
WebSphere MQ

Using .NET
Version 7.0

GC34-6949-01

���

WebSphere MQ

Using .NET
Version 7.0

GC34-6949-01

���

Note
Before using this information and the product it supports, be sure to read the general information under notices at the back
of this book.

Second edition (January 2009)

This edition of the book applies to the following:
v IBM WebSphere MQ, Version 7.0

and to any subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2003, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

Chapter 1. Guidance for users 1
Getting started. 1

What are WebSphere MQ classes for .NET? . . . 1
Connection options 1
Installation 1

Using WebSphere MQ classes for .NET 2
Configuring your queue manager to accept
TCP/IP client connections 2
Sample applications 2
Running your own WebSphere MQ .NET
programs 4
Solving WebSphere MQ .NET problems 5

Chapter 2. Programming with
WebSphere MQ classes for .NET 7
Introduction for programmers 7

Why should I use the .NET interface? 7
The WebSphere MQ .NET interface 7
Prerequisite for compiling WebSphere MQ .NET
applications. 7
WebSphere MQ classes for .NET class library . . 8

Writing WebSphere MQ .NET programs 8
Connection differences 8
Client configuration files 10
Example code fragment 11
Operations on queue managers 13
Accessing queues and topics. 14
Handling messages 15
Handling errors 17
Getting and setting attribute values 18

Multithreaded programs 18
Using a client channel definition table 19
Using channel exits in WebSphere MQ .NET . . 19
Secure Sockets Layer (SSL) support 21
Using the .NET Monitor 23
Compiling WebSphere MQ .NET programs . . . 26
Tracing WebSphere MQ .NET programs 26

The WebSphere MQ .NET classes and interfaces . . 27
MQAsyncStatus 27
MQAuthenticationInformationRecord. 28
MQChannelDefinition 29
MQChannelExit 31
MQDestination 33
MQEnvironment. 36
MQException 39
MQGetMessageOptions 40
MQManagedObject 44
MQMessage 47
MQProcess 77
MQPropertyDescriptor 79
MQPutMessageOptions 81
MQQueue 85
MQQueueManager 94
MQSubscription 131
MQTopic 133
IMQObjectTrigger 144
MQC 145

Notices 147

Index 149

Sending your comments to IBM . . . 151

© Copyright IBM Corp. 2003, 2009 iii

||

||

||

||
||

||

||
||
||

iv WebSphere MQ: Using .NET

Figures

© Copyright IBM Corp. 2003, 2009 v

vi WebSphere MQ: Using .NET

Tables

1. Character set identifiers 70

© Copyright IBM Corp. 2003, 2009 vii

viii WebSphere MQ: Using .NET

Chapter 1. Guidance for users

Getting started

This topic gives an overview of WebSphere® MQ classes for .NET and their uses.

What are WebSphere MQ classes for .NET?
WebSphere MQ classes for .NET allow a program written in the .NET
programming framework to connect to WebSphere MQ as a WebSphere MQ client
or to connect directly to a WebSphere MQ server.

Connection options
There are three modes of connecting WebSphere MQ classes for .NET to a queue
manager. Consider which type of connection best suits your requirements.

Client bindings connection

To use WebSphere MQ classes for .NET as a WebSphere MQ client, you can install
it, with the WebSphere MQ Client, either on the WebSphere MQ server machine, or
on a separate machine. A client bindings connection can use XA or non-XA
transactions

Server bindings connection

When used in server bindings mode, WebSphere MQ classes for .NET use the
queue manager API, rather than communicating through a network. This provides
better performance for WebSphere MQ applications than using network
connections.

To use the bindings connection, you must install WebSphere MQ classes for .NET
on the WebSphere MQ server.

Managed client connection

A connection made in this mode connects as a WebSphere MQ client to a
WebSphere MQ server running either on the local or a remote machine.

The WebSphere MQ classes for .NET connecting in this mode remain in .NET
managed code and make no calls to native services. For more information about
managed code, refer to Microsoft® documentation.

There are a number of limitations to using the managed client. For more
information about these, see “Managed client connections” on page 8.

Installation
WebSphere MQ classes for .NET, including samples, is installed with WebSphere
MQ. There is a prerequisite of Microsoft .NET Framework.

The latest version of WebSphere MQ classes for .NET is installed as part of the
standard WebSphere MQ installation. You might need to override default

© Copyright IBM Corp. 2003, 2009 1

|
|
|
|

|
|

installation options to make sure this is done. For installation instructions, see
WebSphere MQ for Windows Quick Beginnings.

Sample applications, including source, are also supplied; see “Sample
applications.”

To run WebSphere MQ classes for .NET on 32–bit or 64–bit platforms you must
have installed Microsoft .NET Framework (v2.0) or a later version.

Using WebSphere MQ classes for .NET
This collection of topics describes how to configure your system to run the sample
programs to verify your WebSphere MQ classes for .NET installation, and how to
run your own programs.

Configuring your queue manager to accept TCP/IP client
connections

To configure a queue manager to accept incoming connection requests from the
clients:
1. Define a server connection channel:

a. Start the queue manager.
b. Define a sample channel called NET.CHANNEL1:

DEF CHL('NET.CHANNEL') CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(' ') +
DESCR('Sample channel for WebSphere MQ classes for .NET')

2. Start a listener:
runmqlsr -t tcp [-m qmnqme] [-p portnum]

Note: The square brackets indicate optional parameters; qmname is not required
for the default queue manager, and the port number portnum is not required if
you are using the default (1414).

Sample applications

Five sample applications are supplied:
v A put message application
v A get message application
v A ’hello world’ application
v A publish/subscribe application
v An application using message properties

″Put message″ program SPUT (nmqsput.cs, mmqsput.cpp, vmqsput.vb)
This program shows how to put a message to a named queue. The
program has three parameters:
v The name of a queue (required) for example

SYSTEM.DEFAULT.LOCAL.QUEUE
v The name of a queue manager (optional)
v The definition of a channel (optional) for example

SYSTEM.DEF.SVRCONN/TCP/hostname(1414)

1. In this sample, we are not considering security implications. For a production system, consider using SSL or a security exit. See
WebSphere MQ Security for more information.

2 WebSphere MQ: Using .NET

|

|

If no queue manager name is given, the queue manager defaults to the
default local queue manager. If a channel is defined, it should have the
same format as the MQSERVER environment variable.

″Get message″ program SGET (nmqsget.cs, mmqsget.cpp, vmqsget.vb)
This program shows how to get a message from a named queue. The
program has three parameters:
v The name of a queue (required) for example

SYSTEM.DEFAULT.LOCAL.QUEUE
v The name of a queue manager (optional)
v The definition of a channel (optional) for example

SYSTEM.DEF.SVRCONN/TCP/hostname(1414)

If no queue manager name is given, the queue manager defaults to the
default local queue manager. If a channel is defined, it should have the
same format as the MQSERVER environment variable.

″Hello World″ program (nmqwrld.cs, mmqwrld.cpp, vmqwrld.vb)
This program shows how to put and get a message. The program has three
parameters:
v The name of a queue (optional) for example

SYSTEM.DEFAULT.LOCAL.QUEUE or
SYSTEM.DEFAULT.MODEL.QUEUE

v The name of a queue manager (optional)
v A channel definition (optional) for example SYSTEM.DEF.SVRCONN/

TCP/hostname(1414)

If no queue name is given, the name defaults to
SYSTEM.DEFAULT.LOCAL.QUEUE. If no queue manager name is given,
the queue manager defaults to the default local queue manager.

″Publish/subscribe″ program (MQPubSubSample.cs)
This program shows how to use WebSphere MQ publish/subscribe. It is
supplied in C# only. The program has two parameters:
v The name of a queue manager (optional)
v A channel definition (optional)

″Message properties″ program (MQMessagePropertiesSample.cs)
This program shows how to use message properties. It is supplied in C#
only. The program has two parameters:
v The name of a queue manager (optional)
v A channel definition (optional)

You can verify your installation by compiling and running these applications.

The sample applications will be installed to the following locations, according to
the language in which they are written, where mqmtop represents the high-level
directory in which the product has been installed:

C#

mqmtop\Tools\dotnet\samples\cs\nmqswrld.cs

mqmtop\Tools\dotnet\samples\cs\nmqsput.cs

mqmtop\Tools\dotnet\samples\cs\nmqsget.cs

mqmtop\Tools\dotnet\samples\cs\MQPubSubSample.cs

Chapter 1. Guidance for users 3

|
|
|

|

|

|
|
|

|

|

|

mqmtop\Tools\dotnet\samples\cs\MQMessagePropertiesSample.cs

Managed C++

mqmtop\Tools\dotnet\samples\mcp\mmqswrld.cpp

mqmtop\Tools\dotnet\samples\mcp\mmqsput.cpp

mqmtop\Tools\dotnet\samples\mcp\mmqsget.cpp

Visual Basic

mqmtop\Tools\dotnet\samples\vb\vmqswrld.vb

mqmtop\Tools\dotnet\samples\vb\vmqsput.vb

mqmtop\Tools\dotnet\samples\vb\vmqsget.vb

mqmtop\Tools\dotnet\samples\vb\xmqswrld.vb

mqmtop\Tools\dotnet\samples\vb\xmqsput.vb

mqmtop\Tools\dotnet\samples\vb\xmqsget.vb

To build the sample applications a batch file has been supplied for each language.

C#

mqmtop\Tools\dotnet\samples\cs\bldcssamp.bat

The bldcssamp.bat file contains a line for each sample, which is all that is
necessary to build this sample program:
csc /t:exe /r:System.dll /r:amqmdnet.dll /lib:mqmtop\bin
/out:nmqwrld.exe nmqwrld.cs

Managed C++

mqmtop\Tools\dotnet\samples\mcp\bldmcpsamp.bat

The bldmcpsamp.bat file contains a line for each sample, which is all that
is necessary to build this sample program:
cl /clr:oldsyntax mqmtop\bin mmqwrld.cpp

If you want to compile these applications on Microsoft Visual Studio
2003/.NET SDKv1.1, replace the compile command:
cl /clr:oldsyntax mqmtop\bin mmqwrld.cpp

with
cl /clr mqmtop\bin mmqwrld.cpp

Visual Basic

mqmtop\Tools\dotnet\samples\vb\bldvbsamp.bat

The bldvbsamp.bat file contains a line for each sample, which is all that is
necessary to build this sample program:
vbc /r:System.dll /r:mqmtop\bin\amqmdnet.dll /out:vmqwrld.exe vmqwrld.vb

Running your own WebSphere MQ .NET programs
To run your own .NET applications, use the instructions for the verification
programs, substituting your application name in place of the sample applications.

For information on writing WebSphere MQ classes for .NET applications, see
Chapter 2, “Programming with WebSphere MQ classes for .NET,” on page 7.

4 WebSphere MQ: Using .NET

|

|
|

|

|
|

|

|

|

Solving WebSphere MQ .NET problems
If a program does not complete successfully, run one of the sample applications,
and follow the advice given in the diagnostic messages.

These sample applications are described in “Using WebSphere MQ classes for
.NET” on page 2.

If the problems continue and you need to contact the IBM® service team, you
might be asked to turn on the trace facility.

Tracing the sample application

For instructions on using the trace facility, refer to “Tracing WebSphere MQ .NET
programs” on page 26.

Error messages

You might see the following common error message:

An unhandled exception of type ’System.IO.FileNotFoundException’ occurred in
unknown module

If this error occurs for either amqmdnet.dll or amqmdxcs.dll, either ensure
that both are registered in the ’Global Assembly Cache’ or create a
configuration file that points to the amqmdnet.dll and amqmdxcs.dll
assemblies. You can examine and change the contents of the assembly
cache using mscorcfg.msc, which is supplied as part of the .NET
framework.

If the .NET framework was not available when WebSphere MQ was
installed, the classes might not be registered in the global assembly cache.
You can manually rerun the registration process using the command
amqidnet -c mqmtop\bin\amqidotn.txt -l logfile.txt

Information about this installation is written to the specified log file
(logfile.txt in this example).

Chapter 1. Guidance for users 5

6 WebSphere MQ: Using .NET

Chapter 2. Programming with WebSphere MQ classes for
.NET

Introduction for programmers
This topic contains general information for programmers.

For more detailed information about writing programs, see “Writing WebSphere
MQ .NET programs” on page 8.

Why should I use the .NET interface?
If you have applications which use Microsoft’s .NET Framework and wish to take
advantage of the facilities of WebSphere MQ, you must use WebSphere MQ classes
for .NET.

The WebSphere MQ .NET interface
Rather than using the MQI verbs, the object-oriented WebSphere MQ .NET
interface uses methods of objects.

The procedural WebSphere MQ application programming interface is built around
verbs such as those listed below:

MQCONN, MQDISC, MQOPEN, MQCLOSE,
MQINQ, MQSET, MQGET, MQPUT, MQSUB

These verbs all take, as a parameter, a handle to the WebSphere MQ object on
which they are to operate. Because .NET is object-oriented, the .NET programming
interface turns this round. Your program consists of a set of WebSphere MQ
objects, which you act upon by calling methods on those objects.

When you use the procedural interface, you disconnect from a queue manager by
using the call MQDISC(Hconn, CompCode, Reason), where Hconn is a handle to
the queue manager.

In the .NET interface, the queue manager is represented by an object of class
MQQueueManager. You disconnect from the queue manager by calling the
Disconnect() method on that class.
// declare an object of type queue manager
MQQueueManager queueManager=new MQQueueManager();
...
// do something...
...
// disconnect from the queue manager
queueManager.Disconnect();

Prerequisite for compiling WebSphere MQ .NET applications
Before you can compile any applications that you write, you must have a .NET
Framework installed.

For more information, see “Installation” on page 1.

© Copyright IBM Corp. 2003, 2009 7

WebSphere MQ classes for .NET class library
WebSphere MQ classes for .NET is a set of classes that enable .NET applications to
interact with WebSphere MQ.

They represent the various components of WebSphere MQ which your application
uses, such as queue managers, queues, channels and messages.

For details of these classes, see “The WebSphere MQ .NET classes and interfaces”
on page 27

Writing WebSphere MQ .NET programs
To use WebSphere MQ classes for .NET to access WebSphere MQ queues, you
write programs in any language supported by .NET containing calls that put
messages onto, and get messages from, WebSphere MQ queues.

This chapter provides information to assist with writing applications to interact
with WebSphere MQ systems. For details of individual classes, see “The
WebSphere MQ .NET classes and interfaces” on page 27.

Connection differences

The way you program for WebSphere MQ .NET has some dependencies on the
connection modes you want to use.

Managed client connections
When WebSphere MQ classes for .NET are used as a managed client, it is similar
to a client bindings connection, but has a number of differences.

The following features are not available:
v Channel compression
v SSL support
v XA transactions
v Channel exit chaining

If you try to use these features with a managed client, it will return an
MQException. If the error is detected at the client end of a connection, it will use
reason code MQRC_ENVIRONMENT_ERROR. If it is detected at the server end,
the reason code returned by the server will be used.

Channel exits written for a non-managed client do not work. You must write new
exits specifically for the managed client. Check that there are no invalid channel
exits specified in your client channel definition table (CCDT).

Communication is supported only over TCP/IP.

When you stop a queue manager using the endmqm command, a
server-connection channel to a .NET managed client can take longer to close than
server-connection channels to other clients.

If you use the trace facility, you cannot choose to trace specific threads or
processes.

For general information on WebSphere MQ clients, see WebSphere MQ Clients.

8 WebSphere MQ: Using .NET

|

|
|
|

|
|
|

|
|

Defining which connection type to use
The connection type is determined by the setting of the connection name, channel
name, the customization value NMQ_MQ_LIB and the property
MQC.TRANSPORT_PROPERTY.

You can specify the connection name as follows:
v Explicitly on an MQQueueManager constructor:

public MQQueueManager(String queueManagerName, MQLONG Options, string Channel,
string ConnName)

public MQQueueManager(String queueManagerName, string Channel, string ConnName)

v By setting the properties MQC.HOST_NAME_PROPERTY and, optionally,
MQC.PORT_PROPERTY in a hashtable entry on an MQQueueManager
constructor:
public MQQueueManager(String queueManagerName, Hashtable properties)

v As explicit MQEnvironment values
MQEnvironment.Hostname

MQEnvironment.Port(optional).
v By setting the properties MQC.HOST_NAME_PROPERTY and, optionally,

MQC.PORT_PROPERTY in the MQEnvironment.properties hashtable.

You can specify the channel name as follows:
v Explicitly on an MQQueueManager constructor:

public MQQueueManager(String queueManagerName, MQLONG Options, string Channel,
string ConnName)

public MQQueueManager(String queueManagerName, string Channel, string ConnName)

v By setting the property MQC.CHANNEL_PROPERTY in a hashtable entry on an
MQQueueManager constructor:
public MQQueueManager(String queueManagerName, Hashtable properties)

v As an explicit MQEnvironment value
MQEnvironment.Channel

v By setting the property MQC.CHANNEL_PROPERTY in the
MQEnvironment.properties hashtable.

You can specify the transport property as follows:
v By setting the property MQC.TRANSPORT_PROPERTY in a hashtable entry on

an MQQueueManager constructor:
public MQQueueManager(String queueManagerName, Hashtable properties)

v By setting the property MQC.TRANSPORT_PROPERTY in the
MQEnvironment.properties hashtable.

Select the connection type you require by using one of the following values:
MQC.TRANSPORT_MQSERIES_BINDINGS - connect as server
MQC.TRANSPORT_MQSERIES_CLIENT - connect as non-XA client
MQC.TRANSPORT_MQSERIES_XACLIENT - connect as XA client
MQC.TRANSPORT_MQSERIES_MANAGED - connect as non-XA managed
client

You can set the customization value NMQ_MQ_LIB to explicitly choose the
connection type as shown in the following table

Chapter 2. Programming with WebSphere MQ classes for .NET 9

|

|
|

|

|
|

|

|

|

|

|
|

NMQ_MQ_LIB value Connection type

mqic.dll Connect as a non-XA client

mqicxa.dll Connect as an XA client

mqm.dll Connect as a server

managed Connect as a non-XA managed client

Note: Values of mqic32.dll and mqic32xa.dll are accepted as synonyms of mqic.dll and
mqicxa.dll for comatibility with earlier releases.

If you choose a connection type which is unavailable in your environment, for
example you specify mqic32xa.dll and don’t have XA support, WebSphere MQ
.NET throws an exception.

Setting NMQ_MQ_LIB to ″managed″ causes the client to use managed WebSphere
MQ problem diagnostics, .NET data conversion, and other managed low-level
WebSphere MQ functions.

All other values for NMQ_MQ_LIB cause the .NET process to use unmanaged
WebSphere MQ problem diagnostics and data conversion, and other unmanaged
low-level WebSphere MQ functions (assuming a WebSphere MQ client or server is
installed on the system).

WebSphere MQ .NET chooses the connection type as follows:
1. If MQC.TRANSPORT_PROPERTY is specified, it connects according to the

value of MQC.TRANSPORT_PROPERTY.
Note, however, that setting MQC.TRANSPORT_PROPERTY to
MQC.TRANSPORT_MQSERIES_MANAGED does not guarantee that the client
process runs managed. Even with this setting, the client is not managed in the
following cases:
v If another thread in the process has connected with

MQC.TRANSPORT_PROPERTY set to something other than
MQC.TRANSPORT_MQSERIES_MANAGED.

v If NMQ_MQ_LIB is not set to ″managed″, problem diagnostics, data
conversion and other low-level functions are not fully managed (assuming a
WebSphere MQ client or server is installed on the system).

2. If a connection name has been specified without a channel name, or a channel
name has been specified without a connection name, it throws an error.

3. If both a connection name and a channel name have been specified:
v If NMQ_MQ_LIB is set to mqic32xa.dll, it connects as an XA client.
v If NMQ_MQ_LIB is set to managed, it connects as a managed client.
v Otherwise it connects as a non-XA client.

4. If NMQ_MQ_LIB is specified, it connects according to the value of
NMQ_MQ_LIB.

5. If a WebSphere MQ server is installed, it connects as a server.
6. If a WebSphere MQ client is installed, it connects as a non-XA client.
7. Otherwise, it connects as a managed client.

Client configuration files
A WebSphere MQ classes for .NET client application can use a client configuration
file in the same way as any other WebSphere MQ client.

10 WebSphere MQ: Using .NET

|

|

||

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

This file is typically called mqclient.ini, but you can specify a different file name.
For more information about the client configuration file, see WebSphere MQ client
configuration file.

Only the following attributes in a WebSphere MQ client configuration file are
relevant to WebSphere MQ classes for .NET. If you specify other attributes, it has
no effect.

Stanza Attribute

CHANNELS CCSID

CHANNELS ChannelDefinitionDirectory

CHANNELS ChannelDefinitionFile

CHANNELS ServerConnectionParms

ClientExitPath ExitsDefaultPath

ClientExitPath ExitsDefaultPath64

MessageBuffer MaximumSize

MessageBuffer PurgeTime

MessageBuffer UpdatePercentage

TCP ClntRcvBufSize

TCP ClntSndBufSize

TCP IPAddressVersion

TCP KeepAlive

You can override any of these attributes using the appropriate environment
variable. You can also override the WebSphere MQ client configuration file and the
equivalent environment variables using the .NET Application Configuration File.
The format of the stanzas, variable names, and variable values in the .NET
Application Configuration file is illustrated in the following example for TCP/IP
KeepAlive:
<configuration>

<configSections>
<section name="TCP" type="System.Configuration.NameValueSectionHandler"/>

</configSections>
<TCP>

<add key="KeepAlive" value="true"></add>
</TCP>

<configuration>

See your Microsoft documentation for further information.

Example code fragment

The following C# code fragment demonstrates an application that performs three
actions:
1. Connect to a queue manager
2. Put a message onto SYSTEM.DEFAULT.LOCAL.QUEUE
3. Get the message back

It also shows how to change the connection type.
// ===
// Licensed Materials - Property of IBM
// 5724-H72
// (c) Copyright IBM Corp. 2003, 2005

Chapter 2. Programming with WebSphere MQ classes for .NET 11

// ===
using System;
using System.Collections;

using IBM.WMQ;

class MQSample
{

// The type of connection to use, this can be:-
// MQC.TRANSPORT_MQSERIES_BINDINGS for a server connection.
// MQC.TRANSPORT_MQSERIES_CLIENT for a non-XA client connection
// MQC.TRANSPORT_MQSERIES_XACLIENT for an XA client connection
// MQC.TRANSPORT_MQSERIES_MANAGED for a managed client connection
const String connectionType = MQC.TRANSPORT_MQSERIES_CLIENT;

// Define the name of the queue manager to use (applies to all connections)
const String qManager = "your_Q_manager";

// Define the name of your host connection (applies to client connections only)
const String hostName = "your_hostname";

// Define the name of the channel to use (applies to client connections only)
const String channel = "your_channelname";

/// <summary>
/// Initialise the connection properties for the connection type requested
/// </summary>
/// <param name="connectionType">One of the MQC.TRANSPORT_MQSERIES_ values</param>
static Hashtable init(String connectionType)
{

Hashtable connectionProperties = new Hashtable();

// Add the connection type
connectionProperties.Add(MQC.TRANSPORT_PROPERTY, connectionType);

// Set up the rest of the connection properties, based on the
// connection type requested
switch(connectionType)
{

case MQC.TRANSPORT_MQSERIES_BINDINGS:
break;

case MQC.TRANSPORT_MQSERIES_CLIENT:
case MQC.TRANSPORT_MQSERIES_XACLIENT:
case MQC.TRANSPORT_MQSERIES_MANAGED:

connectionProperties.Add(MQC.HOST_NAME_PROPERTY, hostName);
connectionProperties.Add(MQC.CHANNEL_PROPERTY, channel);
break;

}

return connectionProperties;
}
/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static int Main(string[] args)
{

try
{

Hashtable connectionProperties = init(connectionType);

// Create a connection to the queue manager using the connection
// properties just defined
MQQueueManager qMgr = new MQQueueManager(qManager, connectionProperties);

12 WebSphere MQ: Using .NET

// Set up the options on the queue we wish to open
int openOptions = MQC.MQOO_INPUT_AS_Q_DEF | MQC.MQOO_OUTPUT;

// Now specify the queue that we wish to open,and the open options
MQQueue system_default_local_queue =

qMgr.AccessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE", openOptions);

// Define a WebSphere MQ message, writing some text in UTF format
MQMessage hello_world = new MQMessage();
hello_world.WriteUTF("Hello World!");

// Specify the message options
MQPutMessageOptions pmo = new MQPutMessageOptions(); // accept the defaults,

// same as MQPMO_DEFAULT

// Put the message on the queue
system_default_local_queue.Put(hello_world, pmo);

// Get the message back again

// First define a WebSphere MQ message buffer to receive the message
MQMessage retrievedMessage =new MQMessage();
retrievedMessage.MessageId =hello_world.MessageId;

// Set the get message options
MQGetMessageOptions gmo =new MQGetMessageOptions(); //accept the defaults

//same as MQGMO_DEFAULT

// Get the message off the queue
system_default_local_queue.Get(retrievedMessage,gmo);

// Prove we have the message by displaying the UTF message text
String msgText = retrievedMessage.ReadUTF();
Console.WriteLine("The message is: {0}", msgText);

// Close the queue
system_default_local_queue.Close();

// Disconnect from the queue manager
qMgr.Disconnect();

}

//If an error has occurred in the above,try to identify what went wrong.

//Was it a WebSphere MQ error?
catch (MQException ex)
{

Console.WriteLine("A WebSphere MQ error occurred: {0}", ex.ToString());
}

catch (System.Exception ex)
{

Console.WriteLine("A System error occurred: {0}", ex.ToString());
}

return 0;
}//end of start

}//end of sample

Operations on queue managers

This section describes how to connect to, and disconnect from, a queue manager
using WebSphere MQ classes for .NET.

Chapter 2. Programming with WebSphere MQ classes for .NET 13

Setting up the WebSphere MQ environment
Before you use the client connection to connect to a queue manager, you must set
up the WebSphere MQ environment.

Note: This step is not necessary when using WebSphere MQ classes for .NET in
server bindings mode.

The .NET programming interface allows you to use the NMQ_MQ_LIB
customization value but also includes a class MQEnvironment. This class allows
you to specify details that are to be used during the connection attempt, such as
those in the following list:
v Channel name
v Host name
v Port number
v Channel exits
v SSL parameters
v User ID and password

For full information about the MQEnvironment class, see “MQEnvironment” on
page 36

To specify the channel name and host name, use the following code:
MQEnvironment.Hostname = "host.domain.com";
MQEnvironment.Channel = "client.channel";

By default, the clients attempt to connect to a WebSphere MQ listener at port 1414.
To specify a different port, use the code:
MQEnvironment.Port = nnnn;

Connecting to a queue manager

You are now ready to connect to a queue manager by creating a new instance of
the MQQueueManager class:
MQQueueManager queueManager = new MQQueueManager("qMgrName");

To disconnect from a queue manager, call the Disconnect() method on the queue
manager:
queueManager.Disconnect();

If you call the Disconnect method, all open queues and processes that you have
accessed through that queue manager are closed. However, it is good
programming practice to close these resources explicitly when you finish using
them. To do this, use the Close() method on the object associated with each
resource.

The Commit() and Backout() methods on a queue manager replace the MQCMIT
and MQBACK calls that are used with the procedural interface.

Accessing queues and topics
You can access queues and topics using methods of MQQueueManager or
appropriate constructors.

To access queues, use the methods of the MQQueueManager class. The MQOD
(object descriptor structure) is collapsed into the parameters of these methods. For

14 WebSphere MQ: Using .NET

example, to open a queue on a queue manager represented by an
MQQueueManager object called queueManager, use the following code:
MQQueue queue = queueManager.AccessQueue("qName",

MQC.MQOO_OUTPUT,
"qMgrName",
"dynamicQName",
"altUserId");

The options parameter is the same as the Options parameter in the MQOPEN call.

The AccessQueue method returns a new object of class MQQueue.

When you have finished using the queue, use the Close() method to close it, as in
the following example:
queue.Close();

With WebSphere MQ .NET, you can also create a queue by using the MQQueue
constructor. The parameters are exactly the same as for the accessQueue method,
with the addition of a queue manager parameter specifying the instantiated
MQQueueManager object to use. For example:
MQQueue queue = new MQQueue(queueManager,

"qName",
MQC.MQOO_OUTPUT,
"qMgrName",
"dynamicQName",
"altUserId");

Constructing a queue object in this way enables you to write your own subclasses
of MQQueue.

Similarly, you can also access topics using the methods of the MQQueueManager
class. Use an AccessTopic() method to open a topic. This returns a new object of
class MQTopic. When you have finished using the topic, use the Close() method of
the MQTopic to close it.

You can also create a topic by using an MQTopic constructor. There are a number
of constructors for topics; for more information see “Constructors for MQTopic” on
page 134.

Handling messages
Messages are handled using the methods of the queue or topic classes. To build a
new message, create a new MQMessageobject.

Put messages onto queues or topics using the Put() method of the MQQueue or
MQTopic class. Get messages from queues or topics using the Get() method of the
MQQueue or MQTopic class. Unlike the procedural interface, where MQPUT and
MQGET put and get arrays of bytes, the WebSphere MQ classes for .NET put and
get instances of the MQMessage class. The MQMessage class encapsulates the data
buffer that contains the actual message data, together with all the MQMD (message
descriptor) parameters that describe that message.

To build a new message, create a new instance of the MQMessage class and use
the WriteXXX methods to put data into the message buffer.

When the new message instance is created, all the MQMD parameters are
automatically set to their default values, as defined in the WebSphere MQ

Chapter 2. Programming with WebSphere MQ classes for .NET 15

|
|
|
|

|
|
|

Application Programming Reference. The Put() method of MQQueue also takes an
instance of the MQPutMessageOptions class as a parameter. This class represents
the MQPMO structure. The following example creates a message and puts it onto a
queue:
// Build a new message containing my age followed by my name
MQMessage myMessage = new MQMessage();
myMessage.WriteInt(25);

String name = "Charlie Jordan";
myMessage.WriteUTF(name);

// Use the default put message options...
MQPutMessageOptions pmo = new MQPutMessageOptions();

// put the message!
queue.Put(myMessage,pmo);

The Get() method of MQQueue returns a new instance of MQMessage, which
represents the message just taken from the queue. It also takes an instance of the
MQGetMessageOptions class as a parameter. This class represents the MQGMO
structure.

You do not need to specify a maximum message size, because the Get() method
automatically adjusts the size of its internal buffer to fit the incoming message. Use
the ReadXXX methods of the MQMessage class to access the data in the returned
message.

The following example shows how to get a message from a queue:
// Get a message from the queue
MQMessage theMessage = new MQMessage();
MQGetMessageOptions gmo = new MQGetMessageOptions();
queue.Get(theMessage,gmo); // has default values

// Extract the message data
int age = theMessage.ReadInt();
String name1 = theMessage.ReadUTF();

You can alter the number format that the read and write methods use by setting
the encoding member variable.

You can alter the character set to use for reading and writing strings by setting the
characterSet member variable.

See “MQMessage” on page 47 for more details.

Note: The WriteUTF() method of MQMessage automatically encodes the length of
the string as well as the Unicode bytes it contains. When your message will be
read by another .NET program (using ReadUTF()), this is the simplest way to send
string information.

Handling message properties
Message properties allow you to select messages, or to retrieve information about a
message without accessing its headers. The MQMessage class contains methods to
get and set properties.

You can use message properties to allow an application to select messages to
process, or to retrieve information about a message without accessing MQMD or
MQRFH2 headers. They also facilitate communication between Websphere MQ and

16 WebSphere MQ: Using .NET

|
|
|
|

|
|
|

JMS applications. For a discussion of message properties in Websphere MQ, see the
WebSphere MQ System Administration Guide.

The MQMessage class provides a number of methods to get and set properties,
according to the data type of the property. The get methods have names of the
format Get*Property, and the set methods have names of the format Set*Property,
where the asterisk (*) represents one of the following strings:
v Boolean
v Byte
v Bytes
v Double
v Float
v Int
v Int2
v Int4
v Int8
v Long
v Object
v Short
v String

For example, to get the Websphere MQ property myproperty (a character string),
use the call message.GetStringProperty('myproperty'). You can optionally pass a
property descriptor, which WebSphere MQ will complete.

Handling errors
Handle errors arising from WebSphere MQ classes for .NET using try and catch
blocks.

Methods in the .NET interface do not return a completion code and reason code.
Instead, they throw an exception whenever the completion code and reason code
resulting from a WebSphere MQ call are not both zero. This simplifies the program
logic so that you do not have to check the return codes after each call to
WebSphere MQ. You can decide at which points in your program you want to deal
with the possibility of failure. At these points, you can surround your code with
try and catch blocks, as in the following example:
try
{

myQueue.Put(messageA,PutMessageOptionsA);
myQueue.Put(messageB,PutMessageOptionsB);

}
catch (MQException ex)
{

// This block of code is only executed if one of
// the two put methods gave rise to a non-zero
// completion code or reason code.
Console.WriteLine("An error occurred during the put operation:" +

"CC = " + ex.CompletionCode +
"RC = " + ex.ReasonCode);

Console.WriteLine("Cause exception:" + ex);
}

The WebSphere MQ call reason codes reported back in .NET exceptions are
documented in a chapter called “Reason Codes” in WebSphere MQ Messages.

Chapter 2. Programming with WebSphere MQ classes for .NET 17

|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

Getting and setting attribute values
The classes MQManagedObject, MQQueue, and MQQueueManager contain
methods that allow you to get and set their attribute values. Note that for
MQQueue, the methods work only if you specify the appropriate inquire and set
flags when you open the queue.

For common attributes, the MQQueueManager and MQQueue classes inherit from
a class called MQManagedObject. This class defines the Inquire() and Set()
interfaces.

When you create a new queue manager object by using the new operator, it is
automatically opened for inquire. When you use the AccessQueue() method to
access a queue object, that object is not automatically opened for either inquire or
set operations, this could cause problems with some types of remote queues. To
use the Inquire and Set methods and to set properties on a queue, you must
specify the appropriate inquire and set flags in the openOptions parameter of the
AccessQueue() method.

The inquire and set methods take three parameters:
v selectors array
v intAttrs array
v charAttrs array

You do not need the SelectorCount, IntAttrCount, and CharAttrLength parameters
that are found in MQINQ, because the length of an array is always known. The
following example shows how to make an inquiry on a queue:
//inquire on a queue
int [] selectors = new int [2] ;
int [] intAttrs = new int [1] ;
byte [] charAttrs = new byte [MQC.MQ_Q_DESC_LENGTH];
selectors [0] = MQC.MQIA_DEF_PRIORITY;
selectors [1] = MQC.MQCA_Q_DESC;
queue.Inquire(selectors,intAttrs,charAttrs);
ASCIIEncoding enc = new ASCIIEncoding();
String s1 = "";
s1 = enc.GetString(charAttrs);

All attributes of these objects can be inquired on. A subset of attributes is exposed
as the properties of an object. For a list of object attributes, see WebSphere MQ
Application Programming Reference. For object properties, see the appropriate class
description.

Multithreaded programs
The .NET runtime environment is inherently multithreaded. WebSphere MQ classes
for .NET allows a queue manager object to be shared across multiple threads but
ensures that all access to the target queue manager is synchronized.

Consider a simple program that connects to a queue manager and opens a queue
at startup. The program displays a single button on the screen. When a user
presses that button, the program fetches a message from the queue. In this
situation, the application initialization occurs in one thread, and the code that
executes in response to the button press executes in a separate thread (the user
interface thread).

The implementation of WebSphere MQ .NET ensures that, for a given connection
(MQQueueManager object instance), all access to the target WebSphere MQ queue

18 WebSphere MQ: Using .NET

manager is synchronized. The default behaviour is that a thread that wants to
issue a call to a queue manager is blocked until all other calls in progress for that
connection are complete. If you require simultaneous access to the same queue
manager from multiple threads within your program, create a new
MQQueueManager object for each thread that requires concurrent access. (This is
equivalent to issuing a separate MQCONN call for each thread.)

If the default connection options are overridden by
MQC.MQCNO_HANDLE_SHARE_NONE or MQC.MQCNO_SHARE_NO_BLOCK
then the queue manager is no longer synchronized.

Using a client channel definition table
The .NET classes for WebSphere MQ support the use of client definition tables
through the environment variables MQCHLLIB and MQCHLTAB.

MQCHLLIB specifies the directory where the table is located and MQCHLTAB
specifies the actual filename of the table.

The client channel definition table is described in WebSphere MQ Clients.

Using channel exits in WebSphere MQ .NET
If you use client bindings, you can use channel exits as for any other client
connection. If you use managed bindings, you must write an exit program that
implements an appropriate interface.

Client bindings

If you use client bindings, you can use channel exits as described in WebSphere MQ
Clients. You cannot use channel exits written for managed bindings.

Managed bindings

If you use a managed connection, to implement an exit, you define a new .NET
class that implements the appropriate interface. Three exit interfaces are defined in
the WebSphere MQ package:
v MQSendExit
v MQReceiveExit
v MQSecurityExit

Note: User exits written using these interfaces are not supported as channel exits
in the unmanaged environment.

The following sample defines a class that implements all three:
class MyMQExits : MQSendExit, MQReceiveExit, MQSecurityExit
{

// This method comes from the send exit
byte[] SendExit(MQChannelExit channelExitParms,

MQChannelDefinition channelDefinition,
byte[] dataBuffer
ref int dataOffset
ref int dataLength
ref int dataMaxLength)

{
// fill in the body of the send exit here

}

Chapter 2. Programming with WebSphere MQ classes for .NET 19

|

|
|
|

|

|
|

|

|
|
|

|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

// This method comes from the receive exit
byte[] ReceiveExit(MQChannelExit channelExitParms,

MQChannelDefinition channelDefinition,
byte[] dataBuffer
ref int dataOffset
ref int dataLength
ref int dataMaxLength)

{
// fill in the body of the receive exit here

}

// This method comes from the security exit
byte[] SecurityExit(MQChannelExit channelExitParms,

MQChannelDefinition channelDefParms,
byte[] dataBuffer
ref int dataOffset
ref int dataLength
ref int dataMaxLength)

{
// fill in the body of the security exit here

}

}

Each exit is passed an MQChannelExit and an MQChannelDefinition object
instance. These objects represent the MQCXP and MQCD structures defined in the
procedural interface.

The data to be sent by a send exit, and the data received in a security or receive
exit is specified using the exit’s parameters.

On entry, the data at offset dataOffset with length dataLength in the byte array
dataBuffer is the data that is about to be sent by a send exit, and the data received
in a security or receive exit. The parameter dataMaxLength gives the maximum
length (from dataOffset) available to the exit in dataBuffer. Note: For a security exit,
it is possible for the dataBuffer to be null, if this is the first time the exit is called
or the partner end elected to send no data.

On return, the value of dataOffset and dataLength should be set to point to the offset
and length within the returned byte array that the .NET classes should then use.
For a send exit, this indicates the data that it should send, and for a security or
receive exit, the data that should be interpreted. The exit should normally return a
byte array; exceptions are a security exit which could elect to send no data, and
any exit called with the INIT or TERM reasons. The simplest form of exit that can
be written therefore is one which does nothing more than return dataBuffer:

The simplest possible exit body is:
{

return dataBuffer;
}

Specifying channel exits (managed client)
If you specify a channel name and connection name when creating your
MQQueueManager object (either in the MQEnvironment or on the
MQQueueManager constructor) you can specify channel exits in two ways.

In order of precedence, these are:

20 WebSphere MQ: Using .NET

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|

1. Passing hashtable properties MQC.SECURITY_EXIT_PROPERTY,
MQC.SEND_EXIT_PROPERTY or MQC.RECEIVE_EXIT_PROPERTY on the
MQQueueManager constructor.

2. Setting the MQEnvironment SecurityExit, SendExit or ReceiveExit properties.

If you do not specify a channel name and connection name, the channel exits to
use come from the channel definition picked up from a client channel definition
table. It is not possible to override the values stored in the channel definition. See
WebSphere MQ Clients for more information about channel definition tables.

In each case, the specification takes the form of a string with the following format:
Assembly_name(Class_name)

Class_name is the fully qualified name, including namespace specification, of a
.NET class that implements the IBM.WMQ.MQSecurityExit,
IBM.WMQ.MQSendExit or IBM.WMQ.MQReceiveExit interface (as appropriate).
Assembly_name is the fully qualified location, including file extension, of the
assembly that houses the class. The length of the string is limited to 128 characters.
When necessary, the .NET client code loads and creates an instance of the specified
class by parsing the string specification.

Specifying channel exit user data (managed client)
Channel exits can have user data associated with them. If you specify a channel
name and connection name when creating your MQQueueManager object (either
in the MQEnvironment or on the MQQueueManager constructor) you can specify
the user data in two ways.

In order of precedence, these are:
1. Passing hashtable properties MQC.SECURITY_USERDATA_PROPERTY,

MQC.SEND_USERDATA_PROPERTY or
MQC.RECEIVE_USERDATA_PROPERTY on the MQQueueManager constructor.

2. Setting the MQEnvironment SecurityUserData, SendUserData or
ReceiveUserData properties.

If you do not specify a channel name and connection name, the exit user data
values to use come from the channel definition picked up from the client channel
definition table. It is not possible to override the values stored in the channel
definition. See WebSphere MQ Clients for more information about channel
definition tables.

In each case, the specification is a string, limited to 32 characters.

Secure Sockets Layer (SSL) support

The following section does not apply to the managed client.

WebSphere MQ classes for .NET client applications support Secure Sockets Layer
(SSL) encryption. SSL provides communication encryption, authentication, and
message integrity. It is typically used to secure communications between any two
peers on the Internet or within an intranet.

Enabling SSL
SSL is supported only for client connections. To enable SSL, you must specify the
CipherSpec to use when communicating with the queue manager, and this must
match the CipherSpec set on the target channel.

Chapter 2. Programming with WebSphere MQ classes for .NET 21

|
|
|

|

|
|
|
|

|

|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|

|
|
|
|
|

|

To enable SSL, specify the CipherSpec using the SSLCipherSpec static member
variable of MQEnvironment. The following example attaches to a SVRCONN
channel named SECURE.SVRCONN.CHANNEL, which has been set up to require
SSL with a CipherSpec of NULL_MD5:
MQEnvironment.Hostname = "your_hostname";
MQEnvironment.Channel = "SECURE.SVRCONN.CHANNEL";
MQEnvironment.SSLCipherSpec = "NULL_MD5";
MQEnvironment.SSLKeyRepository = "C:\mqm\key";
MQQueueManager qmgr = new MQQueueManager("your_Q_manager");

See WebSphere MQ Security for a list of CipherSpecs.

The SSLCipherSpec property can also be set using the
MQC.SSL_CIPHER_SPEC_PROPERTY in the hash table of connection properties.

To successfully connect using SSL, the client key store must be set up with
Certificate Authority root certificates chain from which the certificate presented by
the queue manager can be authenticated. Similarly, if SSLClientAuth on the
SVRCONN channel has been set to MQSSL_CLIENT_AUTH_REQUIRED, the client
key store must contain an identifying personal certificate that is trusted by the
queue manager.

Using the distinguished name of the queue manager
The queue manager identifies itself using an SSL certificate, which contains a
Distinguished Name (DN).

A WebSphere MQ .NET client application can use this DN to ensure that it is
communicating with the correct queue manager. A DN pattern is specified using
the sslPeerName variable of MQEnvironment. For example, setting:

MQEnvironment.SSLPeerName = "CN=QMGR.*, OU=IBM, OU=WEBSPHERE";

allows the connection to succeed only if the queue manager presents a certificate
with a Common Name beginning QMGR., and at least two Organizational Unit
names, the first of which must be IBM and the second WEBSPHERE.

The SSLPeerName property can also be set using the
MQC.SSL_PEER_NAME_PROPERTY in the hash table of connection properties. For
more information about distinguished names and rules for setting peer names,
refer to WebSphere MQ Security.

If SSLPeerName is set, connections succeed only if it is set to a valid pattern and
the queue manager presents a matching certificate.

Error handling when using SSL

The following reason codes can be issued by WebSphere MQ classes for .NET
when connecting to a queue manager using SSL:

MQRC_SSL_NOT_ALLOWED
The SSLCipherSpec property was set, but bindings connect was used. Only
client connect supports SSL.

MQRC_SSL_PEER_NAME_MISMATCH
The DN pattern specified in the SSLPeerName property did not match the
DN presented by the queue manager.

MQRC_SSL_PEER_NAME_ERROR
The DN pattern specified in the SSLPeerName property was not valid.

22 WebSphere MQ: Using .NET

|

Using the .NET Monitor

The .NET Monitor is an application similar to a WebSphere MQ trigger monitor.
You can create .NET components which will be instantiated whenever a message is
received on a monitored queue, and which will then process that message. The
.NET Monitor is started by the runmqdnm command and stopped by the
endmqdnm command. For details of these commands, see WebSphere MQ System
Administration Guide.

To use the .NET Monitor, you write a component that implements the
IMQObjectTrigger interface, which is defined in amqmdnm.dll.

Components can be either transactional or non-transactional. A transactional
component must inherit from System.EnterpriseServices.ServicedComponent and
be registered as either RequiresTransaction or SupportsTransaction. It must not be
registered as RequiresNew as the .NET Monitor will already have initiated a
transaction.

The component receives MQQueueManager, MQQueue, and MQMessage objects
from runmqdnm. It may also receive a User Parameter string if one was specified,
using the –u command line option, when runmqdnm was invoked. Note that your
component receives the contents of a message that arrived on the monitored queue
in an MQMessage object. It does not have to connect to the queue manager, open
the queue or get the message itself. The component must then process the message
as appropriate and return control to the .NET Monitor.

If your component has been written as a transactional component, it registers
whether it wishes to commit or rollback the transaction using the facilities
provided by System.EnterpriseServices.ServicedComponent.

As the component receives MQQueueManager and MQQueue objects as well as
the message, it has complete context information for that message and can, for
example, open another queue on the same queue manager without needing to
separately connect to WebSphere MQ.

Example code fragments
This topic contains two examples of components which obtain a message from the
.NET Monitor and print it, one using transactional processing and the other
non-transactional processing. A third example shows common utility routines,
applicable to both the first two examples. All the examples are in C#.

Example 1: Transactional processing
/***/
/* Licensed materials, property of IBM */
/* 63H9336 */
/* (C) Copyright IBM Corp. 2005 */
/***/
using System;
using System.EnterpriseServices;

using IBM.WMQ;
using IBM.WMQMonitor;

[assembly: ApplicationName("dnmsamp")]

// build:
//
// csc -target:library -reference:amqmdnet.dll;amqmdnm.dll TranAssembly.cs

Chapter 2. Programming with WebSphere MQ classes for .NET 23

//
// run (with dotnet monitor)
//
// runmqdnm -m <QMNAME> -q <QNAME> -a dnmsamp.dll -c Tran

namespace dnmsamp
{

[TransactionAttribute(TransactionOption.Required)]
public class Tran : ServicedComponent, IMQObjectTrigger
{

Util util = null;

[AutoComplete(true)]
public void Execute(MQQueueManager qmgr, MQQueue queue,

MQMessage message, string param)
{

util = new Util("Tran");

if (param != null)
util.Print("PARAM: '" +param.ToString() + "'");

util.PrintMessage(message);

//System.Console.WriteLine("SETTING ABORT");
//ContextUtil.MyTransactionVote = TransactionVote.Abort;

System.Console.WriteLine("SETTING COMMIT");
ContextUtil.SetComplete();
//ContextUtil.MyTransactionVote = TransactionVote.Commit;

}
}

}

Example 2: Non-transactional processing
/***/
/* Licensed materials, property of IBM */
/* 63H9336 */
/* (C) Copyright IBM Corp. 2005 */
/***/

using System;

using IBM.WMQ;
using IBM.WMQMonitor;

// build:
//
// csc -target:library -reference:amqmdnet.dll;amqmdnm.dll NonTranAssembly.cs
//
// run (with dotnet monitor)
//
// runmqdnm -m <QMNAME> -q <QNAME> -a dnmsamp.dll -c NonTran
namespace dnmsamp
{

public class NonTran : IMQObjectTrigger
{

Util util = null;

public void Execute(MQQueueManager qmgr, MQQueue queue,
MQMessage message, string param)

{
util = new Util("NonTran");

try
{

util.PrintMessage(message);

24 WebSphere MQ: Using .NET

}

catch (Exception ex)
{

System.Console.WriteLine(">>> NonTran\n{0}", ex.ToString());
}

}
}

}

Example 3: Common routines
/***/
/* Licensed materials, property of IBM */
/* 63H9336 */
/* (C) Copyright IBM Corp. 2005 */
/***/

using System;

using IBM.WMQ;

namespace dnmsamp
{
/// <summary>
/// Summary description for Util.
/// </summary>
public class Util
{

/* -- */
/* Default prefix string of the namespace. */
/* -- */
private string prefixText = "dnmsamp";

/* -- */
/* Constructor that takes the replacement prefix string to use. */
/* -- */
public Util(String text)
{

prefixText = text;
}

/* -- */
/* Display an arbitrary string to the console. */
/* -- */
public void Print(String text)
{

System.Console.WriteLine("{0} {1}\n", prefixText, text);
}

/* -- */
/* Display the content of the message passed to the console. */
/* -- */
public void PrintMessage(MQMessage message)
{

if (message.Format.CompareTo(MQC.MQFMT_STRING) == 0)
{

try
{

string messageText = message.ReadString(message.MessageLength);

Print(messageText);
}

catch(Exception ex)

Chapter 2. Programming with WebSphere MQ classes for .NET 25

{
Print(ex.ToString());

}
}
else
{

Print("UNRECOGNISED FORMAT");
}

}

/* -- */
/* Convert the byte array into a hex string. */
/* -- */
static public string ToHexString(byte[] byteArray)
{

string hex = "0123456789ABCDEF";

string retString = "";

for(int i = 0; i < byteArray.Length; i++)
{

int h = (byteArray[i] & 0xF0)>>4;
int l = (byteArray[i] & 0x0F);

retString += hex.Substring(h,1) + hex.Substring(l,1);
}

return retString;
}

}
}

Compiling WebSphere MQ .NET programs
Specimen commands to compile .NET applications written in various languages.

To build a C# application using WebSphere MQ classes for .NET, use the following
command:
csc /t:exe /r:System.dll /r:amqmdnet.dll /lib:mqmtop\bin /out:MyProg.exe MyProg.cs

To build a Visual Basic application using WebSphere MQ classes for .NET, use the
following command:
vbc /r:System.dll /r:mqmtop\bin\amqmdnet.dll /out:MyProg.exe MyProg.vb

To build a Managed C++ application using WebSphere MQ classes for .NET, use
the following command:
cl /clr mqmtop\bin Myprog.cpp

Tracing WebSphere MQ .NET programs
In WebSphere MQ .NET, you start and control the trace facility as in WebSphere
MQ programs using the MQI.

However, the -i and -p parameters of the strmqtrc command, which allow you to
specify process and thread identifiers, and named processes, have no effect.

You normally need to use the trace facility only at the request of IBM service.

See the WebSphere MQ System Administration Guide for information on trace
commands.

26 WebSphere MQ: Using .NET

|
|

The WebSphere MQ .NET classes and interfaces
This topic describes all the WebSphere MQ .NET classes and interfaces. It includes
details of the variables, constructors, and methods in each class and interface.

The following classes, interfaces, and structures are described:

MQAsyncStatus

public class IBM.WMQ.MQAsyncStatus
extends IBM.WMQ.MQBaseObject.

This class encapsulates specific features of the MQSTS data structure. Objects of
this class are used by applications inquiring on the status of previous MQI activity,
for example inquiring on the success of previous asynchronous put operations.

Constructors
MQAsyncStatus

public MQAsyncStatus()

Throws MQException.

Constructor method, constructs an object with fields initialized to zero or
blank as appropriate.

Properties
Properties for MQAsyncStatus

CompCode
public static int CompCode {get;}

The completion code from the first error or warning.

Reason
public static int Reason {get;}

The reason code from the first error or warning.

PutSuccessCount
public static int PutSuccessCount {get;}

The number of successful asynchronous MQI put calls.

PutWarningCount
public static int PutWarningCount { get; }

The number of asynchronous MQI put calls that succeeded with a
warning.

PutFailureCount
public static int PutFailureCount {get;}

System.Object
│
└─ IBM.WMQ.MQBase
│
└─ IBM.WMQ.MQBaseObject
│
└─ IBM.WMQ.MQAsyncStatus

Chapter 2. Programming with WebSphere MQ classes for .NET 27

|
|
|
|
|
|
|

|

|

|
|

|
|
|

|

|

|

|

|
|

|
|

|

|

|

|
|

|

|
|

|

|
|

|
|

|
|

The number of failed asynchronous MQI put calls.

ObjectType
public static int ObjectType {get;}

The object type for the first error. The following values are possible:
v MQC.MQOT_ALIAS_Q
v MQC.MQOT_LOCAL_Q
v MQC.MQOT_MODEL_Q
v MQC.MQOT_Q
v MQC.MQOT_REMOTE_Q
v MQC.MQOT_TOPIC
v zero, meaning that no object is returned

ObjectName
public static String ObjectName {get;}

The object name.

ObjectQMgrName
public static String ObjectQMgrName {get;}

The object queue manager name.

ResolvedObjectName
public static String ResolvedObjectName {get;}

The resolved object name.

ResolvedObjectQMgrName
public static String ResolvedObjectQMgrName {get;}

The resolved object queue manager name.

For more detailed descriptions of these properties, see MQSTS Status reporting
structure.

MQAuthenticationInformationRecord
The MQAuthenticationInformationRecord class encapsulates an authentication
information record (MQAIR).

public class IBM.WMQ.MQAuthenticationInformationRecord
extends System.Object

It allows an application running as a WebSphere MQ client to specify information
about an authenticator that is to be used for the SSL client connection.

Constructors
Creates a new authentication information record.

MQAuthenticationInformationRecord
MQAuthenticationInformationRecord();

System.Object
│
└─ IBM.WMQ.MQAuthenticationInformationRecord

28 WebSphere MQ: Using .NET

|

|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

Properties
Properties for MQAuthenticationInformationRecord

Version
public long Version {get; set;}

Structure version number.

AuthInfoType
public long AuthInfoType {get; set;}

The type of authentication information. The value must be CRLLDAP,
meaning that Certificate Revocation List checking is done using LDAP
servers.

AuthInfoConnName
public String AuthInfoConnName {get; set;}

The DNS name or IP address of the host on which the LDAP server is
running, with an optional port number. This keyword is required.

LDAPPassword
public String LDAPPassword {get; set;}

The password associated with the Distinguished Name of the user who is
accessing the LDAP server.

LDAPUserName
public String LDAPUserName {get; set;}

The Distinguished Name of the user who is accessing the LDAP server.
When you set this property, LDAPUserNameLength and
LDAPUserNamePtr are automatically set correctly.

For more detailed descriptions of these properties, see Attributes for authentication
information objects.

MQChannelDefinition
Use the MQChannelDefinition class to pass information concerning the connection
to the queue manager to the send, receive, and security exits.

public class MQChannelDefinition
extends Object

Properties
Public variables in the MQChannelDefinition class.

ChannelName
public String ChannelName {get; set;}

The name of the channel through which the connection is established.

ClientChannelWeight
public String ClientChannelWeight

The client channel weight.

System.Object
│
└─ IBM.WMQ.MQChannelDefinition

Chapter 2. Programming with WebSphere MQ classes for .NET 29

|
|

ConnectionAffinity
public String ConnectionAffinity

The connection affinity.

ConnectionName
public String ConnectionName {get; set;}

The TCP/IP host name of the computer on which the queue manager
resides.

MaxMessageLength
public int MaxMessageLength {get; set;}

The maximum length of message that can be sent to the queue manager.

ReceiveExits
public String[] ReceiveExits {get; set;}

An array of the receive exit locations being used for the channel.

ReceiveUserDatas
public String[] ReceiveUserDatas {get; set;}

An array of the user data strings associated with each receive exit for the
channel.

SecurityExit
public String SecurityExit {get; set;}

The security exit location being used for the channel.

SecurityUserData
public String SecurityUserData {get; set;}

A storage area for the security exit to use. Information placed here is
preserved across invocations of the security exit, and is also available to
the send and receive exits.

SendExits
public String[] SendExits {get; set;}

An array of the send exit locations being used for the channel.

SendUserDatas
public String[] SendUserDatas {get; set;}

An array of the user data strings associated with each send exit for the
channel.

SharingConversations
public int SharingConversations {get; set;}

Number of sharing conversations for this channel instance.

SSLCipherSpec
public String SSLCipherSpec {get; set;}

The SSL Cipher Specification defined for the channel.

SSLPeerName
public String SSLPeerName {get; set;}

If SSL is used to encrypt data on the wire, this is set to the Distinguished
Name presented by the queue manager during connection. If SSL is not
used, it is left as null.

30 WebSphere MQ: Using .NET

For more detailed descriptions of these properties, see MQCD - Channel definition.

MQChannelExit
This class defines context information passed to the send, receive, and security
exits when they are invoked. The exit must set the ExitResponse member variable
to indicate what action the WebSphere MQ Client for .NET should take next.

public class MQChannelExit
extends Object

Note: This class does not apply when connecting directly to WebSphere MQ in
bindings mode.

Properties of MQChannelExit
The properties of MQChannelExit are described.

CapabilityFlags
public int CapabilityFlags {get; set;}

Indicates the capability of the queue manager.

Only the MQC.MQCF_DIST_LISTS flag is supported.

CurHdrCompression
public int CurHdrCompression {get; set;}

The type of compression currently being employed on this channel for
message header compression.

CurMsgCompression
public int CurMsgCompression {get; set;}

The type of compression currently being employed on this channel for
message data compression.

ExitID public int ExitID {get; set;}

The type of exit that has been invoked. For an MQSecurityExit this is
always MQC.MQXT_CHANNEL_SEC_EXIT; for an MQSendExit this is
always MQC.MQXT_CHANNEL_SEND_EXIT; for an MQReceiveExit this
is always MQC.MQXT_CHANNEL_RCV_EXIT.

ExitNumber
public int ExitNumber {get; set;}

A zero based index indicating the index of this exit in the array of exits of
the same type. For example, a value of 1 indicates that this is the second
instance of a send exit.

ExitReason
public int ExitReason {get; set;}

The reason for invoking the exit. Possible values are:

MQC.MQXR_INIT
Exit initialization; called after the channel connection conditions
have been negotiated, but before any security flows have been
sent.

System.Object
│
└─ IBM.WMQ.MQChannelExit

Chapter 2. Programming with WebSphere MQ classes for .NET 31

|

MQC.MQXR_INIT_SEC
Indicates that the exit is to initiate the security dialog with the
queue manager.

MQC.MQXR_SEC_MSG
Indicates to the security exit that a security message has been
received from the queue manager.

MQC.MQXR_TERM
Exit termination; called after the disconnect flows have been sent
but before the socket connection is destroyed.

MQC.MQXR_XMIT
For a send exit, indicates that data is to be transmitted to the
queue manager.

For a receive exit, indicates that data has been received from the
queue manager.

ExitResponse
public int ExitResponse {get; set;}

Set by the exit to indicate the action that WebSphere MQ classes for .NET
must take next. Valid values are:

MQC.MQXCC_CLOSE_CHANNEL
Set by any exit to indicate that the connection to the queue
manager must be closed.

MQC.MQXCC_OK
Set by the security exit to indicate that security exchanges are
complete.

Set by send exit to indicate that the returned data is to be
transmitted to the queue manager.

Set by the receive exit to indicate that the returned data is available
for processing by the WebSphere MQ Client for .NET.

MQC.MQXCC_SEND_AND_REQUEST_SEC_MSG
Set by the security exit to indicate that the returned data is to be
transmitted to the queue manager, and that a response is expected
from the queue manager.

MQC.MQXCC_SEND_SEC_MSG
Set by the security exit to indicate that the returned data is to be
transmitted to the queue manager, and that no response is
expected.

MQC.MQXCC_SUPPRESS_EXIT
Set by any exit to indicate that it must no longer be called.

MQC.MQXCC_SUPPRESS_FUNCTION
Set by the security exit to indicate that communications with the
queue manager must be shut down.

ExitUserArea
public byte[] ExitUserArea {get; set;}

A storage area available for the exit to use.

32 WebSphere MQ: Using .NET

Any data placed in the exitUserArea is preserved by the WebSphere MQ
Client for .NET across exit invocations with the same exitID. (That is, the
send, receive, and security exits each have their own, independent, user
areas.)

FapLevel
public int FapLevel {get; set;}

The negotiated Format and Protocol (FAP) level.

Hconn
public MQHCONN HConn {get; set;}

Connection handle for the exit to use when making MQI calls.

MaxSegmentLength
public int MmaxSegmentLength {get; set;}

The maximum length for any one transmission to a queue manager.

If the exit returns data that is to be sent to the queue manager, the length
of the returned data must not exceed this value.

SharingConversations
public MQBOOL SharingConversations {get; set;}

Whether the conversation is sharing this channel instance.

UserData
public String UserData {get; set;}

The user data parameter specified on the channel definition for this specific
exit instance.

For more detailed descriptions of these properties, see Fields.

MQDestination
MQDestination object for .NET

public class IBM.WMQ.MQDestination
extends IBM.WMQ.MQManagedObject

MQDestination is an abstract base class and so cannot be instantiated by itself. It is
designed to contain the common functionality for any WebSphere MQ messaging
destination. MQDestination is a super class for both MQQueue and MQTopic.

Constructors
Constructors for MQDestination.

MQDestination
protected MQDestination();

System.Object
│
└─ IBM.WMQ.MQBase
│
└─ IBM.WMQ.MQBaseObject
│
└─ IBM.WMQ.MQManagedObject
│
└─ IBM.WMQ.MQDestination

Chapter 2. Programming with WebSphere MQ classes for .NET 33

|
|
|
|
|
|
|
|
|

|
|

|

|
|

|

|

|

|

|

|
|

|
|
|

|
|

|

|

Default constructor. MQDestination is an abstract base class and cannot be
instantiated by itself.

Methods
Methods for MQDestination object.

Put
public void Put(ref MQMessage message);

Throws MQException.

Places a message onto a queue or publishes a message to a topic. This
method uses a default instance of MQPutMessageOptions to perform the
put or publish. The default MQPutMessageOptions instance differs
depending upon the destination type.

Parameters

message
An MQMessage object containing the Message Descriptor data
(MQMD) and message to be sent. The Message Descriptor
properties of this object can be altered as a consequence of this
method. The values that they have immediately after the
completion of this method are the values that were put to the
queue or published to the topic.

Put
public void Put(ref MQMessage message,

MQPutMessageOptions putMessageOptions);

Throws MQException.

Places a message onto a queue or publishes a message to a topic.

Parameters

message
An MQMessage object containing the Message Descriptor data
(MQMD) and message to be sent. The Message Descriptor
properties of this object can be altered as a consequence of this
method. The values that they have immediately after the
completion of this method are the values that were put to the
queue or published to the topic.

putMessageOptions
Options controlling the action of the put. See
MQPutMessageOptions object “Properties” on page 82.

Get
public void Get(ref MQMessage message);

Throws MQException.

Retrieves a message from the queue or topic. This method takes an
MQMessage object as a parameter. It uses some of the fields in the object
as input parameters, in particular the messageId and correlationId, so it is
important to ensure that these are set as required.

If the get fails, the MQMessage object is unchanged. If it succeeds, the
message descriptor (member variables) and message data portions of the

34 WebSphere MQ: Using .NET

|
|

|
|

|

|

|

|
|
|
|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|
|
|
|
|
|
|

|
|
|

|

|

|

|
|
|
|

|
|

MQMessage are completely replaced with the message descriptor and
message data from the incoming message.

This method uses a default instance of MQGetMessageOptions to do the
get. The message option used is MQGMO_NOWAIT.

Parameters

message
An input/output parameter containing the message descriptor
information and the returned message data.

Get
public void Get(ref MQMessage message,

MQGetMessageOptions getMessageOptions);

Throws MQException.

Retrieves a message from the queue or topic. This method takes an
MQMessage object as a parameter. It uses some of the fields in the object
as input parameters, in particular the messageId and correlationId, so it is
important to ensure that these are set as required.

If the get fails, the MQMessage object is unchanged. If it succeeds, the
message descriptor (member variables) and message data portions of the
MQMessage are completely replaced with the message descriptor and
message data from the incoming message.

Parameters

message
An input/output parameter containing the message descriptor
information and the returned message data.

getMessageOptions
Options controlling the action of the get. See
MQGetMessageOptions object “Properties” on page 40.

Get
public void Get(ref MQMessage message,

MQGetMessageOptions getMessageOptions,
int MaxMsgSize);

Throws MQException.

Retrieves a message from the queue or topic, up to the specified maximum
message size. This method takes an MQMessage object as a parameter. It
uses some of the fields in the object as input parameters, in particular the
messageId and correlationId, so it is important to ensure that these are set
as required.

If the get fails, the MQMessage object is unchanged. If it succeeds, the
message descriptor (member variables) and message data portions of the
MQMessage are completely replaced with the message descriptor and
message data from the incoming message.

Parameters

message
An input/output parameter containing the message descriptor
information and the returned message data.

Chapter 2. Programming with WebSphere MQ classes for .NET 35

|
|

|
|

|

|
|
|

|

|
|

|

|
|
|
|

|
|
|
|

|

|
|
|

|
|
|

|

|
|
|

|

|
|
|
|
|

|
|
|
|

|

|
|
|

getMessageOptions
Options controlling the action of the get. See
MQGetMessageOptions object “Properties” on page 40.

MaxMsgSize
The largest message this message object is to receive. If the
message on the queue is larger than this size, one of two things
occurs:
v If the MQGMO_ACCEPT_TRUNCATED_MSG flag is set in the

MQGetMessageOptions object, the message is filled with as
much of the message data as possible. An exception is thrown
with the MQCC_WARNING completion code.

v If the MQGMO_ACCEPT_TRUNCATED_MSG flag is not set, the
message is left on the queue or topic and an exception is thrown
with the MQCC_WARNING completion code and
MQRC_TRUNCATED_MSG_FAILED reason code.

Properties
Properties for MQDestination.

CreationDateTime
public DateTime CreationDateTime { get; }

The date and time that the queue or topic was created. Originally
contained within MQQueue, this property has been moved into the base
MQDestination class.

There is no default value.

DestinationType
public int DestinationType { get; }

Integer value describing the type of destination being used. Initialized from
the sub classes constructor (MQQueue or MQTopic), this value can take
one of these values:
v MQOT_Q
v MQOT_TOPIC

There is no default value.

MQEnvironment
The MQEnvironment class is used to control how the MQQueueManager
constructor is called.

public class IBM.WMQ.MQEnvironment
extends System.Object

Constructors
MQEnvironment

public MQEnvironment()

Properties
Properties of the MQEnvironment class.

System.Object
│
└─ IBM.WMQ.MQEnvironment

36 WebSphere MQ: Using .NET

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|

|

|
|

|
|
|

|

|

|

|

Note: Variables marked with * do not apply when connecting directly to
WebSphere MQ in server bindings mode.

Channel*
public static String Channel {get; set;}

The name of the channel to connect to on the target queue manager. You
must set this property before constructing an MQQueueManager instance
for use in client mode.

FipsRequired
public static MQLONG FipsRequired {get; set;}

Specifies whether only FIPS-certified algorithms are to be used if
cryptography is carried out in WebSphere MQ. If cryptographic hardware
is configured, the cryptographic modules used are those provided by the
hardware product, and these might, or might not, be FIPS-certified to a
particular level. This depends on the hardware product in use.

There are two constants available to use when setting this value:
v MQC.MQSSL_FIPS_NO - this equates to the numeric value 0
v MQC.MQSSL_FIPS_YES - this equates to the numeric value 1

HdrCompList
public static ArrayList HdrCompList {get; set;}

Header Data Compression List

Hostname*
public static String Hostname {get; set;}

The TCP/IP host name of the computer on which the WebSphere MQ
server resides. If the host name is not set, and no overriding properties are
set, server bindings mode is used to connect to the local queue manager.

KeyResetCount
public static MQLONG KeyResetCount {get; set;}

Indicates the number of unencrypted bytes sent and received within an
SSL conversation before the secret key is renegotiated.

MessageExit
public static String MsgExit {get; set;}

A message exit allows you to send the application data in a particular
content and format. If MessageExit is set to null, no message exit will be
called.

MQAIRArray
public static ArrayList MQAIRArray {get; set;}

An array of authentication information records.

MsgCompList
public static ArrayList MsgCompList {get; set;}

Message Data Compression List

Password
public static String Password {get; set;}

The password to be authenticated.

Port* public static int Port {get; set;}

Chapter 2. Programming with WebSphere MQ classes for .NET 37

The port to connect to. This is the port on which the WebSphere MQ server
is listening for incoming connection requests. The default value is 1414.

ReceiveExit
public static String ReceiveExit {get; set;}

A receive exit allows you to examine and alter data received from a queue
manager. It is normally used in conjunction with a corresponding send exit
at the queue manager. If ReceiveExit is set to null, no receive exit will be
called.

ReceiveUserData
public static String ReceiveUserData {get; set;}

The user data associated with a receive exit. Limited to 32 characters.

SecurityExit
public static String SecurityExit {get; set;}

A security exit allows you to customize the security flows that occur when
an attempt is made to connect to a queue manager. If securityExit is set to
null, no security exit will be called.

SecurityUserData
public static String SecurityUserData {get; set;}

The user data associated with a security exit. Limited to 32 characters.

SendExit
public static String SendExit {get; set;}

A send exit allows you to examine alter the data sent to a queue manager.
It is normally used in conjunction with a corresponding receive exit at the
queue manager. If SendExit is set to null, no send exit will be called.

SendUserData
public static String SendUserData {get; set;}

The user data associated with a send exit. Limited to 32 characters.

SharingConversations
public static String SharingConversations {get; set;}

The SharingConversations field is used on connections from .NET
applications, when these applications are not using a client channel
definition table.

SharingConversations determines the maximum number of conversations
that can be shared on a socket associated with this connection.

A value of 0 means that the channel operates as it did before WebSphere
MQ Version 7.0, with regard to conversation sharing, read ahead, and
heartbeat.

The field is passed in the hashtable of properties as a
SHARING_CONVERSATIONS_PROPERTY, when instantiating a
WebSphere MQ queue manager.

If you do not specify SharingConversations, a default value of 10 is used.

SSLCipherSpec*
public static String SSLCipherSpec {get; set;}

If set, SSL is enabled for the connection. Set the SSLCipherSpec to the
value of the CipherSpec set on the SVRCONN channel. If set to null
(default), no SSL encryption is performed.

38 WebSphere MQ: Using .NET

|
|

|
|
|

|
|

|
|
|

|
|
|

|

SSLCryptoHardware
public static String SSLCryptoHardware {get; set;}

Sets the name of the parameter string required to configure the
cryptographic hardware present on the system. For a full description of
this property, see WebSphere MQ Programmable Command Formats and
Administration Interface. This variable is ignored if sslCipherSpec is null.

SSLKeyRepository
public static String SSLKeyRepository {get; set;}

This property is set to the fully-qualified file name of the key repository.

If this parameter is set to null (default), the certificate MQSSLKEYR
environment variable will be used to locate the key repository. This
variable is ignored if sslCipherSpec is null.

Note: The . kdb extension is a mandatory part of the file name, but is not
included as part of the value of the parameter. The directory you specify
must exist. WebSphere MQ creates the file the first time it accesses the new
key repository, unless the file already exists.

SSLPeerName*
public static String sslPeerName {get; set;}

A distinguished name pattern. If sslCipherSpec is set, this variable can be
used to ensure the correct queue manager is used. For a description of the
format for this value, see “Using the distinguished name of the queue
manager” on page 22. If set to null (default), no checking of the queue
manager’s DN is performed. This variable is ignored if sslCipherSpec is
null.

UserId
public static String UserId {get; set;}

The UserId to be authenticated. The Userid field in the MQCSP structure
gets populated by setting this Userid property. Authentication of this
Userid peroperty can be performed using an API or Security exit.

For more detailed descriptions of these properties, see MQSCO - SSL configuration
options, MQAIR - Authentication information record, Fields.

MQException
An MQException is thrown whenever a WebSphere MQ error occurs.

public class IBM.WMQ.MQException
extends System.ApplicationException

Constructors
Construct a new MQException object.

MQException

System.Object
│
└─ System.Exception
│
└─ System.ApplicationException
│
└─ IBM.WMQ.MQException

Chapter 2. Programming with WebSphere MQ classes for .NET 39

|
|

public MQException(int completionCode,
int reasonCode)

Parameters

completionCode
The WebSphere MQ completion code.

reasonCode
The WebSphere MQ reason code.

Properties
CompletionCode

public int CompletionCode {get; set;}

WebSphere MQ completion code giving rise to the error. The possible
values are:
v MQException.MQCC_WARNING
v MQException.MQCC_FAILED

ReasonCode
public int ReasonCode {get; set;}

WebSphere MQ reason code describing the error. For a full explanation of
the reason codes, refer to the WebSphere MQ Application Programming
Reference.

MQGetMessageOptions
This class contains options that control the behavior of MQQueue.Get().

public class IBM.WMQ.MQGetMessageOptions
extends IBM.WMQ.MQBaseObject

Constructors
MQGetMessageOptions

public MQGetMessageOptions()

Construct a new MQGetMessageOptions object with options set to
MQC.MQGMO_NO_WAIT, a wait interval of zero, and a blank resolved
queue name.

Properties
Properties for MQGetMessageOptions.

Note: The behavior of some of the options available in this class depends on the
environment in which they are used. These elements are marked with an asterisk
(*).

GroupStatus*
public int GroupStatus {get;}

System.Object
│
└─ IBM.WMQ.MQBase
│
└─ IBM.WMQ.MQBaseObject
│
└─ IBM.WMQ.MQGetMessageOptions

40 WebSphere MQ: Using .NET

This is an output field that indicates whether the retrieved message is in a
group, and if it is, whether it is the last in the group. Possible values are:

MQC.MQGS_LAST_MSG_IN_GROUP
Message is the last in the group. This is also the value returned if
the group consists of only one message.

MQC.MQGS_MSG_IN_GROUP
Message is in a group, but is not the last in the group.

MQC.MQGS_NOT_IN_GROUP
Message is not in a group.

MatchOptions*
public int MatchOptions {get; set;}

Selection criteria that determine which message is retrieved. The following
match options can be set:

MQC.MQMO_MATCH_CORREL_ID
Correlation id to be matched.

MQC.MQMO_MATCH_GROUP_ID
Group id to be matched.

MQC.MQMO_MATCH_MSG_ID
Message id to be matched.

MQC.MQMO_MATCH_MSG_SEQ_NUMBER
Match message sequence number.

MQC.MQMO_NONE
No matching required.

Options
public int Options {get; set;}

Options that control the action of MQQueue.get. Any or none of the
following values can be specified. If more than one option is required, the
values can be added together or combined using the bitwise OR operator.

MQC.MQGMO_ACCEPT_TRUNCATED_MSG
Allow truncation of message data.

MQC.MQGMO_BROWSE_FIRST
Browse from start of queue.

MQC.MQGMO_BROWSE_MSG_UNDER_CURSOR*
Browse message under browse cursor.

MQC.MQGMO_BROWSE_NEXT
Browse from the current position in the queue.

MQC.MQGMO_CONVERT
Request the application data to be converted, to conform to the
characterSet and encoding attributes of the MQMessage, before the
data is copied into the message buffer. Because data conversion is
also applied when the data is retrieved from the message buffer,
applications do not typically set this option.

Using this option can cause problems when converting from single
byte character sets to double byte character sets. Instead, do the
conversion using the readString, readLine, and writeString
methods after the message has been delivered.

Chapter 2. Programming with WebSphere MQ classes for .NET 41

MQC.MQGMO_FAIL_IF_QUIESCING
Fail if the queue manager is quiescing.

MQC.MQGMO_LOCK*
Lock the message that is browsed.

MQC.MQGMO_MARK_SKIP_BACKOUT*
Allow a unit of work to be backed out without reinstating the
message on the queue.

MQC.MQGMO_MSG_UNDER_CURSOR
Get message under browse cursor.

MQC.MQGMO_NONE
No other options have been specified; all options assume their
default values.

MQC.MQGMO_NO_SYNCPOINT
Get message without syncpoint control.

MQC.MQGMO_NO_WAIT
Return immediately if there is no suitable message.

MQC.MQGMO_SYNCPOINT
Get the message under syncpoint control; the message is marked
as being unavailable to other applications, but it is deleted from
the queue only when the unit of work is committed. The message
is made available again if the unit of work is backed out.

MQC.MQGMO_SYNCPOINT_IF_PERSISTENT*
Get message with syncpoint control if message is persistent.

MQC.MQGMO_UNLOCK*
Unlock a previously locked message.

MQC.MQGMO_WAIT
Wait for a message to arrive.

Segmenting and grouping WebSphere MQ messages can be sent or
received as a single entity, can be split into several segments for sending
and receiving, and can also be linked to other messages in a group.

Each piece of data that is sent is known as a physical message, which can
be a complete logical message, or a segment of a longer logical message.

Each physical message typically has a different MsgId. All the segments of
a single logical message have the same groupId value and MsgSeqNumber
value, but the Offset value is different for each segment. The Offset field
gives the offset of the data in the physical message from the start of the
logical message. The segments typically have different MsgId values,
because they are individual physical messages.

Logical messages that form part of a group have the same groupId value,
but each message in the group has a different MsgSeqNumber value.
Messages in a group can also be segmented.

The following options can be used for dealing with segmented or grouped
messages:

MQC.MQGMO_ALL_MSGS_AVAILABLE*
Retrieve messages from a group only when all the messages in the
group are available.

42 WebSphere MQ: Using .NET

MQC.MQGMO_ALL_SEGMENTS_AVAILABLE*
Retrieve the segments of a logical message only when all the
segments in the group are available.

MQC.MQGMO_COMPLETE_MSG*
Retrieve only complete logical messages.

MQC.MQGMO_LOGICAL_ORDER*
Return messages in groups, and segments of logical messages, in
logical order.

Message properties options These options relate to the handling of
message properties.

MQGMO_PROPERTIES_AS_Q_DEF
Properties of the message, except those contained in the message
descriptor (or extension), are represented as defined by the
PropertyControl attribute of MQQueue.

MQGMO_PROPERTIES_IN_HANDLE
Properties of the message are made available via the MsgHandle.

MQGMO_NO_PROPERTIES
No properties of the message, except those contained in the
message descriptor (or extension) are retrieved.

MQGMO_PROPERTIES_COMPATIBILITY
If the message contains a property with a prefix of “mcd.”, “jms.”,
“usr.” or “mqext.” then all message properties, except those
contained in the message descriptor (or extension) should be
represented using MQRFH2 headers. Otherwise no properties of
the message, except those contained in the message descriptor (or
extension) will be retrieved.

MQGMO_PROPERTIES_FORCE_MQRFH2
Properties of the message, except those contained in the message
descriptor (or extension) are represented using MQRFH2 headers.
This provides backward compatibility for applications which are
expecting to retrieve properties but cannot be changed to use
message handles.

ResolvedQueueName
public String ResolvedQueueName {get;}

This is an output field that the queue manager sets to the local name of the
queue from which the message was retrieved. This is different from the
name used to open the queue if an alias queue or model queue was
opened.

Segmentation*
public char Segmentation {get;}

This is an output field that indicates whether segmentation is allowed for
the retrieved message. Possible values are:

MQC.MQSEG_INHIBITED
Segmentation not allowed.

MQC.MQSEG_ALLOWED
Segmentation allowed.

SegmentStatus*
public byte SegmentStatus {get;}

Chapter 2. Programming with WebSphere MQ classes for .NET 43

|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

This is an output field that indicates whether the retrieved message is a
segment of a logical message. If the message is a segment, the flag
indicates whether or not it is the last segment. Possible values are:

MQC.MQSS_LAST_SEGMENT
Message is the last segment of the logical message. This is also the
value returned if the logical message consists of only one segment.

MQC.MQSS_NOT_A_SEGMENT
Message is not a segment.

MQC.MQSS_SEGMENT
Message is a segment, but is not the last segment of the logical
message.

WaitInterval
public int WaitInterval {get; set;}

The maximum time (in milliseconds) that an MQQueue.get call waits for a
suitable message to arrive (used in conjunction with
MQC.MQGMO_WAIT). A value of MQC.MQWI_UNLIMITED indicates
that an unlimited wait is required.

For more detailed descriptions of these properties, see MQGMO Get-message
options.

MQManagedObject

public class IBM.WMQ.MQManagedObject
extends IBM.WMQ.MQBaseObject

MQManagedObject is a superclass for MQDestination, MQProcess,
MQQueueManager, and MQSubscription. It provides the ability to inquire and set
attributes of these resources.

Constructors
MQManagedObject

protected MQManagedObject()

Constructor method. This object is an abstract base class which cannot be
instantiated by itself.

Methods
Close

public virtual void Close()

Throws MQException.

System.Object
│
└─ IBM.WMQ.MQBase
│
└─ IBM.WMQ.MQBaseObject
│
└─ IBM.WMQ.MQManagedObject

44 WebSphere MQ: Using .NET

|
|

|
|
|

Closes the object. No further operations against this resource are permitted
after this method has been called. To change the behavior of the Close
method, set the closeOptions attribute.

Throws MQException if the WebSphere MQ call fails.

GetAttributeString
public String GetAttributeString(int selector,

int length)

Throws MQException.

Gets an attribute string.

Throws MQException.

Parameters

length Integer indicating the length of the string required.

selector Integer indicating which attribute is being queried. Suitable
selectors for character attributes are shown in MQCA_*.

Inquire
public void Inquire(int[] selectors,

int[] intAttrs,
byte[] charAttrs)

Throws MQException.

Returns an array of integers and a set of character strings containing the
attributes of an object (queue, process, or queue manager).

The attributes to be queried are specified in the selectors array. Refer to the
WebSphere MQ Application Programming Reference for details of the
permissible selectors.

Many of the more common attributes can be queried using the GetXXX()
methods defined in MQManagedObject, MQQueue and
MQQueueManager.

Parameters

selectors
Integer array identifying the attributes with values to be inquired
on.

intAttrs
The array in which the integer attribute values are returned.
Integer attribute values are returned in the same order as the
integer attribute selectors in the selectors array.

charAttrs
The buffer in which the character attributes are returned,
concatenated. Character attributes are returned in the same order
as the character attribute selectors in the selectors array. The length
of each attribute string is fixed for each attribute.

Throws MQException if the inquire fails.

Set
public void Set(int[] selectors,

int[] intAttrs,
byte[] charAttrs)

Chapter 2. Programming with WebSphere MQ classes for .NET 45

|

|
|

|

|

|

|

||

||
|

Throws MQException.

Sets the attributes defined in the selector’s vector.

The attributes to be set are specified in the selectors array. Refer to the
WebSphere MQ Application Programming Reference for details of the
permissible selectors.

Parameters

selectors
Integer array identifying the attributes with values to be set.

intAttrs
The array of integer attribute values to be set. These values must
be in the same order as the integer attribute selectors in the
selectors array.

charAttrs
The buffer in which the character attributes to be set are
concatenated. These values must be in the same order as the
character attribute selectors in the selectors array. The length of
each character attribute is fixed.

Throws MQException if the set fails.

SetAttributeString
public void SetAttributeString(int selector,

String value,
int length);

Throws MQException.

Sets an attribute string.

Throws MQException.

Parameters

selector Integer indicating which attribute is being set. Suitable selectors for
character attributes are shown in MQCA_*

value The string to set as the attribute value.

length Integer indicating the length of the string required.

Properties
AlternateUserId

public String AlternateUserId {get; set;}

The alternate user ID (if any) specified when this resource was opened.
Setting this attribute has no effect. This property is not valid for
subscriptions and is ignored.

CloseOptions
public int CloseOptions {get; set;}

Set this attribute to control the way the resource is closed. The default
value is MQC.MQCO_NONE, and this is the only permissible value for all
resources other than permanent dynamic queues, temporary dynamic
queues, subscriptions and topics that are being accessed by the objects that
created them.

For queues and topics the following additional values are permissible:

46 WebSphere MQ: Using .NET

|

|
|
|

|

|

|

|

||
|

||

||

|
|

|
|
|
|
|

MQC.MQCO_DELETE
Delete the queue if there are no messages.

MQC.MQCO_DELETE_PURGE
Delete the queue, purging any messages on it.

MQC.MQCO_QUIESCE
Request the queue be closed, receiving a warning if any messages
remain (allowing them to be retrieved before final closing).

For subscriptions the following additional values are permissible:

MQC.MQCO_KEEP_SUB
The subscription is not deleted. This option is valid only if the
original subscription is durable. This is the default value if the
resource is a durable topic.

MQC.MQCO_REMOVE_SUB
The subscription is deleted. This is the default value if the resource
is a non-durable, unmanaged topic.

MQC.MQCO_PURGE_SUB
The subscription is deleted. This is the default value if the resource
is a non-durable, managed topic.

ConnectionReference
public MQQueueManager ConnectionReference {get;}

The queue manager to which this resource belongs.

Description
public String MQDescription {get;}

The description of the resource as held by the queue manager. This
property will return an empty string for subscriptions and topics.

IsOpen
public boolean IsOpen {get;}

Indicates whether this resource is currently open.

Name public String Name {get;}

The name of this resource (either the name supplied on the access method,
or the name allocated by the queue manager for a dynamic queue).

OpenOptions
public int OpenOptions {get; set;}

The options specified when this resource was opened. Setting this attribute
has no effect. This property is not valid for subscriptions.

MQMessage
MQMessage represents both the message descriptor and the data for a WebSphere
MQ message.

System.Object
│
└─ IBM.WMQ.MQBase
│
└─ IBM.WMQ.MQBaseObject
│
└─ IBM.WMQ.MQMessage

Chapter 2. Programming with WebSphere MQ classes for .NET 47

|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|

public class IBM.WMQ.MQMessage
extends IBM.WMQ.MQBaseObject
implements DataInput, DataOutput

There is group of readXXX methods for reading data from a message, and a group
of writeXXX methods for writing data into a message. The format of numbers and
strings used by these read and write methods can be controlled by the Encoding
and CharacterSet properties. The remaining properties contain control information
that accompanies the application message data when a message travels between
sending and receiving applications. The application can set values into the
property before putting a message to a queue and can read values after retrieving
a message from a queue.

Constructors
MQMessage

public MQMessage()

Creates a new message with default message descriptor information and
an empty message buffer.

Methods for MQMessage
ClearMessage

public void ClearMessage()

Throws IOException.

Discards any data in the message buffer and sets the data offset back to
zero.

DeleteProperty
public void DeleteProperty(String name)

Throws MQException.

Deletes a property with the specified name from the message.

Parameters

name The name of the property to delete.

GetBooleanProperty
public boolean GetBooleanProperty(String name)

Throws MQException.

Returns the value of the boolean property with the specified name.

Parameters

name The name of the boolean property.

GetBooleanProperty
public boolean GetBooleanProperty(String name, MQPropertyDescriptor pd)

Throws MQException.

Returns the value of the boolean property with the specified name,
completing the specified property descriptor.

Parameters

name The name of the boolean property.

48 WebSphere MQ: Using .NET

pd The attributes of the property.

GetByteProperty
public sbyte GetByteProperty(String name)

Throws MQException.

Returns the value of the byte property with the specified name.

Parameters

name The name of the byte property.

GetByteProperty
public sbyte GetByteProperty(String name, MQPropertyDescriptor pd)

Throws MQException.

Returns the value of the byte property with the specified name, completing
the specified property descriptor.

Parameters

name The name of the byte property.

pd The attributes of the property.

GetBytesProperty
public sbyte[] GetBytesProperty(String name)

Throws MQException.

Returns the value of the signed byte array property with the specified
name.

Parameters

name The name of the byte array property.

GetBytesProperty
public sbyte[] GetBytesProperty(String name, MQPropertyDescriptor pd)

Throws MQException.

Returns the value of the signed byte array property with the specified
name, completing the specified property descriptor.

Parameters

name The name of the byte array property.

pd The attributes of the property.

GetDoubleProperty
public double GetDoubleProperty(String name)

Throws MQException.

Returns the value of the double property with the specified name.

Parameters

name The name of the double property.

GetDoubleProperty
public double GetDoubleProperty(String name, MQPropertyDescriptor pd)

Throws MQException.

Chapter 2. Programming with WebSphere MQ classes for .NET 49

Returns the value of the double property with the specified name,
completing the specified property descriptor.

Parameters

name The name of the double property.

pd The attributes of the property.

GetFloatProperty
public float GetFloatProperty(String name)

Throws MQException.

Returns the value of the float property with the specified name.

Parameters

name The name of the float property.

GetFloatProperty
public float GetFloatProperty(String name, MQPropertyDescriptor pd)

Throws MQException.

Returns the value of the float property with the specified name, completing
the specified property descriptor.

Parameters

name The name of the float property.

pd The attributes of the property.

GetInt2Property
public short GetInt2Property(String name)

Throws MQException.

Synonym for GetShortProperty(), provided for cross-language WebSphere
MQ API compatibility.

Parameters

name The name of the short property.

GetInt2Property
public short GetInt2Property(String name, MQPropertyDescriptor pd)

Throws MQException.

Synonym for GetShortProperty(), provided for cross-language WebSphere
MQ API compatibility.

Parameters

name The name of the short property.

pd The attributes of the property.

GetInt4Property
public int GetInt4Property(String name)

Throws MQException.

Synonym for GetIntProperty(), provided for cross-language WebSphere MQ
API compatibility.

50 WebSphere MQ: Using .NET

Parameters

name The name of the int property.

GetInt4Property
public int GetInt4Property(String name, MQPropertyDescriptor pd)

Throws MQException.

Synonym for GetIntProperty(), provided for cross-language WebSphere MQ
API compatibility.

Parameters

name The name of the int property.

pd The attributes of the property.

GetInt8Property
public long GetInt8Property(String name)

Throws MQException.

Synonym for GetLongProperty(), provided for cross-language WebSphere
MQ API compatibility.

Parameters

name The name of the long property.

GetInt8Property
public long GetInt8Property(String name, MQPropertyDescriptor pd)

Throws MQException.

Synonym for GetLongProperty(), provided for cross-language WebSphere
MQ API compatibility.

Parameters

name The name of the long property.

pd The attributes of the property.

GetLongProperty
public long GetLongProperty(String name)

Throws MQException.

Returns the value of the long property with the specified name.

Parameters

name The name of the long property.

GetLongProperty
public long GetLongProperty(String name, MQPropertyDescriptor pd)

Throws MQException.

Returns the value of the long property with the specified name, completing
the specified property descriptor.

Parameters

name The name of the long property.

pd The attributes of the property.

Chapter 2. Programming with WebSphere MQ classes for .NET 51

GetObjectProperty
public Object GetObjectProperty(String name)

Throws MQException.

Returns the value of the .NET object property with the specified name.

You can use this method to return, in objectified format, an object that has
been stored as a property in the message with the SetObjectProperty
method call, or its equivalent primitive SettypeProperty method.

Parameters

name The name of the String property.

GetObjectProperty
public Object GetObjectProperty(String name, MQPropertyDescriptor pd)

Throws MQException.

Returns the value of the .NET object property with the specified name,
completing the specified property descriptor.

You can use this method to return, in objectified format, an object that has
been stored as a property in the message with the SetObjectProperty
method call, or its equivalent primitive SettypeProperty method.

Parameters

name The name of the String property.

pd The attributes of the property.

GetPropertyNames
public System.Collectoins.IEnumerator GetPropertyNames(String name)

Throws MQException.

Returns an IEnumerator of all the property names matching the specified
name. The percent sign (%) can be used at the end of the name as a
wildcard character to filter the properties of the message, matching on zero
or more characters, including the period (.).

Parameters

name The name of the property to match on.

GetShortProperty
public short GetShortProperty(String name)

Throws MQException.

Returns the value of the short property with the specified name.

Parameters

name The name of the short property.

GetShortProperty
public short GetShortProperty(String name, MQPropertyDescriptor pd)

Throws MQException.

Returns the value of the short property with the specified name,
completing the specified property descriptor.

Parameters

52 WebSphere MQ: Using .NET

name The name of the short property.

pd The attributes of the property.

GetStringProperty
public String GetFloatProperty(String name)

Throws MQException.

Returns the value of the String property with the specified name.

Parameters

name The name of the String property.

GetStringProperty
public String GetFloatProperty(String name, MQPropertyDescriptor pd)

Throws MQException.

Returns the value of the String property with the specified name,
completing the specified property descriptor.

Parameters

name The name of the String property.

pd The attributes of the property.

PutForwardMessage
public void PutForwardMessage(MQMessage message)

Throws MQException.

Puts a message to be forwarded on the queue using a default instance of
MQPutMessageOptions, with message containing the original message.

Parameters

message
The message to be forwarded

PutForwardMessage
public void PutForwardMessage(MQMessage message, MQPutMessageOptions putMessageOptions)

Throws MQException.

Puts a message to be forwarded on the queue with message containing the
original message.

Parameters

message
The message to be forwarded

putMessageOptions
Options controlling the action of the put. For more information, see
“MQPutMessageOptions” on page 81.

PutReplyMessage
public void PutReplyMessage(MQMessage message)

Throws MQException.

Puts a reply message on the queue using a default instance of
MQPutMessageOptions, with message containing the original message.

Chapter 2. Programming with WebSphere MQ classes for .NET 53

Parameters

message
The request message to be replied to

PutReplyMessage
public void PutReplyMessage(MQMessage message, MQPutMessageOptions putMessageOptions)

Throws MQException.

Puts a reply message on the queue with message containing the original
message.

Parameters

message
The request message to be replied to

putMessageOptions
Options controlling the action of the put. For more information, see
“MQPutMessageOptions” on page 81.

PutReportMessage
public void PutReportMessage(MQMessage message)

Throws MQException.

Puts a report message on the queue using a default instance of
MQPutMessageOptions, with message containing the original message.

Parameters

message
The message causing the report to be generated

PutReportMessage
public void PutReportMessage(MQMessage message, MQPutMessageOptions putMessageOptions)

Throws MQException.

Puts a report message on the queue with message containing the original
message.

Parameters

message
The message causing the report to be generated

putMessageOptions
Options controlling the action of the put. For more information, see
“MQPutMessageOptions” on page 81.

ReadBoolean
public bool ReadBoolean()

Throws IOException.

Reads a (signed) byte from the current position in the message buffer.

ReadByte
public byte ReadByte()

Throws IOException.

Reads a byte from the current position in the message buffer.

54 WebSphere MQ: Using .NET

ReadBytes
public byte[] ReadBytes(int count)

Throws IOException.

Reads byte[’count’] (’count’ bytes) from the buffer starting at the data
pointer. After the data has been read the data pointer is incremented by
’count’.

ReadChar
public char ReadChar()

Throws IOException, EndOfStreamException.

Reads a Unicode character from the current position in the message buffer.

ReadDecimal2
public short ReadDecimal2()

Throws IOException, EndOfStreamException.

Reads a 2-byte packed decimal number (-999 to 999). The behavior of this
method is controlled by the value of the encoding member variable. A
value of MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed
decimal number; a value of MQC.MQENC_DECIMAL_REVERSED reads a
little-endian packed decimal number.

ReadDecimal4
public int readDecimal4()

Throws IOException, EndOfStreamException.

Reads a 4-byte packed decimal number (-9999999 to 9999999). The behavior
of this method is controlled by the value of the encoding member variable.
A value of MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed
decimal number; a value of MQC.MQENC_DECIMAL_REVERSED reads a
little-endian packed decimal number.

ReadDecimal8
public long ReadDecimal8()

Throws IOException, EndOfStreamException.

Reads an 8-byte packed decimal number (-999999999999999 to
999999999999999). The behavior of this method is controlled by the
encoding member variable. A value of
MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed decimal
number; a value of MQC.MQENC_DECIMAL_REVERSED reads a
little-endian packed decimal number.

ReadDouble
public double ReadDouble()

Throws IOException, EndOfStreamException.

Reads a double from the current position in the message buffer. The value
of the encoding member variable determines the behavior of this method.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and
MQC.MQENC_FLOAT_IEEE_REVERSED read IEEE standard doubles in
big-endian and little-endian formats respectively.

Chapter 2. Programming with WebSphere MQ classes for .NET 55

A value of MQC.MQENC_FLOAT_S390 reads a System/390® format
floating point number.

ReadFloat
public float ReadFloat()

Throws IOException, EndOfStreamException.

Reads a float from the current position in the message buffer. The value of
the encoding member variable determines the behavior of this method.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and
MQC.MQENC_FLOAT_IEEE_REVERSED read IEEE standard floats in
big-endian and little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 reads a System/390 format floating
point number.

ReadFully
public void ReadFully(ref byte[] b)

Throws Exception, EndOfStreamException.

Fills the byte array b with data from the message buffer.

ReadFully
public void ReadFully(ref sbyte[] b)

Throws Exception, EndOfStreamException.

Fills the sbyte array b with data from the message buffer.

ReadFully
public void ReadFully(ref byte[] b,

int off,
int len)

Throws IOException, EndOfStreamException.

Fills len elements of the byte array b with data from the message buffer,
starting at offset off.

ReadFully
public void ReadFully(ref sbyte[] b,

int off,
int len)

Throws IOException, EndOfStreamException.

Fills len elements of the sbyte array b with data from the message buffer,
starting at offset off.

ReadInt
public int ReadInt()

Throws IOException, EndOfStreamException.

Reads an integer from the current position in the message buffer. The value
of the encoding member variable determines the behavior of this method.

A value of MQC.MQENC_INTEGER_NORMAL reads a big-endian integer;
a value of MQC.MQENC_INTEGER_REVERSED reads a little-endian
integer.

56 WebSphere MQ: Using .NET

ReadInt2
public short ReadInt2()

Throws IOException, EndOfStreamException.

Synonym for ReadShort(), provided for cross-language WebSphere MQ API
compatibility.

ReadInt4
public int ReadInt4()

Throws IOException, EndOfStreamException.

Synonym for ReadInt(), provided for cross-language WebSphere MQ API
compatibility.

ReadInt8
public long ReadInt8()

Throws IOException, EndOfStreamException.

Synonym for ReadLong(), provided for cross-language WebSphere MQ API
compatibility.

ReadLine
public String ReadLine()

Throws IOException.

Converts from the code set identified in the characterSet member variable
to Unicode, and then reads in a line that has been terminated by \n, \r,
\r\n, or EOF.

ReadLong
public long ReadLong()

Throws IOException, EndOfStreamException.

Reads a long from the current position in the message buffer. The value of
the encoding member variable determines the behavior of this method.

A value of MQC.MQENC_INTEGER_NORMAL reads a big-endian long; a
value of MQC.MQENC_INTEGER_REVERSED reads a little-endian long.

ReadObject
public Object ReadObject()

Throws SerialisationException, IOException.

Reads an object from the message buffer. The class of the object, the
signature of the class, and the value of the non-transient and non-static
fields of the class are all read.

ReadShort
public short ReadShort()

Throws IOException, EndOfStreamException.

Reads a short from the current position in the message buffer. The value of
the encoding member variable determines the behavior of this method.

Chapter 2. Programming with WebSphere MQ classes for .NET 57

A value of MQC.MQENC_INTEGER_NORMAL reads a big-endian short; a
value of MQC.MQENC_INTEGER_REVERSED reads a little-endian short.

ReadString
public String ReadString(int length)

Throws IOException, EndOfStreamException.

Reads a string in the code set identified by the characterSet member
variable, and convert it into Unicode.

Parameters:

length The number of characters to read (which can differ from the
number of bytes according to the code set, because some code sets
use more than one byte per character).

ReadUInt2
public ushort ReadUInt2()

Throws IOException, EndOfStreamException.

Synonym for ReadUnsignedShort(), provided for cross-language
WebSphere MQ API compatibility.

ReadUnsignedByte
public byte ReadUnsignedByte()

Throws IOException, EndOfStreamException.

Reads an unsigned byte from the current position in the message buffer.

ReadUnsignedShort
public ushort ReadUnsignedShort()

Throws IOException, EndOfStreamException.

Reads an unsigned short from the current position in the message buffer.
The value of the encoding member variable determines the behavior of this
method.

A value of MQC.MQENC_INTEGER_NORMAL reads a big-endian
unsigned short; a value of MQC.MQENC_INTEGER_REVERSED reads a
little-endian unsigned short.

ReadUTF
public String ReadUTF()

Throws IOException.

Reads a UTF string, prefixed by a 2-byte length field, from the current
position in the message buffer.

ResizeBuffer
public void ResizeBuffer(int size)

Throws IOException.

A hint to the MQMessage object about the size of buffer that might be
required for subsequent get operations. If the message currently contains
message data, and the new size is less than the current size, the message
data is truncated.

58 WebSphere MQ: Using .NET

Seek
public void Seek(int pos)

Throws IOException, ArgumentOutOfRangeException ArgumentException.

Moves the cursor to the absolute position in the message buffer given by
pos. Subsequent reads and writes act at this position in the buffer.

SetBooleanProperty
public void SetBooleanProperty(String name, boolean value)

Throws MQException.

Sets a boolean property value with the specified name into the message,
with the default property descriptor.

Parameters

name The name of the boolean property.

value The boolean property value to set.

SetBooleanProperty
public void SetBooleanProperty(String name, MQPropertyDescriptor pd, boolean value)

Throws MQException.

Sets a boolean property value with the specified name into the message,
with the specified property descriptor.

Parameters

name The name of the boolean property.

pd The attributes of the property.

value The boolean property value to set.

SetByteProperty
public void SetByteProperty(String name, sbyte value)

Throws MQException.

Sets a signed byte property value with the specified name into the
message, with the default property descriptor.

Parameters

name The name of the byte property.

value The byte property value to set.

SetByteProperty
public void SetByteProperty(String name, MQPropertyDescriptor pd, sbyte value)

Throws MQException.

Sets a signed byte property value with the specified name into the
message, with the specified property descriptor.

Parameters

name The name of the byte property.

pd The attributes of the property.

value The byte property value to set.

Chapter 2. Programming with WebSphere MQ classes for .NET 59

SetBytesProperty
public void SetBytesProperty(String name, sbyte[] value)

Throws MQException.

Sets a signed byte array property value with the specified name into the
message, with the default property descriptor.

Parameters

name The name of the byte array property.

value The byte array property value to set.

SetBytesProperty
public void SetBytesProperty(String name, MQPropertyDescriptor pd, sbyte[] value)

Throws MQException.

Sets a signed byte array property value with the specified name into the
message, with the specified property descriptor.

Parameters

name The name of the byte array property.

pd The attributes of the property.

value The byte array property value to set.

SetDoubleProperty
public void SetDoubleProperty(String name, double value)

Throws MQException.

Sets a double property value with the specified name into the message,
with the default property descriptor.

Parameters

name The name of the double property.

value The double property value to set.

SetDoubleProperty
public void SetDoubleProperty(String name, MQPropertyDescriptor pd, double value)

Throws MQException.

Sets a double property value with the specified name into the message,
with the specified property descriptor.

Parameters

name The name of the double property.

pd The attributes of the property.

value The double property value to set.

SetFloatProperty
public void SetFloatProperty(String name, float value)

Throws MQException.

Sets a float property value with the specified name into the message, with
the default property descriptor.

60 WebSphere MQ: Using .NET

Parameters

name The name of the float property.

value The float property value to set.

SetFloatProperty
public void SetFloatProperty(String name, MQPropertyDescriptor pd, float value)

Throws MQException.

Sets a float property value with the specified name into the message, with
the specified property descriptor.

Parameters

name The name of the float property.

pd The attributes of the property.

value The float property value to set.

SetIntProperty
public void SetIntProperty(String name, int value)

Throws MQException.

Sets an int property value with the specified name into the message, with
the default property descriptor.

Parameters

name The name of the int property.

value The int property value to set.

SetIntProperty
public void SetIntProperty(String name, MQPropertyDescriptor pd, int value)

Throws MQException.

Sets an int property value with the specified name into the message, with
the specified property descriptor.

Parameters

name The name of the int property.

pd The attributes of the property.

value The int property value to set.

SetInt2Property
public void SetInt2Property(String name, short value)

Throws MQException.

Synonym for SetShortProperty(), provided for cross-language WebSphere
MQ API compatibility.

Parameters

name The name of the short property.

value The short property value to set.

SetInt2Property
public void SetInt2Property(String name, MQPropertyDescriptor pd, short value)

Chapter 2. Programming with WebSphere MQ classes for .NET 61

Throws MQException.

Synonym for SetShortProperty(), provided for cross-language WebSphere
MQ API compatibility.

Parameters

name The name of the short property.

pd The attributes of the property.

value The short property value to set.

SetInt4Property
public void SetInt4Property(String name, int value)

Throws MQException.

Synonym for SetIntProperty(), provided for cross-language WebSphere MQ
API compatibility.

Parameters

name The name of the int property.

value The int property value to set.

SetInt4Property
public void SetInt4Property(String name, MQPropertyDescriptor pd, int value)

Throws MQException.

Synonym for SetIntProperty(), provided for cross-language WebSphere MQ
API compatibility.

Parameters

name The name of the int property.

pd The attributes of the property.

value The int property value to set.

SetInt8Property
public void SetInt8Property(String name, long value)

Throws MQException.

Synonym for SetLongProperty(), provided for cross-language WebSphere
MQ API compatibility.

Parameters

name The name of the long property.

value The long property value to set.

SetInt8Property
public void SetInt8Property(String name, MQPropertyDescriptor pd,long value)

Throws MQException.

Synonym for SetLongProperty(), provided for cross-language WebSphere
MQ API compatibility.

Parameters

name The name of the long property.

62 WebSphere MQ: Using .NET

pd The attributes of the property.

value The long property value to set.

SetLongProperty
public void SetLongProperty(String name, long value)

Throws MQException.

Sets a long property value with the specified name into the message, with
the default property descriptor.

Parameters

name The name of the long property.

value The long property value to set.

SetLongProperty
public void SetLongProperty(String name, MQPropertyDescriptor pd, long value)

Throws MQException.

Sets a long property value with The specified name into the message, with
the specified property descriptor.

Parameters

name The name of the long property.

pd The attributes of the property.

value The long property value to set.

SetObjectProperty
public void SetObjectProperty(String name, Object value)

Throws MQException.

Sets a .NET object property value with the specified name into the
message, with the default property descriptor.

This method works only for the objectified primitive object types (Integer,
Double, Long, and so on) and String objects. The property is set as if the
Set*Property method had been called directly, for example, an Integer
object leads to an int property value being set, and a Long object leads to a
long property value being set.

Parameters

name The name of the .NET object property.

value The .NET object property value to set

SetObjectProperty
public void SetObjectProperty(String name, MQPropertyDescriptor pd, Object value)

Throws MQException.

Sets a .NET object property value with the specified name into the
message, with the specified property descriptor.

This method works only for the objectified primitive object types (Integer,
Double, Long, and so on) and String objects. The property is set as if the
Set*Property method had been called directly, for example, an Integer
object leads to an int property value being set, and a Long object leads to a
long property value being set.

Chapter 2. Programming with WebSphere MQ classes for .NET 63

Parameters

name The name of the .NET object property.

pd The attributes of the property.

value The .NET object property value to set.

SetShortProperty
public void SetShortProperty(String name, short value)

Throws MQException.

Sets a short property value with the specified name into the message, with
the default property descriptor.

Parameters

name The name of the short property.

value The short property value to set.

SetShortProperty
public void SetShortProperty(String name, MQPropertyDescriptor pd, short value)

Throws MQException.

Sets a short property value with the specified name into the message, with
the specified property descriptor.

Parameters

name The name of the short property.

pd The attributes of the property.

value The short property value to set.

SetStringProperty
public void SetBytesProperty(String name, String value)

Throws MQException.

Sets a String property value with the specified name into the message,
with the default property descriptor.

Parameters

name The name of the string property.

value The string property value to set.

SetStringProperty
public void SetBytesProperty(String name, MQPropertyDescriptor pd, String value)

Throws MQException.

Sets a String property value with the specified name into the message,
with the specified property descriptor.

Parameters

name The name of the string property.

pd The attributes of the property.

value The string property value to set.

SkipBytes

64 WebSphere MQ: Using .NET

public int SkipBytes(int n)

Throws IOException, EndOfStreamException.

Moves forward n bytes in the message buffer.

This method blocks until one of the following occurs:
v All the bytes are skipped
v The end of message buffer is detected
v An exception is thrown

Returns the number of bytes skipped, which is always n.

Write
public void Write(int b)

Throws IOException.

Writes a byte into the message buffer at the current position.

Write
public void Write(byte[] b)

Throws IOException.

Writes an array of bytes into the message buffer at the current position.

Write
public void Write(sbyte[] b)

Throws IOException.

Writes an array of sbytes into the message buffer at the current position.

Write
public void Write(byte[] b,

int off,
int len)

Throws IOException.

Writes a series of bytes into the message buffer at the current position. len
bytes are written, taken from offset off in the array b.

Write
public void Write(sbyte b[],

int off,
int len)

Throws IOException.

Writes a series of sbytes into the message buffer at the current position. len
sbytes are written, taken from offset off in the array b.

WriteBoolean
public void WriteBoolean(boolean v)

Throws IOException.

Writes a boolean into the message buffer at the current position.

WriteByte
public void WriteByte(int v)

Chapter 2. Programming with WebSphere MQ classes for .NET 65

Throws IOException.

Writes a byte into the message buffer at the current position.

WriteByte
public void WriteByte(byte value)

Throws IOException.

Writes a byte into the message buffer at the current position.

WriteByte
public void WriteByte(sbyte value)

Throws IOException.

Writes an sbyte into the message buffer at the current position.

WriteBytes
public void WriteBytes(String s)

Throws IOException.

Writes the string to the message buffer as a sequence of bytes. Each
character in the string is written in sequence by discarding its high eight
bits.

WriteChar
public void WriteChar(int v)

Throws IOException.

Writes a Unicode character into the message buffer at the current position.

WriteChars
public void WriteChars(String s)

Throws IOException.

Writes a string as a sequence of Unicode characters into the message buffer
at the current position.

WriteDecimal2
public void WriteDecimal2(short v)

Throws IOException, MQException.

Writes a 2-byte packed decimal format number into the message buffer at
the current position. The value of the encoding member variable
determines the behavior of this method.

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian
packed decimal; a value of MQC.MQENC_DECIMAL_REVERSED writes a
little-endian packed decimal.

Parameters

v can be in the range -999 to 999.

WriteDecimal4
public void WriteDecimal4(int v)

Throws IOException, MQException.

66 WebSphere MQ: Using .NET

Writes a 4-byte packed decimal format number into the message buffer at
the current position. The value of the encoding member variable
determines the behavior of this method.

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian
packed decimal; a value of MQC.MQENC_DECIMAL_REVERSED writes a
little-endian packed decimal.

Parameters

v can be in the range -9999999 to 9999999.

WriteDecimal8
public void WriteDecimal8(long v)

Throws IOException, MQException.

Writes an 8-byte packed decimal format number into the message buffer at
the current position. The value of the encoding member variable
determines the behavior of this method.

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian
packed decimal; a value of MQC.MQENC_DECIMAL_REVERSED writes a
little-endian packed decimal.

Parameters:

v can be in the range -999999999999999 to 999999999999999.

WriteDouble
public void WriteDouble(double v)

Throws IOException, MQException.

Writes a double into the message buffer at the current position. The value
of the encoding member variable determines the behavior of this method.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and
MQC.MQENC_FLOAT_IEEE_REVERSED write IEEE standard floats in
big-endian and little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 writes a System/390 format
floating point number. Note that the range of IEEE doubles is greater than
the range of S/390® double precision floating point numbers, therefore
very large numbers cannot be converted.

WriteFloat
public void WriteFloat(float v)

Throws IOException, MQException.

Writes a float into the message buffer at the current position. The value of
the encoding member variable determines the behavior of this method.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and
MQC.MQENC_FLOAT_IEEE_REVERSED write IEEE standard floats in
big-endian and little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 writes a System/390 format
floating point number.

WriteInt
public void WriteInt(int v)

Chapter 2. Programming with WebSphere MQ classes for .NET 67

Throws IOException.

Writes an integer into the message buffer at the current position. The value
of the encoding member variable determines the behavior of this method.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian
integer; a value of MQC.MQENC_INTEGER_REVERSED writes a
little-endian integer.

WriteInt2
public void WriteInt2(int v)

Throws IOException.

Synonym for WriteShort(), provided for cross-language WebSphere MQ
API compatibility.

WriteInt4
public void WriteInt4(int v)

Throws IOException.

Synonym for WriteInt(), provided for cross-language WebSphere MQ API
compatibility.

WriteInt8
public void WriteInt8(long v)

Throws IOException.

Synonym for WriteLong(), provided for cross-language WebSphere MQ API
compatibility.

WriteLong
public void WriteLong(long v)

Throws IOException.

Writes a long into the message buffer at the current position. The value of
the encoding member variable determines the behavior of this method.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian long; a
value of MQC.MQENC_INTEGER_REVERSED writes a little-endian long.

WriteObject
public void WriteObject(Object obj)

Throws IOException.

Writes the specified object to the message buffer. The class of the object, the
signature of the class, and the values of the non-transient and non-static
fields of the class and all its supertypes are all written.

WriteShort
public void WriteShort(int v)

Throws IOException.

Writes a short into the message buffer at the current position. The value of
the encoding member variable determines the behavior of this method.

68 WebSphere MQ: Using .NET

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian short;
a value of MQC.MQENC_INTEGER_REVERSED writes a little-endian
short.

WriteString
public void WriteString(String str)

Throws IOException.

Writes a string into the message buffer at the current position, converting it
to the code set identified by the characterSet member variable.

WriteUTF
public void WriteUTF(String str)

Throws IOException.

Writes a UTF string, prefixed by a 2-byte length field, into the message
buffer at the current position.

Properties
Properties for MQMessage.

AccountingToken
public String AccountingToken {get; set;}

Part of the identity context of the message; it allows an application to
charge for work done as a result of the message.

The default value is MQC.MQACT_NONE.

ApplicationIdData
public String ApplicationIdData {get; set;}

Part of the identity context of the message; it is information that is defined
by the application suite, and can be used to provide additional information
about the message or its originator.

The default value is ″″.

ApplicationOriginData
public String ApplicationOriginData {get; set;}

Information defined by the application that can be used to provide
additional information about the origin of the message.

The default value is ″″.

BackoutCount
public int BackoutCount {get;}

A count of the number of times the message has previously been returned
by an MQQueue.Get() call as part of a unit of work, and subsequently
backed out.

The default value is zero.

CharacterSet
public int CharacterSet {get; set;}

The coded character set identifier of character data in the application
message data. The behavior of the ReadString, ReadLine, and WriteString
methods is altered accordingly.

Chapter 2. Programming with WebSphere MQ classes for .NET 69

The default value for this field is MQC.MQCCSI_Q_MGR. If the default
value is used, CharacterSet 1200 (Unicode) is assumed. The following table
shows coded character set identifiers and the characterSet values to use:

Table 1. Character set identifiers

characterSet Description

37 ibm037
437 ibm437 / PC Original
500 ibm500
819 iso-8859-1 / latin1 / ibm819
1200 Unicode
1208 UTF-8
273 ibm273
277 ibm277
278 ibm278
280 ibm280
284 ibm284
285 ibm285
297 ibm297
420 ibm420
424 ibm424
737 ibm737 / PC Greek
775 ibm775 / PC Baltic
813 iso-8859-7 / greek / ibm813
838 ibm838
850 ibm850 / PC Latin 1
852 ibm852 / PC Latin 2
855 ibm855 / PC Cyrillic
856 ibm856
857 ibm857 / PC Turkish
860 ibm860 / PC Portuguese
861 ibm861 / PC Icelandic
862 ibm862 / PC Hebrew
863 ibm863 / PC Canadian French
864 ibm864 / PC Arabic
865 ibm865 / PC Nordic
866 ibm866 / PC Russian
868 ibm868
869 ibm869 / PC Modern Greek
870 ibm870
871 ibm871
874 ibm874
875 ibm875
912 iso-8859-2 / latin2 / ibm912
913 iso-8859-3 / latin3 / ibm913
914 iso-8859-4 / latin4 / ibm914
915 iso-8859-5 / cyrillic / ibm915
916 iso-8859-8 / hebrew / ibm916
918 ibm918
920 iso-8859-9 / latin5 / ibm920
921 ibm921
922 ibm922
930 ibm930
932 PC Japanese
933 ibm933

70 WebSphere MQ: Using .NET

Table 1. Character set identifiers (continued)

characterSet Description

935 ibm935
937 ibm937
939 ibm939
942 ibm942
948 ibm948
949 ibm949
950 ibm950 / Big 5 Traditional Chinese
954 EUCJIS
964 ibm964 / CNS 11643 Traditional Chinese
970 ibm970
1006 ibm1006
1025 ibm1025
1026 ibm1026
1089 iso-8859-6 / arabic / ibm1089
1097 ibm1097
1098 ibm1098
1112 ibm1112
1122 ibm1122
1123 ibm1123
1124 ibm1124
1250 Windows® Latin 2
1251 Windows Cyrillic
1252 Windows Latin 1
1253 Windows Greek
1254 Windows Turkish
1255 Windows Hebrew
1256 Windows Arabic
1257 Windows Baltic
1258 Windows Vietnamese
1381 ibm1381
1383 ibm1383
2022 JIS
5601 ksc-5601 Korean
33722 ibm33722

CorrelationId
public byte[] CorrelationId {get;set;}

For an MQQueue.Get() call, the correlation identifier of the message to be
retrieved. Normally the queue manager returns the first message with a
message identifier and correlation identifier that match those specified. The
special value MQC.MQCI_NONE allows any correlation identifier to
match.

For an MQQueue.Put() call, this specifies the correlation identifier to use.

The default value is MQC.MQCI_NONE.

DataLength
public int DataLength {get;}

The number of bytes of message data remaining to be read.

DataOffset
public int DataOffset {get; set;}

Chapter 2. Programming with WebSphere MQ classes for .NET 71

The current cursor position within the message data (the point at which
read and write operations take effect).

Encoding
public int Encoding {get; set;}

The representation used for numeric values in the application message
data; this applies to binary, packed decimal, and floating point data. The
behavior of the read and write methods for these numeric formats is
altered accordingly.

The following encodings are defined for binary integers:

MQC.MQENC_INTEGER_NORMAL
Big-endian integers.

MQC.MQENC_INTEGER_REVERSED
Little-endian integers, as used by PCs.

The following encodings are defined for packed-decimal integers:

MQC.MQENC_DECIMAL_NORMAL
Big-endian packed-decimal, as used by z/OS®.

MQC.MQENC_DECIMAL_REVERSED
Little-endian packed-decimal.

The following encodings are defined for floating-point numbers:

MQC.MQENC_FLOAT_IEEE_NORMAL
Big-endian IEEE floats.

MQC.MQENC_FLOAT_IEEE_REVERSED
Little-endian IEEE floats, as used by PCs.

MQC.MQENC_FLOAT_S390
z/OS format floating points.

Construct a value for the encoding field by adding together one value from
each of these three sections (or using the bitwise OR operator). The default
value is: MQC.MQENC_INTEGER_REVERSED |
MQC.MQENC_DECIMAL_REVERSED |
MQC.MQENC_FLOAT_IEEE_REVERSED For convenience, this value is
also represented by MQC.MQENC_NATIVE. This setting causes WriteInt()
to write a little-endian integer, and ReadInt() to read a little-endian integer.
If you set the flag MQC.MQENC_INTEGER_NORMAL flag instead,
WriteInt() writes a big-endian integer, and ReadInt() reads a big-endian
integer.

A loss in precision can occur when converting from IEEE format floating
points to zSeries® format floating points.

Expiry public int Expiry {get; set;}

An expiry time expressed in tenths of a second, set by the application that
puts the message. After a message’s expiry time has elapsed, it is eligible
to be discarded by the queue manager. If the message specified one of the
MQC.MQRO_EXPIRATION flags, a report is generated when the message
is discarded.

The default value is MQC.MQEI_UNLIMITED, meaning that the message
never expires.

Feedback
public int Feedback {get; set;}

72 WebSphere MQ: Using .NET

Used with a message of type MQC.MQMT_REPORT to indicate the nature
of the report. The following feedback codes are defined by the system:
v MQC.MQFB_EXPIRATION
v MQC.MQFB_COA
v MQC.MQFB_COD
v MQC.MQFB_QUIT
v MQC.MQFB_PAN
v MQC.MQFB_NAN
v MQC.MQFB_DATA_LENGTH_ZERO
v MQC.MQFB_DATA_LENGTH_NEGATIVE
v MQC.MQFB_DATA_LENGTH_TOO_BIG
v MQC.MQFB_BUFFER_OVERFLOW
v MQC.MQFB_LENGTH_OFF_BY_ONE
v MQC.MQFB_IIH_ERROR

Application-defined feedback values in the range
MQC.MQFB_APPL_FIRST to MQC.MQFB_APPL_LAST can also be used.

The default value of this field is MQC.MQFB_NONE, indicating that no
feedback is provided.

Format
public String Format {get; set;}

A format name used by the sender of the message to indicate the nature of
the data in the message to the receiver. You can use your own format
names, but names beginning with the letters MQ have meanings that are
defined by the queue manager. The queue manager built-in formats are:

MQC.MQFMT_ADMIN
Command server request/reply message.

MQC.MQFMT_COMMAND_1
Type 1 command reply message.

MQC.MQFMT_COMMAND_2
Type 2 command reply message.

MQC.MQFMT_DEAD_LETTER_HEADER
Dead-letter header.

MQC.MQFMT_EVENT
Event message.

MQC.MQFMT_NONE
No format name.

MQC.MQFMT_PCF
User-defined message in programmable command format.

MQC.MQFMT_STRING
Message consisting entirely of characters.

MQC.MQFMT_TRIGGER
Trigger message

MQC.MQFMT_XMIT_Q_HEADER
Transmission queue header.

The default value is MQC.MQFMT_NONE.

Chapter 2. Programming with WebSphere MQ classes for .NET 73

GroupId
public byte[] GroupId {get; set;}

A byte string that identifies the message group to which the physical
message belongs.

The default value is MQC.MQGI_NONE.

MessageFlags
public int MessageFlags {get; set;}

Flags controlling the segmentation and status of a message.

MessageId
public byte[] MessageId {get; set;}

For an MQQueue.Get() call, this field specifies the message identifier of the
message to be retrieved. Normally, the queue manager returns the first
message with a message identifier and correlation identifier that match
those specified. The special value MQC.MQMI_NONE allows any message
identifier to match.

For an MQQueue.Put() call, this field specifies the message identifier to
use. If MQC.MQMI_NONE is specified, the queue manager generates a
unique message identifier when the message is put. The value of this
member variable is updated after the put, to indicate the message identifier
that was used.

The default value is MQC.MQMI_NONE.

MessageLength
public int MessageLength {get;}

The number of bytes of message data in the MQMessage object.

MessageSequenceNumber
public int MessageSequenceNumber {get; set;}

The sequence number of a logical message within a group.

MessageType
public int MessageType {get; set;}

Indicates the type of the message. The following values are currently
defined by the system:
v MQC.MQMT_DATAGRAM
v MQC.MQMT_REPLY
v MQC.MQMT_REPORT
v MQC.MQMT_REQUEST

Application-defined values can also be used, in the range
MQC.MQMT_APPL_FIRST to MQC.MQMT_APPL_LAST.

The default value of this field is MQC.MQMT_DATAGRAM.

Offset public int Offset {get; set;}

In a segmented message, the offset of data in a physical message from the
start of a logical message.

OriginalLength
public int OriginalLength {get; set;}

The original length of a segmented message.

74 WebSphere MQ: Using .NET

|

|

Persistence
public int Persistence {get; set;}

Message persistence. The following values are defined:
v MQC.MQPER_NOT_PERSISTENT
v MQC.MQPER_PERSISTENT
v MQC.MQPER_PERSISTENCE_AS_Q_DEF

The default value is MQC.MQPER_PERSISTENCE_AS_Q_DEF, which takes
the persistence for the message from the default persistence attribute of the
destination queue.

Priority
public int Priority {get; set;}

The message priority. The special value
MQC.MQPRI_PRIORITY_AS_Q_DEF can also be set in outbound
messages, in which case the priority for the message is taken from the
default priority attribute of the destination queue.

The default value is MQC.MQPRI_PRIORITY_AS_Q_DEF.

PropertyValidation
public int PropertyValidation {get; set;}

Specifies whether validation of properties will take place when a property
of the message is set. Possible values are:
v MQCMHO_DEFAULT_VALIDATION
v MQCMHO_VALIDATE
v MQCMHO_NO_VALIDATION

The default value is MQCMHO_DEFAULT_VALIDATION.

PutApplicationName
public String PutApplicationName {get; set;}

The name of the application that put the message. The default value is ″″.

PutApplicationType
public int PutApplicationType {get; set;}

The type of application that put the message. This can be a system-defined
or user-defined value. The following values are defined by the system:
v MQC.MQAT_AIX
v MQC.MQAT_CICS
v MQC.MQAT_DOS
v MQC.MQAT_IMS
v MQC.MQAT_MVS
v MQC.MQAT_OS2
v MQC.MQAT_OS400
v MQC.MQAT_QMGR
v MQC.MQAT_UNIX
v MQC.MQAT_WINDOWS
v MQC.MQAT_JAVA

The default value is the special value MQC.MQAT_NO_CONTEXT, which
indicates that no context information is present in the message.

Chapter 2. Programming with WebSphere MQ classes for .NET 75

PutDateTime
public DateTime PutDateTime {get; set;}

The time and date that the message was put.

ReplyToQueueManagerName
public String ReplyToQueueManagerName {get; set;}

The name of the queue manager to which reply or report messages will be
sent.

The default value is ″″.

If the value is ″″ on an MQQueue.put() call, the QueueManager fills in the
value.

ReplyToQueueName
public String ReplyToQueueName {get; set;}

The name of the message queue to which the application that issued the
get request for the message will send MQC.MQMT_REPLY and
MQC.MQMT_REPORT messages.

The default value is ″″.

Report
public int Report {get; set;}

A report is a message about another message. This member variable
enables the application sending the original message to specify which
report messages are required, whether the application message data is to
be included in them, and how to set the message and correlation identifiers
in the report or reply. Any, all, or none of the following report types can be
requested:
v Exception
v Expiration
v Confirm on arrival
v Confirm on delivery

For each type, only one of the three corresponding values can be specified,
depending on whether the application message data is to be included in
the report message.

Note: Values marked with ** in the following list are not supported by
z/OS queue managers; do not use them if your application is likely to
access a z/OS queue manager, regardless of the platform on which the
application is running.

The valid values are:
v MQC.MQRO_COA
v MQC.MQRO_COA_WITH_DATA
v MQC.MQRO_COA_WITH_FULL_DATA**

v MQC.MQRO_COD
v MQC.MQRO_COD_WITH_DATA
v MQC.MQRO_COD_WITH_FULL_DATA**

v MQC.MQRO_EXCEPTION
v MQC.MQRO_EXCEPTION_WITH_DATA
v MQC.MQRO_EXCEPTION_WITH_FULL_DATA**

76 WebSphere MQ: Using .NET

|

v MQC.MQRO_EXPIRATION
v MQC.MQRO_EXPIRATION_WITH_DATA
v MQC.MQRO_EXPIRATION_WITH_FULL_DATA**

You can specify one of the following to control how the message Id is
generated for the report or reply message:
v MQC.MQRO_NEW_MSG_ID
v MQC.MQRO_PASS_MSG_ID

You can specify one of the following to control how the correlation Id of
the report or reply message is to be set:
v MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID
v MQC.MQRO_PASS_CORREL_ID

You can specify one of the following to control the disposition of the
original message when it cannot be delivered to the destination queue:
v MQC.MQRO_DEAD_LETTER_Q
v MQC.MQRO_DISCARD_MSG **

If no report options are specified, the default is:
MQC.MQRO_NEW_MSG_ID |
MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID |
MQC.MQRO_DEAD_LETTER_Q

You can specify one or both of the following to request that the receiving
application sends a positive action or negative action report message.
v MQC.MQRO_PAN
v MQC.MQRO_NAN

TotalMessageLength
public int TotalMessageLength {get;}

The total number of bytes in the message as stored on the message queue
from which this message was received.

UserId
public String UserId {get; set;}

Part of the identity context of the message; it identifies the user that
originated this message.

The default value is ″″.

Version
public int Version {get; set;}

The version of the MQMD structure in use.

For more detailed descriptions of these properties, see MQMD - message
descriptor fields.

MQProcess
MQProcess object for .NET

Chapter 2. Programming with WebSphere MQ classes for .NET 77

|
|

|

|

|

public class IBM.WMQ.MQProcess
extends IBM.WMQ.MQManagedObject

MQProcess provides inquire operations for WebSphere MQ processes. Use either
the corresponding MQProcess constructors or the
MQQueueManager::AccessProcess (...) methods to create an MQProcess object.

Constructors for MQProcess
Constructors for MQProcess.

MQProcess
public MQProcess(MQQueueManager qMgr, String processName, int openOptions)

Throws MQException.

Establishes access to a WebSphere MQ process on the queue manager qMgr
such that the process attributes can be inquired. The default user authority
is used for connection to the queue manager.

See MQQueueManager.AccessProcess for details of the remaining
parameters.

MQProcess
public MQProcess(MQQueueManager qMgr, String processName, int openOptions,

String queueManagerName, String alternateUserId)

Throws MQException.

Establishes access to a WebSphere MQ process on the queue manager qMgr
such that the process attributes can be inquired. The specified alternative
user authority is used for connection to the queue manager.

See MQQueueManager.AccessProcess for details of the remaining
parameters.

Properties
Properties for MQProcess.

ApplicationId
public String ApplicationId { get; }

Gets the character string that identifies the application to be started. This
information is used by the trigger monitor application that processes
messages on the initiation queue; the information is sent to the initiation
queue as part of the trigger message.

The default value is null.

ApplicationType
public int ApplicationType { get; }

System.Object
│
└─ IBM.WMQ.MQBase
│
└─ IBM.WMQ.MQBaseObject
│
└─ IBM.WMQ.MQManagedObject
│
└─ IBM.WMQ.MQProcess

78 WebSphere MQ: Using .NET

|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|

|

|

|
|
|

|
|

|

|
|

|

|
|
|

|
|

|
|

|
|

|
|
|
|

|

|
|

Identifies the nature of the process to be started in response to a trigger
message. The following standard types have already been defined but
others can be used:
v MQAT_AIX
v MQAT_CICS
v MQAT_IMS
v MQAT_MVS
v MQAT_NATIVE
v MQAT_OS400
v MQAT_UNIX
v MQAT_WINDOWS
v MQAT_JAVA
v MQAT_USER_FIRST
v MQAT_USER_LAST

The default value is MQAT_NATIVE.

EnvironmentData
public String EnvironmentData { get; }

Gets information on the environment of the application that is to be
started.

The default value is null.

UserData
public String UserData { get; }

Gets information pertaining to the application to be started.

The default value is null.

MQPropertyDescriptor
This class encapsulates a property descriptor structure (MQPD). An MQPD
instance describes an MQMessage property.

public class IBM.WMQ.MQPropertyDescriptor
extends System.Object

This class is an input parameter on the MQMessage.set*Property() calls and an
output parameter on the MQMessage.get*Property() calls.

Constructors
Constructors for the property descriptor (MQPD).

ImqPropertyDescriptor();
Create a new property descriptor.

Properties
Properties for MQPropertyDescriptor

Context
public int Context { get; set; }

System.Object
│
└─ IBM.WMQ.MQPropertyDescriptor

Chapter 2. Programming with WebSphere MQ classes for .NET 79

|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|

|
|

|

|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

The message context the property belongs to. Possible values are:

CMQC.MQPD_NO_CONTEXT
The property is not associated with a message context.

CMQC.MQPD_USER_CONTEXT
The property is associated with the user context.

A property associated with the user context is saved as described
for MQOO_SAVE_ALL_CONTEXT. An MQPUT call with
MQPMO_PASS_ALL_CONTEXT specified, causes the property to
be copied from the saved context into the new message.

CopyOptions
public int CopyOptions { get; set; }

This describes which type of message the property should be copied into.

When a queue manager receives a message containing a WebSphere
MQ-defined property that the queue manager recognizes as being
incorrect. the queue manager corrects the value of the CopyOptions field.

Any of the following can be specified. If more than one is required the
values can be:
v Added together (do not add the same constant more than once), or
v Combined using the bitwise OR operation (if the programming language

supports bit operations).

You can specifiy one or more of these options:

CMQC.MQCOPY_ALL
This property is copied into all types of subsequent messages.

CMQC.MQCOPY_FORWARD
This property iscopied into a message being forwarded.

CMQC.MQCOPY_PUBLISH
This property is copied into the message received by a subscriber
when a message is being published.

CMQC.MQCOPY_REPLY
This property is copied into a reply message.

CMQC.MQCOPY_REPORT
This property is copied into a report message.

CMQC.MQCOPY_DEFAULT
Use this value to indicate that no other copy options have been
specified; programmatically no relationship exists between this
property and subsequent messages. This is always returned for
message descriptor properties.

CMQC.MQCOPY_NONE
Use this value to indicate that no other copy options have been
specified; programmatically no relationship exists between this
property and subsequent messages. This is always returned for
message descriptor properties.

Options
public int Options { set; }

Message property’s options. This is always an input field. The default
value is CMQC.MQPD_NONE

80 WebSphere MQ: Using .NET

|

|
|

|
|

|
|
|
|

|
|

|

|
|
|

|
|

|

|
|

|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

Support
public int Support { get; set; }

This field describes what level of support for the message property is
required of the queue manager in order for the message containing this
property to be put to a queue. This only applies to WebSphere MQ-defined
properties; support for all other properties is optional. Any or none of the
following values can be specified

CMQC.MQPD_SUPPORT_OPTIONAL
The property is accepted by a queue manager even if it is not
supported. The property can be discarded in order for the message
to flow to a queue manager that does not support message
properties. This value is also assigned to properties that are not
WebSphere MQ-defined.

CMQC.MQPD_SUPPORT_REQUIRED
Support for the property is required. The message is rejected by a
queue manager that does not support the WebSphere MQ-defined
property. The MQPUT or MQPUT1 call fails with completion code
MQCC_FAILED and reason code
MQRC_UNSUPPORTED_PROPERTY.

CMQC.MQPD_SUPPORT_REQUIRED_IF_LOCAL
The message is rejected by a queue manager that does not support
the WebSphere MQ-defined property if the message is destined for
a local queue. The MQPUT or MQPUT1 call fails with completion
code MQCC_FAILED and reason code
MQRC_UNSUPPORTED_PROPERTY.

The MQPUT or MQPUT1 call succeeds if the message is destined
for a remote queue manager.

Version
This is the structure version number; the initial value is
MQPD_VERSION_1.

MQPD_VERSION_1
Version-1 property descriptor structure.

MQPD_CURRENT_VERSION
Current version of property descriptor structure.

MQPutMessageOptions
This class contains options that control the behavior of MQQueue.put().

public class IBM.WMQ.MQPutMessageOptions
extends IBM.WMQ.MQBaseObject

Note: The behavior of some of the options available in this class depends on the
environment in which they are used. These elements are marked with an asterisk
(*).

System.Object
│
└─ IBM.WMQ.MQBase
│
└─ IBM.WMQ.MQBaseObject
│
└─ IBM.WMQ.MQPutMessageOptions

Chapter 2. Programming with WebSphere MQ classes for .NET 81

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|

Constructors
MQPutMessageOptions

public MQPutMessageOptions()

Construct a new MQPutMessageOptions object with no options set, and a
blank resolvedQueueName and resolvedQueueManagerName.

Properties
Properties of MQPutMessageOptions.

ContextReference
public MQQueue ContextReference {get; set;}

An input field that indicates the source of the context information.

If the options field includes MQC.MQPMO_PASS_IDENTITY_CONTEXT,
or MQC.MQPMO_PASS_ALL_CONTEXT, set this field to refer to the
MQQueue from which to take the context information.

The initial value of this field is null.

InvalidDestCount *
public int InvalidDestCount {get;}

An output field set by the queue manager to the number of messages that
could not be sent to queues in a distribution list. The count includes
queues that failed to open and queues that were opened successfully, but
for which the put operation failed. This field is also set when opening a
single queue that is not part of a distribution list.

KnownDestCount *
public int KnownDestCount {get;}

An output field set by the queue manager to the number of messages that
the current call has sent successfully to queues that resolve to local queues.
This field is also set when opening a single queue that is not part of a
distribution list.

Options
public int Options {get; set;}

Options that control the action of MQQueue.put. Any or none of the
following values can be specified. If more than one option is required, the
values can be added together or combined using the bitwise OR operator.

MQC.MQPMO_ASYNC_RESPONSE
This option causes the MQPUT or MQPUT1 call to be made
asynchronously, with some response data.

MQC.MQPMO_DEFAULT_CONTEXT
Associate default context with the message.

MQC.MQPMO_FAIL_IF_QUIESCING
Fail if the queue manager is quiescing.

MQC.MQPMO_LOGICAL_ORDER*
Put logical messages and segments in message groups into their
logical order.

MQC.MQPMO_NEW_CORREL_ID*
Generate a new correlation id for each sent message.

MQC.MQPMO_NEW_MSG_ID*
Generate a new message id for each sent message.

82 WebSphere MQ: Using .NET

|
|
|

MQC.MQPMO_NONE
No options specified. Do not use in conjunction with other options.

MQC.MQPMO_NO_CONTEXT
No context is to be associated with the message.

MQC.MQPMO_NO_SYNCPOINT
Put a message without syncpoint control. Note that, if the
syncpoint control option is not specified, a default of no syncpoint
is assumed. This applies to all supported platforms.

MQC.MQPMO_PASS_ALL_CONTEXT
Pass all context from an input queue handle.

MQC.MQPMO_PASS_IDENTITY_CONTEXT
Pass identity context from an input queue handle.

MQC.MQPMO_RESPONSE_AS_Q_DEF

For an MQPUT call, this option takes the put response type from
DEFPRESP attribute of the queue.

For an MQPUT1 call, this option causes the call to be made
synchronously.

MQC.MQPMO_RESPONSE_AS_TOPIC_DEF
This is a synonym for MQPMO_RESPONSE_AS_Q_DEF for use
with topic objects.

MQC.MQPMO_RETAIN
The publication being sent is to be retained by the queue manager.
This allows a subscriber to request a copy of this publication after
the time it was published, by using the MQSUBRQ call. It also
allows a publication to be sent to applications which make their
subscription after the time this publication was made (unless they
choose not to be sent it by using the option
MQSO_NEW_PUBLICATIONS_ONLY). If an application is sent a
publication which was retained, this will be indicated by the
MQIsRetained message property of that publication.

Only one publication can be retained at each node of the topic tree.
That means if there already is a retained publication for this topic,
published by any other application, it is replaced with this
publication. It is recommended that you do not have more than
one publisher retaining messages on the same topic.

When retained publications are requested by a subscriber, the
subscription used may contain a wildcard in the topic, in which
case a number of retained publications may match (at various
nodes in the topic tree) and several publications may be sent to the
requesting application. See MQSUBRQ - Subscription Request for
more details.If this option is used and the publication cannot be
retained, the message will not be published and the call will fail
with MQRC_PUT_NOT_RETAINED.

MQC.MQPMO_SET_ALL_CONTEXT
Set all context from the application.

MQC.MQPMO_SET_IDENTITY_CONTEXT
Set identity context from the application.

Chapter 2. Programming with WebSphere MQ classes for .NET 83

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

MQC.MQPMO_SYNC_RESPONSE
This option causes the MQPUT or MQPUT1 call to be made
synchronously, with full response data.

MQC.MQPMO_SUPPRESS_REPLYTO
Any information filled into the ReplyToQ and ReplyToQMgr fields
of the MQMD of this publication will not be passed on to
subscribers. If this option is used in combination with a report
option that requires a ReplyToQ, the call will fail with
MQRC_MISSING_REPLY_TO_Q.

MQC.MQPMO_SYNCPOINT
Put a message with syncpoint control. The message is not visible
outside the unit of work until the unit of work is committed. If the
unit of work is backed out, the message is deleted.

RecordFields *
public int RecordFields {get; set;}

Flags indicating which fields are to be customized in each queue when
putting a message to a distribution list. One or more of the following flags
can be specified:

MQC.MQPMRF_ACCOUNTING_TOKEN
Use the accountingToken attribute in the MQDistributionListItem.

MQC.MQPMRF_CORREL_ID
Use the correlationId attribute in the MQDistributionListItem.

MQC.MQPMRF_FEEDBACK
Use the feedback attribute in the MQDistributionListItem.

MQC.MQPMRF_GROUP_ID
Use the groupId attribute in the MQDistributionListItem.

MQC.MQPMRF_MSG_ID
Use the messageId attribute in the MQDistributionListItem.

The special value MQC.MQPMRF_NONE indicates that no fields are to be
customized.

ResolvedQueueManagerName
public String ResolvedQueueManagerName {get;}

An output field set by the queue manager to the name of the queue
manager that owns the queue specified by the remote queue name. This
might be different from the name of the queue manager from which the
queue was accessed if the queue is a remote queue.

A nonblank value is returned only if the object is a single queue; if the
object is a distribution list or a topic, the value returned is undefined.

ResolvedQueueName
public String ResolvedQueueName {get;}

An output field that is set by the queue manager to the name of the queue
on which the message is placed. This might be different from the name
used to open the queue if the opened queue was an alias or model queue.

A nonblank value is returned only if the object is a single queue; if the
object is a distribution list or a topic, the value returned is undefined.

UnknownDestCount *
public int UnknownDestCount {get;}

84 WebSphere MQ: Using .NET

|
|
|

|
|
|
|
|
|

|
|

|
|

An output field set by the queue manager to the number of messages that
the current call has sent successfully to queues that resolve to remote
queues. This field is also set when opening a single queue that is not part
of a distribution list.

For more detailed descriptions of these properties, see MQPMO Put-message
options.

MQQueue
MQQueue object for .NET

public class IBM.WMQ.MQQueue
extends IBM.WMQ.MQDestination. (See “MQDestination” on page 33.)

In WebSphere MQ V7.0 MQQueue has been modified to be a sub class of
MQDestination (it was previously a sub class of MQManagedObject). Some of the
methods and properties originally available on the MQQueue object have been
moved into the parent class (MQDestination). This does not affect any existing
WebSphere MQ .NET applications.

MQQueue provides inquire, set, put, and get operations for WebSphere MQ
queues. The inquire and set capabilities are inherited from MQ.MQManagedObject.
The put and get capabilities are inherited from MQDestination.

See also MQQueueManager.AccessQueue.

Constructors
MQQueue

public MQQueue(MQQueueManager qMgr, String queueName, int openOptions,
String queueManagerName, String dynamicQueueName,
String alternateUserId)

Throws MQException.

Accesses a queue on the queue manager qMgr.

See MQQueueManager.AccessQueue for details of the remaining
parameters.

Methods
Close

public override void Close()

Overrides MQManagedObject.Close.

System.Object
│
└─ IBM.WMQ.MQBase
│
└─ IBM.WMQ.MQBaseObject
│
└─ IBM.WMQ.MQManagedObject
│
└─ IBM.WMQ.MQDestination
│
└─ IBM.WMQ.MQQueue

Chapter 2. Programming with WebSphere MQ classes for .NET 85

|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

|
|

|
|
|
|
|

|
|
|

|

|

|

|
|
|

|

|

|
|

|

|

|

|

Get
public void Get(MQMessage message,

MQGetMessageOptions getMessageOptions,
int MaxMsgSize)

Throws MQException.

Retrieves a message from the queue, up to a maximum specified message
size.

This method takes an MQMessage object as a parameter. It uses some of
the fields in the object as input parameters, in particular the messageId and
correlationId, so it is important to ensure that these are set as required.

If the get fails, the MQMessage object is unchanged. If it succeeds, the
message descriptor (member variables) and message data portions of the
MQMessage are completely replaced with the message descriptor and
message data from the incoming message.

All calls to WebSphere MQ from a given MQQueueManager are
synchronous. Therefore, if you perform a get with wait, all other threads
using the same MQQueueManager are blocked from making further
WebSphere MQ calls until the get completes. If you need multiple threads
to access WebSphere MQ simultaneously, each thread must create its own
MQQueueManager object.

Parameters

message
An input/output parameter containing the message descriptor
information and the returned message data.

getMessageOptions
Options controlling the action of the get. (See
“MQGetMessageOptions” on page 40.)

Using option MQC.MQGMO_CONVERT might result in an
exception with reason code
MQException.MQRC_CONVERTED_STRING_TOO_BIG when
converting from single byte character codes to double byte codes.
In this case, the message is copied into the buffer but remains
encoded using its original character set.

MaxMsgSize
The largest message this call can receive. If the message on the
queue is larger than this size, one of two things occurs:
1. If the MQC.MQGMO_ACCEPT_TRUNCATED_MSG flag is set

in the options member variable of the MQGetMessageOptions
object, the message is filled with as much of the message data
as will fit in the specified buffer size, and an exception is
thrown with completion code MQException.MQCC_WARNING
and reason code
MQException.MQRC_TRUNCATED_MSG_ACCEPTED.

2. If the MQC.MQGMO_ACCEPT_TRUNCATED_MSG flag is not
set, the message is left on the queue and an MQException is
raised with completion code MQException.MQCC_WARNING
and reason code
MQException.MQRC_TRUNCATED_MSG_FAILED.

Throws MQException if the get fails.

86 WebSphere MQ: Using .NET

|

|
|
|

|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

Get
public void Get(MQMessage message,

MQGetMessageOptions getMessageOptions)

Throws MQException.

Retrieves a message from the queue, regardless of the size of the message.
For large messages, the get method might have to issue two calls to
WebSphere MQ on your behalf, one to establish the required buffer size
and one to get the message data itself.

This method takes an MQMessage object as a parameter. It uses some of
the fields in the object as input parameters, in particular the messageId and
correlationId, so it is important to ensure that these are set as required.

If the get fails, the MQMessage object is unchanged. If it succeeds, the
message descriptor (member variables) and message data portions of the
MQMessage are completely replaced with the message descriptor and
message data from the incoming message.

All calls to WebSphere MQ from a given MQQueueManager are
synchronous. Therefore, if you perform a get with wait, all other threads
using the same MQQueueManager are blocked from making further
WebSphere MQ calls until the get completes. If you need multiple threads
to access WebSphere MQ simultaneously, each thread must create its own
MQQueueManager object.

Parameters

message
An input/output parameter containing the message descriptor
information and the returned message data.

getMessageOptions
Options controlling the action of the get. (See
“MQGetMessageOptions” on page 40 for details.)

Throws MQException if the get fails.

Get
public void Get(MQMessage message)

A simplified version of the Get method previously described.

Parameters

MQMessage
An input/output parameter containing the message descriptor
information and the returned message data.

This method uses a default instance of MQGetMessageOptions to do the
get. The message option used is MQGMO_NOWAIT.

Put
public void Put(MQMessage message,

MQPutMessageOptions putMessageOptions)

Throws MQException.

Places a message onto the queue.

Chapter 2. Programming with WebSphere MQ classes for .NET 87

|

|
|

|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|

|

|

|

|

|

|
|
|

|
|

|

|
|

|

|

Note: For simplicity and performance, if you want to put just a single
message to a queue, use the Put() method on the MQQueueManager
object. For this you do not need to have an MQQueue object. See
MQQueueManager.Put.

This method takes an MQMessage object as a parameter. The message
descriptor properties of this object can be altered as a result of this method.
The values that they have immediately after the completion of this method
are the values that were put onto the WebSphere MQ queue.

Modifications to the MQMessage object after the put has completed do not
affect the actual message on the WebSphere MQ queue.

A Put updates the messageId and correlationId. Consider this when
making further calls to Put/Get using the same MQMessage object. Also,
calling Put does not clear the message data, so:
msg.WriteString("a");
q.Put(msg,pmo);
msg.WriteString("b");
q.Put(msg,pmo);

puts two messages. The first contains a and the second ab.

Parameters

message
Message Buffer containing the Message Descriptor data and
message to be sent.

putMessageOptions
Options controlling the action of the put. (See
“MQPutMessageOptions” on page 81)

Throws MQException if the put fails.

Put
public void Put(MQMessage message)

A simplified version of the Put method previously described.

Parameters

MQMessage
Message Buffer containing the Message Descriptor data and
message to be sent.

This method uses a default instance of MQPutMessageOptions to do the
put.

PutForwardMessage
public void PutForwardMessage(MQMessage message)

Put a message being forwarded onto the queue using default put message
options and message as the original message.

Parameters

MQMessage
The message for forwarding.

Throws MQException if the put fails.

88 WebSphere MQ: Using .NET

|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|

|

|

|
|
|

|
|
|

|

|

|

|

|

|
|
|

|
|

|
|

|
|

|

|
|

|

PutForwardMessage
public void PutForwardMessage(MQMessage message,

MQPutMessageOptions putMessageOptions)

Throws MQException.

Put a message being forwarded onto the queue using message as the
original message.

Parameters

MQMessage
The message for forwarding.

MQPutMessageOptions
Options controlling the action of the put. (See
“MQPutMessageOptions” on page 81)

Throws MQException if the put fails.

PutReplyMessage
public void PutReplyMessage(MQMessage message)

Put a reply message onto the queue using default put message options and
message as the original message.

Parameters

MQMessage
The request message to be replied to.

Throws MQException if the put fails.

PutReplyMessage
public void PutReplyMessage(MQMessage message,

MQPutMessageOptions putMessageOptions)

Throws MQException.

Put a reply message onto the queue using message as the original message.

Parameters

MQMessage
The request message to be replied to.

MQPutMessageOptions
Options controlling the action of the put. (See
“MQPutMessageOptions” on page 81)

Throws MQException if the put fails.

PutReportMessage
public void PutReportMessage(MQMessage message)

Put a report message onto the queue using default put message options
and message as the original message.

Parameters

MQMessage
The message that caused the report to be generated.

Throws MQException if the put fails.

Chapter 2. Programming with WebSphere MQ classes for .NET 89

|
|
|

|

|
|

|

|
|

|
|
|

|

|
|

|
|

|

|
|

|

|
|
|

|

|

|

|
|

|
|
|

|

|
|

|
|

|

|
|

|

PutReportMessage
public void PutReportMessage(MQMessage message,

MQPutMessageOptions putMessageOptions)

Throws MQException.

Put a message being forwarded onto the queue using message as the
original message.

Parameters

MQMessage
The message that caused the report to be generated.

MQPutMessageOptions
Options controlling the action of the put. (See
“MQPutMessageOptions” on page 81)

Throws MQException if the put fails.

Properties
Properties of MQQueue.

ClusterWorkLoadPriority
public int ClusterWorkLoadPriority {get;}

Specifies the priority of the queue. This parameter is valid only for local,
remote, and alias queues.

ClusterWorkLoadRank
public int ClusterWorkLoadRank {get;}

Specifies the rank of the queue. This parameter is valid only for local,
remote, and alias queues.

ClusterWorkLoadUseQ
public int ClusterWorkLoadUseQ {get;}

Specifies the behavior of an MQPUT operation when the target queue has
a local instance and at least one remote cluster instance. This parameter
does not apply if the MQPUT originates from a cluster channel. This
parameter is valid only for local queues.

CreationDateTime
public DateTime CreationDateTime {get;}

Throws MQException.

The date and time that this queue was created.

CurrentDepth
public int CurrentDepth {get;}

Throws MQException.

Gets the number of messages currently on the queue. This value is
incremented during a put call, and during backout of a get call. It is
decremented during a non-browse get and during backout of a put call.

DefinitionType
public int DefinitionType {get;}

90 WebSphere MQ: Using .NET

|
|
|

|

|
|

|

|
|

|
|
|

|

|
|

|

|

|
|

|

|

|
|

|

|

|
|
|
|

|

|

|

|

|

|

|

|
|
|

|

|

Throws MQException.

How the queue was defined.

Returns
One of the following:
v MQC.MQQDT_PREDEFINED
v MQC.MQQDT_PERMANENT_DYNAMIC
v MQC.MQQDT_TEMPORARY_DYNAMIC

InhibitGet
public int InhibitGet {get; set;}

Throws MQException.

Controls whether get operations are allowed for this queue or topic. The
possible values are:
v MQC.MQQA_GET_INHIBITED
v MQC.MQQA_GET_ALLOWED

InhibitPut
public int InhibitPut {get; set;}

Throws MQException.

Controls whether put operations are allowed for this queue or topic. The
possible values are:
v MQQA_PUT_INHIBITED
v MQQA_PUT_ALLOWED

MaximumDepth
public int MaximumDepth {get;}

Throws MQException.

The maximum number of messages that can exist on the queue at any one
time. An attempt to put a message to a queue that already contains this
many messages fails with reason code MQException.MQRC_Q_FULL.

MaximumMessageLength
public int MaximumMessageLength {get;}

Throws MQException.

The maximum length of the application data that can exist in each message
on this queue. An attempt to put a message larger than this value fails
with reason code MQException.MQRC_MSG_TOO_BIG_FOR_Q.

NonPersistentMessageClass
public int NonPersistentMessageClass {get;}

The level of reliability for non persistent messages put to this queue.

OpenInputCount
public int OpenInputCount {get;}

Throws MQException.

Chapter 2. Programming with WebSphere MQ classes for .NET 91

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|
|

|

|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|

|

|

The number of handles that are currently valid for removing messages
from the queue. This is the total number of such handles known to the
local queue manager, not just those created by the WebSphere MQ classes
for .NET (using accessQueue).

OpenOutputCount
public int OpenOutputCount {get;}

Throws MQException.

The number of handles that are currently valid for adding messages to the
queue. This is the total number of such handles known to the local queue
manager, not just those created by the WebSphere MQ classes for .NET
(using accessQueue).

QueueAccounting
public int QueueAccounting {get;}

Specifies whether the collection of accounting information is enabled for
the queue.

QueueMonitoring
public int QueueMonitoring {get;}

Specifies whether monitoring is enabled for the queue.

QueueStatistics
public int QueueStatistics {get;}

Specifies whether collection of statistics is enabled for the queue.

QueueType
public int QueueType {get;}

Throws MQException

Returns
The type of this queue with one of the following values:
v MQC.MQQT_ALIAS
v MQC.MQQT_LOCAL
v MQC.MQQT_REMOTE
v MQC.MQQT_CLUSTER

Shareability
public int Shareability {get;}

Throws MQException.

Whether the queue can be opened for input multiple times.

Returns
One of the following:
v MQC.MQQA_SHAREABLE
v MQC.MQQA_NOT_SHAREABLE

TPIPE
public string TPIPE {get;}

92 WebSphere MQ: Using .NET

|
|
|
|

|

|

|

|
|
|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

The TPIPE name used for communication with OTMA via the WebSphere
MQ IMS™ bridge.

TriggerControl
public int TriggerControl {get; set;}

Throws MQException.

get

Whether trigger messages are written to an initiation queue, to
start an application to service the queue.

Returns
The possible values are:
v MQC.MQTC_OFF
v MQC.MQTC_ON

set

Controls whether trigger messages are written to an initiation
queue to start an application to service the queue. The permissible
values are:
v MQC.MQTC_OFF
v MQC.MQTC_ON

TriggerData
public String TriggerData {get; set;}

Throws MQException.

get

The free-format data that the queue manager inserts into the
trigger message when a message arriving on this queue causes a
trigger message to be written to the initiation queue.

set

Sets the free-format data that the queue manager inserts into the
trigger message when a message arriving on this queue causes a
trigger message to be written to the initiation queue. The
maximum permissible length of the string is given by
MQC.MQ_TRIGGER_DATA_LENGTH.

TriggerDepth
public int TriggerDepth {get; set;}

Throws MQException.

get

The number of messages that must be on the queue before a
trigger message is written when trigger type is set to
MQC.MQTT_DEPTH.

set

Sets the number of messages that must be on the queue before a
trigger message is written when trigger type is set to
MQC.MQTT_DEPTH.

TriggerMessagePriority

Chapter 2. Programming with WebSphere MQ classes for .NET 93

|
|

|

|

|

|

|
|

|
|

|

|

|

|
|
|

|

|

|

|

|

|

|
|
|

|

|
|
|
|
|

|

|

|

|

|
|
|

|

|
|
|

|
|

public int TriggerMessagePriority {get; set;}

Throws MQException.

get

The message priority below which messages do not contribute to
the generation of trigger messages (that is, the queue manager
ignores these messages when deciding whether to generate a
trigger). A value of zero causes all messages to contribute to the
generation of trigger messages.

set

Sets the message priority below which messages do not contribute
to the generation of trigger messages (that is, the queue manager
ignores these messages when deciding whether a trigger will be
generated). A value of zero causes all messages to contribute to the
generation of trigger messages.

TriggerType
public int TriggerType {get; set;}

Throws MQException.

get

The conditions under which trigger messages are written as a
result of messages arriving on this queue.

Returns
The possible values are:
v MQC.MQTT_NONE
v MQC.MQTT_FIRST
v MQC.MQTT_EVERY
v MQC.MQTT_DEPTH

set

Sets the conditions under which trigger messages are written as a
result of messages arriving on this queue. The possible values are:
v MQC.MQTT_NONE
v MQC.MQTT_FIRST
v MQC.MQTT_EVERY
v MQC.MQTT_DEPTH

For more detailed descriptions of these properties, see Attribute descriptions for
queues.

MQQueueManager
The MQQueueManager encapsulates the MQCONN. It has an overloaded
constructor that can be used to perform client/server connections to a
QueueManager.

94 WebSphere MQ: Using .NET

|

|

|

|
|
|
|
|

|

|
|
|
|
|

|

|

|

|

|
|

|
|

|

|

|

|

|

|
|

|

|

|

|

|
|

public class IBM.WMQ.MQQueueManager
extends IBM.WMQ.MQManagedObject. (See “MQManagedObject” on page 44.)

The MQQueueManager contains a method ’AccessQueue’, which is used to
instantiate an MQQueue object associated with the connected MQQueueManager
object.

The MQQueueManager class also contains methods to begin, commit, and rollback
transactions.

Constructors
MQQueueManager

public MQQueueManager(String queueManagerName)

Throws MQException.

Creates a connection to the named queue manager.

Note: When using WebSphere MQ classes for .NET, the hostname,
channel name, and port to use during the connection request are specified
in the MQEnvironment class. This must be done before calling this
constructor.

The following example shows a connection to a queue manager MYQM,
running on a machine with hostname fred.mq.com.
MQEnvironment.Hostname = "fred.mq.com"; // host to connect to
MQEnvironment.Port = 1414; // port to connect to.

// If I don't set this,
// it defaults to 1414
// (the default WebSphere MQ port)

MQEnvironment.Channel = "channel.name"; // the CASE-SENSITIVE
// name of the
// SVR CONN channel on
// the queue manager

MQQueueManager qMgr = new MQQueueManager("MYQM");

If the queue manager name is left blank (null or ″″), a connection is made
to the default queue manager.

See also “MQEnvironment” on page 36.

MQQueueManager
public MQQueueManager(String queueManagerName,

int options)

Throws MQException.

This version of the constructor is intended for use only in bindings mode,
that is, when connecting to a local server. It uses the extended connection
API (MQCONNX) to connect to the queue manager. The options parameter
allows you to choose fast or normal bindings. Possible values are:

System.Object
│
└─ IBM.WMQ.MQBase
│
└─ IBM.WMQ.MQBaseObject
│
└─ IBM.WMQ.ManagedObject
│
└─ IBM.WMQ.MQQueueManager

Chapter 2. Programming with WebSphere MQ classes for .NET 95

v MQC.MQCNO_FASTPATH_BINDING for fast bindings *.
v MQC.MQCNO_STANDARD_BINDING for normal bindings.

MQQueueManager
public MQQueueManager(String queueManagerName,

Hashtable properties)

Throws MQException.

The properties parameter takes a series of key/value pairs that describe
the WebSphere MQ environment for this particular queue manager. These
properties, where specified, override the values set by the MQEnvironment
class, and allow the individual properties to be set for any queue manager.
The properties which may be specified are as follows:
v MQC.CONNECT_OPTIONS_PROPERTY
v MQC.CONNNAME_PROPERTY
v MQC.HOST_NAME_PROPERTY
v MQC.PORT_PROPERTY
v MQC.CHANNEL_PROPERTY
v MQC.SSL_CIPHER_SPEC_PROPERTY
v MQC.SSL_PEER_NAME_PROPERTY
v MQC.SSL_CERT_STORE_PROPERTY
v MQC.SSL_CRYPTO_HARDWARE_PROPERTY
v MQC.SECURITY_EXIT_PROPERTY
v MQC.SECURITY_USERDATA_PROPERTY
v MQC.SEND_EXIT_PROPERTY
v MQC.SEND_USERDATA_PROPERTY
v MQC.RECEIVE_EXIT_PROPERTY
v MQC.RECEIVE_USERDATA_PROPERTY
v MQC.MSG_EXIT_PROPERTY
v MQC.USER_ID_PROPERTY
v MQC.PASSWORD_PROPERTY
v MQC.MQAIR_ARRAY
v MQC.KEY_RESET_COUNT
v MQC.FIPS_REQUIRED
v MQC.HDR_CMP_LIST
v MQC.MSG_CMP_LIST
v MQC.TRANSPORT_PROPERTY

For descriptions of these properties, see the corresponding property
description in “MQEnvironment” on page 36. The following example
shows program code to create a queue manager with its user ID and
password defined in a hash table.
Hashtable properties = new Hashtable();

properties.Add(MQC.USER_ID_PROPERTY, "ExampleUserId");
properties.Add(MQC.PASSWORD_PROPERTY, "ExamplePassword");

try
{

mqQMgr = new MQQueueManager("qmgrname", properties);
}
catch (MQException mqe)

96 WebSphere MQ: Using .NET

{
System.Console.WriteLine("Connect failed with " + mqe.Message);
return((int)mqe.Reason);

}

MQQueueManager
public MQQueueManager(String queueManagerName,

String channel,
String connName)

Throws MQException.

Connects to the named Queue Manager, using the supplied ’Server
Connection Channel’ and connection.

MQQueueManager
public MQQueueManager(String queueManagerName,

Int options
String channel,
String connName)

Throws MQException.

Connects to the named Queue Manager, using the supplied ’Server
Connection Channel’ and connection, and passing the supplied options.

Methods
Methods for MQQueueManager

AccessProcess
public MQProcess AccessProcess(String processName,

int openOptions);

Throws MQException.

Establishes access to a WebSphere MQ process on this queue manager
using the default queue manager name and default user ID values, to
inquire about the process attributes.

Parameters

processName
The name of the process to open.

openOptions
Options that control the opening of the process. Valid options are:
v MQOO_FAIL_IF_QUIESCING
v MQOO_INQUIRE
v MQOO_SET

Returns
MQProcess that has been successfully opened.

AccessProcess
public MQProcess AccessProcess(String processName,

int openOptions,
String queueManagerName,
String alternateUserId);

Throws MQException.

Chapter 2. Programming with WebSphere MQ classes for .NET 97

|

|
|

|

|
|
|

|

|
|

|
|

|

|

|

|
|

|

|
|
|
|

|

Establishes access to a WebSphere MQ process on this queue manager
using the specified queue manager name and specified alternate user ID
values, in order to inquire about the process attributes.

Parameters

processName
The name of the process to open.

openOptions
Options that control the opening of the process. Valid options are:
v MQOO_ALTERNATE_USER_AUTHORITY
v MQOO_FAIL_IF_QUIESCING
v MQOO_INQUIRE
v MQOO_SET

queueManagerName
Name of the queue manager on which the process is defined. A
name that is entirely blank or null denotes the queue manager to
which the object is associated.

alternateUserId
If MQOO_ALTERNATE_USER_AUTHORITY is specified in the
openOptions parameter, this parameter specifies the alternative
user ID to be used to check the authorization for the action.
Otherwise this parameter can be blank or null.

Returns
MQProcess that has been successfully opened.

AccessQueue
public MQQueue AccessQueue(String queueName,

int openOptions,
String queueManagerName,
String dynamicQueueName,
String alternateUserId)

Throws MQException.

Establishes access to a WebSphere MQ queue on this queue manager to get
or browse messages, put messages, inquire about the attributes of the
queue or set the attributes of the queue.

If the queue named is a model queue, a dynamic local queue is created.
The name of the created queue can be determined from the name attribute
of the returned MQQueue object.

Parameters

queueName
Name of queue to open.

openOptions
Options that control the opening of the queue. Valid options are:

MQC.MQOO_ALTERNATE_USER_AUTHORITY
Validate with the specified user identifier.

MQC.MQOO_BIND_AS_QDEF
Use default binding for queue.

MQC.MQOO_BIND_NOT_FIXED
Do not bind to a specific destination.

98 WebSphere MQ: Using .NET

|
|
|

|

|
|

|
|

|

|

|

|

|
|
|
|

|
|
|
|
|

|
|

MQC.MQOO_BIND_ON_OPEN
Bind handle to destination when queue is opened.

MQC.MQOO_BROWSE
Open to browse message.

MQC.MQOO_FAIL_IF_QUIESCING
Fail if the queue manager is quiescing.

MQC.MQOO_INPUT_AS_Q_DEF
Open to get messages using queue-defined default.

MQC.MQOO_INPUT_SHARED
Open to get messages with shared access.

MQC.MQOO_INPUT_EXCLUSIVE
Open to get messages with exclusive access.

MQC.MQOO_INQUIRE
Open for inquiry - required if you want to query
properties.

MQC.MQOO_OUTPUT
Open to put messages.

MQC.MQOO_PASS_ALL_CONTEXT
Allow all context to be passed.

MQC.MQOO_PASS_IDENTITY_CONTEXT
Allow identity context to be passed.

MQC.MQOO_SAVE_ALL_CONTEXT
Save context when message retrieved*.

MQC.MQOO_SET
Open to set attributes —required if you want to set
properties.

MQC.MQOO_SET_ALL_CONTEXT
Allows all context to be set.

MQC.MQOO_SET_IDENTITY_CONTEXT
Allows identity context to be set.

If more than one option is required, the values can be added
together or combined using the bitwise OR operator. See the
WebSphere MQ Application Programming Guide for a fuller
description of these options.

queueManagerName
Name of the queue manager on which the queue is defined. A
name that is entirely blank or null denotes the queue manager to
which this MQQueueManager object is connected.

dynamicQueueName
This parameter is ignored unless queueName specifies the name of
a model queue. If it does, this parameter specifies the name of the
dynamic queue to be created. A blank or null name is not valid if
queueName specifies the name of a model queue. If the last
non-blank character in the name is an asterisk (*), the queue
manager replaces the asterisk with a string of characters that
guarantees that the name generated for the queue is unique on this
queue manager.

Chapter 2. Programming with WebSphere MQ classes for .NET 99

alternateUserId
If MQOO_ALTERNATE_USER_AUTHORITY is specified in the
openOptions parameter, this parameter specifies the alternate user
identifier that is used to check the authorization for the open. If
MQOO_ALTERNATE_USER_AUTHORITY is not specified, this
parameter can be left blank (or null).

Returns
MQQueue that has been successfully opened.

Throws MQException if the open fails.

AccessQueue
public MQQueue AccessQueue(String queueName,

int openOptions)

Throws MQException if you call this method after disconnecting from the
queue manager.

Parameters

queueName
Name of queue to open

openOptions
Options that control the opening of the queue

See the description of MQQueueManager.AccessQueue for details of the
parameters.

For this version of the method, queueManagerName, dynamicQueueName, and
alternateUserId are set to ″″.

Returns
MQQueue that has been successfully opened.

Throws MQException if the open fails.

AccessTopic
public MQTopic AccessTopic(String topicName,

ref String topicObject,
int openAs,
int options);

Throws MQException.

Establishes access to a WebSphere MQ topic. The MQTopic object can be
opened for either publication or subscription depending upon the value of
the openAs parameter. The value dictates the use of the options parameter
– this can map to the equivalent MQOO options for publication or the
equivalent MQSO options for subscription.

The options specified allow the MQTopic object to be used to get or
browse messages, put messages, inquire about the attributes of the topic
(those defined on the object), or set the attributes of the topic (those
defined on the object).

An MQTopic object cannot be used for both publication and subscription
simultaneously. Therefore, the method returns an MQTopic object for
publication OR subscription using the supplied topic name (topicName)
and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part
exists if the first character of the field is neither a blank nor a null

100 WebSphere MQ: Using .NET

|

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

character. If both parts exist a ‘/’ character is inserted between them in the
resultant combined topic. If only one of these parts exist it is used
unchanged as the topic. The parts are concatenated in the sequence listed
here:
v The value of the TOPICSTR parameter of the topic object named in

topicObject.
v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those
wildcards can be controlled using the wildcard options specified in the
options parameter.

When creating an MQTopic for subscriptions, the store (MQQueue) will be
managed and owned by the queue manager. This method can therefore be
used to create a managed subscription only.

Parameters

topicName
The topic string to publish or subscribe against. The topicName
parameter directly maps to the ObjectString field of the MQSD.
The full topic name used is the combination of the topicObject and
topicName parameters as described above.

topicObject
This is the name of the topic object as defined on the local queue
manager. If this property is specified in combination with a
non-zero-length topicName, then the specified topicName is
appended to the topic string contained in the topic object with a
separator character. It is the full topic string that is published or
subscribed against, as described above.

The parameter is both an input and output parameter. Upon
successful completion of the method, the closest matching
administrative node is located within the topic hierarchy and
returned. The contained topic object might therefore differ to that
originally specified.

openAs Indicates whether the topic is being opened for either publication
or subscription. The parameter can contain one of these options:
v MQTOPIC_OPEN_AS_SUBSCRIPTION
v MQTOPIC_OPEN_AS_PUBLICATION

The topic object cannot be opened for both publication and
subscription. Specifying more than a single option will result in an
error condition.

options

Options that control the opening of the topic for either publication
or subscription. If more than one option is required, the values can
be added together or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a
full descriptive list of which options are valid when opening a
topic):
v MQOO_ALTERNATE_USER_AUTHORITY
v MQOO_FAIL_IF_QUIESCING
v MQOO_OUTPUT

Chapter 2. Programming with WebSphere MQ classes for .NET 101

|
|
|
|

|
|

|

|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

||
|

|

|

|
|
|

|

|
|
|

|
|
|

|

|

|

v MQOO_PASS_ALL_CONTEXT
v MQOO_PASS_IDENTITY_CONTEXT
v MQOO_SET_ALL_CONTEXT
v MQOO_SET_IDENTITY_CONTEXT

When opening the topic for subscription the following valid
options apply.:
v MQSO_CREATE
v MQSO_RESUME
v MQSO_ALTER

If none of these options are specified, then MQSO_CREATE +
MQSO_ALTER is assumed.

Other valid options are also available (see MQOPEN – Open object
Options).

When opening a topic for subscription, the method applies to a
managed, non-durable subscription only. These options are
therefore enforced:
v MQSO_NON_DURABLE
v MQSO_MANAGED

Returns
MQTopic that has been successfully opened.

AccessTopic
public MQTopic AccessTopic(String topicName,

ref String topicObject,
int openAs,
int options,
String alternateUserId);

Throws MQException.

Establishes access to a WebSphere MQ topic. The MQTopic object can be
opened for either publication or subscription depending upon the value of
the openAs parameter. The value dictates the use of the options parameter
– this can map to the equivalent MQOO options for publication or the
equivalent MQSO options for subscription.

If either MQOO_ALTERNATE_USER_AUTHORITY or
MQSO_ALTERNATE_USER_AUTHORITY is specified in the options
parameter, the alternateUserId parameter is used to check for the necessary
authorization.

The options specified allow the MQTopic object to be used to get or
browse messages, put messages, inquire about the attributes of the topic
(those defined on the object), or set the attributes of the topic (those
defined on the object).

An MQTopic object cannot be used for both publication and subscription
simultaneously. Therefore, the method returns an MQTopic object for
publication OR subscription using the supplied topic name (topicName)
and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part
exists if the first character of the field is neither a blank nor a null
character. If both parts exist a ‘/’ character is inserted between them in the

102 WebSphere MQ: Using .NET

|

|

|

|

|
|

|

|

|

|
|

|
|

|
|
|

|

|

|
|

|

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

resultant combined topic. If only one of these parts exist it is used
unchanged as the topic. The parts are concatenated in the sequence listed
here:
v The value of the TOPICSTR parameter of the topic object named in

topicObject.
v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those
wildcards can be controlled using the wildcard options specified in the
options parameter.

When creating an MQTopic for subscriptions, the store (MQQueue) will be
managed and owned by the queue manager. This method can therefore be
used to create a managed subscription only.

Parameters

topicName
The topic string to publish or subscribe against. The topicName
parameter directly maps to the ObjectString field of the MQSD.
The full topic name used is the combination of the topicObject and
topicName parameters as described above.

topicObject
This is the name of the topic object as defined on the local queue
manager. If this property is specified in combination with a
non-zero-length topicName, then the specified topicName is
appended to the topic string contained in the topic object with a
separator character. It is the full topic string that is published or
subscribed against, as described above.

The parameter is both an input and output parameter. Upon
successful completion of the method, the closest matching
administrative node is located within the topic hierarchy and
returned. The contained topic object might therefore differ to that
originally specified.

openAs Indicates whether the topic is being opened for either publication
or subscription. The parameter can contain one of these options:
v MQTOPIC_OPEN_AS_SUBSCRIPTION
v MQTOPIC_OPEN_AS_PUBLICATION

The topic object cannot be opened for both publication and
subscription. Specifying more than a single option will result in an
error condition.

options

Options that control the opening of the topic for either publication
or subscription. If more than one option is required, the values can
be added together or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a
full descriptive list of which options are valid when opening a
topic):
v MQOO_ALTERNATE_USER_AUTHORITY
v MQOO_FAIL_IF_QUIESCING
v MQOO_OUTPUT
v MQOO_PASS_ALL_CONTEXT

Chapter 2. Programming with WebSphere MQ classes for .NET 103

|
|
|

|
|

|

|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

||
|

|

|

|
|
|

|

|
|
|

|
|
|

|

|

|

|

v MQOO_PASS_IDENTITY_CONTEXT
v MQOO_SET_ALL_CONTEXT
v MQOO_SET_IDENTITY_CONTEXT

When opening the topic for subscription the following valid
options apply:
v MQSO_CREATE
v MQSO_RESUME
v MQSO_ALTER

If no option is specified, then MQSO_CREATE + MQSO_ALTER is
assumed. Other valid options are also available. (see MQOPEN –
Open object Options).

When opening a topic for subscription, the method applies to a
managed, non-durable subscription only. These options are
therefore enforced:
v MQSO_NON_DURABLE
v MQSO_MANAGED

alternateUserId

If either MQOO_ALTERNATE_USER_AUTHORITY or
MQSO_ALTERNATE_USER_AUTHORITY is specified in the
options parameter, this parameter specifies the alternate user
identifier that is used to check for the required authorization to
complete the operation. Otherwise, this parameter can be left blank
(or null).

Returns
MQTopic that has been successfully opened.

AccessTopic
public MQTopic AccessTopic(String topicName,

ref String topicObject,
int options,
String alternateUserId,
String subscriptionName);

Throws MQException.

Establishes access to a WebSphere MQ topic. This method can be used for
opening the topic for subscriptions only. The options parameter can map to
the MQSO options for subscription only.

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options
parameter, the alternateUserId parameter is used to check for the necessary
authorization.

The options specified allow the MQTopic object to be used to get or
browse messages, inquire about the attributes of the topic, or set the
attributes of the topic.

The method returns an MQTopic object for subscription using the supplied
topic name (topicName) and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part
exists if the first character of the field is neither a blank nor a null
character. If both parts exist a ‘/’ character is inserted between them in the

104 WebSphere MQ: Using .NET

|

|

|

|
|

|

|

|

|
|
|

|
|
|

|

|

|

|
|
|
|
|
|

|
|

|

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

resultant combined topic. If only one of these parts exist it is used
unchanged as the topic. The parts are concatenated in the sequence listed
here:
v The value of the TOPICSTR parameter of the topic object named in

topicObject.
v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those
wildcards can be controlled using the wildcard options specified in the
options parameter.

When creating an MQTopic for subscriptions, the store (MQQueue) will be
managed and owned by the queue manager. This method can therefore be
used to create a managed subscription only.

Parameters

topicName
The topic string to subscribe against. The topicName parameter
directly maps to the ObjectString field of the MQSD. The full topic
name used is the combination of the topicObject and topicName
parameters as described above.

topicObject
This is the name of the topic object as defined on the local queue
manager. If this property is specified in combination with a
non-zero-length topicName, then the specified topicName is
appended to the topic string contained in the topic object with a
separator character. It is the full topic string that is published or
subscribed against, as described above.

The parameter is both an input and output parameter. Upon
successful completion of the method, the closest matching
administrative node is located within the topic hierarchy and
returned. The contained topic object might therefore differ to that
originally specified.

options

Options that control the opening of the topic for subscription. If
more than one option is required, the values can be added together
or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a
full descriptive list of which options are valid when opening a
topic):
v MQSO_CREATE
v MQSO_RESUME
v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +
MQSO_ALTER is assumed. Other valid options are also available.
(see MQOPEN – Open object Options).

When opening a topic for subscription, the method applies to a
managed subscription only. This option is therefore enforced:
v MQSO_MANAGED

alternateUserId

Chapter 2. Programming with WebSphere MQ classes for .NET 105

|
|
|

|
|

|

|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

|

|

|

|
|
|

|
|

|

|
|

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the
options parameter, this parameter specifies the alternate user
identifier that is used to check for the required authorization to
complete the operation. Otherwise, this parameter can be left blank
(or null).

subscriptionName

If the options parameter specified MQSO_DURABLE then this field
is mandatory, otherwise (MQSO_NON_DURABLE) this field is
optional.

For an MQSO_DURABLE subscription it is the means by which
you identify a subscription to be resumed after it has been created,
if you have either closed the handle to the subscription or have
been disconnected from the queue manager.

If altering an existing subscription using the MQSO_ALTER option,
the subscription name cannot be changed.

Returns
MQTopic that has been successfully opened.

AccessTopic
public MQTopic AccessTopic(String topicName,

ref String topicObject,
int options,
String alternateUserId,
String subscriptionName,
ref Hashtable parameters);

Throws MQException.

Establishes access to a WebSphere MQ topic. This method can be used for
opening the topic for subscriptions only. The options parameter can map to
the MQSO options for subscription only.

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options
parameter, the alternateUserId parameter is used to check for the necessary
authorization.

The options specified allow the MQTopic object to be used to get or
browse messages, inquire about the attributes of the topic, or set the
attributes of the topic.

The method returns an MQTopic object for subscription using the supplied
topic name (topicName) and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part
exists if the first character of the field is neither a blank nor a null
character. If both parts exist a ‘/’ character is inserted between them in the
resultant combined topic. If only one of these parts exist it is used
unchanged as the topic. The parts are concatenated in the sequence listed
here:
v The value of the TOPICSTR parameter of the topic object named in

topicObject.
v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those
wildcards can be controlled using the wildcard options specified in the
options parameter.

106 WebSphere MQ: Using .NET

|
|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|

|

|
|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|

|
|
|

When creating an MQTopic for subscriptions, the store (MQQueue) will be
managed and owned by the queue manager. This method can therefore be
used to create a managed subscription only.

Extra non-standard input and output parameters can also be specified
using the parameters hash table. If a property is an output field it will be
populated within the hash table only if it was originally specified on input.
Essentially, no new key/value pairs will be added to the hash table – only
existing ones updated.

Parameters

topicName
The topic string to subscribe against. The topicName parameter
directly maps to the ObjectString field of the MQSD. The full topic
name used is the combination of the topicObject and topicName
parameters as described above.

topicObject
This is the name of the topic object as defined on the local queue
manager. If this property is specified in combination with a
non-zero-length topicName, then the specified topicName is
appended to the topic string contained in the topic object with a
separator character. It is the full topic string that is published or
subscribed against, as described above.

The parameter is both an input and output parameter. Upon
successful completion of the method, the closest matching
administrative node is located within the topic hierarchy and
returned. The contained topic object might therefore differ to that
originally specified.

options

Options that control the opening of the topic for subscription. If
more than one option is required, the values can be added together
or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a
full descriptive list of which options are valid when opening a
topic):
v MQSO_CREATE
v MQSO_RESUME
v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +
MQSO_ALTER is assumed. Other valid options are also available.
(see MQOPEN – Open object Options).

When opening a topic for subscription, the method applies to a
managed subscription only. This option is therefore enforced:
v MQSO_MANAGED

alternateUserId

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the
options parameter, this parameter specifies the alternate user
identifier that is used to check for the required authorization to
complete the operation. Otherwise, this parameter can be left blank
(or null).

Chapter 2. Programming with WebSphere MQ classes for .NET 107

|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

|

|

|

|
|
|

|
|

|

|

|
|
|
|
|

subscriptionName

If the options parameter specified MQSO_DURABLE then this field
is mandatory, otherwise (MQSO_NON_DURABLE) this field is
optional.

For an MQSO_DURABLE subscription it is the means by which
you identify a subscription to be resumed after it has been created,
if you have either closed the handle to the subscription or have
been disconnected from the queue manager.

If altering an existing subscription using the MQSO_ALTER option,
the subscription name cannot be changed.

parameters

The hash table can be used to specify non-standard input and
output parameters to the subscription request. If a property is an
output field it will only be populated within the hash table if it
was originally specified on input. Consequently, no new key/value
pairs will be added to the hash table – only existing ones updated.
The following key names are valid and can be specified:
v MQSUB_PROP_ALTERNATE_SECURITY_ID
v MQSUB_PROP_SUBSCRIPTION_EXPIRY
v MQSUB_PROP_SUBSCRIPTION_USER_DATA
v MQSUB_PROP_SUBSCRIPTION_CORRELATION_ID
v MQSUB_PROP_PUBLICATION_PRIORITY
v MQSUB_PROP_PUBLICATION_ACCOUNTING_TOKEN
v MQSUB_PROP_PUBLICATION_APPLICATIONID_DATA

All are specified as String type properties. The corresponding
language conversion routines can be used to convert the values to
the relevant types.

Returns
MQTopic that has been successfully opened.

AccessTopic
public MQTopic AccessTopic(MQDestination destination,

String topicName,
ref String topicObject,
int options);

Throws MQException.

Establishes access to a WebSphere MQ topic. This method can be used for
opening the topic for subscriptions only. The options parameter can map to
the MQSO options for subscription only.

The options specified allow the MQTopic object to be used to get or
browse messages, inquire about the attributes of the topic, or set the
attributes of the topic.

The method returns an MQTopic object for subscription using the supplied
topic name (topicName) and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part
exists if the first character of the field is neither a blank nor a null
character. If both parts exist a ‘/’ character is inserted between them in the

108 WebSphere MQ: Using .NET

|

|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|

|
|

|

|
|
|
|

|

|
|
|

|
|
|

|
|

|
|
|

resultant combined topic. If only one of these parts exist it is used
unchanged as the topic. The parts are concatenated in the sequence listed
here:
v The value of the TOPICSTR parameter of the topic object named in

topicObject.
v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those
wildcards can be controlled using the wildcard options specified in the
options parameter.

When creating an MQTopic for subscription, the subscription store
(destination) is provided, managed and owned by the user. The queue
manager takes no responsibility for this object and it is left to the user to
correctly dispose of it. Any messages available for this subscription will be
delivered to the specified destination.

The destination parameter must be valid and cannot be left blank or null.
This method can be used to create an unmanaged, non-durable
subscription only.

Parameters

destination

An existing MQDestination object which should receive the
publications. For WebSphere MQ V7.0 this object maps to an
MQQueue object. It cannot resolve to another MQTopic object.

The MQDestination (MQQueue) object can be created by calling an
MQQueueManager::AccessQueue (...) method or an MQQueue
constructor.

The corresponding destination is held as a reference within the
MQTopic object as the UnmanagedDestinationReference property.

topicName
The topic string to subscribe against. The topicName parameter
directly maps to the ObjectString field of the MQSD. The full topic
name used is the combination of the topicObject and topicName
parameters as described above.

topicObject
This is the name of the topic object as defined on the local queue
manager. If this property is specified in combination with a
non-zero-length topicName, then the specified topicName is
appended to the topic string contained in the topic object with a
separator character. It is the full topic string that is published or
subscribed against, as described above.

The parameter is both an input and output parameter. Upon
successful completion of the method, the closest matching
administrative node is located within the topic hierarchy and
returned. The contained topic object might therefore differ to that
originally specified.

options

Options that control the opening of the topic for subscription. If
more than one option is required, the values can be added together
or combined using the bitwise OR operator.

Chapter 2. Programming with WebSphere MQ classes for .NET 109

|
|
|

|
|

|

|
|
|

|
|
|
|
|

|
|
|

|

|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

These options are valid (see MQOPEN – Open object Options for a
full descriptive list of which options are valid when opening a
topic):
v MQSO_CREATE
v MQSO_RESUME
v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +
MQSO_ALTER is assumed. Other valid options are also available.
(see MQOPEN – Open object Options).

When opening a topic for subscription, the method applies to an
unmanaged, non-durable subscription only. These options are
therefore enforced:
v MQSO_NON_DURABLE
v ~ MQSO_MANAGED

Returns
MQTopic that has been successfully opened.

AccessTopic
public MQTopic AccessTopic(MQDestination destination,

String topicName,
ref String topicObject,
int options,
String alternateUserId);

Throws MQException.

Establishes access to a WebSphere MQ topic. The presence of the
destination parameter indicates that this method can be used for opening
the topic for subscriptions only. The options parameter therefore always
maps to the equivalent MQSO values.

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options
parameter, the alternateUserId parameter is used to check for the necessary
authorization.

The options specified allow the MQTopic object to be used to get or
browse messages, inquire about the attributes of the topic, or set the
attributes of the topic.

The method returns an MQTopic object for subscription using the supplied
topic name (topicName) and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part
exists if the first character of the field is neither a blank nor a null
character. If both parts exist a ‘/’ character is inserted between them in the
resultant combined topic. If only one of these parts exist it is used
unchanged as the topic. The parts are concatenated in the sequence listed
here:
v The value of the TOPICSTR parameter of the topic object named in

topicObject.
v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those
wildcards can be controlled using the wildcard options specified in the
options parameter.

110 WebSphere MQ: Using .NET

|
|
|

|

|

|

|
|
|

|
|
|

|

|

|
|

|

|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|

|
|
|

When creating an MQTopic for subscription, the subscription store
(destination) is provided, managed and owned by the user. The queue
manager takes no responsibility for this object and it is left to the user to
correctly dispose of it. Any messages available for this subscription will be
delivered to the specified destination.

The destination parameter must be valid and cannot be left blank or null.
This method can be used to create an unmanaged, non-durable
subscription only.

Parameters

destination

An existing MQDestination object which should receive the
publications. For WebSphere MQ V7.0 this object maps to an
MQQueue object. It cannot resolve to another MQTopic object.

The MQDestination (MQQueue) object can be created by calling an
MQQueueManager::AccessQueue (...) method or an MQQueue
constructor.

The corresponding destination is held as a reference within the
MQTopic object as the UnmanagedDestinationReference property.

topicName
The topic string to subscribe against. The topicName parameter
directly maps to the ObjectString field of the MQSD. The full topic
name used is the combination of the topicObject and topicName
parameters as described above.

topicObject
This is the name of the topic object as defined on the local queue
manager. If this property is specified in combination with a
non-zero-length topicName, then the specified topicName is
appended to the topic string contained in the topic object with a
separator character. It is the full topic string that is published or
subscribed against, as described above.

The parameter is both an input and output parameter. Upon
successful completion of the method, the closest matching
administrative node is located within the topic hierarchy and
returned. The contained topic object might therefore differ to that
originally specified.

options

Options that control the opening of the topic for subscription. If
more than one option is required, the values can be added together
or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a
full descriptive list of which options are valid when opening a
topic):
v MQSO_CREATE
v MQSO_RESUME
v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +
MQSO_ALTER is assumed. Other valid options are also available.
(see MQOPEN – Open object Options).

Chapter 2. Programming with WebSphere MQ classes for .NET 111

|
|
|
|
|

|
|
|

|

|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

|

|

|

|
|
|

When opening a topic for subscription, the method applies to an
unmanaged, non-durable subscription only. These options are
therefore enforced:
v MQSO_NON_DURABLE
v ~ MQSO_MANAGED

alternateUserId

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the
options parameter, this parameter specifies the alternate user
identifier that is used to check for the required authorization to
complete the operation. Otherwise, this parameter can be left blank
(or null).

Returns
MQTopic that has been successfully opened.

AccessTopic
public MQTopic AccessTopic(MQDestination destination,

String topicName,
ref String topicObject,
int options,
String alternateUserId,
String subscriptionName);

Throws MQException.

Establishes access to a WebSphere MQ topic. The presence of the
destination and subscriptionName parameters indicate that this method
can be used for opening the topic for subscriptions only. The options
parameter therefore always maps to the equivalent MQSO values.

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options
parameter, the alternateUserId parameter is used to check for the necessary
authorization.

The options specified allow the MQTopic object to be used to get or
browse messages, inquire about the attributes of the topic, or set the
attributes of the topic.

The method returns an MQTopic object for subscription using the supplied
topic name (topicName) and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part
exists if the first character of the field is neither a blank nor a null
character. If both parts exist a ‘/’ character is inserted between them in the
resultant combined topic. If only one of these parts exist it is used
unchanged as the topic. The parts are concatenated in the sequence listed
here:
v The value of the TOPICSTR parameter of the topic object named in

topicObject.
v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those
wildcards can be controlled using the wildcard options specified in the
options parameter.

When creating an MQTopic for subscription, the subscription store
(destination) is provided, managed and owned by the user. The queue

112 WebSphere MQ: Using .NET

|
|
|

|

|

|

|
|
|
|
|

|
|

|

|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|

|
|
|

|
|

manager takes no responsibility for this object and it is left to the user to
correctly dispose of it. Any messages available for this subscription will be
delivered to the specified destination.

The destination parameter must be valid and cannot be left blank or null.
This method can be used to create an unmanaged subscription only.

Parameters

destination

An existing MQDestination object which should receive the
publications. For WebSphere MQ V7.0 this object maps to an
MQQueue object. It cannot resolve to another MQTopic object.

The MQDestination (MQQueue) object can be created by calling an
MQQueueManager::AccessQueue (...) method or an MQQueue
constructor.

The corresponding destination is held as a reference within the
MQTopic object as the UnmanagedDestinationReference property.

topicName
The topic string to subscribe against. The topicName parameter
directly maps to the ObjectString field of the MQSD. The full topic
name used is the combination of the topicObject and topicName
parameters as described above.

topicObject
This is the name of the topic object as defined on the local queue
manager. If this property is specified in combination with a
non-zero-length topicName, then the specified topicName is
appended to the topic string contained in the topic object with a
separator character. It is the full topic string that is published or
subscribed against, as described above.

The parameter is both an input and output parameter. Upon
successful completion of the method, the closest matching
administrative node is located within the topic hierarchy and
returned. The contained topic object might therefore differ to that
originally specified.

options

Options that control the opening of the topic for subscription. If
more than one option is required, the values can be added together
or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a
full descriptive list of which options are valid when opening a
topic):
v MQSO_CREATE
v MQSO_RESUME
v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +
MQSO_ALTER is assumed. Other valid options are also available.
(see MQOPEN – Open object Options).

When opening a topic for subscription, the method applies to an
unmanaged subscription only. This option is therefore enforced:
v ~ MQSO_MANAGED

Chapter 2. Programming with WebSphere MQ classes for .NET 113

|
|
|

|
|

|

|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

|

|

|

|
|
|

|
|

|

alternateUserId

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the
options parameter, this parameter specifies the alternate user
identifier that is used to check for the required authorization to
complete the operation. Otherwise, this parameter can be left blank
(or null).

subscriptionName

If the options parameter specified MQSO_DURABLE then this field
is mandatory, otherwise (MQSO_NON_DURABLE) this field is
optional.

For an MQSO_DURABLE subscription it is the means by which
you identify a subscription to be resumed after it has been created,
if you have either closed the handle to the subscription or have
been disconnected from the queue manager.

If altering an existing subscription using the MQSO_ALTER option,
the subscription name cannot be changed.

Returns
MQTopic that has been successfully opened.

AccessTopic
public MQTopic AccessTopic(MQDestination destination,

String topicName,
ref String topicObject,
int options,
String alternateUserId,
String subscriptionName,
ref Hashtable parameters);

Throws MQException.

Establishes access to a WebSphere MQ topic. The presence of the
destination and subscriptionName parameters indicate that this method
can be used for opening the topic for subscriptions only. The options
parameter therefore always maps to the equivalent MQSO values.

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options
parameter, the alternateUserId parameter is used to check for the necessary
authorization.

The options specified allow the MQTopic object to be used to get or
browse messages, inquire about the attributes of the topic, or set the
attributes of the topic.

The method returns an MQTopic object for subscription using the supplied
topic name (topicName) and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part
exists if the first character of the field is neither a blank nor a null
character. If both parts exist a ‘/’ character is inserted between them in the
resultant combined topic. If only one of these parts exist it is used
unchanged as the topic. The parts are concatenated in the sequence listed
here:
v The value of the TOPICSTR parameter of the topic object named in

topicObject.
v topicName, if the length provided for that string is non-zero.

114 WebSphere MQ: Using .NET

|

|
|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|

If there are wildcards in the topicName, the interpretation of those
wildcards can be controlled using the wildcard options specified in the
options parameter.

When creating an MQTopic for subscription, the subscription store
(destination) is provided, managed and owned by the user. The queue
manager takes no responsibility for this object and it is left to the user to
correctly dispose of it. Any messages available for this subscription will be
delivered to the specified destination.

The destination parameter must be valid and cannot be left blank or null.
This method can be used to create an unmanaged subscription only.

Extra non-standard input and output parameters can also be specified
using the parameters hash table. If a property is an output field it will be
populated within the hash table only if it was originally specified on input.
Essentially, no new key/value pairs will be added to the hash table – only
existing ones updated.

Parameters

destination

An existing MQDestination object which should receive the
publications. For WebSphere MQ V7.0 this object maps to an
MQQueue object. It cannot resolve to another MQTopic object.

The MQDestination (MQQueue) object can be created by calling an
MQQueueManager::AccessQueue (...) method or an MQQueue
constructor.

The corresponding destination is held as a reference within the
MQTopic object as the UnmanagedDestinationReference property.

topicName
The topic string to subscribe against. The topicName parameter
directly maps to the ObjectString field of the MQSD. The full topic
name used is the combination of the topicObject and topicName
parameters as described above.

topicObject
This is the name of the topic object as defined on the local queue
manager. If this property is specified in combination with a
non-zero-length topicName, then the specified topicName is
appended to the topic string contained in the topic object with a
separator character. It is the full topic string that is published or
subscribed against, as described above.

The parameter is both an input and output parameter. Upon
successful completion of the method, the closest matching
administrative node is located within the topic hierarchy and
returned. The contained topic object might therefore differ to that
originally specified.

options

Options that control the opening of the topic for subscription. If
more than one option is required, the values can be added together
or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a
full descriptive list of which options are valid when opening a
topic):

Chapter 2. Programming with WebSphere MQ classes for .NET 115

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|

|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

v MQSO_CREATE
v MQSO_RESUME
v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +
MQSO_ALTER is assumed. Other valid options are also available.
(see MQOPEN – Open object Options).

When opening a topic for subscription, the method applies to an
unmanaged subscription only. This option is therefore enforced:
v ~ MQSO_MANAGED

alternateUserId

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the
options parameter, this parameter specifies the alternate user
identifier that is used to check for the required authorization to
complete the operation. Otherwise, this parameter can be left blank
(or null).

subscriptionName

If the options parameter specified MQSO_DURABLE then this field
is mandatory, otherwise (MQSO_NON_DURABLE) this field is
optional.

For an MQSO_DURABLE subscription it is the means by which
you identify a subscription to be resumed after it has been created,
if you have either closed the handle to the subscription or have
been disconnected from the queue manager.

If altering an existing subscription using the MQSO_ALTER option,
the subscription name cannot be changed.

parameters

The hash table can be used to specify non-standard input and
output parameters to the subscription request. If a property is an
output field it will only be populated within the hash table if it
was originally specified on input. Consequently, no new key /
value pairs will be added to the hash table – only existing ones
updated. The following key names are valid and can be specified:
v MQSUB_PROP_ALTERNATE_SECURITY_ID
v MQSUB_PROP_SUBSCRIPTION_EXPIRY
v MQSUB_PROP_SUBSCRIPTION_USER_DATA
v MQSUB_PROP_SUBSCRIPTION_CORRELATION_ID
v MQSUB_PROP_PUBLICATION_PRIORITY
v MQSUB_PROP_PUBLICATION_ACCOUNTING_TOKEN
v MQSUB_PROP_PUBLICATION_APPLICATIONID_DATA

All are specified as String type properties. The corresponding
language conversion routines can be used to convert the values to
the relevant types.

Returns
MQTopic that has been successfully opened.

Backout
public void Backout()

116 WebSphere MQ: Using .NET

|

|

|

|
|
|

|
|

|

|

|
|
|
|
|

|

|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|

|
|

Throws MQException.

Calling this method indicates to the queue manager that all the message
gets and puts that have occurred since the last syncpoint are to be backed
out. Messages put as part of a unit of work (with the
MQC.MQPMO_SYNCPOINT flag set in the options field of
MQPutMessageOptions) are deleted; messages retrieved as part of a unit of
work (with the MQC.MQGMO_SYNCPOINT flag set in the options field of
MQGetMessageOptions) are reinstated on the queue.

See also the description of the commit method.

Begin*
public void Begin()

Throws MQException.

This method is supported only by the WebSphere MQ classes for .NET in
server bindings mode. It signals to the queue manager that a new unit of
work is starting.

Do not use this method for applications that use local one-phase
transactions.

Commit
public void Commit()

Throws MQException.

Calling this method indicates to the queue manager that the application
has reached a syncpoint, and that all the message gets and puts that have
occurred since the last syncpoint are to be made permanent. Messages put
as part of a unit of work (with the MQC.MQPMO_SYNCPOINT flag set in
the options field of MQPutMessageOptions) are made available to other
applications. Messages retrieved as part of a unit of work (with the
MQC.MQGMO_SYNCPOINT flag set in the options field of
MQGetMessageOptions) are deleted.

See also the description of the backout method.

Disconnect
public void Disconnect()

Throws MQException.

Terminates the connection to the queue manager. All open queues and
processes accessed by this queue manager are closed, and become
unusable. When you have disconnected from a queue manager, the only
way to reconnect is to create a new MQQueueManager object.

Normally, any work performed as part of a unit of work is committed.
However, if this connection is managed by a ConnectionManager, rather
than an MQConnectionManager, the unit of work might be rolled back.

GetAsyncStatus
public MQAsyncStatus GetAsyncStatus()

Throws MQException;

Creates an MQAsyncStatus object that represents the asynchronous activity
for the queue manager connection.

Chapter 2. Programming with WebSphere MQ classes for .NET 117

|
|

|

|
|

Returns
An asynchronous status object containing the values of the last
asynchronous errors for the queue manager connection.

Exceptions
MQException – if there is a problem retrieving the asynchronous
error status information.

Put
public void Put(String qName,

String qmName,
MQMessage msg,
MQPutMessageOptions pmo,
String altUserId)

Throws MQException.

Places a single message onto a queue without having to create an
MQQueue object first.

The qName (queue name) and qmName (queue manager name)
parameters identify where the message is placed. If the queue is a model
queue, an MQException is thrown.

In other respects, this method behaves like the put method on the
MQQueue object. It is an implementation of the MQPUT1 MQI call. See
MQQueue.Put.

Parameters

qName The name of the queue onto which to place the message.

qmName
The name of the queue manager on which the queue is defined.

msg The message to send.

pmo Options controlling the actions of the put. See
“MQPutMessageOptions” on page 81 for more details.

altUserid
Specifies an alternative user identifier used to check authorization
when placing the message on a queue. If you do not specify
MQPMO_ALTERNATE_USER, this parameter is ignored.

Put
public void Put(String qName,

String qmName,
MQMessage msg,
MQPutMessageOptions pmo)

Throws MQException.

Places a single message onto a queue without having to create an
MQQueue object first.

This version of the method allows you to omit the altUserid parameter. See
the fully-specified method (MQQueueManager.Put) for details of the
parameters.

Put
public void Put(String qName,

String qmName,
MQMessage msg)

118 WebSphere MQ: Using .NET

|
|
|

|
|
|

Throws MQException.

Places a single message onto a queue without having to create an
MQQueue object first.

This version of the method allows you to omit the put message options
(pmo) and altUserid parameters. See the fully-specified method
(MQQueueManager.Put) for details of the parameters.

Put
public void Put(String qName,

MQMessage msg,
MQPutMessageOptions pmo)

Throws MQException.

Places a single message onto a queue without having to create an
MQQueue object first.

This version of the method allows you to omit the qmName and altUserid
parameters. See the fully-specified method (MQQueueManager.Put) for
details of the parameters.

Put
public void Put(String qName,

MQMessage msg)

Throws MQException.

Places a single message onto a queue without having to create an
MQQueue object first.

This version of the method allows you to omit the qmName, put message
options (pmo), and altUserid parameters. See the fully-specified method
(MQQueueManager.Put) for details of the parameters.

Put
public void Put(int type,

ref String destinationName,
ref MQMessage message);

Throws MQException.

Places or publishes a single message onto a queue or topic without having
to create an MQQueue or MQTopic object first.

When used to place messages to a queue allows you to omit the queue
manager name, put message options, and alternative user ID. When used
to publish messages to a topic allows you to omit the topic string, put
message options and alternative user ID.

The destinationName parameter adopts different meanings depending
upon the destination type specified in the type parameter.

The default options used for unspecified parameters might alter depending
upon the destination type specified.

Parameters

type The options used to control the specified destination type. Valid
values are:
v MQOT_Q

Chapter 2. Programming with WebSphere MQ classes for .NET 119

|

|
|
|

|

|
|

|
|
|
|

|
|

|
|

|

||
|

|

v MQOT_TOPIC

Only one option should be specified – the values should not be
combined by addition or using the bitwise OR operator.

destinationName

The name of the queue or topic onto which to place or publish the
message. Depending upon the value of the type parameter this
parameter will adopt different meanings:
v If MQOT_Q is specified the destinationName parameter directly

maps to the queue name, that is the ObjectName property of the
MQOD.

v If MQOT_TOPIC is specified the destinationName parameter
directly maps to the topic object, that is the ObjectName
property of the MQSD (the topic object ObjectName property is
left blank).

message
The message to send. Properties within the message might be
altered as a result of placing or publishing the message to a queue
or topic. It is therefore marked as both an input and output
parameter.

Returns
There is no return value.

Put
public void Put(int type,

ref String destinationName,
ref MQMessage message
MQPutMessageOptions putMessageOptions);

Throws MQException.

Places or publishes a single message onto a queue or topic without having
to create an MQQueue or MQTopic object first.

When used to place messages to a queue allows you to omit the queue
manager name and alternative user ID. When used to publish messages to
a topic allows you to omit the topic string and alternative user ID.

The destinationName parameter adopts different meanings depending
upon the destination type being specified in the type parameter.

The options specified in the putMessageOptions parameter are used when
putting the message to either the queue or topic. These options differ
depending upon the destination type being specified.

Parameters

type The options used to control the specified destination type. Valid
values are:
v MQOT_Q
v MQOT_TOPIC

Only one option should be specified – the values should not be
combined by addition or using the bitwise OR operator.

destinationName

120 WebSphere MQ: Using .NET

|

|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|

|

|
|

|
|
|

|
|

|
|
|

|

||
|

|

|

|
|

|
|

The name of the queue or topic onto which to place or publish the
message. Depending upon the value of the type parameter this
parameter will adopt different meanings:
v If MQOT_Q is specified the destinationName parameter directly

maps to the queue name, that is the ObjectName property of the
MQOD.

v If MQOT_TOPIC is specified the destinationName parameter
directly maps to the topic object, that is the ObjectName
property of the MQSD (the topic object ObjectName property is
left blank).

message
The message to send. Properties within the message might be
altered as a result of placing or publishing the message to a queue
or topic. It is therefore marked as both an input and output
parameter.

putMessageOptions
Options controlling the action of the put or publish. See
MQPutMessageOptions object “Properties” on page 82.

Returns
There is no return value.

Put
public void Put(int type,

ref String destinationName,
String queueManagerName,
String topicString,
ref MQMessage message);

Throws MQException.

Places or publishes a single message onto a queue or topic without having
to create an MQQueue or MQTopic object first.

When used to place messages to a queue or a topic allows you to omit the
put message options, and alternative user ID.

The destinationName parameter adopts different meanings depending
upon the destination type being specified in the type parameter.

Other parameters are optional.

Parameters

type The options used to control the specified destination type. Valid
values are:
v MQOT_Q
v MQOT_TOPIC

Only one option should be specified – the values should not be
combined by addition or using the bitwise OR operator.

destinationName

The name of the queue or topic onto which to place or publish the
message. Depending upon the value of the type parameter this
parameter will adopt different meanings:
v If MQOT_Q is specified the destinationName parameter directly

maps to the queue name, that is the ObjectName property of the
MQOD.

Chapter 2. Programming with WebSphere MQ classes for .NET 121

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|

|

|
|
|
|
|

|

|
|

|
|

|
|

|

|

||
|

|

|

|
|

|

|
|
|

|
|
|

v If MQOT_TOPIC is specified the destinationName parameter
directly maps to the topic object, that is the ObjectName
property of the MQSD (the topic object ObjectName property is
left blank).

queueManagerName
The name of the queue manager onto which to place the message.
If type MQOT_TOPIC is specified this parameter is ignored.

topicString
The name of the topic string onto which to publish the message. If
type MQOT_Q is specified this parameter is ignored.

message
The message to send. Properties within the message might be
altered as a result of placing or publishing the message to a queue
or topic. It is therefore marked as both an input and output
parameter.

Returns
There is no return value.

Put
public void Put(int type,

ref String destinationName,
String queueManagerName,
String topicString,
ref MQMessage message,
MQPutMessageOptions putMessageOptions);

Throws MQException.

Places or publishes a single message onto a queue or topic without having
to create an MQQueue or MQTopic object first.

When used to place messages to a queue or a topic allows you to omit the
alternative user ID.

The destinationName parameter adopts different meanings depending
upon the destination type being specified in the type parameter.

The options specified in the putMessageOptions parameter are used when
putting the message to either the queue or topic. These options differ
depending upon the destination type being specified.

Other parameters are optional.

Parameters

type The options used to control the specified destination type. Valid
values are:
v MQOT_Q
v MQOT_TOPIC

Only one option should be specified – the values should not be
combined by addition or using the bitwise OR operator.

destinationName

The name of the queue or topic onto which to place or publish the
message. Depending upon the value of the type parameter this
parameter will adopt different meanings:

122 WebSphere MQ: Using .NET

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|
|

|

|

||
|

|

|

|
|

|

|
|
|

v If MQOT_Q is specified the destinationName parameter directly
maps to the queue name, that is the ObjectName property of the
MQOD.

v If MQOT_TOPIC is specified the destinationName parameter
directly maps to the topic object, that is the ObjectName
property of the MQSD (the topic object ObjectName property is
left blank).

queueManagerName
The name of the queue manager onto which to place the message.
If type MQOT_TOPIC is specified this parameter is ignored.

topicString
The name of the topic string onto which to publish the message. If
type MQOT_Q is specified this parameter is ignored.

message
The message to send. Properties within the message might be
altered as a result of placing or publishing the message to a queue
or topic. It is therefore marked as both an input and output
parameter.

putMessageOptions
Options controlling the action of the put or publish. See
MQPutMessageOptions object “Properties” on page 82.

Returns
There is no return value.

Put
public void Put(int type,

ref String destinationName,
String queueManagerName,
String topicString,
ref MQMessage message,
MQPutMessageOptions putMessageOptions
String alternateUserId);

Throws MQException.

Places or publishes a single message onto a queue or topic without having
to create an MQQueue or MQTopic object first.

The destinationName parameter adopts different meanings depending
upon the destination type being specified in the type parameter.

The options specified in the putMessageOptions parameter are used when
putting the message to either the queue or topic. These options differ
depending upon the destination type being specified.

The alternateUserId parameter is an alternative user identifier used to
check authorization when placing or publishing the message onto a queue
or topic.

Other parameters are optional.

Parameters

type The options used to control the specified destination type. Valid
values are:
v MQOT_Q
v MQOT_TOPIC

Chapter 2. Programming with WebSphere MQ classes for .NET 123

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|

|

|
|
|
|
|
|
|

|

|
|

|
|

|
|
|

|
|
|

|

|

||
|

|

|

Only one option should be specified – the values should not be
combined by addition or using the bitwise OR operator.

destinationName

The name of the queue or topic onto which to place or publish the
message. Depending upon the value of the type parameter this
parameter will adopt different meanings:
v If MQOT_Q is specified the destinationName parameter directly

maps to the queue name, that is the ObjectName property of the
MQOD.

v If MQOT_TOPIC is specified the destinationName parameter
directly maps to the topic object, that is the ObjectName
property of the MQSD (the topic object ObjectName property is
left blank).

queueManagerName
The name of the queue manager onto which to place the message.
If type MQOT_TOPIC is specified this parameter is ignored.

topicString
The name of the topic string onto which to publish the message. If
type MQOT_Q is specified this parameter is ignored.

message
The message to send. Properties within the message might be
altered as a result of placing or publishing the message to a queue
or topic. It is therefore marked as both an input and output
parameter.

putMessageOptions
Options controlling the action of the put or publish. See
MQPutMessageOptions object “Properties” on page 82.

alternateUserId
Specifies an alternative user identifier used to check authorization
when placing or publishing the message onto a queue or topic. If
you do not specify MQPMO_ALTERNATE_USER, this parameter is
ignored.

Returns
There is no return value.

Properties
Properties for MQQueueManager.

AccountingConnOverride
public int AccountingConnOverride {get;}

Allows applications to override the setting of the mqi accounting and
queue accounting values.

AccountingInterval
public int AccountingInterval {get;}

How long before intermediate accounting records are written (in seconds).

ActivityRecording
public int ActivityRecording {get;}

Controls the generation of activity reports.

124 WebSphere MQ: Using .NET

|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

AdoptNewMCACheck
public int AdoptNewMCACheck {get;}

Specifies which elements are checked to determine whether an MCA will
be adopted when a new inbound channel is detected with the same name
as an already active MCA.

AdoptNewMCAInterval
public int AdoptNewMCAInterval {get;}

The amount of time, in seconds, that the new channel waits for the
orphaned channel to end.

AdoptNewMCAType
public int AdoptNewMCAType {get;}

Whether an orphaned MCA instance is to be adopted (restarted) when a
new inbound channel request is detected matching the
AdoptNewMCACheck value.

BridgeEvent
public int BridgeEvent {get;}

Whether IMS Bridge events are generated.

ChannelEvent
public int ChannelEvent {get;}

Whether channel events are generated.

ChannelInitiatorControl
public int ChannelInitiatorControl {get;}

Whether the channel initiator starts automatically when the queue manager
starts.

ChannelInitiatorAdapters
public int ChannelInitiatorAdapters {get;}

The number of adapter subtasks to process WebSphere MQ calls.

ChannelInitiatorDispatchers
public int ChannelInitiatorDispatchers {get;}

The number of dispatchers to use for the channel initiator.

ChannelInitiatorTraceAutoStart
public int ChannelInitiatorTraceAutoStart {get;}

Specifies whether the channel initiator trace starts automatically.

ChannelInitiatorTraceTableSize
public int ChannelInitiatorTraceTableSize {get;}

The size, in megabytes, of the channel initiator’s trace data space.

ChannelMonitoring
public int ChannelMonitoring {get;}

Chapter 2. Programming with WebSphere MQ classes for .NET 125

Whether channel monitoring is enabled.

ChannelStatistics
public int ChannelStatistics {get;}

Controls the collection of statistics data for channels.

CharacterSet
public int CharacterSet {get;}

Throws MQException.

Returns the CCSID (Coded Character Set Identifier) of the queue
manager’s code set. This defines the character set used by the queue
manager for all character string fields in the application programming
interface.

Throws MQException if you call this method after disconnecting from the
queue manager.

ClusterSenderMonitoring
public int ClusterSenderMonitoring {get;}

Controls the collection of online monitoring data for automatically-defined
cluster sender channels.

ClusterSenderStatistics
public int ClusterSenderStatistics {get;}

Controls the collection of statistics data for automatically defined cluster
sender channels.

ClusterWorkLoadMRU
public int ClusterWorkLoadMRU {get;}

The maximum number of outbound cluster channels.

ClusterWorkLoadUseQ
public int ClusterWorkLoadUseQ {get;}

The default value of the MQQueue property, ClusterWorkLoadUseQ, if it
specifies a value of QMGR.

CommandEvent
public int CommandEvent {get;}

Specifies whether command events are generated.

CommandInputQueueName
public String CommandInputQueueName {get;}

Throws MQException.

Returns the name of the command input queue defined on the queue
manager. This is a queue to which applications can send commands, if
authorized to do so.

Throws MQException if you call this method after disconnecting from the
queue manager.

CommandLevel

126 WebSphere MQ: Using .NET

public int CommandLevel {get;}

Throws MQException.

Indicates the level of system control commands supported by the queue
manager. The set of system control commands that correspond to a
particular command level varies according to the architecture of the
platform on which the queue manager is running. See the WebSphere MQ
documentation for your platform for further details.

Throws MQException if you call this method after disconnecting from the
queue manager.

Returns
One of the MQC.MQCMDL_LEVEL_xxx constants

CommandServer
public int CommandServer {get;}

Whether the command server starts automatically when the queue
manager starts.

DNSGroup
public string DNSGroup {get;}

The name of the group that the TCP listener handling inbound
transmissions for the queue-sharing group must join when using Workload
Manager for Dynamic Domain Name Services support (DDNS).

DNSWLM
public int DNSWLM {get;}

Whether the TCP listener that handles inbound transmissions for the
queue-sharing group must register with Workload Manager for DDNS.

IPAddressVersion
public int IPAddressVersion {get;}

Which IP protocol (IPv4 or IPv6) to use for a channel connection.

IsConnected
public boolean IsConnected {get;}

Returns the value of the isConnected variable.

KeepAlive
public int KeepAlive {get;}

Specifies whether the TCP KEEPALIVE facility is to be used to check that
the other end of the connection is still available. If it is not available, the
channel is closed.

ListenerTimer
public int ListenerTimer {get;}

The time interval, in seconds, between attempts by WebSphere MQ to
restart the listener after an APPC or TCP/IP failure.

LoggerEvent
public int LoggerEvent {get;}

Chapter 2. Programming with WebSphere MQ classes for .NET 127

Whether logger events are generated.

LU62ARMSuffix
public string LU62ARMSuffix {get;}

The suffix of the APPCPM member of SYS1.PARMLIB. This suffix
nominates the LUADD for this channel initiator. When automatic restart
manager (ARM) restarts the channel initiator, the z/OS command SET
APPC=xx is issued.

LUGroupName
public string LUGroupName {get;}

The generic LU name to be used by the LU 6.2 listener that handles
inbound transmissions for the queue-sharing group.

LUName
public string LUName {get;}

The name of the LU to use for outbound LU 6.2 transmissions.

MaximumActiveChannels
public int MaximumActiveChannels {get;}

The maximum number of channels that can be active at any time.

MaximumCurrentChannels
public int MaximumCurrentChannels {get;}

The maximum number of channels that can be current at any time
(including server-connection channels with connected clients).

MaximumLU62Channels
public int MaximumLU62Channels {get;}

The maximum number of channels that can be current, or clients that can
be connected, that use the LU 6.2 transmission protocol.

MaximumMessageLength
public int MaximumMessageLength {get;}

Throws MQException.

Returns the maximum length of a message (in bytes) that can be handled
by the queue manager. No queue can be defined with a maximum message
length greater than this.

Throws MQException if you call this method after disconnecting from the
queue manager.

MaximumPriority
public int MaximumPriority {get;}

Throws MQException.

Returns the maximum message priority supported by the queue manager.
Priorities range from zero (lowest) to this value.

Throws MQException if you call this method after disconnecting from the
queue manager.

128 WebSphere MQ: Using .NET

MaximumTCPChannels
public int MaximumTCPChannels {get;}

The maximum number of channels that can be current, or clients that can
be connected, that use the TCP/IP transmission protocol.

MQIAccounting
public int MQIAccounting {get;}

Controls the collection of accounting information for MQI data.

MQIStatistics
public int MQIStatistics {get;}

Controls the collection of statistics monitoring information for the queue
manager.

OutboundPortMax
public int OutboundPortMax {get;}

The maximum value in the range of port numbers to be used when
binding outgoing channels.

OutboundPortMin
public int OutboundPortMin {get;}

The minimum value in the range of port numbers to be used when
binding outgoing channels.

QueueAccounting
public int QueueAccounting {get;}

Whether class 3 accounting (thread-level and queue-level accounting) data
is to be enabled for all queues.

QueueMonitoring
public int QueueMonitoring {get;}

Controls the collection of online monitoring data for queues.

QueueStatistics
public int QueueStatistics {get;}

Controls the collection of statistics data for queues.

ReceiveTimeout
public int ReceiveTimeout {get;}

The length of time that a TCP/IP channel waits to receive data, including
heartbeats, from its partner before returning to the inactive state.

ReceiveTimeoutMin
public int ReceiveTimeoutMin {get;}

The minimum length of time that a TCP/IP channel waits to receive data,
including heartbeats, from its partner before returning to an inactive state.

ReceiveTimeoutType
public int ReceiveTimeoutType {get;}

Chapter 2. Programming with WebSphere MQ classes for .NET 129

The qualifier to apply to the value in ReceiveTimeout.

SharedQueueQueueManagerName
public int SharedQueueQueueManagerName {get;}

Whether the ObjectQmgrName must be used or treated as the local queue
manager on an MQOPEN call for a shared queue when the
ObjectQmgrName is that of another queue manager in the queue-sharing
group.

SSLEvent
public int SSLEvent {get;}

Whether SSL events are generated.

SSLFips
public int SSLFips {get;}

Whether only FIPS-certified algorithms are to be used if cryptography is
executed in WebSphere MQ

itself.

SSLKeyResetCount
public int SSLKeyResetCount {get;}

Indicates the number of unencrypted bytes sent and received within an
SSL conversation before the secret key is renegotiated.

StatisticsInterval
public int ClusterSenderStatistics {get;}

Specifies the interval, in minutes, between consecutive gatherings of
statistics.

SyncpointAvailability
public int SyncpointAvailability {get;}

Throws MQException.

Indicates whether the queue manager supports units of work and
syncpointing with the MQQueue.get and MQQueue.put methods.

Returns

v MQC.MQSP_AVAILABLE if syncpointing is available.
v MQC.MQSP_NOT_AVAILABLE if syncpointing is not available.

Throws MQException if you call this method after disconnecting from the
queue manager.

TCPName
public string TCPName {get;}

The name of either the only, or default, TCP/IP system to be used,
depending on the value of TCPStackType.

TCPStackType
public int TCPStackType {get;}

130 WebSphere MQ: Using .NET

Specifies whether the channel initiator may use only the TCP/IP address
space specified in TCPNAME, or may optionally bind to any selected
TCP/IP address.

TraceRouteRecording
public int TraceRouteRecording {get;}

Controls the recording of route tracing information.

For more detailed descriptions of these properties, see Attribute descriptions for
the queue manager.

MQSubscription
MQSubscription object for .NET

public class IBM.WMQ.MQSubscription
extends IBM.WMQ.MQManagedObject

MQSubscription is a helper object designed to encapsulate the HSUB reference.
Under normal operating circumstances do not use or modify the object. It is a sub
class of MQManagedObject.

Constructors
Constructors for MQSubscription.

MQSubscription
protected MQSubscription();

Default constructor. Although not an abstract base class, the
MQSubscription object is set to inhibit construction of these objects. Instead
an MQSubscription object is created automatically when an MQTopic
object is created for subscriptions, and the reference to the MQSubscription
object is held in the MQTopic (SubscriptionReference) object. The reference
is available to you if you want to modify the close options or invoke any
of the object’s methods.

By default the close options of the MQSubscription object are set to
MQCO_NONE, which means the queue manager decides which close
options to use depending upon the subscription type.

Methods
Methods for MQSubscription object.

RequestPublicationUpdate
public int RequestPublicationUpdate(int options);

Throws MQException.

System.Object
│
└─ IBM.WMQ.MQBase
│
└─ IBM.WMQ.MQBaseObject
│
└─ IBM.WMQ.MQManagedObject
│
└─ IBM.WMQ.MQSubscription

Chapter 2. Programming with WebSphere MQ classes for .NET 131

|
|
|
|
|
|
|
|
|

|
|

|

|

|

|
|

|
|
|

|
|

|

|

|
|
|
|
|
|
|

|
|
|

|
|

|

|

|

Requests an update publication to be sent for the current topic. This is
normally used if the user specified the
MQSO_PUBLICATIONS_ON_REQUEST option. If the queue manager has
a retained publication for the topic, this is sent to the subscriber.

The method returns the number of retained publications to be sent to the
subscription queue. There is no guarantee that this many messages will be
available for the application to get, especially if they are non-persistent
messages.

There might be more than one publication if the subscribed topic contained
a wildcard. If no wildcards were present in the topic string when the
subscription was made, then only one publication will be sent as a result
of this call.

Parameters

options This parameter maps directly to the options field of the MQSRO
structure. Any or none of these options can be specified:

MQSRO_FAIL_IF_QUIESCING
The method fails if the queue manager is in a quiescent
state. On z/OS, for a CICS or IMS application, this option
also forces the method to fail if the connection is in a
quiescent state.

MQSRO_NONE
If none of the options described above are required, use
this value to indicate that no other options have been
specified.

Inquire
public void Inquire(int [] selectors,

int [] intAttrs,
byte [] charAttrs);

Although available on the MQManagedObject base class, this method has
no relevance to MQSubscription and is inhibited.

Set
public void Set(int [] selectors,

int [] intAttrs,
byte [] charAttrs);

Although available on the MQManagedObject base class, this method has
no relevance to MQSubscription and is inhibited.

GetAttributeString
public String GetAttributeString(int selector,

int length);

Although available on the MQManagedObject base class, this method has
no relevance to MQSubscription and is inhibited.

SetAttributeString
public String SetAttributeString(int selector,

String value,
int length);

Although available on the MQManagedObject base class, this method has
no relevance to MQSubscription and is inhibited.

132 WebSphere MQ: Using .NET

|
|
|
|

|
|
|
|

|
|
|
|

|

||
|

|
|
|
|
|

|
|
|
|

|

|
|
|

|
|

|

|
|
|

|
|

|

|
|

|
|

|

|
|
|

|
|

Properties
Properties for MQSubscription.

AlternateUserId
public String AlternateUserId { get; set; }

Although available on the MQManagedObject base class, this property has
no relevance to MQSubscription and is disabled.

Description
public String AlternateUserId { get; }

Although available on the MQManagedObject base class, this property has
no relevance to MQSubscription and is disabled.

OpenOptions
public int OpenOptions { get; set; }

Although available on the MQManagedObject base class, this property has
no relevance to MQSubscription and is disabled.

MQTopic
MQTopic object for .NET

public class IBM.WMQ.MQTopic
extends IBM.WMQ.MQDestination

MQTopic is a sub class of MQDestination and provides set, inquire, put
(send/publish), and get (receive/subscribe) operations for WebSphere MQ topics.
The set and inquire capabilities are inherited from MQManagedObject. The put
and get capabilities are inherited from MQDestination.

Use either the MQTopic constructors or the MQQueueManager::AccessTopic(...)
methods to gain access to an MQTopic object. An MQTopic object can be accessed
for either publication or subscription, not both simultaneously.

When used for receiving messages the MQTopic object can be created with an
unmanaged or managed subscription, and as a durable or non-durable subscriber –
multiple overloaded constructors are provided for this.

Note: a subscription can be either managed or unmanaged, irrespective of whether
you are using a managed client connection. For more information about managed
subscriptions, see Websphere MQ Publish/Subscribe User’s Guide. For more
information about .NET managed code, refer to Microsoft documentation.

System.Object
│
└─ IBM.WMQ.MQBase
│
└─ IBM.WMQ.MQBaseObject
│
└─ IBM.WMQ.MQManagedObject
│
└─ IBM.WMQ.MQDestination
│
└─ IBM.WMQ.MQTopic

Chapter 2. Programming with WebSphere MQ classes for .NET 133

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

Constructors for MQTopic
Constructors for MQTopic.

MQTopic has eight constructors. Two can be used for publications or for managed
subscriptions, two for managed subscriptions only, and four for unmanaged
subscriptions only.

Publication or managed subscription

MQTopic
public MQTopic(MQQueueManager qMgr,

String topicName,
ref String topicObject,
int openAs,
int options);

public MQTopic(MQQueueManager qMgr,
String topicName,
ref String topicObject,
int openAs,
int options,
String alternateUserId);

Either of these constructors establishes access to a topic on the specified
queue manager. The MQTopic object can be opened for either publication
or subscription depending upon the value of the openAs parameter. The
value dictates the use of the options parameter that should contain MQOO
options for publication or MQSO options for subscription.

An MQTopic object cannot be used for both publication and subscription
simultaneously. The constructor creates an MQTopic object for either
publication or subscription using the supplied topic name (topicName) and
topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part
exists if the first character of the field is neither a blank nor a null
character. If both parts exist a forward slash (/) is inserted between them
in the resultant combined topic. If only one of these parts exist it is used
unchanged as the topic. The parts are concatenated in the sequence listed
here:
v The value of the TOPICSTR parameter of the topic object named in

topicObject.
v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those
wildcards can be controlled using the wildcard options specified in the
options parameter.

The options specified allow the MQTopic object to be used to get or
browse messages, put messages, inquire about the attributes of the topic,
or set the attributes of the topic.

When creating an MQTopic for subscriptions, the store (MQQueue) will be
managed and owned by the queue manager. This method can therefore be
used to create a managed subscription only.

In the second variant, if either MQOO_ALTERNATE_USER_AUTHORITY
or MQSO_ALTERNATE_USER_AUTHORITY is specified in the options
parameter, the alternateUserId parameter is used to check for the necessary
authorization.

134 WebSphere MQ: Using .NET

|
|

|
|
|

|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|

|
|
|

|
|
|

|
|
|
|

Parameters

qMgr The object that represents the queue manager on which the topic
resides.

topicName
The topic string to publish or subscribe against. The topicName
parameter directly maps to the ObjectString field of the MQSD.
The full topic name used is the combination of the topicObject and
topicName parameters as described above.

topicObject
This is the name of the topic object as defined on the local queue
manager. If this property is specified in combination with a
non-zero-length topicName, then the specified topicName is
appended to the topic string contained in the topic object with a
separator character. It is the full topic string that is published or
subscribed against, as described above.

The parameter is both an input and output parameter. Upon
successful completion of the method the closest matching
administrative node is located within the topic hierarchy and
returned. The contained topic object might therefore differ to that
originally specified.

openAs Indicates whether the topic is being opened for either publication
or subscription. The parameter can contain one of these options:
v MQTOPIC_OPEN_AS_SUBSCRIPTION
v MQTOPIC_OPEN_AS_PUBLICATION

The topic object cannot be opened for both publication and
subscription. Specifying more than a single option will result in an
error condition.

options

Options that control the opening of the topic for either publication
or subscription. If more than one option is required, the values can
be added together or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a
full descriptive list of which options are valid when opening a
topic):
v MQOO_ALTERNATE_USER_AUTHORITY
v MQOO_FAIL_IF_QUIESCING
v MQOO_OUTPUT
v MQOO_PASS_ALL_CONTEXT
v MQOO_PASS_IDENTITY_CONTEXT
v MQOO_SET_ALL_CONTEXT
v MQOO_SET_IDENTITY_CONTEXT

When opening the topic for subscription the following valid
options apply:
v MQSO_CREATE
v MQSO_RESUME
v MQSO_ALTER

Chapter 2. Programming with WebSphere MQ classes for .NET 135

|

||
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

||
|

|

|

|
|
|

|

|
|
|

|
|
|

|

|

|

|

|

|

|

|
|

|

|

|

If none of these options are specified, then MQSO_CREATE +
MQSO_ALTER is assumed.

Other valid options are also available (see MQOPEN – Open object
Options).

When opening a topic for subscription, the method applies to a
managed, non-durable subscription only. These options are
therefore enforced:
v MQSO_NON_DURABLE
v MQSO_MANAGED

alternateUserId

If either MQOO_ALTERNATE_USER_AUTHORITY or
MQSO_ALTERNATE_USER_AUTHORITY is specified in the
options parameter, this parameter specifies the alternate user
identifier that is used to check for the required authorization to
complete the operation. Otherwise, this parameter can be left blank
(or null).

Managed subscription

MQTopic
public MQTopic(MQQueueManager qMgr,

String topicName,
ref String topicObject,
int options,
String alternateUserId,
String subscriptionName);

public MQTopic(MQQueueManager qMgr,
String topicName,
ref String topicObject,
int options,
String alternateUserId,
String subscriptionName,
ref Hashtable parameters);

Either of these constructors establishes access to a topic on the specified
queue manager. These methods can be used for opening the topic for
subscriptions only. The options parameter can map to the MQSO options
for subscription only.

The full topic name is given by the concatenation of two parts. A part
exists if the first character of the field is neither a blank nor a null
character. If both parts exist a forward slash (/) is inserted between them
in the resultant combined topic. If only one of these parts exist it is used
unchanged as the topic. The parts are concatenated in the sequence listed
here:
v The value of the TOPICSTR parameter of the topic object named in

topicObject.
v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those
wildcards can be controlled using the wildcard options specified in the
options parameter.

The options specified allow the MQTopic object to be used to get or
browse messages, inquire about the attributes of the topic, or set the
attributes of the topic.

136 WebSphere MQ: Using .NET

|
|

|
|

|
|
|

|

|

|

|
|
|
|
|
|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|

|
|
|

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options
parameter, the alternateUserId parameter is used to check for the necessary
authorization.

When creating an MQTopic for subscriptions, the store (MQQueue) will be
managed and owned by the queue manager. This method can therefore be
used to create a managed subscription only.

In the second variant, extra non-standard input and output parameters can
also be specified using the parameters hash table. If a property is an
output field it will be populated within the hash table only if it was
originally specified on input. Essentially, no new key/value pairs will be
added to the hash table – only existing ones updated.

Parameters

qMgr The object that represents the queue manager on which the topic
resides.

topicName
The topic string to publish or subscribe against. The topicName
parameter directly maps to the ObjectString field of the MQSD.
The full topic name used is the combination of the topicObject and
topicName parameters as described above.

topicObject
This is the name of the topic object as defined on the local queue
manager. If this property is specified in combination with a
non-zero-length topicName, then the specified topicName is
appended to the topic string contained in the topic object with a
separator character. It is the full topic string that is published or
subscribed against, as described above.

The parameter is both an input and output parameter. Upon
successful completion of the method the closest matching
administrative node is located within the topic hierarchy and
returned. The contained topic object might therefore differ to that
originally specified.

options

Options that control the opening of the topic for subscription. If
more than one option is required, the values can be added together
or combined using the bitwise OR operator.

When opening the topic for subscription the following valid
options apply:
v MQSO_CREATE
v MQSO_RESUME
v MQSO_ALTER

If none of these options are specified, then MQSO_CREATE +
MQSO_ALTER is assumed.

Other valid options are also available (see MQOPEN – Open object
Options).

When opening a topic for subscription, the method applies to a
managed subscription only. This option is therefore enforced:
v MQSO_MANAGED

alternateUserId

Chapter 2. Programming with WebSphere MQ classes for .NET 137

|
|
|

|
|
|

|
|
|
|
|

|

||
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|

|

|

|

|
|

|
|

|
|

|

|
|

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the
options parameter, this parameter specifies the alternate user
identifier that is used to check for the required authorization to
complete the operation. Otherwise, this parameter can be left blank
(or null).

subscriptionName

If the options parameter specified MQSO_DURABLE then this field
is required, otherwise if this field is provided it will be used by the
queue manager for MQSO_NON_DURABLE as well.

For an MQSO_DURABLE subscription it is the means by which
you identify a subscription to be resumed after it has been created,
if you have either closed the handle to the subscription or have
been disconnected from the queue manager.

If altering an existing subscription using the MQSO_ALTER option,
the subscription name cannot be changed.

parameters

The hash table can be used to specify non-standard input and
output parameters to the subscription request. If a property is an
output field it will only be populated within the hash table if it
was originally specified on input. Consequently, no new key/value
pairs will be added to the hash table – only existing ones updated.
The following key names are valid and can be specified:
v MQSUB_PROP_ALTERNATE_SECURITY_ID
v MQSUB_PROP_SUBSCRIPTION_EXPIRY
v MQSUB_PROP_SUBSCRIPTION_USER_DATA
v MQSUB_PROP_SUBSCRIPTION_CORRELATION_ID
v MQSUB_PROP_PUBLICATION_PRIORITY
v MQSUB_PROP_PUBLICATION_ACCOUNTING_TOKEN
v MQSUB_PROP_PUBLICATION_APPLICATIONID_DATA

All are specified as String type properties. The corresponding
language conversion routines can be used to convert the values to
the relevant types.

Unmanaged subscription

MQTopic
public MQTopic(MQQueueManager qMgr,

MQDestination destination,
String topicName,
ref String topicObject,
int options);

public MQTopic(MQQueueManager qMgr,
MQDestination destination,
String topicName,
ref String topicObject,
int options,
String alternateUserId);

public MQTopic(MQQueueManager qMgr,
MQDestination destination,
String topicName,
ref String topicObject,

138 WebSphere MQ: Using .NET

|
|
|
|
|

|

|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|

|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

int options,
String alternateUserId,
String subscriptionName);

public MQTopic(MQQueueManager qMgr,
MQDestination destination,
String topicName,
ref String topicObject,
int options,
String alternateUserId,
String subscriptionName,
ref Hashtable parameters);

These constructors establish access to a topic on the specified queue
manager and can be used for opening the topic for subscriptions only. The
options parameter can map to the MQSO options for subscription only.

The destination parameter must be valid and cannot be left blank or null.

The full topic name is given by the concatenation of two parts. A part
exists if the first character of the field is neither a blank nor a null
character. If both parts exist a forward slash (/) is inserted between them
in the resultant combined topic. If only one of these parts exist it is used
unchanged as the topic. The parts are concatenated in the sequence listed
here:
v The value of the TOPICSTR parameter of the topic object named in

topicObject.
v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those
wildcards can be controlled using the wildcard options specified in the
options parameter.

The options specified allow the MQTopic object to be used to get or
browse messages, inquire about the attributes of the topic, or set the
attributes of the topic.

In the variants with a subscriptionName parameter, if
MQSO_ALTERNATE_USER_AUTHORITY is specified in the options
parameter, the alternateUserId parameter is used to check for the necessary
authorization.

When creating an MQTopic for subscription, the subscription store
(destination) is provided, managed and owned by the user. The queue
manager takes no responsibility for this object and it is left to the user to
correctly dispose of it. Any messages available for this subscription will be
delivered to the specified destination. This method can therefore be used to
create an unmanaged subscription only.

Variants of the constructor without the subscriptionName parameter can be
used to create nondurable subscriptions only.

Extra nonstandard input and output parameters can also be specified using
the parameters hash table. If a property is an output field it will be
populated within the hash table only if it was originally specified on input.
Essentially, no new key/value pairs will be added to the hash table – only
existing ones updated.

Parameters

qMgr The object that represents the queue manager on which the topic
resides.

Chapter 2. Programming with WebSphere MQ classes for .NET 139

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|

||
|

destination

An existing MQDestination object which should receive the
publications. For WebSphere MQ V7.0 this object maps to an
MQQueue object. It cannot resolve to another MQTopic object.

The MQDestination (MQQueue) object can be created by calling an
MQQueueManager::AccessQueue (...) method or an MQQueue
constructor.

The corresponding destination is held as a reference within the
MQTopic object as the UnmanagedDestinationReference property.

topicName
The topic string to publish or subscribe against. The topicName
parameter directly maps to the ObjectString field of the MQSD.
The full topic name used is the combination of the topicObject and
topicName parameters as described above.

topicObject
This is the name of the topic object as defined on the local queue
manager. If this property is specified in combination with a
non-zero-length topicName, then the specified topicName is
appended to the topic string contained in the topic object with a
separator character. It is the full topic string that is published or
subscribed against, as described above.

The parameter is both an input and output parameter. Upon
successful completion of the method the closest matching
administrative node is located within the topic hierarchy and
returned. The contained topic object might therefore differ to that
originally specified.

options

Options that control the opening of the topic for subscription. If
more than one option is required, the values can be added together
or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a
full descriptive list of which options are valid when opening a
topic):
v MQSO_CREATE
v MQSO_RESUME
v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +
MQSO_ALTER is assumed. Other valid options are also available.
(see MQOPEN – Open object Options).

When opening a topic for subscription, the method applies to an
unmanaged subscription only. This option is therefore enforced:
v MQSO_MANAGED

If you are using a variant of the method without the
subscriptionName parameter, this option is also enforced:
v MQSO_NON_DURABLE

alternateUserId

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the
options parameter, this parameter specifies the alternate user

140 WebSphere MQ: Using .NET

|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

|

|

|

|
|
|

|
|

|

|
|

|

|

|
|

identifier that is used to check for the required authorization to
complete the operation. Otherwise, this parameter can be left blank
(or null).

subscriptionName

If the options parameter specified MQSO_DURABLE then this field
is required, otherwise if this field is provided it will be used by the
queue manager for MQSO_NON_DURABLE as well.

For an MQSO_DURABLE subscription it is the means by which
you identify a subscription to be resumed after it has been created,
if you have either closed the handle to the subscription or have
been disconnected from the queue manager.

If altering an existing subscription using the MQSO_ALTER option,
the subscription name cannot be changed.

parameters

The hash table can be used to specify non-standard input and
output parameters to the subscription request. If a property is an
output field it will only be populated within the hash table if it
was originally specified on input. Consequently, no new key/value
pairs will be added to the hash table – only existing ones updated.
The following key names are valid and can be specified:
v MQSUB_PROP_ALTERNATE_SECURITY_ID
v MQSUB_PROP_SUBSCRIPTION_EXPIRY
v MQSUB_PROP_SUBSCRIPTION_USER_DATA
v MQSUB_PROP_SUBSCRIPTION_CORRELATION_ID
v MQSUB_PROP_PUBLICATION_PRIORITY
v MQSUB_PROP_PUBLICATION_ACCOUNTING_TOKEN
v MQSUB_PROP_PUBLICATION_APPLICATIONID_DATA

All are specified as String type properties. The corresponding
language conversion routines can be used to convert the values to
the relevant types.

Methods
Methods for MQTopic object.

Put
public void Put(ref MQMessage message);

Throws MQException.

Publishes a message to the topic. This method uses a default instance of
MQPutMessageOptions to perform the put or publish. The default
MQPutMessageOptions instance differs depending upon the destination
type.

Parameters

message
An MQMessage object containing the Message Descriptor data
(MQMD) and message to be sent. The Message Descriptor
properties of this object can be altered as a result of this method.
The values that they have immediately after the completion of this
method are the values that were published to the topic.

Chapter 2. Programming with WebSphere MQ classes for .NET 141

|
|
|

|

|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|

|
|

|

|

|

|
|
|
|

|

|
|
|
|
|
|

Put
public void Put(ref MQMessage message,

MQPutMessageOptions putMessageOptions);

Throws MQException.

Publishes a message to the topic.

Parameters

message
An MQMessage object containing the Message Descriptor data
(MQMD) and message to be sent. The Message Descriptor
properties of this object can be altered as a result of this method.
The values that they have immediately after the completion of this
method are the values that were published to the topic.

putMessageOptions
Options controlling the action of the put (See
“MQPutMessageOptions” on page 81).

Get
public void Get(ref MQMessage message);

Throws MQException.

Retrieves a message from the topic. This method takes an MQMessage
object as a parameter. It uses some of the fields in the object as input
parameters, in particular the messageId and correlationId, so make sure
you set these as required.

If the get fails, the MQMessage object is unchanged. If it succeeds, the
message descriptor (member variables) and message data portions of the
MQMessage are completely replaced with the message descriptor and
message data from the incoming message.

This method uses a default instance of MQGetMessageOptions to do the
get. The message option used is MQGMO_NOWAIT.

Parameters

message
An input/output parameter containing the message descriptor
information and the returned message data.

Get
public void Get(ref MQMessage message,

MQGetMessageOptions getMessageOptions);

Throws MQException.

Retrieves a message from the topic. This method takes an MQMessage
object as a parameter. It uses some of the fields in the object as input
parameters, in particular the messageId and correlationId, so make sure
you set these as required.

If the get fails, the MQMessage object is unchanged. If it succeeds, the
message descriptor (member variables) and message data portions of the
MQMessage are completely replaced with the message descriptor and
message data from the incoming message.

142 WebSphere MQ: Using .NET

|

|
|

|

|

|

|
|
|
|
|
|

|
|
|

|

|

|

|
|
|
|

|
|
|
|

|
|

|

|
|
|

|

|
|

|

|
|
|
|

|
|
|
|

Parameters

message
An input/output parameter containing the message descriptor
information and the returned message data.

getMessageOptions
Options controlling the action of the get (See
“MQGetMessageOptions” on page 40).

Get
public void Get(ref MQMessage message,

MQGetMessageOptions getMessageOptions,
int MaxMsgSize);

Throws MQException.

Retrieves a message from the topic, up to the maximum specified message
size. This method takes an MQMessage object as a parameter. It uses some
of the fields in the object as input parameters, in particular the messageId
and correlationId, so make sure you set these as required.

If the get fails, the MQMessage object is unchanged. If it succeeds, the
message descriptor (member variables) and message data portions of the
MQMessage are completely replaced with the message descriptor and
message data from the incoming message.

Parameters

message
An input/output parameter containing the message descriptor
information and the returned message data.

getMessageOptions
Options controlling the action of the get (See
“MQGetMessageOptions” on page 40).

MaxMsgSize
The largest message this call can receive. If the message on the
queue is larger than this size, one of two things occurs:
1. If the MQC.MQGMO_ACCEPT_TRUNCATED_MSG flag is set

in the options member variable of the MQGetMessageOptions
object, the message is filled with as much of the message data
as will fit in the specified buffer size, and an exception is
thrown with completion code MQException.MQCC_WARNING
and reason code
MQException.MQRC_TRUNCATED_MSG_ACCEPTED.

2. If the MQC.MQGMO_ACCEPT_TRUNCATED_MSG flag is not
set, the message is left on the queue and an MQException is
raised with completion code MQException.MQCC_WARNING
and reason code
MQException.MQRC_TRUNCATED_MSG_FAILED.

Properties
Properties for MQTopic.

IsDurable
public Boolean IsDurable { get; };

Chapter 2. Programming with WebSphere MQ classes for .NET 143

|

|
|
|

|
|
|

|

|
|
|

|

|
|
|
|

|
|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

Read only property that returns True if the subscription is durable or False
otherwise. If the topic was opened for output, (publication), the property is
ignored and will always return False.

IsManaged
public Boolean IsManaged { get; };

Read only property that returns True if the subscription is managed by the
queue manager, or False otherwise. If the topic was opened for output
(publication), the property is ignored and will always return False.

IsSubscribed
public Boolean IsSubscribed { get; };

Read only property that returns True if the topic was opened for
subscription and False if the topic was opened for publication.

SubscriptionReference
public MQSubscription SubscriptionReference { get; };

Read only property that returns the MQSubscription object associated with
a topic object opened for subscription. The reference is available if you
want to modify the close options or invoke any of the objects methods.

UnmanagedDestinationReference
public MQDestination UnmanagedDestinationReference { get; };

Read only property that returns the MQDestination (MQQueue) associated
with an unmanaged subscription. This is the destination specified when
the topic object was created. The property will return null for any topic
objects opened for publication or with a managed subscription.

IMQObjectTrigger
To use the .NET Monitor, write a component that implements the
IMQObjectTrigger interface.
IBM.WMQMonitor.IMQObjectTrigger

public interface IBM.WMQMonitor.IMQObjectTrigger

Methods of IMQObjectTrigger
IMQObjectTrigger defines a single method, Execute.

Execute
void Execute (MQQueueManager qmgr, MQQueue queue, MQMessage message, string param);

Passes the queue manager, queue, message, and the user parameter string
supplied to the current instance of the .NET monitor by the -u command
line option.

Parameters

qmgr
The name of the queue manager that hosts the application queue.

queue
The name of the application queue to monitor.

message
A message from the monitored queue.

144 WebSphere MQ: Using .NET

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|
|

|

|
|

|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

param
User defined data. User data must be comprised of ASCII characters
only, with no quotation marks (″), null characters, or carriage returns.

MQC

public interface IBM.WMQ.MQC
extends System.Object

The MQC structure defines all the constants used by the MQI. To refer to one of
these constants from within your programs, prefix the constant name with ″MQC.″.
For example, you can set the close options for a queue as follows:
MQQueue queue;
...
queue.closeOptions = MQC.MQCO_DELETE; // delete the

// queue when
// it is closed

...

For a full description of these constants, see WebSphere MQ Constants.

System.Object
│
└─ IBM.WMQ.MQC

Chapter 2. Programming with WebSphere MQ classes for .NET 145

|
|
|

|

146 WebSphere MQ: Using .NET

Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing,
IBM Corporation,
North Castle Drive,
Armonk, NY 10504-1785,
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation,
Licensing,
2-31 Roppongi 3-chome, Minato-k,u
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2009 147

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

The following are trademarks of International Business Machines Corporation in
the United States, or other countries, or both:

IBM IBMLink S/390
System/390 WebSphere z/OS
zSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

148 WebSphere MQ: Using .NET

Index

Special characters
. NET class library 8
.NET classes 27
.NET Monitor 23

A
accessing queues

classes for .NET 14
accessing topics

classes for .NET 14

C
CapabilityFlags

property of MQChannelExit 31
channel exits

specifying
classes for .NET 20

using 19
with SSL 19
writing 19

classes
.NET 8

classes for .NET 18
classes, WebSphere MQ .NET 27, 28

MQAsyncStatus 27
MQC 145
MQChannelDefinition 29
MQChannelExit 31
MQDestination 33
MQEnvironment 36
MQException 39
MQGetMessageOptions 40
MQManagedObject 44
MQMessage 48
MQProcess 78
MQPropertyDescriptor 79
MQPutMessageOptions 81
MQQueue 85
MQQueueManager 95
MQSubscription 131
MQTopic 133

client bindings connections 1
Client configuration files

.NET 11
client connections

.NET managed 8
clients

configuring queue manager 2
code examples

classses for .NET 11
compiling WebSphere MQ .NET

programs 26
configuring queue manager for clients 2
confirm on arrival report options,

message 77
confirm on delivery report options,

message 77
connecting to a queue manager 14

connection type, defining 9
connections

client bindings 1
managed client 1
server bindings 1

constructors 79
CurHdrCompression

property of MQChannelExit 31
CurMsgCompression

property of MQChannelExit 31

D
defining connection type 9
disconnecting from a queue manager 14
disposition options, message 77

E
endmqdnm 23
error messages 5
errors

classes for .NET 17
example code

classses for .NET 11
exception report options, message 77
ExitID

property of MQChannelExit 31
ExitNumber

property of MQChannelExit 31
ExitReason

property of MQChannelExit 31
ExitResponse

property of MQChannelExit 32
ExitUserArea

property of MQChannelExit 32
expiration report options, message 77

F
FapLevel

property of MQChannelExit 33

G
getting started 1

H
handling

errors
classes for .NET 17

messages 15
Hconn

property of MQChannelExit 33

I
IMQObjectTrigger 23

methods 144
inquire and set

classes for .NET 18
installation

classes for .NET 1
interface, programming

.NET 7
introduction 1

for programmers 7

M
managed client connections 1
MaxSegmentLength

property of MQChannelExit 33
message

error 5
handling 15

message properties
classes for .NET 16

Monitor program 23
MQAsyncStatus 27
MQAuthenticationInformationRecord 28
MQC 145
MQChannelDefinition 29
MQChannelExit 31

properties 31
MQDestination 33, 36
MQEnvironment 9, 13, 36
MQException 39
MQGetMessageOptions 40
MQManagedObject 44
MQMessage 15, 48
MQProcess 77, 78
MQPropertyDescriptor 79
MQPutMessageOptions 81
MQQueue 15, 85
MQQueueManager 95
MQReceiveExit 19
MQSecurityExit 19
MQSendExit 19
MQSubscription 131, 133
MQTopic 133, 134, 143
multithreaded programs 18

N
NET managed clients

programming 8

O
operations on queue managers 13

© Copyright IBM Corp. 2003, 2009 149

P
prerequisite software

classes for .NET 1
problems, solving 5
programmers, introduction 7
programming

compiling
.NET 26

connections 8
managed client connections 8
multithreaded 18
tracing

.NET 26
writing 8

programming interface
.NET 7

property descriptor structure 79

Q
queue manager

configuring for clients 2
connecting to 14
disconnecting from 14
operations on 13

queues, accessing
classes for .NET 14

R
report options, message 76
runmqdnm 23

S
Sample applications 2
sample code

classses for .NET 11
Secure Sockets Layer

CipherSpecs 22
distinguished names (DN) 22
enabling 22
sslCipherSpec property 22
sslPeerName property 22

server bindings connections 1
set and inquire 18
SharingConversations

property of MQChannelExit 33
software, prerequisites

classes for .NET 1
solving problems 5
sslCipherSpec property 22
sslPeerName property 22

T
topics, accessing

classes for .NET 14
tracing programs

.NET 26

U
user exits

specifying
classes for .NET 20

using 19
with SSL 19
writing 19

UserData
property of MQChannelExit 33

Using WebSphere MQ classes for
.NET 2

W
WebSphere MQ .NET classes 27
writing

channel exits 19
programs 8
user exits 19

150 WebSphere MQ: Using .NET

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM , you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use 44-1962-816151
– From within the U.K., use 01962-816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2003, 2009 151

152 WebSphere MQ: Using .NET

����

GC34-6949-01

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
W

eb
Sp

he
re

M
Q

U
si

ng
.N

ET
Ve

rs
io

n
7.0

	Contents
	Figures
	Tables
	Chapter 1. Guidance for users
	Getting started
	What are WebSphere MQ classes for .NET?
	Connection options
	Installation

	Using WebSphere MQ classes for .NET
	Configuring your queue manager to accept TCP/IP client connections
	Sample applications
	Running your own WebSphere MQ .NET programs
	Solving WebSphere MQ .NET problems
	Tracing the sample application
	Error messages

	Chapter 2. Programming with WebSphere MQ classes for .NET
	Introduction for programmers
	Why should I use the .NET interface?
	The WebSphere MQ .NET interface
	Prerequisite for compiling WebSphere MQ .NET applications
	WebSphere MQ classes for .NET class library

	Writing WebSphere MQ .NET programs
	Connection differences
	Managed client connections
	Defining which connection type to use

	Client configuration files
	Example code fragment
	Operations on queue managers
	Setting up the WebSphere MQ environment
	Connecting to a queue manager

	Accessing queues and topics
	Handling messages
	Handling message properties

	Handling errors
	Getting and setting attribute values
	Multithreaded programs
	Using a client channel definition table
	Using channel exits in WebSphere MQ .NET
	Specifying channel exits (managed client)
	Specifying channel exit user data (managed client)

	Secure Sockets Layer (SSL) support
	Enabling SSL
	Using the distinguished name of the queue manager
	Error handling when using SSL

	Using the .NET Monitor
	Example code fragments

	Compiling WebSphere MQ .NET programs
	Tracing WebSphere MQ .NET programs

	The WebSphere MQ .NET classes and interfaces
	MQAsyncStatus
	Constructors
	Properties

	MQAuthenticationInformationRecord
	Constructors
	Properties

	MQChannelDefinition
	Properties

	MQChannelExit
	Properties of MQChannelExit

	MQDestination
	Constructors
	Methods
	Properties

	MQEnvironment
	Constructors
	Properties

	MQException
	Constructors
	Properties

	MQGetMessageOptions
	Constructors
	Properties

	MQManagedObject
	Constructors
	Methods
	Properties

	MQMessage
	Constructors
	Methods for MQMessage
	Properties

	MQProcess
	Constructors for MQProcess
	Properties

	MQPropertyDescriptor
	Constructors
	Properties

	MQPutMessageOptions
	Constructors
	Properties

	MQQueue
	Constructors
	Methods
	Properties

	MQQueueManager
	Constructors
	Methods
	Properties

	MQSubscription
	Constructors
	Methods
	Properties

	MQTopic
	Constructors for MQTopic
	Methods
	Properties

	IMQObjectTrigger
	Methods of IMQObjectTrigger

	MQC

	Notices
	Index
	Special characters
	A
	C
	D
	E
	F
	G
	H
	I
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

	Sending your comments to IBM

