
WebSphere MQ

Programmable Command Formats and
Administration Interface
Version 7.0

SC34-6942-01

���





WebSphere MQ

Programmable Command Formats and
Administration Interface
Version 7.0

SC34-6942-01

���



Note
Before using this information and the product it supports, be sure to read the general information under notices at the back
of this book.

Second edition (January 2009)

This edition of the book applies to the following products:
v IBM WebSphere MQ, Version 7.0

v IBM WebSphere MQ for z/OS, Version 7.0

and to any subsequent releases and modifications until otherwise indicated in new editions.

Unless otherwise stated, the information also applies to the following products:
v WebSphere MQ for HP NonStop Server, V5.3

v WebSphere MQ for HP OpenVMS, V6.0

© Copyright International Business Machines Corporation 2002, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Figures . . . . . . . . . . . . . . . xi

Tables . . . . . . . . . . . . . . . xiii

Part 1. Programmable Command
Formats . . . . . . . . . . . . . . 1

Chapter 1. Introduction to
Programmable Command Formats . . . 3
The problem PCF commands solve . . . . . . . 3
What PCFs are. . . . . . . . . . . . . . 4
Other administration interfaces . . . . . . . . 4

WebSphere MQ for i5/OS . . . . . . . . . 4
WebSphere MQ for z/OS . . . . . . . . . 5
MQSeries for Compaq NonStop Kernel, V5.1 . . 5
WebSphere MQ for Windows, UNIX systems and
HP OpenVMS . . . . . . . . . . . . . 5

The WebSphere MQ Administration Interface (MQAI) 5

Chapter 2. Using Programmable
Command Formats . . . . . . . . . . 7
PCF command messages . . . . . . . . . . 7

How to issue PCF command messages . . . . 7
Message descriptor for a PCF command . . . . 7
Sending user data . . . . . . . . . . . 9

Responses . . . . . . . . . . . . . . . 9
Message descriptor for a response . . . . . . 9

Standard responses . . . . . . . . . . . . 10
OK response . . . . . . . . . . . . . 10
Error response . . . . . . . . . . . . 10
Data response . . . . . . . . . . . . 11

Extended responses. . . . . . . . . . . . 11
Extended responses to Inquire commands . . . 12
Extended responses to commands other than
Inquire . . . . . . . . . . . . . . . 12
Extended responses to commands using
CommandScope . . . . . . . . . . . . 13

Rules for naming WebSphere MQ objects . . . . 13
Name lengths . . . . . . . . . . . . 14
Generic values . . . . . . . . . . . . 14

Authority checking for PCF commands . . . . . 14
WebSphere MQ for i5/OS . . . . . . . . 14
WebSphere MQ for Windows, and UNIX systems 15
WebSphere MQ for HP OpenVMS and Compaq
NonStop Kernel . . . . . . . . . . . . 16
WebSphere MQ for z/OS . . . . . . . . . 19

Chapter 3. Definitions of the
Programmable Command Formats. . . 21
How the definitions are shown . . . . . . . . 21

Commands . . . . . . . . . . . . . 21
Responses . . . . . . . . . . . . . . 21
Parameters and response data . . . . . . . 22

Constants . . . . . . . . . . . . . . 22
Informational messages . . . . . . . . . 22
Error codes . . . . . . . . . . . . . 23

PCF commands and responses in groups . . . . 26
Authentication Information commands . . . . 26
Authority Record commands . . . . . . . 26
CF commands . . . . . . . . . . . . 26
Channel commands . . . . . . . . . . 27
Cluster commands . . . . . . . . . . . 27
Connection commands . . . . . . . . . 27
Escape command . . . . . . . . . . . 27
Namelist commands . . . . . . . . . . 27
Process commands . . . . . . . . . . . 28
Queue commands . . . . . . . . . . . 28
Queue Manager commands . . . . . . . . 28
Security commands. . . . . . . . . . . 28
Service commands . . . . . . . . . . . 28
Storage class commands . . . . . . . . . 28
System commands . . . . . . . . . . . 29
Data responses to commands . . . . . . . 29

Definitions of Programmable Command Formats . . 30
Backup CF Structure . . . . . . . . . . . 30

Required parameters . . . . . . . . . . 30
Optional parameters . . . . . . . . . . 30

Change, Copy, and Create Authentication
Information Object . . . . . . . . . . . . 31

Required parameters (Change authentication
information) . . . . . . . . . . . . . 31
Required parameters (Copy authentication
information) . . . . . . . . . . . . . 31
Required parameters (Create authentication
information) . . . . . . . . . . . . . 32
Optional parameters (Change, Copy, and Create
Authentication Information Object) . . . . . 32

Change, Copy, and Create CF Structure . . . . . 34
Required parameters (Change and Create CF
Structure) . . . . . . . . . . . . . . 35
Required parameters (Copy CF Structure) . . . 35
Optional parameters (Change, Copy, and Create
CF Structure) . . . . . . . . . . . . . 35

Change, Copy, and Create Channel . . . . . . 37
Required parameters (Change, Create Channel) 39
Required parameters (Copy Channel). . . . . 40
Optional parameters (Change, Copy and Create
Channel) . . . . . . . . . . . . . . 41
Error codes (Change, Copy and Create Channel) 66

Change, Copy, and Create Channel Listener . . . 68
Required parameters (Change and Create
Channel Listener) . . . . . . . . . . . 69
Required parameters (Copy Channel Listener) . . 69
Optional parameters (Change, Copy, and Create
Channel Listener) . . . . . . . . . . . 69

Change, Copy, and Create Namelist . . . . . . 71
Required parameter (Change and Create
Namelist) . . . . . . . . . . . . . . 72
Required parameters (Copy Namelist) . . . . 72

© Copyright IBM Corp. 2002, 2009 iii



Optional parameters (Change, Copy, and Create
Namelist) . . . . . . . . . . . . . . 72

Change, Copy, and Create Process . . . . . . . 74
Required parameters (Change and Create
Process) . . . . . . . . . . . . . . 75
Required parameters (Copy Process) . . . . . 75
Optional parameters (Change, Copy, and Create
Process) . . . . . . . . . . . . . . 75

Change, Copy, and Create Queue . . . . . . . 79
Required parameters (Change and Create Queue) 79
Required parameters (Copy Queue) . . . . . 79
Required parameters (all commands) . . . . . 80
Optional parameters (Change, Copy, and Create
Queue) . . . . . . . . . . . . . . . 80
Error codes (Change, Copy, and Create Queue) 97

Change Queue Manager . . . . . . . . . . 98
Optional parameters (Change Queue Manager) 98
Error codes (Change Queue Manager) . . . . 124

Change Security . . . . . . . . . . . . 125
Optional parameters (Change Security) . . . . 125

Change, Copy, and Create Service . . . . . . 126
Required parameter (Change and Create
Service) . . . . . . . . . . . . . . 126
Required parameters (Copy Service) . . . . . 126
Optional parameters (Change, Copy, and Create
Service) . . . . . . . . . . . . . . 127

Change, Copy, and Create Storage Class . . . . 128
Required parameters (Change and Create
Storage Class) . . . . . . . . . . . . 129
Required parameters (Copy Storage Class) . . 129
Optional parameters (Change, Copy, and Create
Storage Class) . . . . . . . . . . . . 129

Change, Copy, and Create Subscription. . . . . 132
Required parameters (Change Subscription) . . 132
Required parameters (Copy Subscription) . . . 133
Required parameters (Create Subscription) . . 133
Optional parameters (Change, Copy, and Create
Subscription) . . . . . . . . . . . . 134

Change, Copy, and Create Topic . . . . . . . 137
Required parameter (Change Topic) . . . . . 137
Required parameters (Copy Topic) . . . . . 137
Required parameters (Create Topic) . . . . . 138
Optional parameters (Change, Copy, and Create
Topic) . . . . . . . . . . . . . . . 138

Clear Queue. . . . . . . . . . . . . . 145
Required parameters (Clear Queue) . . . . . 145
Optional parameters (Clear Queue) . . . . . 145
Error codes (Clear Queue) . . . . . . . . 146

Clear Topic String . . . . . . . . . . . . 146
Required parameters (Clear Topic String) . . . 146
Optional parameters (Clear Topic String) . . . 146

Delete Authentication Information Object . . . . 147
Required parameters (Delete Authentication
Information Object) . . . . . . . . . . 147
Optional parameters (Delete Authentication
Information Object) . . . . . . . . . . 147

Delete Authority Record. . . . . . . . . . 148
Required parameters (Delete Authority Record) 149
Optional parameters (Delete Authority Record) 149
Error codes (Delete Authority Record) . . . . 150

Delete CF Structure . . . . . . . . . . . 150

Required parameters (Delete CF Structure) . . 150
Delete Channel . . . . . . . . . . . . . 151

Required parameters (Delete Channel) . . . . 151
Optional parameters (Delete Channel) . . . . 151
Error codes (Delete Channel) . . . . . . . 152

Delete Channel Listener . . . . . . . . . . 153
Required parameters (Delete Channel Listener) 153

Delete Namelist . . . . . . . . . . . . 153
Required parameters (Delete Namelist) . . . . 153
Optional parameters (Delete Namelist) . . . . 153

Delete Process . . . . . . . . . . . . . 154
Required parameters (Delete Process) . . . . 155
Optional parameters (Delete Process) . . . . 155

Delete Queue . . . . . . . . . . . . . 156
Required parameters (Delete Queue) . . . . 156
Optional parameters (Delete Queue). . . . . 156
Error codes (Delete Queue) . . . . . . . . 158

Delete Service . . . . . . . . . . . . . 158
Required parameters (Delete Service) . . . . 159

Delete Storage Class . . . . . . . . . . . 159
Required parameters (Delete Storage Class) . . 159
Optional parameters (Delete Storage Class) . . 159

Delete Subscription . . . . . . . . . . . 160
Required parameters (Delete Subscription) . . 160
Optional parameters (Delete Subscription) . . . 161

Delete Topic . . . . . . . . . . . . . . 161
Required parameters (Delete Topic) . . . . . 161
Optional parameters (Delete Topic) . . . . . 162

Escape. . . . . . . . . . . . . . . . 163
Required parameters (Escape) . . . . . . . 163
Error codes (Escape) . . . . . . . . . . 163

Escape (Response) . . . . . . . . . . . . 163
Parameters . . . . . . . . . . . . . 164

Inquire Archive. . . . . . . . . . . . . 164
Optional parameters (Inquire Archive) . . . . 164

Inquire Archive (Response) . . . . . . . . . 165
Response data - archive parameter information 166
Response data - tape unit status information 168

Inquire Authentication Information Object . . . . 169
Required parameters (Inquire Authentication
Information Object) . . . . . . . . . . 169
Optional parameters (Inquire Authentication
Information Object) . . . . . . . . . . 169

Inquire Authentication Information Object
(Response) . . . . . . . . . . . . . . 171

Response data . . . . . . . . . . . . 171
Inquire Authentication Information Object Names 172

Required parameters (Inquire Authentication
Information Object Names) . . . . . . . . 173
Optional parameters (Inquire Authentication
Information Object Names) . . . . . . . . 173

Inquire Authentication Information Object Names
(Response) . . . . . . . . . . . . . . 174

Response data . . . . . . . . . . . . 174
Inquire Authority Records . . . . . . . . . 175

Required parameters (Inquire Authority
Records) . . . . . . . . . . . . . . 175
Optional parameters (Inquire Authority
Records) . . . . . . . . . . . . . . 177
Error codes (Inquire Authority Records) . . . 178

Inquire Authority Records (Response) . . . . . 178

iv WebSphere MQ: Programmable Command Formats and Administration Interface

||
||
||
||
|
||
||
||
||
||
|
||

||
||
||
||
||
||



Response data . . . . . . . . . . . . 178
Inquire Authority Service . . . . . . . . . 181

Required parameters (Inquire Authority Service) 181
Optional parameters (Inquire Authority Service) 181
Error codes (Inquire Authority Service) . . . . 181

Inquire Authority Service (Response) . . . . . 182
Response data . . . . . . . . . . . . 182

Inquire CF Structure . . . . . . . . . . . 183
Required parameters (Inquire CF Structure) . . 183
Optional parameters (Inquire CF Structure) . . 183

Inquire CF Structure (Response) . . . . . . . 184
Response data . . . . . . . . . . . . 184

Inquire CF Structure Names . . . . . . . . 185
Required parameters (Inquire CF Structure
Names) . . . . . . . . . . . . . . 186

Inquire CF Structure Names (Response) . . . . 186
Response data . . . . . . . . . . . . 186

Inquire CF Structure Status . . . . . . . . . 186
Required parameters (Inquire CF Structure
Status). . . . . . . . . . . . . . . 187
Optional parameters (Inquire CF Structure
Status). . . . . . . . . . . . . . . 187

Inquire CF Structure Status (Response) . . . . . 188
Response data . . . . . . . . . . . . 188

Inquire Channel . . . . . . . . . . . . 191
Required parameters (Inquire Channel). . . . 191
Optional parameters (Inquire Channel) . . . . 192
Error codes (Inquire Channel) . . . . . . . 198

Inquire Channel (Response) . . . . . . . . 199
Response data . . . . . . . . . . . . 199

Inquire Channel Initiator . . . . . . . . . 209
Optional parameters (Inquire Channel Initiator) 209

Inquire Channel Initiator (Response). . . . . . 210
Response data - channel initiator information 210
Response data - listener information. . . . . 212

Inquire Channel Listener . . . . . . . . . 212
Required parameters (Inquire Channel Listener) 213
Optional parameters (Inquire Channel Listener) 213

Inquire Channel Listener (Response). . . . . . 215
Response data . . . . . . . . . . . . 215

Inquire Channel Listener Status . . . . . . . 217
Required parameters (Inquire Channel Listener
Status). . . . . . . . . . . . . . . 217
Optional parameters (Inquire Channel Listener
Status). . . . . . . . . . . . . . . 218
Error codes (Inquire Channel Listener Status) 219

Inquire Channel Listener Status (Response) . . . 219
Response data . . . . . . . . . . . . 220

Inquire Channel Names . . . . . . . . . . 222
Required parameters (Inquire Channel Names) 222
Optional parameters (Inquire Channel Names) 222
Error codes (Inquire Channel Names) . . . . 224

Inquire Channel Names (Response) . . . . . . 224
Response data . . . . . . . . . . . . 224

Inquire Channel Status . . . . . . . . . . 225
Required parameters (Inquire Channel Status) 227
Optional parameters (Inquire Channel Status) 227
Error codes (Inquire Channel Status) . . . . 235

Inquire Channel Status (Response) . . . . . . 236
Response data . . . . . . . . . . . . 237

Inquire Cluster Queue Manager . . . . . . . 246

Required parameters (Inquire Cluster Queue
Manager) . . . . . . . . . . . . . . 246
Optional parameters . . . . . . . . . . 247

Inquire Cluster Queue Manager (Response) . . . 251
Response data . . . . . . . . . . . . 252

Inquire Connection . . . . . . . . . . . 259
Required parameters (Inquire Connection). . . 260
Optional parameters (Inquire Connection) . . . 260
Error codes (Inquire Connection) . . . . . . 263

Inquire Connection (Response) . . . . . . . 264
Response data . . . . . . . . . . . . 264

Inquire Entity Authority . . . . . . . . . . 271
Required parameters (Inquire Entity Authority) 271
Optional parameters (Inquire Entity Authority) 273
Error codes (Inquire Entity Authority) . . . . 273

Inquire Entity Authority (Response) . . . . . . 273
Response data . . . . . . . . . . . . 274

Inquire Group . . . . . . . . . . . . . 276
Optional parameters (Inquire Group) . . . . 276

Inquire Group (Response) . . . . . . . . . 277
Response data relating to the queue manager 277
Response data relating to obsolete DB2
messages . . . . . . . . . . . . . . 278

Inquire Log . . . . . . . . . . . . . . 279
Optional parameters (Inquire Log) . . . . . 279

Inquire Log (Response) . . . . . . . . . . 279
Response data - log parameter information . . 280
Response data - to log status information . . . 281

Inquire Namelist . . . . . . . . . . . . 283
Required parameters (Inquire Namelist) . . . 283
Optional parameters (Inquire Namelist) . . . 283

Inquire Namelist (Response) . . . . . . . . 285
Response data . . . . . . . . . . . . 286

Inquire Namelist Names. . . . . . . . . . 287
Required parameters (Inquire Namelist Names) 287
Optional parameters (Inquire Namelist Names) 287

Inquire Namelist Names (Response) . . . . . . 288
Response data . . . . . . . . . . . . 289

Inquire Process . . . . . . . . . . . . . 289
Required parameters (Inquire Process) . . . . 289
Optional parameters (Inquire Process) . . . . 289

Inquire Process (Response) . . . . . . . . . 291
Response data . . . . . . . . . . . . 292

Inquire Process Names . . . . . . . . . . 293
Required parameters (Inquire Process Names) 293
Optional parameters (Inquire Process Names) 293

Inquire Process Names (Response) . . . . . . 294
Response data . . . . . . . . . . . . 295

Inquire Pub/Sub Status . . . . . . . . . . 295
Optional parameters . . . . . . . . . . 295

Inquire Pub/Sub Status (Response) . . . . . . 296
Response data . . . . . . . . . . . . 296

Inquire Queue . . . . . . . . . . . . . 298
Required parameters (Inquire Queue) . . . . 298
Optional parameters (Inquire Queue) . . . . 299
Error codes (Inquire Queue) . . . . . . . 307

Inquire Queue (Response) . . . . . . . . . 307
Response data . . . . . . . . . . . . 307

Inquire Queue Manager . . . . . . . . . . 318
Optional parameters (Inquire Queue Manager) 318

Inquire Queue Manager (Response) . . . . . . 327

Contents v

||

||
||
||
||



Response data . . . . . . . . . . . . 328
Inquire Queue Manager Status . . . . . . . 348

Optional parameters (Inquire Queue Manager
Status). . . . . . . . . . . . . . . 348

Inquire Queue Manager Status (Response). . . . 349
Response data . . . . . . . . . . . . 349

Inquire Queue Names . . . . . . . . . . 351
Required parameters (Inquire Queue Names) 351
Optional parameters (Inquire Queue Names) 351

Inquire Queue Names (Response) . . . . . . 353
Response data . . . . . . . . . . . . 353

Inquire Queue Status . . . . . . . . . . . 354
Required parameters (Inquire Queue Status) . . 354
Optional parameters (Inquire Queue Status) . . 354
Error codes (Inquire Queue Status) . . . . . 358

Inquire Queue Status (Response) . . . . . . . 359
Response data if StatusType is
MQIACF_Q_STATUS . . . . . . . . . . 359
Response data if StatusType is
MQIACF_Q_HANDLE . . . . . . . . . 361

Inquire Security . . . . . . . . . . . . 366
Optional parameters (Inquire Security) . . . . 366

Inquire Security (Response). . . . . . . . . 367
Response data . . . . . . . . . . . . 367

Inquire Service . . . . . . . . . . . . . 369
Required parameters (Inquire Service) . . . . 369
Optional parameters (Inquire Service) . . . . 369

Inquire Service (Response) . . . . . . . . . 370
Response data . . . . . . . . . . . . 370

Inquire Service Status . . . . . . . . . . 372
Required parameters (Inquire Service Status) 372
Optional parameters (Inquire Service Status) 372
Error codes (Inquire Service Status) . . . . . 374

Inquire Service Status (Response) . . . . . . . 374
Response data . . . . . . . . . . . . 374

Inquire Storage Class . . . . . . . . . . . 376
Required parameters (Inquire Storage Class) . . 376
Optional parameters (Inquire Storage Class) . . 376

Inquire Storage Class (Response) . . . . . . . 378
Response data . . . . . . . . . . . . 379

Inquire Storage Class Names . . . . . . . . 380
Required parameters (Inquire Storage Class
Names) . . . . . . . . . . . . . . 380
Optional parameters (Inquire Storage Class
Names) . . . . . . . . . . . . . . 380

Inquire Storage Class Names (Response) . . . . 381
Response data . . . . . . . . . . . . 381

Inquire Subscription . . . . . . . . . . . 382
Required parameters (Inquire Subscription) . . 382
Optional parameters (Inquire Subscription) . . 382

Inquire Subscription (Response) . . . . . . . 386
Response Data (Inquire Subscription) . . . . 386

Inquire Subscription Status . . . . . . . . . 390
Required parameters (Inquire Subscription
Status). . . . . . . . . . . . . . . 390
Optional parameters (Inquire Subscription
Status). . . . . . . . . . . . . . . 390

Inquire Subscription Status (Response) . . . . . 392
Response Data (Inquire Subscription Status) . . 392

Inquire System . . . . . . . . . . . . . 393
Optional parameters (Inquire System) . . . . 394

Inquire System (Response) . . . . . . . . . 394
Response data . . . . . . . . . . . . 395

Inquire Topic . . . . . . . . . . . . . 398
Required parameters (Inquire Topic). . . . . 398
Optional parameters . . . . . . . . . . 398

Inquire Topic (Response) . . . . . . . . . 401
Response data . . . . . . . . . . . . 402

Inquire Topic Names . . . . . . . . . . . 407
Required parameters (Inquire Topic Names) . . 407
Optional parameters (Inquire Topic Names) . . 407

Inquire Topic Names (Response) . . . . . . . 408
Response data . . . . . . . . . . . . 408

Inquire Topic Status . . . . . . . . . . . 409
Required parameters (Inquire Topic Status) . . 409
Optional parameters (Inquire Topic Status) . . 409

Inquire Topic Status (Response) . . . . . . . 410
Response data (TOPIC_STATUS) . . . . . . 411
Response data (TOPIC_STATUS_SUB) . . . . 414
Response data (TOPIC_STATUS_PUB) . . . . 415

Inquire Usage . . . . . . . . . . . . . 416
Optional parameters (Inquire Usage) . . . . 416

Inquire Usage (Response) . . . . . . . . . 417
Response data if UsageType is
MQIACF_USAGE_PAGESET . . . . . . . 417
Response data if UsageType is
MQIACF_USAGE_BUFFER_POOL . . . . . 419
Response data if UsageType is
MQIACF_USAGE_DATA_SET . . . . . . . 419

Move Queue . . . . . . . . . . . . . 419
Required parameters (Move Queue) . . . . . 420
Optional parameters (Move Queue) . . . . . 420

Ping Channel . . . . . . . . . . . . . 421
Required parameters (Ping Channel) . . . . 422
Optional parameters (Ping Channel) . . . . . 422
Error codes (Ping Channel) . . . . . . . . 423

Ping Queue Manager . . . . . . . . . . . 425
Recover CF Structure . . . . . . . . . . . 425

Required parameters (Recover CF Structure) . . 425
Optional parameters (Recover CF Structure) . . 426

Refresh Cluster . . . . . . . . . . . . . 426
Required parameters (Refresh Cluster) . . . . 426
Optional parameters (Refresh Cluster) . . . . 427

Refresh Queue Manager . . . . . . . . . . 428
Required parameters (Refresh Queue Manager) 428
Optional parameters (Refresh Queue Manager) 429

Refresh Security . . . . . . . . . . . . 430
Optional parameters (Refresh Security) . . . . 430

Reset Channel . . . . . . . . . . . . . 432
Required parameters (Reset Channel) . . . . 433
Optional parameters (Reset Channel) . . . . 433
Error codes (Reset Channel) . . . . . . . 434

Reset Cluster . . . . . . . . . . . . . 435
Required parameters (Reset Cluster) . . . . . 435
Optional parameters (Reset Cluster) . . . . . 435
Error codes (Reset Cluster) . . . . . . . . 436

Reset Queue Manager . . . . . . . . . . 436
Required parameters (Reset Queue Manager) 437
Optional parameters (Reset Queue Manager) 437
Error codes (Reset Queue Manager) . . . . . 437

Reset Queue Statistics . . . . . . . . . . 438
Required parameters (Reset Queue Statistics) 438

vi WebSphere MQ: Programmable Command Formats and Administration Interface

||
||
||
||
||
||
|
||
|
||
||
||

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

||



Optional parameters (Reset Queue Statistics) 438
Error codes (Reset Queue Statistics) . . . . . 439

Reset Queue Statistics (Response). . . . . . . 439
Response data . . . . . . . . . . . . 439

Resolve Channel . . . . . . . . . . . . 440
Required parameters (Resolve Channel) . . . 441
Optional parameters (Resolve Channel). . . . 441
Error codes (Resolve Channel). . . . . . . 442

Resume Queue Manager . . . . . . . . . 442
Required parameters (Resume Queue Manager) 443
Optional parameters (Resume Queue Manager) 443

Resume Queue Manager Cluster . . . . . . . 443
Required parameters (Resume Queue Manager
Cluster) . . . . . . . . . . . . . . 444
Optional parameters (Resume Queue Manager
Cluster) . . . . . . . . . . . . . . 444
Error codes (Resume Queue Manager Cluster) 444

Reverify Security . . . . . . . . . . . . 444
Required parameters (Reverify Security) . . . 445
Optional parameters (Reverify Security) . . . 445

Set Archive . . . . . . . . . . . . . . 445
Required parameters (Set Archive) . . . . . 446
Optional parameters (Set Archive) . . . . . 446

Set Authority Record . . . . . . . . . . . 450
Required parameters (Set Authority Record) . . 450
Optional parameters (Set Authority Record) . . 451
Error codes (Set Authority Record) . . . . . 453

Set Log . . . . . . . . . . . . . . . 454
Required parameters (Set Log) . . . . . . 454
Optional parameters (Set Log) . . . . . . . 454

Set System . . . . . . . . . . . . . . 456
Required parameters (Set System) . . . . . 456
Optional parameters (Set System) . . . . . 456

Start Channel . . . . . . . . . . . . . 457
Required parameters (Start Channel) . . . . 458
Optional parameters (Start Channel). . . . . 458
Error codes (Start Channel) . . . . . . . . 460

Start Channel Initiator . . . . . . . . . . 461
Required parameters (Start Channel Initiator) 461
Optional parameters (Start Channel Initiator) 461
Error codes (Start Channel Initiator) . . . . . 462

Start Channel Listener . . . . . . . . . . 462
Optional parameters (Start Channel Listener) 462
Error codes (Start Channel Listener) . . . . . 464

Start Service . . . . . . . . . . . . . . 464
Required parameters (Start Service) . . . . . 465
Error codes (Start Service) . . . . . . . . 465

Stop Channel . . . . . . . . . . . . . 465
Required parameters (Stop Channel) . . . . 465
Optional parameters (Stop Channel) . . . . . 466
Error codes (Stop Channel) . . . . . . . . 469

Stop Channel Initiator . . . . . . . . . . 469
Optional parameters (Stop Channel Initiator) 469

Stop Channel Listener . . . . . . . . . . 470
Required parameters (Stop Channel Listener) 470
Optional parameters (Stop Channel Listener) 471
Error codes (Stop Channel Listener) . . . . . 472

Stop Connection . . . . . . . . . . . . 472
Required parameters (Stop Connection) . . . 472

Stop Service . . . . . . . . . . . . . . 472
Required parameters (Stop Service) . . . . . 473

Error codes (Stop Service) . . . . . . . . 473
Suspend Queue Manager . . . . . . . . . 473

Required parameters (Suspend Queue Manager) 473
Optional parameters (Suspend Queue Manager) 474

Suspend Queue Manager Cluster . . . . . . . 474
Required parameters (Suspend Queue Manager
Cluster) . . . . . . . . . . . . . . 474
Optional parameters (Suspend Queue Manager
Cluster) . . . . . . . . . . . . . . 475
Error codes (Suspend Queue Manager Cluster) 475

Chapter 4. Structures for commands
and responses . . . . . . . . . . . 477
How the structures are shown. . . . . . . . 477

Data types . . . . . . . . . . . . . 477
Initial values and default structures . . . . . 477

Usage notes . . . . . . . . . . . . . . 478
MQCFH - PCF header . . . . . . . . . . 478

Fields for MQCFH . . . . . . . . . . 478
Language declarations for MQCFH . . . . . 480

MQCFBF - PCF byte string filter parameter . . . 482
Fields for MQCFBF . . . . . . . . . . 482
Language declarations for MQCFBF . . . . . 483

MQCFBS - PCF byte string parameter . . . . . 485
Fields for MQCFBS . . . . . . . . . . 485
Language declarations for MQCFBS . . . . . 486

MQCFIF - PCF integer filter parameter . . . . . 487
Fields for MQCFIF . . . . . . . . . . 487
Language declarations for MQCFIF . . . . . 489

MQCFIL - PCF integer list parameter . . . . . 490
Fields for MQCFIL . . . . . . . . . . 490
Language declarations for MQCFIL . . . . . 491

MQCFIN - PCF integer parameter . . . . . . 493
Fields for MQCFIN . . . . . . . . . . 493
Language declarations for MQCFIN . . . . . 493

MQCFSF - PCF string filter parameter . . . . . 494
Fields for MQCFSF . . . . . . . . . . 495
Language declarations for MQCFSF . . . . . 497

MQCFSL - PCF string list parameter . . . . . 499
Fields for MQCFSL . . . . . . . . . . 499
Language declarations for MQCFSL . . . . . 501

MQCFST - PCF string parameter . . . . . . . 502
Fields for MQCFST . . . . . . . . . . 503
Language declarations for MQCFST . . . . . 504

Chapter 5. PCF example . . . . . . . 507
Inquire local queue attributes . . . . . . . . 507
Program listing . . . . . . . . . . . . . 507

Part 2. Message Queuing
Administration Interface . . . . . 521

Chapter 6. Introduction to the
WebSphere MQ Administration
Interface (MQAI) . . . . . . . . . . 523
MQAI concepts and terminology . . . . . . . 523
Use of the MQAI . . . . . . . . . . . . 524
How do I use the MQAI? . . . . . . . . . 525

Overview. . . . . . . . . . . . . . 525

Contents vii



Building your MQAI application . . . . . . . 526

Chapter 7. Using data bags . . . . . 527
Types of data bag . . . . . . . . . . . . 527
Creating and deleting data bags . . . . . . . 527

Deleting data bags. . . . . . . . . . . 528
Types of data item. . . . . . . . . . . . 528
Adding data items to bags . . . . . . . . . 529

Adding an inquiry command to a bag . . . . 529
Changing information within a bag . . . . . . 530
Counting data items . . . . . . . . . . . 531
Deleting data items . . . . . . . . . . . 532

Deleting data items from a bag using the
mqDeleteItem call . . . . . . . . . . . 532
Clearing a bag using the mqClearBag call . . . 532
Truncating a bag using the mqTruncateBag call 533

Inquiring within data bags . . . . . . . . . 533
System items . . . . . . . . . . . . . 533

Chapter 8. Configuring WebSphere
MQ using mqExecute . . . . . . . . 535
Sending administration commands to the
command server . . . . . . . . . . . . 535

Example code . . . . . . . . . . . . 536
Hints and tips for configuring WebSphere MQ . . 537

Chapter 9. Exchanging data between
applications . . . . . . . . . . . . 539
Converting bags and buffers . . . . . . . . 539
Putting and receiving data bags . . . . . . . 540

Sending PCF messages to a specified queue . . 540
Receiving PCF messages from a specified queue 540

Chapter 10. MQAI reference . . . . . 543
mqAddBag . . . . . . . . . . . . . . 544

Syntax for mqAddBag . . . . . . . . . 544
Parameters for mqAddBag . . . . . . . . 544
Usage notes for mqAddBag . . . . . . . 545
C language invocation for mqAddBag . . . . 545
Visual Basic invocation for mqAddBag . . . . 545

mqAddByteString . . . . . . . . . . . . 545
Syntax for mqAddByteString . . . . . . . 545
Parameters for mqAddByteString. . . . . . 546
Usage notes for mqAddByteString . . . . . 547
C language invocation for mqAddByteString 547
Visual Basic invocation for mqAddByteString 547

mqAddByteStringFilter . . . . . . . . . . 547
Syntax for mqAddByteStringFilter . . . . . 547
Parameters for mqAddByteStringFilter . . . . 547
Usage notes for mqAddByteStringFilter . . . 549
C language invocation for
mqAddByteStringFilter . . . . . . . . . 549
Visual Basic invocation for
mqAddByteStringFilter . . . . . . . . . 549

mqAddInquiry . . . . . . . . . . . . . 549
Syntax for mqAddInquiry . . . . . . . . 549
Parameters for mqAddInquiry. . . . . . . 550
Usage notes for mqAddInquiry . . . . . . 550
C language invocation for mqAddInquiry . . . 550
Visual Basic invocation for mqAddInquiry . . 551

Supported INQUIRE command codes . . . . 551
mqAddInteger . . . . . . . . . . . . . 551

Syntax for mqAddInteger . . . . . . . . 551
Parameters for mqAddInteger . . . . . . . 551
Usage notes for mqAddInteger . . . . . . 552
C language invocation for mqAddInteger . . . 552
Visual Basic invocation for mqAddInteger . . . 553

mqAddInteger64 . . . . . . . . . . . . 553
Syntax for mqAddInteger64 . . . . . . . 553
Parameters for mqAddInteger64 . . . . . . 553
Usage notes for mqAddInteger64 . . . . . . 554
C language invocation for mqAddInteger64 . . 554
Visual Basic invocation for mqAddInteger64 . . 554

mqAddIntegerFilter . . . . . . . . . . . 554
Syntax for mqAddIntegerFilter . . . . . . 554
Parameters for mqAddIntegerFilter . . . . . 555
Usage notes for mqAddIntegerFilter . . . . . 556
C language invocation for mqAddIntegerFilter 556
Visual Basic invocation for mqAddIntegerFilter 556

mqAddString . . . . . . . . . . . . . 556
Syntax for mqAddString. . . . . . . . . 556
Parameters for mqAddString . . . . . . . 556
Usage notes for mqAddString . . . . . . . 558
C language invocation for mqAddString . . . 558
Visual Basic invocation for mqAddString . . . 558

mqAddStringFilter . . . . . . . . . . . 558
Syntax for mqAddStringFilter . . . . . . . 558
Parameters for mqAddStringFilter . . . . . 558
Usage notes for mqAddStringFilter . . . . . 560
C language invocation for mqAddStringFilter 560
Visual Basic invocation for mqAddStringFilter 560

mqBagToBuffer . . . . . . . . . . . . . 560
Syntax for mqBagToBuffer . . . . . . . . 560
Parameters for mqBagToBuffer . . . . . . 561
Usage notes for mqBagToBuffer . . . . . . 562
C language invocation for mqBagToBuffer . . . 562
Visual Basic invocation for mqBagToBuffer . . 562

mqBufferToBag . . . . . . . . . . . . . 563
Syntax for mqBufferToBag . . . . . . . . 563
Parameters for mqBufferToBag . . . . . . 563
Usage notes for mqBufferToBag . . . . . . 564
C language invocation for mqBufferToBag . . . 564
Visual Basic invocation for mqBufferToBag . . 564

mqClearBag . . . . . . . . . . . . . . 564
Syntax for mqClearBag . . . . . . . . . 564
Parameters for mqClearBag. . . . . . . . 564
Usage notes for mqClearBag . . . . . . . 565
C language invocation for mqClearBag . . . . 565
Visual Basic invocation for mqClearBag . . . 565

mqCountItems . . . . . . . . . . . . . 565
Syntax for mqCountItems . . . . . . . . 565
Parameters for mqCountItems . . . . . . . 565
Usage notes for mqCountItems . . . . . . 566
C language invocation for mqCountItems . . . 566
Visual Basic invocation for mqCountItems. . . 566

mqCreateBag . . . . . . . . . . . . . 567
Syntax for mqCreateBag . . . . . . . . . 567
Parameters for mqCreateBag . . . . . . . 567
Usage notes for mqCreateBag . . . . . . . 570
C language invocation for mqCreateBag . . . 570
Visual Basic invocation for mqCreateBag . . . 570

viii WebSphere MQ: Programmable Command Formats and Administration Interface



mqDeleteBag . . . . . . . . . . . . . 571
Syntax for mqDeleteBag . . . . . . . . . 571
Parameters for mqDeleteBag . . . . . . . 571
Usage notes for mqDeleteBag . . . . . . . 571
C language invocation for mqDeleteBag . . . 571
Visual Basic invocation for mqDeleteBag . . . 571

mqDeleteItem . . . . . . . . . . . . . 572
Syntax for mqDeleteItem . . . . . . . . 572
Parameters for mqDeleteItem . . . . . . . 572
Usage notes for mqDeleteItem. . . . . . . 573
C language invocation for mqDeleteItem . . . 574
Visual Basic invocation for mqDeleteItem . . . 574

mqExecute . . . . . . . . . . . . . . 574
Syntax for mqExecute . . . . . . . . . 574
Parameters for mqExecute . . . . . . . . 574
Usage notes for mqExecute . . . . . . . . 577
C language invocation for mqExecute . . . . 577
Visual Basic invocation for mqExecute . . . . 578

mqGetBag . . . . . . . . . . . . . . 578
Syntax for mqGetBag . . . . . . . . . . 578
Parameters for mqGetBag . . . . . . . . 578
Usage notes for mqGetBag . . . . . . . . 580
C language invocation for mqGetBag . . . . 580
Visual Basic invocation for mqGetBag . . . . 580

mqInquireBag . . . . . . . . . . . . . 580
Syntax for mqInquireBag . . . . . . . . 580
Parameters for mqInquireBag . . . . . . . 580
C language invocation for mqInquireBag . . . 582
Visual Basic invocation for mqInquireBag . . . 582

mqInquireByteString . . . . . . . . . . . 583
Syntax for mqInquireByteString . . . . . . 583
Parameters for mqInquireByteString . . . . . 583
C language invocation for mqInquireByteString 585
Visual Basic invocation for mqInquireByteString 585

mqInquireByteStringFilter . . . . . . . . . 585
Syntax for mqInquireByteStringFilter . . . . 585
Parameters for mqInquireByteStringFilter . . . 586
C language invocation for
mqInquireByteStringFilter . . . . . . . . 588
Visual Basic invocation for
mqInquireByteStringFilter . . . . . . . . 588

mqInquireInteger . . . . . . . . . . . . 588
Syntax for mqInquireInteger . . . . . . . 588
Parameters for mqInquireInteger . . . . . . 589
C language invocation for mqInquireInteger . . 590
Visual Basic invocation for mqInquireInteger 590

mqInquireInteger64 . . . . . . . . . . . 591
Syntax for mqInquireInteger64 . . . . . . 591
Parameters for mqInquireInteger64 . . . . . 591
C language invocation for mqInquireInteger64 592
Visual Basic invocation for mqInquireInteger64 593

mqInquireIntegerFilter . . . . . . . . . . 593
Syntax for mqInquireIntegerFilter . . . . . 593
Parameters for mqInquireIntegerFilter . . . . 593
C language invocation for
mqInquireIntegerFilter . . . . . . . . . 595
Visual Basic invocation for
mqInquireIntegerFilter . . . . . . . . . 595

mqInquireItemInfo . . . . . . . . . . . 595
Syntax for mqInquireItemInfo . . . . . . . 595
Parameters for mqInquireItemInfo . . . . . 595

C language invocation for mqInquireItemInfo 597
Visual Basic invocation for mqInquireItemInfo 598

mqInquireString . . . . . . . . . . . . 598
Syntax for mqInquireString . . . . . . . . 598
Parameters for mqInquireString . . . . . . 598
C language invocation for mqInquireString . . 600
Visual Basic invocation for mqInquireString . . 601

mqInquireStringFilter. . . . . . . . . . . 601
Syntax for mqInquireStringFilter . . . . . . 601
Parameters for mqInquireStringFilter . . . . 601
C language invocation for mqInquireStringFilter 603
Visual Basic invocation for
mqInquireStringFilter. . . . . . . . . . 604

mqPad . . . . . . . . . . . . . . . 604
Syntax for mqPad . . . . . . . . . . . 604
Parameters for mqPad . . . . . . . . . 604
Usage notes for mqPad . . . . . . . . . 605
C language invocation for mqPad . . . . . 605

mqPutBag . . . . . . . . . . . . . . 605
Syntax for mqPutBag . . . . . . . . . . 605
Parameters for mqPutBag . . . . . . . . 605
C language invocation for mqPutBag . . . . 607
Visual Basic invocation for mqPutBag . . . . 607

mqSetByteString . . . . . . . . . . . . 607
Syntax for mqSetByteString. . . . . . . . 607
Parameters for mqSetByteString . . . . . . 607
C language invocation for mqSetByteString . . 609
Visual Basic invocation for mqSetByteString . . 609

mqSetByteStringFilter . . . . . . . . . . 610
Syntax for mqSetByteStringFilter . . . . . . 610
Parameters for mqSetByteStringFilter . . . . 610
C language invocation for mqSetByteStringFilter 612
Visual Basic invocation for
mqSetByteStringFilter . . . . . . . . . 612

mqSetInteger . . . . . . . . . . . . . 613
Syntax for mqSetInteger . . . . . . . . . 613
Parameters for mqSetInteger . . . . . . . 613
C language invocation for mqSetInteger . . . 615
Visual Basic invocation for mqSetInteger . . . 615

mqSetInteger64 . . . . . . . . . . . . . 615
Syntax for mqSetInteger64 . . . . . . . . 615
Parameters for mqSetInteger64 . . . . . . 615
C language invocation for mqSetInteger64. . . 617
Visual Basic invocation for mqSetInteger64 . . 617

mqSetIntegerFilter . . . . . . . . . . . . 617
Syntax for mqSetIntegerFilter . . . . . . . 617
Parameters for mqSetIntegerFilter . . . . . 618
C language invocation for mqSetIntegerFilter 619
Visual Basic invocation for mqSetIntegerFilter 620

mqSetString . . . . . . . . . . . . . . 620
Syntax for mqSetString . . . . . . . . . 620
Parameters for mqSetString. . . . . . . . 620
Usage notes for mqSetString . . . . . . . 622
C language invocation for mqSetString . . . . 622
Visual Basic invocation for mqSetString . . . 623

mqSetStringFilter . . . . . . . . . . . . 623
Syntax for mqSetStringFilter . . . . . . . 623
Parameters for mqSetStringFilter . . . . . . 623
Usage notes for mqSetStringFilter . . . . . 625
C language invocation for mqSetStringFilter . . 625
Visual Basic invocation for mqSetStringFilter 626

Contents ix



mqTrim . . . . . . . . . . . . . . . 626
Syntax for mqTrim . . . . . . . . . . 626
Parameters for mqTrim . . . . . . . . . 626
Usage notes for mqTrim . . . . . . . . . 627
C language invocation for mqTrim . . . . . 627

mqTruncateBag . . . . . . . . . . . . . 627
Syntax for mqTruncateBag . . . . . . . . 627
Parameters for mqTruncateBag . . . . . . 627
Usage notes for mqTruncateBag . . . . . . 628
C language invocation for mqTruncateBag. . . 628
Visual Basic invocation for mqTruncateBag . . 628

MQAI Selectors . . . . . . . . . . . . 628
User selectors . . . . . . . . . . . . 629
System selectors . . . . . . . . . . . 629

Chapter 11. Examples of using the
MQAI . . . . . . . . . . . . . . . 631
Creating a local queue (amqsaicq.c) . . . . . . 631
Displaying events using an event monitor
(amqsaiem.c) . . . . . . . . . . . . . 635

Inquire channel objects (amqsaicl.c) . . . . . . 644
Inquiring about queues and printing information
(amqsailq.c) . . . . . . . . . . . . . . 650

Chapter 12. Advanced topics. . . . . 655
Indexing . . . . . . . . . . . . . . . 655
Data conversion . . . . . . . . . . . . 656
Use of the message descriptor . . . . . . . . 657

Part 3. Appendixes . . . . . . . . 659

Notices . . . . . . . . . . . . . . 661

Index . . . . . . . . . . . . . . . 665

Sending your comments to IBM . . . 689

x WebSphere MQ: Programmable Command Formats and Administration Interface

||



Figures

1. Hierarchy of MQAI concepts . . . . . . 524
2. How the MQAI administers WebSphere MQ 525
3. Adding data items . . . . . . . . . . 529
4. Modifying a single data item . . . . . . 530
5. Modifying all data items . . . . . . . . 531
6. Deleting a single data item . . . . . . . 532
7. Deleting all data items . . . . . . . . 532
8. Truncating a bag . . . . . . . . . . 533

9. Nesting . . . . . . . . . . . . . 535
10. Using mqExecute to create a local queue 536
11. Using mqExecute to inquire about queue

attributes . . . . . . . . . . . . . 537
12. Converting bags to PCF messages. . . . . 539
13. Converting PCF messages to bag form 539
14. Indexing . . . . . . . . . . . . . 655

© Copyright IBM Corp. 2002, 2009 xi



xii WebSphere MQ: Programmable Command Formats and Administration Interface



Tables

1. Windows,HP OpenVMS Alpha, NP NonStop
Server, and UNIX systems - object authorities . 16

2. MQIACF_COMMAND_INFO values . . . . 22
3. Change, Copy, Create Channel parameters 37
4. CipherSpecs that can be used with WebSphere

MQ SSL support . . . . . . . . . . . 62
5. ChannelDisposition and CommandScope for

Inquire Channel Status, Current . . . . . 227
6. ChannelDisposition and CommandScope for

Inquire Channel Status, Short . . . . . . 228
7. ChannelDisposition and CommandScope for

Inquire Channel Status, Saved . . . . . . 228
8. Inquire Queue command, queue attributes 300
9. ChannelDisposition and CommandScope for

PING CHANNEL . . . . . . . . . . 423

10. ChannelDisposition and CommandScope for
RESET CHANNEL. . . . . . . . . . 434

11. ChannelDisposition and CommandScope for
RESOLVE CHANNEL . . . . . . . . 442

12. ChannelDisposition and CommandScope for
START CHANNEL. . . . . . . . . . 459

13. ChannelDisposition and CommandScope for
STOP CHANNEL . . . . . . . . . . 466

14. CCSID processing . . . . . . . . . . 656
15. PCF command type . . . . . . . . . 657
16. Format and MsgType parameters of the

MQMD . . . . . . . . . . . . . 657
17. Message descriptor values . . . . . . . 658

© Copyright IBM Corp. 2002, 2009 xiii



xiv WebSphere MQ: Programmable Command Formats and Administration Interface



Part 1. Programmable Command Formats

© Copyright IBM Corp. 2002, 2009 1



2 WebSphere MQ: Programmable Command Formats and Administration Interface



Chapter 1. Introduction to Programmable Command Formats

This topic introduces WebSphere® MQ Programmable Command Formats (PCFs)
and their relationship to other parts of the WebSphere MQ products. It includes:
v “The problem PCF commands solve”
v “What PCFs are” on page 4
v “Other administration interfaces” on page 4
v “The WebSphere MQ Administration Interface (MQAI)” on page 5

The Programmable Command Formats described in this book are supported by:
v IBM® WebSphere MQ for AIX®

v IBM WebSphere MQ for HP-UX
v IBM WebSphere MQ for i5/OS®

v IBM WebSphere MQ for Linux®

v IBM WebSphere MQ for Solaris
v IBM WebSphere MQ for Windows®

v IBM WebSphere MQ for z/OS®

v IBM MQSeries® for Compaq NonStop Kernel, V5.1
v IBM WebSphere MQ for HP OpenVMS, V5.3

The problem PCF commands solve

The administration of distributed networks can become very complex. The
problems of administration will continue to grow as networks increase in size and
complexity.

Examples of administration specific to messaging and queuing include:
v Resource management.

For example, queue creation and deletion.
v Performance monitoring.

For example, maximum queue depth or message rate.
v Control.

For example, tuning queue parameters such as maximum queue depth,
maximum message length, and enabling and disabling queues.

v Message routing.
Definition of alternative routes through a network.

WebSphere MQ PCF commands can be used to simplify queue manager
administration and other network administration. PCF commands allow you to use
a single application to perform network administration from a single queue
manager within the network.

© Copyright IBM Corp. 2002, 2009 3



What PCFs are

PCFs define command and reply messages that can be exchanged between a
program and any queue manager (that supports PCFs) in a network. You can use
PCF commands in a systems management application program for administration
of WebSphere MQ objects: authentication information objects, channels, channel
listeners, namelists, process definitions, queue managers, queues, services, and
storage classes. The application can operate from a single point in the network to
communicate command and reply information with any queue manager, local or
remote, via the local queue manager.

Each queue manager has an administration queue with a standard queue name
and your application can send PCF command messages to that queue. Each queue
manager also has a command server to service the command messages from the
administration queue. PCF command messages can therefore be processed by any
queue manager in the network and the reply data can be returned to your
application, using your specified reply queue. PCF commands and reply messages
are sent and received using the normal Message Queue Interface (MQI).

Other administration interfaces

Administration of WebSphere MQ objects can be carried out in other ways.

WebSphere MQ for i5/OS

In addition to PCFs, there are two further administration interfaces:

i5/OS Control Language (CL)

This can be used to issue administration commands to WebSphere MQ for i5/OS.
They can be issued either at the command line or by writing a CL program. These
commands perform similar functions to PCF commands, but the format is
completely different. CL commands are designed exclusively for servers and CL
responses are designed to be human-readable, whereas PCF commands are
platform independent and both command and response formats are intended for
program use.

WebSphere MQ Commands (MQSC)

These provide a uniform method of issuing commands across WebSphere MQ
platforms. The general format of the commands is shown in the WebSphere MQ
Script (MQSC) Command Reference manual.

To issue the commands on an i5/OS server, create a list of commands in a Script
file, and then run the file using the STRMQMMQSC command.

MQSC responses are designed to be human readable, whereas PCF command and
response formats are intended for program use.

Note: MQSC responses to commands issued from a script file are returned in a
spool file.

4 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|



WebSphere MQ for z/OS

In addition to PCFs, WebSphere MQ for z/OS supports the WebSphere MQ
commands (MQSC). With z/OS these commands can be entered from the z/OS
console, or sent to the system command input queue. More information about
issuing the commands is given in the WebSphere MQ Script (MQSC) Command
Reference manual, and in the WebSphere MQ for z/OS System Administration
Guide.

MQSeries for Compaq NonStop Kernel, V5.1

In addition to PCFs, there are three further administrative interfaces:
v WebSphere MQ commands (MQSC)
v Control commands
v Message Queue Management (MQM) facility

MQSeries for Compaq NonStop Kernel, V5.1 provides a panel interface for some
of the functions.

WebSphere MQ for Windows, UNIX systems and HP OpenVMS

In addition to PCFs, there are three further administrative interfaces:

WebSphere MQ commands (MQSC)

You can use the MQSC as single commands issued at the Windows, or UNIX®

system command line. To issue more complicated, or multiple commands, the
MQSC can be built into a file that you run from the Windows, or UNIX system
command line. MQSC can be sent to a remote queue manager. For full details see
the WebSphere MQ Script (MQSC) Command Reference manual.

Control commands

WebSphere MQ for Windows, and UNIX systems provides another type of
command for some of the functions. These are the control commands that you issue
at the system command line. Reference material for these commands is contained
in the WebSphere MQ System Administration Guide manual.

WebSphere MQ Explorer - WebSphere MQ for Windows and
WebSphere MQ for Linux (x86 platform)

The WebSphere MQ Explorer is an Eclipse-based application that provides a
graphical user interface for controlling resources in a network. For full details see
the WebSphere MQ System Administration Guide manual.

The WebSphere MQ Administration Interface (MQAI)

In addition to the methods described in “Other administration interfaces” on page
4, WebSphere MQ for Windows, AIX, i5/OS, Linux, HP-UX, and Solaris support
the WebSphere MQ Administration Interface (MQAI).

The MQAI is a programming interface to WebSphere MQ that gives you an
alternative to the MQI, for sending and receiving PCFs. The MQAI uses data bags
which allow you to handle properties (or parameters) of objects more easily than
using PCFs directly via the MQI.

Chapter 1. Introduction to Programmable Command Formats 5



The MQAI provides easier programming access to PCF messages by passing
parameters into the data bag, so that only one statement is required for each
structure. This removes the need for the programmer to handle arrays and allocate
storage, and provides some isolation from the details of PCF.

The MQAI administers WebSphere MQ by sending PCF messages to the command
server and waiting for a response.

The MQAI is described in the second section of this manual. See the WebSphere
MQ Using Java book for a description of a component object model interface to the
MQAI.

6 WebSphere MQ: Programmable Command Formats and Administration Interface



Chapter 2. Using Programmable Command Formats

This topic describes how to use the PCFs in a systems management application
program for WebSphere MQ remote administration. The topic includes:
v “PCF command messages”
v “Responses” on page 9
v “Extended responses” on page 11
v “Rules for naming WebSphere MQ objects” on page 13
v “Authority checking for PCF commands” on page 14

PCF command messages

Each command and its parameters are sent as a separate command message
containing a PCF header followed by a number of parameter structures (see
“MQCFH - PCF header” on page 478). The PCF header identifies the command
and the number of parameter structures that follow in the same message. Each
parameter structure provides a parameter to the command.

Replies to the commands, generated by the command server, have a similar
structure. There is a PCF header, followed by a number of parameter structures.
Replies can consist of more than one message but commands always consist of one
message only.

On platforms other than z/OS, the queue to which the PCF commands are sent is
always called the SYSTEM.ADMIN.COMMAND.QUEUE. On z/OS, commands are
sent to SYSTEM.COMMAND.INPUT, although
SYSTEM.ADMIN.COMMAND.QUEUE can be an alias for it.The command server
servicing this queue sends the replies to the queue defined by the ReplyToQ and
ReplyToQMgr fields in the message descriptor of the command message.

How to issue PCF command messages

Use the normal Message Queue Interface (MQI) calls, MQPUT, MQGET and so on,
to put and retrieve PCF command and response messages to and from their
respective queues.

Note to users

Ensure that the command server is running on the target queue manager for the
PCF command to process on that queue manager.

For a list of supplied header files, see the WebSphere MQ Constants manual.

Message descriptor for a PCF command

The WebSphere MQ message descriptor is fully documented in the WebSphere MQ
Application Programming Guide manual.

A PCF command message contains the following fields in the message descriptor:

© Copyright IBM Corp. 2002, 2009 7



Report
Any valid value, as required.

MsgType
This must be MQMT_REQUEST to indicate a message requiring a response.

Expiry
Any valid value, as required.

Feedback
Set to MQFB_NONE

Encoding
If you are sending to i5/OS, Windows or UNIX systems, set this field to the
encoding used for the message data; conversion will be performed if necessary.

CodedCharSetId
If you are sending to i5/OS, Windows, or UNIX systems, set this field to the
coded character-set identifier used for the message data; conversion will be
performed if necessary.

Format
Set to MQFMT_ADMIN.

Priority
Any valid value, as required.

Persistence
Any valid value, as required.

MsgId
The sending application may specify any value, or MQMI_NONE can be
specified to request the queue manager to generate a unique message
identifier.

CorrelId
The sending application may specify any value, or MQCI_NONE can be
specified to indicate no correlation identifier.

ReplyToQ
The name of the queue to receive the response.

ReplyToQMgr
The name of the queue manager for the response (or blank).

Message context fields
These can be set to any valid values, as required. Normally the Put message
option MQPMO_DEFAULT_CONTEXT is used to set the message context
fields to the default values.

If you are using a version-2 MQMD structure, you must set the following
additional fields:

GroupId
Set to MQGI_NONE

MsgSeqNumber
Set to 1

Offset
Set to 0

MsgFlags
Set to MQMF_NONE

8 WebSphere MQ: Programmable Command Formats and Administration Interface



OriginalLength
Set to MQOL_UNDEFINED

Sending user data

The PCF structures can also be used to send user-defined message data. In this
case the message descriptor Format field should be set to MQFMT_PCF.

Responses

In response to each command, the command server generates one or more
response messages. A response message has a similar format to a command
message; the PCF header has the same command identifier value as the command
to which it is a response (see “MQCFH - PCF header” on page 478 for details). The
message identifier and correlation identifier are set according to the report options
of the request.

If the PCF header type of the command message is MQCFT_COMMAND,
standard responses only are generated. Such commands are supported on all
platforms except z/OS. Older applications will not support PCF on z/OS; the
WebSphere MQ Windows Explorer is one such application (however, the Version
6.0 or later WebSphere MQ Explorer does support PCF on z/OS).

If the PCF header type of the command message is MQCFT_COMMAND_XR,
either extended or standard responses are generated. Such commands are
supported on z/OS and some other platforms. Commands issued on z/OS
generate only extended responses. On other platforms, either type of response may
be generated.

If a single command specifies a generic object name, a separate response is
returned in its own message for each matching object. For the purpose of response
generation, a single command with a generic name is treated as multiple
individual commands (except for the control field MQCFC_LAST or
MQCFC_NOT_LAST). Otherwise, one command message generates one response
message.

Certain PCF responses might return a structure even when it is not requested. This
is shown in the definition of the response (Chapter 3, “Definitions of the
Programmable Command Formats,” on page 21) as always returned. The reason
that, for these responses, it is necessary to name the objects in the response to
identify which object the data applies.

Message descriptor for a response

A response message has the following fields in the message descriptor:

MsgType
This is MQMT_REPLY.

MsgId
This is generated by the queue manager.

CorrelId
This is generated according to the report options of the command message.

Format
This is MQFMT_ADMIN.

Chapter 2. Using Programmable Command Formats 9

|



Encoding
Set to MQENC_NATIVE.

CodedCharSetId
Set to MQCCSI_Q_MGR.

Persistence
The same as in the command message.

Priority
The same as in the command message.

The response is generated with MQPMO_PASS_IDENTITY_CONTEXT.

Standard responses

If the PCF header type of the command message is MQCFT_COMMAND,
standard responses only are generated. Such commands are supported on all
platforms except z/OS.

There are three types of standard response:
v OK response
v Error response
v Data response

OK response

This consists of a message starting with a command format header, with a
CompCode field of MQCC_OK or MQCC_WARNING.

For MQCC_OK, the Reason is MQRC_NONE.

For MQCC_WARNING, the Reason identifies the nature of the warning. In this
case the command format header may be followed by one or more warning
parameter structures appropriate to this reason code.

In either case, for an inquire command further parameter structures might follow
as described below.

Error response

If the command has an error, one or more error response messages are sent (more
than one might be sent even for a command that would normally have only a
single response message). These error response messages have MQCFC_LAST or
MQCFC_NOT_LAST set as appropriate.

Each such message starts with a response format header, with a CompCode value of
MQCC_FAILED and a Reason field that identifies the particular error. In general
each message describes a different error. In addition, each message has either zero
or one (never more than one) error parameter structures following the header. This
parameter structure, if there is one, is an MQCFIN structure, with a Parameter field
containing one of the following:
v MQIACF_PARAMETER_ID

The Value field in the structure is the parameter identifier of the parameter that
was in error (for example, MQCA_Q_NAME).

10 WebSphere MQ: Programmable Command Formats and Administration Interface



v MQIACF_ERROR_ID
This is used with a Reason value (in the command format header) of
MQRC_UNEXPECTED_ERROR. The Value field in the MQCFIN structure is the
unexpected reason code received by the command server.

v MQIACF_SELECTOR
This occurs if a list structure (MQCFIL) sent with the command contains a
duplicate selector or one that is not valid. The Reason field in the command
format header identifies the error, and the Value field in the MQCFIN structure
is the parameter value in the MQCFIL structure of the command that was in
error.

v MQIACF_ERROR_OFFSET
This occurs when there is a data compare error on the Ping Channel command.
The Value field in the structure is the offset of the Ping Channel compare error.

v MQIA_CODED_CHAR_SET_ID
This occurs when the coded character-set identifier in the message descriptor of
the incoming PCF command message does not match that of the target queue
manager. The Value field in the structure is the coded character-set identifier of
the queue manager.

The last (or only) error response message is a summary response, with a CompCode
field of MQCC_FAILED, and a Reason field of MQRCCF_COMMAND_FAILED.
This message has no parameter structure following the header.

Data response

This consists of an OK response (as described above) to an inquire command. The
OK response is followed by additional structures containing the requested data as
described in Chapter 3, “Definitions of the Programmable Command Formats,” on
page 21.

Applications should not depend upon these additional parameter structures being
returned in any particular order.

Extended responses

Commands issued on z/OS generate extended responses only. There are three
types of extended response:
v Message response, with type MQCFT_XR_MSG
v Item response, with type MQCFT_XR_ITEM
v Summary response, with type MQCFT_XR_SUMMARY

Each command may generate one, or more, sets of responses. Each set of responses
comprises one or more messages, numbered sequentially from 1 in the
MsgSeqNumber field of the PCF header. The Control field of the last (or only)
response in each set has the value MQCFC_LAST. For all other responses in the
set, this value is MQCFC_NOT_LAST.

Any response may include one, or more, optional MQCFBS structures in which the
Parameter field is set to MQBACF_RESPONSE_SET, the value being a response set
identifier. Identifiers are unique and identify the set of responses which contain the
response. For every set of responses, there is an MQCFBS structure that identifies
it.

Chapter 2. Using Programmable Command Formats 11



Extended responses have at least two parameter structures:
v An MQCFBS structure with the Parameter field set to MQBACF_RESPONSE_ID.

The value in this field is the identifier of the set of responses to which the
response belongs. The identifier in the first set is arbitrary. In subsequent sets,
the identifier is one previously notified in an MQBACF_RESPONSE_SET
structure.

v An MQCFST structure with the Parameter field set to
MQCACF_RESPONSE_Q_MGR_NAME, the value being the name of the queue
manager from which the set of responses come.

Many responses have additional parameter structures, and these are described in
“Extended responses to Inquire commands,” “Extended responses to commands
other than Inquire,” and “Extended responses to commands using
CommandScope” on page 13.

You cannot determine in advance how many responses there will be in a set other
than by getting responses until one with MQCFC_LAST is found. Neither can you
determine in advance how many sets of responses there will be as any set may
include MQBACF_RESPONSE_SET structures to indicate that additional sets will
be generated.

Extended responses to Inquire commands

Inquire commands normally generate an item response (type MQCFT_XR_ITEM)
for each item found that matches the specified search criteria. The item response
has a CompCode field in the header with a value of MQCC_OK, and a Reason field
with a value of MQRC_NONE. It also includes other parameter structures
describing the item and its requested attributes, as described in “Definitions of
Programmable Command Formats” on page 30.

If an item is in error, the CompCode field in the header has a value of
MQCC_FAILED and the Reason field identifies the particular error. Additional
parameter structures are included to identify the item.

Certain Inquire commands may return general (not name-specific) message
responses in addition to the item responses. These are informational, or error,
responses of the type MQCFT__XR_MSG.

If the Inquire command succeeds, there may, optionally, be a summary response
(type MQCFT_XR_SUMMARY), with a CompCode value of MQCC_OK, and a
Reason field value of MQRC_NONE.

If the Inquire command fails, item responses may be returned, and there may
optionally be a summary response (type MQCFT_XR_SUMMARY), with a
CompCode value of MQCC_FAILED, and a Reason field value of
MQRCCF_COMMAND_FAILED.

Extended responses to commands other than Inquire

Successful commands generate message responses in which the CompCode field in
the header has a value of MQCC_OK, and the Reason field has a value of
MQRC_NONE. There will always be at least one message; it may be informational
(MQCFT_XR_MSG) or a summary (MQCFT_XR_SUMMARY). There may
optionally be additional informational (type MQCFT_XR_MSG) messages. Each

12 WebSphere MQ: Programmable Command Formats and Administration Interface



informational message may include a number of additional parameter structures
with information about the command; see the individual command descriptions for
the structures that may occur.

Commands that fail generate error message responses (type MQCFT_XR_MSG), in
which the CompCode field in the header has a value of MQCC_FAILED and the
Reason field identifies the particular error. Each message may include a number of
additional parameter structures with information about the error: see the
individual error descriptions for the structures that may occur. Informational
message responses may be generated. There may, optionally, be a summary
response (MQCFT_XR_SUMMARY), with a CompCode value of MQCC_FAILED, and
a Reason field value of MQRCCF_COMMAND_FAILED.

Extended responses to commands using CommandScope

If a command uses the CommandScope parameter, or causes a command using the
CommandScope parameter to be generated, there is an initial response set from the
queue manager where the command was received. Then a separate set, or sets, of
responses is generated for each queue manager to which the command is directed
(as if multiple individual commands were issued). Finally, there is a response set
from the receiving queue manager which includes an overall summary response
(type MQCFT_XR_SUMMARY). The MQCACF_RESPONSE_Q_MGR_NAME
parameter structure identifies the queue manager that generates each set.

The initial response set has the following additional parameter structures:
v MQIACF_COMMAND_INFO (MQCFIN). Possible values in this structure are

MQCMDI_CMDSCOPE_ACCEPTED or MQCMDI_CMDSCOPE_GENERATED.
v MQIACF_CMDSCOPE_Q_MGR_COUNT (MQCFIN). This indicates the number

of queue managers to which the command is sent.

Rules for naming WebSphere MQ objects

WebSphere MQ authentication information, channel, client channel, listener,
namelist, process, queue, service and storage class objects exist in separate object
name spaces, and so objects from each type can all have the same name. However,
an object cannot have the same name as any other object in the same name space.
(For example, a local queue cannot have the same name as a model queue.) Names
in WebSphere MQ are case sensitive.

The character set that can be used for naming all WebSphere MQ objects is as
follows:
v Uppercase A–Z
v Lowercase a–z (however, on systems using EBCDIC Katakana you cannot use

lowercase characters, and there are also restrictions on the use of lowercase
letters for z/OS console support)

v Numerics 0–9
v Period (.)
v Forward slash (/)
v Underscore (_)
v Percent sign (%). The percent sign (%) is a special character to RACF®. If you are

using RACF as the external security manager for WebSphere MQ for z/OS, you
should not use % in object names. If you do, these names are not included in
any security checks when RACF generic profiles are used.

Chapter 2. Using Programmable Command Formats 13



Note:

1. Leading or embedded blanks are not allowed.
2. Avoid using names with leading or trailing underscores, because they cannot

be handled by the WebSphere MQ for z/OS operations and control panels.
3. Any name that is less than the full field length can be padded to the right with

blanks. All short names that are returned by the queue manager are always
padded to the right with blanks.

4. Any structure to the names (for example, the use of the period or underscore)
is not significant to the queue manager.

Name lengths

Queues can have names up to 48 characters long. Processes, namelists, clusters,
and authentication information objects can have names up to 48 characters long.
Channels can have names up to 20 characters long. Storage classes can have names
up to 8 characters long. CF structures can have names up to 12 characters long.

Reserved object names

Names that start with “SYSTEM.” are reserved for objects defined by the queue
manager. You can use the Change commands to change these object definitions to
suit your installation. The names that are defined for WebSphere MQ are listed in
full in the WebSphere MQ Script (MQSC) Command Reference manual.

Generic values

Wherever a parameter can have a generic value, it is entered ending with an
asterisk (*), for example ABC*. A generic value means ’all values beginning with’;
so ABC* means ’all values beginning with ABC’.

The question mark (?) and colon (:) are not allowed in generic values.

Authority checking for PCF commands

When a PCF command is processed, the UserIdentifier from the message
descriptor in the command message is used for the required WebSphere MQ object
authority checks. The checks are performed on the system on which the command
is being processed; therefore this user ID must exist on the target system and have
the required authorities to process the command. If the message has come from a
remote system, one way of achieving this is to have a matching user ID on both
the local and remote systems.

Authority checking is implemented differently on each platform.

WebSphere MQ for i5/OS

In order to process any PCF command, the user ID must have dsp authority for the
WebSphere MQ object on the target system.

In addition, WebSphere MQ object authority checks are performed for certain PCF
commands, as shown in Table 1 on page 16.

In most cases these are the same checks as those performed by the equivalent
WebSphere MQ CL commands issued on a local system. See the WebSphere MQ

14 WebSphere MQ: Programmable Command Formats and Administration Interface



for i5/OS System Administration Guide book for more information on the
mapping from WebSphere MQ authorities to i5/OS system authorities, and the
authority requirements for the WebSphere MQ CL commands. Details of security
concerning exits are given in the WebSphere MQ Intercommunication manual.

To process any of the following commands the user ID must be a member of the
group profile QMQMADM:
v Ping Channel
v Change Channel
v Copy Channel
v Create Channel
v Delete Channel
v Reset Channel
v Resolve Channel
v Start Channel
v Stop Channel
v Start Channel Initiator
v Start Channel Listener

WebSphere MQ for Windows, and UNIX systems

In order to process any PCF command, the user ID must have dsp authority for the
queue manager object on the target system. In addition, WebSphere MQ object
authority checks are performed for certain PCF commands, as shown in Table 1 on
page 16.

To process any of the following commands the user ID must belong to group
mqm.

Note: For Windows only, the user ID can belong to group Administrators or group
mqm.
v Change Channel
v Copy Channel
v Create Channel
v Delete Channel
v Ping Channel
v Reset Channel
v Start Channel
v Stop Channel
v Start Channel Initiator
v Start Channel Listener
v Resolve Channel
v Reset Cluster
v Refresh Cluster
v Suspend Queue Manager
v Resume Queue Manager

Chapter 2. Using Programmable Command Formats 15



WebSphere MQ for HP OpenVMS and Compaq NonStop
Kernel

In order to process any PCF command, the user ID must have dsp authority for the
queue manager object on the target system. In addition, WebSphere MQ object
authority checks are performed for certain PCF commands, as shown in Table 1.

To process any of the following commands the user ID must belong to group
mqm:
v Change Channel
v Copy Channel
v Create Channel
v Delete Channel
v Ping Channel
v Reset Channel
v Start Channel
v Stop Channel
v Start Channel Initiator
v Start Channel Listener
v Resolve Channel
v Reset Cluster
v Refresh Cluster
v Suspend Queue Manager
v Resume Queue Manager

Table 1. Windows,HP OpenVMS Alpha, NP NonStop Server, and UNIX systems - object
authorities

Command WebSphere MQ object authority Class authority (for
object type)

Change Authentication
Information

dsp and chg n/a

Change Channel dsp and chg n/a

Change Channel Listener dsp and chg n/a

Change Client Connection
Channel

dsp and chg n/a

Change Namelist dsp and chg n/a

Change Process dsp and chg n/a

Change Queue dsp and chg n/a

Change Queue Manager chg see Note 3 n/a

Change Service dsp and chg n/a

Clear Queue clr n/a

Copy Authentication
Information

dsp crt

Copy Authentication
Information (Replace) see
Note 1

from: dsp to: chg crt

Copy Channel dsp crt

16 WebSphere MQ: Programmable Command Formats and Administration Interface

|||

|||

|
|
||

|

|

|

|

|||

|||



Table 1. Windows,HP OpenVMS Alpha, NP NonStop Server, and UNIX systems - object
authorities (continued)

Command WebSphere MQ object authority Class authority (for
object type)

Copy Channel (Replace) see
Note 1

from: dsp to: chg crt

Copy Channel Listener dsp crt

Copy Channel Listener
(Replace) see Note 1

from: dsp to: chg crt

Copy Client Connection
Channel

dsp crt

Copy Client Connection
Channel (Replace) see Note 1

from: dsp to: chg crt

Copy Namelist dsp crt

Copy Namelist (Replace) see
Note 1

from: dsp to: dsp and chg crt

Copy Process dsp crt

Copy Process (Replace) see
Note 1

from: dsp to: chg crt

Copy Queue dsp crt

Copy Queue (Replace) see
Note 1

from: dsp to: dsp and chg crt

Create Authentication
Information

(system default authentication
information) dsp

crt

Create Authentication
Information (Replace) see
Note 1

(system default authentication
information) dsp to: chg

crt

Create Channel (system default channel) dsp crt

Create Channel (Replace) see
Note 1

(system default channel ) dsp to: chg crt

Create Channel Listener (system default listener) dsp crt

Create Channel Listener
(Replace) see Note 1

(system default listener ) dsp to: chg crt

Create Client Connection
Channel

(system default channel) dsp crt

Create Client Connection
Channel (Replace) see Note 1

(system default channel ) dsp to: chg crt

Create Namelist (system default namelist) dsp crt

Create Namelist (Replace) see
Note 1

(system default namelist) dsp to: dsp
and chg

crt

Create Process (system default process) dsp crt

Create Process (Replace) see
Note 1

(system default process) dsp to: chg crt

Create Queue (system default queue) dsp crt

Create Queue (Replace) see
Note 1

(system default queue) dsp to: dsp
and chg

crt

Create Service (system default queue) dsp crt

Chapter 2. Using Programmable Command Formats 17

|
|
||

|||

|
|
||

|
|
||

|
|
||

|

|

|||

|
|
||

|||

|
|
||

|
|
||

|
|
||

|
|

|
|

|||



Table 1. Windows,HP OpenVMS Alpha, NP NonStop Server, and UNIX systems - object
authorities (continued)

Command WebSphere MQ object authority Class authority (for
object type)

Create Service (Replace) see
Note 1

(system default queue) dsp to: chg crt

Delete Authentication
Information

dsp and dlt n/a

Delete Authority Record (queue manager object) chg see Note 4 see Note 4

Delete Channel dsp and dlt n/a

Delete Channel Listener dsp and dlt n/a

Delete Client Connection
Channel

dsp and dlt n/a

Delete Namelist dsp and dlt n/a

Delete Process dsp and dlt n/a

Delete Queue dsp and dlt n/a

Delete Service dsp and dlt n/a

Inquire Authentication
Information

dsp n/a

Inquire Authority Records see Note 4 see Note 4

Inquire Channel dsp n/a

Inquire Channel Listener dsp n/a

Inquire Client Connection
Channel

dsp n/a

Inquire Namelist dsp n/a

Inquire Process dsp n/a

Inquire Queue dsp n/a

Inquire Queue Manager see note 3 n/a

Inquire Service dsp n/a

Ping Channel ctrl n/a

Ping Queue Manager see note 3 n/a

Reset Channel ctrlx n/a

Reset Queue Statistics dsp and chg n/a

Resolve Channel ctrlx n/a

Set Authority Record (queue manager object) chg see Note 4 see Note 4

Start Channel ctrl n/a

Stop Channel ctrl n/a

Escape see Note 2 see Note 2

18 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
||

|

|||

|||

|||

|
|
||

|

|

|

|||

|||

|||

|||

|
|
||

|||

|

|||

|||

|||

|||

|||

|||

|||

|||



Table 1. Windows,HP OpenVMS Alpha, NP NonStop Server, and UNIX systems - object
authorities (continued)

Command WebSphere MQ object authority Class authority (for
object type)

Note:

1. This applies if the object to be replaced does already exist, otherwise the authority
check is as for Create or Copy without Replace.

2. The required authority is determined by the MQSC command defined by the escape
text, and it will be equivalent to one of the above.

3. In order to process any PCF command, the user ID must have dsp authority for the
queue manager object on the target system.

4. This PCF command will be authorized unless the command server has been started
with the -a parameter. By default the command server starts when the Queue Manager
is started, and without the -a parameter. See the System Administration Guide for
further information.

WebSphere MQ also supplies some channel security exit points so that you can
supply your own user exit programs for security checking. Details are given in the
WebSphere MQ Intercommunication manual.

WebSphere MQ for z/OS

See the WebSphere MQ for z/OS System Setup Guide for information about
authority checking on z/OS.

Chapter 2. Using Programmable Command Formats 19

|
|

|
|
|
|



20 WebSphere MQ: Programmable Command Formats and Administration Interface



Chapter 3. Definitions of the Programmable Command
Formats

The topic discusses:
v “How the definitions are shown”
v “PCF commands and responses in groups” on page 26

Following is the reference material for all Programmable Command Formats
(PCFs) of commands and responses.

How the definitions are shown

For each PCF command or response there is a description of what the command or
response does, giving the command identifier in parentheses. See the WebSphere
MQ Constants manual for all values of the command identifier. Each command
description starts with a table that identifies the platforms on which the command
is valid. For additional, more detailed, usage notes for each command, see the
corresponding command description in the WebSphere MQ Script (MQSC)
Command Reference manual.

WebSphere MQ products, other than WebSphere MQ for z/OS, can use the
WebSphere MQ Administration Interface (MQAI), which provides a simplified way
for applications written in the C and Visual Basic programming language to build
and send PCF commands. For information on the MQAI see the second section of
this manual.

On Windows, you can use the Microsoft® Active Directory Services Interface
(ADSI), as well as PCFs, to inquire about and set parameters. For information on
using Microsoft ADSI see the WebSphere MQ Using the Component Object Model
Interface book.

Commands

The required parameters and the optional parameters are listed. On platforms other
than z/OS, the parameters must occur in the order:
1. All required parameters, in the order stated, followed by
2. Optional parameters as required, in any order, unless specifically noted in the

PCF definition.

On z/OS, the parameters can be in any order.

Responses

The response data attribute is always returned whether it is requested or not. This
parameter is required to identify, uniquely, the object when there is a possibility of
multiple reply messages being returned.

The other attributes shown are returned if requested as optional parameters on the
command. The response data attributes are not returned in a defined order.

© Copyright IBM Corp. 2002, 2009 21



Parameters and response data

Each parameter name is followed by its structure name in parentheses (details are
given in Chapter 4, “Structures for commands and responses,” on page 477). The
parameter identifier is given at the beginning of the description.

Constants

The values of constants used by PCF commands and responses are in the
WebSphere MQ Constants manual.

Informational messages

On z/OS, a number of command responses return a structure,
MQIACF_COMMAND_INFO, with values that provide information about the
command.

Table 2. MQIACF_COMMAND_INFO values

MQIACF_COMMAND_INFO value Meaning

MQCMDI_CMDSCOPE_ACCEPTED A command that specified CommandScope was
entered. It has been passed to the requested
queue manager(s) for processing

MQCMDI_CMDSCOPE_GENERATED A command that specified CommandScope was
generated in response to the command
originally entered

MQCMDI_CMDSCOPE_COMPLETED Processing for the command that specified
CommandScope - either entered or generated
by another command - has completed
successfully on all requested queue
managers

MQCMDI_QSG_DISP_COMPLETED Processing for the command that refers to an
object with the indicated disposition has
completed successfully

MQCMDI_COMMAND_ACCEPTED Initial processing for the command has
completed successfully. The command
requires further action by the channel
initiator, for which a request has been
queued. Messages reporting the success or
otherwise of the action will be sent to the
command issuer subsequently

MQCMDI_CLUSTER_REQUEST_QUEUED Initial processing for the command has
completed successfully. The command
requires further action by the cluster
repository manager, for which a request has
been queued

MQCMDI_CHANNEL_INIT_STARTED A Start Channel Initiator command has been
issued and the channel initiator address
space has been started successfully

MQCMDI_RECOVER_STARTED The queue manager has successfully started
a task to process the Recover CF Structure
command for the named structure

MQCMDI_BACKUP_STARTED The queue manager has successfully started
a task to process the Backup CF Structure
command for the named structure

22 WebSphere MQ: Programmable Command Formats and Administration Interface



Table 2. MQIACF_COMMAND_INFO values (continued)

MQIACF_COMMAND_INFO value Meaning

MQCMDI_RECOVER_COMPLETED The named CF structure has been recovered
successfully. The structure is available for
use again

MQCMDI_SEC_TIMER_ZERO The Change Security command was entered
with the SecurityInterval attribute set to 0.
This means that no user timeouts will occur

MQCMDI_REFRESH_CONFIGURATION A Change Queue Manager command has
been issued that enables configuration
events. Event messages need to be generated
to ensure that the configuration information
is complete and up-to-date

MQCMDI_IMS_BRIDGE_SUSPENDED The MQ-IMS Bridge facility is suspended.

MQCMDI_DB2_SUSPENDED The connection to DB2® is suspended

MQCMDI_DB2_OBSOLETE_MSGS Obsolete DB2 messages exist in the
queue-sharing group

Error codes

At the end of most command format definitions there is a list of error codes that
might be returned by that command.

Error codes applicable to all commands

In addition to those listed under each command format, any command might
return the following in the response format header (descriptions of the MQRC_*
error codes are given in the WebSphere MQ Messages and WebSphere MQ for
z/OS Messages and Codes manuals ):

Reason (MQLONG)
The value can be:

MQRC_NONE
(0, X’000’) No reason to report.

MQRC_MSG_TOO_BIG_FOR_Q
(2030, X’7EE’) Message length greater than maximum for queue.

MQRC_CONNECTION_BROKEN
(2009, X’7D9’) Connection to queue manager lost.

MQRC_NOT_AUTHORIZED
(2035, X’7F3’) Not authorized for access.

MQRC_UNKNOWN_OBJECT_NAME
(2067, X’813’) Attribute selector not valid.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X’817’) Insufficient storage available.

MQRC_UNKNOWN_OBJECT_NAME
(2085, X’825’) Unknown object name.

MQRCCF_ATTR_VALUE_ERROR
Attribute value not valid.

Chapter 3. Definitions of the Programmable Command Formats 23



MQRCCF_CFBF_FILTER_VAL_LEN_ERROR
Filter value length not valid.

MQRCCF_CFBF_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFBF_OPERATOR_ERROR
Operator error.

MQRCCF_CFBF_PARM_ID_ERROR
Parameter identifier not valid.

MQRCCF_CFBS_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFBS_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFBS_PARM_ID_ERROR
Parameter identifier not valid.

MQRCCF_CFBS_STRING_LENGTH_ERROR
String length not valid.

MQRCCF_CFGR_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFGR_PARM_COUNT_ERROR
Parameter count not valid.

MQRCCF_CFGR_PARM_ID_ERROR
Parameter identifier not valid.

MQRCCF_CFH_COMMAND_ERROR
Command identifier not valid.

MQRCCF_CFH_CONTROL_ERROR
Control option not valid.

MQRCCF_CFH_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFH_MSG_SEQ_NUMBER_ERR
Message sequence number not valid.

MQRCCF_CFH_PARM_COUNT_ERROR
Parameter count not valid.

MQRCCF_CFH_TYPE_ERROR
Type not valid.

MQRCCF_CFH_VERSION_ERROR
Structure version number is not valid.

MQRCCF_CFIF_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIF_OPERATOR_ERROR
Operator error.

MQRCCF_CFIF_PARM_ID_ERROR
Parameter identifier not valid.

MQRCCF_CFIL_COUNT_ERROR
Count of parameter values not valid.

24 WebSphere MQ: Programmable Command Formats and Administration Interface



MQRCCF_CFIL_DUPLICATE_VALUE
Duplicate parameter.

MQRCCF_CFIL_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIL_PARM_ID_ERROR
Parameter identifier not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier not valid.

MQRCCF_CFSF_FILTER_VAL_LEN_ERROR
Filter value length not valid.

MQRCCF_CFSF_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFSF_OPERATOR_ERROR
Operator error.

MQRCCF_CFSF_PARM_ID_ERROR
Parameter identifier not valid.

MQRCCF_CFSL_COUNT_ERROR
Count of parameter values not valid.

MQRCCF_CFSL_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFSL_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFSL_PARM_ID_ERROR
Parameter identifier not valid.

MQRCCF_CFSL_STRING_LENGTH_ERROR
String length value not valid.

MQRCCF_CFSL_TOTAL_LENGTH_ERROR
Total string length error.

MQRCCF_CFST_CONFLICTING_PARM
Conflicting parameters.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier not valid.

MQRCCF_CFST_STRING_LENGTH_ERROR
String length value not valid.

MQRCCF_COMMAND_FAILED
Command failed.

Chapter 3. Definitions of the Programmable Command Formats 25



MQRCCF_ENCODING_ERROR
Encoding error.

MQRCCF_MD_FORMAT_ERROR
Format not valid.

MQRCCF_MSG_SEQ_NUMBER_ERROR
Message sequence number not valid.

MQRCCF_MSG_TRUNCATED
Message truncated.

MQRCCF_MSG_LENGTH_ERROR
Message length not valid.

MQRCCF_OBJECT_NAME_ERROR
Object name not valid.

MQRCCF_OBJECT_OPEN
Object is open.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_PARM_SYNTAX_ERROR
Syntax error found in parameter.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

PCF commands and responses in groups

The commands and data responses are given in alphabetic order in this book.

They can be usefully grouped as follows:

Authentication Information commands
v “Change, Copy, and Create Authentication Information Object” on page 31
v “Delete Authentication Information Object” on page 147
v “Inquire Authentication Information Object” on page 169
v “Inquire Authentication Information Object Names” on page 172

Authority Record commands
v “Delete Authority Record” on page 148
v “Inquire Authority Records” on page 175
v “Inquire Entity Authority” on page 271
v “Set Authority Record” on page 450

CF commands
v “Backup CF Structure” on page 30
v “Change, Copy, and Create CF Structure” on page 34

26 WebSphere MQ: Programmable Command Formats and Administration Interface



v “Delete CF Structure” on page 150
v “Inquire CF Structure” on page 183
v “Inquire CF Structure Names” on page 185
v “Inquire CF Structure Status” on page 186
v “Recover CF Structure” on page 425

Channel commands
v “Change, Copy, and Create Channel” on page 37
v “Change, Copy, and Create Channel Listener” on page 68
v “Delete Channel” on page 151
v “Delete Channel Listener” on page 153
v “Inquire Channel” on page 191
v “Inquire Channel Initiator” on page 209
v “Inquire Channel Listener” on page 212
v “Inquire Channel Listener Status” on page 217
v “Inquire Channel Names” on page 222
v “Inquire Channel Status” on page 225
v “Ping Channel” on page 421
v “Reset Channel” on page 432
v “Resolve Channel” on page 440
v “Start Channel” on page 457
v “Start Channel Initiator” on page 461
v “Start Channel Listener” on page 462
v “Stop Channel” on page 465
v “Stop Channel Initiator” on page 469
v “Stop Channel Listener” on page 470

Cluster commands
v “Inquire Cluster Queue Manager” on page 246
v “Refresh Cluster” on page 426
v “Reset Cluster” on page 435
v “Resume Queue Manager Cluster” on page 443
v “Suspend Queue Manager Cluster” on page 474

Connection commands
v “Inquire Connection” on page 259
v “Stop Connection” on page 472

Escape command
v “Escape” on page 163

Namelist commands
v “Change, Copy, and Create Namelist” on page 71
v “Delete Namelist” on page 153
v “Inquire Namelist” on page 283
v “Inquire Namelist Names” on page 287

Chapter 3. Definitions of the Programmable Command Formats 27



Process commands
v “Change, Copy, and Create Process” on page 74
v “Delete Process” on page 154
v “Inquire Process” on page 289
v “Inquire Process Names” on page 293

Queue commands
v “Change, Copy, and Create Queue” on page 79
v “Clear Queue” on page 145
v “Delete Queue” on page 156
v “Inquire Queue” on page 298
v “Inquire Queue Names” on page 351
v “Move Queue” on page 419
v “Reset Queue Statistics” on page 438

Queue Manager commands
v “Change Queue Manager” on page 98
v “Inquire Queue Manager” on page 318
v “Inquire Queue Manager Status” on page 348
v “Ping Queue Manager” on page 425
v “Refresh Queue Manager” on page 428
v “Reset Queue Manager” on page 436

Security commands
v “Change Security” on page 125
v “Inquire Security” on page 366
v “Refresh Security” on page 430
v “Reverify Security” on page 444

Service commands
v “Change, Copy, and Create Service” on page 126
v “Delete Service” on page 158
v “Inquire Service” on page 369
v “Inquire Service Status” on page 372
v “Start Service” on page 464
v “Stop Service” on page 472

Storage class commands
v “Change, Copy, and Create Storage Class” on page 128
v “Delete Storage Class” on page 159
v “Inquire Storage Class” on page 376
v “Inquire Storage Class Names” on page 380

28 WebSphere MQ: Programmable Command Formats and Administration Interface



System commands
v “Inquire Archive” on page 164
v “Set Archive” on page 445
v “Inquire Group” on page 276
v “Inquire Log” on page 279
v “Set Log” on page 454
v “Inquire System” on page 393
v “Set System” on page 456
v “Inquire Usage” on page 416

Data responses to commands
v “Escape (Response)” on page 163
v “Inquire Archive (Response)” on page 165
v “Inquire Authentication Information Object (Response)” on page 171
v “Inquire Authentication Information Object Names (Response)” on page 174
v “Inquire Authority Records (Response)” on page 178
v “Inquire CF Structure (Response)” on page 184
v “Inquire CF Structure Names (Response)” on page 186
v “Inquire CF Structure Status (Response)” on page 188
v “Inquire Channel (Response)” on page 199
v “Inquire Channel Initiator (Response)” on page 210
v “Inquire Channel Listener (Response)” on page 215
v “Inquire Channel Listener Status (Response)” on page 219
v “Inquire Channel Names (Response)” on page 224
v “Inquire Channel Status (Response)” on page 236
v “Inquire Cluster Queue Manager (Response)” on page 251
v “Inquire Connection (Response)” on page 264
v “Inquire Entity Authority (Response)” on page 273
v “Inquire Group (Response)” on page 277
v “Inquire Log (Response)” on page 279
v “Inquire Namelist (Response)” on page 285
v “Inquire Namelist Names (Response)” on page 288
v “Inquire Process (Response)” on page 291
v “Inquire Process Names (Response)” on page 294
v “Inquire Queue (Response)” on page 307
v “Inquire Queue Manager (Response)” on page 327
v “Inquire Queue Manager Status (Response)” on page 349
v “Inquire Queue Names (Response)” on page 353
v “Reset Queue Statistics (Response)” on page 439
v “Inquire Security (Response)” on page 367
v “Inquire Service (Response)” on page 370
v “Inquire Service Status (Response)” on page 374
v “Inquire Storage Class (Response)” on page 378
v “Inquire Storage Class Names (Response)” on page 381
v “Inquire System (Response)” on page 394

Chapter 3. Definitions of the Programmable Command Formats 29



v “Inquire Usage (Response)” on page 417

Definitions of Programmable Command Formats

Reference information for the Programmable Command Formats (PCFs) of
commands and responses sent between a WebSphere MQ systems management
application program and a WebSphere MQ queue manager now follows.

Backup CF Structure

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Backup CF Structure (MQCMD_BACKUP_CF_STRUC) command initiates a CF
application structure backup.

Note: This command is supported only on z/OS when the queue manager is a
member of a queue-sharing group.

Required parameters
CFStrucName

Optional parameters:
CommandScope, ExcludeInterval

Required parameters
CFStrucName (MQCFST)

The name of the CF application structure to be backed up (parameter
identifier: MQCA_CF_STRUC_NAME).

The maximum length is MQ_CF_STRUC_NAME_LENGTH.

Optional parameters
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

The maximum length is MQ_QSG_NAME_LENGTH.

ExcludeInterval (MQCFIN)
Exclude interval (parameter identifier: MQIACF_EXCLUDE_INTERVAL).

Specifies a value in seconds that defines the length of time immediately before
the current time where the backup starts. The backup excludes backing-up the

30 WebSphere MQ: Programmable Command Formats and Administration Interface



last n seconds activity. For example, if 30 seconds is specified, the backup does
not include the last 30 seconds worth of activity for this application-structure.

The value must be in the range 30 through 600. The default value is 30.

Change, Copy, and Create Authentication Information Object

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Change authentication information (MQCMD_CHANGE_AUTH_INFO)
command changes the specified attributes in an authentication information object.
For any optional parameters that are omitted, the value does not change.

The Copy authentication information (MQCMD_COPY_AUTH_INFO) command
creates a new authentication information object using, for attributes not specified in
the command, the attribute values of an existing authentication information object.

The Create authentication information (MQCMD_CREATE_AUTH_INFO)
command creates an authentication information object. Any attributes that are not
defined explicitly are set to the default values on the destination queue manager. A
system default authentication information object exists and default values are taken
from it.

Required parameters (Change authentication information):
AuthInfoName

Required parameters (Copy authentication information):
FromAuthInfoName, ToAuthInfoName, AuthInfoType

Required parameters (Create authentication information):
AuthInfoName, AuthInfoType, AuthInfoConnName

Optional parameters:
AuthInfoConnName, AuthInfoDesc, CommandScope, LDAPPassword,
LDAPUserName, QSGDisposition

Required parameters (Change authentication information)
AuthInfoName (MQCFST)

The authentication information object name (parameter identifier:
MQCA_AUTH_INFO_NAME).

The maximum length of the string is MQ_AUTH_INFO_NAME_LENGTH.

Required parameters (Copy authentication information)
FromAuthInfoName (MQCFST)

The name of the authentication information object definition to be copied from
(parameter identifier: MQCACF_FROM_AUTH_INFO_NAME).

On z/OS, the queue manager searches for an object with the name you specify
and a disposition of MQQSGD_Q_MGR or MQQSGD_COPY to copy from.
This parameter is ignored if a value of MQQSGD_COPY is specified for
QSGDisposition. In this case, an object with the name specified by
ToAuthInfoName and the disposition of MQQSGD_GROUP is searched for to
copy from.

Chapter 3. Definitions of the Programmable Command Formats 31



The maximum length of the string is MQ_AUTH_INFO_NAME_LENGTH.

ToAuthInfoName (MQCFST)
The name of the authentication information object to copy to (parameter
identifier: MQCACF_TO_AUTH_INFO_NAME).

The maximum length of the string is MQ_AUTH_INFO_NAME_LENGTH.

AuthInfoType (MQCFIN)
The type of authentication information object (parameter identifier:
MQIA_AUTH_INFO_TYPE).

The value can be:

MQAIT_CRL_LDAP
This defines this authentication information object as specifying
Certificate Revocation Lists that are held on the LDAP. Please see the
WebSphere MQ Security book for more information.

Required parameters (Create authentication information)
AuthInfoName (MQCFST)

Authentication information object name (parameter identifier:
MQCA_AUTH_INFO_NAME).

The maximum length of the string is MQ_AUTH_INFO_NAME_LENGTH.

AuthInfoType (MQCFIN)
The type of authentication information object (parameter identifier:
MQIA_AUTH_INFO_TYPE).

The value can be:

MQAIT_CRL_LDAP
This defines this authentication information object as specifying
Certificate Revocation Lists that are held on the LDAP. Please see the
WebSphere MQ Security book for more information.

AuthInfoConnName (MQCFST)
The connection name of the authentication information object (parameter
identifier: MQCA_AUTH_INFO_CONN_NAME).

On platforms other than z/OS, the maximum length is
MQ_AUTH_INFO_CONN_NAME_LENGTH. On z/OS, it is
MQ_LOCAL_ADDRESS_LENGTH.

Optional parameters (Change, Copy, and Create
Authentication Information Object)

AuthInfoConnName (MQCFST)
The connection name of the authentication information object (parameter
identifier: MQCA_AUTH_INFO_CONN_NAME).

On platforms other than z/OS, the maximum length is
MQ_AUTH_INFO_CONN_NAME_LENGTH. On z/OS, it is
MQ_LOCAL_ADDRESS_LENGTH.

AuthInfoDesc (MQCFST)
The description of the authentication information object(parameter identifier:
MQCA_AUTH_INFO_DESC).

The maximum length is MQ_AUTH_INFO_DESC_LENGTH.

32 WebSphere MQ: Programmable Command Formats and Administration Interface



CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

LDAPPassword (MQCFST)
The LDAP password (parameter identifier: MQCA_LDAP_PASSWORD).

The maximum length is MQ_LDAP_PASSWORD_LENGTH.

LDAPUserName (MQCFST)
The LDAP user name (parameter identifier: MQCA_LDAP_USER_NAME).

On platforms other than z/OS, the maximum length is
MQ_DISTINGUISHED_NAME_LENGTH. On z/OS, it is
MQ_SHORT_DNAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OSonly.

Specifies the disposition of the object to which you are applying the command
(that is, where it is defined and how it behaves). The value can be:

QSGDisposition Change Copy, Create

MQQSGD_COPY The object definition resides on the page set
of the queue manager that executes the
command. The object was defined using a
command that had the parameter
MQQSGD_COPY. Any object residing in the
shared repository, or any object defined
using a command that had the parameter
MQQSGD_Q_MGR, is not affected by this
command.

The object is defined on the page set of the
queue manager that executes the command
using the MQQSGD_GROUP object of the
same name as the ToAuthInfoName object (for
Copy) or the AuthInfoName object (for
Create).

Chapter 3. Definitions of the Programmable Command Formats 33



QSGDisposition Change Copy, Create

MQQSGD_GROUP The object definition resides in the shared
repository. The object was defined using a
command that had the parameter
MQQSGD_GROUP. Any object residing on
the page set of the queue manager that
executes the command (except a local copy
of the object) is not affected by this
command.

If the command is successful, the following
MQSC command is generated and sent to all
active queue managers in the queue-sharing
group so that they refresh local copies on
page set zero:

DEFINE AUTHINFO(name)
REPLACE QSGDISP(COPY)

The Change for the group object takes effect
regardless of whether the generated
command with QSGDISP(COPY) fails.

The object definition resides in the shared
repository. This is allowed only if the queue
manager is in a queue-sharing group.

If the definition is successful, the following
MQSC command is generated and sent to all
active queue managers in the queue-sharing
group so that they make or refresh local
copies on page set zero:

DEFINE AUTHINFO(name)
REPLACE QSGDISP(COPY)

The Copy or Create for the group object
takes effect regardless of whether the
generated command with QSGDISP(COPY)
fails.

MQQSGD_PRIVATE The object resides on the page set of the
queue manager that executes the command,
and was defined with MQQSGD_Q_MGR, or
MQQSGD_COPY. Any object residing in the
shared repository is unaffected.

Not permitted.

MQQSGD_Q_MGR The object definition resides on the page set
of the queue manager that executes the
command. The object was defined using a
command that had the parameter
MQQSGD_Q_MGR. Any object residing in
the shared repository, or any local copy of
such an object, is not affected by this
command. This is the default value.

The object is defined on the page set of the
queue manager that executes the command.
This is the default value.

Replace (MQCFIN)
Replace attributes (parameter identifier: MQIACF_REPLACE).

If an Authentication Information object with the same name as AuthInfoName
or ToAuthInfoName already exists, this specifies whether it is to be replaced.
The value can be:

MQRP_YES
Replace existing definition

MQRP_NO
Do not replace existing definition

Change, Copy, and Create CF Structure

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

Note: These commands are supported only on z/OS when the queue manager is a
member of a queue-sharing group.

34 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|
|

|
|

|
|



The Change CF Structure (MQCMD_CHANGE_CF_STRUC) command changes the
specified attributes in a CF application structure. For any optional parameters that
are omitted, the value does not change.

The Copy CF Structure (MQCMD_COPY_CF_STRUC) command creates a new CF
application structure using, for attributes not specified in the command, the
attribute values of an existing CF application structure.

The Create CF Structure (MQCMD_CREATE_CF_STRUC) command creates a CF
application structure. Any attributes that are not defined explicitly are set to the
default values on the destination queue manager.

Required parameters (Change and Create CF Structure):
CFStrucName

Required parameters (Copy CF Structure):
FromCFStrucName, ToCFStrucName

Optional parameters:
CFLevel, CFStrucDesc, Recovery, Replace

Required parameters (Change and Create CF Structure)
CFStrucName (MQCFST)

The name of the CF application structure whose backup and recovery
parameters you want to define (parameter identifier:
MQCA_CF_STRUC_NAME).

The maximum length of the string is MQ_CF_STRUC_NAME_LENGTH.

Required parameters (Copy CF Structure)
FromCFStrucName (MQCFST)

The name of the CF application structure to be copied from (parameter
identifier: MQCACF_FROM_CF_STRUC_NAME).

The maximum length of the string is MQ_CF_STRUC_NAME_LENGTH.

ToCFStrucName (MQCFST)
The name of the CF application structure to copy to (parameter identifier:
MQCACF_TO_CF_STRUC_NAME).

The maximum length of the string is MQ_CF_STRUC_NAME_LENGTH.

Optional parameters (Change, Copy, and Create CF Structure)
CFLevel (MQCFIN)

The functional capability level for this CF application structure (parameter
identifier: MQIA_CF_LEVEL).

Specifies the functional capability level for the CF application structure. The
value can be:

1 A CF structure that can be ″auto-created″ by a queue manager at
command level 520.

2 A CF structure at command level 520 that can only be created or
deleted by a queue manager at command level 530 or greater.

3

Chapter 3. Definitions of the Programmable Command Formats 35



A CF structure at command level 530. This CFLevel is required if you
want to use persistent messages on shared queues, or for message
grouping, or both. This is the default CFLevel for queue managers at
command level 600.

You can only increase the value of CFLevel to 3 if all the queue
managers in the queue-sharing group are at command level 530 or
greater - this is to ensure that there are no latent command level 520
connections to queues referencing the CF structure.

You can only decrease the value of CFLevel from 3 if all the queues
that reference the CF structure are both empty (have no messages or
uncommitted activity) and closed.

4

This CFLevel supports all the CFLevel (3) functions. CFLevel (4) allows
queues defined with CF structures at this level to have messages with
a length greater than 63 KB.

Only a queue manager with a command level of 600 can connect to a
CF structure at CFLevel (4).

You can only increase the value of CFLevel to 4 if all the queue
managers in the queue-sharing group are at command level 600 or
greater.

You can only decrease the value of CFLevel from 4 if all the queues
that reference the CF structure are both empty (have no messages or
uncommitted activity) and closed.

CFStrucDesc (MQCFST)
The description of the CF structure (parameter identifier:
MQCA_CF_STRUC_DESC).

The maximum length is MQ_CF_STRUC_DESC_LENGTH.

Recovery (MQCFIN)
Recovery (parameter identifier: MQIA_CF_RECOVER).

Specifies whether CF recovery is supported for the application structure. The
value can be:

MQCFR_YES
Recovery is supported.

MQCFR_NO
Recovery is not supported.

Replace (MQCFIN)
Replace attributes (parameter identifier: MQIACF_REPLACE).

If a CF structure definition with the same name as ToCFStrucName already
exists, this specifies whether it is to be replaced. The value can be:

MQRP_YES
Replace existing definition.

MQRP_NO
Do not replace existing definition.

36 WebSphere MQ: Programmable Command Formats and Administration Interface



Change, Copy, and Create Channel

List of parameters for the Change, Copy, and Create Channel commands showing
to which type, or types, of channel they apply.

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Change Channel (MQCMD_CHANGE_CHANNEL) command changes the
specified attributes in a channel definition. For any optional parameters that are
omitted, the value does not change.

The Copy Channel (MQCMD_COPY_CHANNEL) command creates a new channel
definition using, for attributes not specified in the command, the attribute values
of an existing channel definition.

The Create Channel (MQCMD_CREATE_CHANNEL) command creates a
WebSphere MQ channel definition. Any attributes that are not defined explicitly
are set to the default values on the destination queue manager. If a system default
channel exists for the type of channel being created, the default values are taken
from there.

Table 3 shows the parameters that are applicable to each type of channel.

Table 3. Change, Copy, Create Channel parameters

Parameter Sender Server Receiver Requester Client
conn

Server
conn

Cluster
sender

Cluster
receiver

BatchHeartBeat X X X X

BatchInterval X X X X

BatchSize X X X X X X

ChannelDesc X X X X X X X X

ChannelMonitoring X X X X X X X

ChannelStatistics X X X X X X

ChannelName¹ X X X X X X X X

ChannelType³ X X X X X X X X

ClientChannelWeight X

ClusterName X X

ClusterNameList X X

CLWLChannelPriority X X

CLWLChannelRank X X

CLWLChannelWeight X X

CommandScope X X X X X X X X

ConnectionAffinity X

ConnectionName X X X X X X

DataConversion X X X X X X

DefaultChannelDisposition X X X X X X X

Chapter 3. Definitions of the Programmable Command Formats 37

|
|

|||||||||

|||||||||

|||||||||



Table 3. Change, Copy, Create Channel parameters (continued)

Parameter Sender Server Receiver Requester Client
conn

Server
conn

Cluster
sender

Cluster
receiver

DiscInterval X X X X X

FromChannelName² X X X X X X X X

HeaderCompession X X X X X X X X

HeartBeatInterval X X X X X X X X

KeepAliveInterval X X X X X X X X

LocalAddress X X X X X X

LongRetryCount X X X X

LongRetryInterval X X X X

MaxInstances X

MaxInstancesPerClient X

MaxMsgLength X X X X X X X X

MCAName X X X X

MCAType X X X X X

MCAUserIdentifier X X X X X X X

MessageCompression X X X X X X X X

ModeName X X X X X X

MsgExit X X X X X X

MsgRetryCount X X X

MsgRetryExit X X X

MsgRetryInterval X X X

MsgRetryUserData X X X

MsgUserData X X X X X X

NetworkPriority X

NonPersistentMsgSpeed X X X X X X

Password X X X X X

PropertyControl X X X X

PutAuthority X X X X

QMgrName X

QSGDisposition X X X X X X X X

ReceiveExit X X X X X X X X

ReceiveUserData X X X X X X X X

Replace X X X X X X X X

SecurityExit X X X X X X X X

SecurityUserData X X X X X X X X

SendExit X X X X X X X X

SendUserData X X X X X X X X

SeqNumberWrap X X X X X X

SharingConversations X X

ShortRetryCount X X X X

38 WebSphere MQ: Programmable Command Formats and Administration Interface

||

||

|

|||||||||



Table 3. Change, Copy, Create Channel parameters (continued)

Parameter Sender Server Receiver Requester Client
conn

Server
conn

Cluster
sender

Cluster
receiver

ShortRetryInterval X X X X

SSLCipherSpec X X X X X X X X

SSLClientAuth X X X X X

SSLPeerName X X X X X X X X

ToChannelName² X X X X X X X X

TpName X X X X X X X

TransportType X X X X X X X X

UserIdentifier X X X X X

XmitQName X X

Note:

1. Required parameter on Change and Create Channel commands

2. Required parameter on Copy Channel command

3. Required parameter on Change, Create, and Copy Channel commands

Required parameters (Change, Create Channel)
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

Specifies the name of the channel definition to be changed, or created

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

This parameter is required on all types of channel; on a CLUSSDR it can be
different from on the other channel types. If your convention for naming
channels includes the name of the queue manager, you can make a CLUSSDR
definition using the +QMNAME+ construction, and WebSphere MQ substitutes the
correct repository queue manager name in place of +QMNAME+. This facility
applies to AIX, HP-UX, Linux, i5/OS, Solaris, and Windows only. See
WebSphere MQ Queue Manager Clusters for more details.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

Specifies the type of the channel being changed, copied, or created. The value
can be:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLNTCONN
Client connection.

Chapter 3. Definitions of the Programmable Command Formats 39



MQCHT_CLUSRCVR
Cluster-receiver.

MQCHT_CLUSSDR
Cluster-sender.

Required parameters (Copy Channel)
FromChannelName (MQCFST)

From channel name (parameter identifier:
MQCACF_FROM_CHANNEL_NAME).

The name of the existing channel definition that contains values for the
attributes that are not specified in this command.

On z/OS, the queue manager searches for an object with the name you specify
and a disposition of MQQSGD_Q_MGR or MQQSGD_COPY to copy from.
This parameter is ignored if a value of MQQSGD_COPY is specified for
QSGDisposition. In this case, an object with the name specified by
ToChannelName and the disposition MQQSGD_GROUP is searched for to copy
from.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

Specifies the type of the channel being changed, copied, or created. The value
can be:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLNTCONN
Client connection.

MQCHT_CLUSRCVR
Cluster-receiver.

MQCHT_CLUSSDR
Cluster-sender.

ToChannelName (MQCFST)
To channel name (parameter identifier: MQCACF_TO_CHANNEL_NAME).

The name of the new channel definition.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

Channel names must be unique; if a channel definition with this name already
exists, the value of Replace must be MQRP_YES. The channel type of the
existing channel definition must be the same as the channel type of the new
channel definition otherwise it cannot be replaced.

40 WebSphere MQ: Programmable Command Formats and Administration Interface



Optional parameters (Change, Copy and Create Channel)
This is a list of the optional parameters for the Change, Copy, and Create Channel
PCFs.

BatchHeartbeat (MQCFIN)
The batch heartbeat interval (parameter identifier: MQIACH_BATCH_HB).

Batch heartbeating allows sender-type channels to determine whether the
remote channel instance is still active, before going in-doubt. The value can be
in the range 0 – 999999. A value of 0 indicates that batch heartbeating is not to
be used. Batch heartbeat is measured in milliseconds.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

BatchInterval (MQCFIN)
Batch interval (parameter identifier: MQIACH_BATCH_INTERVAL).

This is the approximate time in milliseconds that a channel will keep a batch
open, if fewer than BatchSize messages have been transmitted in the current
batch.

If BatchInterval is greater than zero, the batch is terminated by whichever of
the following occurs first:
v BatchSize messages have been sent, or
v BatchInterval milliseconds have elapsed since the start of the batch.

If BatchInterval is zero, the batch is terminated by whichever of the following
occurs first:
v BatchSize messages have been sent, or
v the transmission queue becomes empty.

BatchInterval must be in the range 0 - 999 999 999.

This parameter applies only to channels with a ChannelType of:
MQCHT_SENDER, MQCHT_SERVER, MQCHT_CLUSSDR, or
MQCHT_CLUSRCVR.

BatchSize (MQCFIN)
Batch size (parameter identifier: MQIACH_BATCH_SIZE).

The maximum number of messages that should be sent through a channel
before a checkpoint is taken.

The batch size which is actually used is the lowest of the following:
v The BatchSize of the sending channel
v The BatchSize of the receiving channel
v The maximum number of uncommitted messages at the sending queue

manager
v The maximum number of uncommitted messages at the receiving queue

manager

The maximum number of uncommitted messages is specified by the
MaxUncommittedMsgs parameter of the Change Queue Manager command.

Specify a value in the range 1 – 9999.

This parameter is not valid for channels with a ChannelType of
MQCHT_SVRCONN or MQCHT_CLNTCONN.

Chapter 3. Definitions of the Programmable Command Formats 41



ChannelDesc (MQCFST)
Channel description (parameter identifier: MQCACH_DESC).

The maximum length of the string is MQ_CHANNEL_DESC_LENGTH.

Use characters from the character set, identified by the coded character set
identifier (CCSID) for the message queue manager on which the command is
executing, to ensure that the text is translated correctly.

ChannelMonitoring (MQCFIN)
Online monitoring data collection (parameter identifier:
MQIA_MONITORING_CHANNEL).

Specifies whether online monitoring data is to be collected and, if so, the rate
at which the data is collected. The value can be:

MQMON_OFF
Online monitoring data collection is turned off for this channel.

MQMON_Q_MGR
The value of the queue manager’s ChannelMonitoring parameter is
inherited by the channel.

MQMON_LOW
If the value of the queue manager’s ChannelMonitoring parameter is
not MQMON_NONE, online monitoring data collection is turned on,
with a low rate of data collection, for this channel.

MQMON_MEDIUM
If the value of the queue manager’s ChannelMonitoring parameter is
not MQMON_NONE, online monitoring data collection is turned on,
with a moderate rate of data collection, for this channel.

MQMON_HIGH
If the value of the queue manager’s ChannelMonitoring parameter is
not MQMON_NONE, online monitoring data collection is turned on,
with a high rate of data collection, for this channel.

ChannelStatistics (MQCFIN)
Statistics data collection (parameter identifier: MQIA_STATISTICS_CHANNEL).

Specifies whether statistics data is to be collected and, if so, the rate at which
the data is collected. The value can be:

MQMON_OFF
Statistics data collection is turned off for this channel.

MQMON_Q_MGR
The value of the queue manager’s ChannelStatistics parameter is
inherited by the channel.

MQMON_LOW
If the value of the queue manager’s ChannelStatistics parameter is
not MQMON_NONE, online monitoring data collection is turned on,
with a low rate of data collection, for this channel.

MQMON_MEDIUM
If the value of the queue manager’s ChannelStatistics parameter is
not MQMON_NONE, online monitoring data collection is turned on,
with a moderate rate of data collection, for this channel.

MQMON_HIGH
If the value of the queue manager’s ChannelStatistics parameter is

42 WebSphere MQ: Programmable Command Formats and Administration Interface



not MQMON_NONE, online monitoring data collection is turned on,
with a high rate of data collection, for this channel.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

ClientChannelWeight (MQCFIN)
Client Channel Weight (parameter identifier:
MQIACH_CLIENT_CHANNEL_WEIGHT).

The client channel weighting attribute is used so client channel definitions can
be selected at random, with the larger weightings having a higher probability
of selection, when more than one suitable definition is available.

Specify a value in the range 0 – 99. The default is 0.

This parameter is only valid for channels with a ChannelType of
MQCHT_CLNTCONN

ClusterName (MQCFST)
Cluster name (parameter identifier: MQCA_CLUSTER_NAME).

The name of the cluster to which the channel belongs.

This parameter applies only to channels with a ChannelType of:
v MQCHT_CLUSSDR
v MQCHT_CLUSRCVR

Only one of the values of ClusterName and ClusterNamelist can be nonblank;
the other must be blank.

The maximum length of the string is MQ_CLUSTER_NAME_LENGTH.

ClusterNamelist (MQCFST)
Cluster namelist (parameter identifier: MQCA_CLUSTER_NAMELIST).

The name, of the namelist, that specifies a list of clusters to which the channel
belongs.

This parameter applies only to channels with a ChannelType of:
v MQCHT_CLUSSDR
v MQCHT_CLUSRCVR

Only one of the values of ClusterName and ClusterNamelist can be nonblank;
the other must be blank.

CLWLChannelPriority (MQCFIN)
Channel priority for the purposes of cluster workload distribution (parameter
identifier: MQIACH_CLWL_CHANNEL_PRIORITY).

Specify a value in the range 0 – 9 where 0 is the lowest priority and 9 is the
highest.

This parameter applies only to channels with a ChannelType of:
v MQCHT_CLUSSDR
v MQCHT_CLUSRCVR

For more information about this parameter, see WebSphere MQ Queue
Manager Clusters.

CLWLChannelRank (MQCFIN)
Channel rank for the purposes of cluster workload distribution (parameter
identifier: MQIACH_CLWL_CHANNEL_RANK).

Chapter 3. Definitions of the Programmable Command Formats 43

|
|
|

|
|
|

|

|
|



Specify a value in the range 0 – 9 where 0 is the lowest priority and 9 is the
highest.

This parameter applies only to channels with a ChannelType of:
v MQCHT_CLUSSDR
v MQCHT_CLUSRCVR

For more information about this parameter, see WebSphere MQ Queue
Manager Clusters.

CLWLChannelWeight (MQCFIN)
Channel weighting for the purposes of cluster workload distribution
(parameter identifier: MQIACH_CLWL_CHANNEL_WEIGHT).

Specify a weighting for the channel for use in workload management. Specify
a value in the range 1 – 99 where 1 is the lowest priority and 99 is the highest.

This parameter applies only to channels with a ChannelType of:
v MQCHT_CLUSSDR
v MQCHT_CLUSRCVR

For more information about this parameter, see WebSphere MQ Queue
Manager Clusters.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

ConnectionAffinity (MQCFIN)
Channel Affinity (parameter identifier: MQIACH_CONNECTION_AFFINITY)

The channel affinity attribute specifies whether client applications that connect
multiple times using the same queue manager name, use the same client
channel. The value can be:

MQCAFTY_PREFERRED
The first connection in a process reading a CCDT creates a list of
applicable definitions based on the weighting with any zero
ClientChannelWeight definitions first in alphabetical order. Each
connection in the process attempts to connect using the first definition
in the list. If a connection is unsuccessful the next definition is used.
Unsuccessful nonzero ClientChannelWeight definitions are moved to
the end of the list. Zero ClientChannelWeight definitions remain at the
start of the list and are selected first for each connection. For C, C++
and .NET (including fully managed .NET) clients the list is updated if

44 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|



the CCDT has been modified since the list was created. Each client
process with the same hostname creates the same list.

This is the default value.

MQCAFTY_NONE
The first connection in a process reading a CCDT creates a list of
applicable definitions. All connections in a process independently select
an applicable definition based on the weighting with any applicable
zero ClientChannelWeight definitions selected first in alphabetical
order. For C, C++ and .NET (including fully managed .NET) clients the
list is updated if the CCDT has been modified since the list was
created.

This parameter is only valid for channels with a ChannelType of
MQCHT_CLNTCONN.

The maximum length is MQ_QSG_NAME_LENGTH.

ConnectionName (MQCFST)
Connection name (parameter identifier: MQCACH_CONNECTION_NAME).

On platforms other than z/OS, the maximum length of the string is
MQ_CONN_NAME_LENGTH. On z/OS, it is
MQ_LOCAL_ADDRESS_LENGTH.

Specify the name of the machine as required for the stated TransportType:
v For MQXPT_LU62 on i5/OS, and UNIX systems, specify the name of the

CPI-C communications side object. On Windows specify the CPI-C symbolic
destination name.
On z/OS, there are two forms in which to specify the value:

Logical unit name
The logical unit information for the queue manager, comprising the
logical unit name, TP name, and optional mode name. This can be
specified in one of 3 forms:

Form Example

luname IGY12355

luname/TPname IGY12345/APING

luname/TPname/modename IGY12345/APINGD/#INTER

For the first form, the TP name and mode name must be specified
for the TpName and ModeName parameters; otherwise these parameters
must be blank.

Note: For client-connection channels, only the first form is allowed.

Symbolic name
The symbolic destination name for the logical unit information for
the queue manager, as defined in the side information data set. The
TpName and ModeName parameters must be blank.

Note: For cluster-receiver channels, the side information is on the
other queue managers in the cluster. Alternatively, in this case it can
be a name that a channel auto-definition exit can resolve into the
appropriate logical unit information for the local queue manager.

Chapter 3. Definitions of the Programmable Command Formats 45

|
|

|

|
|
|
|
|
|
|
|

|
|

|



The specified or implied LU name can be that of a VTAM® generic
resources group.

v For MQXPT_TCP you can specify the host name or the network address of
the remote machine.
On z/OS, the connection name can include the IP_name of a z/OS dynamic
DNS group or a network dispatcher input port. Do not include this for
channels with a ChannelType value of MQCHT_CLUSSDR.
On a MQCHT_CLUSRCVR channel, the ConnectionName parameter is
optional. On AIX, HP-UX, Linux, i5/OS, Solaris, or Windows
MQCHT_CLUSRCVR channel, if you leave ConnectionName blank,
WebSphere MQ generates a ConnectionName for you, assuming the default
port and using the current IP address of the system.

v For MQXPT_NETBIOS specify the NetBIOS station name.
v For MQXPT_SPX specify the 4 byte network address, the 6 byte node

address, and the 2 byte socket number. These should be entered in
hexadecimal, with a period separating the network and node addresses. The
socket number should be enclosed in brackets, for example:
0a0b0c0d.804abcde23a1(5e86)

If the socket number is omitted, the WebSphere MQ default value (5e86 hex)
is assumed.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_REQUESTER, MQCHT_CLNTCONN,
MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

Note: If you are using clustering between IPv6–only and IPv4–only queue
managers, do not specify an IPv6 network address as the ConnectionName for
cluster-receiver channels. A queue manager that is capable only of IPv4
communication is unable to start a cluster sender channel definition that
specifies the ConnectionName in IPv6 hexadecimal form. Consider, instead,
using hostnames in a heterogeneous IP environment.

DataConversion (MQCFIN)
Whether sender should convert application data (parameter identifier:
MQIACH_DATA_CONVERSION).

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

The value can be:

MQCDC_NO_SENDER_CONVERSION
No conversion by sender.

MQCDC_SENDER_CONVERSION
Conversion by sender.

DefaultChannelDisposition (MQCFIN)
Intended disposition of the channel when activated or started (parameter
identifier: MQIACH_CHANNEL_DISP).

This parameter applies to z/OS only.

The value can be:

MQCHLD_PRIVATE
The intended use of the object is as a private channel.

This is the default value.

46 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|

|

|
|

|



MQCHLD_FIXSHARED
The intended use of the object is as a fixshared channel.

MQCHLD_SHARED
The intended use of the object is as a shared channel.

DiscInterval (MQCFIN)
Disconnection interval (parameter identifier: MQIACH_DISC_INTERVAL).

This defines the maximum number of seconds that the channel waits for
messages to be put on a transmission queue before terminating the channel. A
value of zero causes the message channel agent to wait indefinitely.

Specify a value in the range 0 – 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
MQCHT_SERVER, MQCHT_SVRCONN (on z/OS only), MQCHT_CLUSSDR,
or MQCHT_CLUSRCVR.

For server-connection channels on z/OS using the TCP protocol, this is the
minimum time in seconds for which the server-connection channel instance
remains active without any communication from its partner client. A value of
zero disables this disconnect processing. The server-connection inactivity
interval only applies between MQ API calls from a client, so no client is
disconnected during an extended MQGET with wait call. This attribute is
ignored for server-connection channels using protocols other than TCP.

HeaderCompression (MQCFIL)
Header data compression techniques supported by the channel (parameter
identifier: MQIACH_HDR_COMPRESSION).

The list of header data compression techniques supported by the channel. For
sender, server, cluster-sender, cluster-receiver, and client-connection channels,
the values specified are in order of preference with the first compression
technique supported by the remote end of the channel being used.

The channel’s mutually supported compression techniques are passed to the
sending channel’s message exit where the compression technique used can be
altered on a per message basis. Compression alters the data passed to send and
receive exits.

Specify one or more of:

MQCOMPRESS_NONE
No header data compression is performed. This is the default value.

MQCOMPRESS_SYSTEM
Header data compression is performed.

HeartbeatInterval (MQCFIN)
Heartbeat interval (parameter identifier: MQIACH_HB_INTERVAL).

The interpretation of this parameter depends on the channel type, as follows:
v For a channel type of MQCHT_SENDER, MQCHT_SERVER,

MQCHT_RECEIVER, MQCHT_REQUESTER, MQCHT_CLUSSDR, or
MQCHT_CLUSRCVR, this is the time in seconds between heartbeat flows
passed from the sending MCA when there are no messages on the
transmission queue. This gives the receiving MCA the opportunity to
quiesce the channel. To be useful, HeartbeatInterval should be significantly
less than DiscInterval. However, the only check is that the value is within
the permitted range.

Chapter 3. Definitions of the Programmable Command Formats 47

|
|

|
|



This type of heartbeat is supported in the following environments: AIX,
HP-UX, i5/OS, Solaris, Windows, and z/OS.

v For a channel type of MQCHT_CLNTCONN or MQCHT_SVRCONN, this is
the time in seconds between heartbeat flows passed from the server MCA
when that MCA has issued an MQGET call with the MQGMO_WAIT option
on behalf of a client application. This allows the server MCA to handle
situations where the client connection fails during an MQGET with
MQGMO_WAIT.
This type of heartbeat is supported in the following environments: AIX,
HP-UX, i5/OS, Solaris, Windows, Linux and z/OS.

The value must be in the range 0 – 999 999. A value of 0 means that no
heartbeat exchange occurs. The value that is actually used is the larger of the
values specified at the sending side and receiving side.

KeepAliveInterval (MQCFIN)
KeepAlive interval (parameter identifier: MQIACH_KEEP_ALIVE_INTERVAL).

Specifies the value passed to the communications stack for KeepAlive timing
for the channel.

For this attribute to have any effect, TCP/IP keepalive must be enabled. On
z/OS, you do this by issuing the Change Queue Manager command with a
value of MQTCPKEEP in the TCPKeepAlive parameter; if the TCPKeepAlive
queue manager parameter has a value of MQTCPKEEP_NO, the value is
ignored and the KeepAlive facility is not used. On other platforms, TCP/IP
keepalive is enabled when the KEEPALIVE=YES parameter is specified in the
TCP stanza in the distributed queuing configuration file, qm.ini, or through the
WebSphere MQ Explorer. Keepalive must also be switched on within TCP/IP
itself, using the TCP profile configuration data set.

Although this parameter is available on all platforms, its setting is
implemented only on z/OS. On platforms other than z/OS, you can access and
modify the parameter, but it is only stored and forwarded; there is no
functional implementation of the parameter. This is useful in a clustered
environment where a value set in a cluster-receiver channel definition on
Solaris, for example, flows to (and is implemented by) z/OS queue managers
that are in, or join, the cluster.

Specify either:

integer
The KeepAlive interval to be used, in seconds, in the range 0 – 99 999.
If you specify a value of 0, the value used is that specified by the
INTERVAL statement in the TCP profile configuration data set.

MQKAI_AUTO
The KeepAlive interval is calculated based upon the negotiated
heartbeat value as follows:
v If the negotiated HeartbeatInterval is greater than zero, KeepAlive

interval is set to that value plus 60 seconds.
v If the negotiated HeartbeatInterval is zero, the value used is that

specified by the INTERVAL statement in the TCP profile
configuration data set.

On platforms other than z/OS, if you need the functionality provided by the
KeepAliveInterval parameter, use the HeartBeatInterval parameter.

48 WebSphere MQ: Programmable Command Formats and Administration Interface



LocalAddress (MQCFST)
Local communications address for the channel (parameter identifier:
MQCACH_LOCAL_ADDRESS).

The maximum length of the string is MQ_LOCAL_ADDRESS_LENGTH.

The value that you specify depends on the transport type (TransportType) to be
used:

TCP/IP
The value is the optional IP address and optional port or port range to
be used for outbound TCP/IP communications. The format for this
information is as follows:
[ip-addr][(low-port[,high-port])]

where ip-addr is specified in IPv4 dotted decimal, IPv6 hexadecimal
notation, or alphanumeric form, and low-port and high-port are port
numbers enclosed in parentheses. All are optional.

All Others
The value is ignored; no error is diagnosed.

Use this parameter if you want a channel to use a particular IP address, port,
or port range for outbound communications. This is useful when a machine is
connected to multiple networks with different IP addresses.

Examples of use

Value Meaning

9.20.4.98 Channel binds to this address locally

9.20.4.98 (1000) Channel binds to this address and port 1000 locally

9.20.4.98 (1000,2000) Channel binds to this address and uses a port in
the range 1000 to 2000 locally

(1000) Channel binds to port 1000 locally

(1000,2000) Channel binds to a port in the range 1000 to 2000
locally

This parameter is valid for the following channel types:
v MQCHT_SENDER
v MQCHT_SERVER
v MQCHT_REQUESTER
v MQCHT_CLNTCONN
v MQCHT_CLUSRCVR
v MQCHT_CLUSSDR

Note:

v Do not confuse this parameter with ConnectionName. The LocalAddress
parameter specifies the characteristics of the local communications; the
ConnectionName parameter specifies how to reach a remote queue manager.

LongRetryCount (MQCFIN)
Long retry count (parameter identifier: MQIACH_LONG_RETRY).

When a sender or server channel is attempting to connect to the remote
machine, and the count specified by ShortRetryCount has been exhausted, this

Chapter 3. Definitions of the Programmable Command Formats 49



specifies the maximum number of further attempts that are made to connect to
the remote machine, at intervals specified by LongRetryInterval.

If this count is also exhausted without success, an error is logged to the
operator, and the channel is stopped. The channel must subsequently be
restarted with a command (it is not started automatically by the channel
initiator), and it then makes only one attempt to connect, as it is assumed that
the problem has now been cleared by the administrator. The retry sequence is
not carried out again until after the channel has successfully connected.

Specify a value in the range 0 – 999 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

LongRetryInterval (MQCFIN)
Long timer (parameter identifier: MQIACH_LONG_TIMER).

Specifies the long retry wait interval for a sender or server channel that is
started automatically by the channel initiator. It defines the interval in seconds
between attempts to establish a connection to the remote machine, after the
count specified by ShortRetryCount has been exhausted.

The time is approximate; zero means that another connection attempt is made
as soon as possible.

Specify a value in the range 0 – 999 999. Values exceeding this are treated as
999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

MaxInstances (MQCFIN)
Maximum number of simultaneous instances of a server-connection channel
(parameter identifier: MQIACH_MAX_INSTANCES).

Specify a value in the range 0 – 999 999 999.

The default value is 999 999 999.

A value of zero indicates that no client connections are allowed on the channel.

If the value is reduced below the number of instances of the server-connection
channel that are currently running, the running channels are not affected. This
applies even if the value is zero. However, if the value is reduced below the
number of instances of the server-connection channel that are currently
running, then new instances cannot be started until sufficient existing instances
have ceased to run.

If you do not have the Client Attachment feature installed, the attribute can be
set from zero to five only on the SYSTEM.ADMIN.SVRCONN channel. A value
greater than five is interpreted as zero without the Client Attachment feature
installed.

This parameter is valid only for channels with a ChannelType value of
MQCHT_SVRCONN.

MaxInstancesPerClient (MQCFIN)
Maximum number of simultaneous instances of a server-connection channel
that can be started from a single client (parameter identifier:
MQIACH_MAX_INSTS_PER_CLIENT). In this context, connections that
originate from the same remote network address are regarded as coming from
the same client.

50 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|

|

|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|



Specify a value in the range 0 – 999 999 999.

The default value is 999 999 999.

A value of zero indicates that no client connections are allowed on the channel.

If the value is reduced below the number of instances of the server-connection
channel that are currently running from individual clients, the running
channels are not affected. This applies even if the value is zero. However, if the
value is reduced below the number of instances of the server-connection
channel that are currently running from individual clients, new instances from
those clients cannot start until sufficient existing instances have ceased to run.

If you do not have the Client Attachment feature installed, the attribute can be
set from zero to five only on the SYSTEM.ADMIN.SVRCONN channel. A value
greater than five is interpreted as zero without the Client Attachment feature
installed.

This parameter is valid only for channels with a ChannelType value of
MQCHT_SVRCONN.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIACH_MAX_MSG_LENGTH).

Specifies the maximum message length that can be transmitted on the channel.
This is compared with the value for the remote channel and the actual
maximum is the lower of the two values.

The value zero means the maximum message length for the queue manager.

The lower limit for this parameter is 0. The maximum message length is 100
MB (104 857 600 bytes).

MCAName (MQCFST)
Message channel agent name (parameter identifier: MQCACH_MCA_NAME).

This is reserved, and if specified can be set only to blanks.

The maximum length of the string is MQ_MCA_NAME_LENGTH.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_REQUESTER, MQCHT_CLUSSDR, or
MQCHT_CLUSRCVR.

MCAType (MQCFIN)
Message channel agent type (parameter identifier: MQIACH_MCA_TYPE).

Specifies the type of the message channel agent program.

On AIX, HP-UX, i5/OS, Solaris, Windows and Linux, this parameter is valid
only for ChannelType values of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_REQUESTER, or MQCHT_CLUSSDR.

On z/OS, this parameter is valid only for a ChannelType value of
MQCHT_CLURCVR.

The value can be:

MQMCAT_PROCESS
Process.

MQMCAT_THREAD
Thread.

Chapter 3. Definitions of the Programmable Command Formats 51

|

|

|

|
|
|
|
|
|

|
|
|
|

|
|



MCAUserIdentifier (MQCFST)
Message channel agent user identifier (parameter identifier:
MQCACH_MCA_USER_ID).

If this is nonblank, it is the user identifier which is to be used by the message
channel agent for authorization to access WebSphere MQ resources, including
(if PutAuthority is MQPA_DEFAULT) authorization to put the message to the
destination queue for receiver or requester channels.

If it is blank, the message channel agent uses its default user identifier.

This user identifier can be overridden by one supplied by a channel security
exit.

This parameter is not valid for channels with a ChannelType of
MQCHT_CLNTCONN.

The maximum length of the MCA user identifier depends on the environment
in which the MCA is running. MQ_MCA_USER_ID_LENGTH gives the
maximum length for the environment for which your application is running.
MQ_MAX_MCA_USER_ID_LENGTH gives the maximum for all supported
environments.

On Windows, you can optionally qualify a user identifier with the domain
name in the following format:
user@domain

MessageCompression (MQCFIL)
Header data compression techniques supported by the channel (parameter
identifier: MQIACH_MSG_COMPRESSION). The list of message data
compression techniques supported by the channel. For sender, server,
cluster-sender, cluster-receiver, and client-connection channels, the values
specified are in order of preference with the first compression technique
supported by the remote end of the channel being used.

The channel’s mutually supported compression techniques are passed to the
sending channel’s message exit where the compression technique used can be
altered on a per message basis. Compression will alter the data passed to send
and receive exits.

Specify one or more of:

MQCOMPRESS_NONE
No message data compression is performed. This is the default value.

MQCOMPRESS_RLE
Message data compression is performed using run-length encoding.

MQCOMPRESS_ZLIBFAST
Message data compression is performed using ZLIB encoding with
speed prioritized.

MQCOMPRESS_ZLIBHIGH
Message data compression is performed using ZLIB encoding with
compression prioritized.

MQCOMPRESS_ANY
Any compression technique supported by the queue manager can be
used. This is only valid for receiver, requester, and server-connection
channels.

ModeName (MQCFST)
Mode name (parameter identifier: MQCACH_MODE_NAME).

52 WebSphere MQ: Programmable Command Formats and Administration Interface



This is the LU 6.2 mode name.

The maximum length of the string is MQ_MODE_NAME_LENGTH.
v On HP OpenVMS, i5/OS, Compaq NonStop Kernel, UNIX systems, and

Windows, this can be set only to blanks. The actual name is taken instead
from the CPI-C Communications Side Object or (on Windows) from the
CPI-C symbolic destination name properties.

This parameter is valid only for channels with a TransportType of
MQXPT_LU62. It is not valid for receiver or server-connection channels.

MsgExit (MQCFSL)
Message exit name (parameter identifier: MQCACH_MSG_EXIT_NAME).

If a nonblank name is defined, the exit is invoked immediately after a message
has been retrieved from the transmission queue. The exit is given the entire
application message and message descriptor for modification.

For channels with a channel type (ChannelType) of MQCHT_SVRCONN or
MQCHT_CLNTCONN, this parameter is accepted but ignored, since message
exits are not invoked for such channels.

The format of the string is the same as for SecurityExit.

The maximum length of the exit name depends on the environment in which
the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum length for
the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

You can specify a list of exit names by using an MQCFSL structure instead of
an MQCFST structure.
v The exits are invoked in the order specified in the list.
v A list with only one name is equivalent to specifying a single name in an

MQCFST structure.
v You cannot specify both a list (MQCFSL) and a single entry (MQCFST)

structure for the same channel attribute.
v The total length of all of the exit names in the list (excluding trailing blanks

in each name) must not exceed MQ_TOTAL_EXIT_NAME_LENGTH. An
individual string must not exceed MQ_EXIT_NAME_LENGTH.

v On z/OS, you can specify the names of up to 8 exit programs.

MsgRetryCount (MQCFIN)
Message retry count (parameter identifier: MQIACH_MR_COUNT).

Specifies the number of times that a failing message should be retried.

Specify a value in the range 0 – 999 999 999.

This parameter is valid only for ChannelType values of MQCHT_RECEIVER,
MQCHT_REQUESTER, or MQCHT_CLUSRCVR.

MsgRetryExit (MQCFST)
Message retry exit name (parameter identifier: MQCACH_MR_EXIT_NAME).

If a nonblank name is defined, the exit is invoked prior to performing a wait
before retrying a failing message.

The format of the string is the same as for SecurityExit.

The maximum length of the exit name depends on the environment in which
the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum length for

Chapter 3. Definitions of the Programmable Command Formats 53



the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

This parameter is valid only for ChannelType values of MQCHT_RECEIVER,
MQCHT_REQUESTER, or MQCHT_CLUSRCVR.

MsgRetryInterval (MQCFIN)
Message retry interval (parameter identifier: MQIACH_MR_INTERVAL).

Specifies the minimum time interval in milliseconds between retries of failing
messages.

Specify a value in the range 0 – 999 999 999.

This parameter is valid only for ChannelType values of MQCHT_RECEIVER,
MQCHT_REQUESTER, or MQCHT_CLUSRCVR.

MsgRetryUserData (MQCFST)
Message retry exit user data (parameter identifier:
MQCACH_MR_EXIT_USER_DATA).

Specifies user data that is passed to the message retry exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

This parameter is valid only for ChannelType values of MQCHT_RECEIVER,
MQCHT_REQUESTER, or MQCHT_CLUSRCVR.

MsgUserData (MQCFSL)
Message exit user data (parameter identifier:
MQCACH_MSG_EXIT_USER_DATA).

Specifies user data that is passed to the message exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

For channels with a channel type (ChannelType) of MQCHT_SVRCONN or
MQCHT_CLNTCONN, this parameter is accepted but ignored, since message
exits are not invoked for such channels.

You can specify a list of exit user data strings by using an MQCFSL structure
instead of an MQCFST structure.
v Each exit user data string is passed to the exit at the same ordinal position

in the MsgExit list.
v A list with only one name is equivalent to specifying a single name in an

MQCFST structure.
v You cannot specify both a list (MQCFSL) and a single entry (MQCFST)

structure for the same channel attribute.
v The total length of all of the exit user data in the list (excluding trailing

blanks in each string) must not exceed MQ_TOTAL_EXIT_DATA_LENGTH.
An individual string must not exceed MQ_EXIT_DATA_LENGTH.

v On z/OS, you can specify up to 8 strings.

NetworkPriority (MQCFIN)
Network priority (parameter identifier: MQIACH_NETWORK_PRIORITY).

The priority for the network connection. If there are multiple paths available,
distributed queuing selects the path with the highest priority.

The value must be in the range 0 (lowest) – 9 (highest).

This parameter applies only to channels with a ChannelType of
MQCHT_CLUSRCVR

54 WebSphere MQ: Programmable Command Formats and Administration Interface



NonPersistentMsgSpeed (MQCFIN)
Speed at which nonpersistent messages are to be sent (parameter identifier:
MQIACH_NPM_SPEED).

This parameter is supported in the following environments: AIX, HP-UX,
i5/OS, Solaris, Windows and Linux.

Specifying MQNPMS_FAST means that nonpersistent messages on a channel
need not wait for a syncpoint before being made available for retrieval. The
advantage of this is that nonpersistent messages become available for retrieval
far more quickly. The disadvantage is that because they do not wait for a
syncpoint, they might be lost if there is a transmission failure.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_RECEIVER, MQCHT_REQUESTER,
MQCHT_CLUSSDR, or MQCHT_CLUSRCVR. The value can be:

MQNPMS_NORMAL
Normal speed.

MQNPMS_FAST
Fast speed.

Password (MQCFST)
Password (parameter identifier: MQCACH_PASSWORD).

This is used by the message channel agent when attempting to initiate a secure
SNA session with a remote message channel agent. On HP OpenVMS, i5/OS,
Compaq NonStop Kernel, and UNIX systems, it is valid only for ChannelType
values of MQCHT_SENDER, MQCHT_SERVER, MQCHT_REQUESTER,
MQCHT_CLNTCONN, or MQCHT_CLUSSDR. On z/OS, it is valid only for a
ChannelType value of MQCHT_CLNTCONN.

The maximum length of the string is MQ_PASSWORD_LENGTH. However,
only the first 10 characters are used.

PropertyControl (MQCFIN)
Property control attribute (parameter identifier
MQIA_PROPERTY_CONTROL).

Specifies what happens to properties of messages when the message is about
to be sent to a V6 or prior queue manager (a queue manager that does not
understand the concept of a property descriptor). The value can be:

MQPROP_COMPATIBILITY
If the message contains a property with a prefix of mcd., jms., usr. or
mqext., all message properties are delivered to the application in an
MQRFH2 header. Otherwise all properties of the message, except those
contained in the message descriptor (or extension), are discarded and
are no longer accessible to the application.

This is the default value; it allows applications which expect JMS
related properties to be in an MQRFH2 header in the message data to
continue to work unmodified.

MQPROP_NONE
All properties of the message, except those in the message descriptor
(or extension), are removed from the message before the message is
sent to the remote queue manager.

MQPROP_ALL
All properties of the message are included with the message when it is

Chapter 3. Definitions of the Programmable Command Formats 55

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|



sent to the remote queue manager. The properties, except those in the
message descriptor (or extension), are placed in one or more MQRFH2
headers in the message data.

This attribute is applicable to Sender, Server, Cluster Sender and Cluster
Receiver channels.

PutAuthority (MQCFIN)
Put authority (parameter identifier: MQIACH_PUT_AUTHORITY).

Specifies whether the user identifier in the context information associated with
a message should be used to establish authority to put the message on the
destination queue.

This parameter is valid only for channels with a ChannelType value of
MQCHT_RECEIVER, MQCHT_REQUESTER, MQCHT_CLUSRCVR, or, on
z/OS only, MQCHT_SVRCONN.

The value can be:

MQPA_DEFAULT
Default user identifier is used.

MQPA_CONTEXT
Context user identifier is used. This value is not valid for channels of
type MQCHT_SVRCONN.

MQPA_ALTERNATE_OR_MCA
The user ID from the UserIdentifier field of the message descriptor is
used. Any user ID received from the network is not used. This value is
supported only on z/OS and is not valid for channels of type
MQCHT_SVRCONN.

MQPA_ONLY_MCA
The default user ID is used. Any user ID received from the network is
not used. This value is supported only on z/OS.

QMgrName (MQCFST)
Queue-manager name (parameter identifier: MQCA_Q_MGR_NAME).

For channels with a ChannelType of MQCHT_CLNTCONN, this is the name of
a queue manager to which a client application can request connection.

For channels of other types, this parameter is not valid. The maximum length
of the string is MQ_Q_MGR_NAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object to which you are applying the command
(that is, where it is defined and how it behaves). The value can be:

QSGDisposition Change Copy, Create

MQQSGD_COPY The object definition resides on the page set
of the queue manager that executes the
command. The object was defined using a
command that had the parameter
MQQSGD_COPY. Any object residing in the
shared repository, or any object defined
using a command that had the parameters
MQQSGD_Q_MGR, is not affected by this
command.

The object is defined on the page set of the
queue manager that executes the command
using the MQQSGD_GROUP object of the
same name as the ToChannelName object (for
Copy) or ChannelName object (for Create).

56 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|

|
|

|
|



QSGDisposition Change Copy, Create

MQQSGD_GROUP The object definition resides in the shared
repository. The object was defined using a
command that had the parameter
MQQSGD_GROUP. Any object residing on
the page set of the queue manager that
executes the command (except a local copy
of the object) is not affected by this
command.

If the command is successful, the following
MQSC command is generated and sent to all
active queue managers in the queue-sharing
group to attempt to refresh local copies on
page set zero:

DEFINE CHANNEL(channel-name)
CHLTYPE(type) REPLACE QSGDISP(COPY)

The Change for the group object takes effect
regardless of whether the generated
command with QSGDISP(COPY) fails.

The object definition resides in the shared
repository. This is allowed only if the queue
manager is in a queue-sharing group.

If the definition is successful, the following
MQSC command is generated and sent to all
active queue managers in the queue-sharing
group to attempt to make or refresh local
copies on page set zero:

DEFINE CHANNEL(channe-name)
CHLTYPE(type) REPLACE QSGDISP(COPY)

The Copy or Create for the group object
takes effect regardless of whether the
generated command with QSGDISP(COPY)
fails.

MQQSGD_PRIVATE The object resides on the page set of the
queue manager that executes the command,
and was defined with MQQSGD_Q_MGR or
MQQSGD_COPY. Any object residing in the
shared repository is unaffected.

Not permitted.

MQQSGD_Q_MGR The object definition resides on the page set
of the queue manager that executes the
command. The object was defined using a
command that had the parameter
MQQSGD_Q_MGR. Any object residing in
the shared repository, or any local copy of
such an object, is not affected by this
command. This is the default value.

The object is defined on the page set of the
queue manager that executes the command.
This is the default value.

ReceiveExit (MQCFSL)
Receive exit name (parameter identifier: MQCACH_RCV_EXIT_NAME).

If a nonblank name is defined, the exit is invoked before data received from
the network is processed. The complete transmission buffer is passed to the
exit and the contents of the buffer can be modified as required.

The format of the string is the same as for SecurityExit.

The maximum length of the exit name depends on the environment in which
the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum length for
the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

You can specify a list of exit names by using an MQCFSL structure instead of
an MQCFST structure.
v The exits are invoked in the order specified in the list.
v A list with only one name is equivalent to specifying a single name in an

MQCFST structure.
v You cannot specify both a list (MQCFSL) and a single entry (MQCFST)

structure for the same channel attribute.

Chapter 3. Definitions of the Programmable Command Formats 57



v The total length of all of the exit names in the list (excluding trailing blanks
in each name) must not exceed MQ_TOTAL_EXIT_NAME_LENGTH. An
individual string must not exceed MQ_EXIT_NAME_LENGTH.

v On z/OS, you can specify the names of up to 8 exit programs.

ReceiveUserData (MQCFSL)
Receive exit user data (parameter identifier:
MQCACH_RCV_EXIT_USER_DATA).

Specifies user data that is passed to the receive exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

You can specify a list of exit user data strings by using an MQCFSL structure
instead of an MQCFST structure.
v Each exit user data string is passed to the exit at the same ordinal position

in the ReceiveExit list.
v A list with only one name is equivalent to specifying a single name in an

MQCFST structure.
v You cannot specify both a list (MQCFSL) and a single entry (MQCFST)

structure for the same channel attribute.
v The total length of all of the exit user data in the list (excluding trailing

blanks in each string) must not exceed MQ_TOTAL_EXIT_DATA_LENGTH.
An individual string must not exceed MQ_EXIT_DATA_LENGTH.

v On z/OS, you can specify up to 8 strings.

Replace (MQCFIN)
Replace channel definition (parameter identifier: MQIACF_REPLACE).

The value can be:

MQRP_YES
Replace existing definition.

If ChannelType is MQCHT_CLUSSDR, MQRP_YES can be specified
only if the channel was created manually.

MQRP_NO
Do not replace existing definition.

SecurityExit (MQCFST)
Security exit name (parameter identifier: MQCACH_SEC_EXIT_NAME).

If a nonblank name is defined, the security exit is invoked at the following
times:
v Immediately after establishing a channel.

Before any messages are transferred, the exit is given the opportunity to
instigate security flows to validate connection authorization.

v Upon receipt of a response to a security message flow.
Any security message flows received from the remote processor on the
remote machine are passed to the exit.

The exit is given the entire application message and message descriptor for
modification.

The format of the string depends on the platform, as follows:
v On i5/OS and UNIX systems, it is of the form

libraryname(functionname)

58 WebSphere MQ: Programmable Command Formats and Administration Interface



Note: On i5/OS systems, the following form is also supported for
compatibility with older releases:
progname libname

where progname occupies the first 10 characters, and libname the second 10
characters (both blank-padded to the right if necessary).

v On Windows, it is of the form
dllname(functionname)

where dllname is specified without the suffix “.DLL”.
v On z/OS, it is a load module name, maximum length 8 characters (128

characters are allowed for exit names for client-connection channels, subject
to a maximum total length of 999).

The maximum length of the exit name depends on the environment in which
the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum length for
the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

SecurityUserData (MQCFST)
Security exit user data (parameter identifier:
MQCACH_SEC_EXIT_USER_DATA).

Specifies user data that is passed to the security exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

SendExit (MQCFSL)
Send exit name (parameter identifier: MQCACH_SEND_EXIT_NAME).

If a nonblank name is defined, the exit is invoked immediately before data is
sent out on the network. The exit is given the complete transmission buffer
before it is transmitted; the contents of the buffer can be modified as required.

The format of the string is the same as for SecurityExit.

The maximum length of the exit name depends on the environment in which
the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum length for
the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

You can specify a list of exit names by using an MQCFSL structure instead of
an MQCFST structure.
v The exits are invoked in the order specified in the list.
v A list with only one name is equivalent to specifying a single name in an

MQCFST structure.
v You cannot specify both a list (MQCFSL) and a single entry (MQCFST)

structure for the same channel attribute.
v The total length of all of the exit names in the list (excluding trailing blanks

in each name) must not exceed MQ_TOTAL_EXIT_NAME_LENGTH. An
individual string must not exceed MQ_EXIT_NAME_LENGTH.

v On z/OS, you can specify the names of up to 8 exit programs.

SendUserData (MQCFSL)
Send exit user data (parameter identifier:
MQCACH_SEND_EXIT_USER_DATA).

Chapter 3. Definitions of the Programmable Command Formats 59



Specifies user data that is passed to the send exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

You can specify a list of exit user data strings by using an MQCFSL structure
instead of an MQCFST structure.
v Each exit user data string is passed to the exit at the same ordinal position

in the SendExit list.
v A list with only one name is equivalent to specifying a single name in an

MQCFST structure.
v You cannot specify both a list (MQCFSL) and a single entry (MQCFST)

structure for the same channel attribute.
v The total length of all of the exit user data in the list (excluding trailing

blanks in each string) must not exceed MQ_TOTAL_EXIT_DATA_LENGTH.
An individual string must not exceed MQ_EXIT_DATA_LENGTH.

v On z/OS, you can specify up to 8 strings.

SeqNumberWrap (MQCFIN)
Sequence wrap number (parameter identifier:
MQIACH_SEQUENCE_NUMBER_WRAP).

Specifies the maximum message sequence number. When the maximum is
reached, sequence numbers wrap to start again at 1.

The maximum message sequence number is not negotiable; the local and
remote channels must wrap at the same number.

Specify a value in the range 100 – 999 999 999.

This parameter is not valid for channels with a ChannelType of
MQCHT_SVRCONN or MQCHT_CLNTCONN.

SharingConversations (MQCFIN)
Maximum number of sharing conversations (parameter identifier:
MQIACH_SHARING_CONVERSATIONS).

Specifies the maximum number of conversations that can share a particular
TCP/IP MQI channel instance (socket).

Specify a value in the range 0 – 999 999 999. The default value is 10 and the
migrated value is 10.

This parameter is valid only for channels with a ChannelType of
MQCHT_CLNTCONN or MQCHT_SVRCONN. It is ignored for channels with
a TransportType other than MQXPT_TCP.

The number of shared conversations does not contribute to the MaxInstances
or MaxInstancesPerClient totals.

A value of:

1 Means that there is no sharing of conversations over a TCP/IP channel
instance, but client heartbeating is available whether in an MQGET call
or not, read ahead and client asynchronous consume are available, and
channel quiescing is more controllable.

0 Specifies no sharing of conversations over a TCP/IP channel instance.
The channel instance runs in a mode prior to that of WebSphere MQ
Version 7.0, with regard to:
v Administrator stop-quiesce
v Heartbeating

60 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|

|
|

|
|
|

|
|

|

||
|
|
|

||
|
|

|

|



v Read ahead
v Client asynchronous consume

ShortRetryCount (MQCFIN)
Short retry count (parameter identifier: MQIACH_SHORT_RETRY).

The maximum number of attempts that are made by a sender or server
channel to establish a connection to the remote machine, at intervals specified
by ShortRetryInterval before the (normally longer) LongRetryCount and
LongRetryInterval are used.

Retry attempts are made if the channel fails to connect initially (whether it is
started automatically by the channel initiator or by an explicit command), and
also if the connection fails after the channel has successfully connected.
However, if the cause of the failure is such that retry is unlikely to be
successful, retries are not attempted.

Specify a value in the range 0 – 999 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

ShortRetryInterval (MQCFIN)
Short timer (parameter identifier: MQIACH_SHORT_TIMER).

Specifies the short retry wait interval for a sender or server channel that is
started automatically by the channel initiator. It defines the interval in seconds
between attempts to establish a connection to the remote machine.

The time is approximate; zero means that another connection attempt is made
as soon as possible.

Specify a value in the range 0 – 999 999. Values exceeding this are treated as
999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

SSLCipherSpec (MQCFST)
CipherSpec (parameter identifier: MQCACH_SSL_CIPHER_SPEC).

The length of the string is MQ_SSL_CIPHER_SPEC_LENGTH.

It is valid only for channels with a transport type (TRPTYPE) of TCP. If the
TRPTYPE is not TCP, the data is ignored and no error message is issued.

The SSLCIPH values must specify the same CipherSpec on both ends of the
channel. For more information about working with CipherSpecs, see the
WebSphere MQ Security book.

Specify the name of the CipherSpec that you are using. Alternatively, on i5/OS,
and z/OS, you can specify the two-digit hexadecimal code.

The following table shows the CipherSpecs that can be used with WebSphere
MQ SSL.

On i5/OS, installation of AC3 is a prerequisite of the use of SSL.

Chapter 3. Definitions of the Programmable Command Formats 61

|

|

|
|



Table 4. CipherSpecs that can be used with WebSphere MQ SSL support

CipherSpec name Hash
algorithm

Encryption
algorithm

Encryption
bits

FIPS on
Windows
and UNIX
platforms¹

NULL_MD5
Note: Available on all platforms.

MD5 None 0 No

NULL_SHA
Note: Available on all platforms

SHA-1 None 0 No

RC4_MD5_EXPORT
Note: Available on all platforms

MD5 RC4 40 No

RC4_MD5_US
Note: Available on all platforms

MD5 RC4 128 No

RC4_SHA_US
Note: Available on all platforms

SHA-1 RC4 128 No

RC2_MD5_EXPORT
Note: Available on all platforms

MD5 RC2 40 No

DES_SHA_EXPORT
Note: Available on all platforms

SHA-1 DES 56 No

RC4_56_SHA_EXPORT1024
Note:

1. Not available for z/OS or i5/OS

2. Specifies a 1024–bit handshake key size

SHA-1 RC4 56 No

DES_SHA_EXPORT1024
Note:

1. Not available for z/OS or i5/OS

2. Specifies a 1024–bit handshake key size

SHA-1 DES 56 No

TRIPLE_DES_SHA_US
Note: Not available for i5/OS

SHA-1 3DES 168 No

TLS_RSA_WITH_AES_128_CBC_SHA
Note:

1. Not available for i5/OS

2. The protocol used is TLS rather than SSL

SHA-1 AES 128 Yes

TLS_RSA_WITH_AES_256_CBC_SHA
Note:

1. Not available for i5/OS

2. The protocol used is TLS rather than SSL

SHA-1 AES 256 Yes

AES_SHA_US
Note: Available on i5/OS only

SHA-1 AES 128 No

TLS_RSA_WITH_DES_CBC_SHA
Note:

1. Not available for z/OS or i5/OS

2. The protocol used is TLS rather than SSL

SHA-1 DES 56 No2

TLS_RSA_WITH_3DES_EDE_CBC_SHA
Note:

1. Not available for z/OS or i5/OS

2. The protocol used is TLS rather than SSL

SHA-1 3DES 168 Yes

62 WebSphere MQ: Programmable Command Formats and Administration Interface

|



Table 4. CipherSpecs that can be used with WebSphere MQ SSL support (continued)

CipherSpec name Hash
algorithm

Encryption
algorithm

Encryption
bits

FIPS on
Windows
and UNIX
platforms¹

FIPS_WITH_DES_CBC_SHA
Note: Available only on Windows and UNIX
platforms

SHA-1 DES 56 No3

FIPS_WITH_3DES_EDE_CBC_SHA
Note: Available only on Windows and UNIX
platforms

SHA-1 3DES 168 Yes

Note:

1. Is the CipherSpec FIPS-certified on a FIPS-certified platform? See “CipherSuites and CipherSpecs” in the
WebSphere MQ Security manual for an explanation of FIPS.

2. This cipherspec was FIPS 140-2 certified prior to 19th May 2007.

3. This cipherspec was FIPS 140-2 certified prior to 19th May 2007. The name FIPS_WITH_DES_CBC_SHA is
historical and reflects the fact that this cipherspec was previously FIPS-compliant.

When you request a personal certificate, you specify a key size for the public
and private key pair. The key size that is used during the SSL handshake can
depend on the size stored in the certificate and on the CipherSpec:
v On UNIX systems, Windows systems, and z/OS, when a CipherSpec name

includes _EXPORT, the maximum handshake key size is 512 bits. If either of
the certificates exchanged during the SSL handshake has a key size greater
than 512 bits, a temporary 512-bit key is generated for use during the
handshake.

v On UNIX and Windows systems, when a CipherSpec name includes
_EXPORT1024, the handshake key size is 1024 bits.

v Otherwise the handshake key size is the size stored in the certificate.

If the SSLCIPH parameter is blank, no attempt is made to use SSL on the
channel.

SSLClientAuth (MQCFIN)
Client authentication (parameter identifier: MQIACH_SSL_CLIENT_AUTH).

The value can be:

MQSCA_REQUIRED
Client authentication required

MQSCA_OPTIONAL
Client authentication optional.

Defines whether WebSphere MQ requires a certificate from the SSL client.

The initiating end of the channel acts as the SSL client, so this applies to the
end of the channel that receives the initiation flow, which acts as the SSL
server.

The parameter is used only for channels with SSLCIPH specified. If SSLCIPH
is blank, the data is ignored and no error message is issued.

SSLPeerName (MQCFST)
Peer name (parameter identifier: MQCACH_SSL_PEER_NAME).

On platforms other than z/OS, the length of the string is
MQ_SSL_PEER_NAME_LENGTH. On z/OS, it is
MQ_SSL_SHORT_PEER_NAME_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 63

|

|

|
|



Specifies the filter to use to compare with the Distinguished Name of the
certificate from the peer queue manager or client at the other end of the
channel. (A Distinguished Name is the identifier of the SSL certificate.) If the
Distinguished Name in the certificate received from the peer does not match
the SSLPEER filter, the channel does not start.

This parameter is optional; if it is not specified, the Distinguished Name of the
peer is not checked at channel start up. (The Distinguished Name from the
certificate is still written into the SSLPEER definition held in memory, and
passed to the security exit). If SSLCIPH is blank, the data is ignored and no
error message is issued.

This parameter is valid for all channel types.

The SSLPEER value is specified in the standard form used to specify a
Distinguished Name. For example: SSLPEER('CN="xxx yyy zzz",O=xxx,C=xxx')

You can use a semi-colon as a separator instead of a comma.

The possible attribute types supported are:

CN common name

T title

OU organizational unit name

O organization name

L locality name

ST, SP or S state or province name

C country

WebSphere MQ only accepts upper case letters for the attribute types.

If any of the unsupported attribute types are specified in the SSLPEER string,
an error is output either when the attribute is defined or at run time
(depending on which platform you are running on), and the string is deemed
not to have matched the flowed certificate’s Distinguished Name.

If the flowed certificate’s Distinguished Name contains multiple OU
(organisational unit) attributes, and SSLPEER specifies these attributes to be
compared, they must be defined in descending hierarchical order. For example,
if the flowed certificate’s Distinguished Name contains the OUs OU=Large
Unit,OU=Medium Unit,OU=Small Unit, specifying the following SSLPEER values
will work:
('OU=Large Unit,OU=Medium Unit')
('OU=*,OU=Medium Unit,OU=Small Unit')
('OU=*,OU=Medium Unit')

but specifying the following SSLPEER values will fail:
('OU=Medium Unit,OU=Small Unit')
('OU=Large Unit,OU=Small Unit')
('OU=Medium Unit')

Any or all of the attribute values can be generic, either an asterisk (*) on its
own, or a stem with initiating or trailing asterisks. This allows the SSLPEER to
match any Distinguished Name value, or any value starting with the stem for
that attribute.

If an asterisk is specified at the beginning or end of any attribute value in the
Distinguished Name on the certificate, you can specify \* to check for an exact

64 WebSphere MQ: Programmable Command Formats and Administration Interface



match in SSLPEER. For example, if you have an attribute of CN=Test* in the
Distinguished Name of the certificate, you can use the following command:

SSLPEER('CN=Test\*')

TpName (MQCFST)
Transaction program name (parameter identifier: MQCACH_TP_NAME).

This is the LU 6.2 transaction program name.

The maximum length of the string is MQ_TP_NAME_LENGTH.
v On HP OpenVMS, i5/OS, Compaq NonStop Kernel, UNIX systems, and

Windows, this can be set only to blanks. The actual name is taken instead
from the CPI-C Communications Side Object or (on Windows) from the
CPI-C symbolic destination name properties.

This parameter is valid only for channels with a TransportType of
MQXPT_LU62. It is not valid for receiver channels.

TransportType (MQCFIN)
Transmission protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

No check is made that the correct transport type has been specified if the
channel is initiated from the other end. The value can be:

MQXPT_LU62
LU 6.2.

MQXPT_TCP
TCP.

MQXPT_NETBIOS
NetBIOS.

This value is supported in Windows. It also applies to z/OS for
defining client-connection channels that connect to servers on the
platforms supporting NetBIOS.

MQXPT_SPX
SPX.

This value is supported in Windows. It also applies to z/OS for
defining client-connection channels that connect to servers on the
platforms supporting SPX.

UserIdentifier (MQCFST)
Task user identifier (parameter identifier: MQCACH_USER_ID).

This is used by the message channel agent when attempting to initiate a secure
SNA session with a remote message channel agent. On i5/OS and UNIX
systems, it is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_REQUESTER, MQCHT_CLNTCONN,
MQCHT_CLUSSDR, or MQCHT_CLUSRCVR. On z/OS, it is valid only for a
ChannelType value of MQCHT_CLNTCONN.

The maximum length of the string is MQ_USER_ID_LENGTH. However, only
the first 10 characters are used.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 65



A transmission queue name is required (either previously defined or specified
here) if ChannelType is MQCHT_SENDER or MQCHT_SERVER. It is not valid
for other channel types.

Error codes (Change, Copy and Create Channel)

This command might return the following error codes in the response format
header, in addition to those listed in “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_BATCH_INT_ERROR
Batch interval not valid.

MQRCCF_BATCH_INT_WRONG_TYPE
Batch interval parameter not allowed for this channel type.

MQRCCF_BATCH_SIZE_ERROR
Batch size not valid.

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_CLUSTER_NAME_CONFLICT
Cluster name conflict.

MQRCCF_DISC_INT_ERROR
Disconnection interval not valid.

MQRCCF_DISC_INT_WRONG_TYPE
Disconnection interval not allowed for this channel type.

MQRCCF_HB_INTERVAL_ERROR
Heartbeat interval not valid.

MQRCCF_HB_INTERVAL_WRONG_TYPE
Heartbeat interval parameter not allowed for this channel type.

MQRCCF_LONG_RETRY_ERROR
Long retry count not valid.

MQRCCF_LONG_RETRY_WRONG_TYPE
Long retry parameter not allowed for this channel type.

MQRCCF_LONG_TIMER_ERROR
Long timer not valid.

MQRCCF_LONG_TIMER_WRONG_TYPE
Long timer parameter not allowed for this channel type.

MQRCCF_MAX_INSTANCES_ERROR
Maximum instances value not valid.

MQRCCF_MAX_INSTS_PER_CLNT_ERR
Maximum instances per client value not valid.

66 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|



MQRCCF_MAX_MSG_LENGTH_ERROR
Maximum message length not valid.

MQRCCF_MCA_NAME_ERROR
Message channel agent name error.

MQRCCF_MCA_NAME_WRONG_TYPE
Message channel agent name not allowed for this channel type.

MQRCCF_MCA_TYPE_ERROR
Message channel agent type not valid.

MQRCCF_MISSING_CONN_NAME
Connection name parameter required but missing.

MQRCCF_MR_COUNT_ERROR
Message retry count not valid.

MQRCCF_MR_COUNT_WRONG_TYPE
Message-retry count parameter not allowed for this channel type.

MQRCCF_MR_EXIT_NAME_ERROR
Channel message-retry exit name error.

MQRCCF_MR_EXIT_NAME_WRONG_TYPE
Message-retry exit parameter not allowed for this channel type.

MQRCCF_MR_INTERVAL_ERROR
Message retry interval not valid.

MQRCCF_MR_INTERVAL_WRONG_TYPE
Message-retry interval parameter not allowed for this channel type.

MQRCCF_MSG_EXIT_NAME_ERROR
Channel message exit name error.

MQRCCF_NET_PRIORITY_ERROR
Network priority value error.

MQRCCF_NET_PRIORITY_WRONG_TYPE
Network priority attribute not allowed for this channel type.

MQRCCF_NPM_SPEED_ERROR
Nonpersistent message speed not valid.

MQRCCF_NPM_SPEED_WRONG_TYPE
Nonpersistent message speed parameter not allowed for this channel
type.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_PUT_AUTH_ERROR
Put authority value not valid.

MQRCCF_PUT_AUTH_WRONG_TYPE
Put authority parameter not allowed for this channel type.

MQRCCF_RCV_EXIT_NAME_ERROR
Channel receive exit name error.

MQRCCF_SEC_EXIT_NAME_ERROR
Channel security exit name error.

MQRCCF_SEND_EXIT_NAME_ERROR
Channel send exit name error.

Chapter 3. Definitions of the Programmable Command Formats 67



MQRCCF_SEQ_NUMBER_WRAP_ERROR
Sequence wrap number not valid.

MQRCCF_SHARING_CONVS_ERROR
Value given for Sharing Conversations not valid.

MQRCCF_SHARING_CONVS_TYPE
Sharing Conversations parameter not valid for this channel type.

MQRCCF_SHORT_RETRY_ERROR
Short retry count not valid.

MQRCCF_SHORT_RETRY_WRONG_TYPE
Short retry parameter not allowed for this channel type.

MQRCCF_SHORT_TIMER_ERROR
Short timer value not valid.

MQRCCF_SHORT_TIMER_WRONG_TYPE
Short timer parameter not allowed for this channel type.

MQRCCF_SSL_CIPHER_SPEC_ERROR
SSL CipherSpec not valid.

MQRCCF_SSL_CLIENT_AUTH_ERROR
SSL client authentication not valid.

MQRCCF_SSL_PEER_NAME_ERROR
SSL peer name not valid.

MQRCCF_WRONG_CHANNEL_TYPE
Parameter not allowed for this channel type.

MQRCCF_XMIT_PROTOCOL_TYPE_ERR
Transmission protocol type not valid.

MQRCCF_XMIT_Q_NAME_ERROR
Transmission queue name error.

MQRCCF_XMIT_Q_NAME_WRONG_TYPE
Transmission queue name not allowed for this channel type.

Change, Copy, and Create Channel Listener

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The Change Channel Listener (MQCMD_CHANGE_LISTENER) command changes
the specified attributes of an existing WebSphere MQ listener definition. For any
optional parameters that are omitted, the value does not change.

The Copy Channel Listener (MQCMD_ COPY_LISTENER) command creates a new
WebSphere MQ listener definition, using, for attributes not specified in the
command, the attribute values of an existing listener definition.

The Create Channel Listener (MQCMD_CREATE_LISTENER) command creates a
new WebSphere MQ listener definition. Any attributes that are not defined
explicitly are set to the default values on the destination queue manager.

68 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|



Required parameters (Change and Create Channel Listener):
ListenerName, TransportType

Required parameters (Copy Channel Listener):
FromListenerName, ToListenerName

Optional parameters:
Adapter, Backlog, Commands, IPAddress, ListenerDesc, LocalName,
NetbiosNames, Port, Replace, Sessions, Socket, StartMode, TPname

Required parameters (Change and Create Channel Listener)
ListenerName (MQCFST)

The name of the listener definition to be changed or created (parameter
identifier: MQCACH_LISTENER_NAME).

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

TransportType (MQCFIN)
Transmission protocol (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

The value can be:

MQXPT_TCP
TCP.

MQXPT_LU62
LU 6.2. This is valid only on Windows.

MQXPT_NETBIOS
NetBIOS. This is valid only on Windows.

MQXPT_SPX
SPX. This is valid only on Windows.

Required parameters (Copy Channel Listener)
FromListenerName (MQCFST)

The name of the listener definition to be copied from (parameter identifier:
MQCACF_FROM_LISTENER_NAME).

This specifies the name of the existing listener definition that contains values
for the attributes not specified in this command.

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

ToListenerName (MQCFST)
To listener name (parameter identifier: MQCACF_TO_LISTENER_NAME).

This specifies the name of the new listener definition. If a listener definition
with this name already exists, Replace must be specified as MQRP_YES.

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

Optional parameters (Change, Copy, and Create Channel
Listener)

Adapter (MQCFIN)
Adapter number (parameter identifier: MQIACH_ADAPTER).

The adapter number on which NetBIOS listens. This is valid only on Windows.

Chapter 3. Definitions of the Programmable Command Formats 69



Backlog (MQCFIN)
Backlog (parameter identifier: MQIACH_BACKLOG).

The number of concurrent connection requests that the listener supports.

Commands (MQCFIN)
Adapter number (parameter identifier: MQIACH_COMMAND_COUNT).

The number of commands that the listener can use. This is valid only on
Windows.

IPAddress (MQCFST)
IP address (parameter identifier: MQCACH_IP_ADDRESS).

IP address for the listener specified in IPv4 dotted decimal, IPv6 hexadecimal
notation, or alphanumeric hostname form. If you do not specify a value for
this parameter, the listener listens on all configured IPv6 and IPv6 stacks.

The maximum length of the string is MQ_LOCAL_ADDRESS_LENGTH

ListenerDesc (MQCFST)
Description of listener definition (parameter identifier:
MQCACH_LISTENER_DESC).

This is a plain-text comment that provides descriptive information about the
listener definition. It should contain only displayable characters.

If characters are used that are not in the coded character set identifier (CCSID)
for the queue manager on which the command is executing, they might be
translated incorrectly.

The maximum length of the string is MQ_LISTENER_DESC_LENGTH.

LocalName (MQCFST)
NetBIOS local name (parameter identifier: MQCACH_LOCAL_NAME).

The NetBIOS local name that the listener uses. This is valid only on Windows.

The maximum length of the string is MQ_CONN_NAME_LENGTH

NetbiosNames (MQCFIN)
NetBIOS names (parameter identifier: MQIACH_NAME_COUNT).

The number of names that the listener supports. This is valid only on
Windows.

Port (MQCFIN)
Port number (parameter identifier: MQIACH_PORT).

The port number for TCP/IP. This is valid only if the value of TransportType is
MQXPT_TCP.

Replace (MQCFIN)
Replace attributes (parameter identifier: MQIACF_REPLACE).

If a namelist definition with the same name as ToListenerName already exists,
this specifies whether it is to be replaced. The value can be:

MQRP_YES
Replace existing definition.

MQRP_NO
Do not replace existing definition.

Sessions (MQCFIN)
NetBIOS sessions (parameter identifier: MQIACH_SESSION_COUNT).

70 WebSphere MQ: Programmable Command Formats and Administration Interface

|



The number of sessions that the listener can use. This is valid only on
Windows.

Socket (MQCFIN)
SPX socket number (parameter identifier: MQIACH_SOCKET).

The SPX socket on which to listen. This is valid only if the value of
TransportType is MQXPT_SPX.

StartMode (MQCFIN)
Service mode (parameter identifier: MQIACH_LISTENER_CONTROL).

Specifies how the listener is to be started and stopped. The value can be:

MQSVC_CONTROL_MANUAL
The listener is not to be started automatically or stopped automatically.
It is to be controlled by user command. This is the default value.

MQSVC_CONTROL_Q_MGR
The listener being defined is to be started and stopped at the same
time as the queue manager is started and stopped.

MQSVC_CONTROL_Q_MGR_START
The listener is to be started at the same time as the queue manager is
started, but is not requested to stop when the queue manager is
stopped.

TPName (MQCFST)
Transaction program name (parameter identifier: MQCACH_TP_NAME).

The LU 6.2 transaction program name. This is valid only on Windows.

The maximum length of the string is MQ_TP_NAME_LENGTH

Change, Copy, and Create Namelist

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Change Namelist (MQCMD_CHANGE_NAMELIST) command changes the
specified attributes of an existing WebSphere MQ namelist definition. For any
optional parameters that are omitted, the value does not change.

The Copy Namelist (MQCMD_COPY_NAMELIST) command creates a new
WebSphere MQ namelist definition, using, for attributes not specified in the
command, the attribute values of an existing namelist definition.

The Create Namelist (MQCMD_CREATE_NAMELIST) command creates a new
WebSphere MQ namelist definition. Any attributes that are not defined explicitly
are set to the default values on the destination queue manager.

Required parameter (Change and Create Namelist):
NamelistName

Required parameters (Copy Namelist):
FromNamelistName, ToNamelistName

Optional parameters:
CommandScope, NamelistDesc, NamelistType, Names, QSGDisposition, Replace

Chapter 3. Definitions of the Programmable Command Formats 71



Required parameter (Change and Create Namelist)
NamelistName (MQCFST)

The name of the namelist definition to be changed (parameter identifier:
MQCA_NAMELIST_NAME).

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

Required parameters (Copy Namelist)
FromNamelistName (MQCFST)

The name of the namelist definition to be copied from (parameter identifier:
MQCACF_FROM_NAMELIST_NAME).

This specifies the name of the existing namelist definition that contains values
for the attributes not specified in this command.

On z/OS, the queue manager searches for an object with the name you specify
and a disposition of MQQSGD_Q_MGR or MQQSGD_COPY to copy from.
This parameter is ignored if a value of MQQSGD_COPY is specified for
QSGDisposition. In this case, an object with the name specified by
ToNamelistName and the disposition MQQSGD_GROUP is searched for to copy
from.

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

ToNamelistName (MQCFST)
To namelist name (parameter identifier: MQCACF_TO_NAMELIST_NAME).

This specifies the name of the new namelist definition. If a namelist definition
with this name already exists, Replace must be specified as MQRP_YES.

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

Optional parameters (Change, Copy, and Create Namelist)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

NamelistDesc (MQCFST)
Description of namelist definition (parameter identifier:
MQCA_NAMELIST_DESC).

This is a plain-text comment that provides descriptive information about the
namelist definition. It should contain only displayable characters.

72 WebSphere MQ: Programmable Command Formats and Administration Interface



If characters are used that are not in the coded character set identifier (CCSID)
for the queue manager on which the command is executing, they might be
translated incorrectly.

The maximum length of the string is MQ_NAMELIST_DESC_LENGTH.

NamelistType (MQCFIN)
Type of names in the namelist (parameter identifier: MQIA_NAMELIST_TYPE).
This parameter applies to z/OS only.

Specifies the type of names in the namelist . The value can be:

MQNT_NONE
The names are of no particular type.

MQNT_Q
A namelist that holds a list of queue names.

MQNT_CLUSTER
A namelist that is associated with clustering, containing a list of the
cluster names.

MQNT_AUTH_INFO
The namelist is associated with SSL, and contains a list of
authentication information object names.

Names (MQCFSL)
The names to be placed in the namelist (parameter identifier: MQCA_NAMES).

The number of names in the list is given by the Count field in the MQCFSL
structure. The length of each name is given by the StringLength field in that
structure. The maximum length of a name is MQ_OBJECT_NAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object to which you are applying the command
(that is, where it is defined and how it behaves). The value can be:

QSGDisposition Change Copy, Create

MQQSGD_COPY The object definition resides on the page set
of the queue manager that executes the
command. The object was defined using a
command that had the parameter
MQQSGD_COPY. Any object residing in the
shared repository, or any object defined
using a command that had the parameters
MQQSGD_Q_MGR, is not affected by this
command.

The object is defined on the page set of the
queue manager that executes the command
using the MQQSGD_GROUP object of the
same name as the ToNameListName object (for
Copy) or NameListName object (for Create).

Chapter 3. Definitions of the Programmable Command Formats 73



QSGDisposition Change Copy, Create

MQQSGD_GROUP The object definition resides in the shared
repository. The object was defined using a
command that had the parameter
MQQSGD_GROUP. Any object residing on
the page set of the queue manager that
executes the command (except a local copy
of the object) is not affected by this
command.

If the command is successful, the following
MQSC command is generated and sent to all
active queue managers in the queue-sharing
group so that they refresh local copies on
page set zero:

DEFINE NAMELIST(name)
REPLACE QSGDISP(COPY)

The Change for the group object takes effect
regardless of whether the generated
command with QSGDISP(COPY) fails.

The object definition resides in the shared
repository. This is allowed only if the queue
manager is in a queue-sharing group.

If the definition is successful, the following
MQSC command is generated and sent to all
active queue managers in the queue-sharing
group so that they make or refresh local
copies on page set zero:

DEFINE NAMELIST(name)
REPLACE QSGDISP(COPY)

The Copy or Create for the group object
takes effect regardless of whether the
generated command with QSGDISP(COPY)
fails.

MQQSGD_PRIVATE The object resides on the page set of the
queue manager that executes the command,
and was defined with MQQSGD_Q_MGR or
MQQSGD_COPY. Any object residing in the
shared repository is unaffected.

Not permitted.

MQQSGD_Q_MGR The object definition resides on the page set
of the queue manager that executes the
command. The object was defined using a
command that had the parameter
MQQSGD_Q_MGR. Any object residing in
the shared repository, or any local copy of
such an object, is not affected by this
command. This is the default value.

The object is defined on the page set of the
queue manager that executes the command.
This is the default value.

Replace (MQCFIN)
Replace attributes (parameter identifier: MQIACF_REPLACE).

If a namelist definition with the same name as ToNamelistName already exists,
this specifies whether it is to be replaced. The value can be:

MQRP_YES
Replace existing definition.

MQRP_NO
Do not replace existing definition.

Change, Copy, and Create Process

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Change Process (MQCMD_CHANGE_PROCESS) command changes the
specified attributes of an existing WebSphere MQ process definition. For any
optional parameters that are omitted, the value does not change.

74 WebSphere MQ: Programmable Command Formats and Administration Interface



The Copy Process (MQCMD_COPY_PROCESS) command creates a new
WebSphere MQ process definition, using, for attributes not specified in the
command, the attribute values of an existing process definition.

The Create Process (MQCMD_CREATE_PROCESS) command creates a new
WebSphere MQ process definition. Any attributes that are not defined explicitly are
set to the default values on the destination queue manager.

Required parameter (Change and Create Process):
ProcessName

Required parameters (Copy Process):
FromProcessName, ToProcessName

Optional parameters:
ApplId, ApplType, CommandScope, EnvData, ProcessDesc, QSGDisposition,
Replace, UserData

Required parameters (Change and Create Process)
ProcessName (MQCFST)

The name of the process definition to be changed or created (parameter
identifier: MQCA_PROCESS_NAME).

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

Required parameters (Copy Process)
FromProcessName (MQCFST)

The name of the process definition to be copied from (parameter identifier:
MQCACF_FROM_PROCESS_NAME).

Specifies the name of the existing process definition that contains values for the
attributes not specified in this command.

On z/OS, the queue manager searches for an object with the name you specify
and a disposition of MQQSGD_Q_MGR or MQQSGD_COPY to copy from.
This parameter is ignored if a value of MQQSGD_COPY is specified for
QSGDisposition. In this case, an object with the name specified by
ToProcessName and the disposition MQQSGD_GROUP is searched for to copy
from.

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

ToProcessName (MQCFST)
To process name (parameter identifier: MQCACF_TO_PROCESS_NAME).

The name of the new process definition. If a process definition with this name
already exists, Replace must be specified as MQRP_YES.

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

Optional parameters (Change, Copy, and Create Process)
ApplId (MQCFST)

Application identifier (parameter identifier: MQCA_APPL_ID).

This is the name of the application to be started, on the platform for which the
command is executing, and might typically be a program name and library
name.

The maximum length of the string is MQ_PROCESS_APPL_ID_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 75



ApplType (MQCFIN)
Application type (parameter identifier: MQIA_APPL_TYPE).

Valid application types are:

MQAT_OS400
i5/OS application.

MQAT_WINDOWS_NT
Windows or Windows 95, Windows 98 application.

MQAT_DOS
DOS client application.

MQAT_WINDOWS
Windows client application.

MQAT_UNIX
UNIX application.

MQAT_AIX
AIX application (same value as MQAT_UNIX).

MQAT_CICS
CICS® transaction.

MQAT_VMS
HP OpenVMS application.

MQAT_NSK
Compaq NonStop Kernel application.

MQAT_ZOS
z/OS application.

MQAT_DEFAULT
Default application type.

integer: System-defined application type in the range zero through 65 535 or a
user-defined application type in the range 65 536 through 999 999 999 (not
checked).

Only application types (other than user-defined types) that are supported on
the platform at which the command is executed should be used:
v On HP OpenVMS:

MQAT_VMS,
MQAT_DOS,
MQAT_WINDOWS, and
MQAT_DEFAULT are supported.

v On i5/OS:

MQAT_OS400,
MQAT_CICS, and
MQAT_DEFAULT are supported.

v On Compaq NonStop Kernel:

MQAT_NSK,
MQAT_DOS,
MQAT_WINDOWS, and
MQAT_DEFAULT are supported.

v On UNIX systems:

76 WebSphere MQ: Programmable Command Formats and Administration Interface



MQAT_UNIX,
MQAT_OS2,
MQAT_DOS,
MQAT_WINDOWS,
MQAT_CICS, and
MQAT_DEFAULT are supported.

v On Windows:

MQAT_WINDOWS_NT,
MQAT_OS2,
MQAT_DOS,
MQAT_WINDOWS,
MQAT_CICS, and
MQAT_DEFAULT are supported.

v On z/OS:

MQAT_DOS,
MQAT_IMS
MQAT_MVS,
MQAT_UNIX,
MQAT_CICS, and
MQAT_DEFAULT are supported.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

EnvData (MQCFST)
Environment data (parameter identifier: MQCA_ENV_DATA).

A character string that contains environment information pertaining to the
application to be started.

The maximum length of the string is MQ_PROCESS_ENV_DATA_LENGTH.

ProcessDesc (MQCFST)
Description of process definition (parameter identifier:
MQCA_PROCESS_DESC).

A plain-text comment that provides descriptive information about the process
definition. It must contain only displayable characters.

The maximum length of the string is MQ_PROCESS_DESC_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 77



If characters are used that are not in the coded character set identifier (CCSID)
for the queue manager on which the command is executing, they might be
translated incorrectly.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object to which you are applying the command
(that is, where it is defined and how it behaves). The value can be:

QSGDisposition Change Copy, Create

MQQSGD_COPY The object definition resides on the page set
of the queue manager that executes the
command. The object was defined using a
command that had the parameter
MQQSGD_COPY. Any object residing in the
shared repository, or any object defined
using a command that had the parameters
MQQSGD_Q_MGR, is not affected by this
command.

The object is defined on the page set of the
queue manager that executes the command
using the MQQSGD_GROUP object of the
same name as the ToProcessName object (for
Copy) or ProcessName object (for Create).

MQQSGD_GROUP The object definition resides in the shared
repository. The object was defined using a
command that had the parameter
MQQSGD_GROUP. Any object residing on
the page set of the queue manager that
executes the command (except a local copy
of the object) is not affected by this
command.

If the command is successful, the following
MQSC command is generated and sent to all
active queue managers in the queue-sharing
group to attempt to refresh local copies on
page set zero:

DEFINE PROCESS(process-name)
REPLACE QSGDISP(COPY)

The Change for the group object takes effect
regardless of whether the generated
command with QSGDISP(COPY) fails.

The object definition resides in the shared
repository. This is allowed only if the queue
manager is in a queue-sharing group.

If the definition is successful, the following
MQSC command is generated and sent to all
active queue managers in the queue-sharing
group to attempt to make or refresh local
copies on page set zero:

DEFINE PROCESS(process-name)
REPLACE QSGDISP(COPY)

The Copy or Create for the group object
takes effect regardless of whether the
generated command with QSGDISP(COPY)
fails.

MQQSGD_PRIVATE The object resides on the page set of the
queue manager that executes the command,
and was defined with MQQSGD_Q_MGR or
MQQSGD_COPY. Any object residing in the
shared repository is unaffected.

Not permitted.

MQQSGD_Q_MGR The object definition resides on the page set
of the queue manager that executes the
command. The object was defined using a
command that had the parameter
MQQSGD_Q_MGR. Any object residing in
the shared repository, or any local copy of
such an object, is not affected by this
command. This is the default value.

The object is defined on the page set of the
queue manager that executes the command.
This is the default value.

Replace (MQCFIN)
Replace attributes (parameter identifier: MQIACF_REPLACE).

78 WebSphere MQ: Programmable Command Formats and Administration Interface



If a process definition with the same name as ToProcessName already exists,
this specifies whether it is to be replaced.

The value can be:

MQRP_YES
Replace existing definition.

MQRP_NO
Do not replace existing definition.

UserData (MQCFST)
User data (parameter identifier: MQCA_USER_DATA).

A character string that contains user information pertaining to the application
(defined by ApplId) that is to be started.

The maximum length of the string is MQ_PROCESS_USER_DATA_LENGTH.

Change, Copy, and Create Queue

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Change Queue (MQCMD_CHANGE_Q) command changes the specified
attributes of an existing WebSphere MQ queue. For any optional parameters that
are omitted, the value does not change.

The Copy Queue (MQCMD_COPY_Q) command creates a new queue definition, of
the same type, using, for attributes not specified in the command, the attribute
values of an existing queue definition.

The Create Queue (MQCMD_CREATE_Q) command creates a queue definition
with the specified attributes. All attributes that are not specified are set to the
default value for the type of queue that is created.

“Required parameters (all commands)” on page 80 shows the parameters

Required parameters (Change and Create Queue)
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

The name of the queue to be changed. The maximum length of the string is
MQ_Q_NAME_LENGTH.

Required parameters (Copy Queue)
FromQName (MQCFST)

From queue name (parameter identifier: MQCACF_FROM_Q_NAME).

Specifies the name of the existing queue definition.

On z/OS, the queue manager searches for an object with the name you specify
and a disposition of MQQSGD_Q_MGR, MQQSGD_COPY, or
MQQSGD_SHARED to copy from. This parameter is ignored if a value of

Chapter 3. Definitions of the Programmable Command Formats 79



MQQSGD_COPY is specified for QSGDisposition. In this case, an object with
the name specified by ToQName and the disposition MQQSGD_GROUP is
searched for to copy from.

The maximum length of the string is MQ_Q_NAME_LENGTH.

ToQName (MQCFST)
To queue name (parameter identifier: MQCACF_TO_Q_NAME).

Specifies the name of the new queue definition.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Queue names must be unique; if a queue definition already exists with the
name and type of the new queue, Replace must be specified as MQRP_YES. If
a queue definition exists with the same name as and a different type from the
new queue, the command will fail.

Required parameters (all commands)
QType (MQCFIN)

Queue type (parameter identifier: MQIA_Q_TYPE).

The value specified must match the type of the queue being changed.

The value can be:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

MQQT_REMOTE
Local definition of a remote queue.

MQQT_MODEL
Model queue definition.

Optional parameters (Change, Copy, and Create Queue)
BackoutRequeueName (MQCFST)

Excessive backout requeue name (parameter identifier:
MQCA_BACKOUT_REQ_Q_NAME).

Specifies the local name of the queue (not necessarily a local queue) to which a
message is transferred if it is backed out more times than the value of
BackoutThreshold.

The backout queue does not need to exist at this time but it must exist when
the BackoutThreshold value is exceeded.

The maximum length of the string is MQ_Q_NAME_LENGTH.

BackoutThreshold (MQCFIN)
Backout threshold (parameter identifier: MQIA_BACKOUT_THRESHOLD).

The number of times a message can be backed out before it is transferred to
the backout queue specified by BackoutRequeueName.

If the value is subsequently reduced, any messages already on the queue that
have been backed out at least as many times as the new value remain on the
queue, but such messages are transferred if they are backed out again.

Specify a value in the range 0 through 999 999 999.

80 WebSphere MQ: Programmable Command Formats and Administration Interface



BaseObjectName (MQCFST)
Name of the object to which the alias resolves (parameter identifier:
MQCA_BASE_OBJECT_NAME).

This is the name of a queue or topic that is defined to the local queue manager.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

BaseQName (MQCFST)
Queue name to which the alias resolves (parameter identifier:
MQCA_BASE_Q_NAME).

This is the name of a local or remote queue that is defined to the local queue
manager.

The maximum length of the string is MQ_Q_NAME_LENGTH.

CFStructure (MQCFST)
Coupling facility structure name (parameter identifier:
MQCA_CF_STRUC_NAME). This parameter applies to z/OS only.

Specifies the name of the coupling facility structure where you want to store
messages when you use shared queues. The name:
v Cannot have more than 12 characters
v Must start with an uppercase letter (A through Z)
v Can include only the characters A through Z and 0 through 9

The maximum length of the string is MQ_CF_STRUC_NAME_LENGTH.

The name of the queue-sharing group to which the queue manager is
connected is prefixed to the name you supply. The name of the queue-sharing
group is always four characters, padded with @ symbols if necessary. For
example, if you use a queue-sharing group named NY03 and you supply the
name PRODUCT7, the resultant Coupling Facility structure name is NY03PRODUCT7.
Note that the administrative structure for the queue-sharing group (in this case
NY03CSQ_ADMIN) cannot be used for storing messages.

For local and model queues, when you use the Create Queue command with a
value of MQRP_YES in the Replace parameter, or the Change Queue
command, the following rules apply:
v On a local queue with a value of MQQSGD_SHARED in the QSGDisposition

parameter, CFStructure cannot change.
If you need to change either the CFStructure or QSGDisposition value, you
must delete and redefine the queue. To preserve any of the messages on the
queue you must off-load the messages before you delete the queue and
reload the messages after you have redefined the queue, or move the
messages to another queue.

v On a model queue with a value of MQQDT_SHARED_DYNAMIC in the
DefinitionType parameter, CFStructure cannot be blank.

v On a local queue with a value other than MQQSGD_SHARED in the
QSGDisposition parameter, or a model queue with a value other than
MQQDT_SHARED_DYNAMIC in the DefinitionType parameter, the value
of CFStructure does not matter.

For local and model queues, when you use the Create Queue command with a
value of MQRP_NO in the Replace parameter, the Coupling Facility structure:
v On a local queue with a value of MQQSGD_SHARED in the QSGDisposition

parameter, or a model queue with a value of MQQDT_SHARED_DYNAMIC
in the DefinitionType parameter, CFStructure cannot be blank.

Chapter 3. Definitions of the Programmable Command Formats 81

|
|
|

|

|



v On a local queue with a value other than MQQSGD_SHARED in the
QSGDisposition parameter, or a model queue with a value other than
MQQDT_SHARED_DYNAMIC in the DefinitionType parameter, the value
of CFStructure does not matter.

Note: Before you can use the queue, the structure must be defined in the
Coupling Facility Resource Management (CFRM) policy data set.

ClusterName (MQCFST)
Cluster name (parameter identifier: MQCA_CLUSTER_NAME).

The name of the cluster to which the queue belongs.

Changes to this parameter do not affect instances of the queue that are open.

Only one of the resultant values of ClusterName and ClusterNamelist can be
nonblank; you cannot specify a value for both.

The maximum length of the string is MQ_CLUSTER_NAME_LENGTH.

ClusterNamelist (MQCFST)
Cluster namelist (parameter identifier: MQCA_CLUSTER_NAMELIST).

The name of the namelist, that specifies a list of clusters to which the queue
belongs.

Changes to this parameter do not affect instances of the queue that are open.

Only one of the resultant values of ClusterName and ClusterNamelist can be
nonblank; you cannot specify a value for both.

CLWLQueuePriority (MQCFIN)
Cluster workload queue priority (parameter identifier:
MQIA_CLWL_Q_PRIORITY).

Specifies the priority of the queue in cluster workload management. The value
must be in the range zero through 9, where zero is the lowest priority and 9 is
the highest.

For more information about this parameter, see WebSphere MQ Queue
Manager Clusters.

CLWLQueueRank (MQCFIN)
Cluster workload queue rank (parameter identifier: MQIA_CLWL_Q_RANK).

Specifies the rank of the queue in cluster workload management. The value
must be in the range zero through 9, where zero is the lowest rank and 9 is the
highest.

For more information about this parameter, see WebSphere MQ Queue
Manager Clusters.

CLWLUseQ (MQCFIN)
Cluster workload use remote queue (parameter identifier:
MQIA_CLWL_USEQ).

Specifies whether remote and local queues are to be used in cluster workload
distribution. The value can be:

MQCLWL_USEQ_AS_Q_MGR
Use the value of the CLWLUseQ parameter on the queue manager’s
definition.

MQCLWL_USEQ_ANY
Use remote and local queues.

82 WebSphere MQ: Programmable Command Formats and Administration Interface



MQCLWL_USEQ_LOCAL
Do not use remote queues.

For more information about this parameter, see WebSphere MQ Queue
Manager Clusters.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

DefaultPutResponse (MQCFIN)
Default put response type definition (parameter identifier:
MQIA_DEF_PUT_RESPONSE_TYPE).

The parameter specifies the type of response to be used for put operations to
the queue when an application specifies MQPMO_RESPONSE_AS_Q_DEF. The
value can be:

MQPRT_SYNC_RESPONSE
The put operation is issued synchronously, returning a response.

MQPRT_ASYNC_RESPONSE
The put operation is issued asynchronously, returning a subset of
MQMD fields.

DefBind (MQCFIN)
Bind definition (parameter identifier: MQIA_DEF_BIND).

The parameter specifies the binding to be used when
MQOO_BIND_AS_Q_DEF is specified on the MQOPEN call. The value can be:

MQBND_BIND_ON_OPEN
The binding is fixed by the MQOPEN call.

MQBND_BIND_NOT_FIXED
The binding is not fixed.

Changes to this parameter do not affect instances of the queue that are open.

DefinitionType (MQCFIN)
Queue definition type (parameter identifier: MQIA_DEFINITION_TYPE).

The value can be:

MQQDT_PERMANENT_DYNAMIC
Dynamically defined permanent queue.

MQQDT_SHARED_DYNAMIC
Dynamically defined shared queue. This option is available on z/OS
only.

Chapter 3. Definitions of the Programmable Command Formats 83

|
|
|

|
|
|

|
|

|
|
|



MQQDT_TEMPORARY_DYNAMIC
Dynamically defined temporary queue.

DefInputOpenOption (MQCFIN)
Default input open option (parameter identifier:
MQIA_DEF_INPUT_OPEN_OPTION).

Specifies the default share option for applications opening this queue for input.

The value can be:

MQOO_INPUT_EXCLUSIVE
Open queue to get messages with exclusive access.

MQOO_INPUT_SHARED
Open queue to get messages with shared access.

DefPersistence (MQCFIN)
Default persistence (parameter identifier: MQIA_DEF_PERSISTENCE).

Specifies the default for message-persistence on the queue. Message persistence
determines whether or not messages are preserved across restarts of the queue
manager.

The value can be:

MQPER_PERSISTENT
Message is persistent.

MQPER_NOT_PERSISTENT
Message is not persistent.

DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY).

Specifies the default priority of messages put on the queue. The value must be
in the range zero through to the maximum priority value that is supported (9).

DefReadAhead (MQCFIN)
Default read ahead (parameter identifier: MQIA_DEF_READ_AHEAD).

Specifies the default read ahead behavior for non-persistent messages delivered
to the client.

The value can be:

MQREADA_NO
Non-persistent messages are not read ahead unless the client
application is configured to request read ahead.

MQREADA_YES
Non-persistent messages are sent ahead to the client before an
application requests them. Non-persistent messages can be lost if the
client ends abnormally or if the client does not consume all the
messages it is sent.

MQREADA_DISABLED
Read ahead of non-persistent messages is not enabled for this queue.
Messages are not sent ahead to the client regardless of whether read
ahead is requested by the client application.

DistLists (MQCFIN)
Distribution list support (parameter identifier: MQIA_DIST_LISTS).

Specifies whether distribution-list messages can be placed on the queue.

84 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|

|

|
|
|

|
|
|
|
|

|
|
|
|



Note: This attribute is set by the sending message channel agent (MCA) which
removes messages from the queue; this happens each time the sending MCA
establishes a connection to a receiving MCA on a partnering queue manager.
The attribute is not normally set by administrators, although it can be set if the
need arises.

This parameter is supported in the following environments: AIX, HP-UX,
i5/OS, Solaris, Windows and Linux.

The value can be:

MQDL_SUPPORTED
Distribution lists supported.

MQDL_NOT_SUPPORTED
Distribution lists not supported.

Force (MQCFIN)
Force changes (parameter identifier: MQIACF_FORCE).

Specifies whether the command should be forced to complete when conditions
are such that completing the command would affect an open queue. The
conditions depend upon the type of the queue that is being changed:

Alias QType: BaseQName is specified with a queue name and an application has
the alias queue open.

Local QType: Either of the following conditions indicate that a local queue
would be affected:
v Shareability is specified as MQQA_NOT_SHAREABLE and more than one

application has the local queue open for input.
v The Usage value is changed and one or more applications has the local

queue open, or there are one or more messages on the queue. (The Usage
value should not normally be changed while there are messages on the
queue; the format of messages changes when they are put on a transmission
queue.)

Remote QType: Either of the following conditions indicate that a remote queue
would be affected:
v XmitQName is specified with a transmission-queue name (or blank) and an

application has a remote queue open that would be affected by this change.
v Any of the RemoteQName, RemoteQMgrName or XmitQName parameters is

specified with a queue or queue-manager name, and one or more
applications has a queue open that resolved through this definition as a
queue-manager alias.

Model QType: This parameter is not valid for model queues.

Note: A value of MQFC_YES is not required if this definition is in use as a
reply-to queue definition only.

The value can be:

MQFC_YES
Force the change.

MQFC_NO
Do not force the change.

HardenGetBackout (MQCFIN)
Whether to harden backout count (parameter identifier:
MQIA_HARDEN_GET_BACKOUT).

Chapter 3. Definitions of the Programmable Command Formats 85



Specifies whether the count of backed out messages is saved (hardened) across
restarts of the message queue manager.

Note: WebSphere MQ for i5/OS always hardens the count, regardless of the
setting of this attribute.

The value can be:

MQQA_BACKOUT_HARDENED
Backout count remembered.

MQQA_BACKOUT_NOT_HARDENED
Backout count might not be remembered.

IndexType (MQCFIN)
Index type (parameter identifier: MQIA_INDEX_TYPE). This parameter applies
to z/OS only.

Specifies the type of index maintained by the queue manager to expedite
MQGET operations on the queue. For shared queues, the type of index
determines what type of MQGETs can be used. The value can be:

MQIT_NONE
No index.

MQIT_MSG_ID
The queue is indexed using message identifiers.

MQIT_CORREL_ID
The queue is indexed using correlation identifiers.

MQIT_MSG_TOKEN
The queue is indexed using message tokens.

MQIT_GROUP_ID
The queue is indexed using group identifiers.

Messages can be retrieved using a selection criterion only if an appropriate
index type is maintained, as the following table shows:

Retrieval selection criterion IndexType required

Shared queue Other queue

None (sequential retrieval) Any Any

Message identifier MQIT_MSG_ID or
MQIT_NONE

Any

Correlation identifier MQIT_CORREL_ID Any

Message and correlation identifiers MQIT_MSG_ID or
MQIT_CORREL_ID

Any

Group identifier MQIT_GROUP_ID Any

Grouping MQIT_GROUP_ID MQIT_GROUP_ID

Message token Not allowed MQIT_MSG_TOKEN

InhibitGet (MQCFIN)
Whether get operations are allowed (parameter identifier:
MQIA_INHIBIT_GET).

The value can be:

86 WebSphere MQ: Programmable Command Formats and Administration Interface



MQQA_GET_ALLOWED
Get operations are allowed.

MQQA_GET_INHIBITED
Get operations are inhibited.

InhibitPut (MQCFIN)
Whether put operations are allowed (parameter identifier:
MQIA_INHIBIT_PUT).

Specifies whether messages can be put on the queue.

The value can be:

MQQA_PUT_ALLOWED
Put operations are allowed.

MQQA_PUT_INHIBITED
Put operations are inhibited.

InitiationQName (MQCFST)
Initiation queue name (parameter identifier: MQCA_INITIATION_Q_NAME).

The local queue for trigger messages relating to this queue. The initiation
queue must be on the same queue manager.

The maximum length of the string is MQ_Q_NAME_LENGTH.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier: MQIA_MAX_MSG_LENGTH).

The maximum length for messages on the queue. Because applications might
use the value of this attribute to determine the size of buffer they need to
retrieve messages from the queue, change this value only if it is known that
this will not cause an application to operate incorrectly.

Do not set a value that is greater than the queue manager’s MaxMsgLength
attribute.

The lower limit for this parameter is 0. The upper limit depends on the
environment:
v On AIX, HP OpenVMS, Compaq NonStop Kernel, HP-UX, i5/OS, Solaris,

Linux, Windows, and z/OS, the maximum message length is 100 MB
(104 857 600 bytes).

v On UNIX systems not listed above, the maximum message length is 4 MB
(4 194 304 bytes).

MaxQDepth (MQCFIN)
Maximum queue depth (parameter identifier: MQIA_MAX_Q_DEPTH).

The maximum number of messages allowed on the queue. Note that other
factors may cause the queue to be treated as full; for example, it will appear to
be full if there is no storage available for a message.

Specify a value greater than or equal to 0, and less than or equal to:
v 999 999 999 if the queue is on AIX, HP-UX, i5/OS, Solaris, Linux, Windows,

or z/OS
v 640 000 if the queue is on any other Websphere MQ platform.

MsgDeliverySequence (MQCFIN)
Whether priority is relevant (parameter identifier:
MQIA_MSG_DELIVERY_SEQUENCE).

The value can be:

Chapter 3. Definitions of the Programmable Command Formats 87



MQMDS_PRIORITY
Messages are returned in priority order.

MQMDS_FIFO
Messages are returned in FIFO order (first in, first out).

NonPersistentMessageClass (MQCFIN)
The level of reliability to be assigned to non-persistent messages that are put to
the queue (parameter identifier: MQIA_NPM_CLASS).

The value can be:

MQNPM_CLASS_NORMAL
Non-persistent messages persist as long as the lifetime of the queue
manager session. They are discarded in the event of a queue manager
restart. This is the default value.

MQNPM_CLASS_HIGH
The queue manager attempts to retain non-persistent messages for the
lifetime of the queue. Non-persistent messages may still be lost in the
event of a failure.

This parameter is valid only on local and model queues. It is not valid on
z/OS.

ProcessName (MQCFST)
Name of process definition for the queue (parameter identifier:
MQCA_PROCESS_NAME).

Specifies the local name of the WebSphere MQ process that identifies the
application to be started when a trigger event occurs.
v If the queue is a transmission queue, the process definition contains the

name of the channel to be started. This parameter is optional for
transmission queues on AIX, HP OpenVMS, HP-UX, Linux, i5/OS, Solaris,
Windows, and z/OS; if you do not specify it, the channel name is taken
from the value specified for the TriggerData parameter.

v In other environments, the process name must be nonblank for a trigger
event to occur (although it can be set after the queue has been created).

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

PropertyControl (MQCFIN)
Property control attribute (parameter identifier
MQIA_PROPERTY_CONTROL).

Specifies how message properties are handled when messages are retrieved
from queues using the MQGET call with the
MQGMO_PROPERTIES_AS_Q_DEF option. The value can be:

MQPROP_COMPATIBILITY
If the message contains a property with a prefix of mcd., jms., usr. or
mqext., all message properties are delivered to the application in an
MQRFH2 header. Otherwise all properties of the message, except those
contained in the message descriptor (or extension), are discarded and
are no longer accessible to the application.

This is the default value; it allows applications which expect JMS
related properties to be in an MQRFH2 header in the message data to
continue to work unmodified.

88 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|



MQPROP_NONE
All properties of the message, except those in the message descriptor
(or extension), are removed from the message before the message is
sent to the remote queue manager.

MQPROP_ALL
All properties of the message are included with the message when it is
sent to the remote queue manager. The properties, except those in the
message descriptor (or extension), are placed in one or more MQRFH2
headers in the message data.

MQPROP_FORCE_MQRFH2
Properties are always returned in the message data in an MQRFH2
header regardless of whether the application specifies a message
handle.

A valid message handle supplied in the MsgHandle field of the
MQGMO structure on the MQGET call is ignored. Properties of the
message are not accessible via the message handle.

This parameter is applicable to Local, Alias and Model queues.

QDepthHighEvent (MQCFIN)
Controls whether Queue Depth High events are generated (parameter
identifier: MQIA_Q_DEPTH_HIGH_EVENT).

A Queue Depth High event indicates that an application has put a message on
a queue, and this has caused the number of messages on the queue to become
greater than or equal to the queue depth high threshold. See the
QDepthHighLimit parameter.

Note: The value of this attribute can change implicitly. See Chapter 3,
“Definitions of the Programmable Command Formats,” on page 21.

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDepthHighLimit (MQCFIN)
High limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_HIGH_LIMIT).

The threshold against which the queue depth is compared to generate a Queue
Depth High event.

This event indicates that an application has put a message to a queue, and this
has caused the number of messages on the queue to become greater than or
equal to the queue depth high threshold. See the QDepthHighEvent parameter.

The value is expressed as a percentage of the maximum queue depth
(MaxQDepth attribute), and must be greater than or equal to zero and less than
or equal to 100.

QDepthLowEvent (MQCFIN)
Controls whether Queue Depth Low events are generated (parameter
identifier: MQIA_Q_DEPTH_LOW_EVENT).

Chapter 3. Definitions of the Programmable Command Formats 89

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|



A Queue Depth Low event indicates that an application has retrieved a
message from a queue, and this has caused the number of messages on the
queue to become less than or equal to the queue depth low threshold. See the
QDepthLowLimit parameter.

Note: The value of this attribute can change implicitly. See Chapter 3,
“Definitions of the Programmable Command Formats,” on page 21.

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDepthLowLimit (MQCFIN)
Low limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_LOW_LIMIT).

The threshold against which the queue depth is compared to generate a Queue
Depth Low event.

This event indicates that an application has retrieved a message from a queue,
and this has caused the number of messages on the queue to become less than
or equal to the queue depth low threshold. See the QDepthLowEvent parameter.

Specify the value as a percentage of the maximum queue depth (MaxQDepth
attribute), in the range 0 through 100.

QDepthMaxEvent (MQCFIN)
Controls whether Queue Full events are generated (parameter identifier:
MQIA_Q_DEPTH_MAX_EVENT).

A Queue Full event indicates that an MQPUT call to a queue has been rejected
because the queue is full, that is, the queue depth has already reached its
maximum value.

Note: The value of this attribute can change implicitly. See Chapter 3,
“Definitions of the Programmable Command Formats,” on page 21.

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDesc (MQCFST)
Queue description (parameter identifier: MQCA_Q_DESC).

Text that briefly describes the object.

The maximum length of the string is MQ_Q_DESC_LENGTH.

Use characters from the character set identified by the coded character set
identifier (CCSID) for the message queue manager on which the command is
executing to ensure that the text is translated correctly if it is sent to another
queue manager.

QServiceInterval (MQCFIN)
Target for queue service interval (parameter identifier:
MQIA_Q_SERVICE_INTERVAL).

90 WebSphere MQ: Programmable Command Formats and Administration Interface



The service interval used for comparison to generate Queue Service Interval
High and Queue Service Interval OK events. See the QServiceIntervalEvent
parameter.

Specify a value in the range 0 through 999 999 999 milliseconds.

QServiceIntervalEvent (MQCFIN)
Controls whether Service Interval High or Service Interval OK events are
generated (parameter identifier: MQIA_Q_SERVICE_INTERVAL_EVENT).

A Queue Service Interval High event is generated when a check indicates that
no messages have been retrieved from or put to the queue for at least the time
indicated by the QServiceInterval attribute.

A Queue Service Interval OK event is generated when a check indicates that a
message has been retrieved from the queue within the time indicated by the
QServiceInterval attribute.

Note: The value of this attribute can change implicitly. See Chapter 3,
“Definitions of the Programmable Command Formats,” on page 21.

The value can be:

MQQSIE_HIGH
Queue Service Interval High events enabled.
v Queue Service Interval High events are enabled and
v Queue Service Interval OK events are disabled.

MQQSIE_OK
Queue Service Interval OK events enabled.
v Queue Service Interval High events are disabled and
v Queue Service Interval OK events are enabled.

MQQSIE_NONE
No queue service interval events enabled.
v Queue Service Interval High events are disabled and
v Queue Service Interval OK events are also disabled.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object to which you are applying the command
(that is, where it is defined and how it behaves). The value can be:

QSGDisposition Change Copy, Create

MQQSGD_COPY The object definition resides on the page set
of the queue manager that executes the
command. The object was defined using a
command that had the parameter
MQQSGD_COPY. Any object residing in the
shared repository, or any object defined
using a command that had the parameters
MQQSGD_Q_MGR, is not affected by this
command.

The object is defined on the page set of the
queue manager that executes the command
using the MQQSGD_GROUP object of the
same name as the ToQName object (for Copy)
or the QName object (for Create). For local
queues, messages are stored on the page sets
of each queue manager and are available
only through that queue manager.

Chapter 3. Definitions of the Programmable Command Formats 91



QSGDisposition Change Copy, Create

MQQSGD_GROUP The object definition resides in the shared
repository. The object was defined using a
command that had the parameter
MQQSGD_GROUP. Any object residing on
the page set of the queue manager that
executes the command (except a local copy
of the object) is not affected by this
command.

If the command is successful, the following
MQSC command is generated and sent to all
active queue managers in the queue-sharing
group to attempt to refresh local copies on
page set zero:

DEFINE QUEUE(q-name)
REPLACE QSGDISP(COPY)

The Change for the group object takes effect
regardless of whether the generated
command with QSGDISP(COPY) fails.

The object definition resides in the shared
repository. This is allowed only in a shared
queue manager environment.

If the definition is successful, the following
MQSC command is generated and sent to all
active queue managers to attempt to make or
refresh local copies on page set zero:

DEFINE QUEUE(q-name)
REPLACE QSGDISP(COPY)

The Copy or Create for the group object
takes effect regardless of whether the
generated command with QSGDISP(COPY)
fails.

MQQSGD_PRIVATE The object resides on the page set of the
queue manager that executes the command,
and was defined with MQQSGD_Q_MGR or
MQQSGD_COPY. Any object residing in the
shared repository is unaffected.

Not permitted.

MQQSGD_Q_MGR The object definition resides on the page set
of the queue manager that executes the
command. The object was defined using a
command that had the parameter
MQQSGD_Q_MGR. Any object residing in
the shared repository, or any local copy of
such an object, is not affected by this
command. This is the default value.

The object is defined on the page set of the
queue manager that executes the command.
This is the default value. For local queues,
messages are stored on the page sets of each
queue manager and are available only
through that queue manager.

MQQSGD_SHARED This value applies only to local queues. The
object definition resides in the shared
repository. The object was defined by a
command using the parameter
MQQSGD_SHARED. Any object residing on
the page set of the queue manager that
executes the command, or any object defined
by a command using the parameter
MQQSGD_GROUP, is not affected by this
command.

This option applies only to local queues.
The object is defined in the shared
repository. Messages are stored in the
Coupling Facility and are available to any
queue manager in the queue-sharing group.
You can specify MQQSGD_SHARED only if:

v CFStructure is nonblank

v IndexType is not MQIT_MSG_TOKEN

v The queue is not one of the following:

– SYSTEM.CHANNEL.INITQ

– SYSTEM.COMMAND.INPUT

QueueAccounting (MQCFIN)
Controls the collection of accounting data (parameter identifier:
MQIA_ACCOUNTING_Q).

The value can be:

MQMON_Q_MGR
The collection of accounting data for the queue is performed based
upon the setting of the QueueAccounting parameter on the queue
manager.

92 WebSphere MQ: Programmable Command Formats and Administration Interface



MQMON_OFF
Accounting data collection is disabled for the queue.

MQMON_ON
If the value of the queue manager’s QueueAccounting parameter is not
MQMON_NONE, accounting data collection is enabled for the queue.

QueueMonitoring (MQCFIN)
Online monitoring data collection (parameter identifier:
MQIA_MONITORING_Q).

Specifies whether online monitoring data is to be collected and, if so, the rate
at which the data is collected. The value can be:

MQMON_OFF
Online monitoring data collection is turned off for this queue.

MQMON_Q_MGR
The value of the queue manager’s QueueMonitoring parameter is
inherited by the queue.

MQMON_LOW
If the value of the queue manager’s QueueMonitoring parameter is not
MQMON_NONE, online monitoring data collection is turned on, with
a low rate of data collection, for this queue.

MQMON_MEDIUM
If the value of the queue manager’s QueueMonitoring parameter is not
MQMON_NONE, online monitoring data collection is turned on, with
a moderate rate of data collection, for this queue.

MQMON_HIGH
If the value of the queue manager’s QueueMonitoring parameter is not
MQMON_NONE, online monitoring data collection is turned on, with
a high rate of data collection, for this queue.

QueueStatistics (MQCFIN)
Statistics data collection (parameter identifier: MQIA_STATISTICS_Q).

Specifies whether statistics data collection is enabled. The value can be:

MQMON_Q_MGR
The value of the queue manager’s QueueStatistics parameter is
inherited by the queue.

MQMON_OFF
Statistics data collection is disabled

MQMON_ON
If the value of the queue manager’s QueueStatistics parameter is not
MQMON_NONE, statistics data collection is enabled

This parameter is valid only on i5/OS, UNIX systems, and Windows.

RemoteQMgrName (MQCFST)
Name of remote queue manager (parameter identifier:
MQCA_REMOTE_Q_MGR_NAME).

If an application opens the local definition of a remote queue, RemoteQMgrName
must not be blank or the name of the connected queue manager. If XmitQName
is blank there must be a local queue of this name, which is to be used as the
transmission queue.

Chapter 3. Definitions of the Programmable Command Formats 93



If this definition is used for a queue-manager alias, RemoteQMgrName is the name
of the queue manager, which can be the name of the connected queue
manager. Otherwise, if XmitQName is blank, when the queue is opened there
must be a local queue of this name, which is to be used as the transmission
queue.

If this definition is used for a reply-to alias, this name is the name of the queue
manager that is to be the reply-to queue manager.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

RemoteQName (MQCFST)
Name of remote queue as known locally on the remote queue manager
(parameter identifier: MQCA_REMOTE_Q_NAME).

If this definition is used for a local definition of a remote queue, RemoteQName
must not be blank when the open occurs.

If this definition is used for a queue-manager alias definition, RemoteQName
must be blank when the open occurs.

If this definition is used for a reply-to alias, this name is the name of the queue
that is to be the reply-to queue.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Replace (MQCFIN)
Replace attributes (parameter identifier: MQIACF_REPLACE). This parameter
is not valid on a Change Queue command.

If the object already exists, the effect is similar to issuing the Change Queue
command without the MQFC_YES option on the Force parameter, and with all
of the other attributes specified. In particular, note that any messages which
are on the existing queue are retained.

(The difference between the Change Queue command without MQFC_YES on
the Force parameter, and the Create Queue command with MQRP_YES on the
Replace parameter, is that the Change Queue command does not change
unspecified attributes, but Create Queue with MQRP_YES sets all the
attributes. When you use MQRP_YES, unspecified attributes are taken from the
default definition, and the attributes of the object being replaced, if one exists,
are ignored.)

The command fails if both of the following are true:
v The command sets attributes that would require the use of MQFC_YES on

the Force parameter if you were using the Change Queue command
v The object is open

The Change Queue command with MQFC_YES on the Force parameter
succeeds in this situation.

If MQSCO_CELL is specified on the Scope parameter on OS/2® or UNIX
systems, and there is already a queue with the same name in the cell directory,
the command fails, whether or not MQRP_YES is specified.

The value can be:

MQRP_YES
Replace existing definition.

MQRP_NO
Do not replace existing definition.

94 WebSphere MQ: Programmable Command Formats and Administration Interface



RetentionInterval (MQCFIN)
Retention interval (parameter identifier: MQIA_RETENTION_INTERVAL).

The number of hours for which the queue might be needed, based on the date
and time when the queue was created.

This information is available to a housekeeping application or an operator and
can be used to determine when a queue is no longer required. The queue
manager does not delete queues nor does it prevent queues from being deleted
if their retention interval has not expired. It is the user’s responsibility to take
any required action.

Specify a value in the range 0 through 999 999 999.

Scope (MQCFIN)
Scope of the queue definition (parameter identifier: MQIA_SCOPE).

Specifies whether the scope of the queue definition does not extend beyond the
queue manager which owns the queue, or whether the queue name is
contained in a cell directory, so that it is known to all of the queue managers
within the cell.

If this attribute is changed from MQSCO_CELL to MQSCO_Q_MGR, the entry
for the queue is deleted from the cell directory.

Model and dynamic queues cannot be changed to have cell scope.

If it is changed from MQSCO_Q_MGR to MQSCO_CELL, an entry for the
queue is created in the cell directory. If there is already a queue with the same
name in the cell directory, the command fails. The command also fails if no
name service supporting a cell directory has been configured.

The value can be:

MQSCO_Q_MGR
Queue-manager scope.

MQSCO_CELL
Cell scope.

This value is not supported on i5/OS.

This parameter is not available on z/OS.

Shareability (MQCFIN)
Whether the queue can be shared (parameter identifier:
MQIA_SHAREABILITY).

Specifies whether multiple instances of applications can open this queue for
input.

The value can be:

MQQA_SHAREABLE
Queue is shareable.

MQQA_NOT_SHAREABLE
Queue is not shareable.

StorageClass (MQCFST)
Storage class (parameter identifier: MQCA_STORAGE_CLASS). This parameter
applies to z/OS only.

Specifies the name of the storage class.

The maximum length of the string is MQ_STORAGE_CLASS_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 95



TargetType (MQCFIN)
Target type (parameter identifier: MQIA_BASE_TYPE).

Specifies the type of object to which the alias resolves.

The value can be:

MQOT_Q
The object is a queue.

MQOT_TOPIC
The object is a topic.

TriggerControl (MQCFIN)
Trigger control (parameter identifier: MQIA_TRIGGER_CONTROL).

Specifies whether trigger messages are written to the initiation queue.

The value can be:

MQTC_OFF
Trigger messages not required.

MQTC_ON
Trigger messages required.

TriggerData (MQCFST)
Trigger data (parameter identifier: MQCA_TRIGGER_DATA).

Specifies user data that the queue manager includes in the trigger message.
This data is made available to the monitoring application that processes the
initiation queue and to the application that is started by the monitor.

The maximum length of the string is MQ_TRIGGER_DATA_LENGTH.

TriggerDepth (MQCFIN)
Trigger depth (parameter identifier: MQIA_TRIGGER_DEPTH).

Specifies (when TriggerType is MQTT_DEPTH) the number of messages that
will initiate a trigger message to the initiation queue. The value must be in the
range 1 through 999 999 999.

TriggerMsgPriority (MQCFIN)
Threshold message priority for triggers (parameter identifier:
MQIA_TRIGGER_MSG_PRIORITY).

Specifies the minimum priority that a message must have before it can cause,
or be counted for, a trigger event. The value must be in the range of priority
values that is supported (0 through 9).

TriggerType (MQCFIN)
Trigger type (parameter identifier: MQIA_TRIGGER_TYPE).

Specifies the condition that initiates a trigger event. When the condition is true,
a trigger message is sent to the initiation queue.

The value can be:

MQTT_NONE
No trigger messages.

MQTT_EVERY
Trigger message for every message.

MQTT_FIRST
Trigger message when queue depth goes from 0 to 1.

96 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|

|

|
|

|
|



MQTT_DEPTH
Trigger message when depth threshold exceeded.

Usage (MQCFIN)
Usage (parameter identifier: MQIA_USAGE).

Specifies whether the queue is for normal usage or for transmitting messages
to a remote message queue manager.

The value can be:

MQUS_NORMAL
Normal usage.

MQUS_TRANSMISSION
Transmission queue.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCA_XMIT_Q_NAME).

Specifies the local name of the transmission queue to be used for messages
destined for either a remote queue or for a queue-manager alias definition.

If XmitQName is blank, a queue with the same name as RemoteQMgrName is used
as the transmission queue.

This attribute is ignored if the definition is being used as a queue-manager
alias and RemoteQMgrName is the name of the connected queue manager.

It is also ignored if the definition is used as a reply-to queue alias definition.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Error codes (Change, Copy, and Create Queue)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_CELL_DIR_NOT_AVAILABLE
Cell directory is not available.

MQRCCF_CLUSTER_NAME_CONFLICT
Cluster name conflict.

MQRCCF_CLUSTER_Q_USAGE_ERROR
Cluster usage conflict.

MQRCCF_DYNAMIC_Q_SCOPE_ERROR
Dynamic queue scope error.

MQRCCF_FORCE_VALUE_ERROR
Force value not valid.

MQRCCF_Q_ALREADY_IN_CELL
Queue already exists in cell.

MQRCCF_Q_TYPE_ERROR
Queue type not valid.

Chapter 3. Definitions of the Programmable Command Formats 97



Change Queue Manager
The Change Queue Manager (MQCMD_CHANGE_Q_MGR) command changes the
specified attributes of the queue manager.

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

For any optional parameters that are omitted, the value does not change.

Required parameters:
None

Optional parameters:
AccountingConnOverride, AccountingInterval, ActivityRecording,
AdoptNewMCACheck, AdoptNewMCAType, AuthorityEvent, BridgeEvent,
ChannelAutoDef, ChannelAutoDefEvent, ChannelAutoDefExit, ChannelEvent,
ChannelInitiatorControl, ChannelMonitoring, ChannelStatistics,
ChinitAdapters, ChinitDispatchers, ChinitServiceParm,
ChinitTraceAutoStart, ChinitTraceTableSize,
ClusterSenderMonitoringDefault, ClusterSenderStatistics,
ClusterWorkloadData, ClusterWorkloadExit, ClusterWorkloadLength,
CLWLMRUChannels, CLWLUseQ, CodedCharSetId, CommandEvent, CommandScope,
CommandServerControl, ConfigurationEvent, DeadLetterQName,
DefXmitQName, DNSGroup, DNSWLM, ExpiryInterval, Force, , IGQPutAuthority,
IGQUserId, InhibitEvent, IntraGroupQueuing, IPAddressVersion,
ListenerTimer, LocalEvent, LoggerEvent, LUGroupName, LUName,
LU62ARMSuffix, LU62Channels, MaxActiveChannels, MaxChannels, MaxHandles,
MaxMsgLength, MaxPropertiesLength, MaxUncommittedMsgs, MQIAccounting,
MQIStatistics, MsgMarkBrowseInterval, OutboundPortMax, OutboundPortMin,
Parent, PerformanceEvent, PubSubMaxMsgRetryCount, PubSubMode,
PubSubNPInputMsg, PubSubNPResponse, PubSubSyncPoint, QMgrDesc,
QueueAccounting, QueueMonitoring, QueueStatistics, ReceiveTimeout,
ReceiveTimeoutMin, ReceiveTimeoutType, RemoteEvent, RepositoryName,
RepositoryNamelist, SecurityCase, SharedQQmgrName, SSLCRLNamelist,
SSLCryptoHardware, SSLEvent, SSLFipsRequired, SSLKeyRepository,
SSLKeyResetCount, SSLTasks, StartStopEvent, StatisticsInterval,
TCPChannels, TCPKeepAlive, TCPName, TCPStackType, TraceRouteRecording,
TreeLifeTime, TriggerInterval

Optional parameters (Change Queue Manager)
This is a list of the optional parameters for the Change Queue Manager PCF.

AccountingConnOverride (MQCFIN)
Specifies whether applications can override the settings of the QueueAccounting
and MQIAccounting queue manager parameters (parameter identifier:
MQIA_ACCOUNTING_CONN_OVERRIDE).

The value can be:

MQMON_DISABLED
Applications cannot override the settings of the QueueAccounting and
MQIAccounting parameters.

This is the queue manager’s initial default value.

98 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|

|



MQMON_ENABLED
Applications can override the settings of the QueueAccounting and
MQIAccounting parameters by using the options field of the MQCNO
structure of the MQCONNX API call.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

AccountingInterval (MQCFIN)
The time interval, in seconds, at which intermediate accounting records are
written (parameter identifier: MQIA_ACCOUNTING_INTERVAL).

Specify a value in the range 1 through 604 000.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

ActivityRecording (MQCFIN)
Whether activity reports can be generated (parameter identifier:
MQIA_ACTIVITY_RECORDING).

The value can be:

MQRECORDING_DISABLED
Activity reports cannot be generated.

MQRECORDING_MSG
Activity reports can be generated and sent to the reply queue specified
by the originator in the message causing the report.

MQRECORDING_Q
Activity reports can be generated and sent to
SYSTEM.ADMIN.ACTIVITY.QUEUE.

For more information about activity reports, see Monitoring WebSphere MQ.

AdoptNewMCACheck (MQCFIN)
The elements checked to determine whether an MCA should be adopted
(restarted) when a new inbound channel is detected that has the same name as
a currently active MCA (parameter identifier:
MQIA_ADOPTNEWMCA_CHECK).

The value can be:

MQADOPT_CHECK_Q_MGR_NAME
Check the queue manager name.

MQADOPT_CHECK_NET_ADDR
Check the network address.

MQADOPT_CHECK_ALL
Check the queue manager name and network address. Perform this
check to prevent your channels from being inadvertently shut down.
This is the queue manager’s initial default value.

MQADOPT_CHECK_NONE
Do not check any elements.

This parameter applies to z/OS only.

AdoptNewMCAType (MQCFIN)
Adoption of orphaned channel instances (parameter identifier:
MQIA_ADOPTNEWMCA_TYPE).

Chapter 3. Definitions of the Programmable Command Formats 99



Specify whether an orphaned MCA instance is to be adopted when a new
inbound channel request is detected matching the AdoptNewMCACheck
parameters.

The value can be:

MQADOPT_TYPE_NO
Do not adopt orphaned channel instances.

MQADOPT_TYPE_ALL
Adopt all channel types. This is the queue manager’s initial default
value.

This parameter applies to z/OS only.

AuthorityEvent (MQCFIN)
Controls whether authorization (Not Authorized) events are generated
(parameter identifier: MQIA_AUTHORITY_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled. This value is not permitted on z/OS.

BridgeEvent (MQCFIN)
Controls whether IMS™ Bridge events are generated (parameter identifier:
MQIA_BRIDGE_EVENT). This parameter applies to z/OS only.

The value can be:

MQEVR_DISABLED
Event reporting disabled. This is the default value.

MQEVR_ENABLED
Event reporting enabled. This value is not supported on z/OS.

ChannelAutoDef (MQCFIN)
Controls whether receiver and server-connection channels can be auto-defined
(parameter identifier: MQIA_CHANNEL_AUTO_DEF).

Auto-definition for cluster-sender channels is always enabled.

This parameter is supported in the following environments: AIX, HP-UX,
i5/OS, Solaris, Windows and Linux.

The value can be:

MQCHAD_DISABLED
Channel auto-definition disabled.

MQCHAD_ENABLED
Channel auto-definition enabled.

ChannelAutoDefEvent (MQCFIN)
Controls whether channel auto-definition events are generated (parameter
identifier: MQIA_CHANNEL_AUTO_DEF_EVENT), when a receiver,
server-connection, or cluster-sender channel is auto-defined.

This parameter is supported in the following environments: AIX, HP-UX,
i5/OS, Solaris, Windows and Linux.

The value can be:

100 WebSphere MQ: Programmable Command Formats and Administration Interface



MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

ChannelAutoDefExit (MQCFST)
Channel auto-definition exit name (parameter identifier:
MQCA_CHANNEL_AUTO_DEF_EXIT).

This exit is invoked when an inbound request for an undefined channel is
received, if:
1. The channel is a cluster-sender, or
2. Channel auto-definition is enabled (see ChannelAutoDef).

This exit is also invoked when a cluster-receiver channel is started.

The format of the name is the same as for the SecurityExit parameter
described in “Change, Copy, and Create Channel” on page 37.

The maximum length of the exit name depends on the environment in which
the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum length for
the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

This parameter is supported in the following environments: AIX, HP-UX,
i5/OS, Solaris, Windows, Linux, and z/OS. On z/OS, it applies only to
cluster-sender and cluster-receiver channels.

ChannelEvent (MQCFIN)
Controls whether channel events are generated (parameter identifier:
MQIA_CHANNEL_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

MQEVR_EXCEPTION
Reporting of exception channel events enabled.

ChannelInitiatorControl (MQCFIN)
Specifies whether the channel initiator is to be started when the queue
manager starts (parameter identifier: MQIA_CHINIT_CONTROL).

The value can be:

MQSVC_CONTROL_MANUAL
The channel initiator is not to be started automatically.

MQSVC_CONTROL_Q_MGR
The channel initiator is to be started automatically when the queue
manager starts.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

ChannelMonitoring (MQCFIN)
Default setting for online monitoring for channels (parameter identifier:
MQIA_MONITORING_CHANNEL).

Chapter 3. Definitions of the Programmable Command Formats 101



The value can be:

MQMON_NONE
Online monitoring data collection is turned off for channels regardless
of the setting of their ChannelMonitoring parameter.

MQMON_OFF
Online monitoring data collection is turned off for channels specifying
a value of MQMON_Q_MGR in their ChannelMonitoring parameter.
This is the queue manager’s initial default value.

MQMON_LOW
Online monitoring data collection is turned on, with a low ratio of data
collection, for channels specifying a value of MQMON_Q_MGR in
their ChannelMonitoring parameter.

MQMON_MEDIUM
Online monitoring data collection is turned on, with a moderate ratio
of data collection, for channels specifying a value of MQMON_Q_MGR
in their ChannelMonitoring parameter.

MQMON_HIGH
Online monitoring data collection is turned on, with a high ratio of
data collection, for channels specifying a value of MQMON_Q_MGR in
their ChannelMonitoring parameter.

ChannelStatistics (MQCFIN)
Controls whether statistics data is to be collected for channels (parameter
identifier: MQIA_STATISTICS_CHANNEL).

The value can be:

MQMON_NONE
Statistics data collection is turned off for channels regardless of the
setting of their ChannelStatistics parameter. This is the queue
manager’s initial default value.

MQMON_OFF
Statistics data collection is turned off for channels specifying a value of
MQMON_Q_MGR in their ChannelStatistics parameter.

MQMON_LOW
Statistics data collection is turned on, with a low ratio of data
collection, for channels specifying a value of MQMON_Q_MGR in
their ChannelStatistics parameter.

MQMON_MEDIUM
Statistics data collection is turned on, with a moderate ratio of data
collection, for channels specifying a value of MQMON_Q_MGR in
their ChannelStatistics parameter.

MQMON_HIGH
Statistics data collection is turned on, with a high ratio of data
collection, for channels specifying a value of MQMON_Q_MGR in
their ChannelStatistics parameter.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

ChinitAdapters (MQCFIN)
Number of adapter subtasks (parameter identifier:
MQIA_CHINIT_ADAPTERS).

102 WebSphere MQ: Programmable Command Formats and Administration Interface



The number of adapter subtasks to use for processing WebSphere MQ calls.
This parameter applies to z/OS only.

Specify a value in the range 1 through 9 999. The queue manager’s initial
default value is 8.

ChinitDispatchers (MQCFIN)
Number of dispatchers (parameter identifier: MQIA_CHINIT_DISPATCHERS).

The number of dispatchers to use for the channel initiator. This parameter
applies to z/OS only.

Specify a value in the range 1 through 9 999. The queue manager’s initial
default value is 5.

ChinitServiceParm (MQCFST)
Reserved for use by IBM (parameter identifier:
MQCA_CHINIT_SERVICE_PARM).

This parameter applies to z/OS only.

ChinitTraceAutoStart (MQCFIN)
Whether the channel initiator trace should start automatically (parameter
identifier: MQIA_CHINIT_TRACE_AUTO_START).

The value can be:

MQTRAXSTR_YES
Channel initiator trace is to start automatically.

MQTRAXSTR_NO
Channel initiator trace is not to start automatically. This is the queue
manager’s initial default value.

This parameter applies to z/OS only.

ChinitTraceTableSize (MQCFIN)
The size, in megabytes, of the channel initiator’s trace data space (parameter
identifier: MQIA_CHINIT_TRACE_TABLE_SIZE).

Specify a value in the range 2 through 2048. The queue manager’s initial
default value is 2.

This parameter applies to z/OS only.

ClusterSenderMonitoringDefault (MQCFIN)
Default setting for online monitoring for automatically defined cluster-sender
channels (parameter identifier: MQIA_MONITORING_AUTO_CLUSSDR).

Specifies the value to be used for the ChannelMonitoring attribute of
automatically defined cluster-sender channels. The value can be:

MQMON_Q_MGR
Collection of online monitoring data is inherited from the setting of the
queue manager’s ChannelMonitoring parameter. This is the queue
manager’s initial default value.

MQMON_OFF
Monitoring for the channel is switched off.

MQMON_LOW
Unless ChannelMonitoring is MQMON_NONE, this specifies a low rate
of data collection with a minimal impact on system performance. The
data collected is not likely to be the most current.

Chapter 3. Definitions of the Programmable Command Formats 103



MQMON_MEDIUM
Unless ChannelMonitoring is MQMON_NONE, this specifies a
moderate rate of data collection with limited impact on system
performance.

MQMON_HIGH
Unless ChannelMonitoring is MQMON_NONE, this specifies a high
rate of data collection with a likely impact on system performance. The
data collected is the most current available.

ClusterSenderStatistics (MQCFIN)
Controls whether statistics data is to be collected for auto-defined
cluster-sender channels (parameter identifier:
MQIA_STATISTICS_AUTO_CLUSSDR).

The value can be:

MQMON_Q_MGR
Collection of statistics data is inherited from the setting of the queue
manager’s ChannelStatistics parameter. This is the queue manager’s
initial default value.

MQMON_OFF
Statistics data collection for the channel is switched off.

MQMON_LOW
Unless ChannelStatistics is MQMON_NONE, this specifies a low rate
of data collection with a minimal impact on system performance.

MQMON_MEDIUM
Unless ChannelStatistics is MQMON_NONE, this specifies a
moderate rate of data collection.

MQMON_HIGH
Unless ChannelStatistics is MQMON_NONE, this specifies a high
rate of data collection.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

ClusterWorkLoadData (MQCFST)
Cluster workload exit data (parameter identifier:
MQCA_CLUSTER_WORKLOAD_DATA).

This is passed to the cluster workload exit when it is called.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

ClusterWorkLoadExit (MQCFST)
Cluster workload exit name (parameter identifier:
MQCA_CLUSTER_WORKLOAD_EXIT).

If a nonblank name is defined this exit is invoked when a message is put to a
cluster queue.

The format of the name is the same as for the SecurityExit parameter
described in “Change, Copy, and Create Channel” on page 37.

The maximum length of the exit name depends on the environment in which
the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum length for
the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

104 WebSphere MQ: Programmable Command Formats and Administration Interface



ClusterWorkLoadLength (MQCFIN)
Cluster workload length (parameter identifier:
MQIA_CLUSTER_WORKLOAD_LENGTH).

The maximum length of the message passed to the cluster workload exit.

The value of this attribute must be in the range 0 through 999 999 999.

CLWLMRUChannels (MQCFIN)
Cluster workload most recently used (MRU) channels (parameter identifier:
MQIA_CLWL_MRU_CHANNELS).

The maximum number of active most recently used outbound channels.

Specify a value in the in the range 1 through 999 999 999.

CLWLUseQ (MQCFIN)
Use of remote queue (parameter identifier: MQIA_CLWL_USEQ).

Specifies whether a cluster queue manager is to use remote puts to other
queues defined in other queue managers within the cluster during workload
management.

Specify either:

MQCLWL_USEQ_ANY
Use remote queues.

MQCLWL_USEQ_LOCAL
Do not use remote queues.

CodedCharSetId (MQCFIN)
Queue manager coded character set identifier (parameter identifier:
MQIA_CODED_CHAR_SET_ID).

The coded character set identifier (CCSID) for the queue manager. The CCSID
is the identifier used with all character string fields defined by the application
programming interface (API). It does not apply to application data carried in
the text of a message unless the CCSID in the message descriptor, when the
message is put with an MQPUT or MQPUT1, is set to the value
MQCCSI_Q_MGR.

Specify a value in the range 1 through 65 535.

The CCSID must specify a value that is defined for use on the platform and
use an appropriate character set. The character set must be:
v EBCDIC on i5/OS
v ASCII or ASCII-related on other platforms

Stop and restart the queue manager after execution of this command so that all
processes reflect the changed CCSID of the queue manager.

This parameter is supported in the following environments: AIX, Compaq
NonStop Kernel, HP OpenVMS, HP-UX, i5/OS, Solaris, Windows and Linux.

CommandEvent (MQCFIN)
Controls whether command events are generated (parameter identifier:
MQIA_COMMAND_EVENT). This parameter applies to z/OS only.

The value can be:

MQEVR_DISABLED
Event reporting disabled.

Chapter 3. Definitions of the Programmable Command Formats 105



MQEVR_ENABLED
Event reporting enabled.

MQEVR_NO_DISPLAY
Event reporting enabled for all successful commands except Inquire
commands.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

CommandServerControl (MQCFIN)
Specifies whether the command server is to be started when the queue
manager starts (parameter identifier: MQIA_CMD_SERVER_CONTROL).

The value can be:

MQSVC_CONTROL_MANUAL
The command server is not to be started automatically.

MQSVC_CONTROL_Q_MGR
The command server is to be started automatically when the queue
manager starts.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

ConfigurationEvent (MQCFIN)
Controls whether configuration events are generated (parameter identifier:
MQIA_CONFIGURATION_EVENT). This parameter applies to z/OS only.

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

DeadLetterQName (MQCFST)
Dead letter (undelivered message) queue name (parameter identifier:
MQCA_DEAD_LETTER_Q_NAME).

Specifies the name of the local queue that is to be used for undelivered
messages. Messages are put on this queue if they cannot be routed to their
correct destination. The maximum length of the string is
MQ_Q_NAME_LENGTH.

106 WebSphere MQ: Programmable Command Formats and Administration Interface



DefXmitQName (MQCFST)
Default transmission queue name (parameter identifier:
MQCA_DEF_XMIT_Q_NAME).

This is the name of the default transmission queue that is used for the
transmission of messages to remote queue managers, if there is no other
indication of which transmission queue to use.

The maximum length of the string is MQ_Q_NAME_LENGTH.

DNSGroup (MQCFST)
DNS group name (parameter identifier: MQCA_DNS_GROUP).

Specify the name of the group that the TCP listener handling inbound
transmissions for the queue-sharing group should join when using Workload
Manager for Dynamic Domain Name Services support (WLM/DNS). This
parameter applies to z/OS only.

The maximum length of the string is MQ_DNS_GROUP_NAME_LENGTH.

DNSWLM (MQCFIN)
Controls whether the TCP listener that handles inbound transmissions for the
queue-sharing group should register with WLM/DNS: (parameter identifier:
MQIA_DNS_WLM).

The value can be:

MQDNSWLM_YES
The listener should register with WLM.

MQDNSWLM_NO
The listener is not to register with WLM. This is the queue manager’s
initial default value.

This parameter applies to z/OS only.

ExpiryInterval (MQCFIN)
Interval between scans for expired messages (parameter identifier:
MQIA_EXPIRY_INTERVAL). This parameter applies to z/OS only.

Specifies the frequency with which the queue manager scans the queues
looking for expired messages. Specify a time interval in seconds in the range 1
through 99 999 999, or the following special value:

MQEXPI_OFF
No scans for expired messages.

The minimum scan interval used is 5 seconds, even if you specify a lower
value.

Force (MQCFIN)
Force changes (parameter identifier: MQIACF_FORCE).

Specifies whether the command will be forced to complete if both of the
following are true:
v DefXmitQName is specified, and
v An application has a remote queue open, the resolution for which will be

affected by this change.

IGQPutAuthority (MQCFIN)
Command scope (parameter identifier: MQIA_IGQ_PUT_AUTHORITY). This
parameter is valid only on z/OS when the queue manager is a member of a
queue-sharing group.

Chapter 3. Definitions of the Programmable Command Formats 107



Specifies the type of authority checking and, therefore, the user IDs to be used
by the IGQ agent (IGQA). This establishes the authority to put messages to a
destination queue. The value can be:

MQIGQPA_DEFAULT
Default user identifier is used.

The user identifier used for authorization is the value of the
UserIdentifier field in the separate MQMD that is associated with the
message when the message is on the shared transmission queue. This
is the user identifier of the program that placed the message on the
shared transmission queue, and is usually the same as the user
identifier under which the remote queue manager is running.

If the RESLEVEL profile indicates that more than one user identifier is
to be checked, the user identifier of the local IGQ agent (IGQUserId) is
also checked.

MQIGQPA_CONTEXT
Context user identifier is used.

The user identifier used for authorization is the value of the
UserIdentifier field in the separate MQMD that is associated with the
message when the message is on the shared transmission queue. This
is the user identifier of the program that placed the message on the
shared transmission queue, and is usually the same as the user
identifier under which the remote queue manager is running.

If the RESLEVEL profile indicates that more than one user identifier is
to be checked, the user identifier of the local IGQ agent (IGQUserId)
and the value of the UserIdentifier field in the embedded MQMD are
also checked. The latter user identifier is usually the user identifier of
the application that originated the message.

MQIGQPA_ONLY_IGQ
Only the IGQ user identifier is used.

The user identifier used for authorization is the user identifier of the
local IGQ agent (IGQUserId).

If the RESLEVEL profile indicates that more than one user identifier is
to be checked, this user identifier is used for all checks.

MQIGQPA_ALTERNATE_OR_IGQ
Alternate user identifier or IGQ-agent user identifier is used.

The user identifier used for authorization is the user identifier of the
local IGQ agent (IGQUserId).

If the RESLEVEL profile indicates that more than one user identifier is
to be checked, the value of the UserIdentifier field in the embedded
MQMD is also checked. This user identifier is usually the user
identifier of the application that originated the message.

IGQUserId (MQCFST)
Intra-group queuing agent user identifier (parameter identifier:
MQCA_IGQ_USER_ID). This parameter is valid only on z/OS when the queue
manager is a member of a queue-sharing group.

Specifies the user identifier that is associated with the local intra-group
queuing agent. This identifier is one of the user identifiers that may be checked
for authorization when the IGQ agent puts messages on local queues. The

108 WebSphere MQ: Programmable Command Formats and Administration Interface



actual user identifiers checked depend on the setting of the IGQPutAuthority
attribute, and on external security options.

The maximum length is MQ_USER_ID_LENGTH.

InhibitEvent (MQCFIN)
Controls whether inhibit (Inhibit Get and Inhibit Put) events are generated
(parameter identifier: MQIA_INHIBIT_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

IntraGroupQueuing (MQCFIN)
Command scope (parameter identifier: MQIA_INTRA_GROUP_QUEUING).
This parameter is valid only on z/OS when the queue manager is a member of
a queue-sharing group.

Specifies whether intra-group queuing is used. The value can be:

MQIGQ_DISABLED
Intra-group queuing disabled.

MQIGQ_ENABLED
Intra-group queuing enabled.

IPAddressVersion (MQCFIN)
IP address version selector (parameter identifier:
MQIA_IP_ADDRESS_VERSION).

Specifies which IP address version, either IPv4 or IPv6, is used. The value can
be:

MQIPADDR_IPV4
IPv4 is used.

MQIPADDR_IPV6
IPv6 is used.

This parameter is only relevant for systems that run both IPv4 and IPv6 and
only affects channels defined as having a TransportType of MQXPY_TCP when
one of the following conditions is true:
v The channel’s ConnectionName is a hostname that resolves to both an IPv4

and IPv6 address and its LocalAddress parameter is not specified.
v The channel’s ConnectionName and LocalAddress are both hostnames that

resolve to both IPv4 and IPv6 addresses.

ListenerTimer (MQCFIN)
Listener restart interval (parameter identifier: MQIA_LISTENER_TIMER).

The time interval, in seconds, between attempts by WebSphere MQ to restart
the listener after an APPC or TCP/IP failure. This parameter applies to z/OS
only.

Specify a value in the range 5 through 9 999. The queue manager’s initial
default value is 60.

LocalEvent (MQCFIN)
Controls whether local error events are generated (parameter identifier:
MQIA_LOCAL_EVENT).

Chapter 3. Definitions of the Programmable Command Formats 109



The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

LoggerEvent (MQCFIN)
Controls whether recovery log events are generated (parameter identifier:
MQIA_LOGGER_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled. This value is valid only on queue managers
that use linear logging.

This is valid only on AIX, HP-UX, i5/OS, Solaris, Linux, and Windows.

LUGroupName (MQCFST)
Generic LU name for the LU 6.2 listener (parameter identifier:
MQCA_LU_GROUP_NAME).

The generic LU name to be used by the LU 6.2 listener that handles inbound
transmissions for the queue-sharing group.

This parameter applies to z/OS only.

The maximum length of the string is MQ_LU_NAME_LENGTH.

LUName (MQCFST)
LU name to use for outbound LU 6.2 transmissions (parameter identifier:
MQCA_LU_NAME).

The name of the LU to use for outbound LU 6.2 transmissions. Set this to be
the same as the name of the LU to be used by the listener for inbound
transmissions.

This parameter applies to z/OS only.

The maximum length of the string is MQ_LU_NAME_LENGTH.

LU62ARMSuffix (MQCFST)
APPCPM suffix (parameter identifier: MQCA_LU62_ARM_SUFFIX).

The suffix of the APPCPM member of SYS1.PARMLIB. This suffix nominates
the LUADD for this channel initiator.

This parameter applies to z/OS only.

The maximum length of the string is MQ_ARM_SUFFIX_LENGTH.

LU62Channels (MQCFIN)
Maximum number of LU 6.2 channels (parameter identifier:
MQIA_LU62_CHANNELS).

The maximum number of channels that can be current, or clients that can be
connected, that use the LU 6.2 transmission protocol.

This parameter applies to z/OS only.

Specify a value in the range zero through 9 999. The queue manager’s initial
default value is 200.

110 WebSphere MQ: Programmable Command Formats and Administration Interface



MaxActiveChannels (MQCFIN)
Maximum number of channels (parameter identifier:
MQIA_ACTIVE_CHANNELS).

The maximum number of channels that can be active at any time.

This parameter applies to z/OS only.

Sharing conversations do not contribute to the total for this parameter.

Specify a value in the range 1 through 9 999. The queue manager’s initial
default value is 200.

MaxChannels (MQCFIN)
Maximum number of current channels (parameter identifier:
MQIA_MAX_CHANNELS).

The maximum number of channels that can be current (including
server-connection channels with connected clients).

This parameter applies to z/OS only.

Sharing conversations do not contribute to the total for this parameter.

Specify a value in the range 1 through 9 999.

MaxHandles (MQCFIN)
Maximum number of handles (parameter identifier: MQIA_MAX_HANDLES).

The maximum number of handles that any one connection can have open at
the same time.

Specify a value in the range 0 through 999 999 999.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier: MQIA_MAX_MSG_LENGTH).

Specifies the maximum length of messages allowed on queues on the queue
manager. No message that is larger than either the queue’s MaxMsgLength or the
queue manager’s MaxMsgLength can be put on a queue.

If you reduce the maximum message length for the queue manager, you must
also reduce the maximum message length of the
SYSTEM.DEFAULT.LOCAL.QUEUE definition, and your other queues, to
ensure that the queue manager’s limit is not less than that of any of the queues
in the system. If you do not do this, and applications inquire only the value of
the queue’s MaxMsgLength, they might not work correctly.

The lower limit for this parameter is 32 KB (32 768 bytes). The upper limit is
100 MB (104 857 600 bytes).This parameter is not valid on z/OS.

MaxPropertiesLength (MQCFIN)
Maximum property length (parameter identifier:
MQIA_MAX_PROPERTIES_LENGTH).

Specifies the maximum length of the properties, including both the property
name in bytes and the size of the property value in bytes.

Specify a value in the range zero through 100 MB (104 857 600 bytes), or the
special value:

MQPROP_UNRESTRICTED_LENGTH
The size of the properties is restricted only by the upper limit.

Chapter 3. Definitions of the Programmable Command Formats 111

|

|

|
|
|

|
|

|
|

|
|



MaxUncommittedMsgs (MQCFIN)
Maximum uncommitted messages (parameter identifier:
MQIA_MAX_UNCOMMITTED_MSGS).

Specifies the maximum number of uncommitted messages. That is, under any
syncpoint, the number of messages that can be retrieved, plus the number of
messages that can be put, plus any trigger messages generated within this unit
of work. This limit does not apply to messages that are retrieved or put
outside syncpoint.

Specify a value in the range 1 through 10 000.

MQIAccounting (MQCFIN)
Controls whether accounting information for MQI data is to be collected
(parameter identifier: MQIA_ACCOUNTING_MQI).

The value can be:

MQMON_OFF
MQI accounting data collection is disabled. This is the queue
manager’s initial default value.

MQMON_ON
MQI accounting data collection is enabled.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

MQIStatistics (MQCFIN)
Controls whether statistics monitoring data is to be collected for the queue
manager (parameter identifier: MQIA_STATISTICS_MQI).

The value can be:

MQMON_OFF
Data collection for MQI statistics is disabled. This is the queue
manager’s initial default value.

MQMON_ON
Data collection for MQI statistics is enabled.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

MsgMarkBrowseInterval (MQCFIN)
Mark-browse interval (parameter identifier:
MQIA_MSG_MARK_BROWSE_INTERVAL).

Specifies the time interval in milliseconds after which the queue manager can
automatically unmark messages.

Specify a value in the range zero through 999 999 999, or the special value
MQMMBI_UNLIMITED.

A value of 0 causes the queue manager to unmark messages immediately.

MQMMBI_UNLIMITED indicates that the queue manager does not
automatically unmark messages.

OutboundPortMax (MQCFIN)
The maximum value in the range for the binding of outgoing channels
(parameter identifier: MQIA_OUTBOUND_PORT_MAX).

112 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|

|
|

|

|
|



The maximum value in the range of port numbers to be used when binding
outgoing channels. This parameter applies to z/OS only.

Specify a value in the range zero through 65 535. The queue manager’s initial
default value is zero.

Specify a corresponding value for OutboundPortMin and ensure that the value
of OutboundPortMax is greater than or equal to the value of OutboundPortMin.

OutboundPortMin (MQCFIN)
The minimum value in the range for the binding of outgoing channels
(parameter identifier: MQIA_OUTBOUND_PORT_MIN).

The minimum value in the range of port numbers to be used when binding
outgoing channels. This parameter applies to z/OS only.

Specify a value in the range zero through 65 535. The queue manager’s initial
default value is zero.

Specify a corresponding value for OutboundPortMax and ensure that the value
of OutboundPortMin is less than or equal to the value of OutboundPortMax.

Parent (MQCFST)
The name of the queue manager to which this queue manager is to connect
hierarchically as its child (parameter identifier: MQCA_PARENT).

A blank value indicates that this queue manager has no parent queue manager.
If there is an existing parent queue manager it is disconnected. This is the
default.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

Note:

v The use of Websphere MQ hierarchical connections requires that the queue
manager attribute PSMode is set to MQPSM_ENABLED.

v The value of Parent can be set to a blank value if PSMode is set to
MQPSM_DISABLED.

v Before connecting to a queue manager hierarchically as its child, channels in
both directions must exist between the parent queue manager and child
queue manager.

v If a parent has already been defined, the Change Queue Manager command
disconnects from the original parent and sends a connection flow to the new
parent queue manager.

PerformanceEvent (MQCFIN)
Controls whether performance-related events are generated (parameter
identifier: MQIA_PERFORMANCE_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

PubSubMaxMsgRetryCount (MQCFIN)
The number of retries when processing (under syncpoint) a failed command
message (parameter identifier: MQIA_PUBSUB_MAXMSG_RETRY_COUNT).

The value can be:

Chapter 3. Definitions of the Programmable Command Formats 113

|
|
|

|
|
|

|

|

|
|

|
|

|
|
|

|
|
|

|

|
|
|

|



0 to 999 999 999
The initial value is 5.

PubSubMode (MQCFIN)
Whether the publish/subscribe engine and the queued publish/subscribe
interface are running, therefore allowing applications to publish or subscribe
using the application programming interface and the queues that are
monitored by the queued publish/subscribe interface (parameter identifier:
MQIA_PUBSUB_MODE).

The value can be:

MQPSM_COMPAT
The publish/subscribe engine is running. It is therefore possible to
publish or subscribe by using the application programming interface.
The queued publish/subscribe interface is not running. Any message
that is put to the queues that are monitored by the queued
publish/subscribe interface will not be acted on. Use this setting for
compatibility with WebSphere Message Broker V6, or earlier versions,
because WebSphere Message Broker needs to read the same queues
from which the queued publish/subscribe interface normally reads.

MQPSM_DISABLED
The publish/subscribe engine and the queued publish/subscribe
interface are not running. It is therefore not possible to publish or
subscribe using the application programming interface. Any
publish/subscribe messages that are put to the queues that are
monitored by the queued publish/subscribe interface will not be acted
on.

MQPSM_ENABLED
The publish/subscribe engine and the queued publish/subscribe
interface are running. It is therefore possible to publish or subscribe by
using the application programming interface and the queues that are
monitored by the queued publish/subscribe interface. This is the queue
manager’s initial default value.

PubSubNPInputMsg (MQCFIN)
Whether to discard (or keep) an undelivered input message (parameter
identifier: MQIA_PUBSUB_NP_MSG).

The value can be:

MQUNDELIVERED_DISCARD
Non-persistent input messages are discarded if they cannot be
processed.

MQUNDELIVERED_KEEP
Non-persistent input messages are not discarded if they cannot be
processed. In this situation the queued publish/subscribe interface
continues to retry the process at appropriate intervals and does not
continue processing subsequent messages.

PubSubNPResponse (MQCFIN)
Controls the behavior of undelivered response messages (parameter identifier:
MQIA_PUBSUB_NP_RESP).

The value can be:

114 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|

|



MQUNDELIVERED_NORMAL
Non-persistent responses that cannot be placed on the reply queue are
put on the dead letter queue. If they cannot be placed on the dead
letter queue they are discarded.

MQUNDELIVERED_SAFE
Non-persistent responses which cannot be placed on the reply queue
are put on the dead letter queue. If the response cannot be set and
cannot be placed on the dead letter queue then the queued
publish/subscribe interface will roll back the current operation and
then retry at appropriate intervals and does not continue processing
subsequent messages.

MQUNDELIVERED_DISCARD
Non-persistent responses that are not placed on the reply queue are
discarded.

MQUNDELIVERED_KEEP
Non-persistent responses are not placed on the dead letter queue or
discarded. Instead, the queued publish/subscribe interface will back
out the current operation and then retry it at appropriate intervals.

PubSubSyncPoint (MQCFIN)
Whether only persistent (or all) messages should be processed under syncpoint
(parameter identifier: MQIA_PUBSUB_SYNC_PT).

The value can be:

MQSYNCPOINT_IFPER
This makes the queued publish/subscribe interface receive
non-persistent messages outside syncpoint. If the interface receives a
publication outside syncpoint, the interface forwards the publication to
subscribers known to it outside syncpoint.

MQSYNCPOINT_YES
This makes the queued publish/subscribe interface receive all
messages under syncpoint.

QMgrDesc (MQCFST)
Queue manager description (parameter identifier: MQCA_Q_MGR_DESC).

This is text that briefly describes the object.

The maximum length of the string is MQ_Q_MGR_DESC_LENGTH.

Use characters from the character set identified by the coded character set
identifier (CCSID) for the queue manager on which the command is executing,
to ensure that the text is translated correctly.

QueueAccounting (MQCFIN)
Controls the collection of accounting (thread-level and queue-level accounting)
data for queues (parameter identifier: MQIA_ACCOUNTING_Q).

The value can be:

MQMON_NONE
Accounting data collection for queues is disabled. This may not be
overridden by the value of the QueueAccounting parameter on the
queue.

MQMON_OFF
Accounting data collection is disabled for queues specifying a value of
MQMON_Q_MGR in the QueueAccounting parameter.

Chapter 3. Definitions of the Programmable Command Formats 115

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|

|



MQMON_ON
Accounting data collection is enabled for queues specifying a value of
MQMON_Q_MGR in the QueueAccounting parameter.

QueueMonitoring (MQCFIN)
Default setting for online monitoring for queues (parameter identifier:
MQIA_MONITORING_Q).

If the QueueMonitoring queue attribute is set to MQMON_Q_MGR, this
attribute specifies the value which is assumed by the channel. The value can
be:

MQMON_OFF
Online monitoring data collection is turned off. This is the queue
manager’s initial default value.

MQMON_NONE
Online monitoring data collection is turned off for queues regardless of
the setting of their QueueMonitoring attribute.

MQMON_LOW
Online monitoring data collection is turned on, with a low ratio of data
collection.

MQMON_MEDIUM
Online monitoring data collection is turned on, with a moderate ratio
of data collection.

MQMON_HIGH
Online monitoring data collection is turned on, with a high ratio of
data collection.

QueueStatistics (MQCFIN)
Controls whether statistics data is to be collected for queues (parameter
identifier: MQIA_STATISTICS_Q).

The value can be:

MQMON_NONE
Statistics data collection is turned off for queues regardless of the
setting of their QueueStatistics parameter. This is the queue
manager’s initial default value.

MQMON_OFF
Statistics data collection is turned off for queues specifying a value of
MQMON_Q_MGR in their QueueStatistics parameter.

MQMON_ON
Statistics data collection is turned on for queues specifying a value of
MQMON_Q_MGR in their QueueStatistics parameter.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

ReceiveTimeout (MQCFIN)
How long a TCP/IP channel waits to receive data from its partner (parameter
identifier: MQIA_RECEIVE_TIMEOUT).

The approximate length of time that a TCP/IP channel waits to receive data,
including heartbeats, from its partner before returning to the inactive state.

This parameter applies to z/OS only and only to message channels (and not to
MQI channels). This number can be qualified as follows:

116 WebSphere MQ: Programmable Command Formats and Administration Interface



v To specify that this number is a multiplier to be applied to the negotiated
HeartBeatInterval value to determine how long a channel is to wait, set
ReceiveTimeoutType to MQRCVTIME_MULTIPLY. Specify a value of zero or
in the range 2 through 99. If you specify zero, the channel does not time out
its wait to receive data from its partner.

v To specify that this number is a value, in seconds, to be added to the
negotiated HeartBeatInterval value to determine how long a channel is to
wait, set ReceiveTimeoutType to MQRCVTIME_ADD. Specify a value in the
range 1 through 999 999.

v To specify that this number is a value, in seconds, that the channel is to
wait, set ReceiveTimeoutType to MQRCVTIME_EQUAL. Specify a value in
the range zero through 999 999. If you specify zero, the channel does not
time out its wait to receive data from its partner.

The queue manager’s initial default value is zero.

ReceiveTimeoutMin (MQCFIN)
The minimum length of time that a TCP/IP channel waits to receive data from
its partner (parameter identifier: MQIA_RECEIVE_TIMEOUT_MIN).

The minimum length of time that a TCP/IP channel waits to receive data,
including heartbeats, from its partner before returning to the inactive state.
This parameter applies to z/OS only.

Specify a value in the range zero through 999 999.

ReceiveTimeoutType (MQCFIN)
The qualifier to apply to ReceiveTimeout (parameter identifier:
MQIA_RECEIVE_TIMEOUT_TYPE).

The qualifier to apply to ReceiveTimeoutType to calculate how long a TCP/IP
channel waits to receive data, including heartbeats, from its partner before
returning to the inactive state. This parameter applies to z/OS only.

The value can be:

MQRCVTIME_MULTIPLY
The ReceiveTimeout value is a multiplier to be applied to the
negotiated value of HeartbeatInterval to determine how long a
channel will wait. This is the queue manager’s initial default value.

MQRCVTIME_ADD
ReceiveTimeout is a value, in seconds, to be added to the negotiated
value of HeartbeatInterval to determine how long a channel will wait.

MQRCVTIME_EQUAL
ReceiveTimeout is a value, in seconds, representing how long a channel
will wait.

RemoteEvent (MQCFIN)
Controls whether remote error events are generated (parameter identifier:
MQIA_REMOTE_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

RepositoryName (MQCFST)
Cluster name (parameter identifier: MQCA_REPOSITORY_NAME).

Chapter 3. Definitions of the Programmable Command Formats 117



The name of a cluster for which this queue manager provides a repository
manager service.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

No more than one of the resultant values of RepositoryName can be nonblank.

RepositoryNamelist (MQCFST)
Repository namelist (parameter identifier: MQCA_REPOSITORY_NAMELIST).

The name, of a namelist of clusters, for which this queue manager provides a
repository manager service.

This queue manager does not have a full repository, but can be a client of
other repository services that are defined in the cluster, if
v Both RepositoryName and RepositoryNamelist are blank, or
v RepositoryName is blank and the namelist specified by RepositoryNamelist is

empty.

No more than one of the resultant values of RepositoryNameList can be
nonblank.

SecurityCase (MQCFIN)
Security case supported (parameter identifier: MQIA_SECURITY_CASE).

Specifies whether or not the queue manager supports security profile names in
mixed case, or in uppercase only. The value is activated when a Refresh
Security command is run with SecurityType(MQSECTYPE_CLASSES) specified.
This parameter is valid only on z/OS.

The value can be:

MQSCYC_UPPER
Security profile names must be in upper case.

MQSCYC_MIXED
Security profile names can be in upper case or in mixed case.

SharedQQmgrName (MQCFIN)
Shared-queue queue manager name (parameter identifier:
MQIA_SHARED_Q_Q_MGR_NAME).

When a queue manager makes an MQOPEN call for a shared queue and the
queue manager that is specified in the ObjectQmgrName parameter of the
MQOPEN call is in the same queue-sharing group as the processing queue
manager, the SQQMNAME attribute specifies whether the ObjectQmgrName is
used or whether the processing queue manager opens the shared queue
directly. This parameter is valid only on z/OS.

The value can be:

MQSQQM_USE
ObjectQmgrName is used and the appropriate transmission queue is
opened.

MQSQQM_IGNORE
The processing queue manager opens the shared queue directly. This
can reduce the traffic in your queue manager network.

SSLCRLNamelist (MQCFST)
The SSL namelist (parameter identifier: MQCA_SSL_CRL_NAMELIST).

The length of the string is MQ_NAMELIST_NAME_LENGTH.

118 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|
|
|

|

|
|

|
|



Indicates the name of a namelist of authentication information objects to be
used for CRL checking by the queue manager.

If SSLCRLNamelist is blank, CRL checking is not invoked.

Changes to SSLCRLNamelist, or to the names in a previously specified namelist,
or to previously referenced authentication information objects become effective:
v On i5/OS, Windows, and UNIX systems when a new channel process is

started.
v For channels that run as threads of the channel initiator on i5/OS, Windows,

and UNIX systems, when the channel initiator is restarted.
v For channels that run as threads of the listener on i5/OS, Windows, and

UNIX systems, when the listener is restarted.
v On z/OS, when the channel initiator is restarted.
v When a REFRESH SECURITY TYPE(SSL) command is issued.
v On i5/OS queue managers, this parameter is ignored. However, it is used to

determine which authentication information objects are written to the
AMQCLCHL.TAB file.

SSLCryptoHardware (MQCFST)
The SSL cryptographic hardware (parameter identifier:
MQCA_SSL_CRYPTO_HARDWARE).

The length of the string is MQ_SSL_CRYPTO_HARDWARE_LENGTH.

Sets the name of the parameter string required to configure the cryptographic
hardware present on the system.

This parameter is supported on AIX, HP-UX, Solaris, Linux, and Windows
only.

All supported cryptographic hardware supports the PKCS #11 interface.
Specify a string of the following format:
GSK_PKCS11=<the PKCS #11 driver path and filename>>;<the PKCS #11 token label>;
<the PKCS #11 token password>;<symmetric cipher setting>;

The PKCS #11 driver path is an absolute path to the shared library providing
support for the PKCS #11 card. The PKCS #11 driver filename is the name of
the shared library. An example of the value required for the PKCS #11 driver
path and filename is /usr/lib/pkcs11/PKCS11_API.so

To access symmetric cipher operations through GSKit, specify the symmetric
cipher setting parameter. The value of this parameter is either:

SYMMETRIC_CIPHER_OFF
Do not access symmetric cipher operations.

SYMMETRIC_CIPHER_ON
Access symmetric cipher operations.

If the symmetric cipher setting is not specified, this has the same effect as
specifying SYMMETRIC_CIPHER_OFF.

The maximum length of the string is 256 characters. The default value is blank.

If you specify a string that does not conform to the format above, you get an
error.

When the SSLCryptoHardware value is changed, the cryptographic hardware
parameters specified become the ones used for new SSL connection
environments. The new information becomes effective:

Chapter 3. Definitions of the Programmable Command Formats 119

|
|

|
|

|
|



v When a new channel process is started.
v For channels that run as threads of the channel initiator, when the channel

initiator is restarted.
v For channels that run as threads of the listener, when the listener is

restarted.
v When a Refresh Security command is issued to refresh the contents of the

SSL key repository.

SSLEvent (MQCFIN)
Controls whether SSL events are generated (parameter identifier:
MQIA_SSL_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

SSLFipsRequired (MQCFIN)
Specifies whether only FIPS-certified algorithms are to be used if WebSphere
MQ itself is to perform cryptography (parameter identifier:
MQIA_SSL_FIPS_REQUIRED).

If cryptographic hardware is configured, the cryptographic modules used are
those provided by the hardware product, and these may, or may not, be
FIPS-certified to a particular level. This depends on the hardware product in
use. This parameter applies to Windows and UNIX platforms only.

The value can be:

MQSSL_FIPS_NO
WebSphere MQ provides an implementation of SSL cryptography
which supplies some FIPS-certified modules on some platforms. If you
set SSLFIPSRequired to MQSSL_FIPS_NO, any CipherSpec supported
on a particular platform can be used. This is the queue manager’s
initial default value.

If the queue manager runs without using cryptographic hardware, the
following CipherSpecs run using FIPS 140–2 certified cryptography:
v TLS_RSA_WITH_3DES_EDE_CBC_SHA
v FIPS_WITH_3DES_EDE_CBC_SHA
v TLS_RSA_WITH_AES_128_CBC_SHA
v TLS_RSA_WITH_AES_256_CBC_SHA

MQSSL_FIPS_YES
Specifies that only FIPS-certified algorithms are to be used in the
CipherSpecs allowed on all SSL connections from and to this queue
manager.

Inbound and outbound SSL channel connections succeed only if one of
the following CipherSpecs is used:
v TLS_RSA_WITH_3DES_EDE_CBC_SHA
v FIPS_WITH_3DES_EDE_CBC_SHA
v TLS_RSA_WITH_AES_128_CBC_SHA
v TLS_RSA_WITH_AES_256_CBC_SHA

120 WebSphere MQ: Programmable Command Formats and Administration Interface



SSLKeyRepository (MQCFST)
The SSL key repository (parameter identifier: MQCA_SSL_KEY_REPOSITORY).

The length of the string is MQ_SSL_KEY_REPOSITORY_LENGTH.

Indicates the name of the Secure Sockets Layer key repository.

The format of the name depends on the environment:
v On z/OS, it is the name of a key ring.
v On i5/OS, it is of the form pathname/keyfile, where keyfile is specified without

the suffix (.kdb), and identifies a GSKit key database file. The default value
is /QIBM/UserData/ICSS/Cert/Server/Default.

If you specify *SYSTEM, WebSphere MQ utilizes the system certificate store
as the key repository for the queue manager. As a result, the queue manager
is registered as a server application in Digital Certificate Manager (DCM)
and you can assign any server/client certificate in the system store to this
application.
If you change the SSLKEYR parameter to a value other than *SYSTEM,
WebSphere MQ deregisters the queue manager as an application with DCM.

v On UNIX it is of the form pathname/keyfile and on Windows pathname\keyfile,
where keyfile is specified without the suffix (.kdb), and identifies a GSKit key
database file. The default value for UNIX platforms is /var/mqm/qmgrs/QMGR/
ssl/key, and on Windows it is C:\Program Files\IBM\WebSphere
MQ\qmgrs\QMGR\ssl\key, where QMGR is replaced by the queue manager name
(on UNIX and Windows).

On i5/OS, Windows, and UNIX systems, the syntax of this parameter is
validated to ensure that it contains a valid, absolute, directory path.

If SSLKEYR is blank, or is set to a value that does not correspond to a key ring
or key database file, channels using SSL fail to start.

Changes to SSLKeyRepository become effective:
v On i5/OS, Windows, and UNIX platforms, when a new channel process is

started.
v For channels that run as threads of the channel initiator on i5/OS, Windows,

and UNIX platforms, when the channel initiator is restarted.
v For channels that run as threads of the listener on i5/OS, Windows, and

UNIX platforms, when the listener is restarted.
v On z/OS, when the channel initiator is restarted.

SSLKeyResetCount (MQCFIN)
SSL key reset count (parameter identifier: MQIA_SSL_RESET_COUNT).

Specifies when SSL channel MCAs that initiate communication reset the secret
key used for encryption on the channel. The value of this parameter represents
the total number of unencrypted bytes that are sent and received on the
channel before the secret key is renegotiated. This number of bytes includes
control information sent by the MCA.

The secret key is renegotiated when (whichever occurs first):
v The total number of unencrypted bytes sent and received by the initiating

channel MCA exceeds the specified value, or,
v If channel heartbeats are enabled, before data is sent or received following a

channel heartbeat.

Specify a value in the range zero through 999 999 999. A value of zero, the
queue manager’s initial default value, signifies that secret keys are never

Chapter 3. Definitions of the Programmable Command Formats 121



renegotiated. If you specify an SSL/TLS secret key reset count between 1 byte
and 32Kb, SSL/TLS channels will use a secret key reset count of 32Kb. This is
to avoid the overhead of excessive key resets which would occur for small
SSL/TLS secret key reset values.

SSLTasks (MQCFIN)
Number of server subtasks to use for processing SSL calls (parameter identifier:
MQIA_SSL_TASKS). This parameter applies to z/OS only.

The number of server subtasks to use for processing SSL calls. To use SSL
channels, you must have at least two of these tasks running.

Specify a value in the range zero through 9 999. However, to avoid problems
with storage allocation, do not set this parameter to a value greater than 50.

StartStopEvent (MQCFIN)
Controls whether start and stop events are generated (parameter identifier:
MQIA_START_STOP_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

StatisticsInterval (MQCFIN)
The time interval, in seconds, at which statistics monitoring data is written to
the monitoring queue (parameter identifier: MQIA_STATISTICS_INTERVAL).

Specify a value in the range 1 through 604 000.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

TCPChannels (MQCFIN)
The maximum number of channels that can be current, or clients that can be
connected, that use the TCP/IP transmission protocol (parameter identifier:
MQIA_TCP_CHANNELS).

Specify a value in the range zero to 9 999. The queue manager’s initial default
value is 200.

Sharing conversations do not contribute to the total for this parameter.

This parameter applies to z/OS only.

TCPKeepAlive (MQCFIN)
Whether the TCP KEEPALIVE facility is to be used to check whether the other
end of a connection is still available (parameter identifier:
MQIA_TCP_KEEP_ALIVE).

The value can be:

MQTCPKEEP_YES
The TCP KEEPALIVE facility is to be used as specified in the TCP
profile configuration data set. The interval is specified in the
KeepAliveInterval channel attribute.

MQTCPKEEP_NO
The TCP KEEPALIVE facility is not to be used. This is the queue
manager’s initial default value.

This parameter applies to z/OS only.

122 WebSphere MQ: Programmable Command Formats and Administration Interface

|



TCPName (MQCFST)
The name of the TCP/IP system that you are using (parameter identifier:
MQIA_TCP_NAME).

The maximum length of the string is MQ_TCP_NAME_LENGTH.

This parameter applies to z/OS only.

TCPStackType (MQCFIN)
Whether the channel initiator may use only the TCP/IP address space specified
in TCPName, or may optionally bind to any selected TCP/IP address (parameter
identifier: MQIA_TCP_STACK_TYPE).

The value can be:

MQTCPSTACK_SINGLE
The channel initiator may only use the TCP/IP address space specified
in TCPName. This is the queue manager’s initial default value.

MQTCPSTACK_MULTIPLE
The channel initiator may use any TCP/IP address space available to
it. It defaults to the one specified in TCPName if no other is specified for
a channel or listener.

This parameter applies to z/OS only.

TraceRouteRecording (MQCFIN)
Whether trace-route information can be recorded and a reply message
generated (parameter identifier: MQIA_TRACE_ROUTE_RECORDING).

The value can be:

MQRECORDING_DISABLED
Trace-route information cannot recorded.

MQRECORDING_MSG
Trace-route information can be recorded and replies sent to the
destination specified by the originator of the message causing the
trace-route record.

MQRECORDING_Q
Trace-route information can be recorded and replies sent to
SYSTEM.ADMIN.TRACE.ROUTE.QUEUE.

If participation in route tracing is enabled using this queue manager attribute
(by the attribute being not set to MQRECORDING_DISABLED) then the value
of the attribute is only important should a reply be generated. The reply
should go either to SYSTEM.ADMIN.TRACE.ROUTE.QUEUE, or to the
destination specified by the message itself. Provided the attribute is not
disabled then messages not yet at the final destination may have information
added to them. For more information about trace-route records, see Monitoring
WebSphere MQ.

TreeLifeTime (MQCFIN)
The lifetime, in seconds, of non-administrative topics (parameter identifier:
MQIA_TREE_LIFE_TIME).

Non-administrative topics are those created when an application publishes to,
or subscribes as, a topic string that does not exist as an administrative node.
When this non-administrative node no longer has any active subscriptions, this
parameter determines how long the queue manager will wait before removing
that node. Only non-administrative topics that are in use by a durable
subscription remain after the queue manager is recycled.

Chapter 3. Definitions of the Programmable Command Formats 123

|
|
|

|
|
|
|
|
|



Specify a value in the range 0 through 604 000. A value of 0 means that
non-administrative topics are not removed by the queue manager. The queue
manager’s initial default value is 1800.

TriggerInterval (MQCFIN)
Trigger interval (parameter identifier: MQIA_TRIGGER_INTERVAL).

Specifies the trigger time interval, expressed in milliseconds, for use only with
queues where TriggerType has a value of MQTT_FIRST.

In this case trigger messages are normally generated only when a suitable
message arrives on the queue, and the queue was previously empty. Under
certain circumstances, however, an additional trigger message can be generated
with MQTT_FIRST triggering, even if the queue was not empty. These
additional trigger messages are not generated more often than every
TriggerInterval milliseconds.

Specify a value in the range 0 through 999 999 999.

Error codes (Change Queue Manager)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_CHAD_ERROR
Channel automatic definition error.

MQRCCF_CHAD_EVENT_ERROR
Channel automatic definition event error.

MQRCCF_CHAD_EVENT_WRONG_TYPE
Channel automatic definition event parameter not allowed for this
channel type.

MQRCCF_CHAD_EXIT_ERROR
Channel automatic definition exit name error.

MQRCCF_CHAD_EXIT_WRONG_TYPE
Channel automatic definition exit parameter not allowed for this
channel type.

MQRCCF_CHAD_WRONG_TYPE
Channel automatic definition parameter not allowed for this channel
type.

MQRCCF_FORCE_VALUE_ERROR
Force value not valid.

MQRCCF_PATH_NOT_VALID
Path not valid.

MQRCCF_PWD_LENGTH_ERROR
Password length error.

MQRCCF_Q_MGR_CCSID_ERROR
Coded character set value not valid.

MQRCCF_REPOS_NAME_CONFLICT
Repository names not valid.

124 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|



MQRCCF_UNKNOWN_Q_MGR
Queue manager not known.

Change Security

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Change Security (MQCMD_CHANGE_SECURITY) command defines
system-wide security options.

Required parameters
None

Optional parameters:
CommandScope, SecurityInterval, SecurityTimeout,

Optional parameters (Change Security)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

SecurityInterval (MQCFIN)
Timeout check interval (parameter identifier:
MQIACF_SECURITY_INTERVAL).

Specifies the interval between checks for user IDs and associated resources to
determine whether the SecurityTimeout has occurred. The value specifies a
number of minutes in the range zero through 10080 (one week). If
SecurityInterval is specified as zero, no user timeouts occur. If
SecurityInterval is specified as nonzero, the user ID times out at a time
between SecurityTimeout and SecurityTimeout plus SecurityInterval.

SecurityTimeout (MQCFIN)
Security information timeout (parameter identifier:
MQIACF_SECURITY_TIMEOUT).

Specifies how long security information about an unused user ID and
associated resources is retained by WebSphere MQ. The value specifies a
number of minutes in the range zero through 10080 (one week). If
SecurityTimeout is specified as zero, and SecurityInterval is nonzero, all such
information is discarded by the queue manager every SecurityInterval
number of minutes.

Chapter 3. Definitions of the Programmable Command Formats 125



Change, Copy, and Create Service

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The Change Service (MQCMD_CHANGE_SERVICE) command changes the
specified attributes of an existing WebSphere MQ service definition. For any
optional parameters that are omitted, the value does not change.

The Copy Service (MQCMD_COPY_SERVICE) command creates a new WebSphere
MQ service definition, using, for attributes not specified in the command, the
attribute values of an existing service definition.

The Create Service (MQCMD_CREATE_SERVICE) command creates a new
WebSphere MQ service definition. Any attributes that are not defined explicitly are
set to the default values on the destination queue manager.

Required parameter (Change and Create Service):
ServiceName

Required parameters (Copy Service):
FromServiceName, ToServiceName

Optional parameters:
Replace, ServiceDesc, ServiceType, StartArguments, StartCommand,
StartMode, StderrDestination, StdoutDestination, StopArguments,
StopCommand

Required parameter (Change and Create Service)
ServiceName (MQCFST)

The name of the service definition to be changed or created (parameter
identifier: MQCA_SERVICE_NAME).

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

Required parameters (Copy Service)
FromServiceName (MQCFST)

The name of the service definition to be copied from (parameter identifier:
MQCACF_FROM_SERVICE_NAME).

This specifies the name of the existing service definition that contains values
for the attributes not specified in this command.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

ToServiceName (MQCFST)
To service name (parameter identifier: MQCACF_TO_SERVICE_NAME).

This specifies the name of the new service definition. If a service definition
with this name already exists, Replace must be specified as MQRP_YES.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

126 WebSphere MQ: Programmable Command Formats and Administration Interface



Optional parameters (Change, Copy, and Create Service)
Replace (MQCFIN)

Replace attributes (parameter identifier: MQIACF_REPLACE).

If a namelist definition with the same name as ToServiceName already exists,
this specifies whether it is to be replaced. The value can be:

MQRP_YES
Replace existing definition.

MQRP_NO
Do not replace existing definition.

ServiceDesc (MQCFST)
Description of service definition (parameter identifier:
MQCA_SERVICE_DESC).

This is a plain-text comment that provides descriptive information about the
service definition. It should contain only displayable characters.

If characters are used that are not in the coded character set identifier (CCSID)
for the queue manager on which the command is executing, they might be
translated incorrectly.

The maximum length of the string is MQ_SERVICE_DESC_LENGTH.

ServiceType (MQCFIN)
The mode in which the service is to run (parameter identifier:
MQIA_SERVICE_TYPE).

Specify either:

MQSVC_TYPE_SERVER
Only one instance of the service can be executed at a time, with the
status of the service made available by the Inquire Service Status
command.

MQSVC_TYPE_COMMAND
Multiple instances of the service can be started.

StartArguments (MQCFST)
Arguments to be passed to the program on startup (parameter identifier:
MQCA_SERVICE_START_ARGS).

Specify each argument within the string as you would on a command line,
with a space to separate each argument to the program.

The maximum length of the string is MQ_SERVICE_ARGS_LENGTH.

StartCommand (MQCFST)
Service program name (parameter identifier:
MQCA_SERVICE_START_COMMAND).

Specifies the name of the program which is to run. You must specify a fully
qualified path name to the executable program.

The maximum length of the string is MQ_SERVICE_COMMAND_LENGTH.

StartMode (MQCFIN)
Service mode (parameter identifier: MQIA_SERVICE_CONTROL).

Specifies how the service is to be started and stopped. The value can be:

Chapter 3. Definitions of the Programmable Command Formats 127



MQSVC_CONTROL_MANUAL
The service is not to be started automatically or stopped automatically.
It is to be controlled by user command. This is the default value.

MQSVC_CONTROL_Q_MGR
The service being defined is to be started and stopped at the same time
as the queue manager is started and stopped.

MQSVC_CONTROL_Q_MGR_START
The service is to be started at the same time as the queue manager is
started, but is not requested to stop when the queue manager is
stopped.

StderrDestination (MQCFST)
Specifies the path to a file to which the standard error (stderr) of the service
program should be redirected (parameter identifier:
MQCA_STDERR_DESTINATION).

If the file does not exist when the service program is started, the file is created.

The maximum length of the string is MQ_SERVICE_PATH_LENGTH.

StdoutDestination (MQCFST)
Specifies the path to a file to which the standard output (stdout) of the service
program should be redirected (parameter identifier:
MQCA_STDOUT_DESTINATION).

If the file does not exist when the service program is started, the file is created.

The maximum length of the string is MQ_SERVICE_PATH_LENGTH.

StopArguments (MQCFST)
Specifies the arguments to be passed to the stop program when instructed to
stop the service (parameter identifier: MQCA_SERVICE_STOP_ARGS).

Specify each argument within the string as you would on a command line,
with a space to separate each argument to the program.

The maximum length of the string is MQ_SERVICE_ARGS_LENGTH.

StopCommand (MQCFST)
Service program stop command (parameter identifier:
MQCA_SERVICE_STOP_COMMAND).

This is the name of the program that is to run when the service is requested to
stop. You must specify a fully qualified path name to the executable program.

The maximum length of the string is MQ_SERVICE_COMMAND_LENGTH.

Change, Copy, and Create Storage Class

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Change Storage Class (MQCMD_CHANGE_STG_CLASS) command changes
the characteristics of a storage class. For any optional parameters that are omitted,
the value does not change.

128 WebSphere MQ: Programmable Command Formats and Administration Interface



The Copy Storage Class (MQCMD_COPY_STG_CLASS) command creates a new
storage class to page set mapping using, for attributes not specified in the
command, the attribute values of an existing storage class.

The Create Storage Class (MQCMD_CREATE_STG_CLASS) command creates a
storage class to page set mapping. Any attributes that are not defined explicitly are
set to the default values on the destination queue manager.

Required parameters (Change and Create Storage Class):
StorageClassName

Required parameters (Copy CF Storage Class):
FromStorageClassName, ToStorageClassName

Optional parameters:
CommandScope, PageSetId, PassTicketApplication, QSGDisposition, Replace,
StorageClassDesc, XCFGroupName, XCFMemberName

Required parameters (Change and Create Storage Class)
StorageClassName (MQCFST)

The name of the storage class to be changed or created (parameter identifier:
MQCA_STORAGE_CLASS).

The maximum length of the string is MQ_STORAGE_CLASS_LENGTH.

Required parameters (Copy Storage Class)
FromStorageClassName (MQCFST)

The name of the storage class to be copied from (parameter identifier:
MQCACF_FROM_STORAGE_CLASS).

On z/OS, the queue manager searches for an object with the name you specify
and a disposition of MQQSGD_Q_MGR or MQQSGD_COPY to copy from.
This parameter is ignored if a value of MQQSGD_COPY is specified for
QSGDisposition. In this case, an object with the name specified by
ToStorageClassName and the disposition MQQSGD_GROUP is searched for to
copy from.

The maximum length of the string is MQ_STORAGE_CLASS_LENGTH.

ToStorageClassName (MQCFST)
The name of the storage class to copy to (parameter identifier:
MQCACF_TO_STORAGE_CLASS).

The maximum length of the string is MQ_STORAGE_CLASS_LENGTH.

Optional parameters (Change, Copy, and Create Storage
Class)

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you

Chapter 3. Definitions of the Programmable Command Formats 129



specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

PageSetId (MQCFIN)
Page set identifier that the storage class is to be associated with (parameter
identifier: MQIA_PAGESET_ID).

Specify a string of two numeric characters in the range 00 through 99.

If you do not specify this, the default is taken from the default storage class
SYSTEMST.

No check is made that the page set has been defined; an error is raised only if
you try to put a message to a queue that specifies this storage class
(MQRC_PAGESET_ERROR).

PassTicketApplication (MQCFST)
Pass ticket application (parameter identifier: MQCA_PASS_TICKET_APPL).

The application name that is passed to RACF when authenticating the
passticket specified in the MQIIH header.

The maximum length is MQ_PASS_TICKET_APPL_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP).

Specifies the disposition of the object to which you are applying the command
(that is, where it is defined and how it behaves). The value can be:

QSGDisposition Change Copy, Create

MQQSGD_COPY The object definition resides on the page set
of the queue manager that executes the
command. The object was defined using a
command that had the parameter
MQQSGD_COPY. Any object residing in the
shared repository, or any object defined
using a command that had the parameters
MQQSGD_Q_MGR, is not affected by this
command.

The object is defined on the page set of the
queue manager that executes the command
using the MQQSGD_GROUP object of the
same name as the ToStorageClassName object
(for Copy) or the StorageClassName object
(for Create).

130 WebSphere MQ: Programmable Command Formats and Administration Interface



QSGDisposition Change Copy, Create

MQQSGD_GROUP The object definition resides in the shared
repository. The object was defined using a
command that had the parameter
MQQSGD_GROUP. Any object residing on
the page set of the queue manager that
executes the command (except a local copy
of the object) is not affected by this
command.

If the command is successful, the following
MQSC command is generated and sent to all
active queue managers in the queue-sharing
group to attempt to refresh local copies on
page set zero:

DEFINE STGCLASS(storage-class)
REPLACE QSGDISP(COPY)

The Change for the group object takes effect
regardless of whether the generated
command with QSGDISP(COPY) fails.

The object definition resides in the shared
repository. This is allowed only if the queue
manager is in a queue-sharing group.

If the definition is successful, the following
MQSC command is generated and sent to all
active queue managers in the queue-sharing
group to attempt to make or refresh local
copies on page set zero:

DEFINE STGCLASS(storage-class)
REPLACE QSGDISP(COPY)

The Copy or Create for the group object
takes effect regardless of whether the
generated command with QSGDISP(COPY)
fails.

MQQSGD_PRIVATE The object resides on the page set of the
queue manager that executes the command,
and was defined with MQQSGD_Q_MGR or
MQQSGD_COPY. Any object residing in the
shared repository is unaffected.

Not permitted.

MQQSGD_Q_MGR The object definition resides on the page set
of the queue manager that executes the
command. The object was defined using a
command that had the parameter
MQQSGD_Q_MGR. Any object residing in
the shared repository, or any local copy of
such an object, is not affected by this
command. This is the default value.

The object is defined on the page set of the
queue manager that executes the command.
This is the default value.

Replace (MQCFIN)
Replace attributes (parameter identifier: MQIACF_REPLACE).

If a storage class definition with the same name as ToStorageClassName already
exists, this specifies whether it is to be replaced. The value can be:

MQRP_YES
Replace existing definition.

MQRP_NO
Do not replace existing definition.

StorageClassDesc (MQCFST)
The description of the storage class (parameter identifier:
MQCA_STORAGE_CLASS_DESC).

The maximum length is MQ_STORAGE_CLASS_DESC_LENGTH.

XCFGroupName (MQCFST)
XCF group name (parameter identifier: MQCA_XCF_GROUP_NAME).

If you are using the IMS bridge, this is the name of the XCF group to which
the IMS system belongs.

The maximum length is MQ_XCF_GROUP_NAME_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 131



XCFMemberName (MQCFST)
XCF member name (parameter identifier: MQCA_XCF_MEMBER_NAME).

If you are using the IMS bridge, this is the XCF member name of the IMS
system within the XCF group specified in XCFGroupName.

The maximum length is MQ_XCF_MEMBER_NAME_LENGTH.

Change, Copy, and Create Subscription

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

The Change Subscription (MQCMD_CHANGE_SUBSCRIPTION) command
changes the specified attributes of an existing WebSphere MQ subscription. For any
optional parameters that are omitted, the value does not change.

The Copy Subscription (MQCMD_COPY_SUBSCRIPTION) command creates a new
WebSphere MQ subscription, using, for attributes not specified in the command,
the attribute values of an existing subscription.

The Create Subscription (MQCMD_CREATE_SUBSCRIPTION) command creates a
new WebSphere MQ administrative subscription so that existing applications can
participate in publish/suscribe application.

Required parameters (Change Subscription):
SubName or SubId

TopicString and TopicObject are optional parameters for this command.

Required parameters (Copy Subscription):
FromSubscriptionName, ToSubscriptionName, SubName or SubId

Required parameters (Create Subscription):
SubName or SubId, TopicString or TopicObject

Optional parameters:
CommandScope, Destination, DestinationClass, DestinationCorrelId,
DestinationQueueManager, Expiry, PublishedAccountingToken,
PublishedApplicationIdentifier, PublishPriority,
PublishSuscribeProperties, Selector, SubscriptionScope, Userdata,
VariableUser, WildcardSchema

Required parameters (Change Subscription)
SubName (MQCFST)

The name of the subscription definition to be changed (parameter identifier:
MQCACF_SUB_NAME).

The maximum length of the string is MQ_SUB_NAME_LENGTH.

or

SubId (MQCFBS)
The unique identifier of the subscription definition to be changed (parameter
identifier: MQBACF_SUB_ID).

The maximum length of the string is MQ_CORREL_ID_LENGTH.

132 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|
|
|
||
|
|||

||||||
|

|
|
|

|
|
|

|
|
|

|
|

|

|
|

|
|

|
|
|
|
|
|

|

|
|
|

|

|

|
|
|

|



Required parameters (Copy Subscription)
FromSubscriptionName (MQCFST)

The name of the subscription definition to be copied from (parameter
identifier: MQCACF_FROM_SUBSCRIPTION_NAME).

On z/OS, the queue manager searches for an object with the name you specify
and a disposition of MQQSGD_Q_MGR or MQQSGD_COPY to copy from.
This parameter is ignored if a value of MQQSGD_COPY is specified for
QSGDisposition. In this case, an object with the name specified by
ToSubscriptionName and the disposition MQQSGD_GROUP is used.

The maximum length of the string is MQ_SUBSCRIPTION_NAME_LENGTH.

ToSubscriptionName (MQCFBS)
The name of the subscription to copy to (parameter identifier:
MQCACF_TO_SUBSCRIPTION_NAME).

The maximum length of the string is MQ_SUBSCRIPTION_NAME_LENGTH.

You require at least one of SubName or SubId.

SubName (MQCFST)
The name of the subscription definition to be changed (parameter identifier:
MQCACF_SUB_NAME).

The maximum length of the string is MQ_SUB_NAME_LENGTH.

SubId (MQCFBS)
The unique identifier of the subscription definition to be changed (parameter
identifier: MQBACF_SUB_ID).

The maximum length of the string is MQ_CORREL_ID_LENGTH.

Required parameters (Create Subscription)

You require at least one of SubName or SubId.

SubName (MQCFST)
The name of the subscription definition to be changed (parameter identifier:
MQCACF_SUB_NAME).

The maximum length of the string is MQ_SUB_NAME_LENGTH.

SubId (MQCFBS)
The unique identifier of the subscription definition to be changed (parameter
identifier: MQBACF_SUB_ID).

The maximum length of the string is MQ_CORREL_ID_LENGTH.

You require at least one of TopicObject or TopicString.

TopicObject (MQCFST)
The name of a previously defined topic object from which is obtained the topic
name for the subscription (parameter identifier: MQCACF_TOPIC).

The maximum length of the string is MQ_TOPIC_NAME_LENGTH.

TopicString (MQCFST)
The resolved topic string (parameter identifier: MQCACF_TOPIC_STRING). .

The maximum length of the string is MQ_TOPIC_STR_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 133

|

|
|
|

|
|
|
|
|

|

|
|
|

|

|

|
|
|

|

|
|
|

|

|

|

|
|
|

|

|
|
|

|

|

|
|
|

|

|
|

|



Optional parameters (Change, Copy, and Create Subscription)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is processed when the queue manager is a
member of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is processed on the

queue manager on which it was entered.
v a queue manager name. The command is processed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is processed on the local queue manager and
is also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

Destination (MQCFST)
Destination (parameter identifier: MQCACF_DESTINATION_CORREL_ID).

Specifies the name of the alias, local, remote, or cluster queue to which
messages for this subscription are put.

DestinationClass (MQCFST)
Destination class (parameter identifier: MQIACF_DESTINATION_CLASS).

Whether the destination is managed.

Specify either:

MANAGED
The destination is managed.

PROVIDED
The destination queue is as specified in the Destination field.

DestinationCorrelId (MQCFBS)
Destination correlation identifier (parameter identifier:
MQCACF_DESTINATION_CORREL_ID).

Provides a correlation identifier that is placed in the CorrelId field of the
message descriptor for all the messages sent to this subscription.

The maximum length is MQ_CORREL_ID_LENGTH.

DestinationQueueManager (MQCFST)
Destination queue manager (parameter identifier:
MQCACF_DESTINATION_Q_MGR).

Specifies the name of the destination queue manager, either local or remote, to
which messages for the subscription are forwarded.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

Expiry (MQCFIN)
The time, in tenths of a second, at which a subscription expires after its
creation date and time (parameter identifier: MQIACF_EXPIRY).

The default value of unlimited means that the subscription never expires.

134 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|

|
|

|
|

|
|

|

|

|
|

|
|

|
|
|

|
|

|

|
|
|

|
|

|

|
|
|

|



After a subscription has expired it becomes eligible to be discarded by the
queue manager and receives no further publications.

PublishedAccountingToken (MQCFIN)
Value of the accounting token used in the AccountingToken field of the
message descriptor (parameter identifier: MQCACF_ACCOUNTING_TOKEN).

The maximum length of the string is MQ_ACCOUNTING_TOKEN_LENGTH.

PublishedApplicationIdentifier (MQCFIN)
Value of the application identity data used in the ApplIdentityData field of the
message descriptor (parameter identifier: MQCACF_APPL_IDENTITY_DATA.

The maximum length of the string is MQ_APPL_IDENTITY_DATA_LENGTH.

PublishPriority (MQCFIN)
The priority of the message sent to this subscription (parameter identifier:
MQIACF_PUB_PRIORITY).

The value can be:

MQPRI_PRIORITY_AS_PUBLISHED
Priority of messages sent to this subscription is taken from that
supplied to the published message. This is the supplied default value.

MQPRI_PRIORITY_AS_QDEF
Priority of messages sent to this subscription is determined by the
default priority of the queue defined as a destination.

0-9 An integer value providing an explicit priority for messages sent to
this subscription.

PublishSubscribeProperties (MQCFST)
Specifies how publish/suscribe related message properties are added to
messages sent to this subscription (parameter identifier:
MQIACF_PUBSUB_PROPERTIES).

The value can be:

MQPSPROP_COMPAT
If the original publication is a PCF message, then the
publish/subscribe properties are added as PCF attributes. Otherwise,
publish/subscribe properties are added within an MQRFH version 1
header. This method is compatible with applications coded for use
with previous versions of WebSphere MQ.

MQPSPROP_NONE
Do not add publish/suscribe properties to the messages. This is the
supplied default value.

MQPSPROP_RFH2
Publish/suscribe properties are added within an MQRFH version 2
header. This method is compatible with applications coded for use
with WebSphere Message Brokers.

Selector (MQCFST)
Specifies the selector applied to messages published to the topic (parameter
identifier: MQCACF_SUB_SELECTOR).

Only those messages that satisfy the selection criteria are put to the destination
specified by this subscription.

SubscriptionLevel (MQCFIL)
The level within the subscription interception hierarchy at which this

Chapter 3. Definitions of the Programmable Command Formats 135

|
|

|
|
|

|

|
|
|

|

|
|
|

|

|
|
|

|
|
|

||
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

|
|



subscription is made (parameter identifier: MQIACF_SUB_LEVEL). To ensure
an intercepting application receives messages before any other subscribers,
make sure it has the highest subscription level of all subscribers.

The value can be:

0 - 9 An integer in the range 0-9. The default value is 1. Subscribers with a
subscription level of 9 will intercept publications before they reach
subscribers with lower subscription levels.

SubscriptionScope (MQCFST)
Determines whether this subscription is passed to other queue managers in the
network (parameter identifier: MQIACF_SUBSCRIPTION_SCOPE).

The value can be:

MQTSCOPE_ALL
The subscription is forwarded to all queue managers directly
connected through a publish/subscribe collective or hierarchy. This is
the supplied default value.

MQTSCOPE_QMGR
The subscription only forwards messages published on the topic within
this queue manager.

SubscriptionUser (MQCFST)
The userid that ’owns’ this subscription. This is either the userid associated
with the creator of the subscription, or, if subscription takeover is permitted,
the userid which last tookover the subscription. (parameter identifier:
MQCACF_SUB_USER_ID).

The maximum length of the string is MQ_USER_ID_LENGTH.

TopicString (MQCFST)
The resolved topic string (parameter identifier: MQCACF_TOPIC_STRING). .

The maximum length of the string is MQ_TOPIC_STR_LENGTH.

Userdata (MQCFIN)
User data (parameter identifier: MQCACF_SUB_USER_DATA).

Specifies the user data associated with the subscription

The maximum length of the string is MQ_USER_DATA_LENGTH.

VariableUser (MQCFST)
Specifies whether a user other than the one who created the subscription, that
is, the user shown in SubscriptionUser can take over the ownership of the
subscription (parameter identifier: MQIACF_VARIABLE_USER_ID).

The value can be:

MQVU_ANY_USER
Any user can take over the ownership. This is the supplied default
value.

MQVU_FIXED_USER
No other user can take over the ownership.

WildcardSchema (MQCFST)
Specifies the schema to be used when interpreting any wildcard characters
contained in the TopicString (parameter identifier:
MQIACF_WILDCARD_SCHEMA).

The value can be:

136 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|

||
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|

|
|

|

|

|
|
|
|

|

|
|
|

|
|

|
|
|
|

|



MQWS_CHAR
Wildcard characters represent portions of strings; this is for
compatibility with WebSphere MQ V6.0 broker.

MQWS_TOPIC
Wildcard characters represent portions of the topic hierarchy; this is for
compatibility with WebSphere Message Brokers. This is the supplied
default value.

Change, Copy, and Create Topic
The Change Topic (MQCMD_CHANGE_TOPIC) command changes the specified
attributes of an existing WebSphere MQ administrative topic definition. For any
optional parameters that are omitted, the value does not change.

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

The Copy Topic (MQCMD_COPY_TOPIC) command creates a new WebSphere MQ
administrative topic definition, using, for attributes not specified in the command,
the attribute values of an existing topic definition.

The Create Topic (MQCMD_CREATE_TOPIC) command creates a new WebSphere
MQ administrative topic definition. Any attributes that are not defined explicitly
are set to the default values on the destination queue manager.

Required parameter (Change Topic):
TopicName

Required parameters (Copy Topic):
FromTopicName, TopicString, ToTopicName

Required parameters (Create Topic):
TopicName, TopicString

Optional parameters:
ClusterName, CommandScope, DefPersistence, DefPriority, DefPutResponse,
DurableModelQName, DurableSubscriptions, InhibitPublications,
InhibitSubscriptions, NonDurableModelQName, NonPersistentMsgDelivery,
PersistentMsgDelivery, ProxySubscriptions, PublicationScope,
QSGDisposition, Replace, SubscriptionLevel, SubscriptionScope,
SubscriptionUser, TopicDesc, TopicString, TopicType, WildcardOperation

Required parameter (Change Topic)
TopicName (MQCFST)

The name of the administrative topic definition to be changed (parameter
identifier: MQCA_TOPIC_NAME).

The maximum length of the string is MQ_TOPIC_NAME_LENGTH.

Required parameters (Copy Topic)
FromTopicName (MQCFST)

The name of the administrative topic object definition to be copied from
(parameter identifier: MQCACF_FROM_TOPIC_NAME).

Chapter 3. Definitions of the Programmable Command Formats 137

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
||
|
|||

||||||
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|

|
|
|

|

|

|
|
|



On z/OS, the queue manager searches for an object with the name you specify
and a disposition of MQQSGD_Q_MGR or MQQSGD_COPY to copy from.
This parameter is ignored if a value of MQQSGD_COPY is specified for
QSGDisposition. In this case, an object with the name specified by ToTopicName
and the disposition MQQSGD_GROUP is searched for to copy from.

The maximum length of the string is MQ_TOPIC_NAME_LENGTH.

TopicString (MQCFST)
The topic string (parameter identifier: MQCA_TOPIC_STRING). This string
uses the forward slash (/) character as a delimiter for elements within the topic
tree.

The maximum length of the string is MQ_TOPIC_STR_LENGTH.

ToTopicName (MQCFST)
The name of the administrative topic definition to copy to (parameter
identifier: MQCACF_TO_TOPIC_NAME).

The maximum length of the string is MQ_TOPIC_NAME_LENGTH.

Required parameters (Create Topic)
TopicName (MQCFST)

The name of the administrative topic definition to be created (parameter
identifier: MQCA_TOPIC_NAME).

The maximum length of the string is MQ_TOPIC_NAME_LENGTH.

TopicString (MQCFST)
The topic string (parameter identifier: MQCA_TOPIC_STRING).

This parameter is required and cannot contain the empty string. The ″/″
character within this string has a special meaning. It delimits the elements in
the topic tree. A topic string can start with the ″/″ character but is not required
to. A string starting with the ″/″ character is not the same as a string that does
not start with the ″/″ character. A topic string cannot end with the ″/″
character.

The maximum length of the string is MQ_TOPIC_STR_LENGTH.

Optional parameters (Change, Copy, and Create Topic)
ClusterName (MQCFST)

The name of the cluster to which this topic belongs (parameter identifier:
MQCA_CLUSTER_NAME). The maximum length of the string is
MQ_CLUSTER_NAME_LENGTH.

The value can be:

Blank This topic does not belong to a cluster. Publications and subscriptions
for this topic are not propagated to publish/subscribe
cluster-connected queue managers.

This is the default value for this parameter if no value is specified.

String This topic belongs to the indicated cluster.

Additionally, if PublicationScope or SubscriptionScope are set to
MQSCOPE_ALL, this is the cluster to be used for the propagation of
publications and subscriptions, for this topic, to publish/subscribe
cluster-connected queue managers.

138 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|
|
|

|

|
|
|
|

|

|
|
|

|

|

|
|
|

|

|
|

|
|
|
|
|
|

|

|

|
|
|
|

|

||
|
|

|

||

|
|
|
|



CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

DefPersistence (MQCFIN)
Default persistence (parameter identifier: MQIA_TOPIC_DEF_PERSISTENCE).

Specifies the default for message-persistence of messages published to the
topic. Message persistence determines whether or not messages are preserved
across restarts of the queue manager.

The value can be:

MQPER_PERSISTENCE_AS_PARENT
The default persistence is based on the setting of the closest parent
administrative topic object in the topic tree.

MQPER_PERSISTENT
Message is persistent.

MQPER_NOT_PERSISTENT
Message is not persistent.

DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY).

Specifies the default priority of messages published to the topic.

Specify either:

integer The default priority to be used, in the range zero through to the
maximum priority value that is supported (9).

MQPRI_PRIORITY_AS_PARENT
The default priority is based on the setting of the closest parent
administrative topic object in the topic tree.

DefPutResponse (MQCFIN)
Default put response (parameter identifier: MQIA_DEF_PUT_RESPONSE).

The value can be:

MQPRT_ASYNC_RESPONSE
The put operation is issued asynchronously, returning a subset of
MQMD fields.

MQPRT_RESPONSE_AS_PARENT
The default put response is based on the setting of the closest parent
administrative topic object in the topic tree.

Chapter 3. Definitions of the Programmable Command Formats 139

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|

|
|

|
|
|

|

|
|
|

|
|

|
|

|
|

|

|

||
|

|
|
|

|
|

|

|
|
|

|
|
|



MQPRT_SYNC_RESPONSE
The put operation is issued synchronously, returning a response.

DurableModelQName (MQCFST)
Name of the model queue to be used for durable subscriptions (parameter
identifier: MQCA_MODEL_DURABLE_Q).

The maximum length of the string is MQ_Q_NAME_LENGTH.

DurableSubscriptions (MQCFIN)
Whether applications are permitted to make durable subscriptions (parameter
identifier: MQIA_DURABLE_SUB).

The value can be:

MQSUB_DURABLE_AS_PARENT
Whether durable subscriptions are permitted is based on the setting of
the closest parent administrative topic object in the topic tree.

MQSUB_DURABLE_ALLOWED
Durable subscriptions are permitted.

MQSUB_DURABLE_INHIBITED
Durable subscriptions are not permitted.

InhibitPublications (MQCFIN)
Whether publications are allowed for this topic (parameter identifier:
MQIA_INHIBIT_PUB).

The value can be:

MQTA_PUB_AS_PARENT
Whether messages can be published to this topic is based on the
setting of the closest parent administrative topic object in the topic tree.

MQTA_PUB_INHIBITED
Publications are inhibited for this topic.

MQTA_PUB_ALLOWED
Publications are allowed for this topic.

InhibitSubscriptions (MQCFIN)
Whether subscriptions are allowed for this topic (parameter identifier:
MQIA_INHIBIT_SUB).

The value can be:

MQTA_SUB_AS_PARENT
Whether applications can subscribe to this topic is based on the setting
of the closest parent administrative topic object in the topic tree.

MQTA_SUB_INHIBITED
Subscriptions are inhibited for this topic.

MQTA_SUB_ALLOWED
Subscriptions are allowed for this topic.

NonDurableModelQName (MQCFST)
Name of the model queue to be used for non durable subscriptions (parameter
identifier: MQCA_MODEL_NON_DURABLE_Q).

The maximum length of the string is MQ_Q_NAME_LENGTH.

NonPersistentMsgDelivery (MQCFIN)
The delivery mechanism for non-persistent messages published to this topic
(parameter identifier: MQIA_NPM_DELIVERY).

140 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|
|

|

|
|
|

|

|
|
|

|
|

|
|

|
|
|

|

|
|
|

|
|

|
|

|
|
|

|

|
|
|

|
|

|
|

|
|
|

|

|
|
|



The value can be:

MQDLV_AS_PARENT
The delivery mechanism used is based on the setting of the first parent
administrative node found in the topic tree relating to this topic.

MQDLV_ALL
Non-persistent messages must be delivered to all subscribers,
irrespective of durability for the MQPUT call to report success. If a
delivery failure to any subscriber occurs, no other subscribers receive
the message and the MQPUT fails.

MQDLV_ALL_DUR
Non-persistent messages must be delivered to all durable subscribers.
Failure to deliver a non-persistent message to any non-durable
subscribers does not return an error to the MQPUT call. If a delivery
failure to a durable subscriber occurs, no other subscribers receive the
message and the MQPUT fails.

MQDLV_ALL_AVAIL
Non-persistent messages are delivered to all subscribers that can accept
the message. Failure to deliver the message to any subscriber does not
prevent other subscribers from receiving the message.

PersistentMsgDelivery (MQCFIN)
The delivery mechanism for persistent messages published to this topic
(parameter identifier: MQIA_PM_DELIVERY).

The value can be:

MQDLV_AS_PARENT
The delivery mechanism used is based on the setting of the first parent
administrative node found in the topic tree relating to this topic.

MQDLV_ALL
Persistent messages must be delivered to all subscribers, irrespective of
durability for the MQPUT call to report success. If a delivery failure to
any subscriber occurs, no other subscribers receive the message and the
MQPUT fails.

MQDLV_ALL_DUR
Persistent messages must be delivered to all durable subscribers.
Failure to deliver a persistent message to any non-durable subscribers
does not return an error to the MQPUT call. If a delivery failure to a
durable subscriber occurs, no other subscribers receive the message
and the MQPUT fails.

MQDLV_ALL_AVAIL
Persistent messages are delivered to all subscribers that can accept the
message. Failure to deliver the message to any subscriber does not
prevent other subscribers from receiving the message.

ProxySubscriptions (MQCFIN)
Whether a proxy subscription is to be sent for this topic to directly connected
queue managers, even if no local subscriptions exist (parameter identifier:
MQIA_PROXY_SUB).

The value can be:

Chapter 3. Definitions of the Programmable Command Formats 141

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

||



MQTA_PROXY_SUB_FORCE
A proxy subscription is sent to connected queue managers even if no
local subscriptions exist.

Note: The proxy subscription is sent when this value is set on Create
or Change of the topic.

MQTA_PROXY_SUB_FIRSTUSE
A proxy subscription is sent for this topic only when a local
subscription exists, or a proxy subscription is received that should be
propagated to further directly connected queue managers.

This is the default value for this parameter if no value is specified.

PublicationScope (MQCFIN)
Whether this queue manager propagates publications for this topic, to queue
managers as part of a hierarchy or as part of a publish/subscribe cluster
(parameter identifier: MQIA_PUB_SCOPE).

The value can be:

MQSCOPE_AS_PARENT
Whether this queue manager propagates publications, for this topic, to
queue managers as part of a hierarchy or as part of a
publish/subscribe cluster is based on the setting of the first parent
administrative node found in the topic tree relating to this topic.

This is the default value for this parameter if no value is specified.

MQSCOPE_QMGR
Publications for this topic are not propagated to other queue managers.

MQSCOPE_ALL
Publications for this topic are propagated to hierarchically connected
queue managers and to publish/subscribe cluster-connected queue
managers.

Note: This behavior can be over-ridden on a publication-by-publication basis,
using MQPMO_SCOPE_QMGR on the Put Message Options.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object to which you are applying the command
(that is, where it is defined and how it behaves). The value can be:

QSGDisposition Change Copy, Create

MQQSGD_COPY The object definition resides on the page set
of the queue manager that executes the
command. The object was defined using a
command that had the parameter
MQQSGD_COPY. Any object residing in the
shared repository, or any object defined
using a command that had the parameters
MQQSGD_Q_MGR, is not affected by this
command.

The object is defined on the page set of the
queue manager that executes the command
using the MQQSGD_GROUP object of the
same name as the ToTopicName object (for
Copy) or TopicName object (for Create).

142 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|

|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|

|
|

|
|
|
|

|
|

|
|
|

|
|

||||

||
|
|
|
|
|
|
|
|

|
|
|
|
|



QSGDisposition Change Copy, Create

MQQSGD_GROUP The object definition resides in the shared
repository. The object was defined using a
command that had the parameter
MQQSGD_GROUP. Any object residing on
the page set of the queue manager that
executes the command (except a local copy
of the object) is not affected by this
command.

If the command is successful, the following
MQSC command is generated and sent to all
active queue managers in the queue-sharing
group so that they refresh local copies on
page set zero:

DEFINE TOPIC(name)
REPLACE QSGDISP(COPY)

The Change for the group object takes effect
regardless of whether the generated
command with QSGDISP(COPY) fails.

The object definition resides in the shared
repository. This is allowed only if the queue
manager is in a queue-sharing group.

If the definition is successful, the following
MQSC command is generated and sent to all
active queue managers in the queue-sharing
group so that they make or refresh local
copies on page set zero:

DEFINE TOPIC(name)
REPLACE QSGDISP(COPY)

The Copy or Create for the group object
takes effect regardless of whether the
generated command with QSGDISP(COPY)
fails.

MQQSGD_PRIVATE The object resides on the page set of the
queue manager that executes the command,
and was defined with MQQSGD_Q_MGR or
MQQSGD_COPY. Any object residing in the
shared repository is unaffected.

Not permitted.

MQQSGD_Q_MGR The object definition resides on the page set
of the queue manager that executes the
command. The object was defined using a
command that had the parameter
MQQSGD_Q_MGR. Any object residing in
the shared repository, or any local copy of
such an object, is not affected by this
command. This is the default value.

The object is defined on the page set of the
queue manager that executes the command.
This is the default value.

Replace (MQCFIN)
Replace attributes (parameter identifier: MQIACF_REPLACE).

If a topic definition with the same name as ToTopicName already exists, this
specifies whether it is to be replaced. The value can be as follows:

MQRP_YES
Replace existing definition.

MQRP_NO
Do not replace existing definition.

SubscriptionScope (MQCFIN)
Whether this queue manager propagates subscriptions for this topic, to queue
managers as part of a hierarchy or as part of a publish/subscribe cluster
(parameter identifier: MQIA_SUB_SCOPE).

The value can be:

MQSCOPE_AS_PARENT
Whether this queue manager propagates subscriptions, for this topic, to
queue managers as part of a hierarchy or as part of a
publish/subscribe-cluster is based on the setting of the first parent
administrative node found in the topic tree relating to this topic.

Chapter 3. Definitions of the Programmable Command Formats 143

|||

||
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

||
|
|
|
|

|

||
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|
|
|

|

|
|
|
|
|



This is the default value for this parameter if no value is specified.

MQSCOPE_QMGR
Subscriptions for this topic are not propagated to other queue
managers.

MQSCOPE_ALL
Subscriptions for this topic are propagated to hierarchically connected
queue managers and to publish/subscribe cluster-connected queue
managers.

Note: This behavior can be over-ridden on a subscription-by-subcription basis,
using MQSO_SCOPE_QMGR on the Subscription Descriptor or
SUBSCOPE(QMGR) on DEFINE SUB.

TopicDesc (MQCFST)
Topic description (parameter identifier: MQCA_TOPIC_DESC).

Text that briefly describes the object

The maximum length is MQ_TOPIC_DESC_LENGTH.

Use characters from the character set identified by the coded character set
identifier (CCSID) for the message queue manager on which the command is
executing to ensure that the text is translated correctly if it is sent to another
queue manager.

TopicType (MQCFIN)
Topic type (parameter identifier: MQIA_TOPIC_TYPE).

The value specified must match the type of the topic being changed. The value
can be:

MQTOPT_LOCAL
Local topic object

WildcardOperation (MQCFIN)
Behavior of subscriptions including wildcards made to this topic (parameter
identifier: MQIA_WILDCARD_OPERATION).

The value can be:

MQTA_PASSTHRU
Subscriptions made to a wildcarded topics that are less specific than
the topic string at this topic object will receive publications made to
this topic and to topic strings more specific than this topic. This is the
default supplied with WebSphere MQ.

MQTA_BLOCK
Subscriptions made to a wildcarded topics that are specific than the
topic string at this topic object will not receive publications made to
this topic or to topic strings more specific than this topic.

This value of this attribute is used when subscriptions are defined. If you alter
this attribute, the set of topics covered by existing subscriptions is not affected
by the modification. This applies also, if the topology is changed when topic
objects are created or deleted; the set of topics matching subscriptions created
following the modification of the WildcardOperation attribute is created using
the modified topology. If you want to force the matching set of topics to be
reevaluated for existing subscriptions, you must restart the queue manager.

144 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|
|
|

|
|
|
|

|
|
|

|
|

|

|

|
|
|
|

|
|

|
|

|
|

|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|



Clear Queue

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Clear Queue (MQCMD_CLEAR_Q) command deletes all the messages from a
local queue.

The command fails if the queue contains uncommitted messages.

Required parameters:
QName

Optional parameters:
CommandScope, QSGDisposition

Required parameters (Clear Queue)
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

The name of the local queue to be cleared. The maximum length of the string
is MQ_Q_NAME_LENGTH.

Note: The target queue must be type local.

Optional parameters (Clear Queue)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object to which you are applying the command
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_PRIVATE
Clear the private queue named in QName. The queue is private if it was
created using a command with the attributes MQQSGD_PRIVATE or
MQQSGD_Q_MGR. This is the default value.

Chapter 3. Definitions of the Programmable Command Formats 145

|



MQQSGD_SHARED
Clear the shared queue named in QName. The queue is shared if it was
created using a command with the attribute MQQSGD_SHARED. This
applies only to local queues.

Error codes (Clear Queue)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRC_Q_NOT_EMPTY
(2055, X’807’) Queue contains one or more messages or uncommitted
put or get requests.

This reason occurs only if there are uncommitted updates.

MQRCCF_Q_WRONG_TYPE
Action not valid for the queue of specified type.

Clear Topic String

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

The Clear Topic String (MQCMD_CLEAR_TOPIC_STRING) command clears the
retained message which is stored for the specified topic.

Required parameters:
TopicString, ClearType, Scope

Optional parameters:
CommandScope

Required parameters (Clear Topic String)
TopicString (MQCFST)

Topic String (parameter identifier: MQCA_TOPIC_STRING).

The topic string to be cleared The maximum length of the string is
MQ_TOPIC_STR_LENGTH.

ClearType (MQCFST)
Clear type (parameter identifier: MQIACF_CLEAR_TYPE).

Specifies the type of clear command being issued. The value must be:

MQCLRT_RETAINED Remove the retained publication from the specified topic
string.

Optional parameters (Clear Topic String)
Scope (MQCFIN)

Scope of clearance (parameter identifier: MQIACF_COMMAND_SCOPE).

Whether the topic string is to be cleared locally or globally. The value can be:

146 WebSphere MQ: Programmable Command Formats and Administration Interface



MQCLRS_LOCAL
The retained message is removed from the specified topic string at the
local queue manager only.

MQCLRS_GLOBAL
The retained message is removed from the specified topic string at all
queue managers connected in the pu/sub cluster.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

Delete Authentication Information Object

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Delete authentication information (MQCMD_DELETE_AUTH_INFO)
command deletes the specified authentication information object.

Required parameters :
AuthInfoName

Optional parameters :
CommandScope, QSGDisposition

Required parameters (Delete Authentication Information
Object)

AuthInfoName (MQCFST)
Authentication information object name (parameter identifier:
MQCA_AUTH_INFO_NAME).

The maximum length of the string is MQ_AUTH_INFO_NAME_LENGTH.

Optional parameters (Delete Authentication Information
Object)

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Chapter 3. Definitions of the Programmable Command Formats 147



Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object to which you are applying the command
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_COPY
The object definition resides on the page set of the queue manager
which executes this command. The object was defined by a command
using the parameter MQQSGD_COPY. Any object in the shared
repository, or any object defined by a command using the parameter
MQQSGD_Q_MGR, is not affected by this command.

MQQSGD_GROUP
The object definition resides in the shared repository. The object was
defined by a command using the parameter MQQSGD_GROUP. Any
object residing on the page set of the queue manager that executes the
command (except a local copy of the object) is not affected by this
command.

If the command is successful, the following MQSC command is
generated and sent to all active queue managers in the queue-sharing
group to delete local copies on page set zero:
DELETE AUTHINFO(name) QSGDISP(COPY)

The deletion of the group object takes effect regardless of whether the
generated command with QSGDISP(COPY) fails.

MQQSGD_Q_MGR
The object definition resides on the page set of the queue manager that
executes the command. The object was defined by a command using
the parameter MQQSGD_Q_MGR. Any object residing in the shared
repository, or any local copy of such an object, is not affected by this
command.

This is the default value.

Delete Authority Record

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

148 WebSphere MQ: Programmable Command Formats and Administration Interface



The Delete Authority Record (MQCMD_DELETE_AUTH_REC) command deletes
an authority record. The authorizations associated with the profile no longer apply
to WebSphere MQ objects with names that match the profile name specified.

Required parameters:
ProfileName, ObjectType

Optional parameters:
GroupNames, PrincipalNames

Required parameters (Delete Authority Record)
ObjectType (MQCFIN)

The type of object for which to delete authorizations (parameter identifier:
MQIACF_OBJECT_TYPE).

The value can be:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel object.

MQOT_CLNTCONN_CHANNEL
Client-connection channel object.

MQOT_LISTENER
Listener object.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process.

MQOT_Q
Queue, or queues, that match the object name parameter.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service object.

MQOT_TOPIC
Topic object.

ProfileName (MQCFST)
Name of the profile to be deleted (parameter identifier:
MQCACF_AUTH_PROFILE_NAME).

If you have defined a generic profile then you may specify it here, using
wildcard characters to specify a named generic profile to be removed. If you
specify an explicit profile name, the object must exist.

The maximum length of the string is MQ_AUTH_PROFILE_NAME_LENGTH.

Optional parameters (Delete Authority Record)
GroupNames (MQCFSL)

Group names (parameter identifier: MQCACF_GROUP_ENTITY_NAMES).

The names of groups having a profile deleted. At least one group name or
principal name must be specified. An error occurs if neither are specified.

Chapter 3. Definitions of the Programmable Command Formats 149

|

|
|



Each member in this list can be a maximum length of
MQ_ENTITY_NAME_LENGTH.

PrincipalNames (MQCFSL)
Principal names (parameter identifier:
MQCACF_PRINCIPAL_ENTITY_NAMES).

The names of principals having a profile deleted. At least one group name or
principal name must be specified. An error occurs if neither are specified.

Each member in this list can be a maximum length of
MQ_ENTITY_NAME_LENGTH.

Error codes (Delete Authority Record)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRC_OBJECT_TYPE_ERROR
Invalid object type.

MQRC_UNKNOWN_ENTITY
Userid not authorized, or unknown.

MQRCCF_ENTITY_NAME_MISSING
Entity name missing.

MQRCCF_OBJECT_TYPE_MISSING
Object type missing.

MQRCCF_PROFILE_NAME_ERROR
Invalid profile name.

Delete CF Structure

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Delete CF Structure (MQCMD_DELETE_CF_STRUC) command deletes an
existing CF application structure definition.

Note: This command is supported only on z/OS when the queue manager is a
member of a queue-sharing group.

Required parameters:
CFStrucName

Optional parameters:
None

Required parameters (Delete CF Structure)
CFStrucName (MQCFST)

CF structure name (parameter identifier: MQCA_CF_STRUC_NAME).

150 WebSphere MQ: Programmable Command Formats and Administration Interface



The CF application structure definition to be deleted. The maximum length of
the string is MQ_CF_STRUC_NAME_LENGTH.

Delete Channel

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Delete Channel (MQCMD_DELETE_CHANNEL) command deletes the
specified channel definition.

Required parameters:
ChannelName

Optional parameters:
ChannelTable, CommandScope, QSGDisposition

Required parameters (Delete Channel)
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel definition to be deleted. The maximum length of the
string is MQ_CHANNEL_NAME_LENGTH.

Optional parameters (Delete Channel)
ChannelTable (MQCFIN)

Channel table (parameter identifier: MQIACH_CHANNEL_TABLE).

Specifies the ownership of the channel definition table that contains the
specified channel definition.

The value can be:

MQCHTAB_Q_MGR
Queue-manager table.

This is the default. This table contains channel definitions for channels
of all types except MQCHT_CLNTCONN.

MQCHTAB_CLNTCONN
Client-connection table.

This table only contains channel definitions for channels of type
MQCHT_CLNTCONN.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you

Chapter 3. Definitions of the Programmable Command Formats 151



specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object to which you are applying the command
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_COPY
The object definition resides on the page set of the queue manager that
executes the command. The object was defined by a command using
the parameter MQQSGD_COPY. Any object residing in the shared
repository, or any object defined by a command using the parameter
MQQSGD_Q_MGR, is not affected by this command.

MQQSGD_GROUP
The object definition resides in the shared repository. The object was
defined by a command using the parameters MQQSGD_GROUP. Any
object residing on the page set of the queue manager that executes the
command (except a local copy of the object) is not affected by this
command.

If the command is successful, the following MQSC command is
generated and sent to all active queue managers in the queue-sharing
group to delete local copies on page set zero:
DELETE CHANNEL(name) QSGDISP(COPY)

The deletion of the group object takes effect regardless of whether the
generated command with QSGDISP(COPY) fails.

MQQSGD_Q_MGR
The object definition resides on the page set of the queue manager that
executes the command. The object was defined by a command using
the parameter MQQSGD_Q_MGR. Any object residing in the shared
repository, or any local copy of such an object, is not affected by this
command.

This is the default value.

Error codes (Delete Channel)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TABLE_ERROR
Channel table value not valid.

152 WebSphere MQ: Programmable Command Formats and Administration Interface



Delete Channel Listener

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The Delete Channel Listener (MQCMD_DELETE_LISTENER) command deletes an
existing channel listener definition.

.

Required parameters:
ListenerName

Optional parameters:
None

Required parameters (Delete Channel Listener)
ListenerName (MQCFST)

Listener name (parameter identifier: MQCACH_LISTENER_NAME).

This is the name of the listener definition to be deleted. The maximum length
of the string is MQ_LISTENER_NAME_LENGTH.

Delete Namelist

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Delete Namelist (MQCMD_DELETE_NAMELIST) command deletes an
existing namelist definition.

Required parameters:
NamelistName

Optional parameters:
CommandScope, QSGDisposition

Required parameters (Delete Namelist)
NamelistName (MQCFST)

Namelist name (parameter identifier: MQCA_NAMELIST_NAME).

This is the name of the namelist definition to be deleted. The maximum length
of the string is MQ_NAMELIST_NAME_LENGTH.

Optional parameters (Delete Namelist)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:

Chapter 3. Definitions of the Programmable Command Formats 153



v blank (or omit the parameter altogether). The command is executed on the
queue manager on which it was entered.

v a queue manager name. The command is executed on the queue manager
you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object to which you are applying the command
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_COPY
The object definition resides on the page set of the queue manager that
executes the command. The object was defined by a command using
the parameter MQQSGD_COPY. Any object residing in the shared
repository, or any object defined using a command that had the
parameters MQQSGD_Q_MGR, is not affected by this command.

MQQSGD_GROUP
The object definition resides in the shared repository. The object was
defined by a command using the parameter MQQSGD_GROUP. Any
object residing on the page set of the queue manager that executes the
command (except a local copy of the object) is not affected by this
command.

If the command is successful, the following MQSC command is
generated and sent to all active queue managers in the queue-sharing
group to delete local copies on page set zero:
DELETE NAMELIST(name) QSGDISP(COPY)

The deletion of the group object takes effect regardless of whether the
generated command with QSGDISP(COPY) fails.

MQQSGD_Q_MGR
The object definition resides on the page set of the queue manager that
executes the command. The object was defined by a command using
the parameter MQQSGD_Q_MGR. Any object residing in the shared
repository, or any local copy of such an object, is not affected by this
command.

This is the default value.

Delete Process

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Delete Process (MQCMD_DELETE_PROCESS) command deletes an existing
process definition.

154 WebSphere MQ: Programmable Command Formats and Administration Interface



Required parameters:
ProcessName

Optional parameters:
CommandScope, QSGDisposition

Required parameters (Delete Process)
ProcessName (MQCFST)

Process name (parameter identifier: MQCA_PROCESS_NAME).

The process definition to be deleted. The maximum length of the string is
MQ_PROCESS_NAME_LENGTH.

Optional parameters (Delete Process)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object to which you are applying the command
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_COPY
The object definition resides on the page set of the queue manager that
executes the command. The object was defined by a command using
the parameter MQQSGD_COPY. Any object residing in the shared
repository, or any object defined using a command that had the
parameters MQQSGD_Q_MGR, is not affected by this command.

MQQSGD_GROUP
The object definition resides in the shared repository. The object was
defined by a command using the parameter MQQSGD_GROUP. Any
object residing on the page set of the queue manager that executes the
command (except a local copy of the object) is not affected by this
command.

If the command is successful, the following MQSC command is
generated and sent to all active queue managers in the queue-sharing
group to delete local copies on page set zero:
DELETE PROCESS(name) QSGDISP(COPY)

Chapter 3. Definitions of the Programmable Command Formats 155



The deletion of the group object takes effect regardless of whether the
generated command with QSGDISP(COPY) fails.

MQQSGD_Q_MGR
The object definition resides on the page set of the queue manager that
executes the command. The object was defined by a command using
the parameter MQQSGD_Q_MGR. Any object residing in the shared
repository, or any local copy of such an object, is not affected by this
command.

This is the default value.

Delete Queue

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Delete Queue (MQCMD_DELETE_Q) command deletes a queue.

Required parameters:
QName

Optional parameters (any QType):
CommandScope, QSGDisposition, QType

Optional parameters (local QType only):
Purge

Required parameters (Delete Queue)
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

The name of the queue to be deleted.

If the Scope attribute of the queue is MQSCO_CELL, the entry for the queue is
deleted from the cell directory.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Optional parameters (Delete Queue)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

156 WebSphere MQ: Programmable Command Formats and Administration Interface



The maximum length is MQ_QSG_NAME_LENGTH.

Purge (MQCFIN)
Purge queue (parameter identifier: MQIACF_PURGE).

If there are messages on the queue MQPO_YES must be specified, otherwise
the command will fail. If this parameter is not present the queue is not purged.

Valid only for queue of type local.

The value can be:

MQPO_YES
Purge the queue.

MQPO_NO
Do not purge the queue.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object to which you are applying the command
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_COPY
The object definition resides on the page set of the queue manager that
executes the command. The object was defined by a command using
the parameter MQQSGD_COPY. Any object residing in the shared
repository, or any object defined using a command that had the
parameters MQQSGD_Q_MGR, is not affected by this command.

MQQSGD_GROUP
The object definition resides in the shared repository. The object was
defined by a command using the parameter MQQSGD_GROUP. Any
object residing on the page set of the queue manager that executes the
command (except a local copy of the object) is not affected by this
command.

If the deletion is successful, the following MQSC command is
generated and sent to all active queue managers in the queue-sharing
group to make, or delete, local copies on page set zero:

DELETE queue(q-name) QSGDISP(COPY)

or, for a local queue only:
DELETE QLOCAL(q-name) NOPURGE QSGDISP(COPY)

The deletion of the group object takes effect even if the generated
command with QSGDISP(COPY) fails.

Note: You always get the NOPURGE option even if you specify
MQPO_YES for Purge. To delete messages on local copies of the
queues, you must explicitly issue, for each copy, the Delete Queue
command with a QSGDisposition value of MQQSGD_COPY and a
Purge value of MQPO_YES.

MQQSGD_Q_MGR
The object definition resides on the page set of the queue manager that
executes the command. The object was defined by a command using
the parameter MQQSGD_Q_MGR. Any object residing in the shared
repository, or any local copy of such an object, is not affected by this
command.

Chapter 3. Definitions of the Programmable Command Formats 157



This is the default value.

MQQSGD_SHARED
Valid only for queue of type local.

The object resides in the shared repository. The object was defined by a
command using the parameter MQQSGD_SHARED. Any object
residing on the page set of the queue manager that executes the
command, or any object defined by a command using the parameter
MQQSGD_GROUP, is not affected by this command.

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

If this parameter is present, the queue must be of the specified type.

The value can be:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

MQQT_REMOTE
Local definition of a remote queue.

MQQT_MODEL
Model queue definition.

Error codes (Delete Queue)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRC_Q_NOT_EMPTY
(2055, X’807’) Queue contains one or more messages or uncommitted
put or get requests.

Delete Service

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The Delete Service (MQCMD_DELETE_SERVICE) command deletes an existing
service definition.

.

Required parameters:
ServiceName

Optional parameters:
None

158 WebSphere MQ: Programmable Command Formats and Administration Interface



Required parameters (Delete Service)
ServiceName (MQCFST)

Service name (parameter identifier: MQCA_SERVICE_NAME).

This is the name of the service definition to be deleted.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

Delete Storage Class

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Delete Storage Class (MQCMD_DELETE_STG_CLASS) command deletes an
existing storage class definition.

Required parameters:
StorageClassName

Optional parameters:
CommandScope, QSGDisposition

Required parameters (Delete Storage Class)
StorageClassName (MQCFST)

Storage class name (parameter identifier: MQCA_STORAGE_CLASS).

The storage class definition to be deleted. The maximum length of the string is
MQ_STORAGE_CLASS_LENGTH.

Optional parameters (Delete Storage Class)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP).

Specifies the disposition of the object to which you are applying the command
(that is, where it is defined and how it behaves). The value can be:

Chapter 3. Definitions of the Programmable Command Formats 159



MQQSGD_COPY
The object definition resides on the page set of the queue manager that
executes the command. The object was defined by a command using
the parameter MQQSGD_COPY. Any object residing in the shared
repository, or any object defined using a command that had the
parameters MQQSGD_Q_MGR, is not affected by this command.

MQQSGD_GROUP
The object definition resides in the shared repository. The object was
defined by a command using the parameter MQQSGD_GROUP. Any
object residing on the page set of the queue manager that executes the
command (except a local copy of the object) is not affected by this
command.

If the command is successful, the following MQSC command is
generated and sent to all active queue managers in the queue-sharing
group to delete local copies on page set zero:
DELETE STGCLASS(name) QSGDISP(COPY)

The deletion of the group object takes effect regardless of whether the
generated command with QSGDISP(COPY) fails.

MQQSGD_Q_MGR
The object definition resides on the page set of the queue manager that
executes the command. The object was defined by a command using
the parameter MQQSGD_Q_MGR. Any object residing in the shared
repository, or any local copy of such an object, is not affected by this
command.

This is the default value.

Delete Subscription
The Delete Subscription (MQCMD_DELETE_SUBSCRIPTION) command deletes a
subscription.

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

Required parameters:
SubName or SubId

Optional parameters:
CommandScope

Required parameters (Delete Subscription)
Lists the required parameters of the Delete Subscription
(MQCMD_DELETE_SUBSCRIPTION) command.

SubName (MQCFST)
Subscription name (parameter identifier: MQCACF_SUB_NAME).

Specifies the unique subscription name. The subscription name, if provided,
must be fully specified; a wildcard is not acceptable.

The subscription name must refer to a durable subscription.

160 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|
|

|
|
|
||
|
|||

||||||
|

|
|

|
|

|

|
|

|
|

|
|

|



If SubName is not provided, SubId must be specified to identify the subscription
to be deleted.

The maximum length of the string is MQ_SUB_NAME_LENGTH.

Optional parameters (Delete Subscription)
Lists the optional parameters of the Delete Subscription
(MQCMD_DELETE_SUBSCRIPTION) command.

SubId (MQCFBT)
Subscription identifier (parameter identifier: MQBACF_SUB_ID).

Specifies the unique internal subscription identifier.

You must supply a value for SubId if you have not supplied a value for
SubName.

The maximum length of the string is MQ_CORREL_ID_LENGTH.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is processed when the queue manager is a
member of a queue-sharing group. You can specify one of the following:
v Blank (or omit the parameter altogether). The command is processed on the

queue manager on which it was entered.
v A queue manager name. The command is processed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v An asterisk (*). The command is processed on the local queue manager and
is also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

You cannot use CommandScope as a parameter on which to filter.

Delete Topic

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

The Delete Topic (MQCMD_DELETE_TOPIC) command deletes the specified
administrative topic object.

Required parameters:
TopicName

Optional parameters (any QType):
CommandScope, QSGDisposition

Required parameters (Delete Topic)
TopicName (MQCFST)

The name of the administrative topic definition to be deleted (parameter
identifier: MQCA_TOPIC_NAME).

Chapter 3. Definitions of the Programmable Command Formats 161

|
|

|

|

|
|

|
|

|

|
|

|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|

|

|
|

|
|
|
||
|
|||

||||||
|

|
|

|
|

|
|

|

|
|
|



The maximum length of the string is MQ_TOPIC_NAME_LENGTH.

Optional parameters (Delete Topic)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object to which you are applying the command
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_COPY
The object definition resides on the page set of the queue manager that
executes the command. The object was defined by a command using
the parameter MQQSGD_COPY. Any object residing in the shared
repository, or any object defined using a command that had the
parameters MQQSGD_Q_MGR, is not affected by this command.

MQQSGD_GROUP
The object definition resides in the shared repository. The object was
defined by a command using the parameter MQQSGD_GROUP. Any
object residing on the page set of the queue manager that executes the
command (except a local copy of the object) is not affected by this
command.

If the deletion is successful, the following MQSC command is
generated and sent to all active queue managers in the queue-sharing
group to make, or delete, local copies on page set zero:

DELETE TOPIC(name) QSGDISP(COPY)

The deletion of the group object takes effect even if the generated
command with QSGDISP(COPY) fails.

MQQSGD_Q_MGR
The object definition resides on the page set of the queue manager that
executes the command. The object was defined by a command using
the parameter MQQSGD_Q_MGR. Any object residing in the shared
repository, or any local copy of such an object, is not affected by this
command.

This is the default value.

162 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|
|
|
|
|
|

|



Escape

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X

The Escape (MQCMD_ESCAPE) command conveys any WebSphere MQ command
(MQSC) to a remote queue manager. Use it when the queue manager (or
application) sending the command does not support the functionality of the
particular WebSphere MQ command, and so does not recognize it and cannot
construct the required PCF command.

The Escape command can also be used to send a command for which no
Programmable Command Format has been defined.

The only type of command that can be carried is one that is identified as an
MQSC, that is recognized at the receiving queue manager.

Required parameters:
EscapeType, EscapeText

Optional parameters:
None

Required parameters (Escape)
EscapeType (MQCFIN)

Escape type (parameter identifier: MQIACF_ESCAPE_TYPE).

The only value supported is:

MQET_MQSC
WebSphere MQ command.

EscapeText (MQCFST)
Escape text (parameter identifier: MQCACF_ESCAPE_TEXT).

A string to hold a command. The length of the string is limited only by the
size of the message.

Error codes (Escape)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_ESCAPE_TYPE_ERROR
Escape type not valid.

Escape (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X

Chapter 3. Definitions of the Programmable Command Formats 163

|



The response to the Escape (MQCMD_ESCAPE) command consists of the response
header followed by two parameter structures, one containing the escape type, and
the other containing the text response. More than one such message might be
issued, depending upon the command contained in the Escape request.

The Command field in the response header MQCFH contains the MQCMD_*
command identifier of the text command contained in the EscapeText parameter in
the original Escape command. For example, if EscapeText in the original Escape
command specified PING QMGR, Command in the response has the value
MQCMD_PING_Q_MGR.

If it is possible to determine the outcome of the command, the CompCode in the
response header identifies whether the command was successful. The success or
otherwise can therefore be determined without the recipient of the response having
to parse the text of the response.

If it is not possible to determine the outcome of the command, CompCode in the
response header has the value MQCC_UNKNOWN, and Reason is MQRC_NONE.

Always returned:
EscapeType, EscapeText

Returned if requested:
None

Parameters
EscapeType (MQCFIN)

Escape type (parameter identifier: MQIACF_ESCAPE_TYPE).

The only value supported is:

MQET_MQSC
WebSphere MQ command.

EscapeText (MQCFST)
Escape text (parameter identifier: MQCACF_ESCAPE_TEXT).

A string holding the response to the original command.

Inquire Archive

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Inquire Archive (MQCMD_INQUIRE_ARCHIVE) command returns archive
system parameters and information.

Required parameters:
None

Optional parameters:
CommandScope

Optional parameters (Inquire Archive)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

164 WebSphere MQ: Programmable Command Formats and Administration Interface



Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

Inquire Archive (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The response to the Inquire Archive (MQCMD_INQUIRE_ARCHIVE) command
consists of the response header followed by the ParameterType structure and the
combination of attribute parameter structures determined by the value of
ParameterType.

Always returned:
ParameterType Specifies the type of archive information being returned.
The value can be:

MQSYSP_TYPE_INITIAL
The initial settings of the archive parameters.

MQSYSP_TYPE_SET
The settings of the archive parameters if they have been altered
since their initial setting.

MQSYSP_TYPE_ARCHIVE_TAPE
Parameters relating to the tape unit (if in use). There is one such
message per tape unit in use for archive logging.

Returned if ParameterType is MQSYSP_TYPE_INITIAL (one message is
returned):

AllocPrimary, AllocSecondary, AllocUnits, ArchivePrefix1,
ArchivePrefix2, ArchiveRetention, ArchiveUnit1, ArchiveUnit2,
ArchiveWTOR, BlockSize, Catalog, Compact, Protect, QuiesceInterval,
RoutingCode, TimeStampFormat

Returned if ParameterType is MQSYSP_TYPE_SET and any value is set (one
message is returned):

AllocPrimary, AllocSecondary, AllocUnits, ArchivePrefix1,
ArchivePrefix2, ArchiveRetention, ArchiveUnit1, ArchiveUnit2,
ArchiveWTOR, BlockSize, Catalog, Compact, Protect, QuiesceInterval,
RoutingCode, TimeStampFormat

Returned if ParameterType is MQSYSP_TYPE_ARCHIVE_TAPE (one message is
returned for each tape unit in use for archive logging):

DataSetName, LogCorrelId, UnitAddress, UnitStatus, UnitVolser

Chapter 3. Definitions of the Programmable Command Formats 165



Response data - archive parameter information
AllocPrimary (MQCFIN)

Primary space allocation for DASD data sets (parameter identifier:
MQIACF_SYSP_ALLOC_PRIMARY).

Specifies the primary space allocation for DASD data sets in the units specified
in the AllocUnits parameter.

AllocSecondary (MQCFIN)
Primary space allocation for DASD data sets (parameter identifier:
MQIACF_SYSP_ALLOC_SECONDARY).

Specifies the secondary space allocation for DASD data sets in the units
specified in the AllocUnits parameter.

AllocUnits (MQCFIN)
Allocation unit (parameter identifier: MQIACF_SYSP_ALLOC_UNIT).

Specifies the unit in which primary and secondary space allocations are made.
The value can be:

MQSYSP_ALLOC_BLK
Blocks.

MQSYSP_ALLOC_TRK
Tracks.

MQSYSP_ALLOC_CYL
Cylinders.

ArchivePrefix1 (MQCFST)
Prefix for the first archive log data set name (parameter identifier:
MQCACF_SYSP_ARCHIVE_PFX1).

The maximum length of the string is MQ_ARCHIVE_PFX_LENGTH.

ArchivePrefix2 (MQCFST)
Prefix for the second archive log data set name (parameter identifier:
MQCACF_SYSP_ARCHIVE_PFX2).

The maximum length of the string is MQ_ARCHIVE_PFX_LENGTH.

ArchiveRetention (MQCFIN)
Archive retention period (parameter identifier:
MQIACF_SYSP_ARCHIVE_RETAIN).

Specifies the retention period, in days, to be used when the archive log data set
is created.

ArchiveUnit1 (MQCFST)
Specifies the device type or unit name of the device that is used to store the
first copy of the archive log data set (parameter identifier:
MQCACF_SYSP_ARCHIVE_UNIT1).

The maximum length of the string is MQ_ARCHIVE_UNIT_LENGTH.

ArchiveUnit2 (MQCFST)
Specifies the device type or unit name of the device that is used to store the
second copy of the archive log data set (parameter identifier:
MQCACF_SYSP_ARCHIVE_UNIT2).

The maximum length of the string is MQ_ARCHIVE_UNIT_LENGTH.

ArchiveWTOR (MQCFIN)
Specifies whether a message is to be sent to the operator and a reply is

166 WebSphere MQ: Programmable Command Formats and Administration Interface



received before attempting to mount an archive log data set (parameter
identifier: MQIACF_SYSP_ARCHIVE_WTOR).

The value can be:

MQSYSP_YES
A message is to be sent and a reply received before an attempt to
mount an archive log data set.

MQSYSP_NO
A message is not to be sent and a reply received before an attempt to
mount an archive log data set.

BlockSize (MQCFIN)
Block size of the archive log data set (parameter identifier:
MQIACF_SYSP_BLOCK_SIZE).

Catalog (MQCFIN)
Specifies whether archive log data sets are cataloged in the primary integrated
catalog facility (parameter identifier: MQIACF_SYSP_CATALOG).

The value can be:

MQSYSP_YES
Archive log data sets are cataloged.

MQSYSP_NO
Archive log data sets are not cataloged.

Compact (MQCFIN)
Specifies whether data written to archive logs is to be compacted (parameter
identifier: MQIACF_SYSP_COMPACT).

The value can be:

MQSYSP_YES
Data is to be compacted.

MQSYSP_NO
Data is not to be compacted.

Protect (MQCFIN)
Protection by external security manager (ESM) (parameter identifier:
MQIACF_SYSP_PROTECT).

Specifies whether archive log data sets are protected by ESM profiles when the
data sets are created.

The value can be:

MQSYSP_YES
Data set profiles are created when logs are off-loaded.

MQSYSP_NO
Profiles are not created.

QuiesceInterval (MQCFIN)
Maximum time allowed for the quiesce (parameter identifier:
MQIACF_SYSP_QUIESCE_INTERVAL).

Specifies the maximum time, in seconds, allowed for the quiesce.

RoutingCode (MQCFIL)
z/OS routing code list (parameter identifier:
MQIACF_SYSP_ROUTING_CODE).

Chapter 3. Definitions of the Programmable Command Formats 167



Specifies the list of z/OS routing codes for messages about the archive log data
sets to the operator. There can be between 1 and 14 entries in the list.

TimeStampFormat (MQCFIN)
Time stamp included (parameter identifier: MQIACF_SYSP_TIMESTAMP).

Specifies whether the archive log data set name has a time stamp in it.

The value can be:

MQSYSP_YES
Names include a time stamp.

MQSYSP_NO
Names do not include a time stamp.

MQSYSP_EXTENDED
Names include a time stamp.

Response data - tape unit status information
DataSetName (MQCFST)

Data set name (parameter identifier: MQCACF_DATA_SET_NAME).

Specifies the data set name on the tape volume that is being processed, or was
last processed.

The maximum length of the string is MQ_DATA_SET_NAME_LENGTH.

LogCorrelId (MQCFST)
Correlation identifier (parameter identifier:
MQCACF_SYSP_LOG_CORREL_ID).

Specifies the correlation ID associated with the user of the tape being
processed. This is blank if there is no current user.

The maximum length of the string is MQ_LOG_CORREL_ID_LENGTH.

UnitAddress (MQCFIN)
Tape unit address: MQIACF_SYSP_UNIT_ADDRESS).

Specifies the physical address of the tape unit allocated to read the archive log.

UnitStatus (MQCFIN)
Status if the tape unit: MQIACF_SYSP_UNIT_STATUS).

The value can be:

MQSYSP_STATUS_BUSY
The tape unit is busy, actively processing an archive log data set.

MQSYSP_STATUS_PREMOUNT
The tape unit is active and allocated for premounting.

MQSYSP_STATUS_AVAILABLE
The tape unit is available, inactive and waiting for work.

MQSYSP_STATUS_UNKNOWN
The tape unit status us unknown.

UnitVolser (MQCFST)
The volume serial number of the tape that is mounted (parameter identifier:
MQCACF_SYSP_UNIT_VOLSER).

The maximum length of the string is MQ_VOLSER_LENGTH.

168 WebSphere MQ: Programmable Command Formats and Administration Interface



Inquire Authentication Information Object

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Inquire authentication information object (MQCMD_INQUIRE_AUTH_INFO)
command inquires about the attributes of authentication information objects.

Required parameters :
AuthInfoName

Optional parameters:
AuthInfoAttrs, CommandScope, IntegerFilterCommand, QSGDisposition,
StringFilterCommand

Required parameters (Inquire Authentication Information
Object)

AuthInfoName (MQCFST)
Authentication information object name (parameter identifier:
MQCA_AUTH_INFO_NAME).

Specifies the name of the authentication information object about which
information is to be returned.

Generic authentication information object names are supported. A generic
name is a character string followed by an asterisk (*), for example ABC*, and it
selects all authentication information objects having names that start with the
selected character string. An asterisk on its own matches all possible names.

The maximum length of the string is MQ_AUTH_INFO_NAME_LENGTH.

Optional parameters (Inquire Authentication Information
Object)

AuthInfoAttrs (MQCFIL)
Authentication information object attributes (parameter identifier:
MQIACF_AUTH_INFO_ATTRS).

The attribute list can specify the following on its own (this is the default value
if the parameter is not specified) :

MQIACF_ALL
All attributes.

or a combination of the following :

MQCA_ALTERATION_DATE
Date on which the definition was last altered.

MQCA_ALTERATION_TIME
Time at which the definition was last altered.

MQCA_AUTH_INFO_NAME
Name of the authentication information object.

MQIA_AUTH_INFO_TYPE
Type of authentication information object.

Chapter 3. Definitions of the Programmable Command Formats 169



MQCA_AUTH_INFO_CONN_NAME
Connection name of the authentication information object.

MQCA_LDAP_USER_NAME
LDAP user name in the authentication information object.

MQCA_LDAP_PASSWORD
LDAP password in the authentication information object.

MQCA_AUTH_INFO_DESC
Description of the authentication information object.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

You cannot use CommandScope as a parameter to filter on.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter of those allowed in AuthInfoAttrs, except
MQIACF_ALL. Use this to restrict the output from the command by specifying
a filter condition. See “MQCFIF - PCF integer filter parameter” on page 487 for
information about using this filter condition.

If you specify an integer filter, you cannot also specify a string filter using the
StringFilterCommand parameter.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object for which information is to be returned
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_LIVE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. This
is the default value if the parameter is not specified.

MQQSGD_ALL
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY.

If there is a shared queue manager environment, and the command is
being executed on the queue manager where it was issued, this option
also displays information for objects defined with MQQSGD_GROUP.

If MQQSGD_LIVE is specified or defaulted, or if MQQSGD_ALL is
specified in a shared queue manager environment, the command might
give duplicated names (with different dispositions).

170 WebSphere MQ: Programmable Command Formats and Administration Interface



MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP. This is permitted only in a
shared queue environment.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_PRIVATE
The object is defined as either MQQSGD_Q_MGR or MQQSGD_COPY.
Note that MQQSGD_PRIVATE returns the same information as
MQQSGD_LIVE.

You cannot use QSGDisposition as a parameter to filter on.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter of those allowed in AuthInfoAttrs, except
MQCA_AUTH_INFO_NAME. Use this to restrict the output from the
command by specifying a filter condition. See “MQCFSF - PCF string filter
parameter” on page 494 for information about using this filter condition.

If you specify a string filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

Inquire Authentication Information Object (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The response of the Inquire authentication information
(MQCMD_INQUIRE_AUTH_INFO) command consists of the response header
followed by the AuthInfoName structure (and on z/OS only, the QSGDisposition
structure), and the requested combination of attribute parameter structures (where
applicable).

Always returned:
AuthInfoName, QSGDisposition

Returned if requested:
AlterationDate, AlterationTime, AuthInfoConnName, AuthInfoDesc,
AuthInfoType, LDAPPassword, LDAPUserName

Response data
AlterationDate (MQCFST)

Alteration date of the authentication information object, in the form yyyy-mm-dd
(parameter identifier: MQCA_ALTERATION_DATE).

AlterationTime (MQCFST)
Alteration time of the authentication information object, in the form hh.mm.ss
(parameter identifier: MQCA_ALTERATION_TIME).

AuthInfoConnName (MQCFST)
The connection name of the authentication information object (parameter
identifier: MQCA_AUTH_INFO_CONN_NAME).

Chapter 3. Definitions of the Programmable Command Formats 171



The maximum length of the string is
MQ_AUTH_INFO_CONN_NAME_LENGTH. On z/OS, it is
MQ_LOCAL_ADDRESS_LENGTH.

AuthInfoDesc (MQCFST)
The description of the authentication information object (parameter identifier:
MQCA_AUTH_INFO_DESC).

The maximum length is MQ_AUTH_INFO_DESC_LENGTH.

AuthInfoName (MQCFST)
authentication information object name (parameter identifier:
MQCA_AUTH_INFO_NAME).

The maximum length of the string is MQ_AUTH_INFO_NAME_LENGTH.

AuthInfoType (MQCFIN)
The type of authentication information object (parameter identifier:
MQIA_AUTH_INFO_TYPE).

The value can be:

MQAIT_CRL_LDAP
This defines this authentication information object as specifying
Certificate Revocation Lists that are held on the LDAP. See the
WebSphere MQ Security book for more information.

LDAPPassword (MQCFST)
The LDAP password (parameter identifier: MQCA_LDAP_PASSWORD).

The maximum length is MQ_LDAP_PASSWORD_LENGTH.

LDAPUserName (MQCFST)
The LDAP user name (parameter identifier: MQCA_LDAP_USER_NAME).

The Distinguished Name of the user who is binding to the directory.

The maximum length is MQ_DISTINGUISHED_NAME_LENGTH. On z/OS, it
is MQ_SHORT_DNAME_LENGTH.

QSGDisposition (MQCFIN)
QSG disposition (parameter identifier: MQIA_QSG_DISP).

Specifies the disposition of the object (that is, where it is defined and how it
behaves). This parameter is valid on z/OS only. The value can be:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

Inquire Authentication Information Object Names

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

172 WebSphere MQ: Programmable Command Formats and Administration Interface



The Inquire authentication information names
(MQCMD_INQUIRE_AUTH_INFO_NAMES) command asks for a list of
authentication information names that match the generic authentication
information name specified.

Required parameters:
AuthInfoName

Optional parameters:
CommandScope, QSGDisposition

Required parameters (Inquire Authentication Information
Object Names)

AuthInfoName (MQCFST)
Authentication information object name (parameter identifier:
MQCA_AUTH_INFO_NAME).

Specifies the name of the authentication information object about which
information is to be returned.

Generic authentication information object names are supported. A generic
name is a character string followed by an asterisk (*), for example ABC*, and it
selects all authentication information objects having names that start with the
selected character string. An asterisk on its own matches all possible names.

The maximum length of the string is MQ_AUTH_INFO_NAME_LENGTH.

Optional parameters (Inquire Authentication Information
Object Names)

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object for which information is to be returned
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_LIVE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. This
is the default value if the parameter is not specified.

Chapter 3. Definitions of the Programmable Command Formats 173



MQQSGD_ALL
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY.

If there is a shared queue manager environment, and the command is
being executed on the queue manager where it was issued, this option
also displays information for objects defined with MQQSGD_GROUP.

If MQQSGD_LIVE is specified or defaulted, or if MQQSGD_ALL is
specified in a shared queue manager environment, the command might
give duplicated names (with different dispositions).

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP. This is permitted only in a
shared queue environment.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_PRIVATE
The object is defined as either MQQSGD_Q_MGR or MQQSGD_COPY.
Note that MQQSGD_PRIVATE returns the same information as
MQQSGD_LIVE.

Inquire Authentication Information Object Names (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The response to the inquire authentication information names
(MQCMD_INQUIRE_AUTH_INFO_NAMES) command consists of the response
header followed by a parameter structure giving zero or more names that match
the specified authentication information name.

In addition to this, on z/OS only, a parameter structure, QSGDispositions, (with
the same number of entries as the AuthInfoNames structure) is returned. Each entry
in this structure indicates the disposition of the object with the corresponding entry
in the AuthInfoNames structure.

Always returned:
AuthInfoNames, QSGDispositions

Returned if requested:
None

Response data
AuthInfoNames (MQCFSL)

List of authentication information object names (parameter identifier:
MQCACF_AUTH_INFO_NAMES).

QSGDispositions (MQCFIL)
List of QSG dispositions (parameter identifier: MQIACF_QSG_DISPS).

Specifies the disposition of the object (that is, where it is defined and how it
behaves). This parameter is valid on z/OS only. The value can be:

174 WebSphere MQ: Programmable Command Formats and Administration Interface



MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

Inquire Authority Records

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The Inquire Authority Records (MQCMD_INQUIRE_AUTH_RECS) command
retrieves authority records associated with a profile name.

Required parameters:
Options, ProfileName, ObjectType

Optional parameters:
EntityName, EntityType, ProfileAttrs, ServiceComponent

Required parameters (Inquire Authority Records)
Options (MQCFIN)

Options to control the set of authority records that is returned (parameter
identifier: MQIACF_AUTH_OPTIONS).

This parameter is required and you should include one of the following two
values:

MQAUTHOPT_NAME_ALL_MATCHING
Return all profiles the names of which match the specified
ProfileName. This means that a ProfileName of ABCD results in the
profiles ABCD, ABC*, and AB* being returned (if ABC* and AB* have
been defined as profiles).

MQAUTHOPT_NAME_EXPLICIT
Return only those profiles the names of which exactly match the
ProfileName. No matching generic profiles are returned unless the
ProfileName is, itself, a generic profile. You cannot specify this and
MQAUTHOPT_ENTITY_SET.

and one of the following two values:

MQAUTHOPT_ENTITY_EXPLICIT
Return all profiles the entity fields of which match the specified
EntityName. No profiles are returned for any group in which
EntityName is a member; only the profile defined for the specified
EntityName.

MQAUTHOPT_ENTITY_SET
Return the profile the entity field of which matches the specified
EntityName and the profiles pertaining to any groups in which
EntityName is a member that contribute to the cumulative authority for
the specified entity. . You cannot specify this and
MQAUTHOPT_NAME_EXPLICIT.

Chapter 3. Definitions of the Programmable Command Formats 175



You can also optionally specify:

MQAUTHOPT_NAME_AS_WILDCARD
Interpret ProfileName as a filter on the profile name of the authority
records. If you do not specify this attribute and ProfileName contains
wildcard characters, it is interpreted as a generic profile and only those
authority records where the generic profile names match the value of
ProfileName are returned.

You cannot specify MQAUTHOPT_NAME_AS_WILDCARD if you also
specify MQAUTHOPT_ENTITY_SET.

ProfileName (MQCFST)
Profile name (parameter identifier: MQCACF_AUTH_PROFILE_NAME).

This is the name of the profile for which to retrieve authorizations. Generic
profile names are supported. A generic name is a character string followed by
an asterisk (*), for example ABC*, and it selects all profiles having names that
start with the selected character string. An asterisk on its own matches all
possible names.

If you have defined a generic profile, you can return information about it by
not setting MQAUTHOPT_NAME_AS_WILDCARD in Options.

If you set Options to MQAUTHOPT_NAME_AS_WILDCARD, the only valid
value for ProfileName is a single asterisk (*). This means that all authority
records that satisfy the values specified in the other parameters are returned.

Do not specify ProfileName if the value of ObjectType is MQOT_Q_MGR.

The profile name is always returned regardless of the attributes requested.

The maximum length of the string is MQ_AUTH_PROFILE_NAME_LENGTH.

ObjectType (MQCFIN)
The type of object referred to by the profile (parameter identifier:
MQIACF_OBJECT_TYPE).

The value can be:

MQOT_ALL
All object types. This is the default if you do not specify a value for
ObjectType.

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel object.

MQOT_CLNTCONN_CHANNEL
Client-connection channel object.

MQOT_LISTENER
Listener object.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process.

MQOT_Q
Queue, or queues, that match the object name parameter.

176 WebSphere MQ: Programmable Command Formats and Administration Interface



MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service object.

MQOT_TOPIC
Topic object.

Optional parameters (Inquire Authority Records)
EntityName (MQCFST)

Entity name (parameter identifier: MQCACF_ENTITY_NAME).

Depending on the value of EntityType, this is either:
v A principal name. This is the name of a user for whom to retrieve

authorizations to the specified object. On WebSphere MQ for Windows, the
name of the principal can optionally include a domain name, specified in
this format: user@domain.

v A group name. This is the name of the user group for which to retrieve
authorizations. You can specify one name only and this must be the name of
an existing user group. On WebSphere MQ for Windows, you can only use
local groups.

The maximum length of the string is MQ_ENTITY_NAME_LENGTH.

EntityType (MQCFIN)
Entity type (parameter identifier: MQIACF_ENTITY_TYPE).

The value can be:

MQZAET_GROUP
The value of the EntityName parameter refers to a group name.

MQZAET_PRINCIPAL
The value of the EntityName parameter refers to a principal name.

ProfileAttrs (MQCFIL)
Profile attributes (parameter identifier: MQIACF_AUTH_PROFILE_ATTRS).

The attribute list might specify the following on its own (this is the default
value if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCACF_ENTITY_NAME
Entity name.

MQIACF_AUTHORIZATION_LIST
Authorization list.

MQIACF_ENTITY_TYPE
Entity type.

ServiceComponent (MQCFST)
Service component (parameter identifier: MQCACF_SERVICE_COMPONENT).

If installable authorization services are supported, this specifies the name of
the authorization service from which to retrieve authorization.

If you omit this parameter, the authorization inquiry is made to the first
installable component for the service.

Chapter 3. Definitions of the Programmable Command Formats 177

|
|



The maximum length of the string is MQ_SERVICE_COMPONENT_LENGTH.

Error codes (Inquire Authority Records)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRC_OBJECT_TYPE_ERROR
Invalid object type.

MQRC_UNKNOWN_ENTITY
Userid not authorized, or unknown.

MQRCCF_CFST_CONFLICTING_PARM
Conflicting parameters.

MQRCCF_PROFILE_NAME_ERROR
Invalid profile name.

Inquire Authority Records (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

One PCF message is returned for each authority record that is found the profile
name of which matches the options specified in the Inquire Authority Records
request. Each response to the Inquire Authority Records
(MQCMD_INQUIRE_AUTH_RECS) command consists of the response header
followed by the QMgrName, Options, ProfileName, and ObjectType structures and the
requested combination of attribute parameter structures.

Always returned:
ObjectType, Options, ProfileName, QMgrName

Returned if requested:
AuthorizationList, EntityName, EntityType

Response data
AuthorizationList (MQCFIL)

Authorization list (parameter identifier: MQIACF_AUTHORIZATION_LIST).

This list can contain zero or more authorization values. Each returned
authorization value means that any user ID in the specified group or principal
has the authority to perform the operation defined by that value. The value
can be:

MQAUTH_NONE
The entity has authority set to ’none’.

MQAUTH_ALT_USER_AUTHORITY
Specify an alternate user ID on an MQI call.

178 WebSphere MQ: Programmable Command Formats and Administration Interface



MQAUTH_BROWSE
Retrieve a message from a queue by issuing an MQGET call with the
BROWSE option.

MQAUTH_CHANGE
Change the attributes of the specified object, using the appropriate
command set.

MQAUTH_CLEAR
Clear a queue.

MQAUTH_CONNECT
Connect the application to the specified queue manager by issuing an
MQCONN call.

MQAUTH_CREATE
Create objects of the specified type using the appropriate command set.

MQAUTH_DELETE
Delete the specified object using the appropriate command set.

MQAUTH_DISPLAY
Display the attributes of the specified object using the appropriate
command set.

MQAUTH_INPUT
Retrieve a message from a queue by issuing an MQGET call.

MQAUTH_INQUIRE
Make an inquiry on a specific queue by issuing an MQINQ call.

MQAUTH_OUTPUT
Put a message on a specific queue by issuing an MQPUT call.

MQAUTH_PASS_ALL_CONTEXT
Pass all context.

MQAUTH_PASS_IDENTITY_CONTEXT
Pass the identity context.

MQAUTH_SET
Set attributes on a queue from the MQI by issuing an MQSET call.

MQAUTH_SET_ALL_CONTEXT
Set all context on a queue.

MQAUTH_SET_IDENTITY_CONTEXT
Set the identity context on a queue.

MQAUTH_SUBSCRIBE
Subscribe to the specified topic.

MQAUTH_RESUME
Resume a subscription to the specified topic.

MQAUTH_PUBLISH
Publish to the specified topic.

Use the Count field in the MQCFIL structure to determine how many values
are returned.

EntityName (MQCFST)
Entity name (parameter identifier: MQCACF_ENTITY_NAME).

This can either be a principal name or a group name.

Chapter 3. Definitions of the Programmable Command Formats 179

|
|

|
|

|
|



The maximum length of the string is MQ_ENTITY_NAME_LENGTH.

EntityType (MQCFIN)
Entity type (parameter identifier: MQIACF_ENTITY_TYPE).

The value can be:

MQZAET_GROUP
The value of the EntityName parameter refers to a group name.

MQZAET_PRINCIPAL
The value of the EntityName parameter refers to a principal name.

MQZAET_UNKNOWN
On Windows, an authority record still exists from a previous queue
manager which did not originally contain entity type information.

ObjectType (MQCFIN)
Object type (parameter identifier: MQIACF_OBJECT_TYPE).

The value can be:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel object.

MQOT_CLNTCONN_CHANNEL
Client-connection channel object.

MQOT_LISTENER
Listener object.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process.

MQOT_Q
Queue, or queues, that match the object name parameter.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service object.

MQOT_TOPIC
Topic object.

Options (MQCFIN)
Options used to indicate the level of information that is returned (parameter
identifier: MQIACF_AUTH_OPTIONS).

ProfileName (MQCFST)
Profile name (parameter identifier: MQCACF_AUTH_PROFILE_NAME).

The maximum length of the string is MQ_AUTH_PROFILE_NAME_LENGTH.

QMgrName (MQCFST)
Name of the queue manager on which the Inquire command is issued
(parameter identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

180 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|



Inquire Authority Service

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The Inquire Authority Service (MQCMD_INQUIRE_AUTH_SERVICE) command
retrieves information about the level of function supported by installed authority
managers.

Required parameters:
AuthServiceAttrs

Optional parameters:
ServiceComponent

Required parameters (Inquire Authority Service)
AuthServiceAttrs (MQCFIL)

Authority service attributes (parameter identifier:
MQIACF_AUTH_SERVICE_ATTRS).

The attribute list might specify the following on its own (this is the default
value if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQIACF_INTERFACE_VERSION
Current interface version of the authority service.

MQIACF_USER_ID_SUPPORT
Whether the authority service supports user IDs.

Optional parameters (Inquire Authority Service)
ServiceComponent (MQCFST)

Name of authorization service (parameter identifier:
MQCACF_SERVICE_COMPONENT).

The name of the authorization service which is to handle the Inquire Authority
Service command.

If this parameter is omitted, or specified as a blank or null string, the inquire
function is called in each installed authorization service in reverse order to the
order in which the services have been installed, until all authorization services
have been called or until one returns a value of MQZCI_STOP in the
Continuation field.

The maximum length of the string is MQ_SERVICE_COMPONENT_LENGTH.

Error codes (Inquire Authority Service)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Chapter 3. Definitions of the Programmable Command Formats 181



Reason (MQLONG)
The value can be:

MQRC_SELECTOR_ERROR
Attribute selector not valid.

MQRC_UNKNOWN_COMPONENT_NAME
Unknown service component name.

Inquire Authority Service (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The response to the Inquire Authority Service
(MQCMD_INQUIRE_AUTH_SERVICE) command consists of the response header
followed by the ServiceComponent structure and the requested combination of
attribute parameter structures.

Always returned:
ServiceComponent

Returned if requested:
InterfaceVersion, UserIDSupport

Response data
InterfaceVersion (MQCFIN)

Interface version (parameter identifier: MQIACF_INTERFACE_VERSION).

This is the current interface version of the OAM.

ServiceComponent (MQCFSL)
Name of authorization service (parameter identifier:
MQCACF_SERVICE_COMPONENT).

If you included a specific value for ServiceComponent on the Inquire Authority
Service command, this field contains the name of the authorization service that
handled the command. If you did not include a specific value for
ServiceComponent on the Inquire Authority Service command, the list contains
the names of all the installed authorization services.

The maximum length of each element in the list is
MQ_SERVICE_COMPONENT_LENGTH.

UserIDSupport (MQCFIN)
User ID support (parameter identifier: MQIACF_USER_ID_SUPPORT).

The value can be:

MQUIDSUPP_YES
The authority service supports user IDs.

MQUIDSUPP_NO
The authority service does not support user IDs.

182 WebSphere MQ: Programmable Command Formats and Administration Interface



Inquire CF Structure

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Inquire CF Structure (MQCMD_INQUIRE_CF_STRUC) command returns
information about the attributes of one or more CF application structures.

Note: This command is supported only on z/OS when the queue manager is a
member of a queue-sharing group.

Required parameters:
CFStrucName

Optional parameters:
CFStrucAttrs, IntegerFilterCommand, StringFilterCommand

Required parameters (Inquire CF Structure)
CFStrucName (MQCFST)

CF Structure name (parameter identifier: MQCA_CF_STRUC_NAME).

Specifies the name of the CF application structure about which information is
to be returned.

Generic CF structure names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all CF application
structures having names that start with the selected character string. An
asterisk on its own matches all possible names.

The maximum length is MQ_CF_STRUC_NAME_LENGTH.

Optional parameters (Inquire CF Structure)
CFStrucAttrs (MQCFIL)

CF application structure attributes (parameter identifier:
MQIACF_CF_STRUC_ATTRS).

The attribute list might specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCA_ALTERATION_DATE
The date on which the definition was last altered.

MQCA_ALTERATION_TIME
The time at which the definition was last altered.

MQCA_CF_STRUC_DESC
Description of CF application structure.

MQCA_CF_STRUC_NAME
Name of CF application structure.

MQIA_CF_LEVEL
Functional capability level for the CF application structure.

Chapter 3. Definitions of the Programmable Command Formats 183



MQIA_CF_RECOVER
Whether CF recovery for the application structure is supported.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter of those allowed in CFStrucAttrs except MQIACF_ALL.
Use this to restrict the output from the command by specifying a filter
condition. See “MQCFIF - PCF integer filter parameter” on page 487 for
information about using this filter condition.

If you specify an integer filter, you cannot also specify a string filter using the
StringFilterCommand parameter.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter of those allowed in CFStrucAttrs except
MQCA_CF_STRUC_NAME. Use this to restrict the output from the command
by specifying a filter condition. See “MQCFSF - PCF string filter parameter” on
page 494 for information about using this filter condition.

If you specify a string filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

Inquire CF Structure (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The response to the Inquire CF Structure (MQCMD_INQUIRE_CF_STRUC)
command consists of the response header followed by the CFStrucName structure
and the requested combination of attribute parameter structures. If a generic CF
application structure name was specified, one such message is generated for each
CF application structure found.

Always returned:
CFStrucName

Returned if requested:
AlterationDate, AlterationTime, CFLevel, CFStrucDesc, Recovery

Response data
AlterationDate (MQCFST)

Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date on which the definition was last altered, in the form yyyy-mm-dd.

The maximum length of the string is MQ_DATE_LENGTH.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time at which the definition was last altered, in the form hh.mm.ss.

The maximum length of the string is MQ_TIME_LENGTH.

CFLevel (MQCFIN)
The functional capability level for this CF application structure (parameter
identifier: MQIA_CF_LEVEL).

184 WebSphere MQ: Programmable Command Formats and Administration Interface



Specifies the functional capability level for the CF application structure. The
value can be:

1 A CF structure that can be ″auto-created″ by a queue manager at
command level 520.

2 A CF structure at command level 520 that can only be created or
deleted by a queue manager at command level 530 or greater. This is
the default CFLevel for queue managers at command level 530 or
greater.

3

A CF structure at command level 530. This CFLevel is required if you
want to use persistent messages on shared queues, or for message
grouping, or both.

4

A CF structure at command level 600. This CFLevel can be used for
persistent messages or for messages longer than 64 512 bytes.

CFStrucDesc (MQCFST)
The description of the CF structure (parameter identifier:
MQCA_CF_STRUC_DESC).

The maximum length is MQ_CF_STRUC_DESC_LENGTH.

CFStrucName (MQCFST)
CF Structure name (parameter identifier: MQCA_CF_STRUC_NAME).

The maximum length is MQ_CF_STRUC_NAME_LENGTH.

Recovery (MQCFIN)
Recovery (parameter identifier: MQIA_CF_RECOVER).

Specifies whether CF recovery is supported for the application structure. The
value can be:

MQCFR_YES
Recovery is supported.

MQCFR_NO
Recovery is not supported.

Inquire CF Structure Names

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Inquire CF Structure Names (MQCMD_INQUIRE_CF_STRUC_NAMES)
command inquires for a list of CF application structure names that match the
generic CF structure name specified.

Note: This command is supported only on z/OS when the queue manager is a
member of a queue-sharing group.

Required parameters:
CFStrucName

Chapter 3. Definitions of the Programmable Command Formats 185

|



Optional parameters:
None

Required parameters (Inquire CF Structure Names)
CFStrucName (MQCFST)

CF Structure name (parameter identifier: MQCA_CF_STRUC_NAME).

Specifies the name of the CF application structure about which information is
to be returned.

Generic CF structure names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all CF application
structures having names that start with the selected character string. An
asterisk on its own matches all possible names.

The maximum length is MQ_CF_STRUC_NAME_LENGTH.

Inquire CF Structure Names (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The response to the Inquire CF Structure Names
(MQCMD_INQUIRE_CF_STRUC_NAMES) command consists of the response
header followed by a single parameter structure giving zero or more names that
match the specified CF application structure name.

Always returned:
CFStrucNames

Returned if requested:
None

Response data
CFStrucNames (MQCFSL)

List of CF application structure names (parameter identifier:
MQCACF_CF_STRUC_NAMES).

Inquire CF Structure Status

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Inquire CF Structure Status (MQCMD_INQUIRE_CF_STRUC_STATUS)
command inquires about the status of a CF application structure.

Note: This command is supported only on z/OS when the queue manager is a
member of a queue-sharing group.

Required parameters:
CFStrucName

186 WebSphere MQ: Programmable Command Formats and Administration Interface



Optional parameters:
CFStatusType, IntegerFilterCommand, StringFilterCommand

Required parameters (Inquire CF Structure Status)
CFStrucName (MQCFST)

CF Structure name (parameter identifier: MQCA_CF_STRUC_NAME).

Specifies the name of the CF application structure for which status information
is to be returned.

Generic CF structure names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all CF application
structures having names that start with the selected character string. An
asterisk on its own matches all possible names.

The maximum length is MQ_CF_STRUC_NAME_LENGTH.

Optional parameters (Inquire CF Structure Status)
CFStatusType (MQCFIN)

Status information type (parameter identifier: MQIACF_CF_STATUS_TYPE).

Specifies the type of status information you want to be returned. You can
specify one of the following:

MQIACF_CF_STATUS_SUMMARY
Summary status information for the CF application structure. This is
the default.

MQIACF_CF_STATUS_CONNECT
Connection status information for each CF application structure for
each active queue manager.

MQIACF_CF_STATUS_BACKUP
Backup status information for each CF application structure.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter of those possible in the response data except
MQIACF_CF_STATUS_TYPE. Use this to restrict the output from the command
by specifying a filter condition. See “MQCFIF - PCF integer filter parameter”
on page 487 for information about using this filter condition.

If you specify an integer filter, you cannot also specify a string filter using the
StringFilterCommand parameter.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter of those possible in the response data except
MQCA_CF_STRUC_NAME. Use this to restrict the output from the command
by specifying a filter condition. See “MQCFSF - PCF string filter parameter” on
page 494 for information about using this filter condition.

If you specify a string filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

Chapter 3. Definitions of the Programmable Command Formats 187



Inquire CF Structure Status (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The response to the Inquire CF Structure Status
(MQCMD_INQUIRE_CF_STRUC_STATUS) command consists of the response
header followed by the CFStrucName and CFStatusType structures and a set of
attribute parameter structures determined by the value of CFStatusType in the
Inquire command.

Always returned:
CFStrucName, CFStatusType.

CFStatusType specifies the type of status information being returned. The
value can be:

MQIACF_CF_STATUS_SUMMARY
Summary status information for the CF application structure. This
is the default.

MQIACF_CF_STATUS_CONNECT
Connection status information for each CF application structure for
each active queue manager.

MQIACF_CF_STATUS_BACKUP
Backup status information for each CF application structure.

Returned if CFStatusType is MQIACF_CF_STATUS_SUMMARY:
CFStrucStatus, CFStrucType, EntriesMax, EntriesUsed, FailDate, FailTime,
SizeMax, SizeUsed

Returned if CFStatusType is MQIACF_CF_STATUS_CONNECT:
CFStrucStatus, FailDate, FailTime, QMgrName, SysName

Returned if CFStatusType is MQIACF_CF_STATUS_BACKUP:
BackupDate, BackupEndRBA, BackupSize, BackupStartRBA, BackupTime,
CFStrucStatus, FailDate, FailTime, LogQMgrNames, QmgrName

Response data
BackupDate (MQCFST)

The date, in the form yyyy-mm-dd, on which the last successful backup was
taken for this CF application structure (parameter identifier:
MQCACF_BACKUP_DATE).

The maximum length of the string is MQ_DATE_LENGTH.

BackupEndRBA (MQCFST)
The backup dataset end RBA for the end of the last successful backup taken
for this CF application structure (parameter identifier:
MQCACF_CF_STRUC_BACKUP_END).

The maximum length of the string is MQ_RBA_LENGTH.

BackupSize (MQCFIN)
The size, in megabytes, of the last successful backup taken for this CF
application structure (parameter identifier:
MQIACF_CF_STRUC_BACKUP_SIZE).

188 WebSphere MQ: Programmable Command Formats and Administration Interface



BackupStartRBA (MQCFST)
The backup dataset start RBA for the start of the last successful backup taken
for this CF application structure (parameter identifier:
MQCACF_CF_STRUC_BACKUP_START).

The maximum length of the string is MQ_RBA_LENGTH.

BackupTime (MQCFST)
The end time, in the form hh.mm.ss, of the last successful backup taken for this
CF application structure (parameter identifier: MQCACF_BACKUP_TIME).

The maximum length of the string is MQ_TIME_LENGTH.

CFStatusType (MQCFIN)
Status information type (parameter identifier: MQIACF_CF_STATUS_TYPE).

Specifies the type of status information being returned. The value can be:

MQIACF_CF_STATUS_SUMMARY
Summary status information for the CF application structure. This is
the default.

MQIACF_CF_STATUS_CONNECT
Connection status information for each CF application structure for
each active queue manager.

MQIACF_CF_STATUS_BACKUP
Backup status information for each CF application structure.

CFStrucName (MQCFST)
CF Structure name (parameter identifier: MQCA_CF_STRUC_NAME).

The maximum length is MQ_CF_STRUC_NAME_LENGTH.

CFStrucStatus (MQCFIN)
CF Structure status (parameter identifier: MQIACF_CF_STRUC_STATUS).

The status of the CF application structure. If CFStatusType is
MQIACF_CF_STATUS_SUMMARY, the value can be:

MQCFSTATUS_ACTIVE
The structure is active.

MQCFSTATUS_FAILED
The structure has failed.

MQCFSTATUS_NOT_FOUND
The structure is not allocated in the CF, but has been defined to DB2.

MQCFSTATUS_IN_BACKUP
The structure is in the process of being backed up.

MQCFSTATUS_IN_RECOVER
The structure is in the process of being recovered.

MQCFSTATUS_UNKNOWN
The status of the CF structure is unknown because, for example, DB2
may be unavailable.

If CFStatusType is MQIACF_CF_STATUS_CONNECT, the value can be:

MQCFSTATUS_ACTIVE
The structure is connected to this queue manager.

MQCFSTATUS_FAILED
The queue manager connection to this structure has failed.

Chapter 3. Definitions of the Programmable Command Formats 189



MQCFSTATUS_NONE
The structure has never been connected to this queue manager.

If CFStatusType is MQIACF_CF_STATUS_BACKUP, the value can be:

MQCFSTATUS_ACTIVE
The structure is active.

MQCFSTATUS_FAILED
The structure has failed.

MQCFSTATUS_NONE
The structure has never been backed up.

MQCFSTATUS_IN_BACKUP
The structure is in the process of being backed up.

MQCFSTATUS_IN_RECOVER
The structure is in the process of being recovered.

CFStrucType (MQCFIN)
CF Structure type (parameter identifier: MQIACF_CF_STRUC_TYPE).

The value can be:

MQCFTYPE_ADMIN
This is the CF administration structure.

MQCFTYPE_APPL
This is a CF application structure.

EntriesMax (MQCFIN)
Number of CF list entries defined for this CF application structure (parameter
identifier: MQIACF_CF_STRUC_ENTRIES_MAX).

EntriesUsed (MQCFIN)
Number of CF list entries defined for this CF application structure that are in
use (parameter identifier: MQIACF_CF_STRUC_ENTRIES_USED).

FailDate (MQCFST)
The date, in the form yyyy-mm-dd, on which this CF application structure
failed (parameter identifier: MQCACF_FAIL_DATE).

If CFStatusType is MQIACF_CF_STATUS_CONNECT, this is the date on which
the queue manager lost connectivity to this application structure. For the other
values of CFStatusType, this is the date on which this CF application structure
failed. This parameter is only applicable when CFStrucStatus is
MQCFSTATUS_FAILED or MQCFSTATUS_IN_RECOVER.

The maximum length of the string is MQ_DATE_LENGTH.

FailTime (MQCFST)
The time, in the form hh.mm.ss, that this CF application structure failed
(parameter identifier: MQCACF_FAIL_TIME).

If CFStatusType is MQIACF_CF_STATUS_CONNECT, this is the time that the
queue manager lost connectivity to this application structure. For the other
values of CFStatusType, this is the time that this CF application structure
failed. This parameter is only applicable when CFStrucStatus is
MQCFSTATUS_FAILED or MQCFSTATUS_IN_RECOVER.

The maximum length of the string is MQ_TIME_LENGTH.

190 WebSphere MQ: Programmable Command Formats and Administration Interface



LogQMgrNames (MQCFSL)
A list of queue managers, the logs of which are required to perform a recovery
(parameter identifier: MQCACF_CF_STRUC_LOG_Q_MGRS).

The maximum length of each name is MQ_Q_MGR_NAME_LENGTH.

QMgrName (MQCFST)
Queue manager name (parameter identifier: MQCA_Q_MGR_NAME).

This is the name of the queue manager. If CFStatusType is
MQIACF_CF_STATUS_BACKUP, this is the name of the queue manager that
took the last successful backup.

The maximum length is MQ_Q_MGR_NAME_LENGTH.

SizeMax (MQCFIN)
Size of the CF application structure (parameter identifier:
MQIACF_CF_STRUC_SIZE_MAX).

This is the size, in kilobytes, of the CF application structure.

SizeUsed (MQCFIN)
Percentage of the CF application structure that is in use (parameter identifier:
MQIACF_CF_STRUC_SIZE_USED).

This is the percentage of the size of the CF application structure that is in use.

SysName (MQCFST)
Queue manager name (parameter identifier: MQCACF_SYSTEM_NAME).

This is the name of the z/OS image of the queue manager that last connected
to the CF application structure.

The maximum length is MQ_SYSTEM_NAME_LENGTH.

Inquire Channel

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Inquire Channel (MQCMD_INQUIRE_CHANNEL) command inquires about
the attributes of WebSphere MQ channel definitions.

Required parameters:
ChannelName

Optional parameters:
ChannelAttrs, ChannelType, CommandScope, DefaultChannelDisposition,
IntegerFilterCommand, QSGDisposition, StringFilterCommand

Required parameters (Inquire Channel)
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

Generic channel names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all channels
having names that start with the selected character string. An asterisk on its
own matches all possible names.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 191

|



Optional parameters (Inquire Channel)
This lists the optional parameters for the Inquire Channel command.

ChannelAttrs (MQCFIL)
Channel attributes (parameter identifier: MQIACF_CHANNEL_ATTRS).

The attribute list can specify the following on its own (this is the default value
used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the parameters in the following table:

Parameter Sender Server Receiver Request
er

Client
conn

Server
conn

Cluster
sender

Cluster
receiver

MQCA_ALTERATION_DATE

Date on which the definition was last
altered

X X X X X X X X

MQCA_ALTERATION_TIME

Time at which the definition was last
altered

X X X X X X X X

MQCA_CLUSTER_NAME

Name of local queue manager
X X

MQCA_CLUSTER_NAMELIST

Name of local queue manager
X X

MQCA_Q_MGR_NAME

Name of local queue manager
X

MQCACH_CHANNEL_NAME

Channel name. You cannot use this
attribute as a filter keyword.

X X X X X X X X

MQCACH_CONNECTION_NAME

Connection name
X X X X X X

MQCACH_DESC

Description
X X X X X X X X

MQCACH_LOCAL_ADDRESS

Local communications address for the
channel

X X X X X X

MQCACH_MCA_NAME

Message channel agent name
X X X X

MQCACH_MCA_USER_ID

MCA user identifier
X X X X X X X

MQCACH_MODE_NAME

Mode name
X X X X X X

192 WebSphere MQ: Programmable Command Formats and Administration Interface



Parameter Sender Server Receiver Request
er

Client
conn

Server
conn

Cluster
sender

Cluster
receiver

MQCACH_MR_EXIT_NAME

Message-retry exit name
X X X

MQCACH_MR_EXIT_USER_DATA

Message-retry exit name
X X X

MQCACH_MSG_EXIT_NAME

Message exit name
X X X X X X

MQCACH_MSG_EXIT_USER_

DATA

Message exit user data

X X X X X X

MQCACH_PASSWORD

Password
X X X X X

MQCACH_RCV_EXIT_NAME

Receive exit name
X X X X X X X X

MQCACH_RCV_EXIT_USER_DATA

Receive exit user data
X X X X X X X X

MQCACH_SEC_EXIT_NAME

Security exit name
X X X X X X X X

MQCACH_SEC_EXIT_USER_

DATA

Security exit user data

X X X X X X X X

MQCACH_SEND_EXIT_NAME

Send exit name
X X X X X X X X

MQCACH_SEND_EXIT_USER_
DATA

Send exit user data

X X X X X X X X

MQCACH_SSL_CIPHER_SPEC

SSL cipher spec
X X X X X X X X

MQIACH_SSL_CLIENT_AUTH

SSL client authentication
X X X X X X

MQCACH_SSL_PEER_NAME

SSL peer name
X X X X X X X X

MQCACH_TP_NAME

Transaction program name
X X X X X X X

MQCACH_USER_ID

User identifier
X X X X X

Chapter 3. Definitions of the Programmable Command Formats 193

|



Parameter Sender Server Receiver Request
er

Client
conn

Server
conn

Cluster
sender

Cluster
receiver

MQCACH_XMIT_Q_NAME

Transmission queue name
X X

MQIA_MONITORING_CHANNEL

Online monitoring data collection
X X X X X X X

MQIA_PROPERTY_CONTROL

Property control attribute
X X X X

MQIA_STATISTICS_CHANNEL

Online statistics collection
X X X X X X

MQIACH_BATCH_HB

Value to use for batch heartbeating X
X X X

MQIACH_BATCH_INTERVAL

Batch wait interval (seconds)
X X X X

MQIACH_BATCH_SIZE

Batch size
X X X X X X

MQIACH_CHANNEL_TYPE

Channel type
X X X X X X X X

MQIACH_CLIENT_CHANNEL_
WEIGHT

Client Channel Weight

X

MQIACH_CLWL_CHANNEL_
PRIORITY

Cluster workload channel priority

X X

MQIACH_CLWL_CHANNEL_
RANK

Cluster workload channel rank

X X

MQIACH_CLWL_CHANNEL_
WEIGHT

Cluster workload channel weight

X X

MQIACH_CONNECTION_
AFFINITY

Connection Affinity

X

MQIACH_DATA_CONVERSION

Whether sender should convert
application data X

X X X

MQIACH_DISC_INTERVAL

Disconnection interval
X X X X X

MQIACH_HB_INTERVAL

Heartbeat interval (seconds)
X X X X X X X X

194 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|



Parameter Sender Server Receiver Request
er

Client
conn

Server
conn

Cluster
sender

Cluster
receiver

MQIACH_HDR_COMPRESSION

List of header data compression
techniques supported by the channel

X X X X X X X X

MQIACH_KEEP_ALIVE_INTERVAL

KeepAlive interval
X X X X X X X X

MQIACH_LONG_RETRY

Long retry count
X X X X

MQIACH_LONG_TIMER

Long timer
X X X X

MQIACH_MAX_INSTANCES

Maximum number of simultaneous
instances of a server-connection
channel that can be started.

X

MQIACH_MAX_INSTS_PER_
CLIENT

Maximum number of simultaneous
instances of a server-connection
channel that can be started from a
single client.

X

MQIACH_MAX_MSG_LENGTH

Maximum message length
X X X X X X X X

MQIACH_MCA_TYPE

MCA type
X X X X X

MQIACH_MR_COUNT

Message retry count
X X X

MQIACH_MSG_COMPRESSION

List of message data compression
techniques supported by the channel

X X X X X X X X

MQIACH_MR_INTERVAL

Message retry interval (milliseconds)
X X X

MQIACH_NPM_SPEED

Speed of nonpersistent messages
X X X X X X

MQIACH_PUT_AUTHORITY

Put authority
X X X X

MQIACH_SEQUENCE_NUMBER_
WRAP

Sequence number wrap

X X X X X X

Chapter 3. Definitions of the Programmable Command Formats 195

|

|
|
|

||||||||

|
|

|
|
|
|

||||||||



Parameter Sender Server Receiver Request
er

Client
conn

Server
conn

Cluster
sender

Cluster
receiver

MQIACH_SHARING_
CONVERSATIONS

Value of Sharing Conversations

X

MQIACH_SHORT_RETRY

Short retry count
X X X X

MQIACH_SHORT_TIMER

Short timer
X X X X

MQIACH_XMIT_PROTOCOL_TYPE

Transport (transmission protocol) type
X X X X X X X X

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

If this parameter is present, eligible channels are limited to those of the
specified type. Any attribute selector specified in the ChannelAttrs list which is
only valid for channels of a different type or types is ignored; no error is
raised.

If this parameter is not present (or if MQCHT_ALL is specified), channels of all
types are eligible. Each attribute specified must be a valid channel attribute
selector (that is, it must be one of those in the following list), but it might not
be applicable to all (or any) of the channels actually returned. Channel
attribute selectors that are valid but not applicable to the channel are ignored,
no error messages occur, and no attribute is returned.

The value can be:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLNTCONN
Client connection.

MQCHT_CLUSRCVR
Cluster-receiver.

MQCHT_CLUSSDR
Cluster-sender.

MQCHT_ALL
All types.

The default value if this parameter is not specified is MQCHT_ALL.

196 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|

||

||||

||



Note: If this parameter is present, it must occur immediately after the
ChannelName parameter on platforms other than z/OS. Failure to do this can
result in a MQRCCF_MSG_LENGTH_ERROR error message.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

You cannot use CommandScope as a parameter to filter on.

DefaultChannelDisposition (MQCFIN)
Default channel disposition (parameter identifier: MQIACH_CHANNEL_DISP).

This parameter is not allowed for client-connection (CLNTCONN) channels.

This parameter applies to z/OS only.

Specifies the disposition of the channels for which information is to be
returned. If this parameter is not present (or if MQCHLD_ALL is specified),
channels of all channel dispositions are eligible. The value can be:

MQCHLD_ALL
Returns requested information for all eligible channels.

MQCHLD_PRIVATE
Returns requested information for PRIVATE channels.

MQCHLD_SHARED
Returns requested information for channels whose channel disposition
is defined as either MQCHLD_SHARED or MQCHLD_FIXSHARED.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in ChannelAttrs except MQIACF_ALL. Use
this to restrict the output from the command by specifying a filter condition.
See “MQCFIF - PCF integer filter parameter” on page 487 for information
about using this filter condition.

If you specify an integer filter for channel type, you cannot also specify the
ChannelType parameter.

If you specify an integer filter, you cannot also specify a string filter using the
StringFilterCommand parameter.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Chapter 3. Definitions of the Programmable Command Formats 197

|
|

|

|

|
|
|

|
|

|
|

|
|
|



Specifies the disposition of the object for which information is to be returned
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_LIVE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. This
is the default value if the parameter is not specified.

MQQSGD_ALL
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY.

If there is a shared queue manager environment, and the command is
being executed on the queue manager where it was issued, this option
also displays information for objects defined with MQQSGD_GROUP.

If MQQSGD_LIVE is specified or defaulted, or if MQQSGD_ALL is
specified in a shared queue manager environment, the command might
give duplicated names (with different dispositions).

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP. This is permitted only in a
shared queue environment.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_PRIVATE
The object is defined as either MQQSGD_Q_MGR or MQQSGD_COPY.
Note that MQQSGD_PRIVATE returns the same information as
MQQSGD_LIVE.

You cannot use QSGDisposition as a parameter to filter on.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter allowed in ChannelAttrs except MQCACH_CHANNEL_NAME
and MQCACH_MCA_NAME. Use this to restrict the output from the
command by specifying a filter condition. See “MQCFSF - PCF string filter
parameter” on page 494 for information about using this filter condition.

If you specify a string filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

Error codes (Inquire Channel)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

198 WebSphere MQ: Programmable Command Formats and Administration Interface



Inquire Channel (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The response to the Inquire Channel (MQCMD_INQUIRE_CHANNEL) command
consists of the response header followed by the ChannelName and ChannelType
structures (and on z/OS only, the QSGDisposition structure), and the requested
combination of attribute parameter structures (where applicable). If a generic
channel name was specified, one such message is generated for each channel
found.

Always returned:
ChannelName, ChannelType, DefaultChannelDisposition, QSGDisposition

Returned if requested:
AlterationDate, AlterationTime, BatchHeartbeat, BatchInterval,
BatchSize, ChannelDesc, ChannelMonitoring, ChannelStatistics,
ClientChannelWeight, ClusterName, ClusterNamelist, CLWLChannelPriority,
CLWLChannelRank, CLWLChannelWeight, ConnectionAffinity, ConnectionName,
DataConversion, DiscInterval, HeaderCompression, HeartbeatInterval,
KeepAliveInterval, LocalAddress, LongRetryCount, LongRetryInterval,
MaxMsgLength, MCAName, MCAType, MCAUserIdentifier, MessageCompression,
ModeName, MsgExit, MsgRetryCount, MsgRetryExit, MsgRetryInterval,
MsgRetryUserData, MsgUserData, NetworkPriority, NonPersistentMsgSpeed,
Password, PropertyControl, PutAuthority, QMgrName, ReceiveExit,
ReceiveUserData, SecurityExit, SecurityUserData, SendExit, SendUserData,
SeqNumberWrap, SharingConversations, ShortRetryCount,
ShortRetryInterval, SSLCipherSpec, SSLClientAuth, SSLPeerName, TpName,
TransportType, UserIdentifier, XmitQName

Response data

Response data for the Inquire Channel command.

AlterationDate (MQCFST)
Alteration date, in the form yyyy-mm-dd (parameter identifier:
MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time, in the form hh.mm.ss (parameter identifier:
MQCA_ALTERATION_TIME).

The time when the information was last altered.

BatchHeartbeat (MQCFIN)
The value being used for the batch heartbeating (parameter identifier:
MQIACH_BATCH_HB).

The value can be between 0 and 999 999. A value of 0 indicates that
heartbeating is not in use.

BatchInterval (MQCFIN)
Batch interval (parameter identifier: MQIACH_BATCH_INTERVAL).

Chapter 3. Definitions of the Programmable Command Formats 199

|
|

|

|

|



BatchSize (MQCFIN)
Batch size (parameter identifier: MQIACH_BATCH_SIZE).

ChannelDesc (MQCFST)
Channel description (parameter identifier: MQCACH_DESC).

The maximum length of the string is MQ_CHANNEL_DESC_LENGTH.

ChannelMonitoring (MQCFIN)
Online monitoring data collection (parameter identifier:
MQIA_MONITORING_CHANNEL).

The value can be:

MQMON_OFF
Online monitoring data collection is turned off for this channel.

MQMON_Q_MGR
The value of the queue manager’s ChannelMonitoring parameter is
inherited by the channel.

MQMON_LOW
Online monitoring data collection is turned on, with a low rate of data
collection, for this channel unless the queue manager’s
ChannelMonitoring parameter is MQMON_NONE.

MQMON_MEDIUM
Online monitoring data collection is turned on, with a moderate rate of
data collection, for this channel unless the queue manager’s
ChannelMonitoring parameter is MQMON_NONE.

MQMON_HIGH
Online monitoring data collection is turned on, with a high rate of data
collection, for this channel unless the queue manager’s
ChannelMonitoring parameter is MQMON_NONE.

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

ChannelStatistics (MQCFIN)
Statistics data collection (parameter identifier: MQIA_STATISTICS_CHANNEL).

The value can be:

MQMON_OFF
Statistics data collection is turned off for this channel.

MQMON_Q_MGR
The value of the queue manager’s ChannelStatistics parameter is
inherited by the channel.

MQMON_LOW
Statistics data collection is turned on, with a low rate of data collection,
for this channel unless the queue manager’s ChannelStatistics
parameter is MQMON_NONE.

MQMON_MEDIUM
Statistics data collection is turned on, with a moderate rate of data
collection, for this channel unless the queue manager’s
ChannelStatistics parameter is MQMON_NONE.

MQMON_HIGH
Statistics data collection is turned on, with a high rate of data

200 WebSphere MQ: Programmable Command Formats and Administration Interface



collection, for this channel unless the queue manager’s
ChannelStatistics parameter is MQMON_NONE.

This is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and Windows.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

The value can be:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLNTCONN
Client connection.

MQCHT_CLUSRCVR
Cluster-receiver.

MQCHT_CLUSSDR
Cluster-sender.

ClientChannelWeight (MQCFIN)
Client Channel Weight (parameter identifier:
MQIACH_CLIENT_CHANNEL_WEIGHT).

The client channel weighting attribute is used so client channel definitions can
be selected at random, with the larger weightings having a higher probability
of selection, when more than one suitable definition is available.

The value can be between 0 – 99. The default is 0.

This parameter is only valid for channels with a ChannelType of
MQCHT_CLNTCONN

ClusterName (MQCFST)
Cluster name (parameter identifier: MQCA_CLUSTER_NAME).

ClusterNamelist (MQCFSL)
Cluster namelist (parameter identifier: MQCA_CLUSTER_NAMELIST).

CLWLChannelPriority (MQCFIN)
Channel priority (parameter identifier:
MQIACH_CLWL_CHANNEL_PRIORITY).

CLWLChannelRank (MQCFIN)
Channel rank (parameter identifier: MQIACH_CLWL_CHANNEL_RANK).

CLWLChannelWeight (MQCFIN)
Channel weighting (parameter identifier:
MQIACH_CLWL_CHANNEL_WEIGHT).

ConnectionAffinity (MQCFIN)
Channel Affinity (parameter identifier: MQIACH_CONNECTION_AFFINITY)

Chapter 3. Definitions of the Programmable Command Formats 201

|
|
|

|
|
|

|

|
|

|
|



The channel affinity attribute specifies whether client applications that connect
multiple times using the same queue manager name, use the same client
channel. The value can be:

MQCAFTY_PREFERRED
The first connection in a process reading a CCDT creates a list of
applicable definitions based on the weighting with any zero
ClientChannelWeight definitions first in alphabetical order. Each
connection in the process attempts to connect using the first definition
in the list. If a connection is unsuccessful the next definition is used.
Unsuccessful nonzero ClientChannelWeight definitions are moved to
the end of the list. Zero ClientChannelWeight definitions remain at the
start of the list and are selected first for each connection. For C, C++
and .NET (including fully managed .NET) clients the list is updated if
the CCDT has been modified since the list was created. Each client
process with the same hostname creates the same list.

This is the default value.

MQCAFTY_NONE
The first connection in a process reading a CCDT creates a list of
applicable definitions. All connections in a process independently select
an applicable definition based on the weighting with any applicable
zero ClientChannelWeight definitions selected first in alphabetical
order. For C, C++ and .NET (including fully managed .NET) clients the
list is updated if the CCDT has been modified since the list was
created.

This parameter is only valid for channels with a ChannelType of
MQCHT_CLNTCONN.

ConnectionName (MQCFST)
Connection name (parameter identifier: MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH. On z/OS,
it is MQ_LOCAL_ADDRESS_LENGTH.

DataConversion (MQCFIN)
Whether sender should convert application data (parameter identifier:
MQIACH_DATA_CONVERSION).

The value can be:

MQCDC_NO_SENDER_CONVERSION
No conversion by sender.

MQCDC_SENDER_CONVERSION
Conversion by sender.

DefaultChannelDisposition (MQCFIN)
Default channel disposition (parameter identifier: MQIACH_CHANNEL_DISP).

This parameter applies to z/OS only.

Specifies the intended disposition of the channel when active. The value can
be:

MQCHLD_PRIVATE
The intended use of the object is as a private channel.

MQCHLD_FIXSHARED
The intended use of the object is as a shared channel linked to a
specific queue manager.

202 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|

|
|

|

|
|

|
|

|
|
|



MQCHLD_SHARED
The intended use of the object is as a shared channel.

DiscInterval (MQCFIN)
Disconnection interval (parameter identifier: MQIACH_DISC_INTERVAL).

HeaderCompression (MQCFIL)
Header data compression techniques supported by the channel (parameter
identifier: MQIACH_HDR_COMPRESSION). For sender, server, cluster-sender,
cluster-receiver, and client-connection channels, the values specified are in
order of preference.

The value can be one, or more, of

MQCOMPRESS_NONE
No header data compression is performed.

MQCOMPRESS_SYSTEM
Header data compression is performed.

HeartbeatInterval (MQCFIN)
Heartbeat interval (parameter identifier: MQIACH_HB_INTERVAL).

KeepAliveInterval (MQCFIN)
KeepAlive interval (parameter identifier: MQIACH_KEEP_ALIVE_INTERVAL).

LocalAddress (MQCFST)
Local communications address for the channel (parameter identifier:
MQCACH_LOCAL_ADDRESS).

The maximum length of the string is MQ_LOCAL_ADDRESS_LENGTH.

LongRetryCount (MQCFIN)
Long retry count (parameter identifier: MQIACH_LONG_RETRY).

LongRetryInterval (MQCFIN)
Long timer (parameter identifier: MQIACH_LONG_TIMER).

MaxInstances (MQCFIN)
Maximum number of simultaneous instances of a server-connection channel
(parameter identifier: MQIACH_MAX_INSTANCES).

This is returned only for server-connection channels in response to an Inquire
Channel call with ChannelAttrs including MQIACF_ALL or
MQIACH_MAX_INSTANCES.

MaxInstancesPerClient (MQCFIN)
Maximum number of simultaneous instances of a server-connection channel
that can be started from a single client (parameter identifier:
MQIACH_MAX_INSTS_PER_CLIENT).

This is returned only for server-connection channels in response to an Inquire
Channel call with ChannelAttrs including MQIACF_ALL or
MQIACH_MAX_INSTS_PER_CLIENT.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIACH_MAX_MSG_LENGTH).

MCAName (MQCFST)
Message channel agent name (parameter identifier: MQCACH_MCA_NAME).

The maximum length of the string is MQ_MCA_NAME_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 203

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|



MCAType (MQCFIN)
Message channel agent type (parameter identifier: MQIACH_MCA_TYPE).

The value can be:

MQMCAT_PROCESS
Process.

MQMCAT_THREAD
Thread (Windows only).

MCAUserIdentifier (MQCFST)
Message channel agent user identifier (parameter identifier:
MQCACH_MCA_USER_ID).

The maximum length of the MCA user identifier depends on the environment
in which the MCA is running. MQ_MCA_USER_ID_LENGTH gives the
maximum length for the environment for which your application is running.
MQ_MAX_MCA_USER_ID_LENGTH gives the maximum for all supported
environments.

On Windows, the user identifier might be qualified with the domain name in
the following format:

user@domain

MessageCompression (MQCFIL)
Message data compression techniques supported by the channel (parameter
identifier: MQIACH_MSG_COMPRESSION). For sender, server, cluster-sender,
cluster-receiver, and client-connection channels, the values specified are in
order of preference.

The value can be one, or more, of:

MQCOMPRESS_NONE
No message data compression is performed.

MQCOMPRESS_RLE
Message data compression is performed using run-length encoding.

MQCOMPRESS_ZLIBFAST
Message data compression is performed using ZLIB encoding with
speed prioritized.

MQCOMPRESS_ZLIBHIGH
Message data compression is performed using ZLIB encoding with
compression prioritized.

MQCOMPRESS_ANY
Any compression technique supported by the queue manager can be
used. This is only valid for receiver, requester, and server-connection
channels.

ModeName (MQCFST)
Mode name (parameter identifier: MQCACH_MODE_NAME).

The maximum length of the string is MQ_MODE_NAME_LENGTH.

MsgExit (MQCFST)
Message exit name (parameter identifier: MQCACH_MSG_EXIT_NAME).

The maximum length of the exit name depends on the environment in which
the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum length for

204 WebSphere MQ: Programmable Command Formats and Administration Interface



the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

In the following environments, if more than one message exit has been defined
for the channel, the list of names is returned in an MQCFSL structure instead
of an MQCFST structure: AIX, HP-UX, i5/OS, Solaris, Linux, and Windows. An
MQCFSL structure is always used on z/OS.

MsgRetryCount (MQCFIN)
Message retry count (parameter identifier: MQIACH_MR_COUNT).

MsgRetryExit (MQCFST)
Message retry exit name (parameter identifier: MQCACH_MR_EXIT_NAME).

The maximum length of the exit name depends on the environment in which
the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum length for
the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

MsgRetryInterval (MQCFIN)
Message retry interval (parameter identifier: MQIACH_MR_INTERVAL).

MsgRetryUserData (MQCFST)
Message retry exit user data (parameter identifier:
MQCACH_MR_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

MsgUserData (MQCFST)
Message exit user data (parameter identifier:
MQCACH_MSG_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, if more than one message exit user data string
has been defined for the channel, the list of strings is returned in an MQCFSL
structure instead of an MQCFST structure: AIX, HP-UX i5/OS, Solaris, Linux,
and Windows. An MQCFSL structure is always used on z/OS.

NetworkPriority (MQCFIN)
Network priority (parameter identifier: MQIACH_NETWORK_PRIORITY).

NonPersistentMsgSpeed (MQCFIN)
Speed at which non-persistent messages are to be sent (parameter identifier:
MQIACH_NPM_SPEED).

The value can be:

MQNPMS_NORMAL
Normal speed.

MQNPMS_FAST
Fast speed.

Password (MQCFST)
Password (parameter identifier: MQCACH_PASSWORD).

If a nonblank password is defined, it is returned as asterisks. Otherwise, it is
returned as blanks.

The maximum length of the string is MQ_PASSWORD_LENGTH. However,
only the first 10 characters are used.

Chapter 3. Definitions of the Programmable Command Formats 205



PropertyControl (MQCFIN)
Property control attribute (parameter identifier
MQIA_PROPERTY_CONTROL).

Specifies what happens to properties of messages when the message is about
to be sent to a V6 or prior queue manager (a queue manager that does not
understand the concept of a property descriptor). The value can be:

MQPROP_COMPATIBILITY

Message properties Result

The message contains a property with a prefix of mcd.,
jms., usr. or mqext.

All optional message properties (where the Support
value is MQPD_SUPPORT_OPTIONAL), except those in
the message descriptor or extension, are placed in one or
more MQRFH2 headers in the message data before the
message it sent to the remote queue manager.

The message does not contain a property with a prefix of
mcd., jms., usr. or mqext.

All message properties, except those in the message
descriptor or extension, are removed from the message
before the message is sent to the remote queue manager.

The message contains a property where the Support field
of the property descriptor is not set to
MQPD_SUPPORT_OPTIONAL

The message is rejected with reason
MQRC_UNSUPPORTED_PROPERTY and treated in
accordance with its report options.

The message contains one or more properties where the
Support field of the property descriptor is set to
MQPD_SUPPORT_OPTIONAL but other fields of the
property descriptor are set to non-default values

The properties with non-default values are removed from
the message before the message is sent to the remote
queue manager.

The MQRFH2 folder that would contain the message
property needs to be assigned with the
content=’properties’ attribute

The properties are removed to prevent MQRFH2 headers
with unsupported syntax flowing to a V6 or prior queue
manager.

MQPROP_NONE
All properties of the message, except those in the message descriptor
or extension, are removed from the message before the message is sent
to the remote queue manager.

If the message contains a property where the Support field of the
property descriptor is not set to MQPD_SUPPORT_OPTIONAL then
the message is rejected with reason
MQRC_UNSUPPORTED_PROPERTY and treated in accordance with
its report options.

MQPROP_ALL
All properties of the message are included with the message when it is
sent to the remote queue manager. The properties, except those in the
message descriptor (or extension), are placed in one or more MQRFH2
headers in the message data.

This attribute is applicable to Sender, Server, Cluster Sender and Cluster
Receiver channels.

PutAuthority (MQCFIN)
Put authority (parameter identifier: MQIACH_PUT_AUTHORITY).

The value can be:

MQPA_DEFAULT
Default user identifier is used.

MQPA_CONTEXT
Context user identifier is used.

206 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|
|

|

|||

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|



QMgrName (MQCFST)
Queue manager name (parameter identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QSGDisposition (MQCFIN)
QSG disposition (parameter identifier: MQIA_QSG_DISP).

Specifies the disposition of the object (that is, where it is defined and how it
behaves). This parameter is valid only on z/OS. The value can be:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

ReceiveExit (MQCFST)
Receive exit name (parameter identifier: MQCACH_RCV_EXIT_NAME).

The maximum length of the exit name depends on the environment in which
the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum length for
the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

In the following environments, if more than one receive exit has been defined
for the channel, the list of names is returned in an MQCFSL structure instead
of an MQCFST structure: AIX, HP-UX, i5/OS, Solaris, Linux, and Windows. An
MQCFSL structure is always used on z/OS.

ReceiveUserData (MQCFST)
Receive exit user data (parameter identifier:
MQCACH_RCV_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, if more than one receive exit user data string
has been defined for the channel, the list of strings is returned in an MQCFSL
structure instead of an MQCFST structure: AIX, HP-UX, i5/OS, Solaris, Linux,
and Windows. An MQCFSL structure is always used on z/OS.

SecurityExit (MQCFST)
Security exit name (parameter identifier: MQCACH_SEC_EXIT_NAME).

The maximum length of the exit name depends on the environment in which
the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum length for
the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

SecurityUserData (MQCFST)
Security exit user data (parameter identifier:
MQCACH_SEC_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

SendExit (MQCFST)
Send exit name (parameter identifier: MQCACH_SEND_EXIT_NAME).

The maximum length of the exit name depends on the environment in which
the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum length for

Chapter 3. Definitions of the Programmable Command Formats 207



the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

In the following environments, if more than one send exit has been defined for
the channel, the list of names is returned in an MQCFSL structure instead of an
MQCFST structure: AIX, HP-UX, i5/OS, Solaris, Linux, and Windows. An
MQCFSL structure is always used on z/OS.

SendUserData (MQCFST)
Send exit user data (parameter identifier:
MQCACH_SEND_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, if more than one send exit user data string has
been defined for the channel, the list of strings is returned in an MQCFSL
structure instead of an MQCFST structure: AIX, HP-UX, i5/OS, Solaris, Linux,
and Windows. An MQCFSL structure is always used on z/OS.

SeqNumberWrap (MQCFIN)
Sequence wrap number (parameter identifier:
MQIACH_SEQUENCE_NUMBER_WRAP).

SharingConversations (MQCFIN)
Number of sharing conversations (parameter identifier:
MQIACH_SHARING_CONVERSATIONS).

This is returned only for TCP/IP client-connection and server-connection
channels.

ShortRetryCount (MQCFIN)
Short retry count (parameter identifier: MQIACH_SHORT_RETRY).

ShortRetryInterval (MQCFIN)
Short timer (parameter identifier: MQIACH_SHORT_TIMER).

SSLCipherSpec (MQCFST)
CipherSpec (parameter identifier: MQCACH_SSL_CIPHER_SPEC).

The length of the string is MQ_SSL_CIPHER_SPEC_LENGTH.

SSLClientAuth (MQCFIN)
Client authentication (parameter identifier: MQIACH_SSL_CLIENT_AUTH).

The value can be

MQSCA_REQUIRED
Client authentication required

MQSCA_OPTIONAL
Client authentication is optional.

Defines whether WebSphere MQ requires a certificate from the SSL client.

SSLPeerName (MQCFST)
Peer name (parameter identifier: MQCACH_SSL_PEER_NAME).

The length of the string is MQ_SSL_PEER_NAME_LENGTH. On z/OS, it is
MQ_SSL_SHORT_PEER_NAME_LENGTH.

Specifies the filter to use to compare with the Distinguished Name of the
certificate from the peer queue manager or client at the other end of the
channel. (A Distinguished Name is the identifier of the SSL certificate.) If the

208 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|

|
|

|
|

|
|

|

|
|

|

|
|

|
|

|

|
|

|
|

|
|
|



Distinguished Name in the certificate received from the peer does not match
the SSLPEER filter, the channel does not start.

TpName (MQCFST)
Transaction program name (parameter identifier: MQCACH_TP_NAME).

The maximum length of the string is MQ_TP_NAME_LENGTH.

TransportType (MQCFIN)
Transmission protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

The value might be:

MQXPT_LU62
LU 6.2.

MQXPT_TCP
TCP.

MQXPT_NETBIOS
NetBIOS.

MQXPT_SPX
SPX.

MQXPT_DECNET
DECnet.

UserIdentifier (MQCFST)
Task user identifier (parameter identifier: MQCACH_USER_ID).

The maximum length of the string is MQ_USER_ID_LENGTH. However, only
the first 10 characters are used.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Inquire Channel Initiator

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Inquire Channel Initiator (MQCMD_INQUIRE_CHANNEL_INIT) command
returns information about the channel initiator.

Required parameters:
None

Optional parameters:
CommandScope

Optional parameters (Inquire Channel Initiator)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:

Chapter 3. Definitions of the Programmable Command Formats 209

|
|

|
|

|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|
|
||
|
|||

||||||
|

|
|

|
|

|
|

|

|
|

|
|



v blank (or omit the parameter altogether). The command is executed on the
queue manager on which it was entered.

v a queue manager name. The command is executed on the queue manager
you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

Inquire Channel Initiator (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The response to the Inquire Channel Initiator
(MQCMD_INQUIRE_CHANNEL_INIT) command consists of one response with a
series of attribute parameter structures showing the status of the channel initiator
(shown by the ChannelInitiatorStatus parameter), and one response for each
listener (shown by the ListenerStatus parameter).

Always returned (one message with channel initiator information):
ActiveChannels, ActiveChannelsMax, ActiveChannelsPaused,
ActiveChannelsRetrying, ActiveChannelsStarted, ActiveChannelsStopped,
AdaptersMax, AdaptersStarted, ChannelInitiatorStatus, CurrentChannels,
CurrentChannelsLU62, CurrentChannelsMax, CurrentChannelsTCP,
DispatchersMax, DispatchersStarted, SSLTasksStarted, TCPName

Always returned (one message for each listener ):
InboundDisposition, ListenerStatus, TransportType

Returned if applicable for the listener:
IPAddress, LUName, Port

Response data - channel initiator information
ActiveChannels (MQCFIN)

The number of active channel connections (parameter identifier:
MQIACH_ACTIVE_CHL).

ActiveChannelsMax (MQCFIN)
The requested number of active channel connections (parameter identifier:
MQIACH_ACTIVE_CHL_MAX).

ActiveChannelsPaused (MQCFIN)
The number of active channel connections that have paused, waiting to become
active, because the limit for active channels has been reached (parameter
identifier: MQIACH_ACTIVE_CHL_PAUSED).

ActiveChannelsRetrying (MQCFIN)
The number of active channel connections that are attempting to reconnect
following a temporary error (parameter identifier:
MQIACH_ACTIVE_CHL_RETRY).

210 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|
|
|
|

|
|

|

|
|

|
|
|
||
|
|||

||||||
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|



ActiveChannelsStarted (MQCFIN)
The number of active channel connections that have started (parameter
identifier: MQIACH_ACTIVE_CHL_STARTED).

ActiveChannelsStopped (MQCFIN)
The number of active channel connections that have stopped, requiring manual
intervention (parameter identifier: MQIACH_ACTIVE_CHL_STOPPED).

AdaptersMax (MQCFIN)
The requested number of adapter subtasks (parameter identifier:
MQIACH_ADAPS_MAX).

AdaptersStarted (MQCFIN)
The number of active adapter subtasks (parameter identifier:
MQIACH_ADAPS_STARTED).

ChannelInitiatorStatus (MQCFIN)
Status of the channel initiator (parameter identifier:
MQIACF_CHINIT_STATUS).

The value can be:

MQSVC_STATUS_STOPPED
The channel initiator is not running.

MQSVC_STATUS_RUNNING
The channel initiator is fully initialized and is running.

CurrentChannels (MQCFIN)
The number of current channel connections (parameter identifier:
MQIACH_CURRENT_CHL).

CurrentChannelsLU62 (MQCFIN)
The number of current LU 6.2 channel connections (parameter identifier:
MQIACH_CURRENT_CHL_LU62).

CurrentChannelsMax (MQCFIN)
The requested number of channel connections (parameter identifier:
MQIACH_CURRENT_CHL_MAX).

CurrentChannelsTCP (MQCFIN)
The number of current TCP/IP channel connections (parameter identifier:
MQIACH_CURRENT_CHL_TCP).

DispatchersMax (MQCFIN)
The requested number of dispatchers (parameter identifier:
MQIACH_DISPS_MAX).

DispatchersStarted (MQCFIN)
The number of active dispatchers (parameter identifier:
MQIACH_DISPS_STARTED).

SSLTasksMax (MQCFIN)
The requested number of SSL server subtasks (parameter identifier:
MQIACH_SSLTASKS_MAX).

SSLTasksStarted (MQCFIN)
The number of active SSL server subtasks (parameter identifier:
MQIACH_SSLTASKS_STARTED).

TCPName (MQCFST)
TCP system name (parameter identifier: MQCACH_TCP_NAME).

The maximum length is MQ_TCP_NAME_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 211

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|



Response data - listener information
InboundDisposition (MQCFIN)

Inbound transmission disposition (parameter identifier:
MQIACH_INBOUND_DISP).

Specifies the disposition of the inbound transmissions that the listener handles.
The value can be:

MQINBD_Q_MGR
Handling for transmissions directed to the queue manager. This is the
default.

MQINBD_GROUP
Handling for transmissions directed to the queue-sharing group. This
is permitted only if there is a shared queue manager environment.

IPAddress (MQCFST)
IP address on which the listener listens (parameter identifier:
MQCACH_IP_ADDRESS).

ListenerStatus (MQCFIN)
Listener status (parameter identifier: MQIACH_LISTENER_STATUS).

The value can be:

MQSVC_STATUS_RUNNING
The listener has started.

MQSVC_STATUS_STOPPED
The listener has stopped.

MQSVC_STATUS_RETRYING
The listener is retrying.

LUName (MQCFST)
LU name on which the listener listens (parameter identifier:
MQCACH_LU_NAME).

The maximum length is MQ_LU_NAME_LENGTH.

Port (MQCFIN)
Port number on which the listener listens (parameter identifier:
MQIACH_PORT_NUMBER).

TransportType (MQCFIN)
Transmission protocol type that the listener is using (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

The value can be:

MQXPT_LU62
LU62.

MQXPT_TCP
TCP.

Inquire Channel Listener

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

212 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|

|
|

|
|

|
|

|
|
|

|

|
|
|

|
|
|

|

|
|

|
|

|
|

|
|
|
||
|
|||

||||||
|



The Inquire Channel Listener (MQCMD_INQUIRE_LISTENER) command inquires
about the attributes of existing WebSphere MQ listeners.

Required parameters:
ListenerName

Optional parameters:
IntegerFilterCommand, ListenerAttrs, StringFilterCommand,
TransportType

Required parameters (Inquire Channel Listener)
ListenerName (MQCFST)

Listener name (parameter identifier: MQCACH_LISTENER_NAME).

This is the name of the listener whose attributes are required. Generic listener
names are supported. A generic name is a character string followed by an
asterisk (*), for example ABC*, and it selects all listeners having names that
start with the selected character string. An asterisk on its own matches all
possible names.

The listener name is always returned regardless of the attributes requested.

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

Optional parameters (Inquire Channel Listener)
IntegerFilterCommand (MQCFIF)

Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in ListenerAttrs except MQIACF_ALL. Use
this to restrict the output from the command by specifying a filter condition.
See “MQCFIF - PCF integer filter parameter” on page 487 for information
about using this filter condition.

If you specify an integer filter, you cannot also specify a string filter using the
StringFilterCommand parameter.

ListenerAttrs (MQCFIL)
Listener attributes (parameter identifier: MQIACF_LISTENER_ATTRS).

The attribute list might specify the following on its own (this is the default
value if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCA_ALTERATION_DATE
Date on which the definition was last altered.

MQCA_ALTERATION_TIME
Time at which the definition was last altered.

MQCACH_IP_ADDRESS
IP address for the listener.

MQCACH_LISTENER_DESC
Description of listener definition.

MQCACH_LISTENER_NAME
Name of listener definition.

Chapter 3. Definitions of the Programmable Command Formats 213

|
|

|
|

|
|
|

|

|
|

|
|
|
|
|

|

|

|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|



MQCACH_LOCAL_NAME
NetBIOS local name that the listener uses. This is valid only on
Windows.

MQCACH_TP_NAME
The LU 6.2 transaction program name. This is valid only on Windows.

MQIACH_ADAPTER
Adapter number on which NetBIOS listens. This is valid only on
Windows.

MQIACH_BACKLOG
Number of concurrent connection requests that the listener supports.

MQIACH_COMMAND_COUNT
Number of commands that the listener can use. This is valid only on
Windows.

MQIACH_LISTENER_CONTROL
Specifies when the queue manager should start and stop the listener.

MQIACH_NAME_COUNT
Number of names that the listener can use. This is valid only on
Windows.

MQIACH_PORT
Port number.

MQIACH_SESSION_COUNT
Number of sessions that the listener can use. This is valid only on
Windows.

MQIACH_SOCKET
SPX socket on which to listen. This is valid only on Windows.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter allowed in ListenerAttrs except
MQCACH_LISTENER_NAME. Use this to restrict the output from the
command by specifying a filter condition. See “MQCFSF - PCF string filter
parameter” on page 494 for information about using this filter condition.

If you specify a string filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

TransportType (MQCFIN)
Transport protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

If you specify this parameter, information is returned relating only to those
listeners defined with the specified transport protocol type. If you specify an
attribute in the ListenerAttrs list which is valid only for listeners of a
different transport protocol type, it is ignored and no error is raised. If you
specify this parameter, it must occur immediately after the ListenerName
parameter.

If you do not specify this parameter, or if you specify it with a value of
MQXPT_ALL, information about all listeners is returned. Valid attributes in the
ListenerAttrs list which are not applicable to the listener are ignored, and no
error messages are issued. The value can be:

MQXPT_ALL
All transport types.

214 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|



MQXPT_LU62
SNA LU 6.2. This is valid only on Windows.

MQXPT_NETBIOS
NetBIOS. This is valid only on Windows.

MQXPT_SPX
SPX. This is valid only on Windows.

MQXPT_TCP
Transmission Control Protocol /Internet Protocol (TCP /IP).

Inquire Channel Listener (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The response to the Inquire Channel Listener (MQCMD_INQUIRE_LISTENER)
command consists of the response header followed by the ListenerName structure
and the requested combination of attribute parameter structures. If a generic
listener name was specified, one such message is generated for each listener found.

Always returned:
ListenerName

Returned if requested:
Adapter, AlterationDate, AlterationTime, Backlog, Commands, IPAddress,
ListenerDesc, LocalName, NetbiosNames, Port, Sessions, Socket, StartMode,
TPname, TransportType

Response data
AlterationDate (MQCFST)

Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date, in the form yyyy-mm-dd, on which the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time, in the form hh.mm.ss, at which the information was last altered.

Adapter (MQCFIN)
Adapter number (parameter identifier: MQIACH_ADAPTER).

The adapter number on which NetBIOS listens. This is valid only on Windows.

Backlog (MQCFIN)
Backlog (parameter identifier: MQIACH_BACKLOG).

The number of concurrent connection requests that the listener supports.

Commands (MQCFIN)
Adapter number (parameter identifier: MQIACH_COMMAND_COUNT).

The number of commands that the listener can use. This is valid only on
Windows.

IPAddress (MQCFST)
IP address (parameter identifier: MQCACH_IP_ADDRESS).

Chapter 3. Definitions of the Programmable Command Formats 215

|
|

|
|

|
|

|
|

|
|

|
|
|
||
|
|||

||||||
|

|
|
|
|

|
|

|
|
|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|
|

|
|



IP address for the listener specified in IPv4 dotted decimal, IPv6 hexadecimal
notation, or alphanumeric hostname form.

The maximum length of the string is MQ_CONN_NAME_LENGTH

ListenerDesc (MQCFST)
Description of listener definition (parameter identifier:
MQCACH_LISTENER_DESC).

The maximum length of the string is MQ_LISTENER_DESC_LENGTH.

ListenerName (MQCFST)
Name of listener definition (parameter identifier:
MQCACH_LISTENER_NAME).

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

LocalName (MQCFST)
NetBIOS local name (parameter identifier: MQCACH_LOCAL_NAME).

The NetBIOS local name that the listener uses. This is valid only on Windows.

The maximum length of the string is MQ_CONN_NAME_LENGTH

NetbiosNames (MQCFIN)
NetBIOS names (parameter identifier: MQIACH_NAME_COUNT).

The number of names that the listener supports. This is valid only on
Windows.

Port (MQCFIN)
Port number (parameter identifier: MQIACH_PORT).

The port number for TCP/IP. This is valid only if the value of TransportType is
MQXPT_TCP.

Sessions (MQCFIN)
NetBIOS sessions (parameter identifier: MQIACH_SESSION_COUNT).

The number of sessions that the listener can use. This is valid only on
Windows.

Socket (MQCFIN)
SPX socket number (parameter identifier: MQIACH_SOCKET).

The SPX socket on which to listen. This is valid only if the value of
TransportType is MQXPT_SPX.

StartMode (MQCFIN)
Service mode (parameter identifier: MQIACH_LISTENER_CONTROL).

Specifies how the listener is to be started and stopped. The value can be:

MQSVC_CONTROL_MANUAL
The listener is not to be started automatically or stopped automatically.
It is to be controlled by user command. This is the default value.

MQSVC_CONTROL_Q_MGR
The listener being defined is to be started and stopped at the same
time as the queue manager is started and stopped.

MQSVC_CONTROL_Q_MGR_START
The listener is to be started at the same time as the queue manager is
started, but is not request to stop when the queue manager is stopped.

TPName (MQCFST)
Transaction program name (parameter identifier: MQCACH_TP_NAME).

216 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|

|
|
|

|

|
|
|

|

|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|

|
|
|

|
|
|

|
|



The LU 6.2 transaction program name. This is valid only on Windows.

The maximum length of the string is MQ_TP_NAME_LENGTH

TransportType (MQCFIN)
Transmission protocol (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

The value can be:

MQXPT_TCP
TCP.

MQXPT_LU62
LU 6.2. This is valid only on Windows.

MQXPT_NETBIOS
NetBIOS. This is valid only on Windows.

MQXPT_SPX
SPX. This is valid only on Windows.

Inquire Channel Listener Status

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The Inquire Channel Listener Status (MQCMD_INQUIRE_LISTENER_STATUS)
command inquires about the status of one or more WebSphere MQ listener
instances. You must specify the name of a listener for which you want to receive
status information. You can specify a listener by using either a specific listener
name or a generic listener name. By using a generic listener name, you can display
either:
v Status information for all listener definitions, by using a single asterisk (*), or
v Status information for one or more listeners that match the specified name.

Required parameters:
ListenerName

Optional parameters:
IntegerFilterCommand, ListenerStatusAttrs, StringFilterCommand

Required parameters (Inquire Channel Listener Status)
ListenerName (MQCFST)

Listener name (parameter identifier: MQCACH_LISTENER_NAME).

Generic listener names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all listeners having
names that start with the selected character string. An asterisk on its own
matches all possible names.

The listener name is always returned, regardless of the attributes requested.

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 217

|

|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|
||
|
|||

||||||
|

|
|
|
|
|
|

|

|

|
|

|
|

|

|
|

|
|
|
|

|

|



Optional parameters (Inquire Channel Listener Status)
IntegerFilterCommand (MQCFIF)

Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in ListenerStatusAttrs except MQIACF_ALL.
Use this to restrict the output from the command by specifying a filter
condition. See “MQCFIF - PCF integer filter parameter” on page 487 for
information about using this filter condition.

If you specify an integer filter, you cannot also specify a string filter using the
StringFilterCommand parameter.

ListenerStatusAttrs (MQCFIL)
Listener status attributes (parameter identifier:
MQIACF_LISTENER_STATUS_ATTRS).

The attribute list can specify the following on its own (this is the default value
used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCACH_IP_ADDRESS
Listener’s IP address.

MQCACH_LISTENER_DESC
Description of listener definition.

MQCACH_LISTENER_NAME
Name of listener definition.

MQCACH_LISTENER_START_DATE
The date on which the listener was started.

MQCACH_LISTENER_START_TIME
The time at which the listener was started.

MQCACH_LOCAL_NAME
NetBIOS local name that the listener uses. This is valid only on
Windows.

MQCACH_TP_NAME
LU6.2 transaction program name. This is valid only on Windows.

MQIACF_PROCESS_ID
Operating system process identifier associated with the listener.

MQIACH_ADAPTER
Adapter number on which NetBIOS listens. This is valid only on
Windows.

MQIACH_BACKLOG
Number of concurrent connection requests that the listener supports.

MQIACH_COMMAND_COUNT
Number of commands that the listener can use. This is valid only on
Windows.

MQIACH_LISTENER_CONTROL
How the listener is to be started and stopped.

MQIACH_LISTENER_STATUS
Current status of the listener.

218 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|



MQIACH_NAME_COUNT
Number of names that the listener can use. This is valid only on
Windows.

MQIACH_PORT
Port number for TCP/IP.

MQIACH_SESSION_COUNT
Number of sessions that the listener can use. This is valid only on
Windows.

MQIACH_SOCKET
SPX socket. This is valid only on Windows.

MQIACH_XMIT_PROTOCOL_TYPE
Transport type.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter allowed in ListenerStatusAttrs except
MQCACH_LISTENER_NAME. Use this to restrict the output from the
command by specifying a filter condition. See “MQCFSF - PCF string filter
parameter” on page 494 for information about using this filter condition.

If you specify a string filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

Error codes (Inquire Channel Listener Status)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_LSTR_STATUS_NOT_FOUND
Listener status not found.

Inquire Channel Listener Status (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The response to the Inquire Channel Listener Status
(MQCMD_INQUIRE_LISTENER_STATUS ) command consists of the response
header followed by the ListenerName structure and the requested combination of
attribute parameter structures. If a generic listener name was specified, one such
message is generated for each listener found.

Always returned:
ListenerName

Returned if requested:
Adapter, Backlog, ChannelCount, Commands, IPAddress, ListenerDesc,
LocalName, NetbiosNames, Port, ProcessId, Sessions, Socket, StartDate,
StartMode, StartTime, Status, TPname, TransportType

Chapter 3. Definitions of the Programmable Command Formats 219

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|

|
|

|

|
|
|

|
|

|
|

|
|

|
|
|
||
|
|||

||||||
|

|
|
|
|
|

|
|

|
|
|
|



Response data
Adapter (MQCFIN)

Adapter number (parameter identifier: MQIACH_ADAPTER).

The adapter number on which NetBIOS listens.

Backlog (MQCFIN)
Backlog (parameter identifier: MQIACH_BACKLOG).

The number of concurrent connection requests that the listener supports.

Commands (MQCFIN)
Adapter number (parameter identifier: MQIACH_COMMAND_COUNT).

The number of commands that the listener can use.

IPAddress (MQCFST)
IP address (parameter identifier: MQCACH_IP_ADDRESS).

IP address for the listener specified in IPv4 dotted decimal, IPv6 hexadecimal
notation, or alphanumeric hostname form.

The maximum length of the string is MQ_CONN_NAME_LENGTH

ListenerDesc (MQCFST)
Description of listener definition (parameter identifier:
MQCACH_LISTENER_DESC).

The maximum length of the string is MQ_LISTENER_DESC_LENGTH.

ListenerName (MQCFST)
Name of listener definition (parameter identifier:
MQCACH_LISTENER_NAME).

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

LocalName (MQCFST)
NetBIOS local name (parameter identifier: MQCACH_LOCAL_NAME).

The NetBIOS local name that the listener uses.

The maximum length of the string is MQ_CONN_NAME_LENGTH

NetbiosNames (MQCFIN)
NetBIOS names (parameter identifier: MQIACH_NAME_COUNT).

The number of names that the listener supports.

Port (MQCFIN)
Port number (parameter identifier: MQIACH_PORT).

The port number for TCP/IP.

ProcessId (MQCFIN)
Process identifier (parameter identifier: MQIACF_PROCESS_ID).

The operating system process identifier associated with the listener.

Sessions (MQCFIN)
NetBIOS sessions (parameter identifier: MQIACH_SESSION_COUNT).

The number of sessions that the listener can use.

Socket (MQCFIN)
SPX socket number (parameter identifier: MQIACH_SOCKET).

The SPX socket on which the listener is to listen.

220 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|
|

|

|
|

|

|
|

|

|
|

|
|

|

|
|
|

|

|
|
|

|

|
|

|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|



StartDate (MQCFST)
Start date (parameter identifier: MQCACH_LISTENER_START_DATE).

The date, in the form yyyy-mm-dd, on which the listener was started.

The maximum length of the string is MQ_DATE_LENGTH

StartMode (MQCFIN)
Service mode (parameter identifier: MQIACH_LISTENER_CONTROL).

Specifies how the listener is to be started and stopped. The value can be:

MQSVC_CONTROL_MANUAL
The listener is not to be started automatically or stopped automatically.
It is to be controlled by user command. This is the default value.

MQSVC_CONTROL_Q_MGR
The listener being defined is to be started and stopped at the same
time as the queue manager is started and stopped.

MQSVC_CONTROL_Q_MGR_START
The listener is to be started at the same time as the queue manager is
started, but is not request to stop when the queue manager is stopped.

StartTime (MQCFST)
Start date (parameter identifier: MQCACH_LISTENER_START_TIME).

The time, in the form hh.mm.ss, at which the listener was started.

The maximum length of the string is MQ_TIME_LENGTH

Status (MQCFIN)
Listener status (parameter identifier: MQIACH_LISTENER_STATUS).

The current status of the listener. The value can be:

MQSVC_STATUS_STARTING
The listener is in the process of initializing.

MQSVC_STATUS_RUNNING
The listener is running.

MQSVC_STATUS_STOPPING
The listener is stopping.

TPName (MQCFST)
Transaction program name (parameter identifier: MQCACH_TP_NAME).

The LU 6.2 transaction program name.

The maximum length of the string is MQ_TP_NAME_LENGTH

TransportType (MQCFIN)
Transmission protocol (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

The value can be:

MQXPT_TCP
TCP.

MQXPT_LU62
LU 6.2. This is valid only on Windows.

MQXPT_NETBIOS
NetBIOS. This is valid only on Windows.

Chapter 3. Definitions of the Programmable Command Formats 221

|
|

|

|

|
|

|

|
|
|

|
|
|

|
|
|

|
|

|

|

|
|

|

|
|

|
|

|
|

|
|

|

|

|
|
|

|

|
|

|
|

|
|



MQXPT_SPX
SPX. This is valid only on Windows.

Inquire Channel Names

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Inquire Channel Names (MQCMD_INQUIRE_CHANNEL_NAMES) command
inquires a list of WebSphere MQ channel names that match the generic channel
name, and the optional channel type specified.

Required parameters:
ChannelName

Optional parameters:
ChannelType, CommandScope, QSGDisposition

Required parameters (Inquire Channel Names)
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

Generic channel names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all objects having
names that start with the selected character string. An asterisk on its own
matches all possible names.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

Optional parameters (Inquire Channel Names)
ChannelType (MQCFIN)

Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

If present, this parameter limits the channel names returned to channels of the
specified type.

The value can be:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLNTCONN
Client connection.

MQCHT_CLUSRCVR
Cluster-receiver.

222 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|

|
|
|
||
|
|||

||||||
|

|
|
|

|
|

|
|

|

|
|

|
|
|
|

|

|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|



MQCHT_CLUSSDR
Cluster-sender.

MQCHT_ALL
All types.

The default value if this parameter is not specified is MQCHT_ALL, which
means that channels of all types except MQCHT_CLNTCONN are eligible.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object for which information is to be returned
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_LIVE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. This
is the default value if the parameter is not specified.

MQQSGD_ALL
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY.

If there is a shared queue manager environment, and the command is
being executed on the queue manager where it was issued, this option
also displays information for objects defined with MQQSGD_GROUP.

If MQQSGD_LIVE is specified or defaulted, or if MQQSGD_ALL is
specified in a shared queue manager environment, the command might
give duplicated names (with different dispositions).

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP. This is permitted only in a
shared queue environment.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_PRIVATE
The object is defined with either MQQSGD_Q_MGR or
MQQSGD_COPY. Note that MQQSGD_PRIVATE returns the same
information as MQQSGD_LIVE.

Chapter 3. Definitions of the Programmable Command Formats 223

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|



Error codes (Inquire Channel Names)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

Inquire Channel Names (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The response to the Inquire Channel Names
(MQCMD_INQUIRE_CHANNEL_NAMES) command consists of the response
header followed by a single parameter structure giving zero or more names that
match the specified channel name.

In addition to this, on z/OS only, two parameter structures (each with the same
number of entries as the ChannelNames structure) are returned. Each entry in the
first structure, ChannelTypes, indicates the channel type of the object with the
corresponding entry in the ChannelNames structure. Each entry in the second
structure, QSGDispositions indicates the disposition of the object with the
corresponding entry in the ChannelNames structure.

Always returned:
ChannelNames, ChannelTypes, QSGDispositions

Returned if requested:
None

Response data
ChannelNames (MQCFSL)

List of channel names (parameter identifier: MQCACH_CHANNEL_NAMES).

ChannelTypes (MQCFIL)
List of channel types (parameter identifier: MQIACH_CHANNEL_TYPES).
Possible values for fields in this structure are those permitted for the
ChannelType parameter, except MQCHT_ALL.

QSGDispositions (MQCFIL)
List of QSG dispositions (parameter identifier: MQIACF_QSG_DISPS). This is
valid only on z/OS. The value can be:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP. This is permitted only in a
shared queue environment.

224 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|
|
|

|
|

|
|

|
|

|
|

|
|
|
||
|
|||

||||||
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|

|

|
|

|
|
|
|

|
|
|

|
|

|
|
|



MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

Inquire Channel Status

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Inquire Channel Status (MQCMD_INQUIRE_CHANNEL_STATUS) command
inquires about the status of one or more channel instances.

You must specify the name of the channel for which you want to inquire status
information. This can be a specific channel name or a generic channel name. By
using a generic channel name, you can inquire either:
v Status information for all channels, or
v Status information for one or more channels that match the specified name.

You must also specify whether you want:
v The current status data (of current channels only), or
v The saved status data of all channels, or
v On z/OS only, the short status data of the channel.

Status for all channels that meet the selection criteria is given, whether the
channels were defined manually or automatically.

There are three classes of data available for channel status. These are saved,
current, and short. The status fields available for saved data are a subset of the
fields available for current data and are called common status fields. Note that
although the common data fields are the same, the data values might be different
for saved and current status. The rest of the fields available for current data are
called current-only status fields.
v Saved data consists of the common status fields. This data is reset at the

following times:
– For all channels:

- When the channel enters or leaves STOPPED or RETRY state
– For a sending channel:

- Before requesting confirmation that a batch of messages has been received
- When confirmation has been received

– For a receiving channel:
- Just before confirming that a batch of messages has been received

– For a server connection channel:
- No data is saved

Therefore, a channel which has never been current will not have any saved
status.

v Current data consists of the common status fields and current-only status fields.
The data fields are continually updated as messages are sent or received.

v Short data consists of the queue manager name that owns the channel instance.
This class of data is available only on z/OS.

This method of operation has the following consequences:

Chapter 3. Definitions of the Programmable Command Formats 225

|
|

|
|

|
|
|
||
|
|||

||||||
|

|
|

|
|
|

|

|

|

|

|

|

|
|

|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|

|



v An inactive channel might not have any saved status –if it has never been
current or has not yet reached a point where saved status is reset.

v The “common” data fields might have different values for saved and current
status.

v A current channel always has current status and might have saved status.

Channels can be current or inactive:

Current channels
These are channels that have been started, or on which a client has
connected, and that have not finished or disconnected normally. They may
not yet have reached the point of transferring messages, or data, or even of
establishing contact with the partner. Current channels have current status
and can also have saved or shortstatus.

The term Active is used to describe the set of current channels which are
not stopped.

Inactive channels
These are channels that have either not been started or on which a client
has not connected, or that have finished or disconnected normally. (Note
that if a channel is stopped, it is not yet considered to have finished
normally – and is, therefore, still current.) Inactive channels have either
saved status or no status at all.

There can be more than one instance of a receiver, requester, cluster-sender,
cluster-receiver, or server-connection channel current at the same time (the
requester is acting as a receiver). This occurs if several senders, at different queue
managers, each initiate a session with this receiver, using the same channel name.
For channels of other types, there can only be one instance current at any time.

For all channel types, however, there can be more than one set of saved status
information available for a given channel name. At most one of these sets relates to
a current instance of the channel, the rest relate to previously current instances.
Multiple instances arise if different transmission queue names or connection names
have been used in connection with the same channel. This can happen in the
following cases:
v At a sender or server:

– If the same channel has been connected to by different requesters (servers
only),

– If the transmission queue name has been changed in the definition, or
– If the connection name has been changed in the definition.

v At a receiver or requester:
– If the same channel has been connected to by different senders or servers, or
– If the connection name has been changed in the definition (for requester

channels initiating connection).

The number of sets returned for a given channel can be limited by using the
XmitQName, ConnectionName and ChannelInstanceType parameters.

Required parameters:
ChannelName

226 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|

|

|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|

|

|

|

|

|
|

|
|

|
|



Optional parameters:
ChannelDisposition, ChannelInstanceAttrs, ChannelInstanceType,
CommandScope, ConnectionName, IntegerFilterCommand,
StringFilterCommand, XmitQName

Required parameters (Inquire Channel Status)
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

Generic channel names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all objects having
names that start with the selected character string. An asterisk on its own
matches all possible names.

The channel name is always returned, regardless of the instance attributes
requested.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

Optional parameters (Inquire Channel Status)
Optional parameters for the Inquire Channel Status command.

ChannelDisposition (MQCFIN)
Channel disposition (parameter identifier: MQIACH_CHANNEL_DISP). This
parameter applies to z/OS only.

Specifies the disposition of the channels for which information is to be
returned. The value can be:

MQCHLD_ALL
Returns requested status information for private channels.

In a shared queue environment where the command is being executed
on the queue manager where it was issued, or if ChannelInstanceType
has a value of MQOT_CURRENT_CHANNEL, this option also
displays the requested status information for shared channels.

MQCHLD_PRIVATE
Returns requested status information for private channels.

MQCHLD_SHARED
Returns requested status information for shared channels.

The status information that is returned for various combinations of
ChannelDisposition, CommandScope, and status type, is summarized in Table 5,
Table 6 on page 228, and Table 7 on page 228.

Table 5. ChannelDisposition and CommandScope for Inquire Channel Status, Current

ChannelDisposition CommandScope blank or local
queue manager

CommandScope(qmgr-name) CommandScope(*)

MQCHLD_PRIVATE Common and current-only
status for current private
channels on the local queue
manager

Common and current-only
status for current private
channels on the named
queue manager

Common and current-only
status for current private
channels on all queue
managers

MQCHLD_SHARED Common and current-only
status for current shared
channels on the local queue
manager

Common and current-only
status for current shared
channels on the named
queue manager

Common and current-only
status for current shared
channels on all queue
managers

Chapter 3. Definitions of the Programmable Command Formats 227

|
|
|
|

|

|
|

|
|
|
|

|
|

|

|

|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

||

||
|
||

||
|
|
|

|
|
|
|

|
|
|
|

||
|
|
|

|
|
|
|

|
|
|
|



Table 5. ChannelDisposition and CommandScope for Inquire Channel Status, Current (continued)

ChannelDisposition CommandScope blank or local
queue manager

CommandScope(qmgr-name) CommandScope(*)

MQCHLD_ALL Common and current-only
status for current private and
shared channels on the local
queue manager

Common and current-only
status for current private and
shared channels on the
named queue manager

Common and current-only
status for current private and
shared channels on all active
queue managers

Table 6. ChannelDisposition and CommandScope for Inquire Channel Status, Short

ChannelDisposition CommandScope blank or local
queue manager

CommandScope(qmgr-name) CommandScope(*)

MQCHLD_PRIVATE ChannelStatus and short
status for current private
channels on the local queue
manager

ChannelStatus and short
status for current private
channels on the named
queue manager

ChannelStatus and short
status for current private
channels on all active queue
managers

MQCHLD_SHARED ChannelStatus and short
status for current shared
channels on all active queue
managers in the
queue-sharing group

Not permitted Not permitted

MQCHLD_ALL ChannelStatus and short
status for current private
channels on the local queue
manager and current shared
channels in the
queue-sharing group(1)

ChannelStatus and short
status for current private
channels on the named
queue manager

ChannelStatus and short
status for current private,
and shared, channels on all
active queue managers in the
queue-sharing group(1)

Note:

1. In this case you get two separate sets of responses to the command on the queue manager where it was entered;
one for MQCHLD_PRIVATE and one for MQCHLD_SHARED.

Table 7. ChannelDisposition and CommandScope for Inquire Channel Status, Saved

ChannelDisposition CommandScope blank or local
queue manager

CommandScope(qmgr-name) CommandScope(*)

MQCHLD_PRIVATE Common status for saved
private channels on the local
queue manager

Common status for saved
private channels on the
named queue manager

Common status for saved
private channels on all active
queue managers

MQCHLD_SHARED Common status for saved
shared channels on all active
queue managers in the
queue-sharing group

Not permitted Not permitted

MQCHLD_ALL Common status for saved
private channels on the local
queue manager and saved
shared channels in the
queue-sharing group

Common status for saved
private channels on the
named queue manager

Common status for saved
private, and shared, channels
on all active queue managers
in the queue-sharing group

You cannot use this parameter as a filter keyword.

ChannelInstanceAttrs (MQCFIL)
Channel instance attributes (parameter identifier:
MQIACH_CHANNEL_INSTANCE_ATTRS).

If status information is requested which is not relevant for the particular
channel type, this is not an error. Similarly, it is not an error to request status

228 WebSphere MQ: Programmable Command Formats and Administration Interface

|

||
|
||

||
|
|
|

|
|
|
|

|
|
|
|
|

||

||
|
||

||
|
|
|

|
|
|
|

|
|
|
|

||
|
|
|
|

||

||
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|

||

||
|
||

||
|
|

|
|
|

|
|
|

||
|
|
|

||

||
|
|
|
|

|
|
|

|
|
|
|

|

|

|
|
|

|
|



information that is applicable only to active channels for saved channel
instances. In both of these cases, no structure is returned in the response for
the information concerned.

For a saved channel instance, the MQCACH_CURRENT_LUWID,
MQIACH_CURRENT_MSGS, and MQIACH_CURRENT_SEQ_NUMBER
attributes have meaningful information only if the channel instance is in doubt.
However, the attribute values are still returned when requested, even if the
channel instance is not in-doubt.

The attribute list might specify the following on its own:

MQIACF_ALL
All attributes.

This is the default value used if the parameter is not specified or it can specify
a combination of the following:

Relevant for common status

The following information applies to all sets of channel status, whether or not
the set is current.

MQCACH_CHANNEL_NAME
Channel name.

MQCACH_CONNECTION_NAME
Connection name.

MQCACH_CURRENT_LUWID
Logical unit of work identifier for current batch.

MQCACH_LAST_LUWID
Logical unit of work identifier for last committed batch.

MQCACH_XMIT_Q_NAME
Transmission queue name.

MQIACH_CHANNEL_INSTANCE_TYPE
Channel instance type.

MQIACH_CHANNEL_TYPE
Channel type.

MQIACH_CURRENT_MSGS
Number of messages sent or received in current batch.

MQIACH_CURRENT_SEQ_NUMBER
Sequence number of last message sent or received.

MQIACH_INDOUBT_STATUS
Whether the channel is currently in-doubt.

MQIACH_LAST_SEQ_NUMBER
Sequence number of last message in last committed batch.

MQCACH_CURRENT_LUWID, MQCACH_LAST_LUWID,
MQIACH_CURRENT_MSGS, MQIACH_CURRENT_SEQ_NUMBER,
MQIACH_INDOUBT_STATUS and MQIACH_LAST_SEQ_NUMBER do not
apply to server-connection channels, and no values are returned. If specified on
the command, they are ignored.

Relevant for current-only status

The following information applies only to current channel instances. The
information applies to all channel types, except where stated.

Chapter 3. Definitions of the Programmable Command Formats 229

|
|
|

|
|
|
|
|

|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

|

|
|



MQCA_Q_MGR_NAME
Name of the queue manager that owns the channel instance. This
parameter is valid only on z/OS.

MQCA_REMOTE_Q_MGR_NAME
Queue manager name, or queue-sharing group name of the remote
system. The remote queue manager name is always returned regardless
of the instance attributes requested.

MQCACH_CHANNEL_START_DATE
Date channel was started.

MQCACH_CHANNEL_START_TIME
Time channel was started.

MQCACH_LAST_MSG_DATE
Date last message was sent, or MQI call was handled.

MQCACH_LAST_MSG_TIME
Time last message was sent, or MQI call was handled.

MQCACH_LOCAL_ADDRESS
Local communications address for the channel.

MQCACH_MCA_JOB_NAME
Name of MCA job.

This parameter is not valid on z/OS.

You cannot use MQCACH_MCA_JOB_NAME as a parameter to filter
on.

MQCACH_MCA_USER_ID
The user ID used by the MCA.

MQCACH_REMOTE_APPL_TAG
Remote partner application name. This is the name of the client
application at the remote end of the channel. This parameter applies
only to server-connection channels.

The maximum length of the string is MQ_APPL_TAG_LENGTH.

MQCACH_SSL_SHORT_PEER_NAME
SSL short peer name.

MQCACH_SSL_CERT_ISSUER_NAME
The full Distinguished Name of the issuer of the remote certificate.

MQCACH_SSL_CERT_USER_ID
User ID associated with the remote certificate. This is valid on z/OS
only.

MQIA_MONITORING_CHANNEL
Current level of monitoring data collection.

MQIACF_MONITORING
All channel status monitoring attributes. These are:

MQIA_MONITORING_CHANNEL
Current level of monitoring data collection.

MQIACH_BATCH_SIZE_INDICATOR
Batch size.

230 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|
|
|

|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|



MQIACH_COMPRESSION_RATE
The compression rate achieved displayed to the nearest
percentage.

MQIACH_COMPRESSION_TIME
The amount of time per message, displayed in microseconds,
spent during compression or decompression.

MQIACH_EXIT_TIME_INDICATOR
Exit time.

MQIACH_NETWORK_TIME_INDICATOR
Network time.

MQIACH_XMITQ_MSGS_AVAILABLE
Number of messages available to the channel on the
transmission queue.

MQIACH_XMITQ_TIME_INDICATOR
Time on transmission queue.

You cannot use MQIACF_MONITORING as a parameter to filter on.

MQIACH_BATCH_SIZE_INDICATOR
Batch size.

You cannot use MQIACH_BATCH_SIZE_INDICATOR as a parameter
to filter on.

MQIACH_BATCHES
Number of completed batches.

MQIACH_BUFFERS_RCVD
Number of buffers received.

MQIACH_BUFFERS_SENT
Number of buffers sent.

MQIACH_BYTES_RCVD
Number of bytes received.

MQIACH_BYTES_SENT
Number of bytes sent.

MQIACH_CHANNEL_SUBSTATE
Current channel substate.

MQIACH_COMPRESSION_RATE
The compression rate achieved displayed to the nearest percentage.

You cannot use MQIACH_COMPRESSION_RATE as a parameter to
filter on.

MQIACH_COMPRESSION_TIME
The amount of time per message, displayed in microseconds, spent
during compression or decompression.

You cannot use MQIACH_COMPRESSION_TIME as a parameter to
filter on.

MQIACH_CURRENT_SHARING_CONVS
Requests information on the current number of conversations on this
channel instance.

This attribute applies only to TCP/IP server-connection channels.

Chapter 3. Definitions of the Programmable Command Formats 231

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|



MQIACH_EXIT_TIME_INDICATOR
Exit time.

You cannot use MQIACH_EXIT_TIME_INDICATOR as a parameter to
filter on.

MQIACH_HDR_COMPRESSION
Technique used to compress the header data sent by the channel is
compressed.

MQIACH_KEEP_ALIVE_INTERVAL
The KeepAlive interval in use for this session. This parameter is
significant only for z/OS.

MQIACH_LONG_RETRIES_LEFT
Number of long retry attempts remaining.

MQIACH_MAX_MSG_LENGTH
Maximum message length. This is valid only on z/OS.

MQIACH_MAX_SHARING_CONVS
Requests information on the maximum number of conversations on
this channel instance.

This attribute applies only to TCP/IP server-connection channels.

MQIACH_MCA_STATUS
MCA status.

You cannot use MQIACH_MCA_STATUS as a parameter to filter on.

MQIACH_MSG_COMPRESSION
Technique used to compress the message data sent by the channel.

MQIACH_MSGS
Number of messages sent or received, or number of MQI calls
handled.

MQIACH_NETWORK_TIME_INDICATOR
Network time.

You cannot use MQIACH_NETWORK_TIME_INDICATOR as a
parameter on which to filter.

MQIACH_SHORT_RETRIES_LEFT
Number of short retry attempts remaining.

MQIACH_SSL_KEY_RESETS
Number of successful SSL key resets.

MQIACH_SSL_RESET_DATE
Date of previous successful SSL secret key reset.

MQIACH_SSL_RESET_TIME
Time of previous successful SSL secret key reset.

MQIACH_STOP_REQUESTED
Whether user stop request has been received.

MQIACH_XMITQ_MSGS_AVAILABLE
Number of messages available to the channel on the transmission
queue.

MQIACH_XMITQ_TIME_INDICATOR
Time on transmission queue.

232 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|



You cannot use MQIACH_XMITQ_TIME_INDICATOR as a parameter
to filter on.

The following is supported on HP OpenVMS, i5/OS, Compaq NonStop Kernel,
UNIX systems, Windows, and z/OS:

MQIACH_BATCH_SIZE
Batch size.

The following is supported on HP OpenVMS, Compaq NonStop Kernel, i5/OS,
UNIX systems, Windows and z/OS:

MQIACH_HB_INTERVAL
Heartbeat interval (seconds).

MQIACH_NPM_SPEED
Speed of nonpersistent messages.

The following attributes do not apply to server-connection channels, and no
values are returned. If specified on the command they are ignored:
v MQIACH_BATCH_SIZE_INDICATOR
v MQIACH_BATCH_SIZE
v MQIACH_BATCHES
v MQIACH_LONG_RETRIES_LEFT
v MQIACH_NETWORK_TIME
v MQIACH_NPM_SPEED
v MQCA_REMOTE_Q_MGR_NAME
v MQIACH_SHORT_RETRIES_LEFT
v MQIACH_XMITQ_MSGS_AVAILABLE
v MQIACH_XMITQ_TIME_INDICATOR

The following attributes apply only to server-connection channels. If specified
on the command for other types of channel the attribute is ignored and no
value is returned:
v MQIACH_CURRENT_SHARING_CONVS
v MQIACH_MAX_SHARING_CONVS

Relevant for short status

The following parameter applies to current channels on z/OS:

MQCACH_Q_MGR_NAME
Name of the queue manager that owns the channel instance.

ChannelInstanceType (MQCFIN)
Channel instance type (parameter identifier:
MQIACH_CHANNEL_INSTANCE_TYPE).

It is always returned regardless of the channel instance attributes requested.

The value can be:

MQOT_CURRENT_CHANNEL
Current channel status.

This is the default, and indicates that only current status information
for active channels is to be returned.

Both common status information and active-only status information
can be requested for current channels.

Chapter 3. Definitions of the Programmable Command Formats 233

|
|
|

|

|



MQOT_SAVED_CHANNEL
Saved channel status.

Specify this to cause saved status information for both active and
inactive channels to be returned.

Only common status information can be returned. Active-only status
information is not returned for active channels if this keyword is
specified.

MQOT_SHORT_CHANNEL
Short channel status (valid on z/OS only).

Specify this to cause short status information for current channels to be
returned.

Other common status and current-only status information is not
returned for current channels if this keyword is specified.

You cannot use MQIACH_CHANNEL_INSTANCE_TYPE as a parameter to
filter on.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

You cannot use CommandScope as a parameter to filter on.

ConnectionName (MQCFST)
Connection name (parameter identifier: MQCACH_CONNECTION_NAME).

If this parameter is present, eligible channel instances are limited to those
using this connection name. If it is not specified, eligible channel instances are
not limited in this way.

The connection name is always returned, regardless of the instance attributes
requested.

The value returned for ConnectionName might not be the same as in the
channel definition, and might differ between the current channel status and the
saved channel status. (Using ConnectionName for limiting the number of sets of
status is therefore not recommended.)

For example, when using TCP, if ConnectionName in the channel definition :
v Is blank or is in “host name” format, the channel status value has the

resolved IP address.
v Includes the port number, the current channel status value includes the port

number (except on z/OS), but the saved channel status value does not.

234 WebSphere MQ: Programmable Command Formats and Administration Interface



The maximum length of the string is MQ_CONN_NAME_LENGTH.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in ChannelInstanceAttrs except MQIACF_ALL
and others as noted. Use this to restrict the output from the command by
specifying a filter condition. See “MQCFIF - PCF integer filter parameter” on
page 487 for information about using this filter condition.

If you specify an integer filter, you cannot also specify a string filter using the
StringFilterCommand parameter.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter allowed in ChannelInstanceAttrs except
MQCACH_CHANNEL_NAME and others as noted. Use this to restrict the
output from the command by specifying a filter condition. See “MQCFSF - PCF
string filter parameter” on page 494 for information about using this filter
condition.

If you specify a string filter for ConnectionName or XmitQName, you cannot also
specify the ConnectionName or XmitQName parameter.

If you specify a string filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCACH_XMIT_Q_NAME).

If this parameter is present, eligible channel instances are limited to those
using this transmission queue. If it is not specified, eligible channel instances
are not limited in this way.

The transmission queue name is always returned, regardless of the instance
attributes requested.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Error codes (Inquire Channel Status)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHL_INST_TYPE_ERROR
Channel instance type not valid.

MQRCCF_CHL_STATUS_NOT_FOUND
Channel status not found.

MQRCCF_XMIT_Q_NAME_ERROR
Transmission queue name error.

Chapter 3. Definitions of the Programmable Command Formats 235



Inquire Channel Status (Response)
Parameters of the Inquire Channel Status (Response) command.

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The response to the Inquire Channel Status
(MQCMD_INQUIRE_CHANNEL_STATUS) command consists of the response
header followed by
v The ChannelName structure,
v The ChannelDisposition structure (on z/OS only),
v The ChannelInstanceType structure
v The ChannelStatus structure (except on z/OS channels whose

ChannelInstanceType parameter has a value of MQOT_SAVED_CHANNEL.
v The ChannelType structure
v The ConnectionName structure
v The RemoteApplTag structure
v The RemoteQMgrName structure
v The StopRequested structure
v The XmitQName structure

which are followed by the requested combination of status attribute parameter
structures. One such message is generated for each channel instance found that
matches the criteria specified on the command.

On z/OS, if the value for any of these parameters exceeds 999 999 999, it is
returned as 999 999 999:
v Batches

v BuffersReceived

v BuffersSent

v BytesReceived

v BytesSent

v CompressionTime

v CurrentMsgs

v ExitTime

v Msgs

v NetTime

v SSLKeyResets

v XQTime

Always returned:
ChannelDisposition, ChannelInstanceType, ChannelName, ChannelStatus,
ChannelType, ConnectionName, RemoteApplTag, RemoteQMgrName,
StopRequested, SubState, XmitQName

Returned if requested:
Batches, BatchSize, BatchSizeIndicator, BuffersReceived, BuffersSent,
BytesReceived, BytesSent, ChannelMonitoring, ChannelStartDate,
ChannelStartTime, CompressionRate, CompressionTime, CurrentLUWID,

236 WebSphere MQ: Programmable Command Formats and Administration Interface



CurrentMsgs, CurrentSequenceNumber, CurrentSharingConversations,
ExitTime, HeaderCompression, HeartbeatInterval, InDoubtStatus,
KeepAliveInterval, LastLUWID, LastMsgDate, LastMsgTime,
LastSequenceNumber, LocalAddress, LongRetriesLeft, MaxMsgLength,
MaxSharingConversations, MCAJobName, MCAStatus, MCAUserIdentifier,
MessageCompression, Msgs, MsgsAvailable, NetTime, NonPersistentMsgSpeed,
QMgrName, ShortRetriesLeft, SSLCertRemoteIssuerName, SSLCertUserId,
SSLKeyResetDate, SSLKeyResets, SSLKeyResetTime, SSLShortPeerName,
XQTime

Response data
Response parameters of the Inquire Channel Status (Response) command.

Batches (MQCFIN)
Number of completed batches (parameter identifier: MQIACH_BATCHES).

BatchSize (MQCFIN)
Negotiated batch size (parameter identifier: MQIACH_BATCH_SIZE).

BatchSizeIndicator (MQCFIL)
Indicator of the number of messages in a batch (parameter identifier:
MQIACH_BATCH_SIZE_INDICATOR). Two values are returned:
v A value based on recent activity over a short period of time.
v A value based on activity over a longer period of time.

Where no measurement is available, the value MQMON_NOT_AVAILABLE is
returned.

BuffersReceived (MQCFIN)
Number of buffers received (parameter identifier: MQIACH_BUFFERS_RCVD).

BuffersSent (MQCFIN)
Number of buffers sent (parameter identifier: MQIACH_BUFFERS_SENT).

BytesReceived (MQCFIN)
Number of bytes received (parameter identifier: MQIACH_BYTES_RCVD).

BytesSent (MQCFIN)
Number of bytes sent (parameter identifier: MQIACH_BYTES_SENT).

ChannelDisposition (MQCFIN)
Channel disposition (parameter identifier: MQIACH_CHANNEL_DISP). This
parameter is valid only on z/OS.

The value can be:

MQCHLD_ALL
Status information for private channels.

In a shared queue environment where the command is being executed
on the queue manager where it was issued, or if ChannelInstanceType
has a value of MQOT_CURRENT_CHANNEL, this option also
displays the requested status information for shared channels.

MQCHLD_PRIVATE
Status information for private channels.

MQCHLD_SHARED
Status information for shared channels.

Chapter 3. Definitions of the Programmable Command Formats 237

|

|



ChannelInstanceType (MQCFIN)
Channel instance type (parameter identifier:
MQIACH_CHANNEL_INSTANCE_TYPE).

The value can be:

MQOT_CURRENT_CHANNEL
Current channel status.

MQOT_SAVED_CHANNEL
Saved channel status.

MQOT_SHORT_CHANNEL
Short channel status, only on z/OS.

ChannelMonitoring (MQCFIN)
Current level of monitoring data collection for the channel (parameter
identifier: MQIACH_MONITORING_CHANNEL).

The value can be:

MQMON_OFF
Monitoring for the channel is switched off.

MQMON_LOW
Low rate of data collection.

MQMON_MEDIUM
Medium rate of data collection.

MQMON_HIGH
High rate of data collection.

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

ChannelStartDate (MQCFST)
Date channel started, in the form yyyy-mm-dd (parameter identifier:
MQCACH_CHANNEL_START_DATE).

The maximum length of the string is MQ_CHANNEL_DATE_LENGTH.

ChannelStartTime (MQCFST)
Time channel started, in the form hh.mm.ss (parameter identifier:
MQCACH_CHANNEL_START_TIME).

The maximum length of the string is MQ_CHANNEL_TIME_LENGTH.

ChannelStatus (MQCFIN)
Channel status (parameter identifier: MQIACH_CHANNEL_STATUS).

The value can be:

MQCHS_BINDING
Channel is negotiating with the partner.

MQCHS_STARTING
Channel is waiting to become active.

MQCHS_RUNNING
Channel is transferring or waiting for messages.

MQCHS_PAUSED
Channel is paused.

238 WebSphere MQ: Programmable Command Formats and Administration Interface



MQCHS_STOPPING
Channel is in process of stopping.

MQCHS_RETRYING
Channel is reattempting to establish connection.

MQCHS_STOPPED
Channel is stopped.

MQCHS_REQUESTING
Requester channel is requesting connection.

MQCHS_INITIALIZING
Channel is initializing.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

The value can be:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLNTCONN
Client connection.

MQCHT_CLUSRCVR
Cluster-receiver.

MQCHT_CLUSSDR
Cluster-sender.

CompressionRate (MQCFIL)
The compression rate achieved displayed to the nearest percentage (parameter
identifier: MQIACH_COMPRESSION_RATE). Two values are returned:
v A value based on recent activity over a short period of time.
v A value based on activity over a longer period of time.

Where no measurement is available, the value MQMON_NOT_AVAILABLE is
returned.

CompressionTime (MQCFIL)
The amount of time per message, displayed in microseconds, spent during
compression or decompression (parameter identifier:
MQIACH_COMPRESSION_TIME). Two values are returned:
v A value based on recent activity over a short period of time.
v A value based on activity over a longer period of time.

Where no measurement is available, the value MQMON_NOT_AVAILABLE is
returned.

Chapter 3. Definitions of the Programmable Command Formats 239



ConnectionName (MQCFST)
Connection name (parameter identifier: MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

CurrentLUWID (MQCFST)
Logical unit of work identifier for in-doubt batch (parameter identifier:
MQCACH_CURRENT_LUWID).

The logical unit of work identifier associated with the current batch, for a
sending or a receiving channel.

For a sending channel, when the channel is in-doubt it is the LUWID of the
in-doubt batch.

It is updated with the LUWID of the next batch when this is known.

The maximum length is MQ_LUWID_LENGTH.

CurrentMsgs (MQCFIN)
Number of messages in-doubt (parameter identifier:
MQIACH_CURRENT_MSGS).

For a sending channel, this is the number of messages that have been sent in
the current batch. It is incremented as each message is sent, and when the
channel becomes in-doubt it is the number of messages that are in-doubt.

For a receiving channel, it is the number of messages that have been received
in the current batch. It is incremented as each message is received.

The value is reset to zero, for both sending and receiving channels, when the
batch is committed.

CurrentSequenceNumber (MQCFIN)
Sequence number of last message in in-doubt batch (parameter identifier:
MQIACH_CURRENT_SEQ_NUMBER).

For a sending channel, this is the message sequence number of the last
message sent. It is updated as each message is sent, and when the channel
becomes in-doubt it is the message sequence number of the last message in the
in-doubt batch.

For a receiving channel, it is the message sequence number of the last message
that was received. It is updated as each message is received.

CurrentSharingConversations (MQCFIN)
Number of conversations currently active on this channel instance (parameter
identifier: MQIACH_CURRENT_SHARING_CONVS).

This is returned only for TCP/IP server-connection channels.

A value of zero indicates that the channel instance is running in a mode prior
to that of WebSphere MQ Version 7.0, with regard to:
v Administrator stop-quiesce
v Heartbeating
v Read ahead
v Client asynchronous consume

ExitTime (MQCFIL)
Indicator of the time taken executing user exits per message (parameter
identifier: MQIACH_EXIT_TIME_INDICATOR). Amount of time, in
microseconds, spent processing user exits per message. Where more than one

240 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|

|
|

|

|

|

|



exit is executed per message, the value is the sum of all the user exit times for
a single message. Two values are returned:
v A value based on recent activity over a short period of time.
v A value based on activity over a longer period of time.

Where no measurement is available, the value MQMON_NOT_AVAILABLE is
returned.

HeaderCompression (MQCFIL)
Whether the header data sent by the channel is compressed (parameter
identifier: MQIACH_HDR_COMPRESSION). Two values are returned:
v The default header data compression value negotiated for this channel.
v The header data compression value used for the last message sent. The

header data compression value can be altered in a sending channels message
exit. If no message has been sent, the second value is
MQCOMPRESS_NOT_AVAILABLE.

The values can be:

MQCOMPRESS_NONE
No header data compression is performed. This is the default value.

MQCOMPRESS_SYSTEM
Header data compression is performed.

MQCOMPRESS_NOT_AVAILABLE
No message has been sent by the channel.

HeartbeatInterval (MQCFIN)
Heartbeat interval (parameter identifier: MQIACH_HB_INTERVAL).

InDoubtStatus (MQCFIN)
Whether the channel is currently in doubt (parameter identifier:
MQIACH_INDOUBT_STATUS).

A sending channel is only in doubt while the sending Message Channel Agent
is waiting for an acknowledgment that a batch of messages, which it has sent,
has been successfully received. It is not in doubt at all other times, including
the period during which messages are being sent, but before an
acknowledgment has been requested.

A receiving channel is never in doubt.

The value can be:

MQCHIDS_NOT_INDOUBT
Channel is not in-doubt.

MQCHIDS_INDOUBT
Channel is in-doubt.

KeepAliveInterval (MQCFIN)
KeepAlive interval (parameter identifier: MQIACH_KEEP_ALIVE_INTERVAL).
This parameter is valid only on z/OS.

LastLUWID (MQCFST)
Logical unit of work identifier for last committed batch (parameter identifier:
MQCACH_LAST_LUWID).

The maximum length is MQ_LUWID_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 241



LastMsgDate (MQCFST)
Date last message was sent, or MQI call was handled, in the form yyyy-mm-dd
(parameter identifier: MQCACH_LAST_MSG_DATE).

The maximum length of the string is MQ_CHANNEL_DATE_LENGTH.

LastMsgTime (MQCFST)
Time last message was sent, or MQI call was handled, in the form hh.mm.ss
(parameter identifier: MQCACH_LAST_MSG_TIME).

The maximum length of the string is MQ_CHANNEL_TIME_LENGTH.

LastSequenceNumber (MQCFIN)
Sequence number of last message in last committed batch (parameter identifier:
MQIACH_LAST_SEQ_NUMBER).

LocalAddress (MQCFST)
Local communications address for the channel (parameter identifier:
MQCACH_LOCAL_ADDRESS).

The maximum length of the string is MQ_LOCAL_ADDRESS_LENGTH.

LongRetriesLeft (MQCFIN)
Number of long retry attempts remaining (parameter identifier:
MQIACH_LONG_RETRIES_LEFT).

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIACH_MAX_MSG_LENGTH). This parameter is valid only on z/OS.

MaxSharingConversations (MQCFIN)
Maximum number of conversations permitted on this channel instance.
(parameter identifier: MQIACH_MAX_SHARING_CONVS)

This is returned only for TCP/IP server-connection channels.

A value of zero indicates that the channel instance is running in a mode prior
to that of WebSphere MQ Version 7.0, with regard to:
v Administrator stop-quiesce
v Heartbeating
v Read ahead
v Client asynchronous consume

MCAJobName (MQCFST)
Name of MCA job (parameter identifier: MQCACH_MCA_JOB_NAME).

The maximum length of the string is MQ_MCA_JOB_NAME_LENGTH.

MCAStatus (MQCFIN)
MCA status (parameter identifier: MQIACH_MCA_STATUS).

The value can be:

MQMCAS_STOPPED
Message channel agent stopped.

MQMCAS_RUNNING
Message channel agent running.

MCAUserIdentifier (MQCFST)
The user ID used by the MCA (parameter identifier:
MQCACH_MCA_USER_ID).

242 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|

|
|

|

|

|

|



This parameter applies only to server-connection, receiver, requester, and
cluster-receiver channels.

The maximum length of the string is MQ_MCA_USER_ID_LENGTH.

MessageCompression (MQCFIL)
Whether the header data sent by the channel is compressed (parameter
identifier: MQIACH_MSG_COMPRESSION). Two values are returned:
v The default message data compression value negotiated for this channel.
v The message data compression value used for the last message sent. The

message data compression value can be altered in a sending channels
message exit. If no message has been sent, the second value is
MQCOMPRESS_NOT_AVAILABLE.

The values can be:

MQCOMPRESS_NONE
No message data compression is performed. This is the default value.

MQCOMPRESS_RLE
Message data compression is performed using run-length encoding.

MQCOMPRESS_ZLIBFAST
Message data compression is performed using ZLIB encoding with
speed prioritized.

MQCOMPRESS_ZLIBHIGH
Message data compression is performed using ZLIB encoding with
compression prioritized.

MQCOMPRESS_NOT_AVAILABLE
No message has been sent by the channel.

Msgs (MQCFIN)
Number of messages sent or received, or number of MQI calls handled
(parameter identifier: MQIACH_MSGS).

MsgsAvailable (MQCFIN)
Number of messages available (parameter identifier:
MQIACH_XMITQ_MSGS_AVAILABLE). Number of messages queued on the
transmission queue available to the channel for MQGETs.

Where no measurement is available, the value MQMON_NOT_AVAILABLE is
returned.

NetTime (MQCFIL)
Indicator of the time of a network operation (parameter identifier:
MQIACH_NETWORK_TIME_INDICATOR). Amount of time, in microseconds,
to send a request to the remote end of the channel and receive a response. Two
values are returned:
v A value based on recent activity over a short period of time.
v A value based on activity over a longer period of time.

Where no measurement is available, the value MQMON_NOT_AVAILABLE is
returned.

NonPersistentMsgSpeed (MQCFIN)
Speed at which nonpersistent messages are to be sent (parameter identifier:
MQIACH_NPM_SPEED).

The value can be:

Chapter 3. Definitions of the Programmable Command Formats 243



MQNPMS_NORMAL
Normal speed.

MQNPMS_FAST
Fast speed.

QMgrName (MQCFST)
Name of the queue manager that owns the channel instance (parameter
identifier: MQCA_Q_MGR_NAME). This parameter is valid only on z/OS.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

RemoteApplTag (MQCFST)
Name of the remote queue manager, or queue-sharing group (parameter
identifier: MQCACH_REMOTE_APPL_TAG).

The remote partner application name. This is the name of the client application
at the remote end of the channel. This parameter applies only to
server-connection channels.

RemoteQMgrName (MQCFST)
Name of the remote queue manager, or queue-sharing group (parameter
identifier: MQCA_REMOTE_Q_MGR_NAME).

ShortRetriesLeft (MQCFIN)
Number of short retry attempts remaining (parameter identifier:
MQIACH_SHORT_RETRIES_LEFT).

SSLCertRemoteIssuerName (MQCFST)
The full Distinguished Name of the issuer of the remote certificate. The issuer
is the Certificate Authority that issued the certificate (parameter identifier:
MQCACH_SSL_CERT_ISSUER_NAME).

The maximum length of the string is MQ_SHORT_DNAME_LENGTH.

SSLCertUserId (MQCFST)
The local user ID associated with the remote certificate (parameter identifier:
MQCACH_SSL_CERT_USER_ID).

This parameter is valid only on z/OS.

The maximum length of the string is MQ_USER_ID_LENGTH.

SSLKeyResetDate (MQCFST)
Date of the previous successful SSL secret key reset, in the form yyyy-mm-dd
(parameter identifier: MQCACH_SSL_KEY_RESET_DATE).

The maximum length of the string is MQ_DATE_LENGTH.

SSLKeyResets (MQCFIN)
SSL secret key resets (parameter identifier: MQIACH_SSL_KEY_RESETS).

The number of successful SSL secret key resets that have occurred for this
channel instance since the channel started. If SSL secret key negotiation is
enabled, the count is incremented whenever a secret key reset is performed.

SSLKeyResetTime (MQCFST)
Time of the previous successful SSL secret key reset, in the form hh.mm.ss
(parameter identifier: MQCACH_SSL_KEY_RESET_TIME).

The maximum length of the string is MQ_TIME_LENGTH.

SSLShortPeerName (MQCFST)
Distinguished Name of the peer queue manager or client at the other end of
the channel (parameter identifier: MQCACH_SSL_SHORT_PEER_NAME).

244 WebSphere MQ: Programmable Command Formats and Administration Interface



The maximum length is MQ_SHORT_DNAME_LENGTH. This limit might
mean that exceptionally long Distinguished Names are truncated.

StopRequested (MQCFIN)
Whether user stop request is outstanding (parameter identifier:
MQIACH_STOP_REQUESTED).

The value can be:

MQCHSR_STOP_NOT_REQUESTED
User stop request has not been received.

MQCHSR_STOP_REQUESTED
User stop request has been received.

SubState (MQCFIN)
Current action being performed by the channel (parameter identifier:
MQIACH_CHANNEL_SUBSTATE).

The value can be:

MQCHSSTATE_CHADEXIT
Running channel auto-definition exit.

MQCHSSTATE_COMPRESSING
Compressing or decompressing data.

MQCHSSTATE_END_OF_BATCH
End of batch processing.

MQCHSSTATE_HANDSHAKING
SSL handshaking.

MQCHSSTATE_HEARTBEATING
Heartbeating with partner.

MQCHSSTATE_IN_MQGET
Performing MQGET.

MQCHSSTATE_IN_MQI_CALL
Executing an MQ API call, other than an MQPUT or MQGET.

MQCHSSTATE_IN_MQPUT
Performing MQPUT.

MQCHSSTATE_MREXIT
Running retry exit.

MQCHSSTATE_MSGEXIT
Running message exit.

MQCHSSTATE_NAME_SERVER
Nameserver request.

MQCHSSTATE_NET_CONNECTING
Network connect.

MQCHSSTATE_OTHER
Undefined state.

MQCHSSTATE_RCVEXIT
Running receive exit.

MQCHSSTATE_RECEIVING
Network receive.

Chapter 3. Definitions of the Programmable Command Formats 245



MQCHSSTATE_RESYNCHING
Resynching with partner.

MQCHSSTATE_SCYEXIT
Running security exit.

MQCHSSTATE_SENDEXIT
Running send exit.

MQCHSSTATE_SENDING
Network send.

MQCHSSTATE_SERIALIZING
Serialized on queue manager access.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

XQTime (MQCFIL)
Transmission queue time indicator (parameter identifier:
MQIACH_XMITQ_TIME_INDICATOR). The time, in microseconds, that
messages remained on the transmission queue before being retrieved. The time
is measured from when the message is put onto the transmission queue until it
is retrieved to be sent on the channel and, therefore, includes any interval
caused by a delay in the putting application.

Two values are returned:
v A value based on recent activity over a short period of time.
v A value based on activity over a longer period of time.

Where no measurement is available, the value MQMON_NOT_AVAILABLE is
returned.

Inquire Cluster Queue Manager

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Inquire Cluster Queue Manager (MQCMD_INQUIRE_CLUSTER_Q_MGR)
command inquires about the attributes of WebSphere MQ queue managers in a
cluster.

Required parameters:
ClusterQMgrName

Optional parameters:
Channel, ClusterName, ClusterQMgrAttrs, CommandScope,
IntegerFilterCommand, StringFilterCommand,

Required parameters (Inquire Cluster Queue Manager)
ClusterQMgrName (MQCFST)

Queue manager name (parameter identifier:
MQCA_CLUSTER_Q_MGR_NAME).

Generic queue manager names are supported. A generic name is a character
string followed by an asterisk (*), for example ABC*, and it selects all queue

246 WebSphere MQ: Programmable Command Formats and Administration Interface



managers having names that start with the selected character string. An
asterisk on its own matches all possible names.

The queue manager name is always returned, regardless of the attributes
requested.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

Optional parameters
Channel (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

Specifies that eligible cluster queue managers are limited to those having the
specified channel name.

Generic channel names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all channels
having names that start with the selected character string. An asterisk on its
own matches all possible names.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

If you do not specify a value for this parameter, channel information about all
queue managers in the cluster is returned.

ClusterName (MQCFST)
Cluster name (parameter identifier: MQCA_CLUSTER_NAME).

Specifies that eligible cluster queue managers are limited to those having the
specified cluster name.

Generic cluster names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all clusters having
names that start with the selected character string. An asterisk on its own
matches all possible names.

The maximum length of the string is MQ_CLUSTER_NAME_LENGTH.

If you do not specify a value for this parameter, cluster information about all
queue managers inquired is returned.

ClusterQMgrAttrs (MQCFIL)
Attributes (parameter identifier: MQIACF_CLUSTER_Q_MGR_ATTRS).

Some parameters are relevant only for cluster channels of a particular type or
types. Attributes that are not relevant for a particular type of channel cause no
output, and do not cause an error. To check which attributes apply to which
channel types, refer to WebSphere MQ Intercommunication.

The attribute list might specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCA_ALTERATION_DATE
The date on which the information was last altered.

MQCA_ALTERATION_TIME
The time at which the information was last altered.

Chapter 3. Definitions of the Programmable Command Formats 247



MQCA_CLUSTER_DATE
The date on which the information became available to the local queue
manager.

MQCA_CLUSTER_NAME
The name of the cluster to which the channel belongs.

MQCA_CLUSTER_Q_MGR_NAME
The name of the cluster to which the channel belongs.

MQCA_CLUSTER_TIME
The time at which the information became available to the local queue
manager.

MQCA_Q_MGR_IDENTIFIER
The unique identifier of the queue manager.

MQCACH_CONNECTION_NAME
Connection name.

MQCACH_DESCRIPTION
Description.

MQCACH_LOCAL_ADDRESS
Local communications address for the channel.

MQCACH_MCA_NAME
Message channel agent name.

You cannot use MQCACH_MCA_NAME as a parameter to filter on.

MQCACH_MCA_USER_ID
MCA user identifier.

MQCACH_MODE_NAME
Mode name.

MQCACH_MR_EXIT_NAME
Message-retry exit name.

MQCACH_MR_EXIT_USER_DATA
Message-retry exit user data.

MQCACH_MSG_EXIT_NAME
Message exit name.

MQCACH_MSG_EXIT_USER_DATA
Message exit user data.

MQCACH_PASSWORD
Password.

This parameter is not valid on z/OS.

MQCACH_RCV_EXIT_NAME
Receive exit name.

MQCACH_RCV_EXIT_USER_DATA
Receive exit user data.

MQCACH_SEC_EXIT_NAME
Security exit name.

MQCACH_SEC_EXIT_USER_DATA
Security exit user data.

248 WebSphere MQ: Programmable Command Formats and Administration Interface



MQCACH_SEND_EXIT_NAME
Send exit name.

MQCACH_SEND_EXIT_USER_DATA
Send exit user data.

MQCACH_SSL_CIPHER_SPEC
SSL cipher spec.

MQIACH_SSL_CLIENT_AUTH
SSL client authentication.

MQCACH_SSL_PEER_NAME
SSL peer name.

MQCACH_TP_NAME
Transaction program name.

MQCACH_USER_ID
User identifier.

This parameter is not valid on z/OS.

MQIA_MONITORING_CHANNEL
Online monitoring data collection.

MQIACF_Q_MGR_DEFINITION_TYPE
How the cluster queue manager was defined.

MQIACF_Q_MGR_TYPE
The function of the queue manager in the cluster.

MQIACF_SUSPEND
Whether the queue manager is suspended from the cluster.

MQIACH_BATCH_HB
The value being used for batch heartbeating.

MQIACH_BATCH_INTERVAL
Batch wait interval (seconds).

MQIACH_BATCH_SIZE
Batch size.

MQIACH_CHANNEL_STATUS
Channel status.

MQIACH_CLWL_CHANNEL_PRIORITY
Cluster workload channel priority.

MQIACH_CLWL_CHANNEL_RANK
Cluster workload channel rank.

MQIACH_CLWL_CHANNEL_WEIGHT
Cluster workload channel weight.

MQIACH_DATA_CONVERSION
Whether sender must convert application data.

MQIACH_DISC_INTERVAL
Disconnection interval.

MQIACH_HB_INTERVAL
Heartbeat interval (seconds).

Chapter 3. Definitions of the Programmable Command Formats 249

|



MQIACH_HDR_COMPRESSION
The list of header data compression techniques supported by the
channel.

MQIACH_KEEP_ALIVE_INTERVAL
KeepAlive interval (valid on z/OS only).

MQIACH_LONG_RETRY
Long retry count.

MQIACH_LONG_TIMER
Long timer.

MQIACH_MAX_MSG_LENGTH
Maximum message length.

MQIACH_MCA_TYPE
MCA type.

MQIACH_MR_COUNT
Message retry count.

MQIACH_MR_INTERVAL
Message retry interval (milliseconds).

MQIACH_MSG_COMPRESSION
List of message data compression techniques supported by the channel.

MQIACH_NETWORK_PRIORITY
Network priority.

MQIACH_NPM_SPEED
Speed of nonpersistent messages.

MQIACH_PUT_AUTHORITY
Put authority.

MQIACH_SEQUENCE_NUMBER_WRAP
Sequence number wrap.

MQIACH_SHORT_RETRY
Short retry count.

MQIACH_SHORT_TIMER
Short timer.

MQIACH_XMIT_PROTOCOL_TYPE
Transmission protocol type.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

250 WebSphere MQ: Programmable Command Formats and Administration Interface



The maximum length is MQ_QSG_NAME_LENGTH.

You cannot use CommandScope as a parameter to filter on.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in ClusterQMgrAttrs except MQIACF_ALL and
others as noted. Use this to restrict the output from the command by
specifying a filter condition. See “MQCFIF - PCF integer filter parameter” on
page 487 for information about using this filter condition.

If you specify an integer filter, you cannot also specify a string filter using the
StringFilterCommand parameter.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter allowed in ClusterQMgrAttrs except
MQCA_CLUSTER_Q_MGR_NAME and others as noted. Use this to restrict the
output from the command by specifying a filter condition. See “MQCFSF - PCF
string filter parameter” on page 494 for information about using this filter
condition.

If you specify a string filter for Channel or ClusterName, you cannot also
specify the Channel or ClusterName parameter.

If you specify a string filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

Inquire Cluster Queue Manager (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The response to the Inquire Cluster Queue Manager
(MQCMD_INQUIRE_CLUSTER_Q_MGR) command consists of the response
header followed by the QMgrName structure and the requested combination of
attribute parameter structures.

Always returned:
ChannelName, ClusterName, QMgrName,

Returned if requested:
AlterationDate, AlterationTime, BatchHeartbeat, BatchInterval,
BatchSize, ChannelDesc, ChannelMonitoring, ChannelStatus, ClusterDate,
ClusterInfo, ClusterTime, CLWLChannelPriority, CLWLChannelRank,
CLWLChannelWeight, ConnectionName, DataConversion, DiscInterval,
HeaderCompression, HeartbeatInterval, KeepAliveInterval, LocalAddress,
LongRetryCount, LongRetryInterval, MaxMsgLength, MCAName, MCAType,
MCAUserIdentifier, MessageCompression, ModeName, MsgExit, MsgRetryCount,
MsgRetryExit, MsgRetryInterval, MsgRetryUserData, MsgUserData,
NetworkPriority, NonPersistentMsgSpeed, Password, PutAuthority,
QMgrDefinitionType, QMgrIdentifier, QMgrType, ReceiveExit,
ReceiveUserData, SecurityExit, SecurityUserData, SendExit, SendUserData,
SeqNumberWrap, ShortRetryCount, ShortRetryInterval, SSLCipherSpec,
SSLClientAuth, SSLPeerName, Suspend, TpName, TransportType,
UserIdentifier

Chapter 3. Definitions of the Programmable Command Formats 251



Response data
AlterationDate (MQCFST)

Alteration date, in the form yyyy-mm-dd (parameter identifier:
MQCA_ALTERATION_DATE).

The date at which the information was last altered.

AlterationTime (MQCFST)
Alteration time, in the form hh.mm.ss (parameter identifier:
MQCA_ALTERATION_TIME).

The time at which the information was last altered.

BatchHeartbeat (MQCFIN)
The value being used for batch heartbeating (parameter identifier:
MQIACH_BATCH_HB).

The value can be between 0 and 999 999. A value of 0 indicates that batch
heartbeating is not being used.

BatchInterval (MQCFIN)
Batch interval (parameter identifier: MQIACH_BATCH_INTERVAL).

BatchSize (MQCFIN)
Batch size (parameter identifier: MQIACH_BATCH_SIZE).

ChannelDesc (MQCFST)
Channel description (parameter identifier: MQCACH_DESC).

The maximum length of the string is MQ_CHANNEL_DESC_LENGTH.

ChannelMonitoring (MQCFIN)
Online monitoring data collection (parameter identifier:
MQIA_MONITORING_CHANNEL).

The value can be:

MQMON_OFF
Online monitoring data collection is turned off for this channel.

MQMON_Q_MGR
The value of the queue manager’s ChannelMonitoring parameter is
inherited by the channel. This is the default value.

MQMON_LOW
Online monitoring data collection is turned on, with a low rate of data
collection, for this channel unless the queue manager’s
ChannelMonitoring parameter is MQMON_NONE.

MQMON_MEDIUM
Online monitoring data collection is turned on, with a moderate rate of
data collection, for this channel unless the queue manager’s
ChannelMonitoring parameter is MQMON_NONE.

MQMON_HIGH
Online monitoring data collection is turned on, with a high rate of data
collection, for this channel unless the queue manager’s
ChannelMonitoring parameter is MQMON_NONE.

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

252 WebSphere MQ: Programmable Command Formats and Administration Interface



ChannelStatus (MQCFIN)
Channel status (parameter identifier: MQIACH_CHANNEL_STATUS).

The value can be:

MQCHS_BINDING
Channel is negotiating with the partner.

MQCHS_INACTIVE
Channel is not active.

MQCHS_STARTING
Channel is waiting to become active.

MQCHS_RUNNING
Channel is transferring or waiting for messages.

MQCHS_PAUSED
Channel is paused.

MQCHS_STOPPING
Channel is in process of stopping.

MQCHS_RETRYING
Channel is reattempting to establish connection.

MQCHS_STOPPED
Channel is stopped.

MQCHS_REQUESTING
Requester channel is requesting connection.

MQCHS_INITIALIZING
Channel is initializing.

This parameter is returned if the channel is a cluster-sender channel
(CLUSSDR) only.

ClusterDate (MQCFST)
Cluster date, in the form yyyy-mm-dd (parameter identifier:
MQCA_CLUSTER_DATE).

The date at which the information became available to the local queue
manager.

ClusterInfo (MQCFIN)
Cluster information (parameter identifier: MQIACF_CLUSTER_INFO).

The cluster information available to the local queue manager.

ClusterName (MQCFST)
Cluster name (parameter identifier: MQCA_CLUSTER_NAME).

ClusterTime (MQCFST)
Cluster time, in the form hh.mm.ss (parameter identifier:
MQCA_CLUSTER_TIME).

The time at which the information became available to the local queue
manager.

CLWLChannelPriority (MQCFIN)
Channel priority (parameter identifier:
MQIACH_CLWL_CHANNEL_PRIORITY).

CLWLChannelRank (MQCFIN)
Channel rank (parameter identifier: MQIACH_CLWL_CHANNEL_RANK).

Chapter 3. Definitions of the Programmable Command Formats 253



CLWLChannelWeight (MQCFIN)
Channel weighting (parameter identifier:
MQIACH_CLWL_CHANNEL_WEIGHT).

ConnectionName (MQCFST)
Connection name (parameter identifier: MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH. On z/OS,
it is MQ_LOCAL_ADDRESS_LENGTH.

DataConversion (MQCFIN)
Whether sender must convert application data (parameter identifier:
MQIACH_DATA_CONVERSION).

The value can be:

MQCDC_NO_SENDER_CONVERSION
No conversion by sender.

MQCDC_SENDER_CONVERSION
Conversion by sender.

DiscInterval (MQCFIN)
Disconnection interval (parameter identifier: MQIACH_DISC_INTERVAL).

HeaderCompression (MQCFIL)
Header data compression techniques supported by the channel (parameter
identifier: MQIACH_HDR_COMPRESSION). The values specified are in order
of preference.

The value can be one, or more, of

MQCOMPRESS_NONE
No header data compression is performed.

MQCOMPRESS_SYSTEM
Header data compression is performed.

HeartbeatInterval (MQCFIN)
Heartbeat interval (parameter identifier: MQIACH_HB_INTERVAL).

KeepAliveInterval (MQCFIN)
KeepAlive interval (parameter identifier: MQIACH_KEEP_ALIVE_INTERVAL).
This parameter applies to z/OS only.

LocalAddress (MQCFST)
Local communications address for the channel (parameter identifier:
MQCACH_LOCAL_ADDRESS).

The maximum length of the string is MQ_LOCAL_ADDRESS_LENGTH.

LongRetryCount (MQCFIN)
Long retry count (parameter identifier: MQIACH_LONG_RETRY).

LongRetryInterval (MQCFIN)
Long timer (parameter identifier: MQIACH_LONG_TIMER).

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIACH_MAX_MSG_LENGTH).

MCAName (MQCFST)
Message channel agent name (parameter identifier: MQCACH_MCA_NAME).

The maximum length of the string is MQ_MCA_NAME_LENGTH.

254 WebSphere MQ: Programmable Command Formats and Administration Interface



MCAType (MQCFIN)
Message channel agent type (parameter identifier: MQIACH_MCA_TYPE).

The value can be:

MQMCAT_PROCESS
Process.

MQMCAT_THREAD
Thread (Windows only).

MCAUserIdentifier (MQCFST)
Message channel agent user identifier (parameter identifier:
MQCACH_MCA_USER_ID).

The maximum length of the string is MQ_USER_ID_LENGTH.

MessageCompression (MQCFIL)
Message data compression techniques supported by the channel (parameter
identifier: MQIACH_MSG_COMPRESSION). The values specified are in order
of preference.

The value can be one, or more, of:

MQCOMPRESS_NONE
No message data compression is performed.

MQCOMPRESS_RLE
Message data compression is performed using run-length encoding.

MQCOMPRESS_ZLIBFAST
Message data compression is performed using ZLIB encoding with
speed prioritized.

MQCOMPRESS_ZLIBHIGH
Message data compression is performed using ZLIB encoding with
compression prioritized.

ModeName (MQCFST)
Mode name (parameter identifier: MQCACH_MODE_NAME).

The maximum length of the string is MQ_MODE_NAME_LENGTH.

MsgExit (MQCFST)
Message exit name (parameter identifier: MQCACH_MSG_EXIT_NAME).

The maximum length of the string is MQ_EXIT_NAME_LENGTH.

In the following environments, if more than one message exit has been defined
for the channel, the list of names is returned in an MQCFSL structure instead
of an MQCFST structure: AIX, HP-UX, i5/OS, Solaris, Linux, and Windows. An
MQCFSL structure is always used on z/OS.

MsgRetryCount (MQCFIN)
Message retry count (parameter identifier: MQIACH_MR_COUNT).

MsgRetryExit (MQCFST)
Message retry exit name (parameter identifier: MQCACH_MR_EXIT_NAME).

The maximum length of the string is MQ_EXIT_NAME_LENGTH.

MsgRetryInterval (MQCFIN)
Message retry interval (parameter identifier: MQIACH_MR_INTERVAL).

Chapter 3. Definitions of the Programmable Command Formats 255



MsgRetryUserData (MQCFST)
Message retry exit user data (parameter identifier:
MQCACH_MR_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

MsgUserData (MQCFST)
Message exit user data (parameter identifier:
MQCACH_MSG_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, if more than one message exit user data string
has been defined for the channel, the list of strings is returned in an MQCFSL
structure instead of an MQCFST structure: AIX, HP-UX, i5/OS, Solaris, Linux,
and Windows. An MQCFSL structure is always used on z/OS.

NetworkPriority (MQCFIN)
Network priority (parameter identifier: MQIACH_NETWORK_PRIORITY).

NonPersistentMsgSpeed (MQCFIN)
Speed at which non-persistent messages are to be sent (parameter identifier:
MQIACH_NPM_SPEED).

The value can be:

MQNPMS_NORMAL
Normal speed.

MQNPMS_FAST
Fast speed.

Password (MQCFST)
Password (parameter identifier: MQCACH_PASSWORD). This parameter is not
available on z/OS.

If a nonblank password is defined, it is returned as asterisks. Otherwise, it is
returned as blanks.

The maximum length of the string is MQ_PASSWORD_LENGTH. However,
only the first 10 characters are used.

PutAuthority (MQCFIN)
Put authority (parameter identifier: MQIACH_PUT_AUTHORITY).

The value can be:

MQPA_DEFAULT
Default user identifier is used.

MQPA_CONTEXT
Context user identifier is used.

MQPA_ALTERNATE_OR_MCA
The user identifier from the UserIdentifier field of the message
descriptor is used. Any user ID received from the network is not used.
This value is valid only on z/OS.

MQPA_ONLY_MCA
The default user identifier is used. Any user ID received from the
network is not used. This value is valid only on z/OS.

QMgrDefinitionType (MQCFIN)
Queue manager definition type (parameter identifier:
MQIACF_Q_MGR_DEFINITION_TYPE).

256 WebSphere MQ: Programmable Command Formats and Administration Interface



The value can be:

MQQMDT_EXPLICIT_CLUSTER_SENDER
A cluster-sender channel from an explicit definition.

MQQMDT_AUTO_CLUSTER_SENDER
A cluster-sender channel by auto-definition.

MQQMDT_CLUSTER_RECEIVER
A cluster-receiver channel.

MQQMDT_AUTO_EXP_CLUSTER_SENDER
A cluster-sender channel, both from an explicit definition and by
auto-definition.

QMgrIdentifier (MQCFST)
Queue manager identifier (parameter identifier: MQCA_Q_MGR_IDENTIFIER).

The unique identifier of the queue manager.

QMgrName (MQCFST)
Queue manager name (parameter identifier:
MQCA_CLUSTER_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QMgrType (MQCFIN)
Queue manager type (parameter identifier: MQIACF_Q_MGR_TYPE).

The value can be:

MQQMT_NORMAL
A normal queue manager.

MQQMT_REPOSITORY
A repository queue manager.

ReceiveExit (MQCFST)
Receive exit name (parameter identifier: MQCACH_RCV_EXIT_NAME).

The maximum length of the string is MQ_EXIT_NAME_LENGTH.

In the following environments, if more than one receive exit has been defined
for the channel, the list of names is returned in an MQCFSL structure instead
of an MQCFST structure: AIX, HP-UX, i5/OS, Solaris, Linux, and Windows. An
MQCFSL structure is always used on z/OS.

ReceiveUserData (MQCFST)
Receive exit user data (parameter identifier:
MQCACH_RCV_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, if more than one receive exit user data string
has been defined for the channel, the list of strings is returned in an MQCFSL
structure instead of an MQCFST structure: AIX, HP-UX, i5/OS, Solaris, Linux,
and Windows. An MQCFSL structure is always used on z/OS.

SecurityExit (MQCFST)
Security exit name (parameter identifier: MQCACH_SEC_EXIT_NAME).

The maximum length of the string is MQ_EXIT_NAME_LENGTH.

SecurityUserData (MQCFST)
Security exit user data (parameter identifier:
MQCACH_SEC_EXIT_USER_DATA).

Chapter 3. Definitions of the Programmable Command Formats 257

|
|

|



The maximum length of the string is MQ_EXIT_DATA_LENGTH.

SendExit (MQCFST)
Send exit name (parameter identifier: MQCACH_SEND_EXIT_NAME).

The maximum length of the string is MQ_EXIT_NAME_LENGTH.

In the following environments, if more than one send exit has been defined for
the channel, the list of names is returned in an MQCFSL structure instead of an
MQCFST structure: AIX, HP-UX, i5/OS, Solaris, Linux, and Windows. An
MQCFSL structure is always used on z/OS.

SendUserData (MQCFST)
Send exit user data (parameter identifier:
MQCACH_SEND_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, if more than one send exit user data string has
been defined for the channel, the list of strings is returned in an MQCFSL
structure instead of an MQCFST structure: AIX, HP-UX, i5/OS, Solaris, Linux,
and Windows. An MQCFSL structure is always used on z/OS.

SeqNumberWrap (MQCFIN)
Sequence wrap number (parameter identifier:
MQIACH_SEQUENCE_NUMBER_WRAP).

ShortRetryCount (MQCFIN)
Short retry count (parameter identifier: MQIACH_SHORT_RETRY).

ShortRetryInterval (MQCFIN)
Short timer (parameter identifier: MQIACH_SHORT_TIMER).

SSLCipherSpec (MQCFST)
CipherSpec (parameter identifier: MQCACH_SSL_CIPHER_SPEC).

The length of the string is MQ_SSL_CIPHER_SPEC_LENGTH.

SSLClientAuth (MQCFIN)
Client authentication (parameter identifier: MQIACH_SSL_CLIENT_AUTH).

The value can be:

MQSCA_REQUIRED
Client authentication required

MQSCA_OPTIONAL
Client authentication is optional.

Defines whether WebSphere MQ requires a certificate from the SSL client.

SSLPeerName (MQCFST)
Peer name (parameter identifier: MQCACH_SSL_PEER_NAME).

The length of the string is MQ_SSL_PEER_NAME_LENGTH. On z/OS, it is
MQ_SHORT_PEER_NAME_LENGTH.

Specifies the filter to use to compare with the Distinguished Name of the
certificate from the peer queue manager or client at the other end of the
channel. (A Distinguished Name is the identifier of the SSL certificate.) If the
Distinguished Name in the certificate received from the peer does not match
the SSLPEER filter, the channel does not start.

Suspend (MQCFIN)
Whether the queue manager is suspended (parameter identifier:
MQIACF_SUSPEND).

258 WebSphere MQ: Programmable Command Formats and Administration Interface



The value can be:

MQSUS_NO
The queue manager is not suspended from the cluster.

MQSUS_YES
The queue manager is suspended from the cluster.

TpName (MQCFST)
Transaction program name (parameter identifier: MQCACH_TP_NAME).

The maximum length of the string is MQ_TP_NAME_LENGTH.

TransportType (MQCFIN)
Transmission protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

The value can be:

MQXPT_LU62
LU 6.2.

MQXPT_TCP
TCP.

MQXPT_NETBIOS
NetBIOS.

MQXPT_SPX
SPX.

MQXPT_DECNET
DECnet.

UserIdentifier (MQCFST)
Task user identifier (parameter identifier: MQCACH_USER_ID). This
parameter is not available on z/OS.

The maximum length of the string is MQ_USER_ID_LENGTH. However, only
the first 10 characters are used.

Inquire Connection

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

The Inquire connection (MQCMD_INQUIRE_CONNECTION) command inquires
about the applications which are connected to the queue manager, the status of any
transactions that those applications are running, and the objects which the
application has open.

Required parameters :
ConnectionId, GenericConnectionId

Optional parameters:
ByteStringFilterCommand, CommandScope, ConnectionAttrs, ConnInfoType,
IntegerFilterCommand, StringFilterCommand,

Chapter 3. Definitions of the Programmable Command Formats 259



Required parameters (Inquire Connection)
ConnectionId (MQCFBS)

Connection identifier (parameter identifier: MQBACF_CONNECTION_ID).

This is the unique connection identifier associated with an application that is
connected to the queue manager. Specify either this parameter or
GenericConnectionId.

All connections are assigned a unique identifier by the queue manager
regardless of how the connection is established.

If you need to specify a generic connection identifier, use the
GenericConnectionId parameter instead.

The length of the string is MQ_CONNECTION_ID_LENGTH.

GenericConnectionId (MQCFBS)
Generic specification of a connection identifier (parameter identifier:
MQBACF_GENERIC_CONNECTION_ID).

Specify either this parameter or ConnectionId.

If you specify a byte string of zero length, or one which contains only null
bytes, information about all connection identifiers is returned. This is the only
value permitted for GenericConnectionId.

The length of the string is MQ_CONNECTION_ID_LENGTH.

Optional parameters (Inquire Connection)
ByteStringFilterCommand (MQCFBF)

Byte string filter command descriptor. The parameter identifier must be
MQBACF_EXTERNAL_UOW_ID, MQBACF_ORIGIN_UOW_ID, or
MQBACF_Q_MGR_UOW_ID. Use this to restrict the output from the
command by specifying a filter condition. See “MQCFBF - PCF byte string
filter parameter” on page 482 for information about using this filter condition.

If you specify a byte string filter, you cannot also specify an integer filter using
the IntegerFilterCommand parameter, or a string filter using the
StringFilterCommand parameter.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_Q_MGR_NAME_LENGTH.

You cannot use CommandScope as a parameter to filter on.

260 WebSphere MQ: Programmable Command Formats and Administration Interface



ConnectionAttrs (MQCFIL)
Connection attributes (parameter identifier: MQIACF_CONNECTION_ATTRS).

The attribute list can specify the following on its own (this is the default value
if the parameter is not specified) :

MQIACF_ALL
All attributes of the selected ConnInfoType.

or, if you select a value of MQIACF_CONN_INFO_CONN for ConnInfoType, a
combination of the following:

MQBACF_CONNECTION_ID
Connection identifier.

MQBACF_EXTERNAL_UOW_ID
External unit of recovery identifier associated with the connection.

MQBACF_ORIGIN_UOW_ID
Unit of recovery identifier assigned by the originator (valid on z/OS
only).

MQBACF_Q_MGR_UOW_ID
Unit of recovery identifier assigned by the queue manager.

MQCACF_APPL_TAG
Name of an application that is connected to the queue manager.

MQCACF_ASID
The 4–character address-space identifier of the application identified in
MQCACF_APPL_TAG (valid on z/OS only).

MQCACF_ORIGIN_NAME
Originator of the unit of recovery (valid on z/OS only).

MQCACF_PSB_NAME
The 8–character name of the program specification block (PSB)
associated with the running IMS transaction (valid on z/OS only).

MQCACF_PST_ID
The 4–character IMS program specification table (PST) region identifier
for the connected IMS region (valid on z/OS only).

MQCACF_TASK_NUMBER
A 7–digit CICS task number (valid on z/OS only).

MQCACF_TRANSACTION_ID
A 4–character CICS transaction identifier (valid on z/OS only).

MQCACF_UOW_LOG_EXTENT_NAME
Name of the first extent required to recover the transaction. This is not
valid on z/OS.

MQCACF_UOW_LOG_START_DATE
Date on which the transaction associated with the current connection
first wrote to the log.

MQCACF_UOW_LOG_START_TIME
Time at which the transaction associated with the current connection
first wrote to the log.

MQCACF_UOW_START_DATE
Date on which the transaction associated with the current connection
was started.

Chapter 3. Definitions of the Programmable Command Formats 261



MQCACF_UOW_START_TIME
Time at which the transaction associated with the current connection
was started.

MQCACF_USER_IDENTIFIER
User identifier of the application that is connected to the queue
manager.

MQCACH_CHANNEL_NAME
Name of the channel associated with the connected application.

MQCACH_CONNECTION_NAME
Connection name of the channel associated with the application.

MQIA_APPL_TYPE
Type of the application that is connected to the queue manager.

MQIACF_CONNECT_OPTIONS
Connect options currently in force for this application connection.

You cannot use the value MQCNO_STANDARD_BINDING as a filter
value.

MQIACF_PROCESS_ID
Process identifier of the application that is currently connected to the
queue manager.

This parameter is not valid on z/OS.

MQIACF_THREAD_ID
Thread identifier of the application that is currently connected to the
queue manager.

This parameter is not valid on z/OS.

MQIACF_UOW_STATE
State of the unit of work.

MQIACF_UOW_TYPE
Type of external unit of recovery identifier as understood by the queue
manager.

or, if you select a value of MQIACF_CONN_INFO_HANDLE for ConnInfoType,
a combination of the following:

MQCACF_OBJECT_NAME
Name of each object that the connection has open.

MQCACH_CONNECTION_NAME
Connection name of the channel associated with the application.

MQIA_QSG_DISP
Disposition of the object (valid on z/OS only).

You cannot use MQIA_QSG_DISP as a parameter to filter on.

MQIA_READ_AHEAD
The read ahead connection status.

MQIACF_HANDLE_STATE
Whether an API call is in progress.

MQIACF_OBJECT_TYPE
Type of each object that the connection has open.

262 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|



MQIACF_OPEN_OPTIONS
Options used by the connection to open each object.

or, if you select a value of MQIACF_CONN_INFO_ALL for ConnInfoType, any
of the above.

ConnInfoType (MQCFIN)
Type of connection information to be returned (parameter identifier:
MQIACF_CONN_INFO_TYPE).

The value can be:

MQIACF_CONN_INFO_CONN
Connection information. On z/OS, this includes threads which may be
logically or actually disassociated from a connection, together with
those that are in-doubt and for which external intervention is needed
to resolve them. This is the default value used if the parameter is not
specified.

MQIACF_CONN_INFO_HANDLE
Information pertaining only to those objects opened by the specified
connection.

MQIACF_CONN_INFO_ALL
Connection information and information about those objects that the
connection has open.

You cannot use ConnInfoType as a parameter to filter on.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in ConnectionAttrs except as noted and
MQIACF_ALL. Use this to restrict the output from the command by specifying
a filter condition. You cannot use the value MQCNO_STANDARD_BINDING
on the MQIACF_CONNECT_OPTIONS parameter with either the
MQCFOP_CONTAINS or MQCFOP_EXCLUDES operator. See “MQCFIF - PCF
integer filter parameter” on page 487 for information about using this filter
condition.

If you filter on MQIACF_CONNECT_OPTIONS or MQIACF_OPEN_OPTIONS,
in each case the filter value must have only one bit set.

If you specify an integer filter, you cannot also specify a byte string filter using
the ByteStringFilterCommand parameter or a string filter using the
StringFilterCommand parameter.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter allowed in ConnectionAttrs. Use this to restrict the output
from the command by specifying a filter condition. See “MQCFSF - PCF string
filter parameter” on page 494 for information about using this filter condition.

If you specify a string filter, you cannot also specify a byte string filter using
the ByteStringFilterCommand parameter or an integer filter using the
IntegerFilterCommand parameter.

Error codes (Inquire Connection)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Chapter 3. Definitions of the Programmable Command Formats 263



Reason (MQLONG)
The value can be:

MQRCCF_CONNECTION_ID_ERROR
Connection identifier not valid.

Inquire Connection (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

The response to the Inquire Connection (MQCMD_INQUIRE_CONNECTION)
command consists of the response header followed by the ConnectionId structure
and a set of attribute parameter structures determined by the value of
ConnInfoType in the Inquire command.

If the value of ConnInfoType was MQIACF_CONN_INFO_ALL, there is one
message for each connection found with MQIACF_CONN_INFO_CONN, and n
more messages per connection with MQIACF_CONN_INFO_HANDLE (where n is
the number of objects that the connection has open).

Always returned:
ConnectionId, ConnInfoType

Always returned if ConnInfoType is MQIACF_CONN_INFO_HANDLE:
ObjectName, ObjectType, QSGDisposition

Returned if requested and ConnInfoType is MQIACF_CONN_INFO_CONN:
ApplTag, ApplType, ASID, AsynchronousState, ChannelName, ConnectionName,
ConnectionOptions, OriginName, OriginUOWId, ProcessId, PSBName, PSTId,
QMgrUOWId, StartUOWLogExtent, TaskNumber, ThreadId, TransactionId,
UOWIdentifier, UOWLogStartDate, UOWLogStartTime, UOWStartDate,
UOWStartTime, UOWState, UOWType, , UserId

Returned if requested and ConnInfoType is MQIACF_CONN_INFO_HANDLE:
AsynchronousState, Destination, DestinationQueueManager, HandleState,
OpenOptions, ReadAhead, SubscriptionID,SubscriptionName, TopicString

Response data
ApplTag (MQCFST)

Application tag (parameter identifier: MQCACF_APPL_TAG).

The maximum length is MQ_APPL_TAG_LENGTH.

ApplType (MQCFIN)
Application type (parameter identifier: MQIA_APPL_TYPE).

The value can be:

MQAT_QMGR
Queue manager process.

MQAT_CHANNEL_INITIATOR
Channel initiator.

MQAT_USER
User application.

264 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|



MQAT_BATCH
Application using a batch connection (only on z/OS).

MQAT_RRS_BATCH
RRS–coordinated application using a batch connection (only on z/OS).

MQAT_CICS
CICS transaction (only on z/OS).

MQAT_IMS
IMS transaction (only on z/OS).

ASID (MQCFST)
Address space identifier (parameter identifier: MQCACF_ASID).

The 4-character address-space identifier of the application identified by
ApplTag. It distinguishes duplicate values of ApplTag.

This parameter is valid only on z/OS.

The length of the string is MQ_ASID_LENGTH.

AsynchronousState (MQCFIN)
The state of asynchronous consumption on this handle (parameter identifier:
MQIACF_ASYNC_STATE).

The value can be:

MQAS_NONE
If ConnInfoType is MQIACF_CONN_INFO_CONN, an MQCTL call has
not been issued against the handle. Asynchronous message
consumption cannot currently proceed on this connection. If
ConnInfoType is MQIACF_CONN_INFO_HANDLE, an MQCB call has
not been issued against this handle, so no asynchronous message
consumption is configured on this handle.

MQAS_SUSPENDED
The asynchronous consumption call back has been suspended so that
asynchronous message consumption cannot currently proceed on this
handle. This can be either because an MQCB or MQCTL call with
Operation MQOP_SUSPEND has been issued against this object handle
by the application, or because it has been suspended by the system. If
it has been suspended by the system, as part of the process of
suspending asynchronous message consumption the call back function
is called with the reason code that describes the problem resulting in
suspension. This is reported in the Reason field in the MQCBC
structure passed to the call back. In order for asynchronous message
consumption to proceed, the application must issue an MQCB or
MQCTL call with Operation MQOP_RESUME. This can be returned if
ConnInfoType is MQIACF_CONN_INFO_CONN or
MQIACF_CONN_INFO_HANDLE.

MQAS_SUSPENDED_TEMPORARY
The asynchronous consumption call back has been temporarily
suspended by the system so that asynchronous message consumption
cannot currently proceed on this object handle. As part of the process
of suspending asynchronous message consumption, the call back
function is called with the reason code that describes the problem
resulting in suspension. This is reported in the Reason field in the
MQCBC structure passed to the call back. The call back function is
called again when asynchronous message consumption is resumed by

Chapter 3. Definitions of the Programmable Command Formats 265

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|



the system when the temporary condition has been resolved. This is
returned only if ConnInfoType is MQIACF_CONN_INFO_HANDLE.

MQAS_STARTED
An MQCTL call with Operation MQOP_START has been issued against
the connection handle so that asynchronous message consumption can
proceed on this connection. This is returned only if ConnInfoType is
MQIACF_CONN_INFO_CONN.

MQAS_START_WAIT
An MQCTL call with Operation MQOP_START_WAIT has been issued
against the connection handle so that asynchronous message
consumption can proceed on this connection. This is returned only if
ConnInfoType is MQIACF_CONN_INFO_CONN.

MQAS_STOPPED
An MQCTL call with Operation MQOP_STOP has been issued against
the connection handle so that asynchronous message consumption
cannot currently proceed on this connection. This is returned only if
ConnInfoType is MQIACF_CONN_INFO_CONN.

MQAS_ACTIVE
An MQCB call has set up a function to call back to process messages
asynchronously and the connection handle has been started so that
asynchronous message consumption can proceed. This is returned only
if ConnInfoType is MQIACF_CONN_INFO_HANDLE.

MQAS_INACTIVE
An MQCB call has set up a function to call back to process messages
asynchronously but the connection handle has not yet been started, or
has been stopped or suspended, so that asynchronous message
consumption cannot currently proceed. This is returned only if
ConnInfoType is MQIACF_CONN_INFO_HANDLE.

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

ConnectionId (MQCFBS)
Connection identifier (parameter identifier: MQBACF_CONNECTION_ID).

The length of the string is MQ_CONNECTION_ID_LENGTH.

ConnectionName (MQCFST)
Connection name (parameter identifier: MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

ConnectionOptions (MQCFIL)
Connect options currently in force for the connection (parameter identifier:
MQIACF_CONNECT_OPTIONS).

ConnInfoType (MQCFIN)
Type of information returned (parameter identifier:
MQIACF_CONN_INFO_TYPE).

The value may be:

MQIACF_CONN_INFO_CONN
Generic information for the specified connection.

266 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|



MQIACF_CONN_INFO_HANDLE
Information pertinent only to those objects opened by the specified
connection.

Destination (MQCFST)
The destination queue for messages published to this subscription (parameter
identifier MQCACF_DESTINATION).

This parameter is relevant only for handles of subscriptions to topics.

DestinationQueueManager (MQCFST)
The destination queue manager for messages published to this subscription
(parameter identifier MQCACF_DESTINATION_Q_MGR).

This parameter is relevant only for handles of subscriptions to topics. If
Destination is a queue hosted on the local queue manager, this parameter
contains the local queue manager name. If Destination is a queue hosted on a
remote queue manager, this parameter contains the name of the remote queue
manager.

HandleState (MQCFIN)
State of the handle (parameter identifier: MQIACF_HANDLE_STATE).

The value may be:

MQHSTATE_ACTIVE
An API call from this connection is currently in progress for this object.
If the object is a queue, this condition can arise when an MQGET
WAIT call is in progress.

If there is an MQGET SIGNAL outstanding, then this does not mean,
by itself, that the handle is active.

MQHSTATE_INACTIVE
No API call from this connection is currently in progress for this object.
If the object is a queue, this condition can arise when no MQGET
WAIT call is in progress.

ObjectName (MQCFST)
Object name (parameter identifier: MQCACF_OBJECT_NAME).

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

ObjectType (MQCFIN)
Object type (parameter identifier: MQIACF_OBJECT_TYPE).

If this is a handle of a subscription to a topic, the SUBID parameter identifies
the subscription and can be used with the Inquire Subscription command to
find all the details about the subscription.

The value can be:

MQOT_Q
Queue.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process.

MQOT_Q_MGR
Queue manager.

Chapter 3. Definitions of the Programmable Command Formats 267

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|



MQOT_CHANNEL
Channel.

MQOT_AUTH_INFO
Authentication information object.

MQOT_TOPIC
Topic.

OpenOptions (MQCFIN)
Open options currently in force for the object for connection (parameter
identifier: MQIACF_OPEN_OPTIONS).

This parameter is not relevant for a subscription. Use the SUBID field of the
DISPLAY SUB command to find all the details about the subscription.

OriginName (MQCFST)
Origin name (parameter identifier: MQCACF_ORIGIN_NAME).

Identifies the originator of the unit of recovery, except where ApplType is
MQAT_RRS_BATCH when it is omitted.

This parameter is valid only on z/OS.

The length of the string is MQ_ORIGIN_NAME_LENGTH.

OriginUOWId (MQCFBS)
Origin UOW identifier (parameter identifier: MQBACF_ORIGIN_UOW_ID).

The unit of recovery identifier assigned by the originator. It is an 8–byte value.

This parameter is valid only on z/OS.

The length of the string is MQ_UOW_ID_LENGTH.

ProcessId (MQCFIN)
Process identifier (parameter identifier: MQIACF_PROCESS_ID).

PSBName (MQCFST)
Program specification block name (parameter identifier:
MQCACF_PSB_NAME).

The 8–character name of the program specification block (PSB) associated with
the running IMS transaction.

This parameter is valid only on z/OS.

The length of the string is MQ_PSB_NAME_LENGTH.

PSTId (MQCFST)
Program specification table identifier (parameter identifier: MQCACF_PST_ID).

The 4–character IMS program specification table (PST) region identifier for the
connected IMS region.

This parameter is valid only on z/OS.

The length of the string is MQ_PST_ID_LENGTH.

QMgrUOWId (MQCFBS)
Unit of recovery identifier assigned by the queue manager (parameter
identifier: MQBACF_Q_MGR_UOW_ID).

On z/OS platforms, this is returned as a 6–byte RBA. On platforms other than
z/OS, this is an 8–byte transaction identifier.

The maximum length of the string is MQ_UOW_ID_LENGTH.

268 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|



QSGDispositon (MQCFIN)
QSG disposition (parameter identifier: MQIA_QSG_DISP).

Specifies the disposition of the object (that is, where it is defined and how it
behaves). This is valid only on z/OS. The value can be:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_SHARED
The object is defined as MQQSGD_SHARED.

ReadAhead (MQCFIN)
The read ahead connection status (parameter identifier:
MQIA_READ_AHEAD).

The value can be:

MQREADA_NO
Read ahead of non-persistent messages is not enabled for the object
that the connection has open.

MQREADA_YES
Read ahead of non-persistent messages is enabled for the object that
the connection has open and is being used efficiently.

MQREADA_BACKLOG
Read ahead of non-persistent messages is enabled for this object. Read
ahead is not being used efficiently because the client has been sent a
large number of messages which are not being consumed.

MQREADA_INHIBITED
Read ahead was requested by the application but has been inhibited
because of incompatible options specified on the first MQGET call.

StartUOWLogExtent (MQCFST)
Name of the first extent needed to recover the transaction (parameter
identifier: MQCACF_UOW_LOG_EXTENT_NAME).

The 8–character name of the program specification block (PSB) associated with
the running IMS transaction.

This parameter is not valid on z/OS.

The maximum length of the string is MQ_LOG_EXTENT_NAME_LENGTH.

SubscriptionID (MQCFBS)
The internal, all time unique identifier of the subscription (parameter identifier
MQBACF_SUB_ID).

This parameter is relevant only for handles of subscriptions to topics.

Not all subscriptions can be seen using Inquire Connection; only those that
have current handles open to the subscriptions can be seen. Use the Inquire
Subscription command to see all subscriptions.

SubscriptionName (MQCFST)
The application’s unique subscription name associated with the handle
(parameter identifier MQCACF_SUB_NAME).

This parameter is relevant only for handles of subscriptions to topics. Not all
subscriptions will have a subscription name.

Chapter 3. Definitions of the Programmable Command Formats 269

|
|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|
|

|
|
|

|
|



ThreadId (MQCFIN)
Thread identifier (parameter identifier: MQIACF_THREAD_ID).

TopicString (MQCFST)
Resolved topic string (parameter identifier: MQCA_TOPIC_STRING).

This parameter is relevant for handles with an ObjectType or MQOT_TOPIC.
For any other object type, this parameter is blank.

TransactionId (MQCFST)
Transaction identifier (parameter identifier: MQCACF_TRANSACTION_ID).

The 4–character CICS transaction identifier.

This parameter is valid only on z/OS.

The maximum length of the string is MQ_TRANSACTION_ID_LENGTH.

UOWIdentifier (MQCFBS)
External unit of recovery identifier associated with the connection (parameter
identifier: MQBACF_EXTERNAL UOW_ID).

This is the recovery identifier for the unit of recovery. The value of UOWType
determines its format.

The maximum length of the byte string is MQ_UOW_ID_LENGTH.

UOWLogStartDate (MQCFST)
Logged unit of work start date, in the form yyyy-mm-dd (parameter identifier:
MQCACF_UOW_LOG_START_DATE).

The maximum length of the string is MQ_DATE_LENGTH.

UOWLogStartTime (MQCFST)
Logged unit of work start time, in the form hh.mm.ss (parameter identifier:
MQCACF_UOW_LOG_START_TIME).

The maximum length of the string is MQ_TIME_LENGTH.

UOWStartDate (MQCFST)
Unit of work creation date (parameter identifier:
MQCACF_UOW_START_DATE).

The maximum length of the string is MQ_DATE_LENGTH.

UOWStartTime (MQCFST)
Unit of work creation time (parameter identifier:
MQCACF_UOW_START_TIME).

The maximum length of the string is MQ_TIME_LENGTH.

UOWState (MQCFIN)
State of the unit of work (parameter identifier: MQIACF_UOW_STATE).

The value can be:

MQUOWST_NONE
There is no unit of work.

MQUOWST_ACTIVE
The unit of work is active.

MQUOWST_PREPARED
The unit of work is in the process of being committed.

MQUOWST_UNRESOLVED
The unit of work is in the second phase of a two-phase commit

270 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|

|



operation. WebSphere MQ holds resources on its behalf and external
intervention is required to resolve it. This might be as simple as
starting the recovery coordinator (such as CICS, IMS, or RRS) or it
might involve a more complex operation such as using the RESOLVE
INDOUBT command. This value can occur only on z/OS.

UOWType (MQCFIN)
Type of external unit of recovery identifier as perceived by the queue manager
(parameter identifier: MQIACF_UOW_TYPE).

The value can be:

MQUOWT_Q_MGR

MQUOWT_CICS

MQUOWT_RRS

MQUOWT_IMS

MQUOWT_XA

UserId (MQCFST)
User identifier (parameter identifier: MQCACF_USER_IDENTIFIER).

The maximum length of the string is MQ_MAX_USER_ID_LENGTH.

Inquire Entity Authority

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The Inquire Entity Authority (MQCMD_INQUIRE_ENTITY_AUTH) command
inquires about an entity’s authorizations to a specified object.

Required parameters:
EntityName, EntityType, ObjectName, ObjectType, Options

Optional parameters:
ProfileAttrs, ServiceComponent

Required parameters (Inquire Entity Authority)
EntityName (MQCFST)

Entity name (parameter identifier: MQCACF_ENTITY_NAME).

Depending on the value of EntityType, this is either:
v A principal name. This is the name of a user for whom to retrieve

authorizations to the specified object. On WebSphere MQ for Windows, the
name of the principal can optionally include a domain name, specified in
this format: user@domain.

v A group name. This is the name of the user group on which to make the
inquiry. You can specify one name only and this must be the name of an
existing user group. On WebSphere MQ for Windows, you can only use local
groups.

The maximum length of the string is MQ_ENTITY_NAME_LENGTH.

EntityType (MQCFIN)
Entity type (parameter identifier: MQIACF_ENTITY_TYPE).

Chapter 3. Definitions of the Programmable Command Formats 271

|



The value can be:

MQZAET_GROUP
The value of the EntityName parameter refers to a group name.

MQZAET_PRINCIPAL
The value of the EntityName parameter refers to a principal name.

ObjectName (MQCFST)
Object name (parameter identifier: MQCACF_OBJECT_NAME).

The name of the queue manager, queue, process definition or generic profile on
which to make the inquiry.

You must include this parameter unless the ObjectType is MQOT_Q_MGR, in
which case, you must omit it. If you do not include this parameter, it is
assumed that you are making an inquiry on the queue manager.

You cannot specify a generic object name although you can specify the name of
a generic profile.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

ObjectType (MQCFIN)
The type of object referred to by the profile (parameter identifier:
MQIACF_OBJECT_TYPE).

The value can be:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel object.

MQOT_CLNTCONN_CHANNEL
Client-connection channel object.

MQOT_LISTENER
Listener object.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process.

MQOT_Q
Queue, or queues, that match the object name parameter.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service object.

MQOT_TOPIC
Topic object.

Options (MQCFIN)
Options to control the set of authority records that is returned (parameter
identifier: MQIACF_AUTH_OPTIONS).

This parameter is required and you should set it to the value
MQAUTHOPT_CUMULATIVE. It returns a set of authorities representing the
cumulative authority that an entity has to a specified object.

272 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|



If a user ID is a member of more than one group, this command displays the
combined authorizations of all groups.

Optional parameters (Inquire Entity Authority)
ProfileAttrs (MQCFIL)

Profile attributes (parameter identifier: MQIACF_AUTH_PROFILE_ATTRS).

The attribute list might specify the following on its own (this is the default
value if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCACF_ENTITY_NAME
Entity name.

MQIACF_AUTHORIZATION_LIST
Authorization list.

MQIACF_ENTITY_TYPE
Entity type.

MQIACF_OBJECT_TYPE
Object type.

ServiceComponent (MQCFST)
Service component (parameter identifier: MQCACF_SERVICE_COMPONENT).

If installable authorization services are supported, this specifies the name of
the authorization service to which the authorizations apply.

If you omit this parameter, the authorization inquiry is made to the first
installable component for the service.

The maximum length of the string is MQ_SERVICE_COMPONENT_LENGTH.

Error codes (Inquire Entity Authority)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRC_UNKNOWN_ENTITY
User ID not authorized, or unknown.

MQRCCF_OBJECT_TYPE_MISSING
Object type missing.

Inquire Entity Authority (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

Chapter 3. Definitions of the Programmable Command Formats 273



Each response to the Inquire Entity Authority (MQCMD_INQUIRE_AUTH_RECS)
command consists of the response header followed by the QMgrName, Options, and
ObjectName structures and the requested combination of attribute parameter
structures.

Always returned:
ObjectName, Options, QMgrName

Returned if requested:
AuthorizationList, EntityName, EntityType, ObjectType

Response data
AuthorizationList (MQCFIL)

Authorization list(parameter identifier: MQIACF_AUTHORIZATION_LIST).

This list can contain zero or more authorization values. Each returned
authorization value means that any user ID in the specified group or principal
has the authority to perform the operation defined by that value. The value
can be:

MQAUTH_ALT_USER_AUTHORITY
Specify an alternate user ID on an MQI call.

MQAUTH_BROWSE
Retrieve a message from a queue by issuing an MQGET call with the
BROWSE option.

MQAUTH_CHANGE
Change the attributes of the specified object, using the appropriate
command set.

MQAUTH_CLEAR
Clear a queue.

MQAUTH_CONNECT
Connect the application to the specified queue manager by issuing an
MQCONN call.

MQAUTH_CREATE
Create objects of the specified type using the appropriate command set.

MQAUTH_DELETE
Delete the specified object using the appropriate command set.

MQAUTH_DISPLAY
Display the attributes of the specified object using the appropriate
command set.

MQAUTH_INPUT
Retrieve a message from a queue by issuing an MQGET call.

MQAUTH_INQUIRE
Make an inquiry on a specific queue by issuing an MQINQ call.

MQAUTH_OUTPUT
Put a message on a specific queue by issuing an MQPUT call.

MQAUTH_PASS_ALL_CONTEXT
Pass all context.

MQAUTH_PASS_IDENTITY_CONTEXT
Pass the identity context.

274 WebSphere MQ: Programmable Command Formats and Administration Interface



MQAUTH_SET
Set attributes on a queue from the MQI by issuing an MQSET call.

MQAUTH_SET_ALL_CONTEXT
Set all context on a queue.

MQAUTH_SET_IDENTITY_CONTEXT
Set the identity context on a queue.

MQAUTH_SUBSCRIBE
Subscribe to the specified topic.

MQAUTH_RESUME
Resume a subscription to the specified topic.

MQAUTH_PUBLISH
Publish to the specified topic.

Use the Count field in the MQCFIL structure to determine how many values
are returned.

EntityName (MQCFST)
Entity name (parameter identifier: MQCACF_ENTITY_NAME).

This can either be a principal name or a group name.

The maximum length of the string is MQ_ENTITY_NAME_LENGTH.

EntityType (MQCFIN)
Entity type (parameter identifier: MQIACF_ENTITY_TYPE).

The value can be:

MQZAET_GROUP
The value of the EntityName parameter refers to a group name.

MQZAET_PRINCIPAL
The value of the EntityName parameter refers to a principal name.

MQZAET_UNKNOWN
On Windows, an authority record still exists from a previous queue
manager which did not originally contain entity type information.

ObjectName (MQCFST)
Object name (parameter identifier: MQCACF_OBJECT_NAME).

The name of the queue manager, queue, process definition or generic profile on
which the inquiry is made.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

ObjectType (MQCFIN)
Object type (parameter identifier: MQIACF_OBJECT_TYPE).

The value can be:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel object.

MQOT_CLNTCONN_CHANNEL
Client-connection channel object.

MQOT_LISTENER
Listener object.

Chapter 3. Definitions of the Programmable Command Formats 275

|
|

|
|

|
|



MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process.

MQOT_Q
Queue, or queues, that match the object name parameter.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service object.

QMgrName (MQCFST)
Name of the queue manager on which the Inquire command is issued
(parameter identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

Inquire Group

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Inquire Group (MQCMD_INQUIRE_QSG) command inquires about the
queue-sharing group to which the queue manager is connected.

Note: This command is supported only on z/OS when the queue manager is a
member of a queue-sharing group.

Required parameters:
None

Optional parameters:
ObsoleteDB2Msgs

Optional parameters (Inquire Group)
ObsoleteDB2Msgs (MQCFIN)

Whether to look for obsolete DB2 messages (parameter identifier:
MQIACF_OBSOLETE_MSGS).

The value can be:

MQOM_NO
Obsolete messages in DB2 are not looked for. This is the default value
used if the parameter is not specified.

MQOM_YES
Obsolete messages in DB2 are looked for and messages containing
information about any found are returned.

276 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|

|
|
|

|

|
|
|

|
|
|



Inquire Group (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The response to the Inquire Group (MQCMD_INQUIRE_QSG) command consists
of the response header followed by the QMgrName structure and a number of other
parameter structures. One such message is generated for each queue manager in
the queue-sharing group. If there are any obsolete DB2 messages, and that
information is requested, one message, identified by a value of
MQCMDI_DB2_OBSOLETE_MSGS in the CommandInformation parameter, is
returned for each such message.

Always returned for the queue manager:
CommandLevel, DB2ConnectStatus, DB2Name, QmgrCPF, QMgrName, QmgrNumber,
QMgrStatus, QSGName

Always returned for obsolete DB2 messages:
CommandInformation, CFMsgIdentifier

Response data relating to the queue manager
CommandLevel (MQCFIN)

Command level supported by the queue manager (parameter identifier:
MQIA_COMMAND_LEVEL). The value can be:

MQCMDL_LEVEL_520
Level 520 of system control commands.

MQCMDL_LEVEL_530
Level 530 of system control commands.

MQCMDL_LEVEL_531
Level 531 of system control commands.

MQCMDL_LEVEL_600
Level 600 of system control commands.

DB2ConnectStatus (MQCFIN)
The current status of the connection to DB2 (parameter identifier:
MQIACF_DB2_CONN_STATUS).

The current status of the queue manager. The value can be:

MQQSGS_ACTIVE
The queue manager is running and is connected to DB2.

MQQSGS_INACTIVE
The queue manager is not running and is not connected to DB2.

MQQSGS_FAILED
The queue manager is running but not connected because DB2 has
terminated abnormally.

MQQSGS_PENDING
The queue manager is running but not connected because DB2 has
terminated normally.

MQQSGS_UNKNOWN
The status cannot be determined.

Chapter 3. Definitions of the Programmable Command Formats 277

|
|



DB2Name (MQCFST)
The name of the DB2 subsystem or group to which the queue manager is to
connect (parameter identifier: MQCACF_DB2_NAME).

The maximum length is MQ_Q_MGR_CPF_LENGTH.

QMgrCPF (MQCFST)
The command prefix of the queue manager (parameter identifier:
MQCA_Q_MGR_CPF).

The maximum length is MQ_Q_MGR_CPF_LENGTH.

QMgrName (MQCFST)
Name of the queue manager (parameter identifier: MQCA_Q_MGR_NAME).

The maximum length is MQ_Q_MGR_NAME_LENGTH.

QmgrNumber (MQCFIN)
The number, generated internally, of the queue manager in the
group.(parameter identifier: MQIACF_Q_MGR_NUMBER).

QMgrStatus (MQCFIN)
Recovery (parameter identifier: MQIACF_Q_MGR_STATUS).

The current status of the queue manager. The value can be:

MQQSGS_ACTIVE
The queue manager is running.

MQQSGS_INACTIVE
The queue manager is not running, having terminated normally.

MQQSGS_FAILED
The queue manager is not running, having terminated abnormally.

MQQSGS_CREATED
The queue manager has been defined to the group, but has not yet
been started.

MQQSGS_UNKNOWN
The status cannot be determined.

QSGName (MQCFST)
The name of the queue sharing group (parameter identifier:
MQCA_QSG_NAME).

The maximum length is MQ_QSG_NAME_LENGTH.

Response data relating to obsolete DB2 messages
CFMsgIdentifier (MQCFBS)

CF list entry identifier (parameter identifier: MQBACF_CF_LEID).

The maximum length is MQ_CF_LEID_LENGTH.

CommandInformation (MQCFIN)
Command information (parameter identifier: MQIACF_COMMAND_INFO).
This indicates whether queue managers in the group contain obsolete
messages. The value is MQCMDI_DB2_OBSOLETE_MSGS.

278 WebSphere MQ: Programmable Command Formats and Administration Interface



Inquire Log

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Inquire Log (MQCMD_INQUIRE_LOG) command returns log system
parameters and information.

Required parameters:
None

Optional parameters:
CommandScope

Optional parameters (Inquire Log)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

Inquire Log (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The response to the Inquire Log (MQCMD_INQUIRE_LOG) command consists of
the response header followed by the ParameterType structure and the combination
of attribute parameter structures determined by the value of ParameterType.

Always returned:
ParameterType. Specifies the type of archive information being returned.
The value can be:

MQSYSP_TYPE_INITIAL
The initial settings of the log parameters.

MQSYSP_TYPE_SET
The settings of the log parameters if they have been altered since
their initial setting.

Chapter 3. Definitions of the Programmable Command Formats 279



MQSYSP_TYPE_LOG_COPY
Information relating to the active log copy.

MQSYSP_TYPE_LOG_STATUS
Information relating to the status of the logs.

Returned if ParameterType is MQSYSP_TYPE_INITIAL (one message is
returned):

DeallocateInterval, DualArchive, DualActive, DualBSDS, InputBufferSize,
LogArchive, MaxArchiveLog, MaxReadTapeUnits, OutputBufferCount,
OutputBufferSize

Returned if ParameterType is MQSYSP_TYPE_SET and any value is set (one
message is returned):

DeallocateInterval, DualArchive, DualActive, DualBSDS, InputBufferSize,
LogArchive, MaxArchiveLog, MaxReadTapeUnits, OutputBufferCount,
OutputBufferSize

Returned if ParameterType is MQSYSP_TYPE_LOG_COPY (one message is
returned for each log copy):

DataSetName, LogCopyNumber, LogUsed

Returned if ParameterType is MQSYSP_TYPE_LOG_STATUS (one message is
returned):

FullLogs, LogRBA, LogSuspend, OffloadStatus, QMgrStartDate, QMgrStartRBA,
QMgrStartTime, TotalLogs

Response data - log parameter information
DeallocateInterval (MQCFIN)

Deallocation interval (parameter identifier:
MQIACF_SYSP_DEALLOC_INTERVAL).

Specifies the length of time, in minutes, that an allocated archive read tape unit
is allowed to remain unused before it is deallocated. The value can be in the
range zero through 1440. If it is zero, the tape unit is deallocated immediately.
If it is 1440, the tape unit is never deallocated.

DualActive (MQCFIN)
Specifies whether dual logging is being used (parameter identifier:
MQIACF_SYSP_DUAL_ACTIVE).

The value can be:

MQSYSP_YES
Dual logging is being used.

MQSYSP_NO
Dual logging is not being used.

DualArchive (MQCFIN)
Specifies whether dual archive logging is being used (parameter identifier:
MQIACF_SYSP_DUAL_ARCHIVE).

The value can be:

MQSYSP_YES
Dual archive logging is being used.

MQSYSP_NO
Dual archive logging is not being used.

280 WebSphere MQ: Programmable Command Formats and Administration Interface



DualBSDS (MQCFIN)
Specifies whether dual BSDS is being used (parameter identifier:
MQIACF_SYSP_DUAL_BSDS).

The value can be:

MQSYSP_YES
Dual BSDS is being used.

MQSYSP_NO
Dual BSDS is not being used.

InputBufferSize (MQCFIN)
Specifies the size of input buffer storage for active and archive log data sets
(parameter identifier: MQIACF_SYSP_IN_BUFFER_SIZE).

LogArchive (MQCFIN)
Specifies whether archiving is on or off (parameter identifier:
MQIACF_SYSP_ARCHIVE).

The value can be:

MQSYSP_YES
Archiving is on.

MQSYSP_NO
Archiving is off.

MaxArchiveLog (MQCFIN)
Specifies the maximum number of archive log volumes that can be recorded in
the BSDS (parameter identifier: MQIACF_SYSP_MAX_ARCHIVE).

MaxReadTapeUnits (MQCFIN)
Specifies the maximum number of dedicated tape units that can be allocated to
read archive log tape volumes (parameter identifier:
MQIACF_SYSP_MAX_READ_TAPES).

OutputBufferCount (MQCFIN)
Specifies the number of output buffers to be filled before they are written to
the active log data sets (parameter identifier:
MQIACF_SYSP_OUT_BUFFER_COUNT).

OutputBufferSize (MQCFIN)
Specifies the size of output buffer storage for active and archive log data sets
(parameter identifier: MQIACF_SYSP_OUT_BUFFER_SIZE).

Response data - to log status information
DataSetName (MQCFST)

The data set name of the active log data set (parameter identifier:
MQCACF_DATA_SET_NAME).

If the copy is not currently active, this is returned as blank.

The maximum length of the string is
MQ_DATA_DATA_SET_NAME_LENGTH.

FullLogs (MQCFIN)
The total number of full active log data sets that have not yet been archived
(parameter identifier: MQIACF_SYSP_FULL_LOGS).

LogCopyNumber (MQCFIN)
Copy number (parameter identifier: MQIACF_SYSP_LOG_COPY).

Chapter 3. Definitions of the Programmable Command Formats 281



LogRBA (MQCFST)
The RBA of the most recently written log record (parameter identifier:
MQCACF_SYSP_LOG_RBA).

The maximum length of the string is MQ_RBA_LENGTH.

LogSuspend (MQCFIN)
Specifies whether logging is suspended (parameter identifier:
MQIACF_SYSP_LOG_SUSPEND).

The value can be:

MQSYSP_YES
Logging is suspended.

MQSYSP_NO
Logging is not suspended.

LogUsed (MQCFIN)
The percentage of the active log data set that has been used (parameter
identifier: MQIACF_SYSP_LOG_USED).

OffloadStatus (MQCFIN)
Specifies the status of the offload task (parameter identifier:
MQIACF_SYSP_OFFLOAD_STATUS).

The value can be:

MQSYSP_STATUS_ALLOCATING_ARCHIVE
The offload task is busy, allocating the archive data set. This could
indicate that a tape mount request is pending.

MQSYSP_STATUS_COPYING_BSDS
The offload task is busy, copying the BSDS data set.

MQSYSP_STATUS_COPYING_LOG
The offload task is busy, copying the active log data set.

MQSYSP_STATUS_BUSY
The offload task is busy with other processing.

MQSYSP_STATUS_AVAILABLE
The offload task is waiting for work.

QMgrStartDate (MQCFST)
The date on which the queue manager was started, in the form yyyy-mm-dd
(parameter identifier: MQCACF_SYSP_Q_MGR_DATE).

The maximum length of the string is MQ_DATE_LENGTH.

QMgrStartRBA (MQCFST)
The RBA from which logging began when the queue manager was started
(parameter identifier: MQCACF_SYSP_Q_MGR_RBA).

The maximum length of the string is MQ_RBA_LENGTH.

QMgrStartTime (MQCFST)
The time that the queue manager was started, in the form hh.mm.ss (parameter
identifier: MQCACF_SYSP_Q_MGR_TIME).

The maximum length of the string is MQ_TIME_LENGTH.

TotalLogs (MQCFIN)
The total number of active log data sets (parameter identifier:
MQIACF_SYSP_TOTAL_LOGS).

282 WebSphere MQ: Programmable Command Formats and Administration Interface



Inquire Namelist

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Inquire Namelist (MQCMD_INQUIRE_NAMELIST) command inquires about
the attributes of existing WebSphere MQ namelists.

Required parameters:
NamelistName

Optional parameters:
CommandScope, IntegerFilterCommand, NamelistAttrs, QSGDisposition,
StringFilterCommand

Required parameters (Inquire Namelist)
NamelistName (MQCFST)

Namelist name (parameter identifier: MQCA_NAMELIST_NAME).

This is the name of the namelist whose attributes are required. Generic
namelist names are supported. A generic name is a character string followed
by an asterisk (*), for example ABC*, and it selects all namelists having names
that start with the selected character string. An asterisk on its own matches all
possible names.

The namelist name is always returned regardless of the attributes requested.

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

Optional parameters (Inquire Namelist)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

You cannot use CommandScope as a parameter to filter on.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in NamelistAttrs except MQIACF_ALL. Use

Chapter 3. Definitions of the Programmable Command Formats 283



this to restrict the output from the command by specifying a filter condition.
See “MQCFIF - PCF integer filter parameter” on page 487 for information
about using this filter condition.

If you specify an integer filter for NamelistType (MQIA_NAMELIST_TYPE),
you cannot also specify the NamelistType parameter.

If you specify an integer filter, you cannot also specify a string filter using the
StringFilterCommand parameter.

NamelistAttrs (MQCFIL)
Namelist attributes (parameter identifier: MQIACF_NAMELIST_ATTRS).

The attribute list might specify the following on its own (this is the default
value if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCA_NAMELIST_NAME
Name of namelist object.

MQCA_NAMELIST_DESC
Namelist description.

MQCA_NAMES
Names in the namelist.

MQCA_ALTERATION_DATE
The date on which the information was last altered.

MQCA_ALTERATION_TIME
The time at which the information was last altered.

MQIA_NAME_COUNT
Number of names in the namelist.

MQIA_NAMELIST_TYPE
Namelist type (valid only on z/OS)

NamelistType (MQCFIN)
Namelist attributes (parameter identifier: MQIA_NAMELIST_TYPE). This
parameter applies to z/OS only.

Specifies the type of names in the namelist. The value can be:

MQNT_NONE
The names are of no particular type.

MQNT_Q
A namelist that holds a list of queue names.

MQNT_CLUSTER
A namelist that is associated with clustering, containing a list of the
cluster names.

MQNT_AUTH_INFO
The namelist is associated with SSL, and contains a list of
authentication information object names.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

284 WebSphere MQ: Programmable Command Formats and Administration Interface



Specifies the disposition of the object for which information is to be returned
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_LIVE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. This
is the default value if the parameter is not specified.

MQQSGD_ALL
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY.

If there is a shared queue manager environment, and the command is
being executed on the queue manager where it was issued, this option
also displays information for objects defined with MQQSGD_GROUP.

If MQQSGD_LIVE is specified or defaulted, or if MQQSGD_ALL is
specified in a shared queue manager environment, the command might
give duplicated names (with different dispositions).

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP. This is permitted only in a
shared queue environment.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_PRIVATE
The object is defined as either MQQSGD_Q_MGR or MQQSGD_COPY.
Note that MQQSGD_PRIVATE returns the same information as
MQQSGD_LIVE.

You cannot use QSGDisposition as a parameter to filter on.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter allowed in NamelistAttrs except MQCA_NAMELIST_NAME.
Use this to restrict the output from the command by specifying a filter
condition. See “MQCFSF - PCF string filter parameter” on page 494 for
information about using this filter condition.

If you specify a string filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

Inquire Namelist (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The response to the Inquire Namelist (MQCMD_INQUIRE_NAMELIST) command
consists of the response header followed by the NamelistName structure and the
requested combination of attribute parameter structures. If a generic namelist name
was specified, one such message is generated for each namelist found.

Always returned:
NamelistName, QSGDisposition

Chapter 3. Definitions of the Programmable Command Formats 285



Returned if requested:
AlterationDate, AlterationTime, NameCount , NamelistDesc, NamelistType,
Names

Response data
AlterationDate (MQCFST)

Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered, in the form yyyy-mm-dd.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered, in the form hh.mm.ss .

NameCount (MQCFIN)
Number of names in the namelist (parameter identifier:
MQIA_NAME_COUNT).

The number of names contained in the namelist.

NamelistDesc (MQCFST)
Description of namelist definition (parameter identifier:
MQCA_NAMELIST_DESC).

The maximum length of the string is MQ_NAMELIST_DESC_LENGTH.

NamelistName (MQCFST)
The name of the namelist definition (parameter identifier:
MQCA_NAMELIST_NAME).

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

NamelistType (MQCFIN)
Type of names in the namelist (parameter identifier: MQIA_NAMELIST_TYPE).
This parameter applies to z/OS only.

Specifies the type of names in the namelist . The value can be:

MQNT_NONE
The names are of no particular type.

MQNT_Q
A namelist that holds a list of queue names.

MQNT_CLUSTER
A namelist that is associated with clustering, containing a list of the
cluster names.

MQNT_AUTH_INFO
The namelist is associated with SSL, and contains a list of
authentication information object names.

Names (MQCFSL)
A list of the names contained in the namelist (parameter identifier:
MQCA_NAMES).

The number of names in the list is given by the Count field in the MQCFSL
structure. The length of each name is given by the StringLength field in that
structure. The maximum length of a name is MQ_OBJECT_NAME_LENGTH.

QSGDisposition (MQCFIN)
QSG disposition (parameter identifier: MQIA_QSG_DISP).

286 WebSphere MQ: Programmable Command Formats and Administration Interface



Specifies the disposition of the object (that is, where it is defined and how it
behaves). This parameter apples only to z/OS. The value can be:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

Inquire Namelist Names

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Inquire Namelist Names (MQCMD_INQUIRE_NAMELIST_NAMES) command
inquires for a list of namelist names that match the generic namelist name
specified.

Required parameters:
NamelistName

Optional parameters:
CommandScope, QSGDisposition

Required parameters (Inquire Namelist Names)
NamelistName (MQCFST)

Name of namelist (parameter identifier: MQCA_NAMELIST_NAME).

Generic namelist names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all objects having
names that start with the selected character string. An asterisk on its own
matches all possible names.

Optional parameters (Inquire Namelist Names)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 287



QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object for which information is to be returned
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_LIVE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. This
is the default value if the parameter is not specified.

MQQSGD_ALL
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY.

If there is a shared queue manager environment, and the command is
being executed on the queue manager where it was issued, this option
also displays information for objects defined with MQQSGD_GROUP.

If MQQSGD_LIVE is specified or defaulted, or if MQQSGD_ALL is
specified in a shared queue manager environment, the command might
give duplicated names (with different dispositions).

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP. This is permitted only in a
shared queue environment.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_PRIVATE
The object is defined with either MQQSGD_Q_MGR or
MQQSGD_COPY. Note that MQQSGD_PRIVATE returns the same
information as MQQSGD_LIVE.

Inquire Namelist Names (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The response to the Inquire Namelist Names
(MQCMD_INQUIRE_NAMELIST_NAMES) command consists of the response
header followed by a single parameter structure giving zero or more names that
match the specified namelist name.

In addition to this, on z/OS only, the QSGDispositions structure (with the same
number of entries as the NamelistNames structure) is returned. Each entry in this
structure indicates the disposition of the object with the corresponding entry in the
NamelistNames structure.

Always returned:
NamelistNames, QSGDispositions

Returned if requested:
None

288 WebSphere MQ: Programmable Command Formats and Administration Interface



Response data
NamelistNames (MQCFSL)

List of namelist names (parameter identifier: MQCACF_NAMELIST_NAMES).

QSGDispositions (MQCFIL)
List of QSG dispositions (parameter identifier: MQIACF_QSG_DISPS). This
parameter is valid only on z/OS. Possible values for fields in this structure are:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP. This is permitted only in a
shared queue environment.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

Inquire Process

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Inquire Process (MQCMD_INQUIRE_PROCESS) command inquires about the
attributes of existing WebSphere MQ processes.

Required parameters:
ProcessName

Optional parameters:
CommandScope, IntegerFilterCommand, ProcessAttrs, QSGDisposition,
StringFilterCommand

Required parameters (Inquire Process)
ProcessName (MQCFST)

Process name (parameter identifier: MQCA_PROCESS_NAME).

Generic process names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all processes
having names that start with the selected character string. An asterisk on its
own matches all possible names.

The process name is always returned regardless of the attributes requested.

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

Optional parameters (Inquire Process)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.

Chapter 3. Definitions of the Programmable Command Formats 289



v a queue manager name. The command is executed on the queue manager
you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

You cannot use CommandScope as a parameter to filter on.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in ProcessAttrs except MQIACF_ALL. Use
this to restrict the output from the command by specifying a filter condition.
See “MQCFIF - PCF integer filter parameter” on page 487 for information
about using this filter condition.

If you specify an integer filter, you cannot also specify a string filter using the
StringFilterCommand parameter.

ProcessAttrs (MQCFIL)
Process attributes (parameter identifier: MQIACF_PROCESS_ATTRS).

The attribute list might specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCA_ALTERATION_DATE
The date at which the information was last altered.

MQCA_ALTERATION_TIME
The time at which the information was last altered.

MQCA_APPL_ID
Application identifier.

MQCA_ENV_DATA
Environment data.

MQCA_PROCESS_DESC
Description of process definition.

MQCA_PROCESS_NAME
Name of process definition.

MQCA_USER_DATA
User data.

MQIA_APPL_TYPE
Application type.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object for which information is to be returned
(that is, where it is defined and how it behaves). The value can be:

290 WebSphere MQ: Programmable Command Formats and Administration Interface



MQQSGD_LIVE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. This
is the default value if the parameter is not specified.

MQQSGD_ALL
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY.

If there is a shared queue manager environment, and the command is
being executed on the queue manager where it was issued, this option
also displays information for objects defined with MQQSGD_GROUP.

If MQQSGD_LIVE is specified or defaulted, or if MQQSGD_ALL is
specified in a shared queue manager environment, the command might
give duplicated names (with different dispositions).

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP. This is permitted only in a
shared queue environment.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_PRIVATE
The object is defined as either MQQSGD_Q_MGR or MQQSGD_COPY.
Note that MQQSGD_PRIVATE returns the same information as
MQQSGD_LIVE.

You cannot use QSGDisposition as a parameter to filter on.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter allowed in ProcessAttrs except MQCA_PROCESS_NAME. Use
this to restrict the output from the command by specifying a filter condition.
See “MQCFSF - PCF string filter parameter” on page 494 for information about
using this filter condition.

If you specify a string filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

Inquire Process (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The response to the Inquire Process (MQCMD_INQUIRE_PROCESS) command
consists of the response header followed by the ProcessName structure and the
requested combination of attribute parameter structures. If a generic process name
was specified, one such message is generated for each process found.

Always returned:
ProcessName, QSGDisposition

Returned if requested:
AlterationDate, AlterationTime, ApplId, ApplType, EnvData, ProcessDesc,
UserData

Chapter 3. Definitions of the Programmable Command Formats 291



Response data
AlterationDate (MQCFST)

Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered, in the form yyyy-mm-dd.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered, in the form hh.mm.ss.

ApplId (MQCFST)
Application identifier (parameter identifier: MQCA_APPL_ID).

The maximum length of the string is MQ_PROCESS_APPL_ID_LENGTH.

ApplType (MQCFIN)
Application type (parameter identifier: MQIA_APPL_TYPE).

The value can be:

MQAT_AIX
AIX application (same value as MQAT_UNIX)

MQAT_CICS
CICS transaction

MQAT_DOS
DOS client application

MQAT_MVS
z/OS application

MQAT_OS2
OS/2 or Presentation Manager application

MQAT_OS400
i5/OS application

MQAT_QMGR
Queue manager

MQAT_UNIX
UNIX application

MQAT_WINDOWS
16–bit Windows application

MQAT_WINDOWS_NT
32–bit Windows application

integer System-defined application type in the range zero through 65 535 or a
user-defined application type in the range 65 536 through 999 999 999

EnvData (MQCFST)
Environment data (parameter identifier: MQCA_ENV_DATA).

The maximum length of the string is MQ_PROCESS_ENV_DATA_LENGTH.

ProcessDesc (MQCFST)
Description of process definition (parameter identifier:
MQCA_PROCESS_DESC).

The maximum length of the string is MQ_PROCESS_DESC_LENGTH.

292 WebSphere MQ: Programmable Command Formats and Administration Interface



ProcessName (MQCFST)
The name of the process definition (parameter identifier:
MQCA_PROCESS_NAME).

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

QSGDisposition (MQCFIN)
QSG disposition (parameter identifier: MQIA_QSG_DISP).

Specifies the disposition of the object (that is, where it is defined and how it
behaves). This parameter is valid on z/OS only. The value can be:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

UserData (MQCFST)
User data (parameter identifier: MQCA_USER_DATA).

The maximum length of the string is MQ_PROCESS_USER_DATA_LENGTH.

Inquire Process Names

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Inquire Process Names (MQCMD_INQUIRE_PROCESS_NAMES) command
inquires for a list of process names that match the generic process name specified.

Required parameters:
ProcessName

Optional parameters:
CommandScope, QSGDisposition

Required parameters (Inquire Process Names)
ProcessName (MQCFST)

Name of process-definition for queue (parameter identifier:
MQCA_PROCESS_NAME).

Generic process names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all objects having
names that start with the selected character string. An asterisk on its own
matches all possible names.

Optional parameters (Inquire Process Names)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:

Chapter 3. Definitions of the Programmable Command Formats 293



v blank (or omit the parameter altogether). The command is executed on the
queue manager on which it was entered.

v a queue manager name. The command is executed on the queue manager
you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object for which information is to be returned
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_LIVE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. This
is the default value if the parameter is not specified.

MQQSGD_ALL
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY.

If there is a shared queue manager environment, and the command is
being executed on the queue manager where it was issued, this option
also displays information for objects defined with MQQSGD_GROUP.

If MQQSGD_LIVE is specified or defaulted, or if MQQSGD_ALL is
specified in a shared queue manager environment, the command might
give duplicated names (with different dispositions).

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP. This is permitted only in a
shared queue environment.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_PRIVATE
The object is defined with either MQQSGD_Q_MGR or
MQQSGD_COPY. Note that MQQSGD_PRIVATE returns the same
information as MQQSGD_LIVE.

Inquire Process Names (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The response to the Inquire Process Names
(MQCMD_INQUIRE_PROCESS_NAMES) command consists of the response
header followed by a single parameter structure giving zero or more names that
match the specified process name.

294 WebSphere MQ: Programmable Command Formats and Administration Interface



In addition to this, on z/OS only, a parameter structure, QSGDispositions (with the
same number of entries as the ProcessNames structure) is returned. Each entry in
this structure indicates the disposition of the object with the corresponding entry in
the ProcessNames structure.

This response is not supported on Windows.

Always returned:
ProcessNames, QSGDispositions

Returned if requested:
None

Response data
ProcessNames (MQCFSL)

List of process names (parameter identifier: MQCACF_PROCESS_NAMES).

QSGDispositions (MQCFIL)
List of QSG dispositions (parameter identifier: MQIACF_QSG_DISPS). This
parameter applies only to z/OS. Possible values for fields in this structure are:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

Inquire Pub/Sub Status
The Inquire Pub/Sub Status (MQCMD_INQUIRE_PUBSUB_STATUS) command
inquires about the status of publish/subscribe connections.

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

Required parameters:
None

Optional parameters:
PubSubStatusAttrs, Type

Optional parameters
PubSubStatusAttrs (MQCFIL)

Publish/subscribe status attributes (parameter identifier:
MQIACF_PUBSUB_STATUS_ATTRS).

The attribute list might specify the following on its own (this is the default
value if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

Chapter 3. Definitions of the Programmable Command Formats 295

|

|
|

|
|
|
||
|
|||

||||||
|

|
|

|
|

|

|
|
|

|
|

|
|

|



MQIA_PUBSUB_STATUS
Hierarchy status.

MQIACF_PS_STATUS_TYPE
Hierarchy type.

Type (MQCFIN)
Type (parameter identifier: MQIACF_PS_STATUS_TYPE).

The type can specify one of the following:

MQPSST_ALL
Return status of both parent and child connections. This is the default
value if the parameter is not specified.

MQPSST_LOCAL
Return local status information.

MQPSST_PARENT
Return status of the parent connection.

MQPSST_CHILD
Return status of the child connections.

Inquire Pub/Sub Status (Response)
The response to the Inquire Pub/Sub Status
(MQCMD_INQUIRE_PUBSUB_STATUS) command consists of the response header
followed by the attribute structures.

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X 2CR

A group of parameters is returned containing the following attributes: Type,
QueueManagerName, and Status.

Always returned:
QueueManagerName, Status, Type

Returned if requested:
None

Response data
QueueManagerName (MQCFST)

Either the name of the local queue manager when TYPE is LOCAL, or the
name of the hierarchically connected queue manager (parameter identifier:
MQCA_Q_MGR_NAME).

Type (MQCFIN)
Type of status that is being returned (parameter identifier: MQIACF_PS_
STATUS_TYPE).

The value can be:

MQPSST_CHILD
Publish/subscribe status for a child hierarchical connection.

MQPSST_LOCAL
Publish/subscribe status for the local queue manager.

296 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|

|
|

|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
||
|
|||

||||||
|

|
|

|
|

|
|

|

|
|
|
|

|
|
|

|

|
|

|
|



MQPSST_PARENT
Publish/subscribe status for the parent hierarchical connection.

Status (MQCFIN)
The status of the publish/subscribe engine or the hierarchical connection
(parameter identifier: MQIA_PUBSUB_STATUS).

When TYPE is LOCAL the following values can be returned:

MQPS_STATUS_ACTIVE
The publish/subscribe engine and the queued publish/subscribe
interface are running. It is therefore possible to publish or subscribe
using the application programming interface and the queues that are
monitored by the queued publish/subscribe interface respectively.

MQPS_STATUS_COMPAT
The publish/subscribe engine is running. It is therefore possible to
publish or subscribe using the application programming interface. The
queued publish/subscribe interface is not running. Therefore, any
message that is put to the queues monitored by the queued
publish/subscribe interface will not be acted upon by WebSphere MQ.

MQPS_STATUS_ERROR
The publish/subscribe engine has failed. Check your error logs to
determine the reason for the failure.

MQPS_STATUS_INACTIVE
The publish/subscribe engine and the queued publish/subscribe
interface are not running. It is therefore not possible to publish or
subscribe using the application programming interface. Any
publish/subscribe messages that are put to the queues that are
monitored by the queued publish/subscribe interface will not be acted
upon by Websphere MQ.

MQPS_STATUS_STARTING
The publish/subscribe engine is initializing and is not yet operational.

MQPS_STATUS_STOPPING
The publish/subscribe engine is stopping.

When TYPE is PARENT, the following values can be returned:

MQPS_STATUS_ACTIVE
The connection with the parent queue manager is active.

MQPS_STATUS_ERROR
This queue manager is unable to initialize a connection with the parent
queue manager because of a configuration error.

Possible causes include:
v Transmit queue not defined
v Transmit queue put disabled

MQPS_STATUS_REFUSED
The connection has been refused by the parent queue manager.

This may be caused by the parent queue manager already having
another child queue manager of the same name as this queue manager.

Alternatively, the parent queue manager has used the RESET QMGR
TYPE(PUBSUB) CHILD command to remove this queue manager as
one of its children.

Chapter 3. Definitions of the Programmable Command Formats 297

|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|

|

|
|

|
|
|

|

|

|

|
|

|
|

|
|
|



MQPS_STATUS_STARTING
The queue manager is attempting to request that another queue
manager become its parent.

MQPS_STATUS_STOPPING
The queue manager is disconnecting from its parent.

When TYPE is CHILD, the following values can be returned:

MQPS_STATUS_ACTIVE
The connection with the parent queue manager is active.

MQPS_STATUS_ERROR
This queue manager is unable to initialize a connection with the parent
queue manager because of a configuration error.

Possible causes include:
v Transmit queue not defined
v Transmit queue put disabled

MQPS_STATUS_STARTING
The queue manager is attempting to request that another queue
manager become its parent.

MQPS_STATUS_STOPPING
The queue manager is disconnecting from its parent.

Inquire Queue

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Inquire Queue (MQCMD_INQUIRE_Q) command inquires about the attributes
of WebSphere MQ queues.

Required parameters:
QName

Optional parameters:
ClusterInfo, ClusterName, ClusterNamelist, CommandScope,
IntegerFilterCommand, PageSetID, QAttrs, QSGDisposition, QType,
StringFilterCommand

Required parameters (Inquire Queue)
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

Generic queue names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all queues having
names that start with the selected character string. An asterisk on its own
matches all possible names.

The queue name is always returned, regardless of the attributes requested.

The maximum length of the string is MQ_Q_NAME_LENGTH.

298 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|

|

|
|

|
|
|

|

|

|

|
|
|

|
|

|



Optional parameters (Inquire Queue)
CFStructure (MQCFST)

Storage class (parameter identifier: MQCA_CF_STRUC_NAME). Specifies the
name of the storage class. This parameter is valid only on z/OS.

This specifies that eligible queues are limited to those having the specified
CFStructure value. If this is not specified, then all queues are eligible.

Generic CF structure names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all CF structures
having names that start with the selected character string. An asterisk on its
own matches all possible names.

The maximum length of the string is MQ_CF_STRUC_NAME_LENGTH.

ClusterInfo (MQCFIN)
Cluster information (parameter identifier: MQIACF_CLUSTER_INFO).

This parameter requests that, in addition to information about attributes of
queues defined on this queue manager, cluster information about these and
other queues in the repository that match the selection criteria will be
displayed.

In this case, there might be multiple queues with the same name displayed.
The cluster information is shown with a queue type of MQQT_CLUSTER.

You can set this parameter to any integer value, the value used does not affect
the response to the command.

The cluster information is obtained locally from the queue manager.

ClusterName (MQCFST)
Cluster name (parameter identifier: MQCA_CLUSTER_NAME).

This specifies that eligible queues are limited to those having the specified
ClusterName value. If this is not specified, then all queues are eligible.

Generic cluster names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all clusters having
names that start with the selected character string. An asterisk on its own
matches all possible names.

The maximum length of the string is MQ_CLUSTER_NAME_LENGTH.

ClusterNamelist (MQCFST)
Cluster namelist (parameter identifier: MQCA_CLUSTER_NAMELIST).

This specifies that eligible queues are limited to those having the specified
ClusterNameList value. If this is not specified, then all queues are eligible.

Generic cluster namelists are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all cluster
namelists having names that start with the selected character string. An
asterisk on its own matches all possible names.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.

Chapter 3. Definitions of the Programmable Command Formats 299

|
|



v a queue manager name. The command is executed on the queue manager
you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

You cannot use CommandScope as a parameter to filter on.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in QAttrs except MQIACF_ALL. Use this to
restrict the output from the command by specifying a filter condition. See
“MQCFIF - PCF integer filter parameter” on page 487 for information about
using this filter condition.

If you specify an integer filter for Qtype or PageSetID, you cannot also specify
the Qtype or PageSetID parameter.

If you specify an integer filter, you cannot also specify a string filter using the
StringFilterCommand parameter.

PageSetID (MQCFIN)
Page set identifier (parameter identifier: MQIA_PAGESET_ID). This parameter
applies to z/OS only.

This specifies that eligible queues are limited to those having the specified
PageSetID value. If this is not specified, then all queues are eligible.

QAttrs (MQCFIL)
Queue attributes (parameter identifier: MQIACF_Q_ATTRS).

The attribute list might specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the parameters in the following table:

Table 8. Inquire Queue command, queue attributes

Local queue Model queue Alias queue Remote
queue

Cluster
queue

MQCA_ALTERATION_DATE

The date on which the information was
last altered

X X X X X

MQCA_ALTERATION_TIME

The time at which the information was
last altered

X X X X X

MQCA_BACKOUT_REQ_Q_NAME

Excessive backout requeue name
X X

MQCA_BASE_NAME

Name of queue that alias resolves to
X

300 WebSphere MQ: Programmable Command Formats and Administration Interface



Table 8. Inquire Queue command, queue attributes (continued)

Local queue Model queue Alias queue Remote
queue

Cluster
queue

MQCA_CF_STRUC_NAME

Coupling facility structure name. This
attribute is valid on z/OS only

X X

MQCA_CLUSTER_DATE

Date when the definition became
available to the local queue manager

X

MQCA_CLUSTER_NAME

Cluster name
X X X X

MQCA_CLUSTER_NAMELIST

Cluster namelist
X X X

MQCA_CLUSTER_Q_MGR_NAME

Queue manager name that hosts the
queue

X

MQCA_CLUSTER_TIME

Time when the definition became
available to the local queue manager

X

MQCA_CREATION_DATE

Queue creation date
X X

MQCA_CREATION_TIME

Queue creation time
X X

MQCA_INITIATION_Q_NAME

Initiation queue name
X X

MQCA_PROCESS_NAME

Name of process definition
X X

MQCA_Q_DESC

Queue description

X X X X X

MQCA_Q_MGR_IDENTIFIER

Internally generated queue manager
name

X

MQCA_Q_NAME

Queue name
X X X X X

MQCA_REMOTE_Q_MGR_NAME

Name of remote queue manager
X

MQCA_REMOTE_Q_NAME

Name of remote queue as known locally
on the remote queue manager

X

Chapter 3. Definitions of the Programmable Command Formats 301



Table 8. Inquire Queue command, queue attributes (continued)

Local queue Model queue Alias queue Remote
queue

Cluster
queue

MQCA_STORAGE_CLASS

Storage class. This is valid on z/OS only
X X

MQCA_TPIPE_NAME

The TPIPE name used for
communication with OTMA using the
WebSphere MQ IMS Bridge

X

MQCA_TRIGGER_DATA

Trigger data
X X

MQCA_XMIT_Q_NAME

Transmission queue name
X

MQIA_ACCOUNTING_Q

Accounting data collection
X X

MQIA_BACKOUT_THRESHOLD

Backout threshold
X X

MQIA_BASE_TYPE

Type of object
X X X X X

MQIA_CLUSTER_Q_TYPE

Cluster queue type
X

MQIA_CLWL_Q_PRIORITY

Cluster workload queue priority
X X X X

MQIA_CLWL_Q_RANK

Cluster workload queue rank
X X X X

MQIA_CLWL_USEQ

Cluster workload use remote setting
X

MQIA_CURRENT_Q_DEPTH

Number of messages on queue
X

MQIA_DEF_BIND

Default binding
X X X X

MQIA_DEF_INPUT_OPEN_OPTION

Default open-for-input option
X X

MQIA_DEF_PERSISTENCE

Default message persistence
X X X X X

MQIA_DEF_PRIORITY

Default message priority
X X X X X

302 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|
|||||



Table 8. Inquire Queue command, queue attributes (continued)

Local queue Model queue Alias queue Remote
queue

Cluster
queue

MQIA_DEF_PUT_RESPONSE_TYPE

Default put response type
X X X X X

MQIA_DEF_READ_AHEAD

Default put response type
X X X X X

MQIA_DEFINITION_TYPE

Queue definition type
X X

MQIA_DIST_LISTS

Distribution list support. This is not
valid on z/OS

X X

MQIA_HARDEN_GET_BACKOUT

Whether to harden backout count
X X

MQIA_INDEX_TYPE

Index type. This attribute is valid on
z/OS only.

X X

MQIA_INHIBIT_GET

Whether get operations are allowed
X X X

MQIA_INHIBIT_PUT

Whether put operations are allowed
X X X X X

MQIA_MAX_MSG_LENGTH

Maximum message length
X X

MQIA_MAX_Q_DEPTH

Maximum number of messages allowed
on queue

X X

MQIA_MONITORING_Q

Online monitoring data collection
X X

MQIA_MSG_DELIVERY_SEQUENCE

Whether message priority is relevant
X X

MQIA_NPM_CLASS

Level of reliability assigned to
non-persistent messages that are put to
the queue

X X

MQIA_OPEN_INPUT_COUNT

Number of MQOPEN calls that have the
queue open for input

X

MQIA_OPEN_OUTPUT_COUNT

Number of MQOPEN calls that have the
queue open for output

X

Chapter 3. Definitions of the Programmable Command Formats 303

|

|
|||||

|

|
|||||



Table 8. Inquire Queue command, queue attributes (continued)

Local queue Model queue Alias queue Remote
queue

Cluster
queue

MQIA_PAGESET_ID

Page set identifier
X

MQIA_PROPERTY_CONTROL

Property control attribute
X X X

MQIA_Q_DEPTH_HIGH_EVENT

Control attribute for queue depth high
events.

You cannot use this as a filter attribute.

X X

MQIA_Q_DEPTH_HIGH_LIMIT

High limit for queue depth
X X

MQIA_Q_DEPTH_LOW_EVENT

Control attribute for queue depth low
events.

You cannot use this as a filter attribute.

X X

MQIA_Q_DEPTH_LOW_LIMIT

Low limit for queue depth
X X

MQIA_Q_DEPTH_MAX_EVENT

Control attribute for queue depth max
events

X X

MQIA_Q_SERVICE_INTERVAL

Limit for queue service interval
X X

MQIA_Q_SERVICE_INTERVAL_
EVENT

Control attribute for queue service
interval events

X X

MQIA_Q_TYPE

Queue type
X X X X X

MQIA_RETENTION_INTERVAL

Queue retention interval
X X

MQIA_SCOPE

Queue definition scope. This is not valid
on z/OS or i5/OS

X X X

MQIA_SHAREABILITY

Whether queue can be shared
X X

MQIA_STATISTICS_Q

Statistics data collection. This is valid
only on AIX, HP-UX, Linux, i5/OS,
Solaris, and Windows.

X X

304 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|

|

|



Table 8. Inquire Queue command, queue attributes (continued)

Local queue Model queue Alias queue Remote
queue

Cluster
queue

MQIA_TRIGGER_CONTROL

Trigger control
X X

MQIA_TRIGGER_DEPTH

Trigger depth
X X

MQIA_TRIGGER_MSG_PRIORITY

Threshold message priority for triggers
X X

MQIA_TRIGGER_MTYPE

Trigger type
X X

MQIA_USAGE

Usage
X X

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object for which information is to be returned
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_LIVE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. If
there is a shared queue manager environment, and the command is
being executed on the queue manager where it was issued, this also
returns information for objects defined with MQQSGD_SHARED. This
is the default value if the parameter is not specified.

MQQSGD_ALL
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY.

If there is a shared queue manager environment, and the command is
being executed on the queue manager where it was issued, this option
also displays information for objects defined with MQQSGD_GROUP
or MQQSGD_SHARED.

If MQQSGD_LIVE is specified or defaulted, or if MQQSGD_ALL is
specified in a shared queue manager environment, the command might
give duplicated names (with different dispositions).

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP. This is permitted only in a
shared queue environment.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_PRIVATE
The object is defined with either MQQSGD_Q_MGR or
MQQSGD_COPY.

Chapter 3. Definitions of the Programmable Command Formats 305



MQQSGD_SHARED
The object is defined as MQQSGD_SHARED. This is permitted only in
a shared queue environment.

You cannot use QSGDisposition as a parameter to filter on.

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

If this parameter is present, eligible queues are limited to those of the specified
type. Any attribute selector specified in the QAttrs list which is valid only for
queues of a different type or types is ignored; no error is raised.

If this parameter is not present (or if MQQT_ALL is specified), queues of all
types are eligible. Each attribute specified must be a valid queue attribute
selector (that is, it must be one of those in the following list), but it need not be
applicable to all (or any) of the queues actually returned. Queue attribute
selectors that are valid but not applicable to the queue are ignored, no error
messages occur and no attribute is returned. The value can be:

MQQT_ALL
All queue types.

MQQT_LOCAL
Local queue.

MQQT_ALIAS
Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

MQQT_CLUSTER
Cluster queue.

MQQT_MODEL
Model queue definition.

Note: On platforms other than z/OS, if this parameter is present, it must occur
immediately after the QName parameter.

StorageClass (MQCFST)
Storage class (parameter identifier: MQCA_STORAGE_CLASS). Specifies the
name of the storage class. This parameter is valid only on z/OS.

This specifies that eligible queues are limited to those having the specified
StorageClass value. If this is not specified, then all queues are eligible.

Generic names are supported. A generic name is a character string followed by
an asterisk (*), for example ABC*, and it selects all storage classes having
names that start with the selected character string. An asterisk on its own
matches all possible names.

The maximum length of the string is MQ_STORAGE_CLASS_LENGTH.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter allowed in QAttrs except MQCA_Q_NAME. Use this to restrict
the output from the command by specifying a filter condition. See “MQCFSF -
PCF string filter parameter” on page 494 for information about using this filter
condition.

If you specify a string filter for ClusterName, ClusterNameList, StorageClass, or
CFStructure, you cannot also specify that as a parameter.

306 WebSphere MQ: Programmable Command Formats and Administration Interface



If you specify a string filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

Error codes (Inquire Queue)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_Q_TYPE_ERROR
Queue type not valid.

Inquire Queue (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The response to the Inquire Queue (MQCMD_INQUIRE_Q) command consists of
the response header followed by the QName structure, and, on z/OS only, the
QSGDisposition structure, and the requested combination of attribute parameter
structures. If a generic queue name was specified, or cluster queues requested
(either by using MQQT_CLUSTER or MQIACF_CLUSTER_INFO), one such
message is generated for each queue found.

Always returned:
QName, QSGDisposition, QType

Returned if requested:
AlterationDate, AlterationTime, BackoutRequeueName, BackoutThreshold,
BaseQName, CFStructure, ClusterDate, ClusterName, ClusterNamelist,
ClusterQType, ClusterTime, CLWLQueuePriority, CLWLQueueRank, CLWLUseQ,
CreationDate, CreationTime, CurrentQDepth, DefaultPutResponse, DefBind,
DefinitionType, DefInputOpenOption, DefPersistence, DefPriority,
DefReadAhead, DistLists, HardenGetBackout, IndexType, InhibitGet,
InhibitPut, InitiationQName, MaxMsgLength, MaxQDepth,
MsgDeliverySequence, NonPersistentMessageClass, OpenInputCount,
OpenOutputCount, PageSetID, ProcessName, PropertyControl,
QDepthHighEvent, QDepthHighLimit, QDepthLowEvent, QDepthLowLimit,
QDepthMaxEvent, QDesc, QMgrIdentifier, QMgrName, QServiceInterval,
QServiceIntervalEvent, QueueAccounting, QueueMonitoring,
QueueStatistics, RemoteQMgrName, RemoteQName, RetentionInterval, Scope,
Shareability, StorageClass, TpipeNames, TriggerControl, TriggerData,
TriggerDepth, TriggerMsgPriority, TriggerType, Usage, XmitQName

Response data
AlterationDate (MQCFST)

Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered, in the form yyyy-mm-dd.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

Chapter 3. Definitions of the Programmable Command Formats 307

|

|

|



The time when the information was last altered, in the form hh.mm.ss.

BackoutRequeueName (MQCFST)
Excessive backout requeue name (parameter identifier:
MQCA_BACKOUT_REQ_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

BackoutThreshold (MQCFIN)
Backout threshold (parameter identifier: MQIA_BACKOUT_THRESHOLD).

BaseQName (MQCFST)
Queue name to which the alias resolves (parameter identifier:
MQCA_BASE_Q_NAME).

This is the name of a queue that is defined to the local queue manager.

The maximum length of the string is MQ_Q_NAME_LENGTH.

CFStructure (MQCFST)
Coupling facility structure name (parameter identifier:
MQCA_CF_STRUC_NAME). This parameter applies to z/OS only.

Specifies the name of the coupling facility structure where you want to store
messages when you use shared queues.

The maximum length of the string is MQ_CF_STRUC_NAME_LENGTH.

ClusterDate (MQCFST)
Cluster date (parameter identifier: MQCA_CLUSTER_DATE).

The date on which the information became available to the local queue
manager, in the form yyyy-mm-dd.

ClusterName (MQCFST)
Cluster name (parameter identifier: MQCA_CLUSTER_NAME).

ClusterNamelist (MQCFST)
Cluster namelist (parameter identifier: MQCA_CLUSTER_NAMELIST).

ClusterQType (MQCFIN)
Cluster queue type (parameter identifier: MQIA_CLUSTER_Q_TYPE).

The value can be:

MQCQT_LOCAL_Q
The cluster queue represents a local queue.

MQCQT_ALIAS_Q
The cluster queue represents an alias queue.

MQCQT_REMOTE_Q
The cluster queue represents a remote queue.

MQCQT_Q_MGR_ALIAS
The cluster queue represents a queue manager alias.

ClusterTime (MQCFST)
Cluster time (parameter identifier: MQCA_CLUSTER_TIME).

The time at which the information became available to the local queue
manager, in the form hh.mm.ss.

CLWLQueuePriority (MQCFIN)
Cluster workload queue priority (parameter identifier:
MQIA_CLWL_Q_PRIORITY).

308 WebSphere MQ: Programmable Command Formats and Administration Interface



Priority of the queue in cluster workload management. The value is in the
range zero through 9, where zero is the lowest priority and 9 is the highest.

CLWLQueueRank (MQCFIN)
Cluster workload queue rank (parameter identifier: MQIA_CLWL_Q_RANK).

Rank of the queue in cluster workload management. The value is in the range
zero through 9, where zero is the lowest rank and 9 is the highest.

CLWLUseQ (MQCFIN)
Cluster workload queue rank (parameter identifier: MQIA_CLWL_USEQ).

The value can be:

MQCLWL_USEQ_AS_Q_MGR
Use the value of the CLWLUseQ parameter on the queue manager’s
definition.

MQCLWL_USEQ_ANY
Use remote and local queues.

MQCLWL_USEQ_LOCAL
Do not use remote queues.

CreationDate (MQCFST)
Queue creation date, in the form yyyy-mm-dd (parameter identifier:
MQCA_CREATION_DATE).

The maximum length of the string is MQ_CREATION_DATE_LENGTH.

CreationTime (MQCFST)
Creation time, in the form hh.mm.ss (parameter identifier:
MQCA_CREATION_TIME).

The maximum length of the string is MQ_CREATION_TIME_LENGTH.

CurrentQDepth (MQCFIN)
Current queue depth (parameter identifier: MQIA_CURRENT_Q_DEPTH).

DefaultPutResponse (MQCFIN)
Default put response type definition (parameter identifier:
MQIA_DEF_PUT_RESPONSE_TYPE).

The parameter specifies the type of response to be used for put operations to
the queue when an application specifies MQPMO_RESPONSE_AS_Q_DEF. The
value can be:

MQPRT_SYNC_RESPONSE
The put operation is issued synchronously, returning a response.

MQPRT_ASYNC_RESPONSE
The put operation is issued asynchronously, returning a subset of
MQMD fields.

DefBind (MQCFIN)
Default binding (parameter identifier: MQIA_DEF_BIND).

The value can be:

MQBND_BIND_ON_OPEN
Binding fixed by MQOPEN call.

MQBND_BIND_NOT_FIXED
Binding not fixed.

Chapter 3. Definitions of the Programmable Command Formats 309

|
|
|

|
|
|

|
|

|
|
|



DefinitionType (MQCFIN)
Queue definition type (parameter identifier: MQIA_DEFINITION_TYPE).

The value can be:

MQQDT_PREDEFINED
Predefined permanent queue.

MQQDT_PERMANENT_DYNAMIC
Dynamically defined permanent queue.

MQQDT_SHARED_DYNAMIC
Dynamically defined shared queue. This option is available on z/OS
only.

MQQDT_TEMPORARY_DYNAMIC
Dynamically defined temporary queue.

DefInputOpenOption (MQCFIN)
Default input open option for defining whether queues can be shared
(parameter identifier: MQIA_DEF_INPUT_OPEN_OPTION).

The value can be:

MQOO_INPUT_EXCLUSIVE
Open queue to get messages with exclusive access.

MQOO_INPUT_SHARED
Open queue to get messages with shared access.

DefPersistence (MQCFIN)
Default persistence (parameter identifier: MQIA_DEF_PERSISTENCE).

The value can be:

MQPER_PERSISTENT
Message is persistent.

MQPER_NOT_PERSISTENT
Message is not persistent.

DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY).

DefReadAhead (MQCFIN)
Default read ahead (parameter identifier: MQIA_DEF_READ_AHEAD).

Specifies the default read ahead behavior for non-persistent messages delivered
to the client.

The value can be:

MQREADA_NO
Non-persistent messages are not sent ahead to the client before an
applications requests them. A maximum of one non-persistent message
can be lost if the client ends abnormally.

MQREADA_YES
Non-persistent messages are sent ahead to the client before an
application requests them. Non-persistent messages can be lost if the
client ends abnormally or if the client does not consume all the
messages it is sent.

MQREADA_DISABLED
Read ahead of non-persistent messages in not enabled for this queue.

310 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|

|



Messages are not sent ahead to the client regardless of whether read
ahead is requested by the client application.

DistLists (MQCFIN)
Distribution list support (parameter identifier: MQIA_DIST_LISTS).

The value can be:

MQDL_SUPPORTED
Distribution lists supported.

MQDL_NOT_SUPPORTED
Distribution lists not supported.

This parameter is supported in the following environments: AIX, HP-UX,
i5/OS, Solaris, Windows and Linux.

HardenGetBackout (MQCFIN)
Whether to harden backout (parameter identifier:
MQIA_HARDEN_GET_BACKOUT).

The value can be:

MQQA_BACKOUT_HARDENED
Backout count remembered.

MQQA_BACKOUT_NOT_HARDENED
Backout count may not be remembered.

IndexType (MQCFIN)
Index type (parameter identifier: MQIA_INDEX_TYPE). This parameter applies
to z/OS only.

Specifies the type of index maintained by the queue manager to expedite
MQGET operations on the queue. The value can be:

MQIT_NONE
No index.

MQIT_MSG_ID
The queue is indexed using message identifiers.

MQIT_CORREL_ID
The queue is indexed using correlation identifiers.

MQIT_MSG_TOKEN
The queue is indexed using message tokens.

MQIT_GROUP_ID
The queue is indexed using group identifiers.

InhibitGet (MQCFIN)
Whether get operations are allowed (parameter identifier:
MQIA_INHIBIT_GET).

The value can be:

MQQA_GET_ALLOWED
Get operations are allowed.

MQQA_GET_INHIBITED
Get operations are inhibited.

InhibitPut (MQCFIN)
Whether put operations are allowed (parameter identifier:
MQIA_INHIBIT_PUT).

Chapter 3. Definitions of the Programmable Command Formats 311



The value can be:

MQQA_PUT_ALLOWED
Put operations are allowed.

MQQA_PUT_INHIBITED
Put operations are inhibited.

InitiationQName (MQCFST)
Initiation queue name (parameter identifier: MQCA_INITIATION_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier: MQIA_MAX_MSG_LENGTH).

MaxQDepth (MQCFIN)
Maximum queue depth (parameter identifier: MQIA_MAX_Q_DEPTH).

MsgDeliverySequence (MQCFIN)
Whether priority is relevant (parameter identifier:
MQIA_MSG_DELIVERY_SEQUENCE).

The value can be:

MQMDS_PRIORITY
Messages are returned in priority order.

MQMDS_FIFO
Messages are returned in FIFO order (first in, first out).

NonPersistentMessageClass (MQCFIN)
The level of reliability assigned to non-persistent messages that are put to the
queue (parameter identifier: MQIA_NPM_CLASS).

Specifies the circumstances under which non-persistent messages put to the
queue may be lost. The value can be:

MQNPM_CLASS_NORMAL
Non-persistent messages are limited to the lifetime of the queue
manager session. They are discarded in the event of a queue manager
restart. This is the default value.

MQNPM_CLASS_HIGH
The queue manager attempts to retain non-persistent messages for the
lifetime of the queue. Non-persistent messages may still be lost in the
event of a failure.

OpenInputCount (MQCFIN)
Number of MQOPEN calls that have the queue open for input (parameter
identifier: MQIA_OPEN_INPUT_COUNT).

OpenOutputCount (MQCFIN)
Number of MQOPEN calls that have the queue open for output (parameter
identifier: MQIA_OPEN_OUTPUT_COUNT).

PageSetID (MQCFIN)
Page set identifier (parameter identifier: MQIA_PAGESET_ID).

Specifies the identifier of the page set on which the queue resides.

This parameter applies to z/OS only when the queue is actively associated
with a page set.

312 WebSphere MQ: Programmable Command Formats and Administration Interface



ProcessName (MQCFST)
Name of process definition for queue (parameter identifier:
MQCA_PROCESS_NAME).

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

PropertyControl (MQCFIN)
Property control attribute (parameter identifier
MQIA_PROPERTY_CONTROL).

Specifies how message properties are handled for messages that are retrieved
from queues using the MQGET call with the
MQGMO_PROPERTIES_AS_Q_DEF option. The value can be:

MQPROP_COMPATIBILITY
If the message contains a property with a prefix of mcd., jms., usr. or
mqext., all message properties are delivered to the application in an
MQRFH2 header. Otherwise all properties of the message, except those
contained in the message descriptor (or extension), are discarded and
are no longer accessible to the application.

This is the default value; it allows applications which expect JMS
related properties to be in an MQRFH2 header in the message data to
continue to work unmodified.

MQPROP_NONE
All properties of the message, except those in the message descriptor
(or extension), are removed from the message before the message is
sent to the remote queue manager.

MQPROP_ALL
All properties of the message are included with the message when it is
sent to the remote queue manager. The properties, except those in the
message descriptor (or extension), are placed in one or more MQRFH2
headers in the message data.

MQPROP_FORCE_MQRFH2
Properties are always returned in the message data in an MQRFH2
header regardless of whether the application specifies a message
handle.

A valid message handle supplied in the MsgHandle field of the
MQGMO structure on the MQGET call is ignored. Properties of the
message are not accessible via the message handle.

This parameter is applicable to Local, Alias and Model queues.

QDepthHighEvent (MQCFIN)
Controls whether Queue Depth High events are generated (parameter
identifier: MQIA_Q_DEPTH_HIGH_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDepthHighLimit (MQCFIN)
High limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_HIGH_LIMIT).

Chapter 3. Definitions of the Programmable Command Formats 313

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|



The threshold against which the queue depth is compared to generate a Queue
Depth High event.

QDepthLowEvent (MQCFIN)
Controls whether Queue Depth Low events are generated (parameter
identifier: MQIA_Q_DEPTH_LOW_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDepthLowLimit (MQCFIN)
Low limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_LOW_LIMIT).

The threshold against which the queue depth is compared to generate a Queue
Depth Low event.

QDepthMaxEvent (MQCFIN)
Controls whether Queue Full events are generated (parameter identifier:
MQIA_Q_DEPTH_MAX_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDesc (MQCFST)
Queue description (parameter identifier: MQCA_Q_DESC).

The maximum length of the string is MQ_Q_DESC_LENGTH.

QMgrIdentifier (MQCFST)
Queue manager identifier (parameter identifier: MQCA_Q_MGR_IDENTIFIER).

The unique identifier of the queue manager.

QMgrName (MQCFST)
Name of local queue manager (parameter identifier:
MQCA_CLUSTER_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name (parameter identifier: MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

QServiceInterval (MQCFIN)
Target for queue service interval (parameter identifier:
MQIA_Q_SERVICE_INTERVAL).

The service interval used for comparison to generate Queue Service Interval
High and Queue Service Interval OK events.

QServiceIntervalEvent (MQCFIN)
Controls whether Service Interval High or Service Interval OK events are
generated (parameter identifier: MQIA_Q_SERVICE_INTERVAL_EVENT).

The value can be:

314 WebSphere MQ: Programmable Command Formats and Administration Interface



MQQSIE_HIGH
Queue Service Interval High events enabled.

MQQSIE_OK
Queue Service Interval OK events enabled.

MQQSIE_NONE
No queue service interval events enabled.

QSGDisposition (MQCFIN)
QSG disposition (parameter identifier: MQIA_QSG_DISP).

Specifies the disposition of the object (that is, where it is defined and how it
behaves). This is valid only on z/OS. The value can be:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_SHARED
The object is defined as MQQSGD_SHARED.

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

The value can be:

MQQT_ALIAS
Alias queue definition.

MQQT_CLUSTER
Cluster queue definition.

MQQT_LOCAL
Local queue.

MQQT_REMOTE
Local definition of a remote queue.

MQQT_MODEL
Model queue definition.

QueueAccounting (MQCFIN)
Controls the collection of accounting (thread-level and queue-level accounting)
data (parameter identifier: MQIA_ACCOUNTING_Q).

The value can be:

MQMON_Q_MGR
The collection of accounting data for the queue is performed based
upon the setting of the QueueAccounting parameter on the queue
manager.

MQMON_OFF
Do not collect accounting data for the queue.

MQMON_ON
Collect accounting data for the queue.

Chapter 3. Definitions of the Programmable Command Formats 315



QueueMonitoring (MQCFIN)
Online monitoring data collection (parameter identifier:
MQIA_MONITORING_Q).

The value can be:

MQMON_OFF
Online monitoring data collection is turned off for this queue.

MQMON_Q_MGR
The value of the queue manager’s QueueMonitoring parameter is
inherited by the queue.

MQMON_LOW
Online monitoring data collection is turned on, with a low rate of data
collection, for this queue unless QueueMonitoring for the queue
manager is MQMON_NONE.

MQMON_MEDIUM
Online monitoring data collection is turned on, with a moderate rate of
data collection, for this queue unless QueueMonitoring for the queue
manager is MQMON_NONE.

MQMON_HIGH
Online monitoring data collection is turned on, with a high rate of data
collection, for this queue unless QueueMonitoring for the queue
manager is MQMON_NONE.

QueueStatistics (MQCFIN)
Controls the collection of statistics data (parameter identifier:
MQIA_STATISTICS_Q).

The value can be:

MQMON_Q_MGR
The collection of statistics data for the queue is performed based upon
the setting of the QueueStatistics parameter on the queue manager.

MQMON_OFF
Do not collect statistics data for the queue.

MQMON_ON
Collect statistics data for the queue unless QueueStatistics for the
queue manager is MQMON_NONE.

This parameter is valid only on i5/OS, UNIX systems, and Windows.

RemoteQMgrName (MQCFST)
Name of remote queue manager (parameter identifier:
MQCA_REMOTE_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

RemoteQName (MQCFST)
Name of remote queue as known locally on the remote queue manager
(parameter identifier: MQCA_REMOTE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

RetentionInterval (MQCFIN)
Retention interval (parameter identifier: MQIA_RETENTION_INTERVAL).

Scope (MQCFIN)
Scope of the queue definition (parameter identifier: MQIA_SCOPE).

316 WebSphere MQ: Programmable Command Formats and Administration Interface



The value can be:

MQSCO_Q_MGR
Queue-manager scope.

MQSCO_CELL
Cell scope.

This parameter is not valid on i5/OS or z/OS.

Shareability (MQCFIN)
Whether queue can be shared (parameter identifier: MQIA_SHAREABILITY).

The value can be:

MQQA_SHAREABLE
Queue is shareable.

MQQA_NOT_SHAREABLE
Queue is not shareable.

StorageClass (MQCFST)
Storage class (parameter identifier: MQCA_STORAGE_CLASS). This parameter
applies to z/OS only.

Specifies the name of the storage class.

The maximum length of the string is MQ_STORAGE_CLASS_LENGTH.

TpipeNames (MQCFSL)
TPIPE names (parameter identifier: MQCA_TPIPE_NAME). This parameter
applies to local queues on z/OS only.

Specifies the TPIPE names used for communication with OTMA via the
WebSphere MQ IMS bridge, if the bridge is active.

The maximum length of the string is MQ_TPIPE_NAME_LENGTH.

TriggerControl (MQCFIN)
Trigger control (parameter identifier: MQIA_TRIGGER_CONTROL).

The value can be:

MQTC_OFF
Trigger messages not required.

MQTC_ON
Trigger messages required.

TriggerData (MQCFST)
Trigger data (parameter identifier: MQCA_TRIGGER_DATA).

The maximum length of the string is MQ_TRIGGER_DATA_LENGTH.

TriggerDepth (MQCFIN)
Trigger depth (parameter identifier: MQIA_TRIGGER_DEPTH).

TriggerMsgPriority (MQCFIN)
Threshold message priority for triggers (parameter identifier:
MQIA_TRIGGER_MSG_PRIORITY).

TriggerType (MQCFIN)
Trigger type (parameter identifier: MQIA_TRIGGER_TYPE).

The value can be:

Chapter 3. Definitions of the Programmable Command Formats 317



MQTT_NONE
No trigger messages.

MQTT_FIRST
Trigger message when queue depth goes from 0 to 1.

MQTT_EVERY
Trigger message for every message.

MQTT_DEPTH
Trigger message when depth threshold exceeded.

Usage (MQCFIN)
Usage (parameter identifier: MQIA_USAGE).

The value can be:

MQUS_NORMAL
Normal usage.

MQUS_TRANSMISSION
Transmission queue.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Inquire Queue Manager
The Inquire Queue Manager (MQCMD_INQUIRE_Q_MGR) command inquires
about the attributes of a queue manager.

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

Required parameters:
None

Optional parameters:
CommandScope, QMgrAttrs

Optional parameters (Inquire Queue Manager)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

318 WebSphere MQ: Programmable Command Formats and Administration Interface



The maximum length is MQ_QSG_NAME_LENGTH.

QMgrAttrs (MQCFIL)
Queue manager attributes (parameter identifier: MQIACF_Q_MGR_ATTRS).

The attribute list might specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCA_ALTERATION_DATE
Date at which the definition was last altered.

MQCA_ALTERATION_TIME
Time at which the definition was last altered.

MQCA_CHANNEL_AUTO_DEF_EXIT
Automatic channel definition exit name. This is not valid on z/OS.

MQCA_CLUSTER_WORKLOAD_DATA
Data passed to the cluster workload exit.

MQCA_CLUSTER_WORKLOAD_EXIT
Name of the cluster workload exit.

MQCA_COMMAND_INPUT_Q_NAME
System command input queue name.

MQCA_DEAD_LETTER_Q_NAME
Name of dead-letter queue.

MQCA_DEF_XMIT_Q_NAME
Default transmission queue name.

MQCA_DNS_GROUP
The name of the group that the TCP listener handling inbound
transmissions for the queue-sharing group should join when using
Workload Manager for Dynamic Domain Name Services support
(DDNS). This is valid on z/OS only.

MQCA_IGQ_USER_ID
Intra-group queuing user identifier. This parameter is valid on z/OS
only.

MQCA_LU_GROUP_NAME
Generic LU name for the LU 6.2 listener. This is valid on z/OS only.

MQCA_LU_NAME
LU name to use for outbound LU 6.2 transmissions. This is valid on
z/OS only.

MQCA_LU62_ARM_SUFFIX
APPCPM suffix. This is valid on z/OS only.

MQCA_PARENT
The name of the hierarchically connected queue manager that is
nominated as the parent of this queue manager.

MQCA_Q_MGR_DESC
Queue manager description.

MQCA_Q_MGR_IDENTIFIER
Internally generated unique queue manager name.

Chapter 3. Definitions of the Programmable Command Formats 319

|
|
|



MQCA_Q_MGR_NAME
Name of local queue manager.

MQCA_QSG_NAME
Queue sharing group name. This parameter attribute is valid on z/OS
only.

MQCA_REPOSITORY_NAME
Cluster name for the queue manager repository.

MQCA_REPOSITORY_NAMELIST
Name of the list of clusters for which the queue manager is providing
a repository manager service.

MQCA_SSL_CRL_NAMELIST
SSL Certification Revocation List (CRL) namelist.

MQCA_SSL_CRYPTO_HARDWARE
Parameters to configure the SSL cryptographic hardware. This
parameter is supported on UNIX and Windows platforms only.

MQCA_SSL_KEY_REPOSITORY
Location and name of the SSL key repository.

MQCA_TCP_NAME
Name of the TCP/IP system that you are using. This is valid on z/OS
only.

MQIA_ACCOUNTING_CONN_OVERRIDE
Whether the settings of the MQIAccounting and QueueAccounting queue
manager parameters may be overridden. This is valid only on AIX,
HP-UX, Linux, i5/OS, Solaris, and Windows.

MQIA_ACCOUNTING_INTERVAL
Intermediate accounting data collection interval. This is valid only on
AIX, HP-UX, Linux, i5/OS, Solaris, and Windows.

MQIA_ACCOUNTING_MQI
Whether accounting information is to be collected for MQI data. This is
valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and Windows.

MQIA_ACCOUNTING_Q
Accounting data collection for queues.

MQIA_ACTIVE_CHANNELS
Maximum number of channels that can be active at any time. This is
valid on z/OS only.

MQIA_ACTIVITY_RECORDING
Whether activity reports can be generated.

MQIA_ADOPTNEWMCA_CHECK
Elements checked to determine whether an MCA should be adopted
when a new inbound channel is detected with the same name as an
MCA that is already active. This is valid on z/OS only.

MQIA_ADOPTNEWMCA_TYPE
Whether an orphaned instance of an MCA should be restarted
automatically when a new inbound channel request matching the
AdoptNewMCACheck parameter is detected. This is valid on z/OS only.

MQIA_AUTHORITY_EVENT
Control attribute for authority events.

320 WebSphere MQ: Programmable Command Formats and Administration Interface



MQIA_BRIDGE_EVENT
Control attribute for IMS Bridge events. This is valid only on z/OS.

MQIA_CHANNEL_AUTO_DEF
Control attribute for automatic channel definition. This is not valid on
z/OS.

MQIA_CHANNEL_AUTO_DEF_EVENT
Control attribute for automatic channel definition events. This is not
valid on z/OS.

MQIA_CHANNEL_EVENT
Control attribute for channel events.

MQIA_CHINIT_ADAPTERS
Number of adapter subtasks to use for processing WebSphere MQ
calls. This is valid on z/OS only.

MQIA_CHINIT_CONTROL
Start channel initiator automatically when queue manager starts.

MQIA_CHINIT_DISPATCHERS
Number of dispatchers to use for the channel initiator. This is valid on
z/OS only.

MQIA_CHINIT_SERVICE_PARM
Reserved for use by IBM. This is valid only on z/OS.

MQIA_CHINIT_TRACE_AUTO_START
Whether the channel initiator trace should start automatically. This is
valid on z/OS only.

MQIA_CHINIT_TRACE_TABLE_SIZE
Size, in megabytes, of the channel initiator’s trace data space. This is
valid on z/OS only.

MQIA_CLUSTER_WORKLOAD_LENGTH
Maximum length of the message passed to the cluster workload exit.

MQIA_CLWL_MRU_CHANNELS
Cluster workload most recently used channels.

MQIA_CLWL_USEQ
Cluster workload remote queue use.

MQIA_CMD_SERVER_CONTROL
Start command server automatically when queue manager starts.

MQIA_CODED_CHAR_SET_ID
Coded character set identifier.

MQIA_COMMAND_EVENT
Control attribute for command events. This parameter is valid on z/OS
only.

MQIA_COMMAND_LEVEL
Command level supported by queue manager.

MQIA_CONFIGURATION_EVENT
Control attribute for configuration events. This parameter is valid on
z/OS only.

MQIA_CPI_LEVEL
Reserved for use by IBM.

Chapter 3. Definitions of the Programmable Command Formats 321



MQIA_DIST_LISTS
Distribution list support. This parameter is not valid on z/OS.

MQIA_DNS_WLM
Whether the TCP listener that handles inbound transmissions for the
queue-sharing group should register with Workload Manager (WLM)
for DDNS. This is valid on z/OS only.

MQIA_EXPIRY_INTERVAL
Expiry interval. This parameter is valid on z/OS only.

MQIA_IGQ_PUT_AUTHORITY
Intra-group queuing put authority. This parameter is valid on z/OS
only.

MQIA_INHIBIT_EVENT
Control attribute for inhibit events.

MQIA_INTRA_GROUP_QUEUING
Intra-group queuing support. This parameter is valid on z/OS only.

MQIA_IP_ADDRESS_VERSION
IP address version selector.

MQIA_LISTENER_TIMER
Listener restart interval. This is valid on z/OS only.

MQIA_LOCAL_EVENT
Control attribute for local events.

MQIA_LOGGER_EVENT
Control attribute for recovery log events.

MQIA_LU62_CHANNELS
Maximum number of LU 6.2 channels. This is valid on z/OS only.

MQIA_MSG_MARK_BROWSE_INTERVAL
Interval for which messages that have been browsed remain marked.

MQIA_MAX_CHANNELS
Maximum number of channels that can be current. This is valid on
z/OS only.

MQIA_MAX_HANDLES
Maximum number of handles.

MQIA_MAX_MSG_LENGTH
Maximum message length.

MQIA_MAX_PRIORITY
Maximum priority.

MQIA_MAX_PROPERTIES_LENGTH
Maximum properties length.

MQIA_MAX_UNCOMMITTED_MSGS
Maximum number of uncommitted messages within a unit of work.

MQIA_MONITORING_AUTO_CLUSSDR
Default value of the ChannelMonitoring attribute of automatically
defined cluster-sender channels.

MQIA_MONITORING_CHANNEL
Whether channel monitoring is enabled.

322 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|



MQIA_MONITORING_Q
Whether queue monitoring is enabled.

MQIA_OUTBOUND_PORT_MAX
Maximum value in the range for the binding of outgoing channels.
This is valid on z/OS only.

MQIA_OUTBOUND_PORT_MIN
Minimum value in the range for the binding of outgoing channels. This
is valid on z/OS only.

MQIA_PERFORMANCE_EVENT
Control attribute for performance events.

MQIA_PLATFORM
Platform on which the queue manager resides.

MQIA_PUBSUB_MAXMSG_RETRY_COUNT
The number of retries when processing (under syncpoint) a failed
command message

MQIA_PUBSUB_MODE
Inquires if the publish/subscribe engine and the queued
publish/subscribe interface are running, which allow applications to
publish/subscribe by using the application programming interface and
the queues that are being monitored by the queued publish/subscribe
interface.

MQIA_PUBSUB_NP_MSG
Whether to discard (or keep) an undelivered input message.

MQIA_PUBSUB_NP_RESP
The behavior of undelivered response messages.

MQIA_PUBSUB_SYNC_PT
Whether only persistent (or all) messages should be processed under
syncpoint.

MQIA_RECEIVE_TIMEOUT
How long a TCP/IP channel waits to receive data from its partner.
This is valid on z/OS only.

MQIA_RECEIVE_TIMEOUT_MIN
Minimum length of time that a TCP/IP channel waits to receive data
from its partner. This is valid on z/OS only.

MQIA_RECEIVE_TIMEOUT_TYPE
Qualifier to apply to the ReceiveTimeout parameter. This is valid on
z/OS only.

MQIA_REMOTE_EVENT
Control attribute for remote events.

MQIA_SECURITY_CASE
Specifies whether the queue manager supports security profile names
either in mixed case, or in uppercase only. This is valid on z/OS only.

MQIA_SHARED_Q_Q_MGR_NAME
When a queue manager makes an MQOPEN call for a shared queue
and the queue manager that is specified in the ObjectQmgrName
parameter of the MQOPEN call is in the same queue-sharing group as
the processing queue manager, the SQQMNAME attribute specifies

Chapter 3. Definitions of the Programmable Command Formats 323

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|



whether the ObjectQmgrName is used or whether the processing queue
manager opens the shared queue directly. This is valid on z/OS only.

MQIA_SSL_EVENT
Control attribute for SSL events.

MQIA_SSL_FIPS_REQUIRED
Whether only FIPS-certified algorithms are to be used if cryptography
is executed in WebSphere MQ itself. This is not valid on z/OS.

MQIA_SSL_RESET_COUNT
SSL key reset count.

MQIA_SSL_TASKS
SSL tasks. This parameter is valid on z/OS only.

MQIA_START_STOP_EVENT
Control attribute for start stop events.

MQIA_STATISTICS_AUTO_CLUSSDR
Whether statistics data is to be collected for auto-defined cluster-sender
channels and, if so, the rate of data collection. This is valid only on
AIX, HP-UX, Linux, i5/OS, Solaris, and Windows.

MQIA_STATISTICS_CHANNEL
Whether statistics monitoring data is to be collected for channels and,
if so, the rate of data collection. This is valid only on AIX, HP-UX,
Linux, i5/OS, Solaris, and Windows.

MQIA_STATISTICS_INTERVAL
Statistics data collection interval. This is valid only on AIX, HP-UX,
Linux, i5/OS, Solaris, and Windows.

MQIA_STATISTICS_MQI
Whether statistics monitoring data is to be collected for the queue
manager. This is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

MQIA_STATISTICS_Q
Whether statistics monitoring data is to be collected for queues. This is
valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and Windows.

MQIA_SYNCPOINT
Syncpoint availability.

MQIA_TCP_CHANNELS
Maximum number of channels that can be current, or clients that can
be connected, that use the TCP/IP transmission protocol This is valid
on z/OS only.

MQIA_TCP_KEEP_ALIVE
Whether the TCP KEEPALIVE facility is to be used to check whether
the other end of a connection is still available. This is valid on z/OS
only.

MQIA_TCP_STACK_TYPE
Whether the channel initiator may use only the TCP/IP address space
specified in the TCPName parameter, or may optionally bind to any
selected TCP/IP address. This is valid on z/OS only.

MQIA_TRACE_ROUTE_RECORDING
Whether trace-route information can be recorded and reply messages
generated.

324 WebSphere MQ: Programmable Command Formats and Administration Interface



MQIA_TREE_LIFE_TIME
The lifetime of non-administrative topics.

MQIA_TRIGGER_INTERVAL
Trigger interval.

MQIACF_Q_MGR_CLUSTER
All clustering attributes. These are:
v MQCA_CLUSTER_WORKLOAD_DATA
v MQCA_CLUSTER_WORKLOAD_EXIT
v MQCA_CHANNEL_AUTO_DEF_EXIT
v MQCA_REPOSITORY_NAME
v MQCA_REPOSITORY_NAMELIST
v MQIA_CLUSTER_WORKLOAD_LENGTH
v MQIA_CLWL_MRU_CHANNELS
v MQIA_CLWL_USEQ
v MQIA_MONITORING_AUTO_CLUSSDR
v MQCA_Q_MGR_IDENTIFIER

MQIACF_Q_MGR_DQM
All distributed queuing attributes. These are:
v MQCA_CHANNEL_AUTO_DEF_EXIT
v MQCA_DEAD_LETTER_Q_NAME
v MQCA_DEF_XMIT_Q_NAME
v MQCA_DNS_GROUP
v MQCA_IGQ_USER_ID
v MQCA_LU_GROUP_NAME
v MQCA_LU_NAME
v MQCA_LU62_ARM_SUFFIX
v MQCA_Q_MGR_IDENTIFIER
v MQCA_SSL_CRL_NAMELIST
v MQCA_SSL_CRYPTO_HARDWARE
v MQCA_SSL_KEY_REPOSITORY
v MQCA_TCP_NAME
v MQIA_ACTIVE_CHANNELS
v MQIA_ADOPTNEWMCA_CHECK
v MQIA_ADOPTNEWMCA_TYPE
v MQIA_CHANNEL_AUTO_DEF
v MQIA_CHANNEL_AUTO_DEF_EVENT
v MQIA_CHANNEL_EVENT
v MQIA_CHINIT_ADAPTERS
v MQIA_CHINIT_CONTROL
v MQIA_CHINIT_DISPATCHERS
v MQIA_CHINIT_SERVICE_PARM
v MQIA_CHINIT_TRACE_AUTO_START
v MQIA_CHINIT_TRACE_TABLE_SIZE
v MQIA_INTRA_GROUP_QUEUING
v MQIA_IGQ_PUT_AUTHORITY

Chapter 3. Definitions of the Programmable Command Formats 325

|
|



v MQIA_IP_ADDRESS_VERSION
v MQIA_LISTENER_TIMER
v MQIA_LU62_CHANNELS
v MQIA_MAX_CHANNELS
v MQIA_MONITORING_CHANNEL
v MQIA_OUTBOUND_PORT_MAX
v MQIA_OUTBOUND_PORT_MIN
v MQIA_RECEIVE_TIMEOUT
v MQIA_RECEIVE_TIMEOUT_MIN
v MQIA_RECEIVE_TIMEOUT_TYPE
v MQIA_SSL_EVENT
v MQIA_SSL_FIPS_REQUIRED
v MQIA_SSL_RESET_COUNT
v MQIA_SSL_TASKS
v MQIA_STATISTICS_AUTO_CLUSSDR
v MQIA_TCP_CHANNELS
v MQIA_TCP_KEEP_ALIVE
v MQIA_TCP_STACK_TYPE

MQIACF_Q_MGR_EVENT
All event control attributes. These are:
v MQIA_AUTHORITY_EVENT
v MQIA_BRIDGE_EVENT
v MQIA_CHANNEL_EVENT
v MQIA_COMMAND_EVENT
v MQIA_CONFIGURATION_EVENT
v MQIA_INHIBIT_EVENT
v MQIA_LOCAL_EVENT
v MQIA_LOGGER_EVENT
v MQIA_PERFORMANCE_EVENT
v MQIA_REMOTE_EVENT
v MQIA_SSL_EVENT
v MQIA_START_STOP_EVENT

MQIACF_Q_MGR_PUBSUB
All queue manager publish/subscribe attributes. These are:
v MQCA_PARENT
v MQIA_PUBSUB_MAXMSG_RETRY_COUNT
v MQIA_PUBSUB_MODE
v MQIA_PUBSUB_NP_MSG
v MQIA_PUBSUB_NP_RESP
v MQIA_PUBSUB_SYNC_PT
v MQIA_TREE_LIFE_TIME

MQIACF_Q_MGR_SYSTEM
All queue manager system attributes. These are:
v MQCA_COMMAND_INPUT_Q_NAME
v MQCA_DEAD_LETTER_Q_NAME

326 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|

|

|

|

|

|

|



v MQCA_Q_MGR_NAME
v MQCA_QSG_NAME
v MQIA_ACCOUNTING_CONN_OVERRIDE
v MQIA_ACCOUNTING_INTERVAL
v MQIA_ACCOUNTING_Q
v MQIA_ACTIVITY_RECORDING
v MQCA_ALTERATION_DATE
v MQCA_ALTERATION_TIME
v MQIA_CMD_SERVER_CONTROL
v MQIA_CODED_CHAR_SET_ID
v MQIA_COMMAND_LEVEL
v MQIA_CPI_LEVEL
v MQIA_DIST_LISTS
v MQIA_EXPIRY_INTERVAL
v MQIA_MAX_HANDLES
v MQIA_MAX_MSG_LENGTH
v MQIA_MAX_PRIORITY
v MQIA_MAX_PROPERTIES_LENGTH
v MQIA_MAX_UNCOMMITTED_MSGS
v MQIA_MONITORING_Q
v MQIA_PLATFORM
v MQIA_SHARED_Q_Q_MGR_NAME
v MQIA_STATISTICS_INTERVAL
v MQIA_STATISTICS_MQI
v MQIA_STATISTICS_Q
v MQIA_SYNCPOINT
v MQIA_TRACE_ROUTE_RECORDING
v MQIA_TRIGGER_INTERVAL

Inquire Queue Manager (Response)
The response to the Inquire Queue Manager (MQCMD_INQUIRE_Q_MGR)
command consists of the response header followed by the QMgrName structure and
the requested combination of attribute parameter structures.

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

Always returned:
QMgrName

Returned if requested:
AccountingConnOverride, AccountingInterval, ActivityRecording,
AdoptNewMCACheck, AdoptNewMCAType, AlterationDate, AlterationTime,
AuthorityEvent, BridgeEvent, ChannelAutoDef, ChannelAutoDefEvent,
ChannelAutoDefExit, ChannelEvent, ChannelInitiatorControl,
ChannelMonitoring, ChannelStatistics, ChinitAdapters,
ChinitDispatchers, ChinitServiceParm, ChinitTraceAutoStart,

Chapter 3. Definitions of the Programmable Command Formats 327

|



ChinitTraceTableSize, ClusterSenderMonitoringDefault,
ClusterSenderStatistics, ClusterWorkloadData, ClusterWorkloadExit,
ClusterWorkloadLength, CLWLMRUChannels, CLWLUseQ, CodedCharSetId,
CommandEvent, CommandInputQName, CommandLevel, CommandServerControl,
ConfigurationEvent, DeadLetterQName, DefXmitQName, DistLists, DNSGroup,
DNSWLM, ExpiryInterval, , IGQPutAuthority, IGQUserId, InhibitEvent,
IntraGroupQueuing, IPAddressVersion, ListenerTimer, LocalEvent,
LoggerEvent, LUGroupName, LUName, LU62ARMSuffix, LU62Channels,
MaxChannels, MaxActiveChanels, MaxHandles, MaxMsgLength, MaxPriority,
MaxPropertiesLength, MaxUncommittedMsgs, MQIAccounting,
MQIStatisticsOutboundPortMax, OutboundPortMin, Parent,
PerformanceEvent, Platform, PubSubMode, QmgrDesc, QMgrIdentifier,
QSGName, QueueAccounting, QueueMonitoring, QueueStatistics,
ReceiveTimeout, ReceiveTimeoutMin, ReceiveTimeoutType, RemoteEvent,
RepositoryName, RepositoryNamelist, SecurityCase, SharedQQmgrName,
SSLCRLNamelist, SSLCryptoHardware, SSLEvent, SSLFIPSRequired,
SSLKeyRepository, SSLKeyResetCount, SSLTasks, StartStopEvent,
StatisticsInterval, SyncPoint, TCPChannels, TCPKeepAlive, TCPName,
TCPStackType, TraceRouteRecording, TreeLifeTime, TriggerInterval

Response data
AccountingConnOverride (MQCFIN)

Specifies whether applications can override the settings of the QueueAccounting
and MQIAccounting queue manager parameters (parameter identifier:
MQIA_ACCOUNTING_CONN_OVERRIDE).

The value can be:

MQMON_DISABLED
Applications cannot override the settings of the QueueAccounting and
MQIAccounting parameters.

MQMON_ENABLED
Applications can override the settings of the QueueAccounting and
MQIAccounting parameters by using the options field of the MQCNO
structure of the MQCONNX API call.

This parameter applies only to AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

AccountingInterval (MQCFIN)
The time interval, in seconds, at which intermediate accounting records are
written (parameter identifier: MQIA_ACCOUNTING_INTERVAL).

It is a value in the range 1 through 604 000.

This parameter applies only to AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

ActivityRecording (MQCFIN)
Whether activity reports can be generated (parameter identifier:
MQIA_ACTIVITY_RECORDING).

The value can be:

MQRECORDING_DISABLED
Activity reports cannot be generated.

MQRECORDING_MSG
Activity reports can be generated and sent to the destination specified
by the originator of the message causing the report.

328 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|

|



MQRECORDING_Q
Activity reports can be generated and sent to
SYSTEM.ADMIN.ACTIVITY.QUEUE.

AdoptNewMCACheck (MQCFIN)
The elements checked to determine whether an MCA should be adopted
(restarted) when a new inbound channel is detected that has the same name as
a currently active MCA (parameter identifier:
MQIA_ADOPTNEWMCA_CHECK).

The value can be:

MQADOPT_CHECK_Q_MGR_NAME
Check the queue manager name.

MQADOPT_CHECK_NET_ADDR
Check the network address.

MQADOPT_CHECK_ALL
Check the queue manager name and network address.

MQADOPT_CHECK_NONE
Do not check any elements.

This parameter applies to z/OS only.

AdoptNewMCAType (MQCFIL)
Adoption of orphaned channel instances (parameter identifier:
MQIA_ADOPTNEWMCA_TYPE).

The value can be:

MQADOPT_TYPE_NO
Do not adopt orphaned channel instances.

MQADOPT_TYPE_ALL
Adopt all channel types.

This parameter applies to z/OS only.

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date, in the form yyyy-mm-dd, on which the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time, in the form hh.mm.ss, at which the information was last altered.

AuthorityEvent (MQCFIN)
Controls whether authorization (Not Authorized) events are generated
(parameter identifier: MQIA_AUTHORITY_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

BridgeEvent (MQCFIN)
Controls whether IMS Bridge events are generated (parameter identifier:
MQIA_BRIDGE_EVENT). This parameter applies to z/OS only.

The value can be:

Chapter 3. Definitions of the Programmable Command Formats 329



MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

ChannelAutoDef (MQCFIN)
Controls whether receiver and server-connection channels can be auto-defined
(parameter identifier: MQIA_CHANNEL_AUTO_DEF).

The value can be:

MQCHAD_DISABLED
Channel auto-definition disabled.

MQCHAD_ENABLED
Channel auto-definition enabled.

ChannelAutoDefEvent (MQCFIN)
Controls whether channel auto-definition events are generated (parameter
identifier: MQIA_CHANNEL_AUTO_DEF_EVENT), when a receiver,
server-connection, or cluster-sender channel is auto-defined.

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

ChannelAutoDefExit (MQCFST)
Channel auto-definition exit name (parameter identifier:
MQCA_CHANNEL_AUTO_DEF_EXIT).

The maximum length of the exit name depends on the environment in which
the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum length for
the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

ChannelEvent (MQCFIN)
Controls whether channel events are generated (parameter identifier:
MQIA_CHANNEL_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

MQEVR_EXCEPTION
Reporting of exception channel events enabled.

ChannelInitiatorControl (MQCFIN)
Start the channel initiator during queue manager start (parameter identifier:
MQIA_CHINIT_CONTROL). This parameter is not available on z/OS.

The value can be:

MQSVC_CONTROL_MANUAL
The channel initiator is not to be started automatically when the queue
manager starts.

330 WebSphere MQ: Programmable Command Formats and Administration Interface



MQSVC_CONTROL_Q_MGR
The channel initiator is to be started automatically when the queue
manager starts.

ChannelMonitoring (MQCFIN)
Default setting for online monitoring for channels (parameter identifier:
MQIA_MONITORING_CHANNEL).

If the ChannelMonitoring channel attribute is set to MQMON_Q_MGR, this
attribute specifies the value which is assumed by the channel. The value can
be:

MQMON_OFF
Online monitoring data collection is turned off.

MQMON_NONE
Online monitoring data collection is turned off for channels regardless
of the setting of their ChannelMonitoring attribute.

MQMON_LOW
Online monitoring data collection is turned on, with a low ratio of data
collection.

MQMON_MEDIUM
Online monitoring data collection is turned on, with a moderate ratio
of data collection.

MQMON_HIGH
Online monitoring data collection is turned on, with a high ratio of
data collection.

ChannelStatistics (MQCFIN)
Whether statistics data is to be collected for channels (parameter identifier:
MQIA_STATISTICS_CHANNEL).

The value can be:

MQMON_NONE
Statistics data collection is turned off for channels regardless of the
setting of their ChannelStatistics parameter. This is the queue
manager’s initial default value.

MQMON_OFF
Statistics data collection is turned off for channels specifying a value of
MQMON_Q_MGR in their ChannelStatistics parameter.

MQMON_LOW
Statistics data collection is turned on, with a low ratio of data
collection, for channels specifying a value of MQMON_Q_MGR in
their ChannelStatistics parameter.

MQMON_MEDIUM
Statistics data collection is turned on, with a moderate ratio of data
collection, for channels specifying a value of MQMON_Q_MGR in
their ChannelStatistics parameter.

MQMON_HIGH
Statistics data collection is turned on, with a high ratio of data
collection, for channels specifying a value of MQMON_Q_MGR in
their ChannelStatistics parameter.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

Chapter 3. Definitions of the Programmable Command Formats 331



ChinitAdapters (MQCFIN)
Number of adapter subtasks (parameter identifier:
MQIA_CHINIT_ADAPTERS).

The number of adapter subtasks to use for processing WebSphere MQ calls.
This parameter applies to z/OS only.

ChinitDispatchers (MQCFIN)
Number of dispatchers (parameter identifier: MQIA_CHINIT_DISPATCHERS).

The number of dispatchers to use for the channel initiator. This parameter
applies to z/OS only.

ChinitServiceParm (MQCFST)
Reserved for use by IBM (parameter identifier:
MQCA_CHINIT_SERVICE_PARM).

ChinitTraceAutoStart (MQCFIN)
Whether the channel initiator trace should start automatically (parameter
identifier: MQIA_CHINIT_TRACE_AUTO_START).

The value can be:

MQTRAXSTR_YES
Channel initiator trace is to start automatically.

MQTRAXSTR_NO
Channel initiator trace is not to start automatically.

This parameter applies to z/OS only.

ChinitTraceTableSize (MQCFIN)
The size, in megabytes, of the channel initiator’s trace data space (parameter
identifier: MQIA_CHINIT_TRACE_TABLE_SIZE).

This parameter applies to z/OS only.

ClusterSenderMonitoringDefault (MQCFIN)
Setting for online monitoring for automatically defined cluster-sender channels
(parameter identifier: MQIA_MONITORING_AUTO_CLUSSDR).

The value can be:

MQMON_Q_MGR
Collection of online monitoring data is inherited from the setting of the
queue manager’s ChannelMonitoring parameter.

MQMON_OFF
Monitoring for the channel is switched off.

MQMON_LOW
Specifies a low rate of data collection with a minimal impact on system
performance unless ChannelMonitoring for the queue manager is
MQMON_NONE. The data collected is not likely to be the most
current.

MQMON_MEDIUM
Specifies a moderate rate of data collection with limited impact on
system performance unless ChannelMonitoring for the queue manager
is MQMON_NONE.

MQMON_HIGH
Specifies a high rate of data collection with a likely impact on system
performance unless ChannelMonitoring for the queue manager is
MQMON_NONE. The data collected is the most current available.

332 WebSphere MQ: Programmable Command Formats and Administration Interface



ClusterSenderStatistics (MQCFIN)
Whether statistics data is to be collected for auto-defined cluster-sender
channels (parameter identifier: MQIA_STATISTICS_AUTO_CLUSSDR).

The value can be:

MQMON_Q_MGR
Collection of statistics data is inherited from the setting of the queue
manager’s ChannelStatistics parameter.

MQMON_OFF
Statistics data collection for the channel is switched off.

MQMON_LOW
Specifies a low rate of data collection with a minimal impact on system
performance.

MQMON_MEDIUM
Specifies a moderate rate of data collection.

MQMON_HIGH
Specifies a high rate of data collection.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

ClusterWorkLoadData (MQCFST)
Data passed to the cluster workload exit (parameter identifier:
MQCA_CLUSTER_WORKLOAD_DATA).

ClusterWorkLoadExit (MQCFST)
Name of the cluster workload exit (parameter identifier:
MQCA_CLUSTER_WORKLOAD_EXIT).

The maximum length of the exit name depends on the environment in which
the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum length for
the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

ClusterWorkLoadLength (MQCFIN)
Cluster workload length (parameter identifier:
MQIA_CLUSTER_WORKLOAD_LENGTH).

The maximum length of the message passed to the cluster workload exit.

CLWLMRUChannels (MQCFIN)
Cluster workload most recently used (MRU) channels (parameter identifier:
MQIA_CLWL_MRU_CHANNELS).

The maximum number of active most recently used outbound channels.

CLWLUseQ (MQCFIN)
Use of remote queue (parameter identifier: MQIA_CLWL_USEQ).

Specifies whether a cluster queue manager is to use remote puts to other
queues defined in other queue managers within the cluster during workload
management.

The value can be:

MQCLWL_USEQ_ANY
Use remote queues.

Chapter 3. Definitions of the Programmable Command Formats 333



MQCLWL_USEQ_LOCAL
Do not use remote queues.

CodedCharSetId (MQCFIN)
Coded character set identifier (parameter identifier:
MQIA_CODED_CHAR_SET_ID).

CommandEvent (MQCFIN)
Controls whether command events are generated (parameter identifier:
MQIA_COMMAND_EVENT). This parameter applies to z/OS only.

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

MQEVR_NODISPLAY
Event reporting enabled for all successful commands except Inquire
commands.

CommandInputQName (MQCFST)
Command input queue name (parameter identifier:
MQCA_COMMAND_INPUT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

CommandLevel (MQCFIN)
Command level supported by queue manager (parameter identifier:
MQIA_COMMAND_LEVEL).

The value can be:

MQCMDL_LEVEL_1
Level 1 of system control commands.

This value is returned by the following:
v MQSeries for AIX V2.2
v MQSeries for OS/2 V2.0
v MQSeries for OS/400®:

– V2R3
– V3R1
– V3R6

v MQSeries for Windows V2.0

MQCMDL_LEVEL_101
MQSeries for Windows V2.0.1

MQCMDL_LEVEL_110
MQSeries for Windows V2.1

MQCMDL_LEVEL_200
MQSeries for Windows NT® V2.0

MQCMDL_LEVEL_201
MQSeries for OS/2 V2.0.1

MQCMDL_LEVEL_220
Level 220 of system control commands.

This value is returned by the following:

334 WebSphere MQ: Programmable Command Formats and Administration Interface



v MQSeries for AT&T GIS UNIX V2.2
v MQSeries for SINIX and DC/OSx V2.2
v MQSeries for Compaq NonStop Kernel V2.2.0.1

MQCMDL_LEVEL_221
Level 221 of system control commands.

This value is returned by the following:
v MQSeries for AIX Version 2.2.1
v MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX) V2.2.1

MQCMDL_LEVEL_320
MQSeries for OS/400 V3R2 and V3R7

MQCMDL_LEVEL_420
MQSeries for AS/400® V4R2 and R2.1

MQCMDL_LEVEL_500
Level 500 of system control commands.

This value is returned by the following:
v MQSeries for AIX V5.0
v MQSeries for HP-UX V5.0
v MQSeries for OS/2 Warp V5.0
v MQSeries for Solaris V5.0
v MQSeries for Windows NT V5.0

MQCMDL_LEVEL_510
Level 510 of system control commands.

This value is returned by the following:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for Compaq OpenVMS Alpha, Version 5.1
v MQSeries for Compaq NonStop Kernel, V5.1
v MQSeries for Solaris V5.1
v MQSeries for Windows NT V5.1

MQCMDL_LEVEL_520
Level 520 of system control commands.

This value is returned by the following:
v MQSeries for AIX V5.2
v MQSeries for AS/400 V5.2
v MQSeries for HP-UX V5.2
v MQSeries for Linux V5.2
v MQSeries for Solaris V5.2
v MQSeries for Windows NT V5.2
v MQSeries for Windows 2000 V5.2

MQCMDL_LEVEL_530
Level 530 of system control commands.

Chapter 3. Definitions of the Programmable Command Formats 335



This value is returned by the following:
v WebSphere MQ for AIX, V5.3
v WebSphere MQ for i5/OS, V5.3
v WebSphere MQ for HP-UX, V5.3
v WebSphere MQ for Linux, V5.3
v WebSphere MQ for Sun Solaris, Version 5.3
v WebSphere MQ for Windows NT and Windows 2000, Version 5.3

MQCMDL_LEVEL_531
Level 531 of system control commands.

MQCMDL_LEVEL_600
Level 600 of system control commands.

MQCMDL_LEVEL_700
Level 700 of system control commands.

The set of system control commands that corresponds to a particular value of
the CommandLevel attribute varies according to the value of the Platform
attribute; both must be used to decide which system control commands are
supported.

CommandServerControl (MQCFIN)
Start the command server during queue manager start (parameter identifier:
MQIA_CMD_SERVER_CONTROL). This parameter is not available on z/OS.

The value can be:

MQSVC_CONTROL_MANUAL
The command server is not to be started automatically when the queue
manager starts.

MQSVC_CONTROL_Q_MGR
The command server is to be started automatically when the queue
manager starts.

ConfigurationEvent (MQCFIN)
Queue sharing group name (parameter identifier:
MQIA_CONFIGURATION_EVENT). This parameter is valid only on z/OS.

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

DeadLetterQName (MQCFST)
Dead letter (undelivered message) queue name (parameter identifier:
MQCA_DEAD_LETTER_Q_NAME).

Specifies the name of the local queue that is to be used for undelivered
messages. Messages are put on this queue if they cannot be routed to their
correct destination.

The maximum length of the string is MQ_Q_NAME_LENGTH.

DefXmitQName (MQCFST)
Default transmission queue name (parameter identifier:
MQCA_DEF_XMIT_Q_NAME).

336 WebSphere MQ: Programmable Command Formats and Administration Interface



This is the name of the default transmission queue that is used for the
transmission of messages to remote queue managers, if there is no other
indication of which transmission queue to use.

The maximum length of the string is MQ_Q_NAME_LENGTH.

DistLists (MQCFIN)
Distribution list support (parameter identifier: MQIA_DIST_LISTS).

The value can be:

MQDL_SUPPORTED
Distribution lists supported.

MQDL_NOT_SUPPORTED
Distribution lists not supported.

DNSGroup (MQCFST)
DNS group name (parameter identifier: MQCA_DNS_GROUP).

The name of the group that the TCP listener handling inbound transmissions
for the queue-sharing group should join when using Workload Manager for
Dynamic Domain Name Services support (DDNS). This parameter applies to
z/OS only.

DNSWLM (MQCFIN)
Controls whether the TCP listener that handles inbound transmissions for the
queue-sharing group should register with Workload Manager (WLM) for
DDNS: (parameter identifier: MQIA_DNS_WLM).

The value can be:

MQDNSWLM_YES
The listener should register with WLM.

MQDNSWLM_NO
The listener is not to register with WLM. This is the queue manager’s
initial default value.

This parameter applies to z/OS only.

ExpiryInterval (MQCFIN)
Interval between scans for expired messages (parameter identifier:
MQIA_EXPIRY_INTERVAL). This parameter is valid only on z/OS.

Specifies the frequency with which the queue manager scans the queues
looking for expired messages. This is a time interval in seconds in the range 1
through 99 999 999, or the following special value:

MQEXPI_OFF
No scans for expired messages.

IGQPutAuthority (MQCFIN)
Type of authority checking used by the intra-group queuing agent (parameter
identifier: MQIA_IGQ_PUT_AUTHORITY). This parameter is valid only on
z/OS.

The attribute indicates the type of authority checking that is performed when
the local intra-group queuing agent (IGQ agent) removes a message from the
shared transmission queue and places the message on a local queue. The value
can be:

MQIGQPA_DEFAULT
Default user identifier is used.

Chapter 3. Definitions of the Programmable Command Formats 337



MQIGQPA_CONTEXT
Context user identifier is used.

MQIGQPA_ONLY_IGQ
Only the IGQ user identifier is used.

MQIGQPA_ALTERNATE_OR_IGQ
Alternate user identifier or IGQ-agent user identifier is used.

IGQUserId (MQCFST)
Use identifier used the intra-group queuing agent (parameter identifier:
MQCA_IGQ_USER_ID). This parameter is valid only on z/OS.

The maximum length of the string is MQ_USER_ID_LENGTH.

InhibitEvent (MQCFIN)
Controls whether inhibit (Inhibit Get and Inhibit Put) events are generated
(parameter identifier: MQIA_INHIBIT_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

IntraGroupQueuing (MQCFIN)
Specifies whether intra-group queuing is used (parameter identifier:
MQIA_INTRA_GROUP_QUEUING). This parameter is valid only on z/OS.

The value can be:

MQIGQ_DISABLED
Intra-group queuing is disabled. All messages destined for other queue
managers in the queue-sharing group are transmitted using
conventional channels.

MQIGQ_ENABLED
Intra-group queuing is enabled.

IPAddressVersion (MQCFIN)
IP address version selector (parameter identifier:
MQIA_IP_ADDRESS_VERSION).

Specifies which IP address version, either IPv4 or IPv6, is used. The value can
be:

MQIPADDR_IPV4
IPv4 is used.

MQIPADDR_IPV6
IPv6 is used.

ListenerTimer (MQCFIN)
Listener restart interval (parameter identifier: MQIA_LISTENER_TIMER).

The time interval, in seconds, between attempts by WebSphere MQ to restart
the listener after an APPC or TCP/IP failure. This parameter applies to z/OS
only.

LocalEvent (MQCFIN)
Controls whether local error events are generated (parameter identifier:
MQIA_LOCAL_EVENT).

The value can be:

338 WebSphere MQ: Programmable Command Formats and Administration Interface



MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

LoggerEvent (MQCFIN)
Controls whether recovery log events are generated (parameter identifier:
MQIA_LOGGER_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

This is valid only on AIX, HP-UX, i5/OS, Solaris, Linux, and Windows.

LUGroupName (MQCFST)
Generic LU name for the LU 6.2 listener (parameter identifier:
MQCA_LU_GROUP_NAME).

The generic LU name to be used by the LU 6.2 listener that handles inbound
transmissions for the queue-sharing group. This parameter applies to z/OS
only.

LUName (MQCFST)
LU name to use for outbound LU 6.2 transmissions (parameter identifier:
MQCA_LU_NAME).

The name of the LU to use for outbound LU 6.2 transmissions. This parameter
applies to z/OS only.

LU62ARMSuffix (MQCFST)
APPCPM suffix (parameter identifier: MQCA_LU62_ARM_SUFFIX).

The suffix of the APPCPM member of SYS1.PARMLIB. This suffix nominates
the LUADD for this channel initiator. This parameter applies to z/OS only.

LU62Channels (MQCFIN)
Maximum number of LU 6.2 channels (parameter identifier:
MQIA_LU62_CHANNELS).

The maximum number of channels that can be current, or clients that can be
connected, that use the LU 6.2 transmission protocol. This parameter applies to
z/OS only.

MaxActiveChannels (MQCFIN)
Maximum number of channels (parameter identifier:
MQIA_ACTIVE_CHANNELS).

The maximum number of channels that can be active at any time. This
parameter applies to z/OS only.

MaxChannels (MQCFIN)
Maximum number of current channels (parameter identifier:
MQIA_MAX_CHANNELS).

The maximum number of channels that can be current (including
server-connection channels with connected clients). This parameter applies to
z/OS only.

Chapter 3. Definitions of the Programmable Command Formats 339



MaxHandles (MQCFIN)
Maximum number of handles (parameter identifier: MQIA_MAX_HANDLES).

Specifies the maximum number of handles that any one connection can have
open at the same time.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier: MQIA_MAX_MSG_LENGTH).

MaxPriority (MQCFIN)
Maximum priority (parameter identifier: MQIA_MAX_PRIORITY).

MaxPropertiesLength (MQCFIN)
Maximum properties length (parameter identifier:
MQIA_MAX_PROPERTIES_LENGTH).

MaxUncommittedMsgs (MQCFIN)
Maximum number of uncommitted messages within a unit of work (parameter
identifier: MQIA_MAX_UNCOMMITTED_MSGS).

That is:
v The number of messages that can be retrieved, plus
v The number of messages that can be put on a queue, plus
v Any trigger messages generated within this unit of work

under any one syncpoint. This limit does not apply to messages that are
retrieved or put outside syncpoint.

MQIAccounting (MQCFIN)
Whether accounting information for MQI data is to be collected (parameter
identifier: MQIA_ACCOUNTING_MQI).

The value can be:

MQMON_OFF
MQI accounting data collection is disabled.

MQMON_ON
MQI accounting data collection is enabled.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

MQIStatistics (MQCFIN)
Whether statistics monitoring data is to be collected for the queue manager
(parameter identifier: MQIA_STATISTICS_MQI).

The value can be:

MQMON_OFF
Data collection for MQI statistics is disabled. This is the queue
manager’s initial default value.

MQMON_ON
Data collection for MQI statistics is enabled.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

MsgMarkBrowseInterval (MQCFIN)
Mark-browse interval (parameter identifier:
MQIA_MSG_MARK_BROWSE_INTERVAL).

340 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|



The time interval in milliseconds after which the queue manager can
automatically unmark messages.

OutboundPortMax (MQCFIN)
The maximum value in the range for the binding of outgoing channels
(parameter identifier: MQIA_OUTBOUND_PORT_MAX).

The maximum value in the range of port numbers to be used when binding
outgoing channels. This parameter applies to z/OS only.

OutboundPortMin (MQCFIN)
The minimum value in the range for the binding of outgoing channels
(parameter identifier: MQIA_OUTBOUND_PORT_MIN).

The minimum value in the range of port numbers to be used when binding
outgoing channels. This parameter applies to z/OS only.

Parent (MQCFST)
The name of the hierarchically connected queue manager nominated as the
parent of this queue manager (parameter identifier: MQCA_PARENT).

PerformanceEvent (MQCFIN)
Controls whether performance-related events are generated (parameter
identifier: MQIA_PERFORMANCE_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

Platform (MQCFIN)
Platform on which the queue manager resides (parameter identifier:
MQIA_PLATFORM).

The value can be:

MQPL_AIX
AIX (same value as MQPL_UNIX).

MQPL_NSK
Compaq NonStop Kernel.

MQPL_OS400
i5/OS.

MQPL_UNIX
UNIX systems.

MQPL_VMS
HP OpenVMS.

MQPL_WINDOWS_NT
Windows.

MQPL_ZOS
z/OS

PubSubMode (MQCFIN)
Whether the publish/subscribe engine and the queued publish/subscribe
interface are running, therefore allowing applications to publish or subscribe

Chapter 3. Definitions of the Programmable Command Formats 341

|
|
|

|
|
|



by using the application programming interface and the queues that are being
monitored by the queued publish/subscribe interface (parameter identifier:
MQIA_PUBSUB_MODE).

The values can be as follows:

MQPSM_COMPAT
The publish/subscribe engine is running. It is therefore possible to
publish or subscribe by using the application programming interface.
The queued publish/subscribe interface is not running, therefore any
message that is put to the queues that are monitored by the queued
publish/subscribe interface will not be acted on. This setting is used
for compatibility with WebSphere Message Broker V6 or earlier
versions using this queue manager, because it needs to read the same
queues from which the queued publish/subscribe interface normally
reads.

MQPSM_DISABLED
The publish/subscribe engine and the queued publish/subscribe
interface are not running. It is therefore not possible to publish or
subscribe by using the application programming interface. Any
publish/subscribe messages that are put to the queues that are
monitored by the queued publish/subscribe interface will not be acted
on.

MQPSM_ENABLED
The publish/subscribe engine and the queued publish/subscribe
interface are running. It is therefore possible to publish or subscribe by
using the application programming interface and the queues that are
being monitored by the queued publish/subscribe interface. This is the
queue manager’s initial default value.

QMgrIdentifier (MQCFST)
Queue manager identifier (parameter identifier: MQCA_Q_MGR_IDENTIFIER).

The unique identifier of the queue manager.

QMgrName (MQCFST)
Name of local queue manager (parameter identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QSGName (MQCFST)
Queue sharing group name (parameter identifier: MQCA_QSG_NAME). This
parameter is valid only on z/OS.

The maximum length of the string is MQ_QSG_NAME_LENGTH.

QueueAccounting (MQCFIN)
Collection of accounting (thread-level and queue-level accounting) data for
queues (parameter identifier: MQIA_ACCOUNTING_Q).

The value can be:

MQMON_NONE
Accounting data collection for queues is disabled.

MQMON_OFF
Accounting data collection is disabled for queues specifying a value of
MQMON__Q_MGR in the QueueAccounting parameter.

342 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|



MQMON_ON
Accounting data collection is enabled for queues specifying a value of
MQMON__Q_MGR in the QueueAccounting parameter.

QueueMonitoring (MQCFIN)
Default setting for online monitoring for queues (parameter identifier:
MQIA_MONITORING_Q).

If the QueueMonitoring queue attribute is set to MQMON_Q_MGR, this
attribute specifies the value which is assumed by the channel. The value can
be:

MQMON_OFF
Online monitoring data collection is turned off.

MQMON_NONE
Online monitoring data collection is turned off for queues regardless of
the setting of their QueueMonitoring attribute.

MQMON_LOW
Online monitoring data collection is turned on, with a low ratio of data
collection.

MQMON_MEDIUM
Online monitoring data collection is turned on, with a moderate ratio
of data collection.

MQMON_HIGH
Online monitoring data collection is turned on, with a high ratio of
data collection.

QueueStatistics (MQCFIN)
Whether statistics data is to be collected for queues (parameter identifier:
MQIA_STATISTICS_Q).

The value can be:

MQMON_NONE
Statistics data collection is turned off for queues regardless of the
setting of their QueueStatistics parameter.

MQMON_OFF
Statistics data collection is turned off for queues specifying a value of
MQMON_Q_MGR in their QueueStatistics parameter.

MQMON_ON
Statistics data collection is turned on for queues specifying a value of
MQMON_Q_MGR in their QueueStatistics parameter.

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

ReceiveTimeout (MQCFIN)
How long a TCP/IP channel waits to receive data from its partner (parameter
identifier: MQIA_RECEIVE_TIMEOUT).

The length of time that a TCP/IP channel waits to receive data, including
heartbeats, from its partner before returning to the inactive state.

This parameter applies to z/OS only.

ReceiveTimeoutMin (MQCFIN)
The minimum length of time that a TCP/IP channel waits to receive data from
its partner (parameter identifier: MQIA_RECEIVE_TIMEOUT_MIN).

Chapter 3. Definitions of the Programmable Command Formats 343



The minimum length of time that a TCP/IP channel waits to receive data,
including heartbeats, from its partner before returning to the inactive state.
This parameter applies to z/OS only.

ReceiveTimeoutType (MQCFIN)
The qualifier to apply to ReceiveTimeout (parameter identifier:
MQIA_RECEIVE_TIMEOUT_TYPE).

The qualifier to apply to ReceiveTimeoutType to calculate how long a TCP/IP
channel waits to receive data, including heartbeats, from its partner before
returning to the inactive state. This parameter applies to z/OS only.

The value can be:

MQRCVTIME_MULTIPLY
The ReceiveTimeout value is a multiplier to be applied to the
negotiated value of HeartbeatInterval to determine how long a
channel will wait.

MQRCVTIME_ADD
ReceiveTimeout is a value, in seconds, to be added to the negotiated
value of HeartbeatInterval to determine how long a channel will wait.

MQRCVTIME_EQUAL
ReceiveTimeout is a value, in seconds, representing how long a channel
will wait.

RemoteEvent (MQCFIN)
Controls whether remote error events are generated (parameter identifier:
MQIA_REMOTE_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

RepositoryName (MQCFST)
Repository name (parameter identifier: MQCA_REPOSITORY_NAME).

The name of a cluster for which this queue manager is to provide a repository
service.

RepositoryNamelist (MQCFST)
Repository name list (parameter identifier: MQCA_REPOSITORY_NAMELIST).

The name of a list of clusters for which this queue manager is to provide a
repository service.

SecurityCase (MQCFIN)
Security case supported (parameter identifier: MQIA_SECURITY_CASE).

Specifies whether or not the queue manager supports security profile names in
mixed case, or in uppercase only. The value is activated when a Refresh
Security command is run with SecurityType(MQSECTYPE_CLASSES) specified.
This parameter is valid only on z/OS.

The value can be:

MQSCYC_UPPER
Security profile names must be in upper case.

344 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|
|
|

|

|
|



MQSCYC_MIXED
Security profile names can be in upper case or in mixed case.

SharedQQmgrName (MQCFIN)
Shared-queue queue manager name (parameter identifier:
MQIA_SHARED_Q_Q_MGR_NAME).

When a queue manager makes an MQOPEN call for a shared queue and the
queue manager that is specified in the ObjectQmgrName parameter of the
MQOPEN call is in the same queue-sharing group as the processing queue
manager, the SQQMNAME attribute specifies whether the ObjectQmgrName is
used or whether the processing queue manager opens the shared queue
directly. This parameter is valid only on z/OS.

The value can be:

MQSQQM_USE
ObjectQmgrName is used and the appropriate transmission queue is
opened.

MQSQQM_IGNORE
The processing queue manager opens the shared queue directly.

SSLCRLNamelist (MQCFST)
The SSL Certification Revocation List (CRL) namelist (parameter identifier:
MQCA_SSL_CRL_NAMELIST).

The length of the string is MQ_NAMELIST_NAME_LENGTH.

Indicates the name of a namelist of authentication information objects to be
used for CRL checking by the queue manager.

SSLCryptoHardware (MQCFST)
Parameters to configure the SSL cryptographic hardware (parameter identifier:
MQCA_SSL_CRYPTO_HARDWARE).

The length of the string is MQ_SSL_CRYPTO_HARDWARE_LENGTH.

Sets the name of the parameter string required to configure the cryptographic
hardware present on the system.

This parameter is supported on AIX, HP-UX, Solaris, Linux, and Windows
only.

SSLEvent (MQCFIN)
Controls whether SSL events are generated (parameter identifier:
MQIA_SSL_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

SSLFipsRequired (MQCFIN)
Controls whether only FIPS-certified algorithms are to be used if cryptography
is executed in WebSphere MQ itself (parameter identifier:
MQIA_SSL_FIPS_REQUIRED). This parameter is valid only on Windows and
UNIX platforms.

The value can be:

Chapter 3. Definitions of the Programmable Command Formats 345

|
|



MQSSL_FIPS_NO
Any supported CipherSpec can be used.

MQSSL_FIPS_YES
Only FIPS-certified cryptographic algorithms are to be used if
cryptography is executed in WebSphere MQ itself.

SSLKeyRepository (MQCFST)
Location and name of the SSL key repository (parameter identifier:
MQCA_SSL_KEY_REPOSITORY).

The length of the string is MQ_SSL_KEY_REPOSITORY_LENGTH.

Indicates the name of the Secure Sockets Layer key repository.

The format of the name depends on the environment.

SSLKeyResetCount (MQCFIN)
SSL key reset count (parameter identifier: MQIA_SSL_RESET_COUNT).

The number of unencrypted bytes that initiating SSL channel MCAs send or
receive before renegotiating the secret key.

SSLTasks (MQCFIN)
Number of server subtasks used for processing SSL calls (parameter identifier:
MQIA_SSL_TASKS). This parameter is valid only on z/OS.

The number of server subtasks used for processing SSL calls.

StartStopEvent (MQCFIN)
Controls whether start and stop events are generated (parameter identifier:
MQIA_START_STOP_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

StatisticsInterval (MQCFIN)
The time interval, in seconds, at which statistics monitoring data is written to
the monitoring queue (parameter identifier: MQIA_STATISTICS_INTERVAL).

This parameter is valid only on AIX, HP-UX, Linux, i5/OS, Solaris, and
Windows.

SyncPoint (MQCFIN)
Syncpoint availability (parameter identifier: MQIA_SYNCPOINT).

The value can be:

MQSP_AVAILABLE
Units of work and syncpointing available.

MQSP_NOT_AVAILABLE
Units of work and syncpointing not available.

TCPChannels (MQCFIN)
The maximum number of channels that can be current, or clients that can be
connected, that use the TCP/IP transmission protocol (parameter identifier:
MQIA_TCP_CHANNELS).

This parameter applies to z/OS only.

346 WebSphere MQ: Programmable Command Formats and Administration Interface



TCPKeepAlive (MQCFIN)
Whether the TCP KEEPALIVE facility is to be used to check whether the other
end of the connection is still available (parameter identifier:
MQIA_TCP_KEEP_ALIVE).

The value can be:

MQTCPKEEP_YES
The TCP KEEPALIVE facility is to be used as specified in the TCP
profile configuration data set. The interval is specified in the
KeepAliveInterval channel attribute.

MQTCPKEEP_NO
The TCP KEEPALIVE facility is not to be used.

This parameter applies to z/OS only.

TCPName (MQCFST)
The name of the TCP/IP system that you are using (parameter identifier:
MQIA_TCP_NAME).

This parameter applies to z/OS only.

TCPStackType (MQCFIN)
Whether the channel initiator may use only the TCP/IP address space specified
in TCPName, or may optionally bind to any selected TCP/IP address (parameter
identifier: MQIA_TCP_STACK_TYPE).

The value can be:

MQTCPSTACK_SINGLE
The channel initiator may only use the TCP/IP address space specified
in TCPName.

MQTCPSTACK_MULTIPLE
The channel initiator may use any TCP/IP address space available to
it.

This parameter applies to z/OS only.

TraceRouteRecording (MQCFIN)
Whether trace-route information can be recorded and a reply message
generated (parameter identifier: MQIA_TRACE_ROUTE_RECORDING).

The value can be:

MQRECORDING_DISABLED
Trace-route information cannot recorded.

MQRECORDING_MSG
Trace-route information can be recorded and sent to the destination
specified by the originator of the message causing the trace route
record.

MQRECORDING_Q
Trace-route information can be recorded and sent to
SYSTEM.ADMIN.TRACE.ROUTE.QUEUE.

TreeLifeTime (MQCFIN)
The lifetime in seconds of non-administrative topics (parameter identifier:
MQIA_TREE_LIFE_TIME).

Non-administrative topics are those created when an application publishes to,
or subscribes on, a topic string that does not exist as an administrative node.
When this non-administrative node no longer has any active subscriptions, this

Chapter 3. Definitions of the Programmable Command Formats 347

|
|
|

|
|
|



parameter determines how long the queue manager will wait before removing
that node. Only non-administrative topics that are in use by a durable
subscription remain after the queue manager it recycled.

The value can be in the range 0 through 604 000. A value of 0 means that
non-administrative topics are not removed by the queue manager. The queue
manager’s initial default value is 1800.

TriggerInterval (MQCFIN)
Trigger interval (parameter identifier: MQIA_TRIGGER_INTERVAL).

Specifies the trigger time interval, expressed in milliseconds, for use only with
queues where TriggerType has a value of MQTT_FIRST.

Inquire Queue Manager Status

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The Inquire Queue Manager Status (MQCMD_INQUIRE_Q_MGR_STATUS)
command inquires about the status of the local queue manager.

Required parameters:
None

Optional parameters:
QMStatusAttrs

Optional parameters (Inquire Queue Manager Status)
QMStatusAttrs (MQCFIL)

Queue manager status attributes (parameter identifier:
MQIACF_Q_MGR_STATUS_ATTRS).

The attribute list might specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCA_Q_MGR_NAME
Name of the local queue manager.

MQCACF_CURRENT_LOG_EXTENT_NAME
Name of the log extent currently being written to by the logger. This is
available only on queue managers using linear logging. On other
queue managers, this is blank.

MQCACF_LOG_PATH
Location of the recovery log extents.

MQCACF_MEDIA_LOG_EXTENT_NAME
Name of the earliest log extent required to perform media recovery.
This is available only on queue managers using linear logging. On
other queue managers, this is blank.

MQCACF_RESTART_LOG_EXTENT_NAME
Name of the earliest log extent required to perform restart recovery.

348 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|
|



This is available only on queue managers using linear logging. On
other queue managers, this is blank.

MQIACF_CHINIT_STATUS
Current status of the channel initiator.

MQIACF_CMD_SERVER_STATUS
Current status of the command server.

MQIACF_CONNECTION_COUNT
Current number of connections to the queue manager.

MQIACF_Q_MGR_STATUS
Current status of the queue manager.

Inquire Queue Manager Status (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The response to the Inquire Queue Manager Status
(MQCMD_INQUIRE_Q_MGR_STATUS) command consists of the response header
followed by the QMgrName and QMgrStatus structures and the requested combination
of attribute parameter structures.

Always returned:
QMgrName, QMgrStatus

Returned if requested:
ChannelInitiatorStatus, CommandServerStatus, ConnectionCount,
CurrentLog, LogPath, MediaRecoveryLog, RestartRecoveryLog

Response data
ChannelInitiatorStatus (MQCFIN)

Status of the channel initiator reading SYSTEM.DEFAULT.INITIATION.QUEUE
(parameter identifier: MQIACF_CHINIT_STATUS).

The value can be:

MQSVC_STATUS_STOPPED
The channel initiator is not running.

MQSVC_STATUS_STARTING
The channel initiator is in the process of initializing.

MQSVC_STATUS_RUNNING
The channel initiator is fully initialized and is running.

MQSVC_STATUS_STOPPING
The channel initiator is stopping.

CommandServerStatus (MQCFIN)
Status of the command server (parameter identifier:
MQIACF_CMD_SERVER_STATUS).

The value can be:

MQSVC_STATUS_STOPPED
The command server is not running.

Chapter 3. Definitions of the Programmable Command Formats 349



MQSVC_STATUS_STARTING
The command server is in the process of initializing.

MQSVC_STATUS_RUNNING
The command server is fully initialized and is running.

MQSVC_STATUS_STOPPING
The command server is stopping.

ConnectionCount (MQCFIN)
Connection count (parameter identifier: MQIACF_CONNECTION_COUNT).

The current number of connections to the queue manager.

CurrentLog (MQCFST)
Log extent name (parameter identifier:
MQCACF_CURRENT_LOG_EXTENT_NAME).

The name of the log extent that was being written to at the time of the Inquire
command. If the queue manager is using circular logging, this is blank.

The maximum length of the string is MQ_LOG_EXTENT_NAME_LENGTH.

LogPath (MQCFST)
Location of the recovery log extents (parameter identifier:
MQCACF_LOG_PATH).

This identifies the directory where log files are created by the queue manager.

The maximum length of the string is MQ_LOG_PATH_LENGTH.

MediaRecoveryLog (MQCFST)
Name of the oldest log extent required by the queue manager to perform
media recovery (parameter identifier:
MQCACF_MEDIA_LOG_EXTENT_NAME). This is available only on queue
managers using linear logging. If the queue manager is using circular logging,
this is blank.

The maximum length of the string is MQ_LOG_EXTENT_NAME_LENGTH.

QMgrName (MQCFST)
Name of the local queue manager (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QMgrStatus (MQCFIN)
Current execution status of the queue manager (parameter identifier:
MQIACF_Q_MGR_STATUS).

The value can be:

MQQMSTA_STARTING
The queue manager is initializing.

MQQMSTA_RUNNING
The queue manager is fully initialized and is running.

MQQMSTA_QUIESCING
The queue manager is quiescing.

RestartRecoveryLog (MQCFST)
Name of the oldest log extent required by the queue manager to perform
restart recovery (parameter identifier:
MQCACF_RESTART_LOG_EXTENT_NAME).

350 WebSphere MQ: Programmable Command Formats and Administration Interface



This is available only on queue managers using linear logging. If the queue
manager is using circular logging, this is blank.

The maximum length of the string is MQ_LOG_EXTENT_NAME_LENGTH.

Inquire Queue Names

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Inquire Queue Names (MQCMD_INQUIRE_Q_NAMES) command inquires a
list of queue names that match the generic queue name, and the optional queue
type specified.

Required parameters:
QName

Optional parameters:
CommandScope, QSGDisposition, QType

Required parameters (Inquire Queue Names)
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

Generic queue names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all objects having
names that start with the selected character string. An asterisk on its own
matches all possible names.

The maximum length of the string is MQ_Q_LENGTH.

Optional parameters (Inquire Queue Names)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Chapter 3. Definitions of the Programmable Command Formats 351



Specifies the disposition of the object for which information is to be returned
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_LIVE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. This
is the default value if the parameter is not specified.

MQQSGD_ALL
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY.

If there is a shared queue manager environment, and the command is
being executed on the queue manager where it was issued, this option
also displays information for objects defined with MQQSGD_GROUP.

If MQQSGD_LIVE is specified or defaulted, or if MQQSGD_ALL is
specified in a shared queue manager environment, the command might
give duplicated names (with different dispositions).

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP. This is permitted only in a
shared queue environment.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_PRIVATE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. Note
that MQQSGD_PRIVATE returns the same information as
MQQSGD_LIVE.

MQQSGD_SHARED
The object is defined as MQQSGD_SHARED. This is permitted only in
a shared queue environment.

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

If present, this parameter limits the queue names returned to queues of the
specified type. If this parameter is not present, queues of all types are eligible.
The value can be:

MQQT_ALL
All queue types.

MQQT_LOCAL
Local queue.

MQQT_ALIAS
Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

MQQT_MODEL
Model queue definition.

The default value if this parameter is not specified is MQQT_ALL.

352 WebSphere MQ: Programmable Command Formats and Administration Interface



Inquire Queue Names (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The response to the Inquire Queue Names (MQCMD_INQUIRE_Q_NAMES)
command consists of the response header followed by a single parameter structure
giving zero or more names that match the specified queue name. This is followed
by the QTypes structure, with the same number of entries as the QNames structure.
Each entry gives the type of the queue with the corresponding entry in the QNames
structure.

In addition to this, on z/OS only, the QSGDispositions parameter structure (with
the same number of entries as the QNames structure) is returned. Each entry in this
structure indicates the disposition of the object with the corresponding entry in the
QNames structure.

Always returned:
QNames, QSGDispositions, QTypes

Returned if requested:
None

Response data
QNames (MQCFSL)

List of queue names (parameter identifier: MQCACF_Q_NAMES).

QSGDispositions (MQCFIL)
List of QSG dispositions (parameter identifier: MQIACF_QSG_DISPS). This is
valid on z/OS only. Possible values for fields in this structure are:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_SHARED
The object is defined as MQQSGD_SHARED.

QTypes (MQCFIL)
List of queue types (parameter identifier: MQIACF_Q_TYPES). Possible values
for fields in this structure are:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

MQQT_REMOTE
Local definition of a remote queue.

MQQT_MODEL
Model queue definition.

Chapter 3. Definitions of the Programmable Command Formats 353



Inquire Queue Status

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

The Inquire Queue Status (MQCMD_INQUIRE_Q_STATUS) command inquires
about the status of a local WebSphere MQ queue. You must specify the name of a
local queue for which you want to receive status information.

Required parameters:
QName

Optional parameters:
CommandScope, IntegerFilterCommand, OpenType, QSGDisposition,
QStatusAttrs, StatusType, StringFilterCommand,

Required parameters (Inquire Queue Status)
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

Generic queue names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all queues having
names that start with the selected character string. An asterisk on its own
matches all possible names.

The queue name is always returned, regardless of the attributes requested.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Optional parameters (Inquire Queue Status)
ByteStringFilterCommand (MQCFBF)

Byte string filter command descriptor. The parameter identifier must be
MQBACF_EXTERNAL_UOW_ID or MQBACF_Q_MGR_UOW_ID. Use this to
restrict the output from the command by specifying a filter condition. See
“MQCFBF - PCF byte string filter parameter” on page 482 for information
about using this filter condition.

If you specify a byte string filter, you cannot also specify an integer filter using
the IntegerFilterCommand parameter, or a string filter using the
StringFilterCommand parameter.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

354 WebSphere MQ: Programmable Command Formats and Administration Interface



v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

You cannot use CommandScope as a parameter to filter on.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in QStatusAttrs except MQIACF_ALL,
MQIACF_MONITORING, and MQIACF_Q_TIME_INDICATOR. Use this to
restrict the output from the command by specifying a filter condition. See
“MQCFIF - PCF integer filter parameter” on page 487 for information about
using this filter condition.

If you specify an integer filter, you cannot also specify a byte string filter using
the ByteStringFilterCommand parameter or a string filter using the
StringFilterCommand parameter.

OpenType (MQCFIN)
Queue status open type (parameter identifier: MQIACF_OPEN_TYPE).

It is always returned, regardless of the queue instance attributes requested.

The value can be:

MQQSOT_ALL
Selects status for queues that are open with any type of access.

MQQSOT_INPUT
Selects status for queues that are open for input.

MQQSOT_OUTPUT
Selects status for queues that are open for output.

The default value if this parameter if not specified is MQQSOT_ALL.

Filtering is not supported for this parameter.

QSGDispositon (MQCFIN)
QSG disposition (parameter identifier: MQIA_QSG_DISP).

Specifies the disposition of the object (that is, where it is defined and how it
behaves). This is valid only on z/OS. The value can be:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_SHARED
The object is defined as MQQSGD_SHARED.

You cannot use QSGDispositon as a parameter to filter on.

QStatusAttrs (MQCFIL)
Queue status attributes (parameter identifier: MQIACF_Q_STATUS_ATTRS).

The attribute list can specify the following on its own (this is the default value
used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

Chapter 3. Definitions of the Programmable Command Formats 355



Where StatusType is MQIACF_Q_STATUS:

MQCA_Q_NAME
Queue name.

MQCACF_LAST_GET_DATE
Date of the last message successfully destructively read from the
queue.

MQCACF_LAST_GET_TIME
Time of the last message successfully destructively read from the
queue.

MQCACF_LAST_PUT_DATE
Date of the last message successfully put to the queue.

MQCACF_LAST_PUT_TIME
Time of the last message successfully put to the queue.

MQCACF_MEDIA_LOG_EXTENT_NAME
Identity of the oldest log extent needed to perform media recovery of
the queue.

On i5/OS, this identifies the name of the oldest journal receiver needed
to perform media recovery of the queue.

MQIA_CURRENT_Q_DEPTH
The current number of messages on the queue.

MQIA_MONITORING_Q
Current level of monitoring data collection.

MQIA_OPEN_INPUT_COUNT
The number of handles that are currently open for input for the queue.
This does not include handles that are open for browse.

MQIA_OPEN_OUTPUT_COUNT
The number of handles that are currently open for output for the
queue.

MQIACF_HANDLE_STATE
Whether an API call is in progress.

MQIACF_MONITORING
All of the queue status monitoring attributes. These are:
v MQCACF_LAST_GET_DATE
v MQCACF_LAST_GET_TIME
v MQCACF_LAST_PUT_DATE
v MQCACF_LAST_PUT_TIME
v MQIA_MONITORING_Q
v MQIACF_OLDEST_MSG_AGE
v MQIACF_Q_TIME_INDICATOR

Filtering is not supported for this parameter.

MQIACF_OLDEST_MSG_AGE
Age of oldest message on the queue.

MQIACF_Q_TIME_INDICATOR
Indicator of the time that messages remain on the queue.

MQIACF_UNCOMMITED_MSGS
Whether there are uncommitted messages on the queue.

356 WebSphere MQ: Programmable Command Formats and Administration Interface



Where StatusType is MQIACF_Q_HANDLE:

MQBACF_EXTERNAL_UOW_ID
Unit of recovery identifier assigned by the queue manager.

MQBACF_Q_MGR_UOW_ID
External unit of recovery identifier associated with the connection.

MQCA_Q_NAME
Queue name.

MQCACF_APPL_TAG
This is a string containing the tag of the application connected to the
queue manager.

MQCACF_ASID
Address-space identifier of the application identified by ApplTag. This
parameter is valid on z/OS only.

MQCACF_PSB_NAME
Name of the program specification block (PSB) associated with the
running IMS transaction. This parameter is valid on z/OS only.

MQCACF_PSTID
Identifier of the IMS program specification table (PST) for the
connected IMS region. This parameter is valid on z/OS only.

MQCACF_TASK_NUMBER
CICS task number. This parameter is valid on z/OS only.

MQCACF_TRANSACTION_ID
CICS transaction identifier. This parameter is valid on z/OS only.

MQCACF_USER_IDENTIFIER
The username of the application that has opened the specified queue.

MQCACH_CHANNEL_NAME
The name of the channel that has the queue open, if any.

MQCACH_CONNECTION_NAME
The connection name of the channel that has the queue open, if any.

MQIA_APPL_TYPE
The type of application that has the queue open.

MQIACF_OPEN_BROWSE
Open browse.

Filtering is not supported for this parameter.

MQIACF_OPEN_INPUT_TYPE
Open input type.

Filtering is not supported for this parameter.

MQIACF_OPEN_INQUIRE
Open inquire.

Filtering is not supported for this parameter.

MQIACF_OPEN_OPTIONS
The options used to open the queue.

If this parameter is requested, the following parameter structures are
also returned:
v OpenBrowse

Chapter 3. Definitions of the Programmable Command Formats 357



v OpenInputType
v OpenInquire
v OpenOutput
v OpenSet

Filtering is not supported for this parameter.

MQIACF_OPEN_OUTPUT
Open output.

Filtering is not supported for this parameter.

MQIACF_OPEN_SET
Open set.

Filtering is not supported for this parameter.

MQIACF_PROCESS_ID
The process identifier of the application that has opened the specified
queue.

MQIACF_ASYNC_STATE

MQIACF_THREAD_ID
The thread identifier of the application that has opened the specified
queue.

MQIACF_UOW_TYPE
Type of external unit of recovery identifier as seen by the queue
manager.

StatusType (MQCFIN)
Queue status type (parameter identifier: MQIACF_Q_STATUS_TYPE).

Specifies the type of status information required.

The value can be:

MQIACF_Q_STATUS
Selects status information relating to queues.

MQIACF_Q_HANDLE
Selects status information relating to the handles that are accessing the
queues.

The default value, if this parameter is not specified, is MQIACF_Q_STATUS.

You cannot use StatusType as a parameter to filter on.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter allowed in QStatusAttrs except MQCA_Q_NAME. Use this to
restrict the output from the command by specifying a filter condition. See
“MQCFSF - PCF string filter parameter” on page 494 for information about
using this filter condition.

If you specify a string filter, you cannot also specify a byte string filter using
the ByteStringFilterCommand parameter or an integer filter using the
IntegerFilterCommand parameter.

Error codes (Inquire Queue Status)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

358 WebSphere MQ: Programmable Command Formats and Administration Interface



Reason (MQLONG)
The value can be:

MQRCCF_Q_TYPE_ERROR
Queue type not valid.

Inquire Queue Status (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

The response to the Inquire Queue Status (MQCMD_INQUIRE_Q_STATUS)
command consists of the response header followed by the QName structure and a set
of attribute parameter structures determined by the value of StatusType in the
Inquire command.

Always returned:
QName, QSGDisposition, StatusType

Possible values of StatusType are:

MQIACF_Q_STATUS
Returns status information relating to queues.

MQIACF_Q_HANDLE
Returns status information relating to the handles that are
accessing the queues.

Returned if requested and StatusType is MQIACF_Q_STATUS:
CurrentQDepth, LastGetDate, LastGetTime, LastPutDate, LastPutTime,
MediaRecoveryLogExtent, OldestMsgAge, OnQTime, OpenInputCount,
OpenOutputCount, QueueMonitoring, UncommittedMsgs

Returned if requested and StatusType is MQIACF_Q_HANDLE:
ApplTag, ApplType, ASId, AsynchronousState, ChannelName, ConnectionName,
ExternalUOWId, HandleState, OpenOptions, ProcessId, PSBName, PSTId,
QMgrUOWId, TaskNumber, ThreadId, TransactionId, UOWIdentifier, UOWType,
UserIdentifier

Response data if StatusType is MQIACF_Q_STATUS
CurrentQDepth (MQCFIN)

Current queue depth (parameter identifier: MQIA_CURRENT_Q_DEPTH).

LastGetDate (MQCFST)
Date on which the last message was destructively read from the queue
(parameter identifier: MQCACF_LAST_GET_DATE).

The date, in the form yyyy-mm-dd, on which the last message was successfully
read from the queue. The date is returned in the time zone in which the queue
manager is running.

The maximum length of the string is MQ_DATE_LENGTH.

LastGetTime (MQCFST)
Time at which the last message was destructively read from the queue
(parameter identifier: MQCACF_LAST_GET_TIME).

Chapter 3. Definitions of the Programmable Command Formats 359

|



The time, in the form hh.mm.ss, at which the last message was successfully
read from the queue. The time is returned in the time zone in which the queue
manager is running.

The maximum length of the string is MQ_TIME_LENGTH.

LastPutDate (MQCFST)
Date on which the last message was successfully put to the queue (parameter
identifier: MQCACF_LAST_PUT_DATE).

The date, in the form yyyy-mm-dd, on which the last message was successfully
put to the queue. The date is returned in the time zone in which the queue
manager is running.

The maximum length of the string is MQ_DATE_LENGTH.

LastPutTime (MQCFST)
Time at which the last message was successfully put to the queue (parameter
identifier: MQCACF_LAST_PUT_TIME).

The time, in the form hh.mm.ss, at which the last message was successfully put
to the queue. The time is returned in the time zone in which the queue
manager is running.

The maximum length of the string is MQ_TIME_LENGTH.

MediaRecoveryLogExtent (MQCFST)
Name of the oldest log extent needed to perform media recovery of the queue
(parameter identifier: MQCACF_MEDIA_LOG_EXTENT_NAME).

On i5/OS, this identifies the name of the oldest journal receiver needed to
perform media recovery of the queue.

Note that the name returned is of the form Snnnnnnn.LOG and is not a fully
qualified path name. This allows the name to be easily correlated with the
messages issued following an rcdmqimg command to identify those queues
causing the media recovery LSN not to move forwards.

This is valid on AIX, HP-UX, Linux, i5/OS, Solaris, and Windows.

The maximum length of the string is MQ_LOG_EXTENT_NAME_LENGTH.

OldestMsgAge (MQCFIN)
Age of the oldest message (parameter identifier:
MQIACF_OLDEST_MSG_AGE). Age, in seconds, of the oldest message on the
queue.

If the value is unavailable, MQMON_NOT_AVAILABLE is returned. If the
queue is empty, 0 is returned. If the value exceeds 999 999 999, it is returned
as 999 999 999.

OnQTime (MQCFIL)
Indicator of the time that messages remain on the queue (parameter identifier:
MQIACH_Q_TIME_INDICATOR). Amount of time, in microseconds, that a
message spent on the queue. Two values are returned:
v A value based on recent activity over a short period of time.
v A value based on activity over a longer period of time.

Where no measurement is available, the value MQMON_NOT_AVAILABLE is
returned. If the value exceeds 999 999 999, it is returned as 999 999 999.

OpenInputCount (MQCFIN)
Open input count (parameter identifier: MQIA_OPEN_INPUT_COUNT).

360 WebSphere MQ: Programmable Command Formats and Administration Interface



OpenOutputCount (MQCFIN)
Open output count (parameter identifier: MQIA_OPEN_OUTPUT_COUNT).

QName (MQCFST)
Queue name (parameter identifier: MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

QSGDisposition (MQCFIN)
QSG disposition (parameter identifier: MQIA_QSG_DISP).

Returns the disposition of the object (that is, where it is defined and how it
behaves). This parameter is valid on z/OS only. The value can be:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_SHARED
The object is defined as MQQSGD_SHARED.

QueueMonitoring (MQCFIN)
Current level of monitoring data collection for the queue (parameter identifier:
MQIA_MONITORING_Q). The value can be:

MQMON_OFF
Monitoring for the queue is switched off.

MQMON_LOW
Low rate of data collection.

MQMON_MEDIUM
Medium rate of data collection.

MQMON_HIGH
High rate of data collection.

StatusType (MQCFST)
Queue status type (parameter identifier: MQIACF_Q_STATUS_TYPE).

Specifies the type of status information.

UncommittedMsgs (MQCFIN)
Whether or not there are uncommitted messages (parameter identifier:
MQIACF_UNCOMMITTED_MSGS). The value can be:

MQQSUM_YES
There are uncommitted messages.

MQQSUM_NO
There are no uncommitted messages.

Response data if StatusType is MQIACF_Q_HANDLE
ApplTag (MQCFST)

Open application tag (parameter identifier: MQCACF_APPL_TAG).

The maximum length of the string is MQ_APPL_TAG_LENGTH.

ApplType (MQCFIN)
Open application type (parameter identifier: MQIA_APPL_TYPE).

The value can be:

Chapter 3. Definitions of the Programmable Command Formats 361

|
|

|
|

|
|



MQAT_QMGR
A queue manager process.

MQAT_CHANNEL_INITIATOR
The channel initiator.

MQAT_USER
A user application.

MQAT_BATCH
Application using a batch connection. This applies only to z/OS.

MQAT_RRS_BATCH
RRS-coordinated application using a batch connection. This applies
only to z/OS.

MQAT_CICS
A CICS transaction. This applies only to z/OS.

MQAT_IMS
An IMS transaction. This applies only to z/OS.

ASId (MQCFST)
Address-space identifier (parameter identifier: MQCACF_ASID).

The 4–character address-space identifier of the application identified by
ApplTag. It distinguishes duplicate values of ApplTag. This parameter applies
only to z/OS.

The length of the string is MQ_ASID_LENGTH.

AsynchronousState (MQCFIN)
The state of the asynchronous consumer on this queue (parameter identifier:
MQIACF_ASYNC_STATE).

The value can be:

MQAS_ACTIVE
An MQCB call has set up a function to call back to process messages
asynchronously and the connection handle has been started so that
asynchronous message consumption can proceed.

MQAS_INACTIVE
An MQCB call has set up a function to call back to process messages
asynchronously but the connection handle has not yet been started, or
has been stopped or suspended, so that asynchronous message
consumption cannot currently proceed.

MQAS_SUSPENDED
The asynchronous consumption call back has been suspended so that
asynchronous message consumption cannot currently proceed on this
handle. This can be either because an MQCB or MQCTL call with
Operation MQOP_SUSPEND has been issued against this object handle
by the application, or because it has been suspended by the system. If
it has been suspended by the system, as part of the process of
suspending asynchronous message consumption the call back function
will be called with the reason code that describes the problem resulting
in suspension. This will be reported in the Reason field in the MQCBC
structure passed to the call back. In order for asynchronous message
consumption to proceed, the application must issue an MQCB or
MQCTL call with Operation MQOP_RESUME.

362 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|



MQAS_SUSPENDED_TEMPORARY
The asynchronous consumption call back has been temporarily
suspended by the system so that asynchronous message consumption
cannot currently proceed on this object handle. As part of the process
of suspending asynchronous message consumption the call back
function will be called with the reason code that describes the problem
resulting in suspension. This will be reported in the Reason field in the
MQCBC structure passed to the call back. The call back function will
be called again when asynchronous message consumption is resumed
by the system once the temporary condition has been resolved.

MQAS_NONE
An MQCB call has not been issued against this handle, so no
asynchronous message consumption is configured on this handle.

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

Conname (MQCFST)
Connection name (parameter identifier: MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

ExternalUOWId (MQCFBS)
RRS unit-of–recovery identifier (parameter identifier:
MQBACF_EXTERNAL_UOW_ID).

The RRS unit-of-recovery identifier associated with the handle. This parameter
is valid only on z/OS only.

The length of the string is MQ_EXTERNAL_UOW_ID_LENGTH.

HandleState (MQCFIN)
State of the handle (parameter identifier: MQIACF_HANDLE_STATE).

The value may be:

MQHSTATE_ACTIVE
An API call from a connection is currently in progress for this object.
For a queue, this condition can arise when an MQGET WAIT call is in
progress.

If there is an MQGET SIGNAL outstanding, then this does not mean,
by itself, that the handle is active.

MQHSTATE_INACTIVE
No API call from a connection is currently in progress for this object.
For a queue, this condition can arise when no MQGET WAIT call is in
progress.

OpenBrowse (MQCFIN)
Open browse (parameter identifier: MQIACF_OPEN_BROWSE).

The value can be:

MQQSO_YES
The queue is open for browsing.

MQQSO_NO
The queue is not open for browsing.

OpenInputType (MQCFIN)
Open input type (parameter identifier: MQIACF_OPEN_INPUT_TYPE).

Chapter 3. Definitions of the Programmable Command Formats 363

|
|
|
|
|
|
|
|
|
|

|
|
|



The value can be:

MQQSO_NO
The queue is not open for inputing.

MQQSO_SHARED
The queue is open for shared input.

MQQSO_EXCLUSIVE
The queue is open for exclusive input.

OpenInquire (MQCFIN)
Open inquire (parameter identifier: MQIACF_OPEN_INQUIRE).

The value can be:

MQQSO_YES
The queue is open for inquiring.

MQQSO_NO
The queue is not open for inquiring.

OpenOptions (MQCFIN)
Open options currently in force for the queue (parameter identifier:
MQIACF_OPEN_OPTIONS).

OpenOutput (MQCFIN)
Open output (parameter identifier: MQIACF_OPEN_OUTPUT).

The value can be:

MQQSO_YES
The queue is open for outputting.

MQQSO_NO
The queue is not open for outputting.

OpenSet (MQCFIN)
Open set (parameter identifier: MQIACF_OPEN_SET).

The value can be:

MQQSO_YES
The queue is open for setting.

MQQSO_NO
The queue is not open for setting.

ProcessId (MQCFIN)
Open application process ID (parameter identifier: MQIACF_PROCESS_ID).

PSBName (MQCFST)
Program specification block (PSB) name (parameter identifier:
MQCACF_PSB_NAME).

The 8–character name of the PSB associated with the running IMS transaction.
This parameter is valid on z/OS only.

The length of the string is MQ_PSB_NAME_LENGTH.

PSTId (MQCFST)
Program specification table (PST) identifier (parameter identifier:
MQCACF_PST_ID).

The 4–character identifier of the PST region identifier for the connected IMS
region. This parameter is valid on z/OS only.

364 WebSphere MQ: Programmable Command Formats and Administration Interface



The length of the string is MQ_PST_ID_LENGTH.

QMgrUOWId (MQCFBS)
The unit of recovery assigned by the queue manager (parameter identifier:
MQBACF_Q_MGR_UOW_ID).

On z/OS, this is a 6–byte log RBA, displayed as 12 hexadecimal characters. On
platforms other than z/OS, this is an 8–byte transaction identifier, displayed as
16 hexadecimal characters.

The maximum length of the string is MQ_UOW_ID_LENGTH.

QName (MQCFST)
Queue name (parameter identifier: MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

QSGDisposition (MQCFIN)
QSG disposition (parameter identifier: MQIA_QSG_DISP).

Returns the disposition of the object (that is, where it is defined and how it
behaves). This parameter is valid on z/OS only. The value can be:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_SHARED
The object is defined as MQQSGD_SHARED.

StatusType (MQCFST)
Queue status type (parameter identifier: MQIACF_Q_STATUS_TYPE).

Specifies the type of status information.

TaskNumber (MQCFST)
CICS task number (parameter identifier: MQCACF_TASK_NUMBER).

A 7–digit CICS task number. This parameter is valid on z/OS only.

The length of the string is MQ_TASK_NUMBER_LENGTH.

ThreadId (MQCFIN)
The thread ID of the open application (parameter identifier:
MQIACF_THREAD_ID).

A value of zero indicates that the handle was opened by a shared connection.
A handle created by a shared connection is logically open to all threads.

TransactionId (MQCFST)
CICS transaction identifier (parameter identifier:
MQCACF_TRANSACTION_ID).

A 4–character CICS transaction identifier. This parameter is valid on z/OS only.

The length of the string is MQ_TRANSACTION_ID_LENGTH.

UOWIdentifier (MQCFBS)
The external unit of recovery associated with the connection (parameter
identifier: MQBACF_EXTERNAL_UOW_ID).

This is the recovery identifier for the unit of recovery. Its format is determined
by the value of UOWType.

The maximum length of the string is MQ_UOW_ID_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 365

|
|

|
|



UOWType (MQCFIN)
Type of external unit of recovery identifier as perceived by the queue manager
(parameter identifier: MQIACF_UOW_TYPE).

The value can be:

MQUOWT_Q_MGR

MQUOWT_CICS
Valid only on z/OS.

MQUOWT_RRS
Valid only on z/OS.

MQUOWT_IMS
Valid only on z/OS.

MQUOWT_XA

UOWType identifies the UOWIdentifier type and not the type of the transaction
coordinator. When the value of UOWType is MQUOWT_Q_MGR, the associated
identifier is in QMgrUOWId (and not UOWIdentifier).

UserIdentifier (MQCFST)
Open application username (parameter identifier:
MQCACF_USER_IDENTIFIER).

The maximum length of the string is MQ_MAX_USER_ID_LENGTH.

Inquire Security

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Inquire Security (MQCMD_INQUIRE_SECURITY) command returns
information about the current settings for the security parameters.

Required parameters:
None

Optional parameters:
CommandScope, SecurityAttrs

Optional parameters (Inquire Security)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

366 WebSphere MQ: Programmable Command Formats and Administration Interface



The maximum length is MQ_QSG_NAME_LENGTH.

SecurityAttrs (MQCFIL)
Security parameter attributes (parameter identifier:
MQIACF_SECURITY_ATTRS).

The attribute list might specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQIACF_SECURITY_SWITCH
Current setting of the switch profiles. If the subsystem security switch
is off, no other switch profile settings are returned.

MQIACF_SECURITY_TIMEOUT
Timeout value.

MQIACF_SECURITY_INTERVAL
Time interval between checks.

Inquire Security (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The response to the Inquire Security (MQCMD_INQUIRE_SECURITY) command
consists of the response header followed by the requested combination of attribute
parameter structures. One message is returned if either SecurityTimeout or
SecurityInterval is specified on the command. If SecuritySwitch is specified, one
message per security switch found is returned. This includes the SecuritySwitch,
SecuritySwitchSetting, and SecuritySwitchProfile attribute parameter structures.

Returned if requested:
SecurityInterval, SecuritySwitch, SecuritySwitchProfile,
SecuritySwitchSetting, SecurityTimeout

Response data
SecurityInterval (MQCFIN)

Time interval between checks (parameter identifier:
MQIACF_SECURITY_INTERVAL).

The interval, in minutes, between checks for user IDs and their associated
resources to determine whether SecurityTimeout has expired.

SecuritySwitch (MQCFIN)
Security switch profile (parameter identifier: MQIA_CF_LEVEL).

. The value can be:

MQSECSW_SUBSYSTEM
Subsystem security switch.

MQSECSW_Q_MGR
Queue manager security switch.

Chapter 3. Definitions of the Programmable Command Formats 367



MQSECSW_QSG
Queue sharing group security switch.

MQSECSW_CONNECTION
Connection security switch.

MQSECSW_COMMAND
Command security switch.

MQSECSW_CONTEXT
Context security switch.

MQSECSW_ALTERNATE_USER
Alternate user security switch.

MQSECSW_PROCESS
Process security switch.

MQSECSW_NAMELIST
Namelist security switch.

MQSECSW_TOPIC
Topic security switch.

MQSECSW_Q
Queue security switch.

MQSECSW_COMMAND_RESOURCES
Command resource security switch.

SecuritySwitchProfile (MQCFST)
Security switch profile (parameter identifier: MQCACF_SECURITY_PROFILE).

The maximum length of the string is MQ_SECURITY_PROFILE_LENGTH.

SecuritySwitchSetting (MQCFIN)
Setting of the security switch (parameter identifier:
MQIACF_SECURITY_SETTING).

The value can be:

MQSECSW_ON_FOUND
Switch ON, profile found.

MQSECSW_OFF_FOUND
Switch OFF, profile found.

MQSECSW_ON_NOT_FOUND
Switch ON, profile not found.

MQSECSW_OFF_NOT_FOUND
Switch OFF, profile not found.

MQSECSW_OFF_ERROR
Switch OFF, profile error.

MQSECSW_ON_OVERRIDDEN
Switch ON, profile overridden.

SecurityTimeout (MQCFIN)
Timeout value (parameter identifier: MQIACF_SECURITY_TIMEOUT).

How long, in minutes, security information about an unused user ID and
associated resources is retained.

368 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|



Inquire Service

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The Inquire Service (MQCMD_INQUIRE_SERVICE) command inquires about the
attributes of existing WebSphere MQ services.

Required parameters:
ServiceName

Optional parameters:
IntegerFilterCommand, ServiceAttrs, StringFilterCommand

Required parameters (Inquire Service)
ServiceName (MQCFST)

Service name (parameter identifier: MQCA_SERVICE_NAME).

This is the name of the service whose attributes are required. Generic service
names are supported. A generic name is a character string followed by an
asterisk (*), for example ABC*, and it selects all services having names that
start with the selected character string. An asterisk on its own matches all
possible names.

The service name is always returned regardless of the attributes requested.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

Optional parameters (Inquire Service)
IntegerFilterCommand (MQCFIF)

Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in ServiceAttrs except MQIACF_ALL. Use
this to restrict the output from the command by specifying a filter condition.
See “MQCFIF - PCF integer filter parameter” on page 487 for information
about using this filter condition.

If you specify an integer filter, you cannot also specify a string filter using the
StringFilterCommand parameter.

ServiceAttrs (MQCFIL)
Service attributes (parameter identifier: MQIACF_SERVICE_ATTRS).

The attribute list might specify the following on its own (this is the default
value if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCA_ALTERATION_DATE
Date on which the definition was last altered.

MQCA_ALTERATION_TIME
Time at which the definition was last altered.

MQCA_SERVICE_DESC
Description of service definition.

Chapter 3. Definitions of the Programmable Command Formats 369



MQCA_SERVICE_NAME
Name of service definition.

MQCA_SERVICE_START_ARGS
Arguments to be passed to the service program.

MQCA_SERVICE_START_COMMAND
Name of program to run to start the service.

MQCA_SERVICE_STOP_ARGS
Arguments to be passed to the stop program to stop the service.

MQCA_STDERR_DESTINATION
Destination of standard error for the process.

MQCA_STDOUT_DESTINATION
Destination of standard output for the process.

MQCA_SERVICE_START_ARGS
Arguments to be passed to the service program.

MQIA_SERVICE_CONTROL
When the queue manager should start the service.

MQIA_SERVICE_TYPE
Mode in which the service is to run.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter allowed in ServiceAttrs except MQCA_SERVICE_NAME. Use
this to restrict the output from the command by specifying a filter condition.
See “MQCFSF - PCF string filter parameter” on page 494 for information about
using this filter condition.

If you specify a string filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

Inquire Service (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The response to the Inquire Service (MQCMD_INQUIRE_SERVICE) command
consists of the response header followed by the ServiceName structure and the
requested combination of attribute parameter structures. If a generic service name
was specified, one such message is generated for each service found.

Always returned:
ServiceName

Returned if requested:
AlterationDate, AlterationTime, Arguments, ServiceDesc, ServiceType,
StartArguments, StartCommand, StartMode, StderrDestination,
StdoutDestination, StopArguments, StopCommand

Response data
AlterationDate (MQCFST)

Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

370 WebSphere MQ: Programmable Command Formats and Administration Interface



The date on which the information was last altered in the form yyyy-mm-dd.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time at which the information was last altered in the form hh.mm.ss.

ServiceDesc (MQCFST)
Description of service definition (parameter identifier:
MQCA_SERVICE_DESC).

The maximum length of the string is MQ_SERVICE_DESC_LENGTH.

ServiceName (MQCFST)
Name of service definition (parameter identifier: MQCA_SERVICE_NAME).

The maximum length of the string is MQ_SERVICE_NAME_LENGTH.

ServiceType (MQCFIN)
The mode in which the service is to run (parameter identifier:
MQIA_SERVICE_TYPE).

The value can be:

MQSVC_TYPE_SERVER
Only one instance of the service can be executed at a time, with the
status of the service made available by the Inquire Service Status
command.

MQSVC_TYPE_COMMAND
Multiple instances of the service can be started.

StartArguments (MQCFST)
The arguments to be passed to the user program at queue manager startup
(parameter identifier: MQCA_SERVICE_START_ARGS).

The maximum length of the string is MQ_SERVICE_ARGS_LENGTH.

StartCommand (MQCFST)
Service program name (parameter identifier:
MQCA_SERVICE_START_COMMAND).

The name of the program which is to run.

The maximum length of the string is MQ_SERVICE_COMMAND_LENGTH.

StartMode (MQCFIN)
Service mode (parameter identifier: MQIA_SERVICE_CONTROL).

Specifies how the service is to be started and stopped. The value can be:

MQSVC_CONTROL_MANUAL
The service is not to be started automatically or stopped automatically.
It is to be controlled by user command.

MQSVC_CONTROL_Q_MGR
The service is to be started and stopped at the same time as the queue
manager is started and stopped.

MQSVC_CONTROL_Q_MGR_START
The service is to be started at the same time as the queue manager is
started, but is not requested to stop when the queue manager is
stopped.

Chapter 3. Definitions of the Programmable Command Formats 371

|



StderrDestination (MQCFST)
The path to a file to which the standard error (stderr) of the service program is
to be redirected (parameter identifier: MQCA_STDERR_DESTINATION).

The maximum length of the string is MQ_SERVICE_PATH_LENGTH.

StdoutDestination (MQCFST)
The path to a file to which the standard output (stdout) of the service program
is to be redirected (parameter identifier: MQCA_STDOUT_DESTINATION).

The maximum length of the string is MQ_SERVICE_PATH_LENGTH.

StopArguments (MQCFST)
The arguments to be passed to the stop program when instructed to stop the
service (parameter identifier: MQCA_SERVICE_STOP_ARGS).

The maximum length of the string is MQ_SERVICE_ARGS_LENGTH.

StopCommand (MQCFST)
Service program stop command (parameter identifier:
MQCA_SERVICE_STOP_COMMAND).

This is the name of the program that is to run when the service is requested to
stop.

The maximum length of the string is MQ_SERVICE_COMMAND_LENGTH.

Inquire Service Status

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The Inquire Service Status (MQCMD_INQUIRE_SERVICE_STATUS) command
inquires about the status of one or more WebSphere MQ service instances.

Required parameters:
ServiceName

Optional parameters:
IntegerFilterCommand, ServiceStatusAttrs, StringFilterCommand

Required parameters (Inquire Service Status)
ServiceName (MQCFST)

Service name (parameter identifier: MQCACH_SERVICE_NAME).

Generic service names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all services having
names that start with the selected character string. An asterisk on its own
matches all possible names.

The service name is always returned, regardless of the attributes requested.

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

Optional parameters (Inquire Service Status)
IntegerFilterCommand (MQCFIF)

Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in ServiceStatusAttrs except MQIACF_ALL.

372 WebSphere MQ: Programmable Command Formats and Administration Interface



Use this to restrict the output from the command by specifying a filter
condition. See “MQCFIF - PCF integer filter parameter” on page 487 for
information about using this filter condition.

If you specify an integer filter, you cannot also specify a string filter using the
StringFilterCommand parameter.

ServiceStatusAttrs (MQCFIL)
Service status attributes (parameter identifier:
MQIACF_SERVICE_STATUS_ATTRS).

The attribute list can specify the following on its own (this is the default value
used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCA_SERVICE_DESC
Description of service definition.

MQCA_SERVICE_NAME
Name of service definition.

MQCA_SERVICE_START_ARGS
The arguments to pass to the service program.

MQCA_SERVICE_START_COMMAND
The name of the program to run to start the service.

MQCA_SERVICE_STOP_ARGS
The arguments to pass to the stop command to stop the service.

MQCA_SERVICE_STOP_COMMAND
The name of the program to run to stop the service.

MQCA_STDERR_DESTINATION
Destination of standard error for the process.

MQCA_STDOUT_DESTINATION
Destination of standard output for the process.

MQCACF_SERVICE_START_DATE
The date on which the service was started.

MQCACF_SERVICE_START_TIME
The time at which the service was started.

MQIA_SERVICE_CONTROL
How the service is to be started and stopped.

MQIA_SERVICE_TYPE
The mode in which the service is to run.

MQIACF_PROCESS_ID
The process identifier of the operating system task under which this
service is executing.

MQIACF_SERVICE_STATUS
Current status of the service.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter allowed in ServiceStatusAttrs except
MQCA_SERVICE_NAME. Use this to restrict the output from the command by

Chapter 3. Definitions of the Programmable Command Formats 373



specifying a filter condition. See “MQCFSF - PCF string filter parameter” on
page 494 for information about using this filter condition.

If you specify a string filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

Error codes (Inquire Service Status)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_SERV_STATUS_NOT_FOUND
Service status not found.

Inquire Service Status (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The response to the Inquire Service Status (MQCMD_INQUIRE_SERVICE_STATUS)
command consists of the response header followed by the ServiceName structure
and the requested combination of attribute parameter structures. If a generic
service name was specified, one such message is generated for each service found.

Always returned:
ServiceName

Returned if requested:
ProcessId, ServiceDesc, StartArguments, StartCommand, StartDate,
StartMode, StartTime, Status, StderrDestination, StdoutDestination,
StopArguments, StopCommand

Response data
ProcessId (MQCFIN)

Process identifier (parameter identifier: MQIACF_PROCESS_ID).

The operating system process identifier associated with the service.

ServiceDesc (MQCFST)
Description of service definition (parameter identifier:
MQCACH_SERVICE_DESC).

The maximum length of the string is MQ_SERVICE_DESC_LENGTH.

ServiceName (MQCFST)
Name of the service definition (parameter identifier:
MQCA_SERVICE_NAME).

The maximum length of the string is MQ_OBJECT_NAME_LENGTH.

StartArguments (MQCFST)
Arguments to be passed to the program on startup (parameter identifier:
MQCA_SERVICE_START_ARGS).

374 WebSphere MQ: Programmable Command Formats and Administration Interface



The maximum length of the string is MQ_SERVICE_ARGS_LENGTH.

StartCommand (MQCFST)
Service program name (parameter identifier:
MQCA_SERVICE_START_COMMAND).

Specifies the name of the program which is to run.

The maximum length of the string is MQ_SERVICE_COMMAND_LENGTH.

StartDate (MQCFST)
Start date (parameter identifier: MQIACH_SERVICE_START_DATE).

The date, in the form yyyy-mm-dd, on which the service was started.

The maximum length of the string is MQ_DATE_LENGTH

StartMode (MQCFIN)
Service mode (parameter identifier: MQIACH_SERVICE_CONTROL).

How the service is to be started and stopped. The value can be:

MQSVC_CONTROL_MANUAL
The service is not to be started automatically or stopped automatically.
It is to be controlled by user command.

MQSVC_CONTROL_Q_MGR
The service is to be started and stopped at the same time as the queue
manager is started and stopped.

MQSVC_CONTROL_Q_MGR_START
The service is to be started at the same time as the queue manager is
started, but is not request to stop when the queue manager is stopped.

StartTime (MQCFST)
Start date (parameter identifier: MQIACH_SERVICE_START_TIME).

The time, in the form hh.mm.ss, at which the service was started.

The maximum length of the string is MQ_TIME_LENGTH

Status (MQCFIN)
Service status (parameter identifier: MQIACH_SERVICE_STATUS).

The current status of the service. The value can be:

MQSVC_STATUS_STARTING
The service is in the process of initializing.

MQSVC_STATUS_RUNNING
The service is running.

MQSVC_STATUS_STOPPING
The service is stopping.

StderrDestination (MQCFST)
Specifies the path to a file to which the standard error (stderr) of the service
program is to be redirected (parameter identifier:
MQCA_STDERR_DESTINATION).

The maximum length of the string is MQ_SERVICE_PATH_LENGTH.

StdoutDestination (MQCFST)
Specifies the path to a file to which the standard output (stdout) of the service
program is to be redirected (parameter identifier:
MQCA_STDOUT_DESTINATION).

Chapter 3. Definitions of the Programmable Command Formats 375



The maximum length of the string is MQ_SERVICE_PATH_LENGTH.

StopArguments (MQCFST)
Specifies the arguments to be passed to the stop program when instructed to
stop the service (parameter identifier: MQCA_SERVICE_STOP_ARGS).

The maximum length of the string is MQ_SERVICE_ARGS_LENGTH.

StopCommand (MQCFST)
Service program stop command (parameter identifier:
MQCA_SERVICE_STOP_COMMAND).

This is the name of the program that is to run when the service is requested to
stop.

The maximum length of the string is MQ_SERVICE_COMMAND_LENGTH.

Inquire Storage Class

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Inquire Storage Class (MQCMD_INQUIRE_STG_CLASS) command returns
information about storage classes.

Required parameters:
StorageClassName

Optional parameters:
CommandScope, IntegerFilterCommand, PageSetId, PassTicketApplication,
QSGDisposition, StgClassAttrs, StringFilterCommand

Required parameters (Inquire Storage Class)
StorageClassName (MQCFST)

Storage class name (parameter identifier: MQCA_STORAGE_CLASS).

Generic storage class names are supported. A generic name is a character
string followed by an asterisk (*), for example ABC*, and it selects all storage
classes having names that start with the selected character string. An asterisk
on its own matches all possible names.

The maximum length of the string is MQ_STORAGE_CLASS_LENGTH.

Optional parameters (Inquire Storage Class)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

376 WebSphere MQ: Programmable Command Formats and Administration Interface



v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

You cannot use CommandScope as a parameter to filter on.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in StgClassAttrs except MQIACF_ALL. Use
this to restrict the output from the command by specifying a filter condition.
See “MQCFIF - PCF integer filter parameter” on page 487 for information
about using this filter condition.

If you specify an integer filter for PageSetId, you cannot also specify the
PageSetId parameter.

If you specify an integer filter, you cannot also specify a string filter using the
StringFilterCommand parameter.

PageSetId (MQCFIN)
Page set identifier that the storage class is associated with (parameter
identifier: MQIA_PAGESET_ID).

If you omit this parameter, storage classes with any page set identifiers qualify.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP).

Specifies the disposition of the object (that is, where it is defined and how it
behaves). The value can be:

MQQSGD_LIVE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. This
is the default value if the parameter is not specified.

MQQSGD_ALL
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY.

If there is a shared queue manager environment, and the command is
being executed on the queue manager where it was issued, this option
also displays information for objects defined with MQQSGD_GROUP.

If MQQSGD_LIVE is specified or defaulted, or if MQQSGD_ALL is
specified in a shared queue manager environment, the command might
give duplicated names (with different dispositions).

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP. This is permitted only in a
shared queue environment.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_PRIVATE
The object is defined with either MQQSGD_Q_MGR or
MQQSGD_COPY. Note that MQQSGD_PRIVATE returns the same
information as MQQSGD_LIVE.

You cannot use QSGDisposition as a parameter to filter on.

Chapter 3. Definitions of the Programmable Command Formats 377



StgClassAttrs (MQCFIL)
Storage class parameter attributes (parameter identifier:
MQIACF_STORAGE_CLASS_ATTRS).

The attribute list might specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCA_STORAGE_CLASS
Storage class name.

MQCA_STORAGE_CLASS_DESC
Description of the storage class.

MQIA_PAGESET_ID
The page set identifier to which the storage class maps.

MQCA_XCF_GROUP_NAME
The name of the XCF group of which WebSphere MQ is a member.

MQIA_XCF_MEMBER_NAME
The XCF member name of the IMS system within the XCF group
specified in MQCA_XCF_GROUP_NAME.

MQCA_ALTERATION_DATE
The date on which the definition was last altered.

MQCA_ALTERATION_TIME
The time at which the definition was last altered.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string
type parameter allowed in StgClassAttrs except MQCA_STORAGE_CLASS.
Use this to restrict the output from the command by specifying a filter
condition. See “MQCFSF - PCF string filter parameter” on page 494 for
information about using this filter condition.

If you specify a string filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

Inquire Storage Class (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The response to the Inquire Storage Class (MQCMD_INQUIRE_STG_CLASS)
command consists of the response header followed by:
v The StgClassName structure
v The PageSetId structure
v The QSGDisposition structure

which are followed by the requested combination of attribute parameter structures.

Always returned:
PageSetId, QSGDisposition, StgClassName

378 WebSphere MQ: Programmable Command Formats and Administration Interface



Returned if requested:
AlterationDate, AlterationTime, PassTicketApplication,
StorageClassDesc, XCFGroupName, XCFMemberName,

Response data
AlterationDate (MQCFST)

Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

This is the date, in the form yyyy-mm-dd, on which the definition was last
altered.

The maximum length of the string is MQ_DATE_LENGTH.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

This is the time, in the form hh.mm.ss, at which the definition was last altered.

The maximum length of the string is MQ_TIME_LENGTH.

PageSetId (MQCFIN)
Page set identifier (parameter identifier: MQIA_PAGESET_ID).

The page set identifier to which the storage class maps.

PassTicketApplication (MQCFST)
Pass ticket application (parameter identifier: MQCA_PASS_TICKET_APPL).

The application name that is passed to RACF when authenticating the
passticket specified in the MQIIH header.

The maximum length is MQ_PASS_TICKET_APPL_LENGTH.

QSGDisposition (MQCFIN)
QSG disposition (parameter identifier: MQIA_QSG_DISP).

Specifies the disposition of the object (that is, where it is defined and how it
behaves). The value can be:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

StorageClassDesc (MQCFST)
Description of the storage class (parameter identifier:
MQCA_STORAGE_CLASS_DESC).

The maximum length is MQ_STORAGE_CLASS_DESC_LENGTH.

StgClassName (MQCFST)
Name of the storage class (parameter identifier: MQCA_STORAGE_CLASS).

The maximum length of the string is MQ_STORAGE_CLASS_LENGTH.

XCFGroupName (MQCFST)
Name of the XCF group of which WebSphere MQ is a member (parameter
identifier: MQCA_XCF_GROUP_NAME).

The maximum length is MQ_XCF_GROUP_NAME_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 379



XCFMemberName (MQCFST)
Name of the XCF group of which WebSphere MQ is a member (parameter
identifier: MQCA_XCF_MEMBER_NAME).

The maximum length is MQ_XCF_MEMBER_NAME_LENGTH.

Inquire Storage Class Names

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Inquire Storage Class Names (MQCMD_INQUIRE_STG_CLASS_NAMES)
command inquires a list of storage class names that match the generic storage class
name specified.

Required parameters:
StorageClassName

Optional parameters:
CommandScope, QSGDisposition

Required parameters (Inquire Storage Class Names)
StorageClassName (MQCFST)

Storage class name (parameter identifier: MQCA_STORAGE_CLASS).

Generic storage class names are supported. A generic name is a character
string followed by an asterisk (*), for example ABC*, and it selects all storage
classes having names that start with the selected character string. An asterisk
on its own matches all possible names.

The maximum length of the string is MQ_STORAGE_CLASS_LENGTH.

Optional parameters (Inquire Storage Class Names)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

380 WebSphere MQ: Programmable Command Formats and Administration Interface



Specifies the disposition of the object (that is, where it is defined and how it
behaves). The value can be:

MQQSGD_LIVE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. This
is the default value if the parameter is not specified.

MQQSGD_ALL
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY.

If there is a shared queue manager environment, and the command is
being executed on the queue manager where it was issued, this option
also displays information for objects defined with MQQSGD_GROUP.

If MQQSGD_LIVE is specified or defaulted, or if MQQSGD_ALL is
specified in a shared queue manager environment, the command might
give duplicated names (with different dispositions).

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_PRIVATE
The object is defined with either MQQSGD_Q_MGR or
MQQSGD_COPY. Note that MQQSGD_PRIVATE returns the same
information as MQQSGD_LIVE.

Inquire Storage Class Names (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The response to the Inquire Storage Class Names
(MQCMD_INQUIRE_STG_CLASS_NAMES) command consists of the response
header followed by a parameter structure giving zero or more names that match
the specified namelist name.

In addition to this, the QSGDispositions structure (with the same number of entries
as the StorageClassNames structure) is returned. Each entry in this structure
indicates the disposition of the object with the corresponding entry in the
StorageClassNames structure.

Always returned:
StorageClassNames, QSGDispositions

Returned if requested:
None

Response data
StorageClassNames (MQCFSL)

List of storage class names (parameter identifier:
MQCACF_STORAGE_CLASS_NAMES).

Chapter 3. Definitions of the Programmable Command Formats 381



QSGDispositions (MQCFIL)
List of QSG dispositions (parameter identifier: MQIACF_QSG_DISPS). Possible
values for fields in this structure are those permitted for the QSGDisposition
parameter (MQQSGD_*). Possible values for fields in this structure are:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

Inquire Subscription

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

The Inquire Subscription (MQCMD_INQUIRE_SUBSCRIPTION) command inquires
about the attributes of a subscription.

Required parameters:
SubId or SubName

Optional parameters:
Durable, SubAttrs, SubType

Required parameters (Inquire Subscription)

Lists the required parameters of the Inquire Subscription
(MQCMD_INQUIRE_SUBSCRIPTION) command.

SubId (MQCFBS)
Subscription identifier (parameter identifier: MQBACF_SUB_ID).

Specifies the unique internal subscription identifier. If the queue manager is
generating the CorrelId for a subscription, then the SubId will be used as the
DestinationCorrelId.

The maximum length of the string is MQ_CORREL_ID_LENGTH.

or

SubName (MQCFST)
The application’s unique identifier for a subscription (parameter identifier:
MQCACF_SUB_NAME).

The maximum length of the string is MQ_SUB_NAME_LENGTH.

Optional parameters (Inquire Subscription)

Lists the optional parameters of the Inquire Subscription
(MQCMD_INQUIRE_SUBSCRIPTION) command.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

382 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|
|
|
||
|
|||

||||||
|

|
|

|
|

|
|

|

|
|

|
|

|
|
|

|

|

|
|
|

|

|

|
|

|
|
|



Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v Blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v A queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v An asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

You cannot use CommandScope as a parameter to filter on.

Durable (MQCFST)
Specify this attribute to restrict the type of subscriptions which are displayed
(parameter identifier: MQIACF_DURABLE_SUBSCRIPTION).

MQSUB_DURABLE_YES
Information about durable subscriptions only is displayed.

MQSUB_DURABLE_NO
Information about nondurable subscriptions only is displayed.

SubscriptionAttrs (MQCFIL)
Subscription attributes (parameter identifier: MQIACF_SUB_ATTRS).

To select the attributes you want to display you can specify;
v ALL to display all attributes.
v SUMMARY to display a subset of the attributes (see MQIACF_SUMMARY

for a list).
v Any of the following parameters individually or in combination.

MQIACF_ALL
All attributes.

MQIACF_SUMARY
Use this parameter to display:
v MQBACF_DESTINATION_CORREL_ID
v MQBACF_SUB_ID
v MQCACF_DESTINATION
v MQCACF_DESTINATION_Q_QMGR
v MQCACF_SUB_NAME
v MQCACF_TOPIC_STRING
v MQIACF_SUB_TYPE

MQBACF_ACCOUNTING_TOKEN
The accounting token passed by the subscriber for propagation into
messages sent to this subscription in the AccountingToken field of the
MQMD.

MQBACF_CONNECTION_ID
The currently active ConnectionId (CONNID) that has opened this
subscription. Used to detect local publications.

MQBACF_DESTINATION_CORREL_ID
The CorrelId used for messages sent to this subscription.

Chapter 3. Definitions of the Programmable Command Formats 383

|
|

|
|

|
|
|
|
|

|
|

|

|

|
|
|

|
|

|
|

|
|

|

|

|
|

|

|
|

|
|

|

|

|

|

|

|

|

|
|
|
|

|
|
|

|
|



MQBACF_SUB_ID
The internal unique key identifying a subscription.

MQCA_ALTERATION_DATE
The date of the most recent MQSUB with MQSO_ALTER or ALTER
SUB command.

MQCA_ALTERATION_TIME
The time of the most recent MQSUB with MQSO_ALTER or ALTER
SUB command.

MQCA_CREATION_DATE
The date of the first MQSUB command that caused this subscription to
be created.

MQCA_CREATION_TIME
The time of the first MQSUB that caused this subscription to be
created.

MQCA_RESUME_DATE
The date of the most recent MQSUB which connected to this
subscription.

MQCA_RESUME_TIME
The time of most recent MQSUB which connected to this subscription.

MQCA_TOPICSTRNG
The resolved topic string the subscription is for.

MQCACF_APPL_IDENTITY_DATA
The identity data passed by the subscriber for propagation into
messages sent to this subscription in the ApplIdentity field of the
MQMD.

MQCACF_DESTINATION
The destination for messages published to this subscription.

MQCACF_DESTINATION_Q_MGR
The destination queue manager for messages published to this
subscription.

MQCACF_LAST_MSG_TIME
The time at which a message was last sent to the destination specified
by this subscription.

MQCACF_LAST_MSG_DATE
The date on which a message was last sent to the destination specified
by this subscription.

MQCACF_SUB_NAME
The application’s unique identifier for a subscription.

MQCACF_SUB_SELECTOR
The SQL 92 selector string to be applied to messages published on the
named topic to select whether they are eligible for this subscription.

MQCACF_SUB_USER_DATA
The user data associated with the subscription.

MQCACF_SUB_USER_ID
The userid that owns the subscription. This is either the userid
associated with the creator of the subscription, or, if subscription
takeover is permitted, the userid which last tookover the subscription.

384 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|



MQCACF_TOPIC
The name of the topic object that identifies a position in the topic
hierarchy to which the topic string is concatenated.

MQIACF_DESTINATION_CLASS
Indicated whether this is a managed subscription.

MQIACF_DURABLE_SUBSCRIPTION
Whether the subscription is durable, persisting over queue manager
restart.

MQIACF_EXPIRY
The time to live from creation date and time.

MQIACF_MESSAGE_COUNT
The number of messages put to the destination specified by this
subscription.

MQIACF_PUB_PRIORITY
The priority of the messages sent to this subscription.

MQIACF_PUBSUB_PROPERTIES
The manner in which publish/subscribe related message properties are
added to messages sent to this subscription.

MQIACF_REQUEST_ONLY
Indicates whether the subscriber will poll for updates via MQSUBRQ
API, or whether all publications are delivered to this subscription.

MQIACF_SUB_TYPE
The type of subscription - how it was created.

MQIACF_SUBSCRIPTION_SCOPE
Whether the subscription will forward messages to all other queue
managers directly connected via a pub/sub collective or hierarchy, or
the subscription will forward messages on this topic within this queue
manager only.

MQIACF_SUBSCRIPTION_LEVEL
The level within the subscription interception hierarchy at which this
subscription is made.

MQIACF_VARIABLE_USER_ID
Users other than the creator of this subscription that can connect to it
(subject to topic and destination authority checks).

MQIACF_WILDCARD_SCHEMA
The schema to be used when interpreting wild card characters in the
topic string.

SubscriptionType (MQCFIN)
Specify this attribute to restrict the type of subscriptions which are displayed
(parameter identifier: MQIA_SUB_TYPE).

MQSUBTYPE_ADMIN
Subscriptions which have been created by an admin interface or
modified by an admin interface are selected.

MQSUBTYPE_ALL
All subscription types are displayed.

MQSUBTYPE_API
Subscriptions created by applications via an MQ API are displayed.

Chapter 3. Definitions of the Programmable Command Formats 385

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|



MQSUBTYPE_PROXY
System created subscriptions relating to inter-queue manager
subscriptions are displayed.

MQSUBTYPE_USER
USER subscriptions (those with SUBTYPE of either ADMIN or API) are
displayed. This is the default value.

Inquire Subscription (Response)
The response to the Inquire Subscription (MQCMD_INQUIRE_SUBSCRIPTION)
command consists of the response header followed by the SubId and SubName
structures, and the requested combination of attribute parameter structures (where
applicable).

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

Always returned
SubID, SubName

Returned if requested
AlterationDate, AlterationTime, CreationDate, CreationTime, Destination,
DestinationClass, DestinationCorrelId, DestinationQueueManager, Expiry,
PublishedAccountingToken, PublishedApplicationIdentityData,
PublishPriority, PublishSubscribeProperties, Requestonly, Selector,
SubscriptionLevel,SubscriptionScope, SubscriptionType,
SubscriptionUser, TopicObject, TopicString, Userdata, VariableUser,
WildcardSchema

Response Data (Inquire Subscription)
AlterationDate (MQCFST)

The date of the most recent MQSUB or Change Subscription command that
modified the properties of the subscription.

AlterationTime (MQCFST)
The time of the most recent MQSUB or Change Subscription command that
modified the properties of the subscription.

CreationDate (MQCFST)
The creation date of the subscription, in the form yyyy-mm-dd.

CreationTime (MQCFST)
The creation time of the subscription, in the form hh.mm.ss.

Destination (MQCFST)
Destination (parameter identifier: MQCACF_DESTINATION_CORREL_ID).

Specifies the name of the alias, local, remote, or cluster queue to which
messages for this subscription are put.

DestinationClass (MQCFIN)
Destination class (parameter identifier: MQIACF_DESTINATION_CLASS).

Whether the destination is managed.

The value can be:

386 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|
|

|

|
|
|
|

|
|
|
||
|
|||

||||||
|

|
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|

|



MQDC_MANAGED
The destination is managed.

MQDC_PROVIDED
The destination queue is as specified in the Destination field.

DestinationCorrelId (MQCFBS)
Destination correlation identifier (parameter identifier:
MQCACF_DESTINATION_CORREL_ID).

A correlation identifier that is placed in the CorrelId field of the message
descriptor for all the messages sent to this subscription.

The maximum length is MQ_CORREL_ID_LENGTH.

DestinationQueueManager (MQCFST)
Destination queue manager (parameter identifier:
MQCACF_DESTINATION_Q_MGR).

Specifies the name of the destination queue manager, either local or remote, to
which messages for the subscription are forwarded.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

Expiry (MQCFIN)
The time, in tenths of a second, at which a subscription expires after its
creation date and time (parameter identifier: MQIACF_EXPIRY).

A value of unlimited means that the subscription never expires.

After a subscription has expired it becomes eligible to be discarded by the
queue manager and receives no further publications.

PublishedAccountingToken (MQCFBS)
Value of the accounting token used in the AccountingToken field of the
message descriptor (parameter identifier: MQCACF_ACCOUNTING_TOKEN).

The maximum length of the string is MQ_ACCOUNTING_TOKEN_LENGTH.

PublishedApplicationIdentityData (MQCFST)
Value of the application identity data used in the ApplIdentityData field of the
message descriptor (parameter identifier: MQCACF_APPL_IDENTITY_DATA.

The maximum length of the string is MQ_APPL_IDENTITY_DATA_LENGTH.

PublishPriority (MQCFIN)
The priority of messages sent to this subscription (parameter identifier:
MQIACF_PUB_PRIORITY).

The value can be:

MQPRI_PRIORITY_AS_PUBLISHED
The priority of messages sent to this subscription is taken from that
supplied to the published message. This is the supplied default value.

MQPRI_PRIORITY_AS_QDEF
The priority of messages sent to this subscription is determined by the
default priority of the queue defined as a destination.

0-9 An integer value providing an explicit priority for messages sent to
this subscription.

PublishSubscribeProperties (MQCFIN)
Specifies how publish/subscribe related message properties are added to
messages sent to this subscription (parameter identifier:
MQIACF_PUBSUB_PROPERTIES).

Chapter 3. Definitions of the Programmable Command Formats 387

|
|

|
|

|
|
|

|
|

|

|
|
|

|
|

|

|
|
|

|

|
|

|
|
|

|

|
|
|

|

|
|
|

|

|
|
|

|
|
|

||
|

|
|
|
|



The value can be:

MQPSPROP_NONE
Publish/subscribe properties are not added to the messages. This is the
supplied default value.

MQPSPROP_MSGPROP
Publish/subscribe properties are added as PCF attributes.

MQPSPROP_COMPAT
If the original publication is a PCF message, then the
publish/subscribe properties are added as PCF attributes. Otherwise,
publish/subscribe properties are added within an MQRFH version 1
header. This method is compatible with applications coded for use
with previous versions of WebSphere MQ.

MQPSPROP_RFH2
Publish/subscribe properties are added within an MQRFH version 2
header. This method is compatible with applications coded for use
with WebSphere Message Brokers.

Requestonly(MQCFIN)
Indicates whether the subscriber polls for updates using the MQSUBRQ API
call, or whether all publications are delivered to this subscription.

MQRU_PUBLISH_ALL
All publications on the topic are delivered to this subscription.

MQRU_PUBLISH_ON_REQUEST
Publications are only delivered to this subscription in response to an
MQSUBRQ API call.

Selector (MQCFST)
Specifies the selector applied to messages published to the topic (parameter
identifier: MQCACF_SUB_SELECTOR).

Only those messages that satisfy the selection criteria are put to the destination
specified by this subscription.

SubscriptionLevel (MQCFIN)
The level within the subscription interception hierarchy at which this
subscription is made (parameter identifier: MQIACF_SUB_LEVEL).

The value can be:

0 - 9 An integer in the range 0-9. The default value is 1. Subscribers with a
subscription level of 9 will intercept publications before they reach
subscribers with lower subscription levels.

SubscriptionScope (MQCFIN)
Determines whether this subscription is passed to other queue managers in the
network (parameter identifier: MQIACF_SUBSCRIPTION_SCOPE).

The value can be:

MQTSCOPE_ALL
The subscription is forwarded to all queue managers directly
connected through a publish/subscribe collective or hierarchy. This is
the supplied default value.

MQTSCOPE_QMGR
The subscription only forwards messages published on the topic within
this queue manager.

388 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|

||
|
|

|
|
|

|

|
|
|
|

|
|
|



SubscriptionType(MQCFIN)
Indicates how the subscription was created.

MQSUBTYPE_PROXY
An internally created subscription used for routing publications
through a queue manager.

MQSUBTYPE_ADMIN
Created using DEF SUB MQSC or PCF command. This SUBTYPE also
indicates that a subscription has been modified using an administrative
command.

MQSUBTYPE_API
Created using an MQSUB API request.

SubscriptionUser (MQCFST)
The userid that ’owns’ this subscription. This is either the userid associated
with the creator of the subscription, or, if subscription takeover is permitted,
the userid which last took over the subscription. (parameter identifier:
MQCACF_SUB_USER_ID).

The maximum length of the string is MQ_USER_ID_LENGTH.

TopicObject (MQCFST)
The name of a previously defined topic object from which is obtained the topic
name for the subscription (parameter identifier: MQCACF_TOPIC).

The maximum length of the string is MQ_TOPIC_NAME_LENGTH.

TopicString (MQCFST)
The resolved topic string (parameter identifier: MQCACF_TOPIC_STRING).

The maximum length of the string is MQ_TOPIC_STR_LENGTH.

Userdata (MQCFST)
User data (parameter identifier: MQCACF_SUB_USER_DATA).

Specifies the user data associated with the subscription

The maximum length of the string is MQ_USER_DATA_LENGTH.

VariableUser (MQCFIN)
Specifies whether a user other than the one who created the subscription, that
is, the user shown in SubscriptionUser can take over the ownership of the
subscription (parameter identifier: MQIACF_VARIABLE_USER_ID).

The value can be:

MQVU_ANY_USER
Any user can take over the ownership. This is the supplied default
value.

MQVU_FIXED_USER
No other user can take over the ownership.

WildcardSchema (MQCFIN)
Specifies the schema to be used when interpreting any wildcard characters
contained in the TopicString (parameter identifier:
MQIACF_WILDCARD_SCHEMA).

The value can be:

MQWS_CHAR
Wildcard characters represent portions of strings; this is for
compatibility with WebSphere MQ V6.0 broker.

Chapter 3. Definitions of the Programmable Command Formats 389

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|

|
|
|

|

|
|

|

|
|

|

|

|
|
|
|

|

|
|
|

|
|

|
|
|
|

|

|
|
|



MQWS_TOPIC
Wildcard characters represent portions of the topic hierarchy; this is for
compatibility with WebSphere Message Brokers. This is the supplied
default value.

Inquire Subscription Status
The Inquire Subscription Status (MQCMD_INQUIRE_SUB_STATUS) command
inquires about the status of a subscription.

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

Required parameters:
SubId or SubName

Optional parameters:
ActiveConnection, CommandScope, Durable, LastPublishDate,
LastPublishTime, NumberMsgs, ResumeDate, ResumeTime, SubId, SubType,
SubscriptionUser

Required parameters (Inquire Subscription Status)
SubId (MQCFBS)

Subscription identifier (parameter identifier: MQBACF_SUB_ID).

Specifies the unique internal subscription identifier. If the queue manager is
generating the CorrelId for a subscription, then the SubId will be used as the
DestinationCorrelId.

The maximum length of the string is MQ_CORREL_ID_LENGTH.

or

SubName (MQCFST)
The application’s unique identifier for a subscription (parameter identifier:
MQCACF_SUB_NAME).

The maximum length of the string is MQ_SUB_NAME_LENGTH.

Optional parameters (Inquire Subscription Status)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is processed when the queue manager is a
member of a queue-sharing group. You can specify one of the following:
v Blank (or omit the parameter altogether). The command is processed on the

queue manager on which it was entered.
v A queue manager name. The command is processed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v An asterisk (*). The command is processed on the local queue manager and
is also passed to every active queue manager in the queue-sharing group.

390 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|
|

|
|

|
|

|
|
|
||
|
|||

||||||
|

|
|

|
|
|
|

|

|
|

|
|
|

|

|

|
|
|

|

|

|
|
|

|
|

|
|

|
|
|
|
|

|
|



The maximum length is MQ_QSG_NAME_LENGTH.

You cannot use CommandScope as a parameter on which to filter.

Durable (MQCFST)
Specify this attribute to restrict the type of subscriptions which are displayed
(parameter identifier: MQIACF_DURABLE_SUBSCRIPTION).

MQSUB_DURABLE_YES
Information about durable subscriptions only is displayed. This is the
default.

MQSUB_DURABLE_NO
Information about non-durable subscriptions only is displayed.

SubId (MQCFST)
Use this attribute to specify the subscription identifier (parameter identifier:
MQBACF_SUB_ID) of the subscription you want to display.

SubscriptionType (MQCFST)
Specify this attribute to restrict the type of subscriptions which are displayed
(parameter identifier: MQIACF_SUB_TYPE).

MQSUBTYPE_ADMIN
Subscriptions which have been created by an admin interface or
modified by an admin interface are selected.

MQSUBTYPE_ALL
All subscription types are displayed.

MQSUBTYPE_API
Subscriptions created by applications through a WebSphere MQ API
call are displayed.

MQSUBTYPE_PROXY
System created subscriptions relating to inter-queue-manager
subscriptions are displayed.

MQSUBTYPE_USER
USER subscriptions (those with SUBTYPE of either ADMIN or API) are
displayed. This is the default value.

StatusAttrs (MQCFIL)
Subscription status attributes (parameter identifier:
MQIACF_SUB_STATUS_ATTRS).

To select the attributes you want to display you can specify;
v ALL to display all attributes.
v any of the following parameters individually or in combination.

MQIACF_ALL
All attributes.

MQBACF_CONNECTION_ID
The currently active ConnectionID that has opened the subscription.

MQCACF_DURABLE
The time when a message was last sent to the destination specified by
the subscription.

MQCACF_LAST_PUB_DATE
The date that a message was last sent to the destination specified by
the subscription.

Chapter 3. Definitions of the Programmable Command Formats 391

|

|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

|

|

|
|

|
|

|
|
|

|
|
|



MQCACF_LAST_PUB_TIME
The time when a message was last sent to the destination specified by
the subscription.

MQIACF_MESSAGE_COUNT
The number of messages put to the destination specified by the
subscription.

MQCACF_RESUME_DATE
The date of the most recent MQSUB command that connected to the
subscription.

MQCACF_RESUME_TIME
The time of the most recent MQSUB command that connected to the
subscription.

MQIACF_SUB_TYPE
The type of subscription - how it was created.

MQCACF_SUB_USER_ID
The userid owns the subscription.

Inquire Subscription Status (Response)
The response to the Inquire Subscription Status (MQCMD_INQUIRE_SBSTATUS)
command consists of the response header followed by the SubId and SubName
structures, and the requested combination of attribute parameter structures (where
applicable).

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

Always returned
None

Returned if requested
ActiveConnection, Durable, LastPublishDate, LastPublishTime, NumberMsgs,
ResumeDate, ResumeTime, SubID, SubType

Response Data (Inquire Subscription Status)
ActiveConnection (MQCFBS)

The ConnId of the HConn that currently has this subscription open
(parameter identifier: MQBACF_CONNECTION_ID).

Durable (MQCFIN)
A durable subscription is not deleted when the creating application closes
its subscription handle (parameter identifier:
MQIACF_DURABLE_SUBSCRIPTION).

MQSUB_DURABLE_NO
The subscription is removed when the application that created it is
closed or disconnected from the queue manager.

MQSUB_DURABLE_YES
The subscription persists even when the creating application is no
longer running or has been disconnected. The subscription is
reinstated when the queue manager restarts.

392 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
||
|
|||

||||||
|

|
|

|
|
|

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|



LastPublishDate (MQCFST)
The date on which a message was last published to the destination
specified by this subscription (parameter identifier:
MQCACF_LAST_PUB_DATE).

LastPublishTime (MQCFST)
The time on which a message was last published to the destination
specified by this subscription (parameter identifier:
MQCACF_LAST_PUB_TIME).

NumberMsgs (MQCFIN)
The number of messages put to the destination specified by this
subscription (parameter identifier: MQIACF_PUBLISH_COUNT).

ResumeDate (MQCFST)
The date of the most recent MQSUB API call that connected to the
subscription (parameter identifier: MQCA_RESUME_DATE).

ResumeTime (MQCFST)
The time of the most recent MQSUB API call that connected to the
subscription (parameter identifier: MQCA_RESUME_TIME).

SubID (MQCFBS)
The internal, unique key identifying a subscription (parameter identifier:
MQBACF_SUB_ID).

SubType (MQCFIN)
Indicates how the subscription was created (parameter identifier:
MQIA_SUB_TYPE).

MQSUBTYPE_PROXY
An internally created subscription used for routing publications
through a queue manager.

MQSUBTYPE_ADMIN
Created using the DEF SUB MQSC or Create SubscriptionPCF
command. This SubType also indicates that a subscription has been
modified using an administrative command.

MQSUBTYPE_API
Created using an MQSUB API call.

Inquire System

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Inquire System (MQCMD_INQUIRE_SYSTEM) command returns general
system parameters and information.

Required parameters:
None

Optional parameters:
CommandScope

Chapter 3. Definitions of the Programmable Command Formats 393

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|



Optional parameters (Inquire System)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

Inquire System (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The response to the Inquire System (MQCMD_INQUIRE_SYSTEM) command
consists of the response header followed by the ParameterType structure and the
combination of attribute parameter structures determined by the value of the
parameter type.

Always returned:
ParameterType

Possible values of ParameterType are:

MQSYSP_TYPE_INITIAL
The initial settings of the system parameters.

MQSYSP_TYPE_SET
The settings of the system parameters if they have been altered
since their initial setting.

Returned if ParameterType is MQSYSP_TYPE_INITIAL or MQSYSP_TYPE_SET
(and a value is set):

CheckpointCount, ClusterCacheType, CodedCharSetId, CommandUserId,
DB2BlobTasks, DB2Name, DB2Tasks, DSGName, ExitInterval, ExitTasks,
MaxConnects, MaxConnectsBackground, MaxConnectsForeground, ,
OTMADruExit, OTMAGroup, OTMAInterval, OTMAMember, OTMSTpipePrefix,
QIndexDefer, QSGName, RESLEVELAudit, RoutingCode, Service, SMFAccounting,
SMFStatistics, SMFInterval, TraceClass, TraceSize, WLMInterval,
WLMIntervalUnits

394 WebSphere MQ: Programmable Command Formats and Administration Interface



Response data
CheckpointCount (MQCFIN)

The number of log records written by WebSphere MQ between the start of one
checkpoint and the next (parameter identifier:
MQIACF_SYSP_CHKPOINT_COUNT).

ClusterCacheType (MQCFIN)
The type of the cluster cache (parameter identifier:
MQIACF_SYSP_CLUSTER_CACHE).

The value can be:

MQCLCT_STATIC
Static cluster cache.

MQCLCT_DYNAMIC
Dynamic cluster cache.

CodedCharSetId (MQCFIN)
Archive retention period (parameter identifier:
MQIA_CODED_CHAR_SET_ID).

The coded character set identifier for the queue manager.

CommandUserId (MQCFST)
Command user ID (parameter identifier: MQCACF_SYSP_CMD_USER_ID).

Specifies the default user ID for command security checks.

The maximum length of the string is MQ_USER_ID_LENGTH.

DB2BlobTasks (MQCFIN)
The number of DB2 server tasks to be used for BLOBs (parameter identifier:
MQIACF_SYSP_DB2_BLOB_TASKS).

DB2Name (MQCFST)
The name of the DB2 subsystem or group attachment to which the queue
manager is to connect (parameter identifier: MQCACF_DB2_NAME).

The maximum length of the string is MQ_DB2_NAME_LENGTH.

DB2Tasks (MQCFIN)
The number of DB2 server tasks to use (parameter identifier:
MQIACF_SYSP_DB2_TASKS).

DSGName (MQCFST)
The name of the DB2 data-sharing group to which the queue manager is to
connect (parameter identifier: MQCACF_DSG_NAME).

The maximum length of the string is MQ_DSG_NAME_LENGTH.

ExitInterval (MQCFIN)
The time, in seconds, for which queue manager exits can execute during each
invocation (parameter identifier: MQIACF_SYSP_EXIT_INTERVAL).

ExitTasks (MQCFIN)
Specifies how many started server tasks to use to run queue manager exits
(parameter identifier: MQIACF_SYSP_EXIT_TASKS).

MaxConnects (MQCFIN)
The maximum number of connections from batch, CICS, IMS, and TSO tasks to
a single instance of WebSphere MQ (parameter identifier:
MQIACF_SYSP_MAX_CONNS).

Chapter 3. Definitions of the Programmable Command Formats 395



MaxConnectsBackground (MQCFIN)
The maximum number of connections from batch or TSO background tasks to
a single instance of WebSphere MQ (parameter identifier:
MQIACF_SYSP_MAX_CONNS_BACK).

MaxConnectsForeground (MQCFIN)
The maximum number of connections from TSO foreground tasks to a single
instance of WebSphere MQ (parameter identifier:
MQIACF_SYSP_MAX_CONNS_FORE).

OTMADruExit (MQCFST)
The name of the OTMA destination resolution user exit to be run by IMS
(parameter identifier: MQCACF_SYSP_OTMA_DRU_EXIT).

The maximum length of the string is MQ_EXIT_NAME_LENGTH.

OTMAGroup (MQCFST)
The name of the XCF group to which this instance of WebSphere MQ belongs
(parameter identifier: MQCACF_SYSP_OTMA_GROUP).

The maximum length of the string is MQ_XCF_GROUP_NAME_LENGTH.

OTMAInterval (MQCFIN)
The length of time, in seconds, that a user ID from WebSphere MQ is
considered previously verified by IMS (parameter identifier:
MQIACF_SYSP_OTMA_INTERVAL).

OTMAMember (MQCFST)
The name of the XCF member to which this instance of WebSphere MQ
belongs (parameter identifier: MQCACF_SYSP_OTMA_MEMBER).

The maximum length of the string is MQ_XCF_MEMBER_NAME_LENGTH.

OTMSTpipePrefix (MQCFST)
The prefix to be used for Tpipe names (parameter identifier:
MQCACF_SYSP_OTMA_TPIPE_PFX).

The maximum length of the string is MQ_TPIPE_PFX_LENGTH.

QIndexDefer (MQCFIN)
Specifies whether queue manager restart completes before all indexes are built
deferring building to later, or waits until all indexes are built (parameter
identifier: MQIACF_SYSP_Q_INDEX_DEFER).

The value can be:

MQSYSP_YES
Queue manager restart completes before all indexes are built.

MQSYSP_NO
Queue manager restart waits until all indexes are built.

QSGName (MQCFST)
The name of the queue-sharing group to which the queue manager belongs
(parameter identifier: MQCA_QSG_NAME).

The maximum length of the string is MQ_QSG_NAME_LENGTH.

RESLEVELAudit (MQCFIN)
Specifies whether RACF audit records are written for RESLEVEL security
checks performed during connection processing (parameter identifier:
MQIACF_SYSP_RESLEVEL_AUDIT).

The value can be:

396 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|



MQSYSP_YES
RACF audit records are written.

MQSYSP_NO
RACF audit records are not written.

RoutingCode (MQCFIL)
z/OS routing code list (parameter identifier:
MQIACF_SYSP_ROUTING_CODE).

Specifies the list of z/OS routing codes for messages that are not sent in direct
response to an MQSC command. There can be between 1 and 16 entries in the
list.

Service (MQCFST)
Service parameter setting (parameter identifier: MQCACF_SYSP_SERVICE).

The maximum length of the string is MQ_SERVICE_NAME_LENGTH.

SMFAccounting (MQCFIN)
Specifies whether WebSphere MQ sends accounting data to SMF automatically
when the queue manager starts (parameter identifier:
MQIACF_SYSP_SMF_ACCOUNTING).

The value can be:

MQSYSP_YES
Accounting data is sent automatically.

MQSYSP_NO
Accounting data is not sent automatically.

SMFStatistics (MQCFIN)
Specifies whether WebSphere MQ sends statistics data to SMF automatically
when the queue manager starts (parameter identifier:
MQIACF_SYSP_SMF_STATS).

The value can be:

MQSYSP_YES
Statistics data is sent automatically.

MQSYSP_NO
Statistics data is not sent automatically.

SMFInterval (MQCFIN)
The default time, in minutes, between each gathering of statistics (parameter
identifier: MQIACF_SYSP_SMF_INTERVAL).

TraceClass (MQCFIL)
Classes for which tracing is started automatically (parameter identifier:
MQIACF_SYSP_TRACE_CLASS). There can be between 1 and 4 entries in the
list.

TraceSize (MQCFIN)
The size of the trace table, in 4 KB blocks, to be used by the global trace
facility (parameter identifier: MQIACF_SYSP_TRACE_SIZE).

WLMInterval (MQCFIN)
The time between scans of the queue index for WLM-managed queues
(parameter identifier: MQIACF_SYSP_WLM_INTERVAL).

WLMIntervalUnits (MQCFIN)
Whether the value of WLMInterval is given in seconds or minutes (parameter
identifier: MQIACF_SYSP_WLM_INT_UNITS). The value can be:

Chapter 3. Definitions of the Programmable Command Formats 397

|

|
|



MQTIME_UNITS_SEC
The value of WLMInterval is given in seconds.

MQTIME_UNITS_MINS
The value of WLMInterval is given in minutes.

Inquire Topic
The Inquire Topic (MQCMD_INQUIRE_TOPIC) command inquires about the
attributes of existing WebSphere MQ administrative topic objects

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

Required parameters:
TopicName

Optional parameters:
ClusterInfo,CommandScope, IntegerFilterCommand, QSGDisposition,
StringFilterCommand, TopicType,TopicAttrs

Required parameters (Inquire Topic)
TopicName (MQCFST)

Administrative topic object name (parameter identifier:
MQCA_TOPIC_NAME).

Specifies the name of the administrative topic object about which information
is to be returned. Generic topic object names are supported. A generic name is
a character string followed by an asterisk (*), for example ABC*, and it selects
all administrative topic objects having names that start with the selected
character string. An asterisk on its own matches all possible names.

The maximum length of the string is MQ_TOPIC_NAME_LENGTH.

Optional parameters
ClusterInfo (MQCFIN)

Cluster information (parameter identifier: MQIACF_CLUSTER_INFO).

This parameter requests that, in addition to information about attributes of
topics defined on this queue manager, cluster information about these and
other topics in the repository that match the selection criteria is returned.

In this case, there might be multiple topics with the same name returned.

You can set this parameter to any integer value: the value used does not affect
the response to the command.

The cluster information is obtained locally from the queue manager.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.

398 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|
|

|
|
|
||
|
|||

||||||
|

|
|

|
|
|

|

|
|
|

|
|
|
|
|

|

|

|
|

|
|
|

|

|
|

|

|
|
|

|
|

|
|



v a queue manager name. The command is executed on the queue manager
you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

You cannot use CommandScope as a parameter to filter on.

IntegerFilterCommand (MQCFIF)
Integer filter command descriptor. The parameter identifier must be any
integer type parameter allowed in TopicAttrs except MQIACF_ALL.

Use this to restrict the output from the command by specifying a filter
condition. See “MQCFIF - PCF integer filter parameter” on page 487 for
information about using this filter condition.

If you specify an integer filter, you cannot also specify a string filter using the
StringFilterCommand parameter.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Specifies the disposition of the object for which information is to be returned
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_LIVE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. This
is the default value if the parameter is not specified.

MQQSGD_ALL
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY.

If there is a shared queue manager environment, and the command is
being executed on the queue manager where it was issued, this option
also displays information for objects defined with MQQSGD_GROUP.

If MQQSGD_LIVE is specified or defaulted, or if MQQSGD_ALL is
specified in a shared queue manager environment, the command might
give duplicated names (with different dispositions).

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP. This is permitted only in a
shared queue environment.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_PRIVATE
The object is defined as either MQQSGD_Q_MGR or MQQSGD_COPY.
Note that MQQSGD_PRIVATE returns the same information as
MQQSGD_LIVE.

You cannot use QSGDisposition as a parameter to filter on.

StringFilterCommand (MQCFSF)
String filter command descriptor. The parameter identifier must be any string

Chapter 3. Definitions of the Programmable Command Formats 399

|
|
|
|
|

|
|

|

|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|

|

|
|



type parameter allowed in TopicAttrs except MQCA_TOPIC_NAME. Use this
to restrict the output from the command by specifying a filter condition. See
“MQCFSF - PCF string filter parameter” on page 494 for information about
using this filter condition.

If you specify a string filter, you cannot also specify an integer filter using the
IntegerFilterCommand parameter.

TopicAttrs (MQCFIL)
Topic object attributes (parameter identifier: MQIACF_TOPIC_ATTRS).

The attribute list can specify the following on its own (this is the default value
if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCA_ALTERATION_DATE
The date on which the information was last altered.

MQCA_ALTERATION_TIME
The time at which the information was last altered.

MQCA_CLUSTER_NAME
The cluster that is to be used for the propagation of publications and
subscription to publish/subscribe cluster-connected queue managers
for this topic.

MQCA_CLUSTER_DATE
The date on which this information became available to the local queue
manager.

MQCA_CLUSTER_TIME
The time at which this information became available to the local queue
manager.

MQCA_CLUSTER_Q_MGR_NAME
Queue manager that hosts the topic.

MQCA_MODEL_DURABLE_Q
Name of the model queue for durable managed subscriptions.

MQCA_MODEL_NON_DURABLE_Q
Name of the model queue for non-durable managed subscriptions.

MQCA_TOPIC_DESC
Description of the topic object.

MQCA_TOPIC_NAME
Name of the topic object.

MQCA_TOPIC_STRING
The topic string for the topic object.

MQIA_DEF_PRIORITY
Default message priority.

MQIA_DEF_PUT_RESPONSE
Default put response.

MQIA_DURABLE_SUBS
Whether durable subscriptions are permitted.

400 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|



MQIA_INHIBIT_PUB
Whether publications are allowed.

MQIA_INHIBIT_SUB
Whether subscriptions are allowed.

MQIA_NPM_DELIVERY
The delivery mechanism for non-persistent messages.

MQIA_PM_DELIVERY
The delivery mechanism for persistent messages.

MQIA_PROXY_SUB
Whether a proxy subscription is to be sent for this topic, even if no
local subscriptions exist.

MQIA_PUB_SCOPE
Whether this queue manager will propagate publications to queue
managers as part of a hierarchy or a publish/subscribe cluster.

MQIA_SUB_SCOPE
Whether this queue manager will propagate subscriptions to queue
managers as part of a hierarchy or a publish/subscribe cluster.

MQIA_TOPIC_DEF_PERSISTENCE
Default message persistence.

TopicType (MQCFIN)
Cluster information (parameter identifier: MQIA_TOPIC_TYPE).

If this parameter is present, eligible queues are limited to those of the specified
type. Any attribute selector that is specified in the TopicAttrs list and that is
valid only for topics of different type is ignored; no error is raised.

If this parameter is not present (or if MQIACF_ALL is specified), queues of all
types are eligible. Each attribute specified must be a valid topic attribute
selector (that is, it must one of those in the following list), but it need not be
applicable to all or any of the topics actually returned. Topic attribute selectors
that are valid but not applicable to the queue are ignored; no error messages
occur and no attribute is returned.

The value can be:

MQTOPT_ALL
All topic types are displayed. This includes cluster topics, if ClusterInfo
is also specified. This is the default value.

MQTOPT_CLUSTER
Topics that are defined in publish/subscribe clusters are returned.

MQTOPT_LOCAL
Locally defined topics are displayed.

Inquire Topic (Response)
The response to the Inquire Topic (MQCMD_INQUIRE_TOPIC) command consists
of the response header followed by the TopicName structure (and on z/OS only, the
QSG Disposition structure), and the requested combination of attribute parameter
structures (where applicable).

Chapter 3. Definitions of the Programmable Command Formats 401

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|
|
|



HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

Always returned:
TopicName, TopicType,QSGDisposition

Returned if requested:
AlterationDate, AlterationTime, ClusterName, DefPersistence,
DefPriority, DefPutResponse, DurableModelQName, DurableSubscriptions,
InhibitPublications, InhibitSubscriptions, NonDurableModelQName,
NonPersistentMsgDelivery, PersistentMsgDelivery,
PropagatePublications, PropagateSubscriptions, ProxySubscriptions,
PublicationScope, QMgrName, SubscriptionScope,TopicDesc, TopicString

Response data
AlterationDate (MQCFST)

Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered, in the form yyyy-mm-dd.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered, in the form hh.mm.ss .

ClusterName (MQCFST)
The name of the cluster to which this topic belongs (parameter identifier:
MQCA_CLUSTER_NAME).

The maximum length of the string is MQ_CLUSTER_NAME_LENGTH.

The value can be as follows:

Blank This topic does not belong to a cluster. Publications and subscriptions
for this topic are not propagated to publish/subscribe
cluster-connected queue managers.

This is the default value for this parameter if no value is specified.

String This topic belongs to the indicated cluster.

Additionally, if PublicationScope or SubscriptionScope is set to
MQSCOPE_ALL, this cluster is to be used for the propagation of
publications and subscriptions, for this topic, to publish/subcribe
cluster-connected queue managers.

DefPersistence (MQCFIN)
Default persistence (parameter identifier: MQIA_TOPIC_DEF_PERSISTENCE).

The value can be:

MQPER_PERSISTENCE_AS_PARENT
The default persistence is based on the setting of the closest parent
administrative topic object in the topic tree.

MQPER_PERSISTENT
Message is persistent.

MQPER_NOT_PERSISTENT
Message is not persistent.

402 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|
||
|
|||

||||||
|

|
|

|
|
|
|
|
|
|

|

|
|

|

|
|

|

|
|
|

|

|

||
|
|

|

||

|
|
|
|

|
|

|

|
|
|

|
|

|
|



DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY).

DefPutResponse (MQCFIN)
Default put response (parameter identifier: MQIA_DEF_PUT_RESPONSE).

The value can be:

MQPRT_ASYNC_RESPONSE
The put operation is issued asynchronously, returning a subset of
MQMD fields.

MQPRT_RESPONSE_AS_PARENT
The default put response is based on the setting of the closest parent
administrative topic object in the topic tree.

MQPRT_SYNC_RESPONSE
The put operation is issued synchronously, returning a response.

DurableModelQName (MQCFST)
Name of the model queue to be used for durable managed subscriptions
(parameter identifier: MQCA_MODEL_DURABLE_Q).

The maximum length of the string is MQ_Q_NAME_LENGTH.

DurableSubscriptions (MQCFIN)
Whether applications are permitted to make durable subscriptions (parameter
identifier: MQIA_DURABLE_SUBS).

The value can be:

MQSUB_DURABLE_AS_PARENT
Whether durable subscriptions are permitted is based on the setting of
the closest parent administrative topic object in the topic tree.

MQSUB_DURABLE
Durable subscriptions are permitted.

MQSUB_NON_DURABLE
Durable subscriptions are not permitted.

InhibitPublications (MQCFIN)
Whether publications are allowed for this topic (parameter identifier:
MQIA_INHIBIT_PUB).

The value can be:

MQTA_PUB_AS_PARENT
Whether messages can be published to this topic is based on the
setting of the closest parent administrative topic object in the topic tree.

MQTA_PUB_INHIBITED
Publications are inhibited for this topic.

MQTA_PUB_ALLOWED
Publications are allowed for this topic.

InhibitSubscriptions (MQCFIN)
Whether subscriptions are allowed for this topic (parameter identifier:
MQIA_INHIBIT_SUB).

The value can be:

MQTA_SUB_AS_PARENT
Whether applications can subscribe to this topic is based on the setting
of the closest parent administrative topic object in the topic tree.

Chapter 3. Definitions of the Programmable Command Formats 403

|
|

|
|

|

|
|
|

|
|
|

|
|

|
|
|

|

|
|
|

|

|
|
|

|
|

|
|

|
|
|

|

|
|
|

|
|

|
|

|
|
|

|

|
|
|



MQTA_SUB_INHIBITED
Subscriptions are inhibited for this topic.

MQTA_SUB_ALLOWED
Subscriptions are allowed for this topic.

NonDurableModelQName (MQCFST)
Name of the model queue to be used for non durable managed subscriptions
(parameter identifier: MQCA_MODEL_NON_DURABLE_Q).

The maximum length of the string is MQ_Q_NAME_LENGTH.

NonPersistentMsgDelivery (MQCFIN)
The delivery mechanism for non-persistent messages published to this topic
(parameter identifier: MQIA_NPM_DELIVERY).

The value can be:

MQDLV_AS_PARENT
The delivery mechanism used is based on the setting of the first parent
administrative node found in the topic tree relating to this topic.

MQDLV_ALL
Non-persistent messages must be delivered to all subscribers,
irrespective of durability for the MQPUT call to report success. If a
delivery failure to any subscriber occurs, no other subscribers receive
the message and the MQPUT fails.

MQDLV_ALL_DUR
Non-persistent messages must be delivered to all durable subscribers.
Failure to deliver a non-persistent message to any non-durable
subscribers does not return an error to the MQPUT call. If a delivery
failure to a durable subscriber occurs, no other subscribers receive the
message and the MQPUT fails.

MQDLV_ALL_AVAIL
Non-persistent messages are delivered to all subscribers that can accept
the message. Failure to deliver the message to any subscriber does not
prevent other subscribers from receiving the message.

PersistentMsgDelivery (MQCFIN)
The delivery mechanism for persistent messages published to this topic
(parameter identifier: MQIA_PM_DELIVERY).

The value can be:

MQDLV_AS_PARENT
The delivery mechanism used is based on the setting of the first parent
administrative node found in the topic tree relating to this topic.

MQDLV_ALL
Persistent messages must be delivered to all subscribers, irrespective of
durability for the MQPUT call to report success. If a delivery failure to
any subscriber occurs, no other subscribers receive the message and the
MQPUT fails.

MQDLV_ALL_DUR
Persistent messages must be delivered to all durable subscribers.
Failure to deliver a persistent message to any non-durable subscribers
does not return an error to the MQPUT call. If a delivery failure to a
durable subscriber occurs, no other subscribers receive the message
and the MQPUT fails.

404 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|

|
|
|

|

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|



MQDLV_ALL_AVAIL
Persistent messages are delivered to all subscribers that can accept the
message. Failure to deliver the message to any subscriber does not
prevent other subscribers from receiving the message.

ProxySubscriptions (MQCFIN)
Whether a proxy subscription is to be sent for this topic, even if no local
subscriptions exist, to directly connected queue managers (parameter identifier:
MQIA_PROXY_SUB).

The value can be:

MQTA_PROXY_SUB_FORCE
A proxy subscription is sent to connected queue managers even if no
local subscriptions exist.

MQTA_PROXY_SUB_FIRSTUSE
A proxy subscription is sent for this topic only when a local
subscription exists.

PublicationScope (MQCFIN)
Whether this queue manager propagates publications to queue managers as
part of a hierarchy or as part of a publish/subscribe cluster (parameter
identifier: MQIA_PUB_SCOPE).

The value can be:

MQSCOPE_ALL
Publications for this topic are propagated to hierarchically connected
queue managers and to publish/subscribe cluster-connected queue
managers.

MQSCOPE_AS_PARENT
Whether this queue manager will propagate publications to queue
managers as part of a hierarchy or as part of a publish/subscribe
cluster is based on the setting of the first parent administrative node
found in the topic tree relating to this topic.

This is the default value for this parameter if no value is specified.

MQSCOPE_QMGR
Publications for this topic are not propagated to other queue managers.

Note: You can override this behavior on a publication-by-publication basis,
using MQPMO_SCOPE_QMGR on the Put Message Options.

QMgrName (MQCFST)
Name of local queue manager (parameter identifier:
MQCA_CLUSTER_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH

SubscriptionScope (MQCFIN)
Whether this queue manager propagates subscriptions to queue managers as
part of a hierarchy or as part of a publish/subscribe cluster (parameter
identifier: MQIA_SUB_SCOPE).

The value can be:

MQSCOPE_ALL
Subscriptions for this topic are propagated to hierarchically connected
queue managers and to publish/subscribe cluster-connected queue
managers.

Chapter 3. Definitions of the Programmable Command Formats 405

|
|
|
|

|
|
|
|

|

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|
|

|

|
|
|
|

|

|
|
|
|



MQSCOPE_AS_PARENT
Whether this queue manager will propagate subscriptions to queue
managers as part of a hierarchy or as part of a publish/subscribe
cluster is based on the setting of the first parent administrative node
found in the topic tree relating to this topic.

This is the default value for this parameter if no value is specified.

MQSCOPE_QMGR
Subscriptions for this topic are not propagated to other queue
managers.

Note: You can override this behavior on a subscription-by-subscription basis,
using MQSO_SCOPE_QMGR on the Subscription Descriptor or
SUBSCOPE(QMGR) on DEFINE SUB.

TopicDesc (MQCFST)
Topic description (parameter identifier: MQCA_TOPIC_DESC).

The maximum length is MQ_TOPIC_DESC_LENGTH.

TopicName (MQCFST)
Topic object name (parameter identifier: MQIA_TOPIC_NAME).

The maximum length of the string is MQ_TOPIC_NAME_LENGTH

TopicString (MQCFST)
The topic string (parameter identifier: MQCA_TOPIC_STRING).

The ’/’ character within this string has special meaning. It delimits the
elements in the topic tree. A topic string can start with the ’/’ character but is
not required to. A string starting with the ’/’ character is not the same as the
string which starts without the ’/’ character. A topic string cannot end with the
″/″ character.

The maximum length of the string is MQ_TOPIC_STR_LENGTH.

TopicType (MQCFIN)
Whether this object is a local or cluster topic (parameter identifier:
MQIA_TOPIC_TYPE).

The value can be:

MQTOPT_LOCAL
This object is a local topic.

MQTOPT_CLUSTER
This object is a cluster topic.

WildcardOperation (MQCFIN)
Behavior of subscriptions including wildcards made to this topic (parameter
identifier: MQIA_WILDCARD_OPERATION).

The value can be:

MQTA_PASSTHRU
Subscriptions made to a wildcarded topic that are less specific than the
topic string at this topic object will receive publications made to this
topic and to topic strings more specific than this topic. This is the
default supplied with WebSphere MQ.

MQTA_BLOCK
Subscriptions made to a wildcarded topic that are specific than the

406 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|
|
|

|

|
|
|

|
|
|

|
|

|

|
|

|

|
|

|
|
|
|
|

|

|
|
|

|

|
|

|
|

|
|
|

|

|
|
|
|
|

|
|



topic string at this topic object will not receive publications made to
this topic or to topic strings more specific than this topic.

Inquire Topic Names

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

The Inquire Topic Names (MQCMD_INQUIRE_TOPIC_NAMES) command
inquires a list of administrative topic names that match the generic topic name
specified.

Required parameters:
TopicName

Optional parameters:
CommandScope, QSGDisposition

Required parameters (Inquire Topic Names)
TopicName (MQCFST)

Administrative topic object name (parameter identifier:
MQCA_TOPIC_NAME).

Specifies the name of the administrative topic object that information is to be
returned for.

Generic topic object names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all objects having
names that start with the selected character string. An asterisk on its own
matches all possible names.

The maximum length of the string is MQ_TOPIC_NAME_LENGTH.

Optional parameters (Inquire Topic Names)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP). This parameter applies to z/OS only.

Chapter 3. Definitions of the Programmable Command Formats 407

|
|

|
|

|
|
|
||
|
|||

||||||
|

|
|
|

|
|

|
|

|

|
|
|

|
|

|
|
|
|

|

|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|

|
|
|



Specifies the disposition of the object for which information is to be returned
(that is, where it is defined and how it behaves). The value can be:

MQQSGD_LIVE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. This
is the default value if the parameter is not specified.

MQQSGD_ALL
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY.

If there is a shared queue manager environment, and the command is
being executed on the queue manager where it was issued, this option
also displays information for objects defined with MQQSGD_GROUP.

If MQQSGD_LIVE is specified or defaulted, or if MQQSGD_ALL is
specified in a shared queue manager environment, the command might
give duplicated names (with different dispositions).

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP. This is permitted only in a
shared queue environment.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

MQQSGD_PRIVATE
The object is defined as MQQSGD_Q_MGR or MQQSGD_COPY. Note
that MQQSGD_PRIVATE returns the same information as
MQQSGD_LIVE.

Inquire Topic Names (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

The response to the Inquire Topic Names (MQCMD_INQUIRE_TOPIC_NAMES)
command consists of the response header followed by a parameter structure giving
zero or more names that match the specified administrative topic name.

In addition to this, on z/OS only, the QSGDispositions parameter structure (with
the same number of entries as the TopicNames structure) is returned. Each entry in
this structure indicates the disposition of the object with the corresponding entry in
the TopicNames structure.

Always returned:
TopicNames, QSGDispositions

Returned if requested:
None

Response data
TopicNames (MQCFSL)

List of topic object names (parameter identifier: MQCACF_TOPIC_NAMES).

408 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
||
|
|||

||||||
|

|
|
|

|
|
|
|

|
|

|
|

|

|
|



QSGDispositions (MQCFIL)
List of QSG dispositions (parameter identifier: MQIACF_QSG_DISPS). This is
valid on z/OS only. The value can be:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_GROUP
The object is defined as MQQSGD_GROUP.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

Inquire Topic Status
The Inquire Topic Status (MQCMD_INQUIRE_TOPIC_STATUS) command inquires
the status of a given topic, or of a topic and its child topics.

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

Required parameters:
TopicString

Optional parameters:
StatusType, CommandScope

Required parameters (Inquire Topic Status)
The Inquire Topic Status command has a required parameter.

TopicString (MQCFST)
The topic string (parameter identifier: MQCA_TOPIC_STRING).

The name of the topic string to display. WebSphere MQ uses the topic wildcard
characters (’#’ and ’+’) and does not treat a trailing asterisk as a wildcard. For
more more information about using wildcard characters, refer to the related
topic.

The maximum length of the string is MQ_TOPIC_STR_LENGTH.

Optional parameters (Inquire Topic Status)
The Inquire Topic Status command has optional parameters.

StatusType (MQCFIN)
The type of status to return (parameter identifier:
MQIACF_TOPIC_STATUS_TYPE).

The value can be:
MQIACF_TOPIC_STATUS

MQIACF_TOPIC_SUB

MQIACF_TOPIC_PUB

This command ignores any attribute selectors specified in the TopicStatusAttrs
list that are not valid for the selected StatusType and the command raises no
error.

The default value if this parameter is not specified is
MQIACF_TOPIC_STATUS.

Chapter 3. Definitions of the Programmable Command Formats 409

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
||
|
|||

||||||
|

|
|

|
|

|

|

|
|

|
|
|
|

|

|

|

|
|
|

|

|

|

|

|
|
|

|
|



CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command runs on the queue

manager on which you enter it.
v a queue manager name. The command runs on the queue manager that you

specify, provided that it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which you
entered the command, you must be using a queue-sharing group
environment, and the command server must be enabled.

v an asterisk (*). The command runs on the local queue manager and is also
passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

You cannot use CommandScope as a filter parameter.

IntegerFilterCommand(MQCFIF)
Integer filter command descriptor that you use to restrict the output from the
command. The parameter identifier must be an integer type and must be one
of the values allowed for MQIACF_TOPIC_SUB_STATUS, MQIACF_TOPIC_PUB_STATUS
or MQIACF_TOPIC_STATUS, except MQIACF_ALL.

If you specify an integer filter, you cannot also specify a string filter with the
StringFilterCommand parameter.

StringFilterCommand(MQCFSF)
String filter command descriptor that you use to restrict the output from the
command. The parameter identifier must be a string type and must be one of
the values allowed for MQIACF_TOPIC_SUB_STATUS, MQIACF_TOPIC_PUB_STATUS or
MQIACF_TOPIC_STATUS, except MQIACF_ALL.

If you specify a string filter, you cannot also specify an integer filter with the
IntegerFilterCommand parameter.

TopicStatusAttrs(MQCFIL)
Topic status attributes (parameter identifier: MQIACF_TOPIC_STATUS_ATTRS)

The default value used if the parameter is not specified is:
MQIACF_ALL

You can specify any of the parameter values listed in the related reference
about Response Data. It is not an error to request status information that is not
relevant for a particular status type, but the response contains no information
for the value concerned.

Inquire Topic Status (Response)
The response of the Inquire topic (MQCMD_INQUIRE_TOPIC_STATUS) command
consists of the response header followed by the TopicString structure and the
requested combination of attribute parameter structures (where applicable).

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

410 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|

|

|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|

|

|

|
|
|
|

|
|

|
|
|

|
|
|
||
|
|||

||||||
|



Always returned:
TopicString

Returned if requested and StatusType is MQIACF_TOPIC_STATUS:
DefPriority, DefaultPutResponse, DefPersistence, DurableSubscriptions,
InhibitPublications, InhibitSubscriptions, AdminTopicName,
DurableModelQName, NonDurableModelQName, PersistentMessageDelivery,
NonPersistentMessageDelivery, RetainedPublication, PublishCount,
SubscriptionScope, SubscriptionCount, PublicationScope

Note: The Inquire Topic Status command returns only values for the topic,
and no AS_PARENT values.

Returned if requested and StatusType is MQIACF_TOPIC_SUB:
SubscriptionId, SubscriptionUserId, Durable, SubscriptionType,
ResumeDate, ResumeTime, LastMessageDate, LastMessageTime,
NumberOfMessages, ActiveConnection

Returned if requested and StatusType is MQIACF_TOPIC_PUB:
LastPublishDate, LastPublishTime, NumberOfPublishes, ActiveConnection

Response data (TOPIC_STATUS)
The Inquire Topic Status command returns the values requested when the
StatusType is MQIACF_TOPIC_STATUS.

DefPersistence (MQCFIN)
Default persistence (parameter identifier: MQIA_TOPIC_DEF_PERSISTENCE).

Returned value:

MQPER_PERSISTENT
Message is persistent.

MQPER_NOT_PERSISTENT
Message is not persistent.

DefaultPutResponse (MQCFIN)
Default put response (parameter identifier:
MQIA_DEF_PUT_RESPONSE_TYPE).

Returned value:

MQPRT_SYNC_RESPONSE
The put operation is issued synchronously, returning a response.

MQPRT_ASYNC_RESPONSE
The put operation is issued asynchronously, returning a subset of
MQMD fields.

DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY).

Shows the resolved default priority of messages published to the topic.

DurableSubscriptions (MQCFIN)
Whether applications are permitted to make durable subscriptions (parameter
identifier: MQIA_DURABLE_SUBS).

Returned value:

MQSUB_DURABLE_ALLOWED
Durable subscriptions are permitted.

Chapter 3. Definitions of the Programmable Command Formats 411

|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|

|

|
|

|
|

|

|
|

|
|

|
|
|

|

|
|

|
|
|

|
|

|

|
|
|

|

|
|



MQSUB_DURABLE_INHIBITED
Durable subscriptions are not permitted.

InhibitPublications (MQCFIN)
Whether publications are allowed for this topic (parameter identifier:
MQIA_INHIBIT_PUB).

Returned value:

MQTA_PUB_INHIBITED
Publications are inhibited for this topic.

MQTA_PUB_ALLOWED
Publications are allowed for this topic.

InhibitSubscriptions (MQCFIN)
Whether subscriptions are allowed for this topic (parameter identifier:
MQIA_INHIBIT_SUB).

Returned value:

MQTA_SUB_INHIBITED
Subscriptions are inhibited for this topic.

MQTA_SUB_ALLOWED
Subscriptions are allowed for this topic.

AdminTopicName (MQCFST)
Topic object name (parameter identifier: MQCA_ADMIN_TOPIC_NAME).

If the topic node is an admin-node, the command displays the associated topic
object name containing the node configuration. If the field is not an
admin-node the command displays a blank.

The maximum length of the string is MQ_TOPIC_NAME_LENGTH.

DurableModelQName (MQCFST)
The name of the model queue used for managed durable subscriptions
(parameter identifier: MQCA_MODEL_DURABLE_Q).

Shows the resolved value of the name of the model queue to be used for
durable subscriptions that request the queue manager to manage the
destination of publications.

The maximum length of the string is MQ_Q_NAME_LENGTH.

NonDurableModelQName (MQCFST)
The name of the model queue for managed non-durable subscriptions
(parameter identifier: MQCA_MODEL_NON_DURABLE_Q).

The maximum length of the string is MQ_Q_NAME_LENGTH.

PersistentMessageDelivery (MQCFST)
Delivery mechanism for persistent messages published to this topic (parameter
identifier: MQIA_PM_DELIVERY).

Returned value:

MQDLV_ALL
Persistent messages must be delivered to all subscribers, irrespective of
durability, for the MQPUT call to report success. If a delivery failure to
any subscriber occurs, no other subscribers receive the message and the
MQPUT call fails.

MQDLV_ALL_DUR
Persistent messages must be delivered to all durable subscribers.

412 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|
|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|
|
|

|

|
|
|

|
|
|

|

|
|
|

|

|
|
|

|

|
|
|
|
|

|
|



Failure to deliver a persistent message to any non-durable subscribers
does not return an error to the MQPUT call. If a delivery failure to a
durable subscriber occurs, no subscribers receive the message and the
MQPUT call fails.

MQDLV_ALL_AVAIL
Persistent messages are delivered to all subscribers that can accept the
message. Failure to deliver the message to any subscriber does not
prevent other subscribers from receiving the message.

NonPersistentMessageDelivery (MQCFST)
Delivery mechanism for non-persistent messages published to this topic
(parameter identifier: MQIA_NPM_DELIVERY).

Returned value:

MQDLV_ALL
Non-persistent messages must be delivered to all subscribers,
irrespective of durability, for the MQPUT call to report success. If a
delivery failure to any subscriber occurs, no other subscribers receive
the message and the MQPUT call fails.

MQDLV_ALL_DUR
Non-persistent messages must be delivered to all durable subscribers.
Failure to deliver a non-persistent message to any non-durable
subscribers does not return an error to the MQPUT call. If a delivery
failure to a durable subscriber occurs, no subscribers receive the
message and the MQPUT call fails.

MQDLV_ALL_AVAIL
Non-persistent messages are delivered to all subscribers that can accept
the message. Failure to deliver the message to any subscriber does not
prevent other subscribers from receiving the message.

RetainedPublication (MQCFIN)
Whether there is a retained publication for this topic (parameter identifier:
MQIACF_RETAINED_PUBLICATION).

Returned value:

MQQSO_YES
There is a retained publication for this topic.

MQQSO_NO
There is no retained publication for this topic.

PublishCount (MQCFIN)
Publish count (parameter identifier: MQIA_PUB_COUNT).

The number of applications currently publishing to the topic.

SubscriptionCount (MQCFIN)
Subscription count (parameter identifier: MQIA_SUB_COUNT).

The number of subscribers for this topic string, including durable subscribers
who are not currently connected.

SubscriptionScope (MQCFIN)
Determines whether this queue manager propagates subscriptions for this topic
to queue managers as part of a hierarchy or as part of a pub/sub cluster
(parameter identifier: MQIA_SUB_SCOPE).

Returned value:

Chapter 3. Definitions of the Programmable Command Formats 413

|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|

|
|

|

|
|

|
|

|
|
|
|

|



MQSCOPE_QMGR
The queue manager does not propagate subscriptions for this topic to
other queue managers.

MQSCOPE_ALL
The queue manager propagates subscriptions for this topic to
hierarchically connected queue managers and to pub/sub cluster
connected queues.

PublicationScope (MQCFIN)
Determines whether this queue manager propagates publications for this topic
to queue managers as part of a hierarchy or as part of a pub/sub cluster
(parameter identifier: MQIA_PUB_SCOPE).

Returned value:

MQSCOPE_QMGR
The queue manager does not propagate publications for this topic to
other queue managers.

MQSCOPE_ALL
The queue manager propagates publications for this topic to
hierarchically connected queue managers and to pub/sub cluster
connected queues.

Response data (TOPIC_STATUS_SUB)
The Inquire Topic Status command returns the values requested when the
StatusType is MQIACF_TOPIC_STATUS_SUB.

SubscriptionId (MQCFBS)
Subscription identifier (parameter identifier: MQBACF_SUB_ID).

The queue manager assigns SubscriptionId as an all time unique identifier for
this subscription.

The maximum length of the string is MQ_CORREL_ID_LENGTH.

SubscriptionUserId (MQCFST)
The user ID that owns this subscription (parameter identifier:
MQCACF_SUB_USER_ID).

The maximum length of the string is MQ_USER_ID_LENGTH.

Durable (MQCFIN)
Whether this is a durable subscription (parameter identifier:
MQIACF_DURABLE_SUBSCRIPTION).

MQSUB_DURABLE_YES
The subscription persists, even if the creating application disconnects
from the queue manager or issues an MQCLOSE call for the
subscription. The queue manager reinstates the subscription during
restart.

MQSUB_DURABLE_NO
The subscription is non-durable. The queue manager removes the
subscription when the creating application disconnects from the queue
manager or issues an MQCLOSE call for the subscription. If the
subscription has a destination class (DESTCLAS) of MANAGED, the
queue manager removes any messages not yet consumed when it
closes the subscription.

414 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|

|

|
|

|
|

|
|

|

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|



SubscriptionType (MQCFIN)
The type of subscription (parameter identifier: MQIACF_SUB_TYPE).

The value can be:
MQSUBTYPE_ADMIN
MQSUBTYPE_API
MQSUBTYPE_PROXY

ResumeDate (MQCFST)
Date of the most recent MQSUB call that connected to this subscription
(parameter identifier: MQCA_RESUME_DATE).

The maximum length of the string is MQ_DATE_LENGTH.

ResumeTime (MQCFST)
Time of the most recent MQSUB call that connected to this subscription
(parameter identifier: MQCA_RESUME_TIME).

The maximum length of the string is MQ_TIME_LENGTH.

LastMessageDate (MQCFST)
Date on which an MQPUT call last sent a message to this subscription. The
queue manager updates the date field after the MQPUT call successfully puts a
message to the destination specified by this subscription (parameter identifier:
MQCACF_LAST_PUB_DATE).

The maximum length of the string is MQ_DATE_LENGTH.

Note: An MQSUBRQ call updates this value.

LastMessageTime (MQCFST)
Time at which an MQPUT call last sent a message to this subscription. The
queue manager updates the time field after the MQPUT call successfully puts a
message to the destination specified by this subscription (parameter identifier:
MQCACF_LAST_PUB_TIME).

The maximum length of the string is MQ_TIME_LENGTH.

Note: An MQSUBRQ call updates this value.

NumberOfMessages (MQCFST)
Number of messages put to the destination specified by this subscription
(parameter identifier: MQIACF_MESSAGE_COUNT).

Note: An MQSUBRQ call updates this value.

ActiveConnection (MQCFBS)
The currently active ConnectionId (CONNID) that opened this subscription
(parameter identifier: MQBACF_CONNECTION_ID).

The maximum length of the string is MQ_CONNECTION_ID_LENGTH.

Response data (TOPIC_STATUS_PUB)
The Inquire Topic Status command returns the values requested when the
StatusType is MQIACF_TOPIC_STATUS_PUB.

LastPublicationDate (MQCFST)
Date on which this publisher last sent a message (parameter identifier:
MQCACF_LAST_PUB_DATE).

The maximum length of the string is MQ_DATE_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 415

|
|

|

|

|

|

|
|
|

|

|
|
|

|

|
|
|
|
|

|

|

|
|
|
|
|

|

|

|
|
|

|

|
|
|

|

|

|
|

|
|
|

|



LastPublicationTime(MQCFST)
Time at which this publisher last sent a message (parameter identifier:
MQCACF_LAST_PUB_TIME).

The maximum length of the string is MQ_TIME_LENGTH.

NumberOfPublishes(MQCFIN)
Number of publishes made by this publisher (parameter identifier:
MQIACF_MESSAGE_COUNT).

ActiveConnection (MQCFBS)
The currently active ConnectionId (CONNID) associated with the handle that
has this topic node open for publish (parameter identifier:
MQBACF_CONNECTION_ID).

The maximum length of the string is MQ_CONNECTION_ID_LENGTH.

Inquire Usage

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Inquire Usage (MQCMD_INQUIRE_USAGE) command inquires about the
current state of a page set, or information about the log data sets.

Required parameters:
None

Optional parameters:
CommandScope, PageSetId, UsageType

Optional parameters (Inquire Usage)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

PageSetId (MQCFIN)
Page set identifier (parameter identifier: MQIA_PAGESET_ID). If you omit this
parameter, all page set identifiers are returned.

UsageType (MQCFIN)
The type of information to be returned (parameter identifier:
MQIACF_USAGE_TYPE).

416 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|

|

|
|
|

|
|
|
|

|

|



The value can be:

MQIACF_USAGE_PAGESET
Return page set and buffer pool information.

MQIACF_USAGE_DATA_SET
Return data set information for log data sets.

MQIACF_USAGE_ALL
Return page set and data set information.

Inquire Usage (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The response to the Inquire Usage (MQCMD_INQUIRE_USAGE) command
consists of the response header followed by the UsageType structure and a set of
attribute parameter structures determined by the value of UsageType in the Inquire
command.

Always returned:
UsageType

Possible values of ParameterType are:

MQIACF_USAGE_PAGESET
Page set information.

MQIACF_USAGE_BUFFER_POOL
Buffer pool information.

MQIACF_USAGE_DATA_SET
Data set information for log data sets.

Returned if UsageType is MQIACF_USAGE_PAGESET:
BufferPoolId, ExpandCount, ExpandType, LogRBA, NonPersistentDataPages,
PageSetId, PageSetStatus, PersistentDataPages, TotalPages, UnusedPages

Returned if UsageType is MQIACF_USAGE_BUFFER_POOL:
BufferPoolId, TotalBuffers

Returned if UsageType is MQIACF_USAGE_DATA_SET:
DataSetName, DataSetType, LogRBA, LogLRSN

Response data if UsageType is MQIACF_USAGE_PAGESET
BufferPoolId (MQCFIN)

Buffer pool identifier (parameter identifier: MQIACF_BUFFER_POOL_ID).

Theis identifies the buffer pool being used by the page set.

ExpandCount (MQCFIN)
The number of times the page set has been dynamically expanded since restart
(parameter identifier: MQIACF_USAGE_EXPAND_COUNT).

ExpandType (MQCFIN)
How the queue manager expands a page set when it becomes nearly full, and
further pages are required within it (parameter identifier:
MQIACF_USAGE_EXPAND_TYPE).

Chapter 3. Definitions of the Programmable Command Formats 417



The value can be:

MQUSAGE_EXPAND_NONE
No further page set expansion is to take place.

MQUSAGE_EXPAND_USER
The secondary extent size that was specified when the page set was
defined is used. If no secondary extent size was specified, or it was
specified as zero, then no dynamic page set expansion can take place.

At restart, if a previously used page set has been replaced with a data
set that is smaller, it is expanded until it reaches the size of the
previously used data set. Only one extent is required to reach this size.

MQUSAGE_EXPAND_SYSTEM
A secondary extent size that is approximately 10 per cent of the current
size of the page set is used. This may be rounded up to the nearest
cylinder of DASD.

NonPersistentDataPages (MQCFIN)
The number of pages holding nonpersistent data (parameter identifier:
MQIACF_USAGE_NONPERSIST_PAGES).

These pages are being used to store nonpersistent message data.

PageSetId (MQCFIN)
Page set identifier (parameter identifier: MQIA_PAGESET_ID).

The string consists of two numeric characters, in the range 00 through 99.

PageSetStatus (MQCFIN)
Current status of the page set (parameter identifier:
MQIACF_PAGESET_STATUS).

The value can be:

MQUSAGE_PS_AVAILABLE
The page set is available.

MQUSAGE_PS_DEFINED
The page set has been defined but has never been used.

MQUSAGE_PS_OFFLINE
The page set is currently not accessible by the queue manager, for
example because the page set has not been defined to the queue
manager.

MQUSAGE_PS_NOT_DEFINED
The command was issued for a specific page set that is not defined to
the queue manager.

PersistentDataPages (MQCFIN)
The number of pages holding persistent data (parameter identifier:
MQIACF_USAGE_PERSIST_PAGES).

These pages are being used to store object definitions and persistent message
data.

TotalPages (MQCFIN)
The total number of 4 KB pages in the page set (parameter identifier:
MQIACF_USAGE_TOTAL_PAGES).

UnusedPages (MQCFIN)
The number of pages that are not used (that is, available page sets) (parameter
identifier: MQIACF_USAGE_UNUSED_PAGES).

418 WebSphere MQ: Programmable Command Formats and Administration Interface



Response data if UsageType is
MQIACF_USAGE_BUFFER_POOL

BufferPoolId (MQCFIN)
Buffer pool identifier (parameter identifier: MQIACF_BUFFER_POOL_ID).

This identifies the buffer pool being used by the page set.

TotalBuffers (MQCFIN)
The number of buffers defined for specified buffer pool (parameter identifier:
MQIACF_USAGE_TOTAL_BUFFERS).

Response data if UsageType is MQIACF_USAGE_DATA_SET
DataSetName (MQCFST)

Data set name (parameter identifier: MQCACF_DATA_SET_NAME).

The maximum length is MQ_DATA_SET_NAME_LENGTH.

DataSetType (MQCFIN)
The type of data set, and circumstance (parameter identifier:
MQIACF_USAGE_DATA_SET_TYPE).

The value can be:

MQUSAGE_DS_OLDEST_ACTIVE_UOW
The log data set containing the start RBA of the oldest active unit of
work for the queue manager

MQUSAGE_DS_OLDEST_PS_RECOVERY
The log data set containing the oldest restart RBA of any page set for
the queue manager.

MQUSAGE__DS_OLDEST_CF_RECOVERY
The log data set containing the LRSN which matches the time of the
oldest current backup of any CF structure in the queue-sharing group.

LogRBA (MQCFST)
Log RBA (parameter identifier: MQCACF_USAGE_LOG_RBA).

The maximum length is MQ_RBA_LENGTH.

LogLRSN (MQCFST)
Log LRSN (parameter identifier: MQIACF_USAGE_LOG_LRSN).

The length of the string is MQ_LRSN_LENGTH.

Move Queue

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Move Queue (MQCMD_MOVE_Q) command moves all the messages from
one local queue to another.

Required parameters:
FromQName

Optional parameters:
CommandScope, MoveType, QSGDisposition, ToQName

Chapter 3. Definitions of the Programmable Command Formats 419



Required parameters (Move Queue)
FromQName (MQCFST)

From queue name (parameter identifier: MQCACF_FROM_Q_NAME).

The name of the local queue from which messages are moved. The name must
be defined to the local queue manager.

The command fails if the queue contains uncommitted messages.

If an application has this queue open, or has open a queue that eventually
resolves to this queue, the command fails. For example, the command fails if
this queue is a transmission queue, and any queue that is, or resolves to, a
remote queue that references this transmission queue, is open.

An application can open this queue while the command is in progress but the
application waits until the command has completed.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Optional parameters (Move Queue)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

The maximum length is MQ_QSG_NAME_LENGTH.

MoveType (MQCFIN)
Move type (parameter identifier: MQIA_QSG_DISP).

Specifies how the messages are moved. The value can be:

MQIACF_MOVE_TYPE_MOVE
Move the messages from the source queue to the empty target queue.

The command fails if the target queue already contains one or more
messages. The messages are deleted from the source queue. This is the
default value.

MQIACF_MOVE_TYPE_ADD
Move the messages from the source queue and add them to any
messages already on the target queue.

The messages are deleted from the source queue.

QSGDisposition (MQCFIN)
Disposition of the object within the group (parameter identifier:
MQIA_QSG_DISP).

Specifies the disposition of the object for which information is to be returned
(that is, where it is defined and how it behaves). The value can be:

420 WebSphere MQ: Programmable Command Formats and Administration Interface



MQQSGD_PRIVATE
The object is defined as either MQQSGD_Q_MGR or MQQSGD_COPY.
This is the default value.

MQQSGD_SHARED
The object is defined as MQQSGD_SHARED. This is valid only in a
shared queue environment.

ToQName (MQCFST)
To queue name (parameter identifier: MQCACF_TO_Q_NAME).

The name of the local queue to which messages are moved. The name must be
defined to the local queue manager.

The name of the target queue can be the same as that of the source queue only
if the queue exists as both a shared and a private queue. In this case, the
command moves messages to the queue that has the opposite disposition
(shared or private) from that specified for the source queue on the
QSGDisposition parameter.

If an application has this queue open, or has open a queue that eventually
resolves to this queue, the command fails. The command also fails if this queue
is a transmission queue, and any queue that is, or resolves to, a remote queue
that references this transmission queue, is open.

No application can open this queue while the command is in progress.

If you specify a value of MQIACF_MOVE_TYPE_MOVE on the MoveType
parameter, the command fails if the target queue already contains one or more
messages.

The DefinitionType, HardenGetBackout, Usage parameters of the target queue
must be the same as those of the source queue.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Ping Channel

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Ping Channel (MQCMD_PING_CHANNEL) command tests a channel by
sending data as a special message to the remote message queue manager and
checking that the data is returned. The data is generated by the local queue
manager.

This command can only be used for channels with a ChannelType value of
MQCHT_SENDER, MQCHT_SERVER, or MQCHT_CLUSSDR.

Where there is both a locally defined channel and an auto-defined cluster-sender
channel of the same name, the command applies to the locally defined channel.

If there is no locally defined channel but more than one auto-defined
cluster-sender channel, the command applies to the last channel added to the
repository on the local queue manager.

The command is not valid if the channel is running; however it is valid if the
channel is stopped or in retry mode.

Chapter 3. Definitions of the Programmable Command Formats 421



Required parameters:
ChannelName

Optional parameters:
DataCount, CommandScope, ChannelDisposition

Required parameters (Ping Channel)
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel to be tested. The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

Optional parameters (Ping Channel)
DataCount (MQCFIN)

Data count (parameter identifier: MQIACH_DATA_COUNT).

Specifies the length of the data.

Specify a value in the range 16 through 32 768. The default value is 64 bytes.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

ChannelDisposition (MQCFIN)
Channel disposition (parameter identifier: MQIACH_CHANNEL_DISP). This
parameter applies to z/OS only.

Specifies the disposition of the channels to be tested.

If this parameter is omitted, then the value for the channel disposition is taken
from the default channel disposition attribute of the channel object.

The value can be:

MQCHLD_PRIVATE
A receiving channel is private if it was started in response to an
inbound transmission directed to the queue manager.

A sending channel is private if its transmission queue has a disposition
other than MQQSGD_SHARED.

MQCHLD_SHARED
A receiving channel is shared if it was started in response to an
inbound transmission directed to the queue-sharing group.

422 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|



A sending channel is shared if its transmission queue has a disposition
of MQQSGD_SHARED.

MQCHLD_FIXSHARED
Tests shared channels, tied to a specific queue manager.

The combination of the ChannelDisposition and CommandScope parameters also
controls from which queue manager the channel is operated. The possible
options are:
v On the local queue manager where the command is issued.
v On another specific named queue manager in the group.
v On the most suitable queue manager in the group, determined automatically

by the queue manager itself.

The various combinations of ChannelDisposition and CommandScope are
summarized in Table 9

Table 9. ChannelDisposition and CommandScope for PING CHANNEL

ChannelDisposition CommandScope blank or local-qmgr CommandScope
qmgr-name

CommandScope(*)

MQCHLD_PRIVATE Ping private channel on the local
queue manager

Ping private channel on
the named queue
manager

Ping private channel on
all active queue
managers

MQCHLD_SHARED Ping a shared channel on the most
suitable queue manager in the group

This might automatically generate a
command using CommandScope and
send it to the appropriate queue
manager. If there is no definition for
the channel on the queue manager to
which the command is sent, or if the
definition is unsuitable for the
command, the command fails.

The definition of a channel on the
queue manager where the command
is entered might be used to
determine the target queue manager
where the command is actually run.
Therefore, it is important that
channel definitions are consistent.
Inconsistent channel definitions
might result in unexpected command
behavior.

Not permitted Not permitted

MQCHLD_FIXSHARED Ping a shared channel on the local
queue manager

Ping a shared channel
on the named queue
manager

Not permitted

Error codes (Ping Channel)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

Chapter 3. Definitions of the Programmable Command Formats 423



MQRCCF_ALLOCATE_FAILED
Allocation failed.

MQRCCF_BIND_FAILED
Bind failed.

MQRCCF_CCSID_ERROR
Coded character-set identifier error.

MQRCCF_CHANNEL_CLOSED
Channel closed.

MQRCCF_CHANNEL_IN_USE
Channel in use.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_CONFIGURATION_ERROR
Configuration error.

MQRCCF_CONNECTION_CLOSED
Connection closed.

MQRCCF_CONNECTION_REFUSED
Connection refused.

MQRCCF_DATA_TOO_LARGE
Data too large.

MQRCCF_ENTRY_ERROR
Connection name not valid.

MQRCCF_HOST_NOT_AVAILABLE
Remote system not available.

MQRCCF_NO_COMMS_MANAGER
Communications manager not available.

MQRCCF_PING_DATA_COMPARE_ERROR
Ping Channel command failed.

MQRCCF_PING_DATA_COUNT_ERROR
Data count not valid.

MQRCCF_PING_ERROR
Ping error.

MQRCCF_RECEIVE_FAILED
Receive failed.

MQRCCF_RECEIVED_DATA_ERROR
Received data error.

MQRCCF_REMOTE_QM_TERMINATING
Remote queue manager terminating.

MQRCCF_REMOTE_QM_UNAVAILABLE
Remote queue manager not available.

MQRCCF_SEND_FAILED
Send failed.

424 WebSphere MQ: Programmable Command Formats and Administration Interface



MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

MQRCCF_TERMINATED_BY_SEC_EXIT
Channel terminated by security exit.

MQRCCF_UNKNOWN_REMOTE_CHANNEL
Remote channel not known.

MQRCCF_USER_EXIT_NOT_AVAILABLE
User exit not available.

Ping Queue Manager

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X

The Ping Queue Manager (MQCMD_PING_Q_MGR) command tests whether the
queue manager and its command server is responsive to commands. If the queue
manager is responding a positive reply is returned.

Required parameters:
None

Optional parameters:
None

Recover CF Structure

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Recover CF Structure (MQCMD_RECOVER_CF_STRUC) command initiates
recovery of CF application structures.

Note: This command is valid only on z/OS when the queue manager is a member
of a queue-sharing group.

Required parameters:
CFStrucName

Optional parameters:
CommandScope, Purge

Required parameters (Recover CF Structure)
CFStrucName (MQCFST)

CF application structure name (parameter identifier:
MQCA_CF_STRUC_NAME).

The maximum length of the string is MQ_CF_STRUC_NAME_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 425



Optional parameters (Recover CF Structure)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

The maximum length is MQ_Q_MGR_NAME_LENGTH.

Purge (MQCFIN)
Recover to empty CF structure (parameter identifier: MQIACF_PURGE).

Specifies whether the CF application structure is emptied. The value can be:

MQPO_YES
Recover to empty CF structure. Any messages in the CF structure are
lost.

MQPO_NO
Performs a true recovery of the CF structure. This is the default value.

Refresh Cluster

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Refresh Cluster (MQCMD_REFRESH_CLUSTER) command discards all locally
held cluster information, including any auto-defined channels that are not in
doubt, and forces the repository to be rebuilt.

Required parameters:
ClusterName

Optional parameters:
CommandScope, RefreshRepository

Required parameters (Refresh Cluster)
ClusterName (MQCFST)

Cluster name (parameter identifier: MQCA_CLUSTER_NAME).

The name of the cluster to be refreshed.

The maximum length of the string is MQ_CLUSTER_NAME_LENGTH.

This is the name of the cluster to be refreshed. If an asterisk (*) is specified for
the name, the queue manager is refreshed in all the clusters to which it
belongs.

426 WebSphere MQ: Programmable Command Formats and Administration Interface



If an asterisk (*) is specified with RefreshRepository set to
MQCFO_REFRESH_REPOSITORY_YES, the queue manager restarts its search
for repository queue managers, using information in the local cluster-sender
channel definitions.

Optional parameters (Refresh Cluster)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

The maximum length is MQ_QSG_NAME_LENGTH.

RefreshRepository (MQCFIN)
Whether repository information should be refreshed (parameter identifier:
MQIACF_REFRESH_REPOSITORY).

This indicates whether the information about repository queue managers
should be refreshed.

The value can be:

MQCFO_REFRESH_REPOSITORY_YES
Refresh repository information.

This value cannot be specified if the queue manager is itself a
repository queue manager.

MQCFO_REFRESH_REPOSITORY_YES specifies that in addition to
MQCFO_REFRESH_REPOSITORY_NO behavior, objects representing
full repository cluster queue managers are also refreshed. Do not use
this option if the queue manager is itself a full repository.

If it is a full repository, you must first alter it so that it is not a full
repository for the cluster in question.

The full repository location is recovered from the manually defined
cluster-sender channel definitions. After the refresh with
MQCFO_REFRESH_REPOSITORY_YES has been issued the queue
manager can be altered so that it is once again a full repository.

MQCFO_REFRESH_REPOSITORY
Do not refresh repository information. This is the default.

If you select MQCFO_REFRESH_REPOSITORY_YES, check that all
cluster-sender channels in the relevant cluster are inactive or stopped before
you issue the Refresh Cluster command. If there are cluster-sender channels
running at the time when the Refresh is processed, and they are used
exclusively by the cluster or clusters being refreshed and
MQCFO_REFRESH_REPOSITORY_YES is used, the channels are stopped, by
using the Stop Channel command with a value of MQMODE_FORCE in the
Mode parameter if necessary.

Chapter 3. Definitions of the Programmable Command Formats 427



This ensures that the Refresh can remove the channel state and that the
channel will run with the refreshed version after the Refresh has completed. If
a channel’s state cannot be deleted, for example because it is in doubt, or
because it is also running as part of another cluster, it is state is not new after
the refresh and it does not automatically restart if it was stopped.

Refresh Queue Manager
Use the Refresh Queue Manager (MQCMD_REFRESH_Q_MGR) command to
perform special operations on queue managers.

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

Required parameters:
RefreshType

Optional parameters:
CommandScope, ObjectName, ObjectType, RefreshInterval

Required parameters (Refresh Queue Manager)
RefreshType (MQCFIN)

Type of information to be refreshed (parameter identifier:
MQIACF_REFRESH_TYPE).

Use this to specify the type of information to be refreshed. The value can be:

MQRT_CONFIGURATION
This causes the queue manager to generate configuration event
messages for every object definition that matches the selection criteria
specified by the ObjectType, ObjectName, and RefreshInterval
parameters.

A Refresh Queue Manager command with a RefreshType value of
MQRT_CONFIGURATION is generated automatically when the value
of the queue manager’s ConfigurationEvent parameter changes from
MQEVR_DISABLED to MQEVR_ENABLED.

Use this command with a RefreshType of MQRT_CONFIGURATION to
recover from problems such as errors on the event queue. In such
cases, use appropriate selection criteria, to avoid excessive processign
time and event message generation.

Note: Valid only on z/OS.

MQRT_EXPIRY
This requests that the queue manager performs a scan to discard
expired messages for every queue that matches the selection criteria
specified by the ObjectName parameter.

Note: Valid only on z/OS.

MQRT_PROXYSUB
Requests that the queue manager resynchronizes the proxy
subscriptions that are held with and on behalf of queue managers that
are connected in a hierarchy or a publish/subscribe cluster.

428 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|

|
|
|
|



Optional parameters (Refresh Queue Manager)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

ObjectName (MQCFST)
Name of object to be included in the processing of this command (parameter
identifier: MQCACF_OBJECT_NAME).

Use this to specify the name of the object to be included in the processing of
this command.

Generic names are supported. A generic name is a character string followed by
an asterisk (*), for example ABC*, and it selects all objects having names that
start with the selected character string. An asterisk on its own matches all
possible names.

The maximum length is MQ_OBJECT_NAME_LENGTH.

ObjectType (MQCFIN)
Object type for which configuration data is to be refreshed (parameter
identifier: MQIACF_OBJECT_TYPE).

Use this to specify the object type for which configuration data is to be
refreshed. This parameter is valid only if the value of RefreshType is
MQRT_CONFIGURATION. The default value, in that case, is MQOT_ALL. The
value can be one of:

MQOT_AUTH_INFO
Authentication information object.

MQOT_CF_STRUC
CF structure.

MQOT_CHANNEL
Channel.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_LOCAL_Q
Local queue.

Chapter 3. Definitions of the Programmable Command Formats 429



MQOT_MODEL_Q
Model queue.

MQOT_ALIAS_Q
Alias queue.

MQOT_REMOTE_Q
Remote queue.

MQOT_Q_MGR
Queue manager.

MQOT_CFSTRUC
CF structure.

MQOT_STORAGE_CLASS
Storage class.

RefreshInterval (MQCFIN)
Refresh interval (parameter identifier: MQIACF_REFRESH_INTERVAL).

Use this to specify a value, in minutes, defining a period immediately prior to
the current time. This requests that only objects that have been created or
altered within that period (as defined by their AlterationDate and
AlterationTime attributes) are included.

Specify a value in the range zero through 999 999. A value of zero means there
is no time limit (this is the default).

This parameter is valid only if the value of RefreshType is
MQRT_CONFIGURATION.

Refresh Security

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X

The Refresh Security (MQCMD_REFRESH_SECURITY) command refreshes the list
of authorizations held internally by the authorization service component.

Required parameters:
None

Optional parameters:
CommandScope, SecurityItem, SecurityType

Optional parameters (Refresh Security)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you

430 WebSphere MQ: Programmable Command Formats and Administration Interface



specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

SecurityItem (MQCFIN)
Resource class for which the security refresh is to be performed (parameter
identifier: MQIACF_SECURITY_ITEM). This parameter applies to z/OS only.

Use this to specify the resource class for which the security refresh is to be
performed. The value can be:

MQSECITEM_ALL
A full refresh of the type specified is performed. This is the default
value.

MQSECITEM_MQADMIN
Specifies that administration type resources are to be refreshed. Valid
only if the value of SecurityType is MQSECTYPE_CLASSES..

MQSECITEM_MQNLIST
Specifies that namelist resources are to be refreshed. Valid only if the
value of SecurityType is MQSECTYPE_CLASSES.

MQSECITEM_MQPROC
Specifies that process resources are to be refreshed. Valid only if the
value of SecurityType is MQSECTYPE_CLASSES.

MQSECITEM_MQQUEUE
Specifies that queue resources are to be refreshed. Valid only if the
value of SecurityType is MQSECTYPE_CLASSES.

MQSECITEM_MXADMIN
Specifies that administration type resources are to be refreshed. Valid
only if the value of SecurityType is MQSECTYPE_CLASSES..

MQSECITEM_MXNLIST
Specifies that namelist resources are to be refreshed. Valid only if the
value of SecurityType is MQSECTYPE_CLASSES.

MQSECITEM_MXPROC
Specifies that process resources are to be refreshed. Valid only if the
value of SecurityType is MQSECTYPE_CLASSES.

MQSECITEM_MXQUEUE
Specifies that queue resources are to be refreshed. Valid only if the
value of SecurityType is MQSECTYPE_CLASSES.

MQSECITEM_MXTOPIC
Specifies that topic resources are to be refreshed. Valid only if the value
of SecurityType is MQSECTYPE_CLASSES.

SecurityType (MQCFIN)
Security type (parameter identifier: MQIACF_SECURITY_TYPE).

Use this to specify the type of security refresh to be performed. The value can
be:

MQSECTYPE_AUTHSERV
The list of authorizations held internally by the authorization services
component is refreshed. This is not valid on z/OS.

Chapter 3. Definitions of the Programmable Command Formats 431

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|



This is the default on platforms other than z/OS.

MQSECTYPE_CLASSES
Permits you to select specific resource classes for which to perform the
security refresh.

This is valid only on z/OS where it is the default.

MQSECTYPE_SSL
This refreshes the locations of:
v The LDAP servers to be used for Certified Revocation Lists
v The key repository

as well as any cryptographic hardware parameters specified through
WebSphere MQ. It also refreshes the cached view of the Secure Sockets
Layer key repository and allows updates to become effective on
successful completion of the command.

This updates all SSL channels currently running, as follows:
v Sender, server and cluster-sender channels using SSL are allowed to

complete the current batch. In general, they then run the SSL
handshake again with the refreshed view of the SSL key repository.
However, you must manually restart a requester-server channel on
which the server definition has no CONNAME parameter.

v All other channel types using SSL are stopped with a STOP
CHANNEL MODE(FORCE) STATUS(INACTIVE) command. If the
partner end of the stopped MCA channel has retry values defined,
the channel retries and the new SSL handshake uses the refreshed
view of the contents of the SSL key repository, the location of the
LDAP server to be used for Certification Revocation Lists, and the
location of the key repository. In the case of a server-connection
channel, the client application loses its connection to the queue
manager and has to reconnect in order to continue.

Reset Channel

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Reset Channel (MQCMD_RESET_CHANNEL) command resets the message
sequence number for a WebSphere MQ channel with, optionally, a specified
sequence number to be used the next time that the channel is started.

This command can be issued to a channel of any type (except MQCHT_SVRCONN
and MQCHT_CLNTCONN). However, if it is issued to a sender
(MQCHT_SENDER), server (MQCHT_SERVER), or cluster-sender
(MQCHT_CLUSSDR) channel, the value at both ends (issuing end and receiver or
requester end), is reset when the channel is next initiated or resynchronized. The
value at both ends is reset to be equal.

If the command is issued to a receiver (MQCHT_RECEIVER), requester
(MQCHT_REQUESTER), or cluster-receiver (MQCHT_CLUSRCVR) channel, the
value at the other end is not reset as well; this must be done separately if
necessary.

432 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|
|



Where there is both a locally defined channel and an auto-defined cluster-sender
channel of the same name, the command applies to the locally defined channel.

If there is no locally defined channel but more than one auto-defined
cluster-sender channel, the command applies to the last channel added to the
repository on the local queue manager.

Required parameters:
ChannelName

Optional parameters:
CommandScope, ChannelDisposition, MsgSeqNumber

Required parameters (Reset Channel)
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel to be reset. The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

Optional parameters (Reset Channel)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

The maximum length is MQ_QSG_NAME_LENGTH.

ChannelDisposition (MQCFIN)
Channel disposition (parameter identifier: MQIACH_CHANNEL_DISP). This
parameter applies to z/OS only.

Specifies the disposition of the channels to be reset.

If this parameter is omitted, then the value for the channel disposition is taken
from the default channel disposition attribute of the channel object.

The value can be:

MQCHLD_PRIVATE
A receiving channel is private if it was started in response to an
inbound transmission directed to the queue manager.

A sending channel is private if its transmission queue has a disposition
other than MQQSGD_SHARED.

MQCHLD_SHARED
A receiving channel is shared if it was started in response to an
inbound transmission directed to the queue-sharing group.

Chapter 3. Definitions of the Programmable Command Formats 433

|
|



A sending channel is shared if its transmission queue has a disposition
of MQQSGD_SHARED.

The combination of the ChannelDisposition and CommandScope parameters also
controls from which queue manager the channel is operated. The possible
options are:
v On the local queue manager where the command is issued.
v On another specific named queue manager in the group.

The various combinations of ChannelDisposition and CommandScope are
summarized in Table 10

Table 10. ChannelDisposition and CommandScope for RESET CHANNEL

ChannelDisposition CommandScope blank or local-qmgr CommandScope
qmgr-name

MQCHLD_PRIVATE Reset private channel on the local queue
manager

Reset private channel
on the named queue
manager

MQCHLD_SHARED Reset a shared channel on all active queue
managers.

This might automatically generate a
command using CommandScope and send it
to the appropriate queue manager. If there
is no definition for the channel on the
queue manager to which the command is
sent, or if the definition is unsuitable for the
command, the command fails.

The definition of a channel on the queue
manager where the command is entered
might be used to determine the target
queue manager where the command is
actually run. Therefore, it is important that
channel definitions are consistent.
Inconsistent channel definitions might result
in unexpected command behavior.

Not permitted

MsgSeqNumber (MQCFIN)
Message sequence number (parameter identifier:
MQIACH_MSG_SEQUENCE_NUMBER).

Specifies the new message sequence number.

The value must be in the range 1 through 999 999 999. The default value is
one.

Error codes (Reset Channel)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

434 WebSphere MQ: Programmable Command Formats and Administration Interface



Reset Cluster

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Reset Cluster (MQCMD_RESET_CLUSTER) command forces a queue manager
to leave a cluster.

Required parameters:
ClusterName, QMgrIdentifier or QMgrName, Action

Optional parameters:
CommandScope, RemoveQueues

Required parameters (Reset Cluster)
ClusterName (MQCFST)

Cluster name (parameter identifier: MQCA_CLUSTER_NAME).

The name of the cluster to be reset.

The maximum length of the string is MQ_CLUSTER_NAME_LENGTH.

QMgrIdentifier (MQCFST)
Queue manager identifier (parameter identifier: MQCA_Q_MGR_IDENTIFIER).

This is the unique identifier of the queue manager to be forcibly removed from
the cluster. Only one of QMgrIdentifier and QMgrName can be specified. Use
QMgrIdentifier in preference to QmgrName, because QmgrName might not be
unique.

QMgrName (MQCFST)
Queue manager name (parameter identifier: MQCA_Q_MGR_NAME).

This is the name of the queue manager to be forcibly removed from the cluster.
Only one of QMgrIdentifier and QMgrName can be specified. Use
QMgrIdentifier in preference to QmgrName, because QmgrName might not be
unique.

Action (MQCFIN)
Action (parameter identifier: MQIACF_ACTION).

Specifies the action to take place. This can be requested only by a repository
queue manager.

The value can be:

MQACT_FORCE_REMOVE
Requests that a queue manager is forcibly removed from a cluster.

Optional parameters (Reset Cluster)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.

Chapter 3. Definitions of the Programmable Command Formats 435



v a queue manager name. The command is executed on the queue manager
you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

The maximum length is MQ_QSG_NAME_LENGTH.

RemoveQueues (MQCFIN)
Whether cluster queues should be removed from the cluster (parameter
identifier: MQIACF_REMOVE_QUEUES).

This indicates whether the cluster queues that belong to the queue manager
being removed from the cluster should be removed from the cluster. This
parameter can be specified even if the queue manager identified by the
QMgrName parameter is not currently in the cluster.

The value can be:

MQCFO_REMOVE_QUEUES_YES
Remove queues belonging to the queue manager being removed from
the cluster.

MQCFO_REMOVE_QUEUES_NO
Do not remove queues belonging to the queue manager being
removed. This is the default.

Error codes (Reset Cluster)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_ACTION_VALUE_ERROR
Value not valid.

Reset Queue Manager
Use the Reset Queue Manager (MQCMD_RESET_Q_MGR) command as part of
your backup and recovery procedures on AIX, HP-UX, Linux, Solaris, i5/OS, and
Windows.

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

You can use this command to request that the queue manager starts writing to a
new log extent, making the previous log extent available for archiving.

Use the Reset Queue Manager (MQCMD_RESET_Q_MGR) command to forcibly
remove a publish/subscribe hierarchical connection for which this queue manager
is nominated as either the parent or the child in a hierarchical connection. Valid on
all supported platforms.

Required parameters:
Action

436 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|
|

|
|
|
|



Optional parameters:
None

Required parameters (Reset Queue Manager)
Action (MQCFIN)

Action (parameter identifier: MQIACF_ACTION).

Specifies the action to take place.

The value can be:

MQACT_ADVANCE_LOG
Requests that the queue manager starts writing to a new log extent,
making the previous log extent available for archiving. This command
is accepted only if the queue manager is configured to use linear
logging.

Note: Not valid on Compaq NSK, HP OpenVMS, or z/OS.

MQACT_COLLECT_STATISTICS
Requests that the queue manager ends the current statistics collection
period, and writes the statistics collected.

Note: Not valid on Compaq NSK, HP OpenVMS, or z/OS.

MQACT_PUBSUB
Requests a publish/subscribe reset. This value requires that one of the
optional parameters, ChildName or ParentName, is specified.

Optional parameters (Reset Queue Manager)
ChildName (MQCFST)

The name of the child queue manager for which the hierarchical connection is
to be forcibly cancelled (parameter identifier: MQCA_CHILD).

This attribute is valid only when the Action parameter has the value
MQACT_PUBSUB.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

ParentName (MQCFST)
The name of the parent queue manager for which the hierarchical connection is
to be forcibly cancelled (parameter identifier: MQCA_PARENT).

This attribute is valid only when the Action parameter has the value
MQACT_PUBSUB.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

Error codes (Reset Queue Manager)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRC_RESOURCE_PROBLEM
Insufficient system resources available.

Chapter 3. Definitions of the Programmable Command Formats 437

|

|

|
|
|

|

|
|
|

|
|

|

|
|
|

|
|

|

|



Reset Queue Statistics

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Reset Queue Statistics (MQCMD_RESET_Q_STATS) command reports the
performance data for a queue and then resets the performance data.

Performance data is maintained for each local queue (including transmission
queues). It is reset at the following times:
v When a Reset Queue Statistics command is issued
v When the queue manager is restarted

Required parameters:
QName

Optional parameters:
CommandScope

Required parameters (Reset Queue Statistics)
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

The name of the local queue to be tested and reset.

Generic queue names are supported. A generic name is a character string
followed by an asterisk (*), for example ABC*, and it selects all objects having
names that start with the selected character string. An asterisk on its own
matches all possible names.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Optional parameters (Reset Queue Statistics)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

438 WebSphere MQ: Programmable Command Formats and Administration Interface



Error codes (Reset Queue Statistics)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_Q_WRONG_TYPE
Action not valid for the queue of specified type.

Reset Queue Statistics (Response)

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The response to the Reset Queue Statistics (MQCMD_RESET_Q_STATS) command
consists of the response header followed by the QName structure and the attribute
parameter structures shown below. If a generic queue name was specified, one
such message is generated for each queue found.

Always returned:
HighQDepth, MsgDeqCount, MsgEnqCount, QName, QSGDisposition,
TimeSinceReset

Response data
HighQDepth (MQCFIN)

Maximum number of messages on a queue (parameter identifier:
MQIA_HIGH_Q_DEPTH).

This count is the peak value of the CurrentQDepth local queue attribute since
the last reset. The CurrentQDepth is incremented during an MQPUT call, and
during backout of an MQGET call, and is decremented during a (nonbrowse)
MQGET call, and during backout of an MQPUT call.

MsgDeqCount (MQCFIN)
Number of messages dequeued (parameter identifier:
MQIA_MSG_DEQ_COUNT).

This count includes messages that have been successfully retrieved (with a
nonbrowse MQGET) from the queue, even though the MQGET has not yet
been committed. The count is not decremented if the MQGET is subsequently
backed out.

On z/OS, if the value exceeds 999 999 999, it is returned as 999 999 999

MsgEnqCount (MQCFIN)
Number of messages enqueued (parameter identifier:
MQIA_MSG_ENQ_COUNT).

This count includes messages that have been put to the queue, but have not
yet been committed. The count is not decremented if the put is subsequently
backed out.

On z/OS, if the value exceeds 999 999 999, it is returned as 999 999 999

Chapter 3. Definitions of the Programmable Command Formats 439



QName (MQCFST)
Queue name (parameter identifier: MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

QSGDisposition (MQCFIN)
QSG disposition (parameter identifier: MQIA_QSG_DISP).

Specifies the disposition of the object (that is, where it is defined and how it
behaves). This parameter is valid on z/OS only. The value can be:

MQQSGD_COPY
The object is defined as MQQSGD_COPY.

MQQSGD_SHARED
The object is defined as MQQSGD_SHARED.

MQQSGD_Q_MGR
The object is defined as MQQSGD_Q_MGR.

TimeSinceReset (MQCFIN)
Time since statistics reset in seconds (parameter identifier:
MQIA_TIME_SINCE_RESET).

Resolve Channel

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Resolve Channel (MQCMD_RESOLVE_CHANNEL) command requests a
channel to commit or back out in-doubt messages.

This command is used when the other end of a link fails during the confirmation
stage, and for some reason it is not possible to reestablish the connection. In this
situation the sending end remains in an in-doubt state, as to whether or not the
messages were received. Any outstanding units of work must be resolved using
Resolve Channel with either backout or commit.

Care must be exercised in the use of this command. If the resolution specified is
not the same as the resolution at the receiving end, messages can be lost or
duplicated.

This command can only be used for channels with a ChannelType value of
MQCHT_SENDER, MQCHT_SERVER, or MQCHT_CLUSSDR.

Where there is both a locally defined channel and an auto-defined cluster-sender
channel of the same name, the command applies to the locally defined channel.

If there is no locally defined channel but more than one auto-defined
cluster-sender channel, the command applies to the last channel added to the
repository on the local queue manager.

Required parameters:
ChannelName, InDoubt

Optional parameters:
CommandScope, ChannelDisposition

440 WebSphere MQ: Programmable Command Formats and Administration Interface



Required parameters (Resolve Channel)
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel to be resolved. The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

InDoubt (MQCFIN)
Indoubt resolution (parameter identifier: MQIACH_IN_DOUBT).

Specifies whether to commit or back out the in-doubt messages.

The value can be:

MQIDO_COMMIT
Commit.

MQIDO_BACKOUT
Backout.

Optional parameters (Resolve Channel)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

The maximum length is MQ_QSG_NAME_LENGTH.

ChannelDisposition (MQCFIN)
Channel disposition (parameter identifier: MQIACH_CHANNEL_DISP). This
parameter applies to z/OS only.

Specifies the disposition of the channels to be resolved.

If this parameter is omitted, then the value for the channel disposition is taken
from the default channel disposition attribute of the channel object.

The value can be:

MQCHLD_PRIVATE
A receiving channel is private if it was started in response to an
inbound transmission directed to the queue manager.

A sending channel is private if its transmission queue has a disposition
other than MQQSGD_SHARED.

MQCHLD_SHARED
A receiving channel is shared if it was started in response to an
inbound transmission directed to the queue-sharing group.

A sending channel is shared if its transmission queue has a disposition
of MQQSGD_SHARED.

Chapter 3. Definitions of the Programmable Command Formats 441

|
|



The combination of the ChannelDisposition and CommandScope parameters also
controls from which queue manager the channel is operated. The possible
options are:
v On the local queue manager where the command is issued.
v On another specific named queue manager in the group.

The various combinations of ChannelDisposition and CommandScope are
summarized in Table 11

Table 11. ChannelDisposition and CommandScope for RESOLVE CHANNEL

ChannelDisposition CommandScope blank or local-qmgr CommandScope
qmgr-name

MQCHLD_PRIVATE Resolve private channel on the local queue
manager

Resolve private
channel on the named
queue manager

MQCHLD_SHARED Resolve a shared channel on all active
queue managers.

This might automatically generate a
command using CommandScope and send it
to the appropriate queue manager. If there
is no definition for the channel on the
queue manager to which the command is
sent, or if the definition is unsuitable for the
command, the command fails.

The definition of a channel on the queue
manager where the command is entered
might be used to determine the target
queue manager where the command is
actually run. Therefore, it is important that
channel definitions are consistent.
Inconsistent channel definitions might result
in unexpected command behavior.

Not permitted

Error codes (Resolve Channel)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_INDOUBT_VALUE_ERROR
In-doubt value not valid.

Resume Queue Manager

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

442 WebSphere MQ: Programmable Command Formats and Administration Interface



The Resume Queue Manager (MQCMD_RESUME_Q_MGR) command renders the
queue manager available again for the processing of IMS or DB2 messages.

It reverses the action of the Suspend Queue Manager
(MQCMD_SUSPEND_Q_MGR) command.

Required parameters:
Facility

Optional parameters:
None

Required parameters (Resume Queue Manager)
Facility (MQCFIN)

Facility (parameter identifier: MQIACF_FACILITY).

The type of facility for which activity is to be resumed. The value can be:

MQQMFAC_DB2
Resumes normal activity with DB2.

MQQMFAC_IMS_BRIDGE
Resumes normal IMS Bridge activity.

Optional parameters (Resume Queue Manager)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

The maximum length is MQ_QSG_NAME_LENGTH.

Resume Queue Manager Cluster

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Resume Queue Manager Cluster (MQCMD_RESUME_Q_MGR_CLUSTER)
command informs other queue managers in a cluster that the local queue manager
is again available for processing, and can be sent messages.

It reverses the action of the Suspend Queue Manager Cluster
(MQCMD_SUSPEND_Q_MGR_CLUSTER) command.

Required parameters:
ClusterName, or ClusterNamelist

Chapter 3. Definitions of the Programmable Command Formats 443



Optional parameters:
CommandScope

Required parameters (Resume Queue Manager Cluster)
ClusterName (MQCFST)

Cluster name (parameter identifier: MQCA_CLUSTER_NAME).

The name of the cluster for which availability is to be resumed.

The maximum length of the string is MQ_CLUSTER_NAME_LENGTH.

ClusterNamelist (MQCFST)
Cluster Namelist (parameter identifier: MQCA_CLUSTER_NAMELIST).

The name of the namelist specifying a list of clusters for which availability is
to be resumed.

Optional parameters (Resume Queue Manager Cluster)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

The maximum length is MQ_QSG_NAME_LENGTH.

Error codes (Resume Queue Manager Cluster)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_CLUSTER_NAME_CONFLICT
Cluster name conflict.

Reverify Security

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Reverify Security (MQCMD_REVERIFY_SECURITY) to set a reverification flag
for all specified users. The user is reverified the next time that security is checked
for that user.

444 WebSphere MQ: Programmable Command Formats and Administration Interface



Required parameters:
UserId

Optional parameters:
CommandScope

Required parameters (Reverify Security)
UserId (MQCFST)

User ID (parameter identifier: MQCACF_USER_IDENTIFIER).

Use this to specify one or more user IDs. Each user ID specified is signed off
and signed back on again the next time that a request requiring a security
check is issued on behalf of that user.

The maximum length of the string is MQ_USER_ID_LENGTH.

Optional parameters (Reverify Security)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

Set Archive

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

Use the Set Archive (MQCMD_SET_ARCHIVE) to dynamically change certain
archive system parameter values initially set by your system parameter module at
queue manager startup.

Required parameters:
ParameterType

Optional parameters if ParameterType type is MQSYSP_SET:
AllocPrimary, AllocSecondary, AllocUnits, ArchivePrefix1,
ArchivePrefix2, ArchiveRetention, ArchiveUnit1, ArchiveUnit2,
ArchiveWTOR, BlockSize, Catalog, CommandScope, Compact, Protect,
QuiesceInterval, RoutingCode, TimeStampFormat

Optional parameters if ParameterType type is MQSYSP_INITIAL:
CommandScope

Chapter 3. Definitions of the Programmable Command Formats 445



Required parameters (Set Archive)
ParameterType (MQCFIN)

Parameter type (parameter identifier: MQIACF_SYSP_TYPE).

Specifies how the parameters are to be reset:

MQSYSP_TYPE_INITIAL
The initial settings of the archive system parameters. This resets all the
archive system parameters to the values set at queue manager startup.

MQSYSP_TYPE_SET
This indicates that you intend to change one, or more, of the archive
system parameter settings.

Optional parameters (Set Archive)
AllocPrimary (MQCFIN)

Primary space allocation for DASD data sets (parameter identifier:
MQIACF_SYSP_ALLOC_PRIMARY).

Specifies the primary space allocation for DASD data sets in the units specified
in the AllocUnits parameter.

Specify a value greater than zero. This value must be sufficient for a copy of
either the log data set or its corresponding BSDS, whichever is the larger.

AllocSecondary (MQCFIN)
Secondary space allocation for DASD data sets (parameter identifier:
MQIACF_SYSP_ALLOC_SECONDARY).

Specifies the secondary space allocation for DASD data sets in the units
specified in the AllocUnits parameter.

Specify a value greater than zero.

AllocUnits (MQCFIN)
Allocation unit (parameter identifier: MQIACF_SYSP_ALLOC_UNIT).

Specifies the unit in which primary and secondary space allocations are made.
The value can be:

MQSYSP_ALLOC_BLK
Blocks.

MQSYSP_ALLOC_TRK
Tracks.

MQSYSP_ALLOC_CYL
Cylinders.

ArchivePrefix1 (MQCFST)
Specifies the prefix for the first archive log data set name (parameter identifier:
MQCACF_SYSP_ARCHIVE_PFX1).

The maximum length of the string is MQ_ARCHIVE_PFX_LENGTH.

ArchivePrefix2 (MQCFST)
Specifies the prefix for the second archive log data set name (parameter
identifier: MQCACF_SYSP_ARCHIVE_PFX2).

The maximum length of the string is MQ_ARCHIVE_PFX_LENGTH.

446 WebSphere MQ: Programmable Command Formats and Administration Interface



ArchiveRetention (MQCFIN)
Archive retention period (parameter identifier:
MQIACF_SYSP_ARCHIVE_RETAIN).

Specifies the retention period, in days, to be used when the archive log data set
is created. Specify a value in the range zero through 9999.

See the WebSphere MQ for z/OS System Administration Guide for information
about discarding archive log data sets.

ArchiveUnit1 (MQCFST)
Specifies the device type or unit name of the device that is used to store the
first copy of the archive log data set (parameter identifier:
MQCACF_SYSP_ARCHIVE_UNIT1).

Specify a device type or unit name of 1 through 8 characters.

If you archive to DASD, you can specify a generic device type with a limited
volume range.

The maximum length of the string is MQ_ARCHIVE_UNIT_LENGTH.

ArchiveUnit2 (MQCFST)
Specifies the device type or unit name of the device that is used to store the
second copy of the archive log data set (parameter identifier:
MQCACF_SYSP_ARCHIVE_UNIT2).

Specify a device type or unit name of 1 through 8 characters.

If this parameter is blank, the value set for the ArchiveUnit1 parameter is used.

The maximum length of the string is MQ_ARCHIVE_UNIT_LENGTH.

ArchiveWTOR (MQCFIN)
Specifies whether a message is to be sent to the operator and a reply is
received before attempting to mount an archive log data set (parameter
identifier: MQIACF_SYSP_ARCHIVE_WTOR).

Other WebSphere MQ users might be forced to wait until the data set is
mounted, but they are not affected while WebSphere MQ is waiting for the
reply to the message.

The value can be:

MQSYSP_YES
A message is to be sent and a reply received before an attempt to
mount an archive log data set.

MQSYSP_NO
A message is not to be sent and a reply received before an attempt to
mount an archive log data set.

BlockSize (MQCFIN)
Block size of the archive log data set (parameter identifier:
MQIACF_SYSP_BLOCK_SIZE).

The block size you specify must be compatible with the device type you
specify in the ArchiveUnit1 and ArchiveUnit2 parameters.

Specify a value in the range 4 097 through 28 672. The value you specify is
rounded up to a multiple of 4 096.

This parameter is ignored for data sets that are managed by the storage
management system (SMS).

Chapter 3. Definitions of the Programmable Command Formats 447



Catalog (MQCFIN)
Specifies whether archive log data sets are cataloged in the primary integrated
catalog facility (parameter identifier: MQIACF_SYSP_CATALOG).

The value can be:

MQSYSP_YES
Archive log data sets are cataloged.

MQSYSP_NO
Archive log data sets are not cataloged.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

Compact (MQCFIN)
Specifies whether data written to archive logs is to be compacted (parameter
identifier: MQIACF_SYSP_COMPACT).

This parameter applies to a 3480 or 3490 device that has the improved data
recording capability (IDRC) feature. When this feature is turned on, hardware
in the tape control unit writes data at a much higher density than normal,
allowing for more data on each volume. Specify MQSYSP_NO if you do not
use a 3480 device with the IDRC feature or a 3490 base model, with the
exception of the 3490E. Specify MQSYSP_YES if you want the data to be
compacted.

The value can be:

MQSYSP_YES
Data is to be compacted.

MQSYSP_NO
Data is not to be compacted.

Protect (MQCFIN)
Protection by external security manager (ESM) (parameter identifier:
MQIACF_SYSP_PROTECT).

Specifies whether archive log data sets are protected by ESM profiles when the
data sets are created.

If you specify MQSYSP_YES, ensure that:
v ESM protection is active for WebSphere MQ.
v The user ID associated with the WebSphere MQ address space has authority

to create these profiles.
v The TAPEVOL class is active if you are archiving to tape.

448 WebSphere MQ: Programmable Command Formats and Administration Interface



otherwise, off-loads will fail.

The value can be:

MQSYSP_YES
Data set profiles are created when logs are off-loaded.

MQSYSP_NO
Profiles are not created.

QuiesceInterval (MQCFIN)
Maximum time allowed for the quiesce (parameter identifier:
MQIACF_SYSP_QUIESCE_INTERVAL).

Specifies the maximum time, in seconds, allowed for the quiesce.

Specify a value in the range 1 through 999.

RoutingCode (MQCFIL)
z/OS routing code list (parameter identifier:
MQIACF_SYSP_ROUTING_CODE).

Specifies the list of z/OS routing codes for messages about the archive log data
sets to the operator.

Specify up to 14 routing codes, each with a value in the range zero through 16.
You must specify at least one code.

TimeStampFormat (MQCFIN)
Time stamp included (parameter identifier: MQIACF_SYSP_TIMESTAMP).

Specifies whether the archive log data set name has a time stamp in it.

The value can be:

MQSYSP_YES
Names include a time stamp. The archive log data sets are named:
arcpfxi.cyyddd.Thhmmsst.Annnnnnn

where c is ’D’ for the years up to and including 1999 or ’E’ for the year
2000 and later, and arcpfxi is the data set name prefix specified by
ArchivePrefix1 or ArchivePrefix2. arcpfxi can have up to 19
characters.

MQSYSP_NO
Names do not include a time stamp. The archive log data sets are
named:
arcpfxi.Annnnnnn

Where arcpfxi is the data set name prefix specified by ArchivePrefix1
or ArchivePrefix2. arcpfxi can have up to 35 characters.

MQSYSP_EXTENDED
Names include a time stamp. The archive log data sets are named:
arcpfxi.Dyyyyddd.Thhmmsst.Annnnnnn

Where arcpfxi is the data set name prefix specified by ArchivePrefix1
or ArchivePrefix2. arcpfxi can have up to 17 characters.

Chapter 3. Definitions of the Programmable Command Formats 449



Set Authority Record
The Set Authority Record (MQCMD_SET_AUTH_REC) command sets the
authorizations of a profile, object or class of objects. Authorizations can be granted
to, or revoked from, any number of principals or groups.

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

Required parameters:
ProfileName, ObjectType

Optional parameters:
AuthorityAdd, AuthorityRemove, GroupNames, PrincipalNames,
ServiceComponent

Required parameters (Set Authority Record)
ObjectType (MQCFIN)

The type of object for which to set authorizations (parameter identifier:
MQIACF_OBJECT_TYPE).

The value can be:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel object.

MQOT_CLNTCONN_CHANNEL
Client-connection channel object.

MQOT_LISTENER
Listener object.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process.

MQOT_Q
Queue, or queues, that match the object name parameter.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service object.

MQOT_TOPIC
Topic object.

ProfileName (MQCFST)
Profile name (parameter identifier: MQCACF_AUTH_PROFILE_NAME).

The authorizations apply to all WebSphere MQ objects with names that match
the profile name specified. You may define a generic profile. If you specify an
explicit profile name, the object must exist.

The maximum length of the string is MQ_AUTH_PROFILE_NAME_LENGTH.

450 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|



Optional parameters (Set Authority Record)
AuthorityAdd (MQCFIL)

Authority values to set (parameter identifier: MQIACF_AUTH_ADD_AUTHS).

This is a list of authority values to set for the named profile. The values can be:

MQAUTH_ALT_USER_AUTHORITY
Specify an alternate user ID on an MQI call.

MQAUTH_BROWSE
Retrieve a message from a queue by issuing an MQGET call with the
BROWSE option.

MQAUTH_CHANGE
Change the attributes of the specified object, using the appropriate
command set.

MQAUTH_CLEAR
Clear a queue.

MQAUTH_CONNECT
Connect the application to the specified queue manager by issuing an
MQCONN call.

MQAUTH_CREATE
Create objects of the specified type using the appropriate command set.

MQAUTH_DELETE
Delete the specified object using the appropriate command set.

MQAUTH_DISPLAY
Display the attributes of the specified object using the appropriate
command set.

MQAUTH_INPUT
Retrieve a message from a queue by issuing an MQGET call.

MQAUTH_INQUIRE
Make an inquiry on a specific queue by issuing an MQINQ call.

MQAUTH_NONE
Entity has an explicit access of zero to the selected profile.

MQAUTH_OUTPUT
Put a message on a specific queue by issuing an MQPUT call.

MQAUTH_PASS_ALL_CONTEXT
Pass all context.

MQAUTH_PASS_IDENTITY_CONTEXT
Pass the identity context.

MQAUTH_SET
Set attributes on a queue from the MQI by issuing an MQSET call.

MQAUTH_SET_ALL_CONTEXT
Set all context on a queue.

MQAUTH_SET_IDENTITY_CONTEXT
Set the identity context on a queue.

MQAUTH_SUBSCRIBE
Subscribe to the specified topic.

Chapter 3. Definitions of the Programmable Command Formats 451

|
|



MQAUTH_RESUME
Resume a subscription to the specified topic.

MQAUTH_PUBLISH
Publish to the specified topic.

The contents of the AuthorityAdd and AuthorityRemove lists should be
mutually exclusive. You must specify a value for either AuthorityAdd or
AuthorityRemove. An error occurs if you do not specify either.

AuthorityRemove (MQCFIL)
Authority values to remove (parameter identifier:
MQIACF_AUTH_REMOVE_AUTHS).

This is a list of authority values to remove from the named profile. The values
can be:

MQAUTH_ALT_USER_AUTHORITY
Specify an alternate user ID on an MQI call.

MQAUTH_BROWSE
Retrieve a message from a queue by issuing an MQGET call with the
BROWSE option.

MQAUTH_CHANGE
Change the attributes of the specified object, using the appropriate
command set.

MQAUTH_CLEAR
Clear a queue.

MQAUTH_CONNECT
Connect the application to the specified queue manager by issuing an
MQCONN call.

MQAUTH_CREATE
Create objects of the specified type using the appropriate command set.

MQAUTH_DELETE
Delete the specified object using the appropriate command set.

MQAUTH_DISPLAY
Display the attributes of the specified object using the appropriate
command set.

MQAUTH_INPUT
Retrieve a message from a queue by issuing an MQGET call.

MQAUTH_INQUIRE
Make an inquiry on a specific queue by issuing an MQINQ call.

MQAUTH_NONE
Entity has an explicit access of zero to the selected profile.

MQAUTH_OUTPUT
Put a message on a specific queue by issuing an MQPUT call.

MQAUTH_PASS_ALL_CONTEXT
Pass all context.

MQAUTH_PASS_IDENTITY_CONTEXT
Pass the identity context.

MQAUTH_SET
Set attributes on a queue from the MQI by issuing an MQSET call.

452 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|

|
|



MQAUTH_SET_ALL_CONTEXT
Set all context on a queue.

MQAUTH_SET_IDENTITY_CONTEXT
Set the identity context on a queue.

MQAUTH_SUBSCRIBE
Subscribe to the specified topic.

MQAUTH_RESUME
Resume a subscription to the specified topic.

MQAUTH_PUBLISH
Publish to the specified topic.

The contents of the AuthorityAdd and AuthorityRemove lists should be
mutually exclusive. You must specify a value for either AuthorityAdd or
AuthorityRemove. An error occurs if you do not specify either.

GroupNames (MQCFSL)
Group names (parameter identifier: MQCACF_GROUP_ENTITY_NAMES).

The names of groups having their authorizations set. At least one group name
or principal name must be specified. An error occurs if neither are specified.

Each member in this list can be a maximum length of
MQ_ENTITY_NAME_LENGTH.

PrincipalNames (MQCFSL)
Principal names (parameter identifier:
MQCACF_PRINCIPAL_ENTITY_NAMES).

The names of principals having their authorizations set. At least one group
name or principal name must be specified. An error occurs if neither are
specified.

Each member in this list can be a maximum length of
MQ_ENTITY_NAME_LENGTH.

ServiceComponent (MQCFST)
Service component (parameter identifier: MQCACF_SERVICE_COMPONENT).

If installable authorization services are supported, this specifies the name of
the authorization service to which the authorizations apply.

If you omit this parameter, the authorization inquiry is made to the first
installable component for the service.

The maximum length of the string is MQ_SERVICE_COMPONENT_LENGTH.

Error codes (Set Authority Record)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRC_UNKNOWN_ENTITY
Userid not authorized, or unknown.

MQRCCF_AUTH_VALUE_ERROR
Invalid authorization.

Chapter 3. Definitions of the Programmable Command Formats 453

|
|

|
|

|
|



MQRCCF_AUTH_VALUE_MISSING
Authorization missing.

MQRCCF_ENTITY_NAME_MISSING
Entity name missing.

MQRCCF_OBJECT_TYPE_MISSING
Object type missing.

MQRCCF_PROFILE_NAME_ERROR
Invalid profile name.

Set Log

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

Use the Set Log (MQCMD_SET_LOG) command to dynamically change certain log
system parameter values initially set by your system parameter module at queue
manager startup.

Required parameters:
ParameterType

Optional parameters (if the value of ParameterType is MQSYSP_TYPE_SET:
CommandScope, DeallocateInterval, MaxArchiveLog, MaxReadTapeUnits,
OutputBufferCount

Optional parameters if ParameterType type is MQSYSP_INITIAL:
CommandScope

Required parameters (Set Log)
ParameterType (MQCFIN)

Parameter type (parameter identifier: MQIACF_SYSP_TYPE).

Specifies how the parameters are to be set:

MQSYSP_TYPE_INITIAL
The initial settings of the log system parameters. This resets all the log
system parameters to the values at queue manager startup.

MQSYSP_TYPE_SET
This indicates that you intend to change one, or more, of the archive
log system parameter settings.

Optional parameters (Set Log)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you

454 WebSphere MQ: Programmable Command Formats and Administration Interface



specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

DeallocateInterval (MQCFIN)
Deallocation interval (parameter identifier:
MQIACF_SYSP_DEALLOC_INTERVAL).

Specifies the length of time, in minutes, that an allocated archive read tape unit
is allowed to remain unused before it is deallocated. This parameter, together
with the MaxReadTapeUnits parameter, allows WebSphere MQ to optimize
archive log reading from tape devices. You are recommended to specify the
maximum possible values, within system constraints, for both parameters, in
order to achieve the optimum performance for reading archive tapes.

Specify a value in the range zero and 1440. Zero means that a tape unit is
deallocated immediately. If you specify a value of 1440, the tape unit is never
deallocated.

MaxArchiveLog (MQCFIN)
Specifies the maximum number of archive log volumes that can be recorded in
the BSDS (parameter identifier: MQIACF_SYSP_MAX_ARCHIVE).

When this value is exceeded, recording recommences at the start of the BSDS.

Specify a value in the range 10 through 100.

MaxReadTapeUnits (MQCFIN)
Specifies the maximum number of dedicated tape units that can be allocated to
read archive log tape volumes (parameter identifier:
MQIACF_SYSP_MAX_READ_TAPES).

This parameter, together with the DeallocateInterval parameter, allows
WebSphere MQ to optimize archive log reading from tape devices.

Specify a value in the range 1 through 99.

If you specify a value that is greater than the current specification, the
maximum number of tape units allowable for reading archive logs increases. If
you specify a value that is less than the current specification, tape units that
are not being used are immediately deallocated to adjust to the new value.
Active, or premounted, tapes remain allocated.

OutputBufferCount (MQCFIN)
Specifies the number of 4 KB output buffers to be filled before they are written
to the active log data sets (parameter identifier:
MQIACF_SYSP_OUT_BUFFER_COUNT).

Specify the number of buffers in the range 1 through 256.

The larger the number of buffers, the less often the write takes place, and this
improves the performance of WebSphere MQ. The buffers might be written
before this number is reached if significant events, such as a commit point,
occur.

Chapter 3. Definitions of the Programmable Command Formats 455



Set System

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

Use the Set System (MQCMD_SET_SYSTEM) command to dynamically change
certain general system parameter values initially set from your system parameter
module at queue manager startup.

Required parameters:
ParameterType

Optional parameters (if the value of ParameterType is MQSYSP_TYPE_SET:
CheckpointCount, CommandScope, MaxConnects, MaxConnectsBackground,
MaxConnectsForeground, Service, SMFInterval, TraceSize

Optional parameters if ParameterType type is MQSYSP_INITIAL:
CommandScope

Required parameters (Set System)
ParameterType (MQCFIN)

Parameter type (parameter identifier: MQIACF_SYSP_TYPE).

Specifies how the parameters are to be set:

MQSYSP_TYPE_INITIAL
The initial settings of the system parameters. This resets the parameters
to the values specified in the system parameters at queue manager
startup.

MQSYSP_TYPE_SET
This indicates that you intend to change one, or more, of the log
parameter settings.

Optional parameters (Set System)
CheckpointCount (MQCFIN)

The number of log records written by WebSphere MQ between the start of one
checkpoint and the next (parameter identifier:
MQIACF_SYSP_CHKPOINT_COUNT).

WebSphere MQ starts a new checkpoint after the number of records that you
specify has been written.

Specify a value in the range 200 through 16 000 000.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you

456 WebSphere MQ: Programmable Command Formats and Administration Interface



specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

MaxConnects (MQCFIN)
The maximum number of connections from batch, CICS, IMS, and TSO tasks to
a single instance of WebSphere MQ (parameter identifier:
MQIACF_SYSP_MAX_CONNS).

Specify a value in the range 1 through 32 767.

MaxConnectsBackground (MQCFIN)
The maximum number of connections from batch or TSO background tasks to
a single instance of WebSphere MQ (parameter identifier:
MQIACF_SYSP_MAX_CONNS_BACK).

Specify a value in the range zero through 32 767.

MaxConnectsForeground (MQCFIN)
The maximum number of connections from TSO foreground tasks to a single
instance of WebSphere MQ (parameter identifier:
MQIACF_SYSP_MAX_CONNS_FORE).

Specify a value in the range zero through 32 767.

Service (MQCFST)
Service parameter setting (parameter identifier: MQIACF_SYSP_SERVICE).

This parameter is reserved for use by IBM.

SMFInterval (MQCFIN)
The default time, in minutes, between each gathering of statistics (parameter
identifier: MQIACF_SYSP_SMF_INTERVAL).

Specify a value in the range zero through 1440.

If you specify a value of zero, statistics data and accounting data are both
collected at the SMF data collection broadcast.

TraceSize (MQCFIN)
The size of the trace table, in 4 KB blocks, to be used by the global trace
facility (parameter identifier: MQIACF_SYSP_TRACE_SIZE).

Specify a value in the range zero through 999.

Start Channel

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Start Channel (MQCMD_START_CHANNEL) command starts a WebSphere
MQ channel.

This command can be issued to a channel of any type (except
MQCHT_CLNTCONN). If, however, it is issued to a channel with a ChannelType

Chapter 3. Definitions of the Programmable Command Formats 457



value of MQCHT_RECEIVER, MQCHT_SVRCONN, or MQCHT_CLUSRCVR, the
only action is to enable the channel, not start it.

Where there is both a locally defined channel and an auto-defined cluster-sender
channel of the same name, the command applies to the locally defined channel.

If there is no locally defined channel but more than one auto-defined
cluster-sender channel, the command applies to the last channel added to the
repository on the local queue manager.

Required parameters:
ChannelName

Optional parameters:
CommandScope, ChannelDisposition

Required parameters (Start Channel)
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel to be started. The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

Optional parameters (Start Channel)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

ChannelDisposition (MQCFIN)
Channel disposition (parameter identifier: MQIACH_CHANNEL_DISP). This
parameter applies to z/OS only.

Specifies the disposition of the channels to be started.

If this parameter is omitted, then the value for the channel disposition is taken
from the default channel disposition attribute of the channel object.

The value can be:

MQCHLD_PRIVATE
A receiving channel is private if it was started in response to an
inbound transmission directed to the queue manager.

A sending channel is private if its transmission queue has a disposition
other than MQQSGD_SHARED.

458 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|



MQCHLD_SHARED
A receiving channel is shared if it was started in response to an
inbound transmission directed to the queue-sharing group.

A sending channel is shared if its transmission queue has a disposition
of MQQSGD_SHARED.

MQCHLD_FIXSHARED
Shared channels tied to a specific queue manager.

The combination of the ChannelDisposition and CommandScope parameters also
controls from which queue manager the channel is operated. The possible
options are:
v On the local queue manager where the command is issued.
v On another specific named queue manager in the group.
v On every active queue manager in the group.
v On the most suitable queue manager in the group, determined automatically

by the queue manager itself.

The various combinations of ChannelDisposition and CommandScope are
summarized in Table 12

Table 12. ChannelDisposition and CommandScope for START CHANNEL

ChannelDisposition CommandScope blank or local-qmgr CommandScope
qmgr-name

CommandScope(*)

MQCHLD_PRIVATE Start as a private channel on the
local queue manager

Start as a private
channel on the named
queue manager

Start as a private
channel on all active
queue managers

Chapter 3. Definitions of the Programmable Command Formats 459



Table 12. ChannelDisposition and CommandScope for START CHANNEL (continued)

ChannelDisposition CommandScope blank or local-qmgr CommandScope
qmgr-name

CommandScope(*)

MQCHLD_SHARED For channels of ChannelType
MQCHT_SENDER,
MQCHT_REQUESTER, and
MQCHT_SERVER, start as a shared
channel on the most suitable queue
manager in the group.

For a shared channel of ChannelType
MQCHT_RECEIVER and
MQCHT_SVRCONN, start the
channel on all active queue
managers.

For a shared channel of ChannelType
MQCHT_CLUSSDR and
MQCHT_CLUSRCVR, this option is
not permitted.

This might automatically generate a
command using CommandScope and
send it to the appropriate queue
manager. If there is no definition for
the channel on the queue manager to
which the command is sent, or if the
definition is unsuitable for the
command, the command fails.

The definition of a channel on the
queue manager where the command
is entered might be used to
determine the target queue manager
where the command is actually run.
Therefore, it is important that
channel definitions are consistent.
Inconsistent channel definitions
might result in unexpected command
behavior.

Not permitted Not permitted

MQCHLD_FIXSHARED For a shared channel of ChannelType
MQCHT_SENDER,
MQCHT_REQUESTER, and
MQCHT_SERVER, with a nonblank
ConnectionName, start as a shared
channel on the local queue manager.

For a shared channel of
ChannelType
MQCHT_SENDER,
MQCHT_REQUESTER,
and MQCHT_SERVER,
with a nonblank
ConnectionName, start as
a shared channel on the
named queue manager.

Not permitted

Error codes (Start Channel)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

460 WebSphere MQ: Programmable Command Formats and Administration Interface



MQRCCF_CHANNEL_INDOUBT
Channel in-doubt.

MQRCCF_CHANNEL_IN_USE
Channel in use.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_MQCONN_FAILED
MQCONN call failed.

MQRCCF_MQINQ_FAILED
MQINQ call failed.

MQRCCF_MQOPEN_FAILED
MQOPEN call failed.

MQRCCF_NOT_XMIT_Q
Queue is not a transmission queue.

Start Channel Initiator

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X

The Start Channel Initiator (MQCMD_START_CHANNEL_INIT) command starts a
WebSphere MQ channel initiator.

Required parameters:
None on z/OS, InitiationQName on other platforms.

Optional parameters:
CommandScope, EnvironmentInfo

Required parameters (Start Channel Initiator)
InitiationQName (MQCFST)

Initiation queue name (parameter identifier: MQCA_INITIATION_Q_NAME).

The name of the initiation queue for the channel initiation process. That is, the
initiation queue that is specified in the definition of the transmission queue.

This parameter is not valid on z/OS.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Optional parameters (Start Channel Initiator)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.

Chapter 3. Definitions of the Programmable Command Formats 461



v a queue manager name. The command is executed on the queue manager
you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

The maximum length is MQ_QSG_NAME_LENGTH.

EnvironmentInfo (MQCFST)
Environment information (parameter identifier: MQCACF_ENV_INFO).

The parameters and values to be substituted in the JCL procedure (xxxxCHIN,
where xxxx is the queue manager name) that is used to start the channel
initiator address space. This parameter applies to z/OS only.

The maximum length of the string is MQ_ENV_INFO_LENGTH.

Error codes (Start Channel Initiator)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_MQCONN_FAILED
MQCONN call failed.

MQRCCF_MQGET_FAILED
MQGET call failed.

MQRCCF_MQOPEN_FAILED
MQOPEN call failed.

Start Channel Listener

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

The Start Channel Listener (MQCMD_START_CHANNEL_LISTENER) command
starts a WebSphere MQ listener.

On z/OS, this command is valid for any transmission protocol; on other platforms,
it is valid only for TCP transmission protocols.

Required parameters:
None

Optional parameters:
CommandScope, InboundDisposition, IPAddress, ListenerName, LUName, Port,
TransportType

Optional parameters (Start Channel Listener)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

462 WebSphere MQ: Programmable Command Formats and Administration Interface



Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

The maximum length is MQ_Q_MGR_NAME_LENGTH.

InboundDisposition (MQCFIN)
Inbound transmission disposition (parameter identifier:
MQIACH_INBOUND_DISP). This parameter applies to z/OS only.

Specifies the disposition of the inbound transmissions that are to be handled.
The value can be:

MQINBD_Q_MGR
Listen for transmissions directed to the queue manager. This is the
default.

MQINBD_GROUP
Listen for transmissions directed to the queue-sharing group. This is
permitted only if there is a shared queue manager environment.

IPAddress (MQCFST)
IP address (parameter identifier: MQCACH_IP_ADDRESS). This parameter
applies to z/OS only.

The IP address for TCP/IP specified in IPv4 dotted decimal, IPv6 hexadecimal,
or alphanumeric form. This parameter is valid only for channels that have a
TransportType of MQXPT_TCP.

The maximum length of the string is MQ_IP_ADDRESS_LENGTH.

ListenerName (MQCFST)
Listener name (parameter identifier: MQCACH_LISTENER_NAME). This
parameter does not apply to z/OS.

The name of the listener definition to be started. On those platforms on which
this parameter is valid, if this parameter is not specified, the default listener
SYSTEM.DEFAULT.LISTENER is assumed. If this parameter is specified, no
other parameters may be specified.

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

LUName (MQCFST)
LU name (parameter identifier: MQCACH_LU_NAME). This parameter applies
to z/OS only.

The symbolic destination name for the logical unit (LU) as specified in the
APPC side information data set. The LU must be the same LU that is specified
in the channel initiator parameters to be used for outbound transmissions. This
parameter is valid only for channels with a TransportType of MQXPT_LU62.

The maximum length of the string is MQ_LU_NAME_LENGTH.

Port (MQCFIN)
Port number for TCP (parameter identifier: MQIACH_PORT_NUMBER). This
parameter applies to z/OS only.

Chapter 3. Definitions of the Programmable Command Formats 463



The port number for TCP. This parameter is valid only for channels with a
TransportType of MQXPT_TCP.

TransportType (MQCFIN)
Transmission protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

The value can be:

MQXPT_LU62
LU 6.2.

MQXPT_TCP
TCP.

MQXPT_NETBIOS
NetBIOS.

MQXPT_SPX
SPX.

On platforms other than z/OS, this parameter is invalid.

Error codes (Start Channel Listener)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_COMMS_LIBRARY_ERROR
Communications protocol library error.

MQRCCF_LISTENER_NOT_STARTED
Listener not started.

MQRCCF_LISTENER_RUNNING
Listener already running.

MQRCCF_NETBIOS_NAME_ERROR
NetBIOS listener name error.

Start Service

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The Start Service (MQCMD_START_SERVICE) command starts an existing
WebSphere MQ service definition.

Required parameters:
ServiceName

Optional parameters:
None

464 WebSphere MQ: Programmable Command Formats and Administration Interface



Required parameters (Start Service)
ServiceName (MQCFST)

Service name (parameter identifier: MQCA_SERVICE_NAME).

This is the name of the service definition to be started. The maximum length of
the string is MQ_OBJECT_NAME_LENGTH.

Error codes (Start Service)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_NO_START_CMD
The StartCommand parameter of the service is blank.

MQRCCF_SERVICE_RUNNING
Service is already running.

Stop Channel

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Stop Channel (MQCMD_STOP_CHANNEL) command stops a WebSphere MQ
channel.

This command can be issued to a channel of any type (except
MQCHT_CLNTCONN).

Where there is both a locally defined channel and an auto-defined cluster-sender
channel of the same name, the command applies to the locally defined channel.

If there is no locally defined channel but more than one auto-defined
cluster-sender channel, the command applies to the last channel added to the
repository on the local queue manager.

Required parameters:
ChannelName

Optional parameters:
ChannelDisposition, ChannelStatus, CommandScope, ConnectionName, Mode,
QMgrName,

Required parameters (Stop Channel)
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel to be stopped. The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

Chapter 3. Definitions of the Programmable Command Formats 465



Optional parameters (Stop Channel)
ChannelDisposition (MQCFIN)

Channel disposition (parameter identifier: MQIACH_CHANNEL_DISP). This
parameter applies to z/OS only.

Specifies the disposition of the channels to be stopped.

If this parameter is omitted, then the value for the channel disposition is taken
from the default channel disposition attribute of the channel object.

The value can be:

MQCHLD_PRIVATE
A receiving channel is private if it was started in response to an
inbound transmission directed to the queue manager.

A sending channel is private if its transmission queue has a disposition
other than MQQSGD_SHARED.

MQCHLD_SHARED
A receiving channel is shared if it was started in response to an
inbound transmission directed to the queue-sharing group.

A sending channel is shared if its transmission queue has a disposition
of MQQSGD_SHARED.

The combination of the ChannelDisposition and CommandScope parameters also
controls from which queue manager the channel is operated. The possible
options are:
v On the local queue manager where the command is issued.
v On another specific named queue manager in the group.
v On every active queue manager in the group.
v On the most suitable queue manager in the group, determined automatically

by the queue manager itself.

The various combinations of ChannelDisposition and CommandScope are
summarized in Table 13

Table 13. ChannelDisposition and CommandScope for STOP CHANNEL

ChannelDisposition CommandScope blank or local-qmgr CommandScope
qmgr-name

CommandScope(*)

MQCHLD_PRIVATE Stop as a private channel on the
local queue manager

Stop as a private
channel on the named
queue manager

Stop as a private
channel on all active
queue managers

466 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|



Table 13. ChannelDisposition and CommandScope for STOP CHANNEL (continued)

ChannelDisposition CommandScope blank or local-qmgr CommandScope
qmgr-name

CommandScope(*)

MQCHLD_SHARED For channels of ChannelType
MQCHT_RECEIVER or
MQCHT_SVRCONN, stop as shared
channel on all active queue
managers.

For channels of ChannelType
MQCHT_SENDER,
MQCHT_REQUESTER, and
MQCHT_SERVER, stop as a shared
channel on the queue manager
where it is running. If the channel is
in an inactive state (not running), or
if it is in RETRY state because the
channel initiator on which it was
running has stopped, a STOP request
for the channel is issued on the local
queue manager.

This might automatically generate a
command using CommandScope and
send it to the appropriate queue
manager. If there is no definition for
the channel on the queue manager to
which the command is sent, or if the
definition is unsuitable for the
command, the command fails.

The definition of a channel on the
queue manager where the command
is entered might be used to
determine the target queue manager
where the command is actually run.
Therefore, it is important that
channel definitions are consistent.
Inconsistent channel definitions
might result in unexpected command
behavior.

Not permitted Not permitted

ChannelStatus (MQCFIN)
The new state of the channel after the command is executed (parameter
identifier: MQIACH_CHANNEL_STATUS).

The value can be:

MQCHS_INACTIVE
Channel is inactive.

MQCHS_STOPPED
Channel is stopped. This is the default if nothing is specified.

CommandScope (MQCFST)
Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:

Chapter 3. Definitions of the Programmable Command Formats 467



v blank (or omit the parameter altogether). The command is executed on the
queue manager on which it was entered.

v a queue manager name. The command is executed on the queue manager
you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

ConnectionName (MQCFST)
Connection name of channel to be stopped (parameter identifier:
MQCACH_CONNECTION_NAME).

This is the connection name of the channel to be stopped. If this parameter is
omitted, all channels with the specified channel name and remote queue
manager name are stopped. On platforms other than z/OS, the maximum
length of the string is MQ_CONN_NAME_LENGTH. On z/OS, the maximum
length of the string is MQ_LOCAL_ADDRESS_LENGTH.

If this parameter is specified, ChannelStatus must be MQCHS_INACTIVE.

Mode (MQCFIN)
How the channel should be stopped (parameter identifier: MQIACF_MODE).

The value can be:

MQMODE_QUIESCE
Quiesce the channel. This is the default.

If you issue a Stop Channel <channelname> Mode(MQMODE_QUIESCE)
command on a server-connection channel with the sharing
conversations feature enabled, the WebSphere MQ client infrastructure
becomes aware of the stop request in a timely manner; this time is
dependent upon the speed of the network. The client application
becomes aware of the stop request as a result of issuing a subsequent
call to WebSphere MQ.

MQMODE_FORCE
Stop the channel immediately; the channel’s thread or process is not
terminated. Stops transmission of any current batch. This is likely to
result in in-doubt situations.

For server-connection channels, breaks the current connection,
returning MQRC_CONNECTION_BROKEN.

On z/OS, this option will interrupt any message reallocation in
progress, which may leave BIND_NOT_FIXED messages partially
reallocated or out of order.

MQMODE_TERMINATE
On z/OS this is synonymous with FORCE. On other platforms, stop
the channel immediately; the channel’s thread or process is terminated.

On z/OS, this option will interrupt any message reallocation in
progress, which may leave BIND_NOT_FIXED messages partially
reallocated or out of order.

Note: This parameter was previously called Quiesce (MQIACF_QUIESCE),
with values MQQO_YES and MQQO_NO. The old names can still be used.

468 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|



QMgrName (MQCFST)
Name of remote queue manager (parameter identifier:
MQCA_Q_MGR_NAME).

This is the name of the remote queue manager to which the channel is
connected. If this parameter is omitted, all channels with the specified channel
name and connection name are stopped. The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

If this parameter is specified, ChannelStatus must be MQCHS_INACTIVE.

Error codes (Stop Channel)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_CHANNEL_DISABLED
Channel disabled.

MQRCCF_CHANNEL_NOT_ACTIVE
Channel not active.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_MODE_VALUE_ERROR
Mode value not valid.

MQRCCF_MQCONN_FAILED
MQCONN call failed.

MQRCCF_MQOPEN_FAILED
MQOPEN call failed.

MQRCCF_MQSET_FAILED
MQSET call failed.

Stop Channel Initiator

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Stop Channel Initiator (MQCMD_STOP_CHANNEL_INIT) command stops a
WebSphere MQ channel initiator.

Required parameters:
None

Optional parameters:
CommandScope, SharedChannelRestart

Optional parameters (Stop Channel Initiator)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Chapter 3. Definitions of the Programmable Command Formats 469



Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

v an asterisk (*). The command is executed on the local queue manager and is
also passed to every active queue manager in the queue-sharing group.

The maximum length is MQ_QSG_NAME_LENGTH.

SharedChannelRestart (MQCFIN)
Shared channel restart (parameter identifier:
MQIACH_SHARED_CHANNEL_RESTART).

Specifies whether the channel initiator should attempt to restart any active
sending channels , started with the ChannelDisposition parameter set to
MQCHLD_SHARED, that it owns on another queue manager. The value can
be:

MQCHSH_RESTART_YES
Shared sending channels are to be restarted. This is the default.

MQCHSH_RESTART_NO
Shared sending channels are not to be restarted, so will become
inactive.

Active channels started with the ChannelDisposition parameter set to
MQCHLD_FIXSHARED are not restarted, and always become inactive.

Stop Channel Listener

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X

The Stop Channel Listener (MQCMD_STOP_CHANNEL_LISTENER) command
stops a WebSphere MQ listener.

Required parameters:
None on z/OS, ListenerName on other platforms

Optional parameters:
CommandScope, InboundDisposition, IPAddress, Port, TransportType

Required parameters (Stop Channel Listener)
ListenerName (MQCFST)

Listener name (parameter identifier: MQCACH_LISTENER_NAME). This
parameter does not apply to z/OS.

The name of the listener definition to be stopped. If this parameter is specified,
no other parameters may be specified.

The maximum length of the string is MQ_LISTENER_NAME_LENGTH.

470 WebSphere MQ: Programmable Command Formats and Administration Interface



Optional parameters (Stop Channel Listener)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

This is valid only on z/OS.

The maximum length is MQ_QSG_NAME_LENGTH.

InboundDisposition (MQCFIN)
Inbound transmission disposition (parameter identifier:
MQIACH_INBOUND_DISP).

Specifies the disposition of the inbound transmissions that the listener handles.
The value can be:

MQINBD_Q_MGR
Handling for transmissions directed to the queue manager. This is the
default.

MQINBD_GROUP
Handling for transmissions directed to the queue-sharing group. This
is permitted only if there is a shared queue manager environment.

This is valid only on z/OS.

IPAddress (MQCFST)
IP address (parameter identifier: MQCACH_IP_ADDRESS).

The IP address for TCP/IP specified in dotted decimal or alphanumeric form.
This parameter is valid on z/OS only where channels have a TransportType of
MQXPT_TCP.

The maximum length of the string is MQ_IP_ADDRESS_LENGTH.

This is valid only on z/OS.

Port (MQCFIN)
Port number for TCP (parameter identifier: MQIACH_PORT_NUMBER).

The port number for TCP. This parameter is valid only on z/OS where
channels have a TransportType of MQXPT_TCP.

TransportType (MQCFIN)
Transmission protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

The value can be:

MQXPT_LU62
LU 6.2.

MQXPT_TCP
TCP.

Chapter 3. Definitions of the Programmable Command Formats 471



This is valid only on z/OS.

Error codes (Stop Channel Listener)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_LISTENER_STOPPED
Listener not running.

Stop Connection

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The Stop Connection (MQCMD_STOP_CONNECTION) command attempts to
break a connection between an application and the queue manager. There may be
circumstances in which the queue manager cannot implement this command.

Required parameters:
ConnectionId

Optional parameters:
None

Required parameters (Stop Connection)
ConnectionId (MQCFBS)

Connection identifier (parameter identifier: MQBACF_CONNECTION_ID).

This is the unique connection identifier associated with an application that is
connected to the queue manager.

The length of the byte string is MQ_CONNECTION_ID_LENGTH.

Stop Service

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X

The Stop Service (MQCMD_STOP_SERVICE) command stops an existing
WebSphere MQ service definition that is running..

Required parameters:
ServiceName

Optional parameters:
None

472 WebSphere MQ: Programmable Command Formats and Administration Interface



Required parameters (Stop Service)
ServiceName (MQCFST)

Service name (parameter identifier: MQCA_SERVICE_NAME).

This is the name of the service definition to be stopped. The maximum length
of the string is MQ_OBJECT_NAME_LENGTH.

Error codes (Stop Service)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_NO_STOP_CMD
The StopCommand parameter of the service is blank.

MQRCCF_SERVICE_STOPPED
Service is not running.

Suspend Queue Manager

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X

The Suspend Queue Manager (MQCMD_SUSPEND_Q_MGR) command renders
the local queue manager unavailable for the processing of IMS or DB2 messages.

Its action can be reversed by the Resume Queue Manager command
(MQCMD_RESUME_Q_MGR) command.

Required parameters:
Facility

Optional parameters:
CommandScope

Required parameters (Suspend Queue Manager)
Facility (MQCFIN)

Facility (parameter identifier: MQIACF_FACILITY).

The type of facility for which activity is to be suspended. The value can be:

MQQMFAC_DB2
The existing connection to DB2 is terminated.

Any in-flight or subsequent MQGET or MQPUT requests are
suspended and applications wait until the DB2 connection is
re-established by the Resume Queue Manager command, or if the
queue manager is stopped.

MQQMFAC_IMS_BRIDGE
Resumes normal IMS Bridge activity.

Chapter 3. Definitions of the Programmable Command Formats 473



Stops the sending of messages from IMS Bridge queues to OTMA. No
further messages are sent to IMS until one of these events occurs:
v OTMA is stopped and restarted
v IMS or WebSphere MQ is stopped or restarted
v A Resume Queue Manager command is processed

Messages returning from IMS OTMA to the queue manager are
unaffected.

Optional parameters (Suspend Queue Manager)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE).

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

The maximum length is MQ_QSG_NAME_LENGTH.

Suspend Queue Manager Cluster

HP NSS
HP Open
VMS i5/OS

UNIX
systems Windows z/OS

X X X X X X

The Suspend Queue Manager Cluster (MQCMD_SUSPEND_Q_MGR_CLUSTER)
command informs other queue managers in a cluster that the local queue manager
is not available for processing, and cannot be sent messages.

Its action can be reversed by the Resume Queue Manager Cluster
(MQCMD_RESUME_Q_MGR_CLUSTER) command.

Required parameters:
ClusterName or ClusterNamelist

Optional parameters:
CommandScope, Mode

Required parameters (Suspend Queue Manager Cluster)
ClusterName (MQCFST)

Cluster name (parameter identifier: MQCA_CLUSTER_NAME).

The name of the cluster for which availability is to be suspended.

The maximum length of the string is MQ_CLUSTER_NAME_LENGTH.

ClusterNamelist (MQCFST)
Cluster Namelist (parameter identifier: MQCA_CLUSTER_NAMELIST).

474 WebSphere MQ: Programmable Command Formats and Administration Interface



The name of the namelist specifying a list of clusters for which availability is
to be suspended.

Optional parameters (Suspend Queue Manager Cluster)
CommandScope (MQCFST)

Command scope (parameter identifier: MQCACF_COMMAND_SCOPE). This
parameter applies to z/OS only.

Specifies how the command is executed when the queue manager is a member
of a queue-sharing group. You can specify one of the following:
v blank (or omit the parameter altogether). The command is executed on the

queue manager on which it was entered.
v a queue manager name. The command is executed on the queue manager

you specify, providing it is active within the queue sharing group. If you
specify a queue manager name other than the queue manager on which it
was entered, you must be using a queue-sharing group environment, and
the command server must be enabled.

The maximum length is MQ_QSG_NAME_LENGTH.

Mode (MQCFIN)
How the local queue manager should be suspended from the cluster
(parameter identifier: MQIACF_MODE).

The value can be:

MQMODE_QUIESCE
Other queue managers in the cluster are advised that the local queue
manager should not be sent further messages.

MQMODE_FORCE
All inbound and outbound channels to other queue managers in the
cluster are stopped forcibly.

Note: This parameter was previously called Quiesce (MQIACF_QUIESCE),
with values MQQO_YES and MQQO_NO. The old names can still be used.

Error codes (Suspend Queue Manager Cluster)

This command might return the following in the response format header, in
addition to the values shown on page “Error codes applicable to all commands” on
page 23.

Reason (MQLONG)
The value can be:

MQRCCF_CLUSTER_NAME_CONFLICT
Cluster name conflict.

MQRCCF_MODE_VALUE_ERROR
Mode value not valid.

Chapter 3. Definitions of the Programmable Command Formats 475



476 WebSphere MQ: Programmable Command Formats and Administration Interface



Chapter 4. Structures for commands and responses

Commands and responses have the form:
v PCF header (MQCFH) structure (described in topic “MQCFH - PCF header” on

page 478), followed by
v Zero or more parameter structures. Each of these is one of the following:

– PCF byte string filter parameter (MQCFBF, see topic “MQCFBF - PCF byte
string filter parameter” on page 482)

– PCF byte string parameter (MQCFBS, see topic “MQCFBS - PCF byte string
parameter” on page 485)

– PCF integer filter parameter (MQCFIF, see topic “MQCFIF - PCF integer filter
parameter” on page 487)

– PCF integer list parameter (MQCFIL, see topic “MQCFIL - PCF integer list
parameter” on page 490)

– PCF integer parameter (MQCFIN, see topic “MQCFIN - PCF integer
parameter” on page 493)

– PCF string filter parameter (MQCFSF, see topic “MQCFSF - PCF string filter
parameter” on page 494)

– PCF string list parameter (MQCFSL, see topic “MQCFSL - PCF string list
parameter” on page 499)

– PCF string parameter (MQCFST, see topic “MQCFST - PCF string parameter”
on page 502)

How the structures are shown

The structures are described in a language-independent form. The declarations are
shown in the following programming languages:
v C
v COBOL
v PL/I
v S/390® assembler
v Visual Basic

Data types

For each field of the structure the data type is given in brackets after the field
name. These are the elementary data types described in the WebSphere MQ
Application Programming Guide manual.

Initial values and default structures

See the WebSphere MQ Constants book for details of the supplied header files that
contain the structures, constants, initial values and default structures.

© Copyright IBM Corp. 2002, 2009 477



Usage notes

If all of the strings in a PCF message have the same coded character-set identifier,
the CodedCharSetId field in the message descriptor MQMD should be set to that
identifier when the message is put, and the CodedCharSetId fields in the MQCFST,
MQCFSL, and MQCFSF structures within the message should be set to
MQCCSI_DEFAULT.

If the format of the PCF message is MQFMT_ADMIN, MQFMT_EVENT, or
MQFMT_PCF and some of the strings in the message have different character-set
identifiers, the CodedCharSetId field in MQMD should be set to
MQCCSI_EMBEDDED when the message is put, and the CodedCharSetId fields in
the MQCFST, MQCFSL, and MQCFSF structures within the message should all be
set to the identifiers that apply.

This enables conversions of the strings within the message, to the CodedCharSetId
value in the MQMD specified on the MQGET call, if the MQGMO_CONVERT
option is also specified.

For more information about the MQEPH structure, see the WebSphere MQ
Application Programming Guide.

Note: If you request conversion of the internal strings in the message, the
conversion will occur only if the value of the CodedCharSetId field in the MQMD
of the message is different from the CodedCharSetId field of the MQMD specified
on the MQGET call.

Do not specify MQCCSI_EMBEDDED in MQMD when the message is put, with
MQCCSI_DEFAULT in the MQCFST, MQCFSL, or MQCFSF structures within the
message, as this will prevent conversion of the message.

MQCFH - PCF header

The MQCFH structure describes the information that is present at the start of the
message data of a command message, or a response to a command message. In
either case, the message descriptor Format field is MQFMT_ADMIN.

The PCF structures are also used for event messages. In this case the message
descriptor Format field is MQFMT_EVENT.

The PCF structures can also be used for user-defined message data. In this case the
message descriptor Format field is MQFMT_PCF (see “Message descriptor for a
PCF command” on page 7). Also in this case, not all of the fields in the structure
are meaningful. The supplied initial values can be used for most fields, but the
application must set the StrucLength and ParameterCount fields to the values
appropriate to the data.

Fields for MQCFH
Type (MQLONG)

Structure type.

This indicates the content of the message. The following are valid for
commands:

478 WebSphere MQ: Programmable Command Formats and Administration Interface



MQCFT_COMMAND
Message is a command.

MQCFT_COMMAND_XR
Message is a command to which standard or extended responses might
be sent.

This value is required on z/OS.

MQCFT_RESPONSE
Message is a response to a command.

MQCFT_XR_MSG
Message is an extended response to a command. It contains
informational or error details.

MQCFT_XR_ITEM
Message is an extended response to an Inquire command. It contains
item data.

MQCFT_XR_SUMMARY
Message is an extended response to a command. It contains summary
information.

MQCFT_USER
User-defined PCF message.

StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFH structure. The value must be:

MQCFH_STRUC_LENGTH
Length of command format header structure.

Version (MQLONG)
Structure version number.

For z/OS, the value must be:

MQCFH_VERSION_3
Version number for command format header structure.

The following constant specifies the version number of the current version:

MQCFH_CURRENT_VERSION
Current version of command format header structure.

Command (MQLONG)
Command identifier.

For a command message, this identifies the function to be performed. For a
response message, it identifies the command to which this is the reply. See the
description of each command for the value of this field.

MsgSeqNumber (MQLONG)
Message sequence number.

This is the sequence number of the message within a set of related messages.
For a command, this field must have the value one (because a command is
always contained within a single message). For a response, the field has the
value one for the first (or only) response to a command, and increases by one
for each successive response to that command.

The last (or only) message in a set has the MQCFC_LAST flag set in the
Control field.

Chapter 4. Structures for commands and responses 479

|

|
|



Control (MQLONG)
Control options.

The following are valid:

MQCFC_LAST
Last message in the set.

For a command, this value must always be set.

MQCFC_NOT_LAST
Not the last message in the set.

CompCode (MQLONG)
Completion code.

This field is meaningful only for a response; its value is not significant for a
command. The following are possible:

MQCC_OK
Command completed successfully.

MQCC_WARNING
Command completed with warning.

MQCC_FAILED
Command failed.

MQCC_UNKNOWN
Whether command succeeded is not known.

Reason (MQLONG)
Reason code qualifying completion code.

This field is meaningful only for a response; its value is not significant for a
command.

The possible reason codes that can be returned in response to a command are
listed in Chapter 3, “Definitions of the Programmable Command Formats,” on
page 21, and in the description of each command.

ParameterCount (MQLONG)
Count of parameter structures.

This is the number of parameter structures (MQCFBF, MQCFBS, MQCFIF,
MQCFIL, MQCFIN, MQCFSL, MQCFSF, and MQCFST) that follow the
MQCFH structure. The value of this field is zero or greater.

Language declarations for MQCFH

This structure is available in the following languages:

C language declaration
typedef struct tagMQCFH {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Version; /* Structure version number */
MQLONG Command; /* Command identifier */
MQLONG MsgSeqNumber; /* Message sequence number */
MQLONG Control; /* Control options */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying completion code */
MQLONG ParameterCount; /* Count of parameter structures */
} MQCFH;

480 WebSphere MQ: Programmable Command Formats and Administration Interface



COBOL language declaration
** MQCFH structure

10 MQCFH.
** Structure type

15 MQCFH-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFH-STRUCLENGTH PIC S9(9) BINARY.
** Structure version number

15 MQCFH-VERSION PIC S9(9) BINARY.
** Command identifier

15 MQCFH-COMMAND PIC S9(9) BINARY.
** Message sequence number

15 MQCFH-MSGSEQNUMBER PIC S9(9) BINARY.
** Control options

15 MQCFH-CONTROL PIC S9(9) BINARY.
** Completion code

15 MQCFH-COMPCODE PIC S9(9) BINARY.
** Reason code qualifying completion code

15 MQCFH-REASON PIC S9(9) BINARY.
** Count of parameter structures

15 MQCFH-PARAMETERCOUNT PIC S9(9) BINARY.

PL/I language declaration (z/OS only)
dcl
1 MQCFH based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Version fixed bin(31), /* Structure version number */
3 Command fixed bin(31), /* Command identifier */
3 MsgSeqNumber fixed bin(31), /* Message sequence number */
3 Control fixed bin(31), /* Control options */
3 CompCode fixed bin(31), /* Completion code */
3 Reason fixed bin(31), /* Reason code qualifying completion

code */
3 ParameterCount fixed bin(31); /* Count of parameter structures */

System/390 assembler-language declaration (z/OS only)
MQCFH DSECT
MQCFH_TYPE DS F Structure type
MQCFH_STRUCLENGTH DS F Structure length
MQCFH_VERSION DS F Structure version number
MQCFH_COMMAND DS F Command identifier
MQCFH_MSGSEQNUMBER DS F Message sequence number
MQCFH_CONTROL DS F Control options
MQCFH_COMPCODE DS F Completion code
MQCFH_REASON DS F Reason code qualifying
* completion code
MQCFH_PARAMETERCOUNT DS F Count of parameter
* structures
MQCFH_LENGTH EQU *-MQCFH Length of structure

ORG MQCFH
MQCFH_AREA DS CL(MQCFH_LENGTH)

Visual Basic language declaration (Windows only)
Type MQCFH

Type As Long 'Structure type
StrucLength As Long 'Structure length
Version As Long 'Structure version number
Command As Long 'Command identifier
MsgSeqNumber As Long 'Message sequence number
Control As Long 'Control options
CompCode As Long 'Completion code
Reason As Long 'Reason code qualifying completion code

Chapter 4. Structures for commands and responses 481



ParameterCount As Long 'Count of parameter structures
End Type

Global MQCFH_DEFAULT As MQCFH

RPG language declaration (i5/OS only)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCFH Structure
D*
D* Structure type
D FHTYP 1 4I 0 INZ(1)
D* Structure length
D FHLEN 5 8I 0 INZ(36)
D* Structure version number
D FHVER 9 12I 0 INZ(1)
D* Command identifier
D FHCMD 13 16I 0 INZ(0)
D* Message sequence number
D FHSEQ 17 20I 0 INZ(1)
D* Control options
D FHCTL 21 24I 0 INZ(1)
D* Completion code
D FHCMP 25 28I 0 INZ(0)
D* Reason code qualifying completion code
D FHREA 29 32I 0 INZ(0)
D* Count of parameter structures
D FHCNT 33 36I 0 INZ(0)
D*

MQCFBF - PCF byte string filter parameter

The MQCFBF structure describes a byte string filter parameter. The format name in
the message descriptor is MQFMT_ADMIN.

The MQCFBF structure is used in Inquire commands to provide a filter description.
This filter description is used to filter the results of the Inquire command and
return to the user only those objects that satisfy the filter description.

For z/OS, when an MQCFBF structure is present, the Version field in the MQCFH
structure at the start of the PCF must be MQCFH_VERSION_3 or higher.

Fields for MQCFBF
Type (MQLONG)

Structure type.

This indicates that the structure is a MQCFBF structure describing a byte string
filter parameter. The value must be:

MQCFT_BYTE_STRING_FILTER
Structure defining a byte string filter.

StrucLength (MQLONG)
Structure length.

This is the length, in bytes, of the MQCFBF structure, including the string at
the end of the structure (the FilterValue field). The length must be a multiple
of 4, and must be sufficient to contain the string. Bytes between the end of the
string and the length defined by the StrucLength field are not significant.

The following constant gives the length of the fixed part of the structure, that is
the length excluding the FilterValue field:

482 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|



MQCFBF_STRUC_LENGTH_FIXED
Length of fixed part of command format filter string-parameter
structure.

Parameter (MQLONG)
Parameter identifier.

This identifies the parameter that is to be filtered on. The value of this
identifier depends on the parameter to be filtered on.

The parameter is one of the following:
v MQBACF_EXTERNAL_UOW_ID
v MQBACF_Q_MGR_UOW_ID
v MQBACF_ORIGIN_UOW_ID (on z/OS only)

Operator (MQLONG)
Operator identifier.

This identifies the operator that is being used to evaluate whether the
parameter satisfies the filter-value.

Possible values are:

MQCFOP_GREATER
Greater than

MQCFOP_LESS
Less than

MQCFOP_EQUAL
Equal to

MQCFOP_NOT_EQUAL
Not equal to

MQCFOP_NOT_LESS
Greater than or equal to

MQCFOP_NOT_GREATER
Less than or equal to

FilterValueLength (MQLONG)
Length of filter-value string.

This is the length, in bytes, of the data in the FilterValue field. This must be
zero or greater, and does not need to be a multiple of 4.

FilterValue (MQBYTE×FilterValueLength)
Filter value.

This specifies the filter-value that must be satisfied. Use this parameter where
the response type of the filtered parameter is a byte string. Depending on the
filter-keyword, this can be:

Note: If the specified byte string is shorter than the standard length of the
parameter in MQFMT_ADMIN command messages, the omitted characters are
assumed to be blanks. If the specified string is longer than the standard length,
it is an error.

Language declarations for MQCFBF

This structure is available in the following languages:

Chapter 4. Structures for commands and responses 483



C language declaration
typedef struct tagMQCFBF {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG Operator; /* Operator identifier */
MQLONG FilterValueLength; /* Filter value length */
MQBYTE FilterValue[1]; /* Filter value -- first byte */
} MQCFBF;

COBOL language declaration
** MQCFBF structure

10 MQCFBF.
** Structure type

15 MQCFBF-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFBF-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFBF-PARAMETER PIC S9(9) BINARY.
** Operator identifier

15 MQCFBF-OPERATOR PIC S9(9) BINARY.
** Filter value length

15 MQCFBF-FILTERVALUELENGTH PIC S9(9) BINARY.

PL/I language declaration (z/OS only)
dcl

1 MQCFBF based,
3 Type fixed bin(31)
init(MQCFT_BYTE_STRING_FILTER), /* Structure type */
3 StrucLength fixed bin(31)
init(MQCFBF_STRUC_LENGTH_FIXED), /* Structure length */
3 Parameter fixed bin(31)
init(0), /* Parameter identifier */
3 Operator fixed bin(31)
init(0), /* Operator identifier */
3 FilterValueLength fixed bin(31)
init(0); /* Filter value length */

System/390 assembler-language declaration (z/OS only)
MQCFBF DSECT
MQCFBF_TYPE DS F Structure type
MQCFBF_STRUCLENGTH DS F Structure length
MQCFBF_PARAMETER DS F Parameter identifier
MQCFBF_OPERATOR DS F Operator identifier
MQCFBF_FILTERVALUELENGTH DS F Filter value length
MQCFBF_LENGTH EQU *-MQCFIF Length of structure

ORG MQCFBF
MQCFBF_AREA DS CL(MQCFBF_LENGTH)

Visual Basic language declaration (Windows only)
Type MQCFBF

Type As Long 'Structure type'
StrucLength As Long 'Structure length'
Parameter As Long 'Parameter identifier'
Operator As Long 'Operator identifier'
FilterValueLength As Long 'Filter value length'
FilterValue As 1 'Filter value -- first byte'

End Type
Global MQCFBF_DEFAULT As MQCFBF

RPG language declaration (i5/OS only)
D* MQCFBF Structure
D*
D* Structure type

484 WebSphere MQ: Programmable Command Formats and Administration Interface



D FBFTYP 1 4I 0 INZ(15)
D* Structure length
D FBFLEN 5 8I 0 INZ(20)
D* Parameter identifier
D FBFPRM 9 12I 0 INZ(0)
D* Operator identifier
D FBFOP 13 16I 0 INZ(0)
D* Filter value length
D FBFFVL 17 20I 0 INZ(0)
D* Filter value -- first byte
D FBFFV 21 21 INZ

MQCFBS - PCF byte string parameter

The MQCFBS structure describes a byte-string parameter in a PCF message. The
format name in the message descriptor is MQFMT_ADMIN.

For z/OS, when an MQCFBS structure is present, the Version field in the MQCFH
structure at the start of the PCF must be MQCFH_VERSION_3 or greater.

In a user PCF message, the Parameter field has no significance, and can be used by
the application for its own purposes.

The structure ends with a variable-length byte string; see the String field below for
further details.

Fields for MQCFBS
Type (MQLONG)

Structure type.

This indicates that the structure is an MQCFBS structure describing byte string
parameter. The value must be:

MQCFT_BYTE_STRING
Structure defining a byte string.

StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFBS structure, including the
variable-length string at the end of the structure (the String field). The length
must be a multiple of four, and must be sufficient to contain the string; any
bytes between the end of the string and the length defined by the StrucLength
field are not significant.

The following constant gives the length of the fixed part of the structure, that is
the length excluding the String field:

MQCFBS_STRUC_LENGTH_FIXED
Length of fixed part of MQCFBS structure.

Parameter (MQLONG)
Parameter identifier.

This identifies the parameter whose value is contained in the structure. The
values that can occur in this field depend on the value of the Command field in
the MQCFH structure; see “MQCFH - PCF header” on page 478 for details. In
user PCF messages (MQCFT_USER), this field has no significance.

The parameter is from the MQBACF_* group of parameters.

Chapter 4. Structures for commands and responses 485

|
|



StringLength (MQLONG)
Length of string.

This is the length in bytes of the data in the string field; it must be zero or
greater. This length need not be a multiple of four.

String (MQBYTE×StringLength)
String value.

This is the value of the parameter identified by the parameter field. The string is
a byte string, and so is not subject to character-set conversion when sent
between different systems.

Note: A null character in the string is treated as normal data, and does not act as a
delimiter for the string

For MQFMT_ADMIN messages, if the specified string is shorter than the standard
length of the parameter, the omitted characters are assumed to be nulls. If the
specified string is longer than the standard length, it is an error.

The way that this field is declared depends on the programming language:
v For the C programming language, the field is declared as an array with one

element. Storage for the structure must be allocated dynamically, and pointers
used to address the fields within it.

v For other programming languages, the field is omitted from the structure
declaration. When an instance of the structure is declared, you must include
MQCFBS in a larger structure, and declare additional fields following MQCFBS,
to represent the String field as required.

Language declarations for MQCFBS

This structure is available in the following languages:

C language declaration
typedef struct tagMQCFBS {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG StringLength; /* Length of string */
MQBYTE String[1]; /* String value - first byte */

} MQCFBS;

COBOL language declaration
** MQCFBS structure

10 MQCFBS.
** Structure type

15 MQCFBS-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFBS-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFBS-PARAMETER PIC S9(9) BINARY.
** Length of string

15 MQCFBS-STRINGLENGTH PIC S9(9) BINARY.

PL/I language declaration (z/OS only)
dcl
1 MQCFBS based,
3 Type fixed bin(31), /* Structure type */

486 WebSphere MQ: Programmable Command Formats and Administration Interface



3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 StringLength fixed bin(31) /* Length of string */

System/390 assembler-language declaration (z/OS only)
MQCFBS DSECT
MQCFBS_TYPE DS F Structure type
MQCFBS_STRUCLENGTH DS F Structure length
MQCFBS_PARAMETER DS F Parameter identifier
MQCFBS_STRINGLENGTH DS F Length of string

ORG MQCFBS
MQCFBS_AREA DS CL(MQCFBS_LENGTH)

Visual Basic language declaration (Windows only)
Type MQCFBS

Type As Long ' Structure type
StrucLength As Long ' Structure length
Parameter As Long ' Parameter identifier
StringLength As Long ' Operator identifier
String as 1 ' String value - first byte
End Type

Global MQCFBS_DEFAULT As MQCFBS

RPG language declaration (i5/OS only)
D* MQCFBS Structure
D*
D* Structure type
D BSTYP 1 4I 0 INZ(3)
D* Structure length
D BSLEN 5 8I 0 INZ(16)
D* Parameter identifier
D BSPRM 9 12I 0 INZ(0)
D* Length of string
D BSSTL 13 16I 0 INZ(0)
D* String value - first byte
D BSSRA 17 16
D*

MQCFIF - PCF integer filter parameter

The MQCFIF structure describes an integer filter parameter. The format name in
the message descriptor is MQFMT_ADMIN.

The MQCFIF structure is used in Inquire commands to provide a filter condition.
This filter condition is used to filter the results of the Inquire command and return
to the user only those objects that satisfy the filter condition.

For z/OS, when an MQCFIF structure is present, the Version field in the MQCFH
structure at the start of the PCF must be MQCFH_VERSION_3 or higher.

Fields for MQCFIF
Type (MQLONG)

Structure type.

This indicates that the structure is a MQCFIF structure describing an integer
filter parameter. The value must be:

MQCFT_INTEGER_FILTER
Structure defining an integer filter.

Chapter 4. Structures for commands and responses 487

|
|



StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFIF structure. The value must be:

MQCFIF_STRUC_LENGTH
Length of command format integer-parameter structure.

Parameter (MQLONG)
Parameter identifier.

This identifies the parameter that is to be filtered on. The value of this
identifier depends on the parameter to be filtered on. Any of the parameters
which can be used in the Inquire command can be used in this field.

The parameter is from the following groups of parameters:
v MQIA_*
v MQIACF_*
v MQIAMO_*
v MQIACH_*

Operator (MQLONG)
Operator identifier.

This identifies the operator that is being used to evaluate whether the
parameter satisfies the filter-value.

Possible values are:

MQCFOP_GREATER
Greater than

MQCFOP_LESS
Less than

MQCFOP_EQUAL
Equal to

MQCFOP_NOT_EQUAL
Not equal to

MQCFOP_NOT_LESS
Greater than or equal to

MQCFOP_NOT_GREATER
Less than or equal to

MQCFOP_CONTAINS
Contains a specified value. Use this when filtering on lists of values or
integers.

MQCFOP_EXCLUDES
Does not contain a specified value. Use this when filtering on lists of
values or integers.

See the FilterValue description for details telling you which operators may be
used in which circumstances.

FilterValue (MQLONG)
Filter value identifier.

This specifies the filter-value that must be satisfied.

Depending on the parameter, the value and the permitted operators can be:
v An explicit integer value, if the parameter takes a single integer value.

488 WebSphere MQ: Programmable Command Formats and Administration Interface



You can only use the following operators:
– MQCFOP_GREATER
– MQCFOP_LESS
– MQCFOP_EQUAL
– MQCFOP_NOT_EQUAL
– MQCFOP_NOT_GREATER
– MQCFOP_NOT_LESS

v An MQ constant, if the parameter takes a single value from a possible set of
values (for example, the value MQCHT_SENDER on the ChannelType
parameter). You can only use MQCFOP_EQUAL or
MQCFOP_NOT_EQUAL.

v An explicit value or an MQ constant, as the case may be, if the parameter
takes a list of values. You can use either MQCFOP_CONTAINS or
MQCFOP_EXCLUDES. For example, if the value 6 is specified with the
operator MQCFOP_CONTAINS, all items where one of the parameter values
is 6 are listed.

For example, if you need to filter on queues that are enabled for put operations
in your Inquire Queue command, the parameter would be
MQIA_INHIBIT_PUT and the filter-value would be MQQA_PUT_ALLOWED.

The filter value must be a valid value for the parameter being tested.

Language declarations for MQCFIF

This structure is available in the following languages:

C language declaration
typedef struct tagMQCFIF {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG Operator; /* Operator identifier */
MQLONG FilterValue; /* Filter value */
} MQCFIF;

COBOL language declaration
** MQCFIF structure

10 MQCFIF.
** Structure type

15 MQCFIF-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFIF-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFIF-PARAMETER PIC S9(9) BINARY.
** Operator identifier

15 MQCFIF-OPERATOR PIC S9(9) BINARY.
** Filter value

15 MQCFIF-FILTERVALUE PIC S9(9) BINARY.

PL/I language declaration (z/OS only)
dcl
1 MQCFIF based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 Operator fixed bin(31) /* Operator identifier */
3 FilterValue fixed bin(31); /* Filter value */

Chapter 4. Structures for commands and responses 489

|



System/390 assembler-language declaration (z/OS only)
MQCFIF DSECT
MQCFIF_TYPE DS F Structure type
MQCFIF_STRUCLENGTH DS F Structure length
MQCFIF_PARAMETER DS F Parameter identifier
MQCFIF_OPERATOR DS F Operator identifier
MQCFIF_FILTERVALUE DS F Filter value
MQCFIF_LENGTH EQU *-MQCFIF Length of structure

ORG MQCFIF
MQCFIF_AREA DS CL(MQCFIF_LENGTH)

Visual Basic language declaration (Windows only)
Type MQCFIF

Type As Long ' Structure type
StrucLength As Long ' Structure length
Parameter As Long ' Parameter identifier
Operator As Long ' Operator identifier
FilterValue As Long ' Filter value

End Type

Global MQCFIF_DEFAULT As MQCFIF

RPG language declaration (i5/OS only)
D* MQCFIF Structure
D*
D* Structure type
D FIFTYP 1 4I 0 INZ(3)
D* Structure length
D FIFLEN 5 8I 0 INZ(16)
D* Parameter identifier
D FIFPRM 9 12I 0 INZ(0)
D* Operator identifier
D FIFOP 13 16I 0 INZ(0)
D* Condition identifier
D FIFFV 17 20I 0 INZ(0)
D*

MQCFIL - PCF integer list parameter

The MQCFIL structure describes an integer-list parameter in a message that is a
command or a response to a command. In either case, the format name in the
message descriptor is MQFMT_ADMIN.

The MQCFIL structure can also be used for user-defined message data. In this case
the message descriptor Format field is MQFMT_PCF (see “Message descriptor for a
PCF command” on page 7). Also in this case, not all of the fields in the structure
are meaningful. The supplied initial values can be used for most fields, but the
application must set the StrucLength, Count, and Values fields to the values
appropriate to the data.

The structure ends with a variable-length array of integers; see the Values field
below for further details.

Fields for MQCFIL
Type (MQLONG)

Structure type.

This indicates that the structure is an MQCFIL structure describing an
integer-list parameter. The value must be:

490 WebSphere MQ: Programmable Command Formats and Administration Interface



MQCFT_INTEGER_LIST
Structure defining an integer list.

StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFIL structure, including the array of
integers at the end of the structure (the Values field). The length must be a
multiple of four, and must be sufficient to contain the array; any bytes between
the end of the array and the length defined by the StrucLength field are not
significant.

The following constant gives the length of the fixed part of the structure, that is
the length excluding the Values field:

MQCFIL_STRUC_LENGTH_FIXED
Length of fixed part of command format integer-list parameter
structure.

Parameter (MQLONG)
Parameter identifier.

This identifies the parameter whose values are contained in the structure. The
values that can occur in this field depend on the value of the Command field in
the MQCFH structure; see “MQCFH - PCF header” on page 478 for details.

The parameter is from the following groups of parameters:
v MQIA_*
v MQIACF_*
v MQIAMO_*
v MQIACH_*

Count (MQLONG)
Count of parameter values.

This is the number of elements in the Values array; it must be zero or greater.

Values (MQLONG×Count)
Parameter values.

This is an array of values for the parameter identified by the Parameter field.
For example, for MQIACF_Q_ATTRS, this is a list of attribute selectors
(MQCA_* and MQIA_* values).

The way that this field is declared depends on the programming language:
v For the C programming language, the field is declared as an array with one

element. Storage for the structure must be allocated dynamically, and
pointers used to address the fields within it.

v For the COBOL, PL/I, RPG, and System/390® assembler programming
languages, the field is omitted from the structure declaration. When an
instance of the structure is declared, you must include MQCFIL in a larger
structure, and declare additional fields following MQCFIL, to represent the
Values field as required.

Language declarations for MQCFIL

This structure is available in the following languages:

Chapter 4. Structures for commands and responses 491

|
|



C language declaration
typedef struct tagMQCFIL {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG Count; /* Count of parameter values */
MQLONG Values[1]; /* Parameter values - first element */
} MQCFIL;

COBOL language declaration
** MQCFIL structure

10 MQCFIL.
** Structure type

15 MQCFIL-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFIL-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFIL-PARAMETER PIC S9(9) BINARY.
** Count of parameter values

15 MQCFIL-COUNT PIC S9(9) BINARY.

PL/I language declaration (z/OS only)
dcl
1 MQCFIL based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 Count fixed bin(31); /* Count of parameter values */

System/390 assembler-language declaration (z/OS only)
MQCFIL DSECT
MQCFIL_TYPE DS F Structure type
MQCFIL_STRUCLENGTH DS F Structure length
MQCFIL_PARAMETER DS F Parameter identifier
MQCFIL_COUNT DS F Count of parameter values
MQCFIL_LENGTH EQU *-MQCFIL Length of structure

ORG MQCFIL
MQCFIL_AREA DS CL(MQCFIL_LENGTH)

Visual Basic language declaration (Windows only)
Type MQCFIL

Type As Long ' Structure type
StrucLength As Long ' Structure length
Parameter As Long ' Parameter identifier
Count As Long ' Count of parameter values

End Type

Global MQCFIL_DEFAULT As MQCFIL

RPG language declaration (i5/OS only)
D* MQCFIL Structure
D*
D* Structure type
D ILTYP 1 4I 0 INZ(5)
D* Structure length
D ILLEN 5 8I 0 INZ(16)
D* Parameter identifier
D ILPRM 9 12I 0 INZ(0)
D* Count of parameter values
D ILCNT 13 16I 0 INZ(0)
D*

492 WebSphere MQ: Programmable Command Formats and Administration Interface



MQCFIN - PCF integer parameter

The MQCFIN structure describes an integer parameter in a message that is a
command or a response to a command. In either case, the format name in the
message descriptor is MQFMT_ADMIN.

The MQCFIN structure can also be used for user-defined message data. In this case
the message descriptor Format field is MQFMT_PCF (see “Message descriptor for a
PCF command” on page 7). Also in this case, not all of the fields in the structure
are meaningful. The supplied initial values can be used for most fields, but the
application must set the Value field to the value appropriate to the data.

Fields for MQCFIN
Type (MQLONG)

Structure type.

This indicates that the structure is a MQCFIN structure describing an integer
parameter. The value must be:

MQCFT_INTEGER
Structure defining an integer.

StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFIN structure. The value must be:

MQCFIN_STRUC_LENGTH
Length of command format integer-parameter structure.

Parameter (MQLONG)
Parameter identifier.

This identifies the parameter whose value is contained in the structure. The
values that can occur in this field depend on the value of the Command field in
the MQCFH structure; see “MQCFH - PCF header” on page 478 for details.

The parameter is from the following groups of parameters:
v MQIA_*
v MQIACF_*
v MQIAMO_*
v MQIACH_*

Value (MQLONG)
Parameter value.

This is the value of the parameter identified by the Parameter field.

Language declarations for MQCFIN

This structure is available in the following languages:

C language declaration
typedef struct tagMQCFIN {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG Value; /* Parameter value */
} MQCFIN;

Chapter 4. Structures for commands and responses 493



COBOL language declaration
** MQCFIN structure

10 MQCFIN.
** Structure type

15 MQCFIN-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFIN-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFIN-PARAMETER PIC S9(9) BINARY.
** Parameter value

15 MQCFIN-VALUE PIC S9(9) BINARY.

PL/I language declaration (z/OS only)
dcl
1 MQCFIN based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 Value fixed bin(31); /* Parameter value */

System/390 assembler-language declaration (z/OS only)
MQCFIN DSECT
MQCFIN_TYPE DS F Structure type
MQCFIN_STRUCLENGTH DS F Structure length
MQCFIN_PARAMETER DS F Parameter identifier
MQCFIN_VALUE DS F Parameter value
MQCFIN_LENGTH EQU *-MQCFIN Length of structure

ORG MQCFIN
MQCFIN_AREA DS CL(MQCFIN_LENGTH)

Visual Basic language declaration (Windows only)
Type MQCFIN

Type As Long ' Structure type
StrucLength As Long ' Structure length
Parameter As Long ' Parameter identifier
Value As Long ' Parameter value

End Type

Global MQCFIN_DEFAULT As MQCFIN

RPG language declaration (i5/OS only)
D* MQCFIN Structure
D*
D* Structure type
D INTYP 1 4I 0 INZ(3)
D* Structure length
D INLEN 5 8I 0 INZ(16)
D* Parameter identifier
D INPRM 9 12I 0 INZ(0)
D* Parameter value
D INVAL 13 16I 0 INZ(0)
D*

MQCFSF - PCF string filter parameter

The MQCFSF structure describes a string filter parameter. The format name in the
message descriptor is MQFMT_ADMIN.

The MQCFSF structure is used in Inquire commands to provide a filter condition.
This filter condition is used to filter the results of the Inquire command and return
to the user only those objects that satisfy the filter condition.

494 WebSphere MQ: Programmable Command Formats and Administration Interface



The results of filtering character strings on EBCDIC-based systems may be different
from those achieved on ASCII-based systems. This is because comparison of
character strings is based on the collating sequence of the internal built-in values
representing the characters.

When an MQCFSF structure is present, the Version field in the MQCFH structure
at the start of the PCF must be MQCFH_VERSION_3 or higher.

Fields for MQCFSF
Type (MQLONG)

Structure type.

This indicates that the structure is a MQCFSF structure describing a string
filter parameter. The value must be:

MQCFT_STRING_FILTER
Structure defining a string filter.

StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFSF structure. The value must be:

MQCFSF_STRUC_LENGTH
This is the length, in bytes, of the MQCFSF structure, including the
string at the end of the structure (the FilterValue field). The length
must be a multiple of 4, and must be sufficient to contain the string.
Bytes between the end of the string and the length defined by the
StrucLength field are not significant.

The following constant gives the length of the fixed part of the structure, that is
the length excluding the FilterValue field:

MQCFSF_STRUC_LENGTH_FIXED
Length of fixed part of command format filter string-parameter
structure.

Parameter (MQLONG)
Parameter identifier.

This identifies the parameter that is to be filtered on. The value of this
identifier depends on the parameter to be filtered on. Any of the parameters
which can be used in the Inquire command can be used in this field.

The parameter is from the following groups of parameters:
v MQCA_*
v MQCACF_*
v MQCAMO_*
v MQCACH_*

Operator (MQLONG)
Operator identifier.

This identifies the operator that is being used to evaluate whether the
parameter satisfies the filter-value.

Possible values are:

MQCFOP_GREATER
Greater than

Chapter 4. Structures for commands and responses 495



MQCFOP_LESS
Less than

MQCFOP_EQUAL
Equal to

MQCFOP_NOT_EQUAL
Not equal to

MQCFOP_NOT_LESS
Greater than or equal to

MQCFOP_NOT_GREATER
Less than or equal to

MQCFOP_LIKE
Matches a generic string

MQCFOP_NOT_LIKE
Does not match a generic string

MQCFOP_CONTAINS
Contains a specified string. Use this when filtering on lists of strings.

MQCFOP_EXCLUDES
Does not contain a specified string. Use this when filtering on lists of
strings.

MQCFOP_CONTAINS_GEN
Contains an item which matches a generic string. Use this when
filtering on lists of strings.

MQCFOP_EXCLUDES_GEN
Does not contain any item which matches a generic string. Use this
when filtering on lists of strings.

See the FilterValue description for details telling you which operators may be
used in which circumstances.

CodedCharSetId (MQLONG)
Coded character set identifier.

This specifies the coded character set identifier of the data in the FilterValue
field. The following special value can be used:

MQCCSI_DEFAULT
Default character set identifier.

The string data is in the character set defined by the CodedCharSetId
field in the MQ header structure that precedes the MQCFH structure, or
by the CodedCharSetId field in the MQMD if the MQCFH structure is
at the start of the message.

FilterValueLength (MQLONG)
Length of filter-value string.

This is the length, in bytes, of the data in the FilterValue field. This must be
zero or greater, and does not need to be a multiple of 4.

FilterValue (MQCHAR×FilterValueLength)
Filter value.

This specifies the filter-value that must be satisfied. Depending on the
parameter, the value and the permitted operators can be:
v An explicit string value.

496 WebSphere MQ: Programmable Command Formats and Administration Interface



You can only use the following operators:
– MQCFOP_GREATER
– MQCFOP_LESS
– MQCFOP_EQUAL
– MQCFOP_NOT_EQUAL
– MQCFOP_NOT_GREATER
– MQCFOP_NOT_LESS

v A generic string value. This is a character string with an asterisk at the end,
for example ABC*. The operator must be either MQCFOP_LIKE or
MQCFOP_NOT_LIKE. The characters must be valid for the attribute you are
testing. If the operator is MQCFOP_LIKE, all items where the attribute value
begins with the string (ABC in the example) are listed. If the operator is
MQCFOP_NOT_LIKE, all items where the attribute value does not begin
with the string are listed.

v If the parameter takes a list of string values, the operator can be:
– MQCFOP_CONTAINS
– MQCFOP_EXCLUDES
– MQCFOP_CONTAINS_GEN
– MQCFOP_EXCLUDES_GEN

An item in a list of values. The value can be explicit or or generic. If it is
explicit, use MQCFOP_CONTAINS or MQCFOP_EXCLUDES as the
operator. For example, if the value DEF is specified with the operator
MQCFOP_CONTAINS, all items where one of the attribute values is DEF are
listed. If it is generic, use MQCFOP_CONTAINS_GEN or
MQCFOP_EXCLUDES_GEN as the operator. If ABC* is specified with the
operator MQCFOP_CONTAINS_GEN, all items where one of the attribute
values begins with ABC are listed.

Note:

1. If the specified string is shorter than the standard length of the parameter
in MQFMT_ADMIN command messages, the omitted characters are
assumed to be blanks. If the specified string is longer than the standard
length, it is an error.

2. When the queue manager reads an MQCFSF structure in an
MQFMT_ADMIN message from the command input queue, the queue
manager processes the string as though it had been specified on an MQI
call. This means that within the string, the first null and the characters
following it (up to the end of the string) are treated as blanks.

The filter value must be a valid value for the parameter being tested.

Language declarations for MQCFSF

This structure is available in the following languages:

C language declaration
typedef struct tagMQCFSF {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG Operator; /* Operator identifier */
MQLONG CodedCharSetId; /* Coded character set identifier */
MQLONG FilterValueLength /* Filtervalue length */
MQCHAR[1] FilterValue; /* Filter value */
} MQCFSF;

Chapter 4. Structures for commands and responses 497

|



COBOL language declaration
** MQCFSF structure

10 MQCFSF.
** Structure type

15 MQCFSF-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFSF-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFSF-PARAMETER PIC S9(9) BINARY.
** Operator identifier

15 MQCFSF-OPERATOR PIC S9(9) BINARY.
** Coded character set identifier

15 MQCFSF-CODEDCHARSETID PIC S9(9) BINARY.
** Filter value length

15 MQCFSF-FILTERVALUE PIC S9(9) BINARY.

PL/I language declaration (z/OS only)
dcl
1 MQCFSF based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 Operator fixed bin(31) /* Operator identifier */
3 CodedCharSetId fixed bin(31) /* Coded character set identifier */
3 FilterValueLength fixed bin(31); /* Filter value length */

System/390 assembler-language declaration (z/OS only)
MQCFSF DSECT
MQCFSF_TYPE DS F Structure type
MQCFSF_STRUCLENGTH DS F Structure length
MQCFSF_PARAMETER DS F Parameter identifier
MQCFSF_OPERATOR DS F Operator identifier
MQCFSF_CODEDCHARSETID DS F Coded character set identifier
MQCFSF_FILTERVALUELENGTH DS F Filter value length
MQCFSF_LENGTH EQU *-MQCFSF Length of structure

ORG MQCFSF
MQCFSF_AREA DS CL(MQCFSF_LENGTH)

Visual Basic language declaration (Windows only)
Type MQCFSF

Type As Long ' Structure type
StrucLength As Long ' Structure length
Parameter As Long ' Parameter identifier
Operator As Long ' Operator identifier
CodedCharSetId As Long ' Coded character set identifier
FilterValueLength As Long ' Operator identifier
FilterValue As String*1 ' Condition value -- first character

End Type

Global MQCFSF_DEFAULT As MQCFSF

RPG language declaration (i5/OS only)
D* MQCFSF Structure
D*
D* Structure type
D FISTYP 1 4I 0 INZ(3)
D* Structure length
D FSFLEN 5 8I 0 INZ(16)
D* Parameter identifier
D FSFPRM 9 12I 0 INZ(0)
D* Reserved field
D FSFRSV 13 16I 0 INZ(0)
D* Parameter value
D FSFVAL 17 16
D* Structure type

498 WebSphere MQ: Programmable Command Formats and Administration Interface



D FSFTYP 17 20I 0
D* Structure length
D FSFLEN 21 24I 0
D* Parameter value
D FSFPRM 25 28I 0
D* Operator identifier
D FSFOP 29 32I 0
D* Coded character set identifier
D FSFCSI 33 36I 0
D* Length of condition
D FSFFVL 37 40 0
D* Condition value -- first character
D FSFFV 41 41
D*

MQCFSL - PCF string list parameter

The MQCFSL structure describes a string-list parameter in a message which is a
command or a response to a command. In either case, the format name in the
message descriptor is MQFMT_ADMIN.

The MQCFSL structure can also be used for user-defined message data. In this case
the message descriptor Format field is MQFMT_PCF (see “Message descriptor for a
PCF command” on page 7). Also in this case, not all of the fields in the structure
are meaningful. The supplied initial values can be used for most fields, but the
application must set the StrucLength, Count, StringLength, and Strings fields to
the values appropriate to the data.

The structure ends with a variable-length array of character strings; see the Strings
field below for further details.

See “Usage notes” on page 478 for further information on how to use the structure.

Fields for MQCFSL
Type (MQLONG)

Structure type.

This indicates that the structure is an MQCFSL structure describing a string-list
parameter. The value must be:

MQCFT_STRING_LIST
Structure defining a string list.

StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFSL structure, including the data at the
end of the structure (the Strings field). The length must be a multiple of four,
and must be sufficient to contain all of the strings; any bytes between the end
of the strings and the length defined by the StrucLength field are not
significant.

The following constant gives the length of the fixed part of the structure, that is
the length excluding the Strings field:

MQCFSL_STRUC_LENGTH_FIXED
Length of fixed part of command format string-list parameter structure.

Parameter (MQLONG)
Parameter identifier.

Chapter 4. Structures for commands and responses 499



This identifies the parameter whose values are contained in the structure. The
values that can occur in this field depend on the value of the Command field in
the MQCFH structure; see “MQCFH - PCF header” on page 478 for details.

The parameter is from the following groups of parameters:
v MQCA_*
v MQCACF_*
v MQCAMO_*
v MQCACH_*

CodedCharSetId (MQLONG)
Coded character set identifier.

This specifies the coded character set identifier of the data in the Strings field.
The following special value can be used:

MQCCSI_DEFAULT
Default character set identifier.

The string data is in the character set defined by the CodedCharSetId
field in the MQ header structure that precedes the MQCFH structure, or
by the CodedCharSetId field in the MQMD if the MQCFH structure is
at the start of the message.

Count (MQLONG)
Count of parameter values.

This is the number of strings present in the Strings field; it must be zero or
greater.

StringLength (MQLONG)
Length of one string.

This is the length in bytes of one parameter value, that is the length of one
string in the Strings field; all of the strings are this length. The length must be
zero or greater, and need not be a multiple of four.

Strings (MQCHAR×StringLength×Count)
String values.

This is a set of string values for the parameter identified by the Parameter
field. The number of strings is given by the Count field, and the length of each
string is given by the StringLength field. The strings are concatenated together,
with no bytes skipped between adjacent strings. The total length of the strings
is the length of one string multiplied by the number of strings present (that is,
StringLength×Count).
v In MQFMT_ADMIN command messages, if the specified string is shorter

than the standard length of the parameter, the omitted characters are
assumed to be blanks. If the specified string is longer than the standard
length, it is an error.

v In MQFMT_ADMIN response messages, string parameters may be returned
padded with blanks to the standard length of the parameter.

v In MQFMT_EVENT messages, trailing blanks may be omitted from string
parameters (that is, the string may be shorter than the standard length of the
parameter).

In all cases, StringLength gives the length of the string actually present in the
message.

The strings can contain any characters that are in the character set defined by
CodedCharSetId, and that are valid for the parameter identified by Parameter.

500 WebSphere MQ: Programmable Command Formats and Administration Interface



Note: When the queue manager reads an MQCFSL structure in an
MQFMT_ADMIN message from the command input queue, the queue
manager processes each string in the list as though it had been specified on an
MQI call. This means that within each string, the first null and the characters
following it (up to the end of the string) are treated as blanks.

In responses and all other cases, a null character in a string is treated as
normal data, and does not act as a delimiter for the string. This means that
when a receiving application reads a MQFMT_PCF, MQFMT_EVENT, or
MQFMT_ADMIN message, the receiving application receives all of the data
specified by the sending application.

The way that this field is declared depends on the programming language:
v For the C programming language, the field is declared as an array with one

element. Storage for the structure must be allocated dynamically, and
pointers used to address the fields within it.

v For the COBOL, PL/I, RPG, and System/390 assembler programming
languages, the field is omitted from the structure declaration. When an
instance of the structure is declared, you must include MQCFSL in a larger
structure, and declare additional fields following MQCFSL, to represent the
Strings field as required.

Language declarations for MQCFSL

The declarations available for this structure are:

C language declaration
typedef struct tagMQCFSL {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG CodedCharSetId; /* Coded character set identifier */
MQLONG Count; /* Count of parameter values */
MQLONG StringLength; /* Length of one string */
MQCHAR Strings[1]; /* String values - first

character */
} MQCFSL;

COBOL language declaration
** MQCFSL structure

10 MQCFSL.
** Structure type

15 MQCFSL-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFSL-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFSL-PARAMETER PIC S9(9) BINARY.
** Coded character set identifier

15 MQCFSL-CODEDCHARSETID PIC S9(9) BINARY.
** Count of parameter values

15 MQCFSL-COUNT PIC S9(9) BINARY.
** Length of one string

15 MQCFSL-STRINGLENGTH PIC S9(9) BINARY.

PL/I language declaration (z/OS only)
dcl
1 MQCFSL based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */

Chapter 4. Structures for commands and responses 501



3 CodedCharSetId fixed bin(31), /* Coded character set identifier */
3 Count fixed bin(31), /* Count of parameter values */
3 StringLength fixed bin(31); /* Length of one string */

System/390 assembler-language declaration (z/OS only)
MQCFSL DSECT
MQCFSL_TYPE DS F Structure type
MQCFSL_STRUCLENGTH DS F Structure length
MQCFSL_PARAMETER DS F Parameter identifier
MQCFSL_CODEDCHARSETID DS F Coded character set
* identifier
MQCFSL_COUNT DS F Count of parameter values
MQCFSL_STRINGLENGTH DS F Length of one string
MQCFSL_LENGTH EQU *-MQCFSL Length of structure

ORG MQCFSL
MQCFSL_AREA DS CL(MQCFSL_LENGTH)

Visual Basic language declaration (Windows only)
Type MQCFSL

Type As Long ' Structure type
StrucLength As Long ' Structure length
Parameter As Long ' Parameter identifier
CodedCharSetId As Long ' Coded character set identifier
Count As Long ' Count of parameter values
StringLength As Long ' Length of one string

End Type

Global MQCFSL_DEFAULT As MQCFSL

RPG language declaration (i5/OS only)
D* MQCFSL Structure
D*
D* Structure type
D SLTYP 1 4I 0 INZ(6)
D* Structure length
D SLLEN 5 8I 0 INZ(24
D* Parameter identifier
D SLPRM 9 12I 0 INZ(0)
D* Coded character set identifier
D SLCSI 13 16I 0 INZ(0)
D* Count of parameter values
D SLCNT 17 20I 0 INZ(0)
D* Length of one string
D SLSTL 21 24I 0 INZ(0)

MQCFST - PCF string parameter

The MQCFST structure describes a string parameter in a message that is a
command or a response to a command. In either case, the format name in the
message descriptor is MQFMT_ADMIN.

The MQCFST structure can also be used for user-defined message data. In this case
the message descriptor Format field is MQFMT_PCF (see “Message descriptor for a
PCF command” on page 7). Also in this case, not all of the fields in the structure
are meaningful. The supplied initial values can be used for most fields, but the
application must set the StrucLength, StringLength, and String fields to the values
appropriate to the data.

The structure ends with a variable-length character string; see the String field
below for further details.

502 WebSphere MQ: Programmable Command Formats and Administration Interface



See “Usage notes” on page 478 for further information on how to use the structure.

Fields for MQCFST
Type (MQLONG)

Structure type.

This indicates that the structure is an MQCFST structure describing a string
parameter. The value must be:

MQCFT_STRING
Structure defining a string.

StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFST structure, including the string at the
end of the structure (the String field). The length must be a multiple of four,
and must be sufficient to contain the string; any bytes between the end of the
string and the length defined by the StrucLength field are not significant.

The following constant gives the length of the fixed part of the structure, that is
the length excluding the String field:

MQCFST_STRUC_LENGTH_FIXED
Length of fixed part of command format string-parameter structure.

Parameter (MQLONG)
Parameter identifier.

This identifies the parameter whose value is contained in the structure. The
values that can occur in this field depend on the value of the Command field in
the MQCFH structure; see “MQCFH - PCF header” on page 478 for details.

The parameter is from the following groups of parameters:
v MQCA_*
v MQCACF_*
v MQCAMO_*
v MQCACH_*

CodedCharSetId (MQLONG)
Coded character set identifier.

This specifies the coded character set identifier of the data in the String field.
The following special value can be used:

MQCCSI_DEFAULT
Default character set identifier.

The string data is in the character set defined by the CodedCharSetId
field in the MQ header structure that precedes the MQCFH structure, or
by the CodedCharSetId field in the MQMD if the MQCFH structure is
at the start of the message.

StringLength (MQLONG)
Length of string.

This is the length in bytes of the data in the String field; it must be zero or
greater. This length need not be a multiple of four.

String (MQCHAR×StringLength)
String value.

This is the value of the parameter identified by the Parameter field:

Chapter 4. Structures for commands and responses 503



v In MQFMT_ADMIN command messages, if the specified string is shorter
than the standard length of the parameter, the omitted characters are
assumed to be blanks. If the specified string is longer than the standard
length, it is an error.

v In MQFMT_ADMIN response messages, string parameters may be returned
padded with blanks to the standard length of the parameter.

v In MQFMT_EVENT messages, trailing blanks may be omitted from string
parameters (that is, the string may be shorter than the standard length of the
parameter).

The value of StringLength depends on whether, when the specified string is
shorter than the standard length, padding blanks have been added to the
string. If this is the case, the value of StringLength is the sum of the actual
length of the string plus the padded blanks.

The string can contain any characters that are in the character set defined by
CodedCharSetId, and that are valid for the parameter identified by Parameter.

Note: When the queue manager reads an MQCFST structure in an
MQFMT_ADMIN message from the command input queue, the queue
manager processes the string as though it had been specified on an MQI call.
This means that within the string, the first null and the characters following it
(up to the end of the string) are treated as blanks.

In responses and all other cases, a null character in the string is treated as
normal data, and does not act as a delimiter for the string. This means that
when a receiving application reads a MQFMT_PCF, MQFMT_EVENT, or
MQFMT_ADMIN message, the receiving application receives all of the data
specified by the sending application.

The way that this field is declared depends on the programming language:
v For the C programming language, the field is declared as an array with one

element. Storage for the structure must be allocated dynamically, and
pointers used to address the fields within it.

v For the COBOL, PL/I, and System/390 assembler programming languages,
the field is omitted from the structure declaration. When an instance of the
structure is declared, the user must include MQCFST in a larger structure,
and declare additional field(s) following MQCFST, to represent the String
field as required.

Language declarations for MQCFST

This structure is available in the following languages:

C language declaration
typedef struct tagMQCFST {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG CodedCharSetId; /* Coded character set identifier */
MQLONG StringLength; /* Length of string */
MQCHAR String[1]; /* String value - first

character */
} MQCFST;

504 WebSphere MQ: Programmable Command Formats and Administration Interface



COBOL language declaration
** MQCFST structure

10 MQCFST.
** Structure type

15 MQCFST-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFST-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFST-PARAMETER PIC S9(9) BINARY.
** Coded character set identifier

15 MQCFST-CODEDCHARSETID PIC S9(9) BINARY.
** Length of string

15 MQCFST-STRINGLENGTH PIC S9(9) BINARY.

PL/I language declaration (z/OS only)
dcl
1 MQCFST based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 CodedCharSetId fixed bin(31), /* Coded character set identifier */
3 StringLength fixed bin(31); /* Length of string */

System/390 assembler-language declaration (z/OS only)
MQCFST DSECT
MQCFST_TYPE DS F Structure type
MQCFST_STRUCLENGTH DS F Structure length
MQCFST_PARAMETER DS F Parameter identifier
MQCFST_CODEDCHARSETID DS F Coded character set
* identifier
MQCFST_STRINGLENGTH DS F Length of string
MQCFST_LENGTH EQU *-MQCFST Length of structure

ORG MQCFST
MQCFST_AREA DS CL(MQCFST_LENGTH)

Visual Basic language declaration (Windows only)
Type MQCFST

Type As Long ' Structure type
StrucLength As Long ' Structure length
Parameter As Long ' Parameter identifier
CodedCharSetId As Long ' Coded character set identifier
StringLength As Long ' Length of string

End Type

Global MQCFST_DEFAULT As MQCFST

RPG language declaration (i5/OS only)
D* MQCFST Structure
D*
D* Structure type
D STTYP 1 4I 0 INZ(4)
D* Structure length
D STLEN 5 8I 0 INZ(20)
D* Parameter identifier
D STPRM 9 12I 0 INZ(0)
D* Coded character set identifier
D STCSI 13 16I 0 INZ(0)
D* Length of string
D STSTL 17 20I 0 INZ(0)
D*

Chapter 4. Structures for commands and responses 505



506 WebSphere MQ: Programmable Command Formats and Administration Interface



Chapter 5. PCF example

This is an example of how Programmable Command Formats can be used in a
program for administration of WebSphere MQ queues.

Inquire local queue attributes

A C language program is listed here that uses WebSphere MQ for Windows. It is
given as an example of using PCFs and has been limited to a simple case. This
program will be of most use as an example if you are considering the use of PCFs
to manage your WebSphere MQ environment.

The program, once compiled, will inquire of the default queue manager about a
subset of the attributes for all local queues defined to it. It then produces an output
file, SAVEQMGR.TST, in the directory from which it was run. This file is of a
format suitable for use with RUNMQSC.

Program listing
/*===========================================================================*/
/* */
/* This is a program to inquire of the default queue manager about the */
/* local queues defined to it. */
/* */
/* The program takes this information and appends it to a file */
/* SAVEQMGR.TST which is of a format suitable for RUNMQSC. It could, */
/* therefore, be used to recreate or clone a queue manager. */
/* */
/* It is offered as an example of using Programmable Command Formats (PCFs) */
/* as a method for administering a queue manager. */
/* */
/*===========================================================================*/

/* Include standard libraries */
#include <memory.h>
#include <stdio.h>

/* Include MQSeries headers */
#include <cmqc.h>
#include <cmqcfc.h>
#include <cmqxc.h>

typedef struct LocalQParms {
MQCHAR48 QName;
MQLONG QType;
MQCHAR64 QDesc;
MQLONG InhibitPut;
MQLONG DefPriority;
MQLONG DefPersistence;
MQLONG InhibitGet;
MQCHAR48 ProcessName;
MQLONG MaxQDepth;
MQLONG MaxMsgLength;
MQLONG BackoutThreshold;
MQCHAR48 BackoutReqQName;
MQLONG Shareability;
MQLONG DefInputOpenOption;
MQLONG HardenGetBackout;
MQLONG MsgDeliverySequence;

© Copyright IBM Corp. 2002, 2009 507

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



MQLONG RetentionInterval;
MQLONG DefinitionType;
MQLONG Usage;
MQLONG OpenInputCount;
MQLONG OpenOutputCount;
MQLONG CurrentQDepth;
MQCHAR12 CreationDate;
MQCHAR8 CreationTime;
MQCHAR48 InitiationQName;
MQLONG TriggerControl;
MQLONG TriggerType;
MQLONG TriggerMsgPriority;
MQLONG TriggerDepth;
MQCHAR64 TriggerData;
MQLONG Scope;
MQLONG QDepthHighLimit;
MQLONG QDepthLowLimit;
MQLONG QDepthMaxEvent;
MQLONG QDepthHighEvent;
MQLONG QDepthLowEvent;
MQLONG QServiceInterval;
MQLONG QServiceIntervalEvent;

} LocalQParms;

MQOD ObjDesc = { MQOD_DEFAULT };
MQMD md = { MQMD_DEFAULT };
MQPMO pmo = { MQPMO_DEFAULT };
MQGMO gmo = { MQGMO_DEFAULT };

void ProcessStringParm( MQCFST *pPCFString, LocalQParms *DefnLQ );

void ProcessIntegerParm( MQCFIN *pPCFInteger, LocalQParms *DefnLQ );

int AddToFileQLOCAL( LocalQParms DefnLQ );

void MQParmCpy( char *target, char *source, int length );

void PutMsg( MQHCONN hConn /* Connection to queue manager */
, MQCHAR8 MsgFormat /* Format of user data to be put in msg */
, MQHOBJ hQName /* handle of queue to put the message to */
, MQCHAR48 QName /* name of queue to put the message to */
, MQBYTE *UserMsg /* The user data to be put in the message */
, MQLONG UserMsgLen /* */
);

void GetMsg( MQHCONN hConn /* handle of queue manager */
, MQLONG MQParm /* Options to specify nature of get */
, MQHOBJ hQName /* handle of queue to read from */
, MQBYTE *UserMsg /* Input/Output buffer containing msg */
, MQLONG ReadBufferLen /* Length of supplied buffer */
);

MQHOBJ OpenQ( MQHCONN hConn
, MQCHAR48 QName
, MQLONG OpenOpts
);

int main( int argc, char *argv[] )
{

MQCHAR48 QMgrName; /* Name of connected queue mgr */
MQHCONN hConn; /* handle to connected queue mgr */
MQOD ObjDesc; /* */
MQLONG OpenOpts; /* */
MQLONG CompCode; /* MQ API completion code */
MQLONG Reason; /* Reason qualifying above */

/* */
MQHOBJ hAdminQ; /* handle to output queue */
MQHOBJ hReplyQ; /* handle to input queue */

508 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



/* */
MQLONG AdminMsgLen; /* Length of user message buffer */
MQBYTE *pAdminMsg; /* Ptr to outbound data buffer */
MQCFH *pPCFHeader; /* Ptr to PCF header structure */
MQCFST *pPCFString; /* Ptr to PCF string parm block */
MQCFIN *pPCFInteger; /* Ptr to PCF integer parm block */
MQLONG *pPCFType; /* Type field of PCF message parm */
LocalQParms DefnLQ; /* */

/* */
char ErrorReport[40]; /* */
MQCHAR8 MsgFormat; /* Format of inbound message */
short Index; /* Loop counter */

/* Connect to default queue manager */
QMgrName[0] = '\0'; /* set to null default QM */
if ( argc > 1 )

strcpy(QMgrName, argv[1]);

MQCONN( QMgrName /* use default queue manager */
, &hConn /* queue manager handle */
, &CompCode /* Completion code */
, &Reason /* Reason qualifying CompCode */
);

if ( CompCode != MQCC_OK ) {
printf( "MQCONN failed for %s, CC=%d RC=%d\n"

, QMgrName
, CompCode
, Reason
);

exit( -1 );
} /* endif */

/* Open all the required queues */
hAdminQ = OpenQ( hConn, "SYSTEM.ADMIN.COMMAND.QUEUE\0", MQOO_OUTPUT );

hReplyQ = OpenQ( hConn, "SAVEQMGR.REPLY.QUEUE\0", MQOO_INPUT_EXCLUSIVE );

/* ****************************************************************** */
/* Put a message to the SYSTEM.ADMIN.COMMAND.QUEUE to inquire all */
/* the local queues defined on the queue manager. */
/* */
/* The request consists of a Request Header and a parameter block */
/* used to specify the generic search. The header and the parameter */
/* block follow each other in a contiguous buffer which is pointed */
/* to by the variable pAdminMsg. This entire buffer is then put to */
/* the queue. */
/* */
/* The command server, (use STRMQCSV to start it), processes the */
/* SYSTEM.ADMIN.COMMAND.QUEUE and puts a reply on the application */
/* ReplyToQ for each defined queue. */
/* ****************************************************************** */

/* Set the length for the message buffer */
AdminMsgLen = MQCFH_STRUC_LENGTH

+ MQCFST_STRUC_LENGTH_FIXED + MQ_Q_NAME_LENGTH
+ MQCFIN_STRUC_LENGTH
;

/* ----------------------------------------------------------------- */
/* Set pointers to message data buffers */
/* */
/* pAdminMsg points to the start of the message buffer */
/* */
/* pPCFHeader also points to the start of the message buffer. It is */
/* used to indicate the type of command we wish to execute and the */
/* number of parameter blocks following in the message buffer. */

Chapter 5. PCF example 509

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



/* */
/* pPCFString points into the message buffer immediately after the */
/* header and is used to map the following bytes onto a PCF string */
/* parameter block. In this case the string is used to indicate the */
/* nameof the queue we want details about, * indicating all queues. */
/* */
/* pPCFInteger points into the message buffer immediately after the */
/* string block described above. It is used to map the following */
/* bytes onto a PCF integer parameter block. This block indicates */
/* the type of queue we wish to receive details about, thereby */
/* qualifying the generic search set up by passing the previous */
/* string parameter. */
/* */
/* Note that this example is a generic search for all attributes of */
/* all local queues known to the queue manager. By using different, */
/* or more, parameter blocks in the request header it is possible */
/* to narrow the search. */
/* ----------------------------------------------------------------- */

pAdminMsg = (MQBYTE *)malloc( AdminMsgLen );

pPCFHeader = (MQCFH *)pAdminMsg;

pPCFString = (MQCFST *)(pAdminMsg
+ MQCFH_STRUC_LENGTH
);

pPCFInteger = (MQCFIN *)( pAdminMsg
+ MQCFH_STRUC_LENGTH
+ MQCFST_STRUC_LENGTH_FIXED + MQ_Q_NAME_LENGTH
);

/* Setup request header */
pPCFHeader->Type = MQCFT_COMMAND;
pPCFHeader->StrucLength = MQCFH_STRUC_LENGTH;
pPCFHeader->Version = MQCFH_VERSION_1;
pPCFHeader->Command = MQCMD_INQUIRE_Q;
pPCFHeader->MsgSeqNumber = MQCFC_LAST;
pPCFHeader->Control = MQCFC_LAST;
pPCFHeader->ParameterCount = 2;

/* Setup parameter block */
pPCFString->Type = MQCFT_STRING;
pPCFString->StrucLength = MQCFST_STRUC_LENGTH_FIXED + MQ_Q_NAME_LENGTH;
pPCFString->Parameter = MQCA_Q_NAME;
pPCFString->CodedCharSetId = MQCCSI_DEFAULT;
pPCFString->StringLength = MQ_Q_NAME_LENGTH;
memset( pPCFString->String, ' ', MQ_Q_NAME_LENGTH );
memcpy( pPCFString->String, "*", 1 );

/* Setup parameter block */
pPCFInteger->Type = MQCFT_INTEGER;
pPCFInteger->StrucLength = MQCFIN_STRUC_LENGTH;
pPCFInteger->Parameter = MQIA_Q_TYPE;
pPCFInteger->Value = MQQT_LOCAL;

PutMsg( hConn /* Queue manager handle */
, MQFMT_ADMIN /* Format of message */
, hAdminQ /* Handle of command queue */
, "SAVEQMGR.REPLY.QUEUE\0" /* reply to queue */
, (MQBYTE *)pAdminMsg /* Data part of message to put */
, AdminMsgLen
);

free( pAdminMsg );

510 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



/* ****************************************************************** */
/* Get and process the replies received from the command server onto */
/* the applications ReplyToQ. */
/* */
/* There will be one message per defined local queue. */
/* */
/* The last message will have the Control field of the PCF header */
/* set to MQCFC_LAST. All others will be MQCFC_NOT_LAST. */
/* */
/* An individual Reply message consists of a header followed by a */
/* number a parameters, the exact number, type and order will depend */
/* upon the type of request. */
/* */
/* ------------------------------------------------------------------ */
/* */
/* The message is retrieved into a buffer pointed to by pAdminMsg. */
/* This buffer as been allocated to be large enough to hold all the */
/* parameters for a local queue definition. */
/* */
/* pPCFHeader is then allocated to point also to the beginning of */
/* the buffer and is used to access the PCF header structure. The */
/* header contains several fields. The one we are specifically */
/* interested in is the ParameterCount. This tells us how many */
/* parameters follow the header in the message buffer. There is */
/* one parameter for each local queue attribute known by the */
/* queue manager. */
/* */
/* At this point we do not know the order or type of each parameter */
/* block in the buffer, the first MQLONG of each block defines its */
/* type; they may be parameter blocks containing either strings or */
/* integers. */
/* */
/* pPCFType is used initially to point to the first byte beyond the */
/* known parameter block. Initially then, it points to the first byte */
/* after the PCF header. Subsequently it is incremented by the length */
/* of the identified parameter block and therefore points at the */
/* next. Looking at the value of the data pointed to by pPCFType we */
/* can decide how to process the next group of bytes, either as a */
/* string, or an integer. */
/* */
/* In this way we parse the message buffer extracting the values of */
/* each of the parameters we are interested in. */
/* */
/* ****************************************************************** */

/* AdminMsgLen is to be set to the length of the expected reply */
/* message. This structure is specific to Local Queues. */
AdminMsgLen = MQCFH_STRUC_LENGTH

+ ( MQCFST_STRUC_LENGTH_FIXED * 7 )
+ ( MQCFIN_STRUC_LENGTH * 39 )
+ ( MQ_Q_NAME_LENGTH * 6 )
+ ( MQ_Q_MGR_NAME_LENGTH * 2 )
+ MQ_Q_DESC_LENGTH
+ MQ_PROCESS_NAME_LENGTH
+ MQ_CREATION_DATE_LENGTH
+ MQ_CREATION_TIME_LENGTH
+ MQ_TRIGGER_DATA_LENGTH + 100
;

/* Set pointers to message data buffers */
pAdminMsg = (MQBYTE *)malloc( AdminMsgLen );

do {

GetMsg( hConn /* Queue manager handle */
, MQGMO_WAIT
, hReplyQ /* Get queue handle */

Chapter 5. PCF example 511

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



, (MQBYTE *)pAdminMsg /* pointer to message area */
, AdminMsgLen /* length of get buffer */
);

/* Examine Header */
pPCFHeader = (MQCFH *)pAdminMsg;

/* Examine first parameter */
pPCFType = (MQLONG *)(pAdminMsg + MQCFH_STRUC_LENGTH);

Index = 1;

while ( Index <= pPCFHeader->ParameterCount ) {

/* Establish the type of each parameter and allocate */
/* a pointer of the correct type to reference it. */
switch ( *pPCFType ) {
case MQCFT_INTEGER:

pPCFInteger = (MQCFIN *)pPCFType;
ProcessIntegerParm( pPCFInteger, &DefnLQ );
Index++;
/* Increment the pointer to the next parameter by the */
/* length of the current parm. */
pPCFType = (MQLONG *)( (MQBYTE *)pPCFType

+ pPCFInteger->StrucLength
);

break;
case MQCFT_STRING:

pPCFString = (MQCFST *)pPCFType;
ProcessStringParm( pPCFString, &DefnLQ );
Index++;
/* Increment the pointer to the next parameter by the */
/* length of the current parm. */
pPCFType = (MQLONG *)( (MQBYTE *)pPCFType

+ pPCFString->StrucLength
);

break;
} /* endswitch */

} /* endwhile */

/* ********************************************************* */
/* Message parsed, append to output file */
/* ********************************************************* */
AddToFileQLOCAL( DefnLQ );

/* ********************************************************* */
/* Finished processing the current message, do the next one. */
/* ********************************************************* */

} while ( pPCFHeader->Control == MQCFC_NOT_LAST ); /* enddo */

free( pAdminMsg );

/* *************************************** */
/* Processing of the local queues complete */
/* *************************************** */

}

void ProcessStringParm( MQCFST *pPCFString, LocalQParms *DefnLQ )
{

switch ( pPCFString->Parameter ) {
case MQCA_Q_NAME:

MQParmCpy( DefnLQ->QName, pPCFString->String, 48 );
break;

512 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



case MQCA_Q_DESC:
MQParmCpy( DefnLQ->QDesc, pPCFString->String, 64 );
break;

case MQCA_PROCESS_NAME:
MQParmCpy( DefnLQ->ProcessName, pPCFString->String, 48 );
break;

case MQCA_BACKOUT_REQ_Q_NAME:
MQParmCpy( DefnLQ->BackoutReqQName, pPCFString->String, 48 );
break;

case MQCA_CREATION_DATE:
MQParmCpy( DefnLQ->CreationDate, pPCFString->String, 12 );
break;

case MQCA_CREATION_TIME:
MQParmCpy( DefnLQ->CreationTime, pPCFString->String, 8 );
break;

case MQCA_INITIATION_Q_NAME:
MQParmCpy( DefnLQ->InitiationQName, pPCFString->String, 48 );
break;

case MQCA_TRIGGER_DATA:
MQParmCpy( DefnLQ->TriggerData, pPCFString->String, 64 );
break;

} /* endswitch */
}

void ProcessIntegerParm( MQCFIN *pPCFInteger, LocalQParms *DefnLQ )
{

switch ( pPCFInteger->Parameter ) {
case MQIA_Q_TYPE:

DefnLQ->QType = pPCFInteger->Value;
break;

case MQIA_INHIBIT_PUT:
DefnLQ->InhibitPut = pPCFInteger->Value;
break;

case MQIA_DEF_PRIORITY:
DefnLQ->DefPriority = pPCFInteger->Value;
break;

case MQIA_DEF_PERSISTENCE:
DefnLQ->DefPersistence = pPCFInteger->Value;
break;

case MQIA_INHIBIT_GET:
DefnLQ->InhibitGet = pPCFInteger->Value;
break;

case MQIA_SCOPE:
DefnLQ->Scope = pPCFInteger->Value;
break;

case MQIA_MAX_Q_DEPTH:
DefnLQ->MaxQDepth = pPCFInteger->Value;
break;

case MQIA_MAX_MSG_LENGTH:
DefnLQ->MaxMsgLength = pPCFInteger->Value;
break;

case MQIA_BACKOUT_THRESHOLD:
DefnLQ->BackoutThreshold = pPCFInteger->Value;
break;

case MQIA_SHAREABILITY:
DefnLQ->Shareability = pPCFInteger->Value;
break;

case MQIA_DEF_INPUT_OPEN_OPTION:
DefnLQ->DefInputOpenOption = pPCFInteger->Value;
break;

case MQIA_HARDEN_GET_BACKOUT:
DefnLQ->HardenGetBackout = pPCFInteger->Value;
break;

case MQIA_MSG_DELIVERY_SEQUENCE:
DefnLQ->MsgDeliverySequence = pPCFInteger->Value;
break;

case MQIA_RETENTION_INTERVAL:

Chapter 5. PCF example 513

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



DefnLQ->RetentionInterval = pPCFInteger->Value;
break;

case MQIA_DEFINITION_TYPE:
DefnLQ->DefinitionType = pPCFInteger->Value;
break;

case MQIA_USAGE:
DefnLQ->Usage = pPCFInteger->Value;
break;

case MQIA_OPEN_INPUT_COUNT:
DefnLQ->OpenInputCount = pPCFInteger->Value;
break;

case MQIA_OPEN_OUTPUT_COUNT:
DefnLQ->OpenOutputCount = pPCFInteger->Value;
break;

case MQIA_CURRENT_Q_DEPTH:
DefnLQ->CurrentQDepth = pPCFInteger->Value;
break;

case MQIA_TRIGGER_CONTROL:
DefnLQ->TriggerControl = pPCFInteger->Value;
break;

case MQIA_TRIGGER_TYPE:
DefnLQ->TriggerType = pPCFInteger->Value;
break;

case MQIA_TRIGGER_MSG_PRIORITY:
DefnLQ->TriggerMsgPriority = pPCFInteger->Value;
break;

case MQIA_TRIGGER_DEPTH:
DefnLQ->TriggerDepth = pPCFInteger->Value;
break;

case MQIA_Q_DEPTH_HIGH_LIMIT:
DefnLQ->QDepthHighLimit = pPCFInteger->Value;
break;

case MQIA_Q_DEPTH_LOW_LIMIT:
DefnLQ->QDepthLowLimit = pPCFInteger->Value;
break;

case MQIA_Q_DEPTH_MAX_EVENT:
DefnLQ->QDepthMaxEvent = pPCFInteger->Value;
break;

case MQIA_Q_DEPTH_HIGH_EVENT:
DefnLQ->QDepthHighEvent = pPCFInteger->Value;
break;

case MQIA_Q_DEPTH_LOW_EVENT:
DefnLQ->QDepthLowEvent = pPCFInteger->Value;
break;

case MQIA_Q_SERVICE_INTERVAL:
DefnLQ->QServiceInterval = pPCFInteger->Value;
break;

case MQIA_Q_SERVICE_INTERVAL_EVENT:
DefnLQ->QServiceIntervalEvent = pPCFInteger->Value;
break;

} /* endswitch */
}

/* ------------------------------------------------------------------------ */
/* */
/* This process takes the attributes of a single local queue and adds them */
/* to the end of a file, SAVEQMGR.TST, which can be found in the current */
/* directory. */
/* */
/* The file is of a format suitable for subsequent input to RUNMQSC. */
/* */
/* ------------------------------------------------------------------------ */
int AddToFileQLOCAL( LocalQParms DefnLQ )
{

char ParmBuffer[120]; /* Temporary buffer to hold for output to file */
FILE *fp; /* Pointer to a file */

514 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



/* Append these details to the end of the current SAVEQMGR.TST file */
fp = fopen( "SAVEQMGR.TST", "a" );

sprintf( ParmBuffer, "DEFINE QLOCAL ('%s') REPLACE +\n", DefnLQ.QName );
fputs( ParmBuffer, fp );

sprintf( ParmBuffer, " DESCR('%s') +\n" , DefnLQ.QDesc );
fputs( ParmBuffer, fp );

if ( DefnLQ.InhibitPut == MQQA_PUT_ALLOWED ) {
sprintf( ParmBuffer, " PUT(ENABLED) +\n" );
fputs( ParmBuffer, fp );

} else {
sprintf( ParmBuffer, " PUT(DISABLED) +\n" );
fputs( ParmBuffer, fp );

} /* endif */

sprintf( ParmBuffer, " DEFPRTY(%d) +\n", DefnLQ.DefPriority );
fputs( ParmBuffer, fp );

if ( DefnLQ.DefPersistence == MQPER_PERSISTENT ) {
sprintf( ParmBuffer, " DEFPSIST(YES) +\n" );
fputs( ParmBuffer, fp );

} else {
sprintf( ParmBuffer, " DEFPSIST(NO) +\n" );
fputs( ParmBuffer, fp );

} /* endif */

if ( DefnLQ.InhibitGet == MQQA_GET_ALLOWED ) {
sprintf( ParmBuffer, " GET(ENABLED) +\n" );
fputs( ParmBuffer, fp );

} else {
sprintf( ParmBuffer, " GET(DISABLED) +\n" );
fputs( ParmBuffer, fp );

} /* endif */

sprintf( ParmBuffer, " MAXDEPTH(%d) +\n", DefnLQ.MaxQDepth );
fputs( ParmBuffer, fp );

sprintf( ParmBuffer, " MAXMSGL(%d) +\n", DefnLQ.MaxMsgLength );
fputs( ParmBuffer, fp );

if ( DefnLQ.Shareability == MQQA_SHAREABLE ) {
sprintf( ParmBuffer, " SHARE +\n" );
fputs( ParmBuffer, fp );

} else {
sprintf( ParmBuffer, " NOSHARE +\n" );
fputs( ParmBuffer, fp );

} /* endif */

if ( DefnLQ.DefInputOpenOption == MQOO_INPUT_SHARED ) {
sprintf( ParmBuffer, " DEFSOPT(SHARED) +\n" );
fputs( ParmBuffer, fp );

} else {
sprintf( ParmBuffer, " DEFSOPT(EXCL) +\n" );
fputs( ParmBuffer, fp );

} /* endif */

if ( DefnLQ.MsgDeliverySequence == MQMDS_PRIORITY ) {
sprintf( ParmBuffer, " MSGDLVSQ(PRIORITY) +\n" );
fputs( ParmBuffer, fp );

} else {
sprintf( ParmBuffer, " MSGDLVSQ(FIFO) +\n" );
fputs( ParmBuffer, fp );

} /* endif */

if ( DefnLQ.HardenGetBackout == MQQA_BACKOUT_HARDENED ) {

Chapter 5. PCF example 515

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



sprintf( ParmBuffer, " HARDENBO +\n" );
fputs( ParmBuffer, fp );

} else {
sprintf( ParmBuffer, " NOHARDENBO +\n" );
fputs( ParmBuffer, fp );

} /* endif */

if ( DefnLQ.Usage == MQUS_NORMAL ) {
sprintf( ParmBuffer, " USAGE(NORMAL) +\n" );
fputs( ParmBuffer, fp );

} else {
sprintf( ParmBuffer, " USAGE(XMIT) +\n" );
fputs( ParmBuffer, fp );

} /* endif */

if ( DefnLQ.TriggerControl == MQTC_OFF ) {
sprintf( ParmBuffer, " NOTRIGGER +\n" );
fputs( ParmBuffer, fp );

} else {
sprintf( ParmBuffer, " TRIGGER +\n" );
fputs( ParmBuffer, fp );

} /* endif */

switch ( DefnLQ.TriggerType ) {
case MQTT_NONE:

sprintf( ParmBuffer, " TRIGTYPE(NONE) +\n" );
fputs( ParmBuffer, fp );
break;

case MQTT_FIRST:
sprintf( ParmBuffer, " TRIGTYPE(FIRST) +\n" );
fputs( ParmBuffer, fp );
break;

case MQTT_EVERY:
sprintf( ParmBuffer, " TRIGTYPE(EVERY) +\n" );
fputs( ParmBuffer, fp );
break;

case MQTT_DEPTH:
sprintf( ParmBuffer, " TRIGTYPE(DEPTH) +\n" );
fputs( ParmBuffer, fp );
break;

} /* endswitch */

sprintf( ParmBuffer, " TRIGDPTH(%d) +\n", DefnLQ.TriggerDepth );
fputs( ParmBuffer, fp );

sprintf( ParmBuffer, " TRIGMPRI(%d) +\n", DefnLQ.TriggerMsgPriority);
fputs( ParmBuffer, fp );

sprintf( ParmBuffer, " TRIGDATA('%s') +\n", DefnLQ.TriggerData );
fputs( ParmBuffer, fp );

sprintf( ParmBuffer, " PROCESS('%s') +\n", DefnLQ.ProcessName );
fputs( ParmBuffer, fp );

sprintf( ParmBuffer, " INITQ('%s') +\n", DefnLQ.InitiationQName );
fputs( ParmBuffer, fp );

sprintf( ParmBuffer, " RETINTVL(%d) +\n", DefnLQ.RetentionInterval );
fputs( ParmBuffer, fp );

sprintf( ParmBuffer, " BOTHRESH(%d) +\n", DefnLQ.BackoutThreshold );
fputs( ParmBuffer, fp );

sprintf( ParmBuffer, " BOQNAME('%s') +\n", DefnLQ.BackoutReqQName );
fputs( ParmBuffer, fp );

516 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



if ( DefnLQ.Scope == MQSCO_Q_MGR ) {
sprintf( ParmBuffer, " SCOPE(QMGR) +\n" );
fputs( ParmBuffer, fp );

} else {
sprintf( ParmBuffer, " SCOPE(CELL) +\n" );
fputs( ParmBuffer, fp );

} /* endif */

sprintf( ParmBuffer, " QDEPTHHI(%d) +\n", DefnLQ.QDepthHighLimit );
fputs( ParmBuffer, fp );

sprintf( ParmBuffer, " QDEPTHLO(%d) +\n", DefnLQ.QDepthLowLimit );
fputs( ParmBuffer, fp );

if ( DefnLQ.QDepthMaxEvent == MQEVR_ENABLED ) {
sprintf( ParmBuffer, " QDPMAXEV(ENABLED) +\n" );
fputs( ParmBuffer, fp );

} else {
sprintf( ParmBuffer, " QDPMAXEV(DISABLED) +\n" );
fputs( ParmBuffer, fp );

} /* endif */

if ( DefnLQ.QDepthHighEvent == MQEVR_ENABLED ) {
sprintf( ParmBuffer, " QDPHIEV(ENABLED) +\n" );
fputs( ParmBuffer, fp );

} else {
sprintf( ParmBuffer, " QDPHIEV(DISABLED) +\n" );
fputs( ParmBuffer, fp );

} /* endif */

if ( DefnLQ.QDepthLowEvent == MQEVR_ENABLED ) {
sprintf( ParmBuffer, " QDPLOEV(ENABLED) +\n" );
fputs( ParmBuffer, fp );

} else {
sprintf( ParmBuffer, " QDPLOEV(DISABLED) +\n" );
fputs( ParmBuffer, fp );

} /* endif */

sprintf( ParmBuffer, " QSVCINT(%d) +\n", DefnLQ.QServiceInterval );
fputs( ParmBuffer, fp );

switch ( DefnLQ.QServiceIntervalEvent ) {
case MQQSIE_OK:

sprintf( ParmBuffer, " QSVCIEV(OK)\n" );
fputs( ParmBuffer, fp );
break;

case MQQSIE_NONE:
sprintf( ParmBuffer, " QSVCIEV(NONE)\n" );
fputs( ParmBuffer, fp );
break;

case MQQSIE_HIGH:
sprintf( ParmBuffer, " QSVCIEV(HIGH)\n" );
fputs( ParmBuffer, fp );
break;

} /* endswitch */

sprintf( ParmBuffer, "\n" );
fputs( ParmBuffer, fp );

fclose(fp);

}

/* ------------------------------------------------------------------------ */
/* */
/* The queue manager returns strings of the maximum length for each */
/* specific parameter, padded with blanks. */

Chapter 5. PCF example 517

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



/* */
/* We are interested in only the nonblank characters so will extract them */
/* from the message buffer, and terminate the string with a null, \0. */
/* */
/* ------------------------------------------------------------------------ */
void MQParmCpy( char *target, char *source, int length )
{

int counter=0;

while ( counter < length && source[counter] != ' ' ) {
target[counter] = source[counter];
counter++;

} /* endwhile */

if ( counter < length) {
target[counter] = '\0';

} /* endif */
}

MQHOBJ OpenQ( MQHCONN hConn, MQCHAR48 QName, MQLONG OpenOpts)
{

MQHOBJ Hobj;
MQLONG CompCode, Reason;

ObjDesc.ObjectType = MQOT_Q;
strncpy(ObjDesc.ObjectName, QName, MQ_Q_NAME_LENGTH);

MQOPEN(hConn, /* connection handle */
&ObjDesc, /* object descriptor for queue */
OpenOpts, /* open options */
&Hobj, /* object handle */
&CompCode, /* MQOPEN completion code */
&Reason); /* reason code */

/* report reason, if any; stop if failed */
if (Reason != MQRC_NONE)
{

printf("MQOPEN for %s ended with Reason Code %d and Comp Code %d\n",
QName,
Reason,
CompCode);
exit( -1 );

}

return Hobj;
}

void PutMsg(MQHCONN hConn,
MQCHAR8 MsgFormat,
MQHOBJ hQName,
MQCHAR48 QName,
MQBYTE *UserMsg,
MQLONG UserMsgLen)

{
MQLONG CompCode, Reason;

/* setup the message descriptor prior to putting the message */
md.Report = MQRO_NONE;
md.MsgType = MQMT_REQUEST;
md.Expiry = MQEI_UNLIMITED;
md.Feedback = MQFB_NONE;
md.Encoding = MQENC_NATIVE;
md.Priority = MQPRI_PRIORITY_AS_Q_DEF;
md.Persistence = MQPER_PERSISTENCE_AS_Q_DEF;
md.MsgSeqNumber = 1;
md.Offset = 0;
md.MsgFlags = MQMF_NONE;

518 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



md.OriginalLength = MQOL_UNDEFINED;

memcpy(md.GroupId, MQGI_NONE, sizeof(md.GroupId));
memcpy(md.Format, MsgFormat, sizeof(md.Format) );
memcpy(md.ReplyToQ, QName, sizeof(md.ReplyToQ) );

/* reset MsgId and CorrelId to get a new one */
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId) );
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId) );

MQPUT(hConn, /* connection handle */
hQName, /* object handle */
&md, /* message descriptor */
&pmo, /* default options */
UserMsgLen, /* message length */
(MQBYTE *)UserMsg, /* message buffer */
&CompCode, /* completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE) {
printf("MQPUT ended with with Reason Code %d and Comp Code %d\n",
Reason, CompCode);
exit( -1 );

}
}

void GetMsg(MQHCONN hConn, MQLONG MQParm, MQHOBJ hQName,
MQBYTE *UserMsg, MQLONG ReadBufferLen)

{
MQLONG CompCode, Reason, msglen;

gmo.Options = MQParm;
gmo.WaitInterval = 15000;

/* reset MsgId and CorrelId to get a new one */
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId) );
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId) );

MQGET(hConn, /* connection handle */
hQName, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
ReadBufferLen, /* Buffer length */
(MQBYTE *)UserMsg, /* message buffer */
&msglen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE) {
printf("MQGET ended with Reason Code %d and Comp Code %d\n",
Reason, CompCode);
exit( -1 );

}
}

Chapter 5. PCF example 519

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



520 WebSphere MQ: Programmable Command Formats and Administration Interface



Part 2. Message Queuing Administration Interface

© Copyright IBM Corp. 2002, 2009 521



522 WebSphere MQ: Programmable Command Formats and Administration Interface



Chapter 6. Introduction to the WebSphere MQ Administration
Interface (MQAI)

This topic describes:
v The main WebSphere MQ Administration Interface (MQAI) concepts and

terminology
v When the MQAI can be used
v How to use the MQAI

MQAI concepts and terminology

The MQAI is a programming interface to WebSphere MQ, using the C language
and also Visual Basic for Windows. It is available on platforms other than z/OS. It
performs administration tasks on a WebSphere MQ queue manager using data bags.
Data bags allow you to handle properties (or parameters) of objects in a way that
is easier than using the other administration interface, Programmable Command
Formats (PCFs). The MQAI offers easier manipulation of PCFs than using the
MQGET and MQPUT calls. For more information about data bags, see Chapter 7,
“Using data bags,” on page 527. For more information about PCFs, see part 1 of
this book.

The data bag contains zero or more data items. These are ordered within the bag as
they are placed into the bag. This is called the insertion order. Each data item
contains a selector that identifies the data item and a value of that data item that
can be either an integer, a 64-bit integer, an integer filter, a string, a string filter, a
byte string, a byte string filter, or a handle of another bag.

There are two types of selector; user selectors and system selectors. These are
described in “MQAI Selectors” on page 628. The selectors are usually unique, but
it is possible to have multiple values for the same selector. In this case, an index
identifies the particular occurrence of selector that is required. Indexes are
described in “Indexing” on page 655.

A hierarchy of the above concepts is shown in Figure 1 on page 524.

© Copyright IBM Corp. 2002, 2009 523



Use of the MQAI

You can use the MQAI to:.
v Implement self-administering applications and administration tools. For

example, the Active Directory Services provided on Windows uses the MQAI.
For more information about the Active Directory Service Interface, see the
WebSphere MQ Using the Component Object Model Interface book.

v Simplify the use of PCF messages. The MQAI is an easy way to administer
WebSphere MQ; you do not have to write your own PCF messages and thus
avoid the problems associated with complex data structures.

v Handle error conditions more easily. It is difficult to get return codes back from
the WebSphere MQ script (MQSC) commands, but the MQAI makes it easier for
the program to handle error conditions.

of type of type

Data
valueSelector

SystemUser

64-Bit integer

Integer filter

String

String filter

Byte string

Byte string filter

Bag handle

Integer

Data
bag

Data
item

contains

contains
zero or more

Figure 1. Hierarchy of MQAI concepts

524 WebSphere MQ: Programmable Command Formats and Administration Interface



How do I use the MQAI?

The MQAI provides easier programming access to PCF messages. To pass
parameters in programs that are written using MQI calls, the PCF message must
contain the command and details of the string or integer data. To do this, several
statements are needed in your program for every structure, and memory space
must be allocated.

On the other hand, programs written using the MQAI pass parameters into the
data bag and only one statement is required for each structure. The data bag
removes the need for the programmer to handle arrays and allocate storage, and
provides some isolation from the details of PCF.

The MQAI administers WebSphere MQ by sending PCF messages to the command
server and waiting for a response as shown in Figure 2.

Overview

The following instructions give a brief overview of 1) what you do with the MQAI,
and 2) how you use the MQAI. Further details are contained in the rest of this
book.

To use the MQAI to administer WebSphere MQ:
1. Decide on the task you want to carry out (for example, Change Queue).

SYSTEM.ADMIN.COMMAND.QUEUE

MQAI

Command server

Queue Manager

configures

PCF
message

response
messages

reply Q

generates

uses

Program Application

returns

Figure 2. How the MQAI administers WebSphere MQ

Chapter 6. Introduction to the WebSphere MQ Administration Interface (MQAI) 525



2. Use part 1 of this book as a reference to the commands and responses sent
between a WebSphere MQ systems management application program and a
WebSphere MQ queue manager. For example, look up the Change, Create and
Copy Queues command in this book.

3. Choose the values of the selectors for the required parameters and any optional
parameters that you want to set.

4. Create a data bag using the mqCreateBag call and enter values for each of these
selectors using the mqAdd* calls. This is described in Chapter 7, “Using data
bags,” on page 527.

5. Ensure the command server is running.
6. Using the mqExecute call, send the message to the command server and wait

for a response. This is described in Chapter 8, “Configuring WebSphere MQ
using mqExecute,” on page 535.

To use the MQAI to exchange data between applications:
v The sender must:

1. Create a data bag intended to send the data using mqCreateBag. See
“Creating and deleting data bags” on page 527.

2. Add the data to be sent in the bag using mqAddInteger or mqAddString. See
“Adding data items to bags” on page 529.

3. Use the mqPutBag call to convert the data in the bag into a PCF message
and put the message onto the required queue. See “Putting and receiving
data bags” on page 540.

v The receiver must:
1. Create a data bag intended to receive the data using mqCreateBag. See

“Creating and deleting data bags” on page 527.
2. Use the mqGetBag call to get the PCF message from the queue and recreate a

bag from the PCF message. See “Putting and receiving data bags” on page
540.

Using the MQAI is discussed in more detail in the topics that follow.

Building your MQAI application

To build your application using the MQAI, you link to the same libraries as you do
for WebSphere MQ. For information on how to build your WebSphere MQ
applications, see the WebSphere MQ Application Programming Guide.

526 WebSphere MQ: Programmable Command Formats and Administration Interface



Chapter 7. Using data bags

A data bag is a means of handling properties (or parameters) of objects using the
MQAI. This topic discusses the configuration of data bags. It describes:
v The different types of bag and their uses
v How to create and delete data bags
v Types of data item
v How to add data items to data bags
v How to change information within a data bag
v How to count data items within a data bag
v How to delete data items
v How to inquire within data bags
v System items

Types of data bag

You can choose the type of data bag that you want to create depending on the task
that you wish to perform:

user bag
A simple bag used for user data.

administration bag
A bag created for data used to administer WebSphere MQ objects by
sending administration messages to a command server. The administration
bag automatically implies certain options as described in “Creating and
deleting data bags.”

command bag
A bag also created for commands for administering WebSphere MQ
objects. However, unlike the administration bag, the command bag does
not automatically imply certain options although these options are
available. Again, these options are discussed in “Creating and deleting data
bags.”

group bag
A bag used to hold a set of grouped data items. Group bags cannot be
used for administering WebSphere MQ objects.

In addition, the system bag is created by the MQAI when a reply message is
returned from the command server and placed into a user’s output bag. A system
bag cannot be modified by the user.

Creating and deleting data bags

To use the MQAI, you first create a data bag using the mqCreateBag call. As input
to this call, you supply one or more options to control the creation of the bag.

The Options parameter of the MQCreateBag call lets you choose whether to create
a user bag, a command bag, a group bag, or an administration bag.

© Copyright IBM Corp. 2002, 2009 527



To create a user bag, a command bag, or a group bag, you can choose one or more
further options to:
v Use the list form when there are two or more adjacent occurrences of the same

selector in a bag.
v Reorder the data items as they are added to a PCF message to ensure that the

parameters are in their correct order.
v Check the values of user selectors for items that you add to the bag.

Administration bags automatically imply these options.

A data bag is identified by its handle. The bag handle is returned from
mqCreateBag and must be supplied on all other calls that use the data bag.

For a full description of the mqCreateBag call, see “mqCreateBag” on page 567.

Deleting data bags

Any data bag that is created by the user must also be deleted using the
mqDeleteBag call. For example, if a bag is created in the user code, it must also be
deleted in the user code.

System bags are created and deleted automatically by the MQAI. For more
information about this, see “Sending administration commands to the command
server” on page 535. User code cannot delete a system bag.

For a full description of the mqDeleteBag call, see “mqDeleteBag” on page 571.

Types of data item

Here are the types of data item available within the MQAI:
v Integer
v 64-bit integer
v Integer filter
v Character-string
v String filter
v Byte string
v Byte string filter
v Bag handle

When you have created a data bag, you can populate it with integer or
character-string items. You can inquire about all three types of item.

Note: You cannot insert bag handles.

These data items can be user or system items. User items contain user data such as
attributes of objects that are being administered. System items should be used for
more control over the messages generated: for example, the generation of message
headers. For more information about system items, see “System items” on page
533.

528 WebSphere MQ: Programmable Command Formats and Administration Interface



Adding data items to bags

The MQAI lets you add integer items, 64-bit integer items, integer filter items,
character-string items, string filter, byte string items, and byte string filter items to
bags and this is shown in Figure 3. The items are identified by a selector. Usually
one selector identifies one item only, but this is not always the case. If a data item
with the specified selector is already present in the bag, an additional instance of
that selector is added to the end of the bag.

Add data items to a bag using the mqAdd* calls:
v To add integer items, use the mqAddInteger call as described in

“mqAddInteger” on page 551
v To add 64-bit integer items, use the mqAddInteger64 call as described in

“mqAddInteger64” on page 553
v To add integer filter items, use the mqAddIntegerFilter call as described in

“mqAddIntegerFilter” on page 554
v To add character-string items, use the mqAddString call as described in

“mqAddString” on page 556
v To add string filter items, use the mqAddStringFilter call as described in

“mqAddStringFilter” on page 558
v To add byte string items, use the mqAddByteString call as described in

“mqAddByteString” on page 545
v To add byte string filter items, use the mqAddByteStringFilter call as described

in “mqAddByteStringFilter” on page 547

. .

Adding an inquiry command to a bag

The mqAddInquiry call is used to add an inquiry command to a bag. The call is
specifically for administration purposes, so it can be used with administration bags
only. It lets you specify the selectors of attributes on which you want to inquire
from WebSphere MQ.

For a full description of the mqAddInquiry call, see “mqAddInquiry” on page 549.

Filtering and querying data items

When using the MQAI to inquire about the attributes of WebSphere MQ objects,
you can control the data that is returned to your program in two ways.

data
item

5

data
item

0

data
item

1

data
item

4. . . . . .

data bag

add

Figure 3. Adding data items

Chapter 7. Using data bags 529



1. You can filter the data that is returned using the mqAddInteger and
mqAddString calls. This approach lets you specify a Selector and ItemValue
pair, for example:
mqAddInteger(inputbag, MQIA_Q_TYPE, MQQT_LOCAL)

This example specifies that the queue type (Selector) must be local (ItemValue)
and this specification must match the attributes of the object (in this case, a
queue) about which you are inquiring.
Other attributes that can be filtered correspond to the PCF Inquire* commands
that can be found in part 1 of this book. For example, to inquire about the
attributes of a channel, see the Inquire Channel command in this book. The
“Required parameters” and “Optional parameters” of the Inquire Channel
command identify the selectors that you can use for filtering.

2. You can query particular attributes of an object using the mqAddInquiry call.
This specifies the selector in which you are interested. If you do not specify the
selector, all attributes of the object are returned.

Here is an example of filtering and querying the attributes of a queue:
/* Request information about all queues */
mqAddString(adminbag, MQCA_Q_NAME, “*”)

/* Filter attributes so that local queues only are returned */
mqAddInteger(adminbag, MQIA_Q_TYPE, MQQT_LOCAL)

/* Query the names and current depths of the local queues */
mqAddInquiry(adminbag, MQCA_Q_NAME)
mqAddInquiry(adminbag, MQIA_CURRENT_Q_DEPTH)

/* Send inquiry to the command server and wait for reply */
mqExecute(MQCMD_INQUIRE_Q, ...)

For more examples of filtering and querying data items, see Chapter 11, “Examples
of using the MQAI,” on page 631.

Changing information within a bag

The MQAI lets you change information within a bag using the mqSet* calls. You
can:
1. Modify data items within a bag. The index allows an individual instance of a

parameter to be replaced by identifying the occurrence of the item to be
modified (see Figure 4).

2. Delete all existing occurrences of the specified selector and add a new
occurrence to the end of the bag. (See Figure 5 on page 531.) A special index

data
item

0

data
item

1

data
item

4. . . . . .

data bag

INDEX

Figure 4. Modifying a single data item

530 WebSphere MQ: Programmable Command Formats and Administration Interface



value allows all instances of a parameter to be replaced.

Note: The index preserves the insertion order within the bag but can affect the
indices of other data items.

The mqSetInteger call lets you modify integer items within a bag. The
mqSetInteger64 call lets you modify 64-bit integer items. The mqSetIntegerFilter
call lets you modify integer filter items. The mqSetString call lets you modify
character-string items. The mqSetStringFilter call lets you modify string filter items.
The mqSetByteString call lets you modify byte string items. The
mqSetByteStringFilter call lets you modify byte string filter items. Alternatively,
you can use these calls to delete all existing occurrences of the specified selector
and add a new occurrence at the end of the bag. The data item can be a user item
or a system item.

For a full description of these calls, see:
v “mqSetInteger” on page 613
v “mqSetInteger64” on page 615
v “mqSetIntegerFilter” on page 617
v “mqSetString” on page 620
v “mqSetStringFilter” on page 623
v “mqSetByteString” on page 607
v “mqSetByteStringFilter” on page 610

Counting data items

The mqCountItems call counts the number of user items, system items, or both,
that are stored in a data bag, and returns this number. For example,
mqCountItems(Bag, 7, ...), returns the number of items in the bag with a selector
of 7. It can count items by individual selector, by user selectors, by system
selectors, or by all selectors.

Note: This call counts the number of data items, not the number of unique
selectors in the bag. A selector can occur multiple times, so there may be fewer
unique selectors in the bag than data items.

For a full description of the mqCountItems call, see “mqCountItems” on page 565.

data
item

5

data
item

0

data
item

1

data
item

4. . . . . .

data bag

addINDEX

Figure 5. Modifying all data items

Chapter 7. Using data bags 531



Deleting data items

You can delete items from bags in a number of ways. You can:
v Remove one or more user items from a bag,
v Delete all user items from a bag, that is, clear a bag,
v Delete user items from the end of a bag, that is, truncate a bag.

Deleting data items from a bag using the mqDeleteItem call

The mqDeleteItem call removes one or more user items from a bag. The index is
used to delete either:
1. A single occurrence of the specified selector. (See Figure 6.)

or
2. All occurrences of the specified selector. (See Figure 7.)

Note: The index preserves the insertion order within the bag but can affect the
indices of other data items. For example, the mqDeleteItem call does not preserve
the index values of the data items that follow the deleted item because the indices
are reorganized to fill the gap that remains from the deleted item.

For a full description of the mqDeleteItem call, see “mqDeleteItem” on page 572.

Clearing a bag using the mqClearBag call

The mqClearBag call removes all user items from a user bag and resets system
items to their initial values. System bags contained within the bag are also deleted.

For a full description of the mqClearBag call, see “mqClearBag” on page 564.

data
item

0

data
item

1

data
item

4. . . . . .

data bag

INDEX

Figure 6. Deleting a single data item

. . . . . .

data bag

INDEX

data
item

0

selector A

data
item

1

selector B

data
item

3

selector B

data
item

4

selector C

Figure 7. Deleting all data items

532 WebSphere MQ: Programmable Command Formats and Administration Interface



Truncating a bag using the mqTruncateBag call

The mqTruncateBag call reduces the number of user items in a user bag by
deleting the items from the end of the bag, starting with the most recently added
item. For example, it can be used when using the same header information to
generate more than one message.

For a full description of the mqTruncateBag call, see “mqTruncateBag” on page
627.

Inquiring within data bags

You can inquire about:
v The value of an integer item using the mqInquireInteger call. See

“mqInquireInteger” on page 588.
v The value of a 64-bit integer item using the mqInquireInteger64 call. See

“mqInquireInteger64” on page 591.
v The value of an integer filter item using the mqInquireIntegerFilter call. See

“mqInquireIntegerFilter” on page 593.
v The value of a character-string item using the mqInquireString call. See

“mqInquireString” on page 598.
v The value of a string filter item using the mqInquireStringFilter call. See

“mqInquireStringFilter” on page 601.
v The value of a byte string item using the mqInquireByteString call. See

“mqInquireByteString” on page 583.
v The value of a byte string filter item using the mqInquireByteStringFilter call.

See “mqInquireByteStringFilter” on page 585.
v The value of a bag handle using the mqInquireBag call. See “mqInquireBag” on

page 580.

You can also inquire about the type (integer, 64-bit integer, integer filter, character
string, string filter, byte string, byte string filter or bag handle) of a specific item
using the mqInquireItemInfo call. See “mqInquireItemInfo” on page 595.

System items

System items can be used for:
v The generation of PCF headers. System items can control the PCF command

identifier, control options, message sequence number, and command type.

data
item

0

data
item

1

data
item

4. . . . . .

data bag

TRUNCATION

Figure 8. Truncating a bag

Chapter 7. Using data bags 533



v Data conversion. System items handle the character-set identifier for the
character-string items in the bag.

Like all data items, system items consist of a selector and a value. For information
about these selectors and what they are for, see “MQAI Selectors” on page 628.

System items are unique. One or more system items can be identified by a system
selector. There is only one occurrence of each system selector.

Most system items can be modified (see “Changing information within a bag” on
page 530), but the bag-creation options cannot be changed by the user. You cannot
delete system items. (See “Deleting data items” on page 532.)

534 WebSphere MQ: Programmable Command Formats and Administration Interface



Chapter 8. Configuring WebSphere MQ using mqExecute

After you have created and populated your data bag, you can send an
administration command message to the command server of a queue manager and
wait for any response messages. The easiest way to do this is by using the
mqExecute call. This handles the exchange with the command server and returns
responses in a bag.

Sending administration commands to the command server

The mqExecute call sends an administration command message as a nonpersistent
message and waits for any responses. Responses are returned in a response bag.
These might contain information about attributes relating to several WebSphere
MQ objects or a series of PCF error response messages, for example. Therefore, the
response bag could contain a return code only or it could contain nested bags.

Response messages are placed into system bags that are created by the system. For
example, for inquiries about the names of objects, a system bag is created to hold
those object names and the bag is inserted into the user bag. Handles to these bags
are then inserted into the response bag and the nested bag can be accessed by the
selector MQHA_BAG_HANDLE. The system bag stays in storage, if it is not
deleted, until the response bag is deleted.

The concept of nesting is shown in Figure 9.

As input to the mqExecute call, you must supply:
v An MQI connection handle.
v The command to be executed. This should be one of the MQCMD_* values.

Note: If this value is not recognized by the MQAI, the value is still accepted.
However, if the mqAddInquiry call was used to insert values into the bag, this
parameter must be an INQUIRE command recognized by the MQAI. That is, the
parameter should be of the form MQCMD_INQUIRE_*.

v Optionally, a handle of the bag containing options that control the processing of
the call. This is also where you can specify the maximum time in milliseconds
that the MQAI should wait for each reply message.

response
message

user/response bagsystem bag

system bag

NESTED

bag
handle

Figure 9. Nesting

© Copyright IBM Corp. 2002, 2009 535



v A handle of the administration bag that contains details of the administration
command to be issued.

v A handle of the response bag that receives the reply messages.

The following are optional:
v An object handle of the queue where the administration command is to be

placed.
If no object handle is specified, the administration command is placed on the
SYSTEM.ADMIN.COMMAND.QUEUE belonging to the currently connected
queue manager. This is the default.

v An object handle of the queue where reply messages are to be placed.
You can choose to place the reply messages on a dynamic queue that is created
automatically by the MQAI. The queue created exists for the duration of the call
only, and is deleted by the MQAI on exit from the mqExecute call.

Example code

Here are some example uses of the mqExecute call.

The example shown in figure Figure 10 creates a local queue (with a maximum
message length of 100 bytes) on a queue manager:

The example shown in figure Figure 11 on page 537 inquires about all attributes of
a particular queue. The mqAddInquiry call identifies all WebSphere MQ object
attributes of a queue to be returned by the Inquire parameter on mqExecute.

/* Create a bag for the data you want in your PCF message */
mqCreateBag(MQCBO_ADMIN_BAG, &hbagRequest)

/* Create a bag to be filled with the response from the command server */
mqCreateBag(MQCBO_ADMIN_BAG, &hbagResponse)

/* Create a queue */
/* Supply queue name */
mqAddString(hbagRequest, MQCA_Q_NAME, "QBERT")

/* Supply queue type */
mqAddString(hbagRequest, MQIA_Q_TYPE, MQQT_LOCAL)

/* Maximum message length is an optional parameter */
mqAddString(hbagRequest, MQIA_MAX_MSG_LENGTH, 100)

/* Ask the command server to create the queue */
mqExecute(MQCMD_CREATE_Q, hbagRequest, hbagResponse)

/* Tidy up memory allocated */
mqDeleteBag(hbagRequest)
mqDeleteBag(hbagResponse)

Figure 10. Using mqExecute to create a local queue

536 WebSphere MQ: Programmable Command Formats and Administration Interface



Using mqExecute is the simplest way of administering WebSphere MQ, but
lower-level calls, mqBagToBuffer and mqBufferToBag, can be used. For more
information about the use of these calls, see Chapter 9, “Exchanging data between
applications,” on page 539.

For sample programs, see Chapter 11, “Examples of using the MQAI,” on page 631.

Hints and tips for configuring WebSphere MQ

The MQAI uses PCF messages to send administration commands to the command
server rather than dealing directly with the command server itself. Here are some
tips for configuring WebSphere MQ using the MQAI:
v Character strings in WebSphere MQ are blank padded to a fixed length. Using

C, null-terminated strings can normally be supplied as input parameters to
WebSphere MQ programming interfaces.

v To clear the value of a string attribute, set it to a single blank rather than an
empty string.

v It is recommended that you know in advance the attributes that you want to
change and that you inquire on just those attributes. This is because the number
of attributes that can be returned by the Inquire Queue (Response) command is
higher than the number of attributes that can be changed using the Change
Queue command. (See part 1 of this book for details of these commands.)
Therefore, you are not recommended to attempt to modify all the attributes that
you inquire.

v If an MQAI call fails, some detail of the failure is returned to the response bag.
Further detail can then be found in a nested bag that can be accessed by the
selector MQHA_BAG_HANDLE. For example, if an mqExecute call fails with a
reason code of MQRCCF_COMMAND_FAILED, this information is returned in
the response bag. However, a possible reason for this reason code is that a
selector specified was not valid for the type of command message and this detail
of information is found in a nested bag that can be accessed via a bag handle.
The following diagram shows this:

/* Create a bag for the data you want in your PCF message */
mqCreateBag(MQCBO_ADMIN_BAG, &hbagRequest)

/* Create a bag to be filled with the response from the command server */
mqCreateBag(MQCBO_ADMIN_BAG, &hbagResponse)

/* Inquire about a queue by supplying its name */
/* (other parameters are optional) */
mqAddString(hbagRequest, MQCA_Q_NAME, "QBERT")

/* Request the command server to inquire about the queue */
mqExecute(MQCMD_INQUIRE_Q, hbagRequest, hbagResponse)

/* If it worked, the attributes of the queue are returned */
/* in a system bag within the response bag */
mqInquireBag(hbagResponse, MQHA_BAG_HANDLE, 0, &hbagAttributes)

/* Inquire the name of the queue and its current depth */
mqInquireString(hbagAttributes, MQCA_Q_NAME, &stringAttribute)
mqInquireString(hbagAttributes, MQIA_CURRENT_Q_DEPTH, &integerAttribute)

/* Tidy up memory allocated */
mqDeleteBag(hbagRequest)
mqDeleteBag(hbagResponse)

Figure 11. Using mqExecute to inquire about queue attributes

Chapter 8. Configuring WebSphere MQ using mqExecute 537



MQIASY_COMP_CODE      MQCC_FAILDED
MQIASY_REASON              MQRCCF_COMMAND_FAILED

MQHA_BAG_HANDLE

MQHA_BAG_HANDLE

Response bag

MQIASY_COMP_CODE      MQCC_FAILED
MQIASY_REASON              MQRCCF_COMMAND_FAILED

MQIACF_PARAMETER_ID  <invalid selector>

MQIASY_MSG_SEQ_NUMBER 1

System bag corresponding to first response message
returned from the command server

MQIASY_COMP_CODE     MQCC_FAILED
MQIASY_REASON             MQRCCF_COMMAND_FAILED

MQIASY_CONTROL           MQCFC_LAST
MQIASY_MSG_SEQ_NIMBER 2

System bag corresponding to final (summary) message
returned from the command server

nested
bag

nested
bag

538 WebSphere MQ: Programmable Command Formats and Administration Interface



Chapter 9. Exchanging data between applications

The MQAI can also be used to exchange data between applications. The
application data is sent in PCF format and packed and unpacked by the MQAI. If
your message data consists of integers and character strings, you can use the
MQAI to take advantage of WebSphere MQ built-in data conversion for PCF data.
This avoids the need to write data-conversion exits. To exchange data, the sender
must first create the message and send it to the receiving application. Then, the
receiver must read the message and extract the data. This can be done in two
ways:
1. Converting bags and buffers, that is, using the mqBagToBuffer and

mqBufferToBag calls.
2. Putting and getting bags, that is, using the mqPutBag and mqGetBag calls to

send and receive PCF messages.

Both of these options are described in this topic.

Note: You cannot convert a bag containing nested bags into a message.

Converting bags and buffers

To send data between applications, firstly the message data is placed in a bag.
Then, the data in the bag is converted into a PCF message using the
mqBagToBuffer call. The PCF message is sent to the required queue using the
MQPUT call. This is shown in Figure Figure 12. For a full description of the
mqBagToBuffer call, see “mqBagToBuffer” on page 560.

To receive data, the message is received into a buffer using the MQGET call. The
data in the buffer is then converted into a bag using the mqBufferToBag call,
providing the buffer contains a valid PCF message. This is shown in Figure
Figure 13. For a full description of the mqBufferToBag call, see “mqBufferToBag”
on page 563.

PCF
message

queue

PCF
message

buffer

message
data

bag

MQPUTmqBagToBuffer

Figure 12. Converting bags to PCF messages

PCF
message

queue

PCF
message

buffer

message
data

bag

mqBufferToBagMQGET

Figure 13. Converting PCF messages to bag form

© Copyright IBM Corp. 2002, 2009 539



Putting and receiving data bags

Data can also be sent between applications by putting and getting data bags using
the mqPutBag and mqGetBag calls. This lets the MQAI handle the buffer rather
than the application. The mqPutBag call converts the contents of the specified bag
into a PCF message and sends the message to the specified queue and the
mqGetBag call removes the message from the specified queue and converts it back
into a data bag. Therefore, the mqPutBag call is the equivalent of the
mqBagToBuffer call followed by MQPUT, and the mqGetBag is the equivalent of
the MQGET call followed by mqBufferToBag.

Note: If you choose to use the mqGetBag call, the PCF details within the message
must be correct; if they are not, an appropriate error results and the PCF message
is not returned.

Sending PCF messages to a specified queue

To send a message to a specified queue, the mqPutBag call converts the contents of
the specified bag into a PCF message and sends the message to the specified
queue. The contents of the bag are left unchanged after the call.

As input to this call, you must supply:
v An MQI connection handle.
v An object handle for the queue on which the message is to be placed.
v A message descriptor. For more information about the message descriptor, see

the WebSphere MQ Application Programming Reference.
v Put Message Options using the MQPMO structure. For more information about

the MQPMO structure, see the WebSphere MQ Application Programming
Reference.

v The handle of the bag to be converted to a message.

Note: If the bag contains an administration message and the mqAddInquiry call
was used to insert values into the bag, the value of the MQIASY_COMMAND
data item must be an INQUIRE command recognized by the MQAI.

For a full description of the mqPutBag call, see “mqPutBag” on page 605.

Receiving PCF messages from a specified queue

To receive a message from a specified queue, the mqGetBag call gets a PCF
message from a specified queue and converts the message data into a data bag.

As input to this call, you must supply:
v An MQI connection handle.
v An object handle of the queue from which the message is to be read.
v A message descriptor. Within the MQMD structure, the Format parameter must

be MQFMT_ADMIN, MQFMT_EVENT, or MQFMT_PCF.

Note: If the message is received within a unit of work (that is, with the
MQGMO_SYNCPOINT option) and the message has an unsupported format, the
unit of work can be backed out. The message is then reinstated on the queue

540 WebSphere MQ: Programmable Command Formats and Administration Interface



and can be retrieved using the MQGET call instead of the mqGetBag call. For
more information about the message descriptor, see the WebSphere MQ
Application Programming Reference.

v Get Message Options using the MQGMO structure. For more information about
the MQGMO structure, see the WebSphere MQ Application Programming
Reference.

v The handle of the bag to contain the converted message.

For a full description of the mqGetBag call, see “mqGetBag” on page 578.

Chapter 9. Exchanging data between applications 541



542 WebSphere MQ: Programmable Command Formats and Administration Interface



Chapter 10. MQAI reference

This topic contains reference information for the MQAI.

There are two types of selector: user selector and system selector. These are described
in “MQAI Selectors” on page 628.

There are three types of call:
v Data-bag manipulation calls for configuring data bags:

– “mqAddBag” on page 544
– “mqAddByteString” on page 545
– “mqAddByteStringFilter” on page 547
– “mqAddInquiry” on page 549
– “mqAddInteger” on page 551
– “mqAddInteger64” on page 553
– “mqAddIntegerFilter” on page 554
– “mqAddString” on page 556
– “mqAddStringFilter” on page 558
– “mqClearBag” on page 564
– “mqCountItems” on page 565
– “mqCreateBag” on page 567
– “mqDeleteBag” on page 571
– “mqDeleteItem” on page 572
– “mqInquireBag” on page 580
– “mqInquireByteString” on page 583
– “mqInquireByteStringFilter” on page 585
– “mqInquireInteger” on page 588
– “mqInquireInteger64” on page 591
– “mqInquireIntegerFilter” on page 593
– “mqInquireItemInfo” on page 595
– “mqInquireString” on page 598
– “mqInquireStringFilter” on page 601
– “mqSetByteString” on page 607
– “mqSetByteStringFilter” on page 610
– “mqSetInteger” on page 613
– “mqSetInteger64” on page 615
– “mqSetIntegerFilter” on page 617
– “mqSetString” on page 620
– “mqSetStringFilter” on page 623
– “mqTruncateBag” on page 627

v Command calls for sending and receiving administration commands and PCF
messages:
– “mqBagToBuffer” on page 560
– “mqBufferToBag” on page 563

© Copyright IBM Corp. 2002, 2009 543



– “mqExecute” on page 574
– “mqGetBag” on page 578
– “mqPutBag” on page 605

v Utility calls for handling blank-padded and null-terminated strings:
– “mqPad” on page 604
– “mqTrim” on page 626

These calls are described in alphabetical order in the following sections.

mqAddBag

Note: The mqAddBag call can be used with user bags only; you cannot add nested
bags to administration or command bags. You can only nest group bags.

The mqAddBag call nests a bag in another bag.

Syntax for mqAddBag

Parameters for mqAddBag
Bag (MQHBAG) – input

Bag handle into which the item is to be added.

The bag must be a user bag. This means that it must have been created using
the MQCBO_USER_BAG option on the mqCreateBag call. If the bag was not
created in this way, MQRC_WRONG_BAG_TYPE results.

Selector (MQLONG) – input
Selector identifying the item to be nested.

If the selector is less than zero (that is, a system selector),
MQRC_SELECTOR_OUT_OF_RANGE results.

If the selector is zero or greater (that is, a user selector) and the bag was
created with the MQCBO_CHECK_SELECTORS option, the selector must be in
the range MQGA_FIRST through MQGA_LAST; if not, again
MQRC_SELECTOR_OUT_OF_RANGE results.

If MQCBO_CHECK_SELECTORS was not specified, the selector can be any
value of zero or greater.

If the call is creating a second or later occurrence of a selector that is already in
the bag, the datatype of this occurrence must be the same as the datatype of
the first occurrence; MQRC_INCONSISTENT_ITEM_TYPE results if it is not.

ItemValue (MQHBAG) – input
The bag which is to be nested.

If the bag is not a group bag, MQRC_BAG_WRONG_TYPE results. If an
attempt is made to add a bag to itself, MQRC_HBAG_ERROR results.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

mqAddBag (Bag, Selector, ItemValue, CompCode, Reason)

544 WebSphere MQ: Programmable Command Formats and Administration Interface



The following reason codes indicate error conditions that can be returned from
the mqAddBag call:

MQRC_BAG_WRONG_TYPE
Wrong type of bag for intended use (either Bag or ItemValue).

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INCONSISTENT_ITEM_TYPE
Datatype of this occurrence of selector differs from datatype of first
occurrence.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

Usage notes for mqAddBag

If a bag with the specified selector is already present in the bag, an additional
instance of that selector is added to the end of the bag. The new instance is not
necessarily adjacent to the existing instance.

C language invocation for mqAddBag
mqAddBag (Bag, Selector, ItemValue, &CompCode, &Reason)

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQHBAG ItemValue; /* Nested bag handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqAddBag

(Supported on Windows only.)
mqAddGroup Bag, Selector, ItemValue, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemValue As Long 'Nested bag handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqAddByteString

The mqAddByteString call adds a byte string identified by a user selector to the
end of a specified bag.

Syntax for mqAddByteString

mqAddByteString (Bag, Selector, BufferLength, Buffer, CompCode, Reason)

Chapter 10. MQAI reference 545



Parameters for mqAddByteString
Bag (MQHBAG) – input

Handle of the bag to be modified.

This value must be the handle of a bag created by the user, not the handle of a
system bag. MQRC_SYSTEM_BAG_NOT_ALTERABLE results if the value you
specify relates to a system bag.

Selector (MQLONG) – input
Selector identifying the item to be added to the bag.

If the selector is less than zero (that is, a system selector),
MQRC_SELECTOR_OUT_OF_RANGE results.

If the selector is zero or greater (that is, a user selector), and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration
bag (MQCBO_ADMIN_BAG), the selector must be in the range MQBA_FIRST
through MQBA_LAST. MQRC_SELECTOR_OUT_OF_RANGE results if it is not
in the correct range.

If MQCBO_CHECK_SELECTORS was not specified, the selector can be any
value zero or greater.

If the call is creating a second or later occurrence of a selector that is already in
the bag, the datatype of this occurrence must be the same as the datatype of
the first occurrence; MQRC_INCONSISTENT_ITEM_TYPE results if it is not.

BufferLength (MQLONG) – input
The length in bytes of the string contained in the Buffer parameter. The value
must be zero or greater.

Buffer (MQBYTE × BufferLength) – input
Buffer containing the byte string.

The length is given by the BufferLength parameter. If zero is specified for
BufferLength, the null pointer can be specified for the address of the Buffer
parameter. In all other cases, a valid (nonnull) address must be specified for
the Buffer parameter.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqAddByteString call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INCONSISTENT_ITEM_TYPE
Datatype of this occurrence of selector differs from datatype of first
occurrence.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

546 WebSphere MQ: Programmable Command Formats and Administration Interface



MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes for mqAddByteString
1. If a data item with the specified selector is already present in the bag, an

additional instance of that selector is added to the end of the bag. The new
instance is not necessarily adjacent to the existing instance.

2. This call cannot be used to add a system selector to a bag.

C language invocation for mqAddByteString
mqAddByteString (hBag, Selector, BufferLength, Buffer, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG BufferLength; /* Buffer length */
PMQBYTE Buffer /* Buffer containing item value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqAddByteString

(Supported on Windows only.)
mqAddByteString Bag, Selector, BufferLength, Buffer, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As Byte 'Buffer containing item value'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqAddByteStringFilter

The mqAddByteStringFilter call adds a byte string filter identified by a user
selector to the end of a specified bag.

Syntax for mqAddByteStringFilter

Parameters for mqAddByteStringFilter
Bag (MQHBAG) – input

Handle of the bag to be modified.

This value must be the handle of a bag created by the user, not the handle of a
system bag. MQRC_SYSTEM_BAG_NOT_ALTERABLE results if the value you
specify relates to a system bag.

mqAddByteStringFilter (Bag, Selector, BufferLength, Buffer, Operator, CompCode, Reason)

Chapter 10. MQAI reference 547



Selector (MQLONG) – input
Selector identifying the item to be added to the bag.

If the selector is less than zero (that is, a system selector),
MQRC_SELECTOR_OUT_OF_RANGE results.

If the selector is zero or greater (that is, a user selector), and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration
bag (MQCBO_ADMIN_BAG), the selector must be in the range MQBA_FIRST
through MQBA_LAST. MQRC_SELECTOR_OUT_OF_RANGE results if it is not
in the correct range.

If MQCBO_CHECK_SELECTORS was not specified, the selector can be any
value zero or greater.

If the call is creating a second or later occurrence of a selector that is already in
the bag, the datatype of this occurrence must be the same as the datatype of
the first occurrence; MQRC_INCONSISTENT_ITEM_TYPE results if it is not.

BufferLength (MQLONG) – input
The length in bytes of the condition byte string contained in the Buffer
parameter. The value must be zero or greater.

Buffer (MQBYTE × BufferLength) – input
Buffer containing the condition byte string.

The length is given by the BufferLength parameter. If zero is specified for
BufferLength, the null pointer can be specified for the address of the Buffer
parameter. In all other cases, a valid (nonnull) address must be specified for
the Buffer parameter.

Operator (MQLONG) – input
The byte string filter operator to be placed in the bag. Valid operators are of
the form MQCFOP_*.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqAddByteStringFilter call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_FILTER_OPERATOR_ERROR
Filter operator not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INCONSISTENT_ITEM_TYPE
Datatype of this occurrence of selector differs from datatype of first
occurrence.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

548 WebSphere MQ: Programmable Command Formats and Administration Interface



MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes for mqAddByteStringFilter
1. If a data item with the specified selector is already present in the bag, an

additional instance of that selector is added to the end of the bag. The new
instance is not necessarily adjacent to the existing instance.

2. This call cannot be used to add a system selector to a bag.

C language invocation for mqAddByteStringFilter
mqAddByteStringFilter (hBag, Selector, BufferLength, Buffer, Operator,
&CompCode, &Reason);

Declare the parameters as follows:
MQHBAG hBag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG BufferLength; /* Buffer length */
PMQBYTE Buffer /* Buffer containing item value */
MQLONG Operator /* Operator */
PMQLONG CompCode; /* Completion code */
PMQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqAddByteStringFilter

(Supported on Windows only.)
mqAddByteStringFilter Bag, Selector, BufferLength, Buffer, Operator, CompCode,
Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As String 'Buffer containing item value'
Dim Operator As Long 'Operator'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqAddInquiry

Note: The mqAddInquiry call can be used with administration bags only; it is
specifically for administration purposes.

The mqAddInquiry call adds a selector to an administration bag. The selector
refers to a WebSphere MQ object attribute that is to be returned by a PCF
INQUIRE command. The value of the Selector parameter specified on this call is
added to the end of the bag, as the value of a data item that has the selector value
MQIACF_INQUIRY.

Syntax for mqAddInquiry

mqAddInquiry (Bag, Selector, CompCode, Reason)

Chapter 10. MQAI reference 549



Parameters for mqAddInquiry
Bag (MQHBAG) – input

Bag handle.

The bag must be an administration bag; that is, it must have been created with
the MQCBO_ADMIN_BAG option on the mqCreateBag call. If the bag was not
created this way, MQRC_BAG_WRONG_TYPE results.

Selector (MQLONG) – input
Selector of the WebSphere MQ object attribute that is to be returned by the
appropriate INQUIRE administration command.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicate error conditions that can be returned from
the mqAddInquiry call:

MQRC_BAG_WRONG_TYPE
Wrong type of bag for intended use.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes for mqAddInquiry
1. When the administration message is generated, the MQAI constructs an integer

list with the MQIACF_*_ATTRS or MQIACH_*_ATTRS selector that is
appropriate to the Command value specified on the mqExecute, mqPutBag, or
mqBagToBuffer call. It then adds the values of the attribute selectors specified
by the mqAddInquiry call.

2. If the Command value specified on the mqExecute, mqPutBag, or mqBagToBuffer
call is not recognized by the MQAI, MQRC_INQUIRY_COMMAND_ERROR
results. Instead of using the mqAddInquiry call, this can be overcome by using
the mqAddInteger call with the appropriate MQIACF_*_ATTRS or
MQIACH_*_ATTRS selector and the ItemValue parameter of the selector being
inquired.

C language invocation for mqAddInquiry
mqAddInquiry (Bag, Selector, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

550 WebSphere MQ: Programmable Command Formats and Administration Interface



Visual Basic invocation for mqAddInquiry

(Supported on Windows only.)
mqAddInquiry Bag, Selector, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

Supported INQUIRE command codes
v MQCMD_INQUIRE_AUTH_INFO
v MQCMD_INQUIRE_AUTH_RECS
v MQCMD_INQUIRE_AUTH_SERVICE
v MQCMD_INQUIRE_CF_STRUC
v MQCMD_INQUIRE_CHANNEL
v MQCMD_INQUIRE_CHANNEL_STATUS
v MQCMD_INQUIRE_CLUSTER_Q_MGR
v MQCMD_INQUIRE_CONNECTION
v MQCMD_INQUIRE_LISTENER
v MQCMD_INQUIRE_LISTENER_STATUS
v MQCMD_INQUIRE_NAMELIST
v MQCMD_INQUIRE_PROCESS
v MQCMD_INQUIRE_Q
v MQCMD_INQUIRE_Q_MGR
v MQCMD_INQUIRE_Q_MGR_STATUS
v MQCMD_INQUIRE_Q_STATUS
v MQCMD_INQUIRE_SECURITY

For an example that demonstrates the use of supported INQUIRE command codes,
see “Inquiring about queues and printing information (amqsailq.c)” on page 650.

mqAddInteger

The mqAddInteger call adds an integer item identified by a user selector to the
end of a specified bag.

Syntax for mqAddInteger

Parameters for mqAddInteger
Bag (MQHBAG) – input

Handle of the bag to be modified.

This must be the handle of a bag created by the user, not the handle of a
system bag. MQRC_SYSTEM_BAG_NOT_ALTERABLE results if the value you
specify identifies a system bag.

mqAddInteger (Bag, Selector, ItemValue, CompCode, Reason)

Chapter 10. MQAI reference 551



Selector (MQLONG) – input
Selector identifying the item to be added to the bag.

If the selector is less than zero (that is, a system selector),
MQRC_SELECTOR_OUT_OF_RANGE results.

If the selector is zero or greater (that is, a user selector) and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration
bag (MQCBO_ADMIN_BAG), the selector must be in the range MQIA_FIRST
through MQIA_LAST; if not, again MQRC_SELECTOR_OUT_OF_RANGE
results.

If MQCBO_CHECK_SELECTORS was not specified, the selector can be any
value of zero or greater.

If the call is creating a second or later occurrence of a selector that is already in
the bag, the datatype of this occurrence must be the same as the datatype of
the first occurrence; MQRC_INCONSISTENT_ITEM_TYPE results if it is not.

ItemValue (MQLONG) – input
The integer value to be placed in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicate error conditions that can be returned from
the mqAddInteger call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INCONSISTENT_ITEM_TYPE
Datatype of this occurrence of selector differs from datatype of first
occurrence.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes for mqAddInteger
1. If a data item with the specified selector is already present in the bag, an

additional instance of that selector is added to the end of the bag. The new
instance is not necessarily adjacent to the existing instance.

2. This call cannot be used to add a system selector to a bag.

C language invocation for mqAddInteger
mqAddInteger (Bag, Selector, ItemValue, &CompCode, &Reason)

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemValue; /* Integer value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

552 WebSphere MQ: Programmable Command Formats and Administration Interface



Visual Basic invocation for mqAddInteger

(Supported on Windows only.)
mqAddInteger Bag, Selector, ItemValue, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemValue As Long 'Integer value'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqAddInteger64

The mqAddInteger64 call adds a 64-bit integer item identified by a user selector to
the end of a specified bag.

Syntax for mqAddInteger64

Parameters for mqAddInteger64
Bag (MQHBAG) – input

Handle of the bag to be modified.

This must be the handle of a bag created by the user, not the handle of a
system bag. MQRC_SYSTEM_BAG_NOT_ALTERABLE results if the value you
specify identifies a system bag.

Selector (MQLONG) – input
Selector identifying the item to be added to the bag.

If the selector is less than zero (that is, a system selector),
MQRC_SELECTOR_OUT_OF_RANGE results.

If the selector is zero or greater (that is, a user selector) and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration
bag (MQCBO_ADMIN_BAG), the selector must be in the range MQIA_FIRST
through MQIA_LAST; if not, again MQRC_SELECTOR_OUT_OF_RANGE
results.

If MQCBO_CHECK_SELECTORS was not specified, the selector can be any
value of zero or greater.

If the call is creating a second or later occurrence of a selector that is already in
the bag, the datatype of this occurrence must be the same as the datatype of
the first occurrence; MQRC_INCONSISTENT_ITEM_TYPE results if it is not.

ItemValue (MQINT64) – input
The 64-bit integer value to be placed in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

mqAddInteger64 (Bag, Selector, ItemValue, CompCode, Reason)

Chapter 10. MQAI reference 553



The following reason codes indicate error conditions that can be returned from
the mqAddInteger64 call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INCONSISTENT_ITEM_TYPE
Datatype of this occurrence of selector differs from datatype of first
occurrence.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes for mqAddInteger64
1. If a data item with the specified selector is already present in the bag, an

additional instance of that selector is added to the end of the bag. The new
instance is not necessarily adjacent to the existing instance.

2. This call cannot be used to add a system selector to a bag.

C language invocation for mqAddInteger64
mqAddInteger64 (Bag, Selector, ItemValue, &CompCode, &Reason)

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQINT64 ItemValue; /* Integer value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqAddInteger64

(Supported on Windows only.)
mqAddInteger64 Bag, Selector, ItemValue, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim Item Value As Long 'Integer value'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqAddIntegerFilter

The mqAddIntegerFilter call adds an integer filter identified by a user selector to
the end of a specified bag.

Syntax for mqAddIntegerFilter

mqAddIntegerFilter (Bag, Selector, ItemValue, Operator, CompCode, Reason)

554 WebSphere MQ: Programmable Command Formats and Administration Interface



Parameters for mqAddIntegerFilter
Bag (MQHBAG) – input

Handle of the bag to be modified.

This must be the handle of a bag created by the user, not the handle of a
system bag. MQRC_SYSTEM_BAG_NOT_ALTERABLE results if the value you
specify identifies a system bag.

Selector (MQLONG) – input
Selector identifying the item to be added to the bag.

If the selector is less than zero (that is, a system selector),
MQRC_SELECTOR_OUT_OF_RANGE results.

If the selector is zero or greater (that is, a user selector) and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration
bag (MQCBO_ADMIN_BAG), the selector must be in the range MQIA_FIRST
through MQIA_LAST; if not, again MQRC_SELECTOR_OUT_OF_RANGE
results.

If MQCBO_CHECK_SELECTORS was not specified, the selector can be any
value of zero or greater.

If the call is creating a second or later occurrence of a selector that is already in
the bag, the datatype of this occurrence must be the same as the datatype of
the first occurrence; MQRC_INCONSISTENT_ITEM_TYPE results if it is not.

ItemValue (MQLONG) – input
The integer condition value to be placed in the bag.

Operator (MQLONG) – input
The integer filter operator to be placed in the bag. Valid operators take the
form MQCFOP_*.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicate error conditions that can be returned from
the mqAddIntegerFilter call:

MQRC_FILTER_OPERATOR_ERROR
Filter operator not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INCONSISTENT_ITEM_TYPE
Datatype of this occurrence of selector differs from datatype of first
occurrence.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Chapter 10. MQAI reference 555



Usage notes for mqAddIntegerFilter
1. If a data item with the specified selector is already present in the bag, an

additional instance of that selector is added to the end of the bag. The new
instance is not necessarily adjacent to the existing instance.

2. This call cannot be used to add a system selector to a bag.

C language invocation for mqAddIntegerFilter
mqAddIntegerFilter (Bag, Selector, ItemValue, Operator, &CompCode, &Reason)

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemValue; /* Integer value */
MQLONG Operator; /* Item operator */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqAddIntegerFilter

(Supported on Windows only.)
mqAddIntegerFilter Bag, Selector, ItemValue, Operator, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemValue As Long 'Integer value'
Dim Operator As Long 'Item Operator'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqAddString

The mqAddString call adds a character data item identified by a user selector to
the end of a specified bag.

Syntax for mqAddString

Parameters for mqAddString
Bag (MQHBAG) – input

Handle of the bag to be modified.

This value must be the handle of a bag created by the user, not the handle of a
system bag. MQRC_SYSTEM_BAG_NOT_ALTERABLE results if the value you
specify relates to a system bag.

Selector (MQLONG) – input
Selector identifying the item to be added to the bag.

If the selector is less than zero (that is, a system selector),
MQRC_SELECTOR_OUT_OF_RANGE results.

If the selector is zero or greater (that is, a user selector), and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration

mqAddString (Bag, Selector, BufferLength, Buffer, CompCode, Reason)

556 WebSphere MQ: Programmable Command Formats and Administration Interface



bag (MQCBO_ADMIN_BAG), the selector must be in the range MQCA_FIRST
through MQCA_LAST. MQRC_SELECTOR_OUT_OF_RANGE results if it is
not in the correct range.

If MQCBO_CHECK_SELECTORS was not specified, the selector can be any
value zero or greater.

If the call is creating a second or later occurrence of a selector that is already in
the bag, the datatype of this occurrence must be the same as the datatype of
the first occurrence; MQRC_INCONSISTENT_ITEM_TYPE results if it is not.

BufferLength (MQLONG) – input
The length in bytes of the string contained in the Buffer parameter. The value
must be zero or greater, or the special value MQBL_NULL_TERMINATED:
v If MQBL_NULL_TERMINATED is specified, the string is delimited by the

first null encountered in the string. The null is not added to the bag as part
of the string.

v If MQBL_NULL_TERMINATED is not specified, BufferLength characters are
inserted into the bag, even if null characters are present. Nulls do not
delimit the string.

Buffer (MQCHAR × BufferLength) – input
Buffer containing the character string.

The length is given by the BufferLength parameter. If zero is specified for
BufferLength, the null pointer can be specified for the address of the Buffer
parameter. In all other cases, a valid (nonnull) address must be specified for
the Buffer parameter.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqAddString call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_CODED_CHAR_SET_ID_ERROR
Bag CCSID is MQCCSI_EMBEDDED.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INCONSISTENT_ITEM_TYPE
Datatype of this occurrence of selector differs from datatype of first
occurrence.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Chapter 10. MQAI reference 557



Usage notes for mqAddString
1. If a data item with the specified selector is already present in the bag, an

additional instance of that selector is added to the end of the bag. The new
instance is not necessarily adjacent to the existing instance.

2. This call cannot be used to add a system selector to a bag.
3. The Coded Character Set ID associated with this string is copied from the

current CCSID of the bag.

C language invocation for mqAddString
mqAddString (hBag, Selector, BufferLength, Buffer, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG hBag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG BufferLength; /* Buffer length */
PMQCHAR Buffer /* Buffer containing item value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqAddString

(Supported on Windows only.)
mqAddString Bag, Selector, BufferLength, Buffer, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As String 'Buffer containing item value'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqAddStringFilter

The mqAddStringFilter call adds a string filter identified by a user selector to the
end of a specified bag.

Syntax for mqAddStringFilter

Parameters for mqAddStringFilter
Bag (MQHBAG) – input

Handle of the bag to be modified.

This value must be the handle of a bag created by the user, not the handle of a
system bag. MQRC_SYSTEM_BAG_NOT_ALTERABLE results if the value you
specify relates to a system bag.

Selector (MQLONG) – input
Selector identifying the item to be added to the bag.

If the selector is less than zero (that is, a system selector),
MQRC_SELECTOR_OUT_OF_RANGE results.

mqAddStringFilter (Bag, Selector, BufferLength, Buffer, Operator, CompCode, Reason)

558 WebSphere MQ: Programmable Command Formats and Administration Interface



If the selector is zero or greater (that is, a user selector), and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration
bag (MQCBO_ADMIN_BAG), the selector must be in the range MQCA_FIRST
through MQCA_LAST. MQRC_SELECTOR_OUT_OF_RANGE results if it is
not in the correct range.

If MQCBO_CHECK_SELECTORS was not specified, the selector can be any
value zero or greater.

If the call is creating a second or later occurrence of a selector that is already in
the bag, the datatype of this occurrence must be the same as the datatype of
the first occurrence; MQRC_INCONSISTENT_ITEM_TYPE results if it is not.

BufferLength (MQLONG) – input
The length in bytes of the character condition string contained in the Buffer
parameter. The value must be zero or greater, or the special value
MQBL_NULL_TERMINATED:
v If MQBL_NULL_TERMINATED is specified, the string is delimited by the

first null encountered in the string. The null is not added to the bag as part
of the string.

v If MQBL_NULL_TERMINATED is not specified, BufferLength characters are
inserted into the bag, even if null characters are present. Nulls do not
delimit the string.

Buffer (MQCHAR × BufferLength) – input
Buffer containing the character condition string.

The length is given by the BufferLength parameter. If zero is specified for
BufferLength, the null pointer can be specified for the address of the Buffer
parameter. In all other cases, a valid (nonnull) address must be specified for
the Buffer parameter.

Operator (MQLONG) – input
The string filter operator to be placed in the bag. Valid operators are of the
form MQCFOP_*.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqAddStringFilter call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_CODED_CHAR_SET_ID_ERROR
Bag CCSID is MQCCSI_EMBEDDED.

MQRC_FILTER_OPERATOR_ERROR
Filter operator not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

Chapter 10. MQAI reference 559



MQRC_INCONSISTENT_ITEM_TYPE
Datatype of this occurrence of selector differs from datatype of first
occurrence.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes for mqAddStringFilter
1. If a data item with the specified selector is already present in the bag, an

additional instance of that selector is added to the end of the bag. The new
instance is not necessarily adjacent to the existing instance.

2. This call cannot be used to add a system selector to a bag.
3. The Coded Character Set ID associated with this string is copied from the

current CCSID of the bag.

C language invocation for mqAddStringFilter
mqAddStringFilter (hBag, Selector, BufferLength, Buffer, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG hBag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG BufferLength; /* Buffer length */
PMQCHAR Buffer /* Buffer containing item value */
MQLONG Operator /* Operator */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqAddStringFilter

(Supported on Windows only.)
mqAddStringFilter Bag, Selector, BufferLength, Buffer, Operator, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As String 'Buffer containing item value'
Dim Operator As Long 'Item operator'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqBagToBuffer

The mqBagToBuffer call converts the bag into a PCF message in the supplied
buffer.

Syntax for mqBagToBuffer

560 WebSphere MQ: Programmable Command Formats and Administration Interface



Parameters for mqBagToBuffer
OptionsBag (MQHBAG) – input

Handle of the bag containing options that control the processing of the call.
This is a reserved parameter; the value must be MQHB_NONE.

DataBag (MQHBAG) – input
The handle of the bag to convert.

If the bag contains an administration message and mqAddInquiry was used to
insert values into the bag, the value of the MQIASY_COMMAND data item
must be an INQUIRE command that is recognized by the MQAI;
MQRC_INQUIRY_COMMAND_ERROR results if it is not.

If the bag contains nested system bags,
MQRC_NESTED_BAG_NOT_SUPPORTED results.

BufferLength (MQLONG) – input
Length in bytes of the buffer supplied.

If the buffer is too small to accommodate the message generated,
MQRC_BUFFER_LENGTH_ERROR results.

Buffer (MQBYTE × BufferLength) – output
The buffer to hold the message.

DataLength (MQLONG) – output
The length in bytes of the buffer required to hold the entire bag. If the buffer is
not long enough, the contents of the buffer are undefined but the DataLength is
returned.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqBagToBuffer call:

MQRC_BAG_WRONG_TYPE
Input data bag is a group bag.

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid or buffer too small. (Required length returned
in DataLength.)

MQRC_DATA_LENGTH_ERROR
DataLength parameter not valid (invalid parameter address).

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INQUIRY_COMMAND_ERROR
mqAddInquiry used with a command code that is not recognized as an
INQUIRE command.

mqBagToBuffer (OptionsBag, DataBag, BufferLength, Buffer, DataLength, CompCode, Reason)

Chapter 10. MQAI reference 561



MQRC_NESTED_BAG_NOT_SUPPORTED
Input data bag contains one or more nested system bags.

MQRC_OPTIONS_ERROR
Options bag contains unsupported data items or a supported option
has an invalid value.

MQRC_PARAMETER_MISSING
An administration message requires a parameter that is not present in
the bag.

Note: This reason code occurs for bags created with the
MQCBO_ADMIN_BAG or MQCBO_REORDER_AS_REQUIRED
options only.

MQRC_SELECTOR_WRONG_TYPE
mqAddString or mqSetString was used to add the MQIACF_INQUIRY
selector to the bag.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

Usage notes for mqBagToBuffer
1. The PCF message is generated with an encoding of MQENC_NATIVE for the

numeric data.
2. The buffer that holds the message can be null if the BufferLength is zero. This

is useful if you use the mqBagToBuffer call to calculate the size of buffer
necessary to convert your bag.

C language invocation for mqBagToBuffer
mqBagToBuffer (OptionsBag, DataBag, BufferLength, Buffer, &DataLength,
&CompCode, &Reason);

Declare the parameters as follows:
MQHBAG OptionsBag; /* Options bag handle */
MQHBAG DataBag; /* Data bag handle */
MQLONG BufferLength; /* Buffer length */
MQBYTE Buffer[n]; /* Buffer to contain PCF */
MQLONG DataLength; /* Length of PCF returned in buffer */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqBagToBuffer

(Supported on Windows only.)
mqBagToBuffer OptionsBag, DataBag, BufferLength, Buffer, DataLength,
CompCode, Reason

Declare the parameters as follows:
Dim OptionsBag As Long 'Options bag handle'
Dim DataBag As Long 'Data bag handle'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As Long 'Buffer to contain PCF'
Dim DataLength As Long 'Length of PCF returned in buffer'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

562 WebSphere MQ: Programmable Command Formats and Administration Interface



mqBufferToBag

The mqBufferToBag call converts the supplied buffer into bag form.

Syntax for mqBufferToBag

Parameters for mqBufferToBag
OptionsBag (MQHBAG) – input

Handle of the bag containing options that control the processing of the call.
This is a reserved parameter; the value must be MQHB_NONE.

BufferLength (MQLONG) – input
Length in bytes of the buffer.

Buffer (MQBYTE × BufferLength) – input
Pointer to the buffer containing the message to be converted.

Databag (MQHBAG) – input/output
Handle of the bag to receive the message. The MQAI performs an mqClearBag
call on the bag before placing the message in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqBufferToBag call:

MQRC_BAG_CONVERSION_ERROR
Data could not be converted into a bag. This indicates a problem with
the format of the data to be converted into a bag (for example, the
message is not a valid PCF).

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INCONSISTENT_ITEM_TYPE
Datatype of second occurrence of selector differs from datatype of first
occurrence.

MQRC_OPTIONS_ERROR
Options bag contains unsupported data items, or a supported option
has a value that is not valid.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

mqBufferToBag (OptionsBag, BufferLength, Buffer, DataBag, CompCode, Reason)

Chapter 10. MQAI reference 563



MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes for mqBufferToBag

The buffer must contain a valid PCF message. The encoding of numeric data in the
buffer must be MQENC_NATIVE.

The Coded Character Set ID of the bag is unchanged by this call.

C language invocation for mqBufferToBag
mqBufferToBag (OptionsBag, BufferLength, Buffer, DataBag,
&CompCode, &Reason);

Declare the parameters as follows:
MQHBAG OptionsBag; /* Options bag handle */
MQLONG BufferLength; /* Buffer length */
MQBYTE Buffer[n]; /* Buffer containing PCF */
MQHBAG DataBag; /* Data bag handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqBufferToBag

(Supported on Windows only.)
mqBufferToBag OptionsBag, BufferLength, Buffer, DataBag,
CompCode, Reason

Declare the parameters as follows:
Dim OptionsBag As Long 'Options bag handle'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As Long 'Buffer containing PCF'
Dim DataBag As Long 'Data bag handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqClearBag

The mqClearBag call deletes all user items from the bag, and resets system items to
their initial values.

Syntax for mqClearBag

Parameters for mqClearBag
Bag (MQHBAG) – input

Handle of the bag to be cleared. This must be the handle of a bag created by
the user, not the handle of a system bag.
MQRC_SYSTEM_BAG_NOT_ALTERABLE results if you specify the handle of
a system bag.

CompCode (MQLONG) – output
Completion code.

mqClearBag (Bag, CompCode, Reason)

564 WebSphere MQ: Programmable Command Formats and Administration Interface



Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqClearBag call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes for mqClearBag
1. If the bag contains system bags, they are also deleted.
2. The call cannot be used to clear system bags.

C language invocation for mqClearBag
mqClearBag (Bag, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqClearBag

(Supported on Windows only.)
mqClearBag Bag, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqCountItems

The mqCountItems call returns the number of occurrences of user items, system
items, or both, that are stored in a bag with the same specific selector.

Syntax for mqCountItems

Parameters for mqCountItems
Bag (MQHBAG) – input

Handle of the bag whose items are to be counted. This can be a user bag or a
system bag.

Selector (MQLONG) – input
Selector of the data items to count.

If the selector is less than zero (a system selector), the selector must be one that
is supported by the MQAI. MQRC_SELECTOR_NOT_SUPPORTED results if it
is not.

mqCountItems (Bag, Selector, ItemCount, CompCode, Reason)

Chapter 10. MQAI reference 565



If the specified selector is not present in the bag, the call succeeds and zero is
returned for ItemCount.

The following special values can be specified for Selector:

MQSEL_ALL_SELECTORS
All user and system items are to be counted.

MQSEL_ALL_USER_SELECTORS
All user items are to be counted; system items are excluded from the
count.

MQSEL_ALL_SYSTEM_SELECTORS
All system items are to be counted; user items are excluded from the
count.

ItemCount (MQLONG) – output
Number of items of the specified type in the bag (can be zero).

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqCountItems call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_ITEM_COUNT_ERROR
ItemCount parameter not valid (invalid parameter address).

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

Usage notes for mqCountItems

This call counts the number of data items, not the number of unique selectors in
the bag. A selector can occur multiple times, so there may be fewer unique
selectors in the bag than data items.

C language invocation for mqCountItems
mqCountItems (Bag, Selector, &ItemCount, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemCount; /* Number of items */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqCountItems

(Supported on Windows only.)
mqCountItems Bag, Selector, ItemCount, CompCode, Reason

566 WebSphere MQ: Programmable Command Formats and Administration Interface



Declare the parameters as follows:
Dim Bag; As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemCount As Long 'Number of items'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqCreateBag

The mqCreateBag call creates a new bag.

Syntax for mqCreateBag

Parameters for mqCreateBag
Options (MQLONG) – input

Options for creation of the bag.

The following are valid:

MQCBO_ADMIN_BAG
Specifies that the bag is for administering WebSphere MQ objects.
MQCBO_ADMIN_BAG automatically implies the
MQCBO_LIST_FORM_ALLOWED,
MQCBO_REORDER_AS_REQUIRED, and
MQCBO_CHECK_SELECTORS options.

Administration bags are created with the MQIASY_TYPE system item
set to MQCFT_COMMAND.

MQCBO_COMMAND_BAG
Specifies that the bag is a command bag. This is an alternative to the
administration bag (MQCBO_ADMIN_BAG) and
MQRC_OPTIONS_ERROR results if both are specified.

A command bag is processed in the same way as a user bag except
that the value of the MQIASY_TYPE system item is set to
MQCFT_COMMAND when the bag is created.

The command bag is also created for administering objects but they are
not used to send administration messages to a command server as an
administration bag is. The bag options assume the following default
values:
v MQCBO_LIST_FORM_INHIBITIED
v MQCBO_DO_NOT_REORDER
v MQCBO_DO_NOT_CHECK_SELECTORS

Therefore, the MQAI will not change the order of data items or create
lists within a message as with administration bags.

MQCBO_GROUP_BAG
Specifies that the bag is a group bag. This means that the bag is used
to hold a set of grouped items. Group bags cannot be used for the
administration of WebSphere MQ objects. The bag options assume the
following default values:
v MQCBO_LIST_FORM_ALLOWED

mqCreateBag (Options, Bag, CompCode, Reason)

Chapter 10. MQAI reference 567



v MQCBO_REORDER_AS_REQUIRED
v MQCBO_DO_NOT_CHECK_SELECTORS

Therefore, the MQAI may change the order of data items or create lists
within a bag of grouped items.

Group bags are created with two system selectors:
MQIASY_BAG_OPTIONS and MQIASY_CODED_CHAR_SET_ID.

If a group bag is nested in a bag in which
MQCBO_CHECK_SELECTORS was specified, the group bag to be
nested has its selectors checked at that point whether or not
MQCBO_CHECK_SELECTORS was specified when the group bag was
created.

MQCBO_USER_BAG
Specifies that the bag is a user bag. This is the default bag-type option.
User bags can also be used for the administration of WebSphere MQ
objects, but the MQCBO_LIST_FORM_ALLOWED and
MQCBO_REORDER_AS_REQUIRED options should be specified to
ensure correct generation of the administration messages.

User bags are created with the MQIASY_TYPE system item set to
MQCFT_USER.

For user bags, one or more of the following options can be specified:

MQCBO_LIST_FORM_ALLOWED
Specifies that the MQAI is allowed to use the more compact
list form in the message sent whenever there are two or more
adjacent occurrences of the same selector in the bag. However,
this option does not allow the items to be reordered. Therefore,
if the occurrences of the selector are not adjacent in the bag,
and MQCBO_REORDER_AS_REQUIRED is not specified, the
MQAI cannot use the list form for that particular selector.

If the data items are character strings, these strings must have
the same Character Set ID as well as the same selector, in order
to be compacted into list form. If the list form is used, the
shorter strings are padded with blanks to the length of the
longest string.

This option should be specified if the message to be sent is an
administration message but MQCBO_ADMIN_BAG is not
specified.

Note: MQCBO_LIST_FORM_ALLOWED does not imply that
the MQAI will definitely use the list form. The MQAI
considers various factors in deciding whether to use the list
form.

MQCBO_LIST_FORM_INHIBITED
Specifies that the MQAI is not allowed to use the list form in
the message sent, even if there are adjacent occurrences of the
same selector in the bag. This is the default list-form option.

MQCBO_REORDER_AS_REQUIRED
Specifies that the MQAI is allowed to change the order of the
data items in the message sent. This option does not affect the
order of the items in the sending bag.

568 WebSphere MQ: Programmable Command Formats and Administration Interface



This means that you can insert items into a data bag in any
order; that is, the items do not need to be inserted in the way
that they must appear in the PCF message, because the MQAI
can reorder these items as required.

If the message is a user message, the order of the items in the
receiving bag will be the same as the order of the items in the
message; this may be different from the order of the items in
the sending bag.

If the message is an administration message, the order of the
items in the receiving bag will be determined by the message
received.

This option should be specified if the message to be sent is an
administration message but MQCBO_ADMIN is not specified.

MQCBO_DO_NOT_REORDER
Specifies that the MQAI is not allowed to change the order of
data items in the message sent. Both the message sent and the
receiving bag contain the items in the same order as they occur
in the sending bag. This is the default ordering option.

MQCBO_CHECK_SELECTORS
Specifies that user selectors (selectors that are zero or greater)
should be checked to ensure that the selector is consistent with
the datatype implied by the mqAddInteger, mqAddInteger64,
mqAddIntegerFilter, mqAddString, mqAddStringFilter,
mqAddByteString, mqAddByteStringFilter, mqSetInteger,
mqSetInteger64, mqSetIntegerFilter, mqSetString,
mqSetStringFilter, mqSetByteString, or mqSetByteStringFilter
call:
v For the integer, 64-bit integer, and integer filter calls, the

selector must be in the range MQIA_FIRST through
MQIA_LAST.

v For the string and string filter calls, the selector must be in
the range MQCA_FIRST through MQCA_LAST.

v For byte string and byte string filter calls, the selector must
be in the range MQBA_FIRST through MQBA_LAST

v For group bag calls, the selector must be in the range
MQGA_FIRST through MQGA_LAST

v For the handle calls, the selector must be in the range
MQHA_FIRST through MQHA_LAST.

The call fails if the selector is outside the valid range. Note that
system selectors (selectors less than zero) are always checked,
and if a system selector is specified, it must be one that is
supported by the MQAI.

MQCBO_DO_NOT_CHECK_SELECTORS
Specifies that user selectors (selectors that are zero or greater)
should not be checked. This option allows any selector that is
zero or positive to be used with any call. This is the default
selectors option. Note that system selectors (selectors less than
zero) are always checked.

MQCBO_NONE
Specifies that all options should have their default values. This

Chapter 10. MQAI reference 569



is provided to aid program documentation, and should not be
specified with any of the options that has a nonzero value.

The following list summarizes the default option values:
v MQCBO_USER_BAG

– MQCBO_LIST_FORM_INHIBITIED
– MQCBO_DO_NOT_REORDER
– MQCBO_DO_NOT_CHECK_SELECTORS

Bag (MQHBAG) – output
The handle of the bag created by the call.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqCreateBag call:

MQRC_HBAG_ERROR
Bag handle not valid (invalid parameter address or the parameter
location is read-only).

MQRC_OPTIONS_ERROR
Options not valid or not consistent.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

Usage notes for mqCreateBag

Any options used for creating your bag are contained in a system item within the
bag when it is created.

C language invocation for mqCreateBag
mqCreateBag (Options, &Bag, &CompCode, &Reason);

Declare the parameters as follows:
MQLONG Options; /* Bag options */
MQHBAG Bag; /* Bag handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqCreateBag

(Supported on Windows only.)
mqCreateBag Options, Bag, CompCode, Reason

Declare the parameters as follows:
Dim Options As Long 'Bag options'
Dim Bag As Long 'Bag handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

570 WebSphere MQ: Programmable Command Formats and Administration Interface



mqDeleteBag

The mqDeleteBag call deletes the specified bag.

Syntax for mqDeleteBag

Parameters for mqDeleteBag
Bag (MQHBAG) – input/output

The handle of the bag to be deleted. This must be the handle of a bag created
by the user, not the handle of a system bag.
MQRC_SYSTEM_BAG_NOT_DELETABLE results if you specify the handle of a
system bag. The handle is reset to MQHB_UNUSABLE_HBAG.

If the bag contains system-generated bags, they are also deleted.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqDeleteBag call:

MQRC_HBAG_ERROR
Bag handle not valid, or invalid parameter address, or parameter
location is read only.

MQRC_SYSTEM_BAG_NOT_DELETABLE
System bag cannot be deleted.

Usage notes for mqDeleteBag
1. Delete any bags created with mqCreateBag.
2. Nested bags are deleted automatically when the containing bag is deleted.

C language invocation for mqDeleteBag
mqDeleteBag (&Bag, CompCode, Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqDeleteBag

(Supported on Windows only.)
mqDeleteBag Bag, CompCode, Reason

Declare the parameters as follows:
Dim Bag; As Long 'Bag handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqDeleteBag (Bag, CompCode, Reason)

Chapter 10. MQAI reference 571



mqDeleteItem

The mqDeleteItem call removes one or more user items from a bag.

Syntax for mqDeleteItem

Parameters for mqDeleteItem
Hbag (MQHBAG) – input

Handle of the bag to be modified.

This must be the handle of a bag created by the user, and not the handle of a
system bag; MQRC_SYSTEM_BAG_NOT_ALTERABLE results if it is a system
bag.

Selector (MQLONG) – input
Selector identifying the user item to be deleted.

If the selector is less than zero (that is, a system selector),
MQRC_SELECTOR_OUT_OF_RANGE results.

The following special values are valid:

MQSEL_ANY_SELECTOR
The item to be deleted is a user item identified by the ItemIndex
parameter, the index relative to the set of items that contains both user
and system items.

MQSEL_ANY_USER_SELECTOR
The item to be deleted is a user item identified by the ItemIndex
parameter, the index relative to the set of user items.

If an explicit selector value is specified, but the selector is not present
in the bag, the call succeeds if MQIND_ALL is specified for ItemIndex,
and fails with reason code MQRC_SELECTOR_NOT_PRESENT if
MQIND_ALL is not specified.

ItemIndex (MQLONG) – input
Index of the data item to be deleted.

The value must be zero or greater, or one of the following special values:

MQIND_NONE
This specifies that there must be one occurrence only of the selector in
the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results. If MQIND_NONE is
specified with one of the MQSEL_XXX_SELECTOR values,
MQRC_INDEX_ERROR results.

MQIND_ALL
This specifies that all occurrences of the selector in the bag are to be
deleted. If MQIND_ALL is specified with one of the
MQSEL_XXX_SELECTOR values, MQRC_INDEX_ERROR results. If
MQIND_ALL is specified when the selector is not present within the
bag, the call succeeds.

If MQSEL_ANY_SELECTOR is specified for the Selector parameter,
the ItemIndex parameter is the index relative to the set of items that

mqDeleteItem (Bag, Selector, ItemIndex, CompCode, Reason)

572 WebSphere MQ: Programmable Command Formats and Administration Interface



contains both user items and system items, and must be zero or
greater. If ItemIndex identifies a system selector
MQRC_SYSTEM_ITEM_NOT_DELETABLE results. If
MQSEL_ANY_USER_SELECTOR is specified for the Selector
parameter, the ItemIndex parameter is the index relative to the set of
user items, and must be zero or greater.

If an explicit selector value is specified, ItemIndex is the index relative
to the set of items that have that selector value, and can be
MQIND_NONE, MQIND_ALL, zero, or greater.

If an explicit index is specified (that is, not MQIND_NONE or
MQIND_ALL) and the item is not present in the bag,
MQRC_INDEX_NOT_PRESENT results.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqDeleteItem call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
MQIND_NONE or MQIND_ALL specified with one of the
MQSEL_ANY_XXX_SELECTOR values.

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag.

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag is read only and cannot be altered.

MQRC_SYSTEM_ITEM_NOT_DELETABLE
System item is read only and cannot be deleted.

Usage notes for mqDeleteItem
1. Either a single occurrence of the specified selector can be removed, or all

occurrences of the specified selector.
2. The call cannot remove system items from the bag, or remove items from a

system bag. However, the call can remove the handle of a system bag from a
user bag. This way, a system bag can be deleted.

Chapter 10. MQAI reference 573



C language invocation for mqDeleteItem
mqDeleteItem (Bag, Selector, ItemIndex, &CompCode, &Reason)

Declare the parameters as follows:
MQHBAG Hbag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Index of the data item */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqDeleteItem

(Supported on Windows only.)
mqDeleteItem Bag, Selector, ItemIndex, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Index of the data item'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqExecute

The mqExecute call sends an administration command message and waits for the
reply (if expected).

Syntax for mqExecute

Parameters for mqExecute
Hconn (MQHCONN) – input

MQI Connection handle.

This is returned by a preceding MQCONN call issued by the application.

Command (MQLONG) – input
The command to be executed.

This should be one of the MQCMD_* values. If it is a value that is not
recognized by the MQAI servicing the mqExecute call, the value is still
accepted. However, if mqAddInquiry was used to insert values in the bag, the
Command parameter must be an INQUIRE command recognized by the MQAI;
MQRC_INQUIRY_COMMAND_ERROR results if it is not.

OptionsBag (MQHBAG) – input
Handle of a bag containing options that affect the operation of the call.

This must be the handle returned by a preceding mqCreateBag call or the
following special value:

MQHB_NONE
No options bag; all options assume their default values.

Only the options listed below can be present in the options bag
(MQRC_OPTIONS_ERROR results if other data items are present).

mqExecute (Hconn, Command, OptionsBag, AdminBag, ResponseBag, AdminQ, ResponseQ, CompCode, Reason)

574 WebSphere MQ: Programmable Command Formats and Administration Interface



The appropriate default value is used for each option that is not
present in the bag. The following option can be specified:

MQIACF_WAIT_INTERVAL
This data item specifies the maximum time in milliseconds that the
MQAI should wait for each reply message. The time interval must be
zero or greater, or the special value MQWI_UNLIMITED; the default is
thirty seconds. The mqExecute call completes either when all of the
reply messages are received or when the specified wait interval expires
without the expected reply message having been received.

Note: The time interval is an approximate quantity.

If the MQIACF_WAIT_INTERVAL data item has the wrong datatype,
or there is more than one occurrence of that selector in the options bag,
or the value of the data item is not valid,
MQRC_WAIT_INTERVAL_ERROR results.

AdminBag (MQHBAG) – input
Handle of the bag containing details of the administration command to be
issued.

All user items placed in the bag are inserted into the administration message
that is sent. It is the application’s responsibility to ensure that only valid
parameters for the command are placed in the bag.

If the value of the MQIASY_TYPE data item in the command bag is not
MQCFT_COMMAND, MQRC_COMMAND_TYPE_ERROR results. If the bag
contains nested system bags, MQRC_NESTED_BAG_NOT_SUPPORTED
results.

ResponseBag (MQHBAG) – input
Handle of the bag where reply messages are placed.

The MQAI performs an mqClearBag call on the bag before placing reply
messages in the bag. To retrieve the reply messages, the selector,
MQIACF_CONVERT_RESPONSE, can be specified.

Each reply message is placed into a separate system bag, whose handle is then
placed in the response bag. Use the mqInquireBag call with selector
MQHA_BAG_HANDLE to determine the handles of the system bags within
the reply bag, and those bags can then be inquired to determine their contents.

If some but not all of the expected reply messages are received,
MQCC_WARNING with MQRC_NO_MSG_AVAILABLE results. If none of the
expected reply messages is received, MQCC_FAILED with
MQRC_NO_MSG_AVAILABLE results.

Group bags cannot be used as response bags.

AdminQ (MQHOBJ) – input
Object handle of the queue on which the administration message is to be
placed.

This handle was returned by a preceding MQOPEN call issued by the
application. The queue must be open for output.

The following special value can be specified:

MQHO_NONE
This indicates that the administration message should be placed on the
SYSTEM.ADMIN.COMMAND.QUEUE belonging to the currently

Chapter 10. MQAI reference 575



connected queue manager. If MQHO_NONE is specified, the
application need not use MQOPEN to open the queue.

ResponseQ
Object handle of the queue on which reply messages are placed.

This handle was returned by a preceding MQOPEN call issued by the
application. The queue must be open for input and for inquiry.

The following special value can be specified:

MQHO_NONE
This indicates that the reply messages should be placed on a dynamic
queue created automatically by the MQAI. The queue is created by
opening SYSTEM.DEFAULT.MODEL.QUEUE, that must therefore have
suitable characteristics. The queue created exists for the duration of the
call only, and is deleted by the MQAI on exit from the mqExecute call.

CompCode
Completion code.

Reason
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqExecute call:

MQRC_*
Anything from the MQINQ, MQPUT, MQGET, or MQOPEN calls.

MQRC_BAG_WRONG_TYPE
Input data bag is a group bag.

MQRC_CMD_SERVER_NOT_AVAILABLE
The command server that processes administration commands is not
available.

MQRC_COMMAND_TYPE_ERROR
The value of the MQIASY_TYPE data item in the request bag is not
MQCFT_COMMAND.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INQUIRY_COMMAND_ERROR
mqAddInteger call used with a command code that is not a recognized
INQUIRE command.

MQRC_NESTED_BAG_NOT_SUPPORTED
Input data bag contains one or more nested system bags.

MQRC_NO_MSG_AVAILABLE
Some reply messages received, but not all. Reply bag contains
system-generated bags for messages that were received.

MQRC_NO_MSG_AVAILABLE
No reply messages received during the specified wait interval.

MQRC_OPTIONS_ERROR
Options bag contains unsupported data items, or a supported option
has a value which is not valid.

MQRC_PARAMETER_MISSING
Administration message requires a parameter which is not present in

576 WebSphere MQ: Programmable Command Formats and Administration Interface



the bag. This reason code occurs for bags created with the
MQCBO_ADMIN_BAG or MQCBO_REORDER_AS_REQUIRED
options only.

MQRC_SELECTOR_NOT_UNIQUE
Two or more instances of a selector exist within the bag for a
mandatory parameter that permits one instance only.

MQRC_SELECTOR_WRONG_TYPE
mqAddString or mqSetString was used to add the MQIACF_INQUIRY
selector to the bag.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRCCF_COMMAND_FAILED
Command failed; details of failure are contained in system-generated
bags within the reply bag.

Usage notes for mqExecute
1. If no AdminQ is specified, the MQAI checks to see if the command server is

active before sending the administration command message. However, if the
command server is not active, the MQAI does not start it. If you are sending a
large number of administration command messages, you are recommended to
open the SYSTEM.ADMIN.COMMAND.QUEUE yourself and pass the handle
of the administration queue on each administration request.

2. Specifying the MQHO_NONE value in the ResponseQ parameter simplifies the
use of the mqExecute call, but if mqExecute is issued repeatedly by the
application (for example, from within a loop), the response queue will be
created and deleted repeatedly. In this situation, it is better for the application
itself to open the response queue prior to any mqExecute call, and close it after
all mqExecute calls have been issued.

3. If the administration command results in a message being sent with a message
type of MQMT_REQUEST, the call waits for the period of time given by the
MQIACF_WAIT_INTERVAL data item in the options bag.

4. If an error occurs during the processing of the call, the response bag may
contain some data from the reply message, but the data will usually be
incomplete.

C language invocation for mqExecute
mqExecute (Hconn, Command, OptionsBag, AdminBag, ResponseBag,
AdminQ, ResponseQ, CompCode, Reason);

Declare the parameters as follows:
MQHCONN Hconn; /* MQI connection handle */
MQLONG Command; /* Command to be executed */
MQHBAG OptionsBag; /* Handle of a bag containing options */
MQHBAG AdminBag; /* Handle of administration bag containing

/* details of administration command */
MQHBAG ResponseBag; /* Handle of bag for response messages */
MQHOBJ AdminQ /* Handle of administration queue for

administration messages */
MQHOBJ ResponseQ; /* Handle of response queue for response

messages */
MQLONG pCompCode; /* Completion code */
MQLONG pReason; /* Reason code qualifying CompCode */

Chapter 10. MQAI reference 577



Visual Basic invocation for mqExecute

(Supported on Windows only.)
mqExecute (Hconn, Command, OptionsBag, AdminBag, ResponseBag,
AdminQ, ResponseQ, CompCode, Reason);

Declare the parameters as follows:
Dim HConn As Long 'MQI connection handle'
Dim Command As Long 'Command to be executed'
Dim OptionsBag As Long 'Handle of a bag containing options'
Dim AdminBag As Long 'Handle of command bag containing details of

administration command'
Dim ResponseBag As Long 'Handle of bag for reply messages'
Dim AdminQ As Long 'Handle of command queue for

administration messages'
Dim ResponseQ As Long 'Handle of response queue for reply messages'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqGetBag

The mqGetBag call removes a message from the specified queue and converts the
message data into a data bag.

Syntax for mqGetBag

Parameters for mqGetBag
Hconn (MQHCONN) – input

MQI connection handle.

Hobj (MQHOBJ) – input
Object handle of the queue from which the message is to be retrieved. This
handle was returned by a preceding MQOPEN call issued by the application.
The queue must be open for input.

MsgDesc (MQMD) – input/output
Message descriptor (for more information, see the WebSphere MQ Application
Programming Guide).

If the Format field in the message has a value other than MQFMT_ADMIN,
MQFMT_EVENT, or MQFMT_PCF, MQRC_FORMAT_NOT_SUPPORTED
results.

If, on entry to the call, the Encoding field in the application’s MQMD has a
value other than MQENC_NATIVE and MQGMO_CONVERT is specified,
MQRC_ENCODING_NOT_SUPPORTED results. Also, if MQGMO_CONVERT
is not specified, the value of the Encoding parameter must be the retrieving
application’s MQENC_NATIVE; if not, again
MQRC_ENCODING_NOT_SUPPORTED results.

GetMsgOpts (MQGMO) – input/output
Get-message options (for more information, see the WebSphere MQ
Application Programming Guide).

mqGetBag (Hconn, Hobj, MsgDesc, GetMsgOpts, Bag, CompCode, Reason)

578 WebSphere MQ: Programmable Command Formats and Administration Interface



MQGMO_ACCEPT_TRUNCATED_MSG cannot be specified;
MQRC_OPTIONS_ERROR results if it is. MQGMO_LOCK and
MQGMO_UNLOCK are not supported in a 16-bit or 32-bit Window
environment. MQGMO_SET_SIGNAL is supported in a 32-bit Window
environment only.

Bag (MQHBAG) – input/output
Handle of a bag into which the retrieved message is placed. The MQAI
performs an mqClearBag call on the bag before placing the message in the bag.

MQHB_NONE
Gets the retrieved message. This provides a means of deleting
messages from the queue.

If an option of MQGMO_BROWSE_* is specified, this value sets the
browse cursor to the selected message; it is not deleted in this case.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating warning and error conditions can be
returned from the mqGetBag call:

MQRC_*
Anything from the MQGET call or bag manipulation.

MQRC_BAG_CONVERSION_ERROR
Data could not be converted into a bag.

This indicates a problem with the format of the data to be converted
into a bag (for example, the message is not a valid PCF).

If the message was retrieved destructively from the queue (that is, not
browsing the queue), this reason code indicates that it has been
discarded.

MQRC_BAG_WRONG_TYPE
Input data bag is a group bag.

MQRC_ENCODING_NOT_SUPPORTED
Encoding not supported; the value in the Encoding field of the MQMD
must be MQENC_NATIVE.

MQRC_FORMAT_NOT_SUPPORTED
Format not supported; the Format name in the message is not
MQFMT_ADMIN, MQFMT_EVENT, or MQFMT_PCF. If the message
was retrieved destructively from the queue (that is, not browsing the
queue), this reason code indicates that it has been discarded.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INCONSISTENT_ITEM_TYPE
Datatype of second occurrence of selector differs from datatype of first
occurrence.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

Chapter 10. MQAI reference 579



MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes for mqGetBag
1. Only messages that have a supported format can be returned by this call. If the

message has a format that is not supported, the message is discarded, and the
call completes with an appropriate reason code.

2. If the message is retrieved within a unit of work (that is, with the
MQGMO_SYNCPOINT option), and the message has an unsupported format,
the unit of work can be backed out, reinstating the message on the queue. This
allows the message to be retrieved by using the MQGET call in place of the
mqGetBag call.

C language invocation for mqGetBag
mqGetBag (hConn, hObj, &MsgDesc, &GetMsgOpts, hBag, CompCode, Reason);

Declare the parameters as follows:
MQHCONN hConn; /* MQI connection handle */
MQHOBJ hObj; /* Object handle */
MQMD MsgDesc; /* Message descriptor */
MQGMO GetMsgOpts; /* Get-message options */
MQHBAG hBag; /* Bag handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqGetBag

(Supported on Windows only.)
mqGetBag (HConn, HObj, MsgDesc, GetMsgOpts, Bag, CompCode, Reason);

Declare the parameters as follows:
Dim HConn As Long 'MQI connection handle'
Dim HObj As Long 'Object handle'
Dim MsgDesc As Long 'Message descriptor'
Dim GetMsgOpts As Long 'Get-message options'
Dim Bag As Long 'Bag handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqInquireBag

The mqInquireBag call inquires the value of a bag handle that is present in the
bag. The data item can be a user item or a system item.

Syntax for mqInquireBag

Parameters for mqInquireBag
Bag (MQHBAG) – input

Bag handle to be inquired. The bag can be a user bag or a system bag.

Selector (MQLONG) – input
Selector identifying the item to be inquired.

mqInquireBag (Bag, Selector, ItemIndex, ItemValue, CompCode, Reason)

580 WebSphere MQ: Programmable Command Formats and Administration Interface



If the selector is less than zero (that is, a system selector), the selector must be
one that is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED
results if it is not.

The specified selector must be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

The datatype of the item must agree with the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

The following special values can be specified for Selector:

MQSEL_ANY_SELECTOR
The item to be inquired is a user or system item identified by the
ItemIndex parameter.

MQSEL_ANY_USER_SELECTOR
The item to be inquired is a user item identified by the ItemIndex
parameter.

MQSEL_ANY_SYSTEM_SELECTOR
The item to be inquired is a system item identified by the ItemIndex
parameter.

ItemIndex (MQLONG) – input
Index of the data item to be inquired.

The value must be zero or greater, or the special value MQIND_NONE. If the
value is less than zero and not MQIND_NONE, MQRC_INDEX_ERROR
results. If the item is not already present in the bag,
MQRC_INDEX_NOT_PRESENT results.

The following special value can be specified:

MQIND_NONE
This specifies that there must be one occurrence only of the selector in
the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

If MQSEL_ANY_SELECTOR is specified for the Selector parameter,
the ItemIndex parameter is the index relative to the set of items that
contains both user items and system items, and must be zero or
greater.

If MQSEL_ANY_USER_SELECTOR is specified for the Selector
parameter, the ItemIndex parameter is the index relative to the set of
system items, and must be zero or greater.

If MQSEL_ANY_SYSTEM_SELECTOR is specified for the Selector
parameter, the ItemIndex parameter is the index relative to the set of
system items, and must be zero or greater.

If an explicit selector value is specified, the ItemIndex parameter is the
index relative to the set of items that have that selector value and can
be MQIND_NONE, zero, or greater.

ItemValue (MQHBAG) – output
Value of the item in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

Chapter 10. MQAI reference 581



The following reason codes indicating error conditions can be returned from
the mqInquireBag call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE, or
MQIND_NONE specified with one of the
MQSEL_ANY_xxx_SELECTOR values).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_ITEM_VALUE_ERROR
The ItemValue parameter is not valid (invalid parameter address).

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present within the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

C language invocation for mqInquireBag
mqInquireBag (Bag, Selector, ItemIndex, &ItemValue, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Index of the data item to be inquired */
MQHBAG ItemValue; /* Value of item in the bag */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqInquireBag

(Supported on Windows only.)
mqInquireBag (Bag, Selector, ItemIndex, ItemValue, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Index of the data item to be inquired'
Dim ItemValue As Long 'Value of item in the bag'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

582 WebSphere MQ: Programmable Command Formats and Administration Interface



mqInquireByteString

The mqInquireByteString call requests the value of a byte string data item that is
present in the bag. The data item can be a user item or a system item.

Syntax for mqInquireByteString

Parameters for mqInquireByteString
Bag (MQHBAG) – input

Handle of the bag to which the inquiry relates. The bag can be a user bag or a
system bag.

Selector (MQLONG) – input
Selector of the item to which the inquiry relates.

If the selector is less than zero (that is, a system selector), the selector must be
one that is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED
results if it is not.

The specified selector must be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

The datatype of the item must be the same as the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

The following special values can be specified for Selector:

MQSEL_ANY_SELECTOR
The item to be inquired about is a user or system item identified by
ItemIndex.

MQSEL_ANY_USER_SELECTOR
The item to be inquired about is a user item identified by ItemIndex.

MQSEL_ANY_SYSTEM_SELECTOR
The item to be inquired about is a system item identified by ItemIndex.

ItemIndex (MQLONG) – input
Index of the data item to which the inquiry relates. The value must be zero or
greater, or the special value MQIND_NONE. If the value is less than zero and
not MQIND_NONE, MQRC_INDEX_ERROR results. If the item is not already
present in the bag, MQRC_INDEX_NOT_PRESENT results. The following
special value can be specified:

MQIND_NONE
This specifies that there must be one occurrence only of the selector in
the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

If MQSEL_ANY_SELECTOR is specified for the Selector parameter,
ItemIndex is the index relative to the set of items that contains both
user items and system items, and must be zero or greater.

If MQSEL_ANY_USER_SELECTOR is specified for the Selector
parameter, ItemIndex is the index relative to the set of user items, and
must be zero or greater.

mqInquireByteString (Bag, Selector, ItemIndex, Bufferlength, Buffer, ByteStringLength, CompCode, Reason)

Chapter 10. MQAI reference 583



If MQSEL_ANY_SYSTEM_SELECTOR is specified for Selector,
ItemIndex is the index relative to the set of system items, and must be
zero or greater.

If an explicit selector value is specified, ItemIndex is the index relative
to the set of items that have that selector value, and can be
MQIND_NONE, zero, or greater.

BufferLength (MQLONG) – input
Length in bytes of the buffer to receive the byte string. Zero is a valid value.

Buffer (MQBYTE × BufferLength) – output
Buffer to receive the byte string. The length is given by the BufferLength
parameter. If zero is specified for BufferLength, the null pointer can be
specified for the address of the Buffer parameter; in all other cases, a valid
(nonnull) address must be specified for the Buffer parameter.

The string is padded with nulls to the length of the buffer. If the string is
longer than the buffer, the string is truncated to fit; in this case
ByteStringLength indicates the size of the buffer needed to accommodate the
string without truncation.

ByteStringLength (MQLONG) – output
The length in bytes of the string contained in the bag. If the Buffer parameter
is too small, the length of the string returned is less than ByteStringLength.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error and warning conditions can be
returned from the mqInquireByteString call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE, or
MQIND_NONE specified with one of the
MQSEL_ANY_xxx_SELECTOR values).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

584 WebSphere MQ: Programmable Command Formats and Administration Interface



MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_STRING_LENGTH_ERROR
ByteStringLength parameter not valid (invalid parameter address).

MQRC_STRING_TRUNCATED
Data too long for output buffer and has been truncated.

C language invocation for mqInquireByteString
mqInquireByteString (Bag, Selector, ItemIndex,
BufferLength, Buffer, &StringLength, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG BufferLength; /* Buffer length */
PMQBYTE Buffer; /* Buffer to contain string */
MQLONG ByteStringLength; /* Length of byte string returned */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqInquireByteString

(Supported on Windows only.)
mqInquireByteString Bag, Selector, ItemIndex,
BufferLength, Buffer, StringLength, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As Byte 'Buffer to contain string'
Dim ByteStringLength As Long 'Length of byte string returned'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqInquireByteStringFilter

The mqInquireByteStringFilter call requests the value and operator of a byte string
filter item that is present in the bag. The data item can be a user item or a system
item.

Syntax for mqInquireByteStringFilter

mqInquireByteStringFilter (Bag, Selector, ItemIndex, Bufferlength, Buffer, ByteStringLength, Operator,
CompCode, Reason)

Chapter 10. MQAI reference 585



Parameters for mqInquireByteStringFilter
Bag (MQHBAG) – input

Handle of the bag to which the inquiry relates. The bag can be a user bag or a
system bag.

Selector (MQLONG) – input
Selector of the item to which the inquiry relates.

If the selector is less than zero (that is, a system selector), the selector must be
one that is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED
results if it is not.

The specified selector must be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

The datatype of the item must be the same as the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

The following special values can be specified for Selector:

MQSEL_ANY_SELECTOR
The item to be inquired about is a user or system item identified by
ItemIndex.

MQSEL_ANY_USER_SELECTOR
The item to be inquired about is a user item identified by ItemIndex.

MQSEL_ANY_SYSTEM_SELECTOR
The item to be inquired about is a system item identified by ItemIndex.

ItemIndex (MQLONG) – input
Index of the data item to which the inquiry relates. The value must be zero or
greater, or the special value MQIND_NONE. If the value is less than zero and
not MQIND_NONE, MQRC_INDEX_ERROR results. If the item is not already
present in the bag, MQRC_INDEX_NOT_PRESENT results. The following
special value can be specified:

MQIND_NONE
This specifies that there must be one occurrence only of the selector in
the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

If MQSEL_ANY_SELECTOR is specified for the Selector parameter,
ItemIndex is the index relative to the set of items that contains both
user items and system items, and must be zero or greater.

If MQSEL_ANY_USER_SELECTOR is specified for the Selector
parameter, ItemIndex is the index relative to the set of user items, and
must be zero or greater.

If MQSEL_ANY_SYSTEM_SELECTOR is specified for Selector,
ItemIndex is the index relative to the set of system items, and must be
zero or greater.

If an explicit selector value is specified, ItemIndex is the index relative
to the set of items that have that selector value, and can be
MQIND_NONE, zero, or greater.

BufferLength (MQLONG) – input
Length in bytes of the buffer to receive the condition byte string. Zero is a
valid value.

586 WebSphere MQ: Programmable Command Formats and Administration Interface



Buffer (MQBYTE × BufferLength) – output
Buffer to receive the condition byte string. The length is given by the
BufferLength parameter. If zero is specified for BufferLength, the null pointer
can be specified for the address of the Buffer parameter; in all other cases, a
valid (nonnull) address must be specified for the Buffer parameter.

The string is padded with blanks to the length of the buffer; the string is not
null-terminated. If the string is longer than the buffer, the string is truncated to
fit; in this case ByteStringLength indicates the size of the buffer needed to
accommodate the string without truncation.

ByteStringLength (MQLONG) – output
The length in bytes of the condition string contained in the bag. If the Buffer
parameter is too small, the length of the string returned is less than
StringLength.

Operator (MQLONG) – output
Byte string filter operator in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error and warning conditions can be
returned from the mqInquireByteStringFilter call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_FILTER_OPERATOR_ERROR
Filter operator not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE, or
MQIND_NONE specified with one of the
MQSEL_ANY_xxx_SELECTOR values).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

Chapter 10. MQAI reference 587



MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_STRING_LENGTH_ERROR
ByteStringLength parameter not valid (invalid parameter address).

MQRC_STRING_TRUNCATED
Data too long for output buffer and has been truncated.

C language invocation for mqInquireByteStringFilter
mqInquireByteStringFilter (Bag, Selector, ItemIndex,
BufferLength, Buffer, &ByteStringLength, &Operator, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG BufferLength; /* Buffer length */
PMQBYTE Buffer; /* Buffer to contain string */
MQLONG ByteStringLength; /* Length of string returned */
MQLONG Operator /* Item operator */
PMQLONG CompCode; /* Completion code */
PMQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqInquireByteStringFilter

(Supported on Windows only.)
mqInquireByteStringFilter Bag, Selector, ItemIndex,
BufferLength, Buffer, ByteStringLength,
Operator, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As String 'Buffer to contain string'
Dim ByteStringLength As Long 'Length of byte string returned'
Dim Operator As Long 'Operator'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqInquireInteger

The mqInquireInteger call requests the value of an integer data item that is present
in the bag. The data item can be a user item or a system item.

Syntax for mqInquireInteger

mqInquireInteger (Bag, Selector, ItemIndex, ItemValue, CompCode, Reason)

588 WebSphere MQ: Programmable Command Formats and Administration Interface



Parameters for mqInquireInteger
Bag (MQHBAG) – input

Handle of the bag to which the inquiry relates. The bag can be a user bag or a
system bag.

Selector (MQLONG) – input
Selector identifying the item to which the inquiry relates.

If the selector is less than zero (a system selector), the selector must be one that
is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED results if it
is not.

The specified selector must be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

The datatype of the item must agree with the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

The following special values can be specified for Selector:

MQSEL_ANY_SELECTOR
The item to be inquired about is a user or system item identified by
ItemIndex.

MQSEL_ANY_USER_SELECTOR
The item to be inquired about is a user item identified by ItemIndex.

MQSEL_ANY_SYSTEM_SELECTOR
The item to be inquired about is a system item identified by ItemIndex.

ItemIndex (MQLONG) – input
Index of the data item to which the inquiry relates. The value must be zero or
greater, or the special value MQIND_NONE. If the value is less than zero and
is not MQIND_NONE, MQRC_INDEX_ERROR results. If the item is not
already present in the bag, MQRC_INDEX_NOT_PRESENT results. The
following special value can be specified:

MQIND_NONE
This specifies that there must be one occurrence only of the selector in
the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

If MQSEL_ANY_SELECTOR is specified for Selector, ItemIndex is the index
relative to the set of items that contains both user items and system items, and
must be zero or greater.

If MQSEL_ANY_USER_SELECTOR is specified for Selector, ItemIndex is the
index relative to the set of user items, and must be zero or greater.

If MQSEL_ANY_SYSTEM_SELECTOR is specified for Selector, ItemIndex is
the index relative to the set of system items, and must be zero or greater.

If an explicit selector value is specified, ItemIndex is the index relative to the
set of items that have that selector value, and can be MQIND_NONE, zero, or
greater.

ItemValue (MQLONG) – output
The value of the item in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

Chapter 10. MQAI reference 589



The following reason codes indicating error conditions can be returned from
the mqInquireInteger call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE, or
MQIND_NONE specified with one of the
MQSEL_ANY_xxx_SELECTOR values).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_ITEM_VALUE_ERROR
ItemValue parameter not valid (invalid parameter address).

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

C language invocation for mqInquireInteger
mqInquireInteger (Bag, Selector, ItemIndex, &ItemValue,
&CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG ItemValue; /* Item value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqInquireInteger

(Supported on Windows only.)
mqInquireInteger Bag, Selector, ItemIndex, ItemValue,
CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim ItemValue As Long 'Item value'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

590 WebSphere MQ: Programmable Command Formats and Administration Interface



mqInquireInteger64

The mqInquireInteger64 call requests the value of a 64-bit integer data item that is
present in the bag. The data item can be a user item or a system item.

Syntax for mqInquireInteger64

Parameters for mqInquireInteger64
Bag (MQHBAG) – input

Handle of the bag to which the inquiry relates. The bag can be a user bag or a
system bag.

Selector (MQLONG) – input
Selector identifying the item to which the inquiry relates.

If the selector is less than zero (a system selector), the selector must be one that
is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED results if it
is not.

The specified selector must be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

The datatype of the item must agree with the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

The following special values can be specified for Selector:

MQSEL_ANY_SELECTOR
The item to be inquired about is a user or system item identified by
ItemIndex.

MQSEL_ANY_USER_SELECTOR
The item to be inquired about is a user item identified by ItemIndex.

MQSEL_ANY_SYSTEM_SELECTOR
The item to be inquired about is a system item identified by ItemIndex.

ItemIndex (MQLONG) – input
Index of the data item to which the inquiry relates. The value must be zero or
greater, or the special value MQIND_NONE. If the value is less than zero and
is not MQIND_NONE, MQRC_INDEX_ERROR results. If the item is not
already present in the bag, MQRC_INDEX_NOT_PRESENT results. The
following special value can be specified:

MQIND_NONE
This specifies that there must be one occurrence only of the selector in
the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

If MQSEL_ANY_SELECTOR is specified for Selector, ItemIndex is the index
relative to the set of items that contains both user items and system items, and
must be zero or greater.

If MQSEL_ANY_USER_SELECTOR is specified for Selector, ItemIndex is the
index relative to the set of user items, and must be zero or greater.

If MQSEL_ANY_SYSTEM_SELECTOR is specified for Selector, ItemIndex is
the index relative to the set of system items, and must be zero or greater.

mqInquireInteger64 (Bag, Selector, ItemIndex, ItemValue, CompCode, Reason)

Chapter 10. MQAI reference 591



If an explicit selector value is specified, ItemIndex is the index relative to the
set of items that have that selector value, and can be MQIND_NONE, zero, or
greater.

ItemValue (MQINT64) – output
The value of the item in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqInquireInteger64 call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE, or
MQIND_NONE specified with one of the
MQSEL_ANY_xxx_SELECTOR values).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_ITEM_VALUE_ERROR
ItemValue parameter not valid (invalid parameter address).

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

C language invocation for mqInquireInteger64
mqInquireInteger64 (Bag, Selector, ItemIndex, &ItemValue,
&CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQINT64 ItemValue; /* Item value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

592 WebSphere MQ: Programmable Command Formats and Administration Interface



Visual Basic invocation for mqInquireInteger64

(Supported on Windows only.)
mqInquireInteger64 Bag, Selector, ItemIndex, ItemValue,
CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim ItemValue As Long 'Item value'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqInquireIntegerFilter

The mqInquireIntegerFilter call requests the value and operator of an integer filter
item that is present in the bag. The data item can be a user item or a system item.

Syntax for mqInquireIntegerFilter

Parameters for mqInquireIntegerFilter
Bag (MQHBAG) – input

Handle of the bag to which the inquiry relates. The bag can be a user bag or a
system bag.

Selector (MQLONG) – input
Selector identifying the item to which the inquiry relates.

If the selector is less than zero (a system selector), the selector must be one that
is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED results if it
is not.

The specified selector must be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

The datatype of the item must agree with the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

The following special values can be specified for Selector:

MQSEL_ANY_SELECTOR
The item to be inquired about is a user or system item identified by
ItemIndex.

MQSEL_ANY_USER_SELECTOR
The item to be inquired about is a user item identified by ItemIndex.

MQSEL_ANY_SYSTEM_SELECTOR
The item to be inquired about is a system item identified by ItemIndex.

ItemIndex (MQLONG) – input
Index of the data item to which the inquiry relates. The value must be zero or
greater, or the special value MQIND_NONE. If the value is less than zero and
is not MQIND_NONE, MQRC_INDEX_ERROR results. If the item is not

mqInquireIntegerFilter (Bag, Selector, ItemIndex, ItemValue, Operator, CompCode, Reason)

Chapter 10. MQAI reference 593



already present in the bag, MQRC_INDEX_NOT_PRESENT results. The
following special value can be specified:

MQIND_NONE
This specifies that there must be one occurrence only of the selector in
the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

If MQSEL_ANY_SELECTOR is specified for Selector, ItemIndex is the index
relative to the set of items that contains both user items and system items, and
must be zero or greater.

If MQSEL_ANY_USER_SELECTOR is specified for Selector, ItemIndex is the
index relative to the set of user items, and must be zero or greater.

If MQSEL_ANY_SYSTEM_SELECTOR is specified for Selector, ItemIndex is
the index relative to the set of system items, and must be zero or greater.

If an explicit selector value is specified, ItemIndex is the index relative to the
set of items that have that selector value, and can be MQIND_NONE, zero, or
greater.

ItemValue (MQLONG) – output
The condition value.

Operator (MQLONG) – output
Integer filter operator in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqInquireIntegerFilter call:

MQRC_FILTER_OPERATOR_ERROR
Filter operator not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE, or
MQIND_NONE specified with one of the
MQSEL_ANY_xxx_SELECTOR values).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_ITEM_VALUE_ERROR
ItemValue parameter not valid (invalid parameter address).

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

594 WebSphere MQ: Programmable Command Formats and Administration Interface



MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

C language invocation for mqInquireIntegerFilter
mqInquireIntegerFilter (Bag, Selector, ItemIndex, &ItemValue,
&Operator, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG ItemValue; /* Item value */
MQLONG Operator; /* Item operator */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqInquireIntegerFilter

(Supported on Windows only.)
mqInquireIntegerFilter Bag, Selector, ItemIndex, ItemValue,
Operator, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim ItemValue As Long 'Item value'
Dim Operator As Long 'Item operator'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqInquireItemInfo

The mqInquireItemInfo call returns information about a specified item in a bag.
The data item can be a user item or a system item.

Syntax for mqInquireItemInfo

Parameters for mqInquireItemInfo
Bag (MQHBAG) – input

Handle of the bag to be inquired.

The bag can be a user bag or a system bag.

Selector (MQLONG) – input
Selector identifying the item to be inquired.

mqInquireItemInfo (Bag, Selector, ItemIndex, ItemType, OutSelector, CompCode, Reason)

Chapter 10. MQAI reference 595



If the selector is less than zero (that is, a system selector), the selector must be
one that is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED
results if it is not.

The specified selector must be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

The following special values can be specified for Selector:

MQSEL_ANY_SELECTOR
The item to be inquired is a user or system item identified by the
ItemIndex parameter.

MQSEL_ANY_USER_SELECTOR
The item to be inquired is a user item identified by the ItemIndex
parameter.

MQSEL_ANY_SYSTEM_SELECTOR
The item to be inquired is a system item identified by the ItemIndex
parameter.

ItemIndex (MQLONG) – input
Index of the data item to be inquired.

The item must be present within the bag; MQRC_INDEX_NOT_PRESENT
results if it is not. The value must be zero or greater, or the following special
value:

MQIND_NONE
This specifies that there must be one occurrence only of the selector in
the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

If MQSEL_ANY_SELECTOR is specified for the Selector parameter,
the ItemIndex parameter is the index relative to the set of items that
contains both user items and system items, and must be zero or
greater.

If MQSEL_ANY_USER_SELECTOR is specified for the Selector
parameter, the ItemIndex parameter is the index relative to the set of
system items, and must be zero or greater.

If MQSEL_ANY_SYSTEM_SELECTOR is specified for the Selector
parameter, the ItemIndex parameter is the index relative to the set of
system items, and must be zero or greater. If an explicit selector value
is specified, the ItemIndex parameter is the index relative to the set of
items that have that selector value and can be MQIND_NONE, zero, or
greater.

ItemType (MQLONG) – output
The datatype of the specified data item.

The following can be returned:

MQITEM_BAG
Bag handle item.

MQITEM_BYTE_STRING
Byte string.

MQITEM_INTEGER
Integer item.

596 WebSphere MQ: Programmable Command Formats and Administration Interface



MQITEM_INTEGER_FILTER
Integer filter.

MQITEM_INTEGER64
64-bit integer item.

MQITEM_STRING
Character-string item.

MQITEM_STRING_FILTER
String filter.

OutSelector (MQLONG) – output
Selector of the specified data item.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqInquireItemInfo call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
MQIND_NONE specified with one of the
MQSEL_ANY_XXX_SELECTOR values.

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_ITEM_TYPE_ERROR
ItemType parameter not valid (invalid parameter address).

MQRC_OUT_SELECTOR_ERROR
OutSelector parameter not valid (invalid parameter address).

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

C language invocation for mqInquireItemInfo
mqInquireItemInfo (Bag, Selector, ItemIndex, &OutSelector, &ItemType,
&CompCode, &Reason);

Declare the parameters as follows:

Chapter 10. MQAI reference 597



MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector identifying item */
MQLONG ItemIndex; /* Index of data item */
MQLONG OutSelector; /* Selector of specified data item */
MQLONG ItemType; /* Data type of data item */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqInquireItemInfo

(Supported on Windows only.)
mqInquireItemInfo Bag, Selector, ItemIndex, OutSelector, ItemType,
CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector identifying item'
Dim ItemIndex As Long 'Index of data item'
Dim OutSelector As Long 'Selector of specified data item'
Dim ItemType As Long 'Data type of data item'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqInquireString

The mqInquireString call requests the value of a character data item that is present
in the bag. The data item can be a user item or a system item.

Syntax for mqInquireString

Parameters for mqInquireString
Bag (MQHBAG) – input

Handle of the bag to which the inquiry relates. The bag can be a user bag or a
system bag.

Selector (MQLONG) – input
Selector of the item to which the inquiry relates.

If the selector is less than zero (that is, a system selector), the selector must be
one that is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED
results if it is not.

The specified selector must be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

The datatype of the item must be the same as the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

The following special values can be specified for Selector:

MQSEL_ANY_SELECTOR
The item to be inquired about is a user or system item identified by
ItemIndex.

mqInquireString (Bag, Selector, ItemIndex, Bufferlength, Buffer, StringLength, CodedCharSetId, CompCode,
Reason)

598 WebSphere MQ: Programmable Command Formats and Administration Interface



MQSEL_ANY_USER_SELECTOR
The item to be inquired about is a user item identified by ItemIndex.

MQSEL_ANY_SYSTEM_SELECTOR
The item to be inquired about is a system item identified by ItemIndex.

ItemIndex (MQLONG) – input
Index of the data item to which the inquiry relates. The value must be zero or
greater, or the special value MQIND_NONE. If the value is less than zero and
not MQIND_NONE, MQRC_INDEX_ERROR results. If the item is not already
present in the bag, MQRC_INDEX_NOT_PRESENT results. The following
special value can be specified:

MQIND_NONE
This specifies that there must be one occurrence only of the selector in
the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

If MQSEL_ANY_SELECTOR is specified for the Selector parameter,
ItemIndex is the index relative to the set of items that contains both
user items and system items, and must be zero or greater.

If MQSEL_ANY_USER_SELECTOR is specified for the Selector
parameter, ItemIndex is the index relative to the set of user items, and
must be zero or greater.

If MQSEL_ANY_SYSTEM_SELECTOR is specified for Selector,
ItemIndex is the index relative to the set of system items, and must be
zero or greater.

If an explicit selector value is specified, ItemIndex is the index relative
to the set of items that have that selector value, and can be
MQIND_NONE, zero, or greater.

BufferLength (MQLONG) – input
Length in bytes of the buffer to receive the string. Zero is a valid value.

Buffer (MQCHAR × BufferLength) – output
Buffer to receive the character string. The length is given by the BufferLength
parameter. If zero is specified for BufferLength, the null pointer can be
specified for the address of the Buffer parameter; in all other cases, a valid
(nonnull) address must be specified for the Buffer parameter.

The string is padded with blanks to the length of the buffer; the string is not
null-terminated. If the string is longer than the buffer, the string is truncated to
fit; in this case StringLength indicates the size of the buffer needed to
accommodate the string without truncation.

StringLength (MQLONG) – output
The length in bytes of the string contained in the bag. If the Buffer parameter
is too small, the length of the string returned is less than StringLength.

CodedCharSetId (MQLONG) – output
The coded character set identifier for the character data in the string. This
parameter can be set to a null pointer if not required.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

Chapter 10. MQAI reference 599



The following reason codes indicating error and warning conditions can be
returned from the mqInquireString call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE, or
MQIND_NONE specified with one of the
MQSEL_ANY_xxx_SELECTOR values).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_STRING_LENGTH_ERROR
StringLength parameter not valid (invalid parameter address).

MQRC_STRING_TRUNCATED
Data too long for output buffer and has been truncated.

C language invocation for mqInquireString
mqInquireString (Bag, Selector, ItemIndex,
BufferLength, Buffer, &StringLength, &CodedCharSetId,
&CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG BufferLength; /* Buffer length */
PMQCHAR Buffer; /* Buffer to contain string */
MQLONG StringLength; /* Length of string returned */
MQLONG CodedCharSetId /* Coded Character Set ID */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

600 WebSphere MQ: Programmable Command Formats and Administration Interface



Visual Basic invocation for mqInquireString

(Supported on Windows only.)
mqInquireString Bag, Selector, ItemIndex,
BufferLength, Buffer, StringLength, CodedCharSetId,
CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As String 'Buffer to contain string'
Dim StringLength As Long 'Length of string returned'
Dim CodedCharSetId As Long 'Coded Character Set ID'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqInquireStringFilter

The mqInquireStringFilter call requests the value and operator of a string filter
item that is present in the bag. The data item can be a user item or a system item.

Syntax for mqInquireStringFilter

Parameters for mqInquireStringFilter
Bag (MQHBAG) – input

Handle of the bag to which the inquiry relates. The bag can be a user bag or a
system bag.

Selector (MQLONG) – input
Selector of the item to which the inquiry relates.

If the selector is less than zero (that is, a system selector), the selector must be
one that is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED
results if it is not.

The specified selector must be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

The datatype of the item must be the same as the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

The following special values can be specified for Selector:

MQSEL_ANY_SELECTOR
The item to be inquired about is a user or system item identified by
ItemIndex.

MQSEL_ANY_USER_SELECTOR
The item to be inquired about is a user item identified by ItemIndex.

MQSEL_ANY_SYSTEM_SELECTOR
The item to be inquired about is a system item identified by ItemIndex.

mqInquireStringFilter (Bag, Selector, ItemIndex, Bufferlength, Buffer, StringLength, CodedCharSetId,
Operator, CompCode, Reason)

Chapter 10. MQAI reference 601



ItemIndex (MQLONG) – input
Index of the data item to which the inquiry relates. The value must be zero or
greater, or the special value MQIND_NONE. If the value is less than zero and
not MQIND_NONE, MQRC_INDEX_ERROR results. If the item is not already
present in the bag, MQRC_INDEX_NOT_PRESENT results. The following
special value can be specified:

MQIND_NONE
This specifies that there must be one occurrence only of the selector in
the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

If MQSEL_ANY_SELECTOR is specified for the Selector parameter,
ItemIndex is the index relative to the set of items that contains both
user items and system items, and must be zero or greater.

If MQSEL_ANY_USER_SELECTOR is specified for the Selector
parameter, ItemIndex is the index relative to the set of user items, and
must be zero or greater.

If MQSEL_ANY_SYSTEM_SELECTOR is specified for Selector,
ItemIndex is the index relative to the set of system items, and must be
zero or greater.

If an explicit selector value is specified, ItemIndex is the index relative
to the set of items that have that selector value, and can be
MQIND_NONE, zero, or greater.

BufferLength (MQLONG) – input
Length in bytes of the buffer to receive the condition string. Zero is a valid
value.

Buffer (MQCHAR × BufferLength) – output
Buffer to receive the character condition string. The length is given by the
BufferLength parameter. If zero is specified for BufferLength, the null pointer
can be specified for the address of the Buffer parameter; in all other cases, a
valid (nonnull) address must be specified for the Buffer parameter.

The string is padded with blanks to the length of the buffer; the string is not
null-terminated. If the string is longer than the buffer, the string is truncated to
fit; in this case StringLength indicates the size of the buffer needed to
accommodate the string without truncation.

StringLength (MQLONG) – output
The length in bytes of the condition string contained in the bag. If the Buffer
parameter is too small, the length of the string returned is less than
StringLength.

CodedCharSetId (MQLONG) – output
The coded character set identifier for the character data in the string. This
parameter can be set to a null pointer if not required.

Operator (MQLONG) – output
String filter operator in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error and warning conditions can be
returned from the mqInquireStringFilter call:

602 WebSphere MQ: Programmable Command Formats and Administration Interface



MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_FILTER_OPERATOR_ERROR
Filter operator not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE, or
MQIND_NONE specified with one of the
MQSEL_ANY_xxx_SELECTOR values).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_STRING_LENGTH_ERROR
StringLength parameter not valid (invalid parameter address).

MQRC_STRING_TRUNCATED
Data too long for output buffer and has been truncated.

C language invocation for mqInquireStringFilter
mqInquireStringFilter (Bag, Selector, ItemIndex,
BufferLength, Buffer, &StringLength, &CodedCharSetId,
&Operator, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG BufferLength; /* Buffer length */
PMQCHAR Buffer; /* Buffer to contain string */
MQLONG StringLength; /* Length of string returned */
MQLONG CodedCharSetId /* Coded Character Set ID */
MQLONG Operator /* Item operator */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Chapter 10. MQAI reference 603



Visual Basic invocation for mqInquireStringFilter

(Supported on Windows only.)
mqInquireStringFilter Bag, Selector, ItemIndex,
BufferLength, Buffer, StringLength, CodedCharSetId,
Operator, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As String 'Buffer to contain string'
Dim StringLength As Long 'Length of string returned'
Dim CodedCharSetId As Long 'Coded Character Set ID'
Dim Operator As Long 'Item operator'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqPad

The mqPad call pads a null-terminated string with blanks.

Syntax for mqPad

Parameters for mqPad
String (PMQCHAR) – input

Null-terminated string. The null pointer is valid for the address of the String
parameter, and denotes a string of zero length.

BufferLength (MQLONG) – input
Length in bytes of the buffer to receive the string padded with blanks. Must be
zero or greater.

Buffer (MQCHAR × BufferLength) – output
Buffer to receive the blank-padded string. The length is given by the
BufferLength parameter. If zero is specified for BufferLength, the null pointer
can be specified for the address of the Buffer parameter; in all other cases, a
valid (nonnull) address must be specified for the Buffer parameter.

If the number of characters preceding the first null in the String parameter is
greater than the BufferLength parameter, the excess characters are omitted and
MQRC_DATA_TRUNCATED results.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error and warning conditions can be
returned from the mqPad call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

mqPad (String, BufferLength, Buffer, CompCode, Reason)

604 WebSphere MQ: Programmable Command Formats and Administration Interface



MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_STRING_ERROR
String parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_STRING_TRUNCATED
Data too long for output buffer and has been truncated.

Usage notes for mqPad
1. If the buffer pointers are the same, the padding is done in place. If not, at most

BufferLength characters are copied into the second buffer; any space remaining,
including the null-termination character, is overwritten with spaces.

2. If the String and Buffer parameters partially overlap, the result is undefined.

C language invocation for mqPad
mqPad (String, BufferLength, Buffer, &CompCode, &Reason);

Declare the parameters as follows:
MQCHAR String; /* String to be padded */
MQLONG BufferLength; /* Buffer length */
PMQCHAR Buffer /* Buffer to contain padded string */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Note: This call is not supported in Visual Basic.

mqPutBag

The mqPutBag call converts the contents of the specified bag into a PCF message
and sends the message to the specified queue. The contents of the bag are
unchanged after the call.

Syntax for mqPutBag

Parameters for mqPutBag
Hconn (MQHCONN) – input

MQI connection handle.

Hobj (MQHOBJ) – input
Object handle of the queue on which the message is to be placed. This handle
was returned by a preceding MQOPEN call issued by the application. The
queue must be open for output.

MsgDesc (MQMD) – input/output
Message descriptor. (For more information, see the WebSphere MQ Application
Programming Guide.)

If the Format field has a value other than MQFMT_ADMIN, MQFMT_EVENT,
or MQFMT_PCF, MQRC_FORMAT_NOT_SUPPORTED results.

mqPutBag (Hconn, Hobj, MsgDesc, PutMsgOpts, Bag, CompCode, Reason)

Chapter 10. MQAI reference 605



If the Encoding field has a value other than MQENC_NATIVE,
MQRC_ENCODING_NOT_SUPPORTED results.

PutMsgOpts (MQPMO) – input/output
Put-message options. (For more information, see the WebSphere MQ
Application Programming Guide.)

Bag (MQHBAG) – input
Handle of the data bag to be converted to a message.

If the bag contains an administration message, and mqAddInquiry was used to
insert values into the bag, the value of the MQIASY_COMMAND data item
must be an INQUIRE command recognized by the MQAI;
MQRC_INQUIRY_COMMAND_ERROR results if it is not.

If the bag contains nested system bags,
MQRC_NESTED_BAG_NOT_SUPPORTED results.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode. The following reason codes indicating error
and warning conditions can be returned from the mqPutBag call:

MQRC_*
Anything from the MQPUT call or bag manipulation.

MQRC_BAG_WRONG_TYPE
Input data bag is a group bag.

MQRC_ENCODING_NOT_SUPPORTED
Encoding not supported (value in Encoding field in MQMD must be
MQENC_NATIVE).

MQRC_FORMAT_NOT_SUPPORTED
Format not supported (name in Format field in MQMD must be
MQFMT_ADMIN, MQFMT_EVENT, or MQFMT_PCF).

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INQUIRY_COMMAND_ERROR
mqAddInquiry call used with a command code that is not a recognized
INQUIRE command.

MQRC_NESTED_BAG_NOT_SUPPORTED
Input data bag contains one or more nested system bags.

MQRC_PARAMETER_MISSING
Administration message requires a parameter that is not present in the
bag. This reason code occurs for bags created with the
MQCBO_ADMIN_BAG or MQCBO_REORDER_AS_REQUIRED
options only.

MQRC_SELECTOR_WRONG_TYPE
mqAddString or mqSetString was used to add the MQIACF_INQUIRY
selector to the bag.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

606 WebSphere MQ: Programmable Command Formats and Administration Interface



C language invocation for mqPutBag
mqPutBag (HConn, HObj, &MsgDesc, &PutMsgOpts, Bag,
&CompCode, &Reason);

Declare the parameters as follows:
MQHCONN HConn; /* MQI connection handle */
MQHOBJ HObj; /* Object handle */
MQMD MsgDesc; /* Message descriptor */
MQPMO PutMsgOpts; /* Put-message options */
MQHBAG Bag; /* Bag handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqPutBag

(Supported on Windows only.)
mqPutBag (HConn, HObj, MsgDesc, PutMsgOpts, Bag,
CompCode, Reason);

Declare the parameters as follows:
Dim HConn As Long 'MQI connection handle'
Dim HObj As Long 'Object handle'
Dim MsgDesc As MQMD 'Message descriptor'
Dim PutMsgOpts As MQPMO 'Put-message options'
Dim Bag As Long 'Bag handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqSetByteString

The mqSetByteString call either modifies a byte string data item that is already
present in the bag, or deletes all existing occurrences of the specified selector and
adds a new occurrence at the end of the bag. The data item is usually a user item,
but certain system-data items can also be modified.

Syntax for mqSetByteString

Parameters for mqSetByteString
Bag (MQHBAG) – input

Handle of the bag to be set. This must be the handle of a bag created by the
user, not the handle of a system bag;
MQRC_SYSTEM_BAG_NOT_ALTERABLE results if you specify the handle of
a system bag.

Selector (MQLONG) – input
Selector of the item to be modified.

If the selector is less than zero (that is, a system selector), the selector must be
one that is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED
results if it is not.

If the selector is a supported system selector, but is one that is read only,
MQRC_SYSTEM_ITEM_NOT_ALTERABLE results.

mqSetByteString (Bag, Selector, ItemIndex, Bufferlength, Buffer, CompCode, Reason)

Chapter 10. MQAI reference 607



If the selector is an alterable system selector, but is always a single-instance
selector and the application attempts to create a second instance in the bag,
MQRC_MULTIPLE_INSTANCE_ERROR results.

If the selector is zero or greater (that is, a user selector), and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration
bag (MQCBO_ADMIN_BAG), the selector must be in the range MQBA_FIRST
through MQBA_LAST; MQRC_SELECTOR_OUT_OF_RANGE results if it is
not. If MQCBO_CHECK_SELECTORS was not specified, the selector can be
any value zero or greater.

If MQIND_ALL is not specified for the ItemIndex parameter, the specified
selector must already be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

If MQIND_ALL is not specified for the ItemIndex parameter, the datatype of
the item must be the same as the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

ItemIndex (MQLONG) – input
This identifies which occurrence of the item with the specified selector is to be
modified. The value must be zero or greater, or one of the special values
described below; if it is none of these, MQRC_INDEX_ERROR results.

Zero or greater
The item with the specified index must already be present in the bag;
MQRC_INDEX_NOT_PRESENT results if it is not. The index is
counted relative to the items in the bag that have the specified selector.
For example, if there are five items in the bag with the specified
selector, the valid values for ItemIndex are 0 through 4.

MQIND_NONE
This specifies that there must be only one occurrence of the specified
selector in the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

MQIND_ALL
This specifies that all existing occurrences of the specified selector (if
any) are to be deleted from the bag, and a new occurrence of the
selector created at the end of the bag.

BufferLength (MQLONG) – input
The length in bytes of the byte string contained in the Buffer parameter. The
value must be zero or greater.

Buffer (MQBYTE × BufferLength) – input
Buffer containing the byte string. The length is given by the BufferLength
parameter. If zero is specified for BufferLength, the null pointer can be
specified for the address of the Buffer parameter; in all other cases, a valid
(nonnull) address must be specified for the Buffer parameter.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqSetByteString call:

608 WebSphere MQ: Programmable Command Formats and Administration Interface



MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE or
MQIND_ALL).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_MULTIPLE_INSTANCE_ERROR
Multiple instances of system selector not valid.

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

MQRC_SYSTEM_ITEM_NOT_ALTERABLE
System item is read-only and cannot be altered.

C language invocation for mqSetByteString
mqSetByteString (Bag, Selector, ItemIndex, BufferLength, Buffer,
&CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG BufferLength; /* Buffer length */
PMQBYTE Buffer; /* Buffer containing string */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqSetByteString

(Supported on Windows only.)

Chapter 10. MQAI reference 609



mqSetByteString Bag, Selector, ItemIndex, BufferLength, Buffer,
CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As Byte 'Buffer containing string'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqSetByteStringFilter

The mqSetByteStringFilter call either modifies a byte string filter item that is
already present in the bag, or deletes all existing occurrences of the specified
selector and adds a new occurrence at the end of the bag. The data item is usually
a user item, but certain system-data items can also be modified.

Syntax for mqSetByteStringFilter

Parameters for mqSetByteStringFilter
Bag (MQHBAG) – input

Handle of the bag to be set. This must be the handle of a bag created by the
user, not the handle of a system bag;
MQRC_SYSTEM_BAG_NOT_ALTERABLE results if you specify the handle of
a system bag.

Selector (MQLONG) – input
Selector of the item to be modified.

If the selector is less than zero (that is, a system selector), the selector must be
one that is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED
results if it is not.

If the selector is a supported system selector, but is one that is read only,
MQRC_SYSTEM_ITEM_NOT_ALTERABLE results.

If the selector is an alterable system selector, but is always a single-instance
selector and the application attempts to create a second instance in the bag,
MQRC_MULTIPLE_INSTANCE_ERROR results.

If the selector is zero or greater (that is, a user selector), and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration
bag (MQCBO_ADMIN_BAG), the selector must be in the range MQBA_FIRST
through MQBA_LAST; MQRC_SELECTOR_OUT_OF_RANGE results if it is
not. If MQCBO_CHECK_SELECTORS was not specified, the selector can be
any value zero or greater.

If MQIND_ALL is not specified for the ItemIndex parameter, the specified
selector must already be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

If MQIND_ALL is not specified for the ItemIndex parameter, the datatype of
the item must be the same as the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

mqSetByteStringFilter (Bag, Selector, ItemIndex, Bufferlength, Buffer, Operator, CompCode, Reason)

610 WebSphere MQ: Programmable Command Formats and Administration Interface



ItemIndex (MQLONG) – input
This identifies which occurrence of the item with the specified selector is to be
modified. The value must be zero or greater, or one of the special values
described below; if it is none of these, MQRC_INDEX_ERROR results.

Zero or greater
The item with the specified index must already be present in the bag;
MQRC_INDEX_NOT_PRESENT results if it is not. The index is
counted relative to the items in the bag that have the specified selector.
For example, if there are five items in the bag with the specified
selector, the valid values for ItemIndex are 0 through 4.

MQIND_NONE
This specifies that there must be only one occurrence of the specified
selector in the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

MQIND_ALL
This specifies that all existing occurrences of the specified selector (if
any) are to be deleted from the bag, and a new occurrence of the
selector created at the end of the bag.

BufferLength (MQLONG) – input
The length in bytes of the condition byte string contained in the Buffer
parameter. The value must be zero or greater.

Buffer (MQBYTE × BufferLength) – input
Buffer containing the condition byte string. The length is given by the
BufferLength parameter. If zero is specified for BufferLength, the null pointer
can be specified for the address of the Buffer parameter; in all other cases, a
valid (nonnull) address must be specified for the Buffer parameter.

Operator (MQLONG × Operator) – input
Byte string filter operator to be placed in the bag. Valid operators are of the
form MQCFOP_*.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqSetByteStringFilter call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_FILTER_OPERATOR_ERROR
Bag handle not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE or
MQIND_ALL).

Chapter 10. MQAI reference 611



MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_MULTIPLE_INSTANCE_ERROR
Multiple instances of system selector not valid.

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

MQRC_SYSTEM_ITEM_NOT_ALTERABLE
System item is read-only and cannot be altered.

C language invocation for mqSetByteStringFilter
mqSetByteStringFilter (Bag, Selector, ItemIndex, BufferLength, Buffer,
Operator, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG BufferLength; /* Buffer length */
PMQBYTE Buffer; /* Buffer containing string */
MQLONG Operator; /* Operator */
PMQLONG CompCode; /* Completion code */
PMQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqSetByteStringFilter

(Supported on Windows only.)
mqSetByteStringFilter Bag, Selector, ItemIndex, BufferLength, Buffer,
Operator, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As String 'Buffer containing string'
Dim Operator As Long 'Item operator'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

612 WebSphere MQ: Programmable Command Formats and Administration Interface



mqSetInteger

The mqSetInteger call either modifies an integer item that is already present in the
bag, or deletes all existing occurrences of the specified selector and adds a new
occurrence at the end of the bag. The data item is usually a user item, but specific
system-data items can also be modified.

Syntax for mqSetInteger

Parameters for mqSetInteger
Bag (MQHBAG) – input

Handle of the bag to be set. This must be the handle of a bag created by the
user, and not the handle of a system bag;
MQRC_SYSTEM_BAG_NOT_ALTERABLE results if the handle you specify
refers to a system bag.

Selector (MQLONG) – input
Selector of the item to be modified. If the selector is less than zero (that is, a
system selector), the selector must be one that is supported by the MQAI;
MQRC_SELECTOR_NOT_SUPPORTED results if it is not.

If the selector is a supported system selector, but is one that is read-only,
MQRC_SYSTEM_ITEM_NOT_ALTERABLE results.

If the selector is an alterable system selector, but is always a single-instance
selector and the application attempts to create a second instance in the bag,
MQRC_MULTIPLE_INSTANCE_ERROR results.

If the selector is zero or greater (that is, a user selector), and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration
bag (MQCBO_ADMIN_BAG), the selector must be in the range MQIA_FIRST
through MQIA_LAST; MQRC_SELECTOR_OUT_OF_RANGE results if it is not.
If MQCBO_CHECK_SELECTORS was not specified, the selector can be any
value zero or greater.

If MQIND_ALL is not specified for the ItemIndex parameter, the specified
selector must already be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

If MQIND_ALL is not specified for the ItemIndex parameter, the datatype of
the item must agree with the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

ItemIndex (MQLONG) – input
This value identifies the occurrence of the item with the specified selector that
is to be modified. The value must be zero or greater, or one of the special
values described below; if it is none of these, MQRC_INDEX_ERROR results.

Zero or greater
The item with the specified index must already be present in the bag;
MQRC_INDEX_NOT_PRESENT results if it is not. The index is
counted relative to the items in the bag that have the specified selector.
For example, if there are five items in the bag with the specified
selector, the valid values for ItemIndex are 0 through 4.

mqSetInteger (Bag, Selector, ItemIndex, ItemValue, CompCode, Reason)

Chapter 10. MQAI reference 613



MQIND_NONE
This specifies that there must be one occurrence only of the specified
selector in the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

MQIND_ALL
This specifies that all existing occurrences of the specified selector (if
any) are to be deleted from the bag, and a new occurrence of the
selector created at the end of the bag.

Note: For system selectors, the order is not changed.

ItemValue (MQLONG) – input
The integer value to be placed in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error and warning conditions can be
returned from the mqSetInteger call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE or
MQIND_ALL).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_MULTIPLE_INSTANCE_ERROR
Multiple instances of system selector not valid.

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not in valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

MQRC_SYSTEM_ITEM_NOT_ALTERABLE
System item is read only and cannot be altered.

614 WebSphere MQ: Programmable Command Formats and Administration Interface



C language invocation for mqSetInteger
mqSetInteger (Bag, Selector, ItemIndex, ItemValue, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG ItemValue; /* Integer value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqSetInteger

(Supported on Windows only.)
mqSetInteger Bag, Selector, ItemIndex, ItemValue, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim ItemValue As Long 'Integer value'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqSetInteger64

The mqSetInteger64 call either modifies a 64-bit integer item that is already present
in the bag, or deletes all existing occurrences of the specified selector and adds a
new occurrence at the end of the bag. The data item is usually a user item, but
specific system-data items can also be modified.

Syntax for mqSetInteger64

Parameters for mqSetInteger64
Bag (MQHBAG) – input

Handle of the bag to be set. This must be the handle of a bag created by the
user, and not the handle of a system bag;
MQRC_SYSTEM_BAG_NOT_ALTERABLE results if the handle you specify
refers to a system bag.

Selector (MQLONG) – input
Selector of the item to be modified. If the selector is less than zero (that is, a
system selector), the selector must be one that is supported by the MQAI;
MQRC_SELECTOR_NOT_SUPPORTED results if it is not.

If the selector is a supported system selector, but is one that is read-only,
MQRC_SYSTEM_ITEM_NOT_ALTERABLE results.

If the selector is an alterable system selector, but is always a single-instance
selector and the application attempts to create a second instance in the bag,
MQRC_MULTIPLE_INSTANCE_ERROR results.

If the selector is zero or greater (that is, a user selector), and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration

mqSetInteger64 (Bag, Selector, ItemIndex, ItemValue, CompCode, Reason)

Chapter 10. MQAI reference 615



bag (MQCBO_ADMIN_BAG), the selector must be in the range MQIA_FIRST
through MQIA_LAST; MQRC_SELECTOR_OUT_OF_RANGE results if it is not.
If MQCBO_CHECK_SELECTORS was not specified, the selector can be any
value zero or greater.

If MQIND_ALL is not specified for the ItemIndex parameter, the specified
selector must already be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

If MQIND_ALL is not specified for the ItemIndex parameter, the datatype of
the item must agree with the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

ItemIndex (MQLONG) – input
This value identifies the occurrence of the item with the specified selector that
is to be modified. The value must be zero or greater, or one of the special
values described below; if it is none of these, MQRC_INDEX_ERROR results.

Zero or greater
The item with the specified index must already be present in the bag;
MQRC_INDEX_NOT_PRESENT results if it is not. The index is
counted relative to the items in the bag that have the specified selector.
For example, if there are five items in the bag with the specified
selector, the valid values for ItemIndex are 0 through 4.

MQIND_NONE
This specifies that there must be one occurrence only of the specified
selector in the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

MQIND_ALL
This specifies that all existing occurrences of the specified selector (if
any) are to be deleted from the bag, and a new occurrence of the
selector created at the end of the bag.

Note: For system selectors, the order is not changed.

ItemValue (MQINT64) – input
The integer value to be placed in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error and warning conditions can be
returned from the mqSetInteger64 call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE or
MQIND_ALL).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_MULTIPLE_INSTANCE_ERROR
Multiple instances of system selector not valid.

616 WebSphere MQ: Programmable Command Formats and Administration Interface



MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not in valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

MQRC_SYSTEM_ITEM_NOT_ALTERABLE
System item is read only and cannot be altered.

C language invocation for mqSetInteger64
mqSetInteger64 (Bag, Selector, ItemIndex, ItemValue, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQINT64 ItemValue; /* Integer value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqSetInteger64

(Supported on Windows only.)
mqSetInteger64 Bag, Selector, ItemIndex, ItemValue, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim ItemValue As Long 'Integer value'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqSetIntegerFilter

The mqSetIntegerFilter call either modifies an integer filter item that is already
present in the bag, or deletes all existing occurrences of the specified selector and
adds a new occurrence at the end of the bag. The data item is usually a user item,
but specific system-data items can also be modified.

Syntax for mqSetIntegerFilter

Chapter 10. MQAI reference 617



Parameters for mqSetIntegerFilter
Bag (MQHBAG) – input

Handle of the bag to be set. This must be the handle of a bag created by the
user, and not the handle of a system bag;
MQRC_SYSTEM_BAG_NOT_ALTERABLE results if the handle you specify
refers to a system bag.

Selector (MQLONG) – input
Selector of the item to be modified. If the selector is less than zero (that is, a
system selector), the selector must be one that is supported by the MQAI;
MQRC_SELECTOR_NOT_SUPPORTED results if it is not.

If the selector is a supported system selector, but is one that is read-only,
MQRC_SYSTEM_ITEM_NOT_ALTERABLE results.

If the selector is an alterable system selector, but is always a single-instance
selector and the application attempts to create a second instance in the bag,
MQRC_MULTIPLE_INSTANCE_ERROR results.

If the selector is zero or greater (that is, a user selector), and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration
bag (MQCBO_ADMIN_BAG), the selector must be in the range MQIA_FIRST
through MQIA_LAST; MQRC_SELECTOR_OUT_OF_RANGE results if it is not.
If MQCBO_CHECK_SELECTORS was not specified, the selector can be any
value zero or greater.

If MQIND_ALL is not specified for the ItemIndex parameter, the specified
selector must already be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

If MQIND_ALL is not specified for the ItemIndex parameter, the datatype of
the item must agree with the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

ItemIndex (MQLONG) – input
This value identifies the occurrence of the item with the specified selector that
is to be modified. The value must be zero or greater, or one of the special
values described below; if it is none of these, MQRC_INDEX_ERROR results.

Zero or greater
The item with the specified index must already be present in the bag;
MQRC_INDEX_NOT_PRESENT results if it is not. The index is
counted relative to the items in the bag that have the specified selector.
For example, if there are five items in the bag with the specified
selector, the valid values for ItemIndex are 0 through 4.

MQIND_NONE
This specifies that there must be one occurrence only of the specified
selector in the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

MQIND_ALL
This specifies that all existing occurrences of the specified selector (if
any) are to be deleted from the bag, and a new occurrence of the
selector created at the end of the bag.

mqSetIntegerFilter (Bag, Selector, ItemIndex, ItemValue, Operator, CompCode, Reason)

618 WebSphere MQ: Programmable Command Formats and Administration Interface



Note: For system selectors, the order is not changed.

ItemValue (MQLONG) – input
The integer condition value to be placed in the bag.

Operator (MQLONG) – input
The integer filter operator to be placed in the bag. Valid operators are of the
form MQCFOP_*.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error and warning conditions can be
returned from the mqSetIntegerFilter call:

MQRC_FILTER_OPERATOR_ERROR
Filter operator not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE or
MQIND_ALL).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_MULTIPLE_INSTANCE_ERROR
Multiple instances of system selector not valid.

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not in valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

MQRC_SYSTEM_ITEM_NOT_ALTERABLE
System item is read only and cannot be altered.

C language invocation for mqSetIntegerFilter
mqSetIntegerFilter (Bag, Selector, ItemIndex, ItemValue, Operator,
&CompCode, &Reason);

Declare the parameters as follows:

Chapter 10. MQAI reference 619



MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG ItemValue; /* Integer value */
MQLONG Operator; /* Item operator */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqSetIntegerFilter

(Supported on Windows only.)
mqSetIntegerFilter Bag, Selector, ItemIndex, ItemValue, Operator,
CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim ItemValue As Long 'Integer value'
Dim Operator As Long 'Item operator'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqSetString

The mqSetString call either modifies a character data item that is already present in
the bag, or deletes all existing occurrences of the specified selector and adds a new
occurrence at the end of the bag. The data item is usually a user item, but certain
system-data items can also be modified.

Syntax for mqSetString

Parameters for mqSetString
Bag (MQHBAG) – input

Handle of the bag to be set. This must be the handle of a bag created by the
user, not the handle of a system bag;
MQRC_SYSTEM_BAG_NOT_ALTERABLE results if you specify the handle of
a system bag.

Selector (MQLONG) – input
Selector of the item to be modified.

If the selector is less than zero (that is, a system selector), the selector must be
one that is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED
results if it is not.

If the selector is a supported system selector, but is one that is read only,
MQRC_SYSTEM_ITEM_NOT_ALTERABLE results.

If the selector is an alterable system selector, but is always a single-instance
selector and the application attempts to create a second instance in the bag,
MQRC_MULTIPLE_INSTANCE_ERROR results.

If the selector is zero or greater (that is, a user selector), and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration

mqSetString (Bag, Selector, ItemIndex, Bufferlength, Buffer, CompCode, Reason)

620 WebSphere MQ: Programmable Command Formats and Administration Interface



bag (MQCBO_ADMIN_BAG), the selector must be in the range MQCA_FIRST
through MQCA_LAST; MQRC_SELECTOR_OUT_OF_RANGE results if it is
not. If MQCBO_CHECK_SELECTORS was not specified, the selector can be
any value zero or greater.

If MQIND_ALL is not specified for the ItemIndex parameter, the specified
selector must already be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

If MQIND_ALL is not specified for the ItemIndex parameter, the datatype of
the item must be the same as the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

ItemIndex (MQLONG) – input
This identifies which occurrence of the item with the specified selector is to be
modified. The value must be zero or greater, or one of the special values
described below; if it is none of these, MQRC_INDEX_ERROR results.

Zero or greater
The item with the specified index must already be present in the bag;
MQRC_INDEX_NOT_PRESENT results if it is not. The index is
counted relative to the items in the bag that have the specified selector.
For example, if there are five items in the bag with the specified
selector, the valid values for ItemIndex are 0 through 4.

MQIND_NONE
This specifies that there must be only one occurrence of the specified
selector in the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

MQIND_ALL
This specifies that all existing occurrences of the specified selector (if
any) are to be deleted from the bag, and a new occurrence of the
selector created at the end of the bag.

BufferLength (MQLONG) – input
The length in bytes of the string contained in the Buffer parameter. The value
must be zero or greater, or the special value MQBL_NULL_TERMINATED.

If MQBL_NULL_TERMINATED is specified, the string is delimited by the first
null encountered in the string.

If MQBL_NULL_TERMINATED is not specified, BufferLength characters are
inserted into the bag, even if null characters are present; the nulls do not
delimit the string.

Buffer (MQCHAR × BufferLength) – input
Buffer containing the character string. The length is given by the BufferLength
parameter. If zero is specified for BufferLength, the null pointer can be
specified for the address of the Buffer parameter; in all other cases, a valid
(nonnull) address must be specified for the Buffer parameter.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqSetString call:

Chapter 10. MQAI reference 621



MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE or
MQIND_ALL).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_MULTIPLE_INSTANCE_ERROR
Multiple instances of system selector not valid.

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

MQRC_SYSTEM_ITEM_NOT_ALTERABLE
System item is read-only and cannot be altered.

Usage notes for mqSetString

The Coded Character Set ID (CCSID) associated with this string is copied from the
current CCSID of the bag.

C language invocation for mqSetString
mqSetString (Bag, Selector, ItemIndex, BufferLength, Buffer,
&CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG BufferLength; /* Buffer length */
PMQCHAR Buffer; /* Buffer containing string */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

622 WebSphere MQ: Programmable Command Formats and Administration Interface



Visual Basic invocation for mqSetString

(Supported on Windows only.)
mqSetString Bag, Selector, ItemIndex, BufferLength, Buffer,
CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As String 'Buffer containing string'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqSetStringFilter

The mqSetStringFilter call either modifies a string filter item that is already present
in the bag, or deletes all existing occurrences of the specified selector and adds a
new occurrence at the end of the bag. The data item is usually a user item, but
certain system-data items can also be modified.

Syntax for mqSetStringFilter

Parameters for mqSetStringFilter
Bag (MQHBAG) – input

Handle of the bag to be set. This must be the handle of a bag created by the
user, not the handle of a system bag;
MQRC_SYSTEM_BAG_NOT_ALTERABLE results if you specify the handle of
a system bag.

Selector (MQLONG) – input
Selector of the item to be modified.

If the selector is less than zero (that is, a system selector), the selector must be
one that is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED
results if it is not.

If the selector is a supported system selector, but is one that is read only,
MQRC_SYSTEM_ITEM_NOT_ALTERABLE results.

If the selector is an alterable system selector, but is always a single-instance
selector and the application attempts to create a second instance in the bag,
MQRC_MULTIPLE_INSTANCE_ERROR results.

If the selector is zero or greater (that is, a user selector), and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration
bag (MQCBO_ADMIN_BAG), the selector must be in the range MQCA_FIRST
through MQCA_LAST; MQRC_SELECTOR_OUT_OF_RANGE results if it is
not. If MQCBO_CHECK_SELECTORS was not specified, the selector can be
any value zero or greater.

If MQIND_ALL is not specified for the ItemIndex parameter, the specified
selector must already be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

mqSetStringFilter (Bag, Selector, ItemIndex, Bufferlength, Buffer, Operator, CompCode, Reason)

Chapter 10. MQAI reference 623



If MQIND_ALL is not specified for the ItemIndex parameter, the datatype of
the item must be the same as the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

ItemIndex (MQLONG) – input
This identifies which occurrence of the item with the specified selector is to be
modified. The value must be zero or greater, or one of the special values
described below; if it is none of these, MQRC_INDEX_ERROR results.

Zero or greater
The item with the specified index must already be present in the bag;
MQRC_INDEX_NOT_PRESENT results if it is not. The index is
counted relative to the items in the bag that have the specified selector.
For example, if there are five items in the bag with the specified
selector, the valid values for ItemIndex are 0 through 4.

MQIND_NONE
This specifies that there must be only one occurrence of the specified
selector in the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

MQIND_ALL
This specifies that all existing occurrences of the specified selector (if
any) are to be deleted from the bag, and a new occurrence of the
selector created at the end of the bag.

BufferLength (MQLONG) – input
The length in bytes of the condition string contained in the Buffer parameter.
The value must be zero or greater, or the special value
MQBL_NULL_TERMINATED.

If MQBL_NULL_TERMINATED is specified, the string is delimited by the first
null encountered in the string.

If MQBL_NULL_TERMINATED is not specified, BufferLength characters are
inserted into the bag, even if null characters are present; the nulls do not
delimit the string.

Buffer (MQCHAR × BufferLength) – input
Buffer containing the character condition string. The length is given by the
BufferLength parameter. If zero is specified for BufferLength, the null pointer
can be specified for the address of the Buffer parameter; in all other cases, a
valid (nonnull) address must be specified for the Buffer parameter.

Operator (MQLONG × Operator) – input
String filter operator to be placed in the bag. Valid operators are of the form
MQCFOP_*.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqSetStringFilter call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

624 WebSphere MQ: Programmable Command Formats and Administration Interface



MQRC_FILTER_OPERATOR_ERROR
Bag handle not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE or
MQIND_ALL).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_MULTIPLE_INSTANCE_ERROR
Multiple instances of system selector not valid.

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

MQRC_SYSTEM_ITEM_NOT_ALTERABLE
System item is read-only and cannot be altered.

Usage notes for mqSetStringFilter

The Coded Character Set ID (CCSID) associated with this string is copied from the
current CCSID of the bag.

C language invocation for mqSetStringFilter
mqSetStringFilter (Bag, Selector, ItemIndex, BufferLength, Buffer,
Operator, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG BufferLength; /* Buffer length */
PMQCHAR Buffer; /* Buffer containing string */
MQLONG Operator; /* Item operator */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Chapter 10. MQAI reference 625



Visual Basic invocation for mqSetStringFilter

(Supported on Windows only.)
mqSetStringFilter Bag, Selector, ItemIndex, BufferLength, Buffer,
Operator, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As String 'Buffer containing string'
Dim Operator As Long 'Item operator'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqTrim

The mqTrim call trims the blanks from a blank-padded string, then terminates it
with a null.

Syntax for mqTrim

Parameters for mqTrim
BufferLength (MQLONG) – input

Length in bytes of the buffer containing the string padded with blanks. Must
be zero or greater.

Buffer (MQCHAR × BufferLength) – input
Buffer containing the blank-padded string. The length is given by the
BufferLength parameter. If zero is specified for BufferLength, the null pointer
can be specified for the address of the Buffer parameter; in all other cases, a
valid (nonnull) address must be specified for the Buffer parameter.

String (MQCHAR × (BufferLength+1)) – output
Buffer to receive the null-terminated string. The length of this buffer must be at
least one byte greater than the value of the BufferLength parameter.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqTrim call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

mqTrim (BufferLength, Buffer, String, CompCode, Reason)

626 WebSphere MQ: Programmable Command Formats and Administration Interface



MQRC_STRING_ERROR
String parameter not valid (invalid parameter address or buffer not
completely accessible).

Usage notes for mqTrim
1. If the two buffer pointers are the same, the trimming is done in place. If they

are not the same, the blank-padded string is copied into the null-terminated
string buffer. After copying, the buffer is scanned backwards from the end until
a nonspace character is found. The byte following the nonspace character is
then overwritten with a null character.

2. If String and Buffer partially overlap, the result is undefined.

C language invocation for mqTrim
mqTrim (BufferLength, Buffer, String, &CompCode, &Reason);

Declare the parameters as follows:
MQLONG BufferLength; /* Buffer length */
PMQCHAR Buffer; /* Buffer containing blank-padded string */
MQCHAR String[n+1]; /* String with blanks discarded */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Note: This call is not supported in Visual Basic.

mqTruncateBag

The mqTruncateBag call reduces the number of user items in a user bag to the
specified value, by deleting user items from the end of the bag.

Syntax for mqTruncateBag

Parameters for mqTruncateBag
Bag (MQHBAG) – input

Handle of the bag to be truncated. This must be the handle of a bag created by
the user, not the handle of a system bag;
MQRC_SYSTEM_BAG_NOT_ALTERABLE results if you specify the handle of
a system bag.

ItemCount (MQLONG) – input
The number of user items to remain in the bag after truncation. Zero is a valid
value.

Note: The ItemCount parameter is the number of data items, not the number of
unique selectors. (If there are one or more selectors that occur multiple times in
the bag, there will be fewer selectors than data items before truncation.) Data
items are deleted from the end of the bag, in the opposite order to which they
were added to the bag.

If the number specified exceeds the number of user items currently in the bag,
MQRC_ITEM_COUNT_ERROR results.

mqTruncateBag (Bag, ItemCount, CompCode, Reason)

Chapter 10. MQAI reference 627



CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqTruncateBag call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_ITEM_COUNT_ERROR
ItemCount parameter not valid (value exceeds the number of user data
items in the bag).

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes for mqTruncateBag
1. System items in a bag are not affected by mqTruncateBag; the call cannot be

used to truncate system bags.
2. mqTruncateBag with an ItemCount of zero is not the same as the mqClearBag

call. The former deletes all of the user items but leaves the system items intact,
and the latter deletes all of the user items and resets the system items to their
initial values.

C language invocation for mqTruncateBag
mqTruncateBag (Bag, ItemCount, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG hBag; /* Bag handle */
MQLONG ItemCount; /* Number of items to remain in bag */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation for mqTruncateBag

(Supported on Windows only.)
mqTruncateBag Bag, ItemCount, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim ItemCount As Long 'Number of items to remain in bag'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI Selectors

Items in bags are identified by a selector that acts as an identifier for the item.
There are two types of selector, user selector and system selector.

628 WebSphere MQ: Programmable Command Formats and Administration Interface



User selectors

User selectors have values that are zero or positive. For the administration of
MQSeries objects, valid user selectors are already defined by the following
constants:
v MQCA_* and MQIA_* (object attributes)
v MQCACF_* and MQIACF_* (items relating specifically to PCF)
v MQCACH_* and MQIACH_* (channel attributes)

For user messages, the meaning of a user selector is defined by the application.

The following additional user selectors are introduced by the MQAI:

MQIACF_INQUIRY
Identifies a WebSphere MQ object attribute to be returned by an Inquire
command.

MQHA_BAG_HANDLE
Identifies a bag handle residing within another bag.

MQHA_FIRST
Lower limit for handle selectors.

MQHA_LAST
Upper limit for handle selectors.

MQHA_LAST_USED
Upper limit for last handle selector allocated.

MQCA_USER_LIST
Default user selector. Supported on Visual Basic only. This selector
supports character type and represents the default value used if the
Selector parameter is omitted on the mqAdd*, mqSet*, or mqInquire*
calls.

MQIA_USER_LIST
Default user selector. Supported on Visual Basic only. This selector
supports integer type and represents the default value used if the Selector
parameter is omitted on the mqAdd*, mqSet*, or mqInquire* calls.

System selectors

System selectors have negative values. The following system selectors are included
in the bag when it is created:

MQIASY_BAG_OPTIONS
Bag-creation options. A summation of the options used to create the bag.
This selector cannot be changed by the user.

MQIASY_CODED_CHAR_SET_ID
Character-set identifier for the character data items in the bag. The initial
value is the queue-manager’s character set.

The value in the bag is used on entry to the mqExecute call and set on exit
from the mqExecute call. This also applies when character strings are
added to or modified in the bag.

Chapter 10. MQAI reference 629

|
|



MQIASY_COMMAND
PCF command identifier. Valid values are the MQCMD_* constants. For
user messages, the value MQCMD_NONE should be used. The initial
value is MQCMD_NONE.

The value in the bag is used on entry to the mqPutBag and mqBagToBuffer
calls, and set on exit from the mqExecute, mqGetBag and mqBufferToBag
calls.

MQIASY_COMP_CODE
Completion code. Valid values are the MQCC_* constants. The initial value
is MQCC_OK.

The value in the bag is used on entry to the mqExecute, mqPutBag, and
mqBagToBuffer calls, and set on exit from the mqExecute, mqGetBag, and
mqBufferToBag calls.

MQIASY_CONTROL
PCF control options. Valid values are the MQCFC_* constants. The initial
value is MQCFC_LAST.

The value in the bag is used on entry to the mqExecute, mqPutBag, and
mqBagToBuffer calls, and set on exit from the mqExecute, mqGetBag, and
mqBufferToBag calls.

MQIASY_MSG_SEQ_NUMBER
PCF message sequence number. Valid values are 1 or greater. The initial
value is 1.

The value in the bag is used on entry to the mqExecute, mqPutBag, and
mqBagToBuffer calls, and set on exit from the mqExecute, mqGetBag, and
mqBufferToBag calls.

MQIASY_REASON
Reason code. Valid values are the MQRC_* constants. The initial value is
MQRC_NONE.

The value in the bag is used on entry to the mqExecute, mqPutBag, and
mqBagToBuffer calls, and set on exit from the mqExecute, mqGetBag, and
mqBufferToBag calls.

MQIASY_TYPE
PCF command type. Valid values are the MQCFT_* constants. For user
messages, the value MQCFT_USER should be used. The initial value is
MQCFT_USER for bags created as user bags and MQCFT_COMMAND for
bags created as administration or command bags.

The value in the bag is used on entry to the mqExecute, mqPutBag, and
mqBagToBuffer calls, and set on exit from the mqExecute, mqGetBag, and
mqBufferToBag calls.

MQIASY_VERSION
PCF version. Valid values are the MQCFH_VERSION_* constants. The
initial value is MQCFH_VERSION_1.

If the value in the bag is set to a value other than MQCFH_VERSION_1,
the value is used on entry to the mqExecute, mqPutBag, and
mqBagToBuffer calls. If the value in the bag in MQCFH_VERSION_1, the
PCF version is the lowest value required for the parameter structures that
are present in the message.

The value in the bag is set on exit from the mqExecute, mqGetBag, and
mqBufferToBag calls.

630 WebSphere MQ: Programmable Command Formats and Administration Interface



Chapter 11. Examples of using the MQAI

This topic includes some example programs that demonstrate use of the MQAI.
The samples perform the following tasks:
1. Create a local queue.
2. Print a list of all local queues and their current depths.
3. Display events on the screen using a simple event monitor.

Creating a local queue (amqsaicq.c)
/******************************************************************************/
/* */
/* Program name: AMQSAICQ.C */
/* */
/* Description: Sample C program to create a local queue using the */
/* WebSphere MQ Administration Interface (MQAI). */
/* */
/* Statement: Licensed Materials - Property of IBM */
/* */
/* 84H2000, 5765-B73 */
/* 84H2001, 5639-B42 */
/* 84H2002, 5765-B74 */
/* 84H2003, 5765-B75 */
/* 84H2004, 5639-B43 */
/* */
/* (C) Copyright IBM Corp. 1999, 2005 */
/* */
/******************************************************************************/
/* */
/* Function: */
/* AMQSAICQ is a sample C program that creates a local queue and is an */
/* example of the use of the mqExecute call. */
/* */
/* - The name of the queue to be created is a parameter to the program. */
/* */
/* - A PCF command is built by placing items into an MQAI bag. */
/* These are:- */
/* - The name of the queue */
/* - The type of queue required, which, in this case, is local. */
/* */
/* - The mqExecute call is executed with the command MQCMD_CREATE_Q. */
/* The call generates the correct PCF structure. */
/* The call receives the reply from the command server and formats into */
/* the response bag. */
/* */
/* - The completion code from the mqExecute call is checked and if there */
/* is a failure from the command server then the code returned by the */
/* command server is retrieved from the system bag that is */
/* embedded in the response bag to the mqExecute call. */
/* */
/* Note: The command server must be running. */
/* */
/* */

/******************************************************************************/
/* */
/* AMQSAICQ has 2 parameters - the name of the local queue to be created */
/* - the queue manager name (optional) */
/* */
/******************************************************************************/
/******************************************************************************/

© Copyright IBM Corp. 2002, 2009 631



/* Includes */
/******************************************************************************/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>

#include <cmqc.h> /* MQI */
#include <cmqcfc.h> /* PCF */
#include <cmqbc.h> /* MQAI */

void CheckCallResult(MQCHAR *, MQLONG , MQLONG );
void CreateLocalQueue(MQHCONN, MQCHAR *);

int main(int argc, char *argv[])
{

MQHCONN hConn; /* handle to WebSphere MQ connection */
MQCHAR QMName[MQ_Q_MGR_NAME_LENGTH+1]=""; /* default QMgr name */
MQLONG connReason; /* MQCONN reason code */
MQLONG compCode; /* completion code */
MQLONG reason; /* reason code */

/***************************************************************************/
/* First check the required parameters */
/***************************************************************************/
printf("Sample Program to Create a Local Queue\n");
if (argc < 2)
{

printf("Required parameter missing - local queue name\n");
exit(99);

}

/***************************************************************************/
/* Connect to the queue manager */
/***************************************************************************/
if (argc > 2)

strncpy(QMName, argv[2], (size_t)MQ_Q_MGR_NAME_LENGTH);
MQCONN(QMName, &hConn, &compCode, &connReason);

/******************************************************************************/
/* Report reason and stop if connection failed */
/******************************************************************************/

if (compCode == MQCC_FAILED)
{

CheckCallResult("MQCONN", compCode, connReason);
exit( (int)connReason);

}

/******************************************************************************/
/* Call the routine to create a local queue, passing the handle to the */
/* queue manager and also passing the name of the queue to be created. */
/******************************************************************************/

CreateLocalQueue(hConn, argv[1]);

/***************************************************************************/
/* Disconnect from the queue manager if not already connected */
/***************************************************************************/
if (connReason != MQRC_ALREADY_CONNECTED)
{

MQDISC(&hConn, &compCode, &reason);
CheckCallResult("MQDISC", compCode, reason);

}
return 0;

}
/******************************************************************************/

632 WebSphere MQ: Programmable Command Formats and Administration Interface



/* */
/* Function: CreateLocalQueue */
/* Description: Create a local queue by sending a PCF command to the command */
/* server. */
/* */
/******************************************************************************/
/* */
/* Input Parameters: Handle to the queue manager */
/* Name of the queue to be created */
/* */
/* Output Parameters: None */
/* */
/* Logic: The mqExecute call is executed with the command MQCMD_CREATE_Q. */
/* The call generates the correct PCF structure. */
/* The default options to the call are used so that the command is sent*/
/* to the SYSTEM.ADMIN.COMMAND.QUEUE. */
/* The reply from the command server is placed on a temporary dynamic */
/* queue. */
/* The reply is read from the temporary queue and formatted into the */
/* response bag. */
/* */
/* The completion code from the mqExecute call is checked and if there */
/* is a failure from the command server then the code returned by the */
/* command server is retrieved from the system bag that is */
/* embedded in the response bag to the mqExecute call. */
/* */
/******************************************************************************/
void CreateLocalQueue(MQHCONN hConn, MQCHAR *qName)
{

MQLONG reason; /* reason code */
MQLONG compCode; /* completion code */
MQHBAG commandBag = MQHB_UNUSABLE_HBAG; /* command bag for mqExecute */
MQHBAG responseBag = MQHB_UNUSABLE_HBAG;/* response bag for mqExecute */
MQHBAG resultBag; /* result bag from mqExecute */
MQLONG mqExecuteCC; /* mqExecute completion code */
MQLONG mqExecuteRC; /* mqExecute reason code */

printf("\nCreating Local Queue %s\n\n", qName);

/***************************************************************************/
/* Create a command Bag for the mqExecute call. Exit the function if the */
/* create fails. */
/***************************************************************************/
mqCreateBag(MQCBO_ADMIN_BAG, &commandBag, &compCode, &reason);
CheckCallResult("Create the command bag", compCode, reason);
if (compCode !=MQCC_OK)

return;

/***************************************************************************/
/* Create a response Bag for the mqExecute call, exit the function if the */
/* create fails. */
/***************************************************************************/
mqCreateBag(MQCBO_ADMIN_BAG, &responseBag, &compCode, &reason);
CheckCallResult("Create the response bag", compCode, reason);
if (compCode !=MQCC_OK)

return;

/***************************************************************************/
/* Put the name of the queue to be created into the command bag. This will */
/* be used by the mqExecute call. */
/***************************************************************************/
mqAddString(commandBag, MQCA_Q_NAME, MQBL_NULL_TERMINATED, qName, &compCode,

&reason);
CheckCallResult("Add q name to command bag", compCode, reason);

/***************************************************************************/

Chapter 11. Examples of using the MQAI 633



/* Put queue type of local into the command bag. This will be used by the */
/* mqExecute call. */
/***************************************************************************/
mqAddInteger(commandBag, MQIA_Q_TYPE, MQQT_LOCAL, &compCode, &reason);
CheckCallResult("Add q type to command bag", compCode, reason);

/***************************************************************************/
/* Send the command to create the required local queue. */
/* The mqExecute call will create the PCF structure required, send it to */
/* the command server and receive the reply from the command server into */
/* the response bag. */
/***************************************************************************/
mqExecute(hConn, /* WebSphere MQ connection handle */

MQCMD_CREATE_Q, /* Command to be executed */
MQHB_NONE, /* No options bag */
commandBag, /* Handle to bag containing commands */
responseBag, /* Handle to bag to receive the response*/
MQHO_NONE, /* Put msg on SYSTEM.ADMIN.COMMAND.QUEUE*/
MQHO_NONE, /* Create a dynamic q for the response */
&compCode, /* Completion code from the mqExecute */
&reason); /* Reason code from mqExecute call */

if (reason == MQRC_CMD_SERVER_NOT_AVAILABLE)
{

printf("Please start the command server: <strmqcsv QMgrName>\n")
MQDISC(&hConn, &compCode, &reason);
CheckCallResult("MQDISC", compCode, reason);
exit(98);

}

/***************************************************************************/
/* Check the result from mqExecute call and find the error if it failed. */
/***************************************************************************/
if ( compCode == MQCC_OK )

printf("Local queue %s successfully created\n", qName);
else
{

printf("Creation of local queue %s failed: Completion Code = %d
qName, compCode, reason);

if (reason == MQRCCF_COMMAND_FAILED)
{

/*********************************************************************/
/* Get the system bag handle out of the mqExecute response bag. */
/* This bag contains the reason from the command server why the */
/* command failed. */
/*********************************************************************/
mqInquireBag(responseBag, MQHA_BAG_HANDLE, 0, &resultBag, &compCode,

&reason);
CheckCallResult("Get the result bag handle", compCode, reason);

/*********************************************************************/
/* Get the completion code and reason code, returned by the command */
/* server, from the embedded error bag. */
/*********************************************************************/
mqInquireInteger(resultBag, MQIASY_COMP_CODE, MQIND_NONE, &mqExecuteCC,

&compCode, &reason);
CheckCallResult("Get the completion code from the result bag",

compCode, reason);
mqInquireInteger(resultBag, MQIASY_REASON, MQIND_NONE, &mqExecuteRC,

&compCode, &reason);
CheckCallResult("Get the reason code from the result bag", compCode,

reason);
printf("Error returned by the command server: Completion code = %d :

Reason = %d\n", mqExecuteCC, mqExecuteRC);
}

}

634 WebSphere MQ: Programmable Command Formats and Administration Interface



/***************************************************************************/
/* Delete the command bag if successfully created. */
/***************************************************************************/
if (commandBag != MQHB_UNUSABLE_HBAG)
{

mqDeleteBag(&commandBag, &compCode, &reason);
CheckCallResult("Delete the command bag", compCode, reason);

}

/***************************************************************************/
/* Delete the response bag if successfully created. */
/***************************************************************************/
if (responseBag != MQHB_UNUSABLE_HBAG)
{

mqDeleteBag(&responseBag, &compCode, &reason);
CheckCallResult("Delete the response bag", compCode, reason);

}
} /* end of CreateLocalQueue */

/******************************************************************************/
/* */
/* Function: CheckCallResult */
/* */
/******************************************************************************/
/* */
/* Input Parameters: Description of call */
/* Completion code */
/* Reason code */
/* */
/* Output Parameters: None */
/* */
/* Logic: Display the description of the call, the completion code and the */
/* reason code if the completion code is not successful */
/* */
/******************************************************************************/
void CheckCallResult(char *callText, MQLONG cc, MQLONG rc)
{

if (cc != MQCC_OK)
printf("%s failed: Completion Code = %d :

Reason = %d\n", callText, cc, rc);

}

Displaying events using an event monitor (amqsaiem.c)
******************************************************************************/
/* */
/* Program name: AMQSAIEM.C */
/* */
/* Description: Sample C program to demonstrate a basic event monitor */
/* using the WebSphere MQ Admin Interface (MQAI). */
/* Licensed Materials - Property of IBM */
/* */
/* 63H9336 */
/* (c) Copyright IBM Corp. 1999, 2005 All Rights Reserved. */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with */
/* IBM Corp. */
/******************************************************************************/
/* */
/* Function: */
/* AMQSAIEM is a sample C program that demonstrates how to write a simple */
/* event monitor using the mqGetBag call and other MQAI calls. */
/* */
/* The name of the event queue to be monitored is passed as a parameter */

Chapter 11. Examples of using the MQAI 635



/* to the program. This would usually be one of the system event queues:- */
/* SYSTEM.ADMIN.QMGR.EVENT Queue Manager events */
/* SYSTEM.ADMIN.PERFM.EVENT Performance events */
/* SYSTEM.ADMIN.CHANNEL.EVENT Channel events */
/* SYSTEM.ADMIN.LOGGER.EVENT Logger events */
/* */
/* To monitor the queue manager event queue or the performance event queue,*/
/* the attributes of the queue manager needs to be changed to enable */
/* these events. For more information about this, see Part 1 of the */
/* Programmable System Management book. The queue manager attributes can */
/* be changed using either MQSC commands or the MQAI interface. */
/* Channel events are enabled by default. */
/* */
/* Program logic */
/* Connect to the Queue Manager. */
/* Open the requested event queue with a wait interval of 30 seconds. */
/* Wait for a message, and when it arrives get the message from the queue */
/* and format it into an MQAI bag using the mqGetBag call. */
/* There are many types of event messages and it is beyond the scope of */
/* this sample to program for all event messages. Instead the program */
/* prints out the contents of the formatted bag. */
/* Loop around to wait for another message until either there is an error */
/* or the wait interval of 30 seconds is reached. */
/* */
/******************************************************************************/
/* */
/* AMQSAIEM has 2 parameters - the name of the event queue to be monitored */
/* - the queue manager name (optional) */
/* */
/*****************************************************************************

/******************************************************************************/
/* Includes */
/******************************************************************************/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>

#include <cmqc.h> /* MQI */
#include <cmqcfc.h> /* PCF */
#include <cmqbc.h> /* MQAI */

/******************************************************************************/
/* Macros */
/******************************************************************************/
#if MQAT_DEFAULT == MQAT_WINDOWS_NT

#define Int64 "I64"
#elif defined(MQ_64_BIT)

#define Int64 "l"
#else

#define Int64 "ll"
#endif

/******************************************************************************/
/* Function prototypes */
/******************************************************************************/
void CheckCallResult(MQCHAR *, MQLONG , MQLONG);
void GetQEvents(MQHCONN, MQCHAR *);
int PrintBag(MQHBAG);
int PrintBagContents(MQHBAG, int);

/******************************************************************************/
/* Function: main */
/******************************************************************************/
int main(int argc, char *argv[])
{

636 WebSphere MQ: Programmable Command Formats and Administration Interface



MQHCONN hConn; /* handle to connection */
MQCHAR QMName[MQ_Q_MGR_NAME_LENGTH+1]=""; /* default QM name */
MQLONG reason; /* reason code */
MQLONG connReason; /* MQCONN reason code */
MQLONG compCode; /* completion code */

/***************************************************************************/
/* First check the required parameters */
/***************************************************************************/
printf("Sample Event Monitor (times out after 30 secs)\n");
if (argc < 2)
{

printf("Required parameter missing - event queue to be monitored\n");
exit(99);

}

/**************************************************************************/
/* Connect to the queue manager */
/**************************************************************************/
if (argc > 2)

strncpy(QMName, argv[2], (size_t)MQ_Q_MGR_NAME_LENGTH);
MQCONN(QMName, &hConn, &compCode, &connReason);
/***************************************************************************/
/* Report the reason and stop if the connection failed */
/***************************************************************************/
if (compCode == MQCC_FAILED)
{

CheckCallResult("MQCONN", compCode, connReason);
exit( (int)connReason);

}

/***************************************************************************/
/* Call the routine to open the event queue and format any event messages */
/* read from the queue. */
/***************************************************************************/
GetQEvents(hConn, argv[1]);

/***************************************************************************/
/* Disconnect from the queue manager if not already connected */
/***************************************************************************/
if (connReason != MQRC_ALREADY_CONNECTED)
{

MQDISC(&hConn, &compCode, &reason);
CheckCallResult("MQDISC", compCode, reason);

}

return 0;

}

/******************************************************************************/
/* */
/* Function: CheckCallResult */
/* */
/******************************************************************************/
/* */
/* Input Parameters: Description of call */
/* Completion code */
/* Reason code */
/* */
/* Output Parameters: None */
/* */
/* Logic: Display the description of the call, the completion code and the */
/* reason code if the completion code is not successful */
/* */
/******************************************************************************/
void CheckCallResult(char *callText, MQLONG cc, MQLONG rc)

Chapter 11. Examples of using the MQAI 637



{
if (cc != MQCC_OK)

printf("%s failed: Completion Code = %d : Reason = %d\n",
callText, cc, rc);

}

/******************************************************************************/
/* */
/* Function: GetQEvents */
/* */
/******************************************************************************/
/* */
/* Input Parameters: Handle to the queue manager */
/* Name of the event queue to be monitored */
/* */
/* Output Parameters: None */
/*
/* Logic: Open the event queue. */
/* Get a message off the event queue and format the message into */
/* a bag. */
/* A real event monitor would need to be programmed to deal with */
/* each type of event that it receives from the queue. This is */
/* outside the scope of this sample, so instead, the contents of */
/* the bag are printed. */
/* The program waits for 30 seconds for an event message and then */
/* terminates if no more messages are available. */
/* */
/******************************************************************************/
void GetQEvents(MQHCONN hConn, MQCHAR *qName)
{

MQLONG openReason; /* MQOPEN reason code */
MQLONG reason; /* reason code */
MQLONG compCode; /* completion code */
MQHOBJ eventQueue; /* handle to event queue */

MQHBAG eventBag = MQHB_UNUSABLE_HBAG; /* event bag to receive event msg */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
MQLONG bQueueOK = 1; /* keep reading msgs while true */

/***************************************************************************/
/* Create an Event Bag in which to receive the event. */
/* Exit the function if the create fails. */
/***************************************************************************/
mqCreateBag(MQCBO_USER_BAG, &eventBag, &compCode, &reason);
CheckCallResult("Create event bag", compCode, reason);
if (compCode !=MQCC_OK)

return;

/***************************************************************************/
/* Open the event queue chosen by the user */
/***************************************************************************/
strncpy(od.ObjectName, qName, (size_t)MQ_Q_NAME_LENGTH);
MQOPEN(hConn, &od, MQOO_INPUT_AS_Q_DEF+MQOO_FAIL_IF_QUIESCING, &eventQueue,

&compCode, &openReason);
CheckCallResult("Open event queue", compCode, openReason);

/***************************************************************************/
/* Set the GMO options to control the action of the get message from the */
/* queue. */
/***************************************************************************/
gmo.WaitInterval = 30000; /* 30 second wait for message */
gmo.Options = MQGMO_WAIT + MQGMO_FAIL_IF_QUIESCING + MQGMO_CONVERT;
gmo.Version = MQGMO_VERSION_2; /* Avoid need to reset Message ID */
gmo.MatchOptions = MQMO_NONE; /* and Correlation ID after every */

638 WebSphere MQ: Programmable Command Formats and Administration Interface



/* mqGetBag
/***************************************************************************/
/* If open fails, we cannot access the queue and must stop the monitor. */
/***************************************************************************/
if (compCode != MQCC_OK)

bQueueOK = 0;

/***************************************************************************/
/* Main loop to get an event message when it arrives */
/***************************************************************************/
while (bQueueOK)
{

printf("\nWaiting for an event\n");

/*************************************************************************/
/* Get the message from the event queue and convert it into the event */
/* bag. */
/*************************************************************************/
mqGetBag(hConn, eventQueue, &md, &gmo, eventBag, &compCode, &reason);

/*************************************************************************/
/* If get fails, we cannot access the queue and must stop the monitor. */
/*************************************************************************/
if (compCode != MQCC_OK)
{

bQueueOK = 0;

/*********************************************************************/
/* If get fails because no message available then we have timed out, */
/* so report this, otherwise report an error. */
/*********************************************************************/
if (reason == MQRC_NO_MSG_AVAILABLE)
{

printf("No more messages\n");
}
else
{

CheckCallResult("Get bag", compCode, reason);
}

}

/*************************************************************************/
/* Event message read - Print the contents of the event bag */
/*************************************************************************/
else
{

if ( PrintBag(eventBag) )
printf("\nError found while printing bag contents\n");

} /* end of msg found */
} /* end of main loop */
/***************************************************************************/
/* Close the event queue if successfully opened */
/***************************************************************************/
if (openReason == MQRC_NONE)
{

MQCLOSE(hConn, &eventQueue, MQCO_NONE, &compCode, &reason);
CheckCallResult("Close event queue", compCode, reason);

}

/***************************************************************************/
/* Delete the event bag if successfully created. */
/***************************************************************************/
if (eventBag != MQHB_UNUSABLE_HBAG)
{

mqDeleteBag(&eventBag, &compCode, &reason);
CheckCallResult("Delete the event bag", compCode, reason);

Chapter 11. Examples of using the MQAI 639



}

} /* end of GetQEvents */

/******************************************************************************/
/* */
/* Function: PrintBag */
/* */
/******************************************************************************/
/* */
/* Input Parameters: Bag Handle */
/* */
/* Output Parameters: None */
/* */
/* Returns: Number of errors found */
/* */
/* Logic: Calls PrintBagContents to display the contents of the bag. */
/* */
/*****************************************************************************

int PrintBag(MQHBAG dataBag)
{

int errors;

printf("\n");
errors = PrintBagContents(dataBag, 0);
printf("\n");

return errors;
}

/******************************************************************************/
/* */
/* Function: PrintBagContents */
/* */
/******************************************************************************/
/* */
/* Input Parameters: Bag Handle */
/* Indentation level of bag */
/* */
/* Output Parameters: None */
/* */
/* Returns: Number of errors found */
/* */
/* Logic: Count the number of items in the bag */
/* Obtain selector and item type for each item in the bag. */
/* Obtain the value of the item depending on item type and display the */
/* index of the item, the selector and the value. */
/* If the item is an embedded bag handle then call this function again */
/* to print the contents of the embedded bag increasing the */
/* indentation level. */
/* */
/******************************************************************************/
int PrintBagContents(MQHBAG dataBag, int indent)
{

/***************************************************************************/
/* Definitions */
/***************************************************************************/
#define LENGTH 500 /* Max length of string to be read*/
#define INDENT 4 /* Number of spaces to indent */

/* embedded bag display */

/***************************************************************************/
/* Variables */
/***************************************************************************/
MQLONG itemCount; /* Number of items in the bag */

640 WebSphere MQ: Programmable Command Formats and Administration Interface



MQLONG itemType; /* Type of the item */
int i; /* Index of item in the bag */
MQCHAR stringVal[LENGTH+1]; /* Value if item is a string */
MQBYTE byteStringVal[LENGTH]; /* Value if item is a byte string */
MQLONG stringLength; /* Length of string value */
MQLONG ccsid; /* CCSID of string value */
MQINT32 iValue; /* Value if item is an integer */
MQINT64 i64Value; /* Value if item is a 64-bit */

/* integer */
MQLONG selector; /* Selector of item */
MQHBAG bagHandle; /* Value if item is a bag handle */
MQLONG reason; /* reason code */
MQLONG compCode; /* completion code */
MQLONG trimLength; /* Length of string to be trimmed */
int errors = 0; /* Count of errors found */
char blanks[] = " "; /* Blank string used to */

/* indent display */

/***************************************************************************/
/* Count the number of items in the bag */
/***************************************************************************/
mqCountItems(dataBag, MQSEL_ALL_SELECTORS, &itemCount, &compCode, &reason);

if (compCode != MQCC_OK)
errors++;

else
{

printf("
printf("
printf("

}

/***************************************************************************/
/* If no errors found, display each item in the bag */
/***************************************************************************/
if (!errors)
{

for (i = 0; i < itemCount; i++)
{

/********************************************************************/
/* First inquire the type of the item for each item in the bag */
/********************************************************************/
mqInquireItemInfo(dataBag, /* Bag handle */

MQSEL_ANY_SELECTOR, /* Item can have any selector*/
i, /* Index position in the bag */
&selector, /* Actual value of selector */

/* returned by call */
&itemType, /* Actual type of item */

/* returned by call */
&compCode, /* Completion code */
&reason); /* Reason Code */

if (compCode != MQCC_OK)
errors++;

switch(itemType)
{
case MQITEM_INTEGER:

/***************************************************************/
/* Item is an integer. Find its value and display its index, */
/* selector and value. */
/***************************************************************/
mqInquireInteger(dataBag, /* Bag handle */

MQSEL_ANY_SELECTOR, /* Allow any selector */
i, /* Index position in the bag */
&iValue, /* Returned integer value

Chapter 11. Examples of using the MQAI 641



&compCode, /* Completion code */
&reason); /* Reason Code */

if (compCode != MQCC_OK)
errors++;

else
printf("%.*s %-2d %-4d (%d)\n",

indent, blanks, i, selector, iValue);
break

case MQITEM_INTEGER64:
/***************************************************************/
/* Item is a 64-bit integer. Find its value and display its */
/* index, selector and value. */
/***************************************************************/
mqInquireInteger64(dataBag, /* Bag handle */

MQSEL_ANY_SELECTOR, /* Allow any selector */
i, /* Index position in the bag */
&i64Value, /* Returned integer value */
&compCode, /* Completion code */
&reason); /* Reason Code */

if (compCode != MQCC_OK)
errors++;

else
printf("%.*s %-2d %-4d (%"Int64"d)\n",

indent, blanks, i, selector, i64Value);
break;

case MQITEM_STRING:
/***************************************************************/
/* Item is a string. Obtain the string in a buffer, prepare */
/* the string for displaying and display the index, selector, */
/* string and Character Set ID. */
/***************************************************************/
mqInquireString(dataBag, /* Bag handle */

MQSEL_ANY_SELECTOR, /* Allow any selector */
i, /* Index position in the bag */
LENGTH, /* Maximum length of buffer */
stringVal, /* Buffer to receive string */
&stringLength, /* Actual length of string */
&ccsid, /* Coded character set id */
&compCode, /* Completion code */
&reason); /* Reason Code */

/***************************************************************/
/* The call can return a warning if the string is too long for */
/* the output buffer and has been truncated, so only check */
/* explicitly for call failure. */
/***************************************************************/
if (compCode == MQCC_FAILED)

errors++;
else
{

/************************************************************/
/* Remove trailing blanks from the string and terminate with*/
/* a null. First check that the string should not have been */
/* longer than the maximum buffer size allowed. */
/************************************************************/
if (stringLength > LENGTH)

trimLength = LENGTH;
else

trimLength = stringLength;
mqTrim(trimLength, stringVal, stringVal, &compCode, &reason);
printf("%.*s %-2d %-4d '%s' %d\n",

indent, blanks, i, selector, stringVal, ccsid);

642 WebSphere MQ: Programmable Command Formats and Administration Interface



}
break;

case MQITEM_BYTE_STRING:
/***************************************************************/
/* Item is a byte string. Obtain the byte string in a buffer, */
/* prepare the byte string for displaying and display the */
/* index, selector and string. */
/***************************************************************/
mqInquireByteString(dataBag, /* Bag handle */

MQSEL_ANY_SELECTOR, /* Allow any selector */
i, /* Index position in the bag */
LENGTH, /* Maximum length of buffer */
byteStringVal, /* Buffer to receive string */
&stringLength, /* Actual length of string */
&compCode, /* Completion code */
&reason); /* Reason Code

/***************************************************************/
/* The call can return a warning if the string is too long for */
/* the output buffer and has been truncated, so only check */
/* explicitly for call failure. */
/***************************************************************/
if (compCode == MQCC_FAILED)

errors++;
else
{

printf("%.*s %-2d %-4d X'",
indent, blanks, i, selector);

for (i = 0 ; i < stringLength ; i++)
printf("

printf("'\n");
}
break;

case MQITEM_BAG:
/***************************************************************/
/* Item is an embedded bag handle, so call the PrintBagContents*/
/* function again to display the contents. */
/***************************************************************/
mqInquireBag(dataBag, /* Bag handle */

MQSEL_ANY_SELECTOR, /* Allow any selector */
i, /* Index position in the bag */
&bagHandle, /* Returned embedded bag hdle*/
&compCode, /* Completion code */
&reason); /* Reason Code */

if (compCode != MQCC_OK)
errors++;

else
{

printf("%.*s %-2d %-4d (%d)\n", indent, blanks, i,
selector, bagHandle);

if (selector == MQHA_BAG_HANDLE)
printf("

else
printf("

PrintBagContents(bagHandle, indent+INDENT);
}
break;

default:
printf("

}

Chapter 11. Examples of using the MQAI 643



}
}
return errors;

}

Inquire channel objects (amqsaicl.c)
/******************************************************************************/
/* */
/* Program name: AMQSAICL.C */
/* */
/* Description: Sample C program to inquire channel objects */
/* using the WebSphere MQ Administration Interface (MQAI) */
/* */
/* <N_OCO_COPYRIGHT> */
/* Licensed Materials - Property of IBM */
/* */
/* 63H9336 */
/* (c) Copyright IBM Corp. 2008 All Rights Reserved. */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with */
/* IBM Corp. */
/* <NOC_COPYRIGHT> */
/******************************************************************************/
/* */
/* Function: */
/* AMQSAICL is a sample C program that demonstrates how to inquire */
/* attributes of the local queue manager using the MQAI interface. In */
/* particular, it inquires all channels and their types. */
/* */
/* - A PCF command is built from items placed into an MQAI administration */
/* bag. */
/* These are:- */
/* - The generic channel name "*" */
/* - The attributes to be inquired. In this sample we just want */
/* name and type attributes */
/* */
/* - The mqExecute MQCMD_INQUIRE_CHANNEL call is executed. */
/* The call generates the correct PCF structure. */
/* The default options to the call are used so that the command is sent */
/* to the SYSTEM.ADMIN.COMMAND.QUEUE. */
/* The reply from the command server is placed on a temporary dynamic */
/* queue. */
/* The reply from the MQCMD_INQUIRE_CHANNEL is read from the */
/* temporary queue and formatted into the response bag. */
/* */
/* - The completion code from the mqExecute call is checked and if there */
/* is a failure from the command server, then the code returned by the */
/* command server is retrieved from the system bag that has been */
/* embedded in the response bag to the mqExecute call. */
/* */
/* Note: The command server must be running. */
/* */
/******************************************************************************/
/* */
/* AMQSAICL has 2 parameter - the queue manager name (optional) */
/* - output file (optional) default varies */
/******************************************************************************/

/******************************************************************************/
/* Includes */
/******************************************************************************/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>

644 WebSphere MQ: Programmable Command Formats and Administration Interface

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



#if (MQAT_DEFAULT == MQAT_OS400)
#include <recio.h>
#endif

#include <cmqc.h> /* MQI */
#include <cmqcfc.h> /* PCF */
#include <cmqbc.h> /* MQAI */
#include <cmqxc.h> /* MQCD */

/******************************************************************************/
/* Function prototypes */
/******************************************************************************/
void CheckCallResult(MQCHAR *, MQLONG , MQLONG);

/******************************************************************************/
/* DataTypes */
/******************************************************************************/
#if (MQAT_DEFAULT == MQAT_OS400)
typedef _RFILE OUTFILEHDL;
#else
typedef FILE OUTFILEHDL;
#endif

/******************************************************************************/
/* Constants */
/******************************************************************************/
#if (MQAT_DEFAULT == MQAT_OS400)
const struct
{

char name[9];
} ChlTypeMap[9] =
{

"*SDR ", /* MQCHT_SENDER */
"*SVR ", /* MQCHT_SERVER */
"*RCVR ", /* MQCHT_RECEIVER */
"*RQSTR ", /* MQCHT_REQUESTER */
"*ALL ", /* MQCHT_ALL */
"*CLTCN ", /* MQCHT_CLNTCONN */
"*SVRCONN ", /* MQCHT_SVRCONN */
"*CLUSRCVR", /* MQCHT_CLUSRCVR */
"*CLUSSDR " /* MQCHT_CLUSSDR */

};
#else
const struct
{

char name[9];
} ChlTypeMap[9] =
{

"sdr ", /* MQCHT_SENDER */
"svr ", /* MQCHT_SERVER */
"rcvr ", /* MQCHT_RECEIVER */
"rqstr ", /* MQCHT_REQUESTER */
"all ", /* MQCHT_ALL */
"cltconn ", /* MQCHT_CLNTCONN */
"svrcn ", /* MQCHT_SVRCONN */
"clusrcvr ", /* MQCHT_CLUSRCVR */
"clussdr " /* MQCHT_CLUSSDR */

};
#endif

/******************************************************************************/
/* Macros */
/******************************************************************************/
#if (MQAT_DEFAULT == MQAT_OS400)

#define OUTFILE "QTEMP/AMQSAICL(AMQSAICL)"
#define OPENOUTFILE(hdl, fname) \

(hdl) = _Ropen((fname),"wr, rtncode=Y");

Chapter 11. Examples of using the MQAI 645

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



#define CLOSEOUTFILE(hdl) \
_Rclose((hdl));

#define WRITEOUTFILE(hdl, buf, buflen) \
_Rwrite((hdl),(buf),(buflen));

#elif (MQAT_DEFAULT == MQAT_UNIX)
#define OUTFILE "/tmp/amqsaicl.txt"
#define OPENOUTFILE(hdl, fname) \

(hdl) = fopen((fname),"w");
#define CLOSEOUTFILE(hdl) \

fclose((hdl));
#define WRITEOUTFILE(hdl, buf, buflen) \

fwrite((buf),(buflen),1,(hdl)); fflush((hdl));

#else
#define OUTFILE "amqsaicl.txt"
#define OPENOUTFILE(fname) \

fopen((fname),"w");
#define CLOSEOUTFILE(hdl) \

fclose((hdl));
#define WRITEOUTFILE(hdl, buf, buflen) \

fwrite((buf),(buflen),1,(hdl)); fflush((hdl));

#endif

#define ChlType2String(t) ChlTypeMap[(t)-1].name

/******************************************************************************/
/* Function: main */
/******************************************************************************/
int main(int argc, char *argv[])
{

/***************************************************************************/
/* MQAI variables */
/***************************************************************************/
MQHCONN hConn; /* handle to MQ connection */
MQCHAR qmName[MQ_Q_MGR_NAME_LENGTH+1]=""; /* default QMgr name */
MQLONG reason; /* reason code */
MQLONG connReason; /* MQCONN reason code */
MQLONG compCode; /* completion code */
MQHBAG adminBag = MQHB_UNUSABLE_HBAG; /* admin bag for mqExecute */
MQHBAG responseBag = MQHB_UNUSABLE_HBAG;/* response bag for mqExecute */
MQHBAG cAttrsBag; /* bag containing chl attributes */
MQHBAG errorBag; /* bag containing cmd server error */
MQLONG mqExecuteCC; /* mqExecute completion code */
MQLONG mqExecuteRC; /* mqExecute reason code */
MQLONG chlNameLength; /* Actual length of chl name */
MQLONG chlType; /* Channel type */
MQLONG i; /* loop counter */
MQLONG numberOfBags; /* number of bags in response bag */
MQCHAR chlName[MQ_OBJECT_NAME_LENGTH+1];/* name of chl extracted from bag */
MQCHAR OutputBuffer[100]; /* output data buffer */
OUTFILEHDL *outfp = NULL; /* output file handle */

/***************************************************************************/
/* Connect to the queue manager */
/***************************************************************************/
if (argc &gt; 1)

strncpy(qmName, argv[1], (size_t)MQ_Q_MGR_NAME_LENGTH);
MQCONN(qmName, &hConn;, &compCode;, &connReason;);

/***************************************************************************/
/* Report the reason and stop if the connection failed. */
/***************************************************************************/
if (compCode == MQCC_FAILED)
{

CheckCallResult("Queue Manager connection", compCode, connReason);

646 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



exit( (int)connReason);
}

/***************************************************************************/
/* Open the output file */
/***************************************************************************/
if (argc &gt; 2)
{

OPENOUTFILE(outfp, argv[2]);
}
else
{

OPENOUTFILE(outfp, OUTFILE);
}

if(outfp == NULL)
{

printf("Could not open output file.\n");
goto MOD_EXIT;

}
/***************************************************************************/
/* Create an admin bag for the mqExecute call */
/***************************************************************************/
mqCreateBag(MQCBO_ADMIN_BAG, &adminBag;, &compCode;, &reason;);
CheckCallResult("Create admin bag", compCode, reason);

/***************************************************************************/
/* Create a response bag for the mqExecute call */
/***************************************************************************/
mqCreateBag(MQCBO_ADMIN_BAG, &responseBag;, &compCode;, &reason;);
CheckCallResult("Create response bag", compCode, reason);

/***************************************************************************/
/* Put the generic channel name into the admin bag */
/***************************************************************************/
mqAddString(adminBag, MQCACH_CHANNEL_NAME, MQBL_NULL_TERMINATED, "*",

&compCode;, &reason;);
CheckCallResult("Add channel name", compCode, reason);

/***************************************************************************/
/* Put the channel type into the admin bag */
/***************************************************************************/
mqAddInteger(adminBag, MQIACH_CHANNEL_TYPE, MQCHT_ALL, &compCode;, &reason;);
CheckCallResult("Add channel type", compCode, reason);

/***************************************************************************/
/* Add an inquiry for various attributes */
/***************************************************************************/
mqAddInquiry(adminBag, MQIACH_CHANNEL_TYPE, &compCode;, &reason;);
CheckCallResult("Add inquiry", compCode, reason);

/***************************************************************************/
/* Send the command to find all the channel names and channel types. */
/* The mqExecute call creates the PCF structure required, sends it to */
/* the command server, and receives the reply from the command server into */
/* the response bag. The attributes are contained in system bags that are */
/* embedded in the response bag, one set of attributes per bag. */
/***************************************************************************/
mqExecute(hConn, /* MQ connection handle */

MQCMD_INQUIRE_CHANNEL, /* Command to be executed */
MQHB_NONE, /* No options bag */
adminBag, /* Handle to bag containing commands */
responseBag, /* Handle to bag to receive the response*/
MQHO_NONE, /* Put msg on SYSTEM.ADMIN.COMMAND.QUEUE*/
MQHO_NONE, /* Create a dynamic q for the response */
&compCode;, /* Completion code from the mqexecute */
&reason;); /* Reason code from mqexecute call */

Chapter 11. Examples of using the MQAI 647

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



/***************************************************************************/
/* Check the command server is started. If not exit. */
/***************************************************************************/
if (reason == MQRC_CMD_SERVER_NOT_AVAILABLE)
{

printf("Please start the command server: <strmqcsv QMgrName="">\n");
goto MOD_EXIT;

}

/***************************************************************************/
/* Check the result from mqExecute call. If successful find the channel */
/* types for all the channels. If failed find the error. */
/***************************************************************************/
if ( compCode == MQCC_OK ) /* Successful mqExecute */
{

/*************************************************************************/
/* Count the number of system bags embedded in the response bag from the */
/* mqExecute call. The attributes for each channel are in separate bags. */
/*************************************************************************/
mqCountItems(responseBag, MQHA_BAG_HANDLE, &numberOfBags;,

&compCode;, &reason;);
CheckCallResult("Count number of bag handles", compCode, reason);

for ( i=0; i<numberOfbags; i++)
{

/***********************************************************************/
/* Get the next system bag handle out of the mqExecute response bag. */
/* This bag contains the channel attributes */
/***********************************************************************/
mqInquireBag(responseBag, MQHA_BAG_HANDLE, i, &cAttrsbag,

&compCode, &reason);
CheckCallResult("Get the result bag handle", compCode, reason);

/***********************************************************************/
/* Get the channel name out of the channel attributes bag */
/***********************************************************************/
mqInquireString(cAttrsBag, MQCACH_CHANNEL_NAME, 0, MQ_OBJECT_NAME_LENGTH,

chlName, &chlNameLength, NULL, &compCode, &reason);
CheckCallResult("Get channel name", compCode, reason);

/***********************************************************************/
/* Get the channel type out of the channel attributes bag */
/***********************************************************************/

mqInquireInteger(cAttrsBag, MQIACH_CHANNEL_TYPE, MQIND_NONE, &chlType,
&compCode, &reason);

CheckCallResult("Get type", compCode, reason);

/***********************************************************************/
/* Use mqTrim to prepare the channel name for printing. */
/* Print the result. */
/***********************************************************************/
mqTrim(MQ_CHANNEL_NAME_LENGTH, chlName, chlName, &compCode, &reason);
sprintf(OutputBuffer, "%-20s%-9s", chlName, ChlType2String(chlType));
WRITEOUTFILE(outfp,OutputBuffer,29)

}
}

else /* Failed mqExecute */
{

printf("Call to get channel attributes failed: Cc = %ld : Rc = %ld\n",
compCode, reason);

/*************************************************************************/
/* If the command fails get the system bag handle out of the mqexecute */
/* response bag.This bag contains the reason from the command server */
/* why the command failed. */

648 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



/*************************************************************************/
if (reason == MQRCCF_COMMAND_FAILED)
{

mqInquireBag(responseBag, MQHA_BAG_HANDLE, 0, &errorBag,
&compCode, &reason);

CheckCallResult("Get the result bag handle", compCode, reason);

/***********************************************************************/
/* Get the completion code and reason code, returned by the command */
/* server, from the embedded error bag. */
/***********************************************************************/
mqInquireInteger(errorBag, MQIASY_COMP_CODE, MQIND_NONE, &mqExecuteCC,

&compCode, &reason );
CheckCallResult("Get the completion code from the result bag",

compCode, reason);
mqInquireInteger(errorBag, MQIASY_REASON, MQIND_NONE, &mqExecuteRC,

&compCode, &reason);
CheckCallResult("Get the reason code from the result bag",

compCode, reason);
printf("Error returned by the command server: Cc = %ld : Rc = %ld\n",

mqExecuteCC, mqExecuteRC);
}

}

MOD_EXIT:
/***************************************************************************/
/* Delete the admin bag if successfully created. */
/***************************************************************************/
if (adminBag != MQHB_UNUSABLE_HBAG)
{

mqDeleteBag(&adminBag, &compCode, &reason);
CheckCallResult("Delete the admin bag", compCode, reason);

}

/***************************************************************************/
/* Delete the response bag if successfully created. */
/***************************************************************************/
if (responseBag != MQHB_UNUSABLE_HBAG)
{

mqDeleteBag(&responseBag, &compCode, &reason);
CheckCallResult("Delete the response bag", compCode, reason);

}

/***************************************************************************/
/* Disconnect from the queue manager if not already connected */
/***************************************************************************/
if (connReason != MQRC_ALREADY_CONNECTED)
{

MQDISC(&hConn, &compCode, &reason);
CheckCallResult("Disconnect from Queue Manager", compCode, reason);

}

/***************************************************************************/
/* Close the output file if open */
/***************************************************************************/
if(outfp != NULL)

CLOSEOUTFILE(outfp);

return 0;
}

/******************************************************************************/
/* */
/* Function: CheckCallResult */
/* */
/******************************************************************************/

Chapter 11. Examples of using the MQAI 649

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



/* */
/* Input Parameters: Description of call */
/* Completion code */
/* Reason code */
/* */
/* Output Parameters: None */
/* */
/* Logic: Display the description of the call, the completion code and the */
/* reason code if the completion code is not successful */
/* */
/******************************************************************************/
void CheckCallResult(char *callText, MQLONG cc, MQLONG rc)
{

if (cc != MQCC_OK)
printf("%s failed: Completion Code = %ld : Reason = %ld\n", callText,

cc, rc);
}

Inquiring about queues and printing information (amqsailq.c)
/******************************************************************************/
/* */
/* Program name: AMQSAILQ.C */
/* */
/* Description: Sample C program to inquire the current depth of the local */
/* queues using the WebSphere MQ Administration Interface (MQAI)*/
/* */
/* Statement: Licensed Materials - Property of IBM */
/* */
/* 84H2000, 5765-B73 */
/* 84H2001, 5639-B42 */
/* 84H2002, 5765-B74 */
/* 84H2003, 5765-B75 */
/* 84H2004, 5639-B43 */
/* */
/* (C) Copyright IBM Corp. 1999, 2005 */
/* */
/******************************************************************************/
/* */
/* Function: */
/* AMQSAILQ is a sample C program that demonstrates how to inquire */
/* attributes of the local queue manager using the MQAI interface. In */
/* particular, it inquires the current depths of all the local queues. */
/* */
/* - A PCF command is built by placing items into an MQAI administration */
/* bag. */
/* These are:- */
/* - The generic queue name "*" */
/* - The type of queue required. In this sample we want to */
/* inquire local queues. */
/* - The attribute to be inquired. In this sample we want the */
/* current depths. */
/* */
/* - The mqExecute call is executed with the command MQCMD_INQUIRE_Q. */
/* The call generates the correct PCF structure. */
/* The default options to the call are used so that the command is sent */
/* to the SYSTEM.ADMIN.COMMAND.QUEUE. */
/* The reply from the command server is placed on a temporary dynamic */
/* queue. */
/* The reply from the MQCMD_INQUIRE_Q command is read from the */
/* temporary queue and formatted into the response bag. */
/* */
/* - The completion code from the mqExecute call is checked and if there */
/* is a failure from the command server, then the code returned by */
/* command server is retrieved from the system bag that has been */
/* embedded in the response bag to the mqExecute call. */
/* */

650 WebSphere MQ: Programmable Command Formats and Administration Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|



/* - If the call is successful, the depth of each local queue is placed */
/* in system bags embedded in the response bag of the mqExecute call. */
/* The name and depth of each queue is obtained from each of the bags */
/* and the result displayed on the screen. */
/* */
/* Note: The command server must be running. */
/* */
/******************************************************************************/
/* */
/* AMQSAILQ has 1 parameter - the queue manager name (optional) */
/* */
/******************************************************************************/

/******************************************************************************/
/* Includes */
/******************************************************************************/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>

#include <cmqc.h> /* MQI */
#include <cmqcfc.h> /* PCF */
#include <cmqbc.h> /* MQAI */

/******************************************************************************/
/* Function prototypes */
/******************************************************************************/
void CheckCallResult(MQCHAR *, MQLONG , MQLONG);

/******************************************************************************/
/* Function: main */
/******************************************************************************/
int main(int argc, char *argv[])
{

/***************************************************************************/
/* MQAI variables */
/***************************************************************************/
MQHCONN hConn; /* handle to WebSphere MQ connection */
MQCHAR qmName[MQ_Q_MGR_NAME_LENGTH+1]=""; /* default QMgr name */
MQLONG reason; /* reason code */
MQLONG connReason; /* MQCONN reason code */
MQLONG compCode; /* completion code */
MQHBAG adminBag = MQHB_UNUSABLE_HBAG; /* admin bag for mqExecute */
MQHBAG responseBag = MQHB_UNUSABLE_HBAG;/* response bag for mqExecute */
MQHBAG qAttrsBag; /* bag containing q attributes */
MQHBAG errorBag; /* bag containing cmd server error */
MQLONG mqExecuteCC; /* mqExecute completion code */
MQLONG mqExecuteRC; /* mqExecute reason code */
MQLONG qNameLength; /* Actual length of q name */
MQLONG qDepth; /* depth of queue */
MQLONG i; /* loop counter */
MQLONG numberOfBags; /* number of bags in response bag */
MQCHAR qName[MQ_Q_NAME_LENGTH+1]; /* name of queue extracted from bag*/

printf("Display current depths of local queues\n\n");

/***************************************************************************/
/* Connect to the queue manager */
/***************************************************************************/
if (argc > 1)

strncpy(qmName, argv[1], (size_t)MQ_Q_MGR_NAME_LENGTH);
MQCONN(qmName, &hConn, &compCode, &connReason);

/***************************************************************************/
/* Report the reason and stop if the connection failed. */

Chapter 11. Examples of using the MQAI 651



/***************************************************************************/
if (compCode == MQCC_FAILED)
{

CheckCallResult("Queue Manager connection", compCode, connReason);
exit( (int)connReason);

}

/***************************************************************************/
/* Create an admin bag for the mqExecute call */
/***************************************************************************/
mqCreateBag(MQCBO_ADMIN_BAG, &adminBag, &compCode, &reason);
CheckCallResult("Create admin bag", compCode, reason);
/***************************************************************************/
/* Create a response bag for the mqExecute call */
/***************************************************************************/
mqCreateBag(MQCBO_ADMIN_BAG, &responseBag, &compCode, &reason);
CheckCallResult("Create response bag", compCode, reason);

/***************************************************************************/
/* Put the generic queue name into the admin bag */
/***************************************************************************/
mqAddString(adminBag, MQCA_Q_NAME, MQBL_NULL_TERMINATED, "*",

&compCode, &reason);
CheckCallResult("Add q name", compCode, reason);

/***************************************************************************/
/* Put the local queue type into the admin bag */
/***************************************************************************/
mqAddInteger(adminBag, MQIA_Q_TYPE, MQQT_LOCAL, &compCode, &reason);
CheckCallResult("Add q type", compCode, reason);

/***************************************************************************/
/* Add an inquiry for current queue depths */
/***************************************************************************/
mqAddInquiry(adminBag, MQIA_CURRENT_Q_DEPTH, &compCode, &reason);
CheckCallResult("Add inquiry", compCode, reason);

/***************************************************************************/
/* Send the command to find all the local queue names and queue depths. */
/* The mqExecute call creates the PCF structure required, sends it to */
/* the command server, and receives the reply from the command server into */
/* the response bag. The attributes are contained in system bags that are */
/* embedded in the response bag, one set of attributes per bag. */
/***************************************************************************/
mqExecute(hConn, /* WebSphere MQ connection handle */

MQCMD_INQUIRE_Q, /* Command to be executed */
MQHB_NONE, /* No options bag */
adminBag, /* Handle to bag containing commands */
responseBag, /* Handle to bag to receive the response*/
MQHO_NONE, /* Put msg on SYSTEM.ADMIN.COMMAND.QUEUE*/
MQHO_NONE, /* Create a dynamic q for the response */
&compCode, /* Completion code from the mqExecute */
&reason); /* Reason code from mqExecute call */

/***************************************************************************/
/* Check the command server is started. If not exit. */
/***************************************************************************/
if (reason == MQRC_CMD_SERVER_NOT_AVAILABLE)
{

printf("Please start the command server: <strmqcsv QMgrName>\n");
MQDISC(&hConn, &compCode, &reason);
CheckCallResult("Disconnect from Queue Manager", compCode, reason);
exit(98);

}

/***************************************************************************/

652 WebSphere MQ: Programmable Command Formats and Administration Interface

|



/* Check the result from mqExecute call. If successful find the current */
/* depths of all the local queues. If failed find the error. */
/***************************************************************************/
if ( compCode == MQCC_OK ) /* Successful mqExecute */
{

/*************************************************************************/
/* Count the number of system bags embedded in the response bag from the */
/* mqExecute call. The attributes for each queue are in a separate bag. */
/*************************************************************************/
mqCountItems(responseBag, MQHA_BAG_HANDLE, &numberOfBags, &compCode,

&reason);
CheckCallResult("Count number of bag handles", compCode, reason);

for ( i=0; i<numberOfBags; i++)
{

/***********************************************************************/
/* Get the next system bag handle out of the mqExecute response bag. */
/* This bag contains the queue attributes */
/***********************************************************************/
mqInquireBag(responseBag, MQHA_BAG_HANDLE, i, &qAttrsBag, &compCode,

&reason);
CheckCallResult("Get the result bag handle", compCode, reason);

/***********************************************************************/
/* Get the queue name out of the queue attributes bag */
/***********************************************************************/
mqInquireString(qAttrsBag, MQCA_Q_NAME, 0, MQ_Q_NAME_LENGTH, qName,

&qNameLength, NULL, &compCode, &reason);
CheckCallResult("Get queue name", compCode, reason);

/***********************************************************************/
/* Get the depth out of the queue attributes bag */
/***********************************************************************/
mqInquireInteger(qAttrsBag, MQIA_CURRENT_Q_DEPTH, MQIND_NONE, &qDepth,

&compCode, &reason);
CheckCallResult("Get depth", compCode, reason);

/***********************************************************************/
/* Use mqTrim to prepare the queue name for printing. */
/* Print the result. */
/***********************************************************************/
mqTrim(MQ_Q_NAME_LENGTH, qName, qName, &compCode, &reason)
printf("%4d %-48s\n", qDepth, qName);

}
}

else /* Failed mqExecute */
{

printf("Call to get queue attributes failed: Completion Code = %d :
Reason = %d\n", compCode, reason);

/*************************************************************************/
/* If the command fails get the system bag handle out of the mqExecute */
/* response bag. This bag contains the reason from the command server */
/* why the command failed. */
/*************************************************************************/
if (reason == MQRCCF_COMMAND_FAILED)
{

mqInquireBag(responseBag, MQHA_BAG_HANDLE, 0, &errorBag, &compCode,
&reason);

CheckCallResult("Get the result bag handle", compCode, reason);

/************************************************************************/
/* Get the completion code and reason code, returned by the command */
/* server, from the embedded error bag. */
/************************************************************************/
mqInquireInteger(errorBag, MQIASY_COMP_CODE, MQIND_NONE, &mqExecuteCC,

Chapter 11. Examples of using the MQAI 653



&compCode, &reason );
CheckCallResult("Get the completion code from the result bag",

compCode, reason);
mqInquireInteger(errorBag, MQIASY_REASON, MQIND_NONE, &mqExecuteRC,

&compCode, &reason);
CheckCallResult("Get the reason code from the result bag",

compCode, reason);
printf("Error returned by the command server: Completion Code = %d :

Reason = %d\n", mqExecuteCC, mqExecuteRC);
}

}

/****************************************************************************/
/* Delete the admin bag if successfully created. */
/****************************************************************************/
if (adminBag != MQHB_UNUSABLE_HBAG)
{

mqDeleteBag(&adminBag, &compCode, &reason);
CheckCallResult("Delete the admin bag", compCode, reason);

}

/****************************************************************************/
/* Delete the response bag if successfully created. */
/****************************************************************************/
if (responseBag != MQHB_UNUSABLE_HBAG)
{

mqDeleteBag(&responseBag, &compCode, &reason);
CheckCallResult("Delete the response bag", compCode, reason);

}

/****************************************************************************/
/* Disconnect from the queue manager if not already connected */
/****************************************************************************/
if (connReason != MQRC_ALREADY_CONNECTED)
{

MQDISC(&hConn, &compCode, &reason);
CheckCallResult("Disconnect from queue manager", compCode, reason);

}
return 0;

}

*******************************************************************************/
* */
* Function: CheckCallResult */
* */
*******************************************************************************/
* */
* Input Parameters: Description of call */
* Completion code */
* Reason code */
* */
* Output Parameters: None */
* */
* Logic: Display the description of the call, the completion code and the */
* reason code if the completion code is not successful */
* */
*******************************************************************************/
void CheckCallResult(char *callText, MQLONG cc, MQLONG rc)
{

if (cc != MQCC_OK)
printf("%s failed: Completion Code = %d : Reason = %d\n",

callText, cc, rc);
}

654 WebSphere MQ: Programmable Command Formats and Administration Interface



Chapter 12. Advanced topics

This topic discusses the following:
v Indexing
v Data conversion
v Use of the message descriptor

Indexing

Each selector and value within a data item in a bag have three associated index
numbers:
v The index relative to other items that have the same selector.
v The index relative to the category of selector (user or system) to which the item

belongs.
v The index relative to all the data items in the bag (user and system).

This allows indexing by user selectors, system selectors, or both as shown in
Figure 14.

In Figure Figure 14, user item 3 (selector A) can be referred to by the following
index pairs:

Selector ItemIndex

selector A 1

MQSEL_ANY_USER_SELECTOR 2

MQSEL_ANY_SELECTOR 3

The index is zero-based like an array in C; if there are ‘n’ occurrences, the index
ranges from zero through ‘n-1’, with no gaps.

MQSEL_ANY_USER_SELECTOR MQSEL_ANY_SYSTEM_SELECTOR

MQSEL_ANY_SELECTOR

user
item

2

user
item

3

user
item

4

system
item

1

system
item

5

system
item

6

data bag

ItemIndex parameter

user
item

0

selector A selector B selector C selector A selector A selector D selector E

Figure 14. Indexing

© Copyright IBM Corp. 2002, 2009 655



Indexes are used when replacing or removing existing data items from a bag.
When used in this way, the insertion order is preserved, but indexes of other data
items can be affected. For examples of this, see “Changing information within a
bag” on page 530 and “Deleting data items” on page 532.

The three types of indexing allow easy retrieval of data items. For example, if there
are three instances of a particular selector in a bag, the mqCountItems call can
count the number of instances of that selector, and the mqInquire* calls can specify
both the selector and the index to inquire those values only. This is useful for
attributes that can have a list of values such as some of the exits on channels.

Data conversion

Like PCF messages, the strings contained in an MQAI data bag can be in a variety
of coded character sets. Usually, all of the strings in a PCF message are in the same
coded character set; that is, the same set as the queue manager.

Each string item in a data bag contains two values; the string itself and the CCSID.
The string that is added to the bag is obtained from the Buffer parameter of the
mqAddString or mqSetString call. The CCSID is obtained from the system item
containing a selector of MQIASY_CODED_CHAR_SET_ID. This is known as the
bag CCSID and can be changed using the mqSetInteger call.

When you inquire the value of a string contained in a data bag, the CCSID is an
output parameter from the call.

Table 14 shows the rules applied when converting data bags into messages and
vice versa:

Table 14. CCSID processing

MQAI call CCSID Input to call Output to call

mqBagToBuffer Bag CCSID (1 on
page 657)

Ignored Unchanged

mqBagToBuffer String CCSIDs in bag Used Unchanged

mqBagToBuffer String CCSIDs in
buffer

Not applicable Copied from string
CCSIDs in bag

mqBufferToBag Bag CCSID (1 on
page 657)

Ignored Unchanged

mqBufferToBag String CCSIDs in
buffer

Used Unchanged

mqBufferToBag String CCSIDs in bag Not applicable Copied from string
CCSIDs in buffer

mqPutBag MQMD CCSID Used Unchanged (2 on
page 657)

mqPutBag Bag CCSID (1 on
page 657)

Ignored Unchanged

mqPutBag String CCSIDs in bag Used Unchanged

mqPutBag String CCSIDs in
message sent

Not applicable Copied from string
CCSIDs in bag

mqGetBag MQMD CCSID Used for data
conversion of
message

Set to CCSID of data
returned (3 on page
657)

656 WebSphere MQ: Programmable Command Formats and Administration Interface



Table 14. CCSID processing (continued)

MQAI call CCSID Input to call Output to call

mqGetBag Bag CCSID (1) Ignored Unchanged

mqGetBag String CCSIDs in
message

Used Unchanged

mqGetBag String CCSIDs in bag Not applicable Copied from string
CCSIDs in message

mqExecute Request-bag CCSID Used for MQMD of
request message (4)

Unchanged

mqExecute Reply-bag CCSID Used for data
conversion of reply
message (4)

Set to CCSID of data
returned (3)

mqExecute String CCSIDs in
request bag

Used for request
message

Unchanged

mqExecute String CCSIDs in
reply bag

Not applicable Copied from string
CCSIDs in reply
message

Notes:

1. Bag CCSID is the system item with selector MQIASY_CODED_CHAR_SET_ID.

2. MQCCSI_Q_MGR is changed to the actual queue manager CCSID.

3. If data conversion is requested, the CCSID of data returned is the same as the output
value. If data conversion is not requested, the CCSID of data returned is the same as
the message value. Note that no message is returned if data conversion is requested but
fails.

4. If the CCSID is MQCCSI_DEFAULT, the queue manager’s CCSID is used.

Use of the message descriptor

Tables showing the values of message descriptor parameters.

The PCF command type is obtained from the system item with selector
MQIASY_TYPE. When you create your data bag, the initial value of this item is set
depending on the type of bag you create:

Table 15. PCF command type

Type of bag Initial value of MQIASY_TYPE item

MQCBO_ADMIN_BAG MQCFT_COMMAND

MQCBO_COMMAND_BAG MQCFT_COMMAND

MQCBO_* MQCFT_USER

When the MQAI generates a message descriptor, the values used in the Format and
MsgType parameters depend on the value of the system item with selector
MQIASY_TYPE as shown in Table 15.

Table 16. Format and MsgType parameters of the MQMD

PCF command type Format MsgType

MQCFT_COMMAND MQFMT_ADMIN MQMT_REQUEST

MQCFT_REPORT MQFMT_ADMIN MQMT_REPORT

Chapter 12. Advanced topics 657

|



Table 16. Format and MsgType parameters of the MQMD (continued)

PCF command type Format MsgType

MQCFT_RESPONSE MQFMT_ADMIN MQMT_REPLY

MQCFT_TRACE_ROUTE MQFMT_ADMIN MQMT_DATAGRAM

MQCFT_EVENT MQFMT_EVENT MQMT_DATAGRAM

MQCFT_* MQFMT_PCF MQMT_DATAGRAM

Table 16 on page 657 shows that if you create an administration bag or a command
bag, the Format of the message descriptor is MQFMT_ADMIN and the MsgType is
MQMT_REQUEST. This is suitable for a PCF request message sent to the command
server when a response is expected back.

Other parameters in the message descriptor take the values shown in Table 17.

Table 17. Message descriptor values

Parameter Value

StrucId MQMD_STRUC_ID

Version MQMD_VERSION_1

Report MQRO_NONE

MsgType see Table 16 on page 657

Expiry 30 seconds (note 1)

Feedback MQFB_NONE

Encoding MQENC_NATIVE

CodedCharSetId depends on the bag CCSID (note 2)

Format see Table 16 on page 657

Priority MQPRI_PRIORITY_AS_Q_DEF

Persistence MQPER_NOT_PERSISTENT

MsgId MQMI_NONE

CorrelId MQCI_NONE

BackoutCount 0

ReplyToQ see note 3

ReplyToQMgr blank

Notes:

1. This value can be overridden on the mqExecute call by using the OptionsBag parameter.
For information about this, see “mqExecute” on page 574.

2. See “Data conversion” on page 656.

3. Name of the user-specified reply queue or MQAI-generated temporary dynamic queue
for messages of type MQMT_REQUEST. Blank otherwise.

658 WebSphere MQ: Programmable Command Formats and Administration Interface

|



Part 3. Appendixes

© Copyright IBM Corp. 2002, 2009 659



660 WebSphere MQ: Programmable Command Formats and Administration Interface



Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing,
IBM Corporation,
North Castle Drive,
Armonk, NY 10504-1785,
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation,
Licensing,
2-31 Roppongi 3-chome, Minato-k,u
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2002, 2009 661



Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

The following are trademarks of International Business Machines Corporation in
the United States, or other countries, or both:

AIX i5/OS IBM
Lotus® Lotus Notes® MQSeries
RACF S/390 System/390
WebSphere z/OS

Java™ and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

662 WebSphere MQ: Programmable Command Formats and Administration Interface



Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 663



664 WebSphere MQ: Programmable Command Formats and Administration Interface



Index

A
AccountingConnOverride parameter

Change Queue Manager
command 98

Inquire Queue Manager (Response)
command 328

AccountingInterval parameter
Change Queue Manager

command 99
Inquire Queue Manager (Response)

command 328
Action parameter, Reset Cluster

command 435
Action parameter, Reset Queue Manager

command 437
ActiveChannels parameter

Inquire Channel Initiator
(Response) 210

ActiveChannelsMax parameter
Inquire Channel Initiator

(Response) 210
ActiveChannelsPaused parameter

Inquire Channel Initiator
(Response) 210

ActiveChannelsRetrying parameter
Inquire Channel Initiator

(Response) 210
ActiveChannelsStarted parameter

Inquire Channel Initiator
(Response) 211

ActiveChannelsStopped parameter
Inquire Channel Initiator

(Response) 211
ActivityRecording parameter

Change Queue Manager
command 99

Inquire Queue Manager (Response)
command 328

Adapter parameter
Change, Copy, Create Channel

Listener command 69
Inquire Channel Listener (Response)

command 215
Inquire Channel Listener Status

(Response) command 220
AdaptersMax parameter

Inquire Channel Initiator
(Response) 211

AdaptersStarted parameter
Inquire Channel Initiator

(Response) 211
adding 64-bit integer items 529
adding byte string filter items 529
adding byte string items 529
adding character-string items 529
adding data items to bags 529
adding inquiry command 529
adding integer filter items 529
adding integer items 529
adding string filter items 529

AdminBag parameter, mqExecute
call 575

administration bag 527
AdminQ parameter, mqExecute call 576
AdoptNewMCACheck parameter

Change Queue Manager
command 99

Inquire Queue Manager (Response)
command 329

AdoptNewMCAType parameter
Change Queue Manager

command 99
Inquire Queue Manager (Response)

command 329
advanced topics

data conversion 656
indexing 655

AllocPrimary parameter
Inquire Archive (Response) 166
Set Archive command 446

AllocSecondary parameter
Inquire Archive (Response) 166
Set Archive command 446

AllocUnits parameter
Inquire Archive (Response) 166
Set Archive command 446

AlterationDate parameter
Inquire Authentication Information

Object (Response) command 171
Inquire CF Structure (Response) 184
Inquire Channel (Response)

command 199
Inquire Channel Listener (Response)

command 215
Inquire Cluster Queue Manager

(Response) command 252
Inquire Namelist (Response)

command 286
Inquire Process (Response)

command 292
Inquire Queue (Response)

command 307
Inquire Queue Manager (Response)

command 329
Inquire Service (Response)

command 370
Inquire Storage Class (Response) 379
Inquire Topic Object (Response)

command 402
AlterationTime parameter

Inquire Authentication Information
Object (Response) command 171

Inquire CF Structure (Response) 184
Inquire Channel (Response)

command 199
Inquire Channel Listener (Response)

command 215
Inquire Cluster Queue Manager

(Response) command 252
Inquire Namelist (Response)

command 286

AlterationTime parameter (continued)
Inquire Process (Response)

command 292
Inquire Queue (Response)

command 307
Inquire Queue Manager (Response)

command 329
Inquire Service (Response)

command 371
Inquire Storage Class (Response) 379
Inquire Topic Object (Response)

command 402
amqsaicl.c, sample programs 644
amqsaicq.c, sample programs 631
amqsaiem.c, sample programs 635
amqsailq.c, sample programs 650
ApplId parameter

Change, Copy, Create Process
command 75

Inquire Process (Response)
command 292

ApplTag parameter
Inquire Connection (Response) 264
Inquire Queue Status (Response)

command 361
ApplType parameter

Change, Copy, Create Process
command 76

Inquire Connection (Response) 264
Inquire Process (Response)

command 292
Inquire Queue Status (Response)

command 361
ArchivePrefix1 parameter

Inquire Archive (Response) 166
Set Archive command 446

ArchivePrefix2 parameter
Inquire Archive (Response) 166
Set Archive command 446

ArchiveRetention parameter
Inquire Archive (Response) 166
Set Archive command 447

ArchiveUnit1 parameter
Inquire Archive (Response) 166
Set Archive command 447

ArchiveUnit2 parameter
Inquire Archive (Response) 166
Set Archive command 447

ArchiveWTOR parameter
Inquire Archive (Response) 167
Set Archive command 447

ASId parameter
Inquire Queue Status (Response)

command 362
ASID parameter

Inquire Connection (Response) 265
AsynchronousState parameter

Inquire Connection (Response) 265
Inquire Queue Status (Response)

command 362

© Copyright IBM Corp. 2002, 2009 665



AuthInfoAttrs parameter
Inquire authentication information

command 169
AuthInfoConnName parameter

Inquire Authentication Information
Object (Response) command 171

AuthInfoConnName, Create and Copy
authentication information
command 32

AuthInfoConnName, Create
authentication information
command 32

AuthInfoDesc parameter
Inquire Authentication Information

Object (Response) command 172
AuthInfoDesc, Create authentication

information command 32
AuthInfoName parameter

Change, Copy, Create authentication
information command 31

Change, Create authentication
information command 32

Delete Authentication Information
Object 147

Inquire Authentication Information
Object (Response) command 172

Inquire Authentication Information
Object command 169

Inquire Authentication Information
Object Names command 173

AuthInfoNames parameter
Inquire Authentication Information

Object Names (Response) 174
AuthInfoType parameter

Change, Copy, Create authentication
information command 32

Inquire Authentication Information
Object (Response) command 172

authority checking (PCF)
Compaq NonStop Kernel 16
HP OpenVMS 16
i5/OS 14
UNIX systems 15
Windows NT 15
z/OS systems 19

AuthorityAdd parameter
Set Authority Record 451, 452

AuthorityEvent parameter
Change Queue Manager

command 100
Inquire Queue Manager (Response)

command 329
Inquire Queue Manager Status

(Response) command 350
AuthorizationList parameter

Inquire Authority Records
(Response) 178

Inquire Entity Authority
(Response) 274

B
Backlog parameter

Change, Copy, Create Channel
Listener command 70

Inquire Channel Listener (Response)
command 215

Backlog parameter (continued)
Inquire Channel Listener Status

(Response) command 220
BackoutRequeueName parameter

Change, Copy, Create Queue
command 80

Inquire Queue (Response)
command 308

BackoutThreshold parameter
Change, Copy, Create Queue

command 80
Inquire Queue (Response)

command 308
Backup CF Structure 30
BackupDate parameter

Inquire CF Structure Status
(Response) 188

BackupEndRBA parameter
Inquire CF Structure Status

(Response) 188
BackupSize parameter

Inquire CF Structure Status
(Response) 188

BackupStartRBA parameter
Inquire CF Structure Status

(Response) 189
BackupTime parameter

Inquire CF Structure Status
(Response) 189

Bag parameter
mqAddBag call 544
mqAddByteString call 546
mqAddByteStringFilter call 547
mqAddInteger call 552
mqAddInteger64 call 553
mqAddIntegerFilter call 555
mqAddString call 556
mqAddStringFilter call 558
mqClearBag call 564
mqCountItems call 565
mqCreateBag call 570
mqDeleteBag call 571
mqGetBag call 579
mqInquireBag call 580
mqInquireByteString call 583
mqInquireByteStringFilter call 586
mqInquireInteger call 589
mqInquireInteger64 call 591
mqInquireIntegerFilter call 593
mqInquireItemInfo call 595
mqInquireString call 598
mqInquireStringFilter call 601
mqPutBag call 606
mqSetByteString call 607
mqSetByteStringFilter call 610
mqSetInteger call 613
mqSetInteger64 call 615
mqSetIntegerFilter call 618
mqSetString call 620
mqSetStringFilter call 623
mqTruncateBag call 627

bags
adding 64-bit integer items to 529
adding byte string filter items to 529
adding byte string items to 529
adding character-string items to 529
adding data items to 529

bags (continued)
adding inquiry command to 529
adding integer filter items to 529
adding integer items to 529
adding string filter items to 529
changing 64-bit integer items

within 531
changing byte string filter items

within 531
changing byte string items

within 531
changing character-string items

within 531
changing information within 530
changing integer filter items

within 531
changing integer items within 531
changing string filter items

within 531
converting 539
converting to PCF messages 539
creating 527
creating and deleting 527
deleting 528
inquiring within 533
putting 540
receiving 540
types of 527
using 527

BaseObjectName parameter
Change, Copy, Create Queue

command 81
BaseQName parameter

Change, Copy, Create Queue
command 81

Inquire Queue (Response)
command 308

Batch Heartbeat parameter
Channel commands 41
Inquire Channel (Response)

command 199
Inquire Cluster Queue Manager

(Response) command 252
Batches parameter, Inquire Channel

Status (Response) command 237
BatchInterval parameter

Channel commands 41
Inquire Channel (Response)

command 199
Inquire Cluster Queue Manager

(Response) command 252
BatchSize parameter

Channel commands 41
Inquire Channel (Response)

command 200
Inquire Channel Status (Response)

command 237
Inquire Cluster Queue Manager

(Response) command 252
BatchSizeIndicator parameter

Inquire Channel Status (Response)
command 237

BlockSize parameter
Inquire Archive (Response) 167
Set Archive command 447

666 WebSphere MQ: Programmable Command Formats and Administration Interface



BridgeEvent parameter
Change Queue Manager

command 100
Inquire Queue Manager (Response)

command 329
Buffer parameter

mqAddByteString call 546
mqAddByteStringFilter call 548
mqAddString call 557
mqAddStringFilter call 559
mqBagToBuffer call 561
mqBufferToBag call 563
mqInquireByteString call 584
mqInquireByteStringFilter call 587
mqInquireString call 599
mqInquireStringFilter call 602
mqPad call 604
mqSetByteString call 608
mqSetByteStringFilter call 611
mqSetString call 621
mqSetStringFilter call 624
mqTrim call 626

BufferLength parameter
mqAddByteString call 546
mqAddByteStringFilter call 548
mqAddString call 557
mqAddStringFilter call 559
mqBagToBuffer call 561
mqBufferToBag call 563
mqInquireByteString call 584
mqInquireByteStringFilter call 587
mqInquireString call 599
mqInquireStringFilter call 602
mqPad call 604
mqSetByteStringFilter call 611
mqSetString call 621
mqSetStringFilter call 624
mqTrim call 626

BufferPoolId parameter
Inquire Usage (Response) 417, 419

BuffersReceived parameter, Inquire
Channel Status (Response)
command 237

BuffersSent parameter, Inquire Channel
Status (Response) command 237

BytesReceived parameter, Inquire
Channel Status (Response)
command 237

BytesSent parameter, Inquire Channel
Status (Response) command 237

ByteStringFilterCommand parameter
Inquire Connection command 260
Inquire Queue Status command 354

ByteStringLength parameter,
mqInquireByteString call 584

ByteStringLength parameter,
mqInquireByteStringFilter call 587

C
calls

data-bag manipulation 543
detailed description

mqAddBad 544
mqAddByteString 545
mqAddByteStringFilter 547
mqAddInquiry 549

calls (continued)
detailed description (continued)

mqAddInteger 551
mqAddInteger64 553
mqAddIntegerFilter 554
mqAddString 556
mqAddStringFilter 558
mqBagToBuffer 560
mqBufferToBag 563
mqClearBag 564
mqCountItems 565
mqCreateBag 567
mqDeleteBag 571
mqDeleteItem 572
mqExecute 574
mqGetBag 578
mqInquireBag 580
mqInquireByteString 583
mqInquireByteStringFilter 585
mqInquireInteger 588
mqInquireInteger64 591
mqInquireIntegerFilter 593
mqInquireItemInfo 595
mqInquireString 598
mqInquireStringFilter 601
mqPad 604
mqPutBag 605
mqSetByteString 607
mqSetByteStringFilter 610
mqSetInteger 613
mqSetInteger64 615
mqSetIntegerFilter 617
mqSetString 620
mqSetStringFilter 623
mqTrim 626
mqTruncateBag 627

mqAddByteString 529
mqAddByteStringFilter 529
mqAddInquiry 529
mqAddInteger 529
mqAddInteger64 529
mqAddIntegerFilter 529
mqAddString 529
mqAddStringFilter 529
mqBagToBuffer 539
mqBufferToBag 539
mqClearBag 532
mqCreateBag 527
mqDeleteBag 528
mqDeleteItem 532
mqExecute 535
mqGetBag 540
mqPutBag 540
mqSetByteString 531
mqSetByteStringFilter 531
mqSetInteger 531
mqSetInteger64 531
mqSetIntegerFilter 531
mqSetString 531
mqSetStringFilter 531
mqTruncateBag 533

Catalog parameter
Inquire Archive (Response) 167
Set Archive command 448

CFLevel parameter
Copy, Change, Create CF Structure

command 35

CFLevel parameter (continued)
Inquire CF Structure (Response) 184

CFMsgIdentifier parameter
Inquire Group (Response) 278

CFStatusType parameter
Inquire CF Structure Status

(Response) 189
Inquire CF Structure Status

command 187
CFStrucAttrs parameter

Inquire CF Structure command 183
CFStrucDesc parameter

Copy, Change, Create CF Structure
command 36

Inquire CF Structure (Response) 185
CFStrucName parameter

Backup CF Structure command 30
Change, Copy, Create CF Structure

command 35
Delete CF Structure command 150
Inquire CF Structure (Response) 185
Inquire CF Structure command 183
Inquire CF Structure Names

command 186
Inquire CF Structure Status

(Response) 189
Inquire CF Structure Status

command 187
Recover CF Structure command 425

CFStrucNames parameter
Inquire CF Structure Names

(Response) 186
CFStructure parameter

Change, Copy, Create Queue
command 81

Inquire Queue (Response)
command 308

Inquire Queue command 299
CFStrucType parameter

Inquire CF Structure Status
(Response) 189, 190

Change Queue Manager 98
Change Security 125
Change, Copy and Create Channel 37
Change, Copy, Create authentication

information Object 31
Change, Copy, Create CF structure 34
Change, Copy, Create Channel

command 55, 206
Change, Copy, Create Channel

Listener 68
Change, Copy, Create Namelist 71
Change, Copy, Create Process 74
Change, Copy, Create Queue 79
Change, Copy, Create Queue

command 88, 313
Change, Copy, Create Service 126
Change, Copy, Create Storage Class 128
Change, Copy, Create Subscription 132
Change, Copy, Create Topic 137
changing 64-bit integer items within data

bags 531
changing byte string filter items within

data bags 531
changing byte string items within data

bags 531

Index 667



changing character-string items within
data bags 531

changing information within data
bags 530

changing integer filter items within data
bags 531

changing integer items within data
bags 531

changing string filter items within data
bags 531

Channel parameter, Inquire Cluster
Queue Manager command 247

ChannelAttrs parameter, Inquire Channel
command 192

ChannelAutoDef parameter
Change Queue Manager

command 100
Inquire Queue Manager (Response)

command 330
ChannelAutoDefEvent parameter

Change Queue Manager
command 100

Inquire Queue Manager (Response)
command 330

ChannelAutoDefExit parameter
Change Queue Manager

command 101
Inquire Queue Manager (Response)

command 330
ChannelDesc parameter

Channel commands 42
Inquire Channel (Response)

command 200
Inquire Cluster Queue Manager

(Response) command 252
ChannelDisposition parameter

Inquire Channel Status (Response)
command 237

Inquire Channel Status
command 227

Ping Channel command 422
Reset Channel command 433
Resolve Channel command 441
Start Channel command 458
Stop Channel command 466

ChannelEvent parameter
Change Queue Manager

command 101
Inquire Queue Manager (Response)

command 330
ChannelInitiatorControl parameter

Change Queue Manager
command 101

Inquire Queue Manager (Response)
command 330

ChannelInitiatorStatus parameter
Inquire Channel Initiator (Response)

command 211
Inquire Queue Manager Status

(Response) command 349
ChannelInstanceAttrs parameter

Inquire Channel Status
command 228

ChannelInstanceType parameter
Inquire Channel Status (Response)

command 238

ChannelInstanceType parameter
(continued)

Inquire Channel Status
command 233

ChannelMonitoring parameter
Change Queue Manager

command 101
Channel commands 42
Inquire Channel (Response)

command 200
Inquire Channel Status (Response)

command 238
Inquire Cluster Queue Manager

(Response) command 252
Inquire Queue Manager (Response)

command 331
ChannelName parameter

Change and Create Channel
command 39

Delete Channel command 151
Inquire Channel (Response)

command 200
Inquire Channel command 191
Inquire Channel Names

command 222
Inquire Channel Status (Response)

command 238
Inquire Channel Status

command 227
Inquire Cluster Queue Manager

(Response) command 252
Inquire Connection (Response) 266
Inquire Queue Status (Response)

command 363
Ping Channel command 422
Reset Channel command 433
Resolve Channel command 441
Start Channel command 458
Stop Channel command 465

ChannelNames parameter
Inquire Channel Names

(Response) 224
ChannelStartDate parameter, Inquire

Channel Status (Response)
command 238

ChannelStartTime parameter, Inquire
Channel Status (Response)
command 238

ChannelStatistics parameter
Change Queue Manager

command 102
Channel commands 42
Inquire Channel (Response)

command 200
Inquire Queue Manager (Response)

command 331
ChannelStatus parameter

Inquire Channel Status (Response)
command 238

Inquire Cluster Queue Manager
(Response) command 253

Stop Channel command 467
ChannelTable parameter

Delete Channel command 151
ChannelType parameter

Change and Create Channel
command 39

ChannelType parameter (continued)
Copy Channel command 40
Inquire Channel (Response)

command 201
Inquire Channel command 196
Inquire Channel Names

command 222
Inquire Channel Status (Response)

command 239
ChannelTypes parameter

Inquire Channel Names
(Response) 224

CheckpointCount parameter
Inquire System (Response) 395
Set System command 456

ChildName parameter
Reset Queue Manager command 437

ChinitAdapters parameter
Change Queue Manager

command 102
Inquire Queue Manager (Response)

command 332
ChinitDispatchers parameter

Change Queue Manager
command 103

Inquire Queue Manager (Response)
command 332

ChinitServiceParm parameter
Change Queue Manager

command 103
Inquire Queue Manager (Response)

command 332
ChinitTraceAutoStart parameter

Change Queue Manager
command 103

Inquire Queue Manager (Response)
command 332

ChinitTraceTableSize parameter
Change Queue Manager

command 103
Inquire Queue Manager (Response)

command 332
Clear Queue 145
Clear Topic String 146
clearing a bag 532
ClearType parameter

Clear Topic String command 146
ClientChannelWeight parameter

Channel commands 43, 201
ClusterCacheType parameter

Inquire System (Response) 395
ClusterDate parameter

Inquire Cluster Queue Manager
(Response) command 253

Inquire Queue (Response)
command 308

ClusterInfo parameter
Inquire Cluster Queue Manager

(Response) command 253
Inquire Queue command 299
Inquire Topic Object command 398

ClusterName parameter
Change, Copy, Create Queue

command 82
Change, Copy, Create Topic

command 138
Channel commands 43

668 WebSphere MQ: Programmable Command Formats and Administration Interface



ClusterName parameter (continued)
Inquire Channel (Response)

command 201
Inquire Cluster Queue Manager

(Response) command 253
Inquire Cluster Queue Manager

command 247
Inquire Queue (Response)

command 308
Inquire queue command 299
Inquire Topic Object (Response)

command 402
Refresh Cluster command 426
Reset Cluster command 435
Resume Queue Manager Cluster

command 444
Suspend Queue Manager Cluster

command 474
ClusterNamelist parameter

Change, Copy, Create Queue
command 82

Channel commands 43
Inquire Channel (Response)

command 201
Inquire Queue (Response)

command 308
Inquire Queue command 299
Resume Queue Manager Cluster

command 444
Suspend Queue Manager Cluster

command 474
ClusterQMgrAttrs parameter, Inquire

Cluster Queue Manager command 247
ClusterQMgrName parameter

Inquire Cluster Queue Manager
command 246

ClusterQType parameter, Inquire Queue
(Response) command 308

ClusterSenderMonitoringDefault
parameter

Change Queue Manager
command 103

Inquire Queue Manager (Response)
command 332

ClusterSenderStatistics parameter
Change Queue Manager

command 104
Inquire Queue Manager (Response)

command 333
ClusterTime parameter

Inquire Cluster Queue Manager
(Response) command 253

Inquire Queue (Response)
command 308

ClusterWorkloadData parameter
Change Queue Manager

command 104
Inquire Queue Manager (Response)

command 333
ClusterWorkloadExit parameter

Change Queue Manager
command 104

Inquire Queue Manager (Response)
command 333

ClusterWorkloadLength parameter
Change Queue Manager

command 105

ClusterWorkloadLength parameter
(continued)

Inquire Queue Manager (Response)
command 333

CLWLChannelPriority parameter
Channel commands 43
Inquire Channel (Response)

command 201
Inquire Cluster Queue Manager

(Response) command 253
CLWLChannelRank parameter

Channel commands 43
Inquire Channel (Response)

command 201
Inquire Cluster Queue Manager

(Response) command 253
CLWLChannelWeight parameter

Channel commands 44
Inquire Channel (Response)

command 201
Inquire Cluster Queue Manager

(Response) command 254
CLWLMRUChannels parameter

Change Queue Manager
command 105

Inquire Queue Manager (Response)
command 333

CLWLQueuePriority parameter
Change, Copy, Create Queue

command 82
Inquire Queue (Response)

command 308
CLWLQueueRank parameter

Change, Copy, Create Queue
command 82

Inquire Queue (Response)
command 309

CLWLUseQ parameter
Change Queue Manager

command 105
Change, Copy, Create Queue

command 82
Inquire Queue (Response)

command 309
Inquire Queue Manager (Response)

command 333
CodedCharSetId field

MQCFSF structure 496
MQCFSL structure 500
MQCFST structure 503

CodedCharSetId parameter
Inquire Queue Manager (Response)

command 334
Inquire System (Response) 395

CodedCharSetId parameter,
mqInquireString call 599

CodedCharSetId parameter,
mqInquireStringFilter call 602

command
queue 7
structures 477

command bag 527
command calls

utility 543
Command field 478
Command parameter, mqExecute

call 574

CommandEvent parameter
Change Queue Manager

command 105
Inquire Queue Manager (Response)

command 334
CommandInformation parameter

Inquire Group (Response) 278
CommandInputQName parameter

Inquire Queue Manager (Response)
command 334

CommandLevel parameter
Inquire Group (Response) 277
Inquire Queue Manager (Response)

command 334
commands

rules for naming objects in 13
Commands parameter

Change, Copy, Create Channel
Listener command 70

Inquire Channel Listener (Response)
command 215

Inquire Channel Listener Status
(Response) command 220

CommandScope parameter
Backup CF Structure command 30
Change Queue Manager

command 106
Change Security command 125
Change, Copy, Create Namelist

command 72
Change, Copy, Create Process

command 77
Change, Copy, Create Queue

command 83
Change, Copy, Create Storage Class

command 129
Change, Copy, Create Subscription

command 134
Change, Copy, Create Topic

command 139
Channel commands 44
Clear Queue command 145, 147
Delete Authentication Information

Object 147
Delete Channel command 151
Delete Namelist 153
Delete Process command 155
Delete Queue command 156
Delete Storage Class command 159
Delete Topic Objectcommand 162
Inquire Archive command 164
Inquire Authentication Information

Object command 170, 197
Inquire Authentication Information

Object Names command 173, 293
Inquire Channel Initiator

command 209
Inquire Channel Names

command 223
Inquire Channel Status

command 234
Inquire Cluster Queue Manager

command 250
Inquire Connection command 260
Inquire Log command 279
Inquire Namelist command 283

Index 669



CommandScope parameter (continued)
Inquire Namelist Names

command 287
Inquire Process command 289
Inquire Queue command 299, 382
Inquire Queue Manager

command 318
Inquire Queue Names command 351
Inquire Queue Status command 354
Inquire Security command 366
Inquire Storage Class command 376
Inquire Storage Class Names

command 380
Inquire Subscription Status

command 161, 390
Inquire System command 394
Inquire Topic Names command 407
Inquire Topic Object command 398
Inquire Topic Status command 410
Inquire Usgae command 416
Move Queue command 420
Ping Channel command 422
Recover CF Structure command 426
Refresh Cluster command 427
Refresh Queue Manager

command 429
Refresh Security command 430
Reset Channel command 433
Reset Cluster command 435
Reset Queue Statistics command 438
Resolve Channel command 441
Resume Queue Manager Cluster

command 444
Resume Queue Manager

command 443
Reverify Security command 445
Set Archive command 448
Set Log command 454
Set System command 456
Start Channel command 458
Start Channel Initiator command 461
Start Channel Listener command 462
Stop Channel command 467
Stop Channel Initiator command 469
Stop Channel Listener command 471
Suspend Queue Manager Cluster

command 475
Suspend Queue Manager

command 474
CommandScope parameter, Create

authentication information
command 33

CommandServerControl parameter
Change Queue Manager

command 106, 336
CommandServerStatus parameter

Inquire Queue Manager Status
(Response) command 349

CommandUserId parameter
Inquire System (Response) 395

Compact parameter
Inquire Archive (Response) 167
Set Archive command 448

CompCode field 478
CompCode parameter

mqAddBag call 544
mqAddByteString call 546

CompCode parameter (continued)
mqAddByteStringFilter call 548
mqAddInquiry call 550
mqAddInteger call 552
mqAddInteger64 call 553
mqAddIntegerFilter call 555
mqAddString call 557
mqAddStringFilter call 559
mqBagToBuffer call 561
mqBufferToBag call 563
mqClearBag call 565
mqCountItems call 566
mqCreateBag call 570
mqDeleteBag call 571
mqDeleteItem call 573
mqExecute call 576
mqGetBag call 579
mqInquireBag call 581
mqInquireByteString call 584
mqInquireByteStringFilter call 587
mqInquireInteger call 589
mqInquireInteger64 call 592
mqInquireIntegerFilter call 594
mqInquireItemInfo call 597
mqInquireString call 599
mqInquireStringFilter call 602
mqPad call 604
mqPutBag call 606
mqSetByteString call 608
mqSetByteStringFilter call 611
mqSetInteger call 614
mqSetInteger64 call 616
mqSetIntegerFilter call 619
mqSetString call 621
mqSetStringFilter call 624
mqTrim call 626
mqTruncateBag call 628

CompressionRate parameter
Inquire Channel Status (Response)

command 239
CompressionTimee parameter

Inquire Channel Status (Response)
command 239

concepts and terminology 523
ConfigurationEvent parameter

Change Queue Manager
command 106

Inquire Queue Manager (Response)
command 336

configuring WebSphere MQ 535
Conname parameter

Inquire Queue Status (Response)
command 363

ConnectionAffinity parameter
Channel commands 44, 201

ConnectionAttrs parameter
Inquire Connection command 261

ConnectionCount parameter
Inquire Queue Manager Status

(Response) command 350
ConnectionId parameter

Inquire Connection (Response) 266
Inquire Connection command 260
Stop Connection command 472

ConnectionName parameter
Channel commands 45

ConnectionName parameter (continued)
Inquire Channel (Response)

command 202
Inquire Channel Status (Response)

command 240
Inquire Channel Status

command 234
Inquire Cluster Queue Manager

(Response) command 254
Inquire Connection (Response) 266
Stop Channel command 468

ConnectionOptions parameter
Inquire Connection (Response) 266

ConnInfoType parameter
Inquire Connection (Response) 266

Control field 478
control Language, i5/OS 4
converting bags and buffers 539
converting bags to PCF messages 539
converting PCF messages to bag

form 539
Count field

MQCFIL structure 491
MQCFSL structure 500

counting data items 531
creating a local queue, sample

programs 631
creating data bags 527
CreationDate parameter, Inquire Queue

(Response) command 309
CreationTime parameter, Inquire Queue

(Response) command 309
CurrentChannels parameter

Inquire Channel Initiator
(Response) 211

CurrentChannelsLU62 parameter
Inquire Channel Initiator

(Response) 211
CurrentChannelsMax parameter

Inquire Channel Initiator
(Response) 211

CurrentChannelsTCP parameter
Inquire Channel Initiator

(Response) 211
CurrentLog parameter

Inquire Queue Manager Status
(Response) command 350

CurrentLUWID parameter, Inquire
Channel Status (Response)
command 240

CurrentMsgs parameter, Inquire Channel
Status (Response) command 240

CurrentQDepth parameter
Inquire Queue Status (Response)

command 359
CurrentQDepth parameter, Inquire Queue

(Response) command 309
CurrentSequenceNumber parameter,

Inquire Channel Status (Response)
command 240

CurrentSharingConversations parameter
Inquire Channel Status (Response)

command 240

670 WebSphere MQ: Programmable Command Formats and Administration Interface



D
data

exchanging 539
receiving 539
response 11
sending 539

data bags
adding 64-bit integer items to 529
adding byte string filter items to 529
adding byte string items to 529
adding character-string items to 529
adding data items to 529
adding inquiry command to 529
adding integer filter items to 529
adding integer items to 529
adding string filter items to 529
changing 64-bit integer items

within 531
changing byte string filter items

within 531
changing byte string items

within 531
changing character-string items

within 531
changing information within 530
changing integer filter items

within 531
changing integer items within 531
changing string filter items

within 531
converting 539
converting to PCF messages 539
creating 527
creating and deleting 527
deleting 528
inquiring within 533
putting 540
receiving 540
types of 527
using 527

data conversion 656
data items

counting 531
deleting 532
filtering 529
querying 529
types of 528

data-bag manipulation calls
command 543

DataBag parameter
mqBagToBuffer call 561
mqBufferToBag call 563

DataConversion parameter
Channel commands 46
Inquire Channel (Response)

command 202
Inquire Cluster Queue Manager

(Response) command 254
DataCount parameter

Ping Channel command 422
DataLength parameter, mqBagToBuffer

call 561
DataSetName parameter

Inquire Archive (Response) 168
Inquire Log (Response) 281
Inquire Usage (Response) 419

DataSetType parameter
Inquire Usage (Response) 419

DB2BlobTasks parameter
Inquire System (Response) 395

DB2ConnectStatus parameter
Inquire Group (Response) 277

DB2Name parameter
Inquire Group (Response) 278
Inquire System (Response) 395

DB2Tasks parameter
Inquire System (Response) 395

DeadLetterQName parameter
Change Queue Manager

command 106
Inquire Queue Manager (Response)

command 336
DeallocateInterval parameter

Inquire Log (Response) 280
Set Log command 455

default structures 477
DefaultChannelDisposition parameter

Channel commands 46
Inquire Channel (Response)

command 202
Inquire Channel command 197

DefaultPutResponse parameter,
Change, Copy, Create Queue

command 83
Inquire Queue (Response)

command 309
DefBind parameter

Inquire Queue (Response)
command 309

DefBind parameter,
Change, Copy, Create Queue

command 83
definitions of PCFs 21
DefinitionType parameter

Change, Copy, Create Queue
command 83

Inquire Queue (Response)
command 310

DefInputOpenOption parameter
Change, Copy, Create Queue

command 84
Inquire Queue (Response)

command 310
DefPersistence parameter

Change, Copy, Create Queue
command 84

Change, Copy, Create Topic
command 139

Inquire Queue (Response)
command 310

Inquire Topic Object (Response)
command 402

DefPriority parameter
Change, Copy, Create Queue

command 84
Change, Copy, Create Topic

command 139
Inquire Queue (Response)

command 310
Inquire Queue Manager (Response)

command 347
Inquire Topic Object (Response)

command 403

DefPutResponse parameter
Change, Copy, Create Topic

command 139
Inquire Topic Object (Response)

command 403
DefReadAhead parameter

Change, Copy, Create Queue
command 84

Inquire Queue (Response)
command 310

DefXmitQName parameter
Change Queue Manager

command 107
Inquire Queue Manager (Response)

command 336
Delete Authentication Information

Object 147
Delete Authority Record 149
Delete CF Structure 150
Delete Channel 151
Delete Channel Listener 153
Delete Namelist 153
Delete Process 154
Delete Queue 156
Delete Service 158
Delete Storage Class 159, 209
Delete Subscription 160
Delete Topic 161
deleting data bags 528
deleting data items 532
descriptor, message 7
Destination parameter

Change, Copy, Create Subscription
command 134

Inquire Connection (Response) 267
DestinationClass parameter

Change, Copy, Create Subscription
command 134

DestinationCorrelId parameter
Change, Copy, Create Subscription

command 134
DestinationQueueManager parameter

Change, Copy, Create Subscription
command 134

Inquire Connection (Response) 267
DiscInterval parameter

Channel commands 47
Inquire Channel (Response)

command 203
Inquire Cluster Queue Manager

(Response) command 254
DispatchersMax parameter

Inquire Channel Initiator
(Response) 211

DispatchersStarted parameter
Inquire Channel Initiator

(Response) 211
DistLists parameter

Change, Copy, Create Queue
command 84

Inquire Queue (Response)
command 311

Inquire Queue Manager (Response)
command 337

DNSGroup parameter
Change Queue Manager

command 107

Index 671



DNSGroup parameter (continued)
Inquire Queue Manager (Response)

command 337
DNSWLM parameter

Change Queue Manager
command 107

Inquire Queue Manager (Response)
command 337

DSGName parameter
Inquire System (Response) 395

DualActive parameter
Inquire Log (Response) 280

DualArchive parameter
Inquire Log (Response) 280

DualBSDS parameter
Inquire Log (Response) 281

Durable parameter
Inquire Subscription command 383
Inquire Subscription Status

command 391
DurableModelQName parameter

Change, Copy, Create Topic
command 140

Inquire Topic Object (Response)
command 403

DurableSubscriptions parameter
Change, Copy, Create Topic

command 140
Inquire Topic Object (Response)

command 403

E
enquire local queue attributes 507
EntityName parameter

Inquire Authority Records 177
Inquire Authority Records

(Response) 179
Inquire Entity Authority 271
Inquire Entity Authority

(Response) 275
EntityType parameter

Inquire Authority Records 177
Inquire Authority Records

(Response) 180
Inquire Entity Authority 271
Inquire Entity Authority

(Response) 275
EntriesMax parameter

Inquire CF Structure Status
(Response) 190

EntriesUsed parameter
Inquire CF Structure Status

(Response) 190
EnvData parameter

Change, Copy, Create command 77
Inquire Process (Response)

command 292
EnvironmentInfo parameter

Start Channel Initiator command 462
error

response 10
Escape 163
Escape (Response) 164
EscapeText parameter

Escape (Response) command 164
Escape command 163

EscapeType parameter
Escape (Response) command 164
Escape command 163

event monitor, sample programs 635
example

using PCFs 507
exchanging data 539
ExcludeInterval parameter

Backup CF Structure command 30
ExitInterval parameter

Inquire System (Response) 395
ExitTasks parameter

Inquire System (Response) 395
ExitTime parameter

Inquire Channel Status (Response)
command 240

ExpandCount parameter
Inquire Usage (Response) 417

ExpandType parameter
Inquire Usage (Response) 417

Expiry parameter
Change, Copy, Create Subscription

command 134
ExpiryInterval parameter

Change Queue Manager
command 107

Inquire Queue Manager (Response)
command 337

ExternalUOWId parameter
Inquire Queue Status (Response)

command 363

F
Facility parameter

Resume Queue Manager
command 443

Suspend Queue Manager
command 473

FailDate parameter
Inquire CF Structure Status (Response)

command 190
FailTime parameter

Inquire CF Structure Status
(Response) 190

filtering data items 529
FilterValue field

MQCFBF structure 483
MQCFIF structure 488
MQCFSF structure 496

FilterValueLength field
MQCFBF structure 483
MQCFSF structure 496

Force parameter
Change Queue Manager

command 107
Change, Copy, Create Queue

command 85
Format field 478

message descriptor 9
FromAuthInfoName, Copy authentication

information command 31
FromCFStrucName parameter

Copy CF Structure command 35
FromChannelName parameter

Copy Channel command 40

FromListenerName parameter, Copy
Channel Listener command 69

FromNamelistName parameter, Copy
Namelist command 72

FromProcessName parameter, Copy
Process command 75

FromQName parameter
Move Queue command 420

FromQName parameter, Copy Queue
command 79

FromServiceName parameter, Copy
Service command 126

FromStorageClassName parameter
Copy Storage Class command 129

FromSubscriptionName parameter, Copy
Subscription command 133

FromTopicName parameter, Copy Topic
command 137

FullLogs parameter
Inquire Log (Response) 281

G
generic values 14
GenericConnectionId parameter

Inquire Connection command 260
GetMsgOpts parameter, mqGetBag

call 579
group bag 527
GroupNames parameter

Delete Authority Record 149
Set Authority Record 453

H
HandleState parameter

Inquire Connection (Response) 267,
363

HardenGetBackout parameter
Change, Copy, Create Queue

command 85
Inquire Queue (Response)

command 311
Hbag parameter

mqAddInquiry call 550
mqDeleteItem call 572

Hconn parameter
mqExecute call 574
mqGetBag call 578
mqPutBag call 605

HeaderCompression parameter
Channel commands 47
Inquire Channel (Response)

command 203
Inquire Channel Status (Response)

command 241
Inquire Cluster Queue Manager

(Response) command 254
HeartbeatInterval parameter

Channel commands 47
Inquire Channel (Response)

command 203
Inquire Channel Status (Response)

command 241
Inquire Cluster Queue Manager

(Response) command 254

672 WebSphere MQ: Programmable Command Formats and Administration Interface



HighQDepth parameter, Reset Queue
Statistics (Response) command 439

Hobj parameter
mqGetBag call 578
mqPutBag call 605

I
i5/OS Control Language 4
IGQPutAuthority parameter

Change Queue Manager
command 107

Inquire Queue Manager (Response)
command 337

IGQUserId parameter
Change Queue Manager

command 108
Inquire Queue Manager (Response)

command 338
InboundDisposition parameter

Inquire Channel Initiator
(Response) 212

Start ChannelListener command 463
Stop Channel Listener command 471

indexing 655
IndexType parameter

Change, Copy, Create Queue
command 86

Inquire Queue (Response)
command 311

InDoubt parameter, Resolve Channel
command 441

InDoubtStatus parameter, Inquire
Channel Status (Response)
command 241

InhibitEvent parameter
Change Queue Manager

command 109
Inquire Queue Manager (Response)

command 338
InhibitGet parameter

Change, Copy, Create Queue
command 86

Inquire Queue (Response)
command 311

InhibitPublications parameter
Change, Copy, Create Topic

command 140
Inquire Topic Object (Response)

command 403
InhibitPut parameter

Change, Copy, Create Queue
command 87

Inquire Queue (Response)
command 311

InhibitSubscriptions parameter
Change, Copy, Create Topic

command 140
Inquire Topic Object (Response)

command 403
InitiationQName parameter

Change, Copy, Create Queue
command 87

Inquire Queue (Response)
command 312

Start Channel Initiator command 461

InputBufferSize parameter
Inquire Log (Response) 281

Inquire Archive 164
Inquire Archive (Response) 165
Inquire Authentication Information

Object 169
Inquire authentication information object

(Response) 171
Inquire Authentication Information Object

Names 173
Inquire Authentication Information Object

Names (Response) 174
Inquire Authority Records 175
Inquire Authority Records

(Response) 178
Inquire Authority Service 181
Inquire Authority Service

(Response) 182
Inquire CF Structure 183
Inquire CF Structure (Response) 184
Inquire CF Structure Names 185
Inquire CF Structure Names

(Response) 186
Inquire CF Structure Status 186
Inquire CF Structure Status

(Response) 188
Inquire Channel 191
Inquire Channel (Response) 199
Inquire Channel Initiator (Response) 210
Inquire Channel Listener 212
Inquire Channel Listener (Response) 215
Inquire Channel Listener Status 217
Inquire Channel Listener Status

(Response) 219
Inquire Channel Names 222
Inquire Channel Names (Response) 224
Inquire Channel Status 225
Inquire Channel Status (Response) 236
Inquire Cluster Queue Manager 246
Inquire Cluster Queue Manager

(Response) 251
Inquire Connection 259
Inquire Connection (Response) 264
Inquire Entity Authority 271
Inquire Entity Authority (Response) 274
Inquire Group 276
Inquire Group (Response) 277
Inquire Log 279
Inquire Log (Response) 279
Inquire Namelist 283
Inquire Namelist (Response) 285
Inquire Namelist Names 287
Inquire Namelist Names (Response) 288
Inquire Process 289
Inquire Process (Response) 291
Inquire Process Names 293
Inquire Process Names (Response) 294
Inquire Pub/Sub Status 295
Inquire Pub/Sub Status (Response) 296
Inquire Queue 298
Inquire Queue (Response) 307
Inquire Queue Manager 318
Inquire Queue Manager (Response) 327
Inquire Queue Manager Status 348
Inquire Queue ManagerStatus

(Response) 349
Inquire Queue Names 351

Inquire Queue Names (Response) 353
Inquire Queue Status 354
Inquire Queue Status (Response) 359
Inquire Security 366
Inquire Security (Response) 367
Inquire Service 369
Inquire Service (Response) 370
Inquire Service Status 372
Inquire Service Status (Response) 374
Inquire Storage Class 376
Inquire Storage Class (Response) 378
Inquire Storage Class Names 380
Inquire Storage Class Names

(Response) 381
Inquire Subscription 382
Inquire Subscription Status 390
Inquire System 393
Inquire System (Response) 394
Inquire Topic 398
Inquire Topic (Response) 402
Inquire Topic Names 407
Inquire Topic Names (Response) 408
Inquire Topic Status 409
Inquire Topic Status (Response) 411
Inquire Usage 416
Inquire Usage (Response) 417
inquiring queues, sample programs 650
inquiring within data bags 533
IntegerFilterCommand parameter

Inquire Authentication Information
Object command 170

Inquire CF Structure command 184
Inquire CF Structure Status

command 187
Inquire Channel command 197
Inquire Channel Listener

command 213
Inquire Channel Listener Status

command 218
Inquire Channel Status

command 235
Inquire Cluster Queue Manager

command 251
Inquire Connection command 263
Inquire Namelist command 283
Inquire Process command 290
Inquire Queue command 300
Inquire Queue Status command 355
Inquire Service command 369
Inquire Service Status command 373
Inquire Storage Class command 377
Inquire Topic Object command 399

InterfaceVersion parameter
Inquire Authority Service

(Response) 182
IntraGroupQueuing parameter

Change Queue Manager
command 109

Inquire Queue Manager (Response)
command 338

introduction 523
IPAddress parameter

Change, Copy, Create Channel
Listener command 70

Inquire Channel Initiator
(Response) 212

Index 673



IPAddress parameter (continued)
Inquire Channel Listener (Response)

command 215
Inquire Channel Listener Status

(Response) command 220
Start Channel Listener command 463
Stop Channel Listener command 471

IPAddressVersion parameter
Change Queue Manager

command 109
Inquire Queue Manager (Response)

command 338
ItemCount parameter

mqCountItems call 566
mqTruncateBag call 627

ItemIndex parameter
mqDeleteItem call 573
mqInquireBag call 581
mqInquireByteString call 584
mqInquireByteStringFilter call 586
mqInquireInteger call 589
mqInquireInteger64 call 592
mqInquireIntegerFilter call 594
mqInquireItemInfo call 596
mqInquireString call 599
mqInquireStringFilter call 602
mqSetByteString call 608
mqSetByteStringFilter call 611
mqSetInteger call 614
mqSetInteger64 call 616
mqSetIntegerFilter call 619
mqSetString call 621
mqSetStringFilter call 624

ItemOperator parameter
mqAddByteStringFilter call 548
mqAddStringFilter call 559

items
counting 531
deleting 532
filtering 529
querying 529

items, types of 528
ItemType parameter

mqInquireItemInfo call 597
ItemValue parameter

mqAddBagr call 544
mqAddInteger call 552
mqAddInteger64 call 553
mqAddIntegerFilter call 555
mqInquireBag call 581
mqInquireInteger call 589
mqInquireInteger64 call 592
mqInquireIntegerFilter call 594
mqSetInteger call 614
mqSetInteger64 call 616
mqSetIntegerFilter call 619

K
KeepAliveInterval parameter

Channel commands 48
Inquire Channel (Response)

command 203
Inquire Cluster Queue Manager

(Response) command 254

KeepAliveInterval parameter, Inquire
Channel Status (Response)
command 241

L
LastGetDate parameter

Inquire Queue Status (Response)
command 359

LastGetTime parameter
Inquire Queue Status (Response)

command 359
LastLUWID parameter, Inquire Channel

Status (Response) command 241
LastMsgDate parameter, Inquire Channel

Status (Response) command 242
LastMsgTime parameter, Inquire Channel

Status (Response) command 242
LastPutDate parameter

Inquire Queue Status (Response)
command 360

LastPutTime parameter
Inquire Queue Status (Response)

command 360
LastSequenceNumber parameter, Inquire

Channel Status (Response)
command 242

LDAPPassword parameter
Inquire Authentication Information

Object (Response) command 172
LDAPPassword, Create authentication

information command 33
LDAPUserName parameter

Inquire Authentication Information
Object (Response) command 172

LDAPUserName, Create authentication
information command 33

ListenerAttrs parameter, Inquire Channel
Listener command 213

ListenerDesc parameter
Change, Copy, Create Channel

Listener command 70
Inquire Channel Listener (Response)

command 216
Inquire Channel Listener Status

(Response) command 220
ListenerName parameter

Change, Create Channel Listener
command 69

Delete Listener command 153
Inquire Channel Listener (Response)

command 216
Inquire Channel Listener

command 213
Inquire Channel Listener Status

command 217
Inquire Channel ListenerStatus

(Response) command 220
Start Channel Listener command 463
Stop Channel Listener command 470

ListenerStatus parameter
Inquire Channel Initiator

(Response) 212
ListenerStatusAttrs parameter, Inquire

Channel Listener Status command 218

ListenerTimer parameter
Change Queue Manager

command 109
Inquire Queue Manager (Response)

command 338
Local Address parameter

Inquire Cluster Queue Manager
(Response) command 254

LocalAddress parameter
Channel commands 49, 242
Inquire Channel (Response)

command 203
LocalEvent parameter

Change Queue Manager
command 109

Inquire Queue Manager (Response)
command 338

LocalName parameter
Change, Copy, Create Channel

Listener command 70
Inquire Channel Listener (Response)

command 216
Inquire Channel Listener Status

(Response) command 220
LogArchive parameter

Inquire Log (Response) 281
LogCopyNumber parameter

Inquire Log (Response) 281
LogCorrelId parameter

Inquire Archive (Response) 168
LoggerEvent parameter

Change Queue Manager
command 110

Inquire Queue Manager (Response)
command 339

LogLRSN parameter
Inquire Usage (Response) 419

LogQMgrNames parameter
Inquire CF Structure Status

(Response) 191
LogRBA parameter

Inquire Log (Response) 282
Inquire Usage (Response) 419

LogSuspend parameter
Inquire Log (Response) 282

LogUsed parameter
Inquire Log (Response) 282

LongRetriesLeft parameter, Inquire
Channel Status (Response)
command 242

LongRetryCount parameter
Channel commands 49
Inquire Channel (Response)

command 203
Inquire Cluster Queue Manager

(Response) command 254
LongRetryInterval parameter

Channel commands 50
Inquire Channel (Response)

command 203
Inquire Cluster Queue Manager

(Response) command 254
LU62ARMSuffix parameter

Change Queue Manager
command 110

Inquire Queue Manager (Response)
command 339

674 WebSphere MQ: Programmable Command Formats and Administration Interface



LU62Channels parameter
Change Queue Manager

command 110
Inquire Queue Manager (Response)

command 339
LUGroupName parameter

Change Queue Manager
command 110

Inquire Queue Manager (Response)
command 339

LUName parameter
Change Queue Manager

command 110
Inquire Channel Initiator

(Response) 212
Inquire Queue Manager (Response)

command 339
Start ChannelListener command 463

M
MaxActiveChannels parameter

Change Queue Manager
command 111

Inquire Queue Manager (Response)
command 339

MaxArchiveLog parameter
Inquire Log (Response) 281
Set Log command 455

MaxChannels parameter
Change Queue Manager

command 111
Inquire Queue Manager (Response)

command 339
MaxConnects parameter

Inquire System (Response) 395
Set System command 457

MaxConnectsBackground parameter
Inquire System (Response) 396
Set System command 457

MaxConnectsForeground parameter
Inquire System (Response) 396
Set System command 457

MaxHandles parameter
Change Queue Manager

command 111
Inquire Queue Manager (Response)

command 340
MaxInstances parameter

Channel commands 50
Inquire Channel (Response)

command 203
MaxInstancesPerClient parameter

Inquire Channel (Response)
command 203

MaxMsgLength parameter
Change Queue Manager

command 111
Change, Copy, Create Queue

command 87
Channel commands 51
Inquire Channel (Response)

command 203
Inquire Channel Status (Response)

command 242
Inquire Cluster Queue Manager

(Response) command 254

MaxMsgLength parameter (continued)
Inquire Queue (Response)

command 312
Inquire Queue Manager (Response)

command 340
MaxPriority parameter

Inquire Queue Manager (Response)
command 340

MaxPropertiesLength parameter
Change Queue Manager

command 111
Inquire Queue Manager (Response)

command 340
MaxQDepth parameter

Change, Copy, Create Queue
command 87

Inquire Queue (Response)
command 312

MaxReadTapeUnits parameter
Inquire Log (Response) 281
Set Log command 455

MaxSharingConversations parameter
Inquire Channel Status (Response)

command 242
MaxUncommittedMsgs parameter

Change Queue Manager
command 112

Inquire Queue Manager (Response)
command 340

MCAJobName parameter, Inquire
Channel Status (Response)
command 242

MCAName parameter
Channel commands 51
Inquire Channel (Response)

command 203
Inquire Cluster Queue Manager

(Response) command 254
MCAStatus parameter, Inquire Channel

Status (Response) command 242
MCAType parameter

Channel commands 51
Inquire Channel (Response)

command 204
Inquire Cluster Queue Manager

(Response) command 255
MCAUserIdentifier parameter

Channel commands 52
Inquire Channel (Response)

command 204
Inquire Cluster Queue Manager

(Response) command 255
MCAUserIdentifier parameter, Inquire

Channel Status (Response)
command 242

MediaRecoveryLog parameter
Inquire Queue Manager Status

(Response) command 350
MediaRecoveryLogExtent parameter

Inquire Queue Status (Response)
command 360

message descriptor
PCF messages 7
response 9

MessageCompression parameter
Channel commands 52

MessageCompression parameter
(continued)

Inquire Channel (Response)
command 204

Inquire Channel Status (Response)
command 243

Inquire Cluster Queue Manager
(Response) command 255

Mode parameter
Stop Channel command 468
Suspend Queue Manager Cluster

command 475
ModeName parameter

Channel commands 52
Inquire Channel (Response)

command 204
Inquire Cluster Queue Manager

(Response) command 255
Move Queue 419
MoveType parameter

Move Queue command 420
mqAddBag 544
mqAddBag call

Bag parameter 544
CompCode parameter 544
ItemValue parameter 544
Reason parameter 545
Selector parameter 544

mqAddByteString 529, 545
mqAddByteString call

Bag parameter 546
Buffer parameter 546
BufferLength parameter 546
CompCode parameter 546
Reason parameter 546
Selector parameter 546

mqAddByteStringFilter 529, 547
mqAddByteStringFilter call

Bag parameter 547
Buffer parameter 548
BufferLength parameter 548
CompCode parameter 548
ItemValue parameter 548
Reason parameter 548
Selector parameter 548

mqAddInquiry 529, 549
mqAddInquiry call

CompCode parameter 550
Hbag parameter 550
Reason parameter 550
Selector parameter 550

mqAddInteger 529, 551
mqAddInteger call

Bag parameter 552
CompCode parameter 552
ItemValue parameter 552
Reason parameter 552
Selector parameter 552

mqAddInteger64 529, 553
mqAddInteger64 call

Bag parameter 553
CompCode parameter 553
ItemValue parameter 553
Reason parameter 554
Selector parameter 553

mqAddIntegerFilter 529, 554

Index 675



mqAddIntegerFilter call
Bag parameter 555
CompCode parameter 555
ItemValue parameter 555
Operator parameter 555
Reason parameter 555
Selector parameter 555

mqAddString 529, 556
mqAddString call

Bag parameter 556
Buffer parameter 557
BufferLength parameter 557
CompCode parameter 557
Reason parameter 557
Selector parameter 557

mqAddStringFilter 529, 558
mqAddStringFilter call

Bag parameter 558
Buffer parameter 559
BufferLength parameter 559
CompCode parameter 559
ItemValue parameter 559
Reason parameter 559
Selector parameter 559

MQAI
concepts and terminology 523
examples 631
introduction 523
overview 525
sample programs

creating a local queue 631
displaying events 635
inquire channel objects 644
inquiring queues 650
printing information 650

selectors 628
use 524

MQAI (WebSphere MQ Administration
Interface) 5

mqBagToBuffer 539, 560
mqBagToBuffer call

Buffer parameter 561
BufferLength parameter 561
CompCode parameter 561
DataBag parameter 561
DataLength parameter 561
OptionsBag parameter 561
Reason parameter 561

mqBufferToBag 539, 563
mqBufferToBag call

Buffer parameter 563
BufferLength parameter 563
CompCode parameter 563
DataBag parameter 563
OptionsBag parameter 563
Reason parameter 563

MQCFBF structure 482
MQCFBS structure 485
MQCFH structure 478
MQCFIF structure 487
MQCFIL structure 490
MQCFIN structure 493
MQCFSF structure 494
MQCFSL structure 499
MQCFST structure 502
MQCFT_* values 478
mqClearBag 532, 564

mqClearBag call
Bag parameter 564
CompCode parameter 565
Reason parameter 565

MQCMDL_* values 334
mqCountItems 565
mqCountItems call

Bag parameter 565
CompCode parameter 566
ItemCount parameter 566
Reason parameter 566
Selector parameter 566

mqCreateBag 527, 567
mqCreateBag call

Bag parameter 570
CompCode parameter 570
Options parameter 567
Reason parameter 570

mqCreateBag options 527
mqDeleteBag 528, 571
mqDeleteBag call

Bag parameter 571
CompCode parameter 571
Reason parameter 571

mqDeleteItem 532, 572
mqDeleteItem call

CompCode parameter 573
Hbag parameter 572
ItemIndex parameter 573
Reason parameter 573
Selector parameter 572

mqExecute 535, 574
mqExecute call

AdminBag parameter 575
AdminQ parameter 576
Command parameter 574
CompCode parameter 576
Hconn parameter 574
OptionsBag parameter 575
Reason parameter 576
ResponseBag parameter 575
ResponseQ parameter 576

mqGetBag 540, 578
mqGetBag call

Bag parameter 579
CompCode parameter 579
GetMsgOpts parameter 579
Hconn parameter 578
Hobj parameter 578
MsgDesc parameter 578
Reason parameter 579

MQIAccounting parameter
Change Queue Manager

command 112
Inquire Queue Manager (Response)

command 340
mqInquireBag 580
mqInquireBag call

Bag parameter 580
CompCode parameter 581
ItemIndex parameter 581
ItemValue parameter 581
Reason parameter 582
Selector parameter 581

mqInquireByteString 583
mqInquireByteString call

Bag parameter 583

mqInquireByteString call (continued)
Buffer parameter 584
BufferLength parameter 584
CompCode parameter 584
ItemIndex parameter 584
Reason parameter 584
Selector parameter 583
StringLength parameter 584

mqInquireByteStringFilter 585
mqInquireByteStringFilter call

Bag parameter 586
Buffer parameter 587
BufferLength parameter 587
CompCode parameter 587
ItemIndex parameter 586
Operator parameter 587
Reason parameter 587
Selector parameter 586
StringLength parameter 587

mqInquireInteger 588
mqInquireInteger call

Bag parameter 589
CompCode parameter 589
ItemIndex parameter 589
ItemValue parameter 589
Reason parameter 590
Selector parameter 589

mqInquireInteger64 591
mqInquireInteger64 call

Bag parameter 591
CompCode parameter 592
ItemIndex parameter 592
ItemValue parameter 592
Reason parameter 592
Selector parameter 591

mqInquireIntegerFilter 593
mqInquireIntegerFilter call

Bag parameter 593
CompCode parameter 594
ItemIndex parameter 594
ItemValue parameter 594
Operator parameter 594
Reason parameter 594
Selector parameter 593

mqInquireItemInfo 595
mqInquireItemInfo call

Bag parameter 595
CompCode parameter 597
ItemIndex parameter 596
ItemType parameter 597
OutSelector parameter 597
Reason parameter 597
Selector parameter 596

mqInquireString 598
mqInquireString call

Bag parameter 598
Buffer parameter 599
BufferLength parameter 599
CodedCharSetId parameter 599
CompCode parameter 599
ItemIndex parameter 599
Reason parameter 600
Selector parameter 599
StringLength parameter 599

mqInquireStringFilter 601
mqInquireStringFilter call

Bag parameter 601

676 WebSphere MQ: Programmable Command Formats and Administration Interface



mqInquireStringFilter call (continued)
Buffer parameter 602
BufferLength parameter 602
CodedCharSetId parameter 602
CompCode parameter 602
ItemIndex parameter 602
Operator parameter 602
Reason parameter 602
Selector parameter 602
StringLength parameter 602

MQIStatistics parameter
Change Queue Manager

command 112
Inquire Queue Manager (Response)

command 340
mqPad 604
mqPad call

Buffer parameter 604
BufferLength parameter 604
CompCode parameter 604
Reason parameter 604
String parameter 604

mqPutBag 540, 605
mqPutBag call

Bag parameter 606
CompCode parameter 606
Hconn parameter 605
Hobj parameter 605
MsgDesc parameter 606
PutMsgOpts parameter 606
Reason parameter 606

mqSetByteString 531, 607
mqSetByteString call

Bag parameter 607
Buffer parameter 608
CompCode parameter 608
ItemIndex parameter 608
Reason parameter 608
Selector parameter 608

mqSetByteStringFilter 531, 610
mqSetByteStringFilter call

Bag parameter 610
Buffer parameter 611
BufferLength parameter 611
CompCode parameter 611
ItemIndex parameter 611
Operator parameter 611
Reason parameter 611
Selector parameter 610

mqSetInteger 531, 613
mqSetInteger call

Bag parameter 613
CompCode parameter 614
ItemIndex parameter 614
ItemValue parameter 614
Reason parameter 614
Selector parameter 613

mqSetInteger64 531, 615
mqSetInteger64 call

Bag parameter 615
CompCode parameter 616
ItemIndex parameter 616
ItemValue parameter 616
Reason parameter 616
Selector parameter 616

mqSetIntegerFilter 531, 617

mqSetIntegerFilter call
Bag parameter 618
CompCode parameter 619
ItemIndex parameter 619
ItemValue parameter 619
Operator parameter 619
Reason parameter 619
Selector parameter 618

mqSetString 531, 620
mqSetString call

Bag parameter 620
Buffer parameter 621
BufferLength parameter 621
CompCode parameter 621
ItemIndex parameter 621
Reason parameter 621
Selector parameter 621

mqSetStringFilter 531, 623
mqSetStringFilter call

Bag parameter 623
Buffer parameter 624
BufferLength parameter 624
CompCode parameter 624
ItemIndex parameter 624
Operator parameter 624
Reason parameter 624
Selector parameter 624

mqTrim 626
mqTrim call

Buffer parameter 626
BufferLength parameter 626
CompCode parameter 626
Reason parameter 626
String parameter 626

mqTruncateBag 533, 627
mqTruncateBag call

Bag parameter 627
CompCode parameter 628
ItemCount parameter 627
Reason parameter 628

MsgDeliverySequence parameter
Change, Copy, Create Queue

command 87
Inquire Queue (Response)

command 312
MsgDeqCount parameter, Reset Queue

Statistics (Response) command 439
MsgDesc parameter

mqGetBag call 578
mqPutBag call 606

MsgEnqCount parameter, Reset Queue
Statistics (Response) command 439

MsgExit parameter
Channel commands 53
Inquire Channel (Response)

command 204
Inquire Cluster Queue Manager

(Response) command 255
MsgMarkBrowseInterval parameter

Change Queue Manager
command 112

Inquire Queue Manager (Response)
command 340

MsgRetryCount parameter
Channel commands 53
Inquire Channel (Response)

command 205

MsgRetryCount parameter (continued)
Inquire Cluster Queue Manager

(Response) command 255
MsgRetryExit parameter

Channel commands 53
Inquire Channel (Response)

command 205
Inquire Cluster Queue Manager

(Response) command 255
MsgRetryInterval parameter

Channel commands 54
Inquire Channel (Response)

command 205
Inquire Cluster Queue Manager

(Response) command 255
MsgRetryUserData parameter

Channel commands 54
Inquire Channel (Response)

command 205
Inquire Cluster Queue Manager

(Response) command 256
Msgs parameter, Inquire Channel Status

(Response) command 243
MsgsAvailable parameter

Inquire Channel Status (Response)
command 243

MsgSeqNumber field 478
MsgSeqNumber parameter

Reset Channel command 434
MsgUserData parameter

Channel commands 54
Inquire Channel (Response)

command 205
Inquire Cluster Queue Manager

(Response) command 256

N
name spaces 13
NameCount parameter

Inquire Namelist (Response)
command 286

NamelistAttrs parameter, Inquire
Namelist command 284, 400

NamelistDesc parameter
Change, Copy, Create Namelist

command 72
Inquire Namelist (Response)

command 286
NamelistName parameter

Change, Create Namelist
command 72

Delete Namelist command 153
Inquire Namelist (Response)

command 286
Inquire Namelist command 283
Inquire Namelist Names

command 287
NamelistNames parameter

Inquire Namelist Names (Response)
command 289

NamelistType parameter
Change, Copy, Create Namelist

command 73, 286
NamelistType parameter, Inquire

Namelist command 284

Index 677



Names parameter
Change, Copy, Create Namelist

command 73
Inquire Namelist (Response)

command 286
NetbiosNames parameter

Change, Copy, Create Channel
Listener command 70

Inquire Channel Listener (Response)
command 216

Inquire Channel Listener Status
(Response) command 220

NetTime parameter
Inquire Channel Status (Response)

command 243
NetworkPriority parameter

Channel commands 54
Inquire Channel (Response)

command 205
NonDurableModelQName parameter

Change, Copy, Create Topic
command 140

Inquire Topic Object (Response)
command 404

NonPersistentDataPages parameter
Inquire Usage (Response) 418

NonPersistentMessageClass parameter
Change, Copy, Create Queue

command 88
Inquire Queue (Response)

command 312
NonPersistentMsgDelivery parameter

Change, Copy, Create Topic
command 140

Inquire Topic Object (Response)
command 404

NonPersistentMsgSpeed parameter
Channel commands 55
Inquire Channel (Response)

command 205
Inquire Channel Status (Response)

command 243
Inquire Cluster Queue Manager

(Response) command 256

O
ObjectName parameter

Inquire Connection (Response) 267
Inquire Entity Authority 272
Inquire Entity Authority

(Response) 275
Refresh Queue Manager

command 429
ObjectType parameter

Delete Authority Record 149
Inquire Authority Records 176
Inquire Authority Records

(Response) 180
Inquire Connection (Response) 267
Inquire Entity Authority 272
Inquire Entity Authority

(Response) 275
Refresh Queue Manager

command 429
Set Authority Record 450

OffloadStatus parameter
Inquire Log (Response) 282

OK response 10
OldestMsgAge parameter

Inquire Queue Status (Response)
command 360

OnQTime parameter
Inquire Queue Status (Response)

command 360
OpenBrowse parameter

Inquire Queue Status (Response)
command 363

OpenInputCount parameter
Inquire Queue Status (Response)

command 360
OpenInputCount parameter, Inquire

Queue (Response) command 312
OpenInputType parameter

Inquire Queue Status (Response)
command 363

OpenInquire parameter
Inquire Queue Status (Response)

command 364
OpenOptions parameter

Inquire Connection (Response) 268
Inquire Queue Status (Response)

command 364
OpenOutput parameter

Inquire Queue Status (Response)
command 364

OpenOutputCount parameter
Inquire Queue Status (Response)

command 361
OpenOutputCount parameter, Inquire

Queue (Response) command 312
OpenSet parameter

Inquire Queue Status (Response)
command 364

OpenType parameter
Inquire Queue Status command 355,

358
Operator field

MQCFBF structure 483
MQCFIF structure 488
MQCFSF structure 495

Operator parameter
mqAddIntegerFilter call 555
mqInquireIntegerFilter call 594
mqSetByteStringFilter call 611
mqSetIntegerFilter call 619
mqSetStringFilter call 624

Operator parameter,
mqInquireByteStringFilter call 587

Operator parameter,
mqInquireStringFilter call 602

Options parameter
Inquire Authority Records 175
Inquire Authority Records

(Response) 180
Inquire Entity Authority 272

Options parameter, mqCreateBag
call 567

OptionsBag parameter
mqBagToBuffer call 561
mqBufferToBag call 563
mqExecute call 575

OriginName parameter
Inquire Connection (Response) 268

OriginUOWId parameter
Inquire Connection (Response) 268

OTMADruExit parameter
Inquire System (Response) 396

OTMAGroup parameter
Inquire System (Response) 396

OTMAInterval parameter
Inquire System (Response) 396

OTMAMember parameter
Inquire System (Response) 396

OTMSTpipePrefix parameter
Inquire System (Response) 396

OutboundPortMax parameter
Change Queue Manager

command 112
Inquire Queue Manager (Response)

command 341
OutboundPortMin parameter

Change Queue Manager
command 113

Inquire Queue Manager (Response)
command 341

OutputBufferCount parameter
Inquire Log (Response) 281
Set Log command 455

OutputBufferSize parameter
Inquire Log (Response) 281

OutSelector parameter,
mqInquireItemInfo call 597

overview 525

P
padding strings 604
PageSetID

Inquire Queue command 300
PageSetId parameter

Change, Copy, Create Storage Class
command 130

Inquire Storage Class (Response) 379
Inquire Storage Class command 377
Inquire Usage (Response) 418
Inquire Usage command 416

PageSetID parameter
Inquire Queue (Response)

command 312
PageSetStatus parameter

Inquire Usage (Response) 418
Parameter field

MQCFBF structure 483
MQCFBS structure 485
MQCFIF structure 488
MQCFIL structure 491
MQCFIN structure 493
MQCFSF structure 495
MQCFSL structure 500
MQCFST structure 503

ParameterCount field 478
ParameterType parameter

Inquire Archive (Response) 165, 279
Set Archive command 446
Set Log command 454
Set System command 456

678 WebSphere MQ: Programmable Command Formats and Administration Interface



Parent parameter
Change Queue Manager

command 113
Inquire Queue Manager (Response)

command 341
ParentName parameter

Reset Queue Manager command 437
PassTicketApplication parameter

Change, Copy, Create Storage Class
command 130

Inquire Storage Class (Response) 379
Password parameter

Channel commands 55
Inquire Channel (Response)

command 205
Inquire Cluster Queue Manager

(Response) command 256
PCF (Programmable Command Format)

responses 9
PCF definitions

Backup CF Structure 30
Change Queue Manager 98
Change Security 125
Change, Copy, Create authentication

information Object 31
Change, Copy, Create CF

Structure 34
Change, Copy, Create Channel

Listener 68
Change, Copy, Create Namelist 71
Change, Copy, Create Process 74
Change, Copy, Create Queue 79
Change, Copy, Create Service 126
Change, Copy, Create Storage

Class 128
Change, Copy, Create

Subscription 132
Change, Copy, Create Topic 137
Channel commands 37

Change Channel 37
Copy Channel 37
Create Channel 37

Clear Clear Topic String 146
Clear Queue 145
Delete Authentication Information

Object 147
Delete Authority Record 149
Delete CF Structure 150
Delete Channel 151
Delete Channel Listener 153
Delete Namelist 153
Delete Process 154
Delete Queue 156
Delete Service 158
Delete Storage Class 159
Delete Subscription 160
Delete Topic 161
Escape 163
Escape (Response) 164
Inquire Archive 164
Inquire authentication information

object (Response) 171
Inquire Authentication Information

Object command 169
Inquire Authentication Information

Object Names command 173
Inquire Authority Records 175

PCF definitions (continued)
Inquire Authority Service 181
Inquire CF Structure 183
Inquire CF Structure (Response) 184
Inquire CF Structure Names 185
Inquire CF Structure Status 186
Inquire CF Structure Status

(Response) 188
Inquire Channel 191
Inquire Channel Initiator 209
Inquire Channel Initiator

(Response) 210
Inquire Channel Listener 212
Inquire Channel Listener Status 217
Inquire Channel Names 222
Inquire Channel Status 225
Inquire Cluster Queue Manager 246
Inquire Connection (Response) 264
Inquire Connection command 259
Inquire Entity Authority 271
Inquire Group 276
Inquire Group (Response) 277
Inquire Log 279
Inquire Namelist 283
Inquire Namelist Names 287
Inquire Process 289
Inquire Process Names 293
Inquire Pub/Sub Status 295
Inquire Queue 298
Inquire Queue Manager 318
Inquire Queue Manager Status 348
Inquire Queue Names 351
Inquire Queue Status 354
Inquire Security 366
Inquire Security (Response) 367
Inquire Service 369
Inquire Service Status 372
Inquire Storage Class 376
Inquire Storage Class (Response) 378
Inquire Storage Class Names 380
Inquire Subscription 382
Inquire Subscription Status 390
Inquire System 393
Inquire Topic 398
Inquire Topic Names 407
Inquire Topic Status 409
Inquire Usage 416
Inquire Usage (Response) 417
Move Queue 419
Ping Channel 421
Ping Queue Manager 425
Recover CF Structure 425
Refresh Cluster 426
Refresh Queue Manager 428
Refresh Security 430
Reset Channel 432
Reset Cluster 435
Reset Queue Manager 436
Reset Queue Statistics 438
Resolve Channel 440
Resume Queue Manager 442
Resume Queue Manager Cluster 443
Reverify Security 444
Set Archive 445
Set Authority Record 450
Set Log 454
Set System 456

PCF definitions (continued)
Start Channel 457
Start Channel Initiator 461
Start Channel Listener 462
Start Service 464
Stop Channel 465
Stop Channel Initiator 469
Stop Channel Listener 470
Stop Connection 472
Stop Service 472
Suspend Queue Manager 473
Suspend Queue Manager Cluster 474

PCF messages
converting from bag 540
converting to bag 540
receiving 540
sending 540

PerformanceEvent parameter
Change Queue Manager

command 113
Inquire Queue Manager (Response)

command 341
PersistentDataPages parameter

Inquire Usage (Response) 418
PersistentMsgDelivery parameter

Change, Copy, Create Topic
command 141

Inquire Topic Object (Response)
command 404

Ping Channel 421
Ping Queue Manager 425
Platform parameter

Inquire Queue Manager (Response)
command 341

Port parameter
Change, Copy, Create Channel

Listener command 70
Inquire Channel Initiator

(Response) 212
Inquire Channel Listener (Response)

command 216
Inquire Channel Listener Status

(Response) command 220
Start Channel Listener command 463
Stop Channel Listener command 471

PrincipalNames parameter
Delete Authority Record 150
Set Authority Record 453

printing information, sample
programs 650

ProcessAttrs parameter
Inquire Process command 290

ProcessDesc parameter
Change, Copy, Create Process

command 77
Inquire Process (Response)

command 292
ProcessId parameter

Inquire Channel Listener Status
(Response) command 220

Inquire Connection (Response) 268
Inquire Queue Status (Response)

command 364
Inquire Service Status (Response)

command 374

Index 679



ProcessName parameter
Change, Copy, Create Queue

command 88
Change, Create Process command 75
Delete Process command 155
Inquire Process (Response)

command 293
Inquire Process command 289
Inquire Process Names

command 293
Inquire Queue (Response)

command 313
ProcessNames parameter

Inquire Process Names
(Response) 295

ProfileAttrs parameter, Inquire Authority
Records 177

ProfileAttrs parameter, Inquire Entity
Authority 273

ProfileName parameter
Delete Authority Record 149
Inquire Authority Records 176
Inquire Authority Records

(Response) 180
Set Authority Record 450

Programmable Command Format (PCF)
authority checking

Compaq NonStop Kernel 16
HP OpenVMS 16
i5/OS 14
UNIX systems 15
Windows NT 15

example program 507
overview 3
responses 9

PropertyControl parameter 55, 88, 206,
313

Protect parameter
Inquire Archive (Response) 167
Set Archive command 448

ProxySubscriptions parameter
Change, Copy, Create Topic

command 141
Inquire Topic Object (Response)

command 405
PSBName parameter

Inquire Connection (Response) 268
Inquire Queue Status (Response)

command 364
PSTId parameter

Inquire Connection (Response) 268
Inquire Queue Status (Response)

command 364
PublicationScope parameter

Change, Copy, Create Topic
command 142

Inquire Topic Object (Response)
command 405

PublishedAccountingToken parameter
Change, Copy, Create Subscription

command 135
PublishedApplicationIdentifier parameter

Change, Copy, Create Subscription
command 135

PublishSubscribeProperties parameter
Change, Copy, Create Subscription

command 135

PublishSuscribeProperties parameter
Change, Copy, Create Subscription

command 135
PubSubMaxMsgRetryCount parameter

Change Queue Manager
command 113

PubSubMode parameter
Change Queue Manager

command 114
Inquire Queue Manager (Response)

command 342
PubSubNPInputMsg parameter

Change Queue Manager
command 114

PubSubNPResponse parameter
Change Queue Manager

command 114
PubSubStatusAttrs parameter

Inquire Pub/Sub Status
command 295

PubSubSyncPoint parameter
Change Queue Manager

command 115
Purge parameter

Recover CF Structure command 426
Purge parameter, Delete Queue

command 157
PutAuthority parameter

Channel commands 56
Inquire Channel (Response)

command 206
Inquire Cluster Queue Manager

(Response) command 256
PutMsgOpts parameter, mqPutBag

call 606
putting data bags 540

Q
QAttrs parameter, Inquire Queue

command 300
QDepthHighEvent parameter

Change, Copy, Create Queue
command 89

Inquire Queue (Response)
command 313

QDepthHighLimit parameter
Change, Copy, Create Queue

command 89
Inquire Queue (Response)

command 313
QDepthLowEvent parameter

Change, Copy, Create Queue
command 89

Inquire Queue (Response)
command 314

QDepthLowLimit parameter
Change, Copy, Create Queue

command 90
Inquire Queue (Response)

command 314
QDepthMaxEvent parameter

Change, Copy, Create Queue
command 90

Inquire Queue (Response)
command 314

QDesc parameter
Change, Copy, Create Queue

command 90
Inquire Queue (Response)

command 314
QIndexDefer parameter

Inquire System (Response) 396
QMgrAttrs parameter

Inquire Queue Manager
command 319

QMgrCPF parameter
Inquire Group (Response) 278

QMgrDefinitionType parameter, Inquire
Cluster Queue Manager (Response)
command 256

QMgrDesc parameter
Change Queue Manager

command 115
QMgrIdentifier parameter

Inquire Cluster Queue Manager
(Response) command 257

Inquire Queue (Response)
command 314

Inquire Queue Manager (Response)
command 342

Reset Cluster command 435
QMgrName parameter

Channel commands 56
Inquire Authority Records

(Response) 180
Inquire CF Structure Status

(Response) 191
Inquire Channel (Response)

command 207
Inquire Channel Status (Response)

command 244
Inquire Cluster Queue Manager

(Response) command 257
Inquire Entity Authority

(Response) 276
Inquire Group (Response) 278
Inquire Queue (Response)

command 314
Inquire Queue Manager (Response)

command 342
Inquire Queue Manager Status

(Response) command 350
Inquire Topic Object (Response)

command 405
Reset Cluster command 435
Stop Channel command 469

QMgrNumber parameter
Inquire Group (Response) 278

QMgrStartDate parameter
Inquire Log (Response) 282

QMgrStartRBA parameter
Inquire Log (Response) 282

QMgrStartTime parameter
Inquire Log (Response) 282

QMgrStatus parameter
Inquire Group (Response) 278
Inquire Queue Manager Status

(Response) command 350
QMgrType parameter, Inquire Cluster

Queue Manager (Response)
command 257

680 WebSphere MQ: Programmable Command Formats and Administration Interface



QMgrUOWId parameter
Inquire Connection (Response) 268
Inquire Queue Status (Response)

command 365
QMStatusAttrs parameter

Inquire Queue Manager Status
command 348

QName parameter
Change, Create Queue command 79
Clear Queue command 145
Delete Queue command 156
Inquire Queue (Response)

command 314, 361, 365
Inquire Queue command 298
Inquire Queue Names command 351
Inquire Queue Status command 354
Reset Queue Statistics (Response)

command 440
Reset Queue Statistics command 438

QNames parameter
Inquire Queue Names (Response)

command 353
QServiceInterval parameter

Change, Copy, Create Queue
command 90

Inquire Queue (Response)
command 314

QServiceIntervalEvent parameter
Change, Copy, Create Queue

command 91
Inquire Queue (Response)

command 314
QSGDisposition parameter

Change, Copy, Create Namelist
command 73

Change, Copy, Create Process
command 78

Change, Copy, Create Queue
command 91

Change, Copy, Create Storage Class
command 130

Change, Copy, Create Topic
command 142

Channel commands 56
Clear Queue command 145
Delete Authentication Information

Object 148
Delete Channel command 152
Delete Namelist 154
Delete Process command 155
Delete Queue command 157, 162
Delete Storage Class command 159
Inquire Authentication Information

Object (Response) command 172
Inquire Authentication Information

Object command 170, 197
Inquire Authentication Information

Object Names command 173, 294
Inquire Channel (Response)

command 207
Inquire Channel Names

command 223
Inquire Connection (Response) 269
Inquire Namelist (Response)

command 286
Inquire Namelist command 284

QSGDisposition parameter (continued)
Inquire Namelist Names

command 288
Inquire Process (Response)

command 293, 361, 365
Inquire Process command 290
Inquire Queue (Response)

command 315
Inquire Queue command 305
Inquire Queue Names command 351
Inquire Queue Status command 355
Inquire Storage Class (Response) 379
Inquire Storage Class command 377
Inquire Storage Class Names

command 380
Inquire Topic Names command 407
Inquire Topic Object command 399
Move Queue command 420
Reset Queue Statistics (Response)

command 440
QSGDisposition parameter, Create

authentication information
command 33

QSGDispositions parameter
Inquire Authentication Information

Object Names (Response) 174
Inquire Channel Names

(Response) 224
Inquire Namelist Names

(Response) 289
Inquire Process Names

(Response) 295
Inquire Queue Names (Response)

command 353
Inquire Storage Class Names

(Response) 382
Inquire Topic Names (Response)

command 409
QSGName parameter

Inquire Group (Response) 278
Inquire Queue Manager (Response)

command 342
Inquire System (Response) 396

QStatusAttrs parameter, Inquire Queue
Status command 355

QType parameter
Change, Copy, Create Queue

command 80
Delete Queue command 158
Inquire Queue (Response)

command 315
Inquire Queue command 306
Inquire Queue Names command 352

QTypes parameter
Inquire Queue Names (Response)

command 353
querying data items 529
queue

command 7
SYSTEM.ADMIN.COMMAND

.QUEUE 7
QueueAccounting parameter

Change Queue Manager
command 115

Inquire Queue (Response)
command 92, 315, 316

QueueAccounting parameter (continued)
Inquire Queue Manager (Response)

command 342
QueueManagerName parameter

Inquire Pub/Sub Status (Response)
command 296

QueueMonitoring parameter
Change Queue Manager

command 116
Change, Copy, Create Queue

command 93
Inquire Queue (Response)

command 316
Inquire Queue Manager (Response)

command 343
Inquire Queue Status (Response)

command 361
queues

reserved names 14
QueueStatistics parameter

Change Queue Manager
command 116

Change, Copy, Create Queue
command 93

Inquire Queue Manager (Response)
command 343

QuiesceInterval parameter
Inquire Archive (Response) 167
Set Archive command 449

R
ReadAhead parameter

Inquire Connection command 269
Reason field

MQCFH structure 478
Reason parameter

Change Queue Manager
command 124

Change, Copy, Create Queue
command 97

Channel commands 66
Clear Queue command 146
Delete Channel command 152
Delete Queue command 158
Escape command 163
Inquire Authority Records 178
Inquire Authority Service 182
Inquire Channel command 198
Inquire Channel Listener Status

command 219
Inquire Channel Names

command 224
Inquire Channel Status

command 235
Inquire Entity Authority 273
Inquire Queue command 307, 359
Inquire Service Status command 374
mqAddBag call 545
mqAddByteString call 546
mqAddByteStringFilter call 548
mqAddInquiry call 550
mqAddInteger call 552
mqAddInteger64 call 554
mqAddIntegerFilter call 555
mqAddString call 557
mqAddStringFilter call 559

Index 681



Reason parameter (continued)
mqBagToBuffer call 561
mqBufferToBag call 563
mqClearBag call 565
mqCountItems call 566
mqCreateBag call 570
mqDeleteBag call 571
mqDeleteItem call 573
mqExecute call 576
mqGetBag call 579
mqInquireBag call 582
mqInquireByteString call 584
mqInquireByteStringFilter call 587
mqInquireInteger call 590
mqInquireInteger64 call 592
mqInquireIntegerFilter call 594
mqInquireItemInfo call 597
mqInquireString call 600
mqInquireStringFilter call 602
mqPad call 604
mqPutBag call 606
mqSetByteString call 608
mqSetByteStringFilter call 611
mqSetInteger call 614
mqSetInteger64 call 616
mqSetIntegerFilter call 619
mqSetString call 621
mqSetStringFilter call 624
mqTrim call 626
mqTruncateBag call 628
Ping Channel command 423
Reset Channel command 434
Reset Cluster command 436, 437
Reset Queue Statistics command 439
Resolve Channel command 442
Resume Queue Manager Cluster

command 444
Set Authority Record 150, 453
Start Channel command 460
Start Channel Initiator command 462
Start Channel Listener command 464
Start Service command 465, 473
Stop Channel command 469
Stop Channel Listener command 472
Suspend Queue Manager Cluster

command 264, 475
ReceiveExit parameter

Channel commands 57
Inquire Channel (Response)

command 207
Inquire Cluster Queue Manager

(Response) command 257
ReceiveTimeout parameter

Change Queue Manager
command 116

Inquire Queue Manager (Response)
command 343

ReceiveTimeoutMin parameter
Change Queue Manager

command 117
Inquire Queue Manager (Response)

command 343
ReceiveTimeoutType parameter

Change Queue Manager
command 117

Inquire Queue Manager (Response)
command 344

ReceiveUserData parameter
Channel commands 58
Inquire Channel (Response)

command 207
Inquire Cluster Queue Manager

(Response) command 257
receiving data 539
receiving data bags 540
receiving PCF messages 540
Recover CF Structure 425
Recover parameter

Inquire CF Structure (Response) 185
Recovery parameter

Copy, Change, Create CF Structure
command 36

Refresh Cluster 426
Refresh Queue Manager 428
Refresh Security 430
RefreshInterval parameter

Refresh Queue Manager
command 430

RefreshRepository parameter
Refresh Cluster command 427

RefreshType parameter
Refresh Queue Manager

command 428
RemoteApplTag parameter

Inquire Channel Status (Response)
command 244

RemoteEvent parameter
Change Queue Manager

command 117
Inquire Queue Manager (Response)

command 344
RemoteQMgrName parameter

Change, Copy, Create Queue
command 93

Inquire Channel Status (Response)
command 244

Inquire Queue (Response)
command 316

RemoteQName parameter
Change, Copy, Create Queue

command 94
Inquire Queue (Response)

command 316
RemoveQueues parameter

Reset Cluster command 436
Replace parameter

Copy and Create CF Structure
command 36

Copy and Create Channel
command 58

Copy Channel Listener command 70
Copy Namelist command 74
Copy Service command 127
Copy Storage Class command 131
Copy Topic command 143
Copy, Create Process command 78
Copy, Create Queue command 94

Replace parameter, Create authentication
information command 34

RepositoryName parameter
Change Queue Manager

command 117
Inquire Queue Manager (Response)

command 344

RepositoryNamelist parameter
Change Queue Manager

command 118
Inquire Queue Manager (Response)

command 344
reserved names

queues 14
Reset Channel 432
Reset Cluster 435
Reset Queue Manager 436
Reset Queue Statistics 438
Reset Queue Statistics (Response) 439
RESLEVELAudit parameter

Inquire System (Response) 396
Resolve Channel 440
response

data 11
error 10
extended 11
OK 10
standard 10
structures 477

ResponseBag parameter, mqExecute
call 575

ResponseQ parameter, mqExecute
call 576

Responses
Inquire Archive (Response) 165
Inquire Authentication Information

Object Names (Response) 174
Inquire Authority Records

(Response) 178
Inquire Authority Service

(Response) 182
Inquire CF Structure Names

(Response) 186
Inquire Channel (Response) 199
Inquire Channel Listener

(Response) 215
Inquire Channel Listener Status

(Response) 219
Inquire Channel Names

(Response) 224
Inquire Channel Status

(Response) 236
Inquire Cluster Queue Manager

(Response) 251
Inquire Entity Authority

(Response) 274
Inquire Log (Response) 279
Inquire Namelist (Response) 285
Inquire Namelist Names

(Response) 288
Inquire Process (Response) 291
Inquire Process Names

(Response) 294
Inquire Pub/Sub Status

(Response) 296
Inquire Queue (Response) 307
Inquire Queue Manager

(Response) 327
Inquire Queue Manager Status

(Response) 349
Inquire Queue Names

(Response) 353
Inquire Queue Status (Response) 359
Inquire Service (Response) 370

682 WebSphere MQ: Programmable Command Formats and Administration Interface



Responses (continued)
Inquire Service Status (Response) 374
Inquire Storage Class Names

(Response) 381
Inquire System (Response) 394
Inquire Topic (Response) 402
Inquire Topic Names (Response) 408
Inquire Topic Status (Response) 411
Reset Queue Statistics

(Response) 439
RestartRecoveryLog parameter

Inquire Queue Manager Status
(Response) command 350

Resume Queue Manager 442
Resume Queue Manager Cluster 443
RetentionInterval parameter

Change, Copy, Create Queue
command 95

Inquire Queue (Response)
command 316

Reverify Security 444
RoutingCode parameter

Inquire Archive (Response) 167
Inquire System (Response) 397
Set Archive command 449

S
sample programs

creating a local queue 631
displaying events 635
inquire channel objects 644
inquiring queues 650
printing information 650

Scope parameter
Change, Copy, Create Queue

command 95
Clear Topic String command 146
Inquire Queue (Response)

command 316
SecurityAttrs parameter

Inquire Security command 367
SecurityCase parameter

Change Queue Manager
command 118

Inquire Queue Manager (Response)
command 344

SecurityExit parameter
Channel commands 58
Inquire Channel (Response)

command 207
Inquire Cluster Queue Manager

(Response) command 257
SecurityInterval parameter

Change Security command 125
Inquire Security (Response) 367

SecurityItem parameter
Refresh Security command 431

SecuritySwitch parameter
Inquire Security (Response) 367

SecuritySwitchProfile parameter
Inquire Security (Response) 368

SecuritySwitchSetting parameter
Inquire Security (Response) 368

SecurityTimeout parameter
Change Security command 125
Inquire Security (Response) 368

SecurityType parameter
Refresh Security command 431

SecurityUserData parameter
Channel commands 59
Inquire Channel (Response)

command 207
Inquire Cluster Queue Manager

(Response) command 257
Selector parameter

Change, Copy, Create Subscription
command 135

mqAddBag call 544
mqAddByteString call 546
mqAddByteStringFilter call 548
mqAddInquiry call 550
mqAddInteger call 552
mqAddInteger64 call 553
mqAddIntegerFilter call 555
mqAddString call 557
mqAddStringFilter call 559
mqCountItems call 566
mqDeleteItem call 572
mqInquireBag call 581
mqInquireByteString call 583
mqInquireByteStringFilter call 586
mqInquireInteger call 589
mqInquireInteger64 call 591
mqInquireIntegerFilter call 593
mqInquireItemInfo call 596
mqInquireString call 599
mqInquireStringFilter call 602
mqSetByteString call 608
mqSetByteStringFilter call 610
mqSetInteger call 613
mqSetInteger64 call 616
mqSetIntegerFilter call 618
mqSetString call 621
mqSetStringFilter call 624

selectors 628
system 629
user 629

Selectors parameter, Inquire Authority
Service 181

SendExit parameter
Channel commands 59
Inquire Channel (Response)

command 207
Inquire Cluster Queue Manager

(Response) command 258
sending administration commands 535
sending data 539
sending PCF messages 540
SendUserData parameter

Channel commands 59
Inquire Channel (Response)

command 208
Inquire Cluster Queue Manager

(Response) command 258
SeqNumberWrap parameter

Channel commands 60
Inquire Channel (Response)

command 208
Inquire Cluster Queue Manager

(Response) command 258
Service parameter

Inquire System (Response) 397
Set System command 457

ServiceAttrs parameter, Inquire Service
command 369

ServiceComponent parameter
Inquire Authority Records 177
Inquire Authority Service 181
Inquire Authority Service

(Response) 182
Inquire Entity Authority 273
Set Authority Record 453

ServiceDesc parameter
Change, Copy, Create Service

command 127
Inquire Service (Response)

command 371
Inquire Service Status (Response)

command 374
ServiceName parameter

Change, Create Service
command 126

Delete Service command 159
Inquire Service (Response)

command 371
Inquire Service command 369
Inquire Service Status (Response)

command 374
Inquire Service Status command 372
Start Service command 465
Stop Service command 473

ServiceStatusAttrs parameter, Inquire
Service Status command 373

ServiceType parameter
Change, Copy, Create Service

command 127
Inquire Service (Response)

command 371
Sessions parameter

Change, Copy, Create Channel
Listener command 70

Inquire Channel Listener (Response)
command 216

Inquire Channel Listener Status
(Response) command 220

Set Archive 445
Set Authority Record 450
Set Log 454
Set System 456
Shareability parameter

Change, Copy, Create Queue
command 95

Inquire Queue (Response)
command 317

SharedChannelRestart parameter
Stop Channel Initiator command 470

SharingConversations parameter
Channel commands 60
Inquire Channel (Response)

command 208
ShortRetriesLeft parameter, Inquire

Channel Status (Response)
command 244

ShortRetryCount parameter
Channel commands 61
Inquire Channel (Response)

command 208
Inquire Cluster Queue Manager

(Response) command 258

Index 683



ShortRetryInterval parameter
Channel commands 61
Inquire Channel (Response)

command 208
Inquire Cluster Queue Manager

(Response) command 258
SizeMax parameter

Inquire CF Structure Status
(Response) 191

SizeUsed parameter
Inquire CF Structure Status

(Response) 191
SMFAccounting parameter

Inquire System (Response) 397
SMFInterval parameter

Inquire System (Response) 397
Set System command 457

SMFStatistics parameter
Inquire System (Response) 397

Socket parameter
Change, Copy, Create Channel

Listener command 71
Inquire Channel Listener (Response)

command 216
Inquire Channel Listener Status

(Response) command 220
SQQMName parameter

Change Queue Manager
command 118

Inquire Queue Manager (Response)
command 345

SSLCertRemoteIssuerName parameter,
Inquire Channel Status (Response)
command 244

SSLCertUserId parameter, Inquire
Channel Status (Response)
command 244

SSLCipherSpec parameter
Channel commands 61, 208, 258

SSLClientAuthentication parameter
Channel commands 63, 208, 258

SSLCRLNamelist parameter
Change Queue Manager

command 118
Inquire Queue Manager (Response)

command 345
SSLCryptoHardware parameter

Change Queue Manager
command 119

Inquire Queue Manager (Response)
command 345

SSLEvent parameter
Change Queue Manager

command 120
Inquire Queue Manager (Response)

command 345
SSLFipsRequired parameter

Change Queue Manager
command 120

Inquire Queue Manager (Response)
command 345

SSLKetResetCount parameter
Change Queue Manager

command 121
SSLKeyRepository parameter

Change Queue Manager
command 121

SSLKeyRepository parameter (continued)
Inquire Queue Manager (Response)

command 346
SSLKeyResetCount parameter

Inquire Queue Manager (Response)
command 346

SSLKeyResetDate parameter, Inquire
Channel Status (Response)
command 244

SSLKeyResets parameter, Inquire Channel
Status (Response) command 244

SSLKeyResetTime parameter, Inquire
Channel Status (Response)
command 244

SSLPeerName parameter
Channel commands 63, 208, 258

SSLShortPeerName parameter
Inquire Channel Status (Response)

command 245
SSLTasks parameter

Change Queue Manager
command 122

Inquire Queue Manager (Response)
command 346

SSLTasksMax parameter
Inquire Channel Initiator

(Response) 211
SSLTasksStarted parameter

Inquire Channel Initiator
(Response) 211

Start Channel 457
Start Channel Initiator 461
Start Channel Listener 462
Start Service 464
StartArguments parameter

Change, Copy, Create Service
command 127

Inquire Service (Response)
command 371

Inquire Service Status (Response)
command 374

StartCommand parameter
Change, Copy, Create Service

command 127
Inquire Service (Response)

command 371
Inquire Service Status (Response)

command 375
StartDate parameter

Inquire Channel Listener Status
(Response) command 221

Inquire Service Status (Response)
command 375

StartMode parameter
Change, Copy, Create Channel

Listener command 71
Change, Copy, Create Service

command 127
Inquire Channel Listener (Response)

command 216
Inquire Channel Listener Status

(Response) command 221
Inquire Service (Response)

command 371
Inquire Service Status (Response)

command 375

StartStopEvent parameter
Change Queue Manager

command 122
Inquire Queue Manager (Response)

command 346
StartTime parameter

Inquire Channel Listener Status
(Response) command 221

Inquire Service Status (Response)
command 375

StartUOWLogExtent parameter
Inquire Connection (Response) 269

StatisticsInterval parameter
Change Queue Manager

command 122
Inquire Queue Manager (Response)

command 346
Status parameter

Inquire Channel Listener Status
(Response) command 221

Inquire Pub/Sub Status (Response)
command 297

Inquire Service Status (Response)
command 375

StatusType parameter
Inquire Queue (Response)

command 361, 365
Inquire Topic Status command 409

StderrDestination parameter
Change, Copy, Create Service

command 128
Inquire Service (Response)

command 372
Inquire Service Status (Response)

command 375
StdoutDestination parameter

Change, Copy, Create Service
command 128

Inquire Service (Response)
command 372

Inquire Service Status (Response)
command 375

StgClassAttrs parameter
Inquire Storage Class command 378

StgClassName parameter
Inquire Storage Class (Response) 379

Stop Channel 465
Stop Channel Initiator 469
Stop Channel Listener 470
Stop Connection Initiator 472
Stop Service 472
StopArguments parameter

Change, Copy, Create Service
command 128

Inquire Service (Response)
command 372

Inquire Service Status (Response)
command 376

StopCommand parameter
Change, Copy, Create Service

command 128
Inquire Service (Response)

command 372
Inquire Service Status (Response)

command 376

684 WebSphere MQ: Programmable Command Formats and Administration Interface



StopRequested parameter, Inquire
Channel Status (Response)
command 245

StorageClass parameter
Change, Copy, Create Queue

command 95
Inquire Queue (Response)

command 317
Inquire Queue command 306

StorageClassDesc parameter
Change, Copy, Create Storage Class

command 131
Inquire Storage Class (Response) 379

StorageClassName parameter
Change, Copy, Create Storage Class

command 129
Delete Storage Class command 159
Inquire Storage Class command 376
Inquire Storage Class Names

command 380
StorageClassNames parameter

Inquire Namelist Names (Response)
command 381

String field
MQCFBS structure 486
MQCFST structure 503

String parameter
mqPad call 604
mqTrim call 626

StringFilterCommand parameter
Inquire Authentication Information

Object command 171
Inquire CF Structure command 184
Inquire CF Structure Status

command 187
Inquire Channel command 198
Inquire Channel Listener

command 214
Inquire Channel Listener Status

command 219
Inquire Channel Status

command 235
Inquire Cluster Queue Manager

command 251
Inquire Connection command 263
Inquire Namelist command 285
Inquire Process command 291
Inquire Queue command 306
Inquire Queue Status command 358
Inquire Service command 370
Inquire Service Status command 373
Inquire Storage Class command 378
Inquire Topic Object command 400

StringLength field
MQCFBS structure 486
MQCFSL structure 500
MQCFST structure 503

StringLength parameter, mqInquireString
call 599

StringLength parameter,
mqInquireStringFilter call 602

Strings field
MQCFSL structure 500

StrucLength field
MQCFBF structure 482
MQCFBS structure 485
MQCFH structure 478

StrucLength field (continued)
MQCFIF structure 488
MQCFIL structure 491
MQCFIN structure 493
MQCFSF structure 495
MQCFSL structure 499
MQCFST structure 503

structures 477
MQCFBF 482
MQCFBS 485
MQCFH 478
MQCFIF 487
MQCFIL 490
MQCFIN 493
MQCFSF 494
MQCFSL 499
MQCFST 502

SubId parameter
Change Subscription command 132
Inquire Subscription command 382,

391
Inquire Subscription

Statuscommand 390
SubID parameter

Change Subscription command 133
Delete Subscription command 161

SubName parameter
Change Subscription command 132,

133
Delete Subscription command 160
Inquire Subscription command 382
Inquire Subscription Status

command 390
SubscriptionAttrs parameter, Inquire

Subscription command 383
SubscriptionID

Inquire Connection (Response) 269
SubscriptionId parameter

Inquire Topic Status (Response)
command 414

SubscriptionLevel parameter
Change, Copy, Create Subscription

command 136
SubscriptionName

Inquire Connection (Response) 269
SubscriptionScope parameter

Change, Copy, Create Subscription
command 136

Change, Copy, Create Topic
command 143

Inquire Topic Object (Response)
command 405

SubscriptionType parameter
Inquire Subscription command 385
Inquire Subscription

Statuscommand 391
SubscriptionUser parameter

Change, Copy, Create Subscription
command 136

SubState parameter
Inquire Channel Status (Response)

command 245
Suspend parameter, Inquire Cluster

Queue Manager (Response)
command 258

Suspend Queue Manager 473
Suspend Queue Manager Cluster 474

SyncPoint parameter
Inquire Queue Manager (Response)

command 346
SysName parameter

Inquire CF Structure Status (Response)
command 191

system bag 527
system selectors 629
SYSTEM.ADMIN.COMMAND

.QUEUE 7

T
TargetType parameter

Change, Copy, Create Queue
command 96

TaskNumber parameter
Inquire Queue Status (Response)

command 365
TCPChannels parameter

Change Queue Manager
command 122

Inquire Queue Manager (Response)
command 346

TCPKeepAlive parameter
Change Queue Manager

command 122
Inquire Queue Manager (Response)

command 347
TCPName parameter

Change Queue Manager
command 123

Inquire Channel Initiator
(Response) 211

Inquire Queue Manager (Response)
command 347

TCPStackType parameter
Change Queue Manager

command 123
Inquire Queue Manager (Response)

command 347
ThreadId parameter

Inquire Connection (Response) 270
Inquire Queue Status (Response)

command 365
TimeSinceReset parameter, Reset Queue

Statistics (Response) command 440
TimeStampFormat parameter

Inquire Archive (Response) 168
Set Archive command 449

ToAuthInfoName parameter, Copy
authentication information
command 32

ToCFStrucName parameter
Copy CF Structure command 35

ToChannelName parameter
Copy Channel command 40

ToListenerName parameter, Copy
Channel Listener command 69

ToNamelistName parameter, Copy
Namelist command 72

TopicDesc parameter
Change, Copy, Create Topic

command 144
Inquire Topic Object (Response)

command 406

Index 685



TopicName parameter
Change Topic command 137
Create Topic command 138
Delete Topic Object command 161
Inquire Topic Names command 407
Inquire Topic Object command 398

TopicNames parameter
Inquire Topic Names (Response)

command 408
TopicObject parameter

Create Subscription command 133
TopicSring parameter

Inquire Topic Object (Response)
command 406

TopicStatistics parameter
Inquire Topic Object (Response)

command 406
TopicString parameter

Clear Topic String command 146
Copy Topic command 138
Create Subscription command 133,

136
Create Topic command 138
Inquire Connection (Response) 270
Inquire Topic Status command 409

TopicType parameter
Inquire Topic Object (Response)

command 406
Inquire Topic Object command 401

ToProcessName parameter, Copy Process
command 75

ToQName parameter
Move Queue command 421

ToQName parameter, Copy Queue
command 80

ToServiceName parameter, Copy Service
command 126

ToStorageClassName parameter
Copy Storage Class command 129

ToSubscriptionName parameter, Copy
Subscription command 133

TotalBuffers parameter
Inquire Usage (Response) 419

TotalLogs parameter
Inquire Log (Response) 282

TotalPages parameter
Inquire Usage (Response) 418

ToTopicName parameter, Copy Topic
command 138

TpipeName parameter
Inquire Queue (Response)

command 317
TpName parameter

Channel commands 65
Inquire Channel (Response)

command 209
Inquire Cluster Queue Manager

(Response) command 259
TPName parameter

Change, Copy, Create Channel
Listener command 71

Inquire Channel Listener (Response)
command 216

Inquire Channel Listener Status
(Response) command 221

TraceClass parameter
Inquire System (Response) 397

TraceRouteRecording parameter
Change Queue Manager

command 123
Inquire Queue Manager (Response)

command 347
TraceSize parameter

Inquire System (Response) 397
Set System command 457

TransactionId parameter
Inquire Connection (Response) 270
Inquire Queue Status (Response)

command 365
TransportType parameter

Change, Create Channel Listener
command 69

Channel commands 65
Inquire Channel (Response)

command 209
Inquire Channel Initiator

(Response) 212
Inquire Channel Listener (Response)

command 217
Inquire Channel Listener Status

(Response) command 221
Inquire Cluster Queue Manager

(Response) command 259
Start Channel Listener command 464
Stop Channel Listener command 471

TransportType parameter, Inquire
Channel Listener command 214

TreeLifeTime parameter
Change Queue Manager

command 123
TriggerControl parameter

Change, Copy, Create Queue
command 96

Inquire Queue (Response)
command 317

TriggerData parameter
Change, Copy, Create Queue

command 96
Inquire Queue (Response)

command 317
TriggerDepth parameter

Change, Copy, Create Queue
command 96

Inquire Queue (Response)
command 317

TriggerInterval parameter
Change Queue Manager

command 124
Inquire Queue Manager (Response)

command 348
TriggerMsgPriority parameter

Change, Copy, Create Queue
command 96

Inquire Queue (Response)
command 317

TriggerType parameter
Change, Copy, Create Queue

command 96
Inquire Queue (Response)

command 317
trimming blanks from strings 626
truncating a bag 533
Type field

MQCFBF structure 482

Type field (continued)
MQCFBS structure 485
MQCFH structure 478
MQCFIF structure 487
MQCFIL structure 490
MQCFIN structure 493
MQCFSF structure 495
MQCFSL structure 499
MQCFST structure 503

Type parameter
Inquire Pub/Sub Status (Response)

command 296
Inquire Pub/Sub Status

command 296
types of data bag 527
types of data items 528

U
UncommittedMsgs parameter

Inquire Queue Status (Response)
command 361

UnitAddress parameter
Inquire Archive (Response) 168

UnitStatus parameter
Inquire Archive (Response) 168

UnitVolser parameter
Inquire Archive (Response) 168

UnusedPages parameter
Inquire Usage (Response) 418

UOWIdentifier parameter
Inquire Connection (Response) 270
Inquire Queue Status (Response)

command 365
UOWLogStartDate parameter

Inquire Connection (Response) 270
UOWLogStartTime parameter

Inquire Connection (Response) 270
UOWStartDate parameter

Inquire Connection (Response) 270
UOWStartTime parameter

Inquire Connection (Response) 270
UOWState parameter

Inquire Connection (Response) 270
UOWType parameter

Inquire Connection (Response) 271
Inquire Queue Status (Response)

command 366
Usage parameter

Change, Copy, Create Queue
command 97

Inquire Queue (Response)
command 318

UsageType parameter
Inquire Usage command 416

use of the MQAI 524
user bag 527
user data 9
user selectors 629
Userdata parameter

Change, Copy, Create Subscription
command 136

UserData parameter
Change, Copy, Create Process

command 79
Inquire Process (Response)

command 293

686 WebSphere MQ: Programmable Command Formats and Administration Interface



UserId parameter
Inquire Connection (Response) 271
Reverify Security command 445

UserIdentifier parameter
Channel commands 65
Inquire Channel (Response)

command 209
Inquire Cluster Queue Manager

(Response) command 259
Inquire Queue Status (Response)

command 366
UserIDSupport parameter

Inquire Authority Service
(Response) 182

utility calls 543

V
Value field

MQCFIN structure 493
Values field

MQCFIL structure 491
VariableUser parameter

Change, Copy, Create Subscription
command 136

Version field
MQCFH structure 478

W
WebSphere MQ

Commands (MQSC) 4
WebSphere MQ Administration Interface

concepts and terminology 523
creating a local queue 631
displaying events 635
examples 631
inquiring queues 650
introduction 523
printing information 650
sample programs 631
selectors 628
use 524

WebSphere MQ Administration Interface
(MQAI) 5

WildcardOperation parameter
Inquire Topic Object (Response)

command 406
WildcardSchema parameter

Change, Copy, Create Subscription
command 136

WLMInterval parameter
Inquire System (Response) 397

WLMIntervalUnits parameter
Inquire System (Response) 397

X
XCFGroupName parameter

Change, Copy, Create Storage Class
command 131

Inquire Storage Class
(Response) 379, 380

XCFMemberName parameter
Change, Copy, Create Storage Class

command 132

XmitQName parameter
Change, Copy, Create Queue

command 97
Channel commands 65
Inquire Channel (Response)

command 209
Inquire Channel Status (Response)

command 246
Inquire Channel Status

command 235
Inquire Queue (Response)

command 318
XQTime parameter

Inquire Channel Status (Response)
command 246

Index 687



688 WebSphere MQ: Programmable Command Formats and Administration Interface



Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM , you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use 44-1962-816151
– From within the U.K., use 01962-816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2002, 2009 689



690 WebSphere MQ: Programmable Command Formats and Administration Interface





����

SC34-6942-01



Sp
in
e
in
fo
rm
at
io
n:

�
�

�
W

eb
Sp

he
re

M
Q

Pr
og

ra
m

m
ab

le
Co

m
m

an
d

Fo
rm

at
s

an
d

Ad
m

in
is

tr
at

io
n

In
te

rf
ac

e
Ve

rs
io

n
7.0


	Contents
	Figures
	Tables
	Part 1. Programmable Command Formats
	Chapter 1. Introduction to Programmable Command Formats
	The problem PCF commands solve
	What PCFs are
	Other administration interfaces
	WebSphere MQ for i5/OS
	i5/OS Control Language (CL)
	WebSphere MQ Commands (MQSC)

	WebSphere MQ for z/OS
	MQSeries for Compaq NonStop Kernel, V5.1
	WebSphere MQ for Windows, UNIX systems and HP OpenVMS
	WebSphere MQ commands (MQSC)
	Control commands
	WebSphere MQ Explorer - WebSphere MQ for Windows and WebSphere MQ for Linux (x86 platform)


	The WebSphere MQ Administration Interface (MQAI)

	Chapter 2. Using Programmable Command Formats
	PCF command messages
	How to issue PCF command messages
	Message descriptor for a PCF command
	Sending user data

	Responses
	Message descriptor for a response

	Standard responses
	OK response
	Error response
	Data response

	Extended responses
	Extended responses to Inquire commands
	Extended responses to commands other than Inquire
	Extended responses to commands using CommandScope

	Rules for naming WebSphere MQ objects
	Name lengths
	Reserved object names

	Generic values

	Authority checking for PCF commands
	WebSphere MQ for i5/OS
	WebSphere MQ for Windows, and UNIX systems
	WebSphere MQ for HP OpenVMS and Compaq NonStop Kernel
	WebSphere MQ for z/OS


	Chapter 3. Definitions of the Programmable Command Formats
	How the definitions are shown
	Commands
	Responses
	Parameters and response data
	Constants
	Informational messages
	Error codes
	Error codes applicable to all commands


	PCF commands and responses in groups
	Authentication Information commands
	Authority Record commands
	CF commands
	Channel commands
	Cluster commands
	Connection commands
	Escape command
	Namelist commands
	Process commands
	Queue commands
	Queue Manager commands
	Security commands
	Service commands
	Storage class commands
	System commands
	Data responses to commands

	Definitions of Programmable Command Formats
	Backup CF Structure
	Required parameters
	Optional parameters

	Change, Copy, and Create Authentication Information Object
	Required parameters (Change authentication information)
	Required parameters (Copy authentication information)
	Required parameters (Create authentication information)
	Optional parameters (Change, Copy, and Create Authentication Information Object)

	Change, Copy, and Create CF Structure
	Required parameters (Change and Create CF Structure)
	Required parameters (Copy CF Structure)
	Optional parameters (Change, Copy, and Create CF Structure)

	Change, Copy, and Create Channel
	Required parameters (Change, Create Channel)
	Required parameters (Copy Channel)
	Optional parameters (Change, Copy and Create Channel)
	Error codes (Change, Copy and Create Channel)

	Change, Copy, and Create Channel Listener
	Required parameters (Change and Create Channel Listener)
	Required parameters (Copy Channel Listener)
	Optional parameters (Change, Copy, and Create Channel Listener)

	Change, Copy, and Create Namelist
	Required parameter (Change and Create Namelist)
	Required parameters (Copy Namelist)
	Optional parameters (Change, Copy, and Create Namelist)

	Change, Copy, and Create Process
	Required parameters (Change and Create Process)
	Required parameters (Copy Process)
	Optional parameters (Change, Copy, and Create Process)

	Change, Copy, and Create Queue
	Required parameters (Change and Create Queue)
	Required parameters (Copy Queue)
	Required parameters (all commands)
	Optional parameters (Change, Copy, and Create Queue)
	Error codes (Change, Copy, and Create Queue)

	Change Queue Manager
	Optional parameters (Change Queue Manager)
	Error codes (Change Queue Manager)

	Change Security
	Optional parameters (Change Security)

	Change, Copy, and Create Service
	Required parameter (Change and Create Service)
	Required parameters (Copy Service)
	Optional parameters (Change, Copy, and Create Service)

	Change, Copy, and Create Storage Class
	Required parameters (Change and Create Storage Class)
	Required parameters (Copy Storage Class)
	Optional parameters (Change, Copy, and Create Storage Class)

	Change, Copy, and Create Subscription
	Required parameters (Change Subscription)
	Required parameters (Copy Subscription)
	Required parameters (Create Subscription)
	Optional parameters (Change, Copy, and Create Subscription)

	Change, Copy, and Create Topic
	Required parameter (Change Topic)
	Required parameters (Copy Topic)
	Required parameters (Create Topic)
	Optional parameters (Change, Copy, and Create Topic)

	Clear Queue
	Required parameters (Clear Queue)
	Optional parameters (Clear Queue)
	Error codes (Clear Queue)

	Clear Topic String
	Required parameters (Clear Topic String)
	Optional parameters (Clear Topic String)

	Delete Authentication Information Object
	Required parameters (Delete Authentication Information Object)
	Optional parameters (Delete Authentication Information Object)

	Delete Authority Record
	Required parameters (Delete Authority Record)
	Optional parameters (Delete Authority Record)
	Error codes (Delete Authority Record)

	Delete CF Structure
	Required parameters (Delete CF Structure)

	Delete Channel
	Required parameters (Delete Channel)
	Optional parameters (Delete Channel)
	Error codes (Delete Channel)

	Delete Channel Listener
	Required parameters (Delete Channel Listener)

	Delete Namelist
	Required parameters (Delete Namelist)
	Optional parameters (Delete Namelist)

	Delete Process
	Required parameters (Delete Process)
	Optional parameters (Delete Process)

	Delete Queue
	Required parameters (Delete Queue)
	Optional parameters (Delete Queue)
	Error codes (Delete Queue)

	Delete Service
	Required parameters (Delete Service)

	Delete Storage Class
	Required parameters (Delete Storage Class)
	Optional parameters (Delete Storage Class)

	Delete Subscription
	Required parameters (Delete Subscription)
	Optional parameters (Delete Subscription)

	Delete Topic
	Required parameters (Delete Topic)
	Optional parameters (Delete Topic)

	Escape
	Required parameters (Escape)
	Error codes (Escape)

	Escape (Response)
	Parameters

	Inquire Archive
	Optional parameters (Inquire Archive)

	Inquire Archive (Response)
	Response data - archive parameter information
	Response data - tape unit status information

	Inquire Authentication Information Object
	Required parameters (Inquire Authentication Information Object)
	Optional parameters (Inquire Authentication Information Object)

	Inquire Authentication Information Object (Response)
	Response data

	Inquire Authentication Information Object Names
	Required parameters (Inquire Authentication Information Object Names)
	Optional parameters (Inquire Authentication Information Object Names)

	Inquire Authentication Information Object Names (Response)
	Response data

	Inquire Authority Records
	Required parameters (Inquire Authority Records)
	Optional parameters (Inquire Authority Records)
	Error codes (Inquire Authority Records)

	Inquire Authority Records (Response)
	Response data

	Inquire Authority Service
	Required parameters (Inquire Authority Service)
	Optional parameters (Inquire Authority Service)
	Error codes (Inquire Authority Service)

	Inquire Authority Service (Response)
	Response data

	Inquire CF Structure
	Required parameters (Inquire CF Structure)
	Optional parameters (Inquire CF Structure)

	Inquire CF Structure (Response)
	Response data

	Inquire CF Structure Names
	Required parameters (Inquire CF Structure Names)

	Inquire CF Structure Names (Response)
	Response data

	Inquire CF Structure Status
	Required parameters (Inquire CF Structure Status)
	Optional parameters (Inquire CF Structure Status)

	Inquire CF Structure Status (Response)
	Response data

	Inquire Channel
	Required parameters (Inquire Channel)
	Optional parameters (Inquire Channel)
	Error codes (Inquire Channel)

	Inquire Channel (Response)
	Response data

	Inquire Channel Initiator
	Optional parameters (Inquire Channel Initiator)

	Inquire Channel Initiator (Response)
	Response data - channel initiator information
	Response data - listener information

	Inquire Channel Listener
	Required parameters (Inquire Channel Listener)
	Optional parameters (Inquire Channel Listener)

	Inquire Channel Listener (Response)
	Response data

	Inquire Channel Listener Status
	Required parameters (Inquire Channel Listener Status)
	Optional parameters (Inquire Channel Listener Status)
	Error codes (Inquire Channel Listener Status)

	Inquire Channel Listener Status (Response)
	Response data

	Inquire Channel Names
	Required parameters (Inquire Channel Names)
	Optional parameters (Inquire Channel Names)
	Error codes (Inquire Channel Names)

	Inquire Channel Names (Response)
	Response data

	Inquire Channel Status
	Required parameters (Inquire Channel Status)
	Optional parameters (Inquire Channel Status)
	Error codes (Inquire Channel Status)

	Inquire Channel Status (Response)
	Response data

	Inquire Cluster Queue Manager
	Required parameters (Inquire Cluster Queue Manager)
	Optional parameters

	Inquire Cluster Queue Manager (Response)
	Response data

	Inquire Connection
	Required parameters (Inquire Connection)
	Optional parameters (Inquire Connection)
	Error codes (Inquire Connection)

	Inquire Connection (Response)
	Response data

	Inquire Entity Authority
	Required parameters (Inquire Entity Authority)
	Optional parameters (Inquire Entity Authority)
	Error codes (Inquire Entity Authority)

	Inquire Entity Authority (Response)
	Response data

	Inquire Group
	Optional parameters (Inquire Group)

	Inquire Group (Response)
	Response data relating to the queue manager
	Response data relating to obsolete DB2 messages

	Inquire Log
	Optional parameters (Inquire Log)

	Inquire Log (Response)
	Response data - log parameter information
	Response data - to log status information

	Inquire Namelist
	Required parameters (Inquire Namelist)
	Optional parameters (Inquire Namelist)

	Inquire Namelist (Response)
	Response data

	Inquire Namelist Names
	Required parameters (Inquire Namelist Names)
	Optional parameters (Inquire Namelist Names)

	Inquire Namelist Names (Response)
	Response data

	Inquire Process
	Required parameters (Inquire Process)
	Optional parameters (Inquire Process)

	Inquire Process (Response)
	Response data

	Inquire Process Names
	Required parameters (Inquire Process Names)
	Optional parameters (Inquire Process Names)

	Inquire Process Names (Response)
	Response data

	Inquire Pub/Sub Status
	Optional parameters

	Inquire Pub/Sub Status (Response)
	Response data

	Inquire Queue
	Required parameters (Inquire Queue)
	Optional parameters (Inquire Queue)
	Error codes (Inquire Queue)

	Inquire Queue (Response)
	Response data

	Inquire Queue Manager
	Optional parameters (Inquire Queue Manager)

	Inquire Queue Manager (Response)
	Response data

	Inquire Queue Manager Status
	Optional parameters (Inquire Queue Manager Status)

	Inquire Queue Manager Status (Response)
	Response data

	Inquire Queue Names
	Required parameters (Inquire Queue Names)
	Optional parameters (Inquire Queue Names)

	Inquire Queue Names (Response)
	Response data

	Inquire Queue Status
	Required parameters (Inquire Queue Status)
	Optional parameters (Inquire Queue Status)
	Error codes (Inquire Queue Status)

	Inquire Queue Status (Response)
	Response data if StatusType is MQIACF_Q_STATUS
	Response data if StatusType is MQIACF_Q_HANDLE

	Inquire Security
	Optional parameters (Inquire Security)

	Inquire Security (Response)
	Response data

	Inquire Service
	Required parameters (Inquire Service)
	Optional parameters (Inquire Service)

	Inquire Service (Response)
	Response data

	Inquire Service Status
	Required parameters (Inquire Service Status)
	Optional parameters (Inquire Service Status)
	Error codes (Inquire Service Status)

	Inquire Service Status (Response)
	Response data

	Inquire Storage Class
	Required parameters (Inquire Storage Class)
	Optional parameters (Inquire Storage Class)

	Inquire Storage Class (Response)
	Response data

	Inquire Storage Class Names
	Required parameters (Inquire Storage Class Names)
	Optional parameters (Inquire Storage Class Names)

	Inquire Storage Class Names (Response)
	Response data

	Inquire Subscription
	Required parameters (Inquire Subscription)
	Optional parameters (Inquire Subscription)

	Inquire Subscription (Response)
	Response Data (Inquire Subscription)

	Inquire Subscription Status
	Required parameters (Inquire Subscription Status)
	Optional parameters (Inquire Subscription Status)

	Inquire Subscription Status (Response)
	Response Data (Inquire Subscription Status)

	Inquire System
	Optional parameters (Inquire System)

	Inquire System (Response)
	Response data

	Inquire Topic
	Required parameters (Inquire Topic)
	Optional parameters

	Inquire Topic (Response)
	Response data

	Inquire Topic Names
	Required parameters (Inquire Topic Names)
	Optional parameters (Inquire Topic Names)

	Inquire Topic Names (Response)
	Response data

	Inquire Topic Status
	Required parameters (Inquire Topic Status)
	Optional parameters (Inquire Topic Status)

	Inquire Topic Status (Response)
	Response data (TOPIC_STATUS)
	Response data (TOPIC_STATUS_SUB)
	Response data (TOPIC_STATUS_PUB)

	Inquire Usage
	Optional parameters (Inquire Usage)

	Inquire Usage (Response)
	Response data if UsageType is MQIACF_USAGE_PAGESET
	Response data if UsageType is MQIACF_USAGE_BUFFER_POOL
	Response data if UsageType is MQIACF_USAGE_DATA_SET

	Move Queue
	Required parameters (Move Queue)
	Optional parameters (Move Queue)

	Ping Channel
	Required parameters (Ping Channel)
	Optional parameters (Ping Channel)
	Error codes (Ping Channel)

	Ping Queue Manager
	Recover CF Structure
	Required parameters (Recover CF Structure)
	Optional parameters (Recover CF Structure)

	Refresh Cluster
	Required parameters (Refresh Cluster)
	Optional parameters (Refresh Cluster)

	Refresh Queue Manager
	Required parameters (Refresh Queue Manager)
	Optional parameters (Refresh Queue Manager)

	Refresh Security
	Optional parameters (Refresh Security)

	Reset Channel
	Required parameters (Reset Channel)
	Optional parameters (Reset Channel)
	Error codes (Reset Channel)

	Reset Cluster
	Required parameters (Reset Cluster)
	Optional parameters (Reset Cluster)
	Error codes (Reset Cluster)

	Reset Queue Manager
	Required parameters (Reset Queue Manager)
	Optional parameters (Reset Queue Manager)
	Error codes (Reset Queue Manager)

	Reset Queue Statistics
	Required parameters (Reset Queue Statistics)
	Optional parameters (Reset Queue Statistics)
	Error codes (Reset Queue Statistics)

	Reset Queue Statistics (Response)
	Response data

	Resolve Channel
	Required parameters (Resolve Channel)
	Optional parameters (Resolve Channel)
	Error codes (Resolve Channel)

	Resume Queue Manager
	Required parameters (Resume Queue Manager)
	Optional parameters (Resume Queue Manager)

	Resume Queue Manager Cluster
	Required parameters (Resume Queue Manager Cluster)
	Optional parameters (Resume Queue Manager Cluster)
	Error codes (Resume Queue Manager Cluster)

	Reverify Security
	Required parameters (Reverify Security)
	Optional parameters (Reverify Security)

	Set Archive
	Required parameters (Set Archive)
	Optional parameters (Set Archive)

	Set Authority Record
	Required parameters (Set Authority Record)
	Optional parameters (Set Authority Record)
	Error codes (Set Authority Record)

	Set Log
	Required parameters (Set Log)
	Optional parameters (Set Log)

	Set System
	Required parameters (Set System)
	Optional parameters (Set System)

	Start Channel
	Required parameters (Start Channel)
	Optional parameters (Start Channel)
	Error codes (Start Channel)

	Start Channel Initiator
	Required parameters (Start Channel Initiator)
	Optional parameters (Start Channel Initiator)
	Error codes (Start Channel Initiator)

	Start Channel Listener
	Optional parameters (Start Channel Listener)
	Error codes (Start Channel Listener)

	Start Service
	Required parameters (Start Service)
	Error codes (Start Service)

	Stop Channel
	Required parameters (Stop Channel)
	Optional parameters (Stop Channel)
	Error codes (Stop Channel)

	Stop Channel Initiator
	Optional parameters (Stop Channel Initiator)

	Stop Channel Listener
	Required parameters (Stop Channel Listener)
	Optional parameters (Stop Channel Listener)
	Error codes (Stop Channel Listener)

	Stop Connection
	Required parameters (Stop Connection)

	Stop Service
	Required parameters (Stop Service)
	Error codes (Stop Service)

	Suspend Queue Manager
	Required parameters (Suspend Queue Manager)
	Optional parameters (Suspend Queue Manager)

	Suspend Queue Manager Cluster
	Required parameters (Suspend Queue Manager Cluster)
	Optional parameters (Suspend Queue Manager Cluster)
	Error codes (Suspend Queue Manager Cluster)


	Chapter 4. Structures for commands and responses
	How the structures are shown
	Data types
	Initial values and default structures

	Usage notes
	MQCFH - PCF header
	Fields for MQCFH
	Language declarations for MQCFH
	C language declaration
	COBOL language declaration
	PL/I language declaration (z/OS only)
	System/390 assembler-language declaration (z/OS only)
	Visual Basic language declaration (Windows only)
	RPG language declaration (i5/OS only)


	MQCFBF - PCF byte string filter parameter
	Fields for MQCFBF
	Language declarations for MQCFBF
	C language declaration
	COBOL language declaration
	PL/I language declaration (z/OS only)
	System/390 assembler-language declaration (z/OS only)
	Visual Basic language declaration (Windows only)
	RPG language declaration (i5/OS only)


	MQCFBS - PCF byte string parameter
	Fields for MQCFBS
	Language declarations for MQCFBS
	C language declaration
	COBOL language declaration
	PL/I language declaration (z/OS only)
	System/390 assembler-language declaration (z/OS only)
	Visual Basic language declaration (Windows only)
	RPG language declaration (i5/OS only)


	MQCFIF - PCF integer filter parameter
	Fields for MQCFIF
	Language declarations for MQCFIF
	C language declaration
	COBOL language declaration
	PL/I language declaration (z/OS only)
	System/390 assembler-language declaration (z/OS only)
	Visual Basic language declaration (Windows only)
	RPG language declaration (i5/OS only)


	MQCFIL - PCF integer list parameter
	Fields for MQCFIL
	Language declarations for MQCFIL
	C language declaration
	COBOL language declaration
	PL/I language declaration (z/OS only)
	System/390 assembler-language declaration (z/OS only)
	Visual Basic language declaration (Windows only)
	RPG language declaration (i5/OS only)


	MQCFIN - PCF integer parameter
	Fields for MQCFIN
	Language declarations for MQCFIN
	C language declaration
	COBOL language declaration
	PL/I language declaration (z/OS only)
	System/390 assembler-language declaration (z/OS only)
	Visual Basic language declaration (Windows only)
	RPG language declaration (i5/OS only)


	MQCFSF - PCF string filter parameter
	Fields for MQCFSF
	Language declarations for MQCFSF
	C language declaration
	COBOL language declaration
	PL/I language declaration (z/OS only)
	System/390 assembler-language declaration (z/OS only)
	Visual Basic language declaration (Windows only)
	RPG language declaration (i5/OS only)


	MQCFSL - PCF string list parameter
	Fields for MQCFSL
	Language declarations for MQCFSL
	C language declaration
	COBOL language declaration
	PL/I language declaration (z/OS only)
	System/390 assembler-language declaration (z/OS only)
	Visual Basic language declaration (Windows only)
	RPG language declaration (i5/OS only)


	MQCFST - PCF string parameter
	Fields for MQCFST
	Language declarations for MQCFST
	C language declaration
	COBOL language declaration
	PL/I language declaration (z/OS only)
	System/390 assembler-language declaration (z/OS only)
	Visual Basic language declaration (Windows only)
	RPG language declaration (i5/OS only)



	Chapter 5. PCF example
	Inquire local queue attributes
	Program listing

	Part 2. Message Queuing Administration Interface
	Chapter 6. Introduction to the WebSphere MQ Administration Interface (MQAI)
	MQAI concepts and terminology
	Use of the MQAI
	How do I use the MQAI?
	Overview

	Building your MQAI application

	Chapter 7. Using data bags
	Types of data bag
	Creating and deleting data bags
	Deleting data bags

	Types of data item
	Adding data items to bags
	Adding an inquiry command to a bag
	Filtering and querying data items


	Changing information within a bag
	Counting data items
	Deleting data items
	Deleting data items from a bag using the mqDeleteItem call
	Clearing a bag using the mqClearBag call
	Truncating a bag using the mqTruncateBag call

	Inquiring within data bags
	System items

	Chapter 8. Configuring WebSphere MQ using mqExecute
	Sending administration commands to the command server
	Example code

	Hints and tips for configuring WebSphere MQ

	Chapter 9. Exchanging data between applications
	Converting bags and buffers
	Putting and receiving data bags
	Sending PCF messages to a specified queue
	Receiving PCF messages from a specified queue


	Chapter 10. MQAI reference
	mqAddBag
	Syntax for mqAddBag
	Parameters for mqAddBag
	Usage notes for mqAddBag
	C language invocation for mqAddBag
	Visual Basic invocation for mqAddBag

	mqAddByteString
	Syntax for mqAddByteString
	Parameters for mqAddByteString
	Usage notes for mqAddByteString
	C language invocation for mqAddByteString
	Visual Basic invocation for mqAddByteString

	mqAddByteStringFilter
	Syntax for mqAddByteStringFilter
	Parameters for mqAddByteStringFilter
	Usage notes for mqAddByteStringFilter
	C language invocation for mqAddByteStringFilter
	Visual Basic invocation for mqAddByteStringFilter

	mqAddInquiry
	Syntax for mqAddInquiry
	Parameters for mqAddInquiry
	Usage notes for mqAddInquiry
	C language invocation for mqAddInquiry
	Visual Basic invocation for mqAddInquiry
	Supported INQUIRE command codes

	mqAddInteger
	Syntax for mqAddInteger
	Parameters for mqAddInteger
	Usage notes for mqAddInteger
	C language invocation for mqAddInteger
	Visual Basic invocation for mqAddInteger

	mqAddInteger64
	Syntax for mqAddInteger64
	Parameters for mqAddInteger64
	Usage notes for mqAddInteger64
	C language invocation for mqAddInteger64
	Visual Basic invocation for mqAddInteger64

	mqAddIntegerFilter
	Syntax for mqAddIntegerFilter
	Parameters for mqAddIntegerFilter
	Usage notes for mqAddIntegerFilter
	C language invocation for mqAddIntegerFilter
	Visual Basic invocation for mqAddIntegerFilter

	mqAddString
	Syntax for mqAddString
	Parameters for mqAddString
	Usage notes for mqAddString
	C language invocation for mqAddString
	Visual Basic invocation for mqAddString

	mqAddStringFilter
	Syntax for mqAddStringFilter
	Parameters for mqAddStringFilter
	Usage notes for mqAddStringFilter
	C language invocation for mqAddStringFilter
	Visual Basic invocation for mqAddStringFilter

	mqBagToBuffer
	Syntax for mqBagToBuffer
	Parameters for mqBagToBuffer
	Usage notes for mqBagToBuffer
	C language invocation for mqBagToBuffer
	Visual Basic invocation for mqBagToBuffer

	mqBufferToBag
	Syntax for mqBufferToBag
	Parameters for mqBufferToBag
	Usage notes for mqBufferToBag
	C language invocation for mqBufferToBag
	Visual Basic invocation for mqBufferToBag

	mqClearBag
	Syntax for mqClearBag
	Parameters for mqClearBag
	Usage notes for mqClearBag
	C language invocation for mqClearBag
	Visual Basic invocation for mqClearBag

	mqCountItems
	Syntax for mqCountItems
	Parameters for mqCountItems
	Usage notes for mqCountItems
	C language invocation for mqCountItems
	Visual Basic invocation for mqCountItems

	mqCreateBag
	Syntax for mqCreateBag
	Parameters for mqCreateBag
	Usage notes for mqCreateBag
	C language invocation for mqCreateBag
	Visual Basic invocation for mqCreateBag

	mqDeleteBag
	Syntax for mqDeleteBag
	Parameters for mqDeleteBag
	Usage notes for mqDeleteBag
	C language invocation for mqDeleteBag
	Visual Basic invocation for mqDeleteBag

	mqDeleteItem
	Syntax for mqDeleteItem
	Parameters for mqDeleteItem
	Usage notes for mqDeleteItem
	C language invocation for mqDeleteItem
	Visual Basic invocation for mqDeleteItem

	mqExecute
	Syntax for mqExecute
	Parameters for mqExecute
	Usage notes for mqExecute
	C language invocation for mqExecute
	Visual Basic invocation for mqExecute

	mqGetBag
	Syntax for mqGetBag
	Parameters for mqGetBag
	Usage notes for mqGetBag
	C language invocation for mqGetBag
	Visual Basic invocation for mqGetBag

	mqInquireBag
	Syntax for mqInquireBag
	Parameters for mqInquireBag
	C language invocation for mqInquireBag
	Visual Basic invocation for mqInquireBag

	mqInquireByteString
	Syntax for mqInquireByteString
	Parameters for mqInquireByteString
	C language invocation for mqInquireByteString
	Visual Basic invocation for mqInquireByteString

	mqInquireByteStringFilter
	Syntax for mqInquireByteStringFilter
	Parameters for mqInquireByteStringFilter
	C language invocation for mqInquireByteStringFilter
	Visual Basic invocation for mqInquireByteStringFilter

	mqInquireInteger
	Syntax for mqInquireInteger
	Parameters for mqInquireInteger
	C language invocation for mqInquireInteger
	Visual Basic invocation for mqInquireInteger

	mqInquireInteger64
	Syntax for mqInquireInteger64
	Parameters for mqInquireInteger64
	C language invocation for mqInquireInteger64
	Visual Basic invocation for mqInquireInteger64

	mqInquireIntegerFilter
	Syntax for mqInquireIntegerFilter
	Parameters for mqInquireIntegerFilter
	C language invocation for mqInquireIntegerFilter
	Visual Basic invocation for mqInquireIntegerFilter

	mqInquireItemInfo
	Syntax for mqInquireItemInfo
	Parameters for mqInquireItemInfo
	C language invocation for mqInquireItemInfo
	Visual Basic invocation for mqInquireItemInfo

	mqInquireString
	Syntax for mqInquireString
	Parameters for mqInquireString
	C language invocation for mqInquireString
	Visual Basic invocation for mqInquireString

	mqInquireStringFilter
	Syntax for mqInquireStringFilter
	Parameters for mqInquireStringFilter
	C language invocation for mqInquireStringFilter
	Visual Basic invocation for mqInquireStringFilter

	mqPad
	Syntax for mqPad
	Parameters for mqPad
	Usage notes for mqPad
	C language invocation for mqPad

	mqPutBag
	Syntax for mqPutBag
	Parameters for mqPutBag
	C language invocation for mqPutBag
	Visual Basic invocation for mqPutBag

	mqSetByteString
	Syntax for mqSetByteString
	Parameters for mqSetByteString
	C language invocation for mqSetByteString
	Visual Basic invocation for mqSetByteString

	mqSetByteStringFilter
	Syntax for mqSetByteStringFilter
	Parameters for mqSetByteStringFilter
	C language invocation for mqSetByteStringFilter
	Visual Basic invocation for mqSetByteStringFilter

	mqSetInteger
	Syntax for mqSetInteger
	Parameters for mqSetInteger
	C language invocation for mqSetInteger
	Visual Basic invocation for mqSetInteger

	mqSetInteger64
	Syntax for mqSetInteger64
	Parameters for mqSetInteger64
	C language invocation for mqSetInteger64
	Visual Basic invocation for mqSetInteger64

	mqSetIntegerFilter
	Syntax for mqSetIntegerFilter
	Parameters for mqSetIntegerFilter
	C language invocation for mqSetIntegerFilter
	Visual Basic invocation for mqSetIntegerFilter

	mqSetString
	Syntax for mqSetString
	Parameters for mqSetString
	Usage notes for mqSetString
	C language invocation for mqSetString
	Visual Basic invocation for mqSetString

	mqSetStringFilter
	Syntax for mqSetStringFilter
	Parameters for mqSetStringFilter
	Usage notes for mqSetStringFilter
	C language invocation for mqSetStringFilter
	Visual Basic invocation for mqSetStringFilter

	mqTrim
	Syntax for mqTrim
	Parameters for mqTrim
	Usage notes for mqTrim
	C language invocation for mqTrim

	mqTruncateBag
	Syntax for mqTruncateBag
	Parameters for mqTruncateBag
	Usage notes for mqTruncateBag
	C language invocation for mqTruncateBag
	Visual Basic invocation for mqTruncateBag

	MQAI Selectors
	User selectors
	System selectors


	Chapter 11. Examples of using the MQAI
	Creating a local queue (amqsaicq.c)
	Displaying events using an event monitor (amqsaiem.c)
	Inquire channel objects (amqsaicl.c)
	Inquiring about queues and printing information (amqsailq.c)

	Chapter 12. Advanced topics
	Indexing
	Data conversion
	Use of the message descriptor

	Part 3. Appendixes
	Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Sending your comments to IBM

