriate.

CodedCharSetId

Description: Character set identifier of message data.
Datatype: MQLONG.
Value: Set as appropriate.

Format

Description: Format name of message data
Datatype: MQCHAR8.

Chapter 3. Message monitoring 235



Value:
MQFMT_ADMIN

Admin message. No user data follows the TraceRoute PCF
group.

MQFMT_EMBEDDED_PCF
Embedded PCF message. User data follows the TraceRoute PCF
group.

Priority

Description: Message priority.
Datatype: MQLONG.
Value: Set according to requirements.

Persistence

Description: Message persistence.
Datatype: MQLONG.
Value: Set according to requirements.

MsgId

Description: Message identifier.
Datatype: MQBYTE24.
Value: Set according to requirements.

CorrelId

Description: Correlation identifier.
Datatype: MQBYTE24.
Value: Set according to requirements.

BackoutCount

Description: Backout counter.
Datatype: MQLONG.
Value: 0.

ReplyToQ

Description: Name of reply queue.
Datatype: MQCHAR48.
Values: Set according to requirements.

If MsgType is set to MQMT_REQUEST or if Report has any report
generating options set, then this parameter must be non-blank.

ReplyToQMgr

Description: Name of reply queue manager.
Datatype: MQCHAR48.
Value: Set according to requirements.

UserIdentifier

Description: The user identifier of the application that originated the message.

236 WebSphere MQ: Monitoring WebSphere MQ



Datatype: MQCHAR12.
Value: Set as normal.

AccountingToken

Description: Accounting token that allows an application to charge for work done as
a result of the message.

Datatype: MQBYTE32.
Value: Set as normal.

ApplIdentityData

Description: Application data relating to identity.
Datatype: MQCHAR32.
Values: Set as normal.

PutApplType

Description: Type of application that put the message.
Datatype: MQLONG.
Value: Set as normal.

PutApplName

Description: Name of application that put the message.
Datatype: MQCHAR28.
Value: Set as normal.

PutDate

Description: Date when message was put.
Datatype: MQCHAR8.
Value: Set as normal.

PutTime

Description: Time when message was put.
Datatype: MQCHAR8.
Value: Set as normal.

ApplOriginData

Description: Application data relating to origin.
Datatype: MQCHAR4.
Value: Set as normal..

Trace-route message MQEPH (Embedded PCF header)

The MQEPH structure contains a description of both the PCF information that
accompanies the message data of a trace-route message and the application
message data which follows it. For a full description of the MQEPH structure,
including a description of the elementary datatype of each parameter, see
“MQEPH - Embedded PCF header” on page 332.

Chapter 3. Message monitoring 237



An MQEPH structure is used only if additional user message data follows the
TraceRoute PCF group.

For a trace-route message, the MQEPH structure contains the following values:

StrucId

Description: Structure identifier.
Datatype: MQCHAR4.
Value: MQEPH_STRUC_ID.

Version

Description: Structure version number.
Datatype: MQLONG.
Values: MQEPH_VERSION_1.

StrucLength

Description: Structure length.
Datatype: MQLONG.
Value: Total length of the structure including the PCF parameter structures that

follow it.

Encoding

Description: Numeric encoding of the message data that follows the last PCF
parameter structure.

Datatype: MQLONG.
Value: The encoding of the message data.

CodedCharSetId

Description: Character set identifier of the message data that follows the last PCF
parameter structure.

Datatype: MQLONG.
Value: The character set of the message data.

Format

Description: Format name of the message data that follows the last PCF parameter
structure.

Datatype: MQCHAR8.
Value: The format name of the message data.

Flags

Description: Flags that specify attributes of the structure or control its processing.
Datatype: MQLONG.
Value:

MQEPH_NONE
No flags specified.

MQEPH_CCSID_EMBEDDED
Specifies that the character set of the parameters containing
character data is specified individually within the
CodedCharSetId field in each structure.

238 WebSphere MQ: Monitoring WebSphere MQ



PCFHeader

Description: Programmable Command Format Header
Datatype: MQCFH.
Value: See “Trace-route message MQCFH (PCF header).”

Trace-route message MQCFH (PCF header)

The MQCFH structure describes the PCF information available in the trace-route
message. For a full description of MQCFH, including a description of the
elementary datatype of each parameter, see “MQCFH - PCF header” on page 316.

For a trace-route message, the MQCFH structure contains the following values:

Type

Description: Structure type that identifies the content of the message.
Datatype: MQLONG.
Value:

MQCFT_TRACE_ROUTE
Message is a trace-route message.

StrucLength

Description: Structure length.
Datatype: MQLONG.
Value:

MQCFH_STRUC_LENGTH
Length in bytes of MQCFH structure.

Version

Description: Structure version number.
Datatype: MQLONG.
Values: MQCFH_VERSION_3

Command

Description: Command identifier. This identifies the category of the message.
Datatype: MQLONG.
Values:

MQCMD_TRACE_ROUTE
Trace-route message.

MsgSeqNumber

Description: Message sequence number. This is the sequence number of the message
within a group of related messages.

Datatype: MQLONG.
Values: 1.

Control

Description: Control options.
Datatype: MQLONG.
Values: MQCFC_LAST.

Chapter 3. Message monitoring 239



CompCode

Description: Completion code.
Datatype: MQLONG.
Values: MQCC_OK.

Reason

Description: Reason code qualifying completion code.
Datatype: MQLONG.
Values: MQRC_NONE.

ParameterCount

Description: Count of parameter structures. This is the number of parameter
structures that follow the MQCFH structure. A group structure
(MQCFGR), and its included parameter structures, are counted as one
structure only.

Datatype: MQLONG.
Values: 1 or greater.

Trace-route message data

The content of trace-route message data depends on the Accumulate parameter
from the TraceRoute PCF group, see “Trace-route message data format” on page
233. Trace-route message data consists of the TraceRoute PCF group, and zero or
more Activity PCF groups. The TraceRoute PCF group is detailed below. For details
of the Activity PCF group, see “Activity report message data” on page 216 and
“Operation-specific activity report message data” on page 227.

Trace-route message data contains the following parameters:

TraceRoute

Description: Grouped parameters specifying attributes of the trace-route message. For
a trace-route message, some of these parameters can be altered to control
how it is processed.

Identifier: MQGACF_TRACE_ROUTE.
Datatype: MQCFGR.
Contained in PCF
group:

None.

Parameters in
group:

Detail

RecordedActivities

UnrecordedActivities

DiscontinuityCount

MaxActivities

Accumulate

Forward

Deliver

Detail

Description: The detail level that will be recorded for the activity.
Identifier: MQIACF_ROUTE_DETAIL.

240 WebSphere MQ: Monitoring WebSphere MQ



Datatype: MQCFIN.
Contained in PCF
group:

TraceRoute.

Values:
MQROUTE_DETAIL_LOW

Activities performed by user-written application are recorded.

MQROUTE_DETAIL_MEDIUM
Activities specified in MQROUTE_DETAIL_LOW are recorded.
Additionally, activities performed by MCAs are recorded.

MQROUTE_DETAIL_HIGH
Activities specified in MQROUTE_DETAIL_LOW, and
MQROUTE_DETAIL_MEDIUM are recorded. MCAs do not
record any further activity information at this level of detail.
This option is only available to user-written applications that
are to record further activity information.

RecordedActivities

Description: The number of activities that the trace-route message has caused, where
information was recorded.

Identifier: MQIACF_RECORDED_ACTIVITIES.
Datatype: MQCFIN.
Contained in PCF
group:

TraceRoute.

UnrecordedActivities

Description: The number of activities that the trace-route message has caused, where
information was not recorded.

Identifier: MQIACF_UNRECORDED_ACTIVITIES.
Datatype: MQCFIN.
Contained in PCF
group:

TraceRoute.

DiscontinuityCount

Description: The number of times a trace-route message has been received from a
queue manager that does not support trace-route messaging.

Identifier: MQIACF_DISCONTINUITY_COUNT.
Datatype: MQCFIN.
Contained in PCF
group:

TraceRoute.

MaxActivities

Description: The maximum number of activities the trace-route message can be
involved in before it stops being processed.

Identifier: MQIACF_MAX_ACTIVITIES.
Datatype: MQCFIN.
Contained in PCF
group:

TraceRoute.

Value:
A positive integer

The maximum number of activities.

MQROUTE_UNLIMITED_ACTIVITIES
An unlimited number of activities.

Chapter 3. Message monitoring 241



Accumulate

Description: Specifies whether activity information is accumulated within the
trace-route message, and whether a reply message containing the
accumulated activity information is generated before the trace-route
message is discarded or is put on a non-transmission queue.

Identifier: MQIACF_ROUTE_ACCUMULATION.
Datatype: MQCFIN.
Contained in PCF
group:

TraceRoute.

Value:
MQROUTE_ACCUMULATE_NONE

Activity information is not accumulated in the message data of
the trace-route message.

MQROUTE_ACCUMULATE_IN_MSG
Activity information is accumulated in the message data of the
trace-route message.

MQROUTE_ACCUMULATE_AND_REPLY
Activity information is accumulated in the message data of the
trace-route message, and a trace-route reply message will be
generated.

Forward

Description: Specifies queue managers that the trace-route message can be forwarded
to. Queue managers use an algorithm when determining whether to
forward a message to a remote queue manager. For details of this
algorithm, see Forwarding.

Identifier: MQIACF_ROUTE_FORWARDING.
Datatype: MQCFIN.
Contained in PCF
group:

TraceRoute.

Value:
MQROUTE_FORWARD_IF_SUPPORTED

The trace-route message is only forwarded to queue managers
that will honor the value of the Deliver parameter from the
TraceRoute group.

MQROUTE_FORWARD_ALL
The trace-route message is forwarded to any queue manager,
regardless of whether the value of the Deliver parameter will be
honored.

Deliver

Description: Specifies the action to be taken if the trace-route message arrives at the
destination queue successfully.

Identifier: MQIACF_ROUTE_DELIVERY.
Datatype: MQCFIN.
Contained in PCF
group:

TraceRoute.

Value:
MQROUTE_DELIVER_YES

On arrival, the trace-route message is put on the target queue.
Any application performing a destructive get on the target
queue can receive the trace-route message.

MQROUTE_DELIVER_NO
On arrival, the trace-route message is discarded.

242 WebSphere MQ: Monitoring WebSphere MQ



For details of the Activity PCF group, see “Activity report message data” on page
216 and “Operation-specific activity report message data” on page 227.

Trace-route reply message reference

This chapter provides an overview of the trace-route reply message format. It
describes the information returned in trace-route reply messages, including
returned parameters.

Trace-route reply message format

Trace-route reply messages are standard WebSphere MQ messages containing a
message descriptor and message data. The message data contains information
about the activities performed on a trace-route message as it has been routed
through a queue manager network. For information on trace-route messaging, see
“Trace-route messaging” on page 171.

Trace-route reply messages contain the following:

A message descriptor
An MQMD structure

Message data
A PCF header (MQCFH) and trace-route reply message data

Trace-route reply message data consists of one or more Activity PCF groups.

When a trace-route message reaches its target queue, a trace-route reply message
can be generated that contains a copy of the activity information from the
trace-route message. The trace-route reply message will be delivered to a reply-to
queue or to a system queue, see “Controlling queue managers for trace-route
messaging” on page 174.

Table 19 shows the structure of a trace-route reply message, including parameters
that are only returned under certain conditions.

Table 19. Trace-route reply message format

Message descriptor Message data

MQMD structure PCF header
MQCFH structure

Trace-route reply message data

Chapter 3. Message monitoring 243



Table 19. Trace-route reply message format (continued)

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback
Encoding
Coded character set ID
Message format
Priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name
Put date
Put time
Application origin data
Group identifier
Message sequence number
Offset
Message flags
Original length

PCF header (MQCFH)
Structure type
Structure length
Structure version
Command identifier
Message sequence number
Control options
Completion code
Reason code
Parameter count

Activity
Activity application name
Activity application type
Activity description
Operation

Operation type
Operation date
Operation time
Message

Message length
MQMD
EmbeddedMQMD

Queue manager name
Queue sharing group name
Queue name 1 2 3

Resolved queue name 1 3

Remote queue name 3

Remote queue manager-
name 2 3 4 5

Feedback 2

Channel name 4 5

Channel type 4 5

Transmission queue name 5

TraceRoute
Detail
Recorded activities
Unrecorded activities
Discontinuity count
Max activities
Accumulate
Deliver

Note:

1. Returned for Get and Browse operations.

2. Returned for Discard operations.

3. Returned for Put, Put Reply, and Put Report operations.

4. Returned for Receive operations.

5. Returned for Send operations.

Trace-route reply message MQMD (message descriptor)

The MQMD structure describes the information that accompanies the message data
of a trace-route reply message. For a full description of MQMD, including a
description of the elementary datatype of each parameter, see the WebSphere MQ
Application Programming Reference manual.

For a trace-route reply message, the MQMD structure contains the parameters as
described in Activity report message descriptor. Some of the parameter values in a
trace-route reply message descriptor are different from those in an activity report
message descriptor, as follows:

MsgType

Description: Type of message.

244 WebSphere MQ: Monitoring WebSphere MQ



Datatype: MQLONG.
Value:

MQMT_REPLY

Feedback

Description: Feedback or reason code.
Datatype: MQLONG.
Value:

MQFB_NONE

Encoding

Description: Numeric encoding of message data.
Datatype: MQLONG.
Value: Copied from trace-route message descriptor.

CodedCharSetId

Description: Character set identifier of message data.
Datatype: MQLONG.
Value: Copied from trace-route message descriptor.

Format

Description: Format name of message data
Datatype: MQCHAR8.
Value:

MQFMT_ADMIN
Admin message.

Trace-route reply message MQCFH (PCF header)

The MQCFH structure describes the PCF information available in the trace-route
reply message. For a full description of MQCFH, including a description of the
elementary datatype of each parameter, see “MQCFH - PCF header” on page 316.

The PCF header (MQCFH) for a trace-route reply message is the same as for a
trace-route message, see “Trace-route message MQCFH (PCF header)” on page 239.

Trace-route reply message data

The trace-route reply message data of a trace-route reply message is a duplicate of
the trace-route message data from the trace-route message for which it was
generated. The trace-route reply message data contains one or more Activity
groups.

The trace-route reply message data contains the parameters as described in
“Activity report message data” on page 216.

Chapter 3. Message monitoring 245



246 WebSphere MQ: Monitoring WebSphere MQ



Chapter 4. Accounting and statistics messages

Accounting and statistics messages

Accounting and statistics messages are generated intermittently by queue managers
to record information about the MQI operations performed by WebSphere MQ
applications, or to record information about the activities occurring in a WebSphere
MQ system.

Accounting messages
Accounting messages are used to record information about the MQI
operations performed by WebSphere MQ applications, see “Accounting
messages.”

Statistics messages
Statistics messages are used to record information about the activities
occurring in a WebSphere MQ system, see “Statistics messages” on page
251.

Accounting messages and statistics messages as described here are not available on
WebSphere MQ for z/OS, however equivalent functionality is available through
the System Management Facility (SMF), see the WebSphere MQ for z/OS System
Setup Guide.

Accounting and statistics messages are delivered to two system queues. Users or
user applications can retrieve messages from these system queues and use the
recorded information for various tasks such as resource charging or system
monitoring.

Accounting messages

Accounting messages are used to record information about the MQI operations
performed by WebSphere MQ applications. An accounting message is a PCF
message that contains a number of PCF structures.

When an application disconnects from a queue manager, an accounting message is
generated and delivered to the system accounting queue
(SYSTEM.ADMIN.ACCOUNTING.QUEUE). For long running WebSphere MQ
applications, intermediate accounting messages are generated as follows:
v When the time since the connection was established exceeds the configured

interval.
v When the time since the last intermediate accounting message exceeds the

configured interval.

The information contained within accounting messages can be used for the
following:
v Account for application resource use.
v Record application activity.
v Detect problems in your queue manager network.
v Assist in determining the causes of problems in your queue manager network.
v Improve the efficiency of your queue manager network.

© Copyright IBM Corp. 1994, 2009 247



v Familiarize yourself with the running of your queue manager network.
v Confirm your queue manager network is running correctly.

Accounting message types

The are two categories of accounting message, as follows:

MQI accounting messages
MQI accounting messages contain information relating to the number of
MQI calls made using a connection to a queue manager.

Queue accounting messages
Queue accounting messages contain information relating to the number of
MQI calls made using connections to a queue manager, grouped by queue.

Each queue accounting message can contain up to 100 records, with every
record relating to an activity performed by the application with respect to
a specific queue.

Accounting messages are recorded only for local queues. If an application
makes an MQI call against an alias queue, the accounting data is recorded
against the base queue, and, for a remote queue, the accounting data is
recorded against the transmission queue.

Controlling accounting messages

The collection of accounting information is controlled by a set of queue manager,
and queue attributes.

Collecting MQI accounting information:

The collection of MQI accounting information is controlled by the queue manager
attribute, ACCTMQI. To change the value of this attribute you can use the MQSC
command, ALTER QMGR, and specify the parameter ACCTMQI. Accounting messages
are generated only for connections which begin after accounting is enabled.

The ACCTMQI parameter can have the following values:

ON MQI accounting information is collected for every connection to the queue
manager.

OFF MQI accounting information is not collected. This is the default value.

For example, to enable MQI accounting information collection use the following
MQSC command:
ALTER QMGR ACCTMQI(ON)

Collecting queue accounting information:

The collection of queue accounting information is controlled by the queue attribute,
ACCTQ, and the queue manager attribute, ACCTQ. To change the value of the
queue attribute, you can use the MQSC command, ALTER QLOCAL and specify the
parameter ACCTQ. Accounting messages are generated only for connections which
begin after accounting is enabled.

The queue attribute, ACCTQ, can have the following values:

ON Queue accounting information for this queue is collected for every
connection to the queue manager that opens the queue.

248 WebSphere MQ: Monitoring WebSphere MQ

|
|
|
|



OFF Queue accounting information for this queue is not collected.

QMGR
The collection of queue accounting information for this queue is controlled
according to the value of the queue manager attribute, ACCTQ. This is the
default value.

The queue manager attribute, ACCTQ, can have the following values:

ON Queue accounting information is collected for queues that have the queue
attribute ACCTQ set as QMGR.

OFF Queue accounting information is not collected for queues that have the
queue attribute ACCTQ set as QMGR. This is the default value.

NONE
The collection of queue accounting information is disabled for all queues,
regardless of the queue attribute ACCTQ.

To enable accounting information collection for the queue, Q1, use the following
MQSC command:
ALTER QLOCAL(Q1) ACCTQ(ON)

To enable accounting information collection for all queues that specify the queue
attribute ACCTQ as QMGR, use the following MQSC command:
ALTER QMGR ACCTQ(ON)

If the queue manager attribute, ACCTQ, is set to NONE, the collection of queue
accounting information is disabled for all queues, regardless of the queue attribute
ACCTQ.

Controlling accounting information collection using MQCONNX:

The collection of both MQI and queue accounting information can also be modified
at the connection level by specifying the ConnectOpts parameter on the
MQCONNX call. By altering the value of ConnectOpts, it is possible to override
the effective value of the queue manager attributes ACCTMQI and ACCTQ.

ConnectOpts can have the following values:

MQCNO_ACCOUNTING_MQI_ENABLED
If the value of the queue manager attribute ACCTMQI is specified as OFF,
then MQI accounting is enabled for this connection. This is equivalent of
the queue manager attribute ACCTMQI being specified as ON.

If the value of the queue manager attribute ACCTMQI is not specified as
OFF, then this attribute has no effect.

MQCNO_ACCOUNTING_MQI_DISABLED
If the value of the queue manager attribute ACCTMQI is specified as ON,
then MQI accounting is disabled for this connection. This is equivalent of
the queue manager attribute ACCTMQI being specified as OFF.

If the value of the queue manager attribute ACCTMQI is not specified as
ON, then this attribute has no effect.

MQCNO_ACCOUNTING_Q_ENABLED
If the value of the queue manager attribute ACCTQ is specified as OFF,
then queue accounting is enabled for this connection. All queues with

Chapter 4. Accounting and statistics messages 249



ACCTQ specified as QMGR, are enabled for queue accounting. This is
equivalent of the queue manager attribute ACCTQ being specified as ON.

If the value of the queue manager attribute ACCTQ is not specified as OFF,
then this attribute has no effect.

MQCNO_ACCOUNTING_Q_DISABLED
If the value of the queue manager attribute ACCTQ is specified as ON,
queue accounting is disabled for this connection. This is equivalent of the
queue manager attribute ACCTQ being specified as OFF.

If the value of the queue manager attribute ACCTQ is not specified as ON,
then this attribute has no effect.

These overrides are by disabled by default. To enable them, set the queue manager
attribute ACCTCONO to ENABLED. To enable accounting overrides per
connection use the following MQSC command:
ALTER QMGR ACCTCONO(ENABLED)

Generating accounting messages:

Accounting messages are generated upon the disconnection of the application from
the queue manager, either upon the execution of the MQDISC operation, or
implicity by the queue manager upon the recognition of the termination of the
application.

Intermediate accounting messages are also written for long running WebSphere
MQ applications when the interval since the connection was established or since
the last intermediate accounting message that was written exceeds the configured
interval. The queue manager attribute, ACCTINT, specifies the time, in seconds,
after which intermediate accounting messages can be automatically written.
Accounting messages are only generated when the application interacts with the
queue manager, so applications that remain connected to the queue manager for
long periods without executing MQI requests will not generate accounting
messages until the execution of the first MQI request following the completion of
the accounting interval.

The default accounting interval is 1800 seconds (30 minutes). For example, to
change the accounting interval to 900 seconds (15 minutes) use the following
MQSC command:
ALTER QMGR ACCTINT(900)

Format of accounting messages

Accounting messages are constructed as a set of PCF fields that consist of the
following:

A message descriptor
An accounting message MQMD (message descriptor)

Accounting message data

v An accounting message MQCFH (PCF header)
v Accounting message data that is always returned
v Accounting message data that is returned if available

The accounting message MQCFH (PCF header) contains information about the
application, and the interval for which the accounting data was recorded.

250 WebSphere MQ: Monitoring WebSphere MQ



Accounting message data is comprised of PCF parameters that store the accounting
information. The content of accounting messages depends on the message category
as follows:

MQI accounting message
MQI accounting message data consists of a number of PCF parameters, but
no PCF groups.

The parameters contained in MQI accounting message data are described
in “MQI accounting message data” on page 266.

Queue accounting message
Queue accounting message data consists of a number of PCF parameters,
and between one and one hundred QAccountingData PCF groups.

There is one QAccountingData PCF group for every queue that had
accounting data collected. If an application accesses more than 100 queues,
multiple accounting messages are generated. Each message has the
SeqNumber in the MQCFH (PCF header) updated accordingly, and the last
message in the sequence has the Control parameter in the MQCFH
specified as MQCFC_LAST.

The parameters contained in queue accounting message data are described
in “Queue accounting message data” on page 272.

Statistics messages

Statistics messages are used to record information about the activities occurring in
a WebSphere MQ system. An statistics messages is a PCF message that contains a
number of PCF structures. Statistics messages are delivered to the system queue
(SYSTEM.ADMIN.STATISTICS.QUEUE) at configured intervals.

The information contained within statistics messages can be used for the following:
v Account for application resource use.
v Record application activity.
v Capacity planning.
v Detect problems in your queue manager network.
v Assist in determining the causes of problems in your queue manager network.
v Improve the efficiency of your queue manager network.
v Familiarize yourself with the running of your queue manager network.
v Confirm your queue manager network is running correctly.

Statistics message types

The various types of statistics message follow:

MQI statistics messages
MQI statistics messages contain information relating to the number of MQI
calls made during a configured interval. For example, the information can
include the number of MQI calls actioned by a queue manager.

Queue statistics messages
Queue statistics messages contain information relating to the activity of a
queue during a configured interval. The information includes the number
of messages put on, and retrieved from, the queue, and the total number of
bytes processed by a queue.

Chapter 4. Accounting and statistics messages 251



Each queue statistics message can contain up to 100 records, with each
record relating to the activity per queue for which statistics were collected.

Statistics messages are recorded only for local queues. If an application
makes an MQI call against an alias queue, the statistics data is recorded
against the base queue, and, for a remote queue, the statistics data is
recorded against the transmission queue.

Channel statistics messages
Channel statistics messages contain information relating to the activity of a
channel during a configured interval. For example the information might
be the number of messages transferred by the channel, or the number of
bytes transferred by the channel.

Each channel statistics message contains up to 100 records, with each
record relating to the activity per channel for which statistics were
collected.

Controlling statistics messaging

The collection of statistics data is controlled by queue manager, queue, and channel
attributes.

Collecting MQI statistics information:

The collection of MQI statistics information is controlled by the queue manager
attribute, STATMQI. To change the value of this r attribute, you can use the MQSC
command, ALTER QMGR and specify the parameter STATMQI. Statistics messages are
generated only for queues which are opened after statistics collection has been
enabled.

STATMQI can have the following values:

ON MQI statistics information is collected for every connection to the queue
manager.

OFF MQI statistics information is not collected. This is the default value.

For example, to enable MQI statistics use the following MQSC command:
ALTER QMGR STATMQI(ON)

Collecting queue statistics information:

Queue statistics information collection can be enabled or disabled for individual
queues, or for multiple queues. To control individual queues, set the queue
attribute STATQ. Queue statistics information collection can be enabled or disabled
at the queue manager level using the queue manager attribute STATQ. For all
queues that have the queue attribute STATQ specified with the value QMGR queue
statistics information collection is controlled at the queue manager level. Statistics
messages are generated only for queues which are opened after statistics collection
has been enabled.

To change the value of the queue attribute STATQ, you can use the MQSC
command, ALTER QLOCAL and specify the parameter STATQ. To change the value of
the queue manager attribute STATQ, you can use the MQSC command, ALTER QMGR
and specify the parameter STATQ.

The queue attribute, STATQ, can have the following values:

252 WebSphere MQ: Monitoring WebSphere MQ

|
|
|
|



ON Queue statistics information is collected for every connection to the queue
manager that opens the queue.

OFF Queue statistics information for this queue is not collected.

QMGR
The collection of queue statistics information for this queue is controlled
according to the value of the queue manager attribute, STATQ. This is the
default value.

The queue manager attribute, STATQ, can have the following values:

ON Queue statistics information is collected for queues that have the queue
attribute STATQ set as QMGR

OFF Queue statistics information is not collected for queues that have the queue
attribute STATQ set as QMGR. This is the default value.

NONE
The collection of queue statistics information is disabled for all queues,
regardless of the queue attribute STATQ.

To enable statistics information collection for the queue, Q1, use the following
MQSC command:
ALTER QLOCAL(Q1) STATQ(ON)

To enable statistics information collection for all queues that specify the queue
attribute STATQ as QMGR, use the following MQSC command:
ALTER QMGR STATQ(ON)

If the queue manager attribute, STATQ, is set to NONE, the collection of queue
statistics information is disabled for all queues, regardless of the queue attribute
STATQ.

Collecting channel statistics information:

Channel statistics information collection can be enabled or disabled for individual
channels, or for multiple channels. To control individual channels, the channel
attribute STATCHL must be set to enable or disable channel statistic information
collection. To control many channels together, channel statistics information
collection can be enabled or disabled at the queue manager level using the queue
manager attribute STATCHL. For all channels that have the channel attribute
STATCHL specified with the value, QMGR, channel statistics information collection
is controlled at the queue manager level.

Automatically defined cluster-sender channels are not WebSphere MQ objects, so
do not have attributes in the same way as channel objects. To control automatically
defined cluster-sender channels, use the queue manager attribute, STATACLS. This
attribute determines whether automatically defined cluster-sender channels within
a queue manager are enabled or disabled for channel statistics information
collection.

Channel statistics information collection can be set to one of the three monitoring
levels, low, medium or high. This is set at either object level, or at the queue
manager level. The choice of which level to use is dependant on your system.
Collecting statistics information data may require the execution of some relatively
expensive instructions, so in order to reduce the impact of channel statistics
information collection, the medium and low monitoring options measure a sample

Chapter 4. Accounting and statistics messages 253



of the data at regular intervals rather than collecting data all the time. Table 20
summarizes the levels available with channel statistics information collection:

Table 20. Detail level of channel statistics information collection

Level Description Usage

Low
Measure a small sample of the data,
at regular intervals.

For objects that process a high volume
of messages.

Medium
Measure a sample of the data, at
regular intervals.

For most objects.

High
Measure all data, at regular
intervals.

For objects that process only a few
messages per second, on which the
most current information is important.

To change the value of the channel attribute STATCHL, you can use the MQSC
command, ALTER CHANNEL and specify the parameter STATCHL.

To change the value of the queue manager attribute STATCHL, you can use the
MQSC command, ALTER QMGR and specify the parameter STATCHL.

To change the value of the queue manager attribute STATACLS, you can use the
MQSC command, ALTER QMGR and specify the parameter STATACLS.

The channel attribute, STATCHL, can have the following values:

LOW Channel statistics information is collected with a low level of detail.

MEDIUM
Channel statistics information is collected with a medium level of detail.

HIGH Channel statistics information is collected with a high level of detail.

OFF Channel statistics information is not collected for this channel.

This is the default value.

QMGR
The channel attribute is set as QMGR. The collection of statistics
information for this channel is controlled by the value of the queue
manager attribute, STATCHL.

The queue manager attribute, STATCHL, can have the following values:

LOW Channel statistics information is collected with a low level of detail, for all
channels that have the channel attribute STATCHL set as QMGR.

MEDIUM
Channel statistics information is collected with a medium level of detail,
for all channels that have the channel attribute STATCHL set as QMGR.

HIGH Channel statistics information is collected with a high level of detail, for all
channels that have the channel attribute STATCHL set as QMGR.

OFF Channel statistics information is not collected for all channels that have the
channel attribute STATCHL set as QMGR.

This is the default value.

254 WebSphere MQ: Monitoring WebSphere MQ



NONE
The collection of channel statistics information is disabled for all channel,
regardless of the channel attribute STATCHL.

The queue manager attribute, STATACLS, can have the following values:

LOW Statistics information is collected with a low level of detail for
automatically defined cluster-sender channels.

MEDIUM
Statistics information is collected with a medium level of detail for
automatically defined cluster-sender channels.

HIGH Statistics information is collected with a high level of detail for
automatically defined cluster-sender channels.

OFF Statistics information is not for automatically defined cluster-sender
channels.

This is the default value.

QMGR
The collection of statistics information for automatically defined
cluster-sender channels is controlled by the value of the queue manager
attribute, STATCHL.

For example, to enable statistics information collection, with a medium level of
detail, for the sender channel QM1.TO.QM2, use the following MQSC command:
ALTER CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) STATCHL(MEDIUM)

To enable statistics information collection, at a medium level of detail, for all
channels that specify the channel attribute STATCHL as QMGR, use the following
MQSC command:
ALTER QMGR STATCHL(MEDIUM)

To enable statistics information collection, at a medium level of detail, for all
automatically defined cluster-sender channels, use the following MQSC command:
ALTER QMGR STATACLS(MEDIUM)

Generating statistics messages:

Statistics messages are generated at configured intervals, and when a queue
manager shuts down in a controlled fashion.

The configured interval is controlled by the STATINT queue manager attribute.
STATINT specifies the interval, in seconds, between the generation of statistics
messages. The default statistics interval is 1800 seconds (30 minutes). To change the
statistics interval you can you the MQSC command ALTER QMGR and specify the
STATINT parameter. For example, to change the statistics interval to 900 seconds (15
minutes) use the following MQSC command:
ALTER QMGR STATINT(900)

To write the currently collected statistics data to the statistics queue before the
statistics collection interval is due to expire, you can use issue the MQSC command
RESET QMGR TYPE(STATISTICS). This causes the collected statistics data to be written
to the statistics queue and a new statistics data collection interval to begin.

Chapter 4. Accounting and statistics messages 255



Format of statistics messages

Statistics messages are constructed as a set of PCF fields that consist of the
following:

A message descriptor
A statistics message MQMD (message descriptor)

Accounting message data

v A statistics message MQCFH (PCF header)
v Statistics message data that is always returned
v Statistics message data that is returned if available

The statistics message MQCFH (PCF header) contains information about the
interval for which the statistics data was recorded.

Statistics message data is comprised of PCF parameters that store the statistics
information. The content of statistics messages depends on the message category as
follows:

MQI statistics message
MQI statistics message data consists of a number of PCF parameters, but
no PCF groups.

The parameters contained in MQI statistics message data are described in
“MQI statistics message data” on page 281.

Queue statistics message
Queue statistics message data consists of a number of PCF parameters, and
between one and one hundred QStatisticsData PCF groups.

There is one QStatisticsData PCF group for every queue was active in the
interval. If more than 100 queues were active in the interval, multiple
statistics messages are generated. Each message has the SeqNumber in the
MQCFH (PCF header) updated accordingly, and the last message in the
sequence has the Control parameter in the MQCFH specified as MQCFC_LAST.

The parameters contained in queue statistics message data are described in
“Queue statistics message data” on page 286.

Channel statistics message
Channel statistics message data consists of a number of PCF parameters,
and between one and one hundred ChlStatisticsData PCF groups.

There is one ChlStatisticsData PCF group for every channel that was active
in the interval. If more than 100 channels were active in the interval,
multiple statistics messages are generated. Each message has the
SeqNumber in the MQCFH (PCF header) updated accordingly, and the last
message in the sequence has the Control parameter in the MQCFH
specified as MQCFC_LAST.

The parameters contained in channel statistics message data are described
in “Channel statistics message data” on page 292.

Displaying accounting and statistics information

Accounting and statistics messages are written to the system accounting and
statistics queues. In order to use the information recorded in these messages, you
must use an application to transform the recorded information into a format
suitable to be used.

256 WebSphere MQ: Monitoring WebSphere MQ



amqsmon is a sample supplied with WebSphere MQ which processes messages
from the accounting and statistics queues and displays the information to the
screen in a readable form.

As amqsmon is a sample program, you can use the supplied source code as
template for writing your own application to process accounting or statistics
messages, or modify the amqsmon source code to meet your own particular
requirements.

amqsmon (Display formatted monitoring information)

Use amqsmon to display the information contained within accounting and
statistics messages in a formatted form. Accounting messages are read from the
accounting queue, SYSTEM.ADMIN.ACCOUNTING.QUEUE. Statistics messages
are read from the statistics queue, SYSTEM.ADMIN.STATISTICS.QUEUE.

Syntax:

�� amqsmon
-m QMgrName

-t Type
-a
-i ConnectionId
-c

ChannelName
-q

QueueName

�

�
-b -d Depth -w TimeOut -s StartTime

�

�
-e EndTime

�

,

-l
Parameter

��

Required parameters:

-t Type
The type of messages to process. Specify Type as one of the following:

accounting
Accounting records are processed. Messages are read from the system
queue, SYSTEM.ADMIN.ACCOUNTING.QUEUE.

statistics
Statistics records are processed. Messages are read from the system
queue, SYSTEM.ADMIN.STATISTICS.QUEUE.

Optional Parameters:

-m QMgrName
The name of the queue manager from which accounting or statistics messages
are to be processed.

If you do not specify this parameter, the default queue manager is used.

-a Process messages containing MQI records only.

Only display MQI records. Messages not containing MQI records will always
be left on the queue they were read from.

Chapter 4. Accounting and statistics messages 257



-q QueueName
QueueName is an optional parameter.

If QueueName is not supplied: Displays queue accounting and queue statistics
records only.

If QueueName is supplied: Displays queue accounting and queue statistics
records for the queue specified by QueueName only.

If -b is not specified then the accounting and
statistics messages from which the records came are
discarded. Since accounting and statistics messages
can also contain records from other queues, if -b is
not specified then unseen records can be discarded.

-c ChannelName
ChannelName is an optional parameter.

If ChannelName is not supplied: Displays channel statistics records only.

If ChannelName is supplied: Displays channel statistics records for the channel
specified by ChannelName only.

If -b is not specified then the statistics messages
from which the records came are discarded. Since
statistics messages can also contain records from
other channels, if -b is not specified then unseen
records can be discarded.

This parameter is available when displaying statistics messages only, (-t
statistics).

-i ConnectionId
Displays records related to the connection identifier specified by ConnectionId
only.

This parameter is available when displaying accounting messages only, (-t
accounting).

If -b is not specified then the statistics messages from which the records came
are discarded. Since statistics messages can also contain records from other
channels, if -b is not specified then unseen records can be discarded.

-b Browse messages.

Messages are retrieved non-destructively.

-d Depth
The maximum number of messages that can be processed.

If you do not specify this parameter, then an unlimited number of messages
can be processed.

-w TimeOut
Time maximum number of seconds to wait for a message to become available.

If you do not specify this parameter, amqsmon will end once there are no
more messages to process.

-s StartTime
Process messages put after the specified StartTime only.

258 WebSphere MQ: Monitoring WebSphere MQ



StartTime is specified in the format yyyy-mm-dd hh.mm.ss. If a date is specified
without a time, then the time will default to 00.00.00 on the date specified.
Times are in GMT.

For the effect of not specifying this parameter, see Note 1.

-e EndTime
Process messages put before the specified EndTime only.

The EndTime is specified in the format yyyy-mm-dd hh.mm.ss. If a date is
specified without a time, then the time will default to 23.59.59 on the date
specified. Times are in GMT.

For the effect of not specifying this parameter, see Note 1.

-l Parameter
Only display the selected fields from the records processed. Parameter is a
comma-separated list of integer values, with each integer value mapping to the
numerical constant of a field, see amqsmon example 5.

If you do not specify this parameter, then all available fields are displayed.

Note:

1. If you do not specify -s StartTime or -e EndTime, then the messages that can be
processed are not restricted by put time.

Examples:

1. The following command displays all MQI statistics messages from queue
manager saturn.queue.manager:
amqsmon -m saturn.queue.manager -t statistics -a

The output from this command follows:
RecordType: MQIStatistics
QueueManager: 'saturn.queue.manager'
IntervalStartDate: '2005-04-30'
IntervalStartTime: '15.09.02'
IntervalEndDate: '2005-04-30'
IntervalEndTime: '15.39.02'
CommandLevel: 600
ConnCount: 23
ConnFailCount: 0
ConnHighwater: 8
DiscCount: [17, 0, 0]
OpenCount: [0, 80, 1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0]
OpenFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
CloseCount: [0, 73, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
CloseFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
InqCount: [4, 2102, 0, 0, 0, 46, 0, 0, 0, 0, 0, 0, 0]
InqFailCount: [0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
SetCount: [0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
SetFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
PutCount: [26, 1]
PutFailCount: 0
Put1Count: [40, 0]
Put1FailCount: 0
PutBytes: [57064, 12320]
GetCount: [18, 1]
GetBytes: [52, 12320]
GetFailCount: 2254
BrowseCount: [18, 60]
BrowseBytes: [23784, 30760]
BrowseFailCount: 9
CommitCount: 0

Chapter 4. Accounting and statistics messages 259



CommitFailCount: 0
BackCount: 0
ExpiredMsgCount: 0
PurgeCount: 0

2. The following command displays all queue statistics messages for queue LOCALQ
on queue manager saturn.queue.manager:
amqsmon -m saturn.queue.manager -t statistics -q LOCALQ

The output from this command follows:
RecordType: QueueStatistics
QueueManager: 'saturn.queue.manager'
IntervalStartDate: '2005-04-30'
IntervalStartTime: '15.09.02'
IntervalEndDate: '2005-04-30'
IntervalEndTime: '15.39.02'
CommandLevel: 600
ObjectCount: 3
QueueStatistics:

QueueName: 'LOCALQ'
CreateDate: '2005-03-08'
CreateTime: '17.07.02'
QueueType: Predefined
QueueDefinitionType: Local
QMinDepth: 0
QMaxDepth: 18
AverageQueueTime: [29827281, 0]
PutCount: [26, 0]
PutFailCount: 0
Put1Count: [0, 0]
Put1FailCount: 0
PutBytes: [88, 0]
GetCount: [18, 0]
GetBytes: [52, 0]
GetFailCount: 0
BrowseCount: [0, 0]
BrowseBytes: [0, 0]
BrowseFailCount: 1
NonQueuedMsgCount: 0
ExpiredMsgCount: 0
PurgedMsgCount: 0

3. The following command displays all of the statistics messages recorded since
15:30 on 30 April 2005 from queue manager saturn.queue.manager.
amqsmon -m saturn.queue.manager -t statistics -s "2005-04-30 15.30.00"

The output from this command follows:
RecordType: MQIStatistics
QueueManager: 'saturn.queue.manager'
IntervalStartDate: '2005-04-30'
IntervalStartTime: '15.09.02'
IntervalEndDate: '2005-04-30'
IntervalEndTime: '15.39.02'
CommandLevel: 600
ConnCount: 23
ConnFailCount: 0
ConnHighwater: 8
DiscCount: [17, 0, 0]
OpenCount: [0, 80, 1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0]

...
RecordType: QueueStatistics
QueueManager: 'saturn.queue.manager'
IntervalStartDate: '2005-04-30'
IntervalStartTime: '15.09.02'
IntervalEndDate: '2005-04-30'

260 WebSphere MQ: Monitoring WebSphere MQ



IntervalEndTime: '15.39.02'
CommandLevel: 600
ObjectCount: 3
QueueStatistics: 0

QueueName: 'LOCALQ'
CreateDate: '2005-03-08'
CreateTime: '17.07.02'
QueueType: Predefined

...
QueueStatistics: 1

QueueName: 'SAMPLEQ'
CreateDate: '2005-03-08'
CreateTime: '17.07.02'
QueueType: Predefined

...

4. The following command displays all accounting messages recorded on 30 April
2005 from queue manager saturn.queue.manager:
amqsmon -m saturn.queue.manager -t accounting -s "2005-04-30" -e "2005-04-30"

The output from this command follows:
RecordType: MQIAccounting
QueueManager: 'saturn.queue.manager'
IntervalStartDate: '2005-04-30'
IntervalStartTime: '15.09.29'
IntervalEndDate: '2005-04-30'
IntervalEndTime: '15.09.30'
CommandLevel: 600
ConnectionId: x'414d51435452455631202020202020208d0b3742010a0020'
SeqNumber: 0
ApplicationName: 'amqsput'
ApplicationPid: 8572
ApplicationTid: 1
UserId: 'admin'
ConnDate: '2005-03-16'
ConnTime: '15.09.29'
DiscDate: '2005-03-16'
DiscTime: '15.09.30'
DiscType: Normal
OpenCount: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
OpenFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
CloseCount: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
CloseFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
PutCount: [1, 0]
PutFailCount: 0
PutBytes: [4, 0]
GetCount: [0, 0]
GetFailCount: 0
GetBytes: [0, 0]
BrowseCount: [0, 0]
BrowseFailCount: 0
BrowseBytes: [0, 0]
CommitCount: 0
CommitFailCount: 0
BackCount: 0
InqCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
InqFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
SetCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
SetFailCount: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

RecordType: MQIAccounting
QueueManager: 'saturn.queue.manager'
IntervalStartDate: '2005-03-16'
IntervalStartTime: '15.16.22'
IntervalEndDate: '2005-03-16'
IntervalEndTime: '15.16.22'

Chapter 4. Accounting and statistics messages 261



CommandLevel: 600
ConnectionId: x'414d51435452455631202020202020208d0b3742010c0020'
SeqNumber: 0
ApplicationName: 'runmqsc'
ApplicationPid: 8615
ApplicationTid: 1

...

5. The following command browses the accounting queue and displays the
application name and connection identifier of every application for which MQI
accounting information is available:
amqsmon -m saturn.queue.manager -t accounting -b -a -l 7006,3024

The output from this command follows:
ConnectionId: x'414d51435452455631202020202020208d0b374203090020'
ApplicationName: 'runmqsc'

ConnectionId: x'414d51435452455631202020202020208d0b3742010a0020'
ApplicationName: 'amqsput'

ConnectionId: x'414d51435452455631202020202020208d0b3742010c0020'
ApplicationName: 'runmqsc'

ConnectionId: x'414d51435452455631202020202020208d0b3742010d0020'
ApplicationName: 'amqsput'

ConnectionId: x'414d51435452455631202020202020208d0b3742150d0020'
ApplicationName: 'amqsget'

5 Records Processed.

Accounting and statistics message reference
This section provides an overview of the accounting and statistics message format.
It describes the information returned in accounting messages, and in statistics
messages.

Accounting and statistics message format

Accounting and statistics message messages are standard WebSphere MQ messages
containing a message descriptor and message data. The message data contains
information about the MQI operations performed by WebSphere MQ applications,
or information about the activities occurring in a WebSphere MQ system. For
information on accounting and statistics messages, see “Accounting and statistics
messages” on page 247.

Accounting and statistics messages contain the following:

A message descriptor
An MQMD structure

Message data

v A PCF header (MQCFH)
v Accounting or statistics message data that is always returned
v Accounting or statistics message data that is returned if available

For example, the structure of an MQI accounting message is shown in Table 21 on
page 263.

262 WebSphere MQ: Monitoring WebSphere MQ



Table 21. MQI accounting message structure

Message descriptor Message data

MQMD structure Accounting message header
MQCFH structure

MQI accounting message data 1

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback code
Encoding
Coded character set ID
Message format
Message priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name
Put date
Put time
Application origin data
Group identifier
Message sequence number
Offset
Message flags
Original length

Structure type
Structure length
Structure version
Command identifier
Message sequence number
Control options
Completion code
Reason code
Parameter count

Queue manager
Interval start date
Interval start time
Interval end date
Interval end time
Command level
Connection identifier
Sequence number
Application name
Application process identifier
Application thread identifier
User identifier
Connection date
Connection time
Connection name
Channel name
Disconnect date
Disconnect time
Disconnect type
Open count
Open fail count
Close count
Close fail count
Put count
Put fail count
Put1 count
Put1 fail count
Put bytes
Get count
Get fail count
Get bytes
Browse count
Browse fail count
Browse bytes
Commit count
Commit fail count
Backout count
Inquire count
Inquire fail count
Set count
Set fail count

Note:

1. The parameters shown are those returned for an MQI accounting message. The actual accounting or statistics
message data depends on the message category.

Chapter 4. Accounting and statistics messages 263



Accounting and statistics message MQMD (message
descriptor)

The parameters and values in the message descriptor of accounting and statistics
message are the same as in the message descriptor of event messages, with the
following exception:

Format

Description: Format name of message data.
Datatype: MQCHAR8.
Value:

MQFMT_ADMIN
Admin message.

Some of the parameters contained in the message descriptor of accounting and
statistics message contain fixed data supplied by the queue manager that generated
the message.

The parameters that make up the MQMD structure of event messages are
described in “Event message MQMD (message descriptor)” on page 51. The
MQMD also specifies the name of the queue manager (truncated to 28 characters)
that put the message, and the date and time when the message was put on the
accounting, or statistics, queue.

Message data in accounting and statistics messages

The message data in accounting and statistics messages is based on the
programmable command format (PCF), which is used in PCF command inquiries
and responses.

The message data in accounting and statistics messages consists of two parts:
v A PCF header (MQCFH), see “Accounting and statistics message MQCFH (PCF

header).”
v An accounting or statistics report, see “Accounting and statistics message data”

on page 265.

Accounting and statistics message MQCFH (PCF header)

The message header of accounting and statistics messages is an MQCFH structure.
The parameters and values in the message header of accounting and statistics
message are the same as in the message header of event messages, with the
following exceptions:

Command

Description: Command identifier. This identifies the accounting or statistics message
category.

Datatype: MQLONG.

264 WebSphere MQ: Monitoring WebSphere MQ



Values:
MQCMD_ACCOUNTING_MQI

MQI accounting message.

MQCMD_ACCOUNTING_Q
Queue accounting message.

MQCMD_STATISTICS_MQI
MQI statistics message.

MQCMD_STATISTICS_Q
Queue statistics message.

MQCMD_STATISTICS_CHANNEL
Channel statistics message.

Version

Description: Structure version number.
Datatype: MQLONG.
Value:

MQCFH_VERSION_3
Version-3 for accounting and statistics messages.

The parameters that make up the MQCFH structure of event messages are
described in “Event message MQCFH (PCF header)” on page 56.

Accounting and statistics message data

The content of accounting and statistics message data is dependent on the category
of the accounting or statistics message, as follows:

MQI accounting message
MQI accounting message data consists of a number of PCF parameters, but
no PCF groups.

The parameters contained in MQI accounting message data are described
in “MQI accounting message data” on page 266.

Queue accounting message
Queue accounting message data consists of a number of PCF parameters,
and between one and one hundred QAccountingData PCF groups.

The parameters contained in queue accounting message data are described
in “Queue accounting message data” on page 272.

MQI statistics message
MQI statistics message data consists of a number of PCF parameters, but
no PCF groups.

The parameters contained in MQI statistics message data are described in
“MQI statistics message data” on page 281.

Queue statistics message
Queue statistics message data consists of a number of PCF parameters, and
between one and one hundred QStatisticsData PCF groups.

The parameters contained in queue statistics message data are described in
“Queue statistics message data” on page 286.

Channel statistics message
Channel statistics message data consists of a number of PCF parameters,
and between one and one hundred ChlStatisticsData PCF groups.

Chapter 4. Accounting and statistics messages 265



The parameters contained in channel statistics message data are described
in “Channel statistics message data” on page 292.

MQI accounting message data

Message name: MQI accounting message.

Platforms: All, except WebSphere MQ for z/OS.

System queue: SYSTEM.ADMIN.ACCOUNTING.QUEUE.

Accounting message data
QueueManager

Description: The name of the queue manager
Identifier: MQCA_Q_MGR_NAME
Datatype: MQCFST
Maximum length: MQ_Q_MGR_NAME_LENGTH
Returned: Always

IntervalStartDate

Description: The date of the start of the monitoring period
Identifier: MQCAMO_START_DATE
Datatype: MQCFST
Maximum length: MQ_DATE_LENGTH
Returned: Always

IntervalStartTime

Description: The time of the start of the monitoring period
Identifier: MQCAMO_START_TIME
Datatype: MQCFST
Maximum length: MQ_TIME_LENGTH
Returned: Always

IntervalEndDate

Description: The date of the end of the monitoring period
Identifier: MQCAMO_END_DATE
Datatype: MQCFST
Maximum length: MQ_DATE_LENGTH
Returned: Always

IntervalEndTime

Description: The time of the end of the monitoring period
Identifier: MQCAMO_END_TIME
Datatype: MQCFST
Maximum length: MQ_TIME_LENGTH
Returned: Always

CommandLevel

Description: The queue manager command level
Identifier: MQIA_COMMAND_LEVEL

266 WebSphere MQ: Monitoring WebSphere MQ



Datatype: MQCFIN
Returned: Always

ConnectionId

Description: The connection identifier for the WebSphere MQ connection
Identifier: MQBACF_CONNECTION_ID
Datatype: MQCFBS
Maximum length: MQ_CONNECTION_ID_LENGTH
Returned: Always

SeqNumber

Description: The sequence number. This value is incremented for each subsequent
record for long running connections.

Identifier: MQIACF_SEQUENCE_NUMBER
Datatype: MQCFIN
Returned: Always

ApplicationName

Description: The name of the application. The contents of this field are equivalent to
the contents of the PutApplName field in the message descriptor.

Identifier: MQCACF_APPL_NAME
Datatype: MQCFST
Maximum length: MQ_APPL_NAME_LENGTH
Returned: Always

ApplicationPid

Description: The operating system process identifier of the application
Identifier: MQIACF_PROCESS_ID
Datatype: MQCFIN
Returned: Always

ApplicationTid

Description: The WebSphere MQ thread identifier of the connection in the application
Identifier: MQIACF_THREAD_ID
Datatype: MQCFIN
Returned: Always

UserId

Description: The user identifier context of the application
Identifier: MQCACF_USER_IDENTIFIER
Datatype: MQCFST
Maximum length: MQ_USER_ID_LENGTH
Returned: Always

ConnDate

Description: Date of MQCONN operation
Identifier: MQCAMO_CONN_DATE
Datatype: MQCFST

Chapter 4. Accounting and statistics messages 267

|
|

|

|



Maximum length: MQ_TIME_LENGTH
Returned: When available

ConnTime

Description: Time of MQCONN operation
Identifier: MQCAMO_CONN_TIME
Datatype: MQCFST
Maximum length: MQ_TIME_LENGTH
Returned: When available

ConnName

Description: Connection name for client connection
Identifier: MQCAMO_CONNECTION_NAME
Datatype: MQCFST
Maximum length: MQ_CONN_NAME_LENGTH
Returned: When available

ChannelName

Description: Channel name for client connection
Identifier: MQCACH_CHANNEL_NAME
Datatype: MQCFST
Maximum length: MQ_CHANNEL_NAME_LENGTH
Returned: When available

DiscDate

Description: Date of MQDISC operation
Identifier: MQCAMO_DISC_DATE
Datatype: MQCFST
Maximum length: MQ_DATE_LENGTH
Returned: When available

DiscTime

Description: Time of MQDISC operation
Identifier: MQCAMO_DISC_TIME
Datatype: MQCFST
Maximum length: MQ_TIME_LENGTH
Returned: When available

DiscType

Description: Type of disconnect
Identifier: MQIAMO_DISC_TYPE
Datatype: MQCFIN

268 WebSphere MQ: Monitoring WebSphere MQ



Values: The possible values are:

MQDISCONNECT_NORMAL
Requested by application

MQDISCONNECT_IMPLICIT
Abnormal application termination

MQDISCONNECT_Q_MGR
Connection broken by queue manager

Returned: When available

OpenCount

Description: The number of objects opened. This parameter is an integer list indexed
by object type, see Note 1.

Identifier: MQIAMO_OPENS
Datatype: MQCFIL
Returned: When available

OpenFailCount

Description: The number of unsuccessful attempts to open an object. This parameter
is an integer list indexed by object type, see Note 1.

Identifier: MQIAMO_OPENS_FAILED
Datatype: MQCFIL
Returned: When available

CloseCount

Description: The number of objects closed. This parameter is an integer list indexed
by object type, see Note 1.

Identifier: MQIAMO_CLOSES
Datatype: MQCFIL
Returned: When available

CloseFailCount

Description: The number of unsuccessful attempts to close an object. This parameter
is an integer list indexed by object type, see Note 1.

Identifier: MQIAMO_CLOSES_FAILED
Datatype: MQCFIL
Returned: When available

PutCount

Description: The number persistent and nonpersistent messages successfully put to a
queue, with the exception of messages put using the MQPUT1 call. This
parameter is an integer list indexed by persistence value, see Note 2.

Identifier: MQIAMO_PUTS
Datatype: MQCFIL
Returned: When available

PutFailCount

Description: The number of unsuccessful attempts to put a message
Identifier: MQIAMO_PUTS_FAILED

Chapter 4. Accounting and statistics messages 269



Datatype: MQCFIN
Returned: When available

Put1Count

Description: The number of persistent and nonpersistent messages successfully put to
the queue using MQPUT1 calls. This parameter is an integer list indexed
by persistence value, see Note 2.

Identifier: MQIAMO_PUT1S
Datatype: MQCFIL
Included in PCF
group:

QAccountingData

Returned: When available

Put1FailCount

Description: The number of unsuccessful attempts to put a message using MQPUT1
calls

Identifier: MQIAMO_PUT1S_FAILED
Datatype: MQCFIN
Included in PCF
group:

QAccountingData

Returned: When available

PutBytes

Description: The number bytes written using put calls for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Note 2.

Identifier: MQIAMO64_PUT_BYTES
Datatype: MQCFIL64
Returned: When available

GetCount

Description: The number of successful destructive MQGET calls for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Note 2.

Identifier: MQIAMO_GETS
Datatype: MQCFIL
Returned: When available

GetFailCount

Description: The number of failed destructive MQGET calls
Identifier: MQIAMO_GETS_FAILED
Datatype: MQCFIN
Returned: When available

GetBytes

Description: Total number of bytes retrieved for persistent and nonpersistent
messages. This parameter is an integer list indexed by persistence value,
see Note 2.

Identifier: MQIAMO64_GET_BYTES
Datatype: MQCFIL64

270 WebSphere MQ: Monitoring WebSphere MQ

|



Returned: When available

BrowseCount

Description: The number of successful non-destructive MQGET calls for persistent
and nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Note 2.

Identifier: MQIAMO_BROWSES
Datatype: MQCFIL
Returned: When available

BrowseFailCount

Description: The number of unsuccessful non-destructive MQGET calls
Identifier: MQIAMO_BROWSES_FAILED
Datatype: MQCFIN
Returned: When available

BrowseBytes

Description: Total number of bytes browsed for persistent and nonpersistent
messages. This parameter is an integer list indexed by persistence value,
see Note 2.

Identifier: MQIAMO64_BROWSE_BYTES
Datatype: MQCFIL64
Returned: When available

CommitCount

Description: The number of successful transactions. This number includes those
transactions committed implicitly by the connected application. Commit
requests where there is no outstanding work are included in this count.

Identifier: MQIAMO_COMMITS
Datatype: MQCFIN
Returned: When available

CommitFailCount

Description: The number of unsuccessful attempts to complete a transaction
Identifier: MQIAMO_COMMITS_FAILED
Datatype: MQCFIN
Returned: When available

BackCount

Description: The number of backouts processed, including implicit backouts due to
abnormal disconnection

Identifier: MQIAMO_BACKOUTS
Datatype: MQCFIN
Returned: When available

InqCount

Description: The number of successful objects inquired upon. This parameter is an
integer list indexed by object type, see Note 1.

Chapter 4. Accounting and statistics messages 271



Identifier: MQIAMO_INQS
Datatype: MQCFIL
Returned: When available

InqFailCount

Description: The number of unsuccessful object inquire attempts. This parameter is
an integer list indexed by object type, see Note 1.

Identifier: MQIAMO_INQS_FAILED
Datatype: MQCFIL
Returned: When available

SetCount

Description: The number of successful MQSET calls. This parameter is an integer list
indexed by object type, see Note 1.

Identifier: MQIAMO_SETS
Datatype: MQCFIL
Returned: When available

SetFailCount

Description: The number of unsuccessful MQSET calls. This parameter is an integer
list indexed by object type, see Note 1.

Identifier: MQIAMO_SETS_FAILED
Datatype: MQCFIL
Returned: When available

Queue accounting message data

Message name: Queue accounting message.

Platforms: All, except WebSphere MQ for z/OS.

System queue: SYSTEM.ADMIN.ACCOUNTING.QUEUE.

Accounting message data
QueueManager

Description: The name of the queue manager
Identifier: MQCA_Q_MGR_NAME
Datatype: MQCFST
Maximum length: MQ_Q_MGR_NAME_LENGTH
Returned: Always

IntervalStartDate

Description: The date of the start of the monitoring period
Identifier: MQCAMO_START_DATE
Datatype: MQCFST
Maximum length: MQ_DATE_LENGTH
Returned: Always

272 WebSphere MQ: Monitoring WebSphere MQ



IntervalStartTime

Description: The time of the start of the monitoring period
Identifier: MQCAMO_START_TIME
Datatype: MQCFST
Maximum length: MQ_TIME_LENGTH
Returned: Always

IntervalEndDate

Description: The date of the end of the monitoring period
Identifier: MQCAMO_END_DATE
Datatype: MQCFST
Maximum length: MQ_DATE_LENGTH
Returned: Always

IntervalEndTime

Description: The time of the end of the monitoring period
Identifier: MQCAMO_END_TIME
Datatype: MQCFST
Maximum length: MQ_TIME_LENGTH
Returned: Always

CommandLevel

Description: The queue manager command level
Identifier: MQIA_COMMAND_LEVEL
Datatype: MQCFIN
Returned: Always

ConnectionId

Description: The connection identifier for the WebSphere MQ connection
Identifier: MQBACF_CONNECTION_ID
Datatype: MQCFBS
Maximum length: MQ_CONNECTION_ID_LENGTH
Returned: Always

SeqNumber

Description: The sequence number. This value is incremented for each subsequent
record for long running connections.

Identifier: MQIACF_SEQUENCE_NUMBER
Datatype: MQCFIN
Returned: Always

ApplicationName

Description: The name of the application. The contents of this field are equivalent to
the contents of the PutApplName field in the message descriptor.

Identifier: MQCACF_APPL_NAME
Datatype: MQCFST
Maximum length: MQ_APPL_NAME_LENGTH
Returned: Always

Chapter 4. Accounting and statistics messages 273

|
|



ApplicationPid

Description: The operating system process identifier of the application
Identifier: MQIACF_PROCESS_ID
Datatype: MQCFIN
Returned: Always

ApplicationTid

Description: The WebSphere MQ thread identifier of the connection in the application
Identifier: MQIACF_THREAD_ID
Datatype: MQCFIN
Returned: Always

UserId

Description: The user identifier context of the application
Identifier: MQCACF_USER_IDENTIFIER
Datatype: MQCFST
Maximum length: MQ_USER_ID_LENGTH
Returned: Always

ObjectCount

Description: The number of queues accessed in the interval for which accounting
data has been recorded. This value is set to the number of
QAccountingData PCF groups contained in the message.

Identifier: MQIAMO_OBJECT_COUNT
Datatype: MQCFIN
Returned: Always

QAccountingData

Description: Grouped parameters specifying accounting details for a queue
Identifier: MQGACF_Q_ACCOUNTING_DATA
Datatype: MQCFGR

274 WebSphere MQ: Monitoring WebSphere MQ

|

|



Parameters in
group:

QName

CreateDate

CreateDate

QType

QDefinitionType

OpenCount

OpenDate

OpenTime

CloseDate

CloseTime

PutCount

PutFailCount

Put1Count

Put1FailCount

PutBytes

PutMinBytes

PutMaxBytes

GetCount

GetFailCount

GetBytes

GetMinBytes

GetMaxBytes

BrowseCount

BrowseFailCount

BrowseBytes

BrowseMinBytes

BrowseMaxBytes

TimeOnQMin

TimeOnQAvg

TimeOnQMax
Returned: Always

QName

Description: The name of the queue
Identifier: MQCA_Q_NAME
Datatype: MQCFST
Included in PCF
group:

QAccountingData

Maximum length: MQ_Q_NAME_LENGTH
Returned: When available

CreateDate

Description: The date the queue was created
Identifier: MQCA_CREATION_DATE
Datatype: MQCFST
Included in PCF
group:

QAccountingData

Maximum length: MQ_DATE_LENGTH

Chapter 4. Accounting and statistics messages 275



Returned: When available

CreateTime

Description: The time the queue was created
Identifier: MQCA_CREATION_TIME
Datatype: MQCFST
Included in PCF
group:

QAccountingData

Maximum length: MQ_TIME_LENGTH
Returned: When available

QType

Description: The type of the queue
Identifier: MQIA_Q_TYPE
Datatype: MQCFIN
Included in PCF
group:

QAccountingData

Value: MQQT_LOCAL
Returned: When available

QDefinitionType

Description: The queue definition type
Identifier: MQIA_DEFINITION_TYPE
Datatype: MQCFIN
Included in PCF
group:

QAccountingData

Values: Possible values are:

MQQDT_PREDEFINED

MQQDT_PERMANENT_DYNAMIC

MQQDT_TEMPORARY_DYNAMIC

Returned: When available

OpenCount

Description: The number of times this queue was opened by the application in this
interval

Identifier: MQIAMO_OPENS
Datatype: MQCFIL
Included in PCF
group:

QAccountingData

Returned: When available

OpenDate

Description: The date the queue was first opened in this recording interval. If the
queue was already open at the start of this interval, this value reflects
the date the queue was originally opened.

Identifier: MQCAMO_OPEN_DATE
Datatype: MQCFST

276 WebSphere MQ: Monitoring WebSphere MQ



Included in PCF
group:

QAccountingData

Returned: When available

OpenTime

Description: The time the queue was first opened in this recording interval. If the
queue was already open at the start of this interval, this value reflects
the time the queue was originally opened.

Identifier: MQCAMO_OPEN_TIME
Datatype: MQCFST
Included in PCF
group:

QAccountingData

Returned: When available

CloseDate

Description: The date of the final close of the queue in this recording interval. If the
queue is still open then the value is not returned.

Identifier: MQCAMO_CLOSE_DATE
Datatype: MQCFST
Included in PCF
group:

QAccountingData

Returned: When available

CloseTime

Description: The time of final close of the queue in this recording interval. If the
queue is still open then the value is not returned.

Identifier: MQCAMO_CLOSE_TIME
Datatype: MQCFST
Included in PCF
group:

QAccountingData

Returned: When available

PutCount

Description: The number of persistent and nonpersistent messages successfully put to
the queue, with the exception of MQPUT1 calls. This parameter is an
integer list indexed by persistence value, see Note 2.

Identifier: MQIAMO_PUTS
Datatype: MQCFIL
Included in PCF
group:

QAccountingData

Returned: When available

PutFailCount

Description: The number of unsuccessful attempts to put a message, with the
exception of MQPUT1 calls

Identifier: MQIAMO_PUTS_FAILED
Datatype: MQCFIN
Included in PCF
group:

QAccountingData

Returned: When available

Chapter 4. Accounting and statistics messages 277



Put1Count

Description: The number of persistent and nonpersistent messages successfully put to
the queue using MQPUT1 calls. This parameter is an integer list indexed
by persistence value, see Note 2.

Identifier: MQIAMO_PUT1S
Datatype: MQCFIL
Included in PCF
group:

QAccountingData

Returned: When available

Put1FailCount

Description: The number of unsuccessful attempts to put a message using MQPUT1
calls

Identifier: MQIAMO_PUT1S_FAILED
Datatype: MQCFIN
Included in PCF
group:

QAccountingData

Returned: When available

PutBytes

Description: The total number of bytes put for persistent and nonpersistent messages.
This parameter is an integer list indexed by persistence value, see Note
2.

Identifier: MQIAMO64_PUT_BYTES
Datatype: MQCFIL64
Included in PCF
group:

QAccountingData

Returned: When available

PutMinBytes

Description: The smallest persistent and nonpersistent message size placed on the
queue. This parameter is an integer list indexed by persistence value, see
Note 2.

Identifier: MQIAMO_PUT_MIN_BYTES
Datatype: MQCFIL
Included in PCF
group:

QAccountingData

Returned: When available

PutMaxBytes

Description: The largest persistent and nonpersistent message size placed on the
queue. This parameter is an integer list indexed by persistence value, see
Note 2.

Identifier: MQIAMO_PUT_MAX_BYTES
Datatype: MQCFIL
Included in PCF
group:

QAccountingData

Returned: When available

278 WebSphere MQ: Monitoring WebSphere MQ



GetCount

Description: The number of successful destructive MQGET calls for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Note 2.

Identifier: MQIAMO_GETS
Datatype: MQCFIL
Included in PCF
group:

QAccountingData

Returned: When available

GetFailCount

Description: The number of failed destructive MQGET calls
Identifier: MQIAMO_GETS_FAILED
Datatype: MQCFIN
Included in PCF
group:

QAccountingData

Returned: When available

GetBytes

Description: The number of bytes read in destructive MQGET calls for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Note 2.

Identifier: MQIAMO64_GET_BYTES
Datatype: MQCFIL64
Included in PCF
group:

QAccountingData

Returned: When available

GetMinBytes

Description: The size of the smallest persistent and nonpersistent message retrieved
rom the queue. This parameter is an integer list indexed by persistence
value, see Note 2.

Identifier: MQIAMO_GET_MIN_BYTES
Datatype: MQCFIL
Included in PCF
group:

QAccountingData

Returned: When available

GetMaxBytes

Description: The size of the largest persistent and nonpersistent message retrieved
rom the queue. This parameter is an integer list indexed by persistence
value, see Note 2.

Identifier: MQIAMO_GET_MAX_BYTES
Datatype: MQCFIL
Included in PCF
group:

QAccountingData

Returned: When available

Chapter 4. Accounting and statistics messages 279

|



BrowseCount

Description: The number of successful non-destructive MQGET calls for persistent
and nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Note 2.

Identifier: MQIAMO_BROWSES
Datatype: MQCFIL
Included in PCF
group:

QAccountingData

Returned: When available

BrowseFailCount

Description: The number of unsuccessful non-destructive MQGET calls
Identifier: MQIAMO_BROWSES_FAILED
Datatype: MQCFIN
Included in PCF
group:

QAccountingData

Returned: When available

BrowseBytes

Description: The number of bytes read in non-destructive MQGET calls that returned
persistent messages

Identifier: MQIAMO64_BROWSE_BYTES
Datatype: MQCFIL64
Included in PCF
group:

QAccountingData

Returned: When available

BrowseMinBytes

Description: The size of the smallest persistent and nonpersistent message browsed
from the queue. This parameter is an integer list indexed by persistence
value, see Note 2.

Identifier: MQIAMO_BROWSE_MIN_BYTES
Datatype: MQCFIL
Included in PCF
group:

QAccountingData

Returned: When available

BrowseMaxBytes

Description: The size of the largest persistent and nonpersistent message browsed
from the queue. This parameter is an integer list indexed by persistence
value, see Note 2.

Identifier: MQIAMO_BROWSE_MAX_BYTES
Datatype: MQCFIL
Included in PCF
group:

QAccountingData

Returned: When available

280 WebSphere MQ: Monitoring WebSphere MQ



TimeOnQMin

Description: The shortest time a persistent and nonpersistent message remained on
the queue before being destructively retrieved, in microseconds. For
messages retrieved under syncpoint this value does not included the
time before the get operation is committed. This parameter is an integer
list indexed by persistence value, see Note 2.

Identifier: MQIAMO_Q_TIME_MIN
Datatype: MQCFIL64
Included in PCF
group:

QAccountingData

Returned: When available

TimeOnQAvg

Description: The average time a persistent and nonpersistent message remained on
the queue before being destructively retrieved, in microseconds. For
messages retrieved under syncpoint this value does not included the
time before the get operation is committed. This parameter is an integer
list indexed by persistence value, see Note 2.

Identifier: MQIAMO_Q_TIME_AVG
Datatype: MQCFIL64
Included in PCF
group:

QAccountingData

Returned: When available

TimeOnQMax

Description: The longest time a persistent and nonpersistent message remained on
the queue before being destructively retrieved, in microseconds. For
messages retrieved under syncpoint this value does not included the
time before the get operation is committed. This parameter is an integer
list indexed by persistence value, see Note 2.

Identifier: MQIAMO_Q_TIME_MAX
Datatype: MQCFIL64
Included in PCF
group:

QAccountingData

Returned: When available

MQI statistics message data

Message name: MQI statistics message.

Platforms: All, except WebSphere MQ for z/OS.

System queue: SYSTEM.ADMIN.STATISTICS.QUEUE.

Statistics message data
QueueManager

Description: Name of the queue manager.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

Chapter 4. Accounting and statistics messages 281

|

|

|

|

|

|



IntervalStartDate

Description: The date at the start of the monitoring period.
Identifier: MQCAMO_START_DATE.
Datatype: MQCFST.
Maximum length: MQ_DATE_LENGTH
Returned: Always.

IntervalStartTime

Description: The time at the start of the monitoring period.
Identifier: MQCAMO_START_TIME.
Datatype: MQCFST.
Maximum length: MQ_TIME_LENGTH
Returned: Always.

IntervalEndDate

Description: The date at the end of the monitoring period.
Identifier: MQCAMO_END_DATE.
Datatype: MQCFST.
Maximum length: MQ_DATE_LENGTH
Returned: Always.

IntervalEndTime

Description: The time at the end of the monitoring period.
Identifier: MQCAMO_END_TIME.
Datatype: MQCFST.
Maximum length: MQ_TIME_LENGTH
Returned: Always.

CommandLevel

Description: The queue manager command level.
Identifier: MQIA_COMMAND_LEVEL.
Datatype: MQCFIN.
Returned: Always.

ConnCount

Description: The number of successful connections to the queue manager.
Identifier: MQIAMO_CONNS.
Datatype: MQCFIN.
Returned: When available.

ConnFailCount

Description: The number of unsuccessful connection attempts.
Identifier: MQIAMO_CONNS_FAILED.
Datatype: MQCFIN.
Returned: When available.

282 WebSphere MQ: Monitoring WebSphere MQ



ConnsMax

Description: The maximum number of concurrent connections in the recording
interval.

Identifier: MQIAMO_CONNS_MAX.
Datatype: MQCFIN.
Returned: When available.

DiscCount

Description: The number of disconnects from the queue manager. This is an integer
array, indexed by the following constants:

v MQDISCONNECT_NORMAL

v MQDISCONNECT_IMPLICIT

v MQDISCONNECT_Q_MGR
Identifier: MQIAMO_DISCS.
Datatype: MQCFIL.
Returned: When available.

OpenCount

Description: The number of objects successfully opened. This parameter is an integer
list indexed by object type, see Note 1.

Identifier: MQIAMO_OPENS.
Datatype: MQCFIL.
Returned: When available.

OpenFailCount

Description: The number of unsuccessful open object attempts. This parameter is an
integer list indexed by object type, see Note 1.

Identifier: MQIAMO_OPENS_FAILED.
Datatype: MQCFIL.
Returned: When available.

CloseCount

Description: The number of objects successfully closed. This parameter is an integer
list indexed by object type, see Note 1.

Identifier: MQIAMO_CLOSES.
Datatype: MQCFIL.
Returned: When available.

CloseFailCount

Description: The number of unsuccessful close object attempts. This parameter is an
integer list indexed by object type, see Note 1.

Identifier: MQIAMO_CLOSES_FAILED.
Datatype: MQCFIL.
Returned: When available.

InqCount

Description: The number of objects successfully inquired upon. This parameter is an
integer list indexed by object type, see Note 1.

Chapter 4. Accounting and statistics messages 283



Identifier: MQIAMO_INQS.
Datatype: MQCFIL.
Returned: When available.

InqFailCount

Description: The number of unsuccessful object inquire attempts. This parameter is
an integer list indexed by object type, see Note 1.

Identifier: MQIAMO_INQS_FAILED.
Datatype: MQCFIL.
Returned: When available.

SetCount

Description: The number of objects successfully updated (SET). This parameter is an
integer list indexed by object type, see Note 1.

Identifier: MQIAMO_SETS.
Datatype: MQCFIL.
Returned: When available.

SetFailCount

Description: The number of unsuccessful SET attempts. This parameter is an integer
list indexed by object type, see Note 1.

Identifier: MQIAMO_SETS_FAILED.
Datatype: MQCFIL.
Returned: When available.

PutCount

Description: The number of persistent and nonpersistent messages successfully put to
a queue, with the exception of MQPUT1 requests. This parameter is an
integer list indexed by persistence value, see Note 2.

Identifier: MQIAMO_PUTS.
Datatype: MQCFIL.
Returned: When available.

PutFailCount

Description: The number of unsuccessful put message attempts.
Identifier: MQIAMO_PUTS_FAILED.
Datatype: MQCFIN.
Returned: When available.

Put1Count

Description: The number of persistent and nonpersistent messages successfully put to
a queue using MQPUT1 requests. This parameter is an integer list
indexed by persistence value, see Note 2

Identifier: MQIAMO_PUT1S.
Datatype: MQCFIL.
Returned: When available.

284 WebSphere MQ: Monitoring WebSphere MQ



Put1FailCount

Description: The number of unsuccessful attempts to put a persistent and
nonpersistent message to a queue using MQPUT1 requests. This
parameter is an integer list indexed by persistence value, see Note 2

Identifier: MQIAMO_PUT1S_FAILED.
Datatype: MQCFIN.
Returned: When available.

PutBytes

Description: The number bytes for persistent and nonpersistent messages written in
using put requests. This parameter is an integer list indexed by
persistence value, see Note 2

Identifier: MQIAMO64_PUT_BYTES.
Datatype: MQCFIL64.
Returned: When available.

GetCount

Description: The number of successful destructive get requests for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Note 2

Identifier: MQIAMO_GETS.
Datatype: MQCFIL.
Returned: When available.

GetFailCount

Description: The number of unsuccessful destructive get requests.
Identifier: MQIAMO_GETS_FAILED.
Datatype: MQCFIN.
Returned: When available.

GetBytes

Description: The number of bytes read in destructive gets requests for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Note 2

Identifier: MQIAMO64_GET_BYTES.
Datatype: MQCFIL64.
Returned: When available.

BrowseCount

Description: The number of successful non-destructive get requests for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Note 2

Identifier: MQIAMO_BROWSES.
Datatype: MQCFIL.
Returned: When available.

BrowseFailCount

Description: The number of unsuccessful non-destructive get requests.
Identifier: MQIAMO_BROWSES_FAILED.

Chapter 4. Accounting and statistics messages 285



Datatype: MQCFIN.
Returned: When available.

BrowseBytes

Description: The number of bytes read in non-destructive get requests for persistent
and nonpersistent messages. This parameter is an integer list indexed by
persistence value, see Note 2

Identifier: MQIAMO64_BROWSE_BYTES.
Datatype: MQCFIL64.
Returned: When available.

CommitCount

Description: The number of transactions successfully completed. This number
includes transactions committed implicitly by the application
disconnecting, and commit requests where there is no outstanding work.

Identifier: MQIAMO_COMMITS.
Datatype: MQCFIN.
Returned: When available.

CommitFailCount

Description: The number of unsuccessful attempts to complete a transaction.
Identifier: MQIAMO_COMMITS_FAILED.
Datatype: MQCFIN.
Returned: When available.

BackCount

Description: The number of backouts processed, including implicit backout upon
abnormal disconnect.

Identifier: MQIAMO_BACKOUTS.
Datatype: MQCFIN.
Returned: When available.

ExpiredMsgCount

Description: The number of persistent and nonpersistent messages that were
discarded because they had expired, before they could be retrieved.

Identifier: MQIAMO_MSGS_EXPIRED.
Datatype: MQCFIN.
Returned: When available.

PurgeCount

Description: The number of times the queue has been cleared.
Identifier: MQIAMO_MSGS_PURGED.
Datatype: MQCFIN.
Returned: When available.

Queue statistics message data

Message name: Queue statistics message.

286 WebSphere MQ: Monitoring WebSphere MQ

|

|||
|
||
||
||
|

|

|||
||
||
||
|

|



Platforms: All, except WebSphere MQ for z/OS.

System queue: SYSTEM.ADMIN.STATISTICS.QUEUE.

Statistics message data
QueueManager

Description: Name of the queue manager
Identifier: MQCA_Q_MGR_NAME
Datatype: MQCFST
Maximum length: MQ_Q_MGR_NAME_LENGTH
Returned: Always

IntervalStartDate

Description: The date at the start of the monitoring period
Identifier: MQCAMO_START_DATE
Datatype: MQCFST
Maximum length: MQ_DATE_LENGTH
Returned: Always

IntervalStartTime

Description: The time at the start of the monitoring period
Identifier: MQCAMO_START_TIME
Datatype: MQCFST
Maximum length: MQ_TIME_LENGT
Returned: Always

IntervalEndDate

Description: The date at the end of the monitoring period
Identifier: MQCAMO_END_DATE
Datatype: MQCFST
Maximum length: MQ_DATE_LENGTH
Returned: Always

IntervalEndTime

Description: The time at the end of the monitoring period
Identifier: MQCAMO_END_TIME
Datatype: MQCFST
Maximum length: MQ_TIME_LENGTH
Returned: Always

CommandLevel

Description: The queue manager command level
Identifier: MQIA_COMMAND_LEVEL
Datatype: MQCFIN
Returned: Always

Chapter 4. Accounting and statistics messages 287



ObjectCount

Description: The number of queue objects accessed in the interval for which statistics
data has been recorded. This value is set to the number of
QStatisticsData PCF groups contained in the message.

Identifier: MQIAMO_OBJECT_COUNT
Datatype: MQCFIN
Returned: Always

QStatisticsData

Description: Grouped parameters specifying statistics details for a queue
Identifier: MQGACF_Q_STATISTICS_DATA
Datatype: MQCFGR
Parameters in
group:

QName

CreateDate

CreateTime

QType

QDefinitionType

QMinDepth

QMaxDepth

AvgTimeOnQ

PutCount

PutFailCount

Put1Count

Put1FailCount

PutBytes

GetCount

GetFailCount

GetBytes

BrowseCount

BrowseFailCount

BrowseBytes

NonQueuedMsgCount

ExpiredMsgCount

PurgeCount
Returned: Always

QName

Description: The name of the queue
Identifier: MQCA_Q_NAME
Datatype: MQCFST
Maximum length: MQ_Q_NAME_LENGTH
Returned: Always

CreateDate

Description: The date when the queue was created
Identifier: MQCA_CREATION_DATE
Datatype: MQCFST
Maximum length: MQ_DATE_LENGTH

288 WebSphere MQ: Monitoring WebSphere MQ

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|



Returned: Always

CreateTime

Description: The time when the queue was created
Identifier: MQCA_CREATION_TIME
Datatype: MQCFST
Maximum length: MQ_TIME_LENGTH
Returned: Always

QType

Description: The type of the queue
Identifier: MQIA_Q_TYPE
Datatype: MQCFIN
Value: MQOT_LOCAL
Returned: Always

QDefinitionType

Description: The queue definition type
Identifier: MQIA_DEFINITION_TYPE
Datatype: MQCFIN
Values: Possible values are

v MQQDT_PREDEFINED

v MQQDT_PERMANENT_DYNAMIC

v MQQDT_TEMPORARY_DYNAMIC
Returned: When available

QMinDepth

Description: The minimum queue depth during the monitoring period
Identifier: MQIAMO_Q_MIN_DEPTH
Datatype: MQCFIN
Included in PCF
group:

QStatisticsData

Returned: When available

QMaxDepth

Description: The maximum queue depth during the monitoring period
Identifier: MQIAMO_Q_MAX_DEPTH
Datatype: MQCFIN
Included in PCF
group:

QStatisticsData

Returned: When available

AvgTimeOnQ

Description: The average latency, in microseconds, of messages destructively
retrieved from the queue during the monitoring period. This parameter
is an integer list indexed by persistence value, see Note 2.

Identifier: MQIAMO_AVG_Q_TIME
Datatype: MQCFIL64

Chapter 4. Accounting and statistics messages 289

|
|



Included in PCF
group:

QStatisticsData

Returned: When available

PutCount

Description: The number of persistent and nonpersistent messages successfully put to
the queue, with exception of MQPUT1 requests. This parameter is an
integer list indexed by persistence value. See Note 2.

Identifier: MQIAMO_PUTS
Datatype: MQCFIL
Included in PCF
group:

QStatisticsData

Returned: When available

PutFailCount

Description: The number of unsuccessful attempts to put a message to the queue
Identifier: MQIAMO_PUTS_FAILED
Datatype: MQCFIN
Included in PCF
group:

QStatisticsData

Returned: When available

Put1Count

Description: The number of persistent and nonpersistent messages successfully put to
the queue using MQPUT1 calls. This parameter is an integer list indexed
by persistence value. See Note 2.

Identifier: MQIAMO_PUT1S
Datatype: MQCFIL
Included in PCF
group:

QStatisticsData

Returned: When available

Put1FailCount

Description: The number of unsuccessful attempts to put a message using MQPUT1
calls

Identifier: MQIAMO_PUT1S_FAILED
Datatype: MQCFIN
Included in PCF
group:

QStatisticsData

Returned: When available

PutBytes

Description: The number of bytes written in put requests to the queue
Identifier: MQIAMO64_PUT_BYTES
Datatype: MQCFIL64
Included in PCF
group:

QStatisticsData

Returned: When available

290 WebSphere MQ: Monitoring WebSphere MQ



GetCount

Description: The number of successful destructive get requests for persistent and
nonpersistent messages.This parameter is an integer list indexed by
persistence value. See Note 2.

Identifier: MQIAMO_GETS
Datatype: MQCFIL
Included in PCF
group:

QStatisticsData

Returned: When available

GetFailCount

Description: The number of unsuccessful destructive get requests
Identifier: MQIAMO_GETS_FAILED
Datatype: MQCFIN
Included in PCF
group:

QStatisticsData

Returned: When available

GetBytes

Description: The number of bytes read in destructive put requests for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value. See Note 2.

Identifier: MQIAMO64_GET_BYTES
Datatype: MQCFIL64
Included in PCF
group:

QStatisticsData

Returned: When available

BrowseCount

Description: The number of successful non-destructive get requests for persistent and
nonpersistent messages. This parameter is an integer list indexed by
persistence value. See Note 2.

Identifier: MQIAMO_BROWSES
Datatype: MQCFIL
Included in PCF
group:

QStatisticsData

Returned: When available

BrowseFailCount

Description: The number of unsuccessful non-destructive get requests
Identifier: MQIAMO_BROWSES_FAILED
Datatype: MQCFIN
Included in PCF
group:

QStatisticsData

Returned: When available

BrowseBytes

Description: The number of bytes read in non-destructive get requests for persistent
and nonpersistent messages. This parameter is an integer list indexed by
persistence value. See Note 2.

Identifier: MQIAMO64_BROWSE_BYTES

Chapter 4. Accounting and statistics messages 291



Datatype: MQCFIL64
Included in PCF
group:

QStatisticsData

Returned: When available

NonQueuedMsgCount

Description: The number of messages that bypassed the queue and were transferred
directly to a waiting application.

Bypassing a queue can only occur in certain circumstances. This number
represents how many times WebSphere MQ was able to bypass the
queue, and not the number of times an application was waiting.

Identifier: MQIAMO_MSGS_NOT_QUEUED
Datatype: MQCFIN
Included in PCF
group:

QStatisticsData

Returned: When available

ExpiredMsgCount

Description: The number of persistent and nonpersistent messages that were
discarded because they had expired before they could be retrieved.

Identifier: MQIAMO_MSGS_EXPIRED
Datatype: MQCFIN
Included in PCF
group:

QStatisticsData

Returned: When available

PurgeCount

Description: The number of messages purged.
Identifier: MQIAMO_MSGS_PURGED
Datatype: MQCFIN
Included in PCF
group:

QStatisticsData

Returned: When available

Channel statistics message data

Message name: Channel statistics message.

Platforms: All, except WebSphere MQ for z/OS.

System queue: SYSTEM.ADMIN.STATISTICS.QUEUE.

Statistics message data
QueueManager

Description: The name of the queue manager.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

292 WebSphere MQ: Monitoring WebSphere MQ

|

|||
|

|
|
|
||
||
|
|
|

||
|

|

|||
|
||
||
|
|
|

||
|

|

|||
||
||
|
|
|

||
|

|



IntervalStartDate

Description: The date at the start of the monitoring period.
Identifier: MQCAMO_START_DATE.
Datatype: MQCFST.
Maximum length: MQ_DATE_LENGTH.
Returned: Always.

IntervalStartTime

Description: The time at the start of the monitoring period.
Identifier: MQCAMO_START_TIME.
Datatype: MQCFST.
Maximum length: MQ_TIME_LENGTH.
Returned: Always.

IntervalEndDate

Description: The date at the end of the monitoring period
Identifier: MQCAMO_END_DATE.
Datatype: MQCFST.
Maximum length: MQ_DATE_LENGTH.
Returned: Always.

IntervalEndTime

Description: The time at the end of the monitoring period
Identifier: MQCAMO_END_TIME.
Datatype: MQCFST.
Maximum length: MQ_TIME_LENGTH
Returned: Always.

CommandLevel

Description: The queue manager command level.
Identifier: MQIA_COMMAND_LEVEL.
Datatype: MQCFIN.
Returned: Always.

ObjectCount

Description: The number of Channel objects accessed in the interval for which
statistics data has been recorded. This value is set to the number of
ChlStatisticsData PCF groups contained in the message.

Identifier: MQIAMO_OBJECT_COUNT
Datatype: MQCFIN.
Returned: Always.

ChlStatisticsData

Description: Grouped parameters specifying statistics details for a channel.
Identifier: MQGACF_CHL_STATISTICS_DATA.
Datatype: MQCFGR.

Chapter 4. Accounting and statistics messages 293



Parameters in
group:

ChannelName

ChannelType

RemoteQmgr

ConnectionName

MsgCount

TotalBytes

NetTimeMin

NetTimeAvg

NetTimeMax

ExitTimeMin

ExitTimeAvg

ExitTimeMax

FullBatchCount

IncmplBatchCount

AverageBatchSize

PutRetryCount
Returned: Always.

ChannelName

Description: The name of the channel.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

ChannelType

Description: The channel type.
Identifier: MQIACH_CHANNEL_TYPE.
Datatype: MQCFIN.
Values: Possible values are:

MQCHT_SENDER
Sender channel.

MQCHT_SERVER
Server channel.

MQCHT_RECEIVER
Receiver channel.

MQCHT_REQUESTER
Requester channel.

MQCHT_CLUSRCVR
Cluster receiver channel.

MQCHT_CLUSSDR
Cluster sender channel.

Returned: Always.

RemoteQmgr

Description: The name of the remote queue manager.
Identifier: MQCA_REMOTE_Q_MGR_NAME.

294 WebSphere MQ: Monitoring WebSphere MQ



Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH
Returned: When available.

ConnectionName

Description: Connection name of remote queue manager.
Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST
Maximum length: MQ_CONN_NAME_LENGTH
Returned: When available.

MsgCount

Description: The number of persistent and nonpersistent messages sent or received.
Identifier: MQIAMO_MSGS.
Datatype: MQCFIN
Returned: When available.

TotalBytes

Description: The number of bytes sent or received for persistent and nonpersistent
messages. This parameter is an integer list indexed by persistence value,
see Note 2

Identifier: MQIAMO64_BYTES.
Datatype: MQCFIL64.
Returned: When available.

NetTimeMin

Description: The shortest recorded channel round trip measured in the recording
interval, in microseconds.

Identifier: MQIAMO_NET_TIME_MIN.
Datatype: MQCFIN.
Returned: When available.

NetTimeAvg

Description: The average recorded channel round trip measured in the recording
interval, in microseconds.

Identifier: MQIAMO_NET_TIME_AVG.
Datatype: MQCFIN.
Returned: When available.

NetTimeMax

Description: The longest recorded channel round trip measured in the recording
interval, in microseconds.

Identifier: MQIAMO_NET_TIME_MAX.
Datatype: MQCFIN.
Returned: When available.

Chapter 4. Accounting and statistics messages 295



ExitTimeMin

Description: The shortest recorded time, in microseconds, spent executing a user exit
in the recording interval,

Identifier: MQIAMO_EXIT_TIME_MIN.
Datatype: MQCFIN.
Returned: When available.

ExitTimeAvg

Description: The average recorded time, in microseconds, spent executing a user exit
in the recording interval. Measured in microseconds.

Identifier: MQIAMO_EXIT_TIME_AVG.
Datatype: MQCFIN.
Returned: When available.

ExitTimeMax

Description: The longest recorded time, in microseconds, spent executing a user exit
in the recording interval. Measured in microseconds.

Identifier: MQIAMO_EXIT_TIME_MAX.
Datatype: MQCFIN.
Returned: When available.

FullBatchCount

Description: The number of batches processed by the channel, that were sent because
the value of the channel attribute BATCHSZ was reached.

Identifier: MQIAMO_FULL_BATCHES.
Datatype: MQCFIN.
Returned: When available.

IncmplBatchCount

Description: The number of batches processed by the channel, that were sent without
the value of the channel attribute BATCHSZ being reached.

Identifier: MQIAMO_INCOMPLETE_BATCHES.
Datatype: MQCFIN.
Returned: When available.

AverageBatchSize

Description: The average batch size of batches processed by the channel.
Identifier: MQIAMO_AVG_BATCHE_SIZE.
Datatype: MQCFIN.
Returned: When available.

PutRetryCount

Description: The number of times in the time interval that a message failed to be put,
and entered a retry loop.

Identifier: MQIAMO_PUT_RETRIES.
Datatype: MQCFIN.
Returned: When available.

296 WebSphere MQ: Monitoring WebSphere MQ



Reference notes

These notes are applicable to the following sections:
v “MQI accounting message data” on page 266
v “Queue accounting message data” on page 272
v “MQI statistics message data” on page 281
v “Queue statistics message data” on page 286
v “Channel statistics message data” on page 292
1. This parameter relates to WebSphere MQ objects. This parameter is an array of

values (MQCFIL or MQCFIL64) indexed by the following constants:

Table 22. Array indexed by object type

Object type Value context

MQOT_Q (1) Contains the value relating to queue objects.

MQOT_NAMELIST (2) Contains the value relating to namelist
objects.

MQOT_PROCESS (3) Contains the value relating to process
objects.

MQOT_Q_MGR (5) Contains the value relating to queue
manager objects.

MQOT_CHANNEL (6) Contains the value relating to channel
objects.

MQOT_AUTH_INFO (7) Contains the value relating to authentication
information objects.

MQOT_TOPIC (8) Contains the value relating to topic objects.

Note: An array of 13 MQCFIL or MQCFIL64 values are returned but only
those listed are meaningful.

2. This parameter relates to WebSphere MQ messages. This parameter is an array
of values (MQCFIL or MQCFIL64) indexed by the following constants:

Table 23. Array indexed by persistence value

Constant Value

1 Contains the value for nonpersistent
messages.

2 Contains the value for persistent messages.

Note: The index for each of these arrays starts at zero, so an index of 1 refers to
the second row of the array. Elements of these arrays not listed in these tables
contain no accounting or statistics information.

Chapter 4. Accounting and statistics messages 297

||

|
|
|



298 WebSphere MQ: Monitoring WebSphere MQ



Chapter 5. Real-time monitoring

An introduction to real-time monitoring
Real-time monitoring is a technique that allows you to determine the current state
of queues and channels within a queue manager. A number of commands are
available that when issued return real-time information about queues and
channels. Varying amounts of information can be returned for a single queue or
channel, or for multiple queues or channels. The information returned is accurate
at the moment the command was issued. Real-time monitoring can be used to:
v Help system administrators understand the steady state of their WebSphere MQ

system. This helps with problem diagnosis if a problem occurs in the system.
v Determine the condition of your queue manager at any moment, even if no

specific event or problem has been detected.
v Assist in determining the cause of a problem in your system.

When using real-time monitoring, information can be returned for either queues or
channels. The amount of real-time information returned is controlled by queue
manager, queue, and channel attributes. This chapter discusses how to enable these
attributes, and how to display real-time information, as follows:
v “Controlling real-time monitoring”
v “Displaying queue and channel monitoring data” on page 301

Real-time monitoring for queues and channels is in addition to, and separate from,
performance and channel event monitoring, see “An introduction to
instrumentation events” on page 5 and “Understanding performance events” on
page 19.

“Monitoring queues” on page 302 outlines a number of questions that you can ask
about a queue to ensure it is being serviced properly, and the commands you can
use for this purpose. Some of the fields used are among these monitoring fields
and must be enabled to allow their use.

“Monitoring channels” on page 305 outlines a number of questions that you can
ask about a channel to ensure it is running properly, and the commands you can
use for this purpose. Some of the fields used are among these monitoring fields
and must be enabled to allow their use.

Controlling real-time monitoring

There are a number of queue and channel status attributes that will hold
monitoring information if real-time monitoring is enabled. If real-time monitoring
is not enabled, then no monitoring information will be held in the monitoring
attributes.

Real-time monitoring can be enabled or disabled for individual queues or channels,
or for multiple queue or channels. To control individual queues or channels, the
queue attribute MONQ, or the channel attribute MONCHL, must be set to enable
or disable real-time monitoring. To control many queues or channels together,
real-time monitoring can be enabled or disabled at the queue manager level using
the queue manager attributes MONQ and MONCHL. For all queue and channel

© Copyright IBM Corp. 1994, 2009 299



objects whose monitoring attribute is specified with the default value, QMGR,
real-time monitoring is controlled at the queue manager level.

Automatically defined cluster-sender channels are not WebSphere MQ objects, so
do not have attributes in the same way as channel objects. To control automatically
defined cluster-sender channels, use the queue manager attribute, MONACLS. This
attribute determines whether automatically defined cluster-sender channels within
a queue manager are enabled or disabled for channel monitoring.

Real-time monitoring of channels (MONCHL) can be set to one of the three
monitoring levels, low, medium or high. This level is either set at the object level,
or at the queue manager level. The choice of which level to use is dependant on
your system. Collecting monitoring data may require the execution of some
relatively expensive instructions (for example, obtaining system time), so in order
to reduce the impact of real-time monitoring, the medium and low monitoring
options measure a sample of the data at regular intervals rather than collecting
data all the time. Table 24 summarizes the monitoring levels available with
real-time monitoring of channels:

Table 24. Monitoring levels

Level Description Usage

Low Measure a small sample of the data,
at regular intervals.

For objects that process a high volume
of messages.

Medium Measure a sample of the data, at
regular intervals.

For most objects.

High Measure all data, at regular
intervals.

For objects that process only a few
messages per second, on which the
most current information is important.

Real-time monitoring of queues (MONQ) can also be set to one of the three
monitoring levels, low, medium or high. However, there is no distinction between
these values. The values all turn data collection on, but do not affect the size of the
sample.

Examples of controlling real-time monitoring

A number of examples follow that show how to set the necessary queue, channel,
and queue manager attributes to control the level of monitoring. In all the
examples, when monitoring is enabled, queue and channel objects have a medium
level of monitoring.
1. To enable both queue and channel monitoring for all queues and channels at

the queue manager level, use the following commands:
ALTER QMGR MONQ(MEDIUM) MONCHL(MEDIUM)
ALTER QL(Q1) MONQ(QMGR)
ALTER CHL(QM1.TO.QM2) CHLTYPE(SDR) MONCHL(QMGR)

2. To enable monitoring for all queues and channels, with the exception of local
queue, Q1, and sender channel, QM1.TO.QM2, use the following commands:
ALTER QMGR MONQ(MEDIUM) MONCHL(MEDIUM)
ALTER QL(Q1) MONQ(OFF)
ALTER CHL(QM1.TO.QM2) CHLTYPE(SDR) MONCHL(OFF)

3. To disable both queue and channel monitoring for all queues and channels,
with the exception of local queue, Q1, and sender channel, QM1.TO.QM2, use the
following commands:
ALTER QMGR MONQ(OFF) MONCHL(OFF)
ALTER QL(Q1) MONQ(MEDIUM)
ALTER CHL(QM1.TO.QM2) CHLTYPE(SDR) MONCHL(MEDIUM)

300 WebSphere MQ: Monitoring WebSphere MQ



4. To disable both queue and channel monitoring for all queues and channels,
regardless of individual object attributes, use the following command:
ALTER QMGR MONQ(NONE) MONCHL(NONE)

To control the monitoring capabilities of automatically defined cluster-sender
channels use the following command:
ALTER QMGR MONACLS(MEDIUM)

To specify that automatically defined cluster-sender channels are to use the queue
manager setting for channel monitoring, use the following command:
ALTER QMGR MONACLS(QMGR)

Displaying queue and channel monitoring data

To display real-time monitoring information for a queue either use the WebSphere
MQ Explorer, or the MQSC command DISPLAY QSTATUS specifying the optional
parameter MONITOR.

To display real-time monitoring information for a channel either use the
WebSphere MQ Explorer, or the MQSC command DISPLAY CHSTATUS specifying the
optional parameter MONITOR.

For examples of using the MQSC commands DISPLAY QSTATUS and DISPLAY
CHSTATUS, see “Examples of displaying monitoring levels.”

Examples of displaying monitoring levels

The queue, Q1, has the attribute MONQ set as the default value, QMGR, and the
queue manager where it resides has the attribute MONQ set as MEDIUM. To
display the monitoring fields collected for this queue, use the following command:
DISPLAY QSTATUS(Q1) MONITOR

This displays the monitoring fields, and monitoring level, of queue, Q1:
QSTATUS(Q1)
TYPE(QUEUE)
MONQ(MEDIUM)
QTIME(11892157,24052785)
MSGAGE(37)
LPUTDATE(2005-03-02)
LPUTTIME(09.52.13)
LGETDATE(2005-03-02)
LGETTIME(09.51.02)

For the meaning of these fields see the WebSphere MQ Script (MQSC) Command
Reference manual.

The sender channel, QM1.TO.QM2, has the attribute MONCHL set as the default
value, QMGR, and the queue manager where it resides has the attribute MONCHL
set as MEDIUM. To display the monitoring fields collected for this sender channel,
use the following command:
DISPLAY CHSTATUS(QM1.TO.QM2) MONITOR

This displays the monitoring fields, and monitoring level, of sender channel,
QM1.TO.QM2:

Chapter 5. Real-time monitoring 301



CHSTATUS(QM1.TO.QM2)
XMITQ(Q1)
CONNAME(127.0.0.1)
CURRENT
CHLTYPE(SDR)
STATUS(RUNNING)
SUBSTATE(MQGET)
MONCHL(MEDIUM)
XQTIME(755394737,755199260)
NETTIME(13372,13372)
EXITTIME(0,0)
XBATCHSZ(50,50)
COMPTIME(0,0)
STOPREQ(NO)
RQMNAME(QM2)

Monitoring Indicator Values

Some monitoring fields display a pair of values separated by a comma. These pairs
are short term and long term indicators for the time measured since monitoring
was enabled for the object, or from when the queue manager was started:
v The short term indicator is the first value in the pair and is calculated in a way

such that more recent measurements are given a higher weighting and will have
a greater effect on this value. This gives an indication of recent trend in
measurements taken.

v The long term indicator in the second value in the pair and is calculated in a
way such that more recent measurements are not given such a high weighting.
This gives an indication of the longer term activity on performance of a resource.

These indicator values are most useful to detect changes in the operation of your
queue manager. This requires knowledge of the times these indicators show when
in normal use, in order to detect increases in these times. By collecting and
checking these values regularly you can detect fluctuations in the operation of your
queue manager. This can indicate a change in performance.

Monitoring queues
Very often the first sign of a problem with a queue that is being serviced is that the
number of messages on the queue (CURDEPTH) is increasing. This section
discusses the various monitoring options that are available to determine the
problem with a queue and the application servicing it.

Of course, the increasing number of messages might not be a sign of a problem if
it is expected at certain times of day or under certain workloads. However, if there
is no known explanation for the increasing number of messages, it should be
investigated.

You might have an application queue where there is a problem with the
application, or a transmission queue where there is a problem with the channel.

“Monitoring channels” on page 305 discusses additional monitoring options that
are available when the application that services the queue is a channel.

This section discusses the questions that you should ask, and the fields that you
should look at in the output of various commands, when investigating problems
with a particular queue. In all the examples, the queue being examined is called
Q1.

302 WebSphere MQ: Monitoring WebSphere MQ



Does your application have the queue open?

To determine whether your application has the queue open, do the following:
1. Ensure that the application that is running against the queue is the application

that you expect. Issue the following command for the queue in question:
DISPLAY QSTATUS(Q1) TYPE(HANDLE) ALL

In the output, look at the APPLTAG field, and check that the name of your
application is shown. If the name of your application is not shown, or if there
is no output at all, start your application.

2. If the queue is a transmission queue, look in the output at the CHANNEL field.
If the channel name is not shown in the CHANNEL field, then see “Is the
channel running?” on page 305

3. Ensure that the application that is running against the queue has the queue
open for input. Issue the following command:
DISPLAY QSTATUS(Q1) TYPE(QUEUE) ALL

In the output, look at the IPPROCS field to see if any application has the queue
open for input. If the value is 0 and this is a user application queue, make sure
that the application opens the queue for input to get the messages off the
queue.

Are the messages on the queue available?

If there is a large number of messages on the queue and your application is not
processing any of them, follow this procedure.

Perform the following steps to investigate why your application is not processing
messages from the queue:
1. Ensure that your application is not asking for a specific message ID or

correlation ID when it should be processing all the messages on the queue.
2. Although the current depth of the queue might show that there is an increasing

number of messages on the queue, some messages on the queue might not be
available to be got by an application, because they are not committed; the
current depth includes the number of uncommitted MQPUTs of messages to
the queue. Issue the following command:
DISPLAY QSTATUS(Q1) TYPE(QUEUE) ALL

In the output, look at the UNCOM field to see whether there are any
uncommitted messages on the queue.

3. If your application is attempting to get any messages from the queue, check
whether the putting application is committing the messages correctly. Issue the
following command to find out the names of applications that are putting
messages to this queue:
DISPLAY QSTATUS(Q1) TYPE(HANDLE) OPENTYPE(OUTPUT)

4. Then issue the following command, inserting in <appltag> the APPLTAG value
from the output of the previous command:
DISPLAY CONN(*) WHERE(APPLTAG EQ <appltag>) UOWSTDA UOWSTTI

This shows when the unit of work was started and will help you discover
whether the application is creating a long running unit of work. If the putting
application is a channel, see “Does a batch take a long time to complete?” on
page 308

Chapter 5. Real-time monitoring 303

|
|

|
|



Is your application getting messages off the queue?

To check whether your application is getting messages off the queue, do the
following:
1. Ensure that the application that is running against the queue is actually

processing messages from the queue. Issue the following command:
DISPLAY QSTATUS(Q1) TYPE(QUEUE) ALL

In the output, look at the LGETDATE and LGETTIME fields which show when
the last get was done from the queue.

2. If the last get that was done on this queue was longer ago than expected,
ensure that the application is processing correctly. If the application is a
channel, see “Is the channel moving messages?” on page 307 for more details.

Can the application process messages fast enough?

If messages are building up on the queue, and there are none of the processing
problems that are described in the previous sections, it might simply be that the
application cannot process messages fast enough. If the application is a channel,
see “Can the channel process messages fast enough?” on page 309.

To determine whether messages are being processed fast enough, do the following:
1. Issue the following command periodically to gather performance data about the

queue:
DISPLAY QSTATUS(Q1) TYPE(QUEUE) ALL

If the values in the QTIME indicators are high, or are increasing over this
period, and you have already ruled out the possibility of long running Units of
Work as discussed in “Are the messages on the queue available?” on page 303,
this can indicate that the getting application is not keeping up with the putting
applications.

2. If your getting application cannot keep up with the putting applications,
consider adding another getting application to process the queue. Whether you
can do this depends on the design of the application and whether the queue
can be shared by more than one application. Features such as message
grouping or getting by correlation ID, might help to ensure that two
applications can process a queue simultaneously. See WebSphere MQ
Application Programming Guide for more details.

What about when the current depth is not increasing?

If the current depth of your queue is not increasing, it might still be useful to
monitor the queue to check whether your application is processing messages
correctly. to do this, issue the following command periodically to gather
performance data about the queue:
DISPLAY QSTATUS(Q1) TYPE(QUEUE) MSGAGE QTIME

In the output, if the value in MSGAGE increases over the period of time, and your
application is designed to process all messages, this might indicate that some
messages are not being processed at all.

304 WebSphere MQ: Monitoring WebSphere MQ



Monitoring channels
Very often the first sign of a problem with a queue that is being serviced is that the
current depth of the queue is increasing. Of course, the fact that the current depth
of the queue is increasing might not be a sign of a problem if it is expected at
certain times of day or under certain workloads. However, if there is no known
explanation for the current depth increasing, it is worth investigating.

This section discusses the various channel monitoring options that are available to
help determine the problem with a transmission queue and the channel servicing
it. In all the examples, the transmission queue in question is called QM2 and the
channel is called QM1.TO.QM2. QM1.TO.QM2 is used to send messages from
queue manager, QM1, to queue manager, QM2. The channel definition at queue
manager QM1 is either a sender or server channel, and the channel definition at
queue manager, QM2, is either a receiver or requester channel. Cluster channels are
discussed in “Cluster channels” on page 310.

Is the channel running?

To determine whether a channel is running and processing this transmission
queue, check the status of the channel by doing the following:
1. Issue the following command to find out which channel is supposed to be

processing the transmission queue QM2:
DIS CHANNEL(*) WHERE(XMITQ EQ QM2)

In this example, the output of this command shows that the channel servicing
the transmission queue is QM1.TO.QM2.

2. Issue the following command to determine the status of the channel,
QM1.TO.QM2:
DIS CHSTATUS(QM1.TO.QM2) ALL

3. Look at the STATUS field of the output.
v If the value of the STATUS field is RUNNING, see “Is the channel moving

messages?” on page 307.
v If the value of the STATUS field is not RUNNING, see one of the topics in this

section of the documentation.

If the channel has stopped

Having issued the command DIS CHSTATUS(QM1.TO.QM2) ALL, if the output shows
the status of the channel is STOPPED, then the channel could either have stopped
because of an error or because of a command. Do the following:
1. Determine why the channel stopped by checking the error logs. If the channel

stopped due to an error, the error must be fixed.
In addition, ensure that the channel has values specified for the retry attributes,
SHORTRTY, and LONGRTY, so that in the event of transient failures such as
network errors, the channel will attempt to restart automatically. For more
information on channel retry, see the WebSphere MQ Intercommunication
manual.
The channel must be manually started for the changes to take effect.

2. Issue the following command to start the channel again:
START CHANNEL(QM1.TO.QM2)

Chapter 5. Real-time monitoring 305



On WebSphere MQ for z/OS, you can detect when a user stops a channel by using
command event messages. For more information, see “Understanding command
events” on page 40.

If the channel is inactive

Having issued the command DIS CHSTATUS(QM1.TO.QM2) ALL, if the output shows
no status, then the channel is inactive. Do the following:
1. If the channel should have been automatically started by a trigger, check the

following:
v Check that the messages on the transmission queue are committed. For more

information, see “Are the messages on the queue available?” on page 303.
v If there are available messages on the transmission queue, check that the

trigger settings on the transmission queue are correct. For details of how to
set up triggering on a transmission queue to start a channel, see the
WebSphere MQ Intercommunication manual.

2. For now, the channel must be manually started. Issue the following command:
START CHANNEL(QM1.TO.QM2)

If the channel is in retry state

Having issued the command DIS CHSTATUS(QM1.TO.QM2) ALL, if the output shows
the status of the channel is RETRY, then the channel has detected an error. Do the
following:
1. Identify, and fix, the error by checking the error logs.
2. Start the channel using one of the following:
v Start the channel manually, by issuing the following command:

START CHANNEL(QM1.TO.QM2)

v Wait for the channel to connect successfully on its next retry,

If the channel is in another state

Having issued the command DIS CHSTATUS(QM1.TO.QM2) ALL, if the output shows
the status of the channel is BINDING or REQUESTING, then it has not yet successfully
connected to the partner. Do the following:
1. Issue the following command, at both ends of the channel, to determine the

substate of the channel:
DIS CHSTATUS(QM1.TO.QM2) ALL

Note:

a. In some cases there might be a substate at one end of the channel only.
b. Many substates are transitory, so issue the command a few times to detect

whether a channel is stuck in a particular substate.
2. Check Table 25 to determine what to do next:

Table 25. Substates seen with status binding or requesting

Initiating MCA
substate 1

Responding MCA
substate 2 Notes

NAMESERVER The initiating MCA is waiting for a nameserver request to
complete. Ensure that the correct hostname has been specified
in the channel attribute, CONNAME, and that your name
servers are set up correctly.

306 WebSphere MQ: Monitoring WebSphere MQ



Table 25. Substates seen with status binding or requesting (continued)

Initiating MCA
substate 1

Responding MCA
substate 2 Notes

SCYEXIT SCYEXIT The MCAs are currently in conversation through a security exit.
For more information, see “Are there exits processing?” on
page 309.

CHADEXIT The channel autodefinition exit is currently executing. For more
information, see “Are there exits processing?” on page 309.

RCVEXIT
SENDEXIT
MSGEXIT
MREXIT

RCVEXIT
SENDEXIT
MSGEXIT
MREXIT

Exits are called at channel startup for MQXR_INIT. Review the
processing in this part of your exit if this takes a long time. For
more information, see “Are there exits processing?” on page
309.

SERIALIZE SERIALIZE This substate only applies to channels with a disposition of
SHARED.

NETCONNECT This substate is shown if there is a delay in connecting due to
incorrect network configuration.

SSLHANDSHAKE SSLHANDSHAKE An SSL handshake is made up of a number of sends and
receives. If network times are slow, or connection to lookup
CRLs are slow, this affects the time taken to do the handshake.

On WebSphere MQ for z/OS this substate can also be
indicative of not having enough SSLTASKS.

Note:

1. The initiating MCA is the end of the channel which started the conversation. This can be senders,
cluster-senders, fully-qualified servers and requesters. In a server-requester pair, it is the end from which you
started the channel.

2. The responding MCA is the end of the channel which responded to the request to start the conversation. This
can be receivers, cluster-receivers, requesters (when the server or sender is started), servers (when the requester
is started) and senders (in a requester-sender call-back pair of channels).

Is the channel moving messages?

Having issued the command DIS CHSTATUS(QM1.TO.QM2) ALL, if the output shows
the status of the channel is RUNNING, then it has successfully connected to the
partner system.

Providing there are no uncommitted messages on the transmission queue, see “Are
the messages on the queue available?” on page 303, then there are messages
available for the channel to get and send. Do the following:
1. In the output from the display channel status command, DIS

CHSTATUS(QM1.TO.QM2) ALL, look at the following fields:

MSGS
Number of messages sent or received (or, for server-connection
channels, the number of MQI calls handled) during this session (since
the channel was started).

BUFSSENT
Number of transmission buffers sent. This includes transmissions to
send control information only.

Chapter 5. Real-time monitoring 307



BYTSSENT
Number of bytes sent during this session (since the channel was
started). This includes control information sent by the message channel
agent.

LSTMSGDA
Date when the last message was sent or MQI call was handled, see
LSTMSGTI.

LSTMSGTI
Time when the last message was sent or MQI call was handled. For a
sender or server, this is the time the last message (the last part of it if it
was split) was sent. For a requester or receiver, it is the time the last
message was put to its target queue. For a server-connection channel, it
is the time when the last MQI call completed.

CURMSGS
For a sending channel, this is the number of messages that have been
sent in the current batch. For a receiving channel, it is the number of
messages that have been received in the current batch. The value is
reset to zero, for both sending and receiving channels, when the batch
is committed.

Determine whether the channel has sent any messages since it started. If any
have been sent, determine when the last message was sent.

2. If the channel has started a batch, which has not yet completed (indicated by a
non-zero value in CURMSGS), it could be waiting for the other end of the
channel to acknowledge the batch. Look at the SUBSTATE field in the output
and refer to Table 26:

Table 26. Sender and receiver MCA substates

Sender SUBSTATE Receiver SUBSTATE Notes

MQGET RECEIVE Normal states of a channel at rest.

SEND RECEIVE SEND is usually a transitory state. If SEND is seen it indicates
that the communication protocol buffers have filled. This can
indicate a network problem.

RECEIVE If the sender is seen in RECEIVE substate for any length of
time, it is waiting on a response, either to a batch completion or
a heartbeat. See “Does a batch take a long time to complete?”
for more details.

Note: Any substates not mentioned here are discussed in “Can the channel process messages fast enough?” on page
309.

Does a batch take a long time to complete?

There could be a number of different reasons why a batch can take a long time to
complete. Once a sender channel has sent a batch of messages it waits for
confirmation of that batch from the receiver (the exception to this is pipelined
channels, see the WebSphere MQ Intercommunication manual). Various things can
affect how long the sender waits for.

Checking whether the network is slow

If the network is slow, this can affect the time it takes to complete a batch. The
measurements, described in “Is the network slow?” on page 309, that result in the

308 WebSphere MQ: Monitoring WebSphere MQ



indicators for the NETTIME field are measured at the end of a batch. The first
batch affected by a slowdown in the network is not indicated with a change in the
NETTIME value because it is measured at the end of the batch.

Is the channel using message retry?

If the receiver channel fails to put a message to a target queue it may use message
retry processing, rather than put the message to a dead-letter immediately. This can
cause the batch to slow down. In between MQPUT attempts, the channel will have
STATUS(PAUSED) indicating that it is waiting for the message retry interval to
pass.

Can the channel process messages fast enough?

If there are messages building up on the transmission queue, yet you have found
no processing problems, it can simply be that the channel cannot process messages
fast enough. To identify if this is the case, do the following:
1. Issue the following command repeatedly over a period of time to gather

performance data about the channel:
DIS CHSTATUS(QM1.TO.QM2) ALL

2. Providing you have confirmed that there are no uncommitted messages on the
transmission queue (detailed in “Are the messages on the queue available?” on
page 303), check the XQTIME field. When the value of the XQTIME indicators
are consistently high, or are increasing over this period, this indicates that the
channel is not keeping pace with the putting applications. In this situation, try
to determine why the channel is not keeping pace by asking the questions
handled in the topics in this section of the documentation.

Are there exits processing?

If exits are used on the channel that is delivering these messages, they may add to
the time spent processing messages. To identify if this is the case, do the following:
1. In the output of the command DIS CHSTATUS(QM1.TO.QM2) ALL, check the

EXITTIME field.
If the time spent in exits is higher than expected, review the processing in your
exits for any unnecessary loops or extra processing especially in message, send,
and receive exits, as they will affect all messages moved across the channel.

2. In the output of the command DIS CHSTATUS(QM1.TO.QM2) ALL, check the
SUBSTATE field.
If you see the channel has a substate of one of the following for any
appreciable time, you should also review your exits.
v SCYEXIT
v RCVEXIT
v SENDEXIT
v MSGEXIT
v MREXIT

Is the network slow?

If messages are not moving fast enough across a channel, this could be because the
network is slow. To identify if this is the case, do the following:
1. In the output of the command DIS CHSTATUS(QM1.TO.QM2) ALL, check the

NETTIME field.

Chapter 5. Real-time monitoring 309



These indicators are measured when the sending channel asks its partner for a
response. This happens at the end of each batch and, when a channel is idle
during heartbeating.

2. If this indicator shows that round trips are taking longer than expected, use
other network monitoring tools to investigate the performance of your network.

Is the channel using compression?

If the channel is using compression, this will add to the time spent processing
messages.

If only one compression algorithm is being used, do the following:
1. In the output of the command DIS CHSTATUS(QM1.TO.QM2) ALL, check the

COMPTIME field.
These indicators show the time spent during compression or decompression.

2. If the chosen compression is not reducing the amount of data to send by the
expected amount, then change the compression algorithm.

If multiple compression algorithms are being used, do the following:
1. In the output of the command DIS CHSTATUS(QM1.TO.QM2) ALL, check the

COMPTIME, COMPHDR, and COMPMSG fields.
2. Change the compression algorithms specified on the channel definition, or

consider writing a message exit to override the channel’s choice of compression
algorithm for particular messages if the rate of compression, or choice of
algorithm, is not providing the required compression or performance.

Cluster channels

The advice in this chapter is also applicable to cluster channels. If the queue that is
showing signs of a build up of messages is the
SYSTEM.CLUSTER.TRANSMIT.QUEUE, the first step in diagnosing the problem is
discovering which channel, or channels, are having a problem delivering messages.
To do this, do the following:
1. Issue the following command:

DIS CHSTATUS(*) WHERE(XQMSGSA GT 1)

Note: If you have a busy cluster that has many messages moving, consider
issuing this command with a higher number to eliminate the channels that
have only a few messages available to deliver.

2. Look through the output for the channel, or channels, that have large values in
the field XQMSGSA. Apply the methods outlined in this chapter to determine
why the channel is not moving messages, or is not moving them fast enough.

The Windows performance monitor

Administrators of WebSphere MQ for Windows can monitor the performance of
local queues using the Windows performance monitor.

The performance monitor displays an object type called MQSeries Queues in which
performance data for local queues is stored.

Active local queues defined in running queue managers are displayed as
QueueName:QMName in the performance monitor instance list when you select the

310 WebSphere MQ: Monitoring WebSphere MQ



MQSeries Queues object type. QMName denotes the name of the queue manager
owning the queue, and QueueName denotes the name of the local queue.

For each queue, you can view information relating to the following:
v The current queue depth
v The queue depth as a percentage of the maximum queue depth
v The number of messages being placed on the queue each second
v The number of messages being removed from the queue each second

For messages sent to a distribution list, the performance monitor counts the
number of messages being put onto each queue.

In the case of segmented messages, the performance monitor counts the
appropriate number of segments.

Performance data is obtained from statistical data maintained by the WebSphere
MQ queue managers for each local queue. However, performance data is available
only for queues that are accessed after the performance monitor has started.

You can monitor the performance of queues on computers other than that on
which the performance monitor is running, by selecting your target computer from
the performance monitor, which works using the Windows Network Neighborhood
hierarchy.

Chapter 5. Real-time monitoring 311



312 WebSphere MQ: Monitoring WebSphere MQ



Chapter 6. Structure datatypes

In this appendix, the structures MQCFBS, MQCFGR, MQCFH, MQCFIL,
MQCFIL64, MQCFIN, MQCFIN64, MQCFSL, MQCFST, and MQEPH are described
in a language-independent form. The declarations are shown in the following
programming languages:
v C
v COBOL
v PL/I
v RPG (ILE) (i5/OS only)
v S/390® assembler (z/OS only)
v Visual Basic (Windows platforms only)

MQCFBS - Byte string parameter

The MQCFBS structure describes a byte string parameter.

Type

Description: This indicates that the structure is an MQCFBS structure describing a
byte string parameter.

Datatype: MQLONG.
Value:

MQCFT_BYTE_STRING
Structure defining a byte string.

StrucLength

Description: This is the length in bytes of the MQCFBS structure, including the
variable-length string at the end of the structure (the String field).

Datatype: MQLONG.

Parameter

Description: This identifies the parameter whose value is contained in the structure.
Datatype: MQLONG.

StringLength

Description: This is the length in bytes of the data in the String field, and is zero or
greater.

Datatype: MQLONG.

String

Description: This is the value of the parameter identified by the Parameter field. The
string is a byte string, and so is not subject to character-set conversion
when sent between different systems.
Note: A null byte in the string is treated as normal data, and does not
act as a delimiter for the string.

Datatype: MQBYTE ×StringLength.

© Copyright IBM Corp. 1994, 2009 313



C language declaration (MQCFBS)
struct tagMQCFBS {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG StringLength; /* Length of string */
MQBYTE String[1]; /* String value -- first character */
} MQCFBS;

COBOL language declaration (MQCFBS)
** MQCFBS structure

10 MQCFBS.
** Structure type

15 MQCFBS-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFBS-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFBS-PARAMETER PIC S9(9) BINARY.
** Length of string

15 MQCFBS-STRINGLENGTH PIC S9(9) BINARY.

PL/I language declaration (MQCFBS) (z/OS only)
dcl
1 MQCFBS based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 StringLength fixed bin(31); /* Length of string */

RPG/ILE language declaration (MQCFBS) (i5/OS only)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCFBS Structure
D*
D* Structure type
D BSTYP 1 4I 0 INZ(9)
D* Structure length
D BSLEN 5 8I 0 INZ(16)
D* Parameter identifier
D BSPRM 9 12I 0 INZ(0)
D* Length of string
D BSSTL 13 16I 0 INZ(0)
D* String value -- first byte
D BSSRA 17 17 INZ

System/390 assembler-language declaration (MQCFBS) (z/OS
only)

MQCFBS DSECT
MQCFBS_TYPE DS F Structure type
MQCFBS_STRUCLENGTH DS F Structure length
MQCFBS_PARAMETER DS F Parameter identifier
MQCFBS_STRINGLENGTH DS F Length of string
*
MQCFBS_LENGTH EQU *-MQCFBS

ORG MQCFBS
MQCFBS_AREA DS CL(MQCFBS_LENGTH)

314 WebSphere MQ: Monitoring WebSphere MQ



MQCFGR - Group parameter

The MQCFGR structure describes a group parameter in which the subsequent
parameter structures are grouped together as a single logical unit. The number of
subsequent structures that are included is given by ParameterCount. This structure,
and the parameter structures it includes, are counted as one structure only in the
ParameterCount parameter in the PCF header (MQCFH) and the group parameter
(MQCFGR).

Type

Description: Indicates that the structure type is MQCFGR describing which
parameters are in this group.

Datatype: MQLONG.
Value:

MQCFT_GROUP
Structure defining a group of parameters.

StrucLength

Description: Length in bytes of the MQCFGR structure.
Datatype: MQLONG.
Value:

MQCFGR_STRUC_LENGTH
Length of the command format group-parameter structure.

Parameter

Description: This identifies the type of group parameter.
Datatype: MQLONG.

ParameterCount

Description: The number of parameter structures following the MQCFGR structure
that are contained within the group identified by the Parameter field. If
the group itself contains one or more groups, each group and its
parameters count as one structure only.

Datatype: MQLONG.

C language declaration (MQCFGR)
typedef struct tagMQCFGR {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG ParameterCount; /* Count of the grouped parameter structures */
} MQCFGR;

COBOL language declaration (MQCFGR)
** MQCFGR structure

10 MQCFGR.
** Structure type

15 MQCFGR-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFGR-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFGR-PARAMETER PIC S9(9) BINARY.
** Count of grouped parameter structures

15 MQCFGR-PARAMETERCOUNT PIC S9(9) BINARY.

Chapter 6. Structure datatypes 315



PL/I language declaration (MQCFGR) (z/OS and Windows only)
dcl
1 MQCFGR based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 ParameterCount fixed bin(31), /* Count of grouped parameter structures */

RPG/ILE declaration (MQCFGR) (i5/OS only)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

D* MQCFGR Structure
D*
D* Structure type
D GRTYP 1 4I INZ(20)
D* Structure length
D GRLEN 5 8I INZ(16)
D* Parameter identifier
D GRPRM 9 12I INZ(0)
D* Count of grouped parameter structures
D GRCNT 13 16I INZ(0)
D*

System/390 assembler-language declaration (MQCFGR) (z/OS
only)

MQCFGR DSECT
MQCFGR_TYPE DS F Structure type
MQCFGR_STRUCLENGTH DS F Structure length
MQCFGR_PARAMETER DS F Parameter identifier
MQCFGR_PARAMETERCOUNT DS F Count of grouped parameter structures
MQCFGR_LENGTH EQU *-MQCFGR Length of structure

ORG MQCFGR
MQCFGR_AREA DS CL(MQCFGR_LENGTH)

Visual Basic language declaration (MQCFGR) (Windows only)
Type MQCFGR

Type As Long ' Structure type
StrucLength As Long ' Structure length
Parameter As Long ' Parameter identifier
ParameterCount As Long ' Count of grouped parameter structures
End Type

MQCFH - PCF header

The MQCFH structure describes the information that is present at the start of the
message data of a monitoring message.

Type

Description: Structure type This indicates the content of the message.
Datatype: MQLONG.

316 WebSphere MQ: Monitoring WebSphere MQ



Values:
MQCFT_ACCOUNTING

Message is an accounting message.

MQCFT_EVENT
Message is reporting an event.

MQCFT_REPORT
Message is an activity report.

MQCFT_RESPONSE
Message is a response to a command.

MQCFT_STATISTICS
Message is a statistics message.

MQCFT_TRACE_ROUTE
Message is a trace-route message.

StrucLength

Description: This is the length in bytes of the MQCFH structure
Datatype: MQLONG.
Value:

MQCFH_STRUC_LENGTH
Length of command format header structure.

Version

Description: Structure version number.
Datatype: MQLONG.
Value:

MQCFH_VERSION_1
Version number for all events except configuration and
command events.

MQCFH_VERSION_2
Version number for configuration events.

MQCFH_VERSION_3
Version number for command events, activity reports,
trace-route messages, accounting and statistics messages.

Command

Description: Specifies the category of the message.
Datatype: MQLONG.
Value: See the following sections for applicable values:

v “Event message MQCFH (PCF header)” on page 56.

v “Activity report MQCFH (PCF header)” on page 215.

v “Trace-route message MQCFH (PCF header)” on page 239.

v “Accounting and statistics message MQCFH (PCF header)” on page
264.

MsgSeqNumber

Description: Message sequence number. This is the sequence number of the message
within a set of related messages.

Datatype: MQLONG.

Chapter 6. Structure datatypes 317



Control

Description: Control options.
Datatype: MQLONG.
Value:

MQCFC_LAST
Last message in the set.

MQCFC_NOT_LAST
Not the last message in the set.

CompCode

Description: Completion code.
Datatype: MQLONG.
Value:

MQCC_OK
Events reporting OK condition, activity reports, trace-route
messages, accounting messages, or statistics messages.

MQCC_WARNING
Event reporting warning condition.

Reason

Description: Reason code qualifying completion code.
Datatype: MQLONG.
Value: For event messages:

MQRC_*
Dependent on the event being reported.
Note: Events with the same reason code are further identified
by the ReasonQualifier parameter in the event data.

For activity reports, trace-route messages, accounting messages, and
statistics messages:

MQRC_NONE

ParameterCount

Description: Count of parameter structures. This is the number of parameter
structures that follow the MQCFH structure.

Datatype: MQLONG.
Value: 0 or greater.

Language declarations

This structure is available in the following languages:

C language declaration
typedef struct tagMQCFH {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Version; /* Structure version number */
MQLONG Command; /* Command identifier */
MQLONG MsgSeqNumber; /* Message sequence number */
MQLONG Control; /* Control options */

318 WebSphere MQ: Monitoring WebSphere MQ



MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying completion code */
MQLONG ParameterCount; /* Count of parameter structures */
} MQCFH;

COBOL language declaration
** MQCFH structure

10 MQCFH.
** Structure type

15 MQCFH-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFH-STRUCLENGTH PIC S9(9) BINARY.
** Structure version number

15 MQCFH-VERSION PIC S9(9) BINARY.
** Command identifier

15 MQCFH-COMMAND PIC S9(9) BINARY.
** Message sequence number

15 MQCFH-MSGSEQNUMBER PIC S9(9) BINARY.
** Control options

15 MQCFH-CONTROL PIC S9(9) BINARY.
** Completion code

15 MQCFH-COMPCODE PIC S9(9) BINARY.
** Reason code qualifying completion code

15 MQCFH-REASON PIC S9(9) BINARY.
** Count of parameter structures

15 MQCFH-PARAMETERCOUNT PIC S9(9) BINARY.

PL/I language declaration (z/OS and Windows)
dcl
1 MQCFH based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Version fixed bin(31), /* Structure version number */
3 Command fixed bin(31), /* Command identifier */
3 MsgSeqNumber fixed bin(31), /* Message sequence number */
3 Control fixed bin(31), /* Control options */
3 CompCode fixed bin(31), /* Completion code */
3 Reason fixed bin(31), /* Reason code qualifying completion

code */
3 ParameterCount fixed bin(31); /* Count of parameter structures */

RPG language declaration (i5/OS only)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCFH Structure
D*
D* Structure type
D FHTYP 1 4I 0 INZ(1)
D* Structure length
D FHLEN 5 8I 0 INZ(36)
D* Structure version number
D FHVER 9 12I 0 INZ(1)
D* Command identifier
D FHCMD 13 16I 0 INZ(0)
D* Message sequence number
D FHSEQ 17 20I 0 INZ(1)
D* Control options
D FHCTL 21 24I 0 INZ(1)
D* Completion code
D FHCMP 25 28I 0 INZ(0)
D* Reason code qualifying completion code
D FHREA 29 32I 0 INZ(0)
D* Count of parameter structures
D FHCNT 33 36I 0 INZ(0)
D*

Chapter 6. Structure datatypes 319



System/390 assembler-language declaration (z/OS only)
MQCFH DSECT
MQCFH_TYPE DS F Structure type
MQCFH_STRUCLENGTH DS F Structure length
MQCFH_VERSION DS F Structure version number
MQCFH_COMMAND DS F Command identifier
MQCFH_MSGSEQNUMBER DS F Message sequence number
MQCFH_CONTROL DS F Control options
MQCFH_COMPCODE DS F Completion code
MQCFH_REASON DS F Reason code qualifying
* completion code
MQCFH_PARAMETERCOUNT DS F Count of parameter
* structures
MQCFH_LENGTH EQU *-MQCFH Length of structure

ORG MQCFH
MQCFH_AREA DS CL(MQCFH_LENGTH)

Visual Basic language declaration (Windows only)
Type MQCFH

Type As Long 'Structure type
StrucLength As Long 'Structure length
Version As Long 'Structure version number
Command As Long 'Command identifier
MsgSeqNumber As Long 'Message sequence number
Control As Long 'Control options
CompCode As Long 'Completion code
Reason As Long 'Reason code qualifying completion code
ParameterCount As Long 'Count of parameter structures

End Type

MQCFIL - Integer list parameter

The MQCFIL structure describes an integer list parameter.

Type

Description: Indicates that the structure type is MQCFIL and describes an integer-list
parameter.

Datatype: MQLONG.
Value:

MQCFT_INTEGER_LIST
Structure defining an integer list.

StrucLength

Description: Length in bytes of the MQCFIL structure, including the array of integers
at the end of the structure (the values field).

Datatype: MQLONG.

Parameter

Description: Identifies the parameter whose value is contained in the structure.
Datatype: MQLONG.

Count

Description: Number of elements in the Values array.
Datatype: MQLONG.
Values: Zero or greater.

320 WebSphere MQ: Monitoring WebSphere MQ



Values

Description: Array of values for the parameter identified by the Parameter field.
Datatype: MQLONG×Count.

The way that this field is declared depends on the programming language:
v For the C programming language, the field is declared as an array with

one element. Storage for the structure must be allocated dynamically,
and pointers used to address the fields within it.

v For the COBOL, PL/I, RPG, and System/390® assembler programming
languages, the field is omitted from the structure declaration. When an
instance of the structure is declared, you must include MQCFIL in a
larger structure, and declare additional fields following MQCFIL, to
represent the Values field as required.

C language declaration (MQCFIL)
typedef struct tagMQCFIL {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG Count; /* Count of parameter values */
MQLONG Values[1]; /* Parameter values - first element */
} MQCFIL;

COBOL language declaration (MQCFIL)
** MQCFIL structure

10 MQCFIL.
** Structure type

15 MQCFIL-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFIL-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFIL-PARAMETER PIC S9(9) BINARY.
** Count of parameter values

15 MQCFIL-COUNT PIC S9(9) BINARY.

PL/I language declaration (MQCFIL)
dcl
1 MQCFIL based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 Count fixed bin(31); /* Count of parameter values */

RPG/ILE declaration (MQCFIL) (i5/OS only)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCFIL Structure
D*
D* Structure type
D ILTYP 1 4I 0
D* Structure length
D ILLEN 5 8I 0
D* Parameter identifier
D ILPRM 9 12I 0
D* Count of paramter valuee
D ILCNT 13 16I 0

Chapter 6. Structure datatypes 321



System/390 assembler-language declaration (MQCFIL)
MQCFIL DSECT
MQCFIL_TYPE DS F Structure type
MQCFIL_STRUCLENGTH DS F Structure length
MQCFIL_PARAMETER DS F Parameter identifier
MQCFIL_COUNT DS F Count of parameter values
MQCFIL_LENGTH EQU *-MQCFIL Length of structure

ORG MQCFIL
MQCFIL_AREA DS CL(MQCFIL_LENGTH)

Visual Basic language declaration (MQCFIL)
Type MQCFIL

Type As Long ' Structure type
StrucLength As Long ' Structure length
Parameter As Long ' Parameter identifier
Count As Long ' Count of parameter value

End Type

MQCFIL64 - 64–bit integer list parameter

The MQCFIL64 structure describes a 64–bit integer list parameter.

Type

Description: Indicates that the structure is a MQCFIL64 structure describing a 64–bit
integer list parameter.

Datatype: MQLONG.
Value:

MQCFT_INTEGER64_LIST
Structure defining a 64–bit integer list.

StrucLength

Description: Length in bytes of the MQCFIL64 structure, including the array of
integers at the end of the structure (the Values field).

Datatype: MQLONG.

Parameter

Description: Identifies the parameter whose value is contained in the structure.
Datatype: MQLONG.

Count

Description: Number of elements in the Values array.
Datatype: MQLONG.
Values: 0 or greater.

Values

Description: Array of values for the parameter identified by the Parameter field.
Datatype: (MQINT64×Count)

The way that this field is declared depends on the programming language:
v For the C programming language, the field is declared as an array with

one element. Storage for the structure must be allocated dynamically,
and pointers used to address the fields within it.

322 WebSphere MQ: Monitoring WebSphere MQ



v For the COBOL, PL/I, RPG, and System/390 assembler programming
languages, the field is omitted from the structure declaration. When an
instance of the structure is declared, you must include MQCFIL64 in a
larger structure, and declare additional fields following MQCFIL64, to
represent the Values field as required.

For COBOL, additional fields should be declared as:
PIC S9(18)

For PL/I, additional fields should be declared as FIXED BINARY SIGNED
with a precision of 63.

For System/390 assembler, additional fields should be declared D (double
word) in the DS declaration.

C language declaration (MQCFIL64)
typedef struct tagMQCFIN64 {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG Count; /* Count of parameter values */
MQINT64 Values[1]; /* Parameter value */
} MQCFIL64;

COBOL language declaration (MQCFIL64)
** MQCFIL64 structure

10 MQCFIL64.
** Structure type

15 MQCFIL64-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFIL64-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFIL64-PARAMETER PIC S9(9) BINARY.
** Count of parameter values

15 MQCFIL64-COUNT PIC S9(9) BINARY.

PL/I language declaration (MQCFIL64)
dcl
1 MQCFIL64 based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 Count fixed bin(31) /* Count of parameter values */

RPG/ILE language declaration (MQCFIL64) (i5/OS only)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCFIL64 Structure
D*
D* Structure type
D IL64TYP 1 4I 0 INZ(25)
D* Structure length
D IL64LEN 5 8I 0 INZ(16)
D* Parameter identifier
D IL64PRM 9 12I 0 INZ(0)
D* Count of parameter values
D IL64CNT 13 16I 0 INZ(0)
D* Parameter values -- first element
D IL64VAL 17 16 INZ(0)

Chapter 6. Structure datatypes 323



System/390 assembler-language declaration (MQCFIL64) (z/OS
only)

MQCFIL64 DSECT
MQCFIL64_TYPE DS F Structure type
MQCFIL64_STRUCLENGTH DS F Structure length
MQCFIL64_PARAMETER DS F Parameter identifier
MQCFIL64_COUNT DS F Parameter value high
MQCFIL64_LENGTH EQU *-MQCFIL64 Length of structure

ORG MQCFIL64
MQCFIL64_AREA DS CL(MQCFIL64_LENGTH)

MQCFIN - Integer parameter

The MQCFIN structure describes an integer parameter.

Type

Description: Indicates that the structure type is MQCFIN and describes an integer
parameter.

Datatype: MQLONG.
Value:

MQCFT_INTEGER
Structure defining an integer.

StrucLength

Description: Length in bytes of the MQCFIN structure.
Datatype: MQLONG.
Value:

MQCFIN_STRUC_LENGTH
Length of MQCFIN structure.

Parameter

Description: Identifies the parameter whose value is contained in the structure.
Datatype: MQLONG.

Value

Description: Value of parameter identified by the Parameter field.
Datatype: MQLONG.

C language declaration (MQCFIN)
typedef struct tagMQCFIN {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG Value; /* Parameter value */
} MQCFIN;

COBOL language declaration (MQCFIN)
** MQCFIN structure

10 MQCFIN.
** Structure type

15 MQCFIN-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFIN-STRUCLENGTH PIC S9(9) BINARY.

324 WebSphere MQ: Monitoring WebSphere MQ



** Parameter identifier
15 MQCFIN-PARAMETER PIC S9(9) BINARY.

** Parameter value
15 MQCFIN-VALUE PIC S9(9) BINARY.

PL/I language declaration (MQCFIN)
dcl
1 MQCFIN based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 Value fixed bin(31); /* Parameter value */

RPG/ILE declaration (MQCFIN) (i5/OS only)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCFIN Structure
D*
D* Structure type
D INTYP 1 4I 0
D* Structure length
D INLEN 5 8I 0
D* Parameter identifier
D INPRM 9 12I 0
D* Parameter value
D INVAL 13 16I 0

System/390 assembler-language declaration (MQCFIN)
MQCFIN DSECT
MQCFIN_TYPE DS F Structure type
MQCFIN_STRUCLENGTH DS F Structure length
MQCFIN_PARAMETER DS F Parameter identifier
MQCFIN_VALUE DS F Parameter value
MQCFIN_LENGTH EQU *-MQCFIN Length of structure

ORG MQCFIN
MQCFIN_AREA DS CL(MQCFIN_LENGTH)

Visual Basic language declaration (MQCFIN)
Type MQCFIN

Type As Long ' Structure type
StrucLength As Long ' Structure length
Parameter As Long ' Parameter identifier
Value As Long ' Parameter value

End Type

MQCFIN64 - 64–bit integer parameter

The MQCFIN64 structure describes a 64–bit integer parameter.

Type

Description: Indicates that the structure is a MQCFIN64 structure describing a 64–bit
integer parameter.

Datatype: MQLONG.
Value:

MQCFT_INTEGER64
Structure defining a 64–bit integer.

Chapter 6. Structure datatypes 325



StrucLength

Description: Length in bytes of the MQCFIN64 structure.
Datatype: MQLONG.
Value:

MQCFIN64_STRUC_LENGTH
Length of 64–bit integer parameter structure.

Parameter

Description: Identifies the parameter whose value is contained in the structure.
Datatype: MQLONG.

Values

Description: This is the value of the parameter identified by the Parameter field.
Datatype: (MQINT64)

C language declaration (MQCFIN64)
typedef struct tagMQCFIN64 {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG Reserved; /* Reserved */
MQINT64 Value; /* Parameter value */
} MQCFIN64;

COBOL language declaration (MQCFIN64)
** MQCFIN64 structure

10 MQCFIN64.
** Structure type

15 MQCFIN64-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFIN64-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFIN64-PARAMETER PIC S9(9) BINARY.
** Reserved

15 MQCFIN64-RESERVED PIC S9(9) BINARY.
** Parameter value

15 MQCFIN64-VALUE PIC S9(18) BINARY.

PL/I language declaration (MQCFIN64)
dcl
1 MQCFIN64 based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 Reserved fixed bin(31) /* Reserved */
3 Value fixed bin(63); /* Parameter value */

RPG/ILE language declaration (MQCFIN64) (i5/OS only)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCFIN64 Structure
D*
D* Structure type
D IN64TYP 1 4I 0 INZ(23)
D* Structure length
D IN64LEN 5 8I 0 INZ(24)
D* Parameter identifier

326 WebSphere MQ: Monitoring WebSphere MQ



D IN64PRM 9 12I 0 INZ(0)
D* Reserved field
D IN64RSV 13 16I 0 INZ(0)
D* Parameter value
D IN64VAL 17 16 INZ(0)

System/390 assembler-language declaration (MQCFIN64) (z/OS
only)

MQCFIN64 DSECT
MQCFIN64_TYPE DS F Structure type
MQCFIN64_STRUCLENGTH DS F Structure length
MQCFIN64_PARAMETER DS F Parameter identifier
MQCFIN64_RESERVED DS F Reserved
MQCFIN64_VALUE DS D Parameter value
MQCFIN64_LENGTH EQU *-MQCFIN64 Length of structure

ORG MQCFIN64
MQCFIN64_AREA DS CL(MQCFIN64_LENGTH)

MQCFSL - String list parameter

The MQCFSL structure describes a string list parameter.

Type

Description: This indicates that the structure is an MQCFSL structure describing a
string-list parameter.

Datatype: MQLONG.
Value:

MQCFT_STRING_LIST
Structure defining a string list.

StrucLength

Description: This is the length in bytes of the MQCFSL structure, including the array
of strings at the end of the structure (the Strings field).

Datatype: MQLONG.

Parameter

Description: This identifies the parameter whose values are contained in the
structure.

Datatype: MQLONG.

CodedCharSetId

Description: This specifies the coded character set identifier of the data in the
Strings field.

Datatype: MQLONG.

Count

Description: This is the number of strings present in the Strings field; zero or
greater.

Datatype: MQLONG.

Chapter 6. Structure datatypes 327



StringLength

Description: This is the length in bytes of one parameter value, that is the length of
one string in the Strings field; all of the strings are this length.

Datatype: MQLONG.

String

Description: This is a set of string values for the parameter identified by the
Parameter field. The number of strings is given by the Count field, and
the length of each string is given by the StringLength field. The strings
are concatenated together, with no bytes skipped between adjacent
strings. The total length of the strings is the length of one string
multiplied by the number of strings present (that is,
StringLength×Count).

In MQFMT_EVENT messages, trailing blanks can be omitted from string
parameters (that is, the string may be shorter than the defined length of
the parameter). StringLength gives the length of the string actually
present in the message.
Note: In the MQCFSL structure, a null character in a string is treated as
normal data, and does not act as a delimiter for the string. This means
that when a receiving application reads a MQFMT_EVENT message, the
receiving application receives all of the data specified by the sending
application. The data may, of course, have been converted between
character sets (for example, by the receiving application specifying the
MQGMO_CONVERT option on the MQGET call).

Datatype: MQCHAR × StringLength×Count.

COBOL language declaration (MQCFSL)
** MQCFSL structure

10 MQCFSL.
** Structure type

15 MQCFSL-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFSL-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFSL-PARAMETER PIC S9(9) BINARY.
** Coded character set identifier

15 MQCFSL-CODEDCHARSETID PIC S9(9) BINARY.
** Count of parameter values

15 MQCFSL-COUNT PIC S9(9) BINARY.
** Length of one string

15 MQCFSL-STRINGLENGTH PIC S9(9) BINARY.

PL/I language declaration (MQCFSL)
dcl
1 MQCFSL based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 CodedCharSetId fixed bin(31), /* Coded character set identifier */
3 Count fixed bin(31), /* Count of parameter values */
3 StringLength fixed bin(31); /* Length of one string */

RPG/ILE declaration (MQCFSL) (i5/OS only)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCFSL Structure
D*

328 WebSphere MQ: Monitoring WebSphere MQ



D* Structure type
D SLTYP 1 4I 0
D* Structure length
D SLLEN 5 8I 0
D* Parameter identifier
D SLPRM 9 12I 0
D* Coded character set identifier
D SLCSI 13 16I 0
D* Count of parameter values
D SLCNT 17 20I 0
D* Length of one string
D SLSTL 21 24I 0

System/390 assembler-language declaration (MQCFSL) (z/OS
only)

MQCFSL DSECT
MQCFSL_TYPE DS F Structure type
MQCFSL_STRUCLENGTH DS F Structure length
MQCFSL_PARAMETER DS F Parameter identifier
MQCFSL_CODEDCHARSETID DS F Coded character set identifier
MQCFSL_COUNT DS F Count of parameter values
MQCFSL_STRINGLENGTH DS F Length of one string
*
MQCFSL_LENGTH EQU *-MQCFSL

ORG MQCFSL
MQCFSL_AREA DS CL(MQCFSL_LENGTH)

Visual Basic language declaration (MQCFSL) (Windows
systems only)

Type MQCFSL
Type As Long 'Structure type'
StrucLength As Long 'Structure length'
Parameter As Long 'Parameter identifier'
CodedCharSetId As Long 'Coded character set identifier'
Count As Long 'Count of parameter values'
StringLength As Long 'Length of one string'

End Type

MQCFST - String parameter

The MQCFST structure describes a string parameter.

The structure ends with a variable-length character string; see the String field
below for further details.

Type

Description: Indicates that the structure type is MQCFST and describes a string
parameter.

Datatype: MQLONG.
Value:

MQCFT_STRING
Structure defining a string.

StrucLength

Description: Length in bytes of the MQCFST structure, including the string at the end
of the structure (the String field).

Datatype: MQLONG.

Chapter 6. Structure datatypes 329



Parameter

Description: Identifies the parameter whose value is contained in the structure.
Datatype: MQLONG.
Values: Dependent on the event message.

CodedCharSetId

Description: Coded character set identifier of the data in the String field.
Datatype: MQLONG.

StringLength

Description: Length in bytes of the data in the String field; zero or greater.
Datatype: MQLONG.

String

Description: The value of the parameter identified by the Parameter field.

In MQFMT_EVENT messages, trailing blanks can be omitted from string
parameters (that is, the string may be shorter than the defined length of
the parameter). StringLength gives the length of the string actually
present in the message.

Datatype: MQCHAR×StringLength.
Value: The string can contain any characters that are in the character set

defined by CodedCharSetId, and that are valid for the parameter
identified by Parameter.

Language
considerations:

The way that this field is declared depends on the programming
language:

v For the C programming language, the field is declared as an array
with one element. Storage for the structure should be allocated
dynamically, and pointers used to address the fields within it.

v For the COBOL, PL/I, System/390 assembler, and Visual Basic
programming languages, the field is omitted from the structure
declaration. When an instance of the structure is declared, the user
should include MQCFST in a larger structure, and declare additional
fields following MQCFST, to represent the String field as required.

A null character in the string is treated as normal data, and does not act
as a delimiter for the string. This means that when a receiving
application reads an MQFMT_EVENT message, the receiving application
receives all of the data specified by the sending application. The data
may, of course, have been converted between character sets (for
example, by the receiving application specifying the
MQGMO_CONVERT option on the MQGET call).

C language declaration (MQCFST)
typedef struct tagMQCFST {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG CodedCharSetId; /* Coded character set identifier */
MQLONG StringLength; /* Length of string */
MQCHAR String[1]; /* String value - first

character */
} MQCFST;

330 WebSphere MQ: Monitoring WebSphere MQ



COBOL language declaration (MQCFST)
** MQCFST structure

10 MQCFST.
** Structure type

15 MQCFST-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFST-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFST-PARAMETER PIC S9(9) BINARY.
** Coded character set identifier

15 MQCFST-CODEDCHARSETID PIC S9(9) BINARY.
** Length of string

15 MQCFST-STRINGLENGTH PIC S9(9) BINARY.

PL/I language declaration (MQCFST)
dcl
1 MQCFST based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 CodedCharSetId fixed bin(31), /* Coded character set identifier */
3 StringLength fixed bin(31); /* Length of string */

RPG/ILE declaration (MQCFST) (i5/OS only)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCFST Structure
D*
D* Structure type
D STTYP 1 4I 0
D* Structure length
D STLEN 5 8I 0
D* Parameter identifier
D STPRM 9 12I 0
D* Coded character set identifier
D STCSI 13 16I 0
D* Length of string
D STSTL 17 20I 0

System/390 assembler-language declaration (MQCFST)
MQCFST DSECT
MQCFST_TYPE DS F Structure type
MQCFST_STRUCLENGTH DS F Structure length
MQCFST_PARAMETER DS F Parameter identifier
MQCFST_CODEDCHARSETID DS F Coded character set
* identifier
MQCFST_STRINGLENGTH DS F Length of string
MQCFST_LENGTH EQU *-MQCFST Length of structure

ORG MQCFST
MQCFST_AREA DS CL(MQCFST_LENGTH)

Visual Basic language declaration (MQCFST)
Type MQCFST

Type As Long ' Structure type
StrucLength As Long ' Structure length
Parameter As Long ' Parameter identifier
CodedCharSetId As Long ' Coded character set identifier
StringLength As Long ' Length of string

End Type

Chapter 6. Structure datatypes 331



MQEPH - Embedded PCF header

The MQEPH structure describes the additional data that is present in a message
when that message is a programmable command format (PCF) message. The
additional data consists of the MQEPH structure followed by an array of PCF
parameter structures. To include the MQEPH structure in a message, the Format
parameter in the message descriptor is set to MQFMT_EMBEDDED.

StrucId

Description: Structure identifier.
Datatype: MQCHAR4.
Value:

MQEPH_STRUC_ID
Identifier for distribution header structure.

Version

Description: Structure version number.
Datatype: MQLONG.
Value:

MQEPH_VERSION_1
Version number for embedded PCF header structure.

StrucLength

Description: Structure length. This is the length in bytes of the MQEPH structure and
is set to the amount of data preceding the next header structure.

Datatype: MQLONG.

Encoding

Description: Numeric encoding. This specifies the numeric encoding of the data that
follows the last PCF parameter structure.

Datatype: MQLONG.

CodedCharSetId

Description: Coded character set identifier. This specifies the coded character set
identifier of the data that follows the last PCF parameter structure.

Datatype: MQLONG.

Format

Description: Format. This specifies the format name of the data that follows the last
PCF parameter structure.

Datatype: MQCHAR8.

Flags

Description: Flags. This is a reserved field.
Datatype: MQLONG.

332 WebSphere MQ: Monitoring WebSphere MQ



Value:
MQEPH_NONE

No flags have been specified.

MQEPH_CCSID_EMBEDDED
The character set of the parameters containing character data is
specified individually within the CodedCharSetId field in each
structure. The character set of the StrucId and Format fields is
defined by the CodedCharSetId field in the header structure
that precedes the MQEPH structure, or by the CodedCharSetId
field in the MQMD if the MQEPH is at the start of the message.

PCFHeader

Description: Command format header.
Datatype: MQCFH.

Language declarations

This structure is available in the following languages:

C language declaration
struct tagMQEPH {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG StrucLength /* Structure length */
MQLONG Encoding; /* Numeric encoding */
MQLONG CodedCharSetId; /* Coded character set identifier */
MQCHAR8 Format; /* Data format */
MQLONG Flags; /* Flags */
MQCFH PCFHeader; /* PCF header */
} MQEPH;

COBOL language declaration
** MQEPH structure

10 MQEPH.
** Structure identifier

15 MQEPH-STRUCID PIC X(4).
** Structure version number

15 MQEPH-VERSION PIC S9(9) BINARY.
** Structure length

15 MQEPH-STRUCLENGTH PIC S9(9) BINARY.
** Numeric encoding

15 MQEPH-ENCODING PIC S9(9) BINARY.
** Coded characeter set identifier

15 MQEPH-CODEDCHARSETID PIC S9(9) BINARY.
** Data format

15 MQEPH-FORMAT PIC X(8).
** Flags

15 MQEPH-FLAGS PIC S9(9) BINARY.
** PCF header

15 MQEPH-PCFHEADER.
** Structure type

20 MQEPH-PCFHEADER-TYPE PIC S9(9) BINARY.
** Structure length

20 MQEPH-PCFHEADER-STRUCLENGTH PIC S9(9) BINARY.
** Structure version number

20 MQEPH-PCFHEADER-VERSION PIC S9(9) BINARY.
** Command identifier

20 MQEPH-PCFHEADER-COMMAND PIC S9(9) BINARY.
** Message sequence number

20 MQEPH-PCFHEADER-MSGSEQNUMBER PIC S9(9) BINARY.

Chapter 6. Structure datatypes 333



** Control options
20 MQEPH-PCFHEADER-CONTROL PIC S9(9) BINARY.

** Completion code
20 MQEPH-PCFHEADER-COMPCODE PIC S9(9) BINARY.

** Reason code qualifying completion code
20 MQEPH-PCFHEADER-REASON PIC S9(9) BINARY.

** Count of parameter structures
20 MQEPH-PCFHEADER-PARAMETERCOUNT PIC S9(9) BINARY.

PL/I language declaration (z/OS and Windows)
dcl
1 MQEPH based,
3 StrucId char(4), /* Structure identifier */
3 Version fixed bin(31), /* Structure version number */
3 StrucLength fixed bin(31), /* Structure length */
3 Encoding fixed bin(31), /* Numeric encoding */
3 CodedCharSetId fixed bin(31), /* Coded character set identifier */
3 Format char(8), /* Data format */
3 Flags fixed bin(31), /* Flags */
3 PCFHeader, /* PCF header */
5 Type fixed bin(31), /* Structure type */
5 StrucLength fixed bin(31), /* Structure length */
5 Version fixed bin(31), /* Structure version number */
5 Command fixed bin(31), /* Command identifier */
5 MsgSeqNumber fixed bin(31), /* Message sequence number */
5 Control fixed bin(31), /* Control options */
5 CompCode fixed bin(31), /* Completion code */
5 Reason fixed bin(31), /* Reason code qualifying completion

code */
5 ParameterCount fixed bin(31); /* Count of parameter structures */

RPG language declaration (i5/OS only)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQEPH Structure
D*
D* Structure identifier
D EPSID 1 4 INZ('EPH ')
D* Structure version number
D EPVER 5 8I 0 INZ(1)
D* Structure length
D EPLEN 9 12I 0 INZ(68)
D* Numeric encoding
D EPENC 13 16I 0 INZ(0)
D* Coded character set identifier
D EPCSI 17 20I 0 INZ(0)
D* Format name
D EPFMT 21 28I 0 INZ(' ')
D* Flags
D EPFLG 29 32I 0 INZ(0)
D* Programmable Command Format Header
D*
D* Structure type
D EP1TYPE 33 36I 0 INZ(0)
D* Structure length
D EP1LEN 37 40I 0 INZ(36)
D* Structure version number
D EP1VER 41 44I 0 INZ(3)
D* Command identifier
D EP1CMD 45 48I 0 INZ(0)
D* Message sequence number
D EP1SEQ 49 52I 0 INZ(1)
D* Control options
D EP1CTL 53 56I 0 INZ(1)
D* Completion code
D EP1CMP 57 60I 0 INZ(0)
D* Reason code qualifying completion code

334 WebSphere MQ: Monitoring WebSphere MQ



D EP1REA 61 64I 0 INZ(0)
D* Count of parameter structures
D EP1CNT 65 68I 0 INZ(0)

System/390 assembler-language declaration (z/OS only)
MQEPH DSECT
MQEPH_STRUCID DS CL4 Structure identifier
MQEPH_VERSION DS F Structure version number
MQEPH_STRUCLENGTH DS F Structure length
MQEPH_ENCODING DS F Numeric encoding
MQEPH_CODEDCHARSETID DS F Coded character set identifier
MQEPH_FORMAT DS CL8 Data format
MQEPH_FLAGS DS F Flags
MQEPH_PCFHEADER DS 0F Force fullword alignment
MQEPH_PCFHEADER_TYPE DS F Structure type
MQEPH_PCFHEADER_STRUCLENGTH DS F Structure length
MQEPH_PCFHEADER_VERSION DS F Structure version number
MQEPH_PCFHEADER_COMMAND DS F Command identifier
MQEPH_PCFHEADER_MSGSEQNUMBER DS F Message sequence number
MQEPH_PCFHEADER_CONTROL DS F Control options
MQEPH_PCFHEADER_COMPCODE DS F Completion code
MQEPH_PCFHEADER_REASON DS F Reason code qualifying completion code
MQEPH_PCFHEADER_PARAMETERCOUNT DS F Count of parameter structures
MQEPH_PCFHEADER_LENGTH EQU *-MQEPH_PCFHEADER

ORG MQEPH_PCFHEADER
MQEPH_PCFHEADER_AREA DS CL(MQEPH_PCFHEADER_LENGTH)
*
MQEPH_LENGTH EQU *-MQEPH

ORG MQEPH
MQEPH_AREA DS CL(MQEPH_LENGTH)

Visual Basic language declaration (Windows only)
Type MQEPH

StrucId As String*4 'Structure identifier
Version As Long 'Structure version number
StrucLength As Long 'Structure length
Encoding As Long 'Numeric encoding
CodedCharSetId As Long 'Coded characetr set identifier
Format As String*8 'Format name
Flags As Long 'Flags
Reason As Long 'Reason code qualifying completion code
PCFHeader As MQCFH 'PCF header

End Type

Chapter 6. Structure datatypes 335



336 WebSphere MQ: Monitoring WebSphere MQ



Chapter 7. Event data for object attributes

This appendix specifies the object attributes that can be included in the event data
of configuration events.

Every object has a different amount of event data, which depends on the type of
object to which the configuration event relates.

Authentication information attributes
AlterationDate (MQCFST)

Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

AuthInfoConnName (MQCFST)
Authentication information connection name (parameter identifier:
MQCA_AUTH_INFO_CONN_NAME).

The maximum length of the string is 48.

AuthInfoDesc (MQCFST)
Authentication information description (parameter identifier:
MQCA_AUTH_INFO_DESC).

The maximum length of the string is MQ_AUTH_INFO_DESC_LENGTH.

AuthInfoType (MQCFIN)
Authentication information type (parameter identifier:
MQIA_AUTH_INFO_TYPE).

The value is MQAIT_CRL_LDAP.

LDAPPassword (MQCFST)
LDAP password (parameter identifier: MQCA_LDAP_PASSWORD).

The maximum length of the string is MQ_LDAP_PASSWORD_LENGTH.

LDAPUserName (MQCFST)
LDAP user name (parameter identifier: MQCA_LDAP_USER_NAME).

The maximum length of the string is 256.

CF structure attributes
AlterationDate (MQCFST)

Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

© Copyright IBM Corp. 1994, 2009 337



CFLevel (MQCFIN)
CF level (parameter identifier: MQIA_CF_LEVEL).

CFStrucDesc (MQCFST)
CF Structure description (parameter identifier: MQCA_CF_STRUC_DESC).

The maximum length of the string is MQCA_CF_STRUC_DESC_LENGTH.

Recovery (MQCFIN)
Recovery (parameter identifier: MQIA_CF_RECOVER).

Channel attributes

Only those attributes that apply to the type of channel in question are included in
the event data.

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

BatchHeartbeat (MQCFIN)
The value being used for the batch heartbeating (parameter identifier:
MQIACH_BATCH_HB).

The value can be between 0 and 999999. A value of 0 indicates heartbeating is
not in use.

BatchInterval (MQCFIN)
Batch interval (parameter identifier: MQIACH_BATCH_INTERVAL).

BatchSize (MQCFIN)
Batch size (parameter identifier: MQIACH_BATCH_SIZE).

ChannelDesc (MQCFST)
Channel description (parameter identifier: MQCACH_DESC).

The maximum length of the string is MQ_CHANNEL_DESC_LENGTH.

ChannelMonitoring (MQCFIN)
Level of monitoring data collection for the channel (parameter identifier:
MQIA_MONITORING_CHANNEL).

The value can be:

MQMON_OFF
Monitoring data collection is turned off.

MQMON_LOW
Monitoring data collection is turned on with a low ratio of data
collection.

MQMON_MEDIUM
Monitoring data collection is turned on with a medium ratio of data
collection.

MQMON_HIGH
Monitoring data collection is turned on with a high ratio of data
collection.

338 WebSphere MQ: Monitoring WebSphere MQ



MQMON_Q_MGR
The level of monitoring data collected is based on the queue manager
attribute ChannelMonitoring.

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

The value can be:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLNTCONN
Client connection.

MQCHT_CLUSRCVR
Cluster-receiver.

MQCHT_CLUSSDR
Cluster-sender.

CipherSpec (MQCFST)
SSL cipher specification (parameter identifier: MQCACH_SSL_CIPHER_SPEC).

The maximum length of the string is MQ_SSL_CIPHER_SPEC_LENGTH.

ClusterName (MQCFST)
Cluster name (parameter identifier: MQCA_CLUSTER_NAME).

ClusterNamelist (MQCFST)
Cluster namelist (parameter identifier: MQCA_CLUSTER_NAMELIST).

CLWLChannelPriority (MQCFIN)
Cluster workload channel priority (parameter identifier:
MQIACH_CLWL_CHANNEL_PRIORITY).

CLWLChannelRank (MQCFIN)
Cluster workload channel rank (parameter identifier:
MQIACH_CLWL_CHANNEL_RANK).

CLWLChannelWeight (MQCFIN)
Cluster workload channel weight (parameter identifier:
MQIACH_CLWL_CHANNEL_WEIGHT).

ConnectionName (MQCFST)
Connection name (parameter identifier: MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

Chapter 7. Event data for object attributes 339



DataConversion (MQCFIN)
Whether sender should convert application data (parameter identifier:
MQIACH_DATA_CONVERSION).

The value can be:

MQCDC_NO_SENDER_CONVERSION
No conversion by sender.

MQCDC_SENDER_CONVERSION
Conversion by sender.

DiscInterval (MQCFIN)
Disconnection interval (parameter identifier: MQIACH_DISC_INTERVAL).

HeaderCompression (MQCFIL)
Header data compression techniques supported by the channel (parameter
identifier: MQIACH_HDR_COMPRESSION).

For sender, server, cluster-sender, cluster-receiver, and client-connection
channels, the values specified are in order of preference.

The value can be one, or more, of the following:

MQCOMPRESS_NONE
No header data compression is performed.

MQCOMPRESS_SYSTEM
Header data compression is performed.

HeartbeatInterval (MQCFIN)
Heartbeat interval (parameter identifier: MQIACH_HB_INTERVAL).

KeepAliveInterval (MQCFIN)
Keep alive interval (parameter identifier: MQIACH_KEEP_ALIVE_INTERVAL).

LocalAddress (MQCFST)
Local communications address for the channel (parameter identifier:
MQCACH_LOCAL_ADDRESS).

The maximum length of the string is MQ_LOCAL_ADDRESS_LENGTH.

LongRetryCount (MQCFIN)
Long retry count (parameter identifier: MQIACH_LONG_RETRY).

LongRetryInterval (MQCFIN)
Long timer (parameter identifier: MQIACH_LONG_TIMER).

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIACH_MAX_MSG_LENGTH).

MCAName (MQCFST)
Message channel agent name (parameter identifier: MQCACH_MCA_NAME).

The maximum length of the string is MQ_MCA_NAME_LENGTH.

MCAType (MQCFIN)
Message channel agent type (parameter identifier: MQIACH_MCA_TYPE).

The value can be:

MQMCAT_PROCESS
Process

MQMCAT_THREAD
Thread

340 WebSphere MQ: Monitoring WebSphere MQ



MCAUserIdentifier (MQCFST)
Message channel agent user identifier (parameter identifier:
MQCACH_MCA_USER_ID).

The maximum length of the MCA user identifier is
MQ_MCA_USER_ID_LENGTH.

MessageCompression (MQCFIL)
Message data compression techniques supported by the channel (parameter
identifier: MQIACH_MSG_COMPRESSION).

For sender, server, cluster-sender, cluster-receiver, and client-connection
channels, the values specified are in order of preference.

The value can be one, or more, of:

MQCOMPRESS_NONE
No message data compression is performed. This is the default value.

MQCOMPRESS_RLE
Message data compression is performed using run-length encoding.

MQCOMPRESS_ZLIBFAST
Message data compression is performed using ZLIB encoding with
speed prioritized.

MQCOMPRESS_ZLIBHIGH
Message data compression is performed using ZLIB encoding with
compression prioritized.

MQCOMPRESS_ANY
Any compression technique supported by the queue manager can be
used. This is only valid for receiver, requester, and server-connection
channels.

ModeName (MQCFST)
Mode name (parameter identifier: MQCACH_MODE_NAME).

The maximum length of the string is MQ_MODE_NAME_LENGTH.

MsgExit (MQCFSL)
Message exit name (parameter identifier: MQCACH_MSG_EXIT_NAME).

The number of names in the list is given by the Count field in the MQCFSL
structure. It will be the same as the Count for MsgUserData. It may exceed the
number of exit names specified for the channel, in which case the excess names
are blank; the minimum is 1. The length of each name is given by the
StringLength field in that structure.

The maximum length of the exit name is MQ_EXIT_NAME_LENGTH.

MsgRetryCount (MQCFIN)
Message retry count (parameter identifier: MQIACH_MR_COUNT).

Specifies the number of times that a failing message should be retried.

This parameter is only valid for receiver, cluster-receiver, and requester
channels.

MsgRetryExit (MQCFST)
Message retry exit name (parameter identifier: MQCACH_MR_EXIT_NAME).

This parameter is only valid for receiver, cluster-receiver, and requester
channels.

The maximum length of the string is MQ_MAX_EXIT_NAME_LENGTH.

Chapter 7. Event data for object attributes 341



MsgRetryInterval (MQCFIN)
Message retry interval (parameter identifier: MQIACH_MR_INTERVAL).

Specifies the minimum time interval in milliseconds between retries of failing
messages.

This parameter is only valid for receiver, cluster-receiver, and requester
channels.

MsgRetryUserData (MQCFST)
Message retry exit user data (parameter identifier:
MQCACH_MR_EXIT_USER_DATA).

Specifies user data that is passed to the message retry exit.

This parameter is only valid for receiver, cluster-receiver, and requester
channels.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

MsgUserData (MQCFSL)
Message exit user data (parameter identifier:
MQCACH_MSG_EXIT_USER_DATA).

The number of names in the list is given by the Count field in the MQCFSL
structure. It will be the same as the count for MsgExit. The length of each name
is given by the StringLength field in that structure.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

NetworkPriority (MQCFIN)
Network priority (parameter identifier: MQIACH_NETWORK_PRIORITY).

NonPersistentMsgSpeed (MQCFIN)
Speed at which nonpersistent messages are to be sent (parameter identifier:
MQIACH_NPM_SPEED).

The value can be:

MQNPMS_NORMAL
Normal speed.

MQNPMS_FAST
Fast speed.

Password (MQCFST)
Password (parameter identifier: MQCACH_PASSWORD).

The maximum length of the string is MQ_PASSWORD_LENGTH.

PeerName (MQCFST)
SSL peer name (parameter identifier: MQCACH_SSL_PEER_NAME).

The maximum length of the string is 256.

PutAuthority (MQCFIN)
Put authority (parameter identifier: MQIACH_PUT_AUTHORITY).

The value can be:

MQPA_DEFAULT
Default user identifier is used.

MQPA_CONTEXT
Context user identifier is used.

342 WebSphere MQ: Monitoring WebSphere MQ



MQPA_ALTERNATE_OR_MCA
Alternate or MCA user identifier is used.

MQPA_ONLY_MCA
Only MCA user identifier is used.

QMgrName (MQCFST)
Queue manager name (parameter identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

ReceiveExit (MQCFSL)
Receive exit name (parameter identifier: MQCACH_RCV_EXIT_NAME).

The number of names in the list is given by the Count field in the MQCFSL
structure. It will be the same as the Count for ReceiveUserData. It may exceed
the number of exit names specified for the channel, in which case the excess
names are blank; the minimum is 1. The length of each name is given by the
StringLength field in that structure.

For a client-connection channel the maximum length of the exit name is
MQ_MAX_EXIT_NAME_LENGTH. For all other channels, the maximum
length of the exit name is MQ_EXIT_NAME_LENGTH.

ReceiveUserData (MQCFSL)
Receive exit user data (parameter identifier:
MQCACH_RCV_EXIT_USER_DATA).

The number of names in the list is given by the Count field in the MQCFSL
structure. It will be the same as the count for ReceiveExit. The length of each
name is given by the StringLength field in that structure.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

SecurityExit (MQCFST)
Security exit name (parameter identifier: MQCACH_SEC_EXIT_NAME).

For a client-connection channel the maximum length of the exit name is
MQ_MAX_EXIT_NAME_LENGTH. For all other channels, the maximum
length of the exit name is MQ_EXIT_NAME_LENGTH.

SecurityUserData (MQCFST)
Security exit user data (parameter identifier:
MQCACH_SEC_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

SendExit (MQCFSL)
Send exit name (parameter identifier: MQCACH_SEND_EXIT_NAME).

The number of names in the list is given by the Count field in the MQCFSL
structure. It will be the same as the Count for SendUserData. It may exceed the
number of exit names specified for the channel, in which case the excess names
are blank; the minimum is 1. The length of each name is given by the
StringLength field in that structure.

For a client-connection channel the maximum length of the exit name is
MQ_MAX_EXIT_NAME_LENGTH. For all other channels, the maximum
length of the exit name is MQ_EXIT_NAME_LENGTH.

SendUserData (MQCFSL)
Send exit user data (parameter identifier:
MQCACH_SEND_EXIT_USER_DATA).

Chapter 7. Event data for object attributes 343



The number of names in the list is given by the Count field in the MQCFSL
structure. It will be the same as the count for SendExit. The length of each
name is given by the StringLength field in that structure.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

SeqNumberWrap (MQCFIN)
Sequence wrap number (parameter identifier:
MQIACH_SEQUENCE_NUMBER_WRAP).

ShortRetryCount (MQCFIN)
Short retry count (parameter identifier: MQIACH_SHORT_RETRY).

ShortRetryInterval (MQCFIN)
Short timer (parameter identifier: MQIACH_SHORT_TIMER).

SSLClientAuthentication (MQCFIN)
SSL client authentication (parameter identifier:
MQIACH_SSL_CLIENT_AUTH).

The value can be:

MQSCA_REQUIRED
Certificate required.

MQSCA_OPTIONAL
Certificate optional.

TpName (MQCFST)
Transaction program name (parameter identifier: MQCACH_TP_NAME).

The maximum length of the string is MQ_TP_NAME_LENGTH.

TransportType (MQCFIN)
Transmission protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

The value may be:

MQXPT_LU62
LU 6.2.

MQXPT_TCP
TCP.

MQXPT_NETBIOS
NetBIOS.

MQXPT_SPX
SPX.

UserIdentifier (MQCFST)
Task user identifier (parameter identifier: MQCACH_USER_ID).

The maximum length of the string is MQ_USER_ID_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

344 WebSphere MQ: Monitoring WebSphere MQ



Namelist attributes
AlterationDate (MQCFST)

Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

NameCount (MQCFIN)
Number of names in the namelist (parameter identifier:
MQIA_NAME_COUNT).

The number of names contained in the namelist.

NamelistDesc (MQCFST)
Description of namelist definition (parameter identifier:
MQCA_NAMELIST_DESC).

The maximum length of the string is MQ_NAMELIST_DESC_LENGTH.

NamelistName (MQCFST)
The name of the namelist definition (parameter identifier:
MQCA_NAMELIST_NAME).

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

NamelistType (MQCFIN)
Namelist type (parameter identifier: MQIA_NAMELIST_TYPE).

Names (MQCFSL)
The names contained in the namelist (parameter identifier: MQCA_NAMES).

The number of names in the list is given by the Count field in the MQCFSL
structure. The length of each name is given by the StringLength field in that
structure. The maximum length of a name is MQ_OBJECT_NAME_LENGTH.

Process attributes
AlterationDate (MQCFST)

Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

ApplId (MQCFST)
Application identifier (parameter identifier: MQCA_APPL_ID).

The maximum length of the string is MQ_PROCESS_APPL_ID_LENGTH.

ApplType (MQCFIN)
Application type (parameter identifier: MQIA_APPL_TYPE).

EnvData (MQCFST)
Environment data (parameter identifier: MQCA_ENV_DATA).

The maximum length of the string is MQ_PROCESS_ENV_DATA_LENGTH.

Chapter 7. Event data for object attributes 345



ProcessDesc (MQCFST)
Description of process definition (parameter identifier:
MQCA_PROCESS_DESC).

The maximum length of the string is MQ_PROCESS_DESC_LENGTH.

ProcessName (MQCFST)
The name of the process definition (parameter identifier:
MQCA_PROCESS_NAME).

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

UserData (MQCFST)
User data (parameter identifier: MQCA_USER_DATA).

The maximum length of the string is MQ_PROCESS_USER_DATA_LENGTH.

Queue attributes

Only those attributes that apply to the type of queue in question are included in
the event data.

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

BackoutRequeueName (MQCFST)
Excessive backout requeue name (parameter identifier:
MQCA_BACKOUT_REQ_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

BackoutThreshold (MQCFIN)
Backout threshold (parameter identifier: MQIA_BACKOUT_THRESHOLD).

BaseQName (MQCFST)
Queue name to which the alias resolves (parameter identifier:
MQCA_BASE_Q_NAME).

This is the name of a queue that is defined to the local queue manager.

The maximum length of the string is MQ_Q_NAME_LENGTH.

CFstructure (MQCFST)
CF structure name (parameter identifier: MQCA_CF_STRUC_NAME).

The maximum length of the string is MQ_CF_STRUC_NAME_LENGTH.

ClusterName (MQCFST)
Cluster name (parameter identifier: MQCA_CLUSTER_NAME).

ClusterNamelist (MQCFST)
Cluster namelist (parameter identifier: MQCA_CLUSTER_NAMELIST).

CLWLQueuePriority (MQCFIN)
Queue priority (parameter identifier: MQIA_CLWL_Q_PRIORITY).

CLWLQueueRank (MQCFIN)
Queue rank (parameter identifier: MQIA_CLWL_Q_RANK).

346 WebSphere MQ: Monitoring WebSphere MQ



CLWLUseQ (MQCFIN)
This defines the behavior of an MQPUT when the target queue has both a local
instance and at least one remote cluster instance (parameter identifier:
MQIA_CLWL_USEQ).

The value can be:

MQCLWL_USEQ_ANY
Use remote and local queues.

MQCLWL_USEQ_LOCAL
Do not use remote queues.

MQCLWL_USEQ_AS_Q_MGR
Inherit definition from the queue manager attribute CLWLUseQ.

CreationDate (MQCFST)
Queue creation date (parameter identifier: MQCA_CREATION_DATE).

The maximum length of the string is MQ_CREATION_DATE_LENGTH.

CreationTime (MQCFST)
Creation time (parameter identifier: MQCA_CREATION_TIME).

The maximum length of the string is MQ_CREATION_TIME_LENGTH.

DefBind (MQCFIN)
Default binding (parameter identifier: MQIA_DEF_BIND).

The value can be:

MQBND_BIND_ON_OPEN
Binding fixed by MQOPEN call.

MQBND_BIND_NOT_FIXED
Binding not fixed.

DefinitionType (MQCFIN)
Queue definition type (parameter identifier: MQIA_DEFINITION_TYPE).

The value can be:

MQQDT_PREDEFINED
Predefined permanent queue.

MQQDT_PERMANENT_DYNAMIC
Dynamically defined permanent queue.

MQQDT_SHARED_DYNAMIC
Dynamically defined permanent queue that is shared.

DefInputOpenOption (MQCFIN)
Default input open option for defining whether queues can be shared
(parameter identifier: MQIA_DEF_INPUT_OPEN_OPTION).

The value can be:

MQOO_INPUT_EXCLUSIVE
Open queue to get messages with exclusive access.

MQOO_INPUT_SHARED
Open queue to get messages with shared access.

DefPersistence (MQCFIN)
Default persistence (parameter identifier: MQIA_DEF_PERSISTENCE).

The value can be:

Chapter 7. Event data for object attributes 347



MQPER_PERSISTENT
Message is persistent.

MQPER_NOT_PERSISTENT
Message is not persistent.

DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY).

HardenGetBackout (MQCFIN)
Whether to harden backout (parameter identifier:
MQIA_HARDEN_GET_BACKOUT).

The value can be:

MQQA_BACKOUT_HARDENED
Backout count remembered.

MQQA_BACKOUT_NOT_HARDENED
Backout count may not be remembered.

IndexType (MQCFIN)
Index type (parameter identifier: MQIA_INDEX_TYPE).

InhibitGet (MQCFIN)
Whether get operations are allowed (parameter identifier:
MQIA_INHIBIT_GET).

The value can be:

MQQA_GET_ALLOWED
Get operations are allowed.

MQQA_GET_INHIBITED
Get operations are inhibited.

InhibitPut (MQCFIN)
Whether put operations are allowed (parameter identifier:
MQIA_INHIBIT_PUT).

The value can be:

MQQA_PUT_ALLOWED
Put operations are allowed.

MQQA_PUT_INHIBITED
Put operations are inhibited.

InitiationQName (MQCFST)
Initiation queue name (parameter identifier: MQCA_INITIATION_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier: MQIA_MAX_MSG_LENGTH).

MaxQDepth (MQCFIN)
Maximum queue depth (parameter identifier: MQIA_MAX_Q_DEPTH).

MsgDeliverySequence (MQCFIN)
Whether priority is relevant (parameter identifier:
MQIA_MSG_DELIVERY_SEQUENCE).

The value can be:

MQMDS_PRIORITY
Messages are returned in priority order.

348 WebSphere MQ: Monitoring WebSphere MQ



MQMDS_FIFO
Messages are returned in FIFO order (first in, first out).

ProcessName (MQCFST)
Name of process definition for queue (parameter identifier:
MQCA_PROCESS_NAME).

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

QDepthHiEvent (MQCFIN)
Controls whether Queue Depth High events are generated. (parameter
identifier: MQIA_Q_DEPTH_HIGH_EVENT).

The value can be:

MQEVR_ENABLED
Queue depth high events are enabled.

MQEVR_DISABLED
Queue depth high events are disabled.

QDepthHighLimit (MQCFIN)
High limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_HIGH_LIMIT).

The threshold against which the queue depth is compared to generate a Queue
Depth High event.

QDepthLoEvent (MQCFIN)
Controls whether Queue Depth Low events are generated. (parameter
identifier: MQIA_Q_DEPTH_LOW_EVENT).

The value can be:

MQEVR_ENABLED
Queue depth lowevents are enabled.

MQEVR_DISABLED
Queue depth low events are disabled.

QDepthLowLimit (MQCFIN)
Low limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_LOW_LIMIT).

The threshold against which the queue depth is compared to generate a Queue
Depth Low event.

QDepthMaxEvent (MQCFIN)
Controls whether Queue Full events are generated. (parameter identifier:
MQIA_Q_DEPTH_MAX_EVENT).

The value can be:

MQEVR_ENABLED
Queue depth full events are enabled.

MQEVR_DISABLED
Queue depth full events are disabled.

QDesc (MQCFST)
Queue description (parameter identifier: MQCA_Q_DESC).

The maximum length of the string is MQ_Q_DESC_LENGTH.

QName (MQCFST)
Queue name (parameter identifier: MQCA_Q_NAME).

Chapter 7. Event data for object attributes 349

|
|
|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|
|

|

|
|

|
|



The maximum length of the string is MQ_Q_NAME_LENGTH.

QServiceInterval (MQCFIN)
Target for queue service interval (parameter identifier:
MQIA_Q_SERVICE_INTERVAL).

The service interval used for comparison to generate Queue Service Interval
High and Queue Service Interval OK events.

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

The value can be:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

MQQT_REMOTE
Local definition of a remote queue.

MQQT_MODEL
Model queue definition.

QueueAccounting (MQCFIN)
Specifies whether accounting information is collected (parameter identifier:
MQIA_ACCOUNTING_Q).

The value can be:

MQMON_ON
Accounting information is collected for the queue.

MQMON_OFF
Accounting information is not collected for the queue.

MQMON_Q_MGR
The collection of accounting information for this queue is based is
based on the queue manager attribute QueueAccounting.

QueueMonitoring (MQCFIN)
Level of monitoring data collection for the queue (parameter identifier:
MQIA_MONITORING_Q).

The value can be:

MQMON_OFF
Monitoring data collection is turned off.

MQMON_LOW
Monitoring data collection is turned on with a low ratio of data
collection.

MQMON_MEDIUM
Monitoring data collection is turned on with a moderate ratio of data
collection.

MQMON_HIGH
Monitoring data collection is turned on with a high ratio of data
collection.

MQMON_Q_MGR
The level of monitoring data collected is based on the queue manager
attribute QueueMonitoring.

350 WebSphere MQ: Monitoring WebSphere MQ



RemoteQMgrName (MQCFST)
Name of remote queue manager (parameter identifier:
MQCA_REMOTE_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

RemoteQName (MQCFST)
Name of remote queue as known locally on the remote queue manager
(parameter identifier: MQCA_REMOTE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

RetentionInterval (MQCFIN)
Retention interval (parameter identifier: MQIA_RETENTION_INTERVAL).

ServiceIntervalEvent (MQCFIN)
Controls whether Service Interval High or Service Interval OK events are
generated. .

The value can be:

MQQSIE_NONE
No service interval events are generated.

MQQSIE_OK
Service interval OK events are generated.

MQQSIE_HIGH
Service interval high events are generated.

Shareability (MQCFIN)
Whether queue can be shared (parameter identifier: MQIA_SHAREABILITY).

The value can be:

MQQA_SHAREABLE
Queue is shareable.

MQQA_NOT_SHAREABLE
Queue is not shareable.

StorageClass (MQCFST)
Storage class name (parameter identifier: MQCA_STORAGE_CLASS).

The maximum length of the string is MQ_STORAGE_CLASS_LENGTH.

TriggerControl (MQCFIN)
Trigger control (parameter identifier: MQIA_TRIGGER_CONTROL).

The value can be:

MQTC_OFF
Trigger messages not required.

MQTC_ON
Trigger messages required.

TriggerData (MQCFST)
Trigger data (parameter identifier: MQCA_TRIGGER_DATA).

The maximum length of the string is MQ_TRIGGER_DATA_LENGTH.

TriggerDepth (MQCFIN)
Trigger depth (parameter identifier: MQIA_TRIGGER_DEPTH).

Chapter 7. Event data for object attributes 351

|
|
|

|

|
|

|
|

|
|



TriggerMsgPriority (MQCFIN)
Threshold message priority for triggers (parameter identifier:
MQIA_TRIGGER_MSG_PRIORITY).

TriggerType (MQCFIN)
Trigger type (parameter identifier: MQIA_TRIGGER_TYPE).

The value can be:

MQTT_NONE
No trigger messages.

MQTT_FIRST
Trigger message when queue depth goes from 0 to 1.

MQTT_EVERY
Trigger message for every message.

MQTT_DEPTH
Trigger message when depth threshold exceeded.

Usage (MQCFIN)
Usage (parameter identifier: MQIA_USAGE).

The value can be:

MQUS_NORMAL
Normal usage.

MQUS_TRANSMISSION
Transmission queue.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Queue manager attributes
ActivityRecording (MQCFIN)

Specifies whether activity recording is enabled or disabled (parameter
identifier: MQIA_ACTIVITY_RECORDING).

The value can be:

MQRECORDING_MSG
Activity recording is enabled. Activity reports are delivered to the
reply-to queue specified in the message descriptor of the message.

MQRECORDING_Q
Activity recording is enabled. Activity reports are delivered to a fixed
name queue.

MQRECORDING_DISABLED.
Activity recording is disabled.

AdoptNewMCACheck (MQCFIN)
Procedure to determine if an existing receiver MCA is to be adopted when an
inbound channel is detected of the same name (parameter identifier:
MQIA_ADOPTNEWMCA_CHECK).

The value can be:

MQADOPT_CHECK_Q_MGR_NAME
Compare the receiver MCA and the inbound channel. If the queue

352 WebSphere MQ: Monitoring WebSphere MQ



manager names match, the existing receiver MCA is adopted providing
it is active. If they don’t match, the existing receiver MCA is cancelled,
and a new MCA is created.

MQADOPT_CHECK_NET_ADDR
Compare the receiver MCA and the inbound channel. If the network
addresses match, the existing receiver MCA is adopted providing it is
active. If they don’t match, the existing receiver MCA is cancelled, and
a new MCA is created.

MQADOPT_CHECK_ALL
Compare the receiver MCA and the inbound channel. If both the queue
manager names, and the network addresses match, the existing
receiver MCA is adopted providing it is active. If they don’t match, the
existing receiver MCA is cancelled, and a new MCA is created.

MQADOPT_CHECK_NONE
If the existing receiver MCA is active it is adopted with no checks.

AdoptNewMCAType (MQCFIN)
Specifies whether orphaned receiver MCAs are to be restarted when an
inbound channel matching the AdoptNewMCACheck procedure is detected
(parameter identifier: MQIA_ADOPTNEWMCA_TYPE).

The value can be:

MQADOPT_TYPE_NO
Do not restart and adopt orphaned receiver MCAs.

MQADOPT_TYPE_ALL
Restart and adopt orphaned receiver MCAs.

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

AuthorityEvent (MQCFIN)
Controls whether authorization (Not Authorized) events are generated
(parameter identifier: MQIA_AUTHORITY_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

BridgeEvent (MQCFIN)
Determines whether IMS bridge events are generated (parameter identifier:
MQIA_BRIDGE_EVENT).

The value can be:

MQEVR_ENABLED
All IMS bridge events are enabled.

MQEVR_DISABLED
All IMS bridge events are disabled.

Chapter 7. Event data for object attributes 353



ChannelAutoDefExit (MQCFST)
Channel auto-definition exit name (parameter identifier:
MQCA_CHANNEL_AUTO_DEF_EXIT).

The maximum length of the exit name is MQ_EXIT_NAME_LENGTH.

This parameter is supported only in the environments in which an MQSeries®

Version 5.1 product, or later, is available.

ChannelEvent (MQCFIN)
Determines whether channel events are generated (parameter identifier:
MQIA_CHANNEL_EVENT).

The value can be:

MQEVR_ENABLED
All channel events are enabled.

MQEVR_EXCEPTION
Only the following channels events are enabled:
v MQRC_CHANNEL_ACTIVATED
v MQRC_CHANNEL_CONV_ERROR
v MQRC_CHANNEL_NOT_ACTIVATED
v MQRC_CHANNEL_STOPPED

MQEVR_DISABLED
All channel events are disabled.

ChannelMonitoring (MQCFIN)
Level of real-time monitoring data collection for channels (parameter identifier:
MQIA_MONITORING_CHANNEL).

The value can be:

MQMON_NONE
Monitoring data collection is disabled, regardless of the setting for the
ChannelMonitoring channel attribute.

MQMON_OFF
Monitoring data collection is turned off for channels specifying
MQMON_Q_MGR in the ChannelMonitoring channel attribute.

MQMON_LOW
Monitoring data collection is turned on with a low ratio of data
collection for channels specifying MQMON_Q_MGR in the
ChannelMonitoring channel attribute.

MQMON_MEDIUM
Monitoring data collection is turned on with a moderate ratio of data
collection for channels specifying MQMON_Q_MGR in the
ChannelMonitoring channel attribute.

MQMON_HIGH
Monitoring data collection is turned on with a high ratio of data
collection for channels specifying MQMON_Q_MGR in the
ChannelMonitoring channel attribute.

ChinitAdapters (MQCFIN)
Number of channel initiator adapter subtasks to use for processing WebSphere
MQ calls (parameter identifier: MQIA_CHINIT_ADAPTERS).

This value must be between 0 and 9999.

354 WebSphere MQ: Monitoring WebSphere MQ



ChinitDispatchers (MQCFIN)
Number of dispatchers to use for the channel initiator (parameter identifier:
MQIA_CHINIT_DISPATCHERS).

ChinitServiceParm (MQCFST)
This attribute is reserved for use by IBM (parameter identifier:
MQCA_CHINIT_SERVICE_PARM).

ChinitTraceAutoStart (MQCFIN)
Specifies whether the channel initiator trace should start automatically
(parameter identifier: MQIA_CHINIT_TRACE_AUTO_START).

The value can be:

MQTRAXSTR_YES
Channel initiator trace starts automatically.

MQTRAXSTR_NO
Channel initiator trace does not starts automatically.

ChinitTraceTableSize (MQCFIN)
Size of the channel initiator’s trace data space, in MB (parameter identifier:
MQIA_CHINIT_TRACE_TABLE_SIZE).

ClusterSenderMonitoring (MQCFIN)
Level of real-time monitoring data collection for auto-defined cluster sender
channels (parameter identifier: MQIA_MONITORING_AUTO_CLUSSDR).

The value can be:

MQMON_Q_MGR
The collection of monitoring data is inherited from the setting of the
ChannelMonitoring attribute in the queue manager object.

MQMON_OFF
Monitoring data collection is disabled.

MQMON_LOW
Monitoring data collection is turned on with a low ratio of data
collection.

MQMON_MEDIUM
Monitoring data collection is turned on with a moderate ratio of data
collection.

MQMON_HIGH
Monitoring data collection is turned on with a high ratio of data
collection.

ClusterWorkLoadData (MQCFST)
Data passed to the cluster workload exit (parameter identifier:
MQCA_CLUSTER_WORKLOAD_DATA).

ClusterWorkLoadExit (MQCFST)
Name of the cluster workload exit (parameter identifier:
MQCA_CLUSTER_WORKLOAD_EXIT).

The maximum length of the exit name is MQ_EXIT_NAME_LENGTH.

ClusterWorkLoadLength (MQCFIN)
Cluster workload length (parameter identifier:
MQIA_CLUSTER_WORKLOAD_LENGTH).

The maximum length of the message passed to the cluster workload exit.

Chapter 7. Event data for object attributes 355



CLWLMRUChannels (MQCFIN)
Maximum number of most recently used channels for cluster workload
balancing (parameter identifier: MQIA_CLWL_MRU_CHANNELS).

CLWLUseQ (MQCFIN)
This defines the behavior of an MQPUT when the target queue has both a local
instance and at least one remote cluster instance (parameter identifier:
MQIA_CLWL_USEQ).

The value can be:

MQCLWL_USEQ_ANY
Use remote and local queues.

MQCLWL_USEQ_LOCAL
Do not use remote queues.

CodedCharSetId (MQCFIN)
Coded character set identifier (parameter identifier:
MQIA_CODED_CHAR_SET_ID).

CommandEvent (MQCFIN)
Controls whether command events are generated (parameter identifier:
MQIA_COMMAND_EVENT).

The value can be:

MQEVR_DISABLED
Command event generation disabled.

MQEVR_ENABLED
Command event generation enabled.

MQEVR_NO_DISPLAY
Command events are generated for all commands other than MQSC
DISPLAY commands and PCF Inquire commands.

CommandInputQName (MQCFST)
Command input queue name (parameter identifier:
MQCA_COMMAND_INPUT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

CommandLevel (MQCFIN)
Command level supported by queue manager (parameter identifier:
MQIA_COMMAND_LEVEL).

ConfigurationEvent (MQCFIN)
Controls whether configuration events are generated (parameter identifier:
MQIA_CONFIGURATION_EVENT).

The value can be:

MQEVR_DISABLED
Configuration event generation disabled.

MQEVR_ENABLED
Configuration event generation enabled.

CPILevel (MQCFIN)
CPI level (parameter identifier: MQIA_CPI_LEVEL).

DeadLetterQName (MQCFST)
Dead letter (undelivered message) queue name (parameter identifier:
MQCA_DEAD_LETTER_Q_NAME).

356 WebSphere MQ: Monitoring WebSphere MQ

|
|



Specifies the name of the local queue that is to be used for undelivered
messages. Messages are put on this queue if they cannot be routed to their
correct destination.

The maximum length of the string is MQ_Q_NAME_LENGTH.

DefXmitQName (MQCFST)
Default transmission queue name (parameter identifier:
MQCA_DEF_XMIT_Q_NAME).

This is the name of the default transmission queue that is used for the
transmission of messages to remote queue managers, if there is no other
indication of which transmission queue to use.

The maximum length of the string is MQ_Q_NAME_LENGTH.

DNSGroup (MQCFST)
The name of the group that the TCP listener that handles inbound
transmissions for the queue sharing group must join when using Workload
Manager for Dynamic Domain Name Services (parameter identifier:
MQCA_DNS_GROUP).

The maximum length of this name is MQ_DNS_GROUP_NAME_LENGTH.

DNSWLM (MQCFIN)
Specifies whether the TCP listener that handles inbound transmissions for the
queue sharing group will register with the Workload Manager for Dynamic
Domain Name Services (parameter identifier: MQIA_DNS_WLM).

The value can be:

MQDNSWLM_YES
Register with the Workload Manager for Dynamic Domain Name
Services.

MQDNSWLM_NO
Do not register with the Workload Manager for Dynamic Domain
Name Services.

ExpiryInterval (MQCFIN)
Expiry interval (parameter identifier: MQIA_EXPIRY_INTERVAL).

IGQPutAuthority (MQCFIN)
IGQ put authority (parameter identifier: MQIA_IGQ_PUT_AUTHORITY).

IGQUserId (MQCFST)
IGQ user identifier (parameter identifier: MQCA_IGQ_USER_ID).

The maximum length of the string is MQ_USER_ID_LENGTH.

InhibitEvent (MQCFIN)
Controls whether inhibit (Inhibit Get and Inhibit Put) events are generated
(parameter identifier: MQIA_INHIBIT_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

IntraGroupQueueing (MQCFIN)
Intra group queueing (parameter identifier:
MQIA_INTRA_GROUP_QUEUING).

Chapter 7. Event data for object attributes 357



IPAddressVersion (MQCFIN)
Specifies the IP version to be used (parameter identifier:
MQIA_IP_ADDRESS_VERSION).

The value can be:

MQIPADDR_IPV4
The IPv4 stack is used.

MQIPADDR_IPV6
The IPv6 stack is used.

ListenerTimer (MQCFIN)
The time interval, in seconds, between attempts to restart a listener following
an APPC or TCP/IP failure (parameter identifier: MQCA_LISTENER_TIMER).

LocalEvent (MQCFIN)
Controls whether local error events are generated (parameter identifier:
MQIA_LOCAL_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

LU62ARMSuffix (MQCFST)
The suffix of the SYS1.PARMLIB member APPCPMxx, that nominates the
LUADD for this channel initiator (parameter identifier:
MQCA_LU62_ARM_SUFFIX).

The maximum length of this name is MQ_ARM_SUFFIX_LENGTH.

LU62Channels (MQCFIN)
Maximum number of current channels that use the LU 6.2 transmission
protocol, including clients connected to server connection channels (parameter
identifier: MQIA_LU62_CHANNELS).

LUGroupName (MQCFST)
The generic LU name that the LU 6.2 listener that handles inbound
transmissions for the queue sharing group is to use. This name must be the
same as LUName (parameter identifier: MQCA_LU_GROUP_NAME).

The maximum length of this name is MQ_LU_NAME_LENGTH.

LUName (MQCFST)
The LU name that the LU 6.2 listener that handles outbound transmissions is
to use. This name must be the same as LUGroupName (parameter identifier:
MQCA_LU_NAME).

The maximum length of this name is MQ_LU_NAME_LENGTH.

MaxActiveChannels (MQCFIN)
Maximum number of channels that can be active at the same time (parameter
identifier: MQIA_ACTIVE_CHANNELS).

MaxChannels (MQCFIN)
Maximum number of current channels, including clients connected to server
connection channels (parameter identifier: MQIA_MAX_CHANNELS).

MaxHandles (MQCFIN)
Maximum number of handles (parameter identifier: MQIA_MAX_HANDLES).

358 WebSphere MQ: Monitoring WebSphere MQ



Specifies the maximum number of handles that any one job can have open at
the same time.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier: MQIA_MAX_MSG_LENGTH).

MaxPriority (MQCFIN)
Maximum priority (parameter identifier: MQIA_MAX_PRIORITY).

MaxUncommittedMsgs (MQCFIN)
Maximum number of uncommitted messages within a unit of work (parameter
identifier: MQIA_MAX_UNCOMMITTED_MSGS).

That is:
v The number of messages that can be retrieved, plus
v The number of messages that can be put on a queue, plus
v Any trigger messages generated within this unit of work

under any one syncpoint. This limit does not apply to messages that are
retrieved or put outside syncpoint.

OutboundPortMax (MQCFIN)
Outbound port range maximum (parameter identifier:
MQIA_OUTBOUND_PORT_MAX).

The upper limit for the range of port numbers used when binding outgoing
channels.

OutboundPortMin (MQCFIN)
Outbound port range minimum (parameter identifier:
MQIA_OUTBOUND_PORT_MIN).

The lower limit for the range of port numbers used when binding outgoing
channels.

PerformanceEvent (MQCFIN)
Controls whether performance-related events are generated (parameter
identifier: MQIA_PERFORMANCE_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

Platform (MQCFIN)
Platform on which the queue manager resides (parameter identifier:
MQIA_PLATFORM).

QMgrDesc (MQCFST)
Queue manager description (parameter identifier: MQCA_Q_MGR_DESC).

The maximum length of the string is MQ_Q_MGR_DESC_LENGTH.

QMgrIdentifier (MQCFST)
Queue manager identifier (parameter identifier: MQCA_Q_MGR_IDENTIFIER).

The unique identifier of the queue manager.

QMgrName (MQCFST)
Name of local queue manager (parameter identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

Chapter 7. Event data for object attributes 359



QSGName (MQCFST)
Queue sharing group name (parameter identifier: MQCA_QSG_NAME).

The maximum length of the string is MQ_QSG_NAME_LENGTH.

QueueAccounting (MQCFIN)
Specifies whether accounting information is collected for queues (parameter
identifier: MQIA_ACCOUNTING_Q).

The value can be:

MQMON_ON
For all queues that have the queue parameter QueueAccounting
specified as MQMON_Q_MGR, accounting information is collected.

MQMON_OFF
For all queues that have the queue parameter QueueAccounting
specified as MQMON_Q_MGR, accounting information is not collected.

MQMON_NONE
Accounting information is not collected for queues.

QueueMonitoring (MQCFIN)
Level of real-time monitoring data collection for queues (parameter identifier:
MQIA_MONITORING_Q).

The value can be:

MQMON_NONE
Monitoring data collection is disabled, regardless of the setting for the
QueueMonitoring queue attribute.

MQMON_OFF
Monitoring data collection is turned off for queues specifying
MQMON_Q_MGR in the QueueMonitoring queue attribute.

MQMON_LOW
Monitoring data collection is turned on with a low ratio of data
collection for queues specifying MQMON_Q_MGR in the
QueueMonitoring queue attribute.

MQMON_MEDIUM
Monitoring data collection is turned on with a moderate ratio of data
collection for queues specifying MQMON_Q_MGR in the
QueueMonitoring queue attribute.

MQMON_HIGH
Monitoring data collection is turned on with a high ratio of data
collection for queues specifying MQMON_Q_MGR in the
QueueMonitoring queue attribute.

ReceiveTimeout (MQCFIN)
In conjunction with ReceiveTimeoutType specifies how long a TCP/IP channel
will wait to receive data, including heartbeats, from its partner before returning
to the inactive state (parameter identifier: MQIA_RECEIVE_TIMEOUT).

ReceiveTimeoutMin (MQCFIN)
The minimum time, in seconds, that a TCP/IP channel will wait to receive
data, including heartbeats, from its partner before returning to the inactive
state (parameter identifier: MQIA_RECEIVE_TIMEOUT_MIN).

ReceiveTimeoutType (MQCFIN)
In conjunction with ReceiveTimeout specifies how long a TCP/IP channel will

360 WebSphere MQ: Monitoring WebSphere MQ



wait to receive data, including heartbeats, from its partner before returning to
the inactive state (parameter identifier: MQIA_RECEIVE_TIMEOUT_TYPE).

The value can be:

MQRCVTIME_MULTIPLY
The ReceiveTimeout value is a multiplier to be applied to the negotiated
value of HeartbeatInterval to determine how long a channel will wait.
This is the queue manager’s initial default value.

MQRCVTIME_ADD
ReceiveTimeout is a value, in seconds, to be added to the negotiated
value of HeartbeatInterval to determine how long a channel will wait.

MQRCVTIME_EQUAL
ReceiveTimeout is a value, in seconds, representing how long a channel
will wait.

RemoteEvent (MQCFIN)
Controls whether remote error events are generated (parameter identifier:
MQIA_REMOTE_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

RepositoryName (MQCFST)
Repository name (parameter identifier: MQCA_REPOSITORY_NAME).

The name of a cluster for which this queue manager is to provide a repository
service.

RepositoryNamelist (MQCFST)
Repository name list (parameter identifier: MQCA_REPOSITORY_NAMELIST).

The name of a list of clusters for which this queue manager is to provide a
repository service.

SharedQueueQueueManagerName (MQCFIN)
Specifies how messages are put on a shared queue that specifies another queue
manager from a queue sharing group as the object queue manager (parameter
identifier: MQIA_SHARED_Q_Q_MGR_NAME).

The value can be:

MQSQQM_USE
Messages are delivered to the object queue manager before being put
on the shared queue.

MQSQQM_IGNORE
Messages are put directly on the shared queue.

SSLCRLNameList (MQCFST)
SSL CRL name list (parameter identifier: MQCA_SSL_CRL_NAMELIST).

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

SSLEvent (MQCFIN)
Determines whether IMS bridge events are generated (parameter identifier:
MQIA_SSL_EVENT).

The value can be:

Chapter 7. Event data for object attributes 361



MQEVR_ENABLED
All SSL events are enabled.

MQEVR_DISABLED
All SSL events are disabled.

SSLKeyRepository (MQCFST)
SSL key repository (parameter identifier: MQCA_SSL_KEY_REPOSITORY).

The maximum length of the string is MQ_SSL_KEY_REPOSITORY_LENGTH.

SSLKeyResetCount (MQCFIN)
SSL key reset count (parameter identifier: MQIA_SSL_RESET_COUNT).

The maximum length of the string is MQ_SSL_KEY_REPOSITORY_LENGTH.

SSLTasks (MQCFIN)
SSL tasks (parameter identifier: MQIA_SSL_TASKS).

StartStopEvent (MQCFIN)
Controls whether start and stop events are generated (parameter identifier:
MQIA_START_STOP_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

SyncPoint (MQCFIN)
Syncpoint availability (parameter identifier: MQIA_SYNCPOINT).

TCPChannels (MQCFIN)
Maximum number of current channels that use the TCP/IP transmission
protocol, including clients connected to server connection channels (parameter
identifier: MQIA_TCP_CHANNELS).

TCPKeepAlive (MQCFIN)
Specifies whether to use the TCP KEEPALIVE facility to check whether the
MCA at the opposite end of a channel is available (parameter identifier:
MQIA_TCP_KEEP_ALIVE).

The value can be:

MQTCPKEEP_YES
Use the TCP KEEPALIVE facility as specified in the TCP profile
configuration data set.

MQTCPKEEP_NO
Do not use the TCP KEEPALIVE facility.

TCPName (MQCFST)
TCP name (parameter identifier: MQIA_TCP_NAME).

The name of the current TCP/IP system in use.

The maximum length of this value is MQ_TCP_NAME_LENGTH.

TCPStackType (MQCFIN)
TCP stack type (parameter identifier: MQIA_TCP_STACK_TYPE).

Specifies whether the channel initiator uses the TCP/IP address space specified
in TCPNAME only, or whether it can bind to any selected TCP/IP address.

The value can be:

362 WebSphere MQ: Monitoring WebSphere MQ



MQTCPSTACK_SINGLE
The channel initiator uses the TCP/IP address space specified in
TCPNAME only.

MQTCPSTACK_MULTIPLE
The initiator can use any TCP/IP address space available to it. If no
other address spaces are available, the address space specified in
TCPNAME is used.

TraceRouteRecording (MQCFIN)
Specifies whether trace-route messaging is enabled or disabled (parameter
identifier: MQIA_TRACE_ROUTE_RECORDING).

The value can be:

MQRECORDING_MSG
Trace-route messaging is enabled. Trace-route reply messages are
delivered to the reply-to queue specified in the message descriptor of
the message.

MQRECORDING_Q
Trace-route messaging is enabled. Trace-route reply messages are
delivered to a fixed name queue.

MQRECORDING_DISABLED.
Trace-route messaging is disabled.

TriggerInterval (MQCFIN)
Trigger interval (parameter identifier: MQIA_TRIGGER_INTERVAL).

Specifies the trigger time interval, expressed in milliseconds, for use only with
queues where TriggerType has a value of MQTT_FIRST.

Storage class attributes
AlterationDate (MQCFST)

Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

PageSetId (MQCFIN)
Page set identifier (parameter identifier: MQIA_PAGESET_ID).

PassTicketApplication (MQCFST)
Name of the application used to authenticate IMS bridge passtickets
(parameter identifier: MQCA_PASS_TICKET_APPL).

The maximum length of the string is MQ_PASS_TICKET_APPL_LENGTH.

StgClassDesc (MQCFST)
Storage class description (parameter identifier:
MQCA_STORAGE_CLASS_DESC).

The maximum length of the string is MQ_STORAGE_CLASS_DESC_LENGTH.

XCFGroupName (MQCFST)
XCF group name (parameter identifier: MQCA_XCF_GROUP_NAME).

The maximum length of the string is MQ_XCF_GROUP_NAME_LENGTH.

Chapter 7. Event data for object attributes 363



XCFMemberName (MQCFST)
XCF member name (parameter identifier: MQCA_XCF_MEMBER_NAME).

The maximum length of the string is MQ_XCF_MEMBER_NAME_LENGTH.

364 WebSphere MQ: Monitoring WebSphere MQ



Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing,
IBM Corporation,
North Castle Drive,
Armonk, NY 10504-1785,
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation,
Licensing,
2-31 Roppongi 3-chome, Minato-k,u
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2009 365



Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

The following are trademarks of International Business Machines Corporation in
the United States, or other countries, or both:

AIX i5/OS IBM
IBMLink™ IMS MQSeries
NetView S/390 System/390
WebSphere z/OS

Microsoft® and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

366 WebSphere MQ: Monitoring WebSphere MQ



Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 367



368 WebSphere MQ: Monitoring WebSphere MQ



Index

A
accounting

message
format 262

accounting monitoring
MQI messages 266
queue messages 272

activity recording 165
activity report

activity report message data 216
format 208
message data, operation specific

content 227
message descriptor 209
structure 208

activity reports
acquiring 169
application control 167
controlling activity recording 166
description of 165
format 166
overview of 165
queue manager control 167
requesting 167
use for 165
using 168

algorithms for queue service interval
events 22

Alias Base Queue Type Error 59
authority events 9

B
Bridge Started 61
Bridge Stopped 62

C
Change object 64
channel

events
controlling 15

Channel
Activated 68
Auto-definition Error 69
Auto-definition OK 71
Conversion Error 72
Not Activated 74
SSL Error 76
Started 79
Stopped 80
Stopped By User 83

channel event
queue 10

channel statistics message data 292
CodedCharSetId field

MQCFGR structure 315
MQCFIF structure 322
MQCFSL structure 327
MQCFST structure 330, 332

command
events

controlling 17
Command event 84
command events 40
Command field, MQCFH structure 56
CompCode field, MQCFH structure 57
conditions giving events 7
configuration

events
controlling 17

configuration events 37
control attribute for queue service

interval events 23
Control field, MQCFH structure 57
controlling

channel events 15
command events 17
configuration events 17
events 14
logger events 17
performance events 16
queue depth events 16
queue manager events 15

controlling activity recording 166
correlation identifier 31
Count field

MQCFSL structure 327
Count field, MQCFIL structure 320
Create object 91

D
data

activity report 208
conversions 19
event 50
header 50
trace-route message 233
trace-route reply message 243

data types, detailed description
activity report

MQCFH 215
MQEPH 213
MQMD 209

event message
MQCFH 56
MQMD 51

trace-route message
MQCFH 239
MQEPH 237
MQMD 234

trace-route reply message
MQCFH 245
MQMD 244

Default Transmission Queue
Type Error 95
Usage Error 97

Delete object 99
disabling

channel events 15

disabling (continued)
command events 17
configuration events 17
events 14
logger events 17
performance events 16
queue manager events 15

distributed monitoring 19

E
embedded header

activity report 213
trace-route message 237

enabling
activity recording 166
applications for activity

recording 167
applications for trace-route

messaging 175
channel events 15
command events 17
configuration events 17
events 14
logger events 17
performance events 16
Queue Depth events 30

differences between nonshared and
shared queues 31

Queue Depth High events 32
Queue Depth Low events 33
Queue Full events 33
queue manager events 15
queue managers for activity

recording 167
queue managers for trace-route

messaging 174
queue service interval events 17, 23

error
on channels 11
on event queues 12

event 7
attribute setting 15
authority 9
channel 10
command 13
configuration 12
controlling 14
controlling channel 15
controlling command 17
controlling configuration 17
controlling logger 17
controlling performance 16
controlling queue manager 15
data 20, 50
enabling and disabling 14
header reason codes 51
IMS bridge 11
inhibit 9
instrumentation example 152
local 10

© Copyright IBM Corp. 1994, 2009 369



event (continued)
logger 13
Logger reference 104
message

data 50
data summary 13
descriptions 57

messages
event queues 7
format 18
formats 50
lost 18
null 30
unit of work 12

notification 6
overview of 5
platforms supported 5
queue depth

Queue Depth High 30
Queue Depth Low 30
Queue Full 30

queue manager 8
queues

errors 12
names for 7
transmission 17
triggered 18
unavailable 18
use of 7

remote 10
reporting 8
service interval 20
shared queues (WebSphere MQ for

z/OS) 12
SSL 11
start and stop 10
statistics

example 1 summary 26
example 2 summary 27
example 3 summary 29
resetting 20

timer 22
transmission queues, as event

queues 17
types of 7
use for 5

events
command 40
logger 42

examples
instrumentation event 152
queue depth events 34
queue service interval events 24

F
format of accounting and statistics

messages 262
format of activity reports 208
format of event messages 18, 50
format of trace-route message 233
format of trace-route reply message 243

G
Get Inhibited 103

H
header

activity report 215
trace-route message 239
trace-route reply message 245
WebSphere MQ messages 50, 262

high (service interval) event 21

I
IMS bridge event 11
inhibit events 9
instrumentation event

example 152
instrumentation events

description of 5

L
LDAPPassword parameter

Inquire Authentication Information
(Response) command 337

limits, queue depth 35
local events 10
logger

events
controlling 17

logger events 42

M
maximum depth reached 30
message descriptor

accounting and statistics
messages 264

activity report 209
event message 51
trace-route message 234
trace-route reply message 244

message monitoring 161
monitoring

queue managers 5, 165
trace-route messaging 171
WebSphere MQ 1
WebSphere MQ network 19

monitoring channels 305
monitoring performance of WebSphere

MQ for Windows queues 310
monitoring queues 302
monitoring WebSphere MQ

accounting and statistics messages 3
approaches 1
Event monitoring 2
message monitoring 2
real-time monitoring 3

MQCFBS structure 313
MQCFGR structure 315
MQCFH structure 316

activity report 215
event message 56
trace-route message 239
trace-route reply message 245

MQCFIL structure 320
MQCFIL64 structure 322
MQCFIN structure 324

MQCFIN64 structure 325
MQCFSL structure 327
MQCFST structure 329
MQEPH structure 332

activity report 213
trace-route message 237

MQI accounting message data 266
MQI statistics message data 281
MQMD message descriptor, event

message 51
MsgSeqNumber field, MQCFH

structure 56

N
names, of event queues 7
network

event monitoring 19
Not Authorized (type 1) 106
Not Authorized (type 2) 107
Not Authorized (type 3) 110
Not Authorized (type 4) 112
Not Authorized (type 5) 113
Not Authorized (type 6) 115
notification of events 6
null event messages 30

O
OK

(service interval) event 21
events algorithm 23

P
Parameter field

MQCFBS structure 313
MQCFGR structure 315
MQCFIF structure 322, 326
MQCFIL structure 320
MQCFIN structure 324
MQCFSL structure 327
MQCFST structure 330, 332, 333

ParameterCount field, MQCFH
structure 57

PCF header
event message 56

performance
events

controlling 16
performance event

control attribute 20, 23
event data 20
event statistics 20
queue 7
types of 11, 20

performance events
enabling 17

performance monitor 310
platforms for events 5
Put Inhibited 117

370 WebSphere MQ: Monitoring WebSphere MQ



Q
queue 310

depth events 29
enabling 32
examples 34

depth limits 35
queue accounting message data 272
queue depth events

controlling 16
Queue Depth High 119
Queue Depth Low 121
Queue Full 123
queue manager

controlling activity recording 167
controlling trace-route messaging 174
event queue 7
events

controlling 15
start and stop 10

monitoring 5, 165
Queue Manager Active 125
Queue Manager Not Active 126
queue service interval events

algorithm for 22
enabling 17, 23
examples 24
high 20
OK 20

Queue Service Interval High 127
Queue Service Interval OK 129
queue statistics message data 286
Queue Type Error 131
queue-sharing group 31

R
real-time monitoring

controlling 299
displaying monitoring data 301
indicator values 302
introduction 299
monitoring channels 305
monitoring queues 302

Reason field, MQCFH structure 57
Refresh object 133
remote events 10
Remote Queue Name Error 137
reporting events 8
requesting activity reports 167
reset queue statistics 20
reset service timer 22

S
service interval events 21
service timer

algorithm for 22
resetting 22

shared queues
coordinating queue manager 31
queue depth events 30, 31

SSL event 11
start and stop events 10
statistics

message
format 262

statistics monitoring
channel messages 292
MQI messages 281
queue messages 286

statistics, events 20
String field

MQCFBS structure 313
MQCFSL structure 328

StringLength field
MQCFBS structure 313
MQCFIF structure 322, 326
MQCFSL structure 328
MQCFST structure 330

StrucLength field
MQCFBS structure 313
MQCFGR structure 315
MQCFH structure 56
MQCFIF structure 322, 326
MQCFIL structure 320
MQCFIN structure 324
MQCFSL structure 327
MQCFST structure 317, 318, 329, 332

structure of accounting and statistics
messages 262

structure of event messages 50
structures

MQCFBS 313
MQCFGR 315
MQCFH 56, 316

activity report 215
event message 56
trace-route message 239
trace-route reply message 245

MQCFIL 320
MQCFIL64 322
MQCFIN 324
MQCFIN64 325
MQCFSL 327
MQCFST 329
MQEPH 332

activity report 213, 214
trace-route message 238

MQMD
activity report 209
event message 51
trace-route message 234
trace-route reply message 244

T
thresholds for queue depth 30
time since reset 20
timer

service 22
trace-route message

format 232, 233
message descriptor 234
structure 233
trace-route message data 240

trace-route messages
acquiring recorded information 183
application control 175
description 171
generating 177
overview 171
queue manager control 174
TraceRoute PCF group 178

trace-route messages (continued)
using recorded information 183

trace-route messaging 171
trace-route reply message

format 243
message descriptor 244
structure 243
trace-route reply message data 245

TraceRoute PCF group 178
Transmission Queue

Type Error 139
Usage Error 141

trigger messages, from event queues 18
triggered event queues 18
Type field

MQCFBS structure 313
MQCFGR structure 315
MQCFH structure 56
MQCFIF structure 322, 325
MQCFIL structure 320
MQCFIN structure 324
MQCFSL structure 327
MQCFST structure 316, 329, 332

types of event 7

U
unavailable event queues 18
unit of work, and events 12
Unknown

Alias Base Queue 143
Default Transmission Queue 145
Object Name 147
Remote Queue Manager 149
Transmission Queue 151

using activity reports 165
using events 5
using trace-route messaging 171

V
Value field, MQCFIN structure 324
Values field, MQCFIL structure 321
Version field, MQCFH structure 56

W
WebSphere MQ

monitoring 1
WebSphere MQ display route

application 187
Windows 310

performance monitor 310

Index 371



372 WebSphere MQ: Monitoring WebSphere MQ



Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM , you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use 44-1962-816151
– From within the U.K., use 01962-816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1994, 2009 373



374 WebSphere MQ: Monitoring WebSphere MQ





����

SC34-6937-01



Sp
in
e
in
fo
rm
at
io
n:

�
�

�
W

eb
Sp

he
re

M
Q

M
on

ito
ri

ng
W

eb
Sp

he
re

M
Q

Ve
rs

io
n

7.0


	Contents
	Figures
	Tables
	Chapter 1. Introduction
	An introduction to monitoring WebSphere MQ
	Monitoring WebSphere MQ
	Approaches to monitoring WebSphere MQ

	Event monitoring
	Message monitoring
	Accounting and statistics messages
	Real-time monitoring


	Chapter 2. Event monitoring
	An introduction to instrumentation events
	What instrumentation events are
	Event notification through event queues
	Conditions that cause events

	Types of event
	Queue manager events
	Channel and bridge events
	Performance events
	Configuration events
	Command events
	Logger events
	Event message data summary

	Controlling events
	Controlling queue manager events
	Controlling channel and bridge events
	Controlling performance events
	Controlling configuration events
	Controlling command events
	Controlling logger events

	Event queues
	When an event queue is unavailable
	Using triggered event queues
	Format of event messages
	Using event monitoring in a WebSphere MQ network

	Understanding performance events
	What performance events are
	Performance event statistics

	Understanding queue service interval events
	What queue service interval events are
	Understanding the service timer
	Queue service interval events algorithm
	Enabling queue service interval events

	Queue service interval events examples
	Example 1 (queue service interval events)
	What queue service interval events tell you
	Example 2 (queue service interval events)
	Example 3 (queue service interval events)

	Understanding queue depth events
	What queue depth events are
	Enabling queue depth events

	Queue depth events examples
	Example 1 (queue depth events)
	Example 2 (queue depth events)


	Understanding configuration events
	What configuration events are
	When configuration events are generated
	When configuration events are not generated
	How configuration events are used
	The Refresh Object configuration event
	Effects of CMDSCOPE


	Understanding command events
	What command events are
	When command events are generated
	When command events are not generated
	How command events are used
	Effects of CMDSCOPE


	Understanding logger events
	What logger events are
	When logger events are generated
	When logger events are not generated
	How logger events are used
	Monitor the logger event queue (amqslog0.c)

	Event message reference
	Event message format
	Message descriptor (MQMD) in event messages
	Message data in event messages

	Event message MQMD (message descriptor)
	Event message MQCFH (PCF header)
	Event message descriptions
	Alias Base Queue Type Error
	Bridge Started
	Bridge Stopped
	Change object
	Channel Activated
	Channel Auto-definition Error
	Channel Auto-definition OK
	Channel Conversion Error
	Channel Not Activated
	Channel SSL Error
	Channel Started
	Channel Stopped
	Channel Stopped By User
	Command
	Create object
	Default Transmission Queue Type Error
	Default Transmission Queue Usage Error
	Delete object
	Get Inhibited
	Logger
	Not Authorized (type 1)
	Not Authorized (type 2)
	Not Authorized (type 3)
	Not Authorized (type 4)
	Not Authorized (type 5)
	Not Authorized (type 6)
	Put Inhibited
	Queue Depth High
	Queue Depth Low
	Queue Full
	Queue Manager Active
	Queue Manager Not Active
	Queue Service Interval High
	Queue Service Interval OK
	Queue Type Error
	Refresh object
	Remote Queue Name Error
	Transmission Queue Type Error
	Transmission Queue Usage Error
	Unknown Alias Base Queue
	Unknown Default Transmission Queue
	Unknown Object Name
	Unknown Remote Queue Manager
	Unknown Transmission Queue

	Example of using instrumentation events

	Chapter 3. Message monitoring
	An introduction to message monitoring
	Activities and operations
	How activities are used
	How to determine a message route
	Comparing activity recording and trace-route messaging
	The WebSphere MQ display route application
	Approaches to message monitoring

	Message route completeness
	How activity information is stored

	Activity recording
	An introduction to activity recording
	What activity reports are used for
	Activity report format

	Controlling activity recording
	Requesting activity reports for a message
	Controlling queue managers for activity recording
	Enabling applications for activity recording

	Using a common queue for activity reports
	Using activity reports
	Retrieving further activity reports
	Circumstances where activity information is not acquired


	Trace-route messaging
	An introduction to trace-route messaging
	What trace-route messaging is used for
	How activity information is recorded
	How recorded activity information is acquired

	Controlling trace-route messaging
	Controlling queue managers for trace-route messaging
	Enabling applications for trace-route messaging

	Configuring and generating a trace-route message
	Mimicking a message
	Using the WebSphere MQ display route application
	Manual generation

	Using a common queue for trace-route reply messages
	Acquiring and using recorded information
	Trace-route reply messages
	Trace-route messages
	Activity reports
	Circumstances where activity information is not acquired

	Recording additional information
	Examples of recording additional information


	WebSphere MQ display route application
	An introduction to the WebSphere MQ display route application
	Using the WebSphere MQ display route application
	Generating trace-route messages
	Displaying activity information

	Displaying additional information
	Examples
	Example 1 - Requesting activity reports
	Example 2 - Requesting a trace-route reply message
	Example 3 - Delivering activity reports to the system queue
	Example 4 - Diagnosing a channel problem


	Activity report reference
	Activity report format
	Activity report MQMD (message descriptor)
	Activity report MQEPH (Embedded PCF header)
	Activity report MQCFH (PCF header)
	Activity report message data
	Operation-specific activity report message data


	Trace-route message reference
	Trace-route message format
	Trace-route message data format
	Example of a trace-route message

	Trace-route message MQMD (message descriptor)
	Trace-route message MQEPH (Embedded PCF header)
	Trace-route message MQCFH (PCF header)
	Trace-route message data

	Trace-route reply message reference
	Trace-route reply message format
	Trace-route reply message MQMD (message descriptor)
	Trace-route reply message MQCFH (PCF header)
	Trace-route reply message data


	Chapter 4. Accounting and statistics messages
	Accounting and statistics messages
	Accounting messages
	Accounting message types
	Controlling accounting messages
	Format of accounting messages

	Statistics messages
	Statistics message types
	Controlling statistics messaging
	Format of statistics messages

	Displaying accounting and statistics information
	amqsmon (Display formatted monitoring information)


	Accounting and statistics message reference
	Accounting and statistics message format
	Accounting and statistics message MQMD (message descriptor)
	Message data in accounting and statistics messages
	Accounting and statistics message MQCFH (PCF header)
	Accounting and statistics message data

	MQI accounting message data
	Accounting message data

	Queue accounting message data
	Accounting message data

	MQI statistics message data
	Statistics message data

	Queue statistics message data
	Statistics message data

	Channel statistics message data
	Statistics message data

	Reference notes


	Chapter 5. Real-time monitoring
	An introduction to real-time monitoring
	Controlling real-time monitoring
	Examples of controlling real-time monitoring

	Displaying queue and channel monitoring data
	Examples of displaying monitoring levels
	Monitoring Indicator Values


	Monitoring queues
	Does your application have the queue open?
	Are the messages on the queue available?
	Is your application getting messages off the queue?
	Can the application process messages fast enough?
	What about when the current depth is not increasing?

	Monitoring channels
	Is the channel running?
	If the channel has stopped
	If the channel is inactive
	If the channel is in retry state
	If the channel is in another state

	Is the channel moving messages?
	Does a batch take a long time to complete?
	Checking whether the network is slow
	Is the channel using message retry?

	Can the channel process messages fast enough?
	Are there exits processing?
	Is the network slow?
	Is the channel using compression?

	Cluster channels

	The Windows performance monitor

	Chapter 6. Structure datatypes
	MQCFBS - Byte string parameter
	C language declaration (MQCFBS)
	COBOL language declaration (MQCFBS)
	PL/I language declaration (MQCFBS) (z/OS only)
	RPG/ILE language declaration (MQCFBS) (i5/OS only)
	System/390 assembler-language declaration (MQCFBS) (z/OS only)

	MQCFGR - Group parameter
	C language declaration (MQCFGR)
	COBOL language declaration (MQCFGR)
	PL/I language declaration (MQCFGR) (z/OS and Windows only)
	RPG/ILE declaration (MQCFGR) (i5/OS only)
	System/390 assembler-language declaration (MQCFGR) (z/OS only)
	Visual Basic language declaration (MQCFGR) (Windows only)

	MQCFH - PCF header
	Language declarations
	C language declaration
	COBOL language declaration
	PL/I language declaration (z/OS and Windows)
	RPG language declaration (i5/OS only)
	System/390 assembler-language declaration (z/OS only)
	Visual Basic language declaration (Windows only)


	MQCFIL - Integer list parameter
	C language declaration (MQCFIL)
	COBOL language declaration (MQCFIL)
	PL/I language declaration (MQCFIL)
	RPG/ILE declaration (MQCFIL) (i5/OS only)
	System/390 assembler-language declaration (MQCFIL)
	Visual Basic language declaration (MQCFIL)

	MQCFIL64 - 64–bit integer list parameter
	C language declaration (MQCFIL64)
	COBOL language declaration (MQCFIL64)
	PL/I language declaration (MQCFIL64)
	RPG/ILE language declaration (MQCFIL64) (i5/OS only)
	System/390 assembler-language declaration (MQCFIL64) (z/OS only)

	MQCFIN - Integer parameter
	C language declaration (MQCFIN)
	COBOL language declaration (MQCFIN)
	PL/I language declaration (MQCFIN)
	RPG/ILE declaration (MQCFIN) (i5/OS only)
	System/390 assembler-language declaration (MQCFIN)
	Visual Basic language declaration (MQCFIN)

	MQCFIN64 - 64–bit integer parameter
	C language declaration (MQCFIN64)
	COBOL language declaration (MQCFIN64)
	PL/I language declaration (MQCFIN64)
	RPG/ILE language declaration (MQCFIN64) (i5/OS only)
	System/390 assembler-language declaration (MQCFIN64) (z/OS only)

	MQCFSL - String list parameter
	COBOL language declaration (MQCFSL)
	PL/I language declaration (MQCFSL)
	RPG/ILE declaration (MQCFSL) (i5/OS only)
	System/390 assembler-language declaration (MQCFSL) (z/OS only)
	Visual Basic language declaration (MQCFSL) (Windows systems only)

	MQCFST - String parameter
	C language declaration (MQCFST)
	COBOL language declaration (MQCFST)
	PL/I language declaration (MQCFST)
	RPG/ILE declaration (MQCFST) (i5/OS only)
	System/390 assembler-language declaration (MQCFST)
	Visual Basic language declaration (MQCFST)

	MQEPH - Embedded PCF header
	Language declarations
	C language declaration
	COBOL language declaration
	PL/I language declaration (z/OS and Windows)
	RPG language declaration (i5/OS only)
	System/390 assembler-language declaration (z/OS only)
	Visual Basic language declaration (Windows only)



	Chapter 7. Event data for object attributes
	Authentication information attributes
	CF structure attributes
	Channel attributes
	Namelist attributes
	Process attributes
	Queue attributes
	Queue manager attributes
	Storage class attributes

	Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Sending your comments to IBM

