
WebSphere MQ

Web Services
Version 7.0

SC34-6952-01

���

WebSphere MQ

Web Services
Version 7.0

SC34-6952-01

���

Note
Before using this information and the product it supports, be sure to read the general information under notices at the back
of this book.

Second edition (January 2009)

This edition of the book applies to the following products:
v IBM WebSphere MQ, Version 7.0

and to any subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2005, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Chapter 1. WebSphere MQ transport for
SOAP 1
Introduction to WebSphere MQ transport for SOAP . 1

Getting started. 1
Overview of WebSphere MQ transport for SOAP 3
Installation 9

Using WebSphere MQ transport for SOAP 13
Creating and deploying a Web service using
WebSphere MQ transport for SOAP 13
Programming for WebSphere MQ transport for
SOAP 15
Specifying the URI 18
Deployment 22
Senders and listeners 30

Further considerations 38
Customizing WebSphere MQ transport for SOAP 38
Using SSL with WebSphere MQ transport for
SOAP 45
Transactional processing 49
Asynchronous messaging. 49

Apache software license 50

Chapter 2. WebSphere MQ Bridge for
HTTP 53
Introduction to WebSphere MQ Bridge for HTTP . . 53

Installation 54
What is installed. 54
Prerequisites 55
Security considerations 55

Configuring WebSphere MQ Bridge for HTTP . . . 56
Configuring WebSphere MQ Bridge for HTTP to
implement diagnostic tracing 56
Configuring WebSphere MQ Bridge for HTTP to
use your connection factory 57

Constructing HTTP requests and handling HTTP
responses 58

Overview of the WebSphere MQ Bridge for
HTTP 58
URI Format 60
WebSphere MQ Bridge for HTTP verbs 61
HTTP headers 63
Supported message types. 74

WebSphere MQ Bridge for HTTP Samples 76
WebSphere MQ Bridge for HTTP samples . . . 76

Limitations 77
HTTP Return codes. 78

Notices 83

Index 87

Sending your comments to IBM 89

© Copyright IBM Corp. 2005, 2009 iii

||
|
||
|
||

iv WebSphere MQ: Web Services

Figures

1. Overview of WebSphere MQ transport for
SOAP 2

2. Queues used by SOAP/WebSphere MQ
(separate queue managers) 4

3. Queues used by SOAP/WebSphere MQ (single
queue manager) 5

4. Example of .NET service programming 18
5. Introduction to WebSphere MQ Bridge for

HTTP 53
6. Simple example of a HTTP POST request to a

queue 58

7. Simple example of a HTTP POST response (the
POST is to a queue) 59

8. Simple example of a HTTP DELETE request to
a queue 59

9. Simple example of a HTTP DELETE response
(the DELETE is to a queue) 59

10. Simple example of a HTTP GET request to a
queue 60

11. Simple example of a HTTP GET response (the
GET is to a queue) 60

© Copyright IBM Corp. 2005, 2009 v

vi WebSphere MQ: Web Services

Chapter 1. WebSphere MQ transport for SOAP

This collection of topics describes WebSphere MQ transport for SOAP, which
allows you to send SOAP formatted messages over WebSphere MQ.

Introduction to WebSphere MQ transport for SOAP

Getting started

This chapter describes WebSphere® MQ transport for SOAP and how to use it at a
high level.

What is SOAP?

SOAP, the Simple Object Access Protocol, is a protocol for exchange of information
in a decentralized, distributed environment. It is an XML (Extensible Markup
Language) based protocol that consists of three parts: an envelope that defines a
framework for describing what is in a message and how to process it, a set of
encoding rules for expressing instances of application-defined data types, and a
convention for representing remote procedure calls and responses. For more
information see the W3C website http://www.w3.org/2000/xp/Group.

What is a Web service?

In general there are two parts to a Web service:
v The requester, or client, which issues a request to a server.
v The server. This can be an external web server such as IBM® WebSphere

Application Server (WAS), but it need not be. Bespoke service code running on
the server does some processing on behalf of the client, and typically sends a
reply to the client.

The Web request has two parts
v The Uniform Resource Identifier (URI) of a service.
v A stream of data which the remote server processes and responds to. This is

often a SOAP or other web service request and response in XML.

What is WebSphere MQ transport for SOAP?

WebSphere MQ transport for SOAP allows you to send SOAP formatted messages,
used in conjunction with Web services, over WebSphere MQ.

It is implemented for either Apache Axis or Microsoft® .NET host environments.
Axis is available on UNIX® or Windows® platforms, and .NET on Windows only.

WebSphere MQ transport for SOAP allows interoperation with WebSphere
Application Server and CICS®.

Figure 1 on page 2 illustrates how WebSphere MQ transport for SOAP fits into a
Web service design. This diagram shows a process where a client application calls
a target Web service and obtains a response from the service.

© Copyright IBM Corp. 2005, 2009 1

First consider the case where HTTP is being used as a transport between the client
application and target web service (labelled ″1″ in Figure 1). The client passes the
details of the required call to the SOAP layer, which prepares a request for
invocation of the service as a SOAP formatted request. This request is dispatched
to the server system, where an HTTP server receives the request and passes it
through the SOAP layer for decoding and invocation of the service. The response
message is processed synchronously by the service, and must be handled
synchronously by the client.

WebSphere MQ transport for SOAP (labelled ″2″ in Figure 1) provides an
alternative transport to HTTP. The advantages of using SOAP/WebSphere MQ
over SOAP/HTTP include options for:
v Assured delivery.
v Integration with, and reuse of, existing WebSphere MQ infrastructure.
v Use of existing WebSphere MQ security.
v Use of WebSphere MQ clustering, for load balancing and enhanced reliability

and availability.

For HTTP the URI is of the format http://address:[port]/function, for example
http://localhost:7080/MyRequest. This would direct the request to the same
machine where the application is running (localhost), using port 7080, and the
server can select which application is to receive the data based on the MyRequest
data.

For SOAP/WebSphere MQ, the URI is of the format jms:/queue?name=value
&name=value.... This is fully described in “Specifying the URI” on page 18.

Apache Axis client applications must be written in Java™. Microsoft .NET client
applications must be written in C#, Visual Basic, or other .NET common language
runtime (CLR) languages. The target services must be written in Java if using Axis,
and in any .NET CLR language if using Microsoft .NET. It is possible to use Axis
clients with .NET services, or .NET clients with Axis services, but see
“Interoperability” on page 6.

Client
application

Target
service

SOAP
layer

SOAP/WMQ
Sender

SOAP/WMQ
Listener

WMQ

SOAP
layer

HTTP
1

2

HTTP
server

Figure 1. Overview of WebSphere MQ transport for SOAP

2 WebSphere MQ: Web Services

What are senders and listeners in WebSphere MQ transport for
SOAP?
Senders

A sender is called by the infrastructure (Axis or .NET) and writes a SOAP
request for invocation of a service. In WebSphere MQ transport for SOAP
the sender causes the request to be put to a WebSphere MQ request queue,
setting up any specific expiry, persistence and priority options. Senders are
fully described in “Senders” on page 9.

Listeners
A SOAP/WebSphere MQ listener process waits for incoming messages and
then invokes the target Web Service through the Web Services
infrastructure and waits for the response. The term listener is used here in
its standard WebServices sense: these listeners listen on request queues for
WebSphere MQ messages and are completely distinct from the standard
WebSphere MQ listener invoked by the runmqlsr command. Listeners are
fully described in “Listeners” on page 8.

Overview of WebSphere MQ transport for SOAP

How WebSphere MQ transport for SOAP processes Web services
requests

WebSphere MQ transport for SOAP is based on a traditional request/response
model. In the simplest case, using proxy classes, the client program sees this as a
remote procedure call. The SOAP/WebSphere MQ client puts a message to a
WebSphere MQ queue. This may be the request queue on the local queue manager
or may be a remote queue in which case the message is then transported using
WebSphere MQ to the appropriate SOAP/WebSphere MQ request queue. A
dedicated SOAP/WebSphere MQ listener process monitors the request queue for
incoming messages and then routes them through to the target Web Service using
the appropriate host infrastructure. Two distinct types of SOAP/WebSphere MQ
listener are provided, one for Apache Axis Web Services (SimpleJavaListener) and
one for Microsoft .NET web services (amqwSOAPNETListener). Note that these
listeners are distinct from the standard WebSphere MQ listener invoked by the
runmqlsr command.

The sequence of control for this is as follows:

Client: Client Program (provided by user)
Client Proxy (generated by infrastructure [optional for Axis])

WebServices runtime (Axis or .NET infrastructure)
SOAP/WebSphere MQ Sender

WebSphere MQ
|

Server: WebSphere MQ
SOAP/WebSphere MQ Listener

WebServices runtime (Axis or .NET infrastructure)
Service Program (provided by user)

The client proxy is shown as optional for Axis because Axis supports three
programming styles, only one of which requires a proxy. .NET always requires a
proxy. See “Basic Web service client programming” on page 16 for details of the
different programming styles.

Chapter 1. WebSphere MQ transport for SOAP 3

Figure 1 on page 2 shows WebSphere MQ positioned between the
SOAP/WebSphere MQ sender and listener, providing transport between the client
application and the target Web service. Figure 2 and Figure 3 on page 5 expand on
that figure, showing queues and queue managers within WebSphere MQ. Figure 2
illustrates one queue manager (QM1) associated with the sender and one (QM2)
with the listener. The sender puts a message on a transmission queue on QM1,
from where it is transported to the request queue on QM2. The request queue is
monitored by the listener. The listener invokes a Web service and then returns a
message via a transmission queue on QM2 to a response queue on QM1. The
listener can put messages on the dead-letter queue if a request fails. The sender
can be local to QM1 or connected by a WebSphere MQ client connection. The
listener can similarly be local to QM2 or connected by a WebSphere MQ client
connection.

Figure 3 on page 5 illustrates a single queue manager (QM2) servicing both the
sender and the listener. The sender places a message on the request queue, which
is monitored by the listener. The listener returns a message to a response queue.
The listener will put messages onto the dead letter queue if a response message
cannot be returned. The sender and listener can be local to QM2 or connected by a
WebSphere MQ client connection.

Client
application

Target
service

SOAP
layer

SOAP/WMQ
Sender

SOAP/WMQ
Listener

WMQ

SOAP
layer

Transmission
queue

Request
queue

Dead letter
queue

Dead letter
queue

QM1 QM2

WebSphere MQ

Response
queue

Transmission
queue

Figure 2. Queues used by SOAP/WebSphere MQ (separate queue managers)

4 WebSphere MQ: Web Services

Processing is as follows:
1. A client program calls the appropriate WebServices framework in the same way

as it would for HTTP transport, except that it must also register the ’jms:’ prefix
(see “Basic Web service client programming” on page 16).

2. The Axis or .NET framework marshals the call into a SOAP request message
exactly as for SOAP/HTTP.

3. A WebSphere MQ service is identified by a URI prefixed with ’jms:’. When the
framework identifies the ’jms:’ URI, it calls the WebSphere MQ transport sender
code; com.ibm.mq.soap.transport.jms.WMQSender (for Axis) or
IBM.WMQSOAP.MQWebRequest (for .NET). If the framework encounters a URI
with an ’http:’ prefix, it calls the standard SOAP over http sender.

4. The SOAP message is transported by the WebSphere MQ sender over
WebSphere MQ, via the request queue, ready for the SimpleJavaListener (for
Java) or amqwSOAPNETListener (for .NET) to receive it.
The SOAP/WebSphere MQ listeners are standalone processes but are
multithreaded with a tailorable number of threads.

5. The SOAP/WebSphere MQ listener reads the incoming SOAP request, and
passes it to the appropriate Web service infrastructure.

6. The Web service infrastructure parses the SOAP request message and invokes
the service, exactly as it would have done for a message that arrived on an
HTTP transport

7. The infrastructure formats the response into a SOAP response message and
returns it to the SOAP/WebSphere MQ listener.

Client
application

Target
service

SOAP
layer

SOAP/WMQ
Sender

SOAP/WMQ
Listener

WMQ

SOAP
layer

Request
queue

Dead letter
queue

QM2

WebSphere MQ

Response
queue

Figure 3. Queues used by SOAP/WebSphere MQ (single queue manager)

Chapter 1. WebSphere MQ transport for SOAP 5

8. The listener returns the message via the response queue over WebSphere MQ to
the SOAP/WebSphere MQ sender, which passes it to the client Web service
infrastructure.

9. The client infrastructure parses the response SOAP message and hands the
result back to the client application.

Each application context is served by a separate WebSphere MQ request queue.
The application context is controlled in Axis by ensuring that the
SOAP/WebSphere MQ listener and service execute in the appropriate directory
and with the correct CLASSPATH. Application context is controlled in .NET by the
SOAP/WebSphere MQ listener executing the service in a context created by a call
to ApplicationHost.CreateApplicationHost. This call specifies the target execution
directory. Each service then operates in the directory in which it was deployed. The
queues are generated automatically by the SOAP/WebSphere MQ deployment
utility, which also generates the infrastructure necessary for handling the queues.
See “Deployment” on page 22 for details of the deployment utility.

Interoperability

WebSphere MQ transport for SOAP does not guarantee interoperability between
different host environments such as Apache Axis or .NET. This is because there are
many different standards for SOAP and many implementations of SOAP
environments, and it is those implementations that determine the specifics of each
SOAP message. In addition, there are various different options for formatting the
details of a service within a particular implementation (for example, RPC, DOC, or
Literal). WebSphere MQ transport for SOAP delivers the message content, but
cannot ensure that the content is meaningful to the service that receives it.

It is the responsibility of the service provider or developer to identify the SOAP
implementations within which the service is to be supported and to ensure that the
formatting style is compatible with those implementations. This process is,
however, independent from WebSphere MQ; when interoperability is established
over HTTP, then it will also be established if WebSphere MQ transport for SOAP is
used in place of HTTP.

There are preferred SOAP options for interoperability as defined by the
WebServices Interoperability group (WSI, http://www.ws-i.org/). The samples
provided with SOAP/WebSphere MQ reflect these options.

WebSphere MQ transport for SOAP uses the same message and URI formats as
WebSphere Application Server (WAS) and CICS and so allows interoperability with
those products. The message format is described in “Constructing message
headers” on page 40 and the URI format in “Specifying the URI” on page 18. For
more information, see “Interoperation with WebSphere Application Server” and
“Interoperation with CICS Transaction Server for z/OS” on page 7.

Interoperation with WebSphere Application Server:

WebSphere MQ transport for SOAP interoperates with all versions of WebSphere
Application Server (WAS) supported by WebSphere MQ.

Deployment of a SOAP/WebSphere MQ Web service using the supplied
deployment utility generates appropriate WSDL and a URI for a standard WAS
client to use directly: the only special requirement is that ’nojndi.jar’ be in the
classpath of the WAS client at runtime.

6 WebSphere MQ: Web Services

Normal deployment of a WAS/SOAP/JMS Web service will generate WSDL and a
URI that includes JNDI (Java Naming and Directory Interface) references.
WebSphere MQ transport for SOAP does not use a JNDI, whereas
WAS/SOAP/JMS and other SOAP/JMS implementations generally do. To make
the service available to SOAP/WebSphere MQ does not require any change to the
runtime, but does require the extension of the WSDL to include a ’pure MQ’
binding with a JNDI-free URI (see the description of the initialContextFactory in
“Specifying the URI” on page 18). This binding can be a replacement for, or
addition to, the standard JNDI-dependent binding. You must write your own
deployment process to generate this new WSDL and URI.

Interoperation with CICS Transaction Server for z/OS:

WebSphere MQ transport for SOAP interoperates with all versions of CICS
Transaction Server for z/OS supported by WebSphere MQ.

The Nojndi mechanism:

The Nojndi mechanism enables JMS programs (such as WAS SOAP/JMS support)
that use JNDI interfaces to use the same URI format as MQ programs that do not
use JNDI. Nojndi uses parsing (rather than a repository) to provide the appropriate
JMS/WebSphere MQ objects.

The URI contains specific WebSphere MQ queue manager and queue names. These
names are parsed and used directly by SOAP/WebSphere MQ support. SOAP/JMS
support uses the initialContextFactory specification to decide which JNDI
implementation to use. ’initalContextFactory=com.ibm.mq.jms.Nojndi’ will direct it
to the Nojndi, which is an implementation of the JNDI interface.

A conventional JNDI implementation looks up input strings in a repository. The
repository looks up these inputs based on its configuration, and JNDI returns the
result as Java objects. In the case of SOAP/JMS, the input strings are determined
by the connectionFactory and destination in the URI, and the JNDI layer then
returns the result as appropriate ConnectionFactory and Queue objects. Where the
JMS implementation is JMS/WebSphere MQ, these will be objects of the subclasses
MQConnectionFactory and MQQueue.

By contrast, the Nojndi implementation operates by parsing the input strings, and
does not use a repository. This parsing matches the parsing performed by the
SOAP/WebSphere MQ implementation. It is still fed input strings based on the
connectionFactory and destination in the URI, and still produces as a result objects
of the subclasses MQConnectionFactory and MQQueue. Thus the WAS Web
services client will access the same MQ queue managers and queues as the
SOAP/WebSphere MQ implementation. No change is needed to the client (other
than the presence of ’nojndi.jar’), and it will still be able to use other JNDI based
services (that do not use Nojndi) within the same session.

Messages

A SOAP/WebSphere MQ format message is a WebSphere MQ message containing
a SOAP message within its body. SOAP/WebSphere MQ provides no constraint on
this body; it relies on the host Web services environment to provide SOAP
formatting and parsing services.

Chapter 1. WebSphere MQ transport for SOAP 7

Listeners

The SimpleJavaListener listener is provided for Axis web services and the
amqwSOAPNETlistener listener for Microsoft .NET services. The term listener is
used here in its standard WebServices sense: these listeners listen on request
queues for WebSphere MQ messages and are completely distinct from the standard
WebSphere MQ listener invoked by the runmqlsr command.

The SOAP/WebSphere MQ listeners pass SOAP messages as WebSphere MQ
messages with a body consisting of a stream of bytes with no assumed structure. If
the format is incorrect, the listener generates a report message.

The incoming messages must be encoded in UTF-8. Any response will also be
written in UTF-8.

The listener performs a basic integrity check of the incoming request message. The
following checks are made:
1. That the basic structure of the MQRFH2 is intact.
2. That all required MQRFH2 fields are present (for example soapAction).
3. That the format of the main body of the incoming message is MQFMT_NONE.

Both the Java and .NET SOAP/WebSphere MQ listeners generate a report message
if a request message is badly formed or has an illegal format. This report message
is processed according to the report options specified in the sender (see “Report
messages” on page 37) and has the feedback code set as described in Feedback.

A SOAP/WebSphere MQ listener passes the endpointURL and soapAction fields in
the MQRFH2 component of the message to the SOAP infrastructure to enable that
infrastructure to correctly identify and call the target service. The listener does not
validate these fields. They are automatically set in the supplied SOAP/WebSphere
MQ senders.

The listener invokes the service through the Web Services infrastructure and waits
for the response. The listener processes the response message as follows:
1. The SOAP/WebSphere MQ listener sets the correlation ID in the response

message according to the report option in the request message. See WebSphere
MQ Application Programming Reference for details of report options.

2. The listener passes back the same Expiry, Persistence, and Priority settings in
the response message as were specified in the request message.

3. The listener also sends report messages back to clients in some circumstances.
See “Report messages” for more information about report messages.

You can configure the SOAP/WebSphere MQ listeners to be started as WebSphere
MQ services in the supplied deployment utility by using the -s option. See “The
deployment utility” on page 23 for details.

You can vary the behavior of a SOAP/WebSphere MQ listener by setting various
parameters, which are described in “Listeners” on page 31.

Report messages:

Report messages can be generated either by WebSphere MQ transport for SOAP or
by WebSphere MQ itself in a number of circumstances, depending on the report
options specified by the sender when constructing a request message (see “Report
messages” on page 37). Note that the report options specified by the

8 WebSphere MQ: Web Services

SOAP/WebSphere MQ senders (MQRO_EXCEPTION_WITH_FULL_DATA,
MQRO_EXPIRATION_WITH_FULL_DATA and MQRO_DISCARD) cannot be
tailored.

For more information about report messages and report options in WebSphere MQ
transport for SOAP, see “Senders and listeners” on page 30. For more information
about report messages in WebSphere MQ in general, see WebSphere MQ
Application Programming Guide.

Senders

For Axis web services, a sender is implemented in the final class
com.ibm.mq.soap.transport.jms.WMQSender which is derived from the
org.apache.axis.handlers.BasicHandler class. For Microsoft .NET services, a sender
is implemented in the sealed class IBM.WMQSOAP.MQWebRequest. This class is
derived from System.Net.WebRequest and System.Net.IwebRequestCreate.

The supplied SOAP/WebSphere MQ sender puts a SOAP request for invocation of
a service to a WebSphere MQ request queue. The sender sets fields in the
WebSphere MQ MQRFH2 header according to options specified in the URI, or
according to defaults. The options that can be specified in the URI are detailed in
“Specifying the URI” on page 18; all the fields in the MQRFH2 are described in
“Constructing the MQRFH2 header” on page 44. If you need to change the
behavior of a sender beyond what is possible using the URI options, you will have
to write your own senders. See “Writing WebSphere MQ transport for SOAP
senders” on page 39.

The Java sender blocks after placing the message until it has read a response from
the response queue. If no response is received within a given timeout interval the
sender throws an exception. If a response is received within the timeout interval
the response message is returned to the client via the Axis framework. Your client
application must be able to handle these response messages.

The .NET sender creates an MQWebResponse object to read the response message
from the response queue and return it to the client.

Diagnostics

Trace facilities in WebSphere MQ transport for SOAP are integrated with the
standard WebSphere MQ diagnostic facilities and (for Java) with the WebSphere
MQ Java diagnostic classes. See WebSphere MQ System Administration Guide for
full details of problem determination in WebSphere MQ.

On Windows platforms, when running SOAP/WebSphere MQ listeners as services,
the associated process names in the Windows Task Manager are displayed as either
java.exe (for Java listeners) or amqwSOAPNETlistener (for .NET listeners). This can
make it difficult to identify the specific process for a given service. To associate a
process with a service, execute the WebSphere MQ runmqsc utility and issue the
command ’display svstatus(service-name)’. This displays the PID of the process for
the service.

Installation

SOAP/WebSphere MQ is installable as part of the standard WebSphere MQ install
mechanism. It is included as part of the ″Java Messaging and SOAP Transport″
install option in both the server and client installation CDs.

Chapter 1. WebSphere MQ transport for SOAP 9

On Windows the binaries, command files, DLLs and executables are installed into
the mqmtop/bin directory. The SOAP/WebSphere MQ jar files and external jar files
used by SOAP/WebSphere MQ are installed into mqmtop/java/lib. The samples
(including installation verification test (IVT)) are installed to mqmtop/tools/soap/
samples. Installation on Windows includes registration to the Microsoft .NET
Global Assembly Cache of various .DLL and .EXE files.

On Unix systems, the SOAP/WebSphere MQ shell scripts are installed into the
mqmtop/bin directory. These are symbolically linked to the /usr/bin directory
according to the usual WebSphere MQ convention. On these platforms there are no
SOAP/WebSphere MQ executables or shared libraries. The jar files are installed
into mqmtop/java/lib. The samples (including IVT) are installed to
mqmtop/samp/soap.

What is installed

The following components are provided with WebSphere MQ transport for SOAP:
v WebSphere MQ sender transport code for both Apache Axis and Microsoft .NET

environments
v Microsoft .NET and Apache Axis SOAP/WebSphere MQ listeners for polling

request queues and invoking target services
v A deployment tool, for defining web services to the host infrastructure.
v Sample source code for a deployment tool.
v Sample Web client and Web service software that can be built, deployed and

tested. Sample programs are listed in “Samples” on page 14.
v An Installation Verification Test (IVT) system for running the supplied

demonstrations
v Various set up and utility scripts

Prerequisites
WebSphere MQ transport for SOAP has a number of prerequisite products,
depending on the environment you are using.

These prerequisites are:
v IBM Java 2 SDK and Runtime environment, V1.4.2, V5.0, or V6.0.
v One or both of

– Apache Axis V1.4
– Microsoft .Net Framework redistributable V2.0

v For .NET only, one of
– Microsoft .NET Framework SDK V2.0
– Microsoft Visual Studio .NET 2005

The IBM Java SDK and Runtime environment are included in the WebSphere MQ
installation media. On AIX®, Linux® and Windows, they are installed automatically
but on Solaris and HP-UX they must be selected at installation time.

A version of the Apache Axis runtime is also included in the WebSphere MQ
installation media, in the prereqs/axis directory, together with a text file,
axis_readme.txt, giving instructions on how to install it. It is not installed as part of
the WebSphere MQ installation process. We recommend that you use this version
of the Axis runtime with WebSphere MQ transport for SOAP, rather than any other
version that you might already have installed. Note that IBM does not provide
technical support for Apache Axis. If you have technical problems with Axis, or

10 WebSphere MQ: Web Services

|

|

|

|

|

any queries about it, you should contact the Apache Software Foundation. Contact
details are given in “Apache software license” on page 50.

On Windows 2003 only, although you do not need to install Microsoft Internet
Information Services (IIS), you must use the aspnet_regiis utility to register IIS to
the framework. The location of the aspnet_regiis.exe utility might vary with
different versions of the Microsoft .NET framework, but it is typically located in:
%SystemRoot%/Microsoft.NET/Framework/version number/aspnet_regiis. If
multiple versions are installed, use only the executable for the version of .NET you
are using

The installation process does not check for the presence and availability of the
prerequisite software items. You must verify that they are installed first.

For .NET only, you must register the WebSphere MQ transport for SOAP files with
the Global Assembly Cache. If .NET is already installed when you install
WebSphere MQ, registration is performed automatically at installation. If you
install .NET after WebSphere MQ, the registration is performed automatically when
the IVT is first run (see “Testing your SOAP/WebSphere MQ installation”), or you
can run amqwregisterDotNet.cmd to perform registration. You can also run
amqwregisterDotNet.cmd to force reregistration at any stage. Once made, this
registration survives system restarts and subsequent reregistration is not normally
necessary.

Testing your SOAP/WebSphere MQ installation

An installation verification test suite (IVT) is provided with WebSphere MQ
transport for SOAP. This runs a number of demonstration applications and ensures
the environment is correctly set up after installation.

Before running the IVT, set the environment variable WMQSOAP_HOME to
specify the WebSphere MQ installation directory.

Change to a directory under which you want the IVT to deploy. Run the IVT by
executing the runivt.cmd script on Windows or the runivt.sh script on Unix
systems. The script is located in the samples directory. The full set of tests can be
executed by entering the command ″runivt″ with no arguments. The IVT starts the
listeners it requires during the tests and by default closes them down before
exiting. If you want to leave the listeners running after the IVT has completed,
specify the ″hold″ option as the last argument on the runivt command line. The
listeners will be started in separate command windows; for this reason it is
necessary to be using an X-Windows session when using the IVT on Unix systems.
On Windows platforms, the IVT utility by default uses a configuration file called
ivttests.txt that details the various tests to be performed. On Unix systems the file
is called ivttests_unix.txt. To use a different configuration file, for example if you
want to run your own tests, specify the ″-c filename″ option.

The configuration file is a plain text file that describes the tests that can be
executed. Each test is defined over 5 lines. For example, for the IVT test labeled
″Dotnet″ the entries in the configuration file are:
Dotnet
WMQ transport test: C# to .NET (Asmx)
SQCS2DotNet
DOC reply is: 77.77
dotnet

Chapter 1. WebSphere MQ transport for SOAP 11

The first line (″Dotnet″) is the name of the test. This can be specified as an
argument to the runivt script to specify which test(s) should be run. The second
line (″WMQ transport test: C# to .NET (Asmx)″) is a description of the test. The
third line (″SQCS2DotNet″) is the command that the IVT will execute to start the
client application. The fourth line (″DOC reply is: 77.77″) is the expected reply
string from the client. This must be the last actual line output by the client for the
test to have been deemed to pass. The fifth line (″dotnet″) is the name of the
SOAP/WebSphere MQ listener that the IVT will start in order for the service
request to be processed. Valid listener names are ″dotnet″ for the
SOAP/WebSphere MQ amqwSOAPNETlistener and ″JMSax″ for the
SOAP/WebSphere MQ SimpleJavaListener.

If you want to use the IVT to run only a single test, the name of the test should be
the first argument supplied to the utility.

To run two or more tests, supply the names of the tests to be run as arguments to
the utility. For example, to run the ″dotnet″ and ″AxisProxy″ tests, invoke the IVT
as follows:
runivt dotnet axisproxy

To leave the listeners running add the ″hold″ parameter to the end of the
command.

All arguments to the IVT are case insensitive. The IVT configuration file can
contain comment lines (indicated by a ’#’ character in the first character of a line)
and blank lines.

For example, to run just the ″dotnet″ test and leave the listeners running, invoke
the IVT as follows:
runivt dotnet hold

This produces output similar to the following:

The list of tests which can be run using the IVT is as follows. These tests are
described in “Samples” on page 14.
v SQAxis2Axis
v SQAxis2DotNet (Windows only)

define qlocal(SYSTEM.SOAP.RESPONSE.QUEUE) BOTHRESH(3) completed OK.
define qmodel(SYSTEM.SOAP.MODEL.RESPONSE.QUEUE) BOTHRESH(3) DEFTYPE(PERMDYN) DEFSOPT(SHARED) SHARE
completed OK.
define qlocal(SYSTEM.SOAP.SIDE.QUEUE) completed OK.
define channel(TESTCHANNEL) CHLTYPE(SVRCONN) TRPTYPE(TCP) REPLACE completed OK.
define channel(TESTSSLCHANNEL) CHLTYPE(SVRCONN) TRPTYPE(TCP) SSLCIPH(DES_SHA_EXPORT) REPLACE completed OK.

----- [Dotnet] --------------------------------
WMQ transport test: C# to .NET (Asmx)
--- client: SQCS2DotNet jms:/queue?desination=SOAPN.demos@WMQSOAP.DEMO.QM&connectionFactory=connectQueueM
anager(WMQSOAP.DEMO.QM)&replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE&targetService=StockQuoteDotNet.asmx&in
initialContextFactory=com.ibm.mq.jms.Nojndi

RPC reply is: 88.88
OK.

C:/temp/demos>rem - generated by DeployWMQService.java at 08-Mar-2005 11:05:04
C:/temp/demos>call amqwsetcp.cmd
===
1 tests run, of which 0 failed.

12 WebSphere MQ: Web Services

v SQCS2Axis
v SQCS2DotNet (Windows only)

Using WebSphere MQ transport for SOAP

Creating and deploying a Web service using WebSphere MQ
transport for SOAP

This chapter explains, at a high level, the steps you must carry out to develop and
implement a Web service and a client to invoke that service.

Target Web services need to be processed through a series of deployment steps.
These steps define the target service to the Axis or .NET host infrastructure,
generate proxy methods to simplify the process of invoking the service from the
client, prepare a script file to start one of the service listeners and perform some
queue and process configuration within WebSphere MQ.

Preparing service code

See “Basic service programming” on page 17 for more details about how to
prepare service code for use as a SOAP/WebSphere MQ service, especially when
the service uses external classes, and for an example of a .NET class modified to
run as a Web service.

Java:

A Java service that has been compiled into classes can be used without
modification, provided that the type of any arguments to the methods in the web
service are supported by the Axis engine. Refer to Axis documentation for further
details. There is a restriction on the use of complex objects as arguments to the
service. This is detailed in “Basic service programming” on page 17.

.NET:

A .NET service that has already been prepared as an HTTP Web service does not
need to be further modified for use as a WebSphere MQ Web service but does
need to be redeployed through a SOAP/WebSphere MQ deployment process.

Deploying a service

Deployment is the process of configuring the host web services infrastructure (Axis
or Microsoft .NET) to recognize the prepared web service.WebSphere MQ transport
for SOAP supplies a sample deployment utility and specimen command files. For
more details, see “Deployment” on page 22.

Preparing client code

You code client applications almost identically to the equivalent applications for
SOAP/HTTP over the same host infrastructure (Axis or .NET) and you can
continue to use your standard development environment. However, you must add
a registration call to the client to register the WebSphere MQ SOAP transport
sender, so that the Web services framework at the client environment is willing to
accept a URI prefixed with ’jms:’. For more details, see“Basic Web service client
programming” on page 16.

Chapter 1. WebSphere MQ transport for SOAP 13

Linking a client

Compile and link Java clients using your standard Java compiler. Make all the
required classes available by setting up the CLASSPATH using the amqwsetcp.sh
script.

A sample build script, msdemobuild.cmd is included in the samples directory. This
builds the .NET samples and you can use it as a basis of scripts to build your own
client programs.

Run amqwclientconfig to create client-config.wsdd in your deployment directory.
This is unnecessary if you are recompiling a client and the client-config.wsdd is
already prepared. amqwclientconfig is run automatically when preparing the
sample programs using regenDemo, regenDemoAsync or regenTranDemoAsync.

Executing a client

A client application is executed in the same way as any other application on its
host infrastructure. You must, however, set the CLASSPATH and
WMQSOAP_HOME environment variables for Java clients or the PATH variable
for .NET clients.

If you experience security problems using a SOAP/WebSphere MQ client installed
on a network drive, you can use the .NET Framework configuration tool
mscorcfg.msc to customize your .NET security settings. Refer to Microsoft .NET
documentation for details of this utility.

Starting listeners

The deployment process (see “The deployment utility” on page 23) automatically
creates wrapper scripts in the generated server directory that set up and invoke the
listener. Two scripts are generated to start the listener; one starts it as a WebSphere
MQ service and the other starts it directly (the latter script is used when a listener
is started by triggering). You can also start a listener manually. See “Listeners” on
page 31 for more details.

Samples

Sample services and client applications are supplied for both Java and .NET. The
samples are built using regenDemo.cmd (on Windows) or regenDemo.sh (on
UNIX). The samples are based on a Stock Quote service that takes a request for a
stock quote and provides the stock quote. On Windows, samples are installed to
mqmtop/tools/soap/samples. On UNIX systems, the samples are installed to
mqmtop/samp/soap.

The samples generate logs by redirecting output from WebSphere MQ utilities such
as runmqsc to a log file. If you are running the samples under Windows, Notepad
and other editors can cause certain characters to be displayed wrongly in some
European languages. If you view the log by issuing the type command, Windows
displays the characters correctly.

Samples for Java:

The following sample services and client applications are supplied for the Java
environment. These can all be run using the supplied IVT.

14 WebSphere MQ: Web Services

StockQuoteAxis.java
Defines the stock quote service. This file is used to generate the proxies
required by the client code.

SQAxis2Axis.java
This sample provides an example of a request to an Axis service providing
stock quotes.

SQAxis2DotNet.java
This sample provides an example of a request to a .NET service providing
stock quotes.

Samples for .NET:

The following sample programs are supplied for the .NET environment. Most of
these can be run using the supplied IVT; those that cannot are indicated.:

StockQuoteDotNet.asmx
Defines the stock quote service. This file is used to generate the proxies
required by the client code.

SQCS2Axis.cs, SQVB2Axis.vb
These samples provide an example of a request to an Axis service
providing stock quotes. The samples provide examples coded in C# and
Visual Basic respectively.

SQCS2DotNet.cs, SQCS2DotNet.vb
These samples provide an example of a request to a .NET service
providing stock quotes. The samples provide examples coded in C# and
Visual Basic respectively.

SQDNNoninline.asmx, SQDNNoninline.asmx.cs, SQCS2DNNoninline.cs
These 3 files provide an example of the use of non inline code using the
codebehind technique in an ’asmx’ file. These are not part of the IVT. To
run this sample, do the following:
1. Compile the SQDNNoninline.asmx.cs and build a .dll from the

resulting object file.
2. Put the .dll in the ’bin’ subdirectory of the directory from where the

service is run.
3. The file SQCS2DNNoninline.cs is a sample of the client code that

invokes the service. The client invokes the service with a ’targetService’
of SQDNNoninline.asmx

Programming for WebSphere MQ transport for SOAP

This chapter discusses issues to do with the writing of client applications and Web
services. After a note on the languages available, it considers writing client
applications, firstly in Java, with examples of two styles, and then in .NET, with an
example. It then considers writing Web services, firstly in Java and then in .NET,
with an example of a .NET class prepared as a Web service.

Languages supported

Apache Axis client and service applications must be written in Java.

Microsoft .NET client and service applications must be written in C#, Visual Basic,
or other .NET CLR languages.

Chapter 1. WebSphere MQ transport for SOAP 15

Basic Web service client programming

You code client applications almost identically to the equivalent applications for
SOAP/HTTP and you can continue to use your standard development
environment. However, you must add a registration call to the client to register the
WebSphere MQ transport for SOAP transport sender, so that the WebServices
framework at the client environment is willing to accept a URI prefixed with ’jms:’.
This call depends on the programming language, as follows:

Java com.ibm.mq.soap.Register.extension ();

C# IBM.WMQSOAP.Register.Extension();

Visual Basic
IBM.WMQSOAP.Register.Extension()

Examples of these calls are given in the following sections.

Java:

For Java, WebSphere MQ provides access to web services using the Apache Axis
Web Services infrastructure. Refer to the Axis documentation for full information
on how to use the infrastructure.

Axis supports three programming styles: SOAP style, WSDL style and PROXY
style. The key features of these three styles can be summarized as follows:

SOAP style
Assumes that the client knows about the location and signature of the
service and does not use a WSDL definition of the service.

WSDL style
Uses WSDL to locate the service, but still relies on the client to know the
signature and prepare the parameters accordingly.

Proxy style
Assumes that a proxy to the service has been pregenerated from WSDL.
The client calls the service via an instantiation of the proxy object and the
service signature is checked at compile-time. This is likely to be the
simplest and easiest option.

All three of these styles are supported in the SOAP/WebSphere MQ Java client
environment. However, SOAP style offers limited flexibility and ease of use and
samples are provided only for WSDL and Proxy styles.

WSDL style:

Sample mqmtop/tools/soap/samples/java/clients/soap.clients.WsdlClients.java
shows an example of a simple Java client WebSphere MQ transport test. This calls
an Axis service from an Axis client environment using WSDL Axis calls. The
programmer is responsible for referencing the correct WSDL (which can be held
locally or accessed over HTTP), and using appropriate ports and bindings.

Proxy style:

Sample mqmtop/tools/soap/samples/java/clients/soap.clients.SqAxis2Axis.java is
an example of a simple Java WebSphere MQ transport test. This calls an Axis
service from an Axis client environment using automatically generated proxy

16 WebSphere MQ: Web Services

classes. The programmer must reference the correct proxies, and the proxies will
have been generated to get the remaining information correct.

.NET:

For .NET, WebSphere MQ provides access to web services using the Microsoft
.NET SDK. Refer to the .NET documentation for information about using the .NET
infrastructure.

SOAP/WebSphere MQ only supports the proxy programming style for .NET
clients. There is no equivalent to the Axis SOAP or WSDL programming styles in
the .NET environment.

Proxy style:

mqmtop/tools/soap/samples/dotnet/clients/SQCS2DotNet.cs is an example of a
simple C# WebSphere MQ transport test. This calls a .NET service from a .NET
client environment using automatically generated proxy classes. The programmer
must reference the correct proxies, and the proxies will have been generated to get
the remaining information correct:

Basic service programming

Java:

A Web service that has been compiled into classes can be used without
modification, provided that the types of any arguments to the methods in the web
service are supported by the Axis engine. Refer to Axis documentation for further
details.

If the service uses a complex object as an argument, or returns one, that object
must comply to the Java Bean specification.

The supplied deployment utility does not support the case where a service returns
an object in a different package to the service itself. If you wish to do this, you can
write your own deployment utility based on the supplied sample, or capture the
commands produced by the supplied utility, using the -v option, and amend them
to produce a tailored script.

If the service uses classes that are external to the Axis infrastructure and the
SOAP/WebSphere MQ run time environment, you must amend the generated
script that starts or defines the listeners, changing the CLASSPATH to include the
services required. You can do this in any of the following ways:
v Amend the CLASSPATH directly in the script after the call to amqwsetcp.
v Create a service-specific script to customize the CLASSPATH and invoke this

script in the generated script after the call to amqwsetcp.
v Create a customized deployment process to customize the CLASSPATH in the

generated script automatically.

.NET:

A service that has already been prepared as an HTTP Web service does not need to
be further modified for use as a WebSphere MQ Web service but it does need to be
redeployed through a SOAP/WebSphere MQ deployment process. If the service
code has not previously been prepared an HTTP Web service you must modify it
to declare it as a web service and to identify how each method’s parameters

Chapter 1. WebSphere MQ transport for SOAP 17

should be formatted. You must also check that any arguments to the methods of
the service are compatible with the environment. Figure 4 shows a .NET class that
has been prepared as a web service. The additions made are shown in bold type.

If the web service uses classes that are external to the .NET infrastructure and the
SOAP/WebSphere MQ run time environment, you must write and build the
service source code as non-inline. This means the source for the service is
separated from the asmx file. The asmx file must declare the name of the
associated source file with the ″codebehind″ keyword and the source must be
compiled prior to deployment.

A sample non-inline service program is supplied with WebSphere MQ transport for
SOAP. This is the SQCS2DNNonInline sample described in “Samples for .NET” on
page 15.

Specifying the URI

A web service is specified using a Universal Resource Identifier (URI). This section
specifies the URI format that is supported in WebSphere MQ transport for SOAP.
This URI format permits a comprehensive degree of control over
SOAP/WebSphere MQ specific parameters and options when accessing target
services. This format is compatible with WebSphere Application Server (WAS) and
with CICS facilitating the integration of WebSphere MQ with both those products
provided that the prerequisite APARs have been applied. These APARs are listed in
“Interoperability” on page 6.

The URI syntax is as follows:
jms:/queue?name=value&name=value...

<%@ WebService Language=″C#″ Class=″StockQuoteDotNet″ %>

using System;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Web.Services.Description;
using System.Threading;

[WebService (Namespace=″http://dotnet.server″)]
public class StockQuoteDotNet {

[WebMethod] [SoapRpcMethod]
public float getQuote(String symbol) {

if (symbol.ToUpper().Equals(″DELAY″)) Thread.Sleep(5000);
return 88.88F;

}

[WebMethod]
public float getQuoteDOC(String symbol) {

return 77.77F;
}

}

Figure 4. Example of .NET service programming

18 WebSphere MQ: Web Services

where name is a parameter name and value is an appropriate value, and the
name=value element can be repeated any number of times with the second and
subsequent occurrences being preceded by an ampersand (&).

Parameter names and values are listed below. Parameter names are case sensitive,
as are names of WebSphere MQ objects. If any parameter is specified more than
once, the final occurrence of the parameter takes effect. This allows client
applications to override parameter values by appending to the URI. If any
additional unrecognised parameters are included, they are ignored.

If you store a URI in an XML string, you must represent the ampersand character
as ″&″. Similarly, if a URI is coded in a script, take care to escape characters
such as & which would otherwise be interpreted by the shell.

Examples of URIs are given in “Sample URIs” on page 21.

Parameter names and values
destination

This parameter is required and should be the first parameter in the URI
after the initial ’jms:/queue’ string.

The name of the request queue: either a WebSphere MQ queue name, or a
queue name and queue manager name connected by an @ symbol, for
example SOAPN.trandemos@WMQSOAP.DEMO.QM. Note that WebSphere MQ
Publish/Subscribe is not supported.

connectionFactory
This parameter is required. For the syntax of this parameter, see “The
connectionFactory parameter” on page 20.

initialContextFactory
This parameter is required and must be set to ″com.ibm.mq.jms.Nojndi″.
This is for compatibility with WebSphere Application Server and other
products (see “Interoperation with WebSphere Application Server” on page
6).

timeout
The time, in milliseconds, that the client will wait for a response message.
Overrides any values set by the infrastructure or client application. If not
specified, the application value (if specified) or infrastructure default is
used.

targetService

This option is mandatory for accessing .NET services. In the .NET
environment this option makes it possible for a single SOAP/WebSphere
MQ listener to be able to process requests for multiple services. These
services must be deployed from the same directory. It is optional for Java
services as the Axis infrastructure permits SOAP/WebSphere MQ listeners
to access multiple services. If it is specified in the Axis environment it will
override the default Axis mechanism.

The value for this parameter is a service name. For a .NET service the
service name should be specified with no directory qualification as .NET
services are always assumed to be located directly within the deployment
directory, for example targetService=myService.asmx. For a Java service
the service name must be fully qualified, for example
targetService=javaDemos.service.StockQuoteAxis.

Chapter 1. WebSphere MQ transport for SOAP 19

timeToLive
Specifies the expiry time of the message in milliseconds. The default is
zero, which indicates an unlimited lifetime.

Note: No relationship is enforced between timeout and expiry.

persistence
Specifies the message persistence. Following standard JMS conventions,
this is specified as a number, with the following meanings:

0 No persistence specified; WebSphere MQ treats this as
PersistenceAsQDef. This is the default.

1 The message is non persistent.

2 The message is persistent

priority
Specifies the message priority. Valid values are in the range 0 (low) to 9
(high). The default is environment specific, for WebSphere MQ the default
is 0.

replyDestination
The queue at the client side to be used for the response message. The
default setting is SYSTEM.SOAP.RESPONSE.QUEUE.

The connectionFactory parameter:

The connection factory parameter’s syntax is as follows:
connectionFactory=name(value)name(value)...

where name is a sub-parameter name and (value) is an appropriate value, and the
name(value) element is repeated as necessary. There is no separator between
occurrences of name(value).

Sub-parameter names and values are as follows. If you are using SSL, you must
add further SSL-specific sub-parameters, as detailed in “SSL-related options in the
URI” on page 46. All the sub-parameters are optional; if none are to be set, you
must code the connectionFactory parameter as connectionFactory=().

connectQueueManager
Specifies the queue manager to which the client will connect. The default is
blank.

binding
Which type of binding should be used on the queue manager connection.
If the binding option is not specified but options appropriate to a client
binding are specified (such as clientConnection), the sender code assumes
a client type binding. If no client type attributes are specified and no
binding type is specified, the default is ″auto″ which means that the client
will attempt a server connection first. If this is not successful a client
connection will then be attempted. If ″server″ is specified as the binding
type, then the client will not attempt a client bindings connection if the
server connection fails. Other options are ″client″, where it is known a
server bindings connection would not be appropriate, or ″xaclient″
(xaclient applies to .NET only). The SOAP/WebSphere MQ sender code
checks the URI for any inconsistencies in the specified options. For
example if the URI specifies ″binding=server″ but also had client type

20 WebSphere MQ: Web Services

parameters specified such as ″clientConnection=″ or SSL parameters, an
error message is displayed by the SOAP/WebSphere MQ sender and the
request fails.

clientChannel
Specifies the channel to be used when a SOAP client makes a WebSphere
MQ client connection. The default value is null. If the clientConnection
keyword is specified, a value must be given for clientChannel.

clientConnection
Specifies the connection string to be used when a SOAP client makes a
WebSphere MQ client connection. For TCP/IP, this is in the form of either
a hostname (for example MACH1.ABC.COM) or network address in IPV4
format (for example 19.22.11.162) or IPV6 format, (for
examplefe80:43e4:0204:acff:fe97:2c34:fde0:3485). It can include the
port number, for example MACH1.ABC.COM(123).

Sample URIs:

This is an example of a simple URI for an Axis service:
jms:/queue?destination=myQ&connectionFactory=()
&initialContextFactory=com.ibm.mq.jms.Nojndi

This is an example of a simple URI for a .NET service:
jms:/queue?destination=myQ&connectionFactory=()&targetService=MyService.asmx
&initialContextFactory=com.ibm.mq.jms.Nojndi

Only the required parameters are supplied (targetService is required for .NET
services only), and connectionFactory is given no options.

In this Axis example, connectionFactory contains a number of options:
jms:/queue?destination=myQ@myRQM&connectionFactory=connectQueueManager(myconnQM)
binding(client)clientChannel(myChannel)clientConnection(myConnection)
&initialContextFactory=com.ibm.mq.jms.Nojndi

In this Axis example, the sslPeerName option of connectionFactory has also been
specified. The value of sslPeerName itself contains name value pairs and
significant embedded blanks:
jms:/queue?destination=myQ@myRQM&connectionFactory=connectQueueManager(myconnQM)
binding(client)clientChannel(myChannel)clientConnection(myConnection)
sslPeerName(CN=MQ Test 1,O=IBM,S=Hampshire,C=GB)
&initialContextFactory=com.ibm.mq.jms.Nojndi

Request queues:

If you do not specify the name of the request queue in a URI, it is determined by
the deployment process and depends on how the service was named to the
deployment process. The service name might either be a simple filename or might
include a relative path name. The queue name is generated by removing the
extension from the filename and replacing any file separator characters with
periods. For example a service name of dotnetDemos/server/StockQuoteAxis.cs
gives a queuename of dotnetDemos.server.StockQuoteAxis.

As for any WebSphere MQ queue, the queue name must be no longer than 48
characters. You can override the default queue name on deployment to specify a
shorter name. You might also need to override the queue name to ensure unique

Chapter 1. WebSphere MQ transport for SOAP 21

names. If the deployment utility generates a queue name longer than 48 characters
it truncates it but this could result in duplicate queue names. See “Deployment.”

Response queues:

The default name of the response queue is SYSTEM.SOAP.RESPONSE.QUEUE. You
can override this by specifying the replyToQueue parameter in the target URI. See
“Specifying the URI” on page 18 for further details. The demonstration programs
create this default queue automatically in the demonstration queue manager. A
script is provided (setupSOAPWMQ.cmd in Windows or setupSOAPWMQ.sh in
UNIX) that configures MQ with default SOAP/WebSphere MQ queue
configurations for a specified queue manager. If you nominate a non-default
response queue name, it is your responsibility to ensure the queue is properly
defined.

Dynamic response queues:

Permanent and temporary dynamic response queues are supported. To use a
dynamic response queue, specify a model queue name in the replyToQueue field
of the SOAP/WebSphere MQ URI. A model queue called
SYSTEM.SOAP.MODEL.RESPONSE.QUEUE is defined for a specified queue
manager by the script setupWMQSOAP.cmd (for Windows) or setupWMQSOAP.sh
(for UNIX). The model queue is set up as a permanent dynamic queue but you can
change it according to your requirements. Alternatively, you can create your own
model queue.

For both temporary and permanent dynamic response queues, a separate instance
of dynamic queue is be created for each request, and is deleted at the first
occurrence of any of the following:
v the response arrives and is processed.
v the request times out.
v the requesting program terminates.

For the best performance, you should normally use temporary dynamic queues
rather than permanent dynamic queues. However, if you use a persistent request
message in conjunction with a temporary dynamic queue, the SOAP/WebSphere
MQ listener fails to process the message and outputs an error. The client will then
generally time out.

Deployment

Deployment is the process of configuring the host web services infrastructure (Axis
or Microsoft .NET) to recognize the prepared web service.

A deployment utility is provided as part of WebSphere MQ transport for SOAP.
This consists of a Java program, com.ibm.mq.soap.util.amqwdeployWMQService,
and command files amqwdeployWMQService.sh and
amqwdeployWMQService.cmd, which invoke it. Source code functionally
equivalent to amqwdeployWMQService is also supplied so you can use it as the
basis of your own deployment utility.

The supplied deployment utility undertakes the following activities:
1. Validate an optional supplied URI to be used in the deployment process.

(Though optional, a URI is normally supplied to avoid the need to specify a
URI at run time.)

22 WebSphere MQ: Web Services

2. Prepare the WSDL from the service code.
3. (Axis only) Prepare deployment descriptor files and create or update

server-config.wsdd, which defines services to Axis.
4. Generate client proxies from the WSDL.
5. Prepare scripts for invoking and stopping a SOAP/WebSphere MQ listener on

the Web Service platform
6. Configure WebSphere MQ with the required queues and processes necessary to

implement the service.

You cannot deploy from existing WSDL using the provided deployment utility:
you can only use it by nominating the source file of a service. If you want to
deploy from WSDL you will have to write your own deployment procedure.

After deployment using the provided utility it is possible for clients to invoke
services through a special proxy class generated by the deployment procedure. In
the Axis environment, use of a proxy is generally be simpler than the alternatives
of using low level calls or by the use of a WSDL configuration file.

You might need to do further configuration, for example:
v If the client is operating with server bindings to a service on a different machine,

create channel definitions and enable communication between queue managers
located on the two machines.

v If the client application is to invoke the service with WebSphere MQ client
bindings and there is no local queue manager at the client, create and configure
a server connection channel to enable the client and server to communicate.

v Configure SSL communications if required on client bindings. It is necessary to
set up the WebSphere MQ channel definitions appropriately if you want to use
SSL and also to prepare a key repository file and import keys and certificates
into it. See “Using SSL with WebSphere MQ transport for SOAP” on page 45 for
details.

v If the client and server are on different machines, either deploy on the server
machine and copy the proxies to the client machine, or deploy on both machines
and remove the redundant elements from each platform.

The deployment utility

The deployment utility prepares a service class for use as a Web service using
WebSphere MQ as the transport.

The deployment utility amqwdeployWMQService.java is most easily called from
the supplied command files amqdeployWMQService.cmd and
amqdeployWMQService.sh. Change to the root directory of the directory in which
the source exists before calling amqdeployWMQService.

A source code example of a deployment utility program is supplied, so you can
develop your own customized deployment procedures for your specific
environment. See “Customizing the deployment process” on page 38 for details.

Syntax of amqwdeployWMQService:

The calling syntax for the UNIX shell is:
./amqwdeployWMQService.sh -f className [-a integrityOption] [-b bothresh]
[-c operation] [-i passContext] [-n num] [r] [-s] [-tmp programName]
[-tmq queueName] [-u URI] [-v] [-x transactionality] [-?]
[SSL options]

Chapter 1. WebSphere MQ transport for SOAP 23

and for the Windows command file:
amqwdeployWMQService -f className [-a integrityOption] [-b bothresh] [-c operation]
[-i passContext] [-n num] [r] [-s] [-tmp programName] [-tmq queueName] [-u URI]
[-v] [-x transactionality] [-?] [SSL options]

Where:

-f className
The name of the class to be deployed. For Java, this must be fully qualified by
the package. It can be specified as a path name with directory separators or as
a class name with period separators. For a .NET service, although the directory
can be specified, Java proxies are always located in the package dotNetService.

If you specify a URI with the -u option and within the URI specify the
targetService, the deployment utility checks that the className you have
specified matches that service. If the class and service specified do not match,
it displays an error message and exits.

-a integrityOption
Allows the default behavior of SOAP/WebSphere MQ listeners to be changed
when it is not possible to put a failed request message on the dead-letter
queue. integrityOption can take one of the following values:

DefaultMsgIntegrity
For non-persistent messages, the listener displays a warning message
and continues to execute with the original message being discarded.
For persistent messages, it displays an error message, backs out the
request message so it remains on the request queue and exits. This
default mode applies if the -a flag is omitted, or if it is specified with
no option.

LowMsgIntegrity
For both persistent and non-persistent messages, the listener displays a
warning and continues to execute, discarding the message.

HighMsgIntegrity
For both persistent and non-persistent messages, the listener displays
an error message, backs out the request message so it remains on the
request queue and exits.

The deployment utility checks for the compatibility of the -x and -a flags. If ″-x
none″ is specified, then ″-a LowMsgIntegrity″ must be specified. If the flags are
incompatible it exits with an error message and with no deploy steps having
been undertaken.

-b bothresh
A numeric value specifying the backout threshold setting that is to be set on
the request queue. The default is 3.

-c operation
Specifies which part of the deployment process to be executed. operation is
one of the following options:

allAxis
Perform all compile and setup steps for an Axis/Java service.

compileJava
Compile the Java service (.java to .class).

genAxisWsdl
Generate WSDL (.class to .wsdl).

24 WebSphere MQ: Web Services

axisDeploy
Deploy the class file (.wsdl to .wsdd, apply .wsdd).

genProxiestoAxis
Generate proxies (.wsdl to .java and .class).

genAxisWMQBits
Set up WebSphere MQ queues, SOAP/WebSphere MQ listeners and
triggers for an Axis service.

allAsmx
Perform all setup steps for a .NET service

genAsmxWsdl
Generate WSDL (.asmx to .wsdl).

genProxiesToDotNet
Generate proxies (.wsdl to .java, .class, .cs and .vb)

genAsmxWMQBits
Set up WebSphere MQ queues, SOAP/WebSphere MQ listeners and
triggers

startWMQMonitor
Start the trigger monitor for SOAP/WebSphere MQ services. See
“Starting listeners by triggering” on page 36.

If this option is omitted, the default is allAxis if the className given with the
-f parameter has a .java extension, and allAsmx if it has an asmx extension.

-i passContext
Specifies whether the listeners should pass identity context. This parameter can
take the values passContext or ownContext. If the parameter is omitted, the
default is to pass context. (See“Context” on page 38).

-n num
Number of threads to be specified in the startup scripts for the
SOAP/WebSphere MQ listener. The default is 10. Consider increasing this
number if you have high message throughput.

-r Specifies that any existing request queue or trigger monitor queue (if -tmq was
specified) will be explicitly replaced. By specifying -r, you ensure the queues
will be recreated with standard default attributes and with no messages. If the
-r option is not used then any existing queue definitions will not be altered nor
message entries deleted. By not specifying -r, you ensure that any customized
queue attributes are preserved.

-s Configure the listener to be executed as a WebSphere MQ service. This option
is mutually exclusive to the -tmq option.

If -s and -tmq are both specified, the deployment utility displays an error
message and exits.

-tmp programName
Specifies a trigger monitor program. This option might be used in a UNIX
environment to circumvent limitations of the setuid trigger monitor runmqtrm.

-tmq queueName
Specifies a trigger monitor queue name. If this option is used then WebSphere
MQ process definitions are made to configure automatic triggering of
SOAP/WebSphere MQ listeners with the associated trigger monitor queue
name. If the option is not specified then no triggering configuration is made by
the deployment utility. This option is mutually exclusive to the -s option.

Chapter 1. WebSphere MQ transport for SOAP 25

If -s and -tmq are both specified, the deployment utility displays an error
message and exits.

-u URI

Specifies a URI. By specifying the URI in this way at deploy time, the need to
supply the URI with every client invocation is removed.

If a target service is specified in this URI, it must match the class supplied in
the -f option. If a request queue is not specified in this URI, the queue name is
generated as follows:
1. The full path name given in the -f parameter is taken and the file extension

removed.
2. Any directory separator characters are replaced with period characters.
3. Any embedded spaces are replaced with underscore characters.
4. For a .NET service on Windows, a colon after any drive prefix is replaced

with a period. The drive prefix itself is left intact.
5. The name is prefixed with ″SOAPJ.″ for Java services or with ″SOAPN.″ for

.NET services.
6. The path name is truncated to no more than 48 characters, including the

″SOAPJ.″ or ″SOAPN.″ prefix. On platforms other than Windows, this is
done by taking the ″SOAPJ.″ prefix and then appending up to a maximum
of the rightmost 42 bytes. On Windows systems, the SOAPN. prefix is
taken. Then, if the service being deployed is a .NET service, the first
character and period following arel also taken if these originally denoted a
drive prefix. This leaves a maximum of either 42 or 40 characters which
will be taken from the right side of the string.

It is possible in some environments that a queue name generated by the
supplied deployment utility might not be unique. Although there is protection
against this via the validation process described in “Queue and directory
validation” on page 28, you might choose to safeguard further against this by
either restructuring the deployment directory hierarchy or by customizing the
supplied deployment process.

It is only possible to nominate a single URI to the deployment utility. This URI
is used in both the default client and listener configurations built by the
deployment utility. One implication of this is that if a binding=client option is
specified in the URI given to the deployment utility, then a configuration is
built that assumes binding=client both at the sender and the listener. You
might want to use the binding=auto option if you have no local queue
manager on the client side and therefore require a client connection at the
sender and a server connection at the listener. If you require different URIs at
the client and listener you can either modify the configuration built by the
deployment utility or build your own deployment utility.

-v Sets verbose output from external commands. (Error messages are displayed
whether or not -v is set.) This can be useful for creating customized
deployment scripts.

-x transactionality
The form of transactional control the listener should run under.
transactionality can be set to one of the following values:

onePhase
WebSphere MQ one-phase support is used. If the system fails during
processing, the request message is redelivered to the application.
WebSphere MQ transactions ensure that the response messages are

26 WebSphere MQ: Web Services

written exactly once. If the -x flag is omitted, or is used without a
qualifying option, this is the default option assumed.

twoPhase
Two-phase support is used. If other resources are coordinated resource
managers and the service is written appropriately the message is
delivered exactly once with a single committed execution of the
service.

This option applies to server bindings connections only.

none No transactional support. If the system fails during processing, the
request message can be lost (even if persistent). The service might or
might not have executed, and response, report or dead-letter messages
might or might not have been written.

The deployment utility checks for the compatibility of the -x and -a flags. See
the description of the -a flag for details.

-? Print out a help text describing how the command should be used.

SSL options
Options that can be specified for use with client connections over a channel
configured to run in SSL mode are specified in “Using SSL with WebSphere
MQ transport for SOAP” on page 45.

Outputs:

All outputs are generated into the ./generated subdirectory, and subdirectories of
./generated.

Before deploying a service, you should delete the ./generated subdirectory. This is
particularly important if you are redeploying a modified service.

Files needed only by the client are placed in: ./generated/client and its
subdirectories.

Files needed only by the server are placed in ./generated/server and its
subdirectories.

The outputs are:
v classes: The Java service source file is compiled (into ./generated/server)
v wsdl: ./generated/className_Wmq.wsdl: wsdl
v wsdd (Axis service deployment files):

– ./generated/server-config.wsdd
– ./generated/client-config.wsdd
– ./generated/server/classDirectory/className_deploy.wsdd
– ./generated/server/classDirectory/className_undeploy.wsdd

v wsdd: Axis source for Java and .Net proxies (in ./generated/client and
subdirectories)

v compiled Java proxies (in ./generated/client and subdirectories)
v Listener scripts: (in ./generated/server). Six scripts are generated:

– startWMQJListener.cmd
– startWMQJListener.sh
– startWMQNListener.cmd

Chapter 1. WebSphere MQ transport for SOAP 27

– endWMQJListener.cmd
– endWMQJListener.sh
– endWMQNListener.cmd

Queue and directory validation:

If you explicitly specify a request queue name, you might accidentally use an
existing queue name. If you use generated queue names, a truncated queue name
might not be unique. To protect against these problems, the deploy utility looks for
the presence of an existing start up script in the generated/server subdirectory of
the deployment directory. It then checks the URI specified to the listener in that
script. It also checks whether the request queue already exists. Having made these
checks, the deployment utility then takes one of the following six actions as
appropriate:
v Request queue does not already exist

– The listener start up script is not found in the generated/server directory.
This is the case where no previous service has been deployed from this
directory.
Deployment continues with no warnings or errors.

– The listener start up script is found but the request queue in the URI does not
match that being used by the deployment utility. This is the case where a
previously deployed service in this directory was deployed with a different
queue.
The deployment utility displays an error message and exits.

– The listener start up script is found and the request queue matches that being
used by the deploy utility This might indicate an incomplete or corrupted,
but compatible, previous deployment.
The deployment utility displays a warning message because the start up file
was valid but the queue did not exist. Deployment continues and the request
queue is created.

v Request Queue does already exist
– The listener start up script is not found in the generated/server directory.

This might indicate the queue is already in use for services deployed in
another directory, or for some other application.
The deployment utility displays an error message and exits.

– The listener start up script is found but the request queue in the URI does not
match that being used by the deployment utility. This is the case when a
service has already been deployed in this directory, but using a different
queue.
The deployment utility displays an error message and exits.

– The listener start up script is found and the request queue matches that being
used by the deploy utility. This occurs when a service has already been
deployed in this directory using the same queue.
Deployment continues with no warnings or errors.

Using the deployment utility:

Run the deployment utility using the amqwdeployWMQService command. Use the
-f flag to specify the name of the source file. For Axis services this is the Java
source file, and for .NET services, the .asmx file. The following example illustrates
the use of anqwdeployWMQService for Axis
amqwdeployWMQService -f javaDemos/service/StockQuoteAxis.java

28 WebSphere MQ: Web Services

The following example illustrates the use of anqwdeployWMQService for .NET.
amqwdeployWMQService -f StockQuoteDotNet.asmx

Deployment performs the following actions. Most of the results of these actions are
placed in the generated subdirectory of the directory from which the deployment
is made, which is created if it does not already exist. If you are redeploying a
service that has already been deployed, you should first delete the generated
subdirectory. In the following examples amqwdeployWMQService is running from
c:/temp/soap, so output is placed in c:/temp/soap/generated.
1. For Java services, compile the source into the c:/temp/soap/generated/server

subdirectory, for example:
c:/temp/soap/generated/server/javaDemos/service/StockQuoteAxis.class

.NET services that are not written using code embedded in the .ASMX file must
be compiled before calling anqwdeployWMQService.

2. Generate the appropriate WSDL. This is created in c:/temp/soap/generated/
className_Wmq.wsdl, for example
c:/temp/soap/generated/javaDemos.service.StockQuoteAxis_Wmq.wsdl

3. For Java services, prepare deployment descriptor files (className_deploy.wsdd
and className_undeploy.wsdd), for example:
c:/temp/soap/generated/server/javaDemos/service/StockQuoteAxis_deploy.wsdd

and
c:/temp/soap/generated/server/javaDemos/service/StockQuoteAxis_undeploy.wsdd

and deploy into the execution directory to create or update
c:/temp/soap/generated/server-config.wsdd.

4. Generate the appropriate proxies for Java, C# and Visual Basic from this WSDL.
On Windows, proxies are generated for all three client languages regardless of
the language in which the service is written. The C# and VB proxies are placed
directly into the c:/temp/soap/generated directory. The Java proxies are placed
in the ./remote subdirectory of the original package and file directories to
prevent confusion with the original classes. For example, the .Net proxies might
be placed in:
c:/temp/soap/generated/client/StockQuoteAxisService.cs

and
c:/temp/soap/generated/client/StockQuoteAxisService.vb

and the various Java files might be placed in:
c:/temp/soap/generated/client/javaDemos/service/remote/*.java

5. Compile the Java proxies: for example to
c:/temp/soap/generated/client/javaDemos/service/remote/*.class

6. Create a WebSphere MQ queue to hold requests to the service. The queue name
is of the form SOAPJ.directory, for example: SOAPJ.demos.

7. Prepare a file to start the SOAP/WebSphere MQ listener that will process this
queue, for example
c:/temp/soap/generated/server/startWmqJListener.cmd

8. If the -tmq option has been used, then prepare WebSphere MQ definitions that
will permit the SOAP/WebSphere MQ listener process to be automatically
triggered. for example:
WebSphere MQ Process: SOAPJ.demos WMQ

Chapter 1. WebSphere MQ transport for SOAP 29

Trigger Initiation Queue: SYSTEM.SOAP.INIT.QUEUE

The WSDL and the proxies generated from it will include the appropriate URI to
call the service, for example:
jms:/queue?destination=myQ&connectionFactory=()&targetService=myService
&initialContextFactory=com.ibm.mq.jms.Nojndi

Errors:

On Windows, if errors are reported from amqswsdl, try issuing the following
command:
%windir%/Microsoft.NET/Framework/version number/aspnet_regiis.exe -ir

This generally applies to systems where IIS has not been installed or IIS has been
installed after NET. (For more information about installing IIS and .NET, and
registering IIS, see “Prerequisites” on page 10.) The aspnet_regiis utility sets up the
necessary registry keys to allow Windows to execute files with the .asmx extension
as services. This is normally first encountered when amqswsdl generates the wsdl
files at deploy time. If you use a customized deployment procedure that does not
include this step, the registry keys are still required to permit the listener to invoke
the services.

Restriction on deployment directory length

The deployment utility uses the APPLICID attribute of the runmqsc DEFINE
PROCESS command to contain a command to start the listener. This will have the
name of the deployment directory embedded in it. WebSphere MQ imposes a
maximum length of 256 on the APPLICID field which in turn means there is a
limit on the maximum length of the deployment directory.

For Java services, this limit is as follows:
v UNIX: 218
v Windows: 197 minus queue_name_length

For .NET services the limit is
v Windows: 209 minus length of service_name

where ″service_name″ is the name of the input service file without any extension.
(For example, ″StockQuoteDotNet.asmx″ would have a service name of
StockQuoteDotNet, which has a length of 16 characters, and so the corresponding
maximum deployment directory length would be 193).

If you are using triggering, the deployment utility checks whether the limit for
APPLICID is exceeded. If the limit is exceeded, the utility does not attempt to
define the triggering process; it displays an error message and the deployment
process fails with no deployment steps having been taken.

For more information on the DEFINE PROCESS command, see WebSphere MQ
Script (MQSC) Command Reference.

Senders and listeners

Senders

The SOAP/WebSphere MQ Java sender:

30 WebSphere MQ: Web Services

A Java sender is implemented in the final class
com.ibm.mq.soap.transport.jms.WMQSender which is derived from the
org.apache.axis.handlers.BasicHandler class. When the Axis host environment
detects the ″jms:″ URI prefix that was previously registered to the environment, the
sender attempts to put the message on the specified request queue with any
specific expiry, persistence and priority options.

The sender then blocks until it has read a response from the response queue. The
response message is then returned to the client. If no response is received within
the timeout interval set in the URI, the sender throws an exception.

The SOAP/WebSphere MQ .NET sender:

The .NET sender is implemented in the sealed class IBM.WMQSOAP.
MQWebRequest. This class is derived from System.Net.WebRequest and
System.Net.IwebRequestCreate. When the .NET environment detects the ″jms:″ URI
prefix it attempts to place the message on the specified request queue, setting up
any specific expiry, persistence and priority options.

The method then creates an IBM.WMQSOAP.MQWebResponse object which reads
the response message from the response queue and then returns it to the client.

Listeners

The deployment process (see “The deployment utility” on page 23) automatically
creates wrapper scripts in the generated/server directory that set up and invoke
the listener. Scripts are generated to start the listener as a WebSphere MQ service
or by triggering. You can also start a listener manually.

The scripts to start listeners are named as follows:

startWMQJListener.sh
to start a Java listener under UNIX

startWMQJListener.cmd
to start a Java listener under Windows

startWMQNListener.cmd
to start a .NET listener under Windows

The scripts to define and start listeners as a WebSphere MQ service are named as
follows:

defineWMQJListener.sh
to define and start a Java listener as a service under UNIX

defineWMQJListener.cmd
to define and start a Java listener as a service under Windows

defineWMQNListener.cmd
to define and start a .NET listener as a service under Windows

These invoke the start scripts described above.

The deployment process also generates scripts to stop listeners, named as follows:

endWMQJListener.sh
to end a Java listener under UNIX

Chapter 1. WebSphere MQ transport for SOAP 31

endWMQJListener.cmd
to end a Java listener under Windows

endWMQNListener.cmd
to end a .NET listener under Windows

Java SOAP/WebSphere MQ listener:

The Java SOAP/WebSphere MQ listener is implemented in the class
com.ibm.mq.soap.axis.transport.jms.SimpleJavaListener.

The Java SOAP/WebSphere MQ listener calling syntax is:
java com.ibm.mq.soap.axis.transport.jms.SimpleJavaListener -u wmqUri
-a [LowMsgIntegrity|HighMsgIntegrity|DefaultMsgIntegrity] [-d msecs]
[-i passContext|ownContext] [-n numListenerThreads] [-v]
[-x none|onePhase|twoPhase] [-?]

where

-u Specifies the URI of the service to be invoked. This parameter is required.

-a Allows the default behavior to be customized when it is not possible to write a
failed request message to the dead letter queue.

DefaultMsgIntegrity
For non-persistent messages, the listener displays a warning message
and continues to execute with the original message being discarded.
For persistent messages, it displays an error message, backs out the
request message so it remains on the request queue and exits. This
default mode applies if the -a flag is omitted, or if it is specified with
no option.

LowMsgIntegrity
For both persistent and non-persistent messages, the listener displays a
warning and continues to execute, discarding the message.

HighMsgIntegrity
For both persistent and non-persistent messages, the listener displays
an error message, backs out the request message so it remains on the
request queue and exits. This mode is mutually exclusive with the -x
none option. If these options are both specified, the listener displays an
error message and exit.

-d Time, in milliseconds, for the SOAP/WebSphere MQ listener to stay alive after
no request messages have been received (on any thread, if you are running
multiple threads). If set to -1, the listener stays alive indefinitely. This is the
default.

-i Specifies whether or not the listener should attempt to pass identity context.

passContext
The listener uses the sender’s context. This is the default.

owncontext
The listener uses the context under which it was started

For more details of context passing, see “Context” on page 38.

-n Specifies the number of SOAP/WebSphere MQ listener threads required. The
default is 10.

32 WebSphere MQ: Web Services

-v Display warning messages if any of the following options are specified in the
-u argument:
v reply to queue
v timeout
v expiry
v persistence
v priority
v targetService

These options apply only to SOAP/WebSphere MQ clients. If you use the same
URI for the listener and don’t want to be warned that you are using redundant
parameters, omit the -v parameter to suppress the warning messages. Whether
or not -v is set or warning messages are output, the listener executes as
normal.

-x Indicates what form of transactional control the listener should run under.
Options can be set on this flag as follows:

onePhase
WebSphere MQ one-phase support is used. If the system fails during
processing, the request message can be redelivered to the application.
WebSphere MQ transactions assure that the message is written exactly
once. This is the default.

twoPhase
Two-phase support is used. This is based on WebSphere MQ
coordination. As long as other resources are coordinated resource
managers and the service is written appropriately the message is
delivered exactly once with a single committed execution of the
service. This option applies only to server bindings (see “The
connectionFactory parameter” on page 20).

none No transactional support. If the system fails during processing, the
request message might be lost, even if it is persistent. The service
might or might not have executed, and response, report or dead-letter
queue messages might or might not have been written. If the -x none
option is used, then the ″-a LowMsgIntegrity″ option is mandated and
the listener exits on start-up with an error message if the latter is not
specified.

The queue of the URI determines the queue that the listener will monitor for
service requests. If you are starting the listener manually, you normally run
this command from a command prompt. The CLASSPATH should first be
correctly set up by invoking the amqwsetcp.sh script. The Axis configuration
directory defaults to the current working directory and the Axis configuration
filename defaults to server-config.wsdd.

-? Provide a usage statement. The usage statement is displayed and the listener
then exits.

For example:
java com.ibm.mq.soap.transport.jms.SimpleJavaListener
-u "jms:/queue?destination=myQ&connectionFactory=()
&initialContextFactory=com.ibm.mq.jms.Nojndi"
-n 20

In the above example, the Java virtual machine is invoked to run the program
com.ibm.mq.soap.transport.jms.SimpleJavaListener. Two arguments are supplied,

Chapter 1. WebSphere MQ transport for SOAP 33

the WebSphere MQ URI, which is identified with the -u qualifier, and the number
of listener threads to start, which is identified with the -n parameter. The URI has
the same form as for the client, but is used in a slightly different way. Optional
values in the URI can be used to control the way the connection occurs
(client/server bindings, which queue manager, and so on). These are:
connectQueueManager, binding, clientChannel, clientConnection, sslCipherSuite,
sslPeerName, sslKeyResetCount, sslKeyStore, sslKeystorePassword, ssFipsRequired,
sslTrustStore, sslTrustStorePassword, and sslLDAPCRLServers. Other optional
values in the URI are only relevant to clients and are ignored, but a warning
message can be issued; see the explanation of the -v parameter.

.NET SOAP/WebSphere MQ listener:

The .NET SOAP/WebSphere MQ listener is implemented in
amqwSOAPNETlistener.exe.

The calling syntax is:
amqwSOAPNETlistener -u wmqUri [-w directory] [-n numListenerThreads] [-d msecs]
[-i passContext|owncontext] [-x none | onePhase | twoPhase]

where:

-u Specifies the URI of the service to be invoked. This option is required.

-a Allows the default behavior to be customized when it is not possible to write a
failed request message to the dead letter queue.

DefaultMsgIntegrity
For non-persistent messages, the listener displays a warning message
and continues to execute with the original message being discarded.
For persistent messages, it displays an error message, backs out the
request message so it remains on the request queue and exits. This
default mode applies if the -a flag is omitted, or if it is specified with
no option.

LowMsgIntegrity
For both persistent and non-persistent messages, the listener displays a
warning and continues to execute, discarding the message.

HighMsgIntegrity
For both persistent and non-persistent messages, the listener displays
an error message, backs out the request message so it remains on the
request queue and exits. This mode is mutually exclusive with the -x
none option. If these options are both specified, the listener displays an
error message and exits.

-d Time, in milliseconds, for SOAP/WebSphere MQ listener to stay alive after no
request messages have been received (on any thread, if you are running
multiple threads). If set to -1, the listener stays alive indefinitely. This is the
default.

-i Specifies whether or not the listener should attempt to pass identity context.

passContext
The listener uses the sender’s context. This is the default.

owncontext
The listener uses the context under which it was started

For more details of context passing, see “Context” on page 38.

34 WebSphere MQ: Web Services

-n Specifies the number of SOAP/WebSphere MQ listener threads required. The
default is 10.

-v Display warning messages if any of the following options are specified in the
-u argument:
v reply to queue
v timeout
v expiry
v persistence
v priority
v targetService

These options apply only to SOAP/WebSphere MQ clients. If you use the same
URI for the listener and don’t want to be warned that you are using redundant
parameters, omit the -v parameter to suppress the warning messages. Whether
or not -v is set or warning messages are output, the listener executes as
normal.

-w Physical directory containing web service. The default is ’c:\\inetpub\\
wwwroot\\<Application>\\’ (extracted from Queue if not specified)

-x Indicates what form of transactional control the listener should run under.
Options can be set on this flag as follows:

onePhase
WebSphere MQ one-phase support is used. If the system fails during
processing, the request message can be redelivered to the application.
WebSphere MQ transactions assure that the message is written exactly
once. This is the default

twoPhase
two-phase support is used. As long as other resources are coordinated
resource managers and the service is written appropriately the message
is delivered exactly once with a single committed execution of the
service. This option applies only to server bindings (see “The
connectionFactory parameter” on page 20).

none No transactional support. If the system fails during processing, the
request message might be lost, even if it is persistent). The service
might or might not have executed, and response, report or dead-letter
queue messages might or might not have been written. If the -x none
option is used, then the ″-a LowMsgIntegrity″ option is mandated and
the listener exits on start-up with an error message if the latter is not
specified.

The queue of the URI determines the queue that the listener will monitor for
service requests. If you are starting the listener manually, you normally run
this command from a command prompt.

-? Provide a usage statement. The usage statement is displayed and the listener
then exits.

For example:
amqwSOAPNETlistener -u "jms:/queue?destination=myQ&connectionFactory=()
&targetService=myService&initialContextFactory=com.ibm.mq.jms.Nojndi"
-w C:/wmqsoap/demos -n 20

In the above example, the listener is started by running the program
amqwSOAPNETlistener. Three arguments are supplied, the WebSphere MQ URI,

Chapter 1. WebSphere MQ transport for SOAP 35

which is identified with the -u qualifier, the directory the service is located in,
which is identified by the -w parameter, and the number of listener threads to
start, which is identified with the -n parameter. The URI has the same form as for
the client, but is used in a slightly different way. Optional values in the URI might
be used to control the way the connection occurs (client/server bindings, which
queue manager, and so on). These are: connectQueueManager, binding,
clientChannel, clientConnection, sslKeyRepository, sslCipherSpec, sslPeerName,
sslKeyResetCount, sslCryptoHardware, sslFipsRequired and sslLDAPCRLServers.
Other optional values in the URI are relevant only to clients and are ignored, but a
warning message can be issued; see the explanation of the -v parameter.

Channel definition tables

As an alternative to creating a client connection channel definition by setting
certain properties of a ConnectionFactory object, you can use client connection
channel definitions that are stored in a client channel definition table. Channel
definition tables are described in WebSphere MQ Using Java and WebSphere MQ
Clients. They are specified in the normal manner for the Java and .NET
environments, as detailed below.

Java:

The channel definition table is specified as a URI (for example
file://mqmtop/qmgrs/QUEUEMANAGERNAME/@ipcc/AMQCLCHL.TAB). The
system property for the channel definition table URI is
com.ibm.mq.soap.transport.jms.mqchlurl. This URI is passed to the
SOAP/WebSphere MQ client (or listener) via a system property on the command
line. You cannot set the channel definition table URI via the SOAP/WebSphere MQ
URI.

If clientChannel, clientConnection, or any SSL options are specified in the
SOAP/WebSphere MQ URI or as system properties when a SOAP client (or
listener) makes a WebSphere MQ client connection, these take priority over any
channel definition table. In these circumstances the channel definition table is not
used and a warning message to this effect is displayed.

.NET:

The .NET classes for WebSphere MQ support the use of client definition tables
through the environment variables MQCHLLIB and MQCHLTAB. MQCHLLIB
specifies the directory where the table is located and MQCHLTAB specifies the
actual filename of the table. You cannot specify the channel definition table directly
in a SOAP/WebSphere MQ URI.

Starting listeners by triggering

You can cause SOAP/WebSphere MQ listeners to start automatically by using
triggering. This is done by setting the -tmq option and supplying a trigger queue
name when you run the deployment utility. You can also specify a trigger monitor
program by setting the -tmp option.

For example:
amqwdeployWMQService -f javaDemos/service/StockQuoteAxis.java -tmq trigger.monitor.queue
-tmp trigmon

When SOAP/WebSphere MQ listeners are activated by the trigger monitor process,
they normally run under the user ID that invokes the trigger monitor. However, if

36 WebSphere MQ: Web Services

the trigger monitor is activated on UNIX systems with a setuid trigger monitor,
such as the supplied runmqtrm utility, the listeners execute under the mqm user
id. Where security is an issue, you must ensure that the listeners are started under
appropriate user IDs

Triggering is described in WebSphere MQ Application Programming Guide and
WebSphere MQ Intercommunication. The deployment utility is described in
“Deployment” on page 22.

Terminating listeners

The deployment utility generates a script in the generated/server directory that
you can use to close down a listener. The script is called: endWMQJListener.cmd
(for Windows) or endWMQJListener.sh (for UNIX) for Java services, and
endWMQNListener.cmd for .NET services.

You can also terminate listeners by setting GET DISABLED on the request queue.

Report messages

The WebSphere MQ transport for SOAP sender code sets the
MQRO_EXCEPTION_WITH_FULL_DATA and
MQRO_EXPIRATION_WITH_FULL_DATA report options. This results in report
messages being written to the response queue in the event of an exception or
message expiry condition. SOAP/WebSphere MQ listeners also generates report
messages if the format of the request message is not recognized or fails a basic
integrity check of the MQRFH2 header, or if the backout/retry threshold is
exceeded while a SOAP/WebSphere MQ listener is trying to process the request.
The use of these report options means that report messages contain the entire
originating request message. Your client application should get these messages and
process them appropriately.

The WebSphere MQ transport for SOAP sender code sets the MQRO_DISCARD
report option. This option causes a message to be discarded after a report message
has been returned, rather than being written to the dead-letter queue. The
provided SOAP/WebSphere MQ listeners honour the case where
MQRO_DISCARD has not been set. If SOAP/WebSphere MQ generates a report
message but fails in the process of sending the report, the normal behavior is that
the report message is sent to the dead-letter queue (DLQ). Ensure that your DLQ
handler handles these messages correctly. (See WebSphere MQ System
Administration Guide for information about DLQ handlers.) If the sender’s report
options do not meet your requirements you will have to write your own senders to
use different MQRO_EXCEPTION and MQRO_DISCARD report options.
(See“Writing WebSphere MQ transport for SOAP senders” on page 39 for
information about writing your own senders.)

If an error occurs when attempting to write to the dead-letter queue (for example if
the dead letter queue is full), a message is written to the WebSphere MQ error log.
If the listener is running in its default transactional mode of OnePhase with a
non-persistent request message, the original message is not left in the request
queue and the SOAP/WebSphere MQ listener continues to execute. If the request
message is persistent it is backed out to the request queue and the listener exits. In
this case the request queue is set to get-inhibited to prevent an accidental triggered
restart.

Chapter 1. WebSphere MQ transport for SOAP 37

Context

Both the Java and .NET SOAP/WebSphere MQ listeners have runtime options for
specifying whether they pass identity context. The default if the parameter is not
specified is that they pass context.

If the listener is to pass identity context, it checks at runtime that it has authority
both to save the context from the request queue and to pass it to the response
queue when opening the response queue. If the listener does not have sufficient
authority the message is put on the dead-letter queue with the return code set to
that returned from the failed open call on the response queue. The listener then
continues to process subsequent incoming messages as normal. If the listener does
have the required authority and the open call is successful, the listener sets the
identity context of the original request message into the response message.

If the listener is started and told not to pass identity context, the listener honours
the runtime option and does not pass context. The returned context reflects the
user ID under which the listener is running rather than the user ID which created
the original request message.

The fields in the origin context are not set by SOAP/WebSphere MQ but by the
queue manager.

See WebSphere MQ Application Programming Guide for details of identity context
and origin context.

Further considerations

Customizing WebSphere MQ transport for SOAP

This chapter discusses how to customize WebSphere MQ transport for SOAP. There
are three areas for customization:
v deployment, see “Customizing the deployment process”
v senders, see “Writing WebSphere MQ transport for SOAP senders” on page 39
v listeners, see “Writing WebSphere MQ transport for SOAP listeners” on page 40

Source code for a sample deployment utility is installed into mqmtop/tools/soap/
samples on Windows systems or mqmtop/samp/soap on UNIX systems. You can
use this sample as the basis of you own deployment utility, as required.

Customizing the deployment process

The behavior of the supplied deployment utility is described in “Deployment” on
page 22. That chapter describes how to control the behavior of the deployment
utility using its optional parameters. If you want to change the deployment process
beyond the capabilities of the supplied utility, perhaps to deploy from .wsdl rather
than from source code, you can write your own utility. If you want to your utility
to work in a similar way to the supplied utility, you can find related source code in
the samples directory as amqwdeployWMQService.java.

You can also customize deployment by running the provided utility with the -v
option set, and capturing the commands that are output. You can then assemble
these into a script and edit them appropriately, for example using different
arguments in the Java2WSDL or WSDL2Java steps.

38 WebSphere MQ: Web Services

Writing WebSphere MQ transport for SOAP senders

Attention: This is recommended for advanced users only.

The behavior of the supplied senders is described in “Senders” on page 30.
Though the supplied senders can be replaced with your own code, sample source
code is not supplied.

One function of the sender is to construct the required message headers. If you
implement your own sender code and these fields are not properly set, results are
undefined. The contents of the message headers are described in “Constructing
message headers” on page 40.

If the sender’s report options do not meet your requirements (see “Report
messages” on page 37), you will have to write your own senders to use different
MQRO_EXCEPTION and MQRO_DISCARD report options. The SOAP/WebSphere
MQ listeners honour such settings as follows (The notation MQRO_EXCEPTION_*
indicates the use of either MQRO_EXCEPTION,
MQRO_EXCEPTION_WITH_DATA or MQRO_EXCEPTION_WITH_FULL_DATA):

MQRO_EXCEPTION_* enabled, MQRO_DISCARD enabled
Default behavior. Report messages are automatically generated if necessary
and the original request discarded. If a report message could not be
returned to the response queue the report message is sent to the dead
letter queue.

MQRO_EXCEPTION_* enabled, MQRO_DISCARD not enabled
Report messages are automatically generated if necessary and the original
message is sent to the dead letter queue. If the report message could not be
returned to the response queue it is also be sent to the dead-letter queue.
In this case there are therefore two dead letter queue entries for the failed
request.

MQRO_EXCEPTION_* not enabled, MQRO_DISCARD not enabled
Report messages are not automatically generated when the incoming
format is not recognized or the backout retry count is exceeded. The
original request message is however written to the dead letter queue when
a report would otherwise have been generated.

MQRO_EXCEPTION_* not enabled, MQRO_DISCARD enabled
Report messages are not automatically generated when the incoming
format is not recognized or the backout retry count is exceeded. The
message is not sent to the dead letter queue. This means that there is no
return notification that the client can inspect and the original request
message is lost.

The following lists show whether other report options are honoured in the
SOAP/WebSphere MQ listeners.
v Report options supported with SOAP/WebSphere MQ:

– MQRO_EXCEPTION
– MQRO_EXCEPTION_WITH_DATA
– MQRO_EXCEPTION_WITH_FULL_DATA
– MQRO_DEAD_LETTER_Q
– MQRO_DISCARD_MSG
– MQRO_NONE
– MQRO_NEW_MSG_ID

Chapter 1. WebSphere MQ transport for SOAP 39

– MQRO_PASS_MSG_ID
– MQRO_COPY_MSG_ID_TO_CORREL_ID
– MQRO_PASS_CORREL_ID

v Report options handled by the queue manager with no intervention from
SOAP/WebSphere MQ:
– MQRO_COA
– MQRO_COA_WITH_DATA
– MQRO_COA_WITH_FULL_DATA
– MQRO_COD
– MQRO_COD_WITH_DATA
– MQRO_COD_WITH_FULL_DATA
– MQRO_EXPIRATION
– MQRO_EXPIRATION_WITH_DATA
– MQRO_EXPIRATION_WITH_FULL_DATA

v Unsupported report options:
– MQRO_PAN
– MQRO_NAN

Writing WebSphere MQ transport for SOAP listeners

Attention: This is recommended for advanced users only.

The behavior of the supplied listeners is described in “Listeners” on page 31.
Though the supplied listeners can be replaced with your own code, sample source
code is not supplied.

Constructing message headers

A SOAP/WebSphere MQ format message consists of a standard WebSphere MQ
header (MQMD), a WebSphere MQ Rules and formatting header (MQRFH2), and a
body that contains a standard SOAP message. SOAP/WebSphere MQ provides no
constraint on this body; it regards it simply as an unformatted byte string and
relies on the host Web services environment to provide SOAP formatting and
parsing services.

Constructing the message descriptor:

This section describes how the message descriptor (MQMD) is set up by the
supplied senders. If you implement your own sender code and these fields are not
properly set, results are undefined. Each message descriptor field can be set
differently for the three types of SOAP/WebSphere MQ message (Request,
Response, and Report). Where the setting is common across the three types they
are grouped together as ″All″. For more details of the MQMD, see WebSphere MQ
Application Programming Reference.

StrucId
Structure identifier.

All message types: MQMD_STRUC_ID

Version

Structure version number.

All message types: MQMD_VERSION_2

40 WebSphere MQ: Web Services

Report
Options for report messages.
v Request: SOAP/WebSphere MQ sets the option

MQRO_COPY_MSG_ID_TO_CORREL_ID in this flag so that the
WebSphere MQ generated message ID is automatically returned in any
response message as the correlation ID. It also sets MQRO_EXCEPTION,
MQRO_EXPIRY, and MQRO_DISCARD so that report messages are
returned to the client if an exception is generated or the request message
expires, and so that a message is discarded after a report message has
been returned in the event of an error, rather than being written to the
Dead Letter Queue.

v Other types: This field is not used.

MsgType
Message type.
v Request: MQMT_REQUEST
v Response: MQMT_REPLY
v Report: MQMT_REPORT

Expiry Message lifetime.
v Request: By default this field is set to MQEI_UNLIMITED, meaning an

unlimited expiry time. However this can be overridden by specifying the
Expiry option in the target URI. (See “Specifying the URI” on page 18).

v Response: The value of this field is passed by WebSphere MQ from a
request message to any corresponding response message.

v Report: The field is set to MQEI_UNLIMITED.

Feedback
Feedback or reason code.
v Request, Response: Not used
v Report: For report messages that are generated by WebSphere MQ this

field is automatically set according to normal conventions. Report
messages that are generated directly by the SOAP/WebSphere MQ
listeners are raised either because the backout retry threshold has been
exceeded or because the format of the request message was not
recognized. If the backout retry threshold was exceeded the field is set to
MQRC_BACKOUT_THRESHOLD_REACHED. For problems with the
request message format, the feedback is set to one of the following
values:
– MQRCCF_MD_FORMAT_ERROR - The message is not recognized as

having an MQRFH2 header.
– MQRC_RFH_PARM_MISSING - A required parameter (for example,

soapAction) in the MQRFH2 is missing.
– MQRC_RFH_FORMAT_ERROR - A basic integrity check of the

MQRFH2 failed (for example, internal lengths are corrupt).
– MQRC_RFH_ERROR - The MQRFH2 passed an integrity check, but

the body of the message is not set to MQFMT_NONE.

Encoding
Numeric encoding of message data.

All: platform default.

CodedCharSetId
Character set identifier of message data.

Chapter 1. WebSphere MQ transport for SOAP 41

All: UTF-8.

Format
Format name of message data.
v Request, Response: MQFMT_RF_HEADER_2.
v Report: For report messages generated by WebSphere MQ the format is

automatically set according to normal WebSphere MQ conventions.
Where SOAP/WebSphere MQ explicitly creates a report message, the
format of the original request is preserved.

Priority
Message priority.
v Request: The priority is by default set to

MQC.MQPRI_PRIORITY_AS_Q_DEF. It can be overridden in the URI.
See “Specifying the URI” on page 18.

v Response, Report: The value of this field is passed by WebSphere MQ
from a request message to any corresponding response or report
message.

Persistence
Message persistence.
v Request: The default persistence is taken from the queue definitions.
v Response, Report: The value of this field is passed by WebSphere MQ

from a request message to any corresponding response or report
message.

MsgId Message identifier.
v Request, Report: This field is automatically completed by WebSphere

MQ and is unique to each message.
v Response: The supplied SOAP/WebSphere MQ senders request that the

MsgId should be uniquely generated in a response message. If you write
your own sender, the SOAP/WebSphere MQ listeners honour other
options supported in WebSphere MQ for setting the MsgId.

CorrelId
Correlation identifier.
v Request, Report: This field is not used.
v Response: The supplied SOAP/WebSphere MQ senders request that the

CorrelId should be set in a response message to the MsgId of the request
message. If you write your own sender, the SOAP/WebSphere MQ
listeners honour other options supported in WebSphere MQ for setting
the CorrelId.

BackoutCount
Backout counter .
v Request: This field is used to detect messages that should be discarded

or put to the dead-letter queue.
v Response, Report: This field is not used.

ReplyToQ
Name of reply queue.
v Request: SOAP/WebSphere MQ sets the reply-to queue to

SYSTEM.SOAP.RESPONSE.QUEUE. This default can be overridden by
setting the target URI appropriately.

Response, Report: Not used.

42 WebSphere MQ: Web Services

ReplyToQMgr
Name of reply queue manager.

All: Set by the WebSphere MQ queue manager.

UserIdentifier
User identifier.
v Request, Report: This field is not used.
v Response: How this and other fields in the Identity Context are set in

response messages depends on the authorization the listener is running
under. See “Context” on page 38 for more details.

AccountingToken
Accounting token.

All: This field is not used.

ApplIdentityData
Application data relating to identity.

All: This field is not used.

PutApplType
Type of application that put the message.

All: This field is set by the queue manager.

PutApplName
Name of application that put the message.

All: This field is completed by the queue manager. In the Java environment
it is normally set to ″java.exe″ and in the .NET environment to
″dir/progName.exe″.

PutDate
Date when message was put.

All: This field is completed by the queue manager.

PutTime
Time when message was put.

All: This field is completed by the queue manager.

ApplOriginData
Application data relating to origin

This field is completed by the queue manager.

GroupId
Group identifier
v Request, Report: This field is not used.
v Response: Although there is no specific use of the GroupId field in

SOAP/WebSphere MQ, the field is preserved by SOAP/WebSphere MQ
listeners.

MsgSeqNumber
Sequence number of logical message within group
v Request, Report: This field is not used
v Response: This field is preserved by SOAP/WebSphere MQ listeners.

Offset Data offset in physical message
v Request, Report: This field is not set.

Chapter 1. WebSphere MQ transport for SOAP 43

v Response: This field is preserved by SOAP/WebSphere MQ listeners.

MsgFlags
Message flags
v Request, Report: This field is not used..
v Response: This field is preserved by SOAP/WebSphere MQ listeners.

OriginalLength

Length of original message

Request, Response: This field is not set by SOAP/WebSphere MQ.

Report: The field is set to the length of the original request message.

Constructing the MQRFH2 header:

This section describes how the supplied senders set up the second message header,
which is in the MQRFH2 format. The settings are common across the three
message types. For more details of the MQRFH2, see WebSphere MQ Application
Programming Reference.

Fixed portion:

StrucId
Structure identifier

MQRFH_STRUC_ID

Version
Structure version number

MQRFH_VERSION_2

StrucLength
Total length of this header including all NameValueLength and
NameValueData fields

Encoding
Numeric encoding of data that follows last NameValueData field

CodedCharSetId
Character set identifier of data that follows last NameValueData field

Set to UTF-8

Format
Format name of data that follows last NameValueData field

Flags Flags

NameValueCCSID
Character set identifier of NameValueData

Set to UTF-8

Variable portion:

The variable portion of an MQRFH2 header consists of a number of occurrences of
the fields NameValueLength and NameValueData. This is described in WebSphere
MQ Application Programming Reference. WebSphere MQ transport for SOAP uses
the same NameValueLength and NameValueData fields as WebSphere MQ JMS
messages. These are detailed in WebSphere MQ Using Java. The NameValueData
fields containing the <mcd> and <jms> folders must be set up as described in

44 WebSphere MQ: Web Services

WebSphere MQ Using Java. The <mcd>, <jms> and <usr> folders (and no others)
must occur in that order. The NameValueData field containing the <usr> folder
must be set up as follows

NameValueLength
Length of matching NameValueData. Must be a multiple of four.

NameValueData
Contains a folder named <usr>, which contains five name/value pairs, as
follows:

contentType
This always contains the string ″text/xml; charset=utf-8″.

endpointURL
URI of the web service to be invoked.

targetService
A copy of the targetService field from endpointURL.

soapAction
This field is mandatory for .NET services but optional for Axis
services. Its value depends on the service to be invoked.

transportVersion
This always contains the value 1.

Using SSL with WebSphere MQ transport for SOAP

WebSphere MQ transport for SOAP provides several SSL options that can be
specified in the WebSphere MQ URI for use with client connections over a channel
configured to run in SSL mode. There are differences in these options between the
.NET and Java environments but the SOAP/WebSphere MQ senders and listeners
process the SSL options that are applicable to that particular environment and
ignore those which are not.

The presence or absence of the sslCipherSpec option for .NET clients and the
sslCipherSuite option for Java clients determines whether SSL is used or not. If the
option is not specified in the URI then by default SSL is not used and all other SSL
options are ignored. All SSL options are optional except where indicated.

For WebSphere MQ clients, where a local queue manager is not used, you should
set the SSL attributes in the URI or channel definition table. On the server, you
should set them using the facilities of WebSphere MQ. By default, the standard
WebSphere MQ SSL option ″Always authenticate parties initiating connections to
this channel definition″ is set when enabling SSL on the channel. This means that
clients are required to authenticate themselves before SSL communication can
commence. They do this by sending their certificate to the server system. If this
option is not set, then SSL communications are established without client
authentication. If using client authentication, it is essential that the client’s key
repository has a certificate assigned which is acceptable to the queue manager. For
additional security, WebSphere MQ channels can be configured to only accept
certificates the Distinguished Names of which match a required set of values. If an
SSL Peer Name is set on a channel, the client’s certificate must match the values
specified in SSL Peer Name. Refer to WebSphere MQ Security for details on the use
and specification of the SSL Peer Name parameter for WebSphere MQ channels.
The parameter is called SSLPEER when it is used in the MQSC DEFINE
CHANNEL command.

Chapter 1. WebSphere MQ transport for SOAP 45

In SOAP/WebSphere MQ the only difference in this specification is that the entire
SSL Peer Name string in the URI for these connections has to be enclosed in
parentheses. This is shown in the following example: SSLPeerName=″(CN=MQ
Test 1,O=IBM,S=Hampshire,C=GB)″

For more details on the CipherSpecs and CipherSuites supported, refer to
WebSphere MQ Security and to WebSphere MQ Using Java. For information about
using the MQSCO structure on an MQCONNX call, see WebSphere MQ
Application Programming Reference.

If you use Java, the first SSL connection from a SOAP/WebSphere MQ client
causes the following SSL parameters to become fixed for subsequent connections
on this client process:
v sslKeyStore
v sslKeyStorePassword
v sslTrustStore
v sslTrustStorePassword
v sslFipsRequired
v sslLDAPCRLservers

The effect of varying these parameters on subsequent connections from this client
is undefined.

If you use .NET, the first SSL connection from a SOAP/WebSphere MQ client
causes the following SSL parameters to become fixed for subsequent connections
on this client process:
v sslKeyRepository
v sslCryptoHardware
v sslFipsRequired
v sslLDAPCRLservers

The effect of varying these parameters on subsequent connections from this client
is undefined. These parameters are reset if all SSL connections become inactive and
a new SSL connection is subsequently made.

The following properties can also be specified as system properties:
v sslKeyStore
v sslKeyStorePassword
v sslTrustStore
v sslTrustStorePassword

If they are specified both as system properties and in the URI, and the values
differ, the deployment utility displays a warning and the URI values take
precedence.

SSL-related options in the URI

The SSL options provided are:

sslKeyRepository=KeyRepository
For SSL enabled client connections, this specifies the location of the SSL key
repository in which SSL keys and certificates are stored. This is specified in
″stem″ format, that is, a full path with file name but with the file extension

46 WebSphere MQ: Web Services

omitted. The effect is the same as setting the KeyRepository field in the
MQSCO structure on an MQCONNX call (see WebSphere MQ Application
Programming Reference for details).

This property applies to the .NET client environment only and is mandatory if
sslCipherSpec is set. It is ignored in the Java environment or if sslCipherSpec is
null.

sslCipherSpec=CipherSpec
For SSL enabled client connection, this specifies the SSL CipherSpec used on
the channel. For more information about CipherSpecs, including a list of the
CipherSpecs that can be used with WebSphere MQ SSL support, see
WebSphere MQ Security.

This property applies to the .NET client environment only and is mandatory if
SSL is being used. It is ignored in the Java environment.

sslCipherSuite=CipherSuite
For SSL enabled client connection, this specifies the SSL CipherSuite used on
the channel. For more information about CipherSuites including a list of
CipherSuites that can be used with WebSphere MQ SSL support, see
WebSphere MQ Using Java.

This property applies to the Java client environment only and is mandatory in
if SSL is being used. It is ignored in the .NET environment.

sslPeerName=PeerName
For SSL enabled client connections, this specifies an SSL peer name. The format
of an SSL peer name is described in WebSphere MQ Script (MQSC) Command
Reference.

This property is ignored if sslCipherSpec (for .NET) or sslCipherSuite (for Java)
is null.

sslKeyResetCount=bytecount
For SSL enabled client connections, this specifies the number of bytes passed
across an SSL channel before the SSL secret key must be renegotiated. To
disable the renegotiation of SSL keys the field can either be omitted or set to 0.
The effect is the same as setting the KeyResetCount field in the MQSCO
structure on an MQCONNX call (see WebSphere MQ Application
Programming Reference for details).

This property is ignored if sslCipherSpec (for .NET) or sslCipherSuite (for Java)
is null.

This property should not be used in certain Java environments, see WebSphere
MQ Using Java for details.

sslCryptoHardware=cryptographic hardware details
For SSL enabled client connections, this specifies details relating to the
cryptographic hardware to be used. The possible values for this field, and the
effect of setting it, are the same as for the CryptoHardware field of the
MQSCO structure on an MQCONNX call (see WebSphere MQ Application
Programming Reference for details).

This property applies to the .NET environment only. It is ignored in the Java
environment or if sslCipherSpec is null.

sslFipsRequired=YES|NO
For SSL enabled client connections, this specifies whether the CipherSpecs or
CipherSuites requested must use FIPS-certified cryptography in WebSphere
MQ. The default value is NO. The effect of setting this field is the same as

Chapter 1. WebSphere MQ transport for SOAP 47

setting the FipsRequired field of the MQSCO structure on an MQCONNX call
(see WebSphere MQ Application Programming Reference for details).

This property is ignored if sslCipherSpec (for .NET) or sslCipherSuite (for Java)
is null.

sslKeyStore=key store name
For SSL enabled client connections, this specifies the JSSE key store.

This property applies to the Java environment only. It is ignored in the .NET
environment or if sslCipherSuite is null. For information about keystores, see
WebSphere MQ Using Java.

sslKeyStorePassword=password
For SSL enabled client connections, this specifies the password for the JSSE key
store.

This property applies to the Java environment only. It is ignored in the .NET
environment or if sslCipherSuite is null. For information about keystores, see
WebSphere MQ Using Java.

sslLDAPCRLServers=LDAP server list
For SSL enabled client connections, this specifies a list of LDAP servers to be
used for Certificate Revocation List checking This string must consist of a
sequence of space-delimited LDAP URIs of the form ldap://host[:port]. If no
port is specified, the LDAP default of 389 is assumed. The certificate provided
by the queue manager is checked against one of the listed LDAP CRL servers;
if found, the connection fails. Each LDAP server is tried in turn until
connectivity is established to one of them. If it is impossible to connect to any
of those specified, the certificate is rejected. Once a connection has been
successfully established to one of them, the certificate is accepted or rejected
depending on the CRLs present on that LDAP server. If sslLDAPCRLServers is
set to null (the default), the queue manager’s certificate is not checked against
a Certificate Revocation List. An error message is displayed if the supplied list
of LDAP URIs is not valid. The effect of setting this field is the same as that of
including MQAIR records and accessing them from an MQSCO structure on an
MQCONNX call (see WebSphere MQ Application Programming Reference).

This property is ignored if sslCipherSpec (for .NET) or sslCipherSuite (for Java)
is null.

sslTrustStore
For SSL enabled client connections, this specifies the JSSE trust store.

This property applies to the Java environment only. It is ignored in the .NET
environment or if sslCipherSuite is null. For information about truststores, see
WebSphere MQ Using Java.

sslTrustStorePassword
For SSL enabled client connections, this specifies the password for the JSSE
trust store.

This property applies to the Java environment only. It is ignored in the .NET
environment or if sslCipherSuite is null. For information about truststores, see
WebSphere MQ Using Java.

48 WebSphere MQ: Web Services

Transactional processing

SOAP/WebSphere MQ can be used to transport messages in the context of Web
Services transactions. However, you must ensure that if you send messages using
SOAP/WebSphere MQ within a Web Services transaction they do not attempt to
use local one-phase transactions.

The only transaction coordinator supported for Axis services is WebSphere MQ
Java classes and the only transaction coordinator supported for .NET services. is
.NET MTS.

Java and .NET clients

WebSphere MQ transport for SOAP does not provide transactional support for
clients. SupportPac™ MA0V, available from http://www-306.ibm.com/software/
integration/support/supportpacs/, enables asynchronous processing, which in
turn enables transactional support.

Java and .NET listeners

Transactionality at the listener is independent of that at the client. The listener
provides support for transactionality in the WebSphere MQ Version 7.0 product
and does not depend on SupportPac MA0V for this, whereas to use a client
transactionally the SupportPac will be required

Use the -x option in the deployment utility to specify the level of transactional
control to be used by the listener (one phase, two phase or none). See the
description of the -x option in “The deployment utility” on page 23 for full details.

Asynchronous messaging

What is asynchronous messaging?

As used in WebSphere MQ, the term ″asynchronous messaging″ means a method
of communication between programs in which a program places a message on a
message queue, then proceeds with its own processing without waiting for a reply
to its message. This contrasts with synchronous messaging, in which a program
places a message on a message queue and then waits for a reply to its message
before resuming its own processing.

In the context of WebSphere MQ transport for SOAP, long term asynchrony refers
to the ability of a client to invoke a service request from one process and then
retrieve the response from the service in a different process. Such a facility might
be required where it is not practical or efficient to prolong the lifetime of a client
until the response is received. Some services might not be designed to return a
response immediately but might return a set of responses at some future point.
Other services might be able to process the request immediately but might then be
unable to return the response owing to unstable network connections. For both
these situations, the ability to decouple the processing of the client’s request and
response across separate processes is a valuable option.

In the Microsoft .NET Environment, short term asynchrony means asynchronous
operation within the context of a single client process.

Chapter 1. WebSphere MQ transport for SOAP 49

Short-term asynchronous messaging

Short-term asynchronous messaging is available in the .NET environment using
Microsoft’s proprietary .NET asynchronous interface. The request must be
submitted by and the response returned to the same process. For details, consult
the relevant Microsoft documentation. Short-term asynchrony is not available in
the Axis environment.

.NET short-term asynchronous messaging is supported in WebSphere MQ
transport for SOAP but no samples are provided.

Long-term asynchronous messaging using the MA0V
SupportPac

Long-term asynchronous messaging is not supported in the WebSphere MQ
transport for SOAP software supplied with WebSphere MQ. A SupportPac, MA0V
″Asynchronous support in the WebSphere MQ transport for SOAP″, is available
from the IBM Web site. That SupportPac contains a version of this manual that
includes details of asynchronous processing support.

Apache software license

50 WebSphere MQ: Web Services

|

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

″License″ shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

″Licensor″ shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

″Legal Entity″ shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
″control″ means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

″You″ (or ″Your″) shall mean an individual or Legal Entity
exercising permissions granted by this License.

″Source″ form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

″Object″ form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

″Work″ shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

″Derivative Works″ shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

″Contribution″ shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, ″submitted″
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as ″Not a Contribution.″

″Contributor″ shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
thi Li h C t ib t h b t t Y t l

Chapter 1. WebSphere MQ transport for SOAP 51

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

52 WebSphere MQ: Web Services

Chapter 2. WebSphere MQ Bridge for HTTP

This collection of topics describes the WebSphere MQ Bridge for HTTP, which
enables client applications to exchange messages with WebSphere MQ from any
platform or language with HTTP capabilities without the need for a WebSphere
MQ client.

Introduction to WebSphere MQ Bridge for HTTP

This document is about the IBM WebSphere MQ Bridge for HTTP. This facility
enables client applications to exchange messages with WebSphere MQ from any
platform or language with HTTP capabilities without the need for a WebSphere
MQ client. The WebSphere MQ Bridge for HTTP is not suitable for use with
messages where guaranteed delivery is required.

Benefits

This facility will be of benefit to you if:
v you have environments that you want to connect to WebSphere MQ that are not

supported but that can build HTTP requests and handle responses.
v you have environments that you want to connect to WebSphere MQ, but that

have insufficient storage space to install a WebSphere MQ client.
v you have multiple systems that you want to connect to WebSphere MQ but it

would take too long to install the WebSphere MQ client on all of those systems.
v you want to access a WebSphere MQ infrastructure from a web-based

application.
v you want to enhance existing web-based applications, using asynchronous

techniques such as AJAX to enhance interactivity.

HTTP support can be used with both point-to-point and publish/subscribe
messaging topologies.

How does HTTP support work?

As figure one shows, the purpose of the WebSphere MQ Bridge for HTTP is to
receive HTTP requests from one or more clients, interact with WebSphere MQ on
their behalf and return HTTP responses to them.

The WebSphere MQ Bridge for HTTP consists of a J2EE servlet that is connected to
WebSphere MQ via a resource adapter. The HTTP servlet is capable of handling 3

HTTP
Client

WebSphere
MQ

WebSphere
MQ Bridge
for HTTP

J2EE 1.4
Application Server

Figure 5. Introduction to WebSphere MQ Bridge for HTTP

© Copyright IBM Corp. 2005, 2009 53

|
|
|
|
|

|

different types of HTTP requests; POST, GET and DELETE.

Table 1. WebSphere MQ Bridge for HTTP verbs

HTTP Request Result

POST Puts a message on a queue or topic.

GET Browses the first message on a queue. In
line with the HTTP protocol this does not
delete the message from the queue. This
verb cannot be used with publish/subscribe
messaging.

DELETE Browses and deletes a message from a
queue or topic.

More information about how to construct HTTP requests and handle HTTP
responses from the WebSphere MQ Bridge for HTTP, is given in Chapter 4.

Installation

The WebSphere MQ Bridge for HTTP is installable as part of the standard
WebSphere® MQ install mechanism.

On platforms other than z/OS, it is included as part of the ″Java Messaging and
Web Services″ install option in both the server and client installation CDs, and is
installed to mqmtop/java/lib/http.

On z/OS it is included as part of the WMQ USS Components feature and is
installed to PathPrefix/usr/lpp/mqm/V7R0M0/HTTPBridge/, where PathPrefix is
an optional customer defined prefix.

Samples

Samples are installed to the following directories. In each case, source code is
installed to the /src subdirectory.

Platform Location

Windows mqmtop/tools/http/samples

z/OS PathPrefix/usr/lpp/mqm/V7R0M0/http/
samples

i5/OS mqmtop/java/samples/http

All other platforms mqmtop/samp/http

What is installed
The WebSphere MQ Bridge for HTTP is supplied as a .war file, WMQHTTP.war.

Deploy the WMQHTTP.war file to your application server. For instructions about
how to do this refer to your application server’s documentation.

If you are not using WebSphere Application Sever with the MLP as your
WebSphere MQ JMS provider, you can use the WebSphere resource adapter as
your WebSphere MQ JMS provider. The WebSphere MQ resource adapter is
included in WebSphere MQ Version 6.0.2.1 or later. Refer to your application
server’s documentation for information about how to deploy the resource adapter.

54 WebSphere MQ: Web Services

||

You must have a JMS connection configured from your application server to
WebSphere MQ before you proceed to use the WebSphere MQ Bridge for HTTP.

Prerequisites

The WebSphere MQ Bridge for HTTP can be used with WebSphere MQ Version 7.
It is not necessary for WebSphere MQ to be installed on the same machine as the
WebSphere MQ Bridge for HTTP.

In order to make use of the WebSphere MQ Bridge for HTTP you will require
some additional software.

To use the WebSphere MQ Bridge for HTTP you will require:
v WebSphere Application Server Version 6.0.2.1 and later or WebSphere

Application Server Community Edition Version 1.1 or greater. You can use the
WebSphere MQ Bridge for HTTP with other J2EE 1.4 compliant application
servers, but these will not be supported.

v a WebSphere MQ JMS provider within your application server.
– If you are using WebSphere Application Server (WAS) Version 6 or earlier use

the WAS Message Listener Port (MLP) to integrate WebSphere MQ as the JMS
provider.

– If you are using an application server other than WAS, use the WebSphere
MQ resource adapter. This is included in WebSphere MQ Version 7.

Clients that use the WebSphere MQ Bridge for HTTP must be capable of creating
HTTP requests and receiving HTTP responses.

Security considerations
Client connection authority

Connections between HTTP clients and the application server should be secured at
the web container level. It is the responsibility of the administrator of the J2EE
application server to secure the WebSphere MQ Bridge for HTTP servlet using
standard HTTP server techniques. How you secure the connections is specific to
your application server, refer to your application server’s documentation for
information.

Resource adapter connection to WebSphere MQ

How you secure the connection between your resource adapter and WebSphere
MQ is dependent on your specific resource adapter, refer to your resource
adapter’s documentation for more information regarding security.

Consideration of what user authorizations are required to initially connect to the
WebSphere MQ system from the JMS provider is required.

The resource adapter will connect to WebSphere MQ using a single authorization
ID. The user ID used to connect the resource adapter to WebSphere MQ must have
the correct WebSphere MQ authorities. In addition, ensure that the user ID used to
connect your resource adapter to WebSphere MQ has appropriate authorities for
connecting to the relevant queues and topics. Ensure that this user ID does not
have unnecessary permissions on the queue manager you are connecting to.

Chapter 2. WebSphere MQ Bridge for HTTP 55

Configuring WebSphere MQ Bridge for HTTP
After installing the WebSphere MQ Bridge for HTTP and deploying
WMQHTTP.war to your application server, configure the WebSphere MQ Bridge
for HTTP so that it can implement diagnostic tracing and use your connection
factory.

The WebSphere MQ Bridge for HTTP has two sets of properties:
v Properties associated with diagnostic tracing. These properties are described in

“Configuring WebSphere MQ Bridge for HTTP to implement diagnostic tracing.”
v Properties associated with the resource adapter connection factory reference.

How to configure these properties is described in “Configuring WebSphere MQ
Bridge for HTTP to use your connection factory” on page 57.

Configuring WebSphere MQ Bridge for HTTP to implement
diagnostic tracing

A number of properties exist which are associated with diagnostic tracing in the
WebSphere MQ Bridge for HTTP.

Table 2 lists the properties of the WebSphere MQ Bridge for HTTP that are
associated with diagnostic tracing.

Table 2. Properties of the WebSphere MQ Bridge for HTTP that are associated with
diagnostic tracing

Name of property Type Default value Description

traceEnabled String false A flag to enable or disable diagnostic tracing.
If the value is false, tracing is turned off. If
the value is true, a trace is sent to the
location specified by the traceDestination
property.

traceDestination String System.err The location to where a diagnostic trace is
sent. If the value is System.out, the trace is
directed to the system output stream.

traceLevel String 3 The level of detail in a diagnostic trace. The
value can be in the range 0, which produces
no trace, to 10, which provides the most
detail. See Table 3 for a description of each
level.

Table 3 describes the levels of detail for diagnostic tracing.

Table 3. The levels of detail for diagnostic tracing

Level
number Level of detail

0 No trace.

1 The trace contains error messages.

3 The trace contains error and warning messages.

6 The trace contains error, warning, and information messages.

8 The trace contains error, warning, and information messages, and entry and exit
information for methods.

56 WebSphere MQ: Web Services

|

|
|
|
|

|

|
|

|
|
|

|

|

|
|

|
|

||
|

||||

||||
|
|
|
|

||||
|
|

||||
|
|
|
|
|

|

||

|
||

||

||

||

||

||
|

Table 3. The levels of detail for diagnostic tracing (continued)

Level
number Level of detail

9 The trace contains error, warning, and information messages, entry and exit
information for methods, and diagnostic data.

10 The trace contains all trace information.

Note: Any level that is not included in this table is equivalent to the next lowest level. For
example, specifying a trace level of 4 is equivalent to specifying a trace level of 3.
However, the levels that are not included might be used in future releases of the
WebSphere MQ Bridge for HTTP, so it is good practice to avoid using these levels.

If diagnostic tracing is turned off, error and warning messages are written to the
system error stream. If diagnostic tracing is turned on, error messages are written
to the system error stream and to the trace destination, but warning messages are
written only to the trace destination. However, the trace contains warning
messages only if the trace level is 3 or higher.

Configuring WebSphere MQ Bridge for HTTP to use your
connection factory

You can configure WebSphere MQ Bridge for HTTP to communicate with
WebSphere MQ by specifying the connection factory you want to use.

Before you begin

After installing the WebSphere MQ Bridge for HTTP and deploying
WMQHTTP.war to your application server, configure the WebSphere MQ Bridge
for HTTP to use your connection factory.

About this task

To enable the WebSphere MQ Bridge for HTTP to communicate with WebSphere
MQ, configure your application server by specifying the connection factory you
want to use.

If you are using the WebSphere MQ resource adapter as your WebSphere MQ JMS
provider with WebSphere Application Server Community Edition, complete the
following steps:
1. Locate and open your deployment plan. The deployment plan you use to

deploy your resource adapter will be specific to the application server you are
using.

2. Define a resource called jms/WMQHTTPJCAConnectionFactory with a value of
the name of your ConnectionFactory object. Ensure that your
ConnectionFactory is configured with the name of the WebSphere MQ queue
manager that you want to connect to, if a user ID is required to access that
queue manager ensure that this is configured on your ConnectionFactory.

What to do next

If you are using WebSphere Application Server MLP with WebSphere Application
Server, complete the following step:
1. Using the WebSphere Application Server admin console, create a

ConnectionFactory object called jms/WMQHTTPJCAConnectionFactory. For

Chapter 2. WebSphere MQ Bridge for HTTP 57

|

|
||

||
|

||

|
|
|
|
|

|
|
|
|
|

|

|

|
|

|

|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|

|
|

|
|

information about how to do this refer to the WebSphere Application Server
information center, http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/
index.jsp?/topic=/com.ibm.websphere.express.doc/info/exp/ae/tmm_ep.html.

If a connection factory called jms/WMQHTTPJCAConnectionFactory does not exist
when the Servlet is invoked for the first time (when it receives the first HTTP
request), an MQHTTP00002 error will occur and will be logged in you application
server error log.

To confirm that the WebSphere MQ Bridge for HTTP in installed and configured
correctly, in a web-browser navigate to http://hostname:port/context_root/msg/
queue/myqueue, where myqueue is an empty WebSphere MQ queue. HTTP error
504 ’Message retrieval timed out’ will be displayed in the browser window if the
WebSphere MQ Bridge for HTTP and JMS resource adapter are configured
correctly.

Constructing HTTP requests and handling HTTP responses

The purpose of the WebSphere MQ Bridge for HTTP is to receive HTTP requests
from clients, interact with WebSphere MQ as instructed in those requests and to
return HTTP responses to the client. This section of the documentation explains the
format of the messages, the information they must contain, and the operations the
WebSphere MQ Bridge for HTTP enables you to perform.

Overview of the WebSphere MQ Bridge for HTTP
Some examples of HTTP response and request messages are included in this
section to help illustrate the interaction between the HTTP client and WebSphere
MQ.

HTTP POST

To put a message to a queue, the client creates an HTTP request. This can be done
using an HTTP client tool, for example, AJAX or Java HTTP libraries.

The figure below shows an HTTP request to put a message on a queue called
myQueue. This request contains the HTTP header x-msg-correlId to set the
correlation ID of the WebSphere MQ message.

The figure below shows the response sent back to the client. Note that there is no
response content.

POST /msg/queue/myQueue/ HTTP/1.1
Host: www.mqhttpsample.com
Content-Type: text/plain
x-msg-correlID: 1234567890
Content-Length: 50

Here's my message body that will appear on the queue.

Figure 6. Simple example of a HTTP POST request to a queue

58 WebSphere MQ: Web Services

|
|
|

|
|
|
|

|
|
|
|
|
|

HTTP DELETE

To delete a message from a queue the client creates an HTTP request. This can be
done using an HTTP client tool, for example, AJAX or Java HTTP libraries.

The figure below shows an HTTP request to delete the next message on queue
called myQueue. When deleting a message, the message body is sent to the client in
the response and in WebSphere MQ terms is a destructive get. This example
request contains the HTTP header x-msg-wait to instruct the server how long to
wait for a message to arrive on the queue, and the x-msg-require-headers header to
specify that the client wants to receive the message correlation ID in the response.

The figure below shows the response sent back to the client. The correlation ID is
returned to the client as requested in the require-headers header of the request.

HTTP GET

To get a message from a queue, the client creates an HTTP request. This can be
done using an HTTP client tool, for example, AJAX or Java HTTP libraries. After a
message has been got from a queue it will remain on the queue, in WebSphere MQ
terms this operation is a browse.

The figure below shows an HTTP request for the next message on queue called
myQueue. This request contains the HTTP headers x-msg-wait to instruct the server
how long to wait for a message to arrive on the queue and the
x-msg-require-headers to specify that the clients wants to receive the message
correlation ID in the response.

HTTP/1.1 200 OK
Date: Wed, 2 Jan 2007 22:38:34 GMT
Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1
Content-Length: 0

Figure 7. Simple example of a HTTP POST response (the POST is to a queue)

DELETE /msg/queue/myQueue/ HTTP/1.1
Host: www.mqhttpsample.com
x-msg-wait: 10
x-msg-require-headers: correlID

Figure 8. Simple example of a HTTP DELETE request to a queue

HTTP/1.1 200 OK
Date: Wed, 2 Jan 2007 22:38:34 GMT
Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1
Content-Length: 50
Content-Type: text/plain; charset=utf-8
x-msg-correlId: 1234567890

Here's my message body that will appear on the queue.

Figure 9. Simple example of a HTTP DELETE response (the DELETE is to a queue)

Chapter 2. WebSphere MQ Bridge for HTTP 59

The figure below shows the response sent back to the client. The correlation ID is
returned to the client as requested in the require-headers head of the request.

The examples above POST, GET and DELETE messages to and from WebSphere
MQ queues. You can also POST and DELETE messages to and from topics by
changing the /msg/queue/myQueue/ URI in the request to /msg/topic/
myTopic/.

GET is not supported for use with publish/subscribe messaging.

For more information about HTTP verbs see section “WebSphere MQ Bridge for
HTTP verbs” on page 61.

URI Format

The IBM WebSphere MQ Bridge for HTTP is deployed within a J2EE server using
a context-root that you define when you deploy the Servlet to your application
server. The bridge is configured such that all requests to the following URIs are
handled by the bridge.
v For point to point messaging context_root/msg/queue where context_root is as

defined in your deployment plan.
v For pub/sub messaging context_root/msg/topic where context_root is as defined

in your deployment plan.

The URI format supported by WebSphere MQ Bridge for HTTP is as follows:
Wmq-http-iri = "http:" "//" connection-name "/" wmq-dest
connection-name = [tcp-connection-name]
tcp-connection-name = ihost [":" port]
wmq-dest = queue-dest / topic-dest
queue-dest = "msg/queue/" wmq-resource ["@" wmq-qmgr] "/"
topic-dest = "msg/topic/" wmq-resource "/"

Notes:
1. If a question mark (?) is used in a wmq-dest it must be substituted with ’%3f’,

for example, orange?topic should be specified as orange%3ftopic.
2. @wmq-qmgr is only valid on a POST.

GET /msg/queue/myQueue/ HTTP/1.1
Host: www.mqhttpsample.com
x-msg-wait: 10
x-msg-require-headers: correlID

Figure 10. Simple example of a HTTP GET request to a queue

HTTP/1.1 200 OK
Date: Wed, 2 Jan 2007 22:38:34 GMT
Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1
Content-Length: 50
Content-Type: text/plain; charset=utf-8
x-msg-correlId: 1234567890

Here's my message body that will appear on the queue.

Figure 11. Simple example of a HTTP GET response (the GET is to a queue)

60 WebSphere MQ: Web Services

WebSphere MQ Bridge for HTTP verbs

The three verbs that you can use in HTTP requests that are sent to the WebSphere
MQ Bridge for HTTP are:
v POST
v GET
v DELETE

Throughout this section there are references to the WebSphere MQ Bridge for
HTTP headers, for more information about these see “HTTP headers” on page 63.

HTTP POST
Description

Using the HTTP POST operation you can put a message onto a WebSphere MQ
queue or topic. The WebSphere MQ Bridge for HTTP will put messages to queues
and topics as WebSphere MQ messages, as a result of this, they do not have a
RFH2 folder.

You can use HTTP headers in your HTTP POST request to set the properties of the
message that is put to WebSphere MQ. You can also use the require-headers header
to specify what information about the WebSphere MQ message you would like to
receive as headers in the response message.

If the HTTP POST request is successful, the entity of the response message will be
empty and the content-length of the response will be set to zero. The status code of
the HTTP response will be ’200 OK’.

In the case of an unsuccessful request, the response will contain a WebSphere MQ
Bridge for HTTP error message and the status code of the HTTP response will be
one of those documented in the “HTTP Return codes” on page 78 section. The
WebSphere MQ message will not be put to the queue or topic.

Supported headers

The following headers can be specified in an HTTP POST request:
v class
v correlId
v encoding
v expiry
v format
v persistence
v priority
v replyTo
v usr

For more information about headers see “HTTP headers” on page 63.

HTTP GET
Description

Using the HTTP GET operation you can browse the next message from a
WebSphere MQ queue. HTTP GET is not supported for use with topics. A response

Chapter 2. WebSphere MQ Bridge for HTTP 61

message will be sent back to the client. The entity of the response message will
contain the data from the WebSphere MQ message. The WebSphere MQ message
will remain on the queue.

You can use HTTP headers in your HTTP GET request as follows:
v you can use the require-headers header to specify what information about the

WebSphere MQ message you would like to receive as headers in the response
message.

v you can use the correlID header, msgID header or both to determine which
message you browse from the queue.

v you can use the wait header to determine how long you will wait for a message
to arrive on the queue.

v you can use the x-msg-range header to specify the range of data in the message
that should be returned in the response.

If the HTTP GET request is successful, the entity of the response message will
contain the data of the message retrieved from the WebSphere MQ queue (see
supported message types for more information), and the HTTP content-length
headers will be set to the number of bytes in the entity body. The status code of
the HTTP response will be ’200 OK’. If x-msg-range has been specified to be 0, or
0-0, then the status code of the HTTP response will be ’204 No Content’.

In the case of an unsuccessful request, the response will contain a WebSphere MQ
Bridge for HTTP error message and the status code of the HTTP response will be
one of those documented in the error codes section.

Supported headers

The following headers can be specified in a HTTP GET request:
v correlId
v msgId
v range
v require-headers
v wait

For more information about headers see “HTTP headers” on page 63.

HTTP DELETE
Description

Using the HTTP DELETE operation you can get a message from a WebSphere MQ
queue or topic. This message will be removed from the queue or topic (if the
message is on a topic is a retained message, it will remain on the topic). A
response message will be sent back to the client including information about the
message.

You can use HTTP headers in your HTTP DELETE request as follows:
v you can use the require-headers header to specify what information about the

WebSphere MQ message you would like to receive as headers in the response
message.

v you can use the correlID header, msgID header, or both to determine which
message you get from the queue or topic.

62 WebSphere MQ: Web Services

v you can use the wait header to determine how long you will wait for a message
to arrive on the queue or topic.

v you can use the x-msg-range header to specify the range of data in the message
that should be returned in the response.

If the HTTP DELETE request is successful, the entity of the response message will
contain the data of the message retrieved from the WebSphere MQ queue or topic
(see “Supported message types” on page 74 for more information) and the HTTP
content-length headers will be set to the number of bytes in the entity body. The
status code of the HTTP response will be ’200 OK’. If x-msg-range has been
specified to be 0, or 0-0, then the status code of the HTTP response will be ’204 No
Content’.

In the case of an unsuccessful request, the response will contain a WebSphere MQ
Bridge for HTTP error message and the status code of the HTTP response will be
one of those documented in the “HTTP Return codes” on page 78 section.

Supported headers

The following headers can be specified in a HTTP DELETE request:
v correlId
v msgId
v range
v require-headers
v wait

For more information about headers see section “HTTP headers.”

HTTP headers
The WebSphere MQ Bridge for HTTP supports some custom HTTP headers to use
with the WebSphere MQ Bridge for HTTP. HTTP practice is to prefix all custom
headers with ’x-’, the WebSphere MQ Bridge for HTTP headers are prefixed with
’x-msg-’. For example, to set the priority header use x-msg-priority.

Limitations exist regarding the use of some HTTP headers, see “Limitations” on
page 77 for more information.

Note:

v All header value literals are case-sensitive. For example, when using the msgId
header, ″NONE″ is recognized as a special case whereas ″none″ would be taken
as a normal msgID.

v HTTP practice is to ignore unrecognized headers. Therefore, a misspelled header
will not cause an error, the header will simply be ignored.

The custom HTTP headers are grouped into entity headers and request headers.

Some standard HTTP headers are also supported for use with the HTTP Bridge in
order to supply more information about the origin of messages.

Entity headers

Entity-header fields define information about the entity-body or, if no body is
present, about the resource identified by the request.

Chapter 2. WebSphere MQ Bridge for HTTP 63

Table 4. Headers that are supported in HTTP request messages

HTTP Header Valid on a POST Valid on a DELETE/GET

x-msg-class X

x-msg-correlId X X

x-msg-encoding X

x-msg-expiry X

x-msg-format X

x-msg-msgId X X

x-msg-persistence X

x-msg-priority X

x-msg-replyTo X

x-msg-usr X

The following table shows all the headers that can be received as headers in a
response message when specified in the require-headers request header.

Table 5. Headers that can be received in response messages

HTTP Header Valid on a DELETE/GET/POST

x-msg-class X

x-msg-correlId X

x-msg-encoding X

x-msg-expiry X

x-msg-format X

x-msg-msgId X

x-msg-persistence X

x-msg-priority X

x-msg-replyTo X

x-msg-timestamp X

x-msg-usr X

class

HTTP header name: x-msg-class

Description: v When set on an HTTP POST request, this header specifies the
message type of the message that is put to the destination.

v When requested in the require-headers request header, this header
indicates the message type that was retrieved from the destination.

Allowed values:
BYTES

MAP

STREAM

TEXT

Default value: BYTES

64 WebSphere MQ: Web Services

|

Notes®: 1. Specifying the class header on a GET or DELETE will return a
400 Bad Request with entity body of: MQHTTP40007.

2. If an invalid value is specified for this header a MQHTTP 40005
message will be returned.

3. If the x-msg-class header is not specified and the content-type of
the message is application/x-www-form-urlencoded, the data will
be assumed to be a map object.

correlId

HTTP header name: x-msg-correlId

Description: v When requested in the require-headers request header, this header
holds the value of the correlation ID of the message POSTED to or
GOT/DELETED from the queue or topic.

v When set on an HTTP POST request, this header can be used to
specify the correlation ID of the message put to the queue or topic.

v When set on an HTTP GET/DELETE request, this header can be
used to select the message you wish to receive from the queue or
topic. If a message with a matching correlation ID exists on the
queue or topic, this message will be retrieved and sent in the
HTTP response. If no message exists with the specified correlation
ID, an HTTP 504 Gateway Timeout response will be returned. This
header can be used in conjunction with msgID to select a message
from a queue or topic that matches both selectors.

Allowed values:
A string value

For example, x-msg-correlId: mycorrelationid

Quoted strings are permitted, for example x-msg-correlId:
″my id″

A hex value prefixed with ″0x:″
For example, x-msg-correlId: 0x:43c1d23a

Default value: Not applicable

Notes: Specifying the correlId header without a value on an HTTP
GET/DELETE request (e.g. ″x-msg-correlId:″), will return the next
message on the queue or topic regardless of its correlation ID.

encoding

HTTP header name: x-msg-encoding

Description: v When requested in the require-headers request header, this header
holds the value of the encoding of the message POSTED to or
GOT/DELETED from the queue or topic.

v When set on an HTTP POST request, this header can be used to
specify the encoding of the message put to the queue or topic.

v When set on an HTTP GET/DELETE request, this header will be
ignored.

Chapter 2. WebSphere MQ Bridge for HTTP 65

Allowed values: A comma separated list of the following values:
DECIMAL_NORMAL
DECIMAL_REVERSED
FLOAT_IEEE_NORMAL
FLOAT_IEEE_REVERSED
FLOAT_S390
INTEGER_NORMAL
INTEGER_REVERSED

For example, x-msg-encoding:
INTEGER_NORMAL,DECIMAL_NORMAL,FLOAT_IEEE_NORMAL

Default value: DECIMAL_NORMAL, FLOAT_IEEE_NORMAL,
INTEGER_NORMAL

Notes: 1. The value is case-sensitive.

expiry

HTTP header name: x-msg-expiry

Description: v When requested in the require-headers request header, this header
contains the time before expiry in milliseconds of the message
POSTED to, or GOT/DELETED from the queue or topic.

v When set on an HTTP POST request, this header specifies a period
of time in milliseconds, after which the message becomes eligible
to be discarded if it has not been removed from the destination
queue or topic.

v When set on an HTTP GET/DELETE request, this header will be
ignored.

This field maps to the Expiry field in the MQMD.

Allowed values:
UNLIMITED

For example, x-msg-expiry: UNLIMITED

The string representation of a signed integer >0 indicating the
period in milliseconds the message is valid for.

For example. x-msg-expiry: 10000

Default value: UNLIMITED

Notes: 1. ″UNLIMITED″ specifies that the message will never expire.

2. The expiry of a message starts from the time the message arrives
on the queue, as a result network latency is ignored.

3. The maximum value is limited by WebSphere MQ to
214748364700 milliseconds. If a value greater than this is specified
then the maximum possible expiry time is assumed.

format

HTTP header name: x-msg-format

66 WebSphere MQ: Web Services

Description: v When requested in the require-headers request header, this header
contains the format of the message POSTED to or GOT/DELETED
from the queue or topic.

v When set on an HTTP POST request, this header can be used to
specify the format of the message put to the queue or topic.

v When set on an HTTP GET/DELETE request, this header will be
ignored.

Allowed values:
NONE For example, x-msg-format: NONE

Any user defined value of up to 8 characters
For example, x-msg-format: myformat

Default: Not applicable

Notes: 1. ″NONE″ is case-sensitive, and indicates that the message format
is blank.

2. The value of this header will be used even if it contradicts the
specified media-type of the HTTP request. For more information
about media-types see “Supported message types” on page 74.

msgId

HTTP header name: x-msg-msgId

Description: v When requested in the require-headers request header, this header
holds the message ID of the message POSTED to or
GOT/DELETED from the queue or topic.

v When set on an HTTP POST request, this header will be ignored.

v When set on an HTTP GET/DELETE request, this header can be
used to select the message you wish to receive from the queue or
topic. If a message with a matching message ID exists on the
queue or topic, this message will be retrieved and sent in the
HTTP response. If no message exists with the specified message
ID, an HTTP 504 Gateway Timeout response will be returned. This
header can be used in conjunction with correlID to select a
message from a queue or topic that matches both selectors.

Allowed values:
a string value

For example, x-msg-msgId: mymessageid

Quoted strings are permitted, for example
x-msg-correlId:″my id″

a hex value prefixed with ″0x:″
For example, x-msg-msgId: 0x:43c1d23a

Default: Not applicable

Notes: 1. Horizontal whitespace is allowed after the ″0x:″ prefix.

persistence

HTTP header name: x-msg-persistence

Chapter 2. WebSphere MQ Bridge for HTTP 67

|

Description: v When requested in the require-headers request header, this header
holds the persistence of the message POSTED to or
GOT/DELETED from the queue or topic.

v When set on an HTTP POST request this header can be used to
specify the persistence of the message put to the queue or topic.

v When set on an HTTP GET/DELETE request this header will be
ignored.

Allowed values:
NON_PERSISTENT

The message does not usually survive system failures or
queue manager restarts. This applies even if an intact copy
of the message is found on auxiliary storage when the
queue manager restarts.

For example, x-msg-persistence: NON_PERSISTENT

PERSISTENT
The message survives system failures and restarts of the
queue manager.

For example, x-msg-persistence: PERSISTENT

AS_DESTINATION
Applies to POST only.

Use the default persistence of the destination as determined
by the message provider.

Default: NON_PERSISTENT

Notes: 1. Both literals are case-sensitive.

priority

HTTP header name: x-msg-priority

Description: v When requested in the require-headers request header, this header
holds the priority of the message POSTED to or GOT/DELETED
from the queue or topic.

v When set on an HTTP POST request, this header can be used to
specify the priority of the message put to the queue or topic.

v When set on an HTTP GET/DELETE request, this header will be
ignored.

Allowed values:
LOW For example, x-msg-priority: LOW

MEDIUM
This priority is equal to a WebSphere MQ priority level of 4.
For example, x-msg-priority: MEDIUM

HIGH For example, x-msg-priority: HIGH

A string representation of an integer between O and 9 (inclusive)
For example, x-msg-priority: 3

AS_DESTINATION
Applies to POST only.

Use the default priority of the destination as determined by
the message provider.

Default: MEDIUM

Notes: 1. 0 represents a low priority, 9 represents a high priority.

68 WebSphere MQ: Web Services

|
|

|
|

|
|

|
|

replyTo

HTTP header name: x-msg-replyTo

Description: v When requested in the require-headers request header, this header
holds the replyTo destination of the message POSTED to or
GOT/DELETED from the queue or topic.

v When set on an HTTP GET/DELETE request, this header will be
ignored.

v When set on a HTTP POST request this header can be used to
specify the replyTo destination of the message put to the queue or
topic.

Allowed values: A point-to-point URI as defined in the URI format section of this
document.

For example, x-msg-replyTo: /msg/queue/myReplyQueue
or x-msg-replyTo:
/msg/queue/myReplyQueue@myReplyQueueManager

Default: Not applicable

Notes: If replyTo is requested on a HTTP POST using the require-headers
header, the URI in the HTTP response can include the name of the
queue manager to which the WebSphere MQ Bridge for HTTP is
connected.

timestamp

HTTP header name: x-msg-timestamp

Description: v When requested in the require-headers request header, this header
holds the timestamp of the message POSTED to or
GOT/DELETED from the queue or topic.

v When set on an HTTP POST request, this header will be ignored.

v When set on an HTTP GET/DELETE request, this header will be
ignored.

Allowed values: A date in the format; day, date month year time time-zone (for
example, Sun, 06 Nov 1994 08:49:37 GMT), as defined by RFC 822,
and updated in RFC 1123.

Default: Not applicable

Notes: 1. The timestamp header cannot be specified in an HTTP request.

usr

HTTP header name: x-msg-usr

Description: The usr header can be used to send and receive user properties.

v When set on an HTTP POST request, this header sets the user
defined message property and the value of that property.

v When requested in the require-headers request header, this header
retrieves the value of the specified user defined property or
properties.

Chapter 2. WebSphere MQ Bridge for HTTP 69

Allowed values: The Using user defined properties with the WebSphere MQ
Bridge for HTTP section below details the values and
properties allowed for usr.

For example:
x-msg-usr: myCustomPropery;5;i1
x-msg-usr: myCustomProperty1;5;i1,
myCustomProperty2;″My String″;string

Default: Not applicable

Notes Multiple properties can be set on a message, either by specifying
multiple comma separated properties in a single usr header, or by
using two or more separate instances of the usr header.

To request a specific property to be returned in the response to a
GET or DELETE request, specify the name of the property in the
require-headers header of the request, using the prefix usr-. For
example: x-msg-require-headers: usr-myCustomProperty

Alternatively, to request that all user properties are returned in a
response, use the ALL-USR constant. For example:
x-msg-require-headers: ALL-USR

Using user defined properties with the WebSphere MQ Bridge for HTTP:

The usr message entity header can be used to send and receive user defined
properties.

Use the user header to set a property as follows:
usr-property-value = property-name “;” usr-value “;” usr-type
property-name = string
usr-type = “boolean” / “i1” / “i2” / “i4” / “i8” / ”r4” / “r8” / “string”
usr-value = boolean / i1 / i2 / i4 / i8 / r4 / r8 / string
boolean = “TRUE” / “FALSE”
i1 = <in the range -128 to 127 inclusive>
i2 = <in the range -32768 to 32767 inclusive>
i4 = <in the range -2147483648 to 2147483647>
i8 = <in the range -9223372036854775808 to 92233720368547750807>
r4 = <in the range 1.4E-45 to 3.4028235E38 inclusive>
r8 = <in the range 4.9E-324 to 1.7976931348623157E308 inclusive>
string = quoted-string

Request headers

The request header fields allow the client to pass additional information about the
request to the server. These fields act as request modifiers.

Table 6. Headers that are supported in HTTP request messages

HTTP Header Valid on a POST Valid on a DELETE/GET

x-msg-range X

x-msg-require-headers X X

x-msg-wait X

Note: The request headers cannot be received as headers in an HTTP response
message.

70 WebSphere MQ: Web Services

range

HTTP header name: x-msg-range

Description: When set on an HTTP GET/DELETE request, this header can be
used to specify a range of bytes in the message that you want to be
returned in the HTTP response message.

The range of bytes is returned in the response message in the the
response message in the content-range header.

Allowed values: Inclusive range in the format n [“-“ m] where n and m are signed
integer values and n <= m.

n Returns the first n bytes of the message (inclusive). Where n
is a signed integer.

If you specify a value of 0, the response is returned as an
“HTTP 204 – No Content” response code.

n ″-″ m Returns a range of bytes from the message content, from n
bytes to m bytes inclusive. Where n and m are signed
integer values and n is less than m.

ALL The whole of the message content is returned in the
response message.

For example, if x-msg-range: 0-60 is used in a request for a message
containing 100 bytes, the content-range header will hold the string
’0-60/100’

Default: ALL

Notes: v If no data is requested, using “x-msg-range: 0” or ″x-msg-range:
0-0″, the response will be returned as an “HTTP 204 – No Content”
response.

v If an invalid range is specified, for example, if n is greater than m
or the syntax is incorrect, then a 400 Bad Request error will be
returned with entity body MQHTTP40005.

v If this header is specified on anything but a GET or DELETE
request on a queue or topic, then a 400 Bad Request will be
returned with entity body MQHTTP40007.

v If a valid range is specified on a GET or DELETE request, the
response will contain an HTTP 1.1 Content-Range header as
specified in the HTTP 1.1 specification.

require-headers

HTTP header name: x-msg-require-headers

Description: When set on an HTTP POST/GET/DELETE request, this header can
be used to specify which of the entity headers should be included in
the HTTP response message.

Chapter 2. WebSphere MQ Bridge for HTTP 71

|
|

Allowed values: A comma separated list of the entity header names supported by this
feature.

ALL

ALL-USR

class

content-location

correlId

encoding

expiry

format

msgId

persistence

priority

replyTo

server

timestamp

usr-property name
For example, x-msg-require-headers: msgId
or x-msg-require-headers: expiry,correlId,timestamp
to request a specific property:
x-msg-require-headers: usr-myCustomProperty
to request all properties:
x-msg-require-headers: ALL-USR, ALL

Default: Not applicable

Notes: 1. The value of this header is case-insensitive, except in the cases of
the ALL and ALL-USR constants, and the property-name specified
in a request for a user property.

wait

HTTP header name: x-msg-wait

Description: v When set on an HTTP POST request, this header will be ignored.

v When set on an HTTP GET/DELETE request, this header can be
used to specify the period of time to wait for a message to arrive
on the queue or topic before returning an HTTP 504 Gateway
Timeout response.

Allowed values:
NO_WAIT

For example, x-msg-wait: NO_WAIT

The string representation of a signed integer >=0, indicating the
period in milliseconds that the WebSphere MQ Bridge for HTTP
should wait for an appropriate message to arrive on the queue or
topic. For example, x-msg-wait: 8

Default value: NO_WAIT

72 WebSphere MQ: Web Services

Notes: 1. ″NO_WAIT″ is case-sensitive.

2. The maximum wait time is 35000 unless the Servlet’s
maximum_wait_time parameter was changed when the Servlet
was deployed, see the“Installation” on page 54 section for more
information.

3. When the x-msg-wait header is set on an HTTP GET or HTTP
DELETE request, the header value is used unless it exceeds the
Servlet’s maximum wait time, in which case the Servlet’s
maximum_wait_time is used.

Standard HTTP headers
Some standard HTTP headers are supported for use with the WebSphere MQ
HTTP Bridge. These headers can be returned in response messages to supply
information about the message’s origins.

To receive one or more of the three standard HTTP headers in a response message,
specify one or more of the headers in the request message. The require-headers
header can be used to request the content-location and server headers, but
content-range will not be received unless x-msg-range is used.

For more information about the standard HTTP headers refer to the HTTP 1.1
Specification.

Content-Location

HTTP header name: Content-Location

Description: When requested in the require-headers header, the content-location
header supplies information about the resource location for the entity
enclosed in the message when that entity is accessible from a
location separate from the requested resource’s URI.

Returned value: URI in the format of /msg/queue/queuename or /msg/topic/topicname

Content-Range

HTTP header name: Content-range

Description: When x-msg-range is specified on a GET or DELETE request, the
range of bytes specified in the content-range header are in the
response.
For example, if x-msg-range: 0-60 is used in a request for a
message containing 100 bytes, the content-range header will hold
the string ’0-60/100’

Server

HTTP header name: server

Description: When requested in the require-headers header, the server header
supplies information about the server and the protocol the client is
connected to.

Returned value: WMQ-HTTP/1.1 JEE-Bridge/1.1

Chapter 2. WebSphere MQ Bridge for HTTP 73

Notes Where an implementation of the 1.1 WebSphere MQ Bridge for
HTTP protocol is deployed to an application server, the HTTP 1.1
specification requires that product details be appended to the server
response header in order of significance. For example, the WebSphere
MQ Bridge for HTTP deployed to JEE implementation deployed to a
WebSphere Application Server CE called Apache-Coyote would give
the response “Server: Apache-Coyote/1.1 WMQ-HTTP/1.1
JEE-Bridge/1.1”.

Supported message types

The WebSphere MQ Bridge for HTTP supports the following message types:
v Text
v Bytes
v Stream
v Map

HTTP POST

When using the POST command to send a message to a queue or topic, the
message type that arrives at the destination depends on the value of the
x-msg-class header and the content-type of the HTTP request.

The following table describes the mappings between these values and the message
type put to the queue or topic.

Table 7. Mapping content-type and x-msg-class to message types

x-msg-class Content-type
Message type on
queue/topic

BYTES v application/octet-stream

v application/xml

WebSphere MQ message
(MQFMT set to
MQC.MQFMT_NONE)

TEXT v text/* WebSphere MQ message
(MQFMT set to
MQC.MQFMT_STRING)

MAP v application/x-www-form-
urlencoded

v application/xml (optional)

JMSMap

STREAM v application/xml (optional) JMSStream

Note: If the x-msg-class header is set to BYTES or TEXT, and one or more user
properties have been set in the POST request using the x-msg-usr header, the
message type on the queue or topic will be JMSBytes or JMSText respectively, since
JMS RFH2 headers are used to store user properties.

All other content-types will be treated as binary messages, and the messages ill
appear on the queue with MQFMT set to MQC.MQFMT_NONE unless the
x-msg-format fils has been set in the request.

74 WebSphere MQ: Web Services

||

|

|
|
|

|||
|
|

||
|

|

|

|||

HTTP GET or DELETE

When using the GET or DELETE command to retrieve a message from a queue or
topic, the message type retrieved determines the value of the x-msg-class header
and the content-type of the HTTP response.

The following table describes the mappings between these values and the message
type retrieved from the queue or topic.

Table 8. Mapping message types to x-msg-class and content-type

Message type on
queue/topic x-msg-class (if requested)

Content-type (always
responded)

WebSphere MQ message
(MQFMT set to anything
other than
MQC.MQFMT_STRING)

BYTES v application/octet-stream

WebSphere MQ message
(MQFMT set to
MQC.MQFMT_STRING)

TEXT v text/plain

JMSBytes BYTES v application/octet-stream

JMSText TEXT v text/plain

JMSMap MAP v application/xml

JMSStream STREAM v application/xml

The message body of map and stream messages will be serialized to the client in
the HTTP entity as JMS serializes the message on a queue when mapping MQ
message to JMS formats. The formats are discussed in WebSphere MQ Using Java,
SC34-6478.

Map and Stream message formats

Map and Stream message types will be serialized back to the client in the HTTP
entity as JMS serializes the message on a queue when mapping MQ messages to
JMS formats.

In the Map message format, the XML name/type/value triplets are encoded as:
<map>
<elt name="elementname1" dt="datatype1">value1</elt>
<elt name="elementname2" dt="datatype2">value2</elt>
...
</map>

The stream is similar to a map message, but does not have element names:
<stream>
<elt dt="datatype1">value1</elt>
<elt dt="datatype2">value2</elt>
...
</stream>

Note: datatype is one of the data types listed the Using user defined properties
chapter. The default data type is string, and so the attribute dt="string" is
omitted for string elements.

Chapter 2. WebSphere MQ Bridge for HTTP 75

|
|
|
|

||

|
|
|

||

|||

|||

|||

|||

WebSphere MQ Bridge for HTTP Samples

This collection of topics documents the WebSphere MQ Bridge for HTTP samples.
These samples are available for use on the Windows operating system only. These
samples demonstrate potential uses of the WebSphere MQ Bridge for HTTP.

The samples simulate the WebSphere MQ AMQSPUT and AMQSGET sample
applications, and illustrate the following functions in a point-to-point messaging
environment:
v HTTPPOST - Generates HTTP POST requests in a Java application to put

messages to a WebSphere MQ queue, via the WebSphere MQ Bridge for HTTP
and handles HTTP responses.

v HTTPDELETE - Generates HTTP DELETE requests in a Java application to get
messages from a WebSphere MQ queue, via the WebSphere MQ Bridge for
HTTP and handles the HTTP responses containing the WebSphere MQ message.

WebSphere MQ Bridge for HTTP samples
The WebSphere MQ Bridge for HTTP samples are available for use on the
Windows operating system only. These samples demonstrate potential uses of the
WebSphere MQ Bridge for HTTP.

About this task

The samples simulate the WebSphere MQ AMQSPUT and AMQSGET sample
applications, and illustrate the following functions in a point-to-point messaging
environment:
v HTTPPOST - Generates HTTP POST requests in a Java application to put

messages to a WebSphere MQ queue, via the WebSphere MQ Bridge for HTTP
and handles HTTP responses.

v HTTPDELETE - Generates HTTP DELETE requests in a Java application to get
messages from a WebSphere MQ queue, via the WebSphere MQ Bridge for
HTTP and handles the HTTP responses containing the WebSphere MQ message.

To run the WebSphere MQ Bridge for HTTP console samples, complete the
following steps:
1. In a command prompt, navigate to mqmtop/samples_location. For information

about where samples are installed see “Installation” on page 54.
2. Run the HTTP POST sample by typing following in the command prompt: java

-classpath . HTTPPOST [queue-name] [host:port] [context-root] When the
HTTPPOST sample starts, the following will be displayed:
HTTP POST Sample start
Target server is 'host:port'
Target queue is 'your queue name'
Target context-root is 'your context-root'

3. In the command prompt type the text that you want to form your message
body.

4. Press enter to post the message to the WebSphere MQ queue.
5. If you want to send another message, input some more text, this will form the

message body of a second WebSphere MQ message and press enter.
6. To end the HTTP POST sample, press enter two times. When the HTTPPOST

sample ends, the following will be displayed:
HTTP POST Sample end

76 WebSphere MQ: Web Services

7. Run the HTTP DELETE sample by typing following in a command
prompt.java -classpath . HTTPDELETE [queue-name] [host:port]
[context-root] . When the HTTPDELETE sample starts, the following will be
displayed:
HTTP DELETE Sample start
Target server is 'host:port'
Target queue is 'your queue name'
Target context-root is 'your context-root'

The sample performs a destructive get of all of the message on the WebSphere
MQ queue. Following the text above will be a list of the messages on your
queue.

Limitations
The following limitations apply to the WebSphere MQ Bridge for HTTP.

HTTP GET and publish/subscribe

HTTP GET cannot be used with publish/subscribe messaging and will return an
error code.

Using correlation ID with WebSphere MQ Publish/Subscribe
messaging

The correlation ID in the MQMD is reserved for use by the WebSphere MQ
publish/subscribe engine to identify subscribers. When putting a message to a
topic using an HTTP POST request, if the message type is a non-JMS message (see
message types section), the correlId header value will be ignored by WebSphere
MQ as the publish/subscribe engine will specify its own MQMD correlation ID.

Using persistence with WebSphere MQ publish/subscribe
messaging

The persistence of a message without RFH2 properties that is put to a topic in
WebSphere MQ is not maintained between the point of publishing the message
and the point of subscribing. When putting a message to a topic using an HTTP
POST request, if the message type is a non-JMS message (see message types
section), the persistence header value will be ignored by WebSphere MQ.

Using format with WebSphere MQ publish/subscribe messaging

The format of a message without RFH2 properties that is put to a topic in
WebSphere MQ is not maintained between the point of publishing the message
and the point of subscribing. When putting a message to a topic using an HTTP
POST request, if the message type is a non-JMS message (see message types
section), the format header value will be ignored by WebSphere MQ.

Requesting the encoding value of a message

When requesting the encoding value of a message by specifying the encoding
header in the require-headers header of an HTTP request, a value will only be
returned in the response if an encoding value was explicitly set on the WebSphere
MQ message in the HTTP request. If no encoding value was set on the WebSphere
MQ message, the encoding cannot be derived and an encoding header value will
not be returned.

Chapter 2. WebSphere MQ Bridge for HTTP 77

Requesting the correlation ID of a message

When requesting the correlation ID of a message by specifying the correlId header
in the require-headers request header of an HTTP request, the value returned will
be in hexadecimal form (″0x:″ prefix followed by a hexadecimal value) if the
message retrieved was an WebSphere MQ (that is, a non JMS) message.

Content-Location

When requesting the content location of a message by specifying content-location
in the require-headers request header of a HTTP request, the value will only be
returned if the message is a JMS message, since the original location of a
WebSphere MQ message (a non-JMS message) cannot be derived from the message
itself.

HTTP Return codes

Servlet errors - Logged but not returned to the client

Where these errors are logged is specific to your application server, refer to your
application server’s documentation for information.

MQHTTP0001
No Connection Factory specified in the Servlet context.

MQHTTP0002
Could not get Connection Manager for {queueOrTopic} using the JNDI
name of {jndiNameTried}

Successful operations

If operations are successful a return code of 200xx will be returned.

Table 9.

Header Description

200 OK This class of status code indicates that the
client’s request was successfully received,
understood and accepted.

204 No Content Sent when a successful GET/DELETE
happens and x-msg-range: 0 was sent in the
request.

78 WebSphere MQ: Web Services

Client errors

HTTP status code MQHTTP errors

400 Bad Request
MQHTTP40001

Reserved.

MQHTTP40002 - URI is not valid for MQ HTTP
Explanation: The URI specified in the HTTP request is not valid.

Programmer response: Confirm that the format and syntax of the specified URI are correct. See
“URI Format” on page 60 for details of the supported URI syntax.

MQHTTP40003 - URI is not valid, @qmgr is only valid on POST
Explanation: The ’@qmgr’ option has been specified in a URI for an HTTP request that is not a
POST request.

Programmer response: If you are attempting to put a message by using the POST verb, change
the HTTP request to a POST request. If you are attempting to get a message by using the
DELETE or GET verbs, remove the ’@qmgr’ option from the URI.

MQHTTP40004 - Invalid content-type specified
Explanation: The Content-Type header field specified on a POST request is not compatible with
the x-msg-class header value.

Programmer response: Change the Content-Type header field to one that is supported. The
Content-Type header must be compatible with the specified x-msg-class header field; see
“Supported message types” on page 74 for a list of supported combinations.

MQHTTP40005 - Bad message header value
Explanation: A supported header field has been specified with a value that is not valid for the
specified request.

Programmer response: Change the value specified for the given header field to a value which is
valid. Check the case of the value specified, as some header fields have case-sensitive values. See
“HTTP headers” on page 63 for a list of header fields and their permitted values.

MQHTTP40006 - {header_name} is not a valid request header
Explanation: A header which is only valid in an HTTP response message has been specified in an
HTTP request message.

Programmer response: Remove any headers from the HTTP request which are only valid in an
HTTP response, for example x-msg-timestamp.

MQHTTP40007 - {header_name} is only valid on...
Explanation: A header has been specified in an HTTP request, but the header field is not valid
for the given request verb.

Programmer response: Remove any headers from the HTTP request which are not valid for the
given request verb. For example, x-msg-encoding is valid for HTTP POST requests, but not valid
for HTTP GET or HTTP DELETE requests.

MQHTTP40008 - {header_name} maximum length is...
Explanation: The maximum length for the given header field has been exceeded.

Programmer response: Change the value of the header field to a value which is within the range
permitted for the header field. See “HTTP headers” on page 63 for a list of header fields and
their permitted values.

MQHTTP40009 - Header field ’{header_field}’ is not valid for...
Explanation: A header field specified in an HTTP request is not supported by the messaging
provider to which the HTTP bridge is connected. This error occurs when a messaging provider is
used which cannot fully support all the features of the HTTP bridge.

Programmer response: Remove the unsupported header from the HTTP request.

MQHTTP40010 - Message with content-type ’{content_type}’ could not be parsed
Explanation: The content of the HTTP request is not compatible with the Content-Type of the
request. A common cause is badly formed application/x-www-form-urlencoded or
application/xml data.

Programmer response: Correct the content of the HTTP request so that it is in the correct format
for the Content-Type of the request.

Chapter 2. WebSphere MQ Bridge for HTTP 79

|||

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|

|

|
|
|
|

|
|

HTTP status code MQHTTP errors

403 Forbidden
MQHTTP40301 - You are forbidden from accessing...

Explanation: The HTTP bridge has been unable to authenticate itself for the specified destination.

Programmer response: Change the authentication properties of the destination so that the HTTP
bridge is authorized to connect to it. Alternatively, specify a destination to which the HTTP
bridge is authorized to connect.

MQHTTP40302 - You are forbidden from...
Explanation: The HTTP bridge has been unable to connect to the queue manager to which it has
been configured to connect.

Programmer response: Change the authentication configuration of the queue manager so that the
HTTP bridge is authorized to connect to it. Alternatively, configure the HTTP bridge to connect to
a queue manager to which it is authorized to connect.

404 Not found
MQHTTP40401 - The destination {destination_name} could not be found

Explanation: The destination specified in the HTTP request URI cannot be found by the HTTP
bridge.

Programmer response: Check that the destination specified in the HTTP request URI exists, or
specify an alternative destination.

405 Method not
allowed MQHTTP40501 - Method {method_name} not allowed

Explanation: The method specified in the HTTP request is not supported by the HTTP bridge.

Programmer response: Change the method specified in the HTTP request to one which is
supported by the HTTP bridge. For a full list of permitted methods see “WebSphere MQ Bridge
for HTTP verbs” on page 61.

413 Request entity
too large MQHTTP41301 - The message being posted was too large for the destination

Explanation: The destination specified in the HTTP POST request URI cannot accept messages
that are as long as the message specified in the HTTP request.

Programmer response: Reduce the size of the message specified in the HTTP request.
Alternatively, specify a destination which can support messages of the desired length.

415 Unsupported
media type MQHTTP41501 - The media type character set is unsupported

Explanation: The character set specified in the Content-Type header field is not supported by the
HTTP bridge.

Programmer response: Change the character set of the Content-Type header field to one that is
supported by the HTTP bridge.

MQHTTP41502 - Media-type {media-type} is not supported...
Explanation: The media-type specified in the HTTP request is not supported by the HTTP bridge
for the specified HTTP verb.

Programmer response: Change the media-type specified in the HTTP request to one that is
supported by the HTTP bridge for the specified HTTP verb.

MQHTTP41503 - Media-type {media-type} is not supported...
Explanation: The media-type specified in the HTTP request is not supported by the HTTP bridge
for the specified x-msg-class header field.

Programmer response: Change the media-type specified in the HTTP request to one that is
supported by the HTTP bridge for the specified x-msg-class header field.

417 Expectation
failed MQHTTP41701 - The HTTP header ’expect’ is not supported

Explanation: The Expect header has been specified in an HTTP request. The HTTP bridge does
not support the Expect header field.

Programmer response: Remove the Expect header from the HTTP request.

80 WebSphere MQ: Web Services

||

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
||
|

|
|
|

|
||
|
|

|
|

|
||
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
||
|
|

|
|

Server errors

HTTP status code MQHTTP errors

500 Internal server
error MQHTTP50001 - There has been an unexpected problem...

Explanation: An error has occurred in the HTTP bridge.

Programmer response: Contact the system administrator of the HTTP bridge.

502 Bad Gateway
MQHTTP50201 - An error has occurred between the HTTP bridge and the queue manager

Explanation: An error has occurred in the connection between the HTTP bridge and
the queue manager.

Programmer response: Contact the system administrator of the HTTP bridge.

504 Gateway
timeout MQHTTP50401 - Message retrieval timed out

Explanation: An HTTP GET or HTTP DELETE has been issued, but no message
matching the specified request parameters was available within the given timeout
period. This return code indicates that no suitable message was available at any time
during the life of the HTTP request.

Programmer response: If a message was expected, check the header fields of the
HTTP request such as x-msg-correlationid and x-msg-msgid, and check that the
destination specified in the HTTP request URI is correct. Alternatively, try extending
the wait time of the HTTP request using the x-msg-wait header field.

505 HTTP version
not supported MQHTTP50501 - HTTP 1.1 and upwards...

Explanation: The HTTP protocol used in the HTTP request is not supported by the
HTTP bridge.

Programmer response: Change the HTTP request to use HTTP protocol V1.1 or higher.

When a server error occurs, a complete stack trace will be outputted to application
server error logs and will also be returned to the HTTP client in the HTTP
response. This trace can then be recognized and handled by the client application
or used by the application server administrator to resolve the cause of the issue.

If the stack trace contains resource adapter errors, refer to you resource adapter’s
documentation for more information.

Chapter 2. WebSphere MQ Bridge for HTTP 81

|||

|
||
|

|

|
|
|
|

|

|
||
|
|
|
|

|
|
|
|

|
||
|
|

|
|

82 WebSphere MQ: Web Services

Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing,
IBM Corporation,
North Castle Drive,
Armonk, NY 10504-1785,
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation,
Licensing,
2-31 Roppongi 3-chome, Minato-k,u
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2005, 2009 83

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

The following are trademarks of International Business Machines Corporation in
the United States, or other countries, or both:

AIX CICS IBM
IBMLink SupportPac WebSphere

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

84 WebSphere MQ: Web Services

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 85

86 WebSphere MQ: Web Services

Index

Special characters
.NET 1
.NET listener, syntax 34

A
accounting token 43
AccountingToken 43
amqwdeployWMQService

syntax 23
using 28

amqwSOAPNETlistener 8
Apache Axis 1
Apache software license 50
ApplIdentityData 43
ApplOriginData 43
asynchronous messaging 49

definition 49
long-term 50
short-term 50

Axis 1

B
backout counter 42
backout threshold 24
BackoutCount 42
binding, keyword in URI 20
BOTHRESH 24

C
CCSID

field of MQMD 41
field of MQRFH2 44

channel definition tables 36
classes

external 13
className 24
clientChannel 21
clientConnection 21
clients 1

compiling 14
executing 14
linking 14
preparing 13

CodedCharSetId
field of MQMD 41
field of MQRFH2 44

connectionFactory 19
syntax 20

connectQueueManager 20
context, passing 38
correlation identifier 8, 42
CorrelId 42
customization 38

deployment 38
listeners 40
senders 39

D
deploying 22
deployment 22

customization 38
Web services 13

deployment directory, length
restriction 30

deployment utility
syntax 23
using 28

destination, parameter of URI 19
diagnostics 9
directory validation 28
dynamic response queues 22

E
encoding 8
Encoding

field of MQMD 41
field of MQRFH2 44

escaping, in URI 19
Expiry, field of MQMD 41

F
Feedback, field of MQMD 41
file locations 9
Flags, field of MQRFH2 44
Format

field of MQMD 42
field of MQRFH2 44

G
getting started 1
Global Assembly Cache 11
group identifier 43
GroupId 43

H
headers 40
HTTP 2

I
identifier, group 43
initialContextFactory 19
installation 9

prerequisites 10
what is installed 10

installation testing 11
integrity checking 8
integrity, message 24
integrityOption 24
interoperability 6
interoperation 6

interoperation (continued)
with CICS 7

IVT 11

J
Java listener, syntax 32

L
languages supported 2, 15
license, Apache software 50
listeners 8, 31

.NET, syntax 34
actions 8
customization 40
definition 3
Java, syntax 32
scripts 31
starting 14, 36
stopping 37
terminating 37
triggering 36
WebSphere MQ 3

M
message descriptor 40
message flags 44
message headers 40
message identifier 42
message lifetime 41
message persistence 42
message priority 42
message type 41
messages

report 8, 37
SOAP 7

MQMD 40
MQRFH2 44
MsgFlags 44
MsgId, field of MQMD 42
MsgSeqNumber 43
MsgType 41

N
NameValueCCSID 44
NameValueData 45
NameValueLength 45
num, parameter of

amqwdeployWMQService 25

O
Offset, field in MQMD 43
operation, parameter of

amqwdeployWMQService 24
OriginalLength 44

© Copyright IBM Corp. 2005, 2009 87

outputs, from
amqwdeployWMQService 27

overview 3

P
passContext 25
passing context 38
persistence

message 42
parameter of URI 20

Persistence, field of MQMD 42
prerequisites 10
priority

message 42
parameter of URI 20

Priority, field of MQMD 42
problem determination 9
processing summary 5
programming 15

service 17
.NET 17
Java 17

Web service client 16
.NET 17
Java 16

programName 25
PutApplName 43
PutApplType 43
PutDate 43
PutTime 43

Q
queue managers 4

reply 43
queue validation 28
queueName 25
queues 4

model 22
reply 42
request 21
response 22

dynamic 22

R
reason code, in MQMD 41
registration 11
reply queue 42
reply queue manager 43
replyDestination 20
ReplyToQ 42
ReplyToQMgr 43
report messages 8, 37
report options 8, 39

in MQMD 41
Report, field of MQMD 41
request queues 21
requesters 1
response queues 22

dynamic 22
runmqlsr 3

S
sample programs 14

.NET 15
Java 14

sample URIs 21
secure sockets layer 27
senders 9

.NET 31
actions 9
customization 39
definition 3
Java 31

sequence of control 3
servers 1
services

deploying 13
preparing 13

Simple Object Access Protocol 1
SimpleJavaListener 8
SOAP

definition 1
interoperation

with WAS 6
SSL

options in
amqwdeployWMQService 27

options in URI 46
using 45

sslCipherSpec 47
sslCipherSuite 47
sslCryptoHardware 47
sslFipsRequired 47
sslKeyRepository 46
sslKeyResetCount 47
sslKeyStore 48
sslKeyStorePassword 48
sslLDAPCRLServers 48
sslPeerName 47
sslTrustStore 48
sslTrustStorePassword 48
stack, runtime 3
starting listeners 36
stopping listeners 37
StrucId 40, 44
StrucLength 44
structure identifier 40

T
targetService 19
terminating listeners 37
testing, installation 11
threads, number of 25
timeout, parameter of URI 19
timeToLive 20
transactional processing 49

clients 49
listeners 49

transactionality, parameter of
amqwdeployWMQService 26

trigger monitor
program 25
queue 25

triggering listeners 36

U
Universal Resource Identifier 18
URI 1, 18

for HTTP 2
format 2
keywords 19
parameter of

amqwdeployWMQService 26
parameters 19
samples 21
syntax 18
WebSphere MQ service 5

user identifier 43
UserIdentifier, field of MQMD 43
UTF-8 8

V
validation

directory 28
queue 28

verbose output 26
Version

field of MQMD 40
field of MQRFH2 44

W
Web services

creating 13
definition 1
deploying 13

WebSphere MQ transport for SOAP
definition 1

88 WebSphere MQ: Web Services

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM , you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use 44-1962-816151
– From within the U.K., use 01962-816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2005, 2009 89

90 WebSphere MQ: Web Services

����

SC34-6952-01

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
W

eb
Sp

he
re

M
Q

W
eb

Se
rv

ic
es

Ve
rs

io
n

7.0

	Contents
	Figures
	Chapter 1. WebSphere MQ transport for SOAP
	Introduction to WebSphere MQ transport for SOAP
	Getting started
	What is SOAP?
	What is a Web service?
	What is WebSphere MQ transport for SOAP?
	What are senders and listeners in WebSphere MQ transport for SOAP?

	Overview of WebSphere MQ transport for SOAP
	How WebSphere MQ transport for SOAP processes Web services requests
	Interoperability
	Messages
	Listeners
	Senders
	Diagnostics

	Installation
	What is installed
	Prerequisites
	Testing your SOAP/WebSphere MQ installation

	Using WebSphere MQ transport for SOAP
	Creating and deploying a Web service using WebSphere MQ transport for SOAP
	Preparing service code
	Deploying a service
	Preparing client code
	Linking a client
	Executing a client
	Starting listeners
	Samples

	Programming for WebSphere MQ transport for SOAP
	Languages supported
	Basic Web service client programming
	Basic service programming

	Specifying the URI
	Parameter names and values

	Deployment
	The deployment utility
	Restriction on deployment directory length

	Senders and listeners
	Senders
	Listeners
	Channel definition tables
	Starting listeners by triggering
	Terminating listeners
	Report messages
	Context

	Further considerations
	Customizing WebSphere MQ transport for SOAP
	Customizing the deployment process
	Writing WebSphere MQ transport for SOAP senders
	Writing WebSphere MQ transport for SOAP listeners
	Constructing message headers

	Using SSL with WebSphere MQ transport for SOAP
	SSL-related options in the URI

	Transactional processing
	Java and .NET clients
	Java and .NET listeners

	Asynchronous messaging
	What is asynchronous messaging?
	Short-term asynchronous messaging
	Long-term asynchronous messaging using the MA0V SupportPac

	Apache software license

	Chapter 2. WebSphere MQ Bridge for HTTP
	Introduction to WebSphere MQ Bridge for HTTP
	Installation
	What is installed
	Prerequisites
	Security considerations

	Configuring WebSphere MQ Bridge for HTTP
	Configuring WebSphere MQ Bridge for HTTP to implement diagnostic tracing
	Configuring WebSphere MQ Bridge for HTTP to use your connection factory

	Constructing HTTP requests and handling HTTP responses
	Overview of the WebSphere MQ Bridge for HTTP
	URI Format
	WebSphere MQ Bridge for HTTP verbs
	HTTP POST
	HTTP GET
	HTTP DELETE

	HTTP headers
	Entity headers
	Request headers
	Standard HTTP headers

	Supported message types

	WebSphere MQ Bridge for HTTP Samples
	WebSphere MQ Bridge for HTTP samples

	Limitations
	HTTP Return codes

	Notices
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Sending your comments to IBM

