
WebSphere MQ

System Administration Guide
Version 7.0

SC34-6928-01

���

WebSphere MQ

System Administration Guide
Version 7.0

SC34-6928-01

���

Note
Before using this information and the product it supports, be sure to read the general information under notices at the back
of this book.

Second edition (January 2009)

This edition of the book applies to the following product:
v IBM WebSphere MQ, Version 7.0

and to any subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1994, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

Chapter 1. Introduction 1
Introduction to WebSphere MQ 1

WebSphere MQ and message queuing 1
Messages and queues 2
Objects 3
Clients and servers 10
Extending queue manager facilities 11
Security 12
Transactional support 13

An introduction to WebSphere MQ administration 13
Local and remote administration 14
Performing administration tasks using commands 14
Further methods of administration 15
Understanding WebSphere MQ file names . . . 17

Chapter 2. Administration using
WebSphere MQ commands 19
Managing queue managers 19

Using control commands 19
Using the WebSphere MQ Explorer 20
Creating a queue manager 20
Starting a queue manager 25
Stopping a queue manager 25
Restarting a queue manager 27
Deleting a queue manager 27

Administering local WebSphere MQ objects . . . 28
Supporting application programs that use the
MQI 28
Performing local administration tasks using
MQSC commands 29
Working with queue managers 36
Working with local queues 38
Working with alias queues 43
Working with model queues. 45
Working with services 46
Managing objects for triggering. 52

Automating administration tasks 54
PCF commands 54

Administering remote WebSphere MQ objects . . . 57
Channels, clusters, and remote queuing 57
Remote administration from a local queue
manager 59
Creating a local definition of a remote queue . . 65
Using remote queue definitions as aliases . . . 68
Data conversion 69

Chapter 3. Administration using the
WebSphere MQ Explorer 71
Administration using the WebSphere MQ Explorer 71

What you can do with the WebSphere MQ
Explorer 71
Setting up the WebSphere MQ Explorer 73
Using the WebSphere MQ Explorer 79
Security on Windows 81

Extending the WebSphere MQ Explorer 85
Who this chapter is for 85
What you need to know to understand this
chapter 85
Introduction 85
Writing an Eclipse plug-in for the WebSphere
MQ Explorer 86
Applying plug-ins to the WebSphere MQ
Explorer 91

Chapter 4. Configuring WebSphere MQ 93
Configuring WebSphere MQ. 93

Changing configuration information on Windows
systems. 93
Changing configuration information on UNIX
systems. 93
Attributes for changing WebSphere MQ
configuration information 99
Changing queue manager configuration
information 105

WebSphere MQ security 119
Authority to administer WebSphere MQ . . . 120
Authority to work with WebSphere MQ objects 121
Connecting to WebSphere MQ using Terminal
Services 126
Configuring additional authority for Windows
applications connecting to WebSphere MQ . . 126
Creating and managing groups 127
Using the OAM to control access to objects . . 132
Channel security 137
How authorizations work 140
Guidelines for Windows. 153

Transactional support. 156
Introducing units of work 156
Scenario 1: Queue manager performs the
coordination. 157
Scenario 2: Other software provides the
coordination. 182

The WebSphere MQ dead-letter queue handler . . 190
Invoking the DLQ handler 190
The DLQ handler rules table 191
How the rules table is processed 197
An example DLQ handler rules table 199

Supporting the Microsoft Cluster Service (MSCS) 200
Introducing MSCS clusters 201
Setting up WebSphere MQ for MSCS clustering 202
Creating a queue manager for use with MSCS 205
Moving a queue manager to MSCS storage . . 205
Putting a queue manager under MSCS control 207
Summary of looksAlive and isAlive polling . . 209

© Copyright IBM Corp. 1994, 2009 iii

||
||
|
||
|
||
|
||
|
||
||
||
||
|
||
|
||
||
||
||
||
||
||
||
|
||
|
||
||
||
||
||
||
||
||
||
||
||
||
||

Removing a queue manager from MSCS control 209
Hints and tips on using MSCS. 211
WebSphere MQ MSCS support utility programs 214

Chapter 5. Recovery and problem
determination 217
Availability, recovery and restart 217

Making sure that messages are not lost (logging) 217
Using checkpointing to ensure complete
recovery 220
Calculating the size of the log 222
Managing logs 224
Using the log for recovery 227
Protecting WebSphere MQ log files 229
Backing up and restoring WebSphere MQ . . . 230
Recovery scenarios 234
Dumping the contents of the log using the
dmpmqlog command. 236

Problem determination 240
Preliminary checks 240
Looking at problems in more detail 244
Application design considerations 250
Error logs 251
Dead-letter queues 254
Configuration files and problem determination 254
Tracing 255
First-failure support technology (FFST) 264
Problem determination with WebSphere MQ
clients 269
Java diagnostics 269

Chapter 6. WebSphere MQ control
commands 273
How to use WebSphere MQ control commands . . 273

Names of WebSphere MQ objects. 273
Syntax diagrams 274
Example syntax diagram 275
Syntax help 276

The control commands 276
amqccert 277
amqmdain 278
amqtcert 284
crtmqcvx 289
crtmqm 291
dltmqm 296
dmpmqaut 297
dmpmqlog 301
dspmq. 302
dspmqaut 304
dspmqcsv 307
dspmqfls 308
dspmqrte 310
dspmqtrc 318
dspmqtrn. 319
dspmqver 320
endmqcsv 321
endmqlsr 323
endmqdnm 323
endmqm 324
endmqtrc 326

mqftapp 328
mqftrcv 328
mqftrcvc 331
mqftsnd 334
mqftsndc 336
rcdmqimg 338
rcrmqobj 340
rsvmqtrn 342
runmqchi. 343
runmqchl. 344
runmqdlq 345
runmqdnm 346
runmqlsr 348
runmqsc 350
runmqtmc 352
runmqtrm 353
setmqaut 354
setmqcrl 361
setmqprd 362
setmqscp 362
strmqcfg 363
strmqcsv 364
strmqm 365
strmqtrc 367

Managing keys and certificates 373
Preparing to use the gsk7cmd and gsk7capicmd
commands 374
gsk7cmd, runmqckm, and gsk7capicmd
commands 375
gsk7cmd, runmqckm, and gsk7capicmd options 387

Chapter 7. WebSphere MQ installable
services and the API exit 391
Installable services and components 391

Why installable services? 391
Functions and components 392
Initialization. 394
Configuring services and components 394
Creating your own service component 396
Using multiple service components 397

Authorization service. 398
Object authority manager (OAM). 398
Authorization service on UNIX systems . . . 399
Authorization service on Windows systems . . 400
Authorization service interface 401

Name service 402
How the name service works 403

Installable services interface reference information 404
How the functions are shown 404
MQZEP – Add component entry point 405
MQZ_AUTHENTICATE_USER – Authenticate
user 406
MQZ_CHECK_AUTHORITY – Check authority 409
MQZ_CHECK_AUTHORITY_2 – Check
authority (extended) 414
MQZ_COPY_ALL_AUTHORITY – Copy all
authority 419
MQZ_DELETE_AUTHORITY – Delete authority 421
MQZ_ENUMERATE_AUTHORITY_DATA –
Enumerate authority data 424
MQZ_FREE_USER – Free user. 427

iv WebSphere MQ: System Administration Guide

||
||
||

|
||
||
||
|
||
||
||
||
||
||
||
|
||
||
||
||
||
||
||
||
||
||
|
||
||

MQZ_GET_AUTHORITY – Get authority . . . 428
MQZ_GET_AUTHORITY_2 – Get authority
(extended) 431
MQZ_GET_EXPLICIT_AUTHORITY – Get
explicit authority 435
MQZ_GET_EXPLICIT_AUTHORITY_2 – Get
explicit authority (extended) 438
MQZ_INIT_AUTHORITY – Initialize
authorization service 441
MQZ_INQUIRE – Inquire authorization service 443
MQZ_REFRESH_CACHE – Refresh all
authorizations 447
MQZ_SET_AUTHORITY – Set authority . . . 449
MQZ_SET_AUTHORITY_2 – Set authority
(extended) 452
MQZ_TERM_AUTHORITY – Terminate
authorization service 455
MQZAC – Application context 457
MQZAD – Authority data 459
MQZED – Entity descriptor 462
MQZIC – Identity context 464
MQZFP – Free parameters 465
MQZ_DELETE_NAME – Delete name 466
MQZ_INIT_NAME – Initialize name service . . 468
MQZ_INSERT_NAME – Insert name 471
MQZ_LOOKUP_NAME – Lookup name . . . 473
MQZ_TERM_NAME – Terminate name service 475

API exits 477
Why use API exits. 477
How you use API exits 477
What happens when an API exit runs? 479
Configuring API exits 479

API exit reference information 482
General usage notes 483
MQACH – API exit chain header 484
MQAXC – API exit context 486
MQAXP – API exit parameter 490
MQXEP – Register entry point. 498
MQXEPO – Register entry point options . . . 501
MQ_BACK_EXIT – Back out changes 503
MQ_BEGIN_EXIT – Begin unit of work . . . 504
MQ_CALLBACK_EXIT – Callback 505
MQ_CLOSE_EXIT – Close object 506
MQ_CMIT_EXIT – Commit changes 507
MQ_CONNX_EXIT – Connect queue manager
(extended) 508
MQ_DISC_EXIT – Disconnect queue manager 509
MQ_GET_EXIT – Get message 510
MQ_INIT_EXIT – Initialize exit environment 512
MQ_INQ_EXIT – Inquire object attributes . . . 513
MQ_OPEN_EXIT – Open object 514
MQ_PUT_EXIT – Put message. 515
MQ_PUT1_EXIT – Put one message 516
MQ_SET_EXIT – Set object attributes 518
MQ_SUB_EXIT – Register subscription 519
MQ_SUBRQ_EXIT – Subscription request . . . 520
MQ_TERM_EXIT – Terminate exit environment 521

Chapter 8. System and default objects 523
Windows default configuration objects 525
SYSTEM.BASE.TOPIC 527

Chapter 9. Directory structure
(Windows systems) 529

Chapter 10. Directory structure (UNIX
systems) 531

Chapter 11. Stopping and removing
queue managers manually. 537
Stopping a queue manager manually 537

Stopping queue managers in WebSphere MQ for
Windows 537
Stopping queue managers in WebSphere MQ for
UNIX systems 538

Removing queue managers manually 538
Removing queue managers in WebSphere MQ
for Windows 539
Removing queue managers in WebSphere MQ
for UNIX systems 540

Chapter 12. File Transfer Application 541
Introduction 541

Advantages 541
Components. 542

Installing and configuring 542
Installing the File Transfer Application on a
WebSphere MQ server 542
Installing the File Transfer Application on a
WebSphere MQ client 543
Setup tasks 544
Configuring the GUI 548
File Transfer Application channel security . . . 549

Using the File Transfer Application 549
Sending a file 549
Receiving a file 549
Listing all sent and received files 550
File status 550
Using the command line 551

Chapter 13. Comparing command sets 553
Queue manager commands. 553
Command server commands 553
Authority commands 554
Cluster commands 554
Authentication information commands 554
Channel commands 555
Listener commands 555
Namelist commands 555
Process commands 556
Queue commands 556
Service commands. 557
Other commands 557

Chapter 14. WebSphere MQ and UNIX
System V IPC resources. 559
Clearing WebSphere MQ shared memory resources 559
Shared memory on AIX 560

Contents v

||

||

||
||

||
||
||

|
||

|
||

|
||
||
|
||
|
||
||
|
||
|
||

||
||
||
||
||
||
||
||
||
||
||
||
||

|
||
||
||

Chapter 15. WebSphere MQ and UNIX
Process Priority 561

Chapter 16. Common Criteria 563

Notices 565

Index 569

Sending your comments to IBM . . . 585

vi WebSphere MQ: System Administration Guide

|
||

||

Figures

1. Queues, messages, and applications 29
2. Extract from an MQSC command file 33
3. Extract from an MQSC command report file 34
4. Example script for running MQSC commands

from a batch file 35
5. Typical output from a DISPLAY QMGR

command 37
6. Typical results from queue browser 42
7. Remote administration using MQSC

commands 60
8. Setting up channels and queues for remote

administration 61
9. Example of a WebSphere MQ configuration file

for UNIX systems 96
10. Example queue manager configuration file for

WebSphere MQ for UNIX systems 98
11. Sample XAResourceManager entry for DB2

on UNIX platforms 166
12. Sample XAResourceManager entry for Oracle

on UNIX platforms 169
13. Sample XAResourceManager entry for

Informix on UNIX platforms 171
14. Example contents of $SYBASE/

$SYBASE_OCS/xa_config 172
15. Sample XAResourceManager entry for Sybase

on UNIX platforms 173
16. Sample XAResourceManager entries for

multiple DB2 databases 174
17. Sample XAResourceManager entries for a

DB2 and Oracle database 174
18. Sample dspmqtrn output 177

19. Commented- out XAResourceManager stanza
on UNIX systems 179

20. Two-computer MSCS cluster 202
21. Checkpointing 221
22. Checkpointing with a long-running

transaction 222
23. Sample WebSphere MQ error log 253
24. Sample WebSphere MQ for Windows trace 256
25. Sample WebSphere MQ for HP-UX trace 258
26. Sample WebSphere MQ for Solaris trace 259
27. Sample WebSphere MQ for Linux trace 260
28. Sample WebSphere MQ for AIX trace 261
29. Sample WebSphere MQ for AIX trace 264
30. Sample WebSphere MQ for Windows First

Failure Symptom Report 266
31. FFST report for WebSphere MQ for UNIX

systems 268
32. Sample com.ibm.mq.commonservices

properties file 271
33. Understanding services, components, and

entry points 393
34. UNIX authorization service stanzas in qm.ini 400
35. Name service stanzas in qm.ini (for UNIX

systems) 404
36. Default directory structure (UNIX systems)

after a queue manager has been started . . . 532
37. Using the File Transfer Application to send

files between remote queue managers . . . 545
38. Using the File Transfer Application to send

files between a queue manager and a remote
client 547

© Copyright IBM Corp. 1994, 2009 vii

|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
||

|
||
||
||
|
||
||
||
||
||
||
||
||
|
||
|
||
|
||

|
||

viii WebSphere MQ: System Administration Guide

Tables

1. Categories of control commands 19
2. User rights required to launch AMQMSRVN 82
3. List of possible ISO CCSIDs. 100
4. Default outstanding connection requests

(TCP) 116
5. Default outstanding connection requests (SPX) 117
6. Security authorization needed for MQCONN

calls. 142
7. Security authorization needed for MQOPEN

calls. 142
8. Security authorization needed for MQPUT1

calls. 142
9. Security authorization needed for MQCLOSE

calls. 143
10. What happens when a database server

crashes. 158
11. What happens when an application program

crashes. 159
12. XA switch function pointers. 160
13. Summary of XA function calls 181
14. XA switch load file names 183
15. Alternative 64-bit XA switch load file names 183
16. 64-bit transaction managers that require the

alternate 64-bit switch load file. 184
17. Essential code for CICS applications: XA

initialization routine 186
18. CICS task termination exits 189
19. Log overhead sizes (all values are

approximate). 223
20. Queue manager error log directory 251
21. System error log directory 251
22. Client error log directory. 252
23. How to read railroad diagrams 274
24. Specifying authorities for different object

types 305
25. Specifying authorities for different object

types 358
26. 372

27. 372
28. Options that can be used with gsk7cmd,

runmqckm , and gsk7capicmd 387
29. Installable service components summary 392
30. Example of entry-points for an installable

service 398
31. System and default objects: queues 523
32. System and default objects: topics. 524
33. System and default objects: channels 524
34. System and default objects: authentication

information objects. 525
35. System and default objects: listeners 525
36. System and default objects: namelists 525
37. System and default objects: processes 525
38. System and default objects: services 525
39. Objects created by the Windows default

configuration application. 526
40. Default values of SYSTEM.BASE.TOPIC 527
41. WebSphere MQ for Windows directory

structure 529
42. Content of a \queue-manager-name\ folder

for WebSphere MQ for Windows 530
43. Default content of a /var/mqm/qmgrs/qmname/

directory on UNIX systems 532
44. File Transfer Application command files 551
45. Queue manager commands 553
46. Commands for command server

administration 553
47. Commands for authority administration 554
48. Cluster commands 554
49. Authentication information commands 554
50. Channel commands 555
51. Listener commands 555
52. Namelist commands 555
53. Process commands 556
54. Queue commands 556
55. Service commands 557
56. Other commands 557

© Copyright IBM Corp. 1994, 2009 ix

||
|
||
||
|
||
|
||
|
||
|
||
|
||
|
||
||
||
||
||
|
||
|
||
||
|
||
||
||
||

||

||
|
||

||
||
||
|
||
||
||
||
||
|
||
||
|
||
|
||
|
||
||
||
|
||
||
||
||
||
||
||
||
||
||
||

x WebSphere MQ: System Administration Guide

Chapter 1. Introduction

Introduction to WebSphere MQ

This section introduces WebSphere® MQ Version 7 from an administrator’s
perspective, and describes the basic concepts of WebSphere MQ and messaging on
UNIX and Windows systems. It contains these sections:
v “WebSphere MQ and message queuing”
v “Messages and queues” on page 2
v “Objects” on page 3
v “Clients and servers” on page 10
v “Extending queue manager facilities” on page 11
v “Security” on page 12
v “Transactional support” on page 13

For WebSphere MQ on z/OS system administration information, see the WebSphere
MQ z/OS System Administration Guide; for WebSphere MQ on i5/OS system
administration information, see the WebSphere MQ on i5/OS System Administration
Guide.

WebSphere MQ and message queuing

WebSphere MQ allows application programs to use message queuing to participate
in message-driven processing. Application programs can communicate across
different platforms by using the appropriate message queuing software products.
For example, HP-UX and z/OS® applications can communicate through WebSphere
MQ for HP-UX and WebSphere MQ for z/OS respectively. The applications are
shielded from the mechanics of the underlying communications.

WebSphere MQ implements a common application programming interface known
as the message queue interface (or MQI) wherever the applications run. This makes it
easier for you to port application programs from one platform to another.

The MQI is described in detail in the WebSphere MQ Application Programming
Reference.

Time-independent applications

With message queuing, the exchange of messages between the sending and
receiving programs is independent of time. This means that the sending and
receiving application programs are decoupled; the sender can continue processing
without having to wait for the receiver to acknowledge receipt of the message. The
target application does not even have to be running when the message is sent. It
can retrieve the message after it is has been started.

Message-driven processing

When messages arrive on a queue, they can automatically start an application
using triggering. If necessary, the applications can be stopped when the message (or
messages) have been processed.

© Copyright IBM Corp. 1994, 2009 1

Messages and queues

Messages and queues are the basic components of a message queuing system.

What is a message?

A message is a string of bytes that is meaningful to the applications that use it.
Messages are used to transfer information from one application program to another
(or between different parts of the same application). The applications can be
running on the same platform, or on different platforms.

WebSphere MQ messages have two parts:
v The application data. The content and structure of the application data is defined

by the application programs that use it.
v A message descriptor. The message descriptor identifies the message and contains

additional control information, such as the type of message and the priority
assigned to the message by the sending application.
The format of the message descriptor is defined by WebSphere MQ. For a
complete description of the message descriptor, see the WebSphere MQ
Application Programming Reference manual.

Message lengths:

The default maximum message length is 4 MB, although you can increase this to a
maximum length of 100 MB (where 1 MB equals 1 048 576 bytes). In practice, the
message length might be limited by:
v The maximum message length defined for the receiving queue
v The maximum message length defined for the queue manager
v The maximum message length defined by the queue
v The maximum message length defined by either the sending or receiving

application
v The amount of storage available for the message

It might take several messages to send all the information that an application
requires.

How do applications send and receive messages?:

Application programs send and receive messages using MQI calls.

For example, to put a message onto a queue, an application:
1. Opens the required queue by issuing an MQI MQOPEN call
2. Issues an MQI MQPUT call to put the message onto the queue

Another application can retrieve the message from the same queue by issuing an
MQI MQGET call

For more information about MQI calls, see the WebSphere MQ Application
Programming Reference.

What is a queue?

A queue is a data structure used to store messages.

2 WebSphere MQ: System Administration Guide

Each queue is owned by a queue manager. The queue manager is responsible for
maintaining the queues it owns, and for storing all the messages it receives onto
the appropriate queues. The messages might be put on the queue by application
programs, or by a queue manager as part of its normal operation.

WebSphere MQ Version 7.0 supports queues over 2 GB in size; “Enabling large
queues” on page 43 discusses this in more detail. For information about planning
the amount of storage you need for queues, see the Quick Beginnings guide for
your platform, or visit the WebSphere MQ Web site for platform-specific
performance reports:
http://www.ibm.com/software/integration/ts/mqseries/

Predefined queues and dynamic queues:

Queues can be characterized by the way they are created:
v Predefined queues are created by an administrator using the appropriate MQSC

or PCF commands. Predefined queues are permanent; they exist independently
of the applications that use them and survive WebSphere MQ restarts.

v Dynamic queues are created when an application issues an MQOPEN request
specifying the name of a model queue. The queue created is based on a template
queue definition, which is called a model queue. You can create a model queue
using the MQSC command DEFINE QMODEL. The attributes of a model queue
(for example, the maximum number of messages that can be stored on it) are
inherited by any dynamic queue that is created from it.
Model queues have an attribute that specifies whether the dynamic queue is to
be permanent or temporary. Permanent queues survive application and queue
manager restarts; temporary queues are lost on restart.

Retrieving messages from queues:

Suitably authorized applications can retrieve messages from a queue according to
the following retrieval algorithms:
v First-in-first-out (FIFO).
v Message priority, as defined in the message descriptor. Messages that have the

same priority are retrieved on a FIFO basis.
v A program request for a specific message.

The MQGET request from the application determines the method used.

Objects

Many of the tasks described in this book involve manipulating WebSphere MQ
objects. The object types are queue managers, queues, process definitions,
namelists, channels, client connection channels, listeners, services, and
authentication information objects.

The manipulation or administration of objects includes:
v Starting and stopping queue managers.
v Creating objects, particularly queues, for applications.
v Working with channels to create communication paths to queue managers on

other (remote) systems. This is described in detail in WebSphere MQ
Intercommunication.

Chapter 1. Introduction 3

v Creating clusters of queue managers to simplify the overall administration
process, and to balance workload.

This book contains detailed information about administration in the following
chapters:
v “An introduction to WebSphere MQ administration” on page 13
v “Managing queue managers” on page 19
v “Administering local WebSphere MQ objects” on page 28
v “Automating administration tasks” on page 54
v “Administering remote WebSphere MQ objects” on page 57
v “Administration using the WebSphere MQ Explorer” on page 71

Object names

The naming convention adopted for WebSphere MQ objects depends on the object.

Each instance of a queue manager is known by its name. This name must be
unique within the network of interconnected queue managers, so that one queue
manager can unambiguously identify the target queue manager to which any
given message is sent.

For the other types of object, each object has a name associated with it and can be
referred to by that name. These names must be unique within one queue manager
and object type. For example, you can have a queue and a process with the same
name, but you cannot have two queues with the same name.

In WebSphere MQ, names can have a maximum of 48 characters, with the
exception of channels which have a maximum of 20 characters. For more
information about names, see “Names of WebSphere MQ objects” on page 273.

Managing objects

You can create, alter, display, and delete objects using:
v Control commands, which are typed in from a keyboard
v MQSC commands, which can be typed in from a keyboard or read from a file
v Programmable Command Format (PCF) messages, which can be used in an

automation program
v WebSphere MQ Administration Interface (MQAI) calls in a program
v The WebSphere MQ Explorer
v WebSphere MQ for Windows® only:

– MQAI Component Object Model (COM) calls in a program
– Active Directory Service interface (ADSI) calls in a program
– The Windows Default Configuration Application

For more information about these methods, see “An introduction to WebSphere
MQ administration” on page 13.

Object attributes

The properties of an object are defined by its attributes. Some you can specify,
others you can only view. For example, the maximum message length that a queue
can accommodate is defined by its MaxMsgLength attribute; you can specify this

4 WebSphere MQ: System Administration Guide

attribute when you create a queue. The DefinitionType attribute specifies how the
queue was created; you can only display this attribute.

In WebSphere MQ, there are two ways of referring to an attribute:
v Using its PCF name, for example, MaxMsgLength.
v Using its MQSC command name, for example, MAXMSGL.

This book mainly describes how to specify attributes using MQSC commands, and
so it refers to most attributes using their MQSC command names, rather than their
PCF names.

WebSphere MQ queues
There are four types of queue object available in WebSphere MQ; the local queue
object, the remote queue object, the alias queue object, and the model queue object.

These four types of queue object are described in the following section.

Local queue object
A local queue object identifies a local queue belonging to the queue
manager to which the application is connected. All queues are local queues
in the sense that each queue belongs to a queue manager and, for that
queue manager, the queue is a local queue.

Remote queue object
A remote queue object identifies a queue belonging to another queue
manager. This queue must be defined as a local queue to that queue
manager. The information you specify when you define a remote queue
object allows the local queue manager to find the remote queue manager,
so that any messages destined for the remote queue go to the correct
queue manager.

Before applications can send messages to a queue on another queue
manager, you must have defined a transmission queue and channels
between the queue managers, unless you have grouped one or more queue
managers together into a cluster. For more information about clusters, see
“Remote administration using clusters” on page 58.

Alias queue object
An alias queue allows applications to access a queue by referring to it
indirectly in MQI calls. When an alias queue name is used in an MQI call,
the name is resolved to the name of either a local or a remote queue at run
time. This allows you to change the queues that applications use without
changing the application in any way; you merely change the alias queue
definition to reflect the name of the new queue to which the alias resolves.

An alias queue is not a queue, but an object that you can use to access
another queue.

Model queue object
A model queue defines a set of queue attributes that are used as a template
for creating a dynamic queue. Dynamic queues are created by the queue
manager when an application issues an MQOPEN request specifying a
queue name that is the name of a model queue. The dynamic queue that is
created in this way is a local queue whose attributes are taken from the
model queue definition. The dynamic queue name can be specified by the
application, or the queue manager can generate the name and return it to
the application.

Chapter 1. Introduction 5

Dynamic queues defined in this way can be temporary queues, which do
not survive product restarts, or permanent queues, which do.

Defining queues:

Queues are defined to WebSphere MQ using:
v The MQSC command DEFINE
v The PCF Create Queue command

The commands specify the type of queue and its attributes. For example, a local
queue object has attributes that specify what happens when applications reference
that queue in MQI calls. Examples of attributes are:
v Whether applications can retrieve messages from the queue (GET enabled)
v Whether applications can put messages on the queue (PUT enabled)
v Whether access to the queue is exclusive to one application or shared between

applications
v The maximum number of messages that can be stored on the queue at the same

time (maximum queue depth)
v The maximum length of messages that can be put on the queue

For further details about defining queue objects, see the WebSphere MQ Script
(MQSC) Command Reference or WebSphere MQ Programmable Command
Formats and Administration Interface.

Queues used by WebSphere MQ:

WebSphere MQ uses some local queues for specific purposes related to its
operation. You must define these queues before WebSphere MQ can use them.

Initiation queues
Initiation queues are queues that are used in triggering. A queue manager
puts a trigger message on an initiation queue when a trigger event occurs.
A trigger event is a logical combination of conditions that is detected by a
queue manager. For example, a trigger event might be generated when the
number of messages on a queue reaches a predefined depth. This event
causes the queue manager to put a trigger message on a specified initiation
queue. This trigger message is retrieved by a trigger monitor, a special
application that monitors an initiation queue. The trigger monitor then
starts the application program that was specified in the trigger message.

If a queue manager is to use triggering, at least one initiation queue must
be defined for that queue manager. See “Managing objects for triggering”
on page 52 and “runmqtrm” on page 353. For more information about
triggering, see the WebSphere MQ Application Programming Guide.

Transmission queues
Transmission queues are queues that temporarily store messages that are
destined for a remote queue manager. You must define at least one
transmission queue for each remote queue manager to which the local
queue manager is to send messages directly. These queues are also used in
remote administration; see “Remote administration from a local queue
manager” on page 59. For information about the use of transmission
queues in distributed queuing, see WebSphere MQ Intercommunication.

Each queue manager can have a default transmission queue. When a
queue manager that is not part of a cluster puts a message onto a remote

6 WebSphere MQ: System Administration Guide

queue, the default action, if there is no transmission queue with the same
name as the destination queue manager, is to use the default transmission
queue.

Cluster transmission queues
Each queue manager within a cluster has a cluster transmission queue
called SYSTEM.CLUSTER.TRANSMIT.QUEUE. A definition of this queue is
created by default when you define a queue manager.

A queue manager that is part of the cluster can send messages on the
cluster transmission queue to any other queue manager that is in the same
cluster.

During name resolution, the cluster transmission queue takes precedence
over the default transmission queue.

When a queue manager is part of a cluster, the default action is to use the
SYSTEM.CLUSTER.TRANSMIT.QUEUE, except when the destination
queue manager is not part of the cluster.

Dead-letter queues
A dead-letter (undelivered-message) queue is a queue that stores messages
that cannot be routed to their correct destinations. This occurs when, for
example, the destination queue is full. The supplied dead-letter queue is
called SYSTEM.DEAD.LETTER.QUEUE.

For distributed queuing, define a dead-letter queue on each queue
manager involved.

Command queues
The command queue, SYSTEM.ADMIN.COMMAND.QUEUE, is a local
queue to which suitably authorized applications can send MQSC
commands for processing. These commands are then retrieved by a
WebSphere MQ component called the command server. The command
server validates the commands, passes the valid ones on for processing by
the queue manager, and returns any responses to the appropriate reply-to
queue.

A command queue is created automatically for each queue manager when
that queue manager is created.

Reply-to queues
When an application sends a request message, the application that receives
the message can send back a reply message to the sending application.
This message is put on a queue, called a reply-to queue, which is normally
a local queue to the sending application. The name of the reply-to queue is
specified by the sending application as part of the message descriptor.

Event queues
Instrumentation events can be used to monitor queue managers
independently of MQI applications.

When an instrumentation event occurs, the queue manager puts an event
message on an event queue. This message can then be read by a
monitoring application, which might inform an administrator or initiate
some remedial action if the event indicates a problem.

Note: Trigger events are quite different from instrumentation events in that
trigger events are not caused by the same conditions, and do not generate
event messages.

Chapter 1. Introduction 7

For more information about instrumentation events, see Monitoring
WebSphere MQ.

WebSphere MQ queue managers

A queue manager provides queuing services to applications, and manages the
queues that belong to it. It ensures that:
v Object attributes are changed according to the commands received.
v Special events such as trigger events or instrumentation events are generated

when the appropriate conditions are met.
v Messages are put on the correct queue, as requested by the application making

the MQPUT call. The application is informed if this cannot be done, and an
appropriate reason code is given.

Each queue belongs to a single queue manager and is said to be a local queue to
that queue manager. The queue manager to which an application is connected is
said to be the local queue manager for that application. For the application, the
queues that belong to its local queue manager are local queues.

A remote queue is a queue that belongs to another queue manager. A remote queue
manager is any queue manager other than the local queue manager. A remote
queue manager can exist on a remote machine across the network, or might exist
on the same machine as the local queue manager. WebSphere MQ supports
multiple queue managers on the same machine.

A queue manager object can be used in some MQI calls. For example, you can
inquire about the attributes of the queue manager object using the MQI call
MQINQ.

Process definitions

A process definition object defines an application that starts in response to a trigger
event on a WebSphere MQ queue manager. See the “Initiation queues” entry under
“Queues used by WebSphere MQ” on page 6 for more information.

The process definition attributes include the application ID, the application type,
and data specific to the application.

Clusters

In a traditional WebSphere MQ network using distributed queuing, every queue
manager is independent. If one queue manager needs to send messages to another
queue manager, it must define a transmission queue, a channel to the remote
queue manager, and a remote queue definition for every queue to which it wants
to send messages.

A cluster is a group of queue managers set up in such a way that the queue
managers can communicate directly with one another over a single network,
without the need for transmission queue, channel, and remote queue definitions.

For information about clusters, see “Administering remote WebSphere MQ objects”
on page 57, and WebSphere MQ Queue Manager Clusters.

8 WebSphere MQ: System Administration Guide

Namelists

A namelist is a WebSphere MQ object that contains a list of other WebSphere MQ
objects. Typically, namelists are used by applications such as trigger monitors,
where they are used to identify a group of queues. The advantage of using a
namelist is that it is maintained independently of applications; it can be updated
without stopping any of the applications that use it. Also, if one application fails,
the namelist is not affected and other applications can continue using it.

Namelists are also used with queue manager clusters to maintain a list of clusters
referred to by more than one WebSphere MQ object.

Authentication information objects

The queue manager authentication information object forms part of WebSphere
MQ support for Secure Sockets Layer (SSL) security. It provides the definitions
needed to check certificate revocation lists (CRLs) using LDAP servers. CRLs allow
Certification Authorities to revoke certificates that can no longer be trusted.

This book describes using the setmqaut, dspmqaut, dmpmqaut, rcrmqobj,
rcdmqimg, and dspmqfls commands with the authentication information object.
For an overview of SSL and the use of the authentication information objects, see
WebSphere MQ Security.

Channels

Channels are objects that provide a communication path from one queue manager
to another. Channels are used in distributed queuing to move messages from one
queue manager to another. They shield applications from the underlying
communications protocols. The queue managers might exist on the same, or
different, platforms. For queue managers to communicate with one another, you
must define one channel object at the queue manager that is to send messages, and
another, complementary one, at the queue manager that is to receive them.

For information on channels and how to use them, see WebSphere MQ
Intercommunication.

Client connection channels

Client connection channels are objects that provide a communication path from a
WebSphere MQ client to a queue manager. Client connection channels are used in
distributed queuing to move messages between a queue manager and a client.
They shield applications from the underlying communications protocols. The client
might exist on the same, or different, platform to the queue manager.

For information on client connection channels and how to use them, see
WebSphere MQ Intercommunication.

Listeners

Listeners are processes that accept network requests from other queue managers, or
client applications, and start associated channels. Listener processes can be started
using the runmqlsr control command.

Listener objects are WebSphere MQ objects that allow you to manage the starting
and stopping of listener processes from within the scope of a queue manager. By
defining attributes of a listener object you do the following:

Chapter 1. Introduction 9

v Configure the listener process.
v Specify whether the listener process automatically starts and stops when the

queue manager starts and stops.

Services

Service objects are a way of defining programs to be executed when a queue
manager starts or stops. The programs can be split into the following types:

Servers
A server is a service object that has the parameter SERVTYPE specified as
SERVER. A server service object is the definition of a program that will be
executed when a specified queue manager is started. Only one instance of
a server process can be executed concurrently. While running, the status of
a server process can be monitored using the MQSC command, DISPLAY
SVSTATUS. Typically server service objects are definitions of programs
such as dead letter handlers or trigger monitors, however the programs
that can be run are not limited to those supplied with WebSphere MQ.
Additionally, a server service object can be defined to include a command
that will be run when the specified queue manager is shutdown to end the
program.

Commands
A command is a service object that has the parameter SERVTYPE specified
as COMMAND. A command service object is the definition of a program
that will be executed when a specified queue manager is started or
stopped. Multiple instances of a command process can be executed
concurrently. Command service objects differ from server service objects in
that once the program is executed the queue manager will not monitor the
program. Typically command service objects are definitions of programs
that are short lived and will perform a specific task such as starting one, or
more, other tasks.

System default objects

The system default objects are a set of object definitions that are created
automatically whenever a queue manager is created. You can copy and modify any
of these object definitions for use in applications at your installation.

Default object names have the stem SYSTEM; for example, the default local queue
is SYSTEM.DEFAULT.LOCAL.QUEUE, and the default receiver channel is
SYSTEM.DEF.RECEIVER. You cannot rename these objects; default objects of these
names are required.

When you define an object, any attributes that you do not specify explicitly are
copied from the appropriate default object. For example, if you define a local
queue, those attributes that you do not specify are taken from the default queue
SYSTEM.DEFAULT.LOCAL.QUEUE.

See Chapter 8, “System and default objects,” on page 523 for more information
about system defaults.

Clients and servers

WebSphere MQ supports client-server configurations for its applications.

10 WebSphere MQ: System Administration Guide

A WebSphere MQ client is a component that allows an application running on a
system to issue MQI calls to a queue manager running on another system. The
output from the call is sent back to the client, which passes it back to the
application.

A WebSphere MQ server is a queue manager that provides queuing services to one
or more clients. All the WebSphere MQ objects, for example queues, exist only on
the queue manager machine (the WebSphere MQ server machine), and not on the
client. A WebSphere MQ server can also support local WebSphere MQ applications.

The difference between a WebSphere MQ server and an ordinary queue manager is
that a server has a dedicated communications link with each client. For more
information about creating channels for clients and servers, see WebSphere MQ
Intercommunication.

For information about client support in general, see WebSphere MQ Clients.

WebSphere MQ applications in a client-server environment

When linked to a server, client WebSphere MQ applications can issue most MQI
calls in the same way as local applications. The client application issues an
MQCONN call to connect to a specified queue manager. Any additional MQI calls
that specify the connection handle returned from the connect request are then
processed by this queue manager.

You must link your applications to the appropriate client libraries. See WebSphere
MQ Clients for further information.

Extending queue manager facilities

The facilities provided by a queue manager can be extended by:
v User exits
v API exits
v Installable services

See “Installable services and components” on page 391 for more information about
the installable services.

User exits

User exits provide a mechanism for you to insert your own code into a queue
manager function. The user exits supported include:

Channel exits
These exits change the way that channels operate. Channel exits are
described in WebSphere MQ Intercommunication.

Data conversion exits
These exits create source code fragments that can be put into application
programs to convert data from one format to another. Data conversion
exits are described in the WebSphere MQ Application Programming Guide.

The cluster workload exit
The function performed by this exit is defined by the provider of the exit.
Call definition information is given in WebSphere MQ Queue Manager
Clusters.

Chapter 1. Introduction 11

API exits

API exits let you write code that changes the behavior of WebSphere MQ API calls,
such as MQPUT and MQGET, and then insert that code immediately before or
immediately after those calls. The insertion is automatic; the queue manager drives
the exit code at the registered points. For more information about API exits, see
“API exits” on page 477 and the WebSphere MQ Application Programming Guide.

Installable services

Installable services have formalized interfaces (an API) with multiple entry points.

An implementation of an installable service is called a service component. You can
use the components supplied with WebSphere MQ, or you can write your own
component to perform the functions that you require.

Currently, the following installable services are provided:

Authorization service
The authorization service allows you to build your own security facility.

The default service component that implements the service is the Object
Authority Manager (OAM). By default, the OAM is active, and you do not
have to do anything to configure it. You can use the authorization service
interface to create other components to replace or augment the OAM. For
more information about the OAM, see “WebSphere MQ security” on page
119.

Name service
The name service enables applications to share queues by identifying
remote queues as though they were local queues.

You can write your own name service component. You might want to do
this if you intend to use the name service with WebSphere MQ, for
example. To use the name service you must have either a component that
is either user-written, or supplied by a different software vendor. By
default, the name service is inactive.

Security

In WebSphere MQ, there are three methods of providing security:
v The Object Authority Manager (OAM) facility
v User-written, or third party, channel exits
v Channel security using Secure Sockets Layer (SSL)

Object Authority Manager (OAM) facility

Authorization for using MQI calls, commands, and access to objects is provided by
the Object Authority Manager (OAM), which by default is enabled. Access to
WebSphere MQ entities is controlled through WebSphere MQ user groups and the
OAM. We provide a command line interface to enable administrators to grant or
revoke authorizations as required.

For more information about creating authorization service components, see
“WebSphere MQ security” on page 119.

12 WebSphere MQ: System Administration Guide

|
|
|
|
|

User-written or third party channel exits

Channels can use user-written or third party channel exits. For more information,
see WebSphere MQ Intercommunication.

Channel security using SSL

The Secure Sockets Layer (SSL) protocol provides industry-standard channel
security, with protection against eavesdropping, tampering, and impersonation.

SSL uses public key and symmetric techniques to provide message privacy and
integrity and mutual authentication.

For a comprehensive review of security in WebSphere MQ including detailed
information on SSL, see WebSphere MQ Security. For an overview of SSL,
including pointers to the commands described in this book, see “Protecting
channels with SSL” on page 139.

Transactional support

An application program can group a set of updates into a unit of work. These
updates are usually logically related and must all be successful for data integrity to
be preserved. If one update succeeds while another fails, data integrity is lost.

When a unit of work completes successfully, it is said to commit. Once committed,
all updates made within that unit of work are made permanent and irreversible.
However, if the unit of work fails, all updates are instead backed out. This process,
where units of work are either committed or backed out with integrity, is known
as syncpoint coordination.

A local unit of work is one in which the only resources updated are those of the
WebSphere MQ queue manager. Here syncpoint coordination is provided by the
queue manager itself using a single-phase commit process.

A global unit of work is one in which resources belonging to other resource
managers, such as XA-compliant databases, are also updated. Here, a two-phase
commit procedure must be used and the unit of work can be coordinated by the
queue manager itself, or externally by another XA-compliant transaction manager
such as IBM® TXSeries®, or BEA Tuxedo.

For more information, see “Transactional support” on page 156.

WebSphere MQ also provides support for the Microsoft® Transaction Server
(COM+). “Using the Microsoft Transaction Server (COM+)” on page 189 provides
information on how to set up WebSphere MQ to take advantage of COM+ support.

An introduction to WebSphere MQ administration

This chapter introduces WebSphere MQ administration.

Administration tasks include creating, starting, altering, viewing, stopping, and
deleting clusters, processes and WebSphere MQ objects (queue managers, queues,
namelists, process definitions, channels, client connection channels, listeners,
services, and authentication information objects).

Chapter 1. Introduction 13

The chapter contains the following sections:
v “Local and remote administration”
v “Performing administration tasks using commands”
v “Further methods of administration” on page 15
v “Understanding WebSphere MQ file names” on page 17

Local and remote administration

You administer WebSphere MQ objects locally or remotely.

Local administration means carrying out administration tasks on any queue
managers you have defined on your local system. You can access other systems,
for example through the TCP/IP terminal emulation program telnet, and carry out
administration there. In WebSphere MQ, you can consider this as local
administration because no channels are involved, that is, the communication is
managed by the operating system.

WebSphere MQ supports administration from a single point of contact through
what is known as remote administration. This allows you to issue commands from
your local system that are processed on another system. For example, you can
issue a remote command to change a queue definition on a remote queue manager.
You do not have to log on to that system, although you do need to have the
appropriate channels defined. The queue manager and command server on the
target system must be running.

Some commands cannot be issued in this way, in particular, creating or starting
queue managers and starting command servers. To perform this type of task, you
must either log onto the remote system and issue the commands from there or
create a process that can issue the commands for you.

“Administering remote WebSphere MQ objects” on page 57 describes the subject of
remote administration in greater detail.

Performing administration tasks using commands

There are three sets of commands that you can use to administer WebSphere MQ:
control commands, MQSC commands, and PCF commands. These command sets
are available on all platforms covered by this book.

Control commands

Control commands allow you to perform administrative tasks on queue managers
themselves.

They are described in “Managing queue managers” on page 19.

WebSphere MQ Script (MQSC) commands

Use MQSC commands to manage queue manager objects, including the queue
manager itself, queues, process definitions, namelists, channels, client connection
channels, listeners, services, and authentication information objects.

You issue MQSC commands to a queue manager using the runmqsc command.
You can do this interactively, issuing commands from a keyboard, or you can

14 WebSphere MQ: System Administration Guide

redirect the standard input device (stdin) to run a sequence of commands from an
ASCII text file. In both cases, the format of the commands is the same.

You can run the runmqsc command in three modes, depending on the flags set on
the command:
v Verification mode, where the MQSC commands are verified on a local queue

manager, but are not actually run
v Direct mode, where the MQSC commands are run on a local queue manager
v Indirect mode, where the MQSC commands are run on a remote queue manager

Object attributes specified in MQSC commands are shown in this book in
uppercase (for example, RQMNAME), although they are not case sensitive. MQSC
command attribute names are limited to eight characters.

MQSC commands are available on other platforms, including i5/OS®, and z/OS.
MQSC commands are summarized in Chapter 13, “Comparing command sets,” on
page 553.

The WebSphere MQ Script (MQSC) Command Reference contains a description of
each MQSC command and its syntax.

See “Performing local administration tasks using MQSC commands” on page 29
for more information about using MQSC commands in local administration.

PCF commands

WebSphere MQ programmable command format (PCF) commands allow
administration tasks to be programmed into an administration program. In this
way you can create queues and process definitions, and change queue managers,
from a program.

PCF commands cover the same range of functions provided by the MQSC
commands. See “PCF commands” on page 54 for more information.

You can use the WebSphere MQ Administration Interface (MQAI) to obtain easier
programming access to PCF messages. This is described in greater detail in “Using
the MQAI to simplify the use of PCFs” on page 55.

Further methods of administration

In addition to the available command sets, there are further methods of
administration:
v The WebSphere MQ Explorer
v The Windows Default Configuration application (WebSphere MQ for Windows

only)
v Use of the Microsoft Cluster Service (MSCS) (WebSphere MQ for Windows only)

Using the WebSphere MQ Explorer
The WebSphere MQ Explorer is an application that runs under the Eclipse platform
and is available with WebSphere MQ for Windows and WebSphere MQ for Linux®

(x86 platform). The WebSphere MQ Explorer can be used to administer local or
remote queue managers on any supported platform. It provides a graphical user
interface for controlling resources in a network.

Chapter 1. Introduction 15

The WebSphere MQ Explorer is an application that runs under the Eclipse platform
and is available with WebSphere MQ for Windows and WebSphere MQ for Linux
(x86 platform). The WebSphere MQ Explorer can be used to administer local queue
managers, or used to administer remote queue managers on any supported
platform. It provides a graphical user interface for controlling resources in a
network. Using the WebSphere MQ Explorer, you can:
v Define and control various resources including queue managers, queues, process

definitions, namelists, channels, client connection channels, listeners, services,
and clusters.

v Start or stop a local queue manager and its associated processes.
v View queue managers and their associated objects on your workstation or from

other workstations.
v Check the status of queue managers, clusters, and channels.
v Check to see which applications, users, or channels have a particular queue

open, from the queue status.

You can invoke the WebSphere MQ Explorer using the strmqcfg command, and on
Windows from the WebSphere MQ Taskbar application, or from the Windows Start
prompt.

On Linux, the WebSphere MQ Explorer might fail to start if you have more than
one Eclipse installation. If this happens, start the WebSphere MQ Explorer using a
different user ID to the one you use for the other Eclipse installation.

On Linux, to start the WebSphere MQ Explorer successfully, you must be able to
write a file to your home directory, and the home directory must exist.

See “Administration using the WebSphere MQ Explorer” on page 71 for more
information.

Using the Windows Default Configuration application

You can use the Windows Default Configuration program from the Prepare
WebSphere MQ Wizard to create a starter (or default) set of WebSphere MQ
objects. A summary of the default objects created is listed in Table 39 on page 526.

Using the Microsoft Cluster Service (MSCS)

Microsoft Cluster Service (MSCS) enables you to connect servers into a cluster,
giving higher availability of data and applications, and making it easier to manage
the system. MSCS can automatically detect and recover from server or application
failures.

It is important not to confuse clusters in the MSCS sense with WebSphere MQ
clusters. The distinction is:

WebSphere MQ clusters
are groups of two or more queue managers on one or more computers,
providing automatic interconnection, and allowing queues to be shared
amongst them for load balancing and redundancy.

MSCS clusters
are groups of computers, connected together and configured in such a way
that, if one fails, MSCS performs a failover, transferring the state data of
applications from the failing computer to another computer in the cluster
and reinitiating their operation there.

16 WebSphere MQ: System Administration Guide

|
|
|

|
|

|
|
|

“Supporting the Microsoft Cluster Service (MSCS)” on page 200 provides detailed
information on how to configure your WebSphere MQ for Windows system to use
MSCS.

Understanding WebSphere MQ file names

Each WebSphere MQ queue manager, queue, process definition, namelist, channel,
client connection channel, listener, service, and authentication information object is
represented by a file. Because object names are not necessarily valid file names, the
queue manager converts the object name into a valid file name where necessary.

The default path to a queue manager directory is as follows:
v A prefix, which is defined in the WebSphere MQ configuration information:

– On Windows 32-bit systems the default prefix is C:\Program
Files\IBM\WebSphere MQ. On Windows 64-bit systems the default prefix is,
C:\Program Files\IBM\WebSphere MQ (x86)\ This is configured in the
Windows Registry.

– On UNIX® systems the default prefix is /var/mqm. This is configured in the
DefaultPrefix stanza of the mqs.ini configuration file.

Where available, the prefix can be changed using the WebSphere MQ properties
page in the WebSphere MQ Explorer, otherwise edit the mqs.ini configuration
file manually.

v The queue manager name is transformed into a valid directory name. For
example, the queue manager:
queue.manager

would be represented as:
queue!manager

This process is referred to as name transformation.

Queue manager name transformation

In WebSphere MQ, you can give a queue manager a name containing up to 48
characters.

For example, you could name a queue manager:
QUEUE.MANAGER.ACCOUNTING.SERVICES

However, each queue manager is represented by a file and there are limitations on
the maximum length of a file name, and on the characters that can be used in the
name. As a result, the names of files representing objects are automatically
transformed to meet the requirements of the file system.

The rules governing the transformation of a queue manager name are as follows:
1. Transform individual characters:
v . becomes !
v / becomes &

2. If the name is still not valid:
a. Truncate it to eight characters
b. Append a three-character numeric suffix

Chapter 1. Introduction 17

|
|
|
|

For example, assuming the default prefix and a queue manager with the name
queue.manager:
v In WebSphere MQ for Windows with NTFS or FAT32, the queue manager name

becomes:
c:\Program Files\IBM\WebSphere MQ\qmgrs\queue!manager

v In WebSphere MQ for Windows with FAT, the queue manager name becomes:
c:\Program Files\IBM\WebSphere MQ\qmgrs\queue!ma

v In WebSphere MQ for UNIX systems, the queue manager name becomes:
/var/mqm/qmgrs/queue!manager

The transformation algorithm also distinguishes between names that differ only in
case on file systems that are not case sensitive.

Object name transformation

Object names are not necessarily valid file system names. You might need to
transform your object names. The method used is different from that for queue
manager names because, although there are only a few queue manager names on
each machine, there can be a large number of other objects for each queue
manager. Queues, process definitions, namelists, channels, client connection
channels, listeners, services, and authentication information objects are represented
in the file system.

When a new name is generated by the transformation process, there is no simple
relationship with the original object name. You can use the dspmqfls command to
convert between real and transformed object names.

18 WebSphere MQ: System Administration Guide

Chapter 2. Administration using WebSphere MQ commands

Managing queue managers

This chapter tells you how to perform operations on queue managers using control
commands and the WebSphere MQ Explorer.

It contains the following topics:
v “Using control commands”
v “Using the WebSphere MQ Explorer” on page 20
v “Creating a queue manager” on page 20
v “Starting a queue manager” on page 25
v “Stopping a queue manager” on page 25
v “Restarting a queue manager” on page 27
v “Deleting a queue manager” on page 27

Using control commands

Control commands can be divided into three categories, as shown in Table 1.

Table 1. Categories of control commands

Category Description

Queue manager
commands

Queue manager control commands include commands for creating,
starting, stopping, and deleting queue managers and command
servers

Channel commands Channel commands include commands for starting and ending
channels and channel initiators

Utility commands Utility commands include commands associated with:

v Running MQSC commands

v Conversion exits

v Authority management

v Recording and recovering media images of queue manager
resources

v Displaying and resolving transactions

v Trigger monitors

v Displaying the file names of WebSphere MQ objects

v The File Transfer Application

For information about administration tasks for channels, see WebSphere MQ
Intercommunication.

Using control commands on Windows systems

In WebSphere MQ for Windows, you enter control commands at a command
prompt. In these environments, control commands and their flags are not case
sensitive, but arguments to those commands (such as queue names and
queue-manager names) are case sensitive.

© Copyright IBM Corp. 1994, 2009 19

For example, in the command:
crtmqm /u SYSTEM.DEAD.LETTER.QUEUE jupiter.queue.manager

v The command name can be entered in uppercase or lowercase, or a mixture of
the two. These are all valid: crtmqm, CRTMQM, and CRTmqm.

v The flag can be entered as -u, -U, /u, or /U.
v SYSTEM.DEAD.LETTER.QUEUE and jupiter.queue.manager must be entered exactly

as shown.

For more information, see “How to use WebSphere MQ control commands” on
page 273.

Using control commands on UNIX systems

In WebSphere MQ for UNIX systems, you enter control commands in a shell
window. In these environments, control commands, including the command name
itself, the flags, and any arguments, are case sensitive. For example, in the
command:
crtmqm -u SYSTEM.DEAD.LETTER.QUEUE jupiter.queue.manager

v The command name must be crtmqm, not CRTMQM.
v The flag must be -u, not -U.
v The dead-letter queue is called SYSTEM.DEAD.LETTER.QUEUE.
v The argument is specified as jupiter.queue.manager, which is different from

JUPITER.queue.manager.

Take care to type the commands exactly as you see them in the examples.

For more information about the crtmqm command, see “crtmqm” on page 291.

Using the WebSphere MQ Explorer

The WebSphere MQ Explorer is available on Windows and WebSphere MQ for
Linux (x86 platform) systems only.

You can use the WebSphere MQ Explorer to perform the operations described in
this chapter, except for a preemptive shutdown.

Creating a queue manager

A queue manager manages the resources associated with it, in particular the
queues that it owns. It provides queuing services to applications for Message
Queuing Interface (MQI) calls and commands to create, modify, display, and delete
WebSphere MQ objects.

Before you can do anything with messages and queues, you must create and start
at least one queue manager and its associated objects. To create a queue manager,
use the WebSphere MQ control command crtmqm (described in “crtmqm” on page
291). The crtmqm command automatically creates the required default objects and
system objects (described in “System default objects” on page 10). Default objects
form the basis of any object definitions that you make; system objects are required
for queue manager operation. When you have created a queue manager and its
objects, use the strmqm command to start the queue manager.

20 WebSphere MQ: System Administration Guide

Note: WebSphere MQ does not support machine names that contain spaces. If you
install WebSphere MQ on a computer with a machine name that contains spaces,
you cannot create any queue managers.

Guidelines for creating queue managers

Before you can create a queue manager, there are several points you need to
consider (especially in a production environment). Work through the following
checklist:

Naming conventions
Use uppercase names so that you can communicate with queue managers
on all platforms. Remember that names are assigned exactly as you enter
them. To avoid the inconvenience of lots of typing, do not use
unnecessarily long names.

Specify a unique queue manager name
When you create a queue manager, ensure that no other queue manager
has the same name anywhere in your network. Queue manager names are
not checked when the queue manager is created, and names that are not
unique prevent you from creating channels for distributed queuing.

One way of ensuring uniqueness is to prefix each queue manager name
with its own unique node name. For example, if a node is called ACCOUNTS,
you can name your queue manager ACCOUNTS.SATURN.QUEUE.MANAGER,
where SATURN identifies a particular queue manager and QUEUE.MANAGER is
an extension you can give to all queue managers. Alternatively, you can
omit this, but note that ACCOUNTS.SATURN and
ACCOUNTS.SATURN.QUEUE.MANAGER are different queue manager names.

If you are using WebSphere MQ for communication with other enterprises,
you can also include your own enterprise name as a prefix. This is not
done in the examples, because it makes them more difficult to follow.

Note: Queue manager names in control commands are case-sensitive. This
means that you are allowed to create two queue managers with the names
jupiter.queue.manager and JUPITER.queue.manager. However, it is better
to avoid such complications.

Limit the number of queue managers
You can create as many queue managers as resources allow. However,
because each queue manager requires its own resources, it is generally
better to have one queue manager with 100 queues on a node than to have
ten queue managers with ten queues each.

In production systems, many processors can be exploited with a single
queue manager, but larger server machines might run more effectively
with multiple queue managers.

Specify a default queue manager
Each node should have a default queue manager, though it is possible to
configure WebSphere MQ on a node without one. The default queue
manager is the queue manager that applications connect to if they do not
specify a queue manager name in an MQCONN call. It is also the queue
manager that processes MQSC commands when you invoke the runmqsc
command without specifying a queue manager name.

Specifying a queue manager as the default replaces any existing default
queue manager specification for the node.

Chapter 2. Administration using WebSphere MQ commands 21

Changing the default queue manage can affect other users or applications.
The change has no effect on currently-connected applications, because they
can use the handle from their original connect call in any further MQI
calls. This handle ensures that the calls are directed to the same queue
manager. Any applications connecting after you have changed the default
queue manager connect to the new default queue manager. This might be
what you intend, but you should take this into account before you change
the default.

Creating a default queue manager is described in “Creating a default
queue manager” on page 23.

Specify a dead-letter queue
The dead-letter queue is a local queue where messages are put if they
cannot be routed to their intended destination.

It is important to have a dead-letter queue on each queue manager in your
network. If you do not define one, errors in application programs might
cause channels to be closed, and replies to administration commands might
not be received.

For example, if an application tries to put a message on a queue on
another queue manager, but gives the wrong queue name, the channel is
stopped and the message remains on the transmission queue. Other
applications cannot then use this channel for their messages.

The channels are not affected if the queue managers have dead-letter
queues. The undelivered message is simply put on the dead-letter queue at
the receiving end, leaving the channel and its transmission queue available.

When you create a queue manager, use the -u flag to specify the name of
the dead-letter queue. You can also use an MQSC command to alter the
attributes of a queue manager that you have already defined to specify the
dead-letter queue to be used. See “Altering queue manager attributes” on
page 37 for an example of the MQSC command ALTER.

Specify a default transmission queue
A transmission queue is a local queue on which messages in transit to a
remote queue manager are queued before transmission. The default
transmission queue is the queue that is used when no transmission queue
is explicitly defined. Each queue manager can be assigned a default
transmission queue.

When you create a queue manager, use the -d flag to specify the name of
the default transmission queue. This does not actually create the queue;
you have to do this explicitly later on. See “Working with local queues” on
page 38 for more information.

Specify the logging parameters you require
You can specify logging parameters on the crtmqm command, including
the type of logging, and the path and size of the log files.

In a development environment, the default logging parameters should be
adequate. However, you can change the defaults if, for example:
v You have a low-end system configuration that cannot support large logs.
v You anticipate a large number of long messages being on your queues at

the same time.
v You anticipate a lot of persistent messages passing through the queue

manager.

22 WebSphere MQ: System Administration Guide

Once you have set the logging parameters, some of them can only be
changed by deleting the queue manager and recreating it with the same
name but with different logging parameters.

For more information about logging parameters, see “Availability, recovery
and restart” on page 217.

Creating a default queue manager

You create a default queue manager using the crtmqm command with the -q flag.
The following crtmqm command:
v Creates a default queue manager called SATURN.QUEUE.MANAGER

v Creates the default and system objects
v Specifies the names of both a default transmission queue and a dead-letter

queue
crtmqm -q -d MY.DEFAULT.XMIT.QUEUE -u SYSTEM.DEAD.LETTER.QUEUE SATURN.QUEUE.MANAGER

where:

-q Indicates that this queue manager is the default queue manager.

-d MY.DEFAULT.XMIT.QUEUE
Is the name of the default transmission queue to be used by this queue
manager.

Note: WebSphere MQ does not create a default transmission queue for
you; you have to define it yourself.

-u SYSTEM.DEAD.LETTER.QUEUE
Is the name of the default dead-letter queue created by WebSphere MQ on
installation.

SATURN.QUEUE.MANAGER
Is the name of this queue manager. This must be the last parameter
specified on the crtmqm command.

The complete syntax of the crtmqm command is shown in “crtmqm” on page 291.

The system and default objects are listed in Chapter 8, “System and default
objects,” on page 523.

For WebSphere MQ for UNIX systems only

You can create the queue manager directory /var/mqm/qmgrs/<qmgr>, even on a
separate local file system, before you use the crtmqm command. When you use
crtmqm, if the /var/mqm/qmgrs/<qmgr> directory exists, is empty, and is owned by
mqm, it is used for the queue manager data. If the directory is not owned by
mqm, the creation fails with a First Failure Support Technology™ (FFST™) message.
If the directory is not empty, a new directory is created.

Making an existing queue manager the default

You can make an existing queue manager the default queue manager. The way you
do this depends on the platform you are using.

WebSphere MQ for Windows and WebSphere MQ for Linux (x86 platform)
systems:

Chapter 2. Administration using WebSphere MQ commands 23

On WebSphere MQ for Windows and WebSphere MQ for Linux (x86 platform)
systems, you can make an existing queue manager the default queue manager as
follows:
1. Open the WebSphere MQ Explorer.
2. Right-click IBM WebSphere MQ, then select Properties.... The Properties for

WebSphere MQ panel is displayed.
3. Type the name of the default queue manager into the Default queue manager

name field.
4. Click OK.

UNIX systems:

When you create a default queue manager, its name is inserted in the Name
attribute of the DefaultQueueManager stanza in the WebSphere MQ configuration
file (mqs.ini). The stanza and its contents are automatically created if they do not
exist.
v To make an existing queue manager the default, change the queue manager

name on the Name attribute to the name of the new default queue manager. You
can do this manually, using a text editor.

v If you do not have a default queue manager on the node, and you want to make
an existing queue manager the default, create the DefaultQueueManager stanza
with the required name yourself.

v If you accidentally make another queue manager the default and want to revert
to the original default queue manager, edit the DefaultQueueManager stanza in
mqs.ini, replacing the unwanted default queue manager with that of the one you
want.

See “Configuring WebSphere MQ” on page 93 for information about configuration
files.

Backing up configuration files after creating a queue manager

WebSphere MQ configuration information is stored in the Registry for Windows
systems, and in configuration files on UNIX systems.

Windows and WebSphere MQ for Linux (x86 platform) systems:

If you use WebSphere MQ for Windows, configuration information is stored in the
Windows Registry. Use the WebSphere MQ Explorer (see “Changing configuration
information on Windows systems” on page 93) or the amqmdain command (see
“amqmdain” on page 278) to make changes to the Registry.

If you use WebSphere MQ for Linux (x86 platform), configuration information is
stored in configuration files. You can use the WebSphere MQ Explorer (see
“Changing configuration information on Windows systems” on page 93).

UNIX systems:

There are two types of configuration file:
v When you install the product, the WebSphere MQ configuration file (mqs.ini) is

created. It contains a list of queue managers that is updated each time you create
or delete a queue manager. There is one mqs.ini file per node.

24 WebSphere MQ: System Administration Guide

v When you create a new queue manager, a new queue manager configuration file
(qm.ini) is automatically created. This contains configuration parameters for the
queue manager.

After creating a queue manager, we recommend that you back up your
configuration files.

If, later on, you create another queue manager that causes you problems, you can
reinstate the backups when you have removed the source of the problem. As a
general rule, back up your configuration files each time you create a new queue
manager.

For more information about configuration files, see “Configuring WebSphere MQ”
on page 93.

Starting a queue manager

Although you have created a queue manager, it cannot process commands or MQI
calls until you start it. You do this using the strmqm command as follows:
strmqm saturn.queue.manager

On WebSphere MQ for Windows and WebSphere MQ for Linux (x86 platform)
systems, you can start a queue manager as follows:
1. Open the WebSphere MQ Explorer.
2. Select the queue manager from the Navigator View.
3. Click Start. The queue manager starts.

If the queue manager start up takes more than a few seconds WebSphere MQ will
issue information messages intermittently detailing the start up progress. For more
information on these messages see WebSphere MQ Messages.

The strmqm command does not return control until the queue manager has started
and is ready to accept connect requests.

Starting a queue manager automatically

In WebSphere MQ for Windows you can start a queue manager automatically
when the system starts using the WebSphere MQ Explorer. For more information,
see “Administration using the WebSphere MQ Explorer” on page 71.

Stopping a queue manager

Use the endmqm command to stop a queue manager. For example, to stop a
queue manager called saturn.queue.manager, type:
endmqm saturn.queue.manager

On WebSphere MQ for Windows and WebSphere MQ for Linux (x86 platform)
systems, you can stop a queue manager as follows:
1. Open the WebSphere MQ Explorer.
2. Select the queue manager from the Navigator View.
3. Click Stop.... The End Queue Manager panel is displayed.
4. Select Controlled, or Immediate.
5. Click OK. The queue manager stops.

Chapter 2. Administration using WebSphere MQ commands 25

Quiesced shutdown

By default, the endmqm command performs a quiesced shutdown of the specified
queue manager. This might take a while to complete. A quiesced shutdown waits
until all connected applications have disconnected.

Use this type of shutdown to notify applications to stop. If you issue:
endmqm -c saturn.queue.manager

you are not told when all applications have stopped. (An endmqm -c
saturn.queue.manager command is equivalent to an endmqm saturn.queue.manager
command.)

However, if you issue:
endmqm -w saturn.queue.manager

the command waits until all applications have stopped and the queue manager has
ended.

Immediate shutdown

For an immediate shutdown any current MQI calls are allowed to complete, but any
new calls fail. This type of shutdown does not wait for applications to disconnect
from the queue manager.

For an immediate shutdown, type:
endmqm -i saturn.queue.manager

Preemptive shutdown

Attention!

Do not use this method unless all other attempts to stop the queue manager using
the endmqm command have failed. This method can have unpredictable
consequences for connected applications.

If an immediate shutdown does not work, you must resort to a preemptive
shutdown, specifying the -p flag. For example:
endmqm -p saturn.queue.manager

This stops the queue manager immediately.

If this method still does not work, see “Stopping a queue manager manually” on
page 537 for an alternative solution.

For a detailed description of the endmqm command and its options, see
“endmqm” on page 324.

If you have problems shutting down a queue manager

Problems in shutting down a queue manager are often caused by applications. For
example, when applications:
v Do not check MQI return codes properly
v Do not request notification of a quiesce

26 WebSphere MQ: System Administration Guide

v Terminate without disconnecting from the queue manager (by issuing an
MQDISC call)

If a problem occurs when you stop the queue manager, you can break out of the
endmqm command using Ctrl-C.

You can then issue another endmqm command, but this time with a flag that
specifies the type of shutdown that you require.

Restarting a queue manager

To restart a queue manager, type:
strmqm saturn.queue.manager

On WebSphere MQ for Windows and WebSphere MQ for Linux (x86 platform)
systems, you can restart a queue manager is the same way as starting it, as
follows:
1. Open the WebSphere MQ Explorer.
2. Select the queue manager from the Navigator View.
3. Click Start. The queue manager restarts.

If the queue manager restart takes more than a few seconds WebSphere MQ will
issue information messages intermittently detailing the start up progress. For more
information on these messages see WebSphere MQ Messages.

Deleting a queue manager
You can delete a queue manager using the dltmqm command or using the
Explorer.

Before you begin

Stop the queue manager.

Issue the following command: dltmqm saturn.queue.manager

About this task

On WebSphere MQ for Windows and WebSphere MQ for Linux (x86 platform)
systems, you can delete a queue manager as follows:
1. Open the WebSphere MQ Explorer.
2. In the Navigator view, select the queue manager.
3. If the queue manager is not stopped, stop it.

a. Right-click the queue manager.
b. Click Stop.

4. Right-click the queue manager.
5. Click Delete.

Chapter 2. Administration using WebSphere MQ commands 27

Results

The queue manager is deleted.

Attention:

v Deleting a queue manager is a drastic step, because you also delete all resources
associated with the queue manager, including all queues and their messages and
all object definitions. If you use the dltmqm command, there is no displayed
prompt that allows you to change your mind; when you press the Enter key all
the associated resources are lost.

v In WebSphere MQ for Windows, deleting a queue manager also removes the
queue manager from the automatic startup list (described in “Starting a queue
manager automatically” on page 25). When the command has completed, a
WebSphere MQ queue manager ending message is displayed; you are not told that
the queue manager has been deleted.

v Deleting a cluster queue manager does not remove it from the cluster. See the
note in the description of dltmqm for more information.

For a description of the dltmqm command and its options, see “dltmqm” on page
296. Ensure that only trusted administrators have the authority to use this
command. (For information about security, see “WebSphere MQ security” on page
119.)

If this method for deleting a queue manager does not work, see “Removing queue
managers manually” on page 538 for an alternative.

Administering local WebSphere MQ objects

This chapter tells you how to administer local WebSphere MQ objects to support
application programs that use the Message Queue Interface (MQI). In this context,
local administration means creating, displaying, changing, copying, and deleting
WebSphere MQ objects. In addition to the approaches detailed in this chapter you
can use the WebSphere MQ Explorer to administer local WebSphere MQ objects,
see “Administration using the WebSphere MQ Explorer” on page 71.

This chapter contains the following sections:
v “Supporting application programs that use the MQI”
v “Performing local administration tasks using MQSC commands” on page 29
v “Working with queue managers” on page 36
v “Working with local queues” on page 38
v “Working with alias queues” on page 43
v “Working with model queues” on page 45
v “Working with services” on page 46
v “Managing objects for triggering” on page 52

Supporting application programs that use the MQI

WebSphere MQ application programs need certain objects before they can run
successfully. For example, Figure 1 on page 29 shows an application that removes
messages from a queue, processes them, and then sends some results to another
queue on the same queue manager.

28 WebSphere MQ: System Administration Guide

|
|

Whereas applications can put messages onto local or remote queues (using
MQPUT), they can only get messages directly from local queues (using MQGET).

Before this application can run, the following conditions must be satisfied:
v The queue manager must exist and be running.
v The first application queue, from which the messages are to be removed, must

be defined.
v The second queue, on which the application puts the messages, must also be

defined.
v The application must be able to connect to the queue manager. To do this it

must be linked to WebSphere MQ. See the WebSphere MQ Application
Programming Guide for more information.

v The applications that put the messages on the first queue must also connect to a
queue manager. If they are remote, they must also be set up with transmission
queues and channels. This part of the system is not shown in Figure 1.

Performing local administration tasks using MQSC commands

This section introduces you to MQSC commands and tells you how to use them
for some common tasks. If you use WebSphere MQ for Windows or WebSphere
MQ for Linux (x86 platform), you can also perform the operations described in this
section using the WebSphere MQ Explorer. See “Administration using the
WebSphere MQ Explorer” on page 71 for more information.

You can use MQSC commands to manage queue manager objects, including the
queue manager itself, queues, process definitions, channels, client connection
channels, listeners, services, namelists, clusters, and authentication information
objects. This section deals with queue managers, queues, and process definitions;
for information about administering channel, client connection channel, and
listener objects, see WebSphere MQ Intercommunication. For information about all
the MQSC commands for managing queue manager objects, see WebSphere MQ
Script (MQSC) Command Reference.

You issue MQSC commands to a queue manager using the runmqsc command.
(For details of this command, see “runmqsc” on page 350.) You can do this
interactively, issuing commands from a keyboard, or you can redirect the standard
input device (stdin) to run a sequence of commands from an ASCII text file. In

Application

Queue Manager

From other
applications

To other
applications

getput

putget

Figure 1. Queues, messages, and applications

Chapter 2. Administration using WebSphere MQ commands 29

both cases, the format of the commands is the same. (For information about
running the commands from a text file, see “Running MQSC commands from text
files” on page 32.)

You can run the runmqsc command in three ways, depending on the flags set on
the command:
v Verify a command without running it, where the MQSC commands are verified

on a local queue manager, but are not actually run.
v Run a command on a local queue manager, where the MQSC commands are run

on a local queue manager.
v Run a command on a remote queue manager, where the MQSC commands are

run on a remote queue manager.

You can also run the command followed by a question mark to display the syntax.

Object attributes specified in MQSC commands are shown in this book in
uppercase (for example, RQMNAME), although they are not case sensitive. MQSC
command attribute names are limited to eight characters. MQSC commands are
available on other platforms, including i5/OS and z/OS.

MQSC commands are summarized in Chapter 13, “Comparing command sets,” on
page 553.The WebSphere MQ Script (MQSC) Command Reference contains a
description of each MQSC command and its syntax.

WebSphere MQ object names

In examples, we use some long names for objects. This is to help you identify the
type of object you are dealing with.

When you issue MQSC commands, you need specify only the local name of the
queue. In our examples, we use queue names such as:
ORANGE.LOCAL.QUEUE

The LOCAL.QUEUE part of the name is simply to illustrate that this queue is a local
queue. It is not required for the names of local queues in general.

We also use the name saturn.queue.manager as a queue manager name. The
queue.manager part of the name is simply to illustrate that this object is a queue
manager. It is not required for the names of queue managers in general.

Case-sensitivity in MQSC commands:

MQSC commands, including their attributes, can be written in uppercase or
lowercase. Object names in MQSC commands are folded to uppercase (that is,
QUEUE and queue are not differentiated), unless the names are enclosed within
single quotation marks. If quotation marks are not used, the object is processed
with a name in uppercase. See the WebSphere MQ Script (MQSC) Command
Reference for more information.

The runmqsc command invocation, in common with all WebSphere MQ control
commands, is case sensitive in some WebSphere MQ environments. See “Using
control commands” on page 19 for more information.

30 WebSphere MQ: System Administration Guide

Standard input and output

The standard input device, also referred to as stdin, is the device from which input
to the system is taken. Typically this is the keyboard, but you can specify that
input is to come from a serial port or a disk file, for example. The standard output
device, also referred to as stdout, is the device to which output from the system is
sent. Typically this is a display, but you can redirect output to a serial port or a
file.

On operating-system commands and WebSphere MQ control commands, the <
operator redirects input. If this operator is followed by a file name, input is taken
from the file. Similarly, the > operator redirects output; if this operator is followed
by a file name, output is directed to that file.

Using MQSC commands interactively

To use MQSC commands interactively, open a command window or shell and
enter:
runmqsc

In this command, a queue manager name has not been specified, so the MQSC
commands are processed by the default queue manager. If you want to use a
different queue manager, specify the queue manager name on the runmqsc
command. For example, to run MQSC commands on queue manager
jupiter.queue.manager, use the command:
runmqsc jupiter.queue.manager

After this, all the MQSC commands you type in are processed by this queue
manager, assuming that it is on the same node and is already running.

Now you can type in any MQSC commands, as required. For example, try this
one:
DEFINE QLOCAL (ORANGE.LOCAL.QUEUE)

For commands that have too many parameters to fit on one line, use continuation
characters to indicate that a command is continued on the following line:
v A minus sign (-) indicates that the command is to be continued from the start of

the following line.
v A plus sign (+) indicates that the command is to be continued from the first

nonblank character on the following line.

Command input terminates with the final character of a nonblank line that is not a
continuation character. You can also terminate command input explicitly by
entering a semicolon (;). (This is especially useful if you accidentally enter a
continuation character at the end of the final line of command input.)

Feedback from MQSC commands:

When you issue MQSC commands, the queue manager returns operator messages
that confirm your actions or tell you about the errors you have made. For example:
AMQ8006: WebSphere MQ queue created.

This message confirms that a queue has been created.

Chapter 2. Administration using WebSphere MQ commands 31

AMQ8405: Syntax error detected at or near end of command segment below:-

AMQ8426: Valid MQSC commands are:

ALTER
CLEAR
DEFINE
DELETE
DISPLAY
END
PING
REFRESH
RESET
RESOLVE
RESUME
START
STOP
SUSPEND
4 : end

This message indicates that you have made a syntax error.

These messages are sent to the standard output device. If you have not entered the
command correctly, refer to the WebSphere MQ Script (MQSC) Command
Reference for the correct syntax.

Ending interactive input of MQSC commands:

To stop working with MQSC commands, enter the END command.

Alternatively, you can use the EOF character for your operating system.

Running MQSC commands from text files

Running MQSC commands interactively is suitable for quick tests, but if you have
very long commands, or are using a particular sequence of commands repeatedly,
consider redirecting stdin from a text file. (See “Standard input and output” on
page 31 for information about stdin and stdout.) To do this, first create a text file
containing the MQSC commands using your usual text editor. When you use the
runmqsc command, use the redirection operators. For example, the following
command runs a sequence of commands contained in the text file myprog.in:
runmqsc < myprog.in

Similarly, you can also redirect the output to a file. A file containing the MQSC
commands for input is called an MQSC command file. The output file containing
replies from the queue manager is called the output file.

To redirect both stdin and stdout on the runmqsc command, use this form of the
command:
runmqsc < myprog.in > myprog.out

This command invokes the MQSC commands contained in the MQSC command
file myprog.in. Because we have not specified a queue manager name, the MQSC
commands run against the default queue manager. The output is sent to the text
file myprog.out. Figure 2 on page 33 shows an extract from the MQSC command
file myprog.in and Figure 3 on page 34 shows the corresponding extract of the
output in myprog.out.

32 WebSphere MQ: System Administration Guide

To redirect stdin and stdout on the runmqsc command, for a queue manager
(saturn.queue.manager) that is not the default, use this form of the command:
runmqsc saturn.queue.manager < myprog.in > myprog.out

MQSC command files:

MQSC commands are written in human-readable form, that is, in ASCII text.
Figure 2 is an extract from an MQSC command file showing an MQSC command
(DEFINE QLOCAL) with its attributes. The WebSphere MQ Script (MQSC)
Command Reference contains a description of each MQSC command and its
syntax.

For portability among WebSphere MQ environments, we recommend that you limit
the line length in MQSC command files to 72 characters. The plus sign indicates
that the command is continued on the next line.

MQSC command reports:

The runmqsc command returns a report, which is sent to stdout. The report
contains:
v A header identifying MQSC commands as the source of the report:

Starting MQSC for queue manager jupiter.queue.manager.

Where jupiter.queue.manager is the name of the queue manager.
v An optional numbered listing of the MQSC commands issued. By default, the

text of the input is echoed to the output. Within this output, each command is
prefixed by a sequence number, as shown in Figure 3 on page 34. However, you
can use the -e flag on the runmqsc command to suppress the output.

v A syntax error message for any commands found to be in error.
v An operator message indicating the outcome of running each command. For

example, the operator message for the successful completion of a DEFINE
QLOCAL command is:

AMQ8006: WebSphere MQ queue created.

v Other messages resulting from general errors when running the script file.

.

.

.
DEFINE QLOCAL(ORANGE.LOCAL.QUEUE) REPLACE +

DESCR(' ') +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL(1024) +
DEFSOPT(SHARED) +
NOHARDENBO +
USAGE(NORMAL) +
NOTRIGGER;

.

.

.

Figure 2. Extract from an MQSC command file

Chapter 2. Administration using WebSphere MQ commands 33

v A brief statistical summary of the report indicating the number of commands
read, the number of commands with syntax errors, and the number of
commands that could not be processed.

Note: The queue manager attempts to process only those commands that have
no syntax errors.

Running the supplied MQSC command files:

These MQSC command files are supplied with WebSphere MQ:

amqscos0.tst
Definitions of objects used by sample programs.

amqscic0.tst
Definitions of queues for CICS® transactions.

In WebSphere MQ for Windows, these files are located in the directory c:\Program
Files\IBM\WebSphere MQ\tools\mqsc\samples.

On UNIX systems these files are located in the directory opt/mqm/samp
(usr/mqm/samp on AIX®).

The command that runs them is:
runmqsc < amqscos0.tst >test.out

Using runmqsc to verify commands:

You can use the runmqsc command to verify MQSC commands on a local queue
manager without actually running them. To do this, set the -v flag in the runmqsc
command, for example:
runmqsc -v < myprog.in > myprog.out

When you invoke runmqsc against an MQSC command file, the queue manager
verifies each command and returns a report without actually running the MQSC
commands. This allows you to check the syntax of the commands in your
command file. This is particularly important if you are:

Starting MQSC for queue manager jupiter.queue.manager.
.
.

12: DEFINE QLOCAL('ORANGE.LOCAL.QUEUE') REPLACE +
: DESCR(' ') +
: PUT(ENABLED) +
: DEFPRTY(0) +
: DEFPSIST(NO) +
: GET(ENABLED) +
: MAXDEPTH(5000) +
: MAXMSGL(1024) +
: DEFSOPT(SHARED) +
: NOHARDENBO +
: USAGE(NORMAL) +
: NOTRIGGER;

AMQ8006: WebSphere MQ queue created.
:

.

.

Figure 3. Extract from an MQSC command report file

34 WebSphere MQ: System Administration Guide

v Running a large number of commands from a command file.
v Using an MQSC command file many times over.

The returned report is similar to that shown in Figure 3 on page 34.

You cannot use this method to verify MQSC commands remotely. For example, if
you attempt this command:
runmqsc -w 30 -v jupiter.queue.manager < myprog.in > myprog.out

the -w flag, which you use to indicate that the queue manager is remote, is
ignored, and the command is run locally in verification mode. 30 is the number of
seconds that WebSphere MQ waits for replies from the remote queue manager.

Running MQSC commands from batch files

If you have very long commands, or are using a particular sequence of commands
repeatedly, consider redirecting stdin from a batch file. To do this, first create a
batch file containing the MQSC commands using your usual text editor. When you
use the runmqsc command, use the redirection operators. The following example:
1. Creates a test queue manager, TESTQM
2. Creates a matching CLNTCONN and listener set to use TCP/IP port 1600
3. Creates a test queue, TESTQ
4. Puts a message on the queue, using the amqsputc sample program

Resolving problems with MQSC commands

If you cannot get MQSC commands to run, use the following information to see if
any of these common problems apply to you. It is not always obvious what the
problem is when you read the error generated.

When you use the runmqsc command, remember the following:
v Use the < operator to redirect input from a file. If you omit this operator, the

queue manager interprets the file name as a queue manager name, and issues
the following error message:

export MYTEMPQM=TESTQM
export MYPORT=1600
export MQCHLLIB=/var/mqm/qmgrs/$MQTEMPQM/@ipcc

crtmqm $MYTEMPQM
strmqm $MYTEMPQM
runmqlsr -m $MYTEMPQM -t TCP -p $MYPORT &

runmqsc $MYTEMPQM << EOF
DEFINE CHANNEL(NTLM) CHLTYPE(SVRCONN) TRPTYPE(TCP)
DEFINE CHANNEL(NTLM) CHLTYPE(CLNTCONN) QMNAME('$MYTEMPQM') CONNAME('hostname($MYPORT)')
ALTER CHANNEL(NTLM) CHLTYPE(CLNTCONN)
DEFINE QLOCAL(TESTQ)

EOF

amqsputc TESTQ $MYTEMPQM << EOF
hello world
EOF

endmqm -i $MYTEMPQM

Figure 4. Example script for running MQSC commands from a batch file

Chapter 2. Administration using WebSphere MQ commands 35

AMQ8118: WebSphere MQ queue manager does not exist.

v If you redirect output to a file, use the > redirection operator. By default, the file
is put in the current working directory at the time runmqsc is invoked. Specify a
fully-qualified file name to send your output to a specific file and directory.

v Check that you have created the queue manager that is going to run the
commands, by using the following command to display all queue managers:
dspmq

v The queue manager must be running. If it is not, start it; (see “Starting a queue
manager” on page 25). You get an error message if you try to start a queue
manager that is already running.

v Specify a queue manager name on the runmqsc command if you have not
defined a default queue manager, or you get this error:
AMQ8146: WebSphere MQ queue manager not available.

v You cannot specify an MQSC command as a parameter of the runmqsc
command. For example, this is not valid:
runmqsc DEFINE QLOCAL(FRED)

v You cannot enter MQSC commands before you issue the runmqsc command.
v You cannot run control commands from runmqsc. For example, you cannot issue

the strmqm command to start a queue manager while you are running MQSC
commands interactively. If you do this, you receive error messages similar to the
following:
runmqsc
.
.
Starting MQSC for queue manager jupiter.queue.manager.

1 : strmqm saturn.queue.manager
AMQ8405: Syntax error detected at or near end of cmd segment below:-s

AMQ8426: Valid MQSC commands are:
ALTER
CLEAR
DEFINE
DELETE
DISPLAY
END
PING
REFRESH
RESET
RESOLVE
RESUME
START
STOP
SUSPEND
2 : end

Working with queue managers

This section contains examples of some MQSC commands that you can use to
display or alter queue manager attributes. See the WebSphere MQ Script (MQSC)
Command Reference for detailed information about these commands.

Displaying queue manager attributes

To display the attributes of the queue manager specified on the runmqsc
command, use the following MQSC command:
DISPLAY QMGR

36 WebSphere MQ: System Administration Guide

Typical output from this command is shown in Figure 5.

The ALL parameter (the default) on the DISPLAY QMGR command displays all
the queue manager attributes. In particular, the output tells you the default queue
manager name (saturn.queue.manager), the dead-letter queue name
(SYSTEM.DEAD.LETTER.QUEUE), and the command queue name
(SYSTEM.ADMIN.COMMAND.QUEUE).

You can confirm that these queues exist by entering the command:
DISPLAY QUEUE (SYSTEM.*)

This displays a list of queues that match the stem SYSTEM.*. The parentheses are
required.

Altering queue manager attributes

To alter the attributes of the queue manager specified on the runmqsc command,
use the MQSC command ALTER QMGR, specifying the attributes and values that
you want to change. For example, use the following commands to alter the
attributes of jupiter.queue.manager:
runmqsc jupiter.queue.manager

ALTER QMGR DEADQ (ANOTHERDLQ) INHIBTEV (ENABLED)

DISPLAY QMGR
1 : DISPLAY QMGR

AMQ8408: Display Queue Manager details.
QMNAME(SATURN) ACCTCONO(DISABLED)
ACCTINT(1800) ACCTMQI(OFF)
ACCTQ(OFF) ACTIVREC(MSG)
ALTDATE(2005-02-09) ALTTIME(17.21.40)
AUTHOREV(DISABLED) CCSID(850)
CHAD(DISABLED) CHADEV(DISABLED)
CHADEXIT() CHLEV(DISABLED)
CLWLDATA() CLWLEXIT()
CLWLLEN(100) CLWLMRUC(999999999)
CLWLUSEQ(LOCAL) CMDLEVEL(600)
COMMANDQ(SYSTEM.ADMIN.COMMAND.QUEUE) CRDATE(2005-02-09)
CRTIME(17.21.40) DEADQ()
DEFXMITQ() DESCR()
DISTL(YES) INHIBTEV(DISABLED)
IPADDRV(IPV4) LOCALEV(DISABLED)
LOGGEREV(DISABLED) MAXHANDS(256)
MAXMSGL(4194304) MAXPRTY(9)
MAXUMSGS(10000) MONACLS(QMGR)
MONCHL(OFF) MONQ(OFF)
PERFMEV(DISABLED) PLATFORM(WINDOWSNT)
QMID(SATURN_2005-02-09_02.00.31) REMOTEEV(DISABLED)
REPOS() REPOSNL()
ROUTEREC(MSG) SCHINIT(QMGR)
SCMDSERV(QMGR) SSLCRLNL()
SSLCRYP() SSLEV(DISABLED)
SSLFIPS(NO)
SSLKEYR(C:\Program Files\IBM\WebSphere MQ\Qmgrs\saturn\ssl\key)
SSLRKEYC(0) STATACLS(QMGR)
STATCHL(OFF) STATINT(1800)
STATMQI(OFF) STATQ(OFF)
STRSTPEV(ENABLED) SYNCPT
TRIGINT(999999999)

Figure 5. Typical output from a DISPLAY QMGR command

Chapter 2. Administration using WebSphere MQ commands 37

The ALTER QMGR command changes the dead-letter queue used, and enables
inhibit events.

Working with local queues

This section contains examples of some MQSC commands that you can use to
manage local, model, and alias queues. See the WebSphere MQ Script (MQSC)
Command Reference for detailed information about these commands.

Defining a local queue

For an application, the local queue manager is the queue manager to which the
application is connected. Queues managed by the local queue manager are said to
be local to that queue manager.

Use the MQSC command DEFINE QLOCAL to create a local queue. You can also
use the default defined in the default local queue definition, or you can modify the
queue characteristics from those of the default local queue.

Note: The default local queue is named SYSTEM.LOCAL.DEFAULT.QUEUE and it
was created on system installation.

Using the MQSC command shown below, we define a queue called
ORANGE.LOCAL.QUEUE, with the following characteristics:
v It is enabled for gets, enabled for puts, and operates on a priority order basis.
v It is an normal queue; it is not an initiation queue or transmission queue, and it

does not generate trigger messages.
v The maximum queue depth is 5000 messages; the maximum message length is

4194304 bytes.
DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) +

DESCR('Queue for messages from other systems') +
PUT (ENABLED) +
GET (ENABLED) +
NOTRIGGER +
MSGDLVSQ (PRIORITY) +
MAXDEPTH (5000) +
MAXMSGL (4194304) +
USAGE (NORMAL);

Note:

1. With the exception of the value for the description, all the attribute values
shown are the default values. We have shown them here for purposes of
illustration. You can omit them if you are sure that the defaults are what you
want or have not been changed. See also “Displaying default object attributes”
on page 39.

2. USAGE (NORMAL) indicates that this queue is not a transmission queue.
3. If you already have a local queue on the same queue manager with the name

ORANGE.LOCAL.QUEUE, this command fails. Use the REPLACE attribute if
you want to overwrite the existing definition of a queue, but see also
“Changing local queue attributes” on page 40.

Defining a dead-letter queue:

We recommend that each queue manager has a local queue to be used as a
dead-letter queue so that messages that cannot be delivered to their correct
destination can be stored for later retrieval. You must tell the queue manager about

38 WebSphere MQ: System Administration Guide

the dead-letter queue. You do this by specifying a dead-letter queue name on the
crtmqm command (crtmqm -u DEAD.LETTER.QUEUE, for example), or by using the
DEADQ attribute on the ALTER QMGR command to specify one later. You must
define the dead-letter queue before using it.

We supply a sample dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE
with the product. This queue is automatically created when you create the queue
manager. You can modify this definition if required, and rename it.

A dead-letter queue has no special requirements except that:
v It must be a local queue
v Its MAXMSGL (maximum message length) attribute must enable the queue to

accommodate the largest messages that the queue manager has to handle plus
the size of the dead-letter header (MQDLH)

WebSphere MQ provides a dead-letter queue handler that allows you to specify
how messages found on a dead-letter queue are to be processed or removed. For
further information, see “The WebSphere MQ dead-letter queue handler” on page
190.

Displaying default object attributes

When you define a WebSphere MQ object, it takes any attributes that you do not
specify from the default object. For example, when you define a local queue, the
queue inherits any attributes that you omit in the definition from the default local
queue, which is called SYSTEM.DEFAULT.LOCAL.QUEUE. To see exactly what
these attributes are, use the following command:
DISPLAY QUEUE (SYSTEM.DEFAULT.LOCAL.QUEUE)

The syntax of this command is different from that of the corresponding DEFINE
command. On the DISPLAY command you can give just the queue name, whereas
on the DEFINE command you have to specify the type of the queue, that is,
QLOCAL, QALIAS, QMODEL, or QREMOTE.

You can selectively display attributes by specifying them individually. For example:
DISPLAY QUEUE (ORANGE.LOCAL.QUEUE) +

MAXDEPTH +
MAXMSGL +
CURDEPTH;

This command displays the three specified attributes as follows:
AMQ8409: Display Queue details.

QUEUE(ORANGE.LOCAL.QUEUE) TYPE(QLOCAL)
CURDEPTH(0) MAXDEPTH(5000)
MAXMSGL(4194304)

CURDEPTH is the current queue depth, that is, the number of messages on the
queue. This is a useful attribute to display, because by monitoring the queue depth
you can ensure that the queue does not become full.

Copying a local queue definition

You can copy a queue definition using the LIKE attribute on the DEFINE
command. For example:
DEFINE QLOCAL (MAGENTA.QUEUE) +

LIKE (ORANGE.LOCAL.QUEUE)

Chapter 2. Administration using WebSphere MQ commands 39

This command creates a queue with the same attributes as our original queue
ORANGE.LOCAL.QUEUE, rather than those of the system default local queue.
Enter the name of the queue to be copied exactly as it was entered when you
created the queue. If the name contains lower case characters, enclose the name in
single quotation marks.

You can also use this form of the DEFINE command to copy a queue definition,
but substitute one or more changes to the attributes of the original. For example:
DEFINE QLOCAL (THIRD.QUEUE) +

LIKE (ORANGE.LOCAL.QUEUE) +
MAXMSGL(1024);

This command copies the attributes of the queue ORANGE.LOCAL.QUEUE to the
queue THIRD.QUEUE, but specifies that the maximum message length on the new
queue is to be 1024 bytes, rather than 4194304.

Note:

1. When you use the LIKE attribute on a DEFINE command, you are copying the
queue attributes only. You are not copying the messages on the queue.

2. If you a define a local queue, without specifying LIKE, it is the same as
DEFINE LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE).

Changing local queue attributes

You can change queue attributes in two ways, using either the ALTER QLOCAL
command or the DEFINE QLOCAL command with the REPLACE attribute. In
“Defining a local queue” on page 38, we defined the queue called
ORANGE.LOCAL.QUEUE. Suppose, for example, you want to decrease the
maximum message length on this queue to 10 000 bytes.
v Using the ALTER command:

ALTER QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000)

This command changes a single attribute, that of the maximum message length;
all the other attributes remain the same.

v Using the DEFINE command with the REPLACE option, for example:
DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000) REPLACE

This command changes not only the maximum message length, but also all the
other attributes, which are given their default values. The queue is now put
enabled whereas previously it was put inhibited. Put enabled is the default, as
specified by the queue SYSTEM.DEFAULT.LOCAL.QUEUE.
If you decrease the maximum message length on an existing queue, existing
messages are not affected. Any new messages, however, must meet the new
criteria.

Clearing a local queue

To delete all the messages from a local queue called MAGENTA.QUEUE, use the
following command:
CLEAR QLOCAL (MAGENTA.QUEUE)

Note: There is no prompt that enables you to change your mind; once you press
the Enter key the messages are lost.

You cannot clear a queue if:

40 WebSphere MQ: System Administration Guide

v There are uncommitted messages that have been put on the queue under
syncpoint.

v An application currently has the queue open.

Deleting a local queue

Use the MQSC command DELETE QLOCAL to delete a local queue. A queue
cannot be deleted if it has uncommitted messages on it. However, if the queue has
one or more committed messages and no uncommitted messages, it can be deleted
only if you specify the PURGE option. For example:
DELETE QLOCAL (PINK.QUEUE) PURGE

Specifying NOPURGE instead of PURGE ensures that the queue is not deleted if it
contains any committed messages.

Browsing queues

WebSphere MQ provides a sample queue browser that you can use to look at the
contents of the messages on a queue. The browser is supplied in both source and
executable formats.

In WebSphere MQ for Windows, the default file names and paths are:

Source
c:\Program Files\IBM\WebSphere MQ\tools\c\samples\

Executable
c:\Program files\IBM\WebSphere MQ\tools\c\samples\bin\amqsbcg.exe

In WebSphere MQ for UNIX, the default file names and paths are:

Source
/opt/mqm/samp/amqsbcg0.c (/usr/mqm/samp/amqsbcg0.c on AIX)

Executable
/opt/mqm/samp/bin/amqsbcg (/usr/mqm/samp/bin/amqsbcg on AIX)

The sample requires two input parameters, the queue name and the queue
manager name. For example:
amqsbcg SYSTEM.ADMIN.QMGREVENT.tpp01 saturn.queue.manager

Typical results from this command are shown in Figure 6 on page 42.

Chapter 2. Administration using WebSphere MQ commands 41

Monitoring local queues with the Windows Performance Monitor

Administrators of WebSphere MQ for Windows can monitor the performance of
local queues using the Windows Performance Monitor. For more information on
the Windows Performance Monitor see the Monitoring WebSphere MQ book.

AMQSBCG0 - starts here

MQOPEN - 'SYSTEM.ADMIN.QMGR.EVENT'

MQGET of message number 1
****Message descriptor****

StrucId : 'MD ' Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 546 CodedCharSetId : 850
Format : 'MQEVENT '
Priority : 0 Persistence : 0
MsgId : X'414D512073617475726E2E71756575650005D30033563DB8'
CorrelId : X'00'
BackoutCount : 0
ReplyToQ : ' '
ReplyToQMgr : 'saturn.queue.manager '
** Identity Context
UserIdentifier : ' '
AccountingToken :
X'00'
ApplIdentityData : ' '
** Origin Context
PutApplType : '7'
PutApplName : 'saturn.queue.manager '
PutDate : '19970417' PutTime : '15115208'
ApplOriginData : ' '

GroupId : X'00'
MsgSeqNumber : '1'
Offset : '0'
MsgFlags : '0'
OriginalLength : '104'

**** Message ****

length - 104 bytes

00000000: 0700 0000 2400 0000 0100 0000 2C00 0000 '....→.......,...'
00000010: 0100 0000 0100 0000 0100 0000 AE08 0000 '................'
00000020: 0100 0000 0400 0000 4400 0000 DF07 0000 '........D.......'
00000030: 0000 0000 3000 0000 7361 7475 726E 2E71 '....0...saturn.q'
00000040: 7565 7565 2E6D 616E 6167 6572 2020 2020 'ueue.manager '
00000050: 2020 2020 2020 2020 2020 2020 2020 2020 ' '
00000060: 2020 2020 2020 2020 ' '

No more messages
MQCLOSE
MQDISC

Figure 6. Typical results from queue browser

42 WebSphere MQ: System Administration Guide

Enabling large queues

WebSphere MQ supports queues larger than 2 GB. On Windows systems, support
for large files is available without any additional enablement. On AIX, HP-UX,
Linux, and Solaris systems, you need to explicitly enable large file support before
you can create queue files larger than 2 GB. See your operating system
documentation for information on how to do this.

Some utilities, such as tar, cannot cope with files greater than 2 GB. Before
enabling large file support, check your operating system documentation for
information on restrictions on utilities you use.

Working with alias queues

An alias queue provides a way of referring indirectly to another queue. The other
queue can be either:
v A local queue (see “Defining a local queue” on page 38).
v A local definition of a remote queue (see “Creating a local definition of a remote

queue” on page 65).
v A topic.

An alias queue is not a real queue, but a definition that resolves to a real (or
target) queue at run time. The alias queue definition specifies the target queue.
When an application makes an MQOPEN call to an alias queue, the queue
manager resolves the alias to the target queue name. An alias queue cannot resolve
to another alias queue.

Alias queues are useful for:
v Giving different applications different levels of access authorities to the target

queue.
v Allowing different applications to work with the same queue in different ways.

(Perhaps you want to assign different default priorities or different default
persistence values.)

v Simplifying maintenance, migration, and workload balancing. (Perhaps you
want to change the target queue name without having to change your
application, which continues to use the alias.)

For example, assume that an application has been developed to put messages on a
queue called MY.ALIAS.QUEUE. It specifies the name of this queue when it makes
an MQOPEN request and, indirectly, if it puts a message on this queue. The
application is not aware that the queue is an alias queue. For each MQI call using
this alias, the queue manager resolves the real queue name, which could be either
a local queue or a remote queue defined at this queue manager.

By changing the value of the TARGQ attribute, you can redirect MQI calls to
another queue, possibly on another queue manager. This is useful for maintenance,
migration, and load-balancing.

Defining an alias queue

The following command creates an alias queue:
DEFINE QALIAS (MY.ALIAS.QUEUE) TARGET (YELLOW.QUEUE)

Chapter 2. Administration using WebSphere MQ commands 43

This command redirects MQI calls that specify MY.ALIAS.QUEUE to the queue
YELLOW.QUEUE. The command does not create the target queue; the MQI calls
fail if the queue YELLOW.QUEUE does not exist at run time.

If you change the alias definition, you can redirect the MQI calls to another queue.
For example:
ALTER QALIAS (MY.ALIAS.QUEUE) TARGQ (MAGENTA.QUEUE)

This command redirects MQI calls to another queue, MAGENTA.QUEUE.

You can also use alias queues to make a single queue (the target queue) appear to
have different attributes for different applications. You do this by defining two
aliases, one for each application. Suppose there are two applications:
v Application ALPHA can put messages on YELLOW.QUEUE, but is not allowed

to get messages from it.
v Application BETA can get messages from YELLOW.QUEUE, but is not allowed

to put messages on it.

The following command defines an alias that is put enabled and get disabled for
application ALPHA:
DEFINE QALIAS (ALPHAS.ALIAS.QUEUE) +

TARGQ (YELLOW.QUEUE) +
PUT (ENABLED) +
GET (DISABLED)

The following command defines an alias that is put disabled and get enabled for
application BETA:
DEFINE QALIAS (BETAS.ALIAS.QUEUE) +

TARGQ (YELLOW.QUEUE) +
PUT (DISABLED) +
GET (ENABLED)

ALPHA uses the queue name ALPHAS.ALIAS.QUEUE in its MQI calls; BETA uses
the queue name BETAS.ALIAS.QUEUE. They both access the same queue, but in
different ways.

You can use the LIKE and REPLACE attributes when you define queue aliases, in
the same way that you use these attributes with local queues.

Using other commands with alias queues

You can use the appropriate MQSC commands to display or alter alias queue
attributes, or to delete the alias queue object. For example:

Use the following command to display the alias queue’s attributes:
DISPLAY QUEUE (ALPHAS.ALIAS.QUEUE)

Use the following command to alter the base queue name, to which the alias
resolves, where the force option forces the change even if the queue is open:
ALTER QALIAS (ALPHAS.ALIAS.QUEUE) TARGQ(ORANGE.LOCAL.QUEUE) FORCE

Use the following command to delete this queue alias:
DELETE QALIAS (ALPHAS.ALIAS.QUEUE)

44 WebSphere MQ: System Administration Guide

You cannot delete an alias queue if an application currently has the queue open.
See the WebSphere MQ Script (MQSC) Command Reference for more information
about this and other alias queue commands.

Working with model queues

A queue manager creates a dynamic queue if it receives an MQI call from an
application specifying a queue name that has been defined as a model queue. The
name of the new dynamic queue is generated by the queue manager when the
queue is created. A model queue is a template that specifies the attributes of any
dynamic queues created from it.

Model queues provide a convenient method for applications to create queues as
required.

Defining a model queue

You define a model queue with a set of attributes in the same way that you define
a local queue. Model queues and local queues have the same set of attributes,
except that on model queues you can specify whether the dynamic queues created
are temporary or permanent. (Permanent queues are maintained across queue
manager restarts, temporary ones are not.) For example:
DEFINE QMODEL (GREEN.MODEL.QUEUE) +

DESCR('Queue for messages from application X') +
PUT (DISABLED) +
GET (ENABLED) +
NOTRIGGER +
MSGDLVSQ (FIFO) +
MAXDEPTH (1000) +
MAXMSGL (2000) +
USAGE (NORMAL) +
DEFTYPE (PERMDYN)

This command creates a model queue definition. From the DEFTYPE attribute, you
can see that the actual queues created from this template are permanent dynamic
queues. Any attributes not specified are automatically copied from the
SYSYTEM.DEFAULT.MODEL.QUEUE default queue.

You can use the LIKE and REPLACE attributes when you define model queues, in
the same way that you use them with local queues.

Using other commands with model queues

You can use the appropriate MQSC commands to display or alter a model queue’s
attributes, or to delete the model queue object. For example:

Use the following command to display the model queue’s attributes:
DISPLAY QUEUE (GREEN.MODEL.QUEUE)

Use the following command to alter the model to enable puts on any dynamic
queue created from this model:
ALTER QMODEL (BLUE.MODEL.QUEUE) PUT(ENABLED)

Use the following command to delete this model queue:
DELETE QMODEL (RED.MODEL.QUEUE)

Chapter 2. Administration using WebSphere MQ commands 45

Working with services

Service objects are a means by which additional processes can be managed as part
of a queue manager. With services you can define programs that are started and
stopped when the queue manager starts and ends.

Service objects can be either of the following types:

Server A server is a service object that has the parameter SERVTYPE specified as
SERVER. A server service object is the definition of a program that will be
executed when a specified queue manager is started. Server service objects
define programs that typically run for a long period of time. For example,
a server service object can be used to execute a trigger monitor process,
such as runmqtrm.

Only one instance of a server service object can run concurrently. The
status of running server service objects can be monitored using the MQSC
command, DISPLAY SVSTATUS.

Command
A command is a service object that has the parameter SERVTYPE specified
as COMMAND. Command service objects are similar to server service
objects, however multiple instances of a command service object can run
concurrently and their status can not be monitored using the MQSC
command DISPLAY SVSTATUS.

If the MQSC command, STOP SERVICE, is executed no check is made to
determine whether the program started by the MQSC command, START
SERVICE, is still active before executing the stop program.

Defining a service object

The attributes used to define a service object are:

SERVTYPE
Defines the type of the service object. Possible values are:

SERVER
A server service object.

Only one instance of a server service object can be executed at a time. The
status of server service objects can be monitored using the MQSC
command, DISPLAY SVSTATUS.

COMMAND
A command service object.

Multiple instances of a command service object can be executed
concurrently. The status of a command service objects cannot be monitored.

STARTCMD
The program that is executed to start the service. A fully qualified path to the
program must be specified.

STARTARG
Arguments passed to the start program.

STDERR
Specifies the path to a file to which the standard error (stderr) of the service
program should be redirected.

46 WebSphere MQ: System Administration Guide

STDOUT
Specifies the path to a file to which the standard output (stdout) of the service
program should be redirected.

STOPCMD
The program that is executed to stop the service. A fully qualified path to the
program must be specified.

STOPARG
Arguments passed to the stop program.

CONTROL
Specifies how the service is to be started and stopped:

MANUAL
The service is not to be started automatically or stopped automatically. It is
controlled by use of the START SERVICE and STOP SERVICE commands.
This is the default value.

QMGR
The service being defined is to be started and stopped at the same time as
the queue manager is started and stopped.

STARTONLY
The service is to be started at the same time as the queue manager is
started, but is not requested to stop when the queue manager is stopped.

Managing services

By using the CONTROL parameter, an instance of a service object can be either
started and stopped automatically by the queue manager, or started and stopped
using the MQSC commands START SERVICE and STOP SERVICE.

When an instance of a service object is started, a message is written to the queue
manager error log containing the name of the service object and the process id of
the started process. An example log entry for a server service object starting
follows:

02/15/2005 11:54:24 AM - Process(10363.1) User(mqm) Program(amqzmgr0)
AMQ5028: The Server 'S1' has started. ProcessId(13031).

EXPLANATION:
The Server process has started.
ACTION:
None.

An example log entry for a command service object starting follows:
02/15/2005 11:53:55 AM - Process(10363.1) User(mqm) Program(amqzmgr0)
AMQ5030: The Command 'C1' has started. ProcessId(13030).

EXPLANATION:
The Command has started.
ACTION:
None.

When an instance server service stops, a message is written to the queue manager
error logs containing the name of the service and the process id of the ending
process. An example log entry for a server service object stopping follows:

02/15/2005 11:54:54 AM - Process(10363.1) User(mqm) Program(amqzmgr0)
AMQ5029: The Server 'S1' has ended. ProcessId(13031).

Chapter 2. Administration using WebSphere MQ commands 47

EXPLANATION:
The Server process has ended.
ACTION:
None.

Additional environment variables

When a service is started, the environment in which the service process is started
is inherited from the environment of the queue manager. It is possible to define
additional environment variables to be set in the environment of the service
process by adding the variables you want to define to one of the service.env
environment override files.

There are two possible files to which you can add environment variables:
v The machine scope service.env file, which is located in /var/mqm on UNIX

systems, or in the data directory selected during installation on Windows
systems.

v The queue manager scope service.env file, which is located in the queue
manager data directory. For example, the location of the environment override
file for a queue manager named QMNAME is:
– On UNIX systems, /var/mqm/qmgrs/QMNAME/service.env.
– On Windows systems, C:\Program Files\IBM\WebSphere MQ\qmgrs\QMNAME\

service.env.

Both files are processed, if available, with definitions in the queue manager scope
file taking precedence over those in the machine scope file.

The format of the variables defined in the file, service.env, is a list of name and
value variable pairs. Each variable must be defined on a new line, and each
variable is taken as it is explicitly defined, including white space. An example of
the file, service.env, follows:

#**#
#* *#
#* <N_OCO_COPYRIGHT> *#
#* Licensed Materials - Property of IBM *#
#* *#
#* 63H9336 *#
#* (C) Copyright IBM Corporation 2005 *#
#* *#
#* <NOC_COPYRIGHT> *#
#* *#
#**#
#***#
#* Module Name: service.env *#
#* Type : WebSphere MQ service environment file *#
#* Function : Define additional environment variables to be set *#
#* for SERVICE programs. *#
#* Usage : <VARIABLE>=<VALUE> *#
#* *#
#***#
MYLOC=/opt/myloc/bin
MYTMP=/tmp
TRACEDIR=/tmp/trace
MYINITQ=ACCOUNTS.INITIATION.QUEUE

Replaceable inserts on service definitions

In the definition of a service object, it is possible to substitute tokens. Tokens that
are substituted will automatically be replaced with their expanded text when the

48 WebSphere MQ: System Administration Guide

|
|
|
|
|

|

|
|
|

|
|
|

|

|
|

|
|

service program is executed. Substitute tokens can be taken from the following list
of common tokens, or from any variables that are defined in the file, service.env.

Common tokens:

The following are common tokens that can be used to substitute tokens in the
definition of a service object:

MQ_INSTALL_PATH
The install location of WebSphere MQ:
v On AIX systems, the install location is /usr/mqm/

v On Solaris, HP-UX, or Linux systems, the install location is /opt/mqm/

v On Windows systems, the install location is the install directory selected
during the installation of WebSphere MQ

MQ_DATA_PATH
The location of the WebSphere MQ data directory:
v On UNIX systems, the WebSphere MQ data directory location is

/var/mqm/

v On Windows systems, the location of the WebSphere MQ data directory
is the data directory selected during the installation of WebSphere MQ

QMNAME
The current queue manager name.

MQ_SERVICE_NAME
The name of the service.

MQ_SERVER_PID
This token can only be used by the STOPARG and STOPCMD arguments.

For server service objects this token is replaced with the process id of the
process started by the STARTCMD and STARTARG arguments. Otherwise,
this token is replaced with 0.

MQ_Q_MGR_DATA_PATH
The location of the queue manager data directory.

MQ_Q_MGR_DATA_NAME
The transformed name of the queue manager. For more information on
name transformation, see “Understanding WebSphere MQ file names” on
page 17.

To use replaceable inserts, insert the token within + characters into any of the
STARTCMD, STARTARG, STOPCMD, STOPARG, STDOUT or STDERR strings. For
examples of this, see “Examples on using service objects.”

Examples on using service objects

The following services are written with UNIX style path separator characters,
except where otherwise stated.

Using a server service object:

This example shows how to define, use, and alter, a server service object to start a
trigger monitor.
1. A server service object is defined, using the following MQSC command:

Chapter 2. Administration using WebSphere MQ commands 49

|

|
|

|
|
|
|

DEFINE SERVICE(S1) +
CONTROL(QMGR) +
SERVTYPE(SERVER) +
STARTCMD('+MQ_INSTALL_PATH+ bin/runmqtrm') +
STARTARG('-m +QMNAME+ -q ACCOUNTS.INITIATION.QUEUE') +
STOPCMD('+MQ_INSTALL_PATH+ bin/amqsstop') +
STOPARG('-m +QMNAME+ -p +MQ_SERVER_PID+')

Where:
+MQ_INSTALL_PATH+ is a token representing the installation directory.
+QMNAME+ is a token representing the name of the queue manager.
ACCOUNTS.INITIATION.QUEUE is the initiation queue.
amqsstop is a sample program provided with WebSphere MQ which
requests the queue manager to break all connections for the process id.
amqsstop generates PCF commands, therefore the command server must be
running.
+MQ_SERVER_PID+ is a token representing the process id passed to the stop
program.

2. An instance of the server service object will execute when the queue manager is
next started. However, we will start an instance of the server service object
immediately with the following MQSC command:
START SERVICE(S1)

3. The status of the server service process is displayed, using the following MQSC
command:
DISPLAY SVSTATUS(S1)

4. This example now shows how to alter the server service object and have the
updates picked up by manually restarting the server service process. The server
service object is altered so that the initiation queue is specified as
JUPITER.INITIATION.QUEUE. The following MQSC command is used:
ALTER SERVICE(S1) +

STARTARG('-m +QMNAME+ -q JUPITER.INITIATION.QUEUE')

Note: A running service will not pick up any updates to its service definition
until it is restarted.

5. The server service process is restarted so that the alteration is picked up, using
the following MQSC commands:
STOP SERVICE(S1)

Followed by:
START SERVICE(S1)

The server service process is restarted and picks up the alterations made in 4.

Note: The MQSC command, STOP SERVICE, can only be used if a STOPCMD
argument is specified in the service definition.

Using a command service object:

This example shows how to define a command service object to start a program
that writes entries to the operating system’s system log when a queue manager is
started or stopped:
1. The command service object is defined, using the following MQSC command:

50 WebSphere MQ: System Administration Guide

|
|
|

|

|
|

DEFINE SERVICE(S2) +
CONTROL(QMGR) +
SERVTYPE(COMMAND) +
STARTCMD('/usr/bin/logger') +
STARTARG('Queue manager +QMNAME+ starting') +
STOPCMD('/usr/bin/logger') +
STOPARG('Queue manager +QMNAME+ stopping')

Where:
logger is the UNIX supplied command to write to the system log.
+QMNAME+ is a token representing the name of the queue manager.

Using a command service object when a queue manager ends only:

This example shows how to define a command service object to start a program
that writes entries to the operating system’s system log when a queue manager is
stopped only:
1. The command service object is defined, using the following MQSC command:

DEFINE SERVICE(S3) +
CONTROL(QMGR) +
SERVTYPE(COMMAND) +
STOPCMD('/usr/bin/logger') +
STOPARG('Queue manager +QMNAME+ stopping')

Where:
logger is a sample program provided with WebSphere MQ that can write
entries to the operating system’s system log.
+QMNAME+ is a token representing the name of the queue manager.

More on passing arguments:

This example is written with Windows style path separator characters.

This example shows how to define a server service object to start a program called
runserv when a queue manager is started. One of the arguments that is to be
passed to the starting program is a string containing a space. This argument needs
to be passed as a single string. To achieve this, double quotes are used as shown in
the following command to define the command service object:
1. The server service object is defined, using the following MQSC command:

DEFINE SERVICE(S1) SERVTYPE(SERVER) CONTROL(QMGR) +
STARTCMD('C:\Program Files\Tools\runserv.exe') +
STARTARG('-m +QMNAME+ -d "C:\Program Files\Tools\"') +
STDOUT('C:\Program Files\Tools\+MQ_SERVICE_NAME+.out')

DEFINE SERVICE(S4) +
CONTROL(QMGR) +
SERVTYPE(SERVER) +
STARTCMD('C:\Program Files\Tools\runserv.exe') +
STARTARG('-m +QMNAME+ -d "C:\Program Files\Tools\"') +
STDOUT('C:\Program Files\Tools\+MQ_SERVICE_NAME+.out')

Where:
+QMNAME+ is a token representing the name of the queue manager.
"C:\Program Files\Tools\" is a string containing a space, which will be
passed as a single string.

Chapter 2. Administration using WebSphere MQ commands 51

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

Autostarting a Service:

This example shows how to define a server service object that can be used to
automatically start the Trigger Monitor when the queue manager starts.
1. The server service object is defined, using the following MQSC command:

DEFINE SERVICE(TRIG_MON_START) +
CONTROL(QMGR) +
SERVTYPE(SERVER) +
STARTCMD('runmqtrm') +
STARTARG('-m +QMNAME+ -q +IQNAME+')

Where:
+QMNAME+ is a token representing the name of the queue manager.
+IQNAME+ is an environment variable defined by the user in one of the
service.env files representing the name of the initiation queue.

Managing objects for triggering

WebSphere MQ enables you to start an application automatically when certain
conditions on a queue are met. For example, you might want to start an
application when the number of messages on a queue reaches a specified number.
This facility is called triggering and is described in detail in the WebSphere MQ
Application Programming Guide.

This section tells you how to set up the required objects to support triggering on
WebSphere MQ.

Defining an application queue for triggering

An application queue is a local queue that is used by applications for messaging,
through the MQI. Triggering requires a number of queue attributes to be defined
on the application queue. Triggering itself is enabled by the Trigger attribute
(TRIGGER in MQSC commands).

In this example, a trigger event is to be generated when there are 100 messages of
priority 5 or greater on the local queue MOTOR.INSURANCE.QUEUE, as follows:
DEFINE QLOCAL (MOTOR.INSURANCE.QUEUE) +

PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +
MAXMSGL (2000) +
DEFPSIST (YES) +
INITQ (MOTOR.INS.INIT.QUEUE) +
TRIGGER +
TRIGTYPE (DEPTH) +
TRIGDPTH (100)+
TRIGMPRI (5)

where:

QLOCAL (MOTOR.INSURANCE.QUEUE)
Is the name of the application queue being defined.

PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)
Is the name of the process definition that defines the application to be
started by a trigger monitor program.

MAXMSGL (2000)
Is the maximum length of messages on the queue.

52 WebSphere MQ: System Administration Guide

DEFPSIST (YES)
Specifies that messages on this queue are persistent by default.

INITQ (MOTOR.INS.INIT.QUEUE)
Is the name of the initiation queue on which the queue manager is to put
the trigger message.

TRIGGER
Is the trigger attribute value.

TRIGTYPE (DEPTH)
Specifies that a trigger event is generated when the number of messages of
the required priority (TRIGMPRI) reaches the number specified in
TRIGDPTH.

TRIGDPTH (100)
Is the number of messages required to generate a trigger event.

TRIGMPRI (5)
Is the priority of messages that are to be counted by the queue manager in
deciding whether to generate a trigger event. Only messages with priority
5 or higher are counted.

Defining an initiation queue

When a trigger event occurs, the queue manager puts a trigger message on the
initiation queue specified in the application queue definition. Initiation queues
have no special settings, but you can use the following definition of the local
queue MOTOR.INS.INIT.QUEUE for guidance:
DEFINE QLOCAL(MOTOR.INS.INIT.QUEUE) +

GET (ENABLED) +
NOSHARE +
NOTRIGGER +
MAXMSGL (2000) +
MAXDEPTH (1000)

Defining a process

Use the DEFINE PROCESS command to create a process definition. A process
definition defines the application to be used to process messages from the
application queue. The application queue definition names the process to be used
and thereby associates the application queue with the application to be used to
process its messages. This is done through the PROCESS attribute on the
application queue MOTOR.INSURANCE.QUEUE. The following MQSC command
defines the required process, MOTOR.INSURANCE.QUOTE.PROCESS, identified
in this example:
DEFINE PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +

DESCR ('Insurance request message processing') +
APPLTYPE (UNIX) +
APPLICID ('/u/admin/test/IRMP01') +
USERDATA ('open, close, 235')

Where:

MOTOR.INSURANCE.QUOTE.PROCESS
Is the name of the process definition.

DESCR ('Insurance request message processing')
Describes the application program to which this definition relates. This text
is displayed when you use the DISPLAY PROCESS command. This can

Chapter 2. Administration using WebSphere MQ commands 53

help you to identify what the process does. If you use spaces in the string,
you must enclose the string in single quotation marks.

APPLTYPE (UNIX)
Is the type of application to be started.

APPLICID ('/u/admin/test/IRMP01')
Is the name of the application executable file, specified as a fully qualified
file name. In Windows systems, a typical APPLICID value would be
c:\appl\test\irmp01.exe.

USERDATA ('open, close, 235')
Is user-defined data, which can be used by the application.

Displaying attributes of a process definition

Use the DISPLAY PROCESS command to examine the results of your definition.
For example:
DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)

24 : DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) ALL
AMQ8407: Display Process details.

DESCR ('Insurance request message processing')
APPLICID ('/u/admin/test/IRMP01')
USERDATA (open, close, 235)
PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)
APPLTYPE (UNIX)

You can also use the MQSC command ALTER PROCESS to alter an existing
process definition, and the DELETE PROCESS command to delete a process
definition.

Automating administration tasks

This chapter assumes that you have experience of administering WebSphere MQ
objects.

You might decide that it would be beneficial to your installation to automate some
administration and monitoring tasks. You can automate administration tasks for
both local and remote queue managers using programmable command format
(PCF) commands.

This chapter describes:
v How to use programmable command formats to automate administration tasks

in “PCF commands.”
v Support for Microsoft’s Active Directory Service Interfaces (ADSI) in “Active

Directory Services Interfaces” on page 56.

PCF commands

The purpose of WebSphere MQ programmable command format (PCF) commands
is to allow administration tasks to be programmed into an administration program.
In this way, from a program you can manipulate queue manager objects (queues,
process definitions, namelists, channels, client connection channels, listeners,
services, and authentication information objects), and even manipulate the queue
managers themselves.

54 WebSphere MQ: System Administration Guide

PCF commands cover the same range of functions provided by MQSC commands.
You can write a program to issue PCF commands to any queue manager in the
network from a single node. In this way, you can both centralize and automate
administration tasks.

Each PCF command is a data structure that is embedded in the application data
part of a WebSphere MQ message. Each command is sent to the target queue
manager using the MQI function MQPUT in the same way as any other message.
Providing the command server is running on the queue manager receiving the
message, the command server interprets it as a command message and runs the
command. To get the replies, the application issues an MQGET call and the reply
data is returned in another data structure. The application can then process the
reply and act accordingly.

Note: Unlike MQSC commands, PCF commands and their replies are not in a text
format that you can read.

Briefly, these are some of the things needed to create a PCF command message:

Message descriptor
This is a standard WebSphere MQ message descriptor, in which:
v Message type (MsqType) is MQMT_REQUEST.
v Message format (Format) is MQFMT_ADMIN.

Application data
Contains the PCF message including the PCF header, in which:
v The PCF message type (Type) specifies MQCFT_COMMAND.
v The command identifier specifies the command, for example, Change

Queue (MQCMD_CHANGE_Q).

For a complete description of the PCF data structures and how to implement them,
see WebSphere MQ Programmable Command Formats and Administration
Interface.

PCF object attributes

Object attributes in PCF are not limited to eight characters as they are for MQSC
commands. They are shown in this book in italics. For example, the PCF
equivalent of RQMNAME is RemoteQMgrName.

Escape PCFs

Escape PCFs are PCF commands that contain MQSC commands within the
message text. You can use PCFs to send commands to a remote queue manager.
For more information about using escape PCFs, see WebSphere MQ Programmable
Command Formats and Administration Interface.

Using the MQAI to simplify the use of PCFs

The MQAI is an administration interface to WebSphere MQ that is available on the
AIX, HP-UX, Linux, Solaris, and Windows platforms.

It performs administration tasks on a queue manager through the use of data bags.
Data bags allow you to handle properties (or parameters) of objects in a way that
is easier than using PCFs.

Use the MQAI:

Chapter 2. Administration using WebSphere MQ commands 55

To simplify the use of PCF messages
The MQAI is an easy way to administer WebSphere MQ; you do not have
to write your own PCF messages, avoiding the problems associated with
complex data structures.

To pass parameters in programs written using MQI calls, the PCF message
must contain the command and details of the string or integer data. To do
this, you need several statements in your program for every structure, and
memory space must be allocated. This task can be long and laborious.

Programs written using the MQAI pass parameters into the appropriate
data bag and you need only one statement for each structure. The use of
MQAI data bags removes the need for you to handle arrays and allocate
storage, and provides some degree of isolation from the details of the PCF.

To implement self-administering applications and administration tools
For example, the Active Directory Services Interfaces provided by
WebSphere MQ for Windows use the MQAI.

To handle error conditions more easily
It is difficult to get return codes back from PCF commands, but the MQAI
makes it easier for the program to handle error conditions.

After you have created and populated your data bag, you can send an
administration command message to the command server of a queue manager,
using the mqExecute call, which waits for any response messages. The mqExecute
call handles the exchange with the command server and returns responses in a
response bag.

For more information about using the MQAI, and PCFs in general, see WebSphere
MQ Programmable Command Formats and Administration Interface.

Active Directory Services Interfaces

Active Directory Service Interfaces (ADSI) support allows client applications to use
a common set of Component Object Model (COM) interfaces to communicate with,
and control, any application that implements them.

Unlike tools written using other WebSphere MQ administration interfaces, those
that use the ADSI are not limited to manipulating WebSphere MQ servers. The
same tool can control Windows, Lotus Notes®, or any application implementing
the ADSI.

WebSphere MQ support for the ADSI is implemented through the use of the
IBMMQSeries namespace.

Any programming language that supports the COM interfaces can be used to
implement ADSI clients.

For more information about the ADSI, visit the Microsoft web site at:

www.microsoft.com

For more information about Component Object Model (COM) interfaces, see
WebSphere MQ Using the Component Object Model Interface.

Client connection channels in the Active Directory:

56 WebSphere MQ: System Administration Guide

On Windows systems that support the Active Directory, WebSphere MQ publishes
client connection channels in the Active Directory to provide dynamic client-server
binding.

When client connection channel objects are defined, they are written into a client
channel definition file, called AMQCLCHL.TAB by default. If the client connection
channels use the TCP/IP protocol, the WebSphere MQ server also publishes them
in the Active Directory. When the WebSphere MQ client determines how to connect
to the server, it looks for a relevant client connection channel object definition
using the following search order:
1. MQCONNX MQCD data structure
2. MQSERVER environment variable
3. client channel definition file
4. Active Directory

This order means that any current applications are not affected by any change. You
can think of these entries in the Active Directory as records in the client channel
definition file, and the WebSphere MQ client processes them in the same way. To
configure and administer support for publishing client connection channel
definitions in the Active Directory, use the setmqscp command, as described in
“setmqscp” on page 362.

Administering remote WebSphere MQ objects

This chapter tells you how to administer WebSphere MQ objects on a remote
queue manager using MQSC commands, and how to use remote queue objects to
control the destination of messages and reply messages.

This chapter describes:
v “Channels, clusters, and remote queuing”
v “Remote administration from a local queue manager” on page 59
v “Creating a local definition of a remote queue” on page 65
v “Using remote queue definitions as aliases” on page 68
v “Data conversion” on page 69

Channels, clusters, and remote queuing

A queue manager communicates with another queue manager by sending a
message and, if required, receiving back a response. The receiving queue manager
could be:
v On the same machine
v On another machine in the same location (or even on the other side of the

world)
v Running on the same platform as the local queue manager
v Running on another platform supported by WebSphere MQ

These messages might originate from:
v User-written application programs that transfer data from one node to another
v User-written administration applications that use PCF commands, the MQAI, or

the ADSI
v The WebSphere MQ Explorer.

Chapter 2. Administration using WebSphere MQ commands 57

v Queue managers sending:
– Instrumentation event messages to another queue manager
– MQSC commands issued from a runmqsc command in indirect mode (where

the commands are run on another queue manager)

Before a message can be sent to a remote queue manager, the local queue manager
needs a mechanism to detect the arrival of messages and transport them consisting
of:
v At least one channel
v A transmission queue
v A channel initiator

For a remote queue manager to received a message, a listener is required.

A channel is a one-way communication link between two queue managers and can
carry messages destined for any number of queues at the remote queue manager.

Each end of the channel has a separate definition. For example, if one end is a
sender or a server, the other end must be a receiver or a requester. A simple
channel consists of a sender channel definition at the local queue manager end and a
receiver channel definition at the remote queue manager end. The two definitions
must have the same name and together constitute a single message channel.

If you want the remote queue manager to respond to messages sent by the local
queue manager, set up a second channel to send responses back to the local queue
manager.

Use the MQSC command DEFINE CHANNEL to define channels. In this chapter,
the examples relating to channels use the default channel attributes unless
otherwise specified.

There is a message channel agent (MCA) at each end of a channel, controlling the
sending and receiving of messages. The MCA takes messages from the
transmission queue and puts them on the communication link between the queue
managers.

A transmission queue is a specialized local queue that temporarily holds messages
before the MCA picks them up and sends them to the remote queue manager. You
specify the name of the transmission queue on a remote queue definition.

You can allow an MCA to transfer messages using multiple threads. This process is
known as pipelining. Pipelining enables the MCA to transfer messages more
efficiently, improving channel performance. See “Attributes of channels” on page
112 for details of how to configure a channel to use pipelining.

“Preparing channels and transmission queues for remote administration” on page
60 tells you how to use these definitions to set up remote administration.

For more information about setting up distributed queuing in general, see
WebSphere MQ Intercommunication.

Remote administration using clusters

In a WebSphere MQ network using distributed queuing, every queue manager is
independent. If one queue manager needs to send messages to another queue

58 WebSphere MQ: System Administration Guide

manager, it must define a transmission queue, a channel to the remote queue
manager, and a remote queue definition for every queue to which it wants to send
messages.

A cluster is a group of queue managers set up in such a way that the queue
managers can communicate directly with one another over a single network
without complex transmission queue, channel, and queue definitions. Clusters can
be set up easily, and typically contain queue managers that are logically related in
some way and need to share data or applications. Even the smallest cluster reduces
system administration overheads.

Establishing a network of queue managers in a cluster involves fewer definitions
than establishing a traditional distributed queuing environment. With fewer
definitions to make, you can set up or change your network more quickly and
easily, and reduce the risk of making an error in your definitions.

To set up a cluster, you need one cluster sender (CLUSSDR) and one cluster
receiver (CLUSRCVR) definition for each queue manager. You do not need any
transmission queue definitions or remote queue definitions. The principles of
remote administration are the same when used within a cluster, but the definitions
themselves are greatly simplified.

For more information about clusters, their attributes, and how to set them up, refer
to WebSphere MQ Queue Manager Clusters.

Remote administration from a local queue manager

This section tells you how to administer a remote queue manager from a local
queue manager using MQSC and PCF commands.

Preparing the queues and channels is essentially the same for both MQSC and PCF
commands. In this book, the examples show MQSC commands, because they are
easier to understand. For more information about writing administration programs
using PCF commands, see WebSphere MQ Programmable Command Formats and
Administration Interface.

You send MQSC commands to a remote queue manager either interactively or
from a text file containing the commands. The remote queue manager might be on
the same machine or, more typically, on a different machine. You can remotely
administer queue managers in other WebSphere MQ environments, including
UNIX systems, Windows systems, i5/OS, and z/OS.

To implement remote administration, you must create specific objects. Unless you
have specialized requirements, you should find that the default values (for
example, for maximum message length) are sufficient.

Preparing queue managers for remote administration

Figure 7 on page 60 shows the configuration of queue managers and channels that
you need for remote administration using the runmqsc command. The object
source.queue.manager is the source queue manager from which you can issue
MQSC commands and to which the results of these commands (operator messages)
are returned. The object target.queue.manager is the name of the target queue
manager, which processes the commands and generates any operator messages.

Chapter 2. Administration using WebSphere MQ commands 59

Note: If you are using runmqsc with the -w option, source.queue.manager must be
the default queue manager. For further information on creating a queue manager,
see “crtmqm” on page 291.

On both systems, if you have not already done so:
v Create the queue manager and the default objects, using the crtmqm command.
v Start the queue manager, using the strmqm command.

On the target queue manager:
v The command queue, SYSTEM.ADMIN.COMMAND.QUEUE, must be present.

This queue is created by default when a queue manager is created.

You have to run these commands locally or over a network facility such as Telnet.

Preparing channels and transmission queues for remote
administration

To run MQSC commands remotely, set up two channels, one for each direction,
and their associated transmission queues. This example assumes that you are using
TCP/IP as the transport type and that you know the TCP/IP address involved.

The channel source.to.target is for sending MQSC commands from the source
queue manager to the target queue manager. Its sender is at source.queue.manager
and its receiver is at target.queue.manager. The channel target.to.source is for
returning the output from commands and any operator messages that are
generated to the source queue manager. You must also define a transmission queue
for each channel. This queue is a local queue that is given the name of the
receiving queue manager. The XMITQ name must match the remote queue
manager name in order for remote administration to work, unless you are using a
queue manager alias. Figure 8 on page 61 summarizes this configuration.

runmqsc

MQSC commands

repl ies

Process commands
for example:
DEFINE QLOCAL

Local system Remote system

source.queue.manager target.queue.manager

Figure 7. Remote administration using MQSC commands

60 WebSphere MQ: System Administration Guide

See WebSphere MQ Intercommunication for more information about setting up
channels.

Defining channels, listeners, and transmission queues:

On the source queue manager (source.queue.manager), issue the following MQSC
commands to define the channels, listener, and the transmission queue:
1. Define the sender channel at the source queue manager:

DEFINE CHANNEL ('source.to.target') +
CHLTYPE(SDR) +
CONNAME (RHX5498) +
XMITQ ('target.queue.manager') +
TRPTYPE(TCP)

2. Define the receiver channel at the source queue manager:
DEFINE CHANNEL ('target.to.source') +

CHLTYPE(RCVR) +
TRPTYPE(TCP)

3. Define the listener on the source queue manager:
DEFINE LISTENER ('source.queue.manager') +

TRPTYPE (TCP)

4. Define the transmission queue on the source queue manager:
DEFINE QLOCAL ('target.queue.manager') +

USAGE (XMITQ)

Issue the following commands on the target queue manager
(target.queue.manager), to create the channels, listener, and the transmission
queue:
1. Define the sender channel on the target queue manager:

DEFINE CHANNEL ('target.to.source') +
CHLTYPE(SDR) +
CONNAME (RHX7721) +
XMITQ ('source.queue.manager') +
TRPTYPE(TCP)

2. Define the receiver channel on the target queue manager:
DEFINE CHANNEL ('source.to.target') +

CHLTYPE(RCVR) +
TRPTYPE(TCP)

3. Define the listener on the target queue manager:

repl ies

runmqsc

Local system Remote system

source.queue.manager target.queue.manager

XMITQ=target.queue.manager

source.to.target

target.to.source

XMITQ=source.queue.manager

SYSTEM.ADMIN.COMMAND.QUEUE

SYSTEM.MQSC.REPLY.QUEUE

commands

Figure 8. Setting up channels and queues for remote administration

Chapter 2. Administration using WebSphere MQ commands 61

DEFINE LISTENER ('target.queue.manager') +
TRPTYPE (TCP)

4. Define the transmission queue on the target queue manager:
DEFINE QLOCAL ('source.queue.manager') +

USAGE (XMITQ)

Note: The TCP/IP connection names specified for the CONNAME attribute in the
sender channel definitions are for illustration only. This is the network name of the
machine at the other end of the connection. Use the values appropriate for your
network.

Starting the listeners and channels:

Start both listeners by using the following MQSC commands:
1. Start the listener on the source queue manager, source.queue.manager, by

issuing the following MQSC command:
START LISTENER ('source.queue.manager')

2. Start the listener on the target queue manager, target.queue.manager, by
issuing the following MQSC command:
START LISTENER ('target.queue.manager')

Start both sender channels by using the following MQSC commands:
1. Start the sender channel on the source queue manager, source.queue.manager,

by issuing the following MQSC command:
START CHANNEL ('source.to.target')

2. Start the sender channel on the target queue manager, target.queue.manager,
by issuing the following MQSC command:
START CHANNEL ('target.to.source')

Automatic definition of channels:

If WebSphere MQ receives an inbound attach request and cannot find an
appropriate receiver or server-connection channel, it creates a channel
automatically. Automatic definitions are based on two default definitions supplied
with WebSphere MQ: SYSTEM.AUTO.RECEIVER and SYSTEM.AUTO.SVRCONN.

You enable automatic definition of receiver and server-connection definitions by
updating the queue manager object using the MQSC command, ALTER QMGR (or
the PCF command Change Queue Manager).

For more information about creating channel definitions automatically, see
WebSphere MQ Intercommunication. For information about automatically defining
channels for clusters, see WebSphere MQ Queue Manager Clusters.

Managing the command server for remote administration

Each queue manager can have a command server associated with it. A command
server processes any incoming commands from remote queue managers, or PCF
commands from applications. It presents the commands to the queue manager for
processing and returns a completion code or operator message depending on the
origin of the command.

A command server is mandatory for all administration involving PCF commands,
the MQAI, and also for remote administration.

62 WebSphere MQ: System Administration Guide

Note: For remote administration, ensure that the target queue manager is running.
Otherwise, the messages containing commands cannot leave the queue manager
from which they are issued. Instead, these messages are queued in the local
transmission queue that serves the remote queue manager. Avoid this situation.

There are separate control commands for starting and stopping the command
server. Providing the command server is running, users of WebSphere MQ for
Windows or WebSphere MQ for Linux (x86 platform) can perform the operations
described in the following sections using the WebSphere MQ Explorer. For more
information, see “Administration using the WebSphere MQ Explorer” on page 71.

Starting the command server:

Depending on the value of the queue manager attribute, SCMDSERV, the
command server is either started automatically when the queue manager starts, or
must be started manually. The value of the queue manager attribute can be altered
using the MQSC command ALTER QMGR specifying the parameter SCMDSERV. By
default, the command server is started automatically.

If SCMDSERV is set to MANUAL, start the command server using the command:
strmqcsv saturn.queue.manager

where saturn.queue.manager is the queue manager for which the command server
is being started.

Displaying the status of the command server:

For remote administration, ensure that the command server on the target queue
manager is running. If it is not running, remote commands cannot be processed.
Any messages containing commands are queued in the target queue manager’s
command queue.

To display the status of the command server for a queue manager, issue the
following MQSC command:
DISPLAY QMSTATUS CMDSERV

Stopping a command server:

To end the command server started by the previous example use the following
command:
endmqcsv saturn.queue.manager

You can stop the command server in two ways:
v For a controlled stop, use the endmqcsv command with the -c flag, which is the

default.
v For an immediate stop, use the endmqcsv command with the -i flag.

Note: Stopping a queue manager also ends the command server associated with it.

Issuing MQSC commands on a remote queue manager

The command server must be running on the target queue manager, if it is going
to process MQSC commands remotely. (This is not necessary on the source queue
manager). For information on how to start the command server on a queue
manager, see “Starting the command server.”

Chapter 2. Administration using WebSphere MQ commands 63

On the source queue manager, you can then run MQSC commands interactively in
indirect mode by typing:
runmqsc -w 30 target.queue.manager

This form of the runmqsc command, with the -w flag, runs the MQSC commands
in indirect mode, where commands are put (in a modified form) on the command
server input queue and executed in order.

When you type in an MQSC command, it is redirected to the remote queue
manager, in this case, target.queue.manager. The timeout is set to 30 seconds; if a
reply is not received within 30 seconds, the following message is generated on the
local (source) queue manager:
AMQ8416: MQSC timed out waiting for a response from the command server.

When you stop issuing MQSC commands, the local queue manager displays any
timed-out responses that have arrived and discards any further responses.

In indirect mode, you can also run an MQSC command file on a remote queue
manager. For example:
runmqsc -w 60 target.queue.manager < mycomds.in > report.out

where mycomds.in is a file containing MQSC commands and report.out is the
report file.

Working with queue managers on z/OS:

You can issue MQSC commands to a z/OS queue manager from a queue manager
on the platforms described in this book. However, to do this, you must modify the
runmqsc command and the channel definitions at the sender.

In particular, you add the -x flag to the runmqsc command on the source node to
specify that the target queue manager is running under z/OS:
runmqsc -w 30 -x target.queue.manager

Recommendations for issuing commands remotely

When you are issuing commands on a remote queue manager:
1. Put the MQSC commands to be run on the remote system in a command file.
2. Verify your MQSC commands locally, by specifying the -v flag on the runmqsc

command.
You cannot use runmqsc to verify MQSC commands on another queue
manager.

3. Check that the command file runs locally without error.
4. Run the command file against the remote system.

If you have problems using MQSC commands remotely

If you have difficulty in running MQSC commands remotely, make sure that you
have:
v Started the command server on the target queue manager.
v Defined a valid transmission queue.
v Defined the two ends of the message channels for both:

– The channel along which the commands are being sent.

64 WebSphere MQ: System Administration Guide

– The channel along which the replies are to be returned.
v Specified the correct connection name (CONNAME) in the channel definition.
v Started the listeners before you started the message channels.
v Checked that the disconnect interval has not expired, for example, if a channel

started but then shut down after some time. This is especially important if you
start the channels manually.

v Sent requests from a source queue manager that do not make sense to the target
queue manager (for example, requests that include parameters that are not
supported on the remote queue manager).

See also “Resolving problems with MQSC commands” on page 35.

Creating a local definition of a remote queue

A local definition of a remote queue is a definition on a local queue manager that
refers to a queue on a remote queue manager.

You do not have to define a remote queue from a local position, but the advantage
of doing so is that applications can refer to the remote queue by its locally-defined
name instead of having to specify a name that is qualified by the ID of the queue
manager on which the remote queue is located.

Understanding how local definitions of remote queues work

An application connects to a local queue manager and then issues an MQOPEN
call. In the open call, the queue name specified is that of a remote queue definition
on the local queue manager. The remote queue definition supplies the names of the
target queue, the target queue manager, and optionally, a transmission queue. To
put a message on the remote queue, the application issues an MQPUT call,
specifying the handle returned from the MQOPEN call. The queue manager uses
the remote queue name and the remote queue manager name in a transmission
header at the start of the message. This information is used to route the message to
its correct destination in the network.

As administrator, you can control the destination of the message by altering the
remote queue definition.

Example:

Purpose:

An application needs to put a message on a queue owned by a remote queue
manager.

How it works:

The application connects to a queue manager, for example, saturn.queue.manager.
The target queue is owned by another queue manager.

Chapter 2. Administration using WebSphere MQ commands 65

On the MQOPEN call, the application specifies these fields:

Field value Description

ObjectName CYAN.REMOTE.QUEUE Specifies the local name of the
remote queue object. This defines the
target queue and the target queue
manager.

ObjectType (Queue) Identifies this object as a queue.

ObjectQmgrName Blank or saturn.queue.manager This field is optional.

If blank, the name of the local queue
manager is assumed. (This is the
queue manager on which the remote
queue definition exists.)

After this, the application issues an MQPUT call to put a message onto this queue.

On the local queue manager, you can create a local definition of a remote queue
using the following MQSC commands:

DEFINE QREMOTE (CYAN.REMOTE.QUEUE) +
DESCR ('Queue for auto insurance requests from the branches') +
RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE) +
RQMNAME (jupiter.queue.manager) +
XMITQ (INQUOTE.XMIT.QUEUE)

where:

QREMOTE (CYAN.REMOTE.QUEUE)
Specifies the local name of the remote queue object. This is the name that
applications connected to this queue manager must specify in the
MQOPEN call to open the queue
AUTOMOBILE.INSURANCE.QUOTE.QUEUE on the remote queue
manager jupiter.queue.manager.

DESCR ('Queue for auto insurance requests from the branches')
Provides additional text that describes the use of the queue.

RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE)
Specifies the name of the target queue on the remote queue manager. This
is the real target queue for messages sent by applications that specify the
queue name CYAN.REMOTE.QUEUE. The queue
AUTOMOBILE.INSURANCE.QUOTE.QUEUE must be defined as a local
queue on the remote queue manager.

RQMNAME (jupiter.queue.manager)
Specifies the name of the remote queue manager that owns the target
queue AUTOMOBILE.INSURANCE.QUOTE.QUEUE.

XMITQ (INQUOTE.XMIT.QUEUE)
Specifies the name of the transmission queue. This is optional; if the name
of a transmission queue is not specified, a queue with the same name as
the remote queue manager is used.

In either case, the appropriate transmission queue must be defined as a
local queue with a Usage attribute specifying that it is a transmission queue
(USAGE(XMITQ) in MQSC commands).

66 WebSphere MQ: System Administration Guide

An alternative way of putting messages on a remote queue

Using a local definition of a remote queue is not the only way of putting messages
on a remote queue. Applications can specify the full queue name, including the
remote queue manager name, as part of the MQOPEN call. In this case, you do
not need a local definition of a remote queue. However, this means that
applications must either know, or have access to, the name of the remote queue
manager at run time.

Using other commands with remote queues

You can use MQSC commands to display or alter the attributes of a remote queue
object, or you can delete the remote queue object. For example:
v To display the remote queue’s attributes:

DISPLAY QUEUE (CYAN.REMOTE.QUEUE)

v To change the remote queue to enable puts. This does not affect the target
queue, only applications that specify this remote queue:
ALTER QREMOTE (CYAN.REMOTE.QUEUE) PUT(ENABLED)

v To delete this remote queue. This does not affect the target queue, only its local
definition:

DELETE QREMOTE (CYAN.REMOTE.QUEUE)

Note: When you delete a remote queue, you delete only the local representation of
the remote queue. You do not delete the remote queue itself or any messages on it.

Defining a transmission queue

A transmission queue is a local queue that is used when a queue manager
forwards messages to a remote queue manager through a message channel.

The channel provides a one-way link to the remote queue manager. Messages are
queued at the transmission queue until the channel can accept them. When you
define a channel, you must specify a transmission queue name at the sending end
of the message channel.

The MQSC command attribute USAGE defines whether a queue is a transmission
queue or a normal queue.

Default transmission queues:

When a queue manager sends messages to a remote queue manager, it identifies
the transmission queue using the following sequence:
1. The transmission queue named on the XMITQ attribute of the local definition

of a remote queue.
2. A transmission queue with the same name as the target queue manager. (This

value is the default value on XMITQ of the local definition of a remote queue.)
3. The transmission queue named on the DEFXMITQ attribute of the local queue

manager.

For example, the following MQSC command creates a default transmission queue
on source.queue.manager for messages going to target.queue.manager:

DEFINE QLOCAL ('target.queue.manager') +
DESCR ('Default transmission queue for target qm') +
USAGE (XMITQ)

Chapter 2. Administration using WebSphere MQ commands 67

Applications can put messages directly on a transmission queue, or indirectly
through a remote queue definition. See also “Creating a local definition of a remote
queue” on page 65.

Using remote queue definitions as aliases

In addition to locating a queue on another queue manager, you can also use a local
definition of a remote queue for both:
v Queue manager aliases
v Reply-to queue aliases

Both types of alias are resolved through the local definition of a remote queue.

You must set up the appropriate channels for the message to arrive at its
destination.

Queue manager aliases

An alias is the process by which the name of the target queue manager, as
specified in a message, is modified by a queue manager on the message route.
Queue manager aliases are important because you can use them to control the
destination of messages within a network of queue managers.

You do this by altering the remote queue definition on the queue manager at the
point of control. The sending application is not aware that the queue manager
name specified is an alias.

For more information about queue manager aliases, see WebSphere MQ
Intercommunication.

Reply-to queue aliases

Optionally, an application can specify the name of a reply-to queue when it puts a
request message on a queue.

If the application that processes the message extracts the name of the reply-to
queue, it knows where to send the reply message, if required.

A reply-to queue alias is the process by which a reply-to queue, as specified in a
request message, is altered by a queue manager on the message route. The sending
application is not aware that the reply-to queue name specified is an alias.

A reply-to queue alias lets you alter the name of the reply-to queue and optionally
its queue manager. This in turn lets you control which route is used for reply
messages.

For more information about request messages, reply messages, and reply-to
queues, see the WebSphere MQ Application Programming Guide.

For more information about reply-to queue aliases, see WebSphere MQ
Intercommunication.

68 WebSphere MQ: System Administration Guide

Data conversion

Message data in WebSphere MQ defined formats (also known as built-in formats)
can be converted by the queue manager from one coded character set to another,
provided that both character sets relate to a single language or a group of similar
languages.

For example, conversion between coded character sets with identifiers (CCSIDs)
850 and 500 is supported, because both apply to Western European languages.

For EBCDIC new line (NL) character conversions to ASCII, see “All queue
managers” on page 99.

Supported conversions are defined in the WebSphere MQ Application
Programming Reference.

When a queue manager cannot convert messages in built-in
formats

The queue manager cannot automatically convert messages in built-in formats if
their CCSIDs represent different national-language groups. For example,
conversion between CCSID 850 and CCSID 1025 (which is an EBCDIC coded
character set for languages using Cyrillic script) is not supported because many of
the characters in one coded character set cannot be represented in the other. If you
have a network of queue managers working in different national languages, and
data conversion among some of the coded character sets is not supported, you can
enable a default conversion. Default data conversion is described in “Default data
conversion.”

File ccsid.tbl

The file ccsid.tbl is used for the following purposes:
v In WebSphere MQ for Windows it records all the supported code sets. In UNIX

systems the supported code sets are held internally by the operating system.
v It specifies any additional code sets. To specify additional code sets, you need to

edit ccsid.tbl (guidance on how to do this is provided in the file).
v It specifies any default data conversion.

You can update the information recorded in ccsid.tbl; you might want to do this if,
for example, a future release of your operating system supports additional coded
character sets.

In WebSphere MQ for Windows, ccsid.tbl is located in directory C:\Program
Files\IBM\WebSphere MQ\conv\table by default.

In WebSphere MQ for UNIX systems, ccsid.tbl is located in directory
/var/mqm/conv/table.

Default data conversion:

If you set up channels between two machines on which data conversion is not
normally supported, you must enable default data conversion for the channels to
work.

Chapter 2. Administration using WebSphere MQ commands 69

To enable default data conversion, edit the ccsid.tbl file to specify a default
EBCDIC CCSID and a default ASCII CCSID. Instructions on how to do this are
included in the file. You must do this on all machines that will be connected using
the channels. Restart the queue manager for the change to take effect.

The default data-conversion process is as follows:
v If conversion between the source and target CCSIDs is not supported, but the

CCSIDs of the source and target environments are either both EBCDIC or both
ASCII, the character data is passed to the target application without conversion.

v If one CCSID represents an ASCII coded character set, and the other represents
an EBCDIC coded character set, WebSphere MQ converts the data using the
default data-conversion CCSIDs defined in ccsid.tbl.

Note: Try to restrict the characters being converted to those that have the same
code values in the coded character set specified for the message and in the default
coded character set. If you use only the set of characters that is valid for
WebSphere MQ object names (as defined in “Names of WebSphere MQ objects” on
page 273) you will, in general, satisfy this requirement. Exceptions occur with
EBCDIC CCSIDs 290, 930, 1279, and 5026 used in Japan, where the lowercase
characters have different codes from those used in other EBCDIC CCSIDs.

Converting messages in user-defined formats

The queue manager cannot convert messages in user-defined formats from one
coded character set to another. If you need to convert data in a user-defined
format, you must supply a data-conversion exit for each such format. Do not use
default CCSIDs to convert character data in user-defined formats. For more
information about converting data in user-defined formats and about writing data
conversion exits, see the WebSphere MQ Application Programming Guide.

Changing the queue manager CCSID

When you have used the CCSID attribute of the ALTER QMGR command to
change the CCSID of the queue manager, stop and restart the queue manager to
ensure that all running applications, including the command server and channel
programs, are stopped and restarted.

This is necessary, because any applications that are running when the queue
manager CCSID is changed continue to use the existing CCSID.

70 WebSphere MQ: System Administration Guide

Chapter 3. Administration using the WebSphere MQ Explorer

Administration using the WebSphere MQ Explorer
The WebSphere MQ Explorer allows you to perform local or remote administration
of your network from a computer running Windows, or Linux (x86 platform)

WebSphere MQ for Windows, and WebSphere MQ for Linux (x86 platform)
provide an administration interface called the WebSphere MQ Explorer to perform
administration tasks as an alternative to using control or MQSC commands.
Chapter 13, “Comparing command sets,” on page 553 shows you what you can do
using the WebSphere MQ Explorer.

WebSphere MQ Explorer runs on all supported Windows platforms, and Linux
(x86 platform only). If used in a 64-bit Windows environment, it runs only in 32-bit
mode.

The WebSphere MQ Explorer allows you to perform local or remote administration
of your network from a computer running Windows, or Linux (x86 platform), by
pointing the WebSphere MQ Explorer at the queue managers and clusters you are
interested in. The platforms and levels of WebSphere MQ that can be administered
using the WebSphere MQ Explorer are described in “Remote queue managers” on
page 72.

To configure remote WebSphere MQ queue managers so that WebSphere MQ
Explorer can administer them, see “Required definitions for administration” on
page 74.

It allows you to perform tasks, typically associated with setting up and fine tuning
the working environment for WebSphere MQ, either locally or remotely within a
Windows or Linux (x86 platform) system domain.

On Linux, the WebSphere MQ Explorer might fail to start if you have more than
one Eclipse installation. If this happens, start the WebSphere MQ Explorer using a
different user ID to the one you use for the other Eclipse installation.

On Linux, to start the WebSphere MQ Explorer successfully, you must be able to
write a file to your home directory, and the home directory must exist.

This chapter describes:
v “What you can do with the WebSphere MQ Explorer”
v “Setting up the WebSphere MQ Explorer” on page 73
v “Using the WebSphere MQ Explorer” on page 79
v “Security on Windows” on page 81

What you can do with the WebSphere MQ Explorer

With the WebSphere MQ Explorer, you can:
v Create and delete a queue manager (on your local machine only).
v Start and stop a queue manager (on your local machine only).

© Copyright IBM Corp. 1994, 2009 71

|
|
|

|
|

v Define, display, and alter the definitions of WebSphere MQ objects such as
queues and channels.

v Browse the messages on a queue.
v Start and stop a channel.
v View status information about a channel, listener, queue, or service objects.
v View queue managers in a cluster.
v Check to see which applications, users, or channels have a particular queue

open.
v Create a new queue manager cluster using the Create New Cluster wizard.
v Add a queue manager to a cluster using the Add Queue Manager to Cluster

wizard.
v Manage the authentication information object, used with Secure Sockets Layer

(SSL) channel security.
v Create and delete channel initiators, trigger monitors, and listeners.
v Start or stop the command servers, channel initiators, trigger monitors, and

listeners.
v Set specific services to start up automatically when a queue manager is started.
v Modify the properties of queue managers.
v Change the local default queue manager.
v Invoke the ikeyman GUI to manage secure sockets layer (SSL) certificates,

associate certificates with queue managers, and configure and setup certificate
stores (on your local machine only).

v Create JMS objects from WebSphere MQ objects, and WebSphere MQ objects
from JMS objects.

v Create a JMS Connection Factory for any of the currently supported types.
v Modify the parameters for any service, such as the TCP port number for a

listener, or a channel initiator queue name.
v Start or stop the service trace.

You perform administration tasks using a series of Content Views and Property
dialogs.

Content View
A Content View is a panel that can display the following:
v Attributes, and administrative options relating to WebSphere MQ itself.
v Attributes, and administrative options relating to one or more related

objects.
v Attributes, and administrative options for a cluster.

Property dialogs
A property dialog is a panel that displays attributes relating to an object in
a series of fields, some of which you can edit.

You navigate through the WebSphere MQ Explorer using the Navigator view. The
Navigator allows you to select the Content View you require.

Remote queue managers

From a Windows or Linux (x86 platform) system, the WebSphere MQ Explorer can
connect to all supported queue managers with the following exceptions:
v WebSphere MQ for z/OS queue managers prior to Version 6.0.

72 WebSphere MQ: System Administration Guide

|
|

|

v Currently supported MQSeries® V2 queue managers.

The WebSphere MQ Explorer handles the differences in the capabilities between
the different command levels and platforms. However, if it encounters an attribute
that it does not recognize, the attribute will not be visible.

If you intend to remotely administer a V6.0 or later queue manager on Windows
using the WebSphere MQ Explorer on a WebSphere MQ V5.3 computer, you must
install Fix Pack 9 (CSD9) or later on your WebSphere MQ for Windows V5.3
computer.

If you intend to remotely administer a V5.3 queue manager on iSeries® using the
WebSphere MQ Explorer on a WebSphere MQ V6.0 or later computer, you must
install Fix Pack 11 (CSD11) or later on your WebSphere MQ for iSeries V5.3
computer. This fix pack corrects connection problems between the WebSphere MQ
Explorer and the iSeries queue manager.

Deciding whether to use the WebSphere MQ Explorer

When deciding whether to use the WebSphere MQ Explorer at your installation,
bear the following points in mind:

Object names
If you use lowercase names for queue managers and other objects with the
WebSphere MQ Explorer, when you work with the objects using MQSC
commands, you must enclose the object names in single quotes, or
WebSphere MQ will not recognize them.

Large queue managers
The WebSphere MQ Explorer works best with small queue managers. If
you have a large number of objects on a single queue manager, you might
experience delays while the WebSphere MQ Explorer extracts the required
information to present in a view.

Clusters
WebSphere MQ clusters can potentially contain hundreds or thousands of
queue managers. The WebSphere MQ Explorer presents the queue
managers in a cluster using a tree structure. The physical size of a cluster
does not affect the speed of the WebSphere MQ Explorer dramatically
because the explorer does not connect to the queue managers in the cluster
until you select them.

Setting up the WebSphere MQ Explorer

This section outlines the steps you need to take to set up the WebSphere MQ
Explorer.

Prerequisite software

Before you can use the WebSphere MQ Explorer, you must have the following
installed on your computer:
v The Eclipse platform (installed as part of WebSphere MQ for Windows or

WebSphere MQ for Linux (x86 platform))

The WebSphere MQ Explorer can connect to remote queue managers using the
TCP/IP communication protocol only.

Chapter 3. Administration using the WebSphere MQ Explorer 73

|

|

|
|
|
|
|

Required definitions for administration

Ensure that you have satisfied the following requirements before trying to use the
WebSphere MQ Explorer. Check that:
1. A command server is running on every remotely administered queue manager.
2. A suitable TCP/IP listener object must be running on every remote queue

manager. This can be the WebSphere MQ listener or, on UNIX systems, the
inetd daemon.

3. A server-connection channel, by default named SYSTEM.ADMIN.SVRCONN,
exists on all remote queue managers.
You can create the channel using the following MQSC command:
DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN)

This command creates a basic channel definition. If you want a more
sophisticated definition (to set up security, for example), you need additional
parameters.
The Client Attachment feature (CAF) is an option of WebSphere MQ for z/OS
that supports the attachment of clients to z/OS. If you require more than five
attaches of the WebSphere MQ Explorer you need to install the Client
Attachment feature (CAF). With the CAF installed, you can set the MAXINST
attribute on the SYSTEM.ADMIN.SVRCONN channel from zero through 999
999 999.
If you do not have the Client Attachment feature (CAF) installed, the
MAXINST attribute can be set from zero to five only on the
SYSTEM.ADMIN.SVRCONN channel. A value greater than five is interpreted
as zero without the CAF installed.

4. The system queue, SYSTEM.MQEXPLORER.REPLY.MODEL, must exist.

Cluster membership

If a queue manager is a member of a cluster, then the cluster tree node will be
populated automatically.

If queue managers become members of clusters while the WebSphere MQ Explorer
is running, then you must maintain the WebSphere MQ Explorer with up-to-date
administration data about clusters so that it can communicate effectively with them
and display correct cluster information when requested. In order to do this, the
WebSphere MQ Explorer needs the following information:
v The name of a repository queue manager
v The connection name of the repository queue manager if it is on a remote queue

manager

With this information, the WebSphere MQ Explorer can:
v Use the repository queue manager to obtain a list of queue managers in the

cluster.
v Administer the queue managers that are members of the cluster and are on

supported platforms and command levels.

Administration is not possible if:
v The chosen repository becomes unavailable. The WebSphere MQ Explorer does

not automatically switch to an alternative repository.
v The chosen repository cannot be contacted over TCP/IP.
v The chosen repository is running on a queue manager that is running on a

platform and command level not supported by the WebSphere MQ Explorer.

74 WebSphere MQ: System Administration Guide

|
|
|
|
|
|

|
|
|
|

The cluster members that can be administered can be local, or they can be remote
if they can be contacted using TCP/IP. The WebSphere MQ Explorer connects to
local queue managers that are members of a cluster directly, without using a client
connection.

Security

If you are using WebSphere MQ in an environment where it is important for you
to control user access to particular objects, you might need to consider the security
aspects of using the WebSphere MQ Explorer.

Authorization to use the WebSphere MQ Explorer:

Any user can use the WebSphere MQ Explorer, however certain authorities are
required to connect, access, and manage queue managers.

To perform local administrative tasks using the WebSphere MQ Explorer, a user is
required to have the necessary authority to perform the administrative tasks. If the
user is a member of the mqm group, the user has authority to perform all local
administrative tasks.

To connect to a remote queue manager and perform remote administrative tasks
using the WebSphere MQ Explorer, the user executing the WebSphere MQ Explorer
is required to have the following authorities:
v CONNECT authority on the target queue manager object
v INQUIRE authority on the target queue manager object
v DISPLAY authority to the target queue manager object
v INQUIRE authority to the queue, SYSTEM.MQEXPLORER.REPLY.MODEL
v DISPLAY authority to the queue, SYSTEM.MQEXPLORER.REPLY.MODEL
v INPUT authority to the queue, SYSTEM.MQEXPLORER.REPLY.MODEL
v OUTPUT authority to the queue, SYSTEM.ADMIN.COMMAND.QUEUE
v Authority to perform the action selected

To connect to a remote queue manager on WebSphere MQ for z/OS and perform
remote administrative tasks using the WebSphere MQ Explorer, the following must
be provided:
v A RACF® profile for the system queue, SYSTEM.MQEXPLORER.REPLY.MODEL
v A RACF profile for the queues, AMQ.MQEXPLORER.*

In addition, the user executing the WebSphere MQ Explorer is required to have the
following authorities:
v RACF UPDATE authority to the system queue,

SYSTEM.MQEXPLORER.REPLY.MODEL
v RACF UPDATE authority to the queues, AMQ.MQEXPLORER.*
v CONNECT authority on the target queue manager object
v Authority to perform the action selected
v READ authority to all the hlq.DISPLAY.object profiles in the MQCMDS class

For information on how to grant authority to WebSphere MQ objects, see
“Authority to work with WebSphere MQ objects” on page 121.

Chapter 3. Administration using the WebSphere MQ Explorer 75

|
|
|

|

|

|

|

|

|

|

|

|
|
|

|

|

|
|

|
|

|

|

|

|

If a user attempts to perform an operation that they are not authorized to perform,
the target queue manager invokes authorization failure procedures and the
operation fails.

The default filter in the WebSphere MQ Explorer is to display all WebSphere MQ
objects. If there are any WebSphere MQ objects that a user does not have DISPLAY
authority to, authorization failures are generated. If authority events are being
recorded, restrict the range of objects that are displayed to those that the user has
DISPLAY authority to.

Security for connecting to remote queue managers:

The WebSphere MQ Explorer connects to remote queue managers as an MQI client
application. This means that each remote queue manager must have a definition of
a server-connection channel and a suitable TCP/IP listener. If you do not specify a
non-blank value for the MCAUSER attribute of the channel, or use a security exit,
it is possible for a malicious application to connect to the same server connection
channel and gain access to the queue manager objects with unlimited authority.

The default value of the MCAUSER attribute is the local userId. If you specify a
non-blank user name as the MCAUSER attribute of the server connection channel,
all programs connecting to the queue manager using this channel run with the
identity of the named user and have the same level of authority.

Using a security exit with the WebSphere MQ Explorer:

You can specify a default security exit and queue manager specific security exits
using the WebSphere MQ Explorer.

You can define a default security exit, which can be used for all new client
connections from the WebSphere MQ Explorer. This default exit can be overridden
at the time a connection is made. You can also define a security exit for a single
queue manager or a set of queue managers, which takes effect when a connection
is made. You specify exits using the WebSphere MQ Explorer. For more
information, see the WebSphere MQ Help Center.

Using SSL security:

The WebSphere MQ Explorer connects to remote queue managers using an MQI
channel. If you want to secure the MQI channel using SSL security, you must
establish the channel using a client channel definition table. For information how
to establish an MQI channel using a client channel definition table, see the
WebSphere MQ Clients book.

Using the WebSphere MQ Explorer to connect to a remote queue manager using
SSL enabled MQI channels:

On the system hosting the remote queue manager:
1. Define a server connection and client connection pair of channels, and specify

the appropriate value for the SSLCIPH variable on the server connection on
both channels. For more information on the SSLCIPH variable, see “Protecting
channels with SSL” on page 139

2. Send the channel definition table AMQCLCHL.TAB, which is found in the queue
manager’s @ipcc directory, to the system hosting the WebSphere MQ Explorer.
To do this you can use the File Transfer Application in binary mode.

3. Start a TCP/IP listener on a designated port.

76 WebSphere MQ: System Administration Guide

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

4. Place both the CA and personal SSL certificates into the queue manager’s SSL
directory:
v /var/mqm/qmgrs/+QMNAME+/SSL for UNIX systems
v C:\Program Files\WebSphere MQ\qmgrs\+QMNAME+\SSL for Windows systems

Where +QMNAME+ is a token representing the name of the queue manager.
5. Create a key database file of type CMS named key.kdb, and stash the password

in a file either by checking the option in the iKeyman GUI, or by using the
-stash option with the gsk7cmd, runmqckm ,or gsk7capicmd commands.

6. Add the CA certificates to the key database created in the previous step.
7. Import the personal certificate for the queue manager into the key database.

For more detailed information on working with the Secure Sockets Layer on
Windows systems, see the WebSphere MQ Security book.

On the system hosting the WebSphere MQ Explorer:
1. Create a key database file of type JKS named key.jks. Set a password for this

key database file.
The WebSphere MQ Explorer uses Java™ key store files (JKS) for SSL security,
and so the key store file being created for configuring SSL for the WebSphere
MQ Explorer must match this.

2. Add the CA certificates to the key database created in the previous step.
3. Import the personal certificate for the queue manager into the key database.
4. Start the WebSphere MQ Explorer either by using the start menu in Windows,

or by running the strmqcfg command.
5. From the WebSphere MQ Explorer toolbar, click Window -> Preferences, then

expand WebSphere MQ Explorer and click SSL Client Certificate Stores. Enter
the name of, and password for, the JKS file created in step 1 in both the Trusted
Certificate Store and the Personal Certificate Store, then click OK.

6. Close the Preferences window, and right-click Queue Managers. Click
Show/Hide Queue Managers, and then click Add on the Show/Hide Queue
Managers screen.

7. Type the name of the queue manager, and select the Connect directly option.
Click next.

8. Select Use client channel definition table and specify the location of the
channel table file that you transferred from the remote queue manager in step 2
on page 76 on the system hosting the remote queue manager.

9. Click Finish. You can now access the remote queue manager from the
WebSphere MQ Explorer.

Connecting through another queue manager:

The WebSphere MQ Explorer allows you to connect to a queue manager through
an intermediate queue manager, to which the WebSphere MQ Explorer is already
connected. In this case, the WebSphere MQ Explorer puts PCF command messages
to the intermediate queue manager, specifying the following:
v The ObjectQMgrName parameter in the object descriptor (MQOD) as the name of

the target queue manager. For more information on queue name resolution, see
the WebSphere MQ Application Programming Guide.

v The UserIdentifier parameter in the message descriptor (MQMD) as the local
userId.

Chapter 3. Administration using the WebSphere MQ Explorer 77

|

|

|
|

|
|
|

|

|

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

If the connection is then used to connect to the target queue manager via an
intermediate queue manager, the userId is flowed in the UserIdentifier parameter of
the message descriptor (MQMD) again. In order for the MCA listener on the target
queue manager to accept this message, either the MCAUSER attribute must be set,
or the userId must already exist with put authority.

The command server on the target queue manager puts messages to the
transmission queue specifying the userId in the UserIdentifier parameter in the
message descriptor (MQMD). For this put to succeed the userId must already exist
on the target queue manager with put authority.

The following example shows you how to connect a queue manager, through an
intermediate queue manager, to the WebSphere MQ Explorer.

Establish a remote administration connection to a queue manager. Verify that the:
v Queue manager on the server is active and has a server-connection channel

(SVRCONN) defined.
v Listener is active.
v Command server is active.
v SYSTEM.MQ EXPLORER.REPLY.MODEL queue has been created and that you

have sufficient authority.
v Queue manager listeners, command servers, and sender channels are started.

In this example:
v WebSphere MQ Explorer is connected to queue manager QMGRA (running on

Server1) using a client connection.
v Queue manager QMGRB on Server2 can be now connected to WebSphere MQ

Explorer through an intermediate queue manager (QMGRA)
v When connecting to QMGRB with WebSphere MQ Explorer, select QMGRA as the

intermediate queue manager

In this situation, there is no direct connection to QMGRB from WebSphere MQ
Explorer; the connection to QMGRB is through QMGRA.

Queue manager QMGRB on Server2 is connected to QMGRA on Server1 using
sender-receiver channels. The channel between QMGRA and QMGRB must be set up in
such a way that remote administration is possible; see “Preparing channels and
transmission queues for remote administration” on page 60.

MQ Client

MQ Explorer

Server 1

QMGRA

SVRCONN

SDR

XMITQ = QMGRB

RCVR

Server 2

QMGRB

RCVR

SDR

XMITQ = QMGRA

78 WebSphere MQ: System Administration Guide

|

|

|
|

|

|
|

|

|

|
|

|

|

|

|
|

|
|

|
|

|
|

|
|
|
|

Data conversion

The WebSphere MQ Explorer works in CCSID 1208 (UTF-8). This enables the
WebSphere MQ Explorer to display the data from remote queue managers
correctly. Whether connecting to a queue manager directly, or via an intermediate
queue manager, the WebSphere MQ Explorer requires all incoming messages to be
converted to CCSID 1208 (UTF-8).

An error message is issued if you try to establish a connection between the
WebSphere MQ Explorer and a queue manager with a CCSID that the WebSphere
MQ Explorer does not recognize.

Supported conversions are described in the WebSphere MQ Application
Programming Reference manual.

Using the WebSphere MQ Explorer

This section explains how to use the WebSphere MQ Explorer to do the following:
v Show or hide queue managers
v Use the WebSphere MQ Taskbar application (Windows only)
v Use the WebSphere MQ alert monitor application (Windows only)

Showing and hiding queue managers and clusters

The WebSphere MQ Explorer can display more than one queue manager at a time.
The Show/Hide Queue Manager panel (selectable from the context menu for the
Queue Managers tree node) allows you to choose whether you display information
on another (remote) machine. Local queue managers are detected automatically.

To show a remote queue manager:
1. Right-click the Queue Managers tree node, then select Show/Hide Queue

Managers....
2. Click Add.... The Show/Hide Queue Managers panel is displayed.
3. Fill in the name of the remote queue manager and the host name or IP address

in the fields provided.
The host name or IP address is used to establish a client connection to the
remote queue manager using either its default server connection channel,
SYSTEM.ADMIN.SVRCONN, or a user defined server connection channel.

4. Click Finish.

The Show/Hide Queue Managers panel also displays a list of all visible queue
managers, and allows you to hide queue managers from the navigation view.

If the WebSphere MQ Explorer displays a queue manager that is a member of a
cluster, the cluster is detected, and displayed automatically.

To export the list of remote queue managers from this panel:
1. Close the Show/Hide Queue Managers panel.
2. Right click the top IBM WebSphere MQ tree node in the Navigation pane of

the WebSphere MQ Explorer, then select Export MQ Explorer Settings....
3. Select Remote queue manager connection information.
4. Select a file to store the exported settings in.

Chapter 3. Administration using the WebSphere MQ Explorer 79

|

|

|
|

|

|

5. Finally, click OK to export the remote queue manager connection information
to the specified file.

To import a list of remote queue managers:
1. Right click the top IBM WebSphere MQ tree node in the Navigation pane of

the WebSphere MQ Explorer, then select Import MQ Explorer Settings....
2. Click Browse, and navigate to the path of the file that contains the remote

queue manager connection information.
3. Click Open. If the file contains a list of remote queue managers, the Remote

queue manager connection information box will be selected.
4. Finally, click OK to import the remote queue manager connection information

into the WebSphere MQ Explorer.

Using the WebSphere MQ Taskbar application (Windows only)

On Windows, the WebSphere MQ icon is in the system tray on the server and is
overlaid with a color-coded status symbol, which can have one of the following
meanings:

Green Healthy; no alerts at present

Blue Indeterminate; WebSphere MQ is starting up or shutting down

Yellow
Alert; one or more services are failing or have already failed

When you click on the icon with your right mouse button, a context menu is
displayed. From this menu, select the WebSphere MQ Explorer option to bring up
the WebSphere MQ Explorer.

Using the WebSphere MQ alert monitor application (Windows only):

The WebSphere MQ alert monitor is an error detection tool that identifies and
records problems with WebSphere MQ on a local machine. The alert monitor
displays information about the current status of the local installation of a
WebSphere MQ server It also monitors the Windows Advanced Configuration and
Power Interface (ACPI) and ensures the ACPI settings are enforced.

From the WebSphere MQ alert monitor, you can:
v Access the WebSphere MQ Explorer directly
v View information relating to all outstanding alerts
v Shut down the WebSphere MQ service on the local machine
v Route alert messages over the network to a configurable user account, or to a

Windows workstation or server

Starting the WebSphere MQ Explorer in standalone mode or
Eclipse workbench mode

By default, the WebSphere MQ Explorer starts up in standalone mode using the
Eclipse Rich Client Platform (RCP). The tools you need to configure WebSphere
MQ will be visible, and other Eclipse tools will be hidden.

If you want to use the other perspectives available in Eclipse, which include the
Eclipse Workbench toolbar and menu options, you can set WebSphere MQ to start
up in an Eclipse Workbench. To do this, click Window -> Preferences and then

80 WebSphere MQ: System Administration Guide

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

select WebSphere MQ Explorer from the list. In the Startup section, select in an
Eclipse Workbench and click OK. The change will take effect the next time you
start WebSphere MQ Explorer.

Security on Windows

The WebSphere MQ Explorer uses Component Object Model (COM) technology to
communicate between servers and between processes on a server.

The COM server application, AMQMSRVN, is shared between any client processes
that need to use the WebSphere MQ COM Services.

Because AMQMSRVN must be shared between non-interactive and interactive
logon sessions, you must launch it under a special user account. This special user
account is called MUSR_MQADMIN. When you install WebSphere MQ and run
the Prepare WebSphere MQ Wizard for the first time, it creates a local user account
for AMQMSRVN called MUSR_MQADMIN with the required settings and
permissions. The password for MUSR_MQADMIN is randomly generated when
the account is created, and used to configure the logon environment for
AMQMSRVN. The generated password does not expire.

This WebSphere MQ account will not be affected by any account policies that are
set up on the system to require that account passwords are changed after a certain
period of time.

The password is not known outside this onetime processing and is stored by the
Windows operating system in a secure part of the Registry.

Using Active directory (Windows only)

In some network configurations, where user accounts are defined on domain
controllers that are using Active Directory, the local user account
MUSR_MQADMIN might not have the authority it requires to query the group
membership of other domain user accounts. The Prepare WebSphere MQ Wizard
identifies whether this is the case by carrying out tests and asking the user
questions about the network configuration. If the local user account
MUSR_MQADMIN does not have the required authority, the Prepare WebSphere
MQ Wizard prompts the user for the account details of a domain user account
with particular user rights. For the user rights that the domain user account
requires see “User rights required for AMQMSRVN.” Once the user has entered
valid account details for the domain user account into the Prepare WebSphere MQ
Wizard, it configures AMQMSRVN to run under this account instead of the local
user account MUSR_MQADMIN. The account details are held in the secure part of
the Registry and cannot be read by users.

When the service is running, AMQMSRVN is launched and remains running for as
long as the service is running. A WebSphere MQ administrator who logs onto the
server after AMQMSRVN is launched can use the WebSphere MQ Explorer to
administer queue managers on the server. This connects the WebSphere MQ
Explorer to the existing AMQMSRVN process. These two actions need different
levels of permission before they can work:
v The launch process requires a launch permission.
v The WebSphere MQ administrator requires Access permission.

User rights required for AMQMSRVN:

Chapter 3. Administration using the WebSphere MQ Explorer 81

|
|
|

|

|
|
|

The following table details the user rights required for the domain user account
under which WebSphere MQ and specifically the AMQMSRVN DCOM object run.

Table 2. User rights required to launch AMQMSRVN

Logon as batch job Enables WebSphere MQ Services COM server to run under
this user account.

Logon as service Enables users to set the WebSphere MQ service to logon
using the configured account.

Shut down the system Allows the WebSphere MQ Service to restart the server if
configured to do so when recovery of a service fails.

Debug programs Enables WebSphere MQ to contact processes that are
secured, such as ASP and IIS applications.

Increase quotas Required for operating system CreateProcessAsUser call.

Act as part of the operating
system

Required for operating system LogonUser call.

Bypass traverse checking Required for operating system LogonUser call.

Replace a process level token Required for operating system LogonUser call.

Your domain user account must have these Windows user rights set as effective
user rights as listed in the Local Security Policy application. If they are not, set
them using either the Local Security Policy application locally on the server, or by
using the Domain Security Application domain wide.

Changing the user name associated with WebSphere MQ Services:

You might need to change the user name associated with WebSphere MQ Services
from MUSR_MQADMIN to something else. (For example, you might need to do
this if your queue manager is associated with DB2®, which does not accept user
names of more than 8 characters.)

To change the user name :
1. Create a new user account (for example NEW_NAME)
2. Use the Prepare WebSphere MQ Wizard to enter the account details of the new

user account.
Windows Vista and Windows Server 2008 users with UAC enabled only: Use
the following command line to set the new account:
AMQMSRVN -user <domain\>NEW_NAME -password <password>

Where NEW_NAME is the new user name you have chosen. This can be qualified
by a domain name if required. WebSphere MQ allocates the correct security
rights and group membership to the new user account.
Ensure the application is run with Administrator privileges.

If for any reason you need to reset the user account back to the default
MUSR_MQADMIN account, use the following command:
AMQMJPSE -r

Controlling access (Windows only)

When you install WebSphere MQ, default access permissions are set up for the
AMQMSRVN process. These default access permissions grant access to the process
to:
v mqm (local WebSphere MQ administrators group)
v Administrators (local administrators of this machine) (Windows only)

82 WebSphere MQ: System Administration Guide

|
|

|

These permissions restrict access to the alert monitor taskbar application and the
amqmdain command to these users and groups only. Other users trying to access
these functions are denied access. The WebSphere MQ Explorer uses amqmdain to
start and end queue managers. If the WebSphere MQ Explorer is run by a user not
authorized to run amqmdain, then an error is reported when the user attempts to
start or stop a queue manager.

Before users run the WebSphere MQ Explorer, you must configure the access
permissions of the objects involved. Use a tool called DCOMCNFG.EXE, shipped
with Windows systems, to do this.

Using DCOMCNFG.EXE to change access permissions:

To start DCOMCNFG.EXE:
1. Click Start.
2. Click Run.
3. Type dcomcnfg in the open input field.
4. Click OK. The Component Services Window opens.
5. Expand Component services.
6. Expand Computers.
7. Expand My Computer.
8. Click the DCOM Config node.

A list of applications is displayed. From this list:
1. Find and highlight the IBM MQSeries Services entry.
2. Right-click IBM MQSeries Services, and then click Properties.

This displays information about the location of the DCOM server
(AMQMSRVN.EXE), together with its identity and security properties.

3. Select the Security page to view or modify the launch, access, or configuration
permissions.

4. Stop and restart the IBM MQSeries service from the Windows Services control
panel for your changes to take effect. (If your changes affect a user who is
currently logged on, that user must log off and on again). Do the following:
a. Access the panel by clicking Start → Run → services.msc. A list of services is

displayed.
b. Right-click IBM MQSeries, and select Properties. The IBM MQSeries

Properties pages is displayed.
c. Click Stop. The IBM MQSeries service stops.
d. Click Start. The IBM MQSeries service restarts.

In addition to being able to add to the list of users that are allowed access to a
service, you can deny access to specific users and groups. This means that you can
grant access to a group of users (by specifying a group name) but deny access to
individuals within that group.

Changing the password of the AMQMSRVN user account

If AMQMSRVN is running under the local user account MUSR_MQADMIN (or
another local user account), you can change the password for the account as
follows:
1. Stop the MQSeries service from the Computer Management panel.

Chapter 3. Administration using the WebSphere MQ Explorer 83

|
|

2. Close any WebSphere MQ programs that are using the AMQMSRVN COM
server (this includes the alert monitor, taskbar, and so on).

3. Change the MUSR_MQADMIN password in the same way that you would
change an individual’s password.

4. Use DCOMCNFG.EXE to bring up the properties pages for the IBM MQSeries
services.

5. Select the Identity Page.
6. Modify the password given for the MUSR_MQADMIN user account.

If AMQMSRVN is running under a domain user account, you can also change the
password for the account as follows:
1. Change the password for the domain account on the domain controller. You

might need to ask your domain administrator to do this for you.
2. Use the Prepare WebSphere MQ Wizard to enter the account details including

the new password.

The user account that AMQMSRVN runs under executes any MQSC commands
that are issued by user interface applications, or performed automatically on
system startup, shutdown, or service recovery. This user account must therefore
have WebSphere MQ administration rights. By default it is added to the local mqm
group on the server. If this membership is removed, the IBM MQSeries service will
not work.

If a security problem arises with the DCOM configuration or with the user account
that AMQMSRVN runs under, error messages and descriptions appear in the
system event log. One common error is for a user not to have access or launch
rights to the server. This error appears in the system log as a DCOM error with the
following message description:
Access denied attempting to launch a DCOM server. The server is:
{55B99860-F95E-11d1-ABB6-0004ACF79B59}

WebSphere MQ coordinating with DB2 as the resource manager

If you start your queue managers via the WebSphere MQ Explorer or are using
WebSphere MQ V7 and are having problems when coordinating DB2 check your
queue manager error logs for an error like this:
23/09/2008 15:43:54 - Process(5508.1) User(MUSR_MQADMIN) Program(amqzxma0.exe)
AMQ7604: The XA resource manager 'DB2 MQBankDB database' was not available when called
for xa_open. The queue manager is continuing without this resource manager.

Explanation: The user id (default name is MUSR_MQADMIN) which runs the MQ
Services process amqmsrvn.exe is still running with an access token which does
not contain group membership information for the group DB2USERS.

Solution: After you have ensured that the MQ Services user id is a member of
DB2USERS, use the following sequence of commands:
v stop the MQ service (for example by issuing net stop ″IBM MQSeries″).
v stop any other processes running under the same user id.
v restart these processes.

Rebooting the machine would ensure the previous steps, but is not usually
necessary.

84 WebSphere MQ: System Administration Guide

|

|
|
|

|
|
|

|
|
|

|
|

|

|

|

|
|

Extending the WebSphere MQ Explorer

This information applies to WebSphere MQ for Windows, and WebSphere MQ
for Linux (x86 platform only).

WebSphere MQ for Windows, and WebSphere MQ for Linux (x86 platform)
provide an administration interface called the WebSphere MQ Explorer to perform
administration tasks as an alternative to using control or MQSC commands. The
WebSphere MQ Explorer presents information in a style consistent with that of the
Eclipse framework and the other plug-in applications that Eclipse supports.

This chapter explains how the features, and perspectives, available with the
WebSphere MQ Explorer can be extended to give further administrative control
over your WebSphere MQ system. Through extending the WebSphere MQ Explorer
system administrators have the ability to customize the WebSphere MQ Explorer to
improve the way they administer WebSphere MQ.

Who this chapter is for

This chapter is for system administrators and system programmers who intend to
extend, and customize, the functionality of the WebSphere MQ Explorer.

What you need to know to understand this chapter

To use this chapter, you need the following:
v A good understanding of the Eclipse framework and of the utilities associated

with it.
v Experience in writing Eclipse plug-ins.

Information on how to write Eclipse plug-ins is available in the Platform Plug-in
Developers Guide, found in Eclipse help.
1. From the WebSphere MQ Explorer toolbar click, Help -> Help Contents.
2. Click Platform Plug-in Developers Guide.

v A good understanding of the features available with the WebSphere MQ
Explorer.

Introduction

The WebSphere MQ Explorer is Eclipse based, and as such acquires all its
functionality, and perspective information, through various plug-ins supplied with
WebSphere MQ. To extend the WebSphere MQ Explorer you are required to write
one, or more, Eclipse plug-ins. Through writing a plug-in you can extend the
function of the WebSphere MQ Explorer in the following ways:
v Add further menu options to existing context menus and associate actions with

them.
v Add tree nodes to the navigation view, and associated content pages.

When writing a plug-in, you will need to supply:

The plugin.xml file
Use the plugin.xml file to specify extension points. Extension points provide
the means by which plug-in developers can extend the functionality of the
WebSphere MQ Explorer. There are many types extension point available
within the WebSphere MQ Explorer and Eclipse. Each type of extension

Chapter 3. Administration using the WebSphere MQ Explorer 85

point is used to extend the Explorer in a different way. Most extension
points are associated with a Java jar file. For more information on the
extension points available, see “Utilizing extension points” on page 87.

Java jar file
Use Java jar files contain the classes that provide the code needed to
implement the added functionality specified by the extension points
declared in the plugin.xml file. Every Java jar file is associated with at least
one extension point.

WebSphere MQ supplies sample Eclipse plug-ins called simple, and menu. The
simple plug-in utilizes all the extension points provided in the WebSphere MQ
Explorer to extend the Explorer in a number of basic ways. The simple plug-in can
be used as a basis for writing your own Eclipse plug-ins. For instructions of how
to import the simple plug-in, see “Importing the sample Eclipse plug-ins.”

Importing the sample Eclipse plug-ins
Instructions for importing the sample Eclipse plug-ins.

To import the sample Eclipse plug-ins, complete the following steps:
1. Open the WebSphere MQ Explorer in an Eclipse workbench.
2. Open the Plug-in Development perspective.
3. Click File → Import to open the Import wizard.

In the Import wizard, complete the following steps:
a. Click Plug-in Development → Plug-ins and Fragments.
b. Select the Projects with source folders check box and click Next.
c. Select one or more from:

com.ibm.mq.explorer.sample.simple
com.ibm.mq.explorer.sample.menus
com.ibm.mq.explorer.jmsadmin.sample.menus
com.ibm.mq.explorer.tests.sample

d. Click Finish

You have now imported the sample Eclipse plug-ins.
Related concepts

“Starting the WebSphere MQ Explorer in standalone mode or Eclipse workbench
mode” on page 80

Writing an Eclipse plug-in for the WebSphere MQ Explorer

This section details how to write an Eclipse plug-in for the WebSphere MQ
Explorer. It is assumed that you have the prerequisite knowledge detailed in
“What you need to know to understand this chapter” on page 85.

To write an Eclipse plug-in for the WebSphere MQ Explorer, you must utilize the
extension points available to extend the functionality of the WebSphere MQ
Explorer. The most common extension points are described, and accompanied by a
number of code extracts from the simple plug-in to provide basic implementation
examples. You must import the simple plug-in if you want access to the code that
it contains. For instructions on how to import the simple plug-in, see “Importing
the sample Eclipse plug-ins.”

86 WebSphere MQ: System Administration Guide

The environment in which the WebSphere MQ Explorer is extended is an event
driven interface. For example, when a Register extension point is extended with an
instance of a user-written class that extends the IExplorerNotify interface, the
user-written class will be called back when an event occurs. For example, when a
queue manager is created. Many of these notifications include a MQExtObject as
one of their arguments. An MQExtObject relates to the WebSphere MQ object that
caused the event. A user-written class can call any of the MQExtObject public
methods to find out about the object.

The IExplorerNotify interface, the associated MQExtObject, and other external
definitions are documented in the WebSphere MQ Explorer JavaDoc. For
information on how to access the WebSphere MQ Explorer JavaDoc, see “Accessing
the WebSphere MQ Explorer Javadoc.”

Accessing the WebSphere MQ Explorer Javadoc
External definitions relating to the WebSphere MQ Explorer are documented in
Javadoc and can be displayed as HTML pages.

To access the WebSphere MQ Explorer Javadoc as HTML pages, complete the
following steps:
1. Open the WebSphere MQ Explorer.
2. Click Help → Help Contents.
3. Expand WebSphere MQ Explorer.
4. Click API Reference.

The WebSphere MQ Explorer Javadoc is displayed in HTML.

Utilizing extension points

Instructions on how to use extension points.

This topic describes how to implement the extension points available in Eclipse
plug-ins for the WebSphere MQ Explorer.

For further information on using extension points see the WebSphere MQ Explorer
help, as follows:
1. Click Help->Help Contents.
2. Expand Platform Plug-in Developers Guide.
3. Click Programmers Guide.

For information on how to include an extension point, see Plugging into the
workbench->Basic workbench extension points in the Programmers Guide.

Through utilizing the available extension points, you can extend the function of the
WebSphere MQ Explorer in the following ways:
v Register extension points.
v Add further menu options to existing context menus and associate actions with

them.
v Add tree nodes to the navigation view and associate content pages with them.
v Add property tabs to property dialogs and associate property pages with them.

Multiple extension points of the same type can be included in a single plug-in. The
extension points that you use will be dependent on the way in which you intend
to extend the functionality of the WebSphere MQ Explorer. However, every plug-in

Chapter 3. Administration using the WebSphere MQ Explorer 87

|

|

for the WebSphere MQ Explorer must use the register extension point. For details
on the register extension point, see “Register.”

Register:

The register extension point is used for the following:
v To allow your plug-in to register itself with the WebSphere MQ Explorer. Every

plug-in for the WebSphere MQ Explorer must include this extension point in
plugin.xml. With out it, any function your plug-in adds to the WebSphere MQ
Explorer will not be activated.

v To enable notify events. For information on notify events, see “Notify events.”

The following code extract is taken from the file, plugin.xml, from the simple
plug-in and shows a basic implementation of the register extension point:
<extension

id="com.ibm.mq.explorer.sample.simple"
name="Simple Sample"
point="com.ibm.mq.explorer.ui.registerplugin">

<pluginDetails
pluginId="com.ibm.mq.explorer.sample.simple"
name="Simple"
class="com.ibm.mq.explorer.sample.simple.SimpleNotify"
enabledByDefault="true"
description="a very simple sample plugin to Explorer"
vendor="IBM">

</pluginDetails>
</extension>

Enabling and disabling a plug-in:

All plug-ins that contain the register extension point can be enabled, or disabled,
within the WebSphere MQ Explorer by doing the following:
1. From the WebSphere MQ Explorer toolbar click, Window -> Preferences.
2. Expand IBM WebSphere MQ.
3. Click Enable plug-ins.

All registered plug-ins are displayed.
4. Select all plug-ins that should be enabled.
5. Click OK.

Notify events:

Within the WebSphere MQ Explorer, when a WebSphere MQ object is created, or
manipulated, a java object relating to the WebSphere MQ object can be generated.
These Java objects can be used to find the name, type, and other externalized
attributes of a WebSphere MQ object.

For Java objects to be generated, the register extension point must specify a class.
In the plugin.xml file from the simple plug-in, the class specified is as follows:
class="com.ibm.mq.explorer.sample.simple.SimpleNotify"

This class contains a number of object specific methods. When a WebSphere MQ
object is created, or manipulated, the appropriate method from the notify class is
called. This class can be used as a basis for writing your own class. For the
methods that this class must contain refer to the WebSphere MQ Explorer JavaDoc.
For information on how to access the WebSphere MQ Explorer JavaDoc, see
“Accessing the WebSphere MQ Explorer Javadoc” on page 87.

88 WebSphere MQ: System Administration Guide

Add tree node:

A tree node extension point is used to add a tree node to the navigation view and
associate it with a content page.

The following code extract is taken from the file, plugin.xml, from the simple
plug-in and shows a basic implementation of the tree node extension point:
<extension

id="com.ibm.mq.explorer.samples.simpleTreeNode"
name="Simple TreeNode"
point="com.ibm.mq.explorer.ui.addtreenode">

<treeNode
pluginId="com.ibm.mq.explorer.sample.simple"
name="com.ibm.mq.explorer.sample.simple"
class="com.ibm.mq.explorer.sample.simple.SimpleTreeNodeFactory"
treeNodeId="com.ibm.mq.explorer.sample.simple"
sequence="888">

</treeNode>
</extension>

As well as declaring the tree node extension point in plugin.xml, the following
classes are needed:
v A class that contains a method that checks the id of any incoming tree node to

determine whether to add sub nodes to it. This class must implement
com.ibm.mq.explorer.ui.extensions.ITreeNodeFactory, and IExecutableExtension.
For the methods that this class must contain refer to the WebSphere MQ
Explorer JavaDoc. For information on how to access the WebSphere MQ
Explorer JavaDoc, see “Accessing the WebSphere MQ Explorer Javadoc” on page
87.
A working example of this class is available in the simple plug-in, called
SimpleTreeNodeFactory.java

v A class that contains methods that return information about any new tree nodes,
such as the name, id, and the associated content page class. This class must
extend com.ibm.mq.ui.extensions.TreeNode. For the methods that this class must
contain refer to the WebSphere MQ Explorer JavaDoc.
A working example of this class is available in the simple plug-in, called
SimpleTreeNode.java.

Add content page:

A content page extension point is used to add a content page to the content view. A
content page can be associated with a tree node.

The following code extract is taken from the file, plugin.xml, from the simple
plug-in and shows a basic implementation of the content page extension point:
<extension

id="com.ibm.mq.explorer.sample.simpleContentPage"
name="Simple ContentPage"
point="com.ibm.mq.explorer.ui.addcontentpage">

<contentPage
pluginId="com.ibm.mq.explorer.sample.simple"
name="com.ibm.mq.explorer.sample.simple"
class="com.ibm.mq.explorer.sample.simple.SimpleContentPageFactory"
contentPageId="com.ibm.mq.explorer.sample.simple">

</contentPage>
</extension>

Chapter 3. Administration using the WebSphere MQ Explorer 89

As well as declaring the content page extension point in plugin.xml, the following
classes are needed:
v A class that contains methods that perform a number of functions such as return

the content page id, create the content page, and set the object to draw the page.
This class must extend com.ibm.mq.ui.extensions.ContentsPage. The class
com.ibm.mq.explorer.ui.extensions.ContentTitleBar can be used to create a title
for the content page consistent with the other content pages in the WebSphere
MQ Explorer. For the methods that this class must contain refer to the
WebSphere MQ Explorer JavaDoc. For information on how to access the
WebSphere MQ Explorer JavaDoc, see “Accessing the WebSphere MQ Explorer
Javadoc” on page 87.
A working example of this class is available in the simple plug-in, called
SimpleContentPage.java.

v A class that contains a method that returns an instance of the class extending
ContentPage. This class must implement
com.ibm.mq.explorer.ui.extensions.IContentPageFactory, and
IExecutableExtension. For the methods that this class must contain refer to the
WebSphere MQ Explorer JavaDoc.
A working example of this class is available in the simple plug-in, called
SimpleContentPageFactory.java

Add context menu item:

A context menu extension point is used to add context menu items to the
WebSphere MQ Explorer.

The following code extract is taken from the file, plugin.xml, from the simple
plug-in and shows a basic implementation of the context menu extension point:
<extension

id="com.ibm.mq.explorer.sample.simple.object1"
name="Object1"
point="org.eclipse.ui.popupMenus">

<objectContribution
objectClass="com.ibm.mq.explorer.ui.extensions.MQExtObject"
id="com.ibm.mq.explorer.sample.simple.obj1">

<visibility>
<and>
<pluginState

value="activated"
id="com.ibm.mq.explorer.ui">

</pluginState>
<objectClass

name="com.ibm.mq.explorer.ui.extensions.MQExtObject">
</objectClass>
<objectState

name="PluginEnabled"
value="com.ibm.mq.explorer.sample.simple">

</objectState>
</and>
</visibility>
<action

label="Simple: Sample action on any MQExtObject"
class="com.ibm.mq.explorer.sample.simple.MenuActions"
menubarPath="additions"
id="com.ibm.mq.explorer.sample.simple.obj.action1">

</action>
</objectContribution>
</extension>

90 WebSphere MQ: System Administration Guide

Additional context menu items are added using the Eclipse extension point
org.eclipse.ui.popupMenus. The <visibility> attribute in the above extract
contains the elements that control the conditions under which the context menu
item is displayed. These conditions include tests on the plug-in state, the type of
object, and the state of the object. For example, a content menu item can be
displayed for local queues only, or for remote queue managers only.

Adding a property tab to an Eclipse property dialog:

A property tab extension point is used to add a property tab to a property dialog
and an associated property page.

The following code extract is taken from the file plugin.xml, from the simple
plug-in, and shows a basic implementation of the property tab extension point:
<extension

id="com.ibm.mq.explorer.samples.simplePropertyTab"
name="Simple Property Tab"
point="com.ibm.mq.explorer.ui.addpropertytab">

<propertyTab
class="com.ibm.mq.explorer.sample.simple.SimplePropertyTabFactory"
objectId="com.ibm.mq.explorer.queuemanager"
pluginId="com.ibm.mq.explorer.sample.simple"
name="com.ibm.mq.explorer.sample.simple"
propertyTabId="com.ibm.mq.explorer.sample.simple.propertyTab"
propertyTabName="Simple Sample Property Tab"/>

</extension>

As well as declaring the property tab extension point in plugin.xml, the following
classes are needed:
v A class that contains a method that creates and returns a property page to be

displayed when a user clicks the property tab. This class must implement
com.ibm.mq.explorer.ui.extensions.IPropertyTabFactory. For the methods that this
class must contain refer to the WebSphere MQ Explorer JavaDoc. For
information on how to access the WebSphere MQ Explorer JavaDoc, see
“Accessing the WebSphere MQ Explorer Javadoc” on page 87.
A working example of this class, called SimplePropertyTabFactory.java, is
available in the simple plug-in.

v A class used for creating the property page must extend
com.ibm.mq.ui.extensions.PropertyPage. For the methods that this class must
contain refer to the WebSphere MQ Explorer JavaDoc.
A working example of this class, called SimplePropertyPage.java, is available in
the simple plug-in.

Applying plug-ins to the WebSphere MQ Explorer
You can either run a plug-in with WebSphere MQ Explorer from the Eclipse
workbench, or apply updates from a plug-in to WebSphere MQ Explorer
permanently.

To run plug-ins with WebSphere MQ Explorer from the Eclipse workbench,
complete the following steps:
1. Select the plug-in from the Package Explorer.
2. Click Run → Run As → Eclipse Application.

A new Eclipse workbench opens.
3. In the new Eclipse workbench, open the WebSphere MQ Explorer perspective.

Chapter 3. Administration using the WebSphere MQ Explorer 91

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

4. In the Explorer preferences section, select the ″Enable plug-ins″ page and
enable the relevant sample plug-in or plug-ins.

To permanently apply updates to the WebSphere MQ Explorer provided by a
plug-in, complete the following steps:
1. With a file browser, find the plug-in file that will provide the functionality

extensions to the WebSphere MQ Explorer.
2. Copy the plug-in file, and paste it into C:\Program Files\IBM\WebSphere

MQ\eclipse\plugins, (or equivalent on Linux (x86 platform)).
3. Restart the WebSphere MQ Explorer.

The updates provided by the plug-in are applied to the WebSphere MQ Explorer.

92 WebSphere MQ: System Administration Guide

Chapter 4. Configuring WebSphere MQ

Configuring WebSphere MQ
Change the behavior of WebSphere MQ or an individual queue manager to suit
your installation’s needs.

You change WebSphere MQ configuration information by changing the values
specified on a set of configuration attributes (or parameters) that govern
WebSphere MQ.

How you change this configuration information, and where WebSphere MQ stores
your changes, is platform-specific:
v WebSphere MQ for Windows uses the WebSphere MQ Explorer to make changes

to attribute information within the Windows Registry. You can also use
amqmdain to set some Registry values, as described in “amqmdain” on page
278.

v Users on all other platforms change attribute values by editing the WebSphere
MQ configuration files. On WebSphere MQ for Linux (x86 platform) the
WebSphere MQ configuration files can be edited using the WebSphere MQ
Explorer.

Changing configuration information on Windows systems
WebSphere MQ configuration information is stored in the Windows Registry. You
edit configuration information using the WebSphere MQ Explorer.

All WebSphere MQ configuration information is stored in the Windows Registry,
except for client configuration options, which are held in the client configuration
file. There is a simple, or close, correlation between the contents of the Windows
Registry and the WebSphere MQ configuration files.

You edit configuration information using the WebSphere MQ Explorer (or by using
the amqmdain command). Do not try to edit the Registry system file directly as
this might adversely affect the smooth running of both your WebSphere MQ
system and your Windows operating system.

Viewing configuration information

View a description of Windows Registry keys used by WebSphere MQ.

View a description of the keys used by WebSphere MQ in the Windows Registry
by searching the WebSphere MQ Help System for ″Settings in the Windows
Registry″.

Access the WebSphere MQ Help System from:
v An icon in the Windows Start menu
v Help in the WebSphere MQ Explorer

Changing configuration information on UNIX systems
Configuration attributes are held in configuration files, at the level of the node and
of the queue manager.

© Copyright IBM Corp. 1994, 2009 93

|

|

|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

|

|
|

|
|
|
|

|
|
|
|

|

|

|
|
|

|

|

|

|

|
|

On UNIX platforms, you can change WebSphere MQ configuration attributes
within:
v A WebSphere MQ configuration file (mqs.ini) to effect changes for WebSphere

MQ on the node as a whole. There is one mqs.ini file for each node.
v A queue manager configuration file (qm.ini) to effect changes for specific queue

managers. There is one qm.ini file for each queue manager on the node.

Client configuration options are held separately, in the client configuration file.

A configuration file (or stanza file) contains one or more stanzas, which are groups
of lines in the .ini file that together have a common function or define part of a
system, such as log functions, channel functions, and installable services.

Because the WebSphere MQ configuration file is used to locate the data associated
with queue managers, a nonexistent or incorrect configuration file can cause some
or all MQSC commands to fail. Also, applications cannot connect to a queue
manager that is not defined in the WebSphere MQ configuration file.

Any changes you make to a configuration file usually do not take effect until the
next time the queue manager is started.

On Linux (x86 platform) systems you can edit configuration information from the
WebSphere MQ Explorer.

Editing configuration files

Edit configuration files using commands or a standard text editor.

Before editing a configuration file, back it up so that you have a copy you can
revert to if the need arises.

You can edit configuration files either:
v Automatically, using commands that change the configuration of queue

managers on the node
v Manually, using a standard text editor

You can edit the default values in the WebSphere MQ configuration files after
installation.

If you set an incorrect value on a configuration file attribute, the value is ignored
and an operator message is issued to indicate the problem. (The effect is the same
as missing out the attribute entirely.)

When you create a new queue manager:
v Back up the WebSphere MQ configuration file
v Back up the new queue manager configuration file

Comments can be included in configuration files by adding a “;” or a “#” character
before the comment text. If you want to use a “;” or a “#” character without it
representing a comment, you can prefix the character with a “\” character and it
will be used as part of the configuration data.

When do you need to edit a configuration file?:

94 WebSphere MQ: System Administration Guide

|
|

|
|

|
|

|

|
|
|

|
|
|
|

|
|

|
|

|

|

|
|

|

|
|

|

|
|

|
|
|

|

|

|

|
|
|
|

|

Edit a configuration file to recover from backup, move a queue manager, change
the default queue manager or to assist IBM support.

You might need to edit a configuration file if, for example:
v You lose a configuration file. (Recover from backup if you can.)
v You need to move one or more queue managers to a new directory.
v You need to change your default queue manager; this could happen if you

accidentally delete the existing queue manager.
v You are advised to do so by your IBM Support Center.

Configuration file priorities:

The value of an attribute is defined in multiple places. Attributes set in commands
take precedence over attributes in configuration files.

The attribute values of a configuration file are set according to the following
priorities:
v Parameters entered on the command line take precedence over values defined in

the configuration files
v Values defined in the qm.ini files take precedence over values defined in the

mqs.ini file

The WebSphere MQ configuration file, mqs.ini

The WebSphere MQ configuration file, mqs.ini, contains information relevant to all
the queue managers on the node. It is created automatically during installation.

The mqs.ini file for WebSphere MQ for UNIX systems is in the /var/mqm directory.
It contains:
v The names of the queue managers
v The name of the default queue manager
v The location of the files associated with each of them

The supplied LogDefaults stanza for a new WebSphere MQ Version 7.0 installation
does not contain any explicit values for the attributes. The lack of an attribute
means that the default for this value is used upon creation of a new queue
manager

The values shown for the LogDefaults stanza in Figure 9 on page 96 are the default
values. Note that a value of zero for the LogBufferPages attribute means 512.

If you require a non-default value, you must explicitly specify that value in the
LogDefaults stanza.

Chapter 4. Configuring WebSphere MQ 95

|
|

|

|

|

|
|

|

|

|
|

|
|

|
|

|
|

|

|
|

|
|

|

|

|

|
|
|
|

|
|

|
|
|

Queue manager configuration files, qm.ini

A queue manager configuration file, qm.ini, contains information relevant to a
specific queue manager. There is one queue manager configuration file for each
queue manager. The qm.ini file is automatically created when the queue manager
with which it is associated is created.

#***#
#* Module Name: mqs.ini *#
#* Type : WebSphere MQ Machine-wide Configuration File *#
#* Function : Define WebSphere MQ resources for an entire machine *#
#***#
#* Notes : *#
#* 1) This is the installation time default configuration *#
#* *#
#***#
AllQueueManagers:
#***#
#* The path to the qmgrs directory, below which queue manager data *#
#* is stored *#
#***#
DefaultPrefix=/var/mqm

LogDefaults:
LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=4096
LogType=CIRCULAR
LogBufferPages=0
LogDefaultPath=/var/mqm/log

QueueManager:
Name=saturn.queue.manager
Prefix=/var/mqm
Directory=saturn!queue!manager

QueueManager:
Name=pluto.queue.manager
Prefix=/var/mqm
Directory=pluto!queue!manager

DefaultQueueManager:
Name=saturn.queue.manager

ApiExitTemplate:
Name=OurPayrollQueueAuditor
Sequence=2
Function=EntryPoint
Module=/usr/ABC/auditor
Data=123

ApiExitCommon:
Name=MQPoliceman
Sequence=1
Function=EntryPoint
Module=/usr/MQPolice/tmqp
Data=CheckEverything

Figure 9. Example of a WebSphere MQ configuration file for UNIX systems

96 WebSphere MQ: System Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|

|

|
|
|
|

A qm.ini file is held in the root of the directory tree occupied by the queue
manager. For example, the path and the name for a configuration file for a queue
manager called QMNAME is:
/var/mqm/qmgrs/QMNAME/qm.ini

The queue manager name can be up to 48 characters in length. However, this does
not guarantee that the name is valid or unique. Therefore, a directory name is
generated based on the queue manager name. This process is known as name
transformation. For a description, see “Understanding WebSphere MQ file names”
on page 17.

Figure 10 on page 98 shows how groups of attributes might be arranged in a queue
manager configuration file in WebSphere MQ for UNIX systems.

Chapter 4. Configuring WebSphere MQ 97

|
|
|

|

|
|
|
|
|

|
|
|

Notes for Figure 10:

#* Module Name: qm.ini *#
#* Type : WebSphere MQ queue manager configuration file *#
Function : Define the configuration of a single queue manager *#
#* *#
#***#
#* Notes : *#
#* 1) This file defines the configuration of the queue manager *#
#* *#
#***#

ExitPath:
ExitsDefaultPath=/var/mqm/exits
ExitsDefaultPath64=/var/mqm/exits64

Service:
Name=AuthorizationService
EntryPoints=13

ServiceComponent:
Service=AuthorizationService
Name=MQSeries.UNIX.auth.service
Module=/opt/mqm/bin/amqzfu 1

ComponentDataSize=0

Log:
LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=4096
LogType=CIRCULAR
LogBufferPages=0
LogPath=/var/mqm/log/saturn!queue!manager/

XAResourceManager:
Name=DB2 Resource Manager Bank
SwitchFile=/usr/bin/db2swit
XAOpenString=MQBankDB
XACloseString=
ThreadOfControl=THREAD

Channels: 2

MaxChannels=20
MaxActiveChannels=100
MQIBindType=STANDARD

TCP:
KeepAlive = Yes
SvrSndBuffSize=32768
SvrRcvBuffSize=32768
Connect_Timeout=0

QMErrorLog:
ErrorLogSize=262144
ExcludeMessage=7234
SuppressMessage=9001,9002,9202
SuppressInterval=30

ApiExitLocal:
Name=ClientApplicationAPIchecker
Sequence=3
Function=EntryPoint
Module=/usr/Dev/ClientAppChecker
Data=9.20.176.20

Figure 10. Example queue manager configuration file for WebSphere MQ for UNIX systems

98 WebSphere MQ: System Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|

1. /usr/mqm/bin/amqzfu on AIX
2. For more information on the Channel stanza, see the WebSphere MQ

Intercommunication manual.
3. The value of zero for LogBufferPages gives a value of 512.

Attributes for changing WebSphere MQ configuration
information

Modify the configuration of WebSphere MQ

On WebSphere MQ for Windows systems and on WebSphere MQ for Linux (x86
platform) systems, modify configuration information using the WebSphere MQ
Explorer. On other systems, modify the information by editing the mqs.ini
configuration file.

The following are detailed:
v “All queue managers”
v “Default queue manager” on page 100
v “Exit properties” on page 100
v “Log defaults for WebSphere MQ” on page 101
v “Advanced Configuration and Power Interface (ACPI)” on page 104
v “API exits” on page 105
v “Queue managers” on page 105

All queue managers

Use the General and Extended WebSphere MQ properties page from the WebSphere
MQ Explorer, or the AllQueueManagers stanza in the mqs.ini file to specify the
following information about all queue managers.

DefaultPrefix=directory_name
This attribute specifies the path to the qmgrs directory, within which the queue
manager data is kept.

If you change the default prefix for the queue manager, replicate the directory
structure that was created at installation time (see Figure 36 on page 532).

In particular, you must create the qmgrs structure. Stop WebSphere MQ before
changing the default prefix, and restart WebSphere MQ only after you have
moved the structures to the new location and changed the default prefix.

Note: Do not delete the /var/mqm/errors directory on UNIX systems, or the
\errors directory on Windows systems.

As an alternative to changing the default prefix, you can use the environment
variable MQSPREFIX to override the DefaultPrefix for the crtmqm command.

Because of operating system restrictions, keep the supplied path sufficiently
short so that the sum of the path length and any queue manager name is a
maximum of 70 characters long.

ConvEBCDICNewline=NL_TO_LF|TABLE|ISO
EBCDIC code pages contain a new line (NL) character that is not supported by
ASCII code pages (although some ISO variants of ASCII contain an
equivalent).

Use the ConvEBCDICNewline attribute to specify how WebSphere MQ is to
convert the EBCDIC NL character into ASCII format.

Chapter 4. Configuring WebSphere MQ 99

|

|
|

|

|

|

|

|
|
|
|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

NL_TO_LF
Convert the EBCDIC NL character (X’15’) to the ASCII line feed character,
LF (X’0A’), for all EBCDIC to ASCII conversions.

NL_TO_LF is the default.

TABLE
Convert the EBCDIC NL character according to the conversion tables used
on your platform for all EBCDIC to ASCII conversions.

The effect of this type of conversion might vary from platform to platform
and from language to language; even on the same platform, the behavior
might vary if you use different CCSIDs.

ISO
Convert:
v ISO CCSIDs using the TABLE method
v All other CCSIDs using the NL_TO_CF method

Possible ISO CCSIDs are shown in Table 3.

Table 3. List of possible ISO CCSIDs

CCSID Code Set

819 ISO8859-1

912 ISO8859-2

915 ISO8859-5

1089 ISO8859-6

813 ISO8859-7

916 ISO8859-8

920 ISO8859-9

1051 roman8

If the ASCII CCSID is not an ISO subset, ConvEBCDICNewline defaults to
NL_TO_LF.

For more information about data conversion, see the WebSphere MQ
Application Programming Guide.

Default queue manager

Use the General WebSphere MQ properties page from the WebSphere MQ
Explorer, or the DefaultQueueManager stanza in the mqs.ini file to specify the
default queue manager.

Name=default_queue_manager
The default queue manager processes any commands for which a queue
manager name is not explicitly specified. The DefaultQueueManager attribute is
automatically updated if you create a new default queue manager. If you
inadvertently create a new default queue manager and then want to revert to
the original, alter the DefaultQueueManager attribute manually.

Exit properties

Use the Exits WebSphere MQ properties page from the WebSphere MQ Explorer,
or the ExitProperties stanza in the mqs.ini file to specify configuration options
used by queue manager exit programs.

100 WebSphere MQ: System Administration Guide

|
|
|

|

|
|
|

|
|
|

|
|

|

|

|

||

||

||

||

||

||

||

||

||

||
|

|
|

|
|

|

|
|
|

|
|
|
|
|
|

|

|
|
|

CLWLMode=SAFE|FAST
The cluster workload exit, CLWL, allows you to specify which cluster queue in
the cluster to open in response to an MQI call (MQOPEN, MQPUT, and so
on). The CLWL exit runs either in FAST mode or SAFE mode depending on
the value you specify on the CLWLMode attribute. If you omit the CLWLMode
attribute, the cluster workload exit runs in SAFE mode.

SAFE
Run the CLWL exit in a separate process from the queue manager. This is
the default.

If a problem arises with the user-written CLWL exit when running in SAFE
mode, the following happens:
v The CLWL server process (amqzlwa0) fails.
v The queue manager restarts the CLWL server process.
v The error is reported to you in the error log. If an MQI call is in

progress, you receive notification in the form of a return code.

The integrity of the queue manager is preserved.

Note: Running the CLWL exit in a separate process can affect performance.

FAST
Run the cluster exit inline in the queue manager process.

Specifying this option improves performance by avoiding the overheads
associated with running in SAFE mode, but does so at the expense of
queue manager integrity. You should only run the CLWL exit in FAST
mode if you are convinced that there are no problems with your CLWL
exit, and you are particularly concerned about performance.

If a problem arises when the CLWL exit is running in FAST mode, the
queue manager will fail and you run the risk of the integrity of the queue
manager being compromised.

Log defaults for WebSphere MQ

Use the Default log settings WebSphere MQ properties page from the
WebSphere MQ Explorer, or the LogDefaults stanza in the mqs.ini file to specify
information about log defaults for all queue managers.

If the stanza does not exist then the MQ defaults will be used. The log attributes
are used as default values when you create a queue manager, but can be
overridden if you specify the log attributes on the crtmqm command. See
“crtmqm” on page 291 for details of this command.

Once a queue manager has been created, the log attributes for that queue manager
are taken from the settings described in “Queue manager logs” on page 108.

The default prefix (specified in “All queue managers” on page 99) and log path
specified for the particular queue manager (specified in “Queue manager logs” on
page 108) allow the queue manager and its log to be on different physical drives.
This is the recommended method, although by default they are on the same drive.

For information about calculating log sizes, see “Calculating the size of the log” on
page 222.

Chapter 4. Configuring WebSphere MQ 101

|
|
|
|
|
|

|
|
|

|
|

|

|

|
|

|

|

|
|

|
|
|
|
|

|
|
|

|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

Note: The limits given in the following parameter list are limits set by WebSphere
MQ. Operating system limits might reduce the maximum possible log size.

LogPrimaryFiles=3|2-254 (Windows)|2-510 (UNIX systems)
The log files allocated when the queue manager is created.

The minimum number of primary log files you can have is 2 and the
maximum is 254 on Windows, or 510 on UNIX systems. The default is 3.

The total number of primary and secondary log files must not exceed 255 on
Windows, or 511 on UNIX systems, and must not be less than 3.

The value is examined when the queue manager is created or started. You can
change it after the queue manager has been created. However, a change in the
value is not effective until the queue manager is restarted, and the effect might
not be immediate.

LogSecondaryFiles=2|1-253 (Windows)|1-509 (UNIX systems)
The log files allocated when the primary files are exhausted.

The minimum number of secondary log files is 1 and the maximum is 253 on
Windows, or 509 on UNIX systems. The default number is 2.

The total number of primary and secondary log files must not exceed 255 on
Windows, or 511 on UNIX systems, and must not be less than 3.

The value is examined when the queue manager is started. You can change this
value, but changes do not become effective until the queue manager is
restarted, and even then the effect might not be immediate.

LogFilePages=number
The log data is held in a series of files called log files. The log file size is
specified in units of 4 KB pages.

The default number of log file pages is 4096, giving a log file size of 16 MB.

On UNIX systems the minimum number of log file pages is 64, and on
Windows the minimum number of log file pages is 32; in both cases the
maximum number is 65 535.

Note: The size of the log files specified during queue manager creation cannot
be changed for a queue manager.

LogType=CIRCULAR|LINEAR
The type of log to be used. The default is CIRCULAR.

CIRCULAR
Start restart recovery using the log to roll back transactions that were in
progress when the system stopped.

See “Circular logging” on page 219 for a fuller explanation of circular
logging.

LINEAR
For both restart recovery and media or forward recovery (creating lost or
damaged data by replaying the contents of the log).

See “Linear logging” on page 219 for a fuller explanation of linear logging.

If you want to change the default, you can either edit the LogType attribute, or
specify linear logging using the crtmqm command. You cannot change the
logging method after a queue manager has been created.

102 WebSphere MQ: System Administration Guide

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

|

|
|
|

LogBufferPages=0|0-4096
The amount of memory allocated to buffer records for writing, specifying the
size of the buffers in units of 4 KB pages.

The minimum number of buffer pages is 18 and the maximum is 4096. Larger
buffers lead to higher throughput, especially for larger messages.

If you specify 0 (the default), the queue manager selects the size. In WebSphere
MQ Version 7.0 this is 512 (2048 KB).

If you specify a number between 1 and 17, the queue manager defaults to 18
(72 KB). If you specify a number between 18 and 4096, the queue manager
uses the number specified to set the memory allocated.

The value is examined when the queue manager is created, and might be
increased or decreased at either of these times. However, a change in the value
is not effective until the queue manager is restarted.

LogDefaultPath=directory_name
The directory in which the log files for a queue manager reside. The directory
resides on a local device to which the queue manager can write and,
preferably, on a different drive from the message queues. Specifying a different
drive gives added protection in case of system failure.

The default is:
v <DefaultPrefix>\log for WebSphere MQ for Windows where

<DefaultPrefix> is the value specified on the DefaultPrefix attribute on the
All Queue Managers WebSphere MQ properties page. This value is set at
install time.

v /var/mqm/log for WebSphere MQ for UNIX systems

Alternatively, you can specify the name of a directory on the crtmqm
command using the -ld flag. When a queue manager is created, a directory is
also created under the queue manager directory, and this is used to hold the
log files. The name of this directory is based on the queue manager name. This
ensures that the log file path is unique, and also that it conforms to any
limitations on directory name lengths.

If you do not specify -ld on the crtmqm command, the value of the
LogDefaultPath attribute in the mqs.ini file is used.

The queue manager name is appended to the directory name to ensure that
multiple queue managers use different log directories.

When the queue manager is created, a LogPath value is created in the log
attributes in the configuration information, giving the complete directory name
for the queue manager’s log. This value is used to locate the log when the
queue manager is started or deleted.

LogWriteIntegrity=SingleWrite|DoubleWrite|TripleWrite
The method the logger uses to reliably write log records.

SingleWrite
Some hardware guarantees that, if a write operation writes a page and fails
for any reason, a subsequent read of the same page into a buffer results in
each byte in the buffer being either:
v The same as before the write, or
v The byte that should have been written in the write operation

Chapter 4. Configuring WebSphere MQ 103

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|
|

|

|

On this type of hardware (for example, ssa write cache enabled), it is safe
for the logger to write log records in a single write as the hardware assures
full write integrity. This method provides the highest level of performance.

DoubleWrite
The DoubleWrite method was the default method used in WebSphere MQ
V5.2 and is available for back-compatibility purposes only.

TripleWrite
This is the default method. Where hardware that assures write integrity is
not available, write log records using the TripleWrite method because it
provides full write integrity.

Advanced Configuration and Power Interface (ACPI)
Use the ACPI WebSphere MQ properties page from the WebSphere MQ Explorer, to
specify how WebSphere MQ is to behave when the system receives a suspend
request.

Windows supports the Advanced Configuration and Power Interface (ACPI)
standard. This enables Windows users with ACPI enabled hardware to stop and
restart channels when the system enters and resumes from suspend mode.

Note that the settings specified in the ACPI WebSphere MQ properties page are
applied only when the Alert Monitor is running. The Alert Monitor icon is present
on the taskbar if the Alert Monitor is running.

DoDialog=Y | N
Displays the dialog at the time of a suspend request.

DenySuspend=Y | N
Denies the suspend request. This is used if DoDialog=N, or if DoDialog=Y and
a dialog cannot be displayed, for example, because your laptop lid is closed.

CheckChannelsRunning=Y | N
Checks whether any channels are running. The outcome can determine the
outcome of the other settings.

The following table outlines the effect of each combination of these parameters:

DoDialog DenySuspend CheckChannels Running Action

N N N Accept the suspend request.

N N Y Accept the suspend request.

N Y N Deny the suspend request.

N Y Y If any channels are running deny
the suspend request; if not accept
the request.

Y N N Display the dialog (see note below;
accept the suspend request). This is
the default.

Y N Y If no channels are running accept
the suspend request; if they are
display the dialog (see note below;
accept the request).

Y Y N Display the dialog (see note below;
deny the suspend request).

104 WebSphere MQ: System Administration Guide

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|

|||||

||||

||||

||||

||||
|
|

||||
|
|

||||
|
|
|

||||
|

Y Y Y If no channels are running accept
the suspend request; if they are
display the dialog (see note below;
deny the request).

Note: In cases where the action is to display the dialog, if the dialog cannot be
displayed (for example because your laptop lid is closed), the DenySuspend option
is used to determine whether the suspend request is accepted or denied.

API exits

Use the WebSphere MQ Explorer or the amqmdain command to change the
Registry entries for API exits.

Use the Exits WebSphere MQ properties page from the WebSphere MQ Explorer,
or the ApiExitTemplate and ApiExitCommon stanza in the mqs.ini file to identify
API exit routines for all queue managers. On Windows systems, you can also use
the amqmdain command to change the Registry entries for API exits. (To identify
API exit routines for individual queue managers, you use the ApiExitLocal stanza,
as described in “API exits” on page 118.)

For a complete description of the attributes for these stanzas, see “Configuring API
exits” on page 479.

Queue managers
There is one QueueManager stanza for every queue manager. Use the stanza to
specify the location of the queue manager directory.

On UNIX systems, there is one QueueManager stanza for every queue manager.
These attributes specify the queue manager name, and the name of the directory
containing the files associated with that queue manager. The name of the directory
is based on the queue manager name, but is transformed if the queue manager
name is not a valid file name. (See “Understanding WebSphere MQ file names” on
page 17 for more information about name transformation.)

On Windows systems, this information is held in the Registry. You cannot use the
WebSphere MQ Explorer to change it directly.

Name=queue_manager_name
The name of the queue manager.

Prefix=prefix
Where the queue manager files are stored. By default, this is the same as the
value specified on the DefaultPrefix attribute of the All Queue Managers
information.

Directory=name
The name of the subdirectory under the <prefix>\QMGRS directory where the
queue manager files are stored. This name is based on the queue manager
name, but can be transformed if there is a duplicate name or if the queue
manager name is not a valid file name.

Changing queue manager configuration information
Modify queue manager configuration

Chapter 4. Configuring WebSphere MQ 105

||||
|
|
|
|

|
|
|

|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|

|

The attributes described here modify the configuration of an individual queue
manager. They override any settings for WebSphere MQ. On WebSphere MQ for
Windows systems and on WebSphere MQ for Linux (x86 platform) systems,
modify configuration information using the WebSphere MQ Explorer. On other
systems, modify the information by editing the qm.ini configuration file.

The following are detailed:
v “Installable services”
v “Service components” on page 108
v “Queue manager logs” on page 108
v “Restricted mode” on page 111
v “XA resource managers” on page 111
v “Attributes of channels” on page 112
v “LU62, NETBIOS, TCP, and SPX” on page 114
v “Exit path” on page 117
v “API exits” on page 118
v “Queue manager error logs” on page 118
v “Queue manager default bind type” on page 119

Installable services

There are significant implications to changing installable services and their
components. For this reason, the installable services are read-only in the
WebSphere MQ Explorer. To change installable services in on Windows systems,
use regedit or on UNIX systems use the Service stanza in the qm.ini file.

For each component within a service, you must also specify the name and path of
the module containing the code for that component. On UNIX systems, use the
ServiceComponent stanza for this.

Name=AuthorizationService|NameService
The name of the required service.

AuthorizationService
For WebSphere MQ, the Authorization Service component is known as the
Object Authority Manager, or OAM.

The AuthorizationService stanza and its associated ServiceComponent
stanza are added automatically when the queue manager is created. Add
other ServiceComponent stanzas manually.

NameService
No name service is provided by default. If you require a name service, you
must add the NameService stanza manually.

EntryPoints=number-of-entries
The number of entry points defined for the service. This includes the
initialization and termination entry points.

SecurityPolicy=Default|NTSIDsRequired (WebSphere MQ for Windows only)
The SecurityPolicy attribute applies only if the service specified is the default
authorization service, that is, the OAM. The SecurityPolicy attribute allows you
to specify the security policy for each queue manager. The possible values are:

Default
Use the default security policy to take effect. If a Windows security

106 WebSphere MQ: System Administration Guide

|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

identifier (NT SID) is not passed to the OAM for a particular user ID, an
attempt is made to obtain the appropriate SID by searching the relevant
security databases.

NTSIDsRequired
Pass an NT SID to the OAM when performing security checks.

See “Windows security identifiers (SIDs)” on page 124 for more
information.

SharedBindingsUserId=user-type
The SharedBindingsUserId attribute applies only if the service specified is the
default authorization service, that is, the OAM. The SharedBindingsUserId
attribute is used with relation to shared bindings only. This value allows you
to specify whether the UserIdentifier field in the IdentityContext structure, from
the MQZ_AUTHENTICATE_USER function, is the effective user Id or the real
user Id. For information on the MQZ_AUTHENTICATE_USER function, see
“MQZ_AUTHENTICATE_USER – Authenticate user” on page 406. The
possible values are:

Default
The value of the UserIdentifier field is set as the real user Id.

Real
The value of the UserIdentifier field is set as the real user Id.

Effective
The value of the UserIdentifier field is set as the effective user Id.

FastpathBindingsUserId=user-type
The FastpathBindingsUserId attribute applies only if the service specified is the
default authorization service, that is, the OAM. The FastpathBindingsUserId
attribute is used with relation to fastpath bindings only. This value allows you
to specify whether the UserIdentifier field in the IdentityContext structure, from
the MQZ_AUTHENTICATE_USER function, is the effective user Id or the real
user Id. For information on the MQZ_AUTHENTICATE_USER function, see
“MQZ_AUTHENTICATE_USER – Authenticate user” on page 406. The
possible values are:

Default
The value of the UserIdentifier field is set as the real user Id.

Real
The value of the UserIdentifier field is set as the real user Id.

Effective
The value of the UserIdentifier field is set as the effective user Id.

IsolatedBindingsUserId =user-type
The IsolatedBindingsUserId attribute applies only if the service specified is the
default authorization service, that is, the OAM. The IsolatedBindingsUserId
attribute is used with relation to isolated bindings only. This value allows you
to specify whether the UserIdentifier field in the IdentityContext structure, from
the MQZ_AUTHENTICATE_USER function, is the effective user Id or the real
user Id. For information on the MQZ_AUTHENTICATE_USER function, see
“MQZ_AUTHENTICATE_USER – Authenticate user” on page 406. The
possible values are:

Default
The value of the UserIdentifier field is set as the effective user Id.

Chapter 4. Configuring WebSphere MQ 107

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

Real
The value of the UserIdentifier field is set as the real user Id.

Effective
The value of the UserIdentifier field is set as the effective user Id.

For more information about installable services and components, see “Installable
services and components” on page 391.

For more information about security services in general, see “WebSphere MQ
security” on page 119.

Service components:

You need to specify service component information when you add a new
installable service. On Windows systems use regedit, and on UNIX systems use the
ServiceComponent stanza in the qm.ini file.

The authorization service stanza is present by default, and the associated
component, the OAM, is active.

Service=service_name
The name of the required service. This must match the value specified on the
Name attribute of the Service configuration information.

Name=component_name
The descriptive name of the service component. This must be unique and
contain only characters that are valid for the names of WebSphere MQ objects
(for example, queue names). This name occurs in operator messages generated
by the service. We recommend that this name begins with a company
trademark or similar distinguishing string.

Module=module_name
The name of the module to contain the code for this component. This must be
a full path name.

ComponentDataSize=size
The size, in bytes, of the component data area passed to the component on
each call. Specify zero if no component data is required.

For more information about installable services and components, see “Installable
services and components” on page 391.

Queue manager logs

Use the Log queue manager properties page from the WebSphere MQ Explorer, or
the Log stanza in the qm.ini file, to specify information about logging on this queue
manager.

By default, these settings are inherited from the settings specified for the default
log settings for the queue manager (described in “Log defaults for WebSphere
MQ” on page 101). Change these settings only if you want to configure this queue
manager in a different way.

For information about calculating log sizes, see “Calculating the size of the log” on
page 222.

Note: The limits given in the following parameter list are set by WebSphere MQ.
Operating system limits might reduce the maximum possible log size.

108 WebSphere MQ: System Administration Guide

|
|

|
|

|
|

|
|

|

|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|

|

|
|
|

|
|
|
|

|
|

|
|

LogPrimaryFiles=3|2-254 (Windows)|2-510 (UNIX systems)
The log files allocated when the queue manager is created.

The minimum number of primary log files you can have is 2 and the
maximum is 254 on Windows, or 510 on UNIX systems. The default is 3.

The total number of primary and secondary log files must not exceed 255 on
Windows, or 511 on UNIX systems, and must not be less than 3.

The value is examined when the queue manager is created or started. You can
change it after the queue manager has been created. However, a change in the
value is not effective until the queue manager is restarted, and the effect might
not be immediate.

LogSecondaryFiles=2|1-253 (Windows)|1-509 (UNIX systems)
The log files allocated when the primary files are exhausted.

The minimum number of secondary log files is 1 and the maximum is 253 on
Windows, or 509 on UNIX systems. The default number is 2.

The total number of primary and secondary log files must not exceed 255 on
Windows, or 511 on UNIX systems, and must not be less than 3.

The value is examined when the queue manager is started. You can change this
value, but changes do not become effective until the queue manager is
restarted, and even then the effect might not be immediate.

LogFilePages=number
The log data is held in a series of files called log files. The log file size is
specified in units of 4 KB pages.

The default number of log file pages is 4096, giving a log file size of 16 MB.

On UNIX systems the minimum number of log file pages is 64, and on
Windows the minimum number of log file pages is 32; in both cases the
maximum number is 65 535.

Note: The size of the log files specified during queue manager creation cannot
be changed for a queue manager.

LogType=CIRCULAR|LINEAR
The type of logging to be used by the queue manager. You cannot change the
type of logging to be used once the queue manager has been created. Refer to
the description of the LogType attribute in “Log defaults for WebSphere MQ”
on page 101 for information about creating a queue manager with the type of
logging you require.

CIRCULAR
Start restart recovery using the log to roll back transactions that were in
progress when the system stopped.

See “Circular logging” on page 219 for a fuller explanation of circular
logging.

LINEAR
For both restart recovery and media or forward recovery (creating lost or
damaged data by replaying the contents of the log).

See “Linear logging” on page 219 for a fuller explanation of linear logging.

LogBufferPages=0|0-4096
The amount of memory allocated to buffer records for writing, specifying the
size of the buffers in units of 4 KB pages.

Chapter 4. Configuring WebSphere MQ 109

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|

|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|

|
|
|

The minimum number of buffer pages is 18 and the maximum is 4096. Larger
buffers lead to higher throughput, especially for larger messages.

If you specify 0 (the default), the queue manager selects the size. In WebSphere
MQ Version 7.0 this is 512 (2048 KB).

If you specify a number between 1 and 17, the queue manager defaults to 18
(72 KB). If you specify a number between 18 and 4096, the queue manager
uses the number specified to set the memory allocated.

The value is examined when the queue manager is created or started, and
might be increased or decreased at either of these times. However, a change in
the value is not effective until the queue manager is restarted.

LogPath=directory_name
The directory in which the log files for a queue manager reside. This must
exist on a local device to which the queue manager can write and, preferably,
on a different drive from the message queues. Specifying a different drive
gives added protection in case of system failure.

The default is:
v C:\Program Files\IBM\WebSphere MQ\log in WebSphere MQ for Windows.
v /var/mqm/log in WebSphere MQ for UNIX systems.

You can specify the name of a directory on the crtmqm command using the -ld
flag. When a queue manager is created, a directory is also created under the
queue manager directory, and this is used to hold the log files. The name of
this directory is based on the queue manager name. This ensures that the log
file path is unique, and also that it conforms to any limitations on directory
name lengths.

If you do not specify -ld on the crtmqm command, the value of the
LogDefaultPath attribute is used.

In WebSphere MQ for UNIX systems, user ID mqm and group mqm must
have full authorities to the log files. If you change the locations of these files,
you must give these authorities yourself. This is not required if the log files are
in the default locations supplied with the product.

LogWriteIntegrity=SingleWrite|DoubleWrite|TripleWrite
The method the logger uses to reliably write log records.

SingleWrite
Some hardware guarantees that, if a write operation writes a page and fails
for any reason, a subsequent read of the same page into a buffer results in
each byte in the buffer being either:
v The same as before the write, or
v The byte that should have been written in the write operation

On this type of hardware (for example; SAN or SSA write cache enabled),
it is safe for the logger to write log records in a single write as the
hardware assures full write integrity. This method provides the highest
level of performance.

DoubleWrite
The DoubleWrite method was the default method used in WebSphere MQ
V5.2 and is available for back-compatibility purposes only.

110 WebSphere MQ: System Administration Guide

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|

|

|

|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|

|

|
|
|
|

|
|
|

TripleWrite
This is the default method. Where hardware that assures write integrity is
not available, write log records using the TripleWrite method because it
provides full write integrity.

Restricted mode

This option applies to UNIX systems only. The RestrictedMode stanza is set by the
-g option on the crtmqm command. Do not change this stanza after the queue
manager has been created. If you do not use the -g option, the stanza is not created
in the qm.ini file.

ApplicationGroup
The name of the group with members that are allowed to:
v Run MQI applications
v Update all IPCC resources
v Change the contents of some queue manager directories

XA resource managers

Use the XA resource manager queue manager properties page from the WebSphere
MQ Explorer, or the XAResourceManager stanza in the qm.ini file, to specify the
following information about the resource managers involved in global units of
work coordinated by the queue manager.

Add XA resource manager configuration information manually for each instance of
a resource manager participating in global units of work; no default values are
supplied.

See “Database coordination” on page 157 for more information about resource
manager attributes.

Name=name (mandatory)
This attribute identifies the resource manager instance.

The Name value can be up to 31 characters in length. You can use the name of
the resource manager as defined in its XA-switch structure. However, if you
are using more than one instance of the same resource manager, you must
construct a unique name for each instance. You can ensure uniqueness by
including the name of the database in the Name string, for example.

WebSphere MQ uses the Name value in messages and in output from the
dspmqtrn command.

Do not change the name of a resource manager instance, or delete its entry
from the configuration information, once the associated queue manager has
started and the resource manager name is in effect.

SwitchFile=name (mandatory)
The fully-qualified name of the load file containing the resource manager’s XA
switch structure.

If you are using a 64-bit queue manager with 32-bit applications, the name
value should contain only the base name of the load file containing the
resource manager’s XA switch structure.

The 32-bit file will be loaded into the application from the path specified by
ExitsDefaultPath.

Chapter 4. Configuring WebSphere MQ 111

|
|
|
|

|

|
|
|
|

|
|

|

|

|

|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

The 64-bit file will be loaded into the queue manager from the path specified
by ExitsDefaultPath64.

XAOpenString=string (optional)
The string of data to be passed to the resource manager’s xa_open entry point.
The contents of the string depend on the resource manager itself. For example,
the string could identify the database that this instance of the resource
manager is to access. For more information about defining this attribute, see:
v “Adding resource manager configuration information for DB2” on page 166
v “Adding resource manager configuration information for Oracle” on page

168
v “Adding resource manager configuration information for Sybase” on page

173
v “Adding resource manager configuration information for Informix” on page

171

and consult your resource manager documentation for the appropriate string.

XACloseString=string (optional)
The string of data to be passed to the resource manager’s xa_close entry point.
The contents of the string depend on the resource manager itself. For more
information about defining this attribute, see:
v “Adding resource manager configuration information for DB2” on page 166
v “Adding resource manager configuration information for Oracle” on page

168
v “Adding resource manager configuration information for Sybase” on page

173
v “Adding resource manager configuration information for Informix” on page

171

and consult your database documentation for the appropriate string.

ThreadOfControl=THREAD|PROCESS
This attribute is mandatory for WebSphere MQ for Windows. The queue
manager uses this value for serialization when it needs to call the resource
manager from one of its own multithreaded processes.

THREAD
The resource manager is fully thread aware. In a multithreaded WebSphere
MQ process, XA function calls can be made to the external resource
manager from multiple threads at the same time.

PROCESS
The resource manager is not thread safe. In a multithreaded WebSphere MQ
process, only one XA function call at a time can be made to the resource
manager.

The ThreadOfControl entry does not apply to XA function calls issued by the
queue manager in a multithreaded application process. In general, an
application that has concurrent units of work on different threads requires this
mode of operation to be supported by each of the resource managers.

Attributes of channels
These attributes determine the configuration of a channel.

Use the Channels queue manager properties page from the WebSphere MQ
Explorer, or the CHANNELS stanza in the qm.ini file, to specify information about
channels.

112 WebSphere MQ: System Administration Guide

|
|

|
|
|
|
|

|

|
|

|
|

|
|

|

|
|
|
|

|

|
|

|
|

|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

MaxChannels=100|number
The maximum number of channels allowed, in the range 1 - 9999. The default
is 100.

MaxActiveChannels=MaxChannels_value
The maximum number of channels allowed to be active at any time. The
default is the value specified for the MaxChannels attribute.

MaxInitiators=3|number
The maximum number of initiators. The default and maximum value is 3. Any
value greater than 3 will be taken as 3.

MQIBindType=FASTPATH|SHARED
The binding for applications:

FASTPATH
Channels connect using MQCONNX FASTPATH; there is no agent process.

SHARED
Channels connect using SHARED.

PipeLineLength=1|number
The maximum number of concurrent threads a channel will use. The default is
1. Any value greater than 1 is treated as 2.

When you use pipelining, configure the queue managers at both ends of the
channel to have a PipeLineLength greater than 1.

Note: Pipelining is only effective for TCP/IP channels.

AdoptNewMCA=NO|SVR|SDR|RCVR|CLUSRCVR|ALL|FASTPATH
If WebSphere MQ receives a request to start a channel, but finds that an
instance of the channel is already running, in some cases the existing channel
instance must be stopped before the new one can start. The AdoptNewMCA
attribute allows you to control which types of channels can be ended in this
way.

If you specify the AdoptNewMCA attribute for a given channel type, but the new
channel fails to start because a matching channel instance is already running:
1. The new channel tries to stop the previous one by requesting it to end.
2. If the previous channel server does not respond to this request by the time

the AdoptNewMCATimeout wait interval expires, the thread or process for
the previous channel server is ended.

3. If the previous channel server has not ended after step 2, and after the
AdoptNewMCATimeout wait interval expires for a second time, WebSphere
MQ ends the channel with a CHANNEL IN USE error.

The AdoptNewMCA functionality applies to server, sender, receiver and
cluster-receiver channels. In the case of a sender or server channel, only one
instance of a channel with a particular name can be running in the receiving
queue manager. In the case of a receiver or cluster-receiver channel, multiple
instances of a channel with a particular name might be running in the
receiving queue manager, but only one instance can run at any one time from a
particular remote queue manager.

Note: AdoptNewMCA is not supported on requester or server-connection
channels.

Specify one or more values, separated by commas or blanks, from the
following list:

Chapter 4. Configuring WebSphere MQ 113

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|

|
|
|
|
|
|

|
|

|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|

NO
The AdoptNewMCA feature is not required. This is the default.

SVR
Adopt server channels.

SDR
Adopt sender channels.

RCVR
Adopt receiver channels.

CLUSRCVR
Adopt cluster receiver channels.

ALL
Adopt all channel types except FASTPATH channels.

FASTPATH
Adopt the channel if it is a FASTPATH channel. This happens only if the
appropriate channel type is also specified, for example:
AdoptNewMCA=RCVR,SVR,FASTPATH.

Attention!: The AdoptNewMCA attribute might behave in an
unpredictable fashion with FASTPATH channels. Exercise great caution
when enabling the AdoptNewMCA attribute for FASTPATH channels.

AdoptNewMCATimeout=60|1 – 3600
The amount of time, in seconds, that the new channel instance waits for the
old channel instance to end. Specify a value in the range 1 – 3600. The default
value is 60.

AdoptNewMCACheck=QM|ADDRESS|NAME|ALL
The type of checking required when enabling the AdoptNewMCA attribute. If
possible, perform full checking to protect your channels from being shut down,
inadvertently or maliciously. At the very least, check that the channel names
match.

Specify one or more of the following values, separated by commas or blanks:

QM
Check that the queue manager names match.

ADDRESS
Check the communications address. For example, the TCP/IP address.

NAME
Check that the channel names match.

ALL
Check for matching queue manager names, the communications address,
and for matching channel names.

The default is AdoptNewMCACheck=NAME,ADDRESS,QM.

LU62, NETBIOS, TCP, and SPX
Use these queue manager properties pages, or stanzas in the qm.ini file, to specify
network protocol configuration parameters. They override the default attributes for
channels.

114 WebSphere MQ: System Administration Guide

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|

|
|
|

|

|
|
|
|

LU62 (WebSphere MQ for Windows only)
Use the LU6.2 queue manager properties page from the WebSphere MQ
Explorer, or the LU62 stanza in the qm.ini file, to specify SNA LU 6.2 protocol
configuration parameters.

TPName
The TP name to start on the remote site.

Library1=DLLName 1
The name of the APPC DLL.

The default value is WCPIC32.

Library2=DLLName2
The same as Library1, used if the code is stored in two separate libraries.

The default value is WCPIC32.

NETBIOS (WebSphere MQ for Windows only)
Use the Netbios queue manager properties page from the WebSphere MQ
Explorer, or the NETBIOS stanza in the qm.ini file, to specify NetBIOS protocol
configuration parameters.

LocalName=name
The name by which this machine is known on the LAN.

AdapterNum=0|adapter_number
The number of the LAN adapter. The default is adapter 0.

NumSess=1|number_of_sessions
The number of sessions to allocate. The default is 1.

NumCmds=1|number_of_commands
The number of commands to allocate. The default is 1.

NumNames=1|number_of_names
The number of names to allocate. The default is 1.

Library1=DLLName1
The name of the NetBIOS DLL.

The default value is NETAPI32.

TCP
Use the TCP queue manager properties page from the WebSphere MQ Explorer,
or the TCP stanza in the qm.ini file, to specify Transmission Control Protocol /
Internet Protocol (TCP/IP) configuration parameters.

Port=1414|port_number
The default port number, in decimal notation, for TCP/IP sessions. The
well known port number for WebSphere MQ is 1414.

Library1=DLLName1 (WebSphere MQ for Windows only)
The name of the TCP/IP sockets DLL.

The default is WSOCK32.

KeepAlive=YES|NO
Switch the KeepAlive function on or off. KeepAlive=YES causes TCP/IP to
check periodically that the other end of the connection is still available. If it
is not, the channel is closed.

ListenerBacklog=number
Override the default number of outstanding requests for the TCP/IP
listener.

Chapter 4. Configuring WebSphere MQ 115

|
|
|
|

|
|

|
|

|

|
|

|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|
|

|
|
|

|
|

|

|
|
|
|

|
|
|

When receiving on TCP/IP, a maximum number of outstanding connection
requests is set. This can be considered to be a backlog of requests waiting
on the TCP/IP port for the listener to accept the request. The default
listener backlog values are shown in Table 4.

Table 4. Default outstanding connection requests (TCP)

Platform Default ListenerBacklog value

Windows Server 100

Windows Workstation 5

Linux 100

Solaris 100

HP-UX 20

AIX V4.2 or later 100

AIX V4.1 or earlier 10

Note: Some operating systems support a larger value than the default
shown. Use this to avoid reaching the connection limit.

Conversely, some operating systems might limit the size of the TCP
backlog, so the effective TCP backlog could be smaller than requested here.

If the backlog reaches the values shown in Table 4, the TCP/IP connection
is rejected and the channel cannot start. For message channels, this results
in the channel going into a RETRY state and retrying the connection at a
later time. For client connections, the client receives an
MQRC_Q_MGR_NOT_AVAILABLE reason code from MQCONN and
retries the connection at a later time.

SvrSndBuffSize=number|32768
The size in bytes of the TCP/IP send buffer used by the server end of the
SVRCONN channels.

SvrRcvBuffSize=number|32768
The size in bytes of the TCP/IP receive buffer used by the server end of
the SVRCONN channels.

Connect_Timeout=number|0
The number of seconds before an attempt to connect the socket times out.
The default value of zero specifies that there is no connect timeout.

SPX (WebSphere MQ for Windows only)
Use the SPX queue manager properties page from the WebSphere MQ Explorer,
or the SPX stanza in the qm.ini file, to specify SPX protocol configuration
parameters.

Socket=5E86|socket_number
The SPX socket number in hexadecimal notation. The default is X’5E86’.

BoardNum=0|adapter_number
The LAN adapter number. The default is adapter 0.

KeepAlive=YES|NO
Switch the KeepAlive function on or off.

KeepAlive=YES causes SPX to check periodically that the other end of the
connection is still available. If it is not, the channel is closed.

116 WebSphere MQ: System Administration Guide

|
|
|
|

||

||

||

||

||

||

||

||

||
|

|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

Library1=DLLName1
The name of the SPX DLL.

The default is WSOCK32.DLL.

Library2=DLLName2
The same as LibraryName1, used if the code is stored in two separate
libraries.

The default is WSOCK32.DLL.

ListenerBacklog=number
Override the default number of outstanding requests for the SPX listener.

When receiving on SPX, a maximum number of outstanding connection
requests is set. This can be considered to be a backlog of requests waiting
on the SPX socket for the listener to accept the request. The default listener
backlog values are shown in Table 5.

Table 5. Default outstanding connection requests (SPX)

Platform Default ListenerBacklog value

Windows Server 100

Windows Workstation 5

Note: Some operating systems support a larger value than the default
shown. Use this to avoid reaching the connection limit.

Conversely, some operating systems might limit the size of the SPX
backlog, so the effective SPX backlog could be smaller than requested here.

If the backlog reaches the values shown in Table 5, the SPX connection is
rejected and the channel cannot start. For message channels, this results in
the channel going into a RETRY state and retrying the connection at a later
time. For client connections, the client receives an
MQRC_Q_MGR_NOT_AVAILABLE reason code from MQCONN and
should retry the connection at a later time.

Exit path

Use the Exits queue manager properties page from the WebSphere MQ Explorer,
or the ExitPath stanza in the qm.ini file to specify the path for user exit programs
on the queue manager system.

ExitsDefaultPath=string
The ExitsDefaultPath attribute specifies the location of:
v 32-bit channel exits for clients
v 32-bit channel exits and data conversion exits for servers
v Unqualified XA switch load files

ExitsDefaultPath64=string
The ExitsDefaultPath64 attribute specifies the location of:
v 64-bit channel exits for clients
v 64-bit channel exits and data conversion exits for servers
v Unqualified XA switch load files

The exit path for clients is held in the WebSphere MQ clients configuration
information, as described in Client exit path.

Chapter 4. Configuring WebSphere MQ 117

|
|

|

|
|
|

|

|
|

|
|
|
|

||

||

||

||
|

|
|

|
|

|
|
|
|
|
|

|

|
|
|

|
|

|

|

|

|
|

|

|

|

|
|

API exits:

Use the Exits queue manager properties page from the WebSphere MQ Explorer,
or the ApiExitLocal stanza in the qm.ini file to identify API exit routines for a
queue manager. On Windows systems, you can also use the amqmdain command
to change the Registry entries for API exits. (To identify API exit routines for all
queue managers, you use the ApiExitCommon and ApiExitTemplate stanzas, as
described in “API exits” on page 105.)

For a complete description of the attributes for these stanzas, see “Configuring API
exits” on page 479.

Queue manager error logs

Use the Extended queue manager properties page from the WebSphere MQ
Explorer, or the QMErrorLog stanza in the qm.ini file to tailor the operation and
contents of queue manager error logs.

ErrorLogSize=maxsize
Specifies the size of the queue manager error log at which it is copied to
the backup. maxsize must be between 32768 and 2147483648 bytes. If
ErrorLogSize is not specified, the default value of 262144 bytes (256KB) is
used.

ExcludeMessage=msgIds
Specifies messages that are not to be written to the queue manager error
log. msqIds contain a comma separated list of message id’s from the
following:

7163 - Job started message (i5/OS only)
7234 - Number of messages loaded
9001 - Channel program ended normally
9002 - Channel program started
9202 - Remote host not available
9208 - Error on receive from host
9209 - Connection closed
9228 - Cannot start channel responder
9508 - Cannot connect to queue manager
9524 - Remote queue manager unavailable
9528 - User requested closure of channel
9558 - Remote Channel is not available
9999 - Channel program ended abnormally

SuppressMessage=msgIds
Specifies messages that will be written to the queue manager error log
once only in a specified time interval. The time interval is specified by
SuppressInterval. msqIds contain a comma separated list of message id’s
from the following:

7163 - Job started message (i5/OS only)
7234 - Number of messages loaded
9001 - Channel program ended normally
9002 - Channel program started
9202 - Remote host not available
9208 - Error on receive from host

118 WebSphere MQ: System Administration Guide

|

|
|
|
|
|
|

|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

9209 - Connection closed
9228 - Cannot start channel responder
9508 - Cannot connect to queue manager
9524 - Remote queue manager unavailable
9528 - User requested closure of channel
9558 - Remote Channel is not available
9999 - Channel program ended abnormally

If the same message id is specified in both SuppressMessage and
ExcludeMessage, the message is excluded.

SuppressInterval=length
Specifies the time interval, in seconds, in which messages specified in
SuppressMessage will be written to the queue manager error log once
only. length must be between 1 and 86400 seconds. If SuppressInterval is
not specified, the default value of 30 seconds is used.

Queue manager default bind type

Use the Extended queue manager properties page from the WebSphere MQ
Explorer, or the Connection stanza in the qm.ini file to specify the default bind
type.

DefaultBindType=SHARED|ISOLATED
If DefaultBindType is set to ISOLATED, applications and the queue
manager run in separate processes, and no resources are shared between
them.

If DefaultBindType is set to SHARED, applications and the queue manager
run in separate processes, however some resources are shared between
them.

The default is SHARED.

WebSphere MQ security

How to secure different types of WebSphere MQ object.

WebSphere MQ queue managers transfer information that is potentially valuable,
so you need to use an authority system to ensure that unauthorized users cannot
access your queue managers. Consider the following types of security controls:

Who can administer WebSphere MQ
You can define the set of users who can issue commands to administer
WebSphere MQ.

Who can use WebSphere MQ objects
You can define which users (usually applications) can use MQI calls and
PCF commands to do the following:
v Who can connect to a queue manager.
v Who can access objects (queues, process definitions, namelists, channels,

client connection channels, listeners, services, and authentication
information objects), and what type of access they have to those objects.

v Who can access WebSphere MQ messages.
v Who can access the context information associated with a message.

Chapter 4. Configuring WebSphere MQ 119

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|

|
|
|

|
|
|
|

|
|
|

|

|
|

|

|
|
|

|
|
|

|
|
|

|

|
|
|

|

|

Channel security
You need to ensure that channels used to send messages to remote systems
can access the required resources.

You can use standard operating facilities to grant access to program libraries, MQI
link libraries, and commands. However, the directory containing queues and other
queue manager data is private to WebSphere MQ; do not use standard operating
system commands to grant or revoke authorizations to MQI resources.

Authority to administer WebSphere MQ

WebSphere MQ administrators have authority to use all WebSphere MQ
commands (including the commands to grant WebSphere MQ authorities for other
users)

To be a WebSphere MQ administrator, you must be a member of a special group
called the mqm group (or a member of the Administrators group on Windows
systems; see below). The mqm group is created automatically when WebSphere
MQ is installed; add further users to the group to allow them to perform
administration (including the root user on UNIX systems). All members of this
group have access to all resources. This access can be revoked only by removing a
user from the mqm group.

On UNIX platforms, a special user ID of mqm is also created, for use by the
product only. It must never be available to non-privileged users. All WebSphere
MQ objects are owned by user ID mqm.

On Windows systems, members of the Administrators group can also administer
any queue manager. You can also create a domain mqm group on the domain
controller that contains all privileged user IDs active within the domain, and add it
to the local mqm group. Some commands, for example crtmqm, manipulate
authorities on WebSphere MQ objects and so need authority to work with these
objects (as described below). Members of the mqm group have authority to work
with all objects, but there might be circumstances on Windows systems when
authority is denied if you have a local user and a domain-authenticated user with
the same name. This is described in “Principals and groups” on page 123.

Windows Vista and Windows Server 2008 introduces a User Account Control
(UAC) feature, which restricts the actions users can perform on certain operating
system facilities, even if they are members of the Administrators group. See User
Account Control (UAC) on Windows Vista and Windows Server 2008 for more
information. If your userid is in the Administrators group but not the mqm group
you must use an elevated command prompt to issue MQ admin commands such
as crtmqm, otherwise the error ″AMQ7077: You are not authorized to perform the
requested operation″ is generated. To open an elevated command prompt,
right-click the start menu item, or icon, for the command prompt, and select ″Run
as administrator″.

You do not need to be a member of the mqm group to do the following:
v Issue commands from an application program that issues PCF commands, or

MQSC commands within an Escape PCF command, unless the commands
manipulate channel initiators. (These commands are described in “Protecting
channel initiator definitions” on page 138).

v Issue MQI calls from an application program (unless you want to use the
fastpath bindings on the MQCONNX call).

120 WebSphere MQ: System Administration Guide

|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

v Use the crtmqcvx command to create a fragment of code that performs data
conversion on data type structures.

v Use the dspmq command to display queue managers.
v Use the dspmqtrc command to display WebSphere MQ formatted trace output.

Managing the mqm group

Security administrators add users who need to administer WebSphere MQ to the
mqm group. This includes the root user on UNIX systems. They might also need to
remove users who no longer need this authority. These tasks are described in
“Creating and managing groups” on page 127.

If your domain controller runs on Windows 2000 or Windows 2003, your domain
administrator might have to set up a special account for WebSphere MQ to use.
This is described in the WebSphere MQ for Windows Quick Beginnings.

Authority to work with WebSphere MQ objects

Queue managers, queues, process definitions, namelists, channels, client connection
channels, listeners, services and authentication information objects are all accessed
from applications that use MQI calls or PCF commands. These resources are all
protected by WebSphere MQ, and applications need to be given permission to
access them. The entity making the request might be a user, an application
program that issues an MQI call, or an administration program that issues a PCF
command. The identifier of the requester is referred to as the principal.

Different groups of principals can be granted different types of access authority to
the same object. For example, for a specific queue, one group might be allowed to
perform both put and get operations; another group might be allowed only to
browse the queue (MQGET with browse option). Similarly, some groups might
have put and get authority to a queue, but not be allowed to alter attributes of the
queue or delete it.

Some operations are particularly sensitive and should be limited to privileged
users. For example:
v Accessing some special queues, such as transmission queues or the command

queue SYSTEM.ADMIN.COMMAND.QUEUE
v Running programs that use full MQI context options
v Creating and deleting application queues

Full access permission to an object is automatically given to the user ID that
created the object and to all members of the mqm group (and to the members of
the local Administrators group on Windows systems).

When security checks are made

The security checks made for a typical application are as follows:

Connecting to the queue manager (MQCONN or MQCONNX calls)
This is the first time that the application is associated with a particular
queue manager. The queue manager interrogates the operating
environment to discover the user ID associated with the application.
WebSphere MQ then verifies that the user ID is authorized to connect to
the queue manager and retains the user ID for future checks.

Chapter 4. Configuring WebSphere MQ 121

|
|

|

|

|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|

|

|
|
|

|

|

|
|
|
|
|
|

Users do not have to sign on to WebSphere MQ; WebSphere MQ assumes
that users have signed on to the underlying operating system and have
been authenticated by that.

Opening the object (MQOPEN or MQPUT1 calls)
WebSphere MQ objects are accessed by opening the object and issuing
commands against it. All resource checks are performed when the object is
opened, rather than when it is actually accessed. This means that the
MQOPEN request must specify the type of access required (for example,
whether the user wants only to browse the object or perform an update
like putting messages onto a queue).

WebSphere MQ checks the resource that is named in the MQOPEN
request. For an alias or remote queue object, the authorization used is that
of the object itself, not the queue to which the alias or remote queue
resolves. This means that the user does not need permission to access it.
Limit the authority to create queues to privileged users. If you do not,
users might bypass the normal access control simply by creating an alias. If
a remote queue is referred to explicitly with both the queue and queue
manager names, the transmission queue associated with the remote queue
manager is checked.

The authority to a dynamic queue is based on that of the model queue
from which it is derived, but is not necessarily the same. This is described
in Note 1 on page 143.

The user ID used by the queue manager for access checks is the user ID
obtained from the operating environment of the application connected to
the queue manager. A suitably authorized application can issue an
MQOPEN call specifying an alternative user ID; access control checks are
then made on the alternative user ID. This does not change the user ID
associated with the application, only that used for access control checks.

Putting and getting messages (MQPUT or MQGET calls)
No access control checks are performed.

Closing the object (MQCLOSE)
No access control checks are performed, unless the MQCLOSE will result
in a dynamic queue being deleted. In this case, there is a check that the
user ID is authorized to delete the queue.

How access control is implemented by WebSphere MQ

WebSphere MQ uses the security services provided by the underlying operating
system. An access control interface called the Authorization Service Interface is part
of WebSphere MQ. WebSphere MQ supplies an implementation of an access
control manager (conforming to the Authorization Service Interface) known as the
Object Authority Manager (OAM). This is automatically installed and enabled for
each queue manager you create, unless you specify otherwise (as described in
“Preventing security access checks” on page 137). The OAM can be replaced by
any user or vendor written component that conforms to the Authorization Service
Interface.

The OAM exploits the security features of the underlying operating system, using
operating system user and group IDs. Users can access WebSphere MQ objects
only if they have the correct authority. “Using the OAM to control access to
objects” on page 132 describes how to grant and revoke this authority.

122 WebSphere MQ: System Administration Guide

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

The OAM maintains an access control list (ACL) for each resource that it controls.
Authorization data is stored on a local queue called
SYSTEM.AUTH.DATA.QUEUE. Access to this queue is restricted to users in the
mqm group, and additionally on Windows, to users in the Administrators group,
and users logged in with the SYSTEM ID. User access to the queue cannot be
changed.

WebSphere MQ supplies commands to create, and maintain access control lists. For
more information on these commands, see “Using the OAM to control access to
objects” on page 132.

WebSphere MQ passes the OAM a request containing a principal, a resource name,
and an access type. The OAM grants or rejects access based on the ACL that it
maintains. WebSphere MQ follows the decision of the OAM; if the OAM cannot
make a decision, WebSphere MQ does not allow access.

Identifying the user ID

The OAM needs to be able to identify who is requesting access to a particular
resource. WebSphere MQ uses the term principal to refer to this identifier. The
principal is established when the application first connects to the queue manager;
it is determined by the queue manager from the user ID associated with the
connecting application. (If the application is running in a transaction monitor
environment, the connection is through the X/Open XA interface, which does not
provide a mechanism for passing user IDs, so WebSphere MQ assumes a default
user name.)

On UNIX systems, the authorization routines checks either the real (logged-in) user
ID, or the effective user ID associated with the application. The user ID checked
can be dependent on the bind type, for details see “Installable services” on page
106.

WebSphere MQ propagates the user ID received from the system in the message
header (MQMD structure) of each message as identification of the user. This
identifier is part of the message context information and is described in “Context
authority” on page 125. Applications cannot alter this information unless they have
been authorized to change context information.

Principals and groups:

Principals can belong to groups. You can grant access to a particular resource to
groups rather than to individuals, to reduce the amount of administration required.
For example, you might define a group consisting of users who want to run a
particular application. Other users can be given access to all the resources they
require simply by adding their user ID to the appropriate group. This is described
in “Creating and managing groups” on page 127.

A principal can belong to more than one group (its group set) and has the
aggregate of all the authorities granted to each group in its group set. These
authorities are cached, so any changes you make to the principal’s group
membership are not recognized until the queue manager is restarted, unless you
issue the MQSC command REFRESH SECURITY (or the PCF equivalent).

UNIX systems
All ACLs are based on groups. When a user is granted access to a
particular resource, the user ID’s primary group is included in the ACL,
not the individual user ID, and authority is granted to all members of that

Chapter 4. Configuring WebSphere MQ 123

|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

group. Because of this, be aware that you could inadvertently change the
authority of a principal by changing the authority of another principal in
the same group.

Note: To add a user to an ACL or any group, WebSphere MQ on UNIX
systems requires the user ID to have a maximum length of eight
characters.

All users are nominally assigned to the default user group nobody and by
default, no authorizations are given to this group. You can change the
authorization in the nobody group to grant access to WebSphere MQ
resources to users without specific authorizations.

Windows systems
ACLs are based on both user IDs and groups. Checks are the same as for
UNIX systems except that individual user IDs can appear in the ACL as
well. You can have different users on different domains with the same user
ID; WebSphere MQ allows user IDs to be qualified by a domain name so
that these users can be given different levels of access. Group names
always refer to local groups, so you don’t need to qualify them with a
domain name.

User IDs can contain up to 20 characters, domain names up to 15
characters, and group names up to 64 characters.

The OAM first checks the local security database, then the database of the
primary domain, and finally the database of any trusted domains. The first
user ID encountered is used by the OAM for checking. Each of these user
IDs might have different group memberships on a particular computer.

Some control commands (for example, crtmqm) change authorities on
WebSphere MQ objects using the Object Authority Manager (OAM).
Because the OAM searches the security databases in the order given above
to determine the authority rights for a given user ID, the authority
determined by the OAM might override the fact that a user ID is a
member of the local mqm group. For example, if you issue crtmqm from a
user ID authenticated by a domain controller that has membership of the
local mqm group through a global group, the command fails if the system
has a local user of the same name who is not in the local mqm group.

Windows security identifiers (SIDs):

On Windows systems, the security identifier (SID) is used to supplement the user
ID. The SID contains information that identifies the full user account details on the
Windows security account manager (SAM) database where the user is defined.
When a message is created on WebSphere MQ for Windows, WebSphere MQ stores
the SID in the message descriptor. When WebSphere MQ for Windows performs
authorization checks, it uses the SID to query the full information from the SAM
database. (The SAM database in which the user is defined must be accessible for
this query to succeed.)

By default, if a Windows SID is not supplied with an authorization request,
WebSphere MQ identifies the user based on the user name alone. It does this by
searching the security databases in the following order:
1. The local security database
2. The security database of the primary domain
3. The security database of trusted domains

124 WebSphere MQ: System Administration Guide

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|

|

|

If the user name is not unique, incorrect WebSphere MQ authority might be
granted. To prevent this problem, include an SID in each authorization request; the
SID is used by WebSphere MQ to establish user credentials.

To specify that all authorization requests must include an SID, use regedit. Set the
SecurityPolicy to NTSIDsRequired.

Alternate-user authority

You can specify that a user ID can use the authority of another user when
accessing a WebSphere MQ object. This is called alternate-user authority, and you
can use it on any WebSphere MQ object.

Alternate-user authority is essential where a server receives requests from a
program and wants to ensure that the program has the required authority for the
request. The server might have the required authority, but it needs to know
whether the program has the authority for the actions it has requested.

For example, assume that a server program running under user ID PAYSERV
retrieves a request message from a queue that was put on the queue by user ID
USER1. When the server program gets the request message, it processes the
request and puts the reply back into the reply-to queue specified with the request
message. Instead of using its own user ID (PAYSERV) to authorize opening the
reply-to queue, the server can specify a different user ID, in this case, USER1. In
this example, you can use alternate-user authority to control whether PAYSERV is
allowed to specify USER1 as an alternate-user ID when it opens the reply-to queue.

The alternate-user ID is specified on the AlternateUserId field of the object
descriptor.

Context authority

Context is information that applies to a particular message and is contained in the
message descriptor, MQMD, which is part of the message. The context information
comes in two sections:

Identity section
Who the message came from. It consists of the UserIdentifier,
AccountingToken, and ApplIdentityData fields.

Origin section
Where the message came from, and when it was put onto the queue. It
consists of the PutApplType, PutApplName, PutDate, PutTime, and
ApplOriginData fields.

Applications can specify the context data when either an MQOPEN or MQPUT
call is made. This data might be generated by the application, passed on from
another message, or generated by the queue manager by default. For example,
context data can be used by server programs to check the identity of the requester,
testing whether the message came from an application running under an
authorized user ID.

A server program can use the UserIdentifier to determine the user ID of an
alternate user. You use context authorization to control whether the user can
specify any of the context options on any MQOPEN or MQPUT1 call.

Chapter 4. Configuring WebSphere MQ 125

|
|
|

|
|

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

See the WebSphere MQ Application Programming Guide for information about the
context options, and the WebSphere MQ Application Programming Reference for
descriptions of the message descriptor fields relating to context.

Connecting to WebSphere MQ using Terminal Services

If you are connecting using Terminal Services to a machine running one of:
v Windows XP with service pack 2 or later. (Service pack 2 for Windows XP is a

prerequisite for WebSphere MQ)
v Windows 2003
v Windows Vista
v Windows Server 2008

and you have problems creating or starting a queue manager this might be because
of the introduction of a new user right, “Create global objects”, in these operating
systems.

The “Create global objects” user right limits the users authorized to create objects
in the global namespace. In order for an application to create a global object, it
must either be running in the global namespace, or the user under which the
application is running must have the “Create global objects” user right applied to
it.

The various methods of administering WebSphere MQ should work when you use
terminal services; if they do not, try setting the “Create global objects” user right:
1. Open the Administrative Tools panel:

Windows 2003 and Windows XP
Access this panel using Control Panel → Administrative Tools.

Windows Vista and Windows Server 2008
Access this panel using Control Panel → System and Maintenance →
Administrative Tools.

2. Double-click Local Security Policy.
3. Expand Local Policies.
4. Click User Rights Assignment.
5. Add the new user or group to the “Create global objects” policy.

Administrators have the “Create global objects” user right applied by default, so if
you are an administrator you will be able to create and start queue managers when
connected via Terminal Services without altering your user rights.

Configuring additional authority for Windows applications
connecting to WebSphere MQ

You might experience problems if you have Windows applications, for example
ASP pages, connecting to WebSphere MQ that are configured to run at a security
level higher than usual.

WebSphere MQ requires SYNCHRONIZE access to application processes in order
to coordinate certain actions. APAR IC35116 changed WebSphere MQ so that the
appropriate privileges are specified. However, the account under which WebSphere
MQ processes run might need additional authorization before the requested access
can be granted. Directions for configuring additional authority are given below.

126 WebSphere MQ: System Administration Guide

|
|
|

|

|

|
|

|

|

|

|
|
|

|
|
|
|
|

|
|

|

|
|

|
|
|

|

|

|

|

|
|
|

|

|

|
|
|

|
|
|
|
|

To configure additional authority to the user ID under which WebSphere MQ
processes are running:
v Bring up the Local Security Policy tool, click on Security Settings ->Local

Policies->User Right Assignments, click on ″Debug Programs″.
v Double click ″Debug Programs″, then Add your WebSphere MQ user ID to the

list

If the system is in a Windows domain and the effective policy setting is still not
set, even though the local policy setting is set, the user ID must be authorized in
the same way at domain level, using the Domain Security Policy tool.

Creating and managing groups

This section tells you how to create groups and add users to them. It also describes
how to remove a user from a group. Any changes you make to a principal’s group
membership are not recognized until the queue manager is restarted, unless you
issue the MQSC command REFRESH SECURITY (or the PCF equivalent).

Windows

The following instructions lead you through the process of administering groups
on a workstation or member server machine. For domain controllers, users and
groups are administered through Active Directory. For more details on using
Active Directory refer to the appropriate operating system instructions.

Use the Computer Management panel to work with user and groups.

Windows 2003 and Windows XP
Access this panel using Control Panel → Administrative Tools → Computer
Management.

Windows Vista and Windows Server 2008
Access this panel using Control Panel → System and Maintenance →
Administrative Tools → Computer Management.

Creating a group:

1. Open the control panel.
2. Double-click Administrative Tools. The Administrative Tools panel opens.
3. Double-click Computer Management. The Computer Management panel opens.
4. Expand Local Users and Groups.
5. Right-click Groups, and select New Group.... The New Group panel is

displayed.
6. Type an appropriate name in the Group name field, then click Create.
7. Click Close.

You have now created a group.

Adding a user to a group:

1. From the Computer Management panel, expand Local Users and Groups.
2. Select Users.
3. Double-click the user that you want to add to a group. The user properties

panel is displayed.
4. Select the Member Of tab.
5. Select the group that you want to add the user to. If the group you want is not

visible:

Chapter 4. Configuring WebSphere MQ 127

|
|

|
|

|
|

|
|
|

|

|
|
|
|

|

|
|
|
|

|

|
|
|

|
|
|

|

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|
|

a. Click Add.... The Select Groups panel is displayed.
b. Click Locations.... The Locations panel is displayed.
c. Select the location of the group you want to add the user to from the list

and click OK.
d. Type the group name in the field provided.

Alternatively, click Advanced... and then Find Now to list the groups
available in the currently selected location. From here, select the group you
want to add the user to and click OK.

e. Click OK. The user properties panel is displayed, showing the group you
added.

f. Select the group.
6. Click OK. The Computer Management panel is displayed.

You have now added a user to a group.

Displaying who is in a group:

1. From the Computer Management panel, expand Local Users and Groups.
2. Select Groups.
3. Double-click a group. The group properties panel is displayed.

The group members are displayed.

Removing a user from a group:

1. From the Computer Management panel, expand Local Users and Groups.
2. Select Users.
3. Double-click the user that you want to add to a group. The user properties

panel is displayed.
4. Select the Member Of tab.
5. Select the group that you want to remove the user from, then click Remove.
6. Click OK. The Computer Management panel is displayed.

You have now removed a user from a group.

HP-UX

On HP-UX, providing you are not using NIS or NIS+, use the System
Administration Manager (SAM) to work with groups.

Creating a group:

1. From the System Administration Manager (SAM), double click Accounts for
Users and Groups.

2. Double click Groups.
3. Select Add from the Actions pull down to display the Add a New Group panel.
4. Enter the name of the group and select the users that you want to add to the

group.
5. Click Apply to create the group.

You have now created a group.

Adding a user to a group:

1. From the System Administration Manager (SAM), double click Accounts for
Users and Groups.

128 WebSphere MQ: System Administration Guide

|

|

|
|

|

|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|
|

|

|
|

|

|

|
|

|

|

|

|
|

2. Double click Groups.
3. Highlight the name of the group and select Modify from the Actions pull down

to display the Modify an Existing Group panel.
4. Select a user that you want to add to the group and click Add.
5. If you want to add other users to the group, repeat step 4 for each user.
6. When you have finished adding names to the list, click OK.

You have now added a user to a group.

Displaying who is in a group:

1. From the System Administration Manager (SAM), double click Accounts for
Users and Groups.

2. Double click Groups.
3. Highlight the name of the group and select Modify from the Actions pull down

to display the Modify an Existing Group panel, showing a list of the users in
the group.

The group members are displayed.

Removing a user from a group:

1. From the System Administration Manager (SAM), double click Accounts for
Users and Groups.

2. Double click Groups.
3. Highlight the name of the group and select Modify from the Actions pull down

to display the Modify an Existing Group panel.
4. Select a user that you want to remove from the group and click Remove.
5. If you want to remove other users from the group, repeat step 4 for each user.
6. When you have finished removing names from the list, click OK.

You have now removed a user from a group

AIX

On AIX, providing you are not using NIS or NIS+, use SMITTY to work with
groups.

You have now added a user to a group.

Creating a group:

1. From SMITTY, select Security and Users and press Enter.
2. Select Groups and press Enter.
3. Select Add a Group and press Enter.
4. Enter the name of the group and the names of any users that you want to add

to the group, separated by commas.
5. Press Enter to create the group.

You have now created a group.

Adding a user to a group:

1. From SMITTY, select Security and Users and press Enter.
2. Select Groups and press Enter.

Chapter 4. Configuring WebSphere MQ 129

|

|
|

|

|

|

|

|

|
|

|

|
|
|

|

|

|
|

|

|
|

|

|

|

|

|

|
|

|

|

|

|

|

|
|

|

|

|

|

|

3. Select Change / Show Characteristics of Groups and press Enter.
4. Enter the name of the group to show a list of the members of the group.
5. Add the names of the users that you want to add to the group, separated by

commas.
6. Press Enter to add the names to the group.

Displaying who is in a group:

1. From SMITTY, select Security and Users and press Enter.
2. Select Groups and press Enter.
3. Select Change / Show Characteristics of Groups and press Enter.
4. Enter the name of the group to show a list of the members of the group.

The group members are displayed.

Removing a user from a group:

1. From SMITTY, select Security and Users and press Enter.
2. Select Groups and press Enter.
3. Select Change / Show Characteristics of Groups and press Enter.
4. Enter the name of the group to show a list of the members of the group.
5. Delete the names of the users that you want to remove from the group.
6. Press Enter to remove the names from the group.

You have now removed a user from a group.

Solaris

On Solaris, providing you are not using NIS or NIS+, use the /etc/group file to
work with groups.

Creating a group:

The file /etc/group file will hold group information.

To create a new group, type the following command:
groupadd group-name

Where group-name is the name of the group.

Adding a user to a group:

To add a member to a supplementary group, execute the usermod command and
list the supplementary groups that the user is currently a member of, and the
supplementary groups that the user is to become a member of. For example, if the
user is a member of the group groupa, and is to become a member of groupb also,
the following command is used:
usermod -G groupa,groupb user-name

Where user-name is the user name.

Displaying who is in a group:

To display who is a member of a group, look at the entry for that group in the
/etc/group file.

130 WebSphere MQ: System Administration Guide

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|
|

Removing a user from a group:

To remove a member from a supplementary group, execute the usermod command
listing the supplementary groups that you want the user to remain a member of.
For example, if the user’s primary group is users and the user is also a member of
the groups mqm, groupa and groupb, to remove the user from the mqm group, the
following command is used:
usermod -G groupa,groupb user-name

Where user-name is the user name.

Linux

On Linux, providing you are not using NIS or NIS+, use the /etc/group file to
work with groups.

Creating a group:

The file /etc/group file will hold group information.

To create a new group, type the following command:
groupadd -g group-ID group-name

Where group-ID is the numeric identifier of the group, and group-name is the name
of the group.

Adding a user to a group:

To add a member to a supplementary group, execute the usermod command and
list the supplementary groups that the user is currently a member of, and the
supplementary groups that the user is to become a member of. For example, if the
user is a member of the group groupa, and is to become a member of groupb also,
the following command is used:
usermod -G groupa,groupb user-name

Where user-name is the user name.

Displaying who is in a group:

To display who is a member of a group, type the following command:
getent group group-name

Where group-name is the name of the group.

Removing a user from a group:

To remove a member from a supplementary group, execute the usermod command
listing the supplementary groups that you want the user to remain a member of.
For example, if the user’s primary group is users and the user is also a member of
the groups mqm, groupa and groupb, to remove the user from the mqm group, the
following command is used:
usermod -G groupa,groupb user-name

Where user-name is the user name.

Chapter 4. Configuring WebSphere MQ 131

|

|
|
|
|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|
|

|

|

Using the OAM to control access to objects

The OAM provides a command interface for granting and revoking authority to
WebSphere MQ objects. You must be suitably authorized to use these commands,
as described in “Authority to administer WebSphere MQ” on page 120. User IDs
that are authorized to administer WebSphere MQ have super user authority to the
queue manager, which means that you do not have to grant them further
permission to issue any MQI requests or commands.

Giving access to a WebSphere MQ object

Use the setmqaut control command, or the MQCMD_SET_AUTH_REC PCF
command to give users, and groups of users, access to WebSphere MQ objects. For
a full definition of the setmqaut control command and its syntax, see “setmqaut”
on page 354, and for a full definition of the MQCMD_SET_AUTH_REC PCF
command and its syntax, see the WebSphere MQ Programmable Command
Formats and Administration Interface book.

The queue manager must be running to use this command. When you have
changed access for a principal, the changes are reflected immediately by the OAM.

To give users access to an object, you need to specify:
v The name of the queue manager that owns the objects you are working with; if

you do not specify the name of a queue manager, the default queue manager is
assumed.

v The name and type of the object (to identify the object uniquely). You specify the
name as a profile; this is either the explicit name of the object, or a generic name,
including wildcard characters. For a detailed description of generic profiles, and
the use of wildcard characters within them, see “Using OAM generic profiles”
on page 133.

v One or more principals and group names to which the authority applies.
If a user ID contains spaces, enclose it in single quotes when you use this
command. On Windows systems, you can qualify a user ID with a domain
name. If the actual user ID contains an @ symbol, replace this with @@ to show
that it is part of the user ID, not the delimiter between the user ID and the
domain name.

v A list of authorizations. Each item in the list specifies a type of access that is to
be granted to that object (or revoked from it). Each authorization in the list is
specified as a keyword, prefixed with a plus sign (+) or a minus sign (-). Use a
plus sign to add the specified authorization, and a minus sign to remove the
authorization. There must be no spaces between the + or - sign and the
keyword.
You can specify any number of authorizations in a single command. For
example, the list of authorizations to permit a user or group to put messages on
a queue and to browse them, but to revoke access to get messages is:

+browse -get +put

Examples of using the command:

The following examples show how to use the setmqaut command to grant and
revoke permission to use an object:
setmqaut -m saturn.queue.manager -t queue -n RED.LOCAL.QUEUE

-g groupa +browse -get +put

132 WebSphere MQ: System Administration Guide

|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|

|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

|
|

|
|

In this example:
v saturn.queue.manager is the queue manager name
v queue is the object type
v RED.LOCAL.QUEUE is the object name
v groupa is the identifier of the group whose authorizations are to change
v +browse -get +put is the authorization list for the specified queue

– +browse adds authorization to browse messages on the queue (to issue
MQGET with the browse option)

– -get removes authorization to get (MQGET) messages from the queue
– +put adds authorization to put (MQPUT) messages on the queue

The following command revokes put authority on the queue MyQueue from
principal fvuser and from groups groupa and groupb. On UNIX systems, this
command also revokes put authority for all principals in the same primary group
as fvuser.
setmqaut -m saturn.queue.manager -t queue -n MyQueue -p fvuser

-g groupa -g groupb -put

Using the command with a different authorization service:

If you are using your own authorization service instead of the OAM, you can
specify the name of this service on the setmqaut command to direct the command
to this service. You must specify this parameter if you have multiple installable
components running at the same time; if you do not, the update is made to the
first installable component for the authorization service. By default, this is the
supplied OAM.

Using OAM generic profiles

OAM generic profiles enable you to set the authority a user has to many objects at
once, rather than having to issue separate setmqaut commands against each
individual object when it is created. Using generic profiles in the setmqaut
command enables you to set a generic authority for all objects that fit that profile.

The rest of this section describes the use of generic profiles in more detail:
v “Using wildcard characters”
v “Profile priorities” on page 134
v “Dumping profile settings” on page 134

Using wildcard characters:

What makes a profile generic is the use of special characters (wildcard characters)
in the profile name. For example, the ? wildcard character matches any single
character in a name. So, if you specify ABC.?EF, the authorization you give to that
profile applies to any objects with the names ABC.DEF, ABC.CEF, ABC.BEF, and so on.

The wildcard characters available are:

? Use the question mark (?) instead of any single character. For example,
AB.?D would apply to the objects AB.CD, AB.ED, and AB.FD.

* Use the asterisk (*) as:
v A qualifier in a profile name to match any one qualifier in an object

name. A qualifier is the part of an object name delimited by a period.
For example, in ABC.DEF.GHI, the qualifiers are ABC, DEF, and GHI.

Chapter 4. Configuring WebSphere MQ 133

|

|

|

|

|

|

|
|

|

|

|
|
|
|

|
|

|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|

|
|
|
|

|

||
|

||

|
|
|

For example, ABC.*.JKL would apply to the objects ABC.DEF.JKL, and
ABC.GHI.JKL. (Note that it would not apply to ABC.JKL; * used in this
context always indicates one qualifier.)

v A character within a qualifier in a profile name to match zero or more
characters within the qualifier in an object name.
For example, ABC.DE*.JKL would apply to the objects ABC.DE.JKL,
ABC.DEF.JKL, and ABC.DEGH.JKL.

** Use the double asterisk (**) once in a profile name as:
v The entire profile name to match all object names. For example if you

use -t prcs to identify processes, then use ** as the profile name, you
change the authorizations for all processes.

v As either the beginning, middle, or ending qualifier in a profile name to
match zero or more qualifiers in an object name. For example, **.ABC
identifies all objects with the final qualifier ABC.

Note: When using wildcard characters on UNIX systems, you must enclose the
profile name in quotes.

Profile priorities:

An important point to understand when using generic profiles is the priority that
profiles are given when deciding what authorities to apply to an object being
created. For example, suppose that you have issued the commands:
setmqaut -n AB.* -t q +put -p fred
setmqaut -n AB.C* -t q +get -p fred

The first gives put authority to all queues for the principal fred with names that
match the profile AB.*; the second gives get authority to the same types of queue
that match the profile AB.C*.

Suppose that you now create a queue called AB.CD. According to the rules for
wildcard matching, either setmqaut could apply to that queue. So, does it have put
or get authority?

To find the answer, you apply the rule that, whenever multiple profiles can apply
to an object, only the most specific applies. The way that you apply this rule is by
comparing the profile names from left to right. Wherever they differ, a non-generic
character is more specific then a generic character. So, in the example above, the
queue AB.CD has get authority (AB.C* is more specific than AB.*).

When you are comparing generic characters, the order of specificity is:
1. ?
2. *
3. **

Dumping profile settings:

The dmpmqaut control command and the MQCMD_INQUIRE_AUTH_RECS PCF
command, enable you to dump the current authorizations associated with a
specified profile. For a full definition of the dmpmqaut control command and its
syntax, see “dmpmqaut” on page 297, and for a full definition of the
MQCMD_INQUIRE_AUTH_RECS PCF command and its syntax, see the
WebSphere MQ Programmable Command Formats and Administration Interface
book.

134 WebSphere MQ: System Administration Guide

|
|
|

|
|

|
|

||

|
|
|

|
|
|

|
|

|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|

The following examples show the use of the dmpmqaut control command to
dump authority records for generic profiles:
1. This example dumps all authority records with a profile that matches queue

a.b.c for principal user1.
dmpmqaut -m qm1 -n a.b.c -t q -p user1

The resulting dump would look something like this:
profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq

Note: UNIX users cannot use the -p option; they must use -g groupname
instead.

2. This example dumps all authority records with a profile that matches queue
a.b.c.
dmpmqaut -m qmgr1 -n a.b.c -t q

The resulting dump would look something like this:
profile: a.b.c
object type: queue
entity: Administrator
type: principal
authority: all
- - - - - - - - - - - - - - - - -
profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq
- - - - - - - - - - - - - - - - -
profile: a.**
object type: queue
entity: group1
type: group
authority: get

3. This example dumps all authority records for profile a.b.*, of type queue.
dmpmqaut -m qmgr1 -n a.b.* -t q

The resulting dump would look something like this:
profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq

4. This example dumps all authority records for queue manager qmX.
dmpmqaut -m qmX

The resulting dump would look something like this:
profile: q1
object type: queue
entity: Administrator
type: principal
authority: all
- - - - - - - - - - - - - - - - -
profile: q*
object type: queue
entity: user1

Chapter 4. Configuring WebSphere MQ 135

|
|

|
|

|

|

|
|
|
|
|

|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|

type: principal
authority: get, browse
- - - - - - - - - - - - - - - - -
profile: name.*
object type: namelist
entity: user2
type: principal
authority: get
- - - - - - - - - - - - - - - - -
profile: pr1
object type: process
entity: group1
type: group
authority: get

5. This example dumps all profile names and object types for queue manager
qmX.
dmpmqaut -m qmX -l

The resulting dump would look something like this:
profile: q1, type: queue
profile: q*, type: queue
profile: name.*, type: namelist
profile: pr1, type: process

Note: For WebSphere MQ for Windows only, all principals displayed include
domain information, for example:
profile: a.b.*
object type: queue
entity: user1@domain1
type: principal
authority: get, browse, put, inq

For detailed information on the command, see “dmpmqaut” on page 297.

Displaying access settings

Use the dspmqaut control command, or the MQCMD_INQUIRE_ENTITY_AUTH
PCF command to view the authorizations that a specific principal or group has for
a particular object. The queue manager must be running to use this command.
When you change access for a principal, the changes are reflected immediately by
the OAM. Authorization can be displayed for only one group or principal at a
time. For a full definition of the dmpmqaut control command and its syntax, see
“dspmqaut” on page 304, and for a full definition of the
MQCMD_INQUIRE_ENTITY_AUTH PCF command and its syntax, see the
WebSphere MQ Programmable Command Formats and Administration Interface
book.

The following example shows the use of the dspmqaut control command to
display the authorizations that the group GpAdmin has to a process definition
named Annuities that is on queue manager QueueMan1.
dspmqaut -m QueueMan1 -t process -n Annuities -g GpAdmin

Changing and revoking access to a WebSphere MQ object
To change the level of access that a user or group has to an object, use the
setmqaut command. To revoke the access of a particular user that is a member of a
group that has authorization, remove the user from the group.

The process of removing the user from a group is described in “Creating and
managing groups” on page 127.

136 WebSphere MQ: System Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|

|
|

|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|

The user ID that creates a WebSphere MQ object is granted full control authorities
to that object. If you remove this user ID from the local mqm group (or the
Administrators group on Windows systems) these authorities are not revoked. Use
the setmqaut control command or the MQCMD_DELETE_AUTH_REC PCF
command to revoke access to an object for the user ID that created it, after
removing it from the mqm or Administrators group. For a full definition of the
setmqaut control command and its syntax, see WebSphere MQ System
Administration Guide, and for a full definition of the
MQCMD_INQUIRE_ENTITY_AUTH PCF command and its syntax, see
WebSphere MQ Programmable Command Formats and Administration Interface.

On Windows, delete the OAM entries corresponding to a particular Windows user
account before deleting the user profile. It is impossible to remove the OAM
entries after removing the user account.

Preventing security access checks

If you decide that you do not want to perform security checks (for example, in a
test environment), you can disable the OAM in one of two ways:
v Set the operating system environment variable MQSNOAUT as follows, before

you create a queue manager (if you do this, you cannot add an OAM later):
On Windows systems:
SET MQSNOAUT=yes

On UNIX systems:
export MQSNOAUT=yes

v Use the WebSphere MQ Explorer or edit the queue manager configuration file to
remove the service. (if you do this, you cannot add an OAM later)

If you use setmqaut, or dspmqaut, while the OAM is disabled, the following will
occur:
v The OAM will not validate the specified principal, or group, meaning the

command will accept invalid values.
v The OAM will not perform security checks and will indicate that all principals,

and groups, are authorized to perform all applicable object operations.

When an OAM is removed, it cannot be put back on an existing queue manager.
This is because the OAM needs to be in place at object creation time. To use the
WebSphere MQ OAM again after it has been removed, the queue manager needs
to be rebuilt.

Channel security

Message channel agents (MCAs) are WebSphere MQ applications and need access
to various WebSphere MQ resources.
v The user ID associated with a sending channel needs access to the queue

manager, the transmission queue, the dead-letter queue, and any resources
required by channel exits.

v The user ID associated with the receiving channel needs to open the target
queues to put messages onto them. This involves the MQI, so access control
checks might need to be made. You can specify whether these checks are made
against the user ID associated with the MCA (as described below), or the user
ID associated with the message (from the MQMD context field).

Chapter 4. Configuring WebSphere MQ 137

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

|

|

|

|

|
|

|
|

|
|

|
|

|
|
|
|

|

|
|

|
|
|

|
|
|
|
|

The PUTAUT parameter of the channel definition specifies which user ID is used
for these checks.
– If you use the user ID of the MCA, this user ID will already be defined on

the local system.
– If you use the user ID associated with the message, it is likely that this is a

user ID from a remote system. This remote system user ID must be
recognized by the target system and have the authority to connect to the
queue manager, make inquiries, set attributes, and set context options
(+connect, +inq, +set, and +setall). It must also have authority to put
messages and set context information (+put and +setall) for the destination
and dead-letter queues.

The user ID associated with the MCA depends on the type of MCA.

Caller MCA
These are MCAs that initiate a channel. They can be started as individual
processes, as threads of the channel initiator, or as threads of a process
pool. The user ID used is that associated with the parent process (the
channel initiator), or the process causing the MCA to be started.

Responder MCA
These are MCAs that are started as a result of a request by a caller MCA.
They can be started as individual processes, as threads of the listener, or as
threads of a process pool. The user ID can be any one of the following (in
this order of preference):
1. On APPC, the caller MCA can indicate the user ID to be used for the

responder MCA. This is called the network user ID and applies only to
channels started as individual processes. This is set using the USERID
parameter of the channel definition.

2. If the USERID parameter is not used, the channel definition of the
responder MCA can specify the user ID that the MCA is to use. This is
set using the MCAUSER parameter of the channel definition.

3. If the user ID has not been set by either of the methods above, the user
ID of the process that starts the MCA or the user ID of the parent
process (the listener) is used.

Protecting channel initiator definitions

WebSphere MQ channel initiators are not WebSphere MQ objects; access to them is
not controlled by the OAM. WebSphere MQ does not allow users or applications to
manipulate these objects, unless their user ID is a member of the mqm group. If
you have an application that issues the PCF command StartChannelInitiator, the
user ID specified in the message descriptor of the PCF message must be a member
of the mqm group on the target queue manager.

A user ID must also be a member of the mqm group on the target machine to issue
the equivalent MQSC commands through the Escape PCF command or using
runmqsc in indirect mode.

Transmission queues

Queue managers automatically put remote messages on a transmission queue; no
special authority is required for this. However, putting a message directly on a
transmission queue requires special authorization; see Table 8 on page 142.

138 WebSphere MQ: System Administration Guide

|
|

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

|

|
|
|

Channel exits

You can use channel exits for added security. A security exit forms a secure
connection between two security exit programs, where one program is for the
sending message channel agent (MCA), and one is for the receiving MCA.

See WebSphere MQ Application Programming Guide and WebSphere MQ
Intercommunication for more information about channel exits.

Protecting channels with SSL

The Secure Sockets Layer (SSL) protocol provides out of the box channel security,
with protection against eavesdropping, tampering, and impersonation. WebSphere
MQ support for SSL enables you to specify, on the channel definition, that a
particular channel uses SSL security. You can also specify details of the kind of
security you want, such as the encryption algorithm you want to use.

SSL support in WebSphere MQ uses the queue manager authentication information
object and various MQSC commands and queue manager and channel parameters
that define the SSL support required in detail.

The following MQSC commands support SSL:

ALTER AUTHINFO
Modifies the attributes of an authentication information object.

DEFINE AUTHINFO
Creates a new authentication information object.

DELETE AUTHINFO
Deletes an authentication information object.

DISPLAY AUTHINFO
Displays the attributes for a specific authentication information object.

The following queue manager parameters support SSL:

SSLCRLNL
Allows access to a certificate revocation list. The SSLCRLNL attribute
specifies a namelist. The namelist contains zero or more authentication
information objects. Each authentication information object gives access to
an LDAP server.

SSLCRYP
On Windows and UNIX systems, sets the SSLCryptoHardware queue
manager attribute. This attribute is the name of the parameter string that
you can use to configure the cryptographic hardware you have on your
system.

SSLEV
Determines whether an SSL event message will be reported if a channel
using SSL fails to establish an SSL connection.

SSLFIPS
Specifies whether only FIPS-certified algorithms are to be used if
cryptography is carried out in WebSphere MQ. If cryptographic hardware
is configured, the cryptographic modules used are those provided by the
hardware product, and these may, or may not, be FIPS-certified to a
particular level. This depends on the hardware product in use.

Chapter 4. Configuring WebSphere MQ 139

|

|
|
|

|
|

|

|
|
|
|
|

|
|
|

|

|
|

|
|

|
|

|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

SSLKEYR
On Windows and UNIX systems, associates a key repository with a queue
manager. The key database is held in a GSKit key database. (The IBM
Global Security Kit (GSKit) enables you to use SSL security on Windows
and UNIX systems systems.)

SSLRKEYC
The number of bytes to be sent and received within an SSL conversation
before the secret key is renegotiated. The number of bytes includes control
information sent by the MCA.

The following channel parameters support SSL:

SSLCAUTH
Defines whether WebSphere MQ requires and validates a certificate from
the SSL client.

SSLCIPH
Specifies the encryption strength and function (CipherSpec), for example
NULL_MD5 or RC4_MD5_US. The CipherSpec must match at both ends of
channel.

SSLPEER
Specifies the distinguished name (unique identifier) of allowed partners.

This book describes the setmqaut, dspmqaut, dmpmqaut, rcrmqobj, rcdmqimg,
and dspmqfls commands to support the authentication information object. It also
describes the amqtcert command for migrating certificates on Windows systems,
the IKEYCMD command for managing certificates on UNIX systems, and the
GSKCapiCmd tool for managing certificates on UNIX and Windows systems. See
the following sections:
v “setmqaut” on page 354
v “dspmqaut” on page 304
v “dmpmqaut” on page 297
v “rcrmqobj” on page 340
v “rcdmqimg” on page 338
v “dspmqfls” on page 308
v “amqtcert” on page 284
v “Managing keys and certificates” on page 373

For an overview of channel security using SSL, see WebSphere MQ Security.

For details of MQSC commands associated with SSL, see the WebSphere MQ Script
(MQSC) Command Reference.

For details of PCF commands associated with SSL, see WebSphere MQ Programmable
Command Formats and Administration Interface.

How authorizations work

The authorization specification tables starting in topic Table 6 on page 142 define
precisely how the authorizations work and the restrictions that apply. The tables
apply to these situations:
v Applications that issue MQI calls
v Administration programs that issue MQSC commands as escape PCFs

140 WebSphere MQ: System Administration Guide

|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

|

|
|
|

|

|

v Administration programs that issue PCF commands

In this section, the information is presented as a set of tables that specify the
following:

Action to be performed
MQI option, MQSC command, or PCF command.

Access control object
Queue, process, queue manager, namelist, authentication information,
channel, client connection channel, listener, or service.

Authorization required
Expressed as an MQZAO_ constant.

In the tables, the constants prefixed by MQZAO_ correspond to the keywords in
the authorization list for the setmqaut command for the particular entity. For
example, MQZAO_BROWSE corresponds to the keyword +browse,
MQZAO_SET_ALL_CONTEXT corresponds to the keyword +setall, and so on.
These constants are defined in the header file cmqzc.h, supplied with the product.

Authorizations for MQI calls

An application is allowed to issue specific MQI calls and options only if the user
identifier under which it is running (or whose authorizations it is able to assume)
has been granted the relevant authorization.

Four MQI calls might require authorization checks: MQCONN, MQOPEN,
MQPUT1, and MQCLOSE.

For MQOPEN and MQPUT1, the authority check is made on the name of the
object being opened, and not on the name, or names, resulting after a name has
been resolved. For example, an application might be granted authority to open an
alias queue without having authority to open the base queue to which the alias
resolves. The rule is that the check is carried out on the first definition encountered
during the process of resolving a name that is not a queue manager alias, unless
the queue manager alias definition is opened directly; that is, its name is displayed
in the ObjectName field of the object descriptor. Authority is always needed for the
object being opened. In some cases additional queue-independent authority,
obtained through an authorization for the queue manager object, is required.

Table 6 on page 142, Table 7 on page 142, Table 8 on page 142, and Table 9 on page
143 summarize the authorizations needed for each call. In the tables Not applicable
means that authorization checking is not relevant to this operation; No check means
that no authorization checking is performed.

Note: You will find no mention of namelists, channels, client connection channels,
listeners, services, or authentication information objects in these tables. This is
because none of the authorizations apply to these objects, except for
MQOO_INQUIRE, for which the same authorizations apply as for the other
objects.

The special authorization MQZAO_ALL_MQI includes all the authorizations in the
tables that are relevant to the object type, except MQZAO_DELETE and
MQZAO_DISPLAY, which are classed as administration authorizations.

Chapter 4. Configuring WebSphere MQ 141

|

|
|

|
|

|
|
|

|
|

|
|
|
|
|

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

Table 6. Security authorization needed for MQCONN calls

Authorization required for: Queue object (1 on page
143)

Process object Queue manager object

MQCONN Not applicable Not applicable MQZAO_CONNECT

Table 7. Security authorization needed for MQOPEN calls

Authorization required for: Queue object (1 on page
143)

Process object Queue manager object

MQOO_INQUIRE MQZAO_INQUIRE MQZAO_INQUIRE MQZAO_INQUIRE

MQOO_BROWSE MQZAO_BROWSE Not applicable No check

MQOO_INPUT_* MQZAO_INPUT Not applicable No check

MQOO_SAVE_
ALL_CONTEXT (2 on page
143)

MQZAO_INPUT Not applicable Not applicable

MQOO_OUTPUT (Normal
queue) (3 on page 143)

MQZAO_OUTPUT Not applicable Not applicable

MQOO_PASS_
IDENTITY_CONTEXT (4
on page 143)

MQZAO_PASS_
IDENTITY_CONTEXT

Not applicable No check

MQOO_PASS_ALL_
CONTEXT (4 on page 143,
5 on page 143)

MQZAO_PASS
_ALL_CONTEXT

Not applicable No check

MQOO_SET_
IDENTITY_CONTEXT (4
on page 143, 5 on page
143)

MQZAO_SET_
IDENTITY_CONTEXT

Not applicable MQZAO_SET_
IDENTITY_CONTEXT (6
on page 143)

MQOO_SET_
ALL_CONTEXT (4 on page
143, 7 on page 143)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (6 on page
143)

MQOO_OUTPUT
(Transmission queue) (8 on
page 143)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (6 on page
143)

MQOO_SET MQZAO_SET Not applicable No check

MQOO_ALTERNATE_
USER_AUTHORITY

(9 on page 143) (9 on page 143) MQZAO_ALTERNATE_
USER_AUTHORITY (9 on
page 143, 10 on page 143)

Table 8. Security authorization needed for MQPUT1 calls

Authorization required for: Queue object (1 on page
143)

Process object Queue manager object

MQPMO_PASS_
IDENTITY_CONTEXT

MQZAO_PASS_
IDENTITY_CONTEXT (11
on page 143)

Not applicable No check

MQPMO_PASS_ALL
_CONTEXT

MQZAO_PASS_
ALL_CONTEXT (11 on
page 143)

Not applicable No check

MQPMO_SET_
IDENTITY_CONTEXT

MQZAO_SET_
IDENTITY_CONTEXT (11
on page 143)

Not applicable MQZAO_SET_
IDENTITY_CONTEXT (6
on page 143)

142 WebSphere MQ: System Administration Guide

||

||
|
||

||||
|

||

||
|
||

|
|||||

||||

||||

|
|
|

|||

|
|
|||

|
|
|

|
|
||

|
|
|

|
|
||

|
|
|
|

|
|
||
|
|

|
|
|

|
|
||
|
|

|
|
|

|
|
||
|
|

||||

|
|
|||
|
|
|

||

||
|
||

|
||
|
|
|
|

||

|
|
|
|
|

||

|
|
|
|
|

||
|
|

MQPMO_SET_
ALL_CONTEXT

MQZAO_SET_
ALL_CONTEXT (11)

Not applicable MQZAO_SET_
ALL_CONTEXT (6)

(Transmission queue) (8) MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (6)

MQPMO_ALTERNATE_
USER_AUTHORITY

(12) Not applicable MQZAO_ALTERNATE_
USER_AUTHORITY (10)

Table 9. Security authorization needed for MQCLOSE calls

Authorization required for: Queue object (1) Process object Queue manager object

MQCO_DELETE MQZAO_DELETE (13 on
page 144)

Not applicable Not applicable

MQCO_DELETE _PURGE MQZAO_DELETE (13 on
page 144)

Not applicable Not applicable

Notes® for the tables:

1. If opening a model queue:
v MQZAO_DISPLAY authority is needed for the model queue, in addition to

the authority to open the model queue for the type of access for which you
are opening.

v MQZAO_CREATE authority is not needed to create the dynamic queue.
v The user identifier used to open the model queue is automatically granted

all the queue-specific authorities (equivalent to MQZAO_ALL) for the
dynamic queue created.

2. MQOO_INPUT_* must also be specified. This is valid for a local, model, or
alias queue.

3. This check is performed for all output cases, except transmission queues (see
note 8).

4. MQOO_OUTPUT must also be specified.
5. MQOO_PASS_IDENTITY_CONTEXT is also implied by this option.
6. This authority is required for both the queue manager object and the

particular queue.
7. MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALL_CONTEXT, and

MQOO_SET_IDENTITY_CONTEXT are also implied by this option.
8. This check is performed for a local or model queue that has a Usage queue

attribute of MQUS_TRANSMISSION, and is being opened directly for output.
It does not apply if a remote queue is being opened (either by specifying the
names of the remote queue manager and remote queue, or by specifying the
name of a local definition of the remote queue).

9. At least one of MQOO_INQUIRE (for any object type), or MQOO_BROWSE,
MQOO_INPUT_*, MQOO_OUTPUT, or MQOO_SET (for queues) must also be
specified. The check carried out is as for the other options specified, using the
supplied alternate-user identifier for the specific-named object authority, and
the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

10. This authorization allows any AlternateUserId to be specified.
11. An MQZAO_OUTPUT check is also carried out if the queue does not have a

Usage queue attribute of MQUS_TRANSMISSION.
12. The check carried out is as for the other options specified, using the supplied

alternate-user identifier for the specific-named queue authority, and the

Chapter 4. Configuring WebSphere MQ 143

|
|
|
|
||
|

||
|
||
|

|
|
|||
|
|

||

||||
|
|||
|
||

||
|
||

|

|

|

|
|
|

|

|
|
|

|
|

|
|

|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|

current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

13. The check is carried out only if both of the following are true:
v A permanent dynamic queue is being closed and deleted.
v The queue was not created by the MQOPEN call that returned the object

handle being used.

Otherwise, there is no check.

Authorizations for MQSC commands in escape PCFs

This section summarizes the authorizations needed for each MQSC command
contained in Escape PCF.

Not applicable means that authorization checking is not relevant to this operation.

The user ID under which the program that submits the command is running must
also have the following authorities:
v MQZAO_CONNECT authority to the queue manager
v DISPLAY authority on the queue manager in order to perform PCF commands
v Authority to issue the MQSC command within the text of the Escape PCF

command

ALTER object

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager MQZAO_CHANGE

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

CLEAR object

Object Authorization required

Queue MQZAO_CLEAR

Topic MQZOA_CLEAR

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel Not applicable

Client connection channel Not applicable

Listener Not applicable

144 WebSphere MQ: System Administration Guide

|
|

|

|

|
|

|

|

|
|

|

|
|

|

|

|
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

Service Not applicable

DEFINE object NOREPLACE (1 on page 147)

Object Authorization required

Queue MQZAO_CREATE (2 on page 148)

Topic MQZAO_CREATE (2 on page 148)

Process MQZAO_CREATE (2 on page 148)

Queue manager Not applicable

Namelist MQZAO_CREATE (2 on page 148)

Authentication information MQZAO_CREATE (2 on page 148)

Channel MQZAO_CREATE (2 on page 148)

Client connection channel MQZAO_CREATE (2 on page 148)

Listener MQZAO_CREATE (2 on page 148)

Service MQZAO_CREATE (2 on page 148)

DEFINE object REPLACE (1 on page 147, 3 on page 148)

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager Not applicable

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

DELETE object

Object Authorization required

Queue MQZAO_DELETE

Topic MQZAO_DELETE

Process MQZAO_DELETE

Queue manager Not applicable

Namelist MQZAO_DELETE

Authentication information MQZAO_DELETE

Channel MQZAO_DELETE

Client connection channel MQZAO_DELETE

Listener MQZAO_DELETE

Service MQZAO_DELETE

Chapter 4. Configuring WebSphere MQ 145

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

DISPLAY object

Object Authorization required

Queue MQZAO_DISPLAY

Topic MQZAO_DISPLAY

Process MQZAO_DISPLAY

Queue manager MQZAO_DISPLAY

Namelist MQZAO_DISPLAY

Authentication information MQZAO_DISPLAY

Channel MQZAO_DISPLAY

Client connection channel MQZAO_DISPLAY

Listener MQZAO_DISPLAY

Service MQZAO_DISPLAY

PING CHANNEL

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

RESET CHANNEL

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL_EXTENDED

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

RESOLVE CHANNEL

Object Authorization required

146 WebSphere MQ: System Administration Guide

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL_EXTENDED

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

START CHANNEL/LISTENER/SERVICE

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener MQZAO_CONTROL

Service MQZAO_CONTROL

STOP CHANNEL/LISTENER/SERVICE

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener MQZAO_CONTROL

Service MQZAO_CONTROL

Note:

1. For DEFINE commands, MQZAO_DISPLAY authority is also needed for the
LIKE object if one is specified, or on the appropriate SYSTEM.DEFAULT.xxx
object if LIKE is omitted.

Chapter 4. Configuring WebSphere MQ 147

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|
|
|

2. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects for a specified queue manager,
by specifying an object type of QMGR on the setmqaut command.

3. This applies if the object to be replaced already exists. If it does not, the check
is as for DEFINE object NOREPLACE.

Authorizations for PCF commands

This section summarizes the authorizations needed for each PCF command.

No check means that no authorization checking is carried out; Not applicable means
that authorization checking is not relevant to this operation.

The user ID under which the program that submits the command is running must
also have the following authorities:
v MQZAO_CONNECT authority to the queue manager
v DISPLAY authority on the queue manager in order to perform PCF commands

The special authorization MQZAO_ALL_ADMIN includes all the authorizations in
the following list that are relevant to the object type, except MQZAO_CREATE,
which is not specific to a particular object or object type.

Change object

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager MQZAO_CHANGE

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Clear object

Object Authorization required

Queue MQZAO_CLEAR

MQZAO_CLEAR

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel Not applicable

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

148 WebSphere MQ: System Administration Guide

|
|
|

|
|

|

|

|
|

|
|

|

|

|
|
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

Copy object (without replace) (1)

Object Authorization required

Queue MQZAO_CREATE (2)

Topic MQZAO_CREATE (2)

Process MQZAO_CREATE (2)

Queue manager Not applicable

NamelistMQZAO_CREATE MQZAO_CREATE (2)

Authentication information MQZAO_CREATE (2)

Channel MQZAO_CREATE (2)

Client connection channel MQZAO_CREATE (2)

Listener MQZAO_CREATE (2)

Service MQZAO_CREATE (2)

Copy object (with replace) (1, 4)

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager Not applicable

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Create object (without replace) (3)

Object Authorization required

Queue MQZAO_CREATE (2)

Topic MQZAO_CREATE (2)

Process MQZAO_CREATE (2)

Queue manager Not applicable

Namelist MQZAO_CREATE (2)

Authentication information MQZAO_CREATE (2)

Channel MQZAO_CREATE (2)

Client connection channel MQZAO_CREATE (2)

Listener MQZAO_CREATE (2)

Service MQZAO_CREATE (2)

Create object (with replace) (3, 4)

Object Authorization required

Chapter 4. Configuring WebSphere MQ 149

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager Not applicable

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Delete object

Object Authorization required

Queue MQZAO_DELETE

Topic MQZAO_DELETE

Process MQZAO_DELETE

Queue manager MQZAO_DELETE

Namelist MQZAO_DELETE

Authentication information MQZAO_DELETE

Channel MQZAO_DELETE

Client connection channel MQZAO_DELETE

Listener MQZAO_DELETE

Service MQZAO_DELETE

Inquire object

Object Authorization required

Queue MQZAO_DISPLAY

Topic MQZAO_DISPLAY

Process MQZAO_DISPLAY

Queue manager MQZAO_DISPLAY

Namelist MQZAO_DISPLAY

Authentication information MQZAO_DISPLAY

Channel MQZAO_DISPLAY

Client connection channel MQZAO_DISPLAY

Listener MQZAO_DISPLAY

Service MQZAO_DISPLAY

Inquire object names

Object Authorization required

Queue No check

Topic No check

150 WebSphere MQ: System Administration Guide

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

Process No check

Queue manager No check

Namelist No check

Authentication information No check

Channel No check

Client connection channel No check

Listener No check

Service No check

Ping Channel

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

Reset Channel

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL_EXTENDED

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

Reset Queue Statistics

Object Authorization required

Queue MQZAO_DISPLAY and MQZAO_CHANGE

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Chapter 4. Configuring WebSphere MQ 151

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

Namelist Not applicable

Authentication information Not applicable

Channel Not applicable

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

Resolve Channel

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL_EXTENDED

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

Start Channel/Listener/Service

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener MQZAO_CONTROL

Service MQZAO_CONTROL

Stop Channel/Listener/Service

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

152 WebSphere MQ: System Administration Guide

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|||

||

||

||

||

||

||

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener MQZAO_CONTROL

Service MQZAO_CONTROL

Note:

1. For Copy commands, MQZAO_DISPLAY authority is also needed for the From
object.

2. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects for a specified queue manager,
by specifying an object type of QMGR on the setmqaut command.

3. For Create commands, MQZAO_DISPLAY authority is also needed for the
appropriate SYSTEM.DEFAULT.* object.

4. This applies if the object to be replaced already exists. If it does not, the check
is as for Copy or Create without replace.

Guidelines for Windows

This information applies only when you are running WebSphere MQ in a
Windows environment.

WebSphere MQ for Windows runs on Windows 2003, Windows Vista, Windows
Server 2008, and Windows XP, but the operation of WebSphere MQ security can be
affected by differences between the platforms.

WebSphere MQ security relies on calls to the operating system API for information
about user authorizations and group memberships. Some functions do not behave
identically on the Windows systems. This section includes descriptions of how
those differences might affect WebSphere MQ security when you are running
WebSphere MQ in a Windows environment.

When you get a ’group not found’ error

This problem can arise because WebSphere MQ loses access to the local mqm
group when Windows servers are promoted to, or demoted from, domain
controllers. The symptom is an error indicating the lack of a local mqm group, for
example:
>crtmqm qm0
AMQ8066:Local mqm group not found.

Altering the state of a machine between server and domain controller can affect the
operation of WebSphere MQ, because WebSphere MQ uses a locally-defined mqm
group. When a server is promoted to be a domain controller, the scope changes
from local to domain local. When the machine is demoted to server, all domain
local groups are removed. This means that changing a machine from server to
domain controller and back to server loses access to a local mqm group.

To remedy this problem, recreate the local mqm group using the standard
Windows management tools. Because all group membership information is lost,
you must reinstate privileged WebSphere MQ users in the newly-created local
mqm group. If the machine is a domain member, you must also add the domain
mqm group to the local mqm group to grant privileged domain WebSphere MQ
user IDs the required level of authority.

Chapter 4. Configuring WebSphere MQ 153

||

||

||

||
|

|

|
|

|
|
|

|
|

|
|

|

|
|

|
|
|

|
|
|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

When you have problems with WebSphere MQ and domain
controllers
Certain problems can arise with security settings when Windows servers are
promoted to domain controllers.

While promoting Windows 2000, Windows 2003, or Windows Server 2008 servers
to domain controllers, you are presented with the option of selecting a default or
non-default security setting relating to user and group permissions. This option
controls whether arbitrary users are able to retrieve group memberships from the
active directory. Because WebSphere MQ relies on group membership information
to implement its security policy, it is important that the user ID that is performing
WebSphere MQ operations can determine the group memberships of other users.

On Windows 2000, when a domain is created using the default security option, the
default user ID created by WebSphere MQ during the installation process
(MUSR_MQADMIN) can obtain group memberships for other users as required.
The product then installs normally, creating default objects, and the queue manager
can determine the access authority of local and domain users if required.

On Windows 2000, when a domain is created using the non-default security
option, or on Windows 2003 and Windows Server 2008 when a domain is created
using the default security option, the user ID created by WebSphere MQ during
the installation (MUSR_MQADMIN) cannot always determine the required group
memberships. In this case, you need to know:
v How Windows 2000 with non-default, or Windows 2003 and Windows Server

2008 with default, security permissions behaves
v How to allow domain mqm group members to read group membership
v How to configure WebSphere MQ Services to run under a domain user

Windows 2000 domain with non-default, or Windows 2003 and Windows Server
2008 domain with default, security permissions:

If a local user installs WebSphere MQ, the Prepare WebSphere MQ Wizard detects
that the local user (MUSR_MQADMIN) created for the WebSphere MQ services
(AMQMSRVN) can retrieve the group membership information of the installing
user. The Prepare WebSphere MQ Wizard asks the user questions about the
network configuration to determine whether there are other user accounts defined
on domain controllers running on Windows 2000 or later. If so, the WebSphere MQ
services need to run under a domain user account with particular settings and
authorities. The Prepare WebSphere MQ Wizard prompts the user for the account
details of this user. Its online help provides details of the domain user account
required that can be sent to the domain administrator.

If a domain user installs WebSphere MQ, the Prepare WebSphere MQ Wizard
detects that the local user (MUSR_MQADMIN) created for the WebSphere MQ
services (AMQMSRVN) cannot retrieve the group membership information of the
installing user. In this case, the Prepare WebSphere MQ Wizard always prompts
the user for the account details of the domain user account for the WebSphere MQ
services to use.

When WebSphere MQ services needs to use a domain user account, WebSphere
MQ cannot operate correctly until this has been configured using the Prepare
WebSphere MQ Wizard. This configuration includes creating default objects such
as the Default Configuration. The Prepare WebSphere MQ Wizard does not allow

154 WebSphere MQ: System Administration Guide

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

the user to continue with other tasks, such as creating the Default Configuration,
until the WebSphere MQ services have been configured with a suitable account.

If a Windows 2000 domain has been configured with non-default security
permissions, the usual solution to enable WebSphere MQ to work correctly is to
configure it with a suitable domain user account, as described above.

See the WebSphere MQ for Windows Quick Beginnings for more information.

Configuring WebSphere MQ Services to run under a domain user:

Use the Prepare WebSphere MQ Wizard to enter the account details of the domain
user account. Alternatively, use the following command line to set the domain user
account:
AMQMSRVN -user [domain]\[userid] -password [password]

In either case, WebSphere MQ allocates the correct security rights and group
membership to the new user account.

Applying security template files

Windows supports text-based security template files that you can use to apply
uniform security settings to one or more computers with the Security
Configuration and Analysis MMC snap-in. In particular, Windows supplies several
templates that include a range of security settings with the aim of providing
specific levels of security. These include compatible, basic, secure, and
highly-secure.

Be aware that applying one of these templates might affect the security settings
applied to WebSphere MQ files and directories. If you want to use the
highly-secure template, configure your machine before you install WebSphere MQ.
If you apply the highly-secure template to a machine on which WebSphere MQ is
already installed, all the permissions you have specifically set on the WebSphere
MQ files and directories are removed. This means that you lose Administrator and
mqm group access and, when applicable, Everyone group access from the error
directories.

Nested groups
There are restrictions on the use of nested groups. These result partly from the
domain functional level and partly from WebSphere MQ restrictions.

Active Directory can support different group types within a Domain context
depending on the Domain functional level. By default, Windows 2003 domains are
in the Windows 2000 mixed functional level. (Windows server 2003 , Windows XP,
Windows Vista, and Windows Server 2008 all follow the Windows 2003 domain
model.) The domain functional level determines the supported group types and
level of nesting allowed when configuring user IDs in a domain environment.
Refer to Active Directory documentation for details on the Group Scope and
inclusion criteria.

In addition to Active Directory requirements, further restrictions are imposed on
IDs used by WebSphere MQ. The network APIs used by WebSphere MQ do not
support all the configurations that are supported by the domain functional level.
As a result, WebSphere MQ is not able to query the group memberships of any
Domain IDs present in a Domain Local group which is then nested in a local

Chapter 4. Configuring WebSphere MQ 155

|
|

|
|
|

|

|

|
|
|

|

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

group. Furthermore, multiple nesting of global and universal groups is not
supported. However, immediately nested global or universal groups are supported.

Transactional support

Enable your applications to work reliably with databases.

This chapter introduces transactional support. The work required to enable your
applications to use WebSphere MQ in conjunction with a database product spans
the areas of application programming and system administration. Use the
information here together with Chapter 13, ″Committing and backing out units of
work″ of the WebSphere MQ Application Programming Guide.

We start by introducing the units of work that form transactions, then describe the
ways in which you enable WebSphere MQ to coordinate transactions with
databases.

Introducing units of work
This topic introduces and defines the general concepts of unit of work, commit,
backout and syncpoint. It also contains two scenarios illustrating global units of
work.

When a program puts messages on queues within a unit of work, those messages
are made visible to other programs only when the program commits the unit of
work. To commit a unit of work, all updates must be successful to preserve data
integrity.

If the program detects an error and decides not to make the put operation
permanent, it can back out the unit of work. When a program performs a backout,
WebSphere MQ restores the queues by removing the messages that were put on
the queues by that unit of work.

Similarly, when a program gets messages from one or more queues within a unit
of work, those messages remain on the queues until the program commits the unit
of work, but the messages are not available to be retrieved by other programs. The
messages are permanently deleted from the queues when the program commits the
unit of work. If the program backs out the unit of work, WebSphere MQ restores
the queues by making the messages available to be retrieved by other programs.

The decision to commit or back out the changes is taken, in the simplest case, at
the end of a task. However, it can be more useful for an application to synchronize
data changes at other logical points within a task. These logical points are called
syncpoints (or synchronization points) and the period of processing a set of
updates between two syncpoints is called a unit of work. Several MQGET calls and
MQPUT calls can be part of a single unit of work.

With WebSphere MQ, we need to distinguish between local and global units of
work:

Local units of work
Are those in which the only actions are puts to, and gets from, WebSphere
MQ queues, and the coordination of each unit of work is provided within
the queue manager using a single-phase commit process.

156 WebSphere MQ: System Administration Guide

|
|

|
|

|

|
|
|
|
|

|
|
|

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

Use local units of work when the only resources to be updated are the
queues managed by a single WebSphere MQ queue manager. Updates are
committed using the MQCMIT verb or backed out using MQBACK.

There are no system administration tasks, other than log management,
involved in using local units of work. In your applications, where you use
the MQPUT and MQGET calls with MQCMIT and MQBACK, try using the
MQPMO_SYNCPOINT and MQGMO_SYNCPOINT options. (For
information on log management, see “Managing log files” on page 225.)

Global units of work
Are those in which other resources, such as tables in a relational database,
are also updated. When more than one resource manager is involved, there
is a need for transaction manager software that uses a two-phase commit
process to coordinate the global unit of work.

Use global units of work when you also need to include updates to
relational database manager software, such as DB2, Oracle, Sybase, and
Informix®.

We define two scenarios for global units of work:
1. In the first, the queue manager itself acts as the transaction manager. In

this scenario, MQI verbs control the global units of work; they are
started in applications using the MQBEGIN verb and then committed
using MQCMIT or backed out using MQBACK.

2. In the second, the transaction manager role is performed by other
software, such as TXSeries, Encina®, or Tuxedo. In this scenario, an API
provided by the transaction manager software is used to control the
unit of work (for example, EXEC CICS SYNCPOINT for TXSeries).

The following sections describe all the steps necessary to use global units
of work, organized by the two scenarios:
v “Scenario 1: Queue manager performs the coordination”
v “Scenario 2: Other software provides the coordination” on page 182

Scenario 1: Queue manager performs the coordination

This section describes this scenario, including:
v “Database coordination”
v “DB2 configuration” on page 165
v “Oracle configuration” on page 167
v “Informix configuration” on page 169
v “Sybase configuration” on page 171
v “Multiple database configurations” on page 173
v “Security considerations” on page 174
v “Administration tasks” on page 175

Database coordination

When the queue manager coordinates global units of work itself, it becomes
possible to integrate database updates within the units of work. That is, a mixed
MQI and SQL application can be written, and the MQCMIT and MQBACK verbs
can be used to commit or roll back the changes to the queues and databases
together.

Chapter 4. Configuring WebSphere MQ 157

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|

The queue manager achieves this using the two-phase commit protocol described
in X/Open Distributed Transaction Processing: The XA Specification. When a unit of
work is to be committed, the queue manager first asks each participating database
manager whether it is prepared to commit its updates. Only if all the participants,
including the queue manager itself, are prepared to commit, are all the queue and
database updates committed. If any participant cannot prepare its updates, the unit
of work is backed out instead.

In general, a global unit of work is implemented in an application by the following
method (in pseudocode):

MQBEGIN
MQGET (include the flag MQGMO_SYNCPOINT in the message options)
MQPUT (include the flag MQPMO_SYNCPOINT in the message options)
SQL INSERT
MQCMIT

The purpose of MQBEGIN is to denote the beginning of a global unit of work. The
purpose of MQCMIT is to denote the end of the global unit of work, and to
complete it with all participating resource managers, using the two-phase commit
protocol.

When the unit of work (also known as a transaction) is completed successfully
using MQCMIT, all actions taken within that unit of work are made permanent or
irreversible. If, for any reason, the unit of work fails, all actions are instead backed
out. It is not acceptable for one action comprising a unit of work to be made
permanent while another is forgotten. This is the principle of a unit of work: either
all actions within the unit of work are made permanent or none of them are.

Note:

1. The application programmer can force a unit of work to be backed out by
calling MQBACK. The unit of work is also backed out by the queue manager if
the application or database crashes before MQCMIT is called.

2. If an application calls MQDISC without calling MQCMIT, the queue manager
behaves as if MQCMIT had been called, and commits the unit of work.

In between MQBEGIN and MQCMIT, the queue manager does not make any calls
to the database to update its resources. That is, the only way a database’s tables
are changed is by your code (for example, the SQL INSERT in the pseudocode
above).

Full recovery support is provided if the queue manager loses contact with any of
the database managers during the commit protocol. If a database manager becomes
unavailable while it is in doubt, that is, it has successfully prepared to commit, but
has yet to receive a commit or backout decision, the queue manager remembers the
outcome of the unit of work until that outcome has been successfully delivered to
the database. Similarly, if the queue manager terminates with incomplete commit
operations outstanding, these are remembered over queue manager restart. If an
application terminates unexpectedly, the integrity of the unit of work is not
compromised, but the outcome depends on where in the process the application
terminated, as described inTable 11 on page 159.

What happens when the database or application program crashes is summarized in
the tables below:

Table 10. What happens when a database server crashes

Before the application call to MQCMIT. The unit of work is backed out.

158 WebSphere MQ: System Administration Guide

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

||

||

Table 10. What happens when a database server crashes (continued)

During the application call to MQCMIT,
before all databases have indicated that they
have successfully prepared.

The unit of work is backed out with a
reason code of MQRC_BACKED_OUT.

During the application call to MQCMIT,
after all databases have indicated that they
have successfully prepared, but before all
have indicated that they have successfully
committed.

The unit of work is held in recoverable state
by the queue manager, with a reason code
of MQRC_OUTCOME_PENDING.

During the application call to MQCMIT,
after all databases have indicated that they
have successfully committed.

The unit of work is committed with a
reason code of MQRC_NONE.

After the application call to MQCMIT. The unit of work is committed with a
reason code of MQRC_NONE.

Table 11. What happens when an application program crashes

Before the application call to MQCMIT. The unit of work is backed out.

During the application call to MQCMIT,
before the queue manager has received the
application’s MQCMIT request.

The unit of work is backed out.

During the application call to MQCMIT,
after the queue manager has received the
application’s MQCMIT request.

The queue manager tries to commit using
two-phase commit (subject to the database
products successfully executing and
committing their parts of the unit of work).

In the case where the reason code on return from MQCMIT is
MQRC_OUTCOME_PENDING, the unit of work is remembered by the queue
manager until it has been able to reestablish contact with the database server, and
tell it to commit its part of the unit of work. Refer to “Administration tasks” on
page 175 for information on how and when recovery is done.

The queue manager communicates with database managers using the XA interface
as described in X/Open Distributed Transaction Processing: The XA Specification.
Examples of these function calls are xa_open, xa_start, xa_end, xa_prepare, and
xa_commit. We use the terms transaction manager and resource manager in the same
sense as they are used in the XA specification.

Restrictions:

The following restrictions apply to the database coordination support:
v The ability to coordinate database updates within WebSphere MQ units of work

is not supported in an MQI client application. The use of MQBEGIN in a client
application fails, as described in the WebSphere MQ Application Programming
Reference. A program that calls MQBEGIN must run as a server application on
the same machine as the queue manager.

Note: A server application is a program that has been linked with the necessary
WebSphere MQ server libraries; a client application is a program that has been
linked with the necessary WebSphere MQ client libraries. See WebSphere MQ
Clients and the WebSphere MQ Application Programming Guide for details on
compiling and linking your programs.

v The database server can reside on a different machine from the queue manager
server, as long as the database client is installed on the same machine as the

Chapter 4. Configuring WebSphere MQ 159

|

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|

||
|
|

||

||

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|

|
|
|
|
|

|
|
|
|
|

|
|

queue manager, and it supports this function. Consult the database product’s
documentation to determine whether their client software can be used for
two-phase commit systems.

v Although the queue manager behaves as a resource manager (for the purposes
of being involved in Scenario 2 global units of work), it is not possible to make
one queue manager coordinate another queue manager within its Scenario 1
global units of work.

Switch load files:

The switch load file is a shared library (a DLL on Windows systems) that is loaded
by the code in your WebSphere MQ application and the queue manager. Its
purpose is to simplify the loading of the database’s client shared library, and to
return the pointers to the XA functions.

The details of the switch load file must be specified before the queue manager is
started. The details are placed in the qm.ini file (UNIX systems), or the Registry
(Windows systems).
v On Windows or Linux (x86 platform) systems use the WebSphere MQ Explorer.

On Windows systems the Registry is updated. On Linux (x86 platform) systems
the file, qm.ini, is updated.

v On all other systems edit the file, qm.ini, directly.

The C source for the switch load file is supplied with the WebSphere MQ
installation if it supports Scenario 1 global units of work. The source contains a
function called MQStart. When the switch load file is loaded, the queue manager
calls this function, which returns the address of a structure called an XA switch.

The XA switch structure exists in the database client shared library, and contains a
number of function pointers, as described in Table 12:

Table 12. XA switch function pointers

Function pointer name XA function Purpose

xa_open_entry xa_open Connect to database

xa_close_entry xa_close Disconnect from database

xa_start_entry xa_start Start a branch of a global
unit of work

xa_end_entry xa_end Suspend a branch of a global
unit of work

xa_rollback_entry xa_rollback Roll back a branch of a
global unit of work

xa_prepare_entry xa_prepare Prepare to commit a branch
of a global unit of work

xa_commit_entry xa_commit Commit a branch of a global
unit of work

xa_recover_entry xa_recover Discover from the database
whether it has an in-doubt
unit of work

xa_forget_entry xa_forget Allow a database to forget a
branch of a global unit of
work

160 WebSphere MQ: System Administration Guide

|
|
|

|
|
|
|

|

|
|
|
|

|
|
|

|
|
|

|

|
|
|
|

|
|

||

|||

|||

|||

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|
|

|||
|
|

Table 12. XA switch function pointers (continued)

Function pointer name XA function Purpose

xa_complete_entry xa_complete Complete a branch of a
global unit of work

During the first MQBEGIN call in your application, the WebSphere MQ code that
executes as part of MQBEGIN loads the switch load file, and calls the xa_open
function in the database shared library. Similarly, during queue manager startup,
and on other subsequent occasions, some queue manager processes load the switch
load file and call xa_open.

You can reduce the number of xa_* calls by using dynamic registration. For a
complete description of this optimization technique, see “XA dynamic registration”
on page 179.

Configuring your system for database coordination:

There are several tasks that you must perform before a database manager can
participate in global units of works coordinated by the queue manager. These are
described here as follows:
v “Installing and configuring the database product”
v “Creating switch load files” on page 162
v “Adding configuration information to the queue manager” on page 162
v “Writing and modifying your applications” on page 164
v “Testing the system” on page 165

Installing and configuring the database product:

The steps involved in installing and configuring your database product are, of
course, described in that product’s own documentation. Installation issues are well
beyond the scope of this chapter, but we can list general configuration issues, as
they relate to the interoperation between WebSphere MQ and the database.

Database connections:

An application that establishes a standard connection to the queue manager is
associated with a thread in a separate local queue manager agent process. (A
connection that is not a fastpath connection is a standard connection in this context.
For more information, see ″Connecting to a queue manager using the MQCONNX
call″ in the WebSphere MQ Application Programming Guide.)

When the application issues MQBEGIN, both it and the agent process call the
xa_open function in the database client library. In response to this, the database
client library code connects to the database that is to be involved in the unit of
work from both the application and queue manager processes. These database
connections are maintained as long as the application remains connected to the
queue manager.

This is an important consideration if the database supports only a limited number
of users or connections, because two connections are being made to the database to
support the one application program.

Client/server configuration:

Chapter 4. Configuring WebSphere MQ 161

|

|||

|||
|
|
|
|
|
|
|

|
|
|

|

|
|
|

|

|

|

|

|

|

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

The database client library that is loaded into the WebSphere MQ queue manager
and application processes must be able to send to and receive from its server.
Ensure that:
v The database’s client/server configuration files have the correct details
v The relevant environment variables are set in the environment of the queue

manager and the application processes

Creating switch load files:

WebSphere MQ comes with a sample makefile, used to build switch load files for
the supported database managers. This makefile, together with all the associated C
source files required to build the switch load files, is installed in the following
directories:
v For WebSphere MQ for Windows, in the C:\Program Files\IBM\WebSphere

MQ\tools\c\samples\xatm\ directory
v For WebSphere MQ for UNIX systems, in the /opt/mqm/samp/xatm/ directory

(/usr/mqm/samp/xatm on AIX)

The sample source modules used to build the switch load files are:
v For DB2, db2swit.c
v For Oracle, oraswit.c
v For Informix, infswit.c
v For Sybase, sybswit.c

When you generate switch load files it is recommended that 32-bit switch load files
are installed in /var/mqm/exits and 64-bit switch load files are installed in
/var/mqm/exits64.

If you have 32-bit queue managers then the sample make file, xaswit.mak, will
install a 32-bit switch load file in /var/mqm/exits.

If you have 64-bit queue managers then the sample make file, xaswit.mak, will
install a 32-bit switch load file in /var/mqm/exits, and a 64-bit switch load file in
/var/mqm/exits64.

Adding configuration information to the queue manager:

When you have created a switch load file for your database manager, and placed it
in a safe location, you must specify that location to your queue manager.
v On Windows and Linux (x86 platform) systems use the WebSphere MQ

Explorer. Specify the details of the switch load file in the queue manager
properties panel, under XA resource manager.

v On all other systems specify the details of the switch load file in the
XAResourceManager stanza in the queue manager’s qm.ini file.

Add an XAResourceManager stanza for the database that your queue manager is
going to coordinate. The most common case is for there to be only one database,
and therefore only one XAResourceManager stanza. More complicated
configurations involving multiple databases, are discussed in “Multiple database
configurations” on page 173. The attributes of the XAResourceManager stanza are
as follows:

162 WebSphere MQ: System Administration Guide

|
|
|

|

|
|

|

|
|
|
|

|
|

|
|

|

|

|

|

|

|
|
|

|
|

|
|
|

|

|
|

|
|
|

|
|

|
|
|
|
|
|

Name=name
User-chosen string that identifies the resource manager. In effect, it gives a
name to the XAResourceManager stanza. The name is mandatory and can be
up to 31 characters in length.

The name you choose must be unique; there must be only one
XAResourceManager stanza with this name in this qm.ini file. The name
should also be meaningful, because the queue manager uses it to refer to this
resource manager both in queue manager error log messages and in output
when the dspmqtrn command is used. (See “Displaying outstanding units of
work with the dspmqtrn command” on page 176 for more information.)

Once you have chosen a name, and have started the queue manager, do not
change the Name attribute. This is discussed in more detail in “Changing
configuration information” on page 178.

SwitchFile=name
This is the name of the XA switch load file you built earlier. This is a
mandatory attribute. The code in the queue manager and WebSphere MQ
application processes tries to load the switch load file on two occasions:
1. At queue manager startup
2. When you make the first call to MQBEGIN in your WebSphere MQ

application process

The security and permissions attributes of your switch load file must allow
these processes to perform this action.

XAOpenString=string
This is a string of data that WebSphere MQ code passes in its calls to the
database manager’s xa_open function. This is an optional attribute; if it is
omitted a zero-length string is assumed.

The code in the queue manager and WebSphere MQ application processes call
the xa_open function on two occasions:
1. At queue manager startup
2. When you make the first call to MQBEGIN in your WebSphere MQ

application process

The format for this string is particular to each database product, and will be
described in the documentation for that product. In general, the xa_open string
contains authentication information (user name and password) to allow a
connection to the database in both the queue manager and the application
processes.

XACloseString=string
This is a string of data that WebSphere MQ code passes in its calls to the
database manager’s xa_close function. This is an optional attribute; if it is
omitted a zero-length string is assumed.

The code in the queue manager and WebSphere MQ application processes call
the xa_close function on two occasions:
1. At queue manager startup
2. When you make a call to MQDISC in your WebSphere MQ application

process, having earlier made a call to MQBEGIN

The format for this string is particular to each database product, and will be
described in the documentation for that product. In general, the string is
empty, and it is common to omit the XACloseString attribute from the
XAResourceManager stanza.

Chapter 4. Configuring WebSphere MQ 163

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|

|
|

|
|
|
|

|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|

ThreadOfControl=THREAD|PROCESS
The ThreadOfControl value can be THREAD or PROCESS. The queue manager
uses it for serialization purposes. This is an optional attribute; if it is omitted,
the value PROCESS is assumed.

If the database client code allows threads to call the XA functions without
serialization, the value for ThreadOfControl can be THREAD. The queue
manager assumes that it can call the XA functions in the database client shared
library from multiple threads at the same time, if necessary.

If the database client code does not allow threads to call its XA functions in
this way, the value for ThreadOfControl must be PROCESS. In this case, the
queue manager serializes all calls to the database client shared library so that
only one call at a time is made from within a particular process. You probably
also need to ensure that your application performs similar serialization if it
runs with multiple threads.

Note that this issue, of the database product’s ability to cope with
multi-threaded processes in this way, is an issue for that product’s vendor.
Consult the database product’s documentation for details on whether you can
set the ThreadOfControl attribute to THREAD or PROCESS. We recommend
that, if you can, you set ThreadOfControl to THREAD. If in doubt, the safer
option is to set it to PROCESS, although you will lose the potential
performance benefits of using THREAD.

Writing and modifying your applications:

The sample application programs for Scenario 1 global units of work that are
supplied with a WebSphere MQ installation are described in the WebSphere MQ
Application Programming Guide.

In general, a global unit of work is implemented in an application by the following
method (in pseudocode):

MQBEGIN
MQGET
MQPUT
SQL INSERT
MQCMIT

The purpose of MQBEGIN is to denote the beginning of a global unit of work. The
purpose of MQCMIT is to denote the end of the global unit of work, and to
complete it with all participating resource managers, using the two-phase commit
protocol.

In between MQBEGIN and MQCMIT, the queue manager does not make any calls
to the database to update its resources. That is, the only way a database’s tables
are changed is by your code (for example, the SQL INSERT in the pseudocode
above).

The role of the queue manager, as far as the database is concerned, is to tell it
when a global unit of work has started, when it has ended, and whether the global
unit of work should be committed or rolled-back.

As far as your application is concerned, the queue manager performs two roles: a
resource manager (where the resources are messages on queues) and the
transaction manager for the global unit of work.

164 WebSphere MQ: System Administration Guide

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

We recommend that you start with the supplied sample programs, and work
through the various WebSphere MQ and database API calls that are being made in
those programs. The API calls concerned are fully documented in the WebSphere
MQ Application Programming Guide, the WebSphere MQ Application
Programming Reference, and (in the case of the database’s own API) the database’s
own documentation.

Testing the system:

You only know whether your application and system are correctly configured by
running them during testing. You can test the system’s configuration (the
successful communication between queue manager and database) by building and
running one of the supplied sample programs.

DB2 configuration

The supported levels of DB2 are defined at: http://www-1.ibm.com/support/
docview.wss?rs=171&uid=swg27006467

Note: 32-bit instances of DB2 are not supported on platforms where the queue
manager is 64-bit.

Do the following:
1. Check the environment variable settings.
2. Create the DB2 switch load file.
3. Add resource manager configuration information.
4. Change DB2 configuration parameters if necessary.

Read this information in conjunction with the general information provided in
“Configuring your system for database coordination” on page 161.

Warning: If you run db2profile on UNIX platforms, the environment variable
LIBPATH and LD_LIBRARY_PATH are set. It is advisable to unset these
environment variables, see appropriate Quick Beginnings Guide.

Checking the DB2 environment variable settings:

Ensure that your DB2 environment variables are set for queue manager processes
as well as in your application processes. In particular, you must always set the
DB2INSTANCE environment variable before you start the queue manager. The
DB2INSTANCE environment variable identifies the DB2 instance containing the
DB2 databases that are being updated. For example:
v On UNIX systems, use:

export DB2INSTANCE=db2inst1

v On Windows systems, use:
set DB2INSTANCE=DB2

Creating the DB2 switch load file:

The easiest way to create the DB2 switch load file is to use the sample file
xaswit.mak, which WebSphere MQ provides to build the switch load files for a
variety of database products.

Chapter 4. Configuring WebSphere MQ 165

|
|
|
|
|
|

|

|
|
|
|

|

|
|

|
|

|

|

|

|

|

|
|

|
|
|

|

|
|
|
|
|

|

|

|

|

|

|
|
|

http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg27006467
http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg27006467

On Windows systems, you can find xaswit.mak in the directory C:\Program
Files\IBM\WebSphere MQ\tools\c\samples\xatm. To create the DB2 switch load file
with Microsoft Visual C++, use:
nmake /f xaswit.mak db2swit.dll

The generated switch file is placed in c:\Program Files\IBM\WebSphere MQ\exits.

On AIX, you can find xaswit.mak in the directory /usr/mqm/samp/xatm; on other
UNIX systems, you can find it in the directory /opt/mqm/samp/xatm.

Edit xaswit.mak to uncomment the lines appropriate to the version of DB2 you are
using. Then execute the makefile using the command:
make -f xaswit.mak db2swit

The generated 32-bit switch load file is placed in /var/mqm/exits.

The generated 64-bit switch load file is placed in /var/mqm/exits64.

Adding resource manager configuration information for DB2:

The next step is to modify the configuration information for the queue manager, as
described in “Adding configuration information to the queue manager” on page
162, to declare DB2 as a participant in global units of work.
v On Windows and Linux (x86 platform) systems use the WebSphere MQ

Explorer. Specify the details of the switch load file in the queue manager
properties panel, under XA resource manager.

v On all other systems specify the details of the switch load file in the
XAResourceManager stanza in the queue manager’s qm.ini file.

Figure 11 is a UNIX sample, showing an XAResourceManager entry where the
database to be coordinated is called mydbname, this name being specified in the
XAOpenString:

Note:

1. ThreadOfControl=THREAD cannot be used with DB2 versions prior to version 8. It
is recommended that you always set ThreadOfControl and the XAOpenString
parameter toc to one of the following combinations:
v ThreadOfControl=THREAD and toc=t

v ThreadOfControl=PROCESS and toc=p

If you are using the jdbcdb2 XA switch load file to enable JDBC/JTA
coordination, you must use ThreadOfControl=PROCESS and toc=p.

Changing DB2 configuration parameters:

For each DB2 database that the queue manager is coordinating, you need to:

XAResourceManager:
Name=mydb2
SwitchFile=db2swit
XAOpenString=mydbname,myuser,mypasswd,toc=t
ThreadOfControl=THREAD

Figure 11. Sample XAResourceManager entry for DB2 on UNIX platforms

166 WebSphere MQ: System Administration Guide

|
|
|
|
|
||
|
|

|
|
|

|

|

|
|

|
|

|

|

|

|

|
|
|

|
|
|

|
|

|
|
|
|

|

|
|
|

|

|

|
|

|

|

Set database privileges
The queue manager processes run with effective user and group mqm on
UNIX systems. On Windows systems, they run as the user that started the
queue manager. This can be one of:
1. The user who issued the strmqm command, or
2. The user under which the IBM MQSeries Service COM server runs

By default, this user is called MUSR_MQADMIN.

If you have not specified a user name and password on the xa_open string,
the user under which the queue manager is running is used by DB2 to
authenticate the xa_open call. If this user (for example, user mqm on UNIX
systems) does not have minimal privileges in the database, the database
refuses to authenticate the xa_open call.

The same considerations apply to your application process. If you have not
specified a user name and password on the xa_open string, the user under
which your application is running is used by DB2 to authenticate the
xa_open call that is made during the first MQBEGIN. Again, this user must
have minimal privileges in the database for this to work.

For example, give the mqm user connect authority in the mydbname
database by issuing the following DB2 commands:
db2 connect to mydbname
db2 grant connect on database to user mqm

See “Security considerations” on page 174 for more information about
security.

Change the tp_mon_name parameter
For DB2 for Windows systems only, change the TP_MON_NAME
configuration parameter to name the DLL that DB2 uses to call the queue
manager for dynamic registration.

Use the command db2 update dbm cfg using TP_MON_NAME mqmax to name
MQMAX.DLL as the library that DB2 uses to call the queue manager. This
must be present in a directory within PATH.

Reset the maxappls parameter
You might need to review your setting for the maxappls parameter, which
limits the maximum number of applications that can be connected to a
database. Refer to “Database connections” on page 161.

Oracle configuration

Do the following:
1. Check environment variable settings.
2. Create the Oracle switch load file.
3. Add resource manager configuration information.
4. Change the Oracle configuration parameters, if necessary.

A current list of levels of Oracle supported by WebSphere MQ is provided at:
http://www.ibm.com/support/docview.wss?rs=171&uid=swg27006467

Checking the Oracle environment variable settings:

Ensure that your Oracle environment variables are set for queue manager
processes as well as in your application processes. In particular, always set the
following environment variables before starting the queue manager:

Chapter 4. Configuring WebSphere MQ 167

|
|
|
|

|

|

|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|

|

|

|

|

|

|
|

|

|
|
|

http://www.ibm.com/support/docview.wss?rs=171&uid=swg27006467

ORACLE_HOME
The Oracle home directory. For example, on UNIX systems, use:
export ORACLE_HOME=/opt/oracle/product/8.1.6

On Windows systems, use:
set ORACLE_HOME=c:\oracle\ora81

ORACLE_SID
The Oracle SID being used. If you are using Net8 for client/server
connectivity, you might not need to set this environment variable. Consult
your Oracle documentation.

An example of setting this, on UNIX systems, is:
export ORACLE_SID=sid1

The equivalent on Windows systems is:
set ORACLE_SID=sid1

Creating the Oracle switch load file:

The easiest way to create the Oracle switch load file is to use the sample file
xaswit.mak, which WebSphere MQ provides to build the switch load files for a
variety of database products.

On Windows systems, you can find xaswit.mak in the directory C:\Program
Files\IBM\WebSphere MQ\tools\c\samples\xatm. To create the Oracle switch load
file with Microsoft Visual C++, use:
nmake /f xaswit.mak oraswit.dll

The generated switch file is placed in c:\Program Files\IBM\WebSphere MQ\exits.

On AIX, you can find xaswit.mak in the directory /usr/mqm/samp/xatm; on other
UNIX systems, you can find it in the directory /opt/mqm/samp/xatm.

Edit xaswit.mak to uncomment the lines appropriate to the version of Oracle you
are using. Then execute the makefile using the command:
make -f xaswit.mak oraswit

The generated 32-bit switch load file is placed in /var/mqm/exits.

The generated 64-bit switch load file is placed in /var/mqm/exits64.

Adding resource manager configuration information for Oracle:

The next step is to modify the configuration information for the queue manager, as
described in “Adding configuration information to the queue manager” on page
162, to declare Oracle as a participant in global units of work.
v On Windows and Linux (x86 platform) systems use the WebSphere MQ

Explorer. Specify the details of the switch load file in the queue manager
properties panel, under XA resource manager.

v On all other systems specify the details of the switch load file in the
XAResourceManager stanza in the queue manager’s qm.ini file.

Figure 12 on page 169 is a UNIX sample showing an XAResourceManager entry. It
is recommend that you add a LogDir to the XA open string so that all error and

168 WebSphere MQ: System Administration Guide

|
|

|

|

|

|
|
|
|

|

|

|

|

|

|
|
|

|
|
|

|

|

|
|

|
|

|

|

|

|

|
|
|

|
|
|

|
|

|
|

tracing information is logged to the same place.

Note:

1. In Figure 12, the xa_open string has been used with four parameters.
Additional parameters can be included as described in Oracle’s documentation.

2. When using Oracle with WebSphere MQ V5.3 for AIX, you must add the
+SqlNet clause to the xa_open string. WebSphere MQ V5.3 for AIX, uses AIX
extended shared memory facilities and the +SqlNet client/server connectivity
solution must be used to enable Oracle’s client library to reach the Oracle
server. Additional text must be added to the Oracle listener and tnsnames
files, see Oracle’s XA and Net9 documentation for details.

3. When using the WebSphere MQ parameter ThreadOfControl=THREAD you must
use the Oracle parameter +threads=true in the XAResourceManager stanza.

See the Oracle8 Server Application Developer’s Guide for more information on the
xa_open string.

Changing Oracle configuration parameters:

For each Oracle database that the queue manager is coordinating, you need to:

Review your maximum sessions
You might need to review your LICENSE_MAX_SESSIONS and
PROCESSES settings to take into account the additional connections
required by processes belonging to the queue manager. Refer to “Database
connections” on page 161 for more details.

Set database privileges
The Oracle user name specified in the xa_open string must have privileges
to access the DBA_PENDING_TRANSACTIONS view, as described in the
Oracle documentation.

The necessary privilege can be given using the following example
command:
grant select on DBA_PENDING_TRANSACTIONS to myuser;

Informix configuration

Do the following:
1. Ensure that you have installed the appropriate Informix client SDK:
v 32-bit queue managers and applications require a 32-bit Informix client SDK.
v 64-bit queue managers and applications require a 64-bit Informix client SDK.

2. Ensure Informix databases are created correctly.
3. Check environment variable settings.
4. Build the Informix switch load file.
5. Add resource manager configuration information.

XAResourceManager:
Name=myoracle
SwitchFile=oraswit
XAOpenString=Oracle_XA+Acc=P/myuser/mypasswd+SesTm=35+LogDir=/tmp+threads=true
ThreadOfControl=THREAD

Figure 12. Sample XAResourceManager entry for Oracle on UNIX platforms

Chapter 4. Configuring WebSphere MQ 169

|
|
|
|
|
||
|
|

|
|

|

|
|

|
|
|
|
|
|

|
|

|
|

|

|

|
|
|
|
|

|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

A current list of levels of Informix supported by WebSphere MQ is provided at:
http://www.ibm.com/support/docview.wss?rs=171&uid=swg27006467

Ensuring Informix databases are created correctly:

Every Informix database that is to be coordinated by a WebSphere MQ queue
manager must be created specifying the log parameter. For example:
create database mydbname with log;

WebSphere MQ queue managers are unable to coordinate Informix databases that
do not have the log parameter specified on creation. If a queue manager attempts
to coordinate an Informix database that does not have the log parameter specified
on creation, the xa_open call to Informix will fail, and a number of FFST errors
will be generated.

Checking the Informix environment variable settings:

Ensure that your Informix environment variables are set for queue manager
processes as well as in your application processes. In particular, always set the
following environment variables before starting the queue manager:

INFORMIXDIR
The directory of the Informix product installation.
v For 32-bit UNIX applications, use the following command:

export INFORMIXDIR=/opt/informix/32-bit

v For 64-bit UNIX applications, use the following command:
export INFORMIXDIR=/opt/informix/64-bit

v For Windows applications, use the following command:
set INFORMIXDIR=c:\informix

For systems that have 64-bit queue managers that must support both 32-bit
and 64-bit applications, you need both the Informix 32-bit and 64-bit client
SDKs installed. The sample make file xaswit.mak, used for creating a
switch load file also sets both product installation directories.

INFORMIXSERVER
The name of the Informix server. For example, on UNIX systems, use:
export INFORMIXSERVER=hostname_1

On Windows systems, use:
set INFORMIXSERVER=hostname_1

ONCONFIG
The name of the Informix server configuration file. For example, on UNIX
systems, use:
export ONCONFIG=onconfig.hostname_1

On Windows systems, use:
set ONCONFIG=onconfig.hostname_1

Creating the Informix switch load file:

The easiest way to create the Informix switch load file is to use the sample file
xaswit.mak, which WebSphere MQ provides to build the switch load files for a
variety of database products.

170 WebSphere MQ: System Administration Guide

|
|

|

|
|

|

|
|
|
|
|

|

|
|
|

|
|

|

|

|

|

|

|

|
|
|
|

|
|

|

|

|

|
|
|

|

|

|

|

|
|
|

http://www.ibm.com/support/docview.wss?rs=171&uid=swg27006467

On Windows systems, you can find xaswit.mak in the directory C:\Program
Files\IBM\WebSphere MQ\tools\c\samples\xatm. To create the Informix switch load
file with Microsoft Visual C++, use:
nmake /f xaswit.mak infswit.dll

The generated switch file is placed in c:\Program Files\IBM\WebSphere MQ\exits.

On AIX, you can find xaswit.mak in the directory /usr/mqm/samp/xatm; on other
UNIX systems, you can find it in the directory /opt/mqm/samp/xatm.

Edit xaswit.mak to uncomment the lines appropriate to the version of Informix you
are using. Then execute the makefile using the command:
make -f xaswit.mak infswit

The generated 32-bit switch load file is placed in /var/mqm/exits.

The generated 64-bit switch load file is placed in /var/mqm/exits64.

Adding resource manager configuration information for Informix:

The next step is to modify the configuration information for the queue manager, as
described in “Adding configuration information to the queue manager” on page
162, to declare Informix as a participant in global units of work.
v On Windows and Linux (x86 platform) systems use the WebSphere MQ

Explorer. Specify the details of the switch load file in the queue manager
properties panel, under XA resource manager.

v On all other systems specify the details of the switch load file in the
XAResourceManager stanza in the queue manager’s qm.ini file.

Figure 13 is a UNIX sample, showing an XAResourceManager entry where the
database to be coordinated is called mydbname, this name being specified in the
XAOpenString:

Note: In Figure 13, ThreadOfControl is specified as PROCESS. This value is
required for the queue manager to use the Informix XA switch-load file. However,
also note that the supported levels of Informix do not allow multi-threaded XA
applications.

Sybase configuration

Do the following:
1. Ensure you have installed the Sybase XA libraries, for example by installing the

XA DTM option.
2. Check environment variable settings.
3. Enable Sybase XA support.
4. Create the Sybase switch load file.

XAResourceManager:
Name=myinformix
SwitchFile=infswit
XAOpenString=mydbname
ThreadOfControl=PROCESS

Figure 13. Sample XAResourceManager entry for Informix on UNIX platforms

Chapter 4. Configuring WebSphere MQ 171

|
|
|
|
|
||
|
|

|
|
|

|

|

|
|

|
|

|

|

|

|

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

|

|

|
|

|

|

|

5. Add resource manager configuration information.

A current list of levels of Sybase supported by WebSphere MQ is provided at:
http://www.ibm.com/support/docview.wss?rs=171&uid=swg27006467

Checking the Sybase environment variable settings:

Ensure that your Sybase environment variables are set for queue manager
processes as well as in your application processes. In particular, always set the
following environment variables before starting the queue manager:

SYBASE
The location of the Sybase product installation. For example, on UNIX
systems, use:
export SYBASE=/sybase

On Windows systems, use:
set SYBASE=c:\sybase

SYBASE_OCS
The directory under SYBASE where you have installed the Sybase client
files. For example, on UNIX systems, use:
export SYBASE_OCS=OCS-12_0

On Windows systems, use:
set SYBASE_OCS=OCS-12_0

Enabling Sybase XA support:

Within the Sybase XA configuration file ($SYBASE/$SYBASE_OCS/xa_config), define a
Logical Resource Manager (LRM) for each connection to the Sybase server that is
being updated.

An example of the contents of $SYBASE/$SYBASE_OCS/xa_config is shown in
Figure 14.

Creating the Sybase switch load file:

The easiest way to create the Sybase switch load file is to use the sample files
supplied with WebSphere MQ.

On Windows systems, you can find xaswit.mak in the directory C:\Program
Files\IBM\WebSphere MQ\tools\c\samples\xatm. To create the Sybase switch load
file with Microsoft Visual C++, use:
nmake /f xaswit.mak sybswit.dll

The generated switch file is placed in c:\Program Files\IBM\WebSphere MQ\exits.

The first line must always be a comment

[xa]

LRM=lrmname
server=servername

Figure 14. Example contents of $SYBASE/$SYBASE_OCS/xa_config

172 WebSphere MQ: System Administration Guide

|
|
|
|
|
|
||
|
|

|

|
|

|

|
|
|

|
|
|

|

|

|

|
|
|

|

|

|

|

|
|
|

|
|
|

|

|
|

|
|
|

|

|

http://www.ibm.com/support/docview.wss?rs=171&uid=swg27006467

On AIX, you can find xaswit.mak in the directory /usr/mqm/samp/xatm; on other
UNIX systems, you can find it in the directory /opt/mqm/samp/xatm.

Edit xaswit.mak to uncomment the lines appropriate to the version of Sybase you
are using. Then execute the makefile using the command:
make -f xaswit.mak sybswit

The generated 32-bit switch load file is placed in /var/mqm/exits.

The generated 64-bit switch load file is placed in /var/mqm/exits64.

Adding resource manager configuration information for Sybase:

The next step is to modify the configuration information for the queue manager, as
described in “Adding configuration information to the queue manager” on page
162, to declare Sybase as a participant in global units of work.
v On Windows and Linux (x86 platform) systems use the WebSphere MQ

Explorer. Specify the details of the switch load file in the queue manager
properties panel, under XA resource manager.

v On all other systems specify the details of the switch load file in the
XAResourceManager stanza in the queue manager’s qm.ini file.

Figure 15 shows a UNIX sample, which uses the database associated with the
lrmname LRM definition in the Sybase XA configuration file, $SYBASE/$SYBASE_OCS/
xa_config. Include a log file name if you want XA function calls to be logged:

Using multi-threaded programs with Sybase:

If you are using multi-threaded programs with WebSphere MQ global units of
work incorporating updates to Sybase, you must use the value THREAD for the
ThreadOfControl parameter as shown in Figure 15.

Also ensure that you link your program (and the switch load file) with the
threadsafe Sybase libraries (the _r versions).

Multiple database configurations

If you want to configure the queue manager so that updates to multiple databases
can be included within global units of work, add an XAResourceManager stanza
for each database.

If the databases are all managed by the same database manager, each stanza
defines a separate database. Each stanza specifies the same SwitchFile, but the
contents of the XAOpenString are different because it specifies the name of the
database being updated. For example, the stanzas shown in Figure 16 on page 174
configure the queue manager with the DB2 databases MQBankDB and MQFeeDB
on UNIX

XAResourceManager:
Name=mysybase
SwitchFile=sybswit
XAOpenString=-Uuser -Ppassword -Nlrmname -L/tmp/sybase.log -Txa
ThreadOfControl=THREAD

Figure 15. Sample XAResourceManager entry for Sybase on UNIX platforms

Chapter 4. Configuring WebSphere MQ 173

|
|
|
|
|
||
|
|

|
|

|
|

|

|

|

|

|
|
|

|
|
|

|
|

|
|
|
|

|

|
|
|

|
|

|

|
|
|

|
|
|
|
|
|

systems.

If the databases to be updated are managed by different database managers, add
an XAResourceManager stanza for each. In this case, each stanza specifies a
different SwitchFile. For example, if MQFeeDB is managed by Oracle instead of
DB2, use the following stanzas on UNIX systems:

In principle, there is no limit to the number of database instances that can be
configured with a single queue manager.

Note: For information on support for including Informix databases in multiple
database updates within global units of work, check the product readme file.

Security considerations

The following information is provided for guidance only. In all cases, refer to the
documentation provided with the database manager to determine the security
implications of running your database under the XA model.

An application process denotes the start of a global unit of work using the
MQBEGIN verb. The first MQBEGIN call that an application issues connects to all
participating databases by calling their client library code at the xa_open entry
point. All the database managers provide a mechanism for supplying a user ID
and password in their XAOpenString. This is the only time that authentication
information flows.

Note that, on UNIX platforms, fastpath applications must run with an effective
user ID of mqm while making MQI calls.

XAResourceManager:
Name=DB2 MQBankDB
SwitchFile=db2swit
XAOpenString=MQBankDB

XAResourceManager:
Name=DB2 MQFeeDB
SwitchFile=db2swit
XAOpenString=MQFeeDB

Figure 16. Sample XAResourceManager entries for multiple DB2 databases

XAResourceManager:
Name=DB2 MQBankDB
SwitchFile=db2swit
XAOpenString=MQBankDB

XAResourceManager:
Name=Oracle MQFeeDB
SwitchFile=oraswit
XAOpenString=Oracle_XA+Acc=P/myuser/mypassword+SesTm=35+LogDir=/tmp/ora.log+DB=MQFeeDB

Figure 17. Sample XAResourceManager entries for a DB2 and Oracle database

174 WebSphere MQ: System Administration Guide

|
|
|
|
|
|
|
|
|
||
|
|

|
|
|
|
|
|
|
|
|
||
|
|

|
|

|
|
|
|
|

|
|

|
|

|

|
|
|

|
|
|
|
|
|

|
|

Administration tasks

In normal operations, only a minimal amount of administration is necessary after
you have completed the configuration steps. The administration job is made easier
because the queue manager tolerates database managers not being available. In
particular this means that:
v The queue manager can start at any time without first starting each of the

database managers.
v The queue manager does not need to stop and restart if one of the database

managers becomes unavailable.

This allows you to start and stop the queue manager independently from the
database server.

Whenever contact is lost between the queue manager and a database, they need to
resynchronize when both become available again. Resynchronization is the process
by which any in-doubt units of work involving that database are completed. In
general, this occurs automatically without the need for user intervention. The
queue manager asks the database for a list of units of work that are in doubt. It
then instructs the database to either commit or roll back each of these in-doubt
units of work.

When a queue manager starts, it resynchronizes with each database. When an
individual database becomes unavailable, only that database needs to be
resynchronized the next time that the queue manager notices it is available again.

The queue manager regains contact with a previously unavailable database
automatically as new global units of work are started with MQBEGIN. It does this
by calling the xa_open function in the database client library. If this xa_open call
fails, MQBEGIN returns with a completion code of MQCC_WARNING and a
reason code of MQRC_PARTICIPANT_NOT_AVAILABLE. You can retry the
MQBEGIN call later.

Do not continue to attempt a global unit of work that involves updates to a
database that has indicated failure during MQBEGIN. There will not be a
connection to that database through which updates can be made. Your only
options are to end the program, or to retry MQBEGIN periodically in the hope that
the database might become available again.

Alternatively, you can use the rsvmqtrn command to resolve explicitly all in-doubt
units of work.

In-doubt units of work:

A database might be left with in-doubt units of work if contact with the queue
manager is lost after the database manager has been instructed to prepare. Until
the database server receives the outcome from the queue manager (commit or roll
back), it needs to retain the database locks associated with the updates.

Because these locks prevent other applications from updating or reading database
records, resynchronization needs to take place as soon as possible.

If, for some reason, you cannot wait for the queue manager to resynchronize with
the database automatically, you can use facilities provided by the database
manager to commit or roll back the database updates manually. In the X/Open
Distributed Transaction Processing: The XA Specification, this is called making a

Chapter 4. Configuring WebSphere MQ 175

|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|

|
|

|
|
|
|

heuristic decision. Use it only as a last resort because of the possibility of
compromising data integrity; you might, for example, mistakenly roll back the
database updates when all other participants have committed their updates.

It is far better to restart the queue manager, or use the rsvmqtrn command when
the database has been restarted, to initiate automatic resynchronization.

Displaying outstanding units of work with the dspmqtrn command:

While a database manager is unavailable, you can use the dspmqtrn command to
check the state of outstanding global units of work involving that database.

The dspmqtrn command displays only those units of work in which one or more
participants are in doubt, awaiting the decision from the queue manager to commit
or roll back the prepared updates.

For each of these global units of work, the state of each participant is displayed in
the output from dspmqtrn. If the unit of work did not update the resources of a
particular resource manager, it is not displayed.

With respect to an in-doubt unit of work, a resource manager is said to have done
one of the following things:

Prepared
The resource manager is prepared to commit its updates.

Committed
The resource manager has committed its updates.

Rolled-back
The resource manager has rolled back its updates.

Participated
The resource manager is a participant, but has not prepared, committed, or
rolled back its updates.

When the queue manager is restarted, it asks each database having an
XAResourceManager stanza for a list of its in-doubt global units of work. If the
database has not been restarted, or is otherwise unavailable, the queue manager
cannot yet deliver to the database the final outcomes for those units of work. The
outcome of the in-doubt units of work is delivered to the database at the first
opportunity when the database is again available.

In this case, the database manager is reported as being in prepared state until such
time as resynchronization has occurred.

Whenever the dspmqtrn command displays an in-doubt unit of work, it first lists
all the possible resource managers that could be participating. These are allocated a
unique identifier, RMId, which is used instead of the Name of the resource
managers when reporting their state with respect to an in-doubt unit of work.

Figure 18 on page 177 shows the result of issuing the following command:
dspmqtrn -m MY_QMGR

176 WebSphere MQ: System Administration Guide

|
|
|

|
|

|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|

|

|

The output in Figure 18 shows that there are three resource managers associated
with the queue manager. The first is resource manager 0, which is the queue
manager itself. The other two resource manager instances are the MQBankDB and
MQFeeDB DB2 databases.

The example shows only a single in-doubt unit of work. A message is issued for all
three resource managers, which means that updates were made to the queue
manager and both DB2 databases within the unit of work.

The updates made to the queue manager, resource manager 0, have been
committed. The updates to the DB2 databases are in prepared state, which means
that DB2 must have become unavailable before it was called to commit the updates
to the MQBankDB and MQFeeDB databases.

The in-doubt unit of work has an external identifier called an XID (transaction id).
This is a piece of data given to DB2 by the queue manager to identify its portion of
the global unit of work.

Resolving outstanding units of work with the rsvmqtrn command:

The output shown in Figure 18 shows a single in-doubt unit of work in which the
commit decision has yet to be delivered to both DB2 databases.

To complete this unit of work, the queue manager and DB2 need to resynchronize
when DB2 next becomes available. The queue manager uses the start of new units
of work as an opportunity to regain contact with DB2. Alternatively, you can
instruct the queue manager to resynchronize explicitly using the rsvmqtrn
command.

Do this soon after DB2 has been restarted, so that any database locks associated
with the in-doubt unit of work are released as quickly as possible. Use the -a
option, which tells the queue manager to resolve all in-doubt units of work. In the
following example, DB2 has restarted, so the queue manager can resolve the
in-doubt unit of work:
> rsvmqtrn -m MY_QMGR -a
Any in-doubt transactions have been resolved.

Mixed outcomes and errors:

Although the queue manager uses a two-phase commit protocol, this does not
completely remove the possibility of some units of work completing with mixed
outcomes. This is where some participants commit their updates and some back
out their updates.

AMQ7107: Resource manager 0 is MQSeries.
AMQ7107: Resource manager 1 is DB2 MQBankDB.
AMQ7107: Resource manager 2 is DB2 MQFeeDB.

AMQ7056: Transaction number 0,1.
XID: formatID 5067085, gtrid_length 12, bqual_length 4

gtrid [3291A5060000201374657374]
bqual [00000001]

AMQ7105: Resource manager 0 has committed.
AMQ7104: Resource manager 1 has prepared.
AMQ7104: Resource manager 2 has prepared.

Figure 18. Sample dspmqtrn output

Chapter 4. Configuring WebSphere MQ 177

|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|

Units of work that complete with a mixed outcome have serious implications
because shared resources that should have been updated as a single unit of work
are no longer in a consistent state.

Mixed outcomes are mainly caused when heuristic decisions are made about units
of work instead of allowing the queue manager to resolve in-doubt units of work
itself. Such decisions are outside the queue manager’s control.

Whenever the queue manager detects a mixed outcome, it produces FFST
information and documents the failure in its error logs, with one of two messages:
v If a database manager rolls back instead of committing:

AMQ7606 A transaction has been committed but one or more resource
managers have rolled back.

v If a database manager commits instead of rolling back:
AMQ7607 A transaction has been rolled back but one or more resource

managers have committed.

Further messages identify the databases that are heuristically damaged. It is then
your responsibility to locally restore consistency to the affected databases. This is a
complicated procedure in which you need first to isolate the update that has been
wrongly committed or rolled back, then to undo or redo the database change
manually.

Changing configuration information:

After the queue manager has successfully started to coordinate global units of
work, do not change any of the resource manager configuration information.

If you need to change the configuration information you can do so at any time, but
the changes do not take effect until after the queue manager has been restarted.

If you remove the resource manager configuration information for a database, you
are effectively removing the ability for the queue manager to contact that database
manager.

Never change the Name attribute in any of your resource manager configuration
information. This attribute uniquely identifies that database manager instance to
the queue manager. If you change this unique identifier, the queue manager
assumes that the database has been removed and a completely new instance has
been added. The queue manager still associates outstanding units of work with the
old Name, possibly leaving the database in an in-doubt state.

Removing database manager instances:

If you need to remove a database from your configuration permanently, ensure
that the database is not in doubt before you restart the queue manager. Database
products provide commands for listing in-doubt transactions. If there are any
in-doubt transactions, first allow the queue manager to resynchronize with the
database. Do this by starting the queue manager. You can verify that
resynchronization has taken place by using the rsvmqtrn command or the
database’s own command for viewing in-doubt units of work. Once you are
satisfied that resynchronization has taken place, end the queue manager and
remove the database’s configuration information.

If you fail to observe this procedure the queue manager still remembers all
in-doubt units of work involving that database. A warning message, AMQ7623, is

178 WebSphere MQ: System Administration Guide

|
|
|

|
|
|

|
|

|

|
|

|

|
|

|
|
|
|
|

|

|
|

|
|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

issued every time the queue manager is restarted. If you are never going to
configure this database with the queue manager again, use the -r option of the
rsvmqtrn command to instruct the queue manager to forget about the database’s
participation in its in-doubt transactions. The queue manager forgets about such
transactions only when in-doubt transactions have been completed with all
participants.

There are times when you might need to remove some resource manager
configuration information temporarily. On UNIX systems this is best achieved by
commenting out the stanza so that it can be easily reinstated at a later time. You
might decide to do this if there are errors every time the queue manager contacts a
particular database or database manager. Temporarily removing the resource
manager configuration information concerned allows the queue manager to start
global units of work involving all the other participants. Here is an example of a
commented-out XAResourceManager stanza follows:

On Windows systems, use the WebSphere MQExplorer to delete the information
about the database manager instance. Take great care to type in the correct name in
the Name field when reinstating it. If you mistype the name, you may face in-doubt
problems, as described in “Changing configuration information” on page 178.

XA dynamic registration

The XA specification provides a way of reducing the number of xa_* calls that a
transaction manager makes to a resource manager. This optimization is known as
dynamic registration. Dynamic registration is supported by DB2. Other databases
might support it; consult the documentation for your database product for details.

Why is the dynamic registration optimization useful? In your application, some
global units of work might contain updates to database tables; others might not
contain such updates. When no persistent update has been made to a database’s
tables, there is no need to include that database in the commit protocol that occurs
during MQCMIT.

Whether or not your database supports dynamic registration, your application calls
xa_open during the first MQBEGIN call on a WebSphere MQ connection. It also
calls xa_close on the subsequent MQDISC call. The pattern of subsequent XA calls
depends on whether the database supports dynamic registration:

If your database does not support dynamic registration...
Every global unit of work involves several XA function calls made by
WebSphere MQ code into the database client library, regardless of whether
you made a persistent update to the tables of that database within your
unit of work. These include:
v xa_start and xa_end from the application process. These are used to

declare the beginning and end of a global unit of work.

This database has been temporarily removed
#XAResourceManager:
Name=mydb2
SwitchFile=db2swit
XAOpenString=mydbname,myuser,mypassword,toc=t
ThreadOfControl=THREAD

Figure 19. Commented- out XAResourceManager stanza on UNIX systems

Chapter 4. Configuring WebSphere MQ 179

|
|
|
|
|
|
||
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

v xa_prepare, xa_commit, and xa_rollback from the queue manager agent
process, amqzlaa0. These are used to deliver the outcome of the global
unit of work: the commit or rollback decision.

In addition, the queue manager agent process also calls xa_open during the
first MQBEGIN.

If your database supports dynamic registration...
The WebSphere MQ code makes only those XA function calls that are
necessary. For a global unit of work that has not involved persistent
updates to database resources, there are no XA calls to the database. For a
global unit of work that has involved such persistent updates, the calls are
to:
v xa_end from the application process to declare the end of the global unit

of work.
v xa_prepare, xa_commit, and xa_rollback from the queue manager agent

process, amqzlaa0. These are used to deliver the outcome of the global
unit of work: the commit or rollback decision.

For dynamic registration to work, it is vital that the database has a way of telling
WebSphere MQ when it has performed a persistent update that it wants to be
included in the current global unit of work. WebSphere MQ provides the ax_reg
function for this purpose.

The database’s client code that runs in your application process finds the ax_reg
function and calls it, to dynamically register the fact it has done persistent work
within the current global unit of work. In response to this ax_reg call, WebSphere
MQ records that the database has participated. If this is the first ax_reg call on this
WebSphere MQ connection, the queue manager agent process calls xa_open.

The database client code make this ax_reg call when it is running in your process,
for example, during an SQL UPDATE call or whatever call in the database’s client
API is responsible

Error conditions:

There is an opportunity here for a confusing failure in the queue manager. Here is
a common example. If you forget to set your database environment variables
properly before starting your queue manager, the queue manager’s calls to xa_open
fail. No global units of work can be used.

To avoid this, ensure that you have set the relevant environment variables before
starting the queue manager. Review your database product’s documentation, and
the advice given in “Checking the DB2 environment variable settings” on page 165,
“Checking the Oracle environment variable settings” on page 167, and “Checking
the Sybase environment variable settings” on page 172.

With all database products, the queue manager calls xa_open once at queue
manager startup, as part of the recovery session (as explained in “Administration
tasks” on page 175). This xa_open call fails if you set your database environment
variables incorrectly, but it does not cause the queue manager to fail to start. This
is because the same xa_open error code is used by the database client library to
indicate that the database server is unavailable. We do not treat this as a serious
error, as the queue manager must be able to start to continue processing data
outside global units of work involving that database.

180 WebSphere MQ: System Administration Guide

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

Subsequent calls to xa_open are made from the queue manager during the first
MQBEGIN on a WebSphere MQ connection (if dynamic registration is not being
used) or during a call by the database client code to the WebSphere MQ-provided
ax_reg function (if dynamic registration is being used).

The timing of any error conditions (or, occasionally, FFST reports) depends on
whether you are using dynamic registration:
v If you are using dynamic registration, your MQBEGIN call could succeed, but

your SQL UPDATE (or similar) database call will fail.
v If you are not using dynamic registration, your MQBEGIN call will fail.

Ensure that your environment variables are set correctly in your application and
queue manager processes.

Summarizing XA calls:

Table 13 lists the calls that are made to the XA functions in a database client library
as a result of the various MQI calls that control global units of work. This is not a
complete description of the protocol described in the XA specification; we have
provided it as a brief overview.

Note that xa_start and xa_end calls are always called by WebSphere MQ code in
the application process, whereas xa_prepare, xa_commit, and xa_rollback are
always called from the queue manager agent process, amqzlaa0.

The xa_open and xa_close calls shown in this table are all made from the
application process. The queue manager agent process calls xa_open in the
circumstances described in “Error conditions” on page 180.

Table 13. Summary of XA function calls

MQI call XA calls made with dynamic
registration

XA calls made without
dynamic registration

First MQBEGIN xa_open xa_open
xa_start

Subsequent MQBEGIN No XA calls xa_start

MQCMIT (without ax_reg
being called during the
current global unit of work)

No XA calls xa_end
xa_prepare
xa_commit
xa_rollback

MQCMIT (with ax_reg being
called during the current
global unit of work)

xa_end
xa_prepare
xa_commit
xa_rollback

Not applicable. No calls are
made to ax_reg in
non-dynamic mode.

MQBACK (without ax_reg
being called during the
current global unit of work)

No XA calls xa_end
xa_rollback

MQBACK (with ax_reg
being called during the
current global unit of work)

xa_end
xa_rollback

Not applicable. No calls are
made to ax_reg in
non-dynamic mode.

MQDISC, where MQCMIT or
MQBACK was called first. If
they were not, MQCMIT
processing is first done
during MQDISC.

xa_close xa_close

Chapter 4. Configuring WebSphere MQ 181

|
|
|
|

|
|

|
|

|

|
|

|

|
|
|
|

|
|
|

|
|
|

||

||
|
|
|

|||
|

|||

|
|
|

||
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

||
|

|
|
|

|
|
|
|
|

|
|
|
|
|

||

Table 13. Summary of XA function calls (continued)

MQI call XA calls made with dynamic
registration

XA calls made without
dynamic registration

Notes:

1. For MQCMIT, xa_commit is called if xa_prepare is successful. Otherwise, xa_rollback is
called.

Scenario 2: Other software provides the coordination

In scenario 2, an external transaction manager coordinates global units of work,
starting and committing them under control of the transaction manager’s API. The
MQBEGIN, MQCMIT, and MQBACK verbs are unavailable.

This section describes this scenario, including:
v “External syncpoint coordination”
v “Using CICS” on page 184
v “Using the Microsoft Transaction Server (COM+)” on page 189

External syncpoint coordination

A global unit of work can also be coordinated by an external X/Open
XA-compliant transaction manager. Here the WebSphere MQ queue manager
participates in, but does not coordinate, the unit of work.

The flow of control in a global unit of work coordinated by an external transaction
manager is as follows:
1. An application tells the external syncpoint coordinator (for example, TXSeries)

that it wants to start a transaction.
2. The syncpoint coordinator tells known resource managers, such as WebSphere

MQ, about the current transaction.
3. The application issues calls to resource managers associated with the current

transaction. For example, the application could issue MQGET calls to
WebSphere MQ.

4. The application issues a commit or backout request to the external syncpoint
coordinator.

5. The syncpoint coordinator completes the transaction by issuing the appropriate
calls to each resource manager, typically using two-phase commit protocols.

The supported levels of external syncpoint coordinators that can provide a
two-phase commit process for transactions in which WebSphere MQ participates
are defined at: http://www.ibm.com/support/docview.wss?rs=171
&uid=swg27006467

See the WebSphere MQ Application Programming Guide for information about
writing and building transactions to be coordinated by an external syncpoint
coordinator.

The rest of this chapter describes how to enable external units of work.

The WebSphere MQ XA switch structure:

182 WebSphere MQ: System Administration Guide

|

||
|
|
|

|

|
|
|

|

|
|
|

|

|

|

|

|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|

|

|

http://www.ibm.com/support/docview.wss?rs=171&uid=swg27006467
http://www.ibm.com/support/docview.wss?rs=171&uid=swg27006467

Each resource manager participating in an externally coordinated unit of work
must provide an XA switch structure. This structure defines both the capabilities of
the resource manager and the functions that are to be called by the syncpoint
coordinator.

WebSphere MQ provides two versions of this structure:
v MQRMIXASwitch for static XA resource management
v MQRMIXASwitchDynamic for dynamic XA resource management

Consult your transaction manager documentation to determine whether to use the
static or dynamic resource management interface. Wherever a transaction manager
supports it, we recommend that you use dynamic XA resource management.

Some 64-bit transaction managers treat the long type in the XA specification as
64-bit, and some treat it as 32-bit. WebSphere MQ supports both models:
v If your transaction manager is 32-bit, or your transaction manager is 64-bit but

treats the long type as 32-bit, use the switch load file listed in Table 14.
v If your transaction manager is 64-bit and treats the long type as 64-bit, use the

switch load file listed in Table 15.

A list of known 64-bit transaction managers that treat the long type as 64-bit is
provided in Table 16 on page 184. Consult your transaction manager
documentation if you are unsure which model your transaction manager uses.

Table 14. XA switch load file names

Platform
Switch load file name
(server)

Switch load file name
(extended transactional client)

Windows mqmxa.dll mqcxa.dll

AIX (nonthreaded) libmqmxa.a libmqcxa.a

AIX (threaded) libmqmxa_r.a libmqcxa_r.a

HP-UX (nonthreaded) libmqmxa.so libmqcxa.so

HP-UX (threaded) libmqmxa_r.so libmqcxa_r.so

Linux (nonthreaded) libmqmxa.so libmqcxa.so

Linux (threaded) libmqmxa_r.so libmqcxa_r.so

Solaris libmqmxa.so libmqcxa.so

Table 15. Alternative 64-bit XA switch load file names

Platform
Switch load file name
(server)

Switch load file name
(extended transactional client)

AIX (nonthreaded) libmqmxa64.a libmqcxa64.a

AIX (threaded) libmqmxa64_r.a libmqcxa64_r.a

HP-UX (nonthreaded) libmqmxa64.so libmqcxa64.so

HP-UX (threaded) libmqmxa64_r.so libmqcxa64_r.so

Linux (nonthreaded) libmqmxa64.so libmqcxa64.so

Linux (threaded) libmqmxa64_r.so libmqcxa64_r.so

Solaris libmqmxa64.so libmqcxa64.so

Chapter 4. Configuring WebSphere MQ 183

|
|
|
|

|

|

|

|
|
|

|
|

|
|

|
|

|
|
|

||

|
|
|
|
|

|||

|||

|||

|||

|||

|||

|||

|||
|

||

|
|
|
|
|

|||

|||

|||

|||

|||

|||

|||
|

Table 16. 64-bit transaction managers that require the alternate 64-bit switch load file

Transaction Manager

Tuxedo

Some external syncpoint coordinators (not CICS) require that each resource
manager participating in a unit of work supplies its name in the name field of the
XA switch structure. The WebSphere MQ resource manager name is
MQSeries_XA_RMI.

The syncpoint coordinator defines how the WebSphere MQ XA switch structure
links to it. Information about linking the WebSphere MQ XA switch structure with
CICS is provided in “Using CICS.” For information about linking the WebSphere
MQ XA switch structure with other XA-compliant syncpoint coordinators, consult
the documentation supplied with those products.

The following considerations apply to using WebSphere MQ with all XA-compliant
syncpoint coordinators:
v The xa_info structure passed on any xa_open call by the syncpoint coordinator

includes the name of a WebSphere MQ queue manager. The name takes the
same form as the queue-manager name passed to the MQCONN call. If the
name passed on the xa_open call is blank, the default queue manager is used.
Alternatively, the xa_info structure can contain values for the TPM and AXLIB
parameters. The TPM parameter specifies the transaction manager being used.
The valid values are CICS, TUXEDO and ENCINA. The AXLIB parameter
specifies the name of the library that contains the transaction manager’s ax_reg
and ax_unreg functions. For more information on these parameters, see the
section about configuring extended transactional clients in WebSphere MQ
Clients. If the xa_info structure contains either of these parameters, the queue
manager name is specified in the QMNAME parameter, unless the default queue
manager is being used.

v Only one queue manager at a time can participate in a transaction coordinated
by an instance of an external syncpoint coordinator. The syncpoint coordinator is
effectively connected to the queue manager, and is subject to the rule that only
one connection at a time is supported.

v All applications that include calls to an external syncpoint coordinator can
connect only to the queue manager that is participating in the transaction
managed by the external coordinator (because they are already effectively
connected to that queue manager). However, such applications must issue an
MQCONN call to obtain a connection handle, and an MQDISC call before they
exit.

v A queue manager with resource updates coordinated by an external syncpoint
coordinator must start before the external syncpoint coordinator. Similarly, the
syncpoint coordinator must end before the queue manager.

v If your external syncpoint coordinator terminates abnormally, stop and restart
your queue manager before restarting the syncpoint coordinator to ensure that
any messaging operations uncommitted at the time of the failure are properly
resolved.

Using CICS

CICS is one of the elements of TXSeries. The versions of TXSeries that are
XA-compliant (and use a two-phase commit process) are defined at:
http://www.ibm.com/support/docview.wss?rs=171&uid=swg27006467

184 WebSphere MQ: System Administration Guide

||

|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

http://www.ibm.com/support/docview.wss?rs=171&uid=swg27006467

The CICS two-phase commit process:

WebSphere MQ also supports other transaction managers. See
http://www.ibm.com/support/docview.wss?rs=171&uid=swg27006467 for the
current lists of supported software.

Requirements of the two-phase commit process:

When you use the CICS two-phase commit process with WebSphere MQ, note the
following requirements:
v WebSphere MQ and CICS must reside on the same physical machine.
v WebSphere MQ does not support CICS on a WebSphere MQ client.
v You must start the queue manager, with its name specified in the XAD resource

definition stanza, before you attempt to start CICS. Failure to do this will
prevent you from starting CICS if you have added an XAD resource definition
stanza for WebSphere MQ to the CICS region.

v Only one WebSphere MQ queue manager can be accessed at a time from a
single CICS region.

v A CICS transaction must issue an MQCONN request before it can access
WebSphere MQ resources. The MQCONN call must specify the name of the
WebSphere MQ queue manager specified on the XAOpen entry of the XAD
resource definition stanza for the CICS region. If this entry is blank, the
MQCONN request must specify the default queue manager.

v A CICS transaction that accesses WebSphere MQ resources must issue an
MQDISC call from the transaction before returning to CICS. Failure to do this
might mean that the CICS application server is still connected, leaving queues
open. Additionally, if you do not install a task termination exit (see “Sample task
termination exit” on page 188), the CICS application server might later end
abnormally, perhaps during a subsequent transaction.

v You must ensure that the CICS user ID (cics) is a member of the mqm group, so
that the CICS code has the authority to call WebSphere MQ.
For transactions running in a CICS environment, the queue manager adapts its
methods of authorization and determining context as follows:
– The queue manager queries the user ID under which CICS runs the

transaction. This is the user ID checked by the Object Authority Manager, and
is used for context information.

– In the message context, the application type is MQAT_CICS.
– The application name in the context is copied from the CICS transaction

name.

General XA support:

General XA is not supported on i5/OS.

An XA switch load module is provided to enable you to link CICS with
WebSphere MQ on UNIX systems. Additionally, sample source code files are
provided to enable you to develop the XA switches for other transaction messages.
The names of the switch load modules provided are:

Chapter 4. Configuring WebSphere MQ 185

|

|
|
|

|

|
|

|

|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|

|
|

|

|

|
|
|
|

http://www.ibm.com/support/docview.wss?rs=171&uid=swg27006467

Table 17. Essential code for CICS applications: XA initialization routine

C (source) C (exec) - add one of the following to your
XAD.Stanza

amqzscix.c amqzsc - TXSeries for AIX, Version 5.1,
amqzsc - TXSeries for HP-UX, Version 5.1
amqzsc - TXSeries for Sun Solaris, Version 5.1

amqzscin.c mqmc4swi - TXSeries for Windows, Version 5.1

Building libraries for use with TXSeries for Multiplatforms version 5:

Building libraries for use with TXSeries for Multiplatforms version 5

Pre-built switch load files are supplied with WebSphere MQ. These are shared
libraries (DLLs on Windows) for use with CICS programs in which you require
2-phase commit using the XA protocol. The names of these pre-built libraries are in
the table Essential code for CICS applications: XA initialization routine. Sample
source code is also supplied in the following directories:

Platform Directory Source file

AIX /usr/mqm/samp/ amqzscix.c

Other UNIX platforms /opt/mqm/samp/ amqzscix.c

Windows c:\Program
Files\IBM\Websphere
MQ\Tools\c\Samples

amqzscin.c

To build the switch load file from the sample source, follow the appropriate
instructions for your platform:

AIX
Issue the following command:

xlC_r4 /usr/mqm/samp/amqzscix.c -I/usr/lpp/encina/include -e amqzscix -o amqzsc
/usr/lpp/cics/lib/regxa_swxa.o -L/usr/lpp/cics/lib -L/usr/lpp/encina/lib
-lmqmcics_r -lmqmxa_r -lmqm_r -lcicsrt -lEncina -lEncServer -ldce

Solaris
Issue the following command:

/opt/SUNWspro/bin/cc -s -l/opt/encina/include amqzscix.c -G -o amqzscix -e
CICS_XA_Init -L/opt/encina/lib -L/opt/dcelocal/lib /opt/cics/lib/reqxa_swxa.o
-lmqmcics -lmqmxa -lmqm -lmqmcs_d -lmqmzse -lcicsrt -lEncina -lEncSfs -ldce

HP-UX
Issue the following command:

cc -c -s -I/opt/encina/include /opt/mqm/samp/amqzscix.c -Aa +z -o amqzscix.o ld -b
-o amqzscix amqzscix.o /opt/cics/lib/regxa_swxa.o +e CICS_XA_Init \
-L/opt/encina/lib -L/opt/cics/lib -lmqmxa_r -lmqm_r -ldbm -lc -lm

Windows
Follow these steps:
1. Use the cl command to build amqzscin.obj by compiling using at least the

following:
cl.exe -c -IEncinaPath\include -IWebSphereMQPath\include -Gz -LD amqzscin.c

2. Create a module definition file named mqmc1415.def containing the
following lines:

186 WebSphere MQ: System Administration Guide

||

||
|

||
|
|

||
|

|

|

|
|
|
|
|

||||

|||

|||

||
|
|

|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|

|
|

LIBRARY MQMC4SWI
EXPORTS
CICS_XA_Init

3. Use the lib command to build an export file and an import library using at
least the following:
lib -def:mqmc4swi.def -out:mqmc4swi.lib

If the lib command is successful then an mqmc4swi.exp will also have been
built.

4. Use the link command to build mqmc4swi.dll by linking using at least the
following:
link.exe -dll -nod -out:mqmc4swi.dll

amqzscin.obj CicsPath\lib\regxa_swxa.obj
mqmc4swi.exp mqmcics4.lib
CicsPath\lib\libcicsrt.lib
DcePath\lib\libdce.lib DcePath\lib\pthreads.lib
EncinaPath\lib\libEncina.lib
EncinaPath\lib\libEncServer.lib
msvcrt.lib kernel32.lib

Building libraries for use with TXSeries for Multiplatforms version 6:

Building libraries for use with TXSeries for Multiplatforms version 6

The switch load file and task termination user exit are shared libraries (DLLs on
Windows). The switch load file is needed with CICS programs in which you
require 2-phase commit using the XA protocol. The task termination user exit is
needed to provide clean shutdown of the MQ runtime in your application in case
of system problems

The pre-built switch load file and task termination user exit supplied with
WebSphere MQ are usable with TXSeries CICS version 5, but not with TXSeries
version 6. It is necessary for you to build a new switch load file and task
termination user exit before WebSphere MQ can be used with TXSeries version 6.

The sample source files supplied for use with TXSeries CICS version 5 (see the
TXSeries CICS 5 page) can be used with TXSeries version 6, but please note you
must compile and link them using TXSeries 6 header files and libraries as per the
requirements of TXSeries 6.

The names of these source files are the same as those listed on the TXSeries CICS 5
page. Consult the TXSeries sample makefiles and product documentation for
examples of how the switch load file and task termination user exit must be
compiled and linked.

WebSphere MQ XA support and Tuxedo:

WebSphere MQ on Windows and UNIX systems can block Tuxedo-coordinated XA
applications indefinitely in xa_start. This can occur only when two or more
processes coordinated by Tuxedo in a single global transaction attempt to access
WebSphere MQ using the same transaction branch ID (XID). If Tuxedo gives each
process in the global transaction a different XID to use with WebSphere MQ, this
cannot occur.

To avoid the problem, configure each application in Tuxedo that accesses
WebSphere MQ under a single global transaction ID (gtrid), within its own Tuxedo
server group. Processes in the same server group use the same XID when accessing

Chapter 4. Configuring WebSphere MQ 187

|
|
|

|
|

|

|
|

|
|

|
|
|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|

resource managers on behalf of a single gtrid, and are therefore vulnerable to
blocking in xa_start in WebSphere MQ. Processes in different server groups use
separate XIDs when accessing resource managers and so do not have to serialize
their transaction work in WebSphere MQ.

Enabling the CICS two-phase commit process:

To enable CICS to use a two-phase commit process to coordinate transactions that
include MQI calls, add a CICS XAD resource definition stanza entry to the CICS
region.

Here is an example of adding an XAD stanza entry for WebSphere MQ for
Windows, where <Drive> is the drive where WebSphere MQ is installed (for
example, D:).
cicsadd –cxad –r<cics_region> \

ResourceDescription="MQM XA Product Description" \
SwitchLoadFile="<Drive>:\Program Files\IBM\WebSphere MQ\bin\mqmc4swi.dll" \
XAOpen=<queue_manager_name>

For extended transactional clients, use the switch load file mqcc4swi.dll.

Here is an example of adding an XAD stanza entry for WebSphere MQ for UNIX
systems:
cicsadd –cxad –r<cics_region> \

ResourceDescription="MQM XA Product Description" \
SwitchLoadFile="/opt/mqm/lib/amqzsc" \
XAOpen=<queue_manager_name>

For extended transactional clients, use the switch load file amqczsc.

For information about using the cicsadd command, see the CICS Administration
Reference, or CICS Administration Guide for your platform.

Calls to WebSphere MQ can be included in a CICS transaction, and the WebSphere
MQ resources will be committed or rolled back as directed by CICS. This support
is not available to client applications.

You must issue an MQCONN from your CICS transaction in order to access
WebSphere MQ resources, followed by a corresponding MQDISC on exit.

Enabling CICS user exits:

Before using a CICS user exit, read the CICS Administration Guide for your
platform.

A CICS user exit point (normally referred to as a user exit) is a place in a CICS
module at which CICS can transfer control to a program that you have written (a
user exit program), and at which CICS can resume control when your exit program
has finished its work.

Sample task termination exit:

WebSphere MQ supplies sample source code for a CICS task termination exit in
the following directories:

188 WebSphere MQ: System Administration Guide

|
|
|
|

|

|
|
|

|
|
|

|
|
|
|

|

|
|

|
|
|
|

|

|
|

|
|
|

|
|

|

|
|

|
|
|
|

|

|
|

Table 18. CICS task termination exits

Platform Directory Source file

AIX /opt/mqm/samp amqzscgx.c

Other UNIX systems /usr/mqm/samp amqzscgx.c

Windows c:\Program
Files\IBM\Websphere
MQ\Tools\c\Samples

amqzscgn.c

The build instructions for the sample task termination exit are contained in the
comments near the top of each source file.

This exit is invoked by CICS at normal and abnormal task termination (after any
syncpoint has been taken). No recoverable work is permitted in the exit program.

These functions are only used in a WebSphere MQ and CICS context in which the
CICS version supports the XA interface. CICS refers to these libraries as
″programs″ or ″user exits″.

CICS has a number of user exits and amqzscgx, if used, is defined and enabled on
CICS as the ″Task termination user exit (UE014015)″, that is, exit number 15.

When the task termination exit is called by CICS, CICS has already informed
WebSphere MQ of the task’s termination state and WebSphere MQ has taken the
appropriate action (commit or rollback). All the exit does is to issue an MQDISC to
clean up.

One purpose of installing and configuring your CICS system to use a task
termination exit is to protect your system against some of the consequences of
faulty application code. For example, if your CICS transaction ends abnormally
without first calling MQDISC, and has no task termination exit installed, then you
might see (within around 10 seconds) a subsequent catastrophic failure of the CICS
region. This is because WebSphere MQ’s health thread, that runs in the cicsas
process, will not have been posted and given time to clean up and return. The
symptoms might be that the cicsas process ends immediately, having written FFST
reports to /var/mqm/errors or the equivalent location on Windows.

Using the Microsoft Transaction Server (COM+)

COM+ (Microsoft Transaction Server) is designed to help users run business logic
applications in a typical middle tier server. COM+ divides work up into activities,
which are typically short independent chunks of business logic, such as transfer
funds from account A to account B. COM+ relies heavily on object orientation and in
particular on COM; loosely a COM+ activity is represented by a COM (business)
object.

COM+ is an integrated part of the operating system. To use COM+ on Windows
2000 and Windows XP, you need Hotfix Q313582 (also known as COM+ Rollup
Package 19.1).

COM+ provides three services to the business object administrator, removing much
of the worry from the business object programmer:
v Transaction management
v Security
v Resource pooling

Chapter 4. Configuring WebSphere MQ 189

||

|||

|||

|||

||
|
|

|

|

|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

You usually use COM+ with front end code that is a COM client to the objects
held within COM+, and back end services such as a database, with WebSphere MQ
bridging between the COM+ business object and the back end.

The front end code can be a standalone program, or an Active Server Page (ASP)
hosted by the Microsoft Internet Information Server (IIS). The front end code can
reside on the same computer as COM+ and its business objects, with connection
through COM. Alternatively, the front end code can reside on a different computer,
with connection through DCOM. You can use different clients to access the same
COM+ business object in different situations.

The back end code can reside on the same computer as COM+ and its business
objects, or on a different computer with connection through any of the WebSphere
MQ supported protocols.

For detailed information on using COM+, including how to configure it, and how
to develop your applications and object code, read the WebSphere MQ COM+
Component Services Support part of the WebSphere MQ Help Center.

The WebSphere MQ dead-letter queue handler

What is a dead-letter queue, how are messages put on it, and how do you manage
it?

A dead-letter queue (DLQ), sometimes referred to as an undelivered-message queue, is a
holding queue for messages that cannot be delivered to their destination queues.
Every queue manager in a network should have an associated DLQ.

Messages can be put on the DLQ by queue managers, message channel agents
(MCAs), and applications. All messages on the DLQ must be prefixed with a
dead-letter header structure, MQDLH.

Messages put on the DLQ by a queue manager or a message channel agent always
have an MQDLH; applications putting messages on the DLQ must supply an
MQDLH. The Reason field of the MQDLH structure contains a reason code that
identifies why the message is on the DLQ.

All WebSphere MQ environments need a routine to process messages on the DLQ
regularly. WebSphere MQ supplies a default routine, called the dead-letter queue
handler (the DLQ handler), which you invoke using the runmqdlq command.

Instructions for processing messages on the DLQ are supplied to the DLQ handler
by means of a user-written rules table. That is, the DLQ handler matches messages
on the DLQ against entries in the rules table; when a DLQ message matches an
entry in the rules table, the DLQ handler performs the action associated with that
entry.

Invoking the DLQ handler

Invoke the DLQ handler using the runmqdlq command. You can name the DLQ
you want to process and the queue manager you want to use in two ways:
v As parameters to runmqdlq from the command prompt. For example:

runmqdlq ABC1.DEAD.LETTER.QUEUE ABC1.QUEUE.MANAGER <qrule.rul

v In the rules table. For example:

190 WebSphere MQ: System Administration Guide

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|

|

|

INPUTQ(ABC1.DEAD.LETTER.QUEUE) INPUTQM(ABC1.QUEUE.MANAGER)

The above examples apply to the DLQ called ABC1.DEAD.LETTER.QUEUE,
owned by the queue manager ABC1.QUEUE.MANAGER.

If you do not specify the DLQ or the queue manager as shown above, the default
queue manager for the installation is used along with the DLQ belonging to that
queue manager.

The runmqdlq command takes its input from stdin; you associate the rules table
with runmqdlq by redirecting stdin from the rules table.

To run the DLQ handler you must be authorized to access both the DLQ itself and
any message queues to which messages on the DLQ are forwarded. For the DLQ
handler to put messages on queues with the authority of the user ID in the
message context, you must also be authorized to assume the identity of other
users.

For more information about the runmqdlq command, see “runmqdlq” on page
345.

The sample DLQ handler, amqsdlq

In addition to the DLQ handler invoked using the runmqdlq command,
WebSphere MQprovides the source of a sample DLQ handler, amqsdlq, whose
function is similar to that provided by runmqdlq. You can customize amqsdlq to
provide a DLQ handler that meets your requirements. For example, you might
decide that you want a DLQ handler that can process messages without dead-letter
headers. (Both the default DLQ handler and the sample, amqsdlq, process only
those messages on the DLQ that begin with a dead-letter header, MQDLH.
Messages that do not begin with an MQDLH are identified as being in error, and
remain on the DLQ indefinitely.)

In WebSphere MQ for Windows, the source of amqsdlq is supplied in the
directory:
c:\Program Files\IBM\WebSphere MQ\tools\c\samples\dlq

and the compiled version is supplied in the directory:
c:\Program Files\IBM\WebSphere MQ\tools\c\samples\bin

In WebSphere MQ for UNIX systems, the source of amqsdlq is supplied in the
directory:

/opt/mqm/samp/dlq (/usr/mqm/samp/dlq on AIX)

and the compiled version is supplied in the directory:

/opt/mqm/samp/bin (/usr/mqm/samp/bin on AIX)

The DLQ handler rules table

The DLQ handler rules table defines how the DLQ handler is to process messages
that arrive on the DLQ. There are two types of entry in a rules table:
v The first entry in the table, which is optional, contains control data.

Chapter 4. Configuring WebSphere MQ 191

|

|
|

|
|
|

|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

v All other entries in the table are rules for the DLQ handler to follow. Each rule
consists of a pattern (a set of message characteristics) that a message is matched
against, and an action to be taken when a message on the DLQ matches the
specified pattern. There must be at least one rule in a rules table.

Each entry in the rules table comprises one or more keywords.

Control data

This section describes the keywords that you can include in a control-data entry in
a DLQ handler rules table. Note the following:
v The default value for a keyword, if any, is underlined.
v The vertical line (|) separates alternatives, only one of which can be specified.
v All keywords are optional.

INPUTQ (QueueName|’ ’)
The name of the DLQ you want to process:
1. Any INPUTQ value you supply as a parameter to the runmqdlq command

overrides any INPUTQ value in the rules table.
2. If you do not specify an INPUTQ value as a parameter to the runmqdlq

command, but you do specify a value in the rules table, the INPUTQ value
in the rules table is used.

3. If no DLQ is specified or you specify INPUTQ(’ ’) in the rules table, the
name of the DLQ belonging to the queue manager whose name is supplied
as a parameter to the runmqdlq command is used.

4. If you do not specify an INPUTQ value as a parameter to the runmqdlq
command or as a value in the rules table, the DLQ belonging to the queue
manager named on the INPUTQM keyword in the rules table is used.

INPUTQM (QueueManagerName|’ ’)
The name of the queue manager that owns the DLQ named on the INPUTQ
keyword:
1. Any INPUTQM value you supply as a parameter to the runmqdlq

command overrides any INPUTQM value in the rules table.
2. If you do not specify an INPUTQM value as a parameter to the runmqdlq

command, the INPUTQM value in the rules table is used.
3. If no queue manager is specified or you specify INPUTQM(’ ’) in the rules

table, the default queue manager for the installation is used.

RETRYINT (Interval|60)
The interval, in seconds, at which the DLQ handler should reprocess messages
on the DLQ that could not be processed at the first attempt, and for which
repeated attempts have been requested. By default, the retry interval is 60
seconds.

WAIT (YES|NO|nnn)
Whether the DLQ handler should wait for further messages to arrive on the
DLQ when it detects that there are no further messages that it can process.

YES The DLQ handler waits indefinitely.

NO The DLQ handler ends when it detects that the DLQ is either empty or
contains no messages that it can process.

nnn The DLQ handler waits for nnn seconds for new work to arrive before
ending, after it detects that the queue is either empty or contains no
messages that it can process.

192 WebSphere MQ: System Administration Guide

|
|
|
|

|

|

|
|

|

|

|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

||

||
|

||
|
|

Specify WAIT (YES) for busy DLQs, and WAIT (NO) or WAIT (nnn) for DLQs
that have a low level of activity. If the DLQ handler is allowed to terminate,
invoke it again using triggering. For more information about triggering, see the
WebSphere MQ Application Programming Guide.

An alternative to including control data in the rules table is to supply the names of
the DLQ and its queue manager as input parameters to the runmqdlq command.
If you specify a value both in the rules table and as input to the runmqdlq
command, the value specified on the runmqdlq command takes precedence.

If you include a control-data entry in the rules table, it must be the first entry in
the table.

Rules (patterns and actions)

Here is an example rule from a DLQ handler rules table:
PERSIST(MQPER_PERSISTENT) REASON (MQRC_PUT_INHIBITED) +
ACTION (RETRY) RETRY (3)

This rule instructs the DLQ handler to make three attempts to deliver to its
destination queue any persistent message that was put on the DLQ because
MQPUT and MQPUT1 were inhibited.

All keywords that you can use on a rule are described in the rest of this section.
Note the following:
v The default value for a keyword, if any, is underlined. For most keywords, the

default value is * (asterisk), which matches any value.
v The vertical line (|) separates alternatives, only one of which can be specified.
v All keywords except ACTION are optional.

This section begins with a description of the pattern-matching keywords (those
against which messages on the DLQ are matched), and then describes the action
keywords (those that determine how the DLQ handler is to process a matching
message).

The pattern-matching keywords:

The pattern-matching keywords, which you use to specify values against which
messages on the DLQ are matched, are described below. All pattern-matching
keywords are optional.

APPLIDAT (ApplIdentityData|*)
The ApplIdentityData value specified in the message descriptor, MQMD, of the
message on the DLQ.

APPLNAME (PutApplName|*)
The name of the application that issued the MQPUT or MQPUT1 call, as
specified in the PutApplName field of the message descriptor MQMD of the
message on the DLQ.

APPLTYPE (PutApplType|*)
The PutApplType value, specified in the message descriptor MQMD, of the
message on the DLQ.

DESTQ (QueueName|*)
The name of the message queue for which the message is destined.

Chapter 4. Configuring WebSphere MQ 193

|
|
|
|

|
|
|
|

|
|

|

|

|
|

|
|
|

|
|

|
|

|

|

|
|
|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

DESTQM (QueueManagerName|*)
The name of the queue manager of the message queue for which the message
is destined.

FEEDBACK (Feedback|*)
When the MsgType value is MQFB_REPORT, Feedback describes the nature of
the report.

You can use symbolic names. For example, you can use the symbolic name
MQFB_COA to identify those messages on the DLQ that need confirmation of
their arrival on their destination queues.

FORMAT (Format|*)
The name that the sender of the message uses to describe the format of the
message data.

MSGTYPE (MsgType|*)
The message type of the message on the DLQ.

You can use symbolic names. For example, you can use the symbolic name
MQMT_REQUEST to identify those messages on the DLQ that need replies.

PERSIST (Persistence|*)
The persistence value of the message. (The persistence of a message determines
whether it survives restarts of the queue manager.)

You can use symbolic names. For example, you can use the symbolic name
MQPER_PERSISTENT to identify messages on the DLQ that are persistent.

REASON (ReasonCode|*)
The reason code that describes why the message was put to the DLQ.

You can use symbolic names. For example, you can use the symbolic name
MQRC_Q_FULL to identify those messages placed on the DLQ because their
destination queues were full.

REPLYQ (QueueName|*)
The name of the reply-to queue specified in the message descriptor, MQMD, of
the message on the DLQ.

REPLYQM (QueueManagerName|*)
The name of the queue manager of the reply-to queue, as specified in the
message descriptor, MQMD, of the message on the DLQ.

USERID (UserIdentifier|*)
The user ID of the user who originated the message on the DLQ, as specified
in the message descriptor, MQMD.

The action keywords:

The action keywords, used to describe how a matching message is to be processed,
are described below.

ACTION (DISCARD|IGNORE|RETRY|FWD)
The action to be taken for any message on the DLQ that matches the pattern
defined in this rule.

DISCARD
Delete the message from the DLQ.

IGNORE
Leave the message on the DLQ.

194 WebSphere MQ: System Administration Guide

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

|
|

|
|
|

|
|

|
|

RETRY
If the first attempt to put the message on its destination queue fails, try
again. The RETRY keyword sets the number of tries made to
implement an action. The RETRYINT keyword of the control data
controls the interval between attempts.

FWD Forward the message to the queue named on the FWDQ keyword.

You must specify the ACTION keyword.

FWDQ (QueueName|&DESTQ|&REPLYQ)
The name of the message queue to which to forward the message when
ACTION (FWD) is requested.

QueueName
The name of a message queue. FWDQ(’ ’) is not valid.

&DESTQ
Take the queue name from the DestQName field in the MQDLH
structure.

&REPLYQ
Take the queue name from the ReplyToQ field in the message
descriptor, MQMD.

To avoid error messages when a rule specifying FWDQ (&REPLYQ)
matches a message with a blank ReplyToQ field, specify REPLYQ (?*) in
the message pattern.

FWDQM (QueueManagerName|&DESTQM|&REPLYQM|’ ’)
The queue manager of the queue to which to forward a message.

QueueManagerName
The name of the queue manager of the queue to which to forward a
message when ACTION (FWD) is requested.

&DESTQM
Take the queue manager name from the DestQMgrName field in the
MQDLH structure.

&REPLYQM
Take the queue manager name from the ReplyToQMgr field in the
message descriptor, MQMD.

’ ’ FWDQM(’ ’), which is the default value, identifies the local queue
manager.

HEADER (YES|NO)
Whether the MQDLH should remain on a message for which ACTION (FWD)
is requested. By default, the MQDLH remains on the message. The HEADER
keyword is not valid for actions other than FWD.

PUTAUT (DEF|CTX)
The authority with which messages should be put by the DLQ handler:

DEF Put messages with the authority of the DLQ handler itself.

CTX Put the messages with the authority of the user ID in the message
context. If you specify PUTAUT (CTX), you must be authorized to
assume the identity of other users.

RETRY (RetryCount|1)
The number of times, in the range 1–999 999 999, to try an action (at the
interval specified on the RETRYINT keyword of the control data). The count of

Chapter 4. Configuring WebSphere MQ 195

|
|
|
|
|

||

|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

||
|

|
|
|
|

|
|

||

||
|
|

|
|
|

attempts made by the DLQ handler to implement any particular rule is specific
to the current instance of the DLQ handler; the count does not persist across
restarts. If the DLQ handler is restarted, the count of attempts made to apply a
rule is reset to zero.

Rules table conventions
The syntax, structure and contents of the DLQ handler rules table must adhere to
these conventions.

The rules table must adhere to the following conventions:
v A rules table must contain at least one rule.
v Keywords can occur in any order.
v A keyword can be included only once in any rule.
v Keywords are not case-sensitive.
v A keyword and its parameter value must be separated from other keywords by

at least one blank or comma.
v There can be any number of blanks at the beginning or end of a rule, and

between keywords, punctuation, and values.
v Each rule must begin on a new line.
v On Windows systems, the last rule in the table must end with a carriage

return/line feed character. You can achieve this by ensuring that you press the
Enter key at the end of the rule, so that the last line of the table is a blank line.

v For reasons of portability, the significant length of a line must not be greater
than 72 characters.

v Use the plus sign (+) as the last nonblank character on a line to indicate that the
rule continues from the first nonblank character in the next line. Use the minus
sign (-) as the last nonblank character on a line to indicate that the rule
continues from the start of the next line. Continuation characters can occur
within keywords and parameters.
For example:
APPLNAME('ABC+

D')

results in ’ABCD’, and
APPLNAME('ABC-

D')

results in ’ABC D’.
v Comment lines, which begin with an asterisk (*), can occur anywhere in the

rules table.
v Blank lines are ignored.
v Each entry in the DLQ handler rules table comprises one or more keywords and

their associated parameters. The parameters must follow these syntax rules:
– Each parameter value must include at least one significant character. The

delimiting quotation marks in quoted values are not considered significant.
For example, these parameters are valid:

FORMAT('ABC') 3 significant characters
FORMAT(ABC) 3 significant characters
FORMAT('A') 1 significant character
FORMAT(A) 1 significant character
FORMAT(' ') 1 significant character

196 WebSphere MQ: System Administration Guide

|
|
|
|

|
|
|

|

|

|

|

|

|
|

|
|

|

|
|
|

|
|

|
|
|
|
|

|

|
|

|

|
|

|

|
|

|

|
|

|
|
|

These parameters are invalid because they contain no significant characters:

FORMAT('')
FORMAT()
FORMAT()
FORMAT

– Wildcard characters are supported. You can use the question mark (?) instead
of any single character, except a trailing blank; you can use the asterisk (*)
instead of zero or more adjacent characters. The asterisk (*) and the question
mark (?) are always interpreted as wildcard characters in parameter values.

– Wildcard characters cannot be included in the parameters of these keywords:
ACTION, HEADER, RETRY, FWDQ, FWDQM, and PUTAUT.

– Trailing blanks in parameter values, and in the corresponding fields in the
message on the DLQ, are not significant when performing wildcard matches.
However, leading and embedded blanks within strings in quotation marks are
significant to wildcard matches.

– Numeric parameters cannot include the question mark (?) wildcard character.
You can use the asterisk (*) instead of an entire numeric parameter, but not as
part of a numeric parameter. For example, these are valid numeric
parameters:

MSGTYPE(2) Only reply messages are eligible
MSGTYPE(*) Any message type is eligible
MSGTYPE('*') Any message type is eligible

However, MSGTYPE('2*') is not valid, because it includes an asterisk (*) as
part of a numeric parameter.

– Numeric parameters must be in the range 0–999 999 999. If the parameter
value is in this range, it is accepted, even if it is not currently valid in the
field to which the keyword relates. You can use symbolic names for numeric
parameters.

– If a string value is shorter than the field in the MQDLH or MQMD to which
the keyword relates, the value is padded with blanks to the length of the
field. If the value, excluding asterisks, is longer than the field, an error is
diagnosed. For example, these are all valid string values for an 8 character
field:

'ABCDEFGH' 8 characters
'A*C*E*G*I' 5 characters excluding asterisks
'*A*C*E*G*I*K*M*O*' 8 characters excluding asterisks

– Enclose strings that contain blanks, lowercase characters, or special characters
other than period (.), forward slash (/), underscore (_), and percent sign (%)
in single quotation marks. Lowercase characters not enclosed in quotation
marks are folded to uppercase. If the string includes a quotation, use two
single quotation marks to denote both the beginning and the end of the
quotation. When the length of the string is calculated, each occurrence of
double quotation marks is counted as a single character.

How the rules table is processed

The DLQ handler searches the rules table for a rule whose pattern matches a
message on the DLQ. The search begins with the first rule in the table, and
continues sequentially through the table. When the DLQ handler finds a rule with

Chapter 4. Configuring WebSphere MQ 197

|

|||
||
||
||
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

a matching pattern, it takes the action from that rule. The DLQ handler increments
the retry count for a rule by 1 whenever it applies that rule. If the first try fails, the
DLQ handler tries again until the number of tries matches the number specified on
the RETRY keyword. If all attempts fail, the DLQ handler searches for the next
matching rule in the table.

This process is repeated for subsequent matching rules until an action is successful.
When each matching rule has been attempted the number of times specified on its
RETRY keyword, and all attempts have failed, ACTION (IGNORE) is assumed.
ACTION (IGNORE) is also assumed if no matching rule is found.

Note:

1. Matching rule patterns are sought only for messages on the DLQ that begin
with an MQDLH. Messages that do not begin with an MQDLH are reported
periodically as being in error, and remain on the DLQ indefinitely.

2. All pattern keywords can be allowed to default, such that a rule can consist of
an action only. Note, however, that action-only rules are applied to all messages
on the queue that have MQDLHs and that have not already been processed in
accordance with other rules in the table.

3. The rules table is validated when the DLQ handler starts, and errors are
flagged at that time. (Error messages issued by the DLQ handler are described
in WebSphere MQ Messages.) You can make changes to the rules table at any
time, but those changes do not come into effect until the DLQ handler restarts.

4. The DLQ handler does not alter the content of messages, the MQDLH, or the
message descriptor. The DLQ handler always puts messages to other queues
with the message option MQPMO_PASS_ALL_CONTEXT.

5. Consecutive syntax errors in the rules table might not be recognized because
the rules table is designed to eliminate the generation of repetitive errors
during validation.

6. The DLQ handler opens the DLQ with the MQOO_INPUT_AS_Q_DEF option.
7. Multiple instances of the DLQ handler can run concurrently against the same

queue, using the same rules table. However, it is more usual for there to be a
one-to-one relationship between a DLQ and a DLQ handler.

Ensuring that all DLQ messages are processed

The DLQ handler keeps a record of all messages on the DLQ that have been seen
but not removed. If you use the DLQ handler as a filter to extract a small subset of
the messages from the DLQ, the DLQ handler still has to keep a record of those
messages on the DLQ that it did not process. Also, the DLQ handler cannot
guarantee that new messages arriving on the DLQ are seen, even if the DLQ is
defined as first-in-first-out (FIFO). If the queue is not empty, the DLQ is
periodically re-scanned to check all messages.

For these reasons, try to ensure that the DLQ contains as few messages as possible;
if messages that cannot be discarded or forwarded to other queues (for whatever
reason) are allowed to accumulate on the queue, the workload of the DLQ handler
increases and the DLQ itself can fill up.

You can take specific measures to enable the DLQ handler to empty the DLQ. For
example, try not to use ACTION (IGNORE), which simply leaves messages on the
DLQ. (Remember that ACTION (IGNORE) is assumed for messages that are not

198 WebSphere MQ: System Administration Guide

|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

explicitly addressed by other rules in the table.) Instead, for those messages that
you would otherwise ignore, use an action that moves the messages to another
queue. For example:
ACTION (FWD) FWDQ (IGNORED.DEAD.QUEUE) HEADER (YES)

Similarly, make the final rule in the table a catchall to process messages that have
not been addressed by earlier rules in the table. For example, the final rule in the
table could be something like this:
ACTION (FWD) FWDQ (REALLY.DEAD.QUEUE) HEADER (YES)

This forwards messages that fall through to the final rule in the table to the queue
REALLY.DEAD.QUEUE, where they can be processed manually. If you do not have
such a rule, messages are likely to remain on the DLQ indefinitely.

An example DLQ handler rules table

The following example rules table contains a single control-data entry and several
rules:

* An example rules table for the runmqdlq command *

* Control data entry
* ------------------
* If no queue manager name is supplied as an explicit parameter to
* runmqdlq, use the default queue manager for the machine.
* If no queue name is supplied as an explicit parameter to runmqdlq,
* use the DLQ defined for the local queue manager.
*
inputqm(' ') inputq(' ')

* Rules
* -----
* We include rules with ACTION (RETRY) first to try to
* deliver the message to the intended destination.
* If a message is placed on the DLQ because its destination
* queue is full, attempt to forward the message to its
* destination queue. Make 5 attempts at approximately
* 60-second intervals (the default value for RETRYINT).

REASON(MQRC_Q_FULL) ACTION(RETRY) RETRY(5)

* If a message is placed on the DLQ because of a put inhibited
* condition, attempt to forward the message to its
* destination queue. Make 5 attempts at approximately
* 60-second intervals (the default value for RETRYINT).

REASON(MQRC_PUT_INHIBITED) ACTION(RETRY) RETRY(5)

* The AAAA corporation are always sending messages with incorrect
* addresses. When we find a request from the AAAA corporation,
* we return it to the DLQ (DEADQ) of the reply-to queue manager
* (&REPLYQM).
* The AAAA DLQ handler attempts to redirect the message.

MSGTYPE(MQMT_REQUEST) REPLYQM(AAAA.*) +
ACTION(FWD) FWDQ(DEADQ) FWDQM(&REPLYQM)

* The BBBB corporation never do things by half measures. If
* the queue manager BBBB.1 is unavailable, try to
* send the message to BBBB.2

DESTQM(bbbb.1) +

Chapter 4. Configuring WebSphere MQ 199

|
|
|

|

|
|
|

|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

action(fwd) fwdq(&DESTQ) fwdqm(bbbb.2) header(no)

* The CCCC corporation considers itself very security
* conscious, and believes that none of its messages
* will ever end up on one of our DLQs.
* Whenever we see a message from a CCCC queue manager on our
* DLQ, we send it to a special destination in the CCCC organization
* where the problem is investigated.

REPLYQM(CCCC.*) +
ACTION(FWD) FWDQ(ALARM) FWDQM(CCCC.SYSTEM)

* Messages that are not persistent run the risk of being
* lost when a queue manager terminates. If an application
* is sending nonpersistent messages, it should be able
* to cope with the message being lost, so we can afford to
* discard the message. PERSIST(MQPER_NOT_PERSISTENT) ACTION(DISCARD)
* For performance and efficiency reasons, we like to keep
* the number of messages on the DLQ small.
* If we receive a message that has not been processed by
* an earlier rule in the table, we assume that it
* requires manual intervention to resolve the problem.
* Some problems are best solved at the node where the
* problem was detected, and others are best solved where
* the message originated. We don't have the message origin,
* but we can use the REPLYQM to identify a node that has
* some interest in this message.
* Attempt to put the message onto a manual intervention
* queue at the appropriate node. If this fails,
* put the message on the manual intervention queue at
* this node.

REPLYQM('?*') +
ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION) FWDQM(&REPLYQM)

ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION)

Supporting the Microsoft Cluster Service (MSCS)

Introducing and setting up MSCS to support failover of virtual servers.

This information applies to WebSphere MQ for Windows only.

The Microsoft Cluster Service (MSCS) enables you to connect servers into a cluster,
giving higher availability of data and applications, and making it easier to manage
the system. MSCS can automatically detect and recover from server or application
failures.

MSCS supports failover of virtual servers, which correspond to applications, Web
sites, print queues, or file shares (including their disk spindles, files, IP addresses,
and so on).

Failover is the process by which MSCS detects a failure in an application on one
computer in the cluster, and shuts down the disrupted application in an orderly
manner, transfers its state data to the other computer, and re-initiates the
application there.

This chapter introduces MSCS clusters and describes setting up MSCS support in
the following sections:
v “Introducing MSCS clusters” on page 201
v “Setting up WebSphere MQ for MSCS clustering” on page 202

200 WebSphere MQ: System Administration Guide

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|

|
|
|

|
|
|
|

|
|

|

|

Then tells you how to configure WebSphere MQ for MSCS clustering, in the
following sections:
v “Creating a queue manager for use with MSCS” on page 205
v “Moving a queue manager to MSCS storage” on page 205
v “Putting a queue manager under MSCS control” on page 207
v “Removing a queue manager from MSCS control” on page 209

And then gives some useful hints on using MSCS with WebSphere MQ, and details
the WebSphere MQ MSCS support utility programs, in the following sections:
v “Hints and tips on using MSCS” on page 211
v “WebSphere MQ MSCS support utility programs” on page 214

Introducing MSCS clusters

Before we start to look at MSCS clusters, we need to distinguish between them and
WebSphere MQ clusters:

WebSphere MQ clusters
are groups or two or more queue managers on one or more computers,
providing automatic interconnection, and allowing queues to be shared
amongst them for load balancing and redundancy.

MSCS clusters
are groups of two or more computers, connected together and configured
in such a way that, if one fails, MSCS performs a failover, transferring the
state data of applications from the failing computer to another computer in
the cluster and reinitiating their operation there.

In the rest of this book, clusters means WebSphere MQ clusters. In this chapter,
clusters always means MSCS clusters.

Let us start by looking at a two-machine cluster. A two-machine cluster comprises
two computers (for example, A and B) that are jointly connected to a network for
client access using a virtual IP address. They might also be connected to each other
by one or more private networks. A and B share at least one disk for the server
applications on each to use. There is also another shared disk, which must be a
redundant array of independent disks (RAID) Level 1, for the exclusive use of
MSCS; this is known as the quorum disk. MSCS monitors both computers to check
that the hardware and software are running correctly.

In a simple setup such as this, both computers have all the applications installed
on them, but only computer A runs with live applications; computer B is just
running and waiting. If computer A encounters any one of a range of problems,
MSCS shuts down the disrupted application in an orderly manner, transfers its
state data to the other computer, and re-initiates the application there. This is
known as a failover. Applications can be made cluster-aware so that they interact
fully with MSCS and failover gracefully.

A typical setup for a two-computer cluster is as shown in Figure 20 on page 202.

Chapter 4. Configuring WebSphere MQ 201

|
|

|

|

|

|

|
|

|

|

|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

Each computer can access the shared disk, but only one at a time, under the
control of MSCS. In the event of a failover, MSCS switches the access to the other
computer. The shared disk itself is usually a RAID, but need not be.

Each computer is connected to the external network for client access, and each has
an IP address. However an external client, communicating with this cluster, sees
only one virtual IP address, and MSCS routes the IP traffic within the cluster
appropriately.

MSCS also performs its own communications between the two computers, either
over one or more private connections or over the public network, in order to
monitor their states using the heartbeat, synchronize their databases, and so on.

Setting up WebSphere MQ for MSCS clustering

You configure WebSphere MQ for clustering by making the queue manager the
unit of failover to MSCS. You define a queue manager as a resource to MSCS,
which can then monitor it, and transfer it to another computer in the cluster if
there is a problem.

To set your system up for this, you start by installing WebSphere MQ on each
computer in the cluster. WebSphere MQ for Windows Quick Beginnings tells you
how to do this.

The queue managers themselves need to exist only on the computer on which you
create them. In the event of a failover, the MSCS initiates the queue managers on
the other computer. The queue managers, however, must have their log and data
files on a cluster shared disk, and not on a local drive. If you have a queue
manager already installed on a local drive, you can migrate it using a tool
provided with WebSphere MQ; see “Moving a queue manager to MSCS storage”
on page 205

Virtual IP address

Computer A Computer B

Private LAN

SCSI bus

Local
disk

Local
disk

Quorum
disk

Shared
disks

Internet

Clients

Figure 20. Two-computer MSCS cluster

202 WebSphere MQ: System Administration Guide

|

|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|
|
|

on page 205. If you want to create new queue managers for use with MSCS, see
“Creating a queue manager for use with MSCS” on page 205.

After installation and migration, use the MSCS Cluster Administrator to make
MSCS aware of your queue managers; see “Putting a queue manager under MSCS
control” on page 207.

If you decide to remove a queue manager from MSCS control, use the procedure
described in “Removing a queue manager from MSCS control” on page 209.

Setup symmetry

When an application switches from one node to the other it must behave in the
same way, regardless of node. The best way of ensuring this is to make the
environments identical. If you can, set up a cluster with identical hardware,
operating system software, product software, and configuration on each computer.
In particular, ensure that all the required software installed on the two computers
is identical in terms of version, maintenance level, SupportPacs, paths and exits (as
described WebSphere MQ for Windows Quick Beginnings), and that there is a
common namespace (security environment) as described in “MSCS security.”

MSCS security

Start by making sure you have identical software installations on each computer in
the cluster, as described in WebSphere MQ for Windows Quick Beginnings.

For successful MSCS security, follow these guidelines:
v Create a common namespace (security environment) across the cluster.
v Make the nodes of the MSCS cluster members of a domain, within which the

user account that is the cluster owner is a domain account.
v Make the other user accounts on the cluster also domain accounts, so that they

are available on both nodes. This is automatically the case if you already have a
domain, and the accounts relevant to WebSphere MQ are domain accounts. If
you do not currently have a domain, consider setting up a mini-domain to cater
for the cluster nodes and relevant accounts. Your aim is to make your cluster of
two computers look like a single computing resource.
Remember that an account that is local to one computer does not exist on the
other one. Even if you create an account with the same name on the other
computer, its security identifier (SID) is different, so, when your application is
moved to the other node, the permissions do not exist on that node.

During a failover or move, WebSphere MQ MSCS support ensures that all files that
contain queue manager objects have equivalent permissions on the destination
node. Explicitly, the code checks that the Administrators and mqm groups, and the
SYSTEM account, have full control, and that if Everyone had read access on the old
node, that permission is added on the destination node.

You can use a domain account to run your WebSphere MQ Service. Make sure that
it exists in the local mqm group on each computer in the cluster.

Using multiple queue managers with MSCS

If you are running more than one queue manager on a computer, you can choose
one of the following setups:

Chapter 4. Configuring WebSphere MQ 203

|
|

|
|
|

|
|

|

|
|
|
|
|
|
|
|

|

|
|

|

|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|

|
|

v All the queue managers in a single group. In this configuration, if a problem
occurs with any queue manager, all the queue managers in the group failover to
the other computer as a group.

v A single queue manager in each group. In this configuration, if a problem occurs
with the queue manager, it alone fails over to the other computer without
affecting the other queue managers.

v A mixture of the first two setups.

Cluster modes

There are two modes in which you might run a cluster system with WebSphere
MQ:
v Active/Passive
v Active/Active

Note: If you are using MSCS together with the Microsoft Transaction Server
(COM+), you cannot use Active/Active mode.

Active/Passive mode:

In Active/Passive mode, computer A has the running application on it, and
computer B is backup, only being used when MSCS detects a problem.

You can use this mode with only one shared disk, but, if any application causes a
failover, all the applications must be transferred as a group (because only one
computer can access the shared disk at a time).

You can configure MSCS with A as the preferred computer. Then, when computer A
has been repaired or replaced and is working properly again, MSCS detects this
and automatically switches the application back to computer A.

If you run more than one queue manager, consider having a separate shared disk
for each. Then put each queue manager in a separate group in MSCS. In this way,
any queue manager can failover to the other computer without affecting the other
queue managers.

Active/Active mode:

In Active/Active mode, computers A and B both have running applications, and
the groups on each computer are set to use the other computer as backup. If a
failure is detected on computer A, MSCS transfers the state data to computer B,
and reinitiates the application there. computer B then runs its own application and
A’s.

For this setup you need at least two shared disks. You can configure MSCS with A
as the preferred computer for A’s applications, and B as the preferred computer for
B’s applications. After failover and repair, each application automatically ends up
back on its own computer.

For WebSphere MQ this means that you could, for example, run two queue
managers, one on each of A and B, with each exploiting the full power of its own
computer. After a failure on computer A, both queue managers would run on
computer B. This would mean sharing the power of the one computer, with a
reduced ability to process large quantities of data at speed. However, your critical
applications would still be available while you find and repair the fault on A.

204 WebSphere MQ: System Administration Guide

|
|
|

|
|
|

|

|

|
|

|

|

|
|

|

|
|

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

Creating a queue manager for use with MSCS

This procedure ensures that a new queue manager is created in such a way that it
is suitable for preparing and placing under MSCS control.

You start by creating the queue manager with all its resources on a local drive, and
then migrate the log files and data files to a shared disk. (You can reverse this
operation.) Do not attempt to create a queue manager with its resources on a
shared drive.

You can create a queue manager for use with MSCS in two ways, either from a
command prompt, or in the WebSphere MQ Explorer. The advantage of doing
using a command prompt is that the queue manager is created stopped and set to
manual startup, which is ready for MSCS. (The WebSphere MQ Explorer
automatically starts a new queue manager and sets it to automatic startup after
creation. You have to change this.)

Creating a queue manager from a command prompt
1. Ensure that you have the environment variable MQSPREFIX set to refer to a local

drive, for example C:\WebSphere MQ. If you change this, reboot the machine so
that the System account picks up the change. If you do not set the variable, the
queue manager is created in the WebSphere MQ default directory for queue
managers.

2. Create the queue manager using the crtmqm command. For example, to create
a queue manager called mscs_test in the default directory, use:
crtmqm mscs_test

3. Proceed to “Moving a queue manager to MSCS storage.”

Creating a queue manager using the WebSphere MQ Explorer
1. Start the WebSphere MQ Explorer from the Start menu.
2. In the Navigator View, expand the tree nodes to find the Queue Managers tree

node.
3. Right-click the Queue Managers tree node, and select New->Queue Manager.

The Create Queue Manager panel is displayed.
4. Complete the dialog (Step 1), then click Next>.
5. Complete the dialog (Step 2), then click Next>.
6. Complete the dialog (Step 3), ensuring that Start Queue Manager and Create

Server Connection Channel are not selected, then click Next>.
7. Complete the dialog (Step 4), then click Finish.
8. Proceed to “Moving a queue manager to MSCS storage.”

Moving a queue manager to MSCS storage

This procedure configures an existing queue manager to make it suitable for
putting under MSCS control. To achieve this, you move the log files and data files
to shared disks to make them available to the other computer in the event of a
failure. For example, the existing queue manager might have paths such as
C:\WebSphere MQ\log\<QMname> and C:\WebSphere MQ\qmgrs\<QMname>. Do not try
to move the files by hand; use the utility program supplied as part of WebSphere
MQ MSCS Support as described below.

If the queue manager being moved uses SSL connections and the SSL key
repository is in the queue manager data directory on the local machine, then the

Chapter 4. Configuring WebSphere MQ 205

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|

|
|

|
|

|
|

|

|

|
|

|

|

|

|
|
|
|
|
|
|

|
|

key repository will be moved with the rest of the queue manager to the shared
disk. By default, the queue manager attribute that specifies the SSL key repository
location, SSLKEYR, is set to <mqmtop>\qmgrs\QMGRNAME\ssl\key, which is under the
queue manager data directory. The hamvmqm command does not modify this queue
manager attribute. In this situation you must modify the queue manager attribute,
SSLKEYR, using the WebSphere MQ Explorer or the MQSC command ALTER QMGR,
to point to the new SSL key repository file.

The procedure is:
1. Shut down the queue manager, and check that there are no errors.
2. If the queue manager’s log files or queue files are already stored on a shared

disk, skip the rest of this procedure and proceed directly to “Putting a queue
manager under MSCS control” on page 207.

3. Make a full media backup of the queue files and log files and store the
backup in a safe place (see “Queue manager log files” on page 212 for why
this is important).

4. If you already have a suitable shared disk resource proceed to step 6.
Otherwise, using the MSCS Cluster Administrator to create a resource of type
shared disk with sufficient capacity to store the queue manager log files and
data (queue) files.

5. Test the shared disk by using the MSCS Cluster Administrator to move it
from one cluster node to the other and back again.

6. Make sure that the shared disk is online on the cluster node where the queue
manager log and data files are stored locally.

7. Run the utility program to move the queue manager as follows:
hamvmqm /m qmname /dd "e:\WebSphere MQ" /ld e:\WebSphere MQ\log"

substituting your queue manager name for qmname, your shared disk drive
letter for e, and your chosen directory for WebSphere MQ. The directories are
created if they do not already exist.

8. Test the queue manager to ensure that it works, using the WebSphere MQ
Explorer. For example:
a. Right-click the queue manager tree node, then select Start. The queue

manager starts.
b. Right-click the Queues tree node, then select New->Local Queue..., and

give the queue a name.
c. Click Finish.
d. Right-click the queue, then select Put Test Message.... The Put Test

Message panel is displayed.
e. Type some message text, then click Put Test Message, and close the panel.
f. Right-click the queue, then select Browse Messages.... The Message

Browser panel is displayed.
g. Ensure your message is on the queue, then click Close . The Message

Browser panel closes.
h. Right-click the queue, then select Clear Messages.... The messages on the

queue are cleared.
i. Right-click the queue, then select Delete.... A confirmation panel is

displayed, click OK. The queue is deleted.
j. Right-click the queue manager tree node, then select Stop.... The End

Queue Manager panel is displayed.
k. Click OK. The queue manager stops.

206 WebSphere MQ: System Administration Guide

|
|
|
|
|
|
|

|

|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|

|

|
|
|

|
|

|
|

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|

9. As WebSphere MQ Administrator ensure that the startup attribute of the
queue manager is set to manual. In the WebSphere MQ Explorer, set the
Startup field to manual in the queue manager properties panel.

10. Proceed to “Putting a queue manager under MSCS control.”

Putting a queue manager under MSCS control

Before you put a queue manager under MSCS control:
1. Ensure that WebSphere MQ and its MSCS Support is installed on both

machines in the cluster and that the software on each computer is identical, as
described in “Setting up WebSphere MQ for MSCS clustering” on page 202.

2. Use the haregtyp utility program to register WebSphere MQ as an MSCS
resource type on all of the cluster nodes. See “WebSphere MQ MSCS support
utility programs” on page 214 for additional information.

3. If you have not yet created the queue manager, see “Creating a queue manager
for use with MSCS” on page 205.

4. If you have created the queue manager, or it already exists, ensure that you
have carried out the procedure in “Moving a queue manager to MSCS storage”
on page 205.

5. Stop the queue manager, if it is running, using either a command prompt or
the WebSphere MQ Explorer.

6. Test MSCS operation of the shared drives before going on to the procedure
below.

To place a queue manager under MSCS control:
1. Log in to the cluster node computer hosting the queue manager, or log in to a

remote workstation as a user with cluster administration permissions, and
connect to the cluster node hosting the queue manager.

2. Start the MSCS Cluster Administrator.
3. Open a connection to the cluster.
4. Create an MSCS group to be used to contain the resources for the queue

manager. Name the group in such a way that it is obvious which queue
manager it relates to. Each group can contain multiple queue managers, as
described in “Using multiple queue managers with MSCS” on page 203.
Use the group for all the remaining steps.

5. Create a resource instance for each of the SCSI logical drives that the queue
manager uses.
You can use one drive to store both the logs and queue files, or you can split
them up across drives. In either case, if each queue manager has its own
shared disk, ensure that all drives used by this queue manager are exclusive
to this queue manager, that is, that nothing else relies on the drives. Also
ensure that you create a resource instance for every drive that the queue
manager uses.
The resource type for a drive depends on the SCSI support you are using;
refer to your SCSI adapter instructions. There might already be groups and
resources for each of the shared drives. If so, you do not need to create the
resource instance for each drive. Just move it from its current group to the one
created for the queue manager.
For each drive resource, set possible owners to both nodes. Set dependent
resources to none.

6. Create a resource instance for the IP address.

Chapter 4. Configuring WebSphere MQ 207

|
|
|

|

|

|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|

|
|
|

|

|

|
|
|
|

|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|

Create an IP address resource (resource type IP Address). This address should
be an unused IP address to be used by clients and other queue managers to
connect to the virtual queue manager. This IP address is not the normal (static)
address of either node; it is an additional address that floats between them.
Although MSCS handles the routing of this address, it does not verify that the
address can be reached.

7. Create a resource instance for the queue manager.
Create a resource of type IBM WebSphere MQ MSCS.The wizard prompts you
for various items, including the following:
v Name; choose a name that makes it easy to identify which queue manager it

is for.
v Add to group; use the group that you created
v Run in a separate Resource Monitor; for better isolation
v Possible owners; set both nodes
v Dependencies; add the drive and IP address for this queue manager.

Warning: Failure to add these dependencies means that WebSphere MQ
attempts to write the queue manager status to the wrong cluster disk
during failovers. Because many processes might be attempting to write to
this disk simultaneously, some WebSphere MQ processes could be blocked
from running.

v Parameters; as follows:
– QueueManagerName (required); the name of the queue manager that this

resource is to control. This queue manager must exist on the local
computer.

– PostOnlineCommand (optional); you can specify a program to run
whenever the queue manager resource changes its state from offline to
online. For more details see “PostOnlineCommand and
PreOfflineCommand” on page 213.

– PreOfflineCommand (optional); you can specify a program to run
whenever the queue manager resource changes its state from online to
offline. For more details see “PostOnlineCommand and
PreOfflineCommand” on page 213.

Note: The looksAlive poll interval is set to default value of 5000ms. The
isAlive poll interval is set to default value of 3000ms. These defaults can
only be modified after the resource definition has been completed. For
further details see “Summary of looksAlive and isAlive polling” on page
209.

8. Optionally, set a preferred node (but note the comments in “Using preferred
nodes” on page 214).

9. The Failover Policy (as defined in the properties for the group) is set by default
to sensible values, but you can tune the thresholds and periods that control
Resource Failover and Group Failover to match the loads placed on the queue
manager.

10. Test the queue manager by bringing it online in the MSCS Cluster
Administrator and subjecting it to a test workload. If you are experimenting
with a test queue manager, use the WebSphere MQ Explorer. For example:
a. Right-click the Queues tree node, then select New->Local Queue..., and

give the queue a name.
b. Click Finish. The queue is created, and displayed in the content view.

208 WebSphere MQ: System Administration Guide

|
|
|
|
|
|

|

|
|

|
|

|

|

|

|

|
|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|

|

c. Right-click the queue, then select Put Test Message.... The Put Test
Message panel is displayed.

d. Type some message text, then click Put Test Message, and close the panel.
e. Right-click the queue, then select Browse Messages.... The Message

Browser panel is displayed.
f. Ensure your message is on the queue, then click Close . The Message

Browser panel closes.
g. Right-click the queue, then select Clear Messages.... The messages on the

queue are cleared.
h. Right-click the queue, then select Delete.... A confirmation panel is

displayed, click OK. The queue is deleted.
11. Test that the queue manager can be taken offline and back online using the

MSCS Cluster Administrator.
12. Simulate a failover.

In the MSCS Cluster Administrator, right-click the group containing the queue
manager and select Move Group. This can take some minutes to do. (If at other
times you just want to move a queue manager to another node quickly, follow
the procedure in “Moving a queue manager to MSCS storage” on page 205.)
You can also right-click and select Initiate Failure; the action (local restart
or failover) depends on the current state and the configuration settings.

Summary of looksAlive and isAlive polling

looksAlive and isAlive are intervals at which MSCS will call back into the resource
types supplied library code and request that the resource performs checks to
determine the working status of itself. This ultimately determines if MSCS
attempts to fail over the resource.

On every occasion that the looksAlive interval elapses (default 5000ms), the queue
manager resource is called to perform its own check to determine if its status is
satisfactory.

On every occasion that the isAlive interval elapses (default 30000ms), another call is
made to the queue manager resource for it to perform another check to determine
if the resource is functioning correctly. This enables two levels of resource type
checking.
1. A looksAlive status check to establish if the resource appears to be functioning.
2. A more significant isAlive check that determines if the queue manager resource

is really active.

If the queue manager resource is determined not to be active, MSCS will, based on
other advanced MSCS options, trigger a fail over for the resource and associated
dependant resources to another node in the cluster. For further information, please
refer to the MSCS documentation.

Removing a queue manager from MSCS control

You can remove queue managers from MSCS control, and return them to manual
administration. You do not need to do this for maintenance operations. You can do
that by taking a queue manager offline temporarily, using the MSCS Cluster
Administrator. Removing a queue manager from MSCS control is a more
permanent change; only do it if you decide that you no longer want MSCS to have
any further control of the queue manager.

Chapter 4. Configuring WebSphere MQ 209

|
|

|

|
|

|
|

|
|

|
|

|
|

|

|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|

|

|
|

|
|
|
|

|

|
|
|
|
|
|

If the queue manager being removed uses SSL connections you must modify the
queue manager attribute, SSLKEYR, using the WebSphere MQ Explorer or the
MQSC command ALTER QMGR, to point to the SSL key repository file on the local
directory.

The procedure is:
1. Take the queue manager resource offline using the MSCS Cluster Administrator.

To do this, see “Taking a queue manager offline from MSCS.”
2. Destroy the resource instance. This does not destroy the queue manager.
3. Optionally, migrate the queue manager files back from shared drives to local

drives. To do this, see “Returning a queue manager from MSCS storage.”
4. Test the queue manager.

Taking a queue manager offline from MSCS

The procedure is:
1. Start the MSCS Cluster Administrator.
2. Open a connection to the cluster.
3. Select Groups, and open the group containing the queue manager to be moved.
4. Select the queue manager resource.
5. Right-click it and select Offline.
6. Wait for completion.

Returning a queue manager from MSCS storage

This procedure configures the queue manager to be back on its computer’s local
drive, that is, it becomes a normal WebSphere MQ queue manager. To achieve this,
you move the log files and data files from the shared disks. For example, the
existing queue manager might have paths such as E:\WebSphere MQ\log\<QMname>
and E:\WebSphere MQ\qmgrs\<QMname>. Do not try to move the files by hand; use
the hamvmqm utility program supplied as part of WebSphere MQ MSCS Support
as described below:
1. Shut down the queue manager, and check that there are no errors.
2. Make a full media backup of the queue files and log files and store the backup

in a safe place (see “Queue manager log files” on page 212 for why this is
important).

3. Decide which local drive to use and ensure that it has sufficient capacity to
store the queue manager log files and data (queue) files.

4. Make sure that the shared disk on which the files currently reside is online on
the cluster node to which to move the queue manager log and data files.

5. Run the utility program to move the queue manager as follows:
hamvmqm /m qmname /dd "c:\WebSphere MQ" /ld "c:\WebSphere MQ\log"

substituting your queue manager name for qmname, your local disk drive letter
for c, and your chosen directory for WebSphere MQ (the directories are created if
they do not already exist).

6. Test the queue manager to ensure that it works (as described in “Moving a
queue manager to MSCS storage” on page 205).

210 WebSphere MQ: System Administration Guide

|
|
|
|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|

|

|
|
|

|
|

Hints and tips on using MSCS

This section contains some general information to help you use WebSphere MQ
support for MSCS effectively.

How long does it take to fail a queue manager over from one machine to the
other? This depends heavily on the amount of workload on the queue manager
and on the mix of traffic, that is, how much of it is persistent, within syncpoint,
how much committed before the failure, and so on. In our test we have seen
failover and failback times of about a minute. This was on a very lightly loaded
queue manager and actual times will vary considerably depending on load.

Verifying that MSCS is working

The task descriptions starting with “Creating a queue manager for use with MSCS”
on page 205 assume that you have a running MSCS cluster within which you can
create, migrate, and destroy resources. If you want to make sure that you have
such a cluster:
1. Using the MSCS Cluster Administrator, create a group.
2. Within that group, create an instance of a generic application resource,

specifying the system clock (pathname C:\winnt\system32\clock.exe and
working directory of C:\).

3. Make sure that you can bring the resource online, that you can move the group
that contains it to the other node, and that you can take the resource offline.

Manual startup

For a queue manager managed by MSCS, you must set the startup attribute to
manual. This ensures that the WebSphere MQ MSCS support can restart the IBM
MQSeries Service without immediately starting the queue manager.

The WebSphere MQ MSCS support needs to be able to restart the service so that it
can perform monitoring and control, but must itself remain in control of which
queue managers are running, and on which machines. See“Moving a queue
manager to MSCS storage” on page 205 for more information.

MSCS and queue managers

This section describes some things to consider about your queue managers when
using MSCS, as follows:
v “Creating a matching queue manager on the other node”
v “Default queue managers” on page 212
v “Deleting a queue manager” on page 212
v “Support for existing queue managers” on page 212
v “Telling MSCS which queue managers to manage” on page 212
v “Queue manager log files” on page 212
v “Multiple queue managers” on page 212

Creating a matching queue manager on the other node:

For clustering to work with WebSphere MQ, you need an identical queue manager
on node B for each one on node A. However, you do not need to explicitly create
the second one. You can create or prepare a queue manager on one node, move it

Chapter 4. Configuring WebSphere MQ 211

|

|
|

|
|
|
|
|
|

|

|
|
|
|

|

|
|
|

|
|

|

|
|
|

|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|
|
|

to the other node as described in “Moving a queue manager to MSCS storage” on
page 205, and it is fully duplicated on that node.

Default queue managers:

Do not use a default queue manager under MSCS control. A queue manager does
not have a property that makes it the default; WebSphere MQ keeps its own
separate record. If you move a queue manager set to be the default to the other
computer on failover, it does not become the default there. Make all your
applications refer to specific queue managers by name.

Deleting a queue manager:

Once a queue manager has moved node, its details exist in the registry on both
computers. When you want to delete it, do so as normal on one computer, and
then run the utility described in “WebSphere MQ MSCS support utility programs”
on page 214 to clean up the registry on the other computer.

Support for existing queue managers:

You can put an existing queue manager under MSCS control, provided that you
can put your queue manager log files and queue files on a disk that is on the
shared SCSI bus between the two machines (see Figure 20 on page 202). You need
to take the queue manager offline briefly while the MSCS Resource is created.

If you want to create a new queue manager, create it independently of MSCS, test
it, then put it under MSCS control. See:
v “Creating a queue manager for use with MSCS” on page 205
v “Moving a queue manager to MSCS storage” on page 205
v “Putting a queue manager under MSCS control” on page 207

Telling MSCS which queue managers to manage:

You choose which queue managers are placed under MSCS control by using the
MSCS Cluster Administrator to create a resource instance for each such queue
manager. This process presents you with a list of resources from which to select the
queue manager that you want that instance to manage.

Queue manager log files:

When you move a queue manager to MSCS storage, you move its log and data
files to a shared disk (for an example see “Moving a queue manager to MSCS
storage” on page 205).

It is advisable before you move, to shut the queue manager cleanly and take a full
backup of the data files and log files.

Multiple queue managers:

WebSphere MQ MSCS support allows you to run multiple queue managers on
each machine and to place individual queue managers under MSCS control.

Always use MSCS to manage clusters

Do not try to perform start and stop operations directly on any clustered queue
manager using either the WebSphere MQ Explorer. Instead, use the MSCS Cluster

212 WebSphere MQ: System Administration Guide

|
|

|

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|

|
|

|

|

|

|

|
|
|
|

|

|
|
|

|
|

|

|
|

|

|
|

Administrator to request that MSCS brings the queue manager online or takes it
offline. This is partly to prevent possible confusion caused by MSCS reporting that
the queue manager is offline, when in fact you have started it outside the control
of MSCS. More seriously, stopping a queue manager without using MSCS is
detected by MSCS as a failure, initiating failover to the other node.

Working in Active/Active mode

Both computers in the MSCS cluster can run queue managers in Active/Active
mode. You do not need to have a completely idle machine acting as standby (but
you can, if you want, in Active/Passive Mode). If you plan to use both machines
to run workload, provide each with sufficient capacity (processor, memory,
secondary storage) to run the entire cluster workload at a satisfactory level of
performance.

Note: If you are using MSCS together with Microsoft Transaction Server (COM+),
you cannot use Active/Active mode. This is because, to use WebSphere MQ with
MSCS and COM+:
v Application components that use WebSphere MQ’s COM+ support must run on

the same computer as the Distributed Transaction Coordinator (DTC), a part of
COM+.

v The queue manager must also run on the same computer.
v The DTC must be configured as an MSCS resource, and can therefore run on

only one of the computers in the cluster at any time.

PostOnlineCommand and PreOfflineCommand
Use these commands to integrate WebSphere MQ MSCS support with other
systems. You can use them to issue WebSphere MQ commands, wih some
restrictions.

Specify these commands in the Parameters to a resource of type IBM WebSphere MQ
MSCS. You can use them to integrate WebSphere MQ MSCS support with other
systems or procedures. For example, you could specify the name of a program that
sends a mail message, activates a pager, or generates some other form of alert to be
captured by another monitoring system.

PostOnlineCommand is invoked when the resource changes from offline to online;
PreOfflineCommand is invoked for a change from online to offline. When invoked
these commands are run, by default, from the Windows system directory. Because
WebSphere MQ uses a 32–bit resource monitor process, on Windows 64–bit
systems, this is the \Windows\SysWOW64 directory rather than \Windows\system32.
For more information, see the Microsoft documentation about file redirection in a
Windows x64 environment. Both commands run under the user account used to
run the MSCS Cluster Service; and are invoked asynchronously; WebSphere MQ
MSCS support does not wait for them to complete before continuing. This
eliminates any risk that they might block or delay further cluster operations.

You can also use these commands to issue WebSphere MQ commands, for example
to restart Requester channels. However, the commands are run at the point in time
when the queue manager’s state changes so they are not intended to perform
long-running functions and must not make assumptions about the current state of
the queue manager; it is quite possible that, immediately after the queue manager
was brought online, an administrator issued an offline command.

If you want to run programs that depend on the state of the queue manager,
consider creating instances of the MSCS Generic Application resource type, placing

Chapter 4. Configuring WebSphere MQ 213

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|

|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

them in the same MSCS group as the queue manager resource, and making them
dependent on the queue manager resource.

Using preferred nodes

It can be useful when using Active/Active mode to configure a preferred node for
each queue manager. However, in general it is better not to set a preferred node
but to rely on a manual failback. Unlike some other relatively stateless resources, a
queue manager can take a while to fail over (or back) from one node to the other.
To avoid unnecessary outages, test the recovered node before failing a queue
manager back to it. This precludes use of the immediate failback setting. You can
configure failback to occur between certain times of day.

Probably the safest route is to move the queue manager back manually to the
desired node, when you are certain that the node is fully recovered. This precludes
use of the preferred node option.

Performance benchmarking

If COM+ errors occur in the Application Event log
When you install WebSphere MQ on a newly-installed MSCS cluster, you might
find an error with Source COM+ and Event ID 4691 reported in the Application
Event log.

This means that you are trying to run WebSphere MQ on a Microsoft Cluster
Server (MSCS) environment when the Microsoft Distributed Transaction
Coordinator (MSDTC) has not been configured to run in such an environment. For
information on configuring MSDTC in a clustered environment, refer to Microsoft
documentation.

WebSphere MQ MSCS support utility programs

WebSphere MQ support for MSCS includes the following utility programs that you
can run at a command prompt:

Register/unregister the resource type
haregtyp.exe

After you unregister the WebSphere MQ MSCS resource type you can no
longer create any resources of that type. MSCS does not let you unregister
a resource type if you still have instances of that type within the cluster:
1. Using the MSCS Cluster Administrator, stop any queue managers that

are running under MSCS control, by taking them offline as described in
“Taking a queue manager offline from MSCS” on page 210.

2. Using the MSCS Cluster Administrator, delete the resource instances.
3. At a command prompt, unregister the resource type by entering the

following command:
haregtyp /u

If you want to register the type (or re-register it at a later time), enter the
following command at a command prompt:
haregtyp /r

After successfully registering the MSCS libraries, you must reboot the
system if you have not done so since installing WebSphere MQ.

214 WebSphere MQ: System Administration Guide

|
|

|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|
|

|
|
|

|

|
|

|

|
|

|

|
|

Move a queue manager to MSCS storage
hamvmqm.exe

See “Moving a queue manager to MSCS storage” on page 205.

Delete a queue manager from a node
hadltmqm.exe

Consider the case where you have had a queue manager in your cluster, it
has been moved from one node to another, and now you want to destroy
it. Use the WebSphere MQ Explorer to delete it on the node where it
currently is. The registry entries for it still exist on the other computer. To
delete these, enter the following command at a prompt on that computer:
hadltmqm /m qmname

where qmname is the name of the queue manager to remove.

Check and save setup details
amqmsysn.exe

This utility presents a dialog showing full details of your WebSphere MQ
MSCS Support setup, such as might be requested if you call IBM support.
There is an option to save the details to a file.

Chapter 4. Configuring WebSphere MQ 215

|
|

|

|
|

|
|
|
|
|

|

|

|
|

|
|
|

|

216 WebSphere MQ: System Administration Guide

Chapter 5. Recovery and problem determination

Availability, recovery and restart

Maintain availability if a queue manager fails, and recover messages that are lost
in crashes.

Client application availability is improved by using WebSphere MQ client
reconnection and automated client reconnection to switch the queue manager the
client is connected to. Server application availability is improved by using
WebSphere MQ clusters and queue sharing groups on z/OS. WebSphere MQ can
also be configured to run in high-availability clusters of servers, such as Microsoft
Cluster Server, HA-CMP on AIX and other Unix clustering solutions.

A messaging system ensures that messages entered into the system are delivered to
their destination. This means that it must provide a method of tracking the
messages in the system, and of recovering messages if the system fails for any
reason.

A highly available messaging system provides a high degree of availability by
using resilient components, failover capabilities and automatic restart. Queue
manager availability is enhanced by using a High Availability solution such as
WebSphere MQ clustering, Microsoft Cluster services (MSCS), and HA-CMP.

WebSphere MQ ensures that messages are not lost by maintaining recovery logs of
the activities of the queue managers that handle the receipt, transmission, and
delivery of messages. It uses these logs for three types of recovery:
1. Restart recovery, when you stop WebSphere MQ in a planned way.
2. Crash recovery, when a failure stops WebSphere MQ.
3. Media recovery, to restore damaged objects.

In all cases, the recovery restores the queue manager to the state it was in when
the queue manager stopped, except that any in-flight transactions are rolled back,
removing from the queues any updates that were in-flight at the time the queue
manager stopped. Recovery restores all persistent messages; nonpersistent
messages can be lost during the process.

Making sure that messages are not lost (logging)

WebSphere MQ logs all the information you need to recover from a queue
manager failure.

WebSphere MQ records all significant changes to the data controlled by the queue
manager in a recovery log.

This includes creating and deleting objects, persistent message updates, transaction
states, changes to object attributes, and channel activities. The log contains the
information you need to recover all updates to message queues by:
v Keeping records of queue manager changes
v Keeping records of queue updates for use by the restart process
v Enabling you to restore data after a hardware or software failure

© Copyright IBM Corp. 1994, 2009 217

|

|

|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|

|

|
|
|
|
|

|

|
|

|
|

|
|
|

|

|

|

However, WebSphere MQ also relies on the disk system hosting its files. If the disk
system is itself unreliable, information, including log information, can still be lost.

What logs look like

Logs consist of primary and secondary files, and a control file. You define the
number and size of log files and where they are stored in the file system.

A WebSphere MQ log consists of two components:
1. One or more files of log data.
2. A log control file

A file of log data is also known as a log extent.

There are a number of log files that contain the data being recorded. You can
define the number and size (as explained in “Configuring WebSphere MQ” on
page 93), or take the system default of three files.

In WebSphere MQ for Windows, each of the three files defaults to 1 MB. In
WebSphere MQ for UNIX systems, each of the three files defaults to 4 MB.

When you create a queue manager, the number of log files you define is the
number of primary log files allocated. If you do not specify a number, the default
value is used.

In WebSphere MQ for Windows, if you have not changed the log path, log files are
created under the directory:
C:\Program Files\IBM\WebSphere MQ\log\<QMgrName>

In WebSphere MQ for UNIX systems, if you have not changed the log path, log
files are created under the directory:
/var/mqm/log/<QMgrName>

WebSphere MQ starts with these primary log files, but if the primary log space is
not sufficient, it allocates secondary log files. It does this dynamically and removes
them when the demand for log space reduces. By default, up to two secondary log
files can be allocated. You can change this default allocation, as described in
“Configuring WebSphere MQ” on page 93.

The log control file:

The log control file contains the information needed to control the use of log files,
such as their size and location, the name of the next available file, and so on.

Note: Ensure that the logs created when you start a queue manager are large
enough to accommodate the size and volume of messages that your applications
will handle. You will probably need to change the default log numbers and sizes to
meet your requirements. For more information, see “Calculating the size of the
log” on page 222.

Types of logging

Circular and linear logging.

218 WebSphere MQ: System Administration Guide

|
|

|

|
|

|

|

|

|

|
|
|

|
|

|
|
|

|
|

|

|
|

|

|
|
|
|
|

|

|
|

|
|
|
|
|

|

|

In WebSphere MQ, the number of files that are required for logging depends on
the file size, the number of messages you have received, and the length of the
messages. There are two ways of maintaining records of queue manager activities:
circular logging and linear logging.

Circular logging:

Use circular logging if all you want is restart recovery, using the log to roll back
transactions that were in progress when the system stopped.

Circular logging keeps all restart data in a ring of log files. Logging fills the first
file in the ring, then moves on to the next, and so on, until all the files are full. It
then goes back to the first file in the ring and starts again. This continues as long
as the product is in use, and has the advantage that you never run out of log files.

WebSphere MQ keeps the log entries required to restart the queue manager
without loss of data until they are no longer required to ensure queue manager
data recovery. The mechanism for releasing log files for reuse is described in
“Using checkpointing to ensure complete recovery” on page 220.

Linear logging:

Use linear logging if you want both restart recovery and media recovery
(recreating lost or damaged data by replaying the contents of the log).

Linear logging keeps the log data in a continuous sequence of files. Space is not
reused, so you can always retrieve any record logged in any log extent that has not
been deleted

As disk space is finite, you might have to think about some form of archiving. It is
an administrative task to manage your disk space for the log, reusing or extending
the existing space as necessary.

The number of log files used with linear logging can be very large, depending on
your message flow and the age of your queue manager. However, there are a
number of files that are said to be active. Active files contain the log entries
required to restart the queue manager. Collectively, active log files are known as
the active log. The number of active log files is usually less than the number of
primary log files as defined in the configuration files. (See “Calculating the size of
the log” on page 222 for information about defining the number.)

The key event that controls whether a log file is termed active or not is a
checkpoint. A WebSphere MQ checkpoint is a point of consistency between the
recovery log and object files. A checkpoint determines the set of log files needed to
perform restart recovery. Log files that are not active are not required for restart
recovery, and are termed inactive. In some cases inactive log files are required for
media recovery. (See “Using checkpointing to ensure complete recovery” on page
220 for further information about checkpointing.)

Inactive log files can be archived as they are not required for restart recovery.
Inactive log files that are not required for media recovery can be considered as
superfluous log files. You can delete superfluous log files if they are no longer of
interest to your operation. Refer to “Managing logs” on page 224 for further
information about the disposition of log files.

Chapter 5. Recovery and problem determination 219

|
|
|
|

|

|
|

|
|
|
|

|
|
|
|

|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

If a new checkpoint is recorded in the second, or later, primary log file, the first file
can become inactive and a new primary file is formatted and added to the end of
the primary pool, restoring the number of primary files available for logging. In
this way the primary log file pool can be seen to be a current set of files in an
ever-extending list of log files. Again, it is an administrative task to manage the
inactive files according to the requirements of your operation.

Although secondary log files are defined for linear logging, they are not used in
normal operation. If a situation arises when, probably due to long-lived
transactions, it is not possible to free a file from the active pool because it might
still be required for a restart, secondary files are formatted and added to the active
log file pool.

If the number of secondary files available is used up, requests for most further
operations requiring log activity will be refused with an
MQRC_RESOURCE_PROBLEM return code being returned to the application.

Both types of logging can cope with unexpected loss of power, assuming that there
is no hardware failure.

Using checkpointing to ensure complete recovery

Checkpoints synchronize queue manager data and log files, and mark a point of
consistency from which log records can be discarded. Frequent checkpointing
makes recovery quicker.

Persistent updates to message queues happen in two stages. First, the records
representing the update are written to the log, then the queue file is updated. The
log files can thus become more up-to-date than the queue files. To ensure that
restart processing begins from a consistent point, WebSphere MQ uses checkpoints.
A checkpoint is a point in time when the record described in the log is the same as
the record in the queue. The checkpoint itself consists of the series of log records
needed to restart the queue manager; for example, the state of all transactions
(units of work) active at the time of the checkpoint.

WebSphere MQ generates checkpoints automatically. They are taken when the
queue manager starts, at shutdown, when logging space is running low, and after
every 10 000 operations logged.

As the queues handle further messages, the checkpoint record becomes
inconsistent with the current state of the queues.

When WebSphere MQ restarts, it finds the latest checkpoint record in the log. This
information is held in the checkpoint file that is updated at the end of every
checkpoint. The checkpoint record represents the most recent point of consistency
between the log and the data. All the operations that have taken place since the
checkpoint are replayed forward. This is known as the replay phase. The replay
phase brings the queues back to the logical state they were in before the system
failure or shutdown. During the replay phase a list is created of the transactions
that were in-flight when the system failure or shutdown occurred. Messages
AMQ7229 and AMQ7230 are issued to indicate the progression of the replay phase.

In order to know which operations to back out or commit, WebSphere MQ accesses
each active log record associated with an in-flight transaction. This is known as the
recovery phase. Messages AMQ7231, AMQ7232 and AMQ7234 are issued to
indicate the progression of the recovery phase.

220 WebSphere MQ: System Administration Guide

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

Once all the necessary log records have been accessed during the recovery phase,
each active transaction is in turn resolved and each operation associated with the
transaction will be either backed out or committed. This is known as the resolution
phase. Message AMQ7233 is issued to indicate the progression of the resolution
phase.

WebSphere MQ maintains internal pointers to the head and tail of the log. It
moves the head pointer to the most recent checkpoint consistent with recovering
message data.

Checkpoints are used to make recovery more efficient, and to control the reuse of
primary and secondary log files.

In Figure 21, all records before the latest checkpoint, Checkpoint 2, are no longer
needed by WebSphere MQ. The queues can be recovered from the checkpoint
information and any later log entries. For circular logging, any freed files prior to
the checkpoint can be reused. For a linear log, the freed log files no longer need to
be accessed for normal operation and become inactive. In the example, the queue
head pointer is moved to point at the latest checkpoint, Checkpoint 2, which then
becomes the new queue head, Head 2. Log File 1 can now be reused.

Figure 22 on page 222 shows how a long-running transaction affects reuse of log
files. In the example, a long-running transaction has made an entry to the log,
shown as LR 1, after the first checkpoint shown. The transaction does not complete
(at point LR 2) until after the third checkpoint. All the log information from LR 1
onwards is retained to allow recovery of that transaction, if necessary, until it has
completed.

Checkpoint
1

Put PutGetGet

Get Get PutPut

Put Put GetGetGet

Checkpoint
2

Head 1

Head 2

Log File 1

Log File 2

Log File 3

Figure 21. Checkpointing. For simplicity, only the ends of the log files are shown.

Chapter 5. Recovery and problem determination 221

|

|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

After the long-running transaction has completed, at LR 2, the head of the log is
moved to Checkpoint 3, the latest logged checkpoint. The files containing log
records before Checkpoint 3, Head 2, are no longer needed. If you are using
circular logging, the space can be reused.

If the primary log files are completely full before the long-running transaction
completes, secondary log files are used to avoid the logs getting full.

When the log head is moved and you are using circular logging, the primary log
files might become eligible for reuse and the logger, after filling the current file,
reuses the first primary file available to it. If you are using linear logging, the log
head is still moved down the active pool and the first file becomes inactive. A new
primary file is formatted and added to the bottom of the pool in readiness for
future logging activities.

Checkpointing with long-running transactions

Calculating the size of the log

Estimating the size of log a queue manager needs.

After deciding whether the queue manager should use circular or linear logging,
you need to estimate the size of the log that the queue manager needs. The size of
the log is determined by the following log configuration parameters:

LogFilePages
The size of each primary and secondary log file in units of 4K pages

LogPrimaryFiles
The number of preallocated primary log files

Checkpoint
1

Put PutGetGet

Get Get PutPut

Put PutGetCheckpoint
3

Get

Checkpoint
2

Head 1

Head 2

Log File 1

Log File 2

Log File 3

LR 1

LR 2

Figure 22. Checkpointing with a long-running transaction. For simplicity, only the ends of the log files are shown.

222 WebSphere MQ: System Administration Guide

|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|

|

|

|

|
|
|

|
|

|
|

LogSecondaryFiles
The number of secondary log files that can be created for use when the
primary log files are full

Table 19 shows the amount of data the queue manager logs for various operations.
Most queue manager operations need a minimal amount of log space. However,
when a persistent message is put to a queue, all the message data must be written
to the log to make it possible to recover the message. The size of the log depends,
typically, on the number and size of the persistent messages the queue manager
needs to handle.

Table 19. Log overhead sizes (all values are approximate)

Operation Size

Put persistent message 750 bytes + message length

If the message is large, it is divided into segments of 15700
bytes, each with a 300-byte overhead.

Get message 260 bytes

Syncpoint, commit 750 bytes

Syncpoint, rollback 1000 bytes + 12 bytes for each get or put to be rolled back

Create object 1500 bytes

Delete object 300 bytes

Alter attributes 1024 bytes

Record media image 800 bytes + image

The image is divided into segments of 260 000 bytes, each
having a 300-byte overhead.

Checkpoint 750 bytes + 200 bytes for each active unit of work

Additional data might be logged for any uncommitted puts
or gets that have been buffered for performance reasons.

Note:

1. You can change the number of primary and secondary log files each time the
queue manager starts.

2. You cannot change the log file size; you must determine it before creating the
queue manager.

3. The number of primary log files and the log file size determine the amount of
log space that is preallocated when the queue manager is created.

4. The total number of primary and secondary log files cannot exceed 511 on
UNIX systems, or 255 on Windows, which in the presence of long-running
transactions, limits the maximum amount of log space available to the queue
manager for restart recovery. The amount of log space the queue manager
might need for media recovery does not share this limit.

5. When circular logging is being used, the queue manager reuses primary log
space. This means that the queue manager’s log can be smaller than the
amount of data you have estimated that the queue manager needs to log. The
queue manager will, up to a limit, allocate a secondary log file when a log file
becomes full, and the next primary log file in the sequence is not available.

6. Primary log files are made available for reuse during a checkpoint. The queue
manager takes both the primary and secondary log space into consideration
before taking a checkpoint because the amount of log space is running low.

Chapter 5. Recovery and problem determination 223

|
|
|

|
|
|
|
|
|

||

||

||

|
|

||

||

||

||

||

||

||

|
|

||

|
|
|

|

|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

If you do not define more primary log files than secondary log files, the queue
manager might allocate secondary log files before a checkpoint is taken. This
makes the primary log files available for reuse.

Managing logs

Logs are nearly self-managing, but sometimes need managing to resolve space
problems.

Over time, some of the log records written become unnecessary for restarting the
queue manager. If you are using circular logging, the queue manager reclaims
freed space in the log files. This activity is transparent to the user and you do not
usually see the amount of disk space used reduce because the space allocated is
quickly reused.

Of the log records, only those written since the start of the last complete
checkpoint, and those written by any active transactions, are needed to restart the
queue manager. Thus, the log might fill if a checkpoint has not been taken for a
long time, or if a long-running transaction wrote a log record a long time ago. The
queue manager tries to take checkpoints often enough to avoid the first problem.

When a long-running transaction fills the log, attempts to write log records fail and
some MQI calls return MQRC_RESOURCE_PROBLEM. (Space is reserved to
commit or roll back all in-flight transactions, so MQCMIT or MQBACK should
not fail.)

The queue manager rolls back transactions that consume too much log space. An
application whose transaction is rolled back in this way cannot perform
subsequent MQPUT or MQGET operations specifying syncpoint under the same
transaction. An attempt to put or get a message under syncpoint in this state
returns MQRC_BACKED_OUT. The application can then issue MQCMIT, which
returns MQRC_BACKED_OUT, or MQBACK and start a new transaction. When
the transaction consuming too much log space has been rolled back, its log space is
released and the queue manager continues to operate normally.

If the log fills, message AMQ7463 is issued. In addition, if the log fills because a
long-running transaction has prevented the space being released, message
AMQ7465 is issued.

Finally, if records are being written to the log faster than the asynchronous
housekeeping processes can handle them, message AMQ7466 is issued. If you see
this message, increase the number of log files or reduce the amount of data being
processed by the queue manager.

What happens when a disk gets full

The queue manager logging component can cope with a full disk, and with full log
files. If the disk containing the log fills, the queue manager issues message
AMQ6708 and an error record is taken.

The log files are created at their maximum size, rather than being extended as log
records are written to them. This means that WebSphere MQ can run out of disk
space only when it is creating a new file; it cannot run out of space when it is
writing a record to the log. WebSphere MQ always knows how much space is
available in the existing log files, and manages the space within the files
accordingly.

224 WebSphere MQ: System Administration Guide

|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|

If you fill the drive containing the log files, you might be able to free some disk
space. If you are using a linear log, there might be some inactive log files in the
log directory, and you can copy these files to another drive or device. If you still
run out of space, check that the configuration of the log in the queue manager
configuration file is correct. You might be able to reduce the number of primary or
secondary log files so that the log does not outgrow the available space. You
cannot alter the size of the log files for an existing queue manager. The queue
manager assumes that all log files are the same size.

Managing log files
Allocate sufficient space for your log files. For linear logging, you can delete old
log files when they are no longer required.

If you are using circular logging, ensure that there is sufficient space to hold the
log files when you configure your system (see “Log defaults for WebSphere MQ”
on page 101 and “Queue manager logs” on page 108). The amount of disk space
used by the log does not increase beyond the configured size, including space for
secondary files to be created when required.

If you are using a linear log, the log files are added continually as data is logged,
and the amount of disk space used increases with time. If the rate of data being
logged is high, disk space is consumed rapidly by new log files.

Over time, the older log files for a linear log are no longer needed to restart the
queue manager or to perform media recovery of any damaged objects. The
following are methods for determining which log files are still required:

Logger event messages
When enabled, logger event messages are generated when queue managers
starts writing log records to a new log file. The contents of logger event
messages specify the log files that are still required for queue manager
restart, and media recovery. For more information on logger event
messages, see Monitoring WebSphere MQ

Queue manager status
Executing the MQSC command, DISPLAY QMSTATUS, or the PCF
command, Inquire Queue Manager Status, returns queue manager
information, including details of the required log files. For more
information on MQSC commands, see the WebSphere MQ Script (MQSC)
Command Reference manual, and for information on PCF commands, see
the WebSphere MQ Programmable Command Formats and Administration
Interface manual.

Queue manager messages
Periodically, the queue manager issues a pair of messages to indicate
which of the log files are needed:
v Message AMQ7467 gives the name of the oldest log file needed to restart

the queue manager. This log file and all newer log files must be
available during queue manager restart.

v Message AMQ7468 gives the name of the oldest log file needed for
media recovery.

Only log files required for queue manager restart, active log files, need to be
online. Inactive log files can be copied to an archive medium such as tape for
disaster recovery, and removed from the log directory. Inactive log files that are not
required for media recovery can be considered as superfluous log files. You can
delete superfluous log files if they are no longer of interest to your operation.

Chapter 5. Recovery and problem determination 225

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|

To determine ″older″ and ″newer″ log files, use the log file number rather than the
modification times applied by the file system.

If any log file that is needed cannot be found, operator message AMQ6767 is
issued. Make the log file, and all subsequent log files, available to the queue
manager and retry the operation.

Note: When performing media recovery, all the required log files must be available
in the log file directory at the same time. Make sure that you take regular media
images of any objects you might wish to recover to avoid running out of disk
space to hold all the required log files.

Messages AMQ7467 and AMQ7468 can also be issued at the time of running the
rcdmqimg command. For more information about this command, see “rcdmqimg”
on page 338.

Determining superfluous log files:

When managing linear log files, it is important to be sure which files can be
deleted or archived. This information will assist you in making this decision.

Do not use the file system’s modification times to determine ″older″ log files. Use
only the log file number. The queue manager’s use of log files follows complex
rules, including pre-allocation and formatting of log files before they are needed.
You might see log files with modification times that would be misleading if you
try to use these times to determine relative age.

To determine the oldest log file needed to restart the queue manager, issue the
command DISPLAY QMSTATUS RECLOG.

To determine the oldest log file needed to perform media recovery, issue the
command DISPLAY QMSTATUS MEDIALOG.

In general a lower log file number implies an older log. Unless you have a very
high log file turnover, of the order of 3000 log files per day for 10 years, then you
do not need to cater for the number wrapping at 9 999 999. In this case, you can
archive any log file with a number less than the RECLOG value, and you can
delete any log file with a number less than both the RECLOG and MEDIALOG
values.

If however you have a very high turnover of log files, or otherwise want to be
confident of coping with the general case, then the following algorithm can
typically be used:

Let S == restart log file number (from DISPLAY QMSTATUS RECLOG).
Let M == media recovery log file number (from DISPLAY QMSTATUS MEDIALOG).
Let L == a given log file number whose eligibility for deletion or archiving
needs to be determined.

function minlog (a, b) {
if (abs (a - b) < 5000000)

return min (a, b); # Not wrapped.
else

return max (a, b); # Wrapped. }

A log file L can be deleted if

226 WebSphere MQ: System Administration Guide

|
|

|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

(L != S && L != M && minlog (L, minlog (S, M)) == L).
A log file L can be archived if (L != S && minlog (L, S) == L).

Log file location:

When choosing a location for your log files, remember that operation is severely
impacted if WebSphere MQ fails to format a new log because of lack of disk space.

If you are using a circular log, ensure that there is sufficient space on the drive for
at least the configured primary log files. Also leave space for at least one
secondary log file, which is needed if the log has to grow.

If you are using a linear log, allow considerably more space; the space consumed
by the log increases continuously as data is logged.

Ideally, place the log files on a separate disk drive from the queue manager data.
This has benefits in terms of performance. It might also be possible to place the log
files on multiple disk drives in a mirrored arrangement. This protects against
failure of the drive containing the log. Without mirroring, you could be forced to
go back to the last backup of your WebSphere MQ system.

Using the log for recovery

Using logs to recover from failures.

There are several ways that your data can be damaged. WebSphere MQ helps you
to recover from:
v A damaged data object
v A power loss in the system
v A communications failure

This section looks at how the logs are used to recover from these problems.

Recovering from power loss or communications failures

WebSphere MQ can recover from both communications failures and loss of power.
In addition, it can sometimes recover from other types of problem, such as
inadvertent deletion of a file.

In the case of a communications failure, messages remain on queues until they are
removed by a receiving application. If the message is being transmitted, it remains
on the transmission queue until it can be successfully transmitted. To recover from
a communications failure, you can usually restart the channels using the link that
failed.

If you lose power, when the queue manager is restarted WebSphere MQ restores
the queues to their committed state at the time of the failure. This ensures that no
persistent messages are lost. Nonpersistent messages are discarded; they do not
survive when WebSphere MQ stops abruptly.

Recovering damaged objects

There are ways in which a WebSphere MQ object can become unusable, for
example because of inadvertent damage. You then have to recover either your

Chapter 5. Recovery and problem determination 227

|
|

|

|
|

|
|
|

|
|

|
|
|
|
|

|

|

|
|

|

|

|

|

|

|
|
|

|
|
|
|
|

|
|
|
|

|

|
|

complete system or some part of it. The action required depends on when the
damage is detected, whether the log method selected supports media recovery, and
which objects are damaged.

Media recovery:

Media recovery re-creates objects from information recorded in a linear log. For
example, if an object file is inadvertently deleted, or becomes unusable for some
other reason, media recovery can re-create it. The information in the log required
for media recovery of an object is called a media image. Media images can be
recorded manually, using the rcdmqimg command, or automatically in some
circumstances.

A media image is a sequence of log records containing an image of an object from
which the object itself can be re-created.

The first log record required to re-create an object is known as its media recovery
record; it is the start of the latest media image for the object. The media recovery
record of each object is one of the pieces of information recorded during a
checkpoint.

When an object is re-created from its media image, it is also necessary to replay
any log records describing updates performed on the object since the last image
was taken.

Consider, for example, a local queue that has an image of the queue object taken
before a persistent message is put onto the queue. In order to re-create the latest
image of the object, it is necessary to replay the log entries recording the putting of
the message to the queue, as well as replaying the image itself.

When an object is created, the log records written contain enough information to
completely re-create the object. These records make up the object’s first media
image. Subsequently, at each shutdown, the queue manager records media images
automatically as follows:
v Images of all process objects and queues that are not local
v Images of empty local queues

Media images can also be recorded manually using the rcdmqimg command,
described in “rcdmqimg” on page 338. This command writes a media image of the
WebSphere MQ object. Once this has been done, only the logs that hold the media
image, and all the logs created after this time, are needed to re-create damaged
objects. The benefit of doing this depends on such factors as the amount of free
storage available, and the speed at which log files are created.

Recovering from media images:

WebSphere MQ automatically recovers some objects from their media image if it
finds that they are corrupt or damaged. In particular, this applies to objects found
to be damaged during the normal queue manager startup. If any transaction was
incomplete when the queue manager last shutdown, any queue affected is also
recovered automatically in order to complete the startup operation.

You must recover other objects manually, using the rcrmqobj command, which
replays the records in the log to re-create the WebSphere MQ object. The object is
re-created from its latest image found in the log, together with all applicable log
events between the time the image was saved and the time the re-create command

228 WebSphere MQ: System Administration Guide

|
|
|

|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|

|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

was issued. If a WebSphere MQ object becomes damaged, the only valid actions
that can be performed are either to delete it or to re-create it by this method.
Nonpersistent messages cannot be recovered in this way.

See “rcrmqobj” on page 340 for further details of the rcrmqobj command.

The log file containing the media recovery record, and all subsequent log files,
must be available in the log file directory when attempting media recovery of an
object. If a required file cannot be found, operator message AMQ6767 is issued and
the media recovery operation fails. If you do not take regular media images of the
objects that you want to re-create, you might have insufficient disk space to hold
all the log files required to re-create an object.

Recovering damaged objects during start up:

If the queue manager discovers a damaged object during startup, the action it
takes depends on the type of object and whether the queue manager is configured
to support media recovery.

If the queue manager object is damaged, the queue manager cannot start unless it
can recover the object. If the queue manager is configured with a linear log, and
thus supports media recovery, WebSphere MQ automatically tries to re-create the
queue manager object from its media images. If the log method selected does not
support media recovery, you can either restore a backup of the queue manager or
delete the queue manager.

If any transactions were active when the queue manager stopped, the local queues
containing the persistent, uncommitted messages put or got inside these
transactions are also needed to start the queue manager successfully. If any of
these local queues is found to be damaged, and the queue manager supports
media recovery, it automatically tries to re-create them from their media images. If
any of the queues cannot be recovered, WebSphere MQ cannot start.

If any damaged local queues containing uncommitted messages are discovered
during startup processing on a queue manager that does not support media
recovery, the queues are marked as damaged objects and the uncommitted
messages on them are ignored. This is because it is not possible to perform media
recovery of damaged objects on such a queue manager and the only action left is
to delete them. Message AMQ7472 is issued to report any damage.

Recovering damaged objects at other times:

Media recovery of objects is automatic only during startup. At other times, when
object damage is detected, operator message AMQ7472 is issued and most
operations using the object fail. If the queue manager object is damaged at any
time after the queue manager has started, the queue manager performs a
preemptive shutdown. When an object has been damaged you can delete it or, if
the queue manager is using a linear log, attempt to recover it from its media image
using the rcrmqobj command (see “rcrmqobj” on page 340 for further details).

Protecting WebSphere MQ log files

Do not touch the log files when a queue manager is running, recovery might be
impossible. Use super use or mqm authority to protect log files against inadvertent
modification.

Chapter 5. Recovery and problem determination 229

|
|
|

|

|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|

Do not remove the active log files manually when a WebSphere MQ queue
manager is running. If a user inadvertently deletes the log files that a queue
manager needs to restart, WebSphere MQ does not issue any errors and continues
to process data including persistent messages. The queue manager shuts down
normally, but can fail to restart. Recovery of messages then becomes impossible.

Users with the authority to remove logs that are being used by an active queue
manager also have authority to delete other important queue manager resources
(such as queue files, the object catalog, and WebSphere MQ executables). They can
therefore damage, perhaps through inexperience, a running or dormant queue
manager in a way against which WebSphere MQ cannot protect itself.

Exercise caution when conferring super user or mqm authority.

Backing up and restoring WebSphere MQ

Backing up queue managers and queue manager data.

Periodically, you can take measures to protect queue managers against possible
corruption caused by hardware failures. There are two ways of protecting a queue
manager:

Backup the queue manager data
In the event of hardware failure, a queue manager can be forced to stop. If
any queue manager log data is lost due to the hardware failure, the queue
manager might be unable to restart. Through backing up queue manager
data you may be able to recover some, or all, of the lost queue manager
data.

In general, the more frequently you backup queue manager data, the less
data you will lose in the event of hardware failure resulting in loss of
integrity in the recovery log.

To backup queue manager data, the queue manager must not be running.

For instructions of how to backup queue manager data, and how to restore
queue manager data, see:
v “Backing up queue manager data” on page 231.
v “Restoring queue manager data” on page 231.

Using a backup queue manager
In the event of severe hardware failure, a queue manager can be
unrecoverable. In this situation, if the unrecoverable queue manager has a
dedicated backup queue manager, the backup queue manager can be
activated in place of the unrecoverable queue manager. If it was updated
regularly, the backup queue manager log can contain log data up to, and
including, the last complete log extent from the unrecoverable queue
manager.

A backup queue manager can be updated while the existing queue
manager is still running.

For instructions of how to create a backup queue manager, and how to
activate a backup queue manager, see:
v “Creating a backup queue manager” on page 232.
v “Starting a backup queue manager” on page 233.

230 WebSphere MQ: System Administration Guide

|
|
|
|
|

|
|
|
|
|

|

|

|

|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|

|

|
|
|
|
|
|
|
|

|
|

|
|

|

|

Backing up queue manager data
Backing up queue manager data can help you to guard against possible loss of
data caused by hardware errors.

To take a backup copy of a queue manager’s data:
1. Ensure that the queue manager is not running. If you try to take a backup of a

running queue manager, the backup might not be consistent because of updates
in progress when the files were copied.
If possible, stop your queue manager in an orderly way. Try executing
endmqm -w (a wait shutdown); only if that fails, use endmqm -i (an
immediate shutdown).

2. Find the directories under which the queue manager places its data and its log
files, using the information in the configuration files. For more information
about this, see “Configuring WebSphere MQ” on page 93.

Note: You might have some difficulty in understanding the names that appear
in the directory. The names are transformed to ensure that they are compatible
with the platform on which you are using WebSphere MQ. For more
information about name transformations, see “Understanding WebSphere MQ
file names” on page 17.

3. Take copies of all the queue manager’s data and log file directories, including
all subdirectories.
Make sure that you do not miss any files, especially the log control file, as
described in WebSphere MQ System Administration Guide,and the configuration
files (or equivalent Registry entries on Windows) as described in WebSphere MQ
Intercommunication. Some of the directories might be empty, but you need them
all to restore the backup at a later date, so save them too.

4. Preserve the ownerships of the files. For WebSphere MQ for UNIX systems,
you can do this with the tar command. (If you have queues larger than 2 GB,
you cannot use tar; for more information, see “Enabling large queues” on page
43.)

Restoring queue manager data

To restore a backup of a queue manager’s data:
1. Ensure that the queue manager is not running.
2. Find the directories under which the queue manager places its data and its log

files, using the information in the configuration files
3. Clear out the directories into which you are going to place the backed-up data.
4. Copy the backed-up queue manager data and log files into the correct places.
5. Update the configuration information files (or equivalent Registry entries on

Windows).

Check the resulting directory structure to ensure that you have all the required
directories.

See Chapter 9, “Directory structure (Windows systems),” on page 529 and
Chapter 10, “Directory structure (UNIX systems),” on page 531 for more
information about WebSphere MQ directories and subdirectories.

Make sure that you have a log control file as well as the log files. Also check that
the WebSphere MQ and queue manager configuration files are consistent so that
WebSphere MQ can look in the correct places for the restored data.

Chapter 5. Recovery and problem determination 231

|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|

|

|

|
|

|

|

|
|

|
|

|
|
|

|
|
|

If the data was backed up and restored correctly, the queue manager will now
start.

For circular logging, backup the queue manager data and log file directories at the
same time as this should allow a consistent set of queue manager data and logs to
be restored.

For linear logging, we recommend that you backup the queue manager data and
log file directories at the same time. However, it is possible to restore only the
queue manager data files if a corresponding complete sequence of log files is
available.

Using a backup queue manager

An existing queue manager can have a dedicated backup queue manager. A
backup queue manager is an inactive copy of the existing queue manager. If the
existing queue manager becomes unrecoverable due to severe hardware failure, the
backup queue manager can be brought online to replace the unrecoverable queue
manager.

The existing queue manager log files must regularly be copied to the backup
queue manager to ensure that the backup queue manager remains an effective
method for disaster recovery. The existing queue manager does not need to be
stopped for log files to be copied, however you should only copy a log file if the
queue manager has finished writing to it. Because the existing queue manager log
is continually updated, there is always a slight discrepancy between the existing
queue manager log and the log data copied to the backup queue manager log.
Regular updates to the backup queue manager minimizes the discrepancy between
the two logs.

If a backup queue manager is required to be brought online it must be activated,
and then started. The requirement to activate a backup queue manager before it is
started is a preventative measure to protect against a backup queue manager being
started accidentally. Once a backup queue manager is activated it can no longer be
updated.

For information on how to create, update, and start a backup queue manager, see
the following:
v “Creating a backup queue manager”
v “Updating a backup queue manager” on page 233
v “Starting a backup queue manager” on page 233

Creating a backup queue manager

You can only use a backup queue manager when using linear logging.

To create a backup queue manager for an existing queue manager, do the
following:
1. Create a backup queue manager for the existing queue manager using the

control command crtmqm. The backup queue manager requires the following:
v To have the same attributes as the existing queue manager, for example the

queue manager name, the logging type, and the log file size.
v To be on the same platform as the existing queue manager.
v To be at an equal, or higher, code level than the existing queue manager.

232 WebSphere MQ: System Administration Guide

|
|

|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|

|

|

|

|

|
|

|
|

|
|

|

|

2. Take copies of all the existing queue manager’s data and log file directories,
including all subdirectories, as described in “Backing up queue manager data”
on page 231.

3. Overwrite the backup queue manager’s data and log file directories, including
all subdirectories, with the copies taken from the existing queue manager.

4. Execute the following control command on the backup queue manager:
strmqm -r BackupQMName

This flags the queue manager as a backup queue manager within WebSphere
MQ, and replays all the copied log extents to bring the backup queue manager
in step with the existing queue manager.

Updating a backup queue manager

To ensure that a backup queue manager remains an effective method for disaster
recovery it must be updated regularly. Regular updating lessens the discrepancy
between the backup queue manager log, and the current queue manager log. There
is no need to stop the queue manager to be backed up.

To update a backup queue manager, do the following:
1. Issue the following Script (MQSC) command on the queue manager to be

backed up:
RESET QMGR TYPE(ADVANCELOG)

This stops any writing to the current log, and then advances the queue
manager logging to the next log extent. This ensures you backup all
information logged up to the current time.

2. Obtain the (new) current active log extent number by issuing the following
Script (MQSC) command on the queue manager to be backed up:
DIS QMSTATUS CURRLOG

3. Copy the updated log extent files from the current queue manager log directory
to the backup queue manager log directory - copy all the log extents since the
last update, and up to (but not including) the current extent noted in step 2.
Copy only log extent files, the ones beginning with ″S...″.

4. Issue the following control command on the backup queue manager:
strmqm -r BackupQMName

This replays all the copied log extents and brings the backup queue manager
into step with the queue manager. When the replay finishes you receive a
message that identifies all the log extents required for restart recovery, and all
the log extents required for media recovery.

Warning: If you copy a non-contiguous set of logs to the backup queue
manager log directory, only the logs up to the point where the first missing log
is found will be replayed.

Starting a backup queue manager

To substitute an unrecoverable queue manager with it’s backup queue manager, do
the following:
1. Execute the following control command to activate the backup queue manager:

strmqm -a BackupQMName

Chapter 5. Recovery and problem determination 233

|
|
|

|
|

|

|

|
|
|

|

|
|
|
|

|

|
|

|

|
|
|

|
|

|

|
|
|
|

|

|

|
|
|
|

|
|
|

|

|
|

|

|

The backup queue manager is activated. Now active, the backup queue
manager can no longer be updated.

2. Execute the following control command to start the backup queue manager:
strmqm BackupQMName

WebSphere MQ regards this as restart recovery, and utilizes the log from the
backup queue manager. During the last update to the backup queue manager
replay will have occurred, therefore only the active transactions from the last
recorded checkpoint are rolled back.
When an unrecoverable queue manager is substituted for a backup queue
manager some of the queue manager data from the unrecoverable queue
manager can be lost. The amount of lost data is dependent on how recently the
backup queue manager was last updated. The more recently the last update,
the less queue manager data loss.

3. Restart all channels.

Check the resulting directory structure to ensure that you have all the required
directories.

See Chapter 9, “Directory structure (Windows systems),” on page 529 and
Chapter 10, “Directory structure (UNIX systems),” on page 531 for more
information about WebSphere MQ directories and subdirectories.

Make sure that you have a log control file as well as the log files. Also check that
the WebSphere MQ and queue manager configuration files are consistent so that
WebSphere MQ can look in the correct places for the restored data.

If the data was backed up and restored correctly, the queue manager will now
start.

Note: Even though the queue manager data and log files are held in different
directories, back up and restore the directories at the same time. If the queue
manager data and log files have different ages, the queue manager is not in a valid
state and will probably not start. If it does start, your data is likely to be corrupt.

Recovery scenarios

Types of failures and how to recover from them.

This section looks at a number of possible problems and indicates how to recover
from them.

Disk drive failures

You might have problems with a disk drive containing either the queue manager
data, the log, or both. Problems can include data loss or corruption. The three cases
differ only in the part of the data that survives, if any.

In all cases first check the directory structure for any damage and, if necessary,
repair such damage. If you lose queue manager data, the queue manager directory
structure might have been damaged. If so, re-create the directory tree manually
before you restart the queue manager.

If damage has occurred to the queue manager data files, but not to the queue
manager log files, then the queue manager will normally be able to restart. If any

234 WebSphere MQ: System Administration Guide

|
|

|

|

|
|
|
|

|
|
|
|
|

|

|
|

|
|
|

|
|
|

|
|

|
|
|
|

|

|

|
|

|

|
|
|

|
|
|
|

|
|

damage has occurred to the queue manager log files, then it is likely that the
queue manager will not be able to restart.

Having checked for structural damage, there are a number of things you can do,
depending on the type of logging that you use.
v Where there is major damage to the directory structure or any damage to the

log, remove all the old files back to the QMgrName level, including the
configuration files, the log, and the queue manager directory, restore the last
backup, and restart the queue manager.

v For linear logging with media recovery, ensure that the directory structure is
intact and restart the queue manager. If the queue manager restarts, check, using
MQSC commands such as DISPLAY QUEUE, whether any other objects have
been damaged. Recover those you find, using the rcrmqobj command. For
example:
rcrmqobj -m QMgrName -t all *

where QMgrName is the queue manager being recovered. -t all * indicates that
all damaged objects of any type are to be recovered. If only one or two objects
have been reported as damaged, you can specify those objects by name and type
here.

v For linear logging with media recovery and with an undamaged log, you
might be able to restore a backup of the queue manager data leaving the
existing log files and log control file unchanged. Starting the queue manager
applies the changes from the log to bring the queue manager back to its state
when the failure occurred.
This method relies on two things:
1. You must restore the checkpoint file as part of the queue manager data. This

file contains the information determining how much of the data in the log
must be applied to give a consistent queue manager.

2. You must have the oldest log file required to start the queue manager at the
time of the backup, and all subsequent log files, available in the log file
directory.

If this is not possible, restore a backup of both the queue manager data and the
log, both of which were taken at the same time. This causes message integrity to
be lost.

v For circular logging, if the queue manager log files are damaged, restore the
queue manager from the latest backup that you have. Once you have restored
the backup, restart the queue manager and check as above for damaged objects.
However, because you do not have media recovery, you must find other ways of
re-creating the damaged objects.
If the queue manager log files are not damaged, the queue manager will
normally be able to restart. Following the restart you must identify all damaged
objects, then delete and redefine them.

Damaged queue manager object

If the queue manager object has been reported as damaged during normal
operation, the queue manager performs a preemptive shutdown. There are two
ways of recovering in these circumstances, depending on the type of logging you
use:
v For linear logging, manually delete the file containing the damaged object and

restart the queue manager. (You can use the dspmqfls command to determine
the real, file-system name of the damaged object.) Media recovery of the
damaged object is automatic.

Chapter 5. Recovery and problem determination 235

|
|

|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|

v For circular logging, restore the last backup of the queue manager data and log,
and restart the queue manager.

Damaged single object

If a single object is reported as damaged during normal operation:
v For linear logging, re-create the object from its media image.
v For circular logging, we do not support re-creating a single object.

Automatic media recovery failure

If a local queue required for queue manager startup with a linear log is damaged,
and the automatic media recovery fails, restore the last backup of the queue
manager data and log and restart the queue manager.

Dumping the contents of the log using the dmpmqlog
command

How to use the dmpmqlog command to dump the contents of the queue manager
log.

Use the dmpmqlog command to dump the contents of the queue manager log. By
default all active log records are dumped, that is, the command starts dumping
from the head of the log (usually the start of the last completed checkpoint).

The log can usually be dumped only when the queue manager is not running.
Because the queue manager takes a checkpoint during shutdown, the active
portion of the log usually contains a small number of log records. However, you
can use the dmpmqlog command to dump more log records using one of the
following options to change the start position of the dump:
v Start dumping from the base of the log. The base of the log is the first log record

in the log file that contains the head of the log. The amount of additional data
dumped in this case depends on where the head of the log is positioned in the
log file. If it is near the start of the log file, only a small amount of additional
data is dumped. If the head is near the end of the log file, significantly more
data is dumped.

v Specify the start position of the dump as an individual log record. Each log
record is identified by a unique log sequence number (LSN). In the case of circular
logging, this starting log record cannot be before the base of the log; this
restriction does not apply to linear logs. You might need to reinstate inactive log
files before running the command. You must specify a valid LSN, taken from
previous dmpmqlog output, as the start position.
For example, with linear logging you can specify the nextlsn from your last
dmpmqlog output. The nextlsn appears in Log File Header and indicates the
LSN of the next log record to be written. Use this as a start position to format all
log records written since the last time the log was dumped.

v For linear logs only, you can instruct dmpmqlog to start formatting log records
from any given log file extent. In this case, dmpmqlog expects to find this log
file, and each successive one, in the same directory as the active log files. This
option does not apply to circular logs, where dmpmqlog cannot access log
records prior to the base of the log.

236 WebSphere MQ: System Administration Guide

|
|

|

|

|

|

|

|
|
|

|

|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

The output from the dmpmqlog command is the Log File Header and a series of
formatted log records. The queue manager uses several log records to record
changes to its data.

Some of the information that is formatted is only of use internally. The following
list includes the most useful log records:

Log File Header
Each log has a single log file header, which is always the first thing formatted
by the dmpmqlog command. It contains the following fields:

logactive The number of primary log extents.

loginactive The number of secondary log extents.

logsize The number of 4 KB pages per extent.

baselsn The first LSN in the log extent containing the head of the log.

nextlsn The LSN of the next log record to be written.

headlsn The LSN of the log record at the head of the log.

tailsn The LSN identifying the tail position of the log.

hflag1 Whether the log is CIRCULAR or LOG RETAIN (linear).

HeadExtentID The log extent containing the head of the log.

Log Record Header
Each log record within the log has a fixed header containing the following
information:

LSN The log sequence number.

LogRecdType The type of the log record.

XTranid The transaction identifier associated with this log record (if any).

A TranType of MQI indicates a WebSphere MQ-only transaction.
A TranType of XA is involved with other resource managers.
Updates involved within the same unit of work have the same
XTranid.

QueueName The queue associated with this log record (if any).

Qid The unique internal identifier for the queue.

PrevLSN The LSN of the previous log record within the same transaction
(if any).

Start Queue Manager
This logs that the queue manager has started.

StartDate The date that the queue manager started.

StartTime The time that the queue manager started.

Stop Queue Manager
This logs that the queue manager has stopped.

StopDate The date that the queue manager stopped.

StopTime The time that the queue manager stopped.

ForceFlag The type of shutdown used.

Chapter 5. Recovery and problem determination 237

|
|
|

|
|

|
|
|

||||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|

||||

|||

|||

|
|
|
|

|||

|||

|||
|
|

|
|

||||

|||
|

|
|

||||

|||

|||
|

Start Checkpoint
This denotes the start of a queue manager checkpoint.

End Checkpoint
This denotes the end of a queue manager checkpoint.

ChkPtLSN The LSN of the log record that started this checkpoint.

Put Message
This logs a persistent message put to a queue. If the message was put under
syncpoint, the log record header contains a non-null XTranid. The remainder of
the record contains:

SpcIndex An identifier for the message on the queue. It can be used to
match the corresponding MQGET that was used to get this
message from the queue. In this case a subsequent Get Message
log record can be found containing the same QueueName and
SpcIndex. At this point the SpcIndex identifier can be reused for
a subsequent put message to that queue.

Data Contained in the hex dump for this log record is various
internal data followed by the Message Descriptor (eyecatcher
MD) and the message data itself.

Put Part
Persistent messages that are too large for a single log record are logged as a
single Put Message record followed by multiple Put Part log records.

Data Continues the message data where the previous log record left
off.

Get Message
Only gets of persistent messages are logged. If the message was got under
syncpoint, the log record header contains a non-null XTranid. The remainder of
the record contains:

SpcIndex Identifies the message that was retrieved from the queue. The
most recent Put Message log record containing the same
QueueName and SpcIndex identifies the message that was
retrieved.

QPriority The priority of the message retrieved from the queue.

Start Transaction
Indicates the start of a new transaction. A TranType of MQI indicates a
WebSphere MQ-only transaction. A TranType of XA indicates one that involves
other resource managers. All updates made by this transaction will have the
same XTranid.

Prepare Transaction
Indicates that the queue manager is prepared to commit the updates associated
with the specified XTranid. This log record is written as part of a two-phase
commit involving other resource managers.

Commit Transaction
Indicates that the queue manager has committed all updates made by a
transaction.

Rollback Transaction
This denotes the queue manager’s intention to roll back a transaction.

238 WebSphere MQ: System Administration Guide

|
|

|
|

||||
|

|
|
|
|

||||
|
|
|
|
|

|||
|
|
|

|
|
|

||||
|
|

|
|
|
|

||||
|
|
|

|||
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

End Transaction
This denotes the end of a rolled-back transaction.

Transaction Table
This record is written during syncpoint. It records the state of each transaction
that has made persistent updates. For each transaction the following
information is recorded:

XTranid The transaction identifier.

FirstLSN The LSN of the first log record associated with the transaction.

LastLSN The LSN of the last log record associated with the transaction.

Transaction Participants
This log record is written by the XA Transaction Manager component of the
queue manager. It records the external resource managers that are participating
in transactions. For each participant the following is recorded:

RMName The name of the resource manager.

RMID The resource manager identifier. This is also logged in
subsequent Transaction Prepared log records that record global
transactions in which the resource manager is participating.

SwitchFile The switch load file for this resource manager.

XAOpenString The XA open string for this resource manager.

XACloseString The XA close string for this resource manager.

Transaction Prepared
This log record is written by the XA Transaction Manager component of the
queue manager. It indicates that the specified global transaction has been
successfully prepared. Each of the participating resource managers will be
instructed to commit. The RMID of each prepared resource manager is recorded
in the log record. If the queue manager itself is participating in the transaction
a Participant Entry with an RMID of zero will be present.

Transaction Forget
This log record is written by the XA Transaction Manager component of the
queue manager. It follows the Transaction Prepared log record when the
commit decision has been delivered to each participant.

Purge Queue
This logs the fact that all messages on a queue have been purged, for example,
using the MQSC command CLEAR QUEUE.

Queue Attributes
This logs the initialization or change of the attributes of a queue.

Create Object
This logs the creation of a WebSphere MQ object.

ObjName The name of the object that was created.

UserId The user ID performing the creation.

Delete Object
This logs the deletion of a WebSphere MQ object.

ObjName The name of the object that was deleted.

Chapter 5. Recovery and problem determination 239

|
|

|
|
|
|

||||

|||

|||
|

|
|
|
|

||||

|||
|
|

|||

|||

|||
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

||||

|||
|

|
|

||||
|

Problem determination

Problem determination is set of procedures to follow to handle problems
experienced with WebSphere MQ.

This chapter suggests reasons for some of the problems you might experience
using WebSphere MQ. You usually start with a symptom, or set of symptoms, and
trace them back to their cause.

Problem determination is not problem solving. However, the process of problem
determination often enables you to solve a problem. For example, if you find that
the cause of the problem is an error in an application program, you can solve the
problem by correcting the error.

Preliminary checks

Before you start problem determination in detail, it is worth considering the facts
to see if there is an obvious cause of the problem, or a likely area in which to start
your investigation. This approach to debugging can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.

The cause of your problem could be in:
v WebSphere MQ
v The network
v The application

The sections that follow raise some fundamental questions that you need to
consider. As you work through the questions, make a note of anything that might
be relevant to the problem. Even if your observations do not suggest a cause
immediately, they could be useful later if you have to carry out a systematic
problem determination exercise.

Has WebSphere MQ run successfully before?

If WebSphere MQ has not run successfully before, it is likely that you have not yet
set it up correctly. See one of the following publications to check that you have
installed the product correctly, and run the verification procedure:
v WebSphere MQ for AIX Quick Beginnings
v WebSphere MQ for HP-UX Quick Beginnings
v WebSphere MQ for Linux Quick Beginnings
v WebSphere MQ for Solaris Quick Beginnings
v WebSphere MQ for Windows Quick Beginnings

Also look at WebSphere MQ Intercommunication for information about
post-installation configuration of WebSphere MQ.

Are there any error messages?

WebSphere MQ uses error logs to capture messages concerning its own operation,
any queue managers that you start, and error data coming from the channels that
are in use. Check the error logs to see if any messages have been recorded that are
associated with your problem.

240 WebSphere MQ: System Administration Guide

|
|

|
|

|
|
|

|
|
|
|

|

|
|
|
|

|

|

|

|

|
|
|
|
|

|

|
|
|

|

|

|

|

|

|
|

|

|
|
|
|

See “Error logs” on page 251 for information about the locations and contents of
the error logs.

Does the Windows Application Event Log show any WebSphere
MQ errors? (Windows only)

WebSphere MQ also logs errors in the Windows Application Event Log. Some
information about the cause of the error might be found here. To find the log, from
the Computer Management panel, expand Event Viewer and select Application.

Are there any return codes explaining the problem?

If your application gets a return code indicating that a Message Queue Interface
(MQI) call has failed, refer to the WebSphere MQ Application Programming
Reference manual for a description of that return code.

Can you reproduce the problem?

If you can reproduce the problem, consider the conditions under which it is
reproduced:
v Is it caused by a command or an equivalent administration request?

Does the operation work if it is entered by another method? If the command
works if it is entered on the command line, but not otherwise, check that the
command server has not stopped, and that the queue definition of the
SYSTEM.ADMIN.COMMAND.QUEUE has not been changed.

v Is it caused by a program? Does it fail on all WebSphere MQ systems and all
queue managers, or only on some?

v Can you identify any application that always seems to be running in the system
when the problem occurs? If so, examine the application to see if it is in error.

Have any changes been made since the last successful run?

When you are considering changes that might recently have been made, think
about the WebSphere MQ system, and also about the other programs it interfaces
with, the hardware, and any new applications. Consider also the possibility that a
new application that you are not aware of might have been run on the system.
v Have you changed, added, or deleted any queue definitions?
v Have you changed or added any channel definitions? Changes might have been

made to either WebSphere MQ channel definitions or any underlying
communications definitions required by your application.

v Do your applications deal with return codes that they might get as a result of
any changes you have made?

v Have you changed any component of the operating system that could affect the
operation of WebSphere MQ? For example, have you modified the Windows
Registry.

Has the application run successfully before?

If the problem appears to involve one particular application, consider whether the
application has run successfully before.

Before you answer Yes to this question, consider the following:
v Have any changes been made to the application since it last ran successfully?

Chapter 5. Recovery and problem determination 241

|
|

|
|

|
|
|

|

|
|
|

|

|
|

|

|
|
|
|

|
|

|
|

|

|
|
|
|

|

|
|
|

|
|

|
|
|

|

|
|

|

|

If so, it is likely that the error lies somewhere in the new or modified part of the
application. Take a look at the changes and see if you can find an obvious
reason for the problem. Is it possible to retry using a back level of the
application?

v Have all the functions of the application been fully exercised before?
Could it be that the problem occurred when part of the application that had
never been invoked before was used for the first time? If so, it is likely that the
error lies in that part of the application. Try to find out what the application was
doing when it failed, and check the source code in that part of the program for
errors.
If a program has been run successfully on many previous occasions, check the
current queue status and the files that were being processed when the error
occurred. It is possible that they contain some unusual data value that invokes a
rarely-used path in the program.

v Does the application check all return codes?
Has your WebSphere MQ system been changed, perhaps in a minor way, such
that your application does not check the return codes it receives as a result of
the change. For example, does your application assume that the queues it
accesses can be shared? If a queue has been redefined as exclusive, can your
application deal with return codes indicating that it can no longer access that
queue?

v Does the application run on other WebSphere MQ systems?
Could it be that there is something different about the way that this WebSphere
MQ system is set up that is causing the problem? For example, have the queues
been defined with the same message length or priority?

If the application has not run successfully before:

If your application has not yet run successfully, examine it carefully to see if you
can find any errors.

Before you look at the code, and depending upon which programming language
the code is written in, examine the output from the translator, or the compiler and
linkage editor, to see if any errors have been reported.

If your application fails to translate, compile, or link-edit into the load library, it
will also fail to run if you attempt to invoke it. See the WebSphere MQ Application
Programming Guide for information about building your application.

If the documentation shows that each of these steps was accomplished without
error, consider the coding logic of the application. Do the symptoms of the
problem indicate the function that is failing and, therefore, the piece of code in
error? See “Common programming errors” for some examples of common errors
that cause problems with WebSphere MQ applications.

Common programming errors:

The errors in the following list illustrate the most common causes of problems
encountered while running WebSphere MQ programs. Consider the possibility that
the problem with your WebSphere MQ system could be caused by one or more of
these errors:
v Assuming that queues can be shared, when they are in fact exclusive.
v Passing incorrect parameters in an MQI call.

242 WebSphere MQ: System Administration Guide

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|

|
|
|

|

|
|

|
|
|

|
|
|

|
|
|
|
|

|

|
|
|
|

|

|

v Passing insufficient parameters in an MQI call. This might mean that WebSphere
MQ cannot set up completion and reason codes for your application to process.

v Failing to check return codes from MQI requests.
v Passing variables with incorrect lengths specified.
v Passing parameters in the wrong order.
v Failing to initialize MsgId and CorrelId correctly.
v Failing to initialize Encoding and CodedCharSetId following

MQRC_TRUNCATED_MSG_ACCEPTED.

Problems with commands

Be careful when including special characters, for example, back slash (\) and
double quote (”) characters, in descriptive text for some commands. If you use
either of these characters in descriptive text, precede them with a \, that is, enter
\\ or \” if you want \ or ” in your text.

Does the problem affect specific parts of the network?

You might be able to identify specific parts of the network that are affected by the
problem (remote queues, for example). If the link to a remote message queue
manager is not working, the messages cannot flow to a remote queue.

Check that the connection between the two systems is available, and that the
intercommunication component of WebSphere MQ has started.

Check that messages are reaching the transmission queue, and check the local
queue definition of the transmission queue and any remote queues.

Have you made any network-related changes, or changed any WebSphere MQ
definitions, that might account for the problem?

Does the problem occur at specific times of the day?

If the problem occurs at specific times of day, it could be that it depends on system
loading. Typically, peak system loading is at mid-morning and mid-afternoon, so
these are the times when load-dependent problems are most likely to occur. (If
your WebSphere MQ network extends across more than one time zone, peak
system loading might seem to occur at some other time of day.)

Is the problem intermittent?

An intermittent problem could be caused by the way that processes can run
independently of each other. For example, a program might issue an MQGET call
without specifying a wait option before an earlier process has completed. An
intermittent problem might also be seen if your application tries to get a message
from a queue while the call that put the message is in-doubt (that is, before it has
been committed or backed out).

Have you applied any service updates?

If you have applied a service update to WebSphere MQ, check that the update
action completed successfully and that no error message was produced.
v Did the update have any special instructions?
v Was any test run to verify that the update was applied correctly and completely?

Chapter 5. Recovery and problem determination 243

|
|

|

|

|

|

|
|

|

|
|
|
|

|

|
|
|

|
|

|
|

|
|

|

|
|
|
|
|

|

|
|
|
|
|
|

|

|
|

|

|

v Does the problem still exist if WebSphere MQ is restored to the previous service
level?

v If the installation was successful, check with the IBM Support Center for any
maintenance package errors.

v If a maintenance package has been applied to any other program, consider the
effect it might have on the way WebSphere MQ interfaces with it.

Looking at problems in more detail

Perhaps the preliminary checks have enabled you to find the cause of the problem.
If so, you should now be able to resolve it, possibly with the help of other books in
the WebSphere MQ library and in the libraries of other licensed programs.

If you have not yet found the cause, start to look at the problem in greater detail.
The purpose of this section is to help you identify the cause of your problem if the
preliminary checks have not enabled you to find it. When you have established
that no changes have been made to your system, and that there are no problems
with your application programs, choose the option that best describes the
symptoms of your problem.
v “Have you obtained incorrect output?”
v “Have you failed to receive a response from a PCF command?” on page 247
v “Are some of your queues failing?” on page 248
v “Are you receiving an error code when creating or starting a queue manager?

(Windows only)” on page 248
v “Does the problem affect only remote queues?” on page 248
v “Is your application or system running slowly?” on page 249

If none of these symptoms describe your problem, consider whether it might have
been caused by another component of your system.

Have you obtained incorrect output?

In this book, incorrect output refers to your application:
v Not receiving a message that it was expecting.
v Receiving a message containing unexpected or corrupted information.
v Receiving a message that it was not expecting, for example, one that was

destined for a different application.

Messages that do not appear on the queue:

If messages do not appear when you are expecting them, check for the following:
v Has the message been put on the queue successfully?

– Has the queue been defined correctly? For example, is MAXMSGL sufficiently
large?

– Is the queue enabled for putting?
– Is the queue already full?
– Has another application got exclusive access to the queue?

v Are you able to get any messages from the queue?
– Do you need to take a syncpoint?

If messages are being put or retrieved within syncpoint, they are not available
to other tasks until the unit of recovery has been committed.

244 WebSphere MQ: System Administration Guide

|
|

|
|

|
|

|

|
|
|

|
|
|
|
|
|

|

|

|

|
|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|

|
|

– Is your wait interval long enough?
You can set the wait interval as an option for the MQGET call. Ensure that
you are waiting long enough for a response.

– Are you waiting for a specific message that is identified by a message or
correlation identifier (MsgId or CorrelId)?
Check that you are waiting for a message with the correct MsgId or CorrelId.
A successful MQGET call sets both these values to that of the message
retrieved, so you might need to reset these values in order to get another
message successfully.
Also, check whether you can get other messages from the queue.

– Can other applications get messages from the queue?
– Was the message you are expecting defined as persistent?

If not, and WebSphere MQ has been restarted, the message has been lost.
– Has another application got exclusive access to the queue?

If you cannot find anything wrong with the queue, and WebSphere MQ is running,
check the process that you expected to put the message onto the queue for the
following:
v Did the application start?

If it should have been triggered, check that the correct trigger options were
specified.

v Did the application stop?
v Is a trigger monitor running?
v Was the trigger process defined correctly?
v Did the application complete correctly?

Look for evidence of an abnormal end in the job log.
v Did the application commit its changes, or were they backed out?

If multiple transactions are serving the queue, they can conflict with one another.
For example, suppose one transaction issues an MQGET call with a buffer length
of zero to find out the length of the message, and then issues a specific MQGET
call specifying the MsgId of that message. However, in the meantime, another
transaction issues a successful MQGET call for that message, so the first
application receives a reason code of MQRC_NO_MSG_AVAILABLE. Applications
that are expected to run in a multiple server environment must be designed to
cope with this situation.

Consider that the message could have been received, but that your application
failed to process it in some way. For example, did an error in the expected format
of the message cause your program to reject it? If this is the case, refer to
“Messages that contain unexpected or corrupted information.”

Messages that contain unexpected or corrupted information:

If the information contained in the message is not what your application was
expecting, or has been corrupted in some way, consider the following:
v Has your application, or the application that put the message onto the queue,

changed?
Ensure that all changes are simultaneously reflected on all systems that need to
be aware of the change.

Chapter 5. Recovery and problem determination 245

|

|
|

|
|

|
|
|
|

|

|

|

|

|

|
|
|

|

|
|

|

|

|

|

|

|

|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|

For example, the format of the message data might have been changed, in which
case, both applications must be recompiled to pick up the changes. If one
application has not been recompiled, the data will appear corrupt to the other.

v Is an application sending messages to the wrong queue?
Check that the messages your application is receiving are not really intended for
an application servicing a different queue. If necessary, change your security
definitions to prevent unauthorized applications from putting messages on to
the wrong queues.
If your application uses an alias queue, check that the alias points to the correct
queue.

v Has the trigger information been specified correctly for this queue?
Check that your application should have started; or should a different
application have started?

If these checks do not enable you to solve the problem, check your application
logic, both for the program sending the message, and for the program receiving it.

Problems with incorrect output when using distributed queues:

If your application uses distributed queues, consider the following points:
v Has WebSphere MQ been correctly installed on both the sending and receiving

systems, and correctly configured for distributed queuing?
v Are the links available between the two systems?

Check that both systems are available, and connected to WebSphere MQ. Check
that the connection between the two systems is active.
You can use the MQSC command PING against either the queue manager (PING
QMGR) or the channel (PING CHANNEL) to verify that the link is operable.

v Is triggering set on in the sending system?
v Is the message for which you are waiting a reply message from a remote

system?
Check that triggering is activated in the remote system.

v Is the queue already full?
If so, check if the message has been put onto the dead-letter queue.
The dead-letter queue header contains a reason or feedback code explaining why
the message could not be put onto the target queue. See the WebSphere MQ
Application Programming Reference for information about the dead-letter queue
header structure.

v Is there a mismatch between the sending and receiving queue managers?
For example, the message length could be longer than the receiving queue
manager can handle.

v Are the channel definitions of the sending and receiving channels compatible?
For example, a mismatch in sequence number wrap can stop the distributed
queuing component. See WebSphere MQ Intercommunication for more
information about distributed queuing.

v Is data conversion involved? If the data formats between the sending and
receiving applications differ, data conversion is necessary. Automatic conversion
occurs when the MQGET call is issued if the format is recognized as one of the
built-in formats.
If the data format is not recognized for conversion, the data conversion exit is
taken to allow you to perform the translation with your own routines.

246 WebSphere MQ: System Administration Guide

|
|
|

|

|
|
|
|

|
|

|

|
|

|
|

|

|

|
|

|

|
|

|
|

|

|
|

|

|

|

|
|
|
|

|

|
|

|

|
|
|

|
|
|
|

|
|

Refer to the WebSphere MQ Application Programming Guide for further details
of data conversion.

Have you failed to receive a response from a PCF command?

If you have issued a command but have not received a response, consider the
following:
v Is the command server running?

Work with the dspmqcsv command to check the status of the command server.
– If the response to this command indicates that the command server is not

running, use the strmqcsv command to start it.
– If the response to the command indicates that the

SYSTEM.ADMIN.COMMAND.QUEUE is not enabled for MQGET requests,
enable the queue for MQGET requests.

v Has a reply been sent to the dead-letter queue?
The dead-letter queue header structure contains a reason or feedback code
describing the problem. See the WebSphere MQ Application Programming
Reference for information about the dead-letter queue header structure
(MQDLH).
If the dead-letter queue contains messages, you can use the provided browse
sample application (amqsbcg) to browse the messages using the MQGET call.
The sample application steps through all the messages on a named queue for a
named queue manager, displaying both the message descriptor and the message
context fields for all the messages on the named queue.

v Has a message been sent to the error log?
See “Error logs” on page 251 for further information.

v Are the queues enabled for put and get operations?
v Is the WaitInterval long enough?

If your MQGET call has timed out, a completion code of MQCC_FAILED and a
reason code of MQRC_NO_MSG_AVAILABLE are returned. (See the WebSphere
MQ Application Programming Reference for information about the WaitInterval
field, and completion and reason codes from MQGET.)

v If you are using your own application program to put commands onto the
SYSTEM.ADMIN.COMMAND.QUEUE, do you need to take a syncpoint?
Unless you have specifically excluded your request message from syncpoint, you
need to take a syncpoint before receiving reply messages.

v Are the MAXDEPTH and MAXMSGL attributes of your queues set sufficiently
high?

v Are you using the CorrelId and MsgId fields correctly?
Set the values of MsgId and CorrelId in your application to ensure that you
receive all messages from the queue.

Try stopping the command server and then restarting it, responding to any error
messages that are produced.

If the system still does not respond, the problem could be with either a queue
manager or the whole of the WebSphere MQ system. First, try stopping individual
queue managers to isolate a failing queue manager. If this does not reveal the
problem, try stopping and restarting WebSphere MQ, responding to any messages
that are produced in the error log.

If the problem still occurs after restart, contact your IBM Support Center for help.

Chapter 5. Recovery and problem determination 247

|
|

|

|
|

|

|

|
|

|
|
|

|

|
|
|
|

|
|
|
|
|

|

|

|

|

|
|
|
|

|
|

|
|

|
|

|

|
|

|
|

|
|
|
|
|

|

Are some of your queues failing?

If you suspect that the problem occurs with only a subset of queues, check the
local queues that you think are having problems:
1. Display the information about each queue. You can use the MQSC command

DISPLAY QUEUE to display the information.
2. Use the data displayed to do the following checks:
v If CURDEPTH is at MAXDEPTH, the queue is not being processed. Check

that all applications are running normally.
v If CURDEPTH is not at MAXDEPTH, check the following queue attributes to

ensure that they are correct:
– If triggering is being used:

- Is the trigger monitor running?
- Is the trigger depth too great? That is, does it generate a trigger event

often enough?
- Is the process name correct?
- Is the process available and operational?

– Can the queue be shared? If not, another application could already have it
open for input.

– Is the queue enabled appropriately for GET and PUT?
v If there are no application processes getting messages from the queue,

determine why this is so. It could be because the applications need to be
started, a connection has been disrupted, or the MQOPEN call has failed for
some reason.
Check the queue attributes IPPROCS and OPPROCS. These attributes
indicate whether the queue has been opened for input and output. If a value
is zero, it indicates that no operations of that type can occur. The values
might have changed; the queue might have been open but is now closed.
You need to check the status at the time you expect to put or get a message.

If you are unable to solve the problem, contact your IBM Support Center for help.

Are you receiving an error code when creating or starting a
queue manager? (Windows only)

If the WebSphere MQ Explorer, or the amqmdain command, fails to create or start
a queue manager, indicating an authority problem, it might be because the user
under which the “IBM MQSeries Services” process (AMQMSRVN) is running has
insufficient rights.

Ensure that the user with which the AMQMSRVN service is configured has the
rights described in “User rights required for AMQMSRVN” on page 81. By default
this service is configured to run as the MUSR_MQADMIN user.

Does the problem affect only remote queues?

If the problem affects only remote queues:
v Check that required channels have started, can be triggered, and any required

initiators are running.
v Check that the programs that should be putting messages to the remote queues

have not reported problems.

248 WebSphere MQ: System Administration Guide

|

|
|

|
|

|

|
|

|
|

|

|

|
|

|

|

|
|

|

|
|
|
|

|
|
|
|

|

|

|
|

|
|
|
|

|
|
|

|

|

|
|

|
|

v If you use triggering to start the distributed queuing process, check that the
transmission queue has triggering set on. Also, check that the trigger monitor is
running.

v Check the error logs for messages indicating channel errors or problems.
v If necessary, start the channel manually. See WebSphere MQ Intercommunication

for information about starting channels.

Is your application or system running slowly?

If your application is running slowly, it might be in a loop or waiting for a
resource that is not available.

This might also indicate a performance problem. Perhaps your system is operating
near the limits of its capacity. This type of problem is probably worst at peak
system load times, typically at mid-morning and mid-afternoon. (If your network
extends across more than one time zone, peak system load might seem to occur at
some other time.)

A performance problem might be caused by a limitation of your hardware.

If you find that performance degradation is not dependent on system loading, but
happens sometimes when the system is lightly loaded, a poorly-designed
application program is probably to blame. This could appear to be a problem that
only occurs when certain queues are accessed.

The following symptoms might indicate that WebSphere MQ is running slowly:
v Your system is slow to respond to MQSC commands.
v Repeated displays of the queue depth indicate that the queue is being processed

slowly for an application with which you would expect a large amount of queue
activity.

If the performance of your system is still degraded after reviewing the above
possible causes, the problem might lie with WebSphere MQ itself. If you suspect
this, contact your IBM Support Center for help.

Tuning performance for nonpersistent messages on AIX:

If you are using AIX, consider setting your tuning parameter to exploit full
performance for nonpersistent messages. To set the tuning parameter so that it
takes effect immediately, issue the following command as a root user:
/usr/sbin/ioo -o j2_nPagesPerWriteBehindCluster=0

To set the tuning parameter so that it takes effect immediately and persists over
reboots, issue the following command as a root user:
/usr/sbin/ioo -p -o j2_nPagesPerWriteBehindCluster=0

Normally, nonpersistent messages are kept only in memory, but there are
circumstances where AIX can schedule nonpersistent messages to be written to
disk. Messages scheduled to be written to disk are unavailable for MQGET until
the disk write completes. The suggested tuning command varies this threshold;
instead of scheduling messages to be written to disk when 16 kilobytes of data are
queued, the write-to-disk occurs only when real storage on the machine becomes
close to full. This is a global alteration and may effect other software components.

Chapter 5. Recovery and problem determination 249

|
|
|

|

|
|

|

|
|

|
|
|
|
|

|

|
|
|
|

|

|

|
|
|

|
|
|

|

|
|
|

|

|
|

|

|
|
|
|
|
|
|

On AIX, when using multithreaded applications and especially when running on
machines with multiple CPUs, we strongly recommend setting
AIXTHREADSCOPE=S in the environment before starting the application, for
better performance and more solid scheduling. For example:
export AIXTHREADSCOPE=S

Setting AIXTHREAD_SCOPE=S means that user threads created with default
attributes will be placed into system-wide contention scope. If a user thread is
created with system-wide contention scope, it is bound to a kernel thread and it is
scheduled by the kernel. The underlying kernel thread is not shared with any other
user thread.

Application design considerations

There are a number of ways in which poor program design can affect performance.
These can be difficult to detect because the program can appear to perform well
itself, but affect the performance of other tasks. Several problems specific to
programs making WebSphere MQ calls are discussed in the following sections.

For more information about application design, see the WebSphere MQ Application
Programming Guide.

Effect of message length

The amount of data in a message can affect the performance of the application that
processes the message. To achieve the best performance from your application,
send only the essential data in a message. For example, in a request to debit a
bank account, the only information that might need to be passed from the client to
the server application is the account number and the amount of the debit.

Effect of message persistence

Persistent messages are usually logged. Logging messages reduces the performance
of your application, so use persistent messages for essential data only. If the data
in a message can be discarded if the queue manager stops or fails, use a
nonpersistent message.

Searching for a particular message

The MQGET call usually retrieves the first message from a queue. If you use the
message and correlation identifiers (MsgId and CorrelId) in the message descriptor
to specify a particular message, the queue manager has to search the queue until it
finds that message. Using the MQGET call in this way affects the performance of
your application.

Queues that contain messages of different lengths

If your application cannot use messages of a fixed length, grow and shrink the
buffers dynamically to suit the typical message size. If the application issues an
MQGET call that fails because the buffer is too small, the size of the message data
is returned. Add code to your application so that the buffer is resized accordingly
and the MQGET call is re-issued.

Note: if you do not set the MaxMsgLength attribute explicitly, it defaults to 4 MB,
which might be very inefficient if this is used to influence the application buffer
size.

250 WebSphere MQ: System Administration Guide

|
|
|
|

|

|
|
|
|
|

|

|
|
|
|

|
|

|

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|

|
|
|

Frequency of syncpoints

Programs that issue very large numbers of MQPUT or MQGET calls within
syncpoint, without committing them, can cause performance problems. Affected
queues can fill up with messages that are currently inaccessible, while other tasks
might be waiting to get these messages. This has implications in terms of storage,
and in terms of threads tied up with tasks that are attempting to get messages.

Use of the MQPUT1 call

Use the MQPUT1 call only if you have a single message to put on a queue. If you
want to put more than one message, use the MQOPEN call, followed by a series of
MQPUT calls and a single MQCLOSE call.

Number of threads in use

For WebSphere MQ for Windows, an application might require a large number of
threads. Each queue manager process is allocated a maximum allowable number of
application threads.

Applications might use too many threads. Consider whether the application takes
into account this possibility and that it takes actions either to stop or to report this
type of occurrence.

Error logs

WebSphere MQ uses a number of error logs to capture messages concerning its
own operation of WebSphere MQ, any queue managers that you start, and error
data coming from the channels that are in use.

The location of the error logs depends on whether the queue manager name is
known and whether the error is associated with a client.
v If the queue manager name is known, the location of the error log is shown in

Table 20.

Table 20. Queue manager error log directory

Platform Directory

UNIX systems /var/mqm/qmgrs/qmname/errors

Windows systems c:\Program Files\IBM\WebSphere MQ\qmgrs\qmname\
errors

v If the queue manager name is not known, the location of the error log is shown
in Table 21.

Table 21. System error log directory

Platform Directory

UNIX systems /var/mqm/errors

Windows systems c:\Program Files\IBM\WebSphere MQ\errors

v If an error has occurred with a client application, the location of the error log on
the client is shown in Table 22 on page 252.

Chapter 5. Recovery and problem determination 251

|

|
|
|
|
|

|

|
|
|

|

|
|
|

|
|
|

|

|
|
|

|
|

|
|

||

||

||

||
|
|

|
|

||

||

||

||
|

|
|

Table 22. Client error log directory

Platform Directory

UNIX systems /var/mqm/errors

Windows systems c:\Program Files\IBM\WebSphere MQ Client\errors

In WebSphere MQ for Windows, an indication of the error is also added to the
Application Log, which can be examined with the Event Viewer application
provided with Windows systems.

Error log files

At installation time an errors subdirectory is created in the /var/mqm file path
under UNIX systems, and in the \IBM\WebSphere MQ\ file path under Windows
systems. The errors subdirectory can contain up to three error log files named:
v AMQERR01.LOG
v AMQERR02.LOG
v AMQERR03.LOG

After you have created a queue manager, it creates three error log files when it
needs them. These files have the same names as those in the system error log
directory, that is AMQERR01, AMQERR02, and AMQERR03, and each has a
default capacity of 256 KB. The capacity can be altered in the Extended queue
manager properties page from the WebSphere MQ Explorer, or in the QMErrorLog
stanza in the qm.ini file. These files are placed in the errors subdirectory in the
/var/mqm/qmgrs/qmname file path under UNIX systems, or in the \IBM\WebSphere
MQ\qmgrs\qmname\errors file path under Windows systems.

As error messages are generated, they are placed in AMQERR01. When
AMQERR01 gets bigger than 256 KB it is copied to AMQERR02. Before the copy,
AMQERR02 is copied to AMQERR03.LOG. The previous contents, if any, of
AMQERR03 are discarded.

The latest error messages are thus always placed in AMQERR01, the other files
being used to maintain a history of error messages.

All messages relating to channels are also placed in the appropriate queue
manager’s errors files, unless the queue manager is unavailable, or its name is
unknown, in which case channel-related messages are placed in the system error
log directory.

To examine the contents of any error log file, use your usual system editor.

Early errors:

There are a number of special cases where these error logs have not yet been
established and an error occurs. WebSphere MQ attempts to record any such errors
in an error log. The location of the log depends on how much of a queue manager
has been established.

If, because of a corrupt configuration file for example, no location information can
be determined, errors are logged to an errors directory that is created at installation
time on the root directory (/var/mqm or C:\Program Files\IBM\WebSphere MQ).

252 WebSphere MQ: System Administration Guide

||

||

||

||
|

|
|
|

|

|
|
|

|

|

|

|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|

|

|
|
|
|

|
|
|

If WebSphere MQ can read its configuration information, and can access the value
for the Default Prefix, errors are logged in the errors subdirectory of the directory
identified by the Default Prefix attribute. For example, if the default prefix is
C:\Program Files\IBM\WebSphere MQ, errors are logged in C:\Program
Files\IBM\WebSphere MQ\errors.

For further information about configuration files, see “Configuring WebSphere
MQ” on page 93.

Note: Errors in the Windows Registry are notified by messages when a queue
manager is started.

An example of an error log:

Figure 23 shows an extract from a WebSphere MQ error log:

Error log access restrictions under UNIX systems

Certain error log directories and error logs have access restrictions under UNIX
systems. To gain the following access permissions, a user or application must be a
member of the mqm group:
v Read and write access to all queue manager error log directories.
v Read and write access to all queue manager error logs.
v Write access to the system error logs.

If an unauthorized user or application attempts to write a message to a queue
manager error log directory, the message is redirected to the system error log
directory.

Ignoring error codes under UNIX systems

On UNIX systems, if you do not want certain error messages to be written to a
queue manager error log, you can specify the error codes that are to be ignored
using the QMErrorLog stanza. For more information, see “Queue manager error
logs” on page 118.

Ignoring error codes under Windows systems

On Windows systems, if an error message has a severity of ERROR, the message is
written to both the WebSphere MQ error log and the Windows Application Event
Log.

If you do not want certain error messages to be written to the Windows
Application Event Log, you can specify the error codes that are to be ignored in
the Windows registry. Use the registry key:

17/11/2004 10:32:29 - Process(2132.1) User(USER_1) Program(runmqchi.exe)
AMQ9542: Queue manager is ending.

EXPLANATION:
The program will end because the queue manager is quiescing.
ACTION:
None.
----- amqrimna.c : 931 ---

Figure 23. Sample WebSphere MQ error log

Chapter 5. Recovery and problem determination 253

|
|
|
|
|
|
|
|
||
|
|

|
|
|
|
|

|
|

|
|

|

|
||

|

|
|
|

|

|

|

|
|
|

|

|
|
|
|

|

|
|
|

|
|
|

HKEY_LOCAL_MACHINE\Software\IBM\MQSeries\CurrentVersion\IgnoredErrorCodes

The value that you set it to is an array of strings delimited by the NULL character,
with each string value relating to the error code that you want ignored from the
error log. The complete list is terminated with a NULL character, which is of type
REG_MULTI_SZ.

For example, if you want WebSphere MQ to exclude error codes AMQ3045,
AMQ6055, and AMQ8079 from the Windows Application Event Log, set the value
to:
AMQ3045\0AMQ6055\0AMQ8079\0\0

The list of messages you want to exclude is defined for all queue managers on the
machine. Any changes you make to the configuration will not take effect until each
queue manager is restarted.

Operator messages

Operator messages identify normal errors, typically caused directly by users doing
things like using parameters that are not valid on a command. Operator messages
are national-language enabled, with message catalogs installed in standard
locations.

These messages are written to the associated window, if any. In addition, some
operator messages are written to the AMQERR01.LOG file in the queue manager
directory, and others to the equivalent file in the system error log directory.

Dead-letter queues

Messages that cannot be delivered for some reason are placed on the dead-letter
queue. You can check whether the queue contains any messages by issuing the
MQSC command DISPLAY QUEUE. If the queue contains messages, use the
provided browse sample application (amqsbcg) to browse messages on the queue
using the MQGET call. The sample application steps through all the messages on
a named queue for a named queue manager, displaying both the message
descriptor and the message context fields for each message. See “Browsing queues”
on page 41 for more information about running this sample and about the kind of
output it produces.

You must decide how to dispose of any messages found on the dead-letter queue,
depending on the reasons for the messages being put on the queue.

Problems might occur if you do not associate a dead-letter queue with each queue
manager. For more information about dead-letter queues, see “The WebSphere MQ
dead-letter queue handler” on page 190.

Configuration files and problem determination

Configuration file errors typically prevent queue managers from being found, and
result in queue manager unavailable errors. Ensure that the configuration files exist,
and that the WebSphere MQ configuration file references the correct queue
manager and log directories.

Errors in the Windows Registry are notified by messages when a queue manager is
started.

254 WebSphere MQ: System Administration Guide

|

|
|
|
|

|
|
|

|

|
|
|

|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|
|
|
|

|
|

Tracing

This section describes how to produce a trace for WebSphere MQ.

Tracing WebSphere MQ for Windows

You enable or modify tracing using the strmqtrc control command, described in
“strmqtrc” on page 367. To stop tracing, you use the endmqtrc control command,
described in “endmqtrc” on page 326.

In WebSphere MQ for Windows systems, you can also start and stop tracing using
the WebSphere MQ Explorer, as follows:
1. Start the WebSphere MQ Explorer from the Start menu.
2. In the Navigator View, right-click the WebSphere MQ tree node, and select

Trace.... The Trace Dialog is displayed.
3. Click Start or Stop as appropriate.

Selective component tracing on WebSphere MQ for Windows:

Use the -t and -x options to control the amount of trace detail to record. By default,
all trace points are enabled. The -x option enables you to specify the points that
you do not want to trace. So if, for example, you want to trace only data flowing
over communications networks, use:
strmqtrc -x all -t comms

For a full description of the trace command, see “strmqtrc” on page 367.

Selective process tracing on WebSphere MQ for Windows:

This introduces the concept of selective process tracing on Websphere MQ for
Windows.

Use the -p option of the strmqtrc command control to restrict trace generation to
specified named processes. For example, to trace all threads that result from any
executing process called amqxxx.exe, use the following command:
strmqtrc -p amqxxx.exe

For a full description of the trace command, see “strmqtrc” on page 367.

Trace files:

This introduces trace files for Windows systems; their file paths and their file
names.

By default, the trace files are placed in the directory\<mqmwork>\trace, where
<mqmwork> is the directory selected, when WebSphere MQ is installed, to hold
WebSphere MQ data files. If you want to, you can specify a different directory path
when you start a trace.

Trace files are named AMQppppp.qq.TRC, where:

ppppp Is the ID of the process reporting the error.
qq Starts at 0. If the full filename already exists, this value is incremented

by one until a unique trace filename is found. A trace filename can
already exist if a process is reused.

Chapter 5. Recovery and problem determination 255

|

|

|

|
|
|

|
|

|

|
|

|

|

|
|
|
|

|

|

|

|
|

|
|
|

|

|

|

|
|

|
|
|
|

|

|||
||
|
|
|

Note:

1. The process identifier can contain fewer, or more, digits than shown in the
example.

2. There is one trace file for each process running as part of the entity being
traced.

An example of WebSphere MQ for Windows trace data:

Figure 24 shows an extract from a WebSphere MQ for Windows trace:

Tracing WebSphere MQ for UNIX systems
This is a brief introduction to the trace control commands you can use in
Websphere MQ for UNIX.

In WebSphere MQ for UNIX systems you enable or modify tracing using the
strmqtrc control command, which is described in “strmqtrc” on page 367. To stop
tracing, you use the endmqtrc control command, which is described in “endmqtrc”
on page 326. On WebSphere MQ for Linux (x86 platform) systems you can
alternatively use the WebSphere MQ Explorer to start and stop tracing, however,
the function provided allows you to trace only everything, equivalent to using the
commands strmqtrc -e and endmqtrc -e.

Trace output is unformatted; use the dspmqtrc control command to format trace
output before viewing. For example, to format all trace files in the current
directory use the following command:
dspmqtrc *.TRC

For more information on the control command dspmqtrc, see “dspmqtrc” on page
318.

Counter TimeStamp PID.TID Data
==

00000D12 15:13:09.961154 10064.1 !! - Thread stack
00000D13 15:13:09.961173 10064.1 !! - -> InitProcessInitialisation
00000D14 15:13:09.961206 10064.1 --{ InitProcessInitialisation
00000D15 15:13:09.961899 10064.1 ---{ xcsReleaseThreadMutexSem
00000D16 15:13:09.961927 10064.1 ---} xcsReleaseThreadMutexSem (rc=OK)
00000D17 15:13:09.961942 10064.1 ---{ xcsGetEnvironmentInteger
00000D18 15:13:09.962017 10064.1 ----{ xcsGetEnvironmentString
00000D19 15:13:09.962045 10064.1 xcsGetEnvironmentString[AMQ_AFFINITY_MASK]#

= NULL
00000D1A 15:13:09.962051 10064.1 ----}! xcsGetEnvironmentString

(rc=xecE_E_ENV_VAR_NOT_FOUND)
00000D1B 15:13:09.962083 10064.1 ---}! xcsGetEnvironmentInteger

(rc=xecE_E_ENV_VAR_NOT_FOUND)
00000D1C 15:13:09.962092 10064.1 --} InitProcessInitialisation (rc=OK)
00000D1D 15:13:09.962097 10064.1 --{ xcsCreateThreadMutexSem
00000D1E 15:13:09.962106 10064.1 ---{ xcsCloseHandle
00000D1F 15:13:09.962113 10064.1 Handle (0x48), Handle Type (9)
00000D20 15:13:09.962121 10064.1 OK
00000D21 15:13:09.962125 10064.1 ---}! xcsCloseHandle (rc=Unknown(1))
00000D22 15:13:09.963830 10064.1 --} xcsCreateThreadMutexSem (rc=OK)
00000D23 15:13:09.963908 10064.1 --{ xcsProgramInit
00000D24 15:13:09.963914 10064.1 ---{ xcsProgramInit
00000D25 15:13:09.964557 10064.1 Adjusted Privilege NewPrivileges.Attribute

= 2 OldPrivileges.Attribute = 1245120

Figure 24. Sample WebSphere MQ for Windows trace

256 WebSphere MQ: System Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|

|
|

|
|

|

|
||

|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|

Selective component tracing on WebSphere MQ for UNIX systems:

Use the -t and -x options to control the amount of trace detail to record. By default,
all trace points are enabled. The -x option enables you to specify the points you do
not want to trace. So if, for example, you want to trace, for queue manager QM1,
only output data associated with using Secure Sockets Layer (SSL) channel security,
use:
strmqtrc -m QM1 -t ssl

For a full description of the trace command, see “strmqtrc” on page 367.

Selective process tracing on WebSphere MQ for UNIX:

This introduces the concept of selective process tracing on Websphere MQ for
UNIX.

Use the -p option of the strmqtrc command control to restrict trace generation to
specified named processes. For example, to trace all threads that result from any
executing process called amqxxx.exe, use the following command:
strmqtrc -p amqxxx.exe

For a full description of the trace command, see “strmqtrc” on page 367.

Example trace data for WebSphere MQ for UNIX systems:

Figure 25 on page 258 shows an extract from a WebSphere MQ for HP-UX trace:

Chapter 5. Recovery and problem determination 257

|

|
|
|
|
|

|

|

|

|
|

|
|
|

|

|

|

|
|

Figure 26 on page 259 shows an extract from a WebSphere MQ for Solaris trace:

Timestamp Process.Thread Trace Data
===
15:19:01.830759 18153.1 Version : 7.0.0.0 Level : p000-L050228
15:19:01.831571 18153.1 Date : 03/04/05 Time : 15:19:01
15:19:01.831598 18153.1 PID : 18153 Process : strmqm_nd
15:19:01.831607 18153.1 QueueManager : QM1
15:19:01.831615 18153.1 --------------------------------
15:19:01.831623 18153.1 Trace Control Memory:
15:19:01.831632 18153.1 StrucId:
15:19:01.831640 18153.1 EarlyTraceOptions: 0
15:19:01.831649 18153.1 EarlyTraceMaxFileSize: 0
15:19:01.831657 18153.1 ActiveEntries: 0
15:19:01.831665 18153.1 Options MaxFileSize FileCount SubPoolName
15:19:01.831674 18153.1 1f4ffff 0 0 elk
15:19:01.831683 18153.1 0 0 0
15:19:01.831691 18153.1 0 0 0
15:19:01.831700 18153.1 0 0 0
15:19:01.831709 18153.1 0 0 0
15:19:01.831717 18153.1 0 0 0
15:19:01.831726 18153.1 0 0 0
15:19:01.831778 18153.1 0 0 0
15:19:01.831787 18153.1 0 0 0
15:19:01.831800 18153.1 Thread stack
15:19:01.838603 18153.1 -> zslWaitEC
15:19:01.838612 18153.1 -> zslCheckIfRunning
15:19:01.841757 18153.1 -> xcsInitialize
15:19:01.841767 18153.1 -> xcsGetEnvironmentString
15:19:01.841774 18153.1 ---{ xcsGetEnvironmentString
15:19:01.841785 18153.1 xcsGetEnvironmentString[AMQ_SERVICE_MODULE]

= NULL
15:19:01.841793 18153.1 ---}! xcsGetEnvironmentString

rc=xecE_E_ENV_VAR_NOT_FOUND
15:19:01.841801 18153.1 ---{ xcsReleaseThreadMutexSem

Figure 25. Sample WebSphere MQ for HP-UX trace

258 WebSphere MQ: System Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|

Figure 27 on page 260 shows an extract from a WebSphere MQ for Linux trace:

Timestamp Process.Thread Trace Data
===
15:00:04.324190 12277.1 Version : 7.0.0.0 Level : p000-L050203
15:00:04.325045 12277.1 Date : 07/02/05 Time : 15:00:04
15:00:04.325375 12277.1 PID : 12277 Process : strmqm
15:00:04.325403 12277.1 QueueManager : QM1
15:00:04.325419 12277.1 --------------------------------
15:00:04.325446 12277.1 Trace Control Memory:
15:00:04.325471 12277.1 StrucId:
15:00:04.325490 12277.1 EarlyTraceOptions: 0
15:00:04.325507 12277.1 EarlyTraceMaxFileSize: 0
15:00:04.325527 12277.1 ActiveEntries: 0
15:00:04.325544 12277.1 Options MaxFileSize FileCount SubPoolName
15:00:04.325566 12277.1 74ffff 0 0 elk
15:00:04.325587 12277.1 0 0 0
15:00:04.325609 12277.1 0 0 0
15:00:04.325632 12277.1 0 0 0
15:00:04.325654 12277.1 0 0 0
15:00:04.325677 12277.1 0 0 0
15:00:04.325698 12277.1 0 0 0
15:00:04.325774 12277.1 0 0 0
15:00:04.325798 12277.1 0 0 0
15:00:04.325891 12277.1 Thread stack
15:00:04.325971 12277.1 -> zslWaitEC
15:00:04.326078 12277.1 -> zslCheckIfRunning
15:00:04.326098 12277.1 -> xcsInitialize
15:00:04.326147 12277.1 -> xcsGetEnvironmentString
15:00:04.326186 12277.1 ---{ xcsGetEnvironmentString
15:00:04.326241 12277.1 xcsGetEnvironmentString[AMQ_SERVICE_MODULE]

= NULL

Figure 26. Sample WebSphere MQ for Solaris trace

Chapter 5. Recovery and problem determination 259

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|

Figure 28 on page 261 shows an extract from a WebSphere MQ for AIX trace:

Timestamp Process.Thread Trace Data
===
15:15:05.931699 1159.1 Version : 7.0.0.0 Level : p000-L050107
15:15:05.931843 1159.1 Date : 02/07/05 Time : 15:15:05
15:15:05.932016 1159.1 PID : 1159 Process : amqzdmaa
15:15:05.932024 1159.1 QueueManager : QM1
15:15:05.932028 1159.1 --------------------------------
15:15:05.932037 1159.1 Trace Control Memory:
15:15:05.932044 1159.1 StrucId:
15:15:05.932049 1159.1 EarlyTraceOptions: 0
15:15:05.932054 1159.1 EarlyTraceMaxFileSize: 0
15:15:05.932059 1159.1 ActiveEntries: 0
15:15:05.932064 1159.1 Options MaxFileSize FileCount SubPoolName
15:15:05.932070 1159.1 74ffff 0 0 elk
15:15:05.932075 1159.1 0 0 0
15:15:05.932081 1159.1 0 0 0
15:15:05.932086 1159.1 0 0 0
15:15:05.932091 1159.1 0 0 0
15:15:05.932097 1159.1 0 0 0
15:15:05.932102 1159.1 0 0 0
15:15:05.932107 1159.1 0 0 0
15:15:05.932112 1159.1 0 0 0
15:15:05.932138 1159.1 Thread stack
15:15:05.932149 1159.1 -> xxxInitialize
15:15:05.932158 1159.1 { xxxInitialize
15:15:05.932165 1159.1 -{ xcsSetlocale
15:15:05.932189 1159.1 category(6) locale() buffer(0xbfffd340)

buflen(1285)
15:15:05.932196 1159.1 Doing the first-thread-only

locale check
15:15:05.932326 1159.1 -} xcsSetlocale rc=OK
15:15:05.932344 1159.1 -{ xcsGetMem

Figure 27. Sample WebSphere MQ for Linux trace

260 WebSphere MQ: System Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|

Trace files
This introduces trace files for UNIX systems; their file paths and their file names.

Trace files are created in the directory /var/mqm/trace by default, or in a directory
that you specify.

Note: You can accommodate production of large trace files by mounting a
temporary file system over the directory that contains your trace files, or by using
the command strmqtrc to specify a directory in a different file system.

Trace files are named AMQppppp.qq.TRC, where:

ppppp Is the ID of the process reporting the error.
qq Starts at 0. If the full filename already exists, this value is incremented

by one until a unique trace filename is found. A trace filename can
already exist if a process is reused.

Note:

1. The process identifier can contain fewer, or more, digits than shown in the
example.

2. There is one trace file for each process running as part of the entity being
traced.

Timestamp Process.Thread Trace Data
===
13:12:12.336214 286850.1 Version : 7.0.0.0 Level : p000-L050201
13:12:12.336345 286850.1 Date : 02/15/05 Time : 13:12:12
13:12:12.336419 286850.1 PID : 286850 Process : amqzlaa0_nd
13:12:12.336444 286850.1 QueueManager : QM1
13:12:12.336468 286850.1 --------------------------------
13:12:12.336493 286850.1 Trace Control Memory:
13:12:12.336518 286850.1 StrucId:
13:12:12.336542 286850.1 EarlyTraceOptions: 0
13:12:12.336567 286850.1 EarlyTraceMaxFileSize: 0
13:12:12.336591 286850.1 ActiveEntries: 0
13:12:12.336616 286850.1 Options MaxFileSize FileCount SubPoolName
13:12:12.336641 286850.1 74ffff 0 0 elk
13:12:12.336668 286850.1 0 0 0
13:12:12.336692 286850.1 0 0 0
13:12:12.336718 286850.1 0 0 0
13:12:12.336742 286850.1 0 0 0
13:12:12.336768 286850.1 0 0 0
13:12:12.336792 286850.1 0 0 0
13:12:12.336817 286850.1 0 0 0
13:12:12.336842 286850.1 0 0 0
13:12:12.336870 286850.1 Thread stack
13:12:12.336897 286850.1 -> xxxInitialize
13:12:12.336921 286850.1 { xxxInitialize
13:12:12.336947 286850.1 -{ xcsSetlocale
13:12:12.336977 286850.1 category(-1) locale()

buffer(fffffffffffcf08) buflen(1285)
13:12:12.337005 286850.1 Doing the first-thread-only locale check . . .
13:12:12.338602 286850.1 -} xcsSetlocale rc=OK

Figure 28. Sample WebSphere MQ for AIX trace

Chapter 5. Recovery and problem determination 261

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|

|
|

|
|

|
|
|

|

|||
||
|
|
|

|

|
|

|
|

To format or view a trace file, you must be either the creator of the trace file, or a
member of the mqm group.

Tracing Secure Sockets Layer (SSL) iKeyman and IKEYCMD
functions

To request iKeyman tracing, execute the iKeyman command for your platform with
the following –D flags.

For UNIX:
gsk7ikm -Dkeyman.debug=true -Dkeyman.jnitracing=ON

For Windows:
strmqikm -Dkeyman.debug=true -Dkeyman.jnitracing=ON

To request IKEYCMD tracing, run the IKEYCMD command for your platform with
the following –D flags.

For UNIX:
gsk7cmd -Dkeyman.debug=true -Dkeyman.jnitracing=ON

For Windows:
runmqckm -Dkeyman.debug=true -Dkeyman.jnitracing=ON

iKeyman and IKEYCMD write three trace files to the directory from which you
start them, so consider starting iKeyman or IKEYCMD from the trace directory to
which the run time SSL trace is written: /var/mqm/trace on UNIX and
<mqmtop>/trace on Windows. The trace files iKeyman and IKEYCMD generate are:

ikmgdbg.log
Java related trace

ikmjdbg.log
JNI related trace

ikmcdbg.log
C related trace

These trace files are binary, so take care when you transfer the files from system to
system using FTP. The trace files are typically approximately 1 MB each.

On UNIX and Windows systems, you can independently request trace information
for iKeyman, IKEYCMD, the runtime SSL functions, or a combination of these.

The runtime SSL trace files have the names AMQ.SSL.TRC and AMQ.SSL.TRC.1.
You cannot format any of the SSL trace files; send them unchanged to IBM
support. The SSL trace files are binary files and, if they are transferred to IBM
support via FTP, they should be transferred in binary transfer mode.

Tracing with the AIX system trace

In addition to the WebSphere MQ trace, WebSphere MQ for AIX users can use the
standard AIX system trace. AIX system tracing is a two-step process:
1. Gathering the data
2. Formatting the results

WebSphere MQ uses two trace hook identifiers:

262 WebSphere MQ: System Administration Guide

|
|

|
|

|
|

|

|

|

|

|
|

|

|

|

|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|

|
|

|

|

|

X’30D’
This event is recorded by WebSphere MQ on entry to or exit from a
subroutine.

X’30E’ This event is recorded by WebSphere MQ to trace data such as that being
sent or received across a communications network.

Trace provides detailed execution tracing to help you to analyze problems. IBM
service support personnel might ask for a problem to be re-created with trace
enabled. The files produced by trace can be very large so it is important to qualify
a trace, where possible. For example, you can optionally qualify a trace by time
and by component.

There are two ways to run trace:
1. Interactively.

The following sequence of commands runs an interactive trace on the program
myprog and ends the trace.
trace -j30D,30E -o trace.file
->!myprog
->q

2. Asynchronously.
The following sequence of commands runs an asynchronous trace on the
program myprog and ends the trace.
trace -a -j30D,30E -o trace.file
myprog
trcstop

You can format the trace file with the command:
trcrpt -t /usr/mqm/lib/amqtrc.fmt trace.file > report.file

report.file is the name of the file where you want to put the formatted trace
output.

Note: All WebSphere MQ activity on the machine is traced while the trace is
active.

Selective component tracing on WebSphere MQ for AIX:

Use the environment variable MQS_TRACE_OPTIONS to activate the high detail
and parameter tracing functions individually. Because it enables tracing to be
active without these functions, you can use it to reduce the overhead on execution
speed when you are trying to reproduce a problem with tracing switched on.

Only set the environment variable MQS_TRACE_OPTIONS if you have been
instructed to do so by your service personnel.

Typically MQS_TRACE_OPTIONS must be set in the process that starts the queue
manager, and before the queue manager is started, or it is not recognized. Set
MQS_TRACE_OPTIONS before tracing starts. If it is set after tracing starts it is not
recognized.

SSL trace:

If you request SSL trace, note the following:
v SSL trace is written to the directory /var/mqm/trace.

Chapter 5. Recovery and problem determination 263

|
|
|

||
|

|
|
|
|
|

|

|

|
|

|
|
|

|

|
|

|
|
|

|

|

|
|

|
|

|

|
|
|
|

|
|

|
|
|
|

|

|

|

v The SSL trace files are AMQ.SSL.TRC and AMQ.SSL.TRC.1.
v You cannot format SSL trace files; send them unchanged to IBM support.
v The SSL trace files are binary files and, if they are transferred to IBM support via

FTP, they should be transferred in binary transfer mode.

An example of WebSphere MQ for AIX trace data:

The following example is an extract of an AIX trace:

First-failure support technology (FFST)

This section describes the role of first-failure support technology (FFST) for
WebSphere MQ.

FFST: WebSphere MQ for Windows
Describes the contents of the First Failure Support Technology (FFST) file.

In WebSphere MQ for Windows, FFST information is recorded in a file in the
c:\Program Files\IBM\WebSphere MQ\errors directory.

An FFST file contains one or more records. Each FFST record contains information
about an error that is normally severe, and possibly unrecoverable. These records
typically indicate either a configuration problem with the system or a WebSphere
MQ internal error.

ID ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

30D 0.000000000 0.000000 MQS FNC Exit!..... 23298.1 ziiSendReceiveAgent
rc=00000814

30D 0.000009512 0.009512 MQS FNC Entry...... 23298.1 zcpDeleteMessage
30D 0.000011869 0.002357 MQS FNC Exit....... 23298.1 zcpDeleteMessage

rc=00000000
30D 0.000014196 0.002327 MQS FNC Exit!..... 23298.1 ziiSPIInq1

rc=00000814
30D 0.000016727 0.002531 MQS FNC Exit!.... 23298.1 lpiSPIInq1

rc=00000814
30D 0.000019847 0.003120 MQS FNC Entry.... 23298.1 lpiSPIInq1
30D 0.000022465 0.002618 MQS FNC Entry..... 23298.1 zstVerifyPCD
30D 0.000024792 0.002327 MQS FNC Exit...... 23298.1 zstVerifyPCD

rc=00000000
30D 0.000027505 0.002713 MQS FNC Entry..... 23298.1 xcsCheckPointer
30D 0.000032436 0.004931 MQS FNC Exit...... 23298.1 xcsCheckPointer

rc=00000000
30D 0.000034923 0.002487 MQS FNC Entry..... 23298.1 xcsCheckPointer
30D 0.000039716 0.004793 MQS FNC Exit...... 23298.1 xcsCheckPointer

rc=00000000
30D 0.000042218 0.002502 MQS FNC Entry..... 23298.1 xcsCheckPointer
30D 0.000046982 0.004764 MQS FNC Exit...... 23298.1 xcsCheckPointer

rc=00000000
30D 0.000049593 0.002611 MQS FNC Entry..... 23298.1 ziiSPIInq1
30D 0.000052116 0.002523 MQS FNC Entry.... 23298.1 ziiCreateIPCCMessage
30D 0.000054611 0.002495 MQS FNC Entry....... 23298.1 zcpCreateMessage
30E 0.000059062 0.004451 Terminus(0) RequestedSize(236)
30D 0.000061549 0.002487 MQS FNC Exit........ 23298.1 zcpCreateMessage

rc=00000000
30D 0.000063884 0.002335 MQS FNC Exit..... 23298.1 ziiCreateIPCCMessage

rc=00000000

Figure 29. Sample WebSphere MQ for AIX trace

264 WebSphere MQ: System Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|

|

|
|

|

|
||

|

|
|

|
|

|
|

|
|
|
|

FFST files are named AMQnnnnn.mm.FDC, where:

nnnnn Is the ID of the process reporting the error
mm Starts at 0. If the full filename already exists, this value is incremented

by one until a unique FFST filename is found. An FFST filename can
already exist if a process is reused.

An instance of a process will write all FFST information to the same FFST file. If
multiple errors occur during a single execution of the process, an FFST file can
contain many records.

When a process writes an FFST record it also sends a record to the Event Log. The
record contains the name of the FFST file to assist in automatic problem tracking.
The Event log entry is made at the application level.

A typical FFST log is shown in Figure 30 on page 266.

Chapter 5. Recovery and problem determination 265

|

|||
||
|
|
|

|
|
|

|
|
|

|
|

+---+
| WebSphere MQ First Failure Symptom Report |
| === |
| |
| Date/Time :- Mon January 28 2008 21:59:06 GMT |
| UTC Time/Zone :- 1201539869.892015 0 GMT |
| Host Name :- 99VXY09 (Windows XP Build 2600: Service Pack 1) |
| PIDS :- 5724H7200 |
| LVLS :- 7.0.0.0 |
| Product Long Name :- WebSphere MQ for Windows |
| Vendor :- IBM |
| Probe Id :- HL010004 |
| Application Name :- MQM |
| Component :- hlgReserveLogSpace |
| SCCS Info :- lib/logger/amqhlge0.c, 1.26 |
| Line Number :- 246 |
| Build Date :- Jan 25 2008 |
| CMVC level :- p000-L050202 |
| Build Type :- IKAP - (Production) |
| UserID :- IBM_User |
| Process Name :- C:\Program Files\IBM\WebSphere MQ\bin\amqzlaa0.exe |
| Process :- 00003456 |
| Thread :- 00000030 |
| QueueManager :- qmgr2 |
| ConnId(1) IPCC :- 162 |
| ConnId(2) QM :- 45 |
| Major Errorcode :- hrcE_LOG_FULL |
| Minor Errorcode :- OK |
| Probe Type :- MSGAMQ6709 |
| Probe Severity :- 2 |
| Probe Description :- AMQ6709: The log for the Queue manager is full. |
| FDCSequenceNumber :- 0 |
+---+

MQM Function Stack
zlaMainThread
zlaProcessMessage
zlaProcessMQIRequest
zlaMQPUT
zsqMQPUT
kpiMQPUT
kqiPutIt
kqiPutMsgSegments
apiPutMessage
aqmPutMessage
aqhPutMessage
aqqWriteMsg
aqqWriteMsgData
aqlReservePutSpace
almReserveSpace
hlgReserveLogSpace
xcsFFST

MQM Trace History
-------------} hlgReserveLogSpace rc=hrcW_LOG_GETTING_VERY_FULL
-------------{ xllLongLockRequest
-------------} xllLongLockRequest rc=OK

...

Figure 30. Sample WebSphere MQ for Windows First Failure Symptom Report

266 WebSphere MQ: System Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

The Function Stack and Trace History are used by IBM to assist in problem
determination. In many cases there is little that the system administrator can do
when an FFST record is generated, apart from raising problems through the IBM
Support Center.

In certain circumstances a small dump file can be generated in addition to an FFST
file and placed in the c:\Program Files\IBM\WebSphere MQ\errors directory. A
dump file will have the same name as the FFST file, in the form AMQnnnnn.mm.dmp.
These files can be used by IBM to assist in problem determination.

FFST: WebSphere MQ for UNIX systems
Describes the contents of the First Failure Support Technology (FFST) file.

For WebSphere MQ for UNIX systems, FFST information is recorded in a file in the
/var/mqm/errors directory.

An FFST file contains one or more records. Each FFST record contains information
about an error that is normally severe, and possibly unrecoverable. These records
indicate either a configuration problem with the system or a WebSphere MQ
internal error.

FFST files are named AMQnnnnn.mm.FDC, where:

nnnnn Is the ID of the process reporting the error
mm Starts at 0. If the full filename already exists, this value is incremented

by one until a unique FFST filename is found. An FFST filename can
already exist if a process is reused.

An instance of a process will write all FFST information to the same FFST file. If
multiple errors occur during a single execution of the process, an FFST file can
contain many records.

In order to read the contents of a FFST file, you must be either the creator of the
file, or a member of the mqm group.

When a process writes an FFST record, it also sends a record to syslog. The record
contains the name of the FFST file to assist in automatic problem tracking. The
syslog entry is made at the user.error level. See the operating-system documentation
about syslog.conf for information about configuring this.

Some typical FFST data is shown in Figure 31 on page 268.

Chapter 5. Recovery and problem determination 267

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

|

|||
||
|
|
|

|
|
|

|
|

|
|
|
|

|
|

The Function Stack and Trace History are used by IBM to assist in problem
determination. In many cases there is little that the system administrator can do
when an FFST report is generated, apart from raising problems through the IBM
Support Center.

However, there are some problems that the system administrator might be able to
solve. If the FFST shows out of resource or out of space on device descriptions when
calling one of the IPC functions (for example, semop or shmget), it is likely that
the relevant kernel parameter limit has been exceeded.

If the FFST report shows a problem with setitimer, it is likely that a change to the
kernel timer parameters is needed.

+---+
| |
| WebSphere MQ First Failure Symptom Report |
| === |
| |
| Date/Time :- Mon January 28 2008 21:59:06 GMT |
| UTC Time/Zone :- 1201539869.892015 0 GMT |
| Host Name :- mqperfh2 (HP-UX B.11.23) |
| PIDS :- 5724H7202 |
| LVLS :- 7.0.0.0 |
| Product Long Name :- WebSphere MQ for HP-UX |
| Vendor :- IBM |
| Probe Id :- XC034255 |
| Application Name :- MQM |
| Component :- xcsWaitEventSem |
| SCCS Info :- lib/cs/unix/amqxerrx.c, 1.204 |
| Line Number :- 6262 |
| Build Date :- Jan 25 2008 |
| CMVC level :- p000-L050203 |
| Build Type :- IKAP - (Production) |
| UserID :- 00000106 (mqperf) |
| Program Name :- amqzmuc0 |
| Addressing mode :- 64-bit |
| Process :- 15497 |
| Thread :- 1 |
| QueueManager :- CSIM |
| ConnId(2) QM :- 4 |
| Major Errorcode :- OK |
| Minor Errorcode :- OK |
| Probe Type :- INCORROUT |
| Probe Severity :- 4 |
| Probe Description :- AMQ6109: An internal WebSphere MQ error has occurred. |
| FDCSequenceNumber :- 0 |
| |
+---+

MQM Function Stack
amqzmuc0
xcsWaitEventSem
xcsFFST

MQM Trace History
Data: 0x00003c87
--} xcsCheckProcess rc=OK
--{ xcsRequestMutexSem
--} xcsRequestMutexSem rc=OK

...

Figure 31. FFST report for WebSphere MQ for UNIX systems

268 WebSphere MQ: System Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|

|
|
|
|

|
|

To resolve these problems, increase the IPC limits, rebuild the kernel, and restart
the machine. See one of the following for further information:
v WebSphere MQ for AIX Quick Beginnings
v WebSphere MQ for HP-UX Quick Beginnings
v WebSphere MQ for Linux Quick Beginnings
v WebSphere MQ for Solaris Quick Beginnings

Problem determination with WebSphere MQ clients

An MQI client application receives MQRC_* reason codes in the same way as
non-client MQI applications. However, there are additional reason codes for error
conditions associated with clients. For example:
v Remote machine not responding
v Communications line error
v Invalid machine address

The most common time for errors to occur is when an application issues an
MQCONN and receives the response MQRC_Q_MQR_NOT_AVAILABLE. An
error message, written to the client log file, explains the cause of the error.
Messages might also be logged at the server, depending on the nature of the
failure.

Terminating clients

Even though a client has terminated, the process at the server can still hold its
queues open. Normally, this is only for a short time until the communications layer
detects that the partner has gone.

Java diagnostics
For Java components of WebSphere MQ, for example the WebSphere MQ Explorer
and the Java implementation of WebSphere MQ Transport for SOAP, diagnostic
information is output using the standard WebSphere MQ diagnostic facilities or by
Java diagnostic classes.

Diagnostic information in this context consists of trace, first-failure data capture
(FFDC) and error messages.

You can choose to have this information produced using WebSphere MQ facilities
or the facilities of WebSphere MQ classes for Java or WebSphere MQ classes for
JMS, as appropriate. You should generally use the WebSphere MQ diagnostic
facilities if they are available on the local system.

You might want to use the Java diagnostics in the following circumstances:
v On a system on which queue managers are available, if the queue manager is

managed separately from the software you are running.
v To reduce performance overhead of WebSphere MQ trace.

To request and configure diagnostic output, two system properties are used when
starting a WebSphere MQ Java process:
v System property com.ibm.mq.commonservices specifies a standard Java

property file, which contains a number of lines which are used to configure the
diagnostic outputs. Each line of code in the file is free-format, and is terminated
by a new line character.

Chapter 5. Recovery and problem determination 269

|
|

|

|

|

|

|

|
|
|

|

|

|

|
|
|
|
|

|

|
|
|

|

|
|
|
|

|
|

|
|
|
|

|

|
|

|

|
|

|
|
|
|

v System property com.ibm.mq.commonservices.diagid associates trace and FFDC
files with the process which created them.

For information about tracing

Using com.ibm.mq.commonservices

The com.ibm.mq.commonservices properties file contains the following entries
relating to the output of diagnostics from the Java components of WebSphere MQ.
Note that case is significant in all these entries.

Diagnostics.MQ=enabled|disabled
Are WebSphere MQ diagnostics to be used? If Diagnostics.MQ is enabled,
diagnostic output is as for other WebSphere MQ components; trace output
is controlled by the parameters in the strmqtrc and endmqtrc control
commands, or the equivalent. The default is enabled.

Diagnostics.Java=options
Which components are traced using Java trace. Options are one or more of
explorer, soap, and wmqjavaclasses, separated by commas, where ″explorer″
refers to the diagnostics from the WebSphere MQ Explorer, ″soap″ refers to
the diagnostics from the running process within WebSphere MQ Transport
for SOAP, and ″wmqjavaclasses″ refers to the diagnostics from the
underlying WebSphere MQ Java classes. By default no components are
traced.

Diagnostics.Java.Trace.Detail=high|medium|low
Detail level for Java trace. The high and medium detail levels match those
used in WebSphere MQ tracing but low is unique to Java trace. This
property is ignored if Diagnostics.Java is not set. The default is medium.

Diagnostics.Java.Trace.Destination.File=enabled|disabled
Whether Java trace is written to a file. This property is ignored if
Diagnostics.Java is not set. The default is disabled.

Diagnostics.Java.Trace.Destination.Console=enabled|disabled
Whether Java trace is written to the system console. This property is
ignored if Diagnostics.Java is not set. The default is disabled.

Diagnostics.Java.Trace.Destination.Pathname=dirname
The directory to which Java trace is written. This property is ignored if
Diagnostics.Java is not set or
Diagnostics.Java.Trace.Destination.File=disabled. On UNIX systems, the
default is /var/mqm/trace if it is present, otherwise the Java console
(System.err). On Windows, the default is the system console.

Diagnostics.Java.FFDC.Destination.Pathname=dirname
The directory to which Java FFDC output is written. The default is the
current working directory.

Diagnostics.Java.Errors.Destination.Filename=filename
The fully qualified filename to which Java error messages are written. The
default is AMQJAVA.LOG in the current working directory.

An example of a com.ibm.mq.commonservices properties file is given in Figure 32
on page 271. Lines beginning with the number sign (#) are treated as comments.

270 WebSphere MQ: System Administration Guide

|
|

|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

A sample properties file, WMQSoap_RAS.properties, is also supplied as part of the
″Java messaging and SOAP transport″ install option.

Java trace and FFDC files

When Java trace is generated for the WebSphere MQ Explorer or for WebSphere
MQ Transport for SOAP it is written to a file with a name of the format
AMQ.diagid.counter.TRC where diagid is the value of the system property
com.ibm.mq.commonservices.diagid associated with this Java process, as described
earlier in this section, and counter is an integer greater than or equal to 0. All letters
in the name are in upper case. This matches the naming convention used for
normal WebSphere MQ trace.

If com.ibm.mq.commonservices.diagid is not specified, the value of diagid is the
current time, in the format YYYYMMDDhhmmssmmm.

The WebSphere MQ Java classes trace file has a name based on the equivalent
WebSphere MQ Explorer or SOAP Java trace file. The name differs in that it has
the string .JC added before the .TRC string, giving a format of
AMQ.diagid.counter.JC.TRC.

When Java FFDC is generated for the WebSphere MQ Explorer or for WebSphere
MQ Transport for SOAP it is written to a file with a name of the format
AMQ.diagid.counter.FDC where diagid and counter are as described for Java trace
files.

#
Base WebSphere MQ diagnostics are disabled
#
Diagnostics.MQ=disabled
#
Java diagnostics for WebSphere MQ Transport for SOAP
and the WebSphere MQ Java Classes are both enabled
#
Diagnostics.Java=soap,wmqjavaclasses
#
High detail Java trace
#
Diagnostics.Java.Trace.Detail=high
#
Java trace is written to a file and not to the console.
#
Diagnostics.Java.Trace.Destination.File=enabled
Diagnostics.Java.Trace.Destination.Console=disabled
#
Directory for Java trace file
#
Diagnostics.Java.Trace.Destination.Pathname=c:\\tracedir
#
Directory for First Failure Data Capture
#
Diagnostics.Java.FFDC.Destination.Pathname=c:\\ffdcdir
#
Directory for error logging
#
Diagnostics.Java.Errors.Destination.Filename=c:\\errorsdir\\SOAPERRORS.LOG
#

Figure 32. Sample com.ibm.mq.commonservices properties file

Chapter 5. Recovery and problem determination 271

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

Java error message output for the WebSphere MQ Explorer and for WebSphere MQ
Transport for SOAP is written to the file specified by
Diagnostics.Java.Errors.Destination.Filename for the appropriate Java process. The
format of these files matches closely the format of the standard WebSphere MQ
error logs.

When a process is writing trace information to a file, it appends to a single trace
output file for the lifetime of the process. Similarly, a single FFDC output file is
used for the lifetime of a process.

All trace output is in the UTF-8 character set.

Note that none of the above applies to output of FFDC data or error messages for
the WebSphere MQ Java classes. This occurs as part of exception logging as
detailed in WebSphere MQ Using Java. The WebSphere MQ Java class trace is also
detailed in WebSphere MQ Using Java.

272 WebSphere MQ: System Administration Guide

|
|
|
|
|

|
|
|

|

|
|
|
|

Chapter 6. WebSphere MQ control commands

How to use WebSphere MQ control commands

This chapter describes how to use the WebSphere MQ control commands. If you
want to issue control commands, your user ID must be a member of the mqm
group. For more information about this, see “Authority to administer WebSphere
MQ” on page 120. In addition, note the following environment-specific
information:

WebSphere MQ for Windows
All control commands can be issued from a command line. Command
names and their flags are not case sensitive: you can enter them in
uppercase, lowercase, or a combination of uppercase and lowercase.
However, arguments to control commands (such as queue names) are case
sensitive.

In the syntax descriptions, the hyphen (-) is used as a flag indicator. You
can use the forward slash (/) instead of the hyphen.

WebSphere MQ for UNIX systems
All WebSphere MQ control commands can be issued from a shell. All
commands are case-sensitive.

A subset of the control commands can be issued using the WebSphere MQ
Explorer.

Names of WebSphere MQ objects

In general, the names of WebSphere MQ objects can have up to 48 characters. This
rule applies to all the following objects:
v Queue managers
v Queues
v Process definitions
v Namelists
v Clusters
v Listeners
v Services
v Authentication information objects
v Topics

The maximum length of channel, and client connection channel names is 20
characters.Topic strings can be 10240 bytes.

The characters that can be used for all WebSphere MQ names are:
v Uppercase A–Z
v Lowercase a–z
v Numerics 0–9
v Period (.)
v Underscore (_)

© Copyright IBM Corp. 1994, 2009 273

|

|

v Forward slash (/) (see note 1)
v Percent sign (%) (see note 1)

Note:

1. Forward slash and percent are special characters. If you use either of these
characters in a name, the name must be enclosed in double quotation marks
whenever it is used.

2. Leading or embedded blanks are not allowed.
3. National language characters are not allowed.
4. Names can be enclosed in double quotation marks, but this is essential only if

special characters are included in the name.

Syntax diagrams
The syntax for commands is presented in the form of a diagram. There are two
types of syntax diagram: railroad diagrams and dotted decimal diagrams.

Either type of syntax diagram tells you what you can do with the particular
command, and indicates relationships between different options and, sometimes,
different values of an option. Railroad diagrams are a visual format suitable for
sighted users. Dotted decimal diagrams are text-based diagrams that are more
helpful for blind or partially-sighted users.

Only railroad diagrams are available in PDFs: dotted decimal diagrams are only
avaliable in the Information Center.

How to read railroad diagrams
Each railroad diagram begins with a double right arrow and ends with a right and
left arrow pair. Lines beginning with a single right arrow are continuation lines.
You read a railroad diagram from left to right and from top to bottom, following
the direction of the arrows.

Other conventions used in railroad diagrams are:

Table 23. How to read railroad diagrams

Convention Meaning

�� A B C ��
You must specify values A, B, and C. Required values are shown on the
main line of a railroad diagram.

��
A

��
You may specify value A. Optional values are shown below the main
line of a railroad diagram.

�� A
B
C

��
Values A, B, and C are alternatives, one of which you must specify.

��
A
B
C

��
Values A, B, and C are alternatives, one of which you might specify.

274 WebSphere MQ: System Administration Guide

Table 23. How to read railroad diagrams (continued)

Convention Meaning

��

�

,

A
B
C

��

You might specify one or more of the values A, B, and C. Any required
separator for multiple or repeated values (in this example, the comma
(,)) is shown on the arrow.

��

�

,

A
��

You might specify value A multiple times. The separator in this
example is optional.

��
A

B
C

��

Values A, B, and C are alternatives, one of which you might specify. If
you specify none of the values shown, the default A (the value shown
above the main line) is used.

�� Name ��

Name:

A
B

The railroad fragment Name is shown separately from the main
railroad diagram.

Punctuation and
uppercase values

Specify exactly as shown.

Example syntax diagram

Here is an example syntax diagram that describes the hello command:

Hello Command

�� hello
Name Greeting

��

Name

�

,
(1)

name

Greeting

, how are you?

Chapter 6. WebSphere MQ control commands 275

Notes:

1 You can code up to three names.

According to the syntax diagram, these are all valid versions of the hello
command:
hello
hello name
hello name, name
hello name, name, name
hello, how are you?
hello name, how are you?
hello name, name, how are you?
hello name, name, name, how are you?

The space before the name value is significant, and that if you do not code name at
all, you must still code the comma before how are you?.

Syntax help

You can obtain help for the syntax of any control command by entering the
command followed by a question mark. WebSphere MQ responds by listing the
syntax required for the selected command.

The syntax shows all the parameters and variables associated with the command.
Different forms of parentheses are used to indicate whether a parameter is
required. For example:
CmdName [-x OptParam] (-c | -b) argument

where:

CmdName
Is the command name for which you have requested help.

[-x OptParam]
Square brackets enclose one or more optional parameters. Where square
brackets enclose multiple parameters, you can select no more than one of
them.

(-c | -b)
Brackets enclose multiple values, one of which you must select. In this
example, you must select either flag c or flag b.

argument
A mandatory argument.

Examples
1. Result of entering endmqm ?

endmqm [-z][-c | -w | -i | -p] QMgrName

2. Result of entering rcdmqimg ?

rcdmqimg [-z] [-m QMgrName] -t ObjType [GenericObjName]

The control commands
This collection of topics provides reference information for each of the WebSphere
MQ control commands.

276 WebSphere MQ: System Administration Guide

amqccert

Check for incomplete certificate chains (Windows only).

Purpose

The amqccert command applies to WebSphere MQ for Windows only.

The amqccert command is used during SSL Certificate Migration from WebSphere
MQ for Windows Version 5.3, or Version 5.3.1. SSL Certificate Migration
instructions are detailed in the WebSphere MQ Migration Information.

In this section when referring to a WebSphere MQ Certificate Store file, we are
specifically referring to a WebSphere MQ for Windows Version 5.3, or Version 5.3.1,
Certificate Store file.

To use amqccert you must be either an administrator or a member of the mqm
group.

The amqccert control command is used to determine whether there are any
incomplete certificate chains in a WebSphere MQ Certificate Store file. A report is
generated that lists each incomplete certificate chain accompanied by information
relating to the certificate chain.

Incomplete certificate chains must be completed before the SSL Certificate
Migration process can continue. The following are available with WebSphere MQ
for Windows Version 5.3, and Version 5.3.1, to help complete certificate chains:
v The control command amqmcert (manage certificates).
v The Services snap-in.

Syntax

�� amqccert FileName ��

Required parameters

FileName
Specifies is the absolute (rather than relative) directory path name and filename
(excluding the .sto suffix) of a WebSphere MQ Certificate Store.

Examples

In the following example reports the term, Microsoft Certificate Store, refers to a
WebSphere MQ Certificate Store file.

amqccert C:\SSL\Client
Generates a report that details whether there are any incomplete certificate
chains.

The following is an example of a report that details no incomplete
certificate chains:
C:\ssl\client
5724-B41 (C) Copyright IBM Corp. 1994, 2005. ALL RIGHTS RESERVED.
The number of certificates in the Microsoft Certificate Store

'c:\ssl\client' is '13'.

Chapter 6. WebSphere MQ control commands 277

|

Certificate chain checking has completed with no failures.
The Check Certificate Chains (amqccert) command has completed.

The following is an example of a report the details two incomplete
certificate chains:
C:\ssl\client
5724-B41 (C) Copyright IBM Corp. 1994, 2005. ALL RIGHTS RESERVED.
The number of certificates in the Microsoft Certificate Store

'c:\ssl\client' is '13'.

The signer certificate 'GlobalSign Primary Class 1 CA' is missing for
the following certificate.

Microsoft Certificate Store: 'c:\ssl\client'.
Certificate Subject: 'GlobalSign PersonalSign Class 1 CA'.
Certificate Issuer: 'GlobalSign Primary Class 1 CA'.
Certificate Serial Number: '0400 0000 0000 FA3D EEE9 D9'.
Certificate Valid From: '22/01/2004' to '28/01/2009'.

The signer certificate 'GlobalSign PersonalSign Class 1 CA' is missing
for the following certificate.

Microsoft Certificate Store: 'c:\ssl\client'.
Certificate Subject: 'wm.shakespeare@hamlet.com'.
Certificate Issuer: 'GlobalSign PersonalSign Class 1 CA'.
Certificate Serial Number: '0100 0000 0001 0170 978B 1E'.
Certificate Valid From: '14/01/2005' to '14/02/2005'.

Certificate chain checking has completed with some failures.
The Check Certificate Chains (amqccert) command has completed.

Return codes

1 amqccert command usage error
2 User not authorized to run amqccert command
3 WebSphere MQ Certificate Store file not found
4 WebSphere MQ Certificate Store file is empty
5 WebSphere MQ Certificate Store file cannot be opened
6 No memory to allocate tables for storing root/intermediate certificates
7 Certificate is either an orphan or has expired
8 Windows operation failed

Related commands

amqtcert Transfer certificates

amqmdain

Configure or control WebSphere MQ services control (Windows only).

Purpose

The amqmdain command applies to WebSphere MQ for Windows only.

In WebSphere MQ Version 6.0 all WebSphere MQ services were migrated to
WebSphere MQ service or listener objects, with the exception of ROOT custom
services and queue manager services.

278 WebSphere MQ: System Administration Guide

|

Use amqmdain to define and administer ROOT custom services, define, and
administer queue manager services, and perform other Windows specific
administrative tasks.

Starting a queue manager service with amqmdain is equivalent to using the
strmqm command with the option -ss. amqmdain makes the queue manager run
in a non-interactive session under a different user account. However, to ensure all
queue manager startup feedback is returned to the command line, use the strmqm
-ss command rather than amqmdain.

To administer and define WebSphere MQ service and listener objects, use MQSC
commands, PCF commands, or the WebSphere MQ Explorer.

Syntax

�� amqmdain qmgr start QMgrName
-c

qmgr end QMgrName
-w
-i
-p

qmgr alter QMgrName -i Initiation
refresh
svc list
svc view ServiceName
svc start ServiceName
svc end ServiceName
svc alter ServiceName Service options
svc delete ServiceName
svc define ServiceName Service options
auto QMgrName
manual QMgrName
status

QMgrName
all

regsec
spn QMgrName set

unset
reg RegParams

QMgrName
*

��

Service options:

-m QMgrName -i Initiation -t Service
�

�
-s command -e command -x Execution

Keywords and parameters

All parameters are required unless the description states they are optional.

Chapter 6. WebSphere MQ control commands 279

|
|
|
|
|

|

In every case, QMgrName is the name of the queue manager service to which the
command applies, and ServiceName is the name of the ROOT custom services to
which the command applies.

qmgr start QMgrName
Starts a queue manager service.

This parameter can also be written in the form start QMgrName.

If you start your queue manager as a service and need the queue manager to
continue to run after logoff, use strmqm -ss qmgr instead of amqmdain start
qmgr.

qmgr end QMgrName
Ends a queue manager service.

This parameter can also be written in the form end QMgrName.

For consistency across platforms, use endmqm qmgr instead of amqmdain end
qmgr.

-c Controlled (or quiesced) shutdown.

-w Wait shutdown.

-i Immediate shutdown.

-p Preemptive shutdown.

qmgr alter QMgrName
Alters a queue manager service.

-i Initiation
Specifies the initiation type. Possible values are:

auto Sets the queue manager service to automatic startup (when
the machine starts up, or more precisely when the
AMQMSRVN process starts up). The syntax is:

amqmdain qmgr alter QmgrName –i auto

interactive Sets the queue manager service to manual startup that then
runs under the logged on (interactive) user. The syntax is:

amqmdain qmgr alter QmgrName –i interactive

service Sets the queue manager service to manual startup that then
runs as a service. The syntax is:

amqmdain qmgr alter QmgrName –i service

refresh
Refreshes or checks the status of a queue manager. You will not see anything
returned on the screen after executing this command.

svc list
Displays a list of currently defined ROOT custom services.

svc view ServiceName
Displays detailed information for a ROOT custom service.

svc start ServiceName
Starts a ROOT custom service.

svc end ServiceName
Ends a ROOT custom service.

svc delete ServiceName
Deletes a ROOT custom service.

280 WebSphere MQ: System Administration Guide

|
|
|

|
|

|||
|

|

|||
|

|

|
|
|

svc alter ServiceName ServiceOptions
Alter a ROOT custom service with the options specified in ServiceOptions.

svc define ServiceName ServiceOptions
Define a ROOT custom service with the options specified in ServiceOptions.

auto QMgrName
Sets a queue manager service to automatic startup.

manual QMgrName
Sets a queue manager service to manual startup.

status QMgrName | all
These parameters are optional.

If no parameter is supplied: Displays the status of the WebSphere MQ services.

If a QMgrName is supplied: Displays the status of the named queue manager
service.

If the parameter all is supplied: Displays the status of all ROOT custom services.

regsec
Ensures that the security permissions assigned to the Registry keys are correct.

spn QMgrName set | unset
Allows you to set or unset the service principal name for a queue manager.

reg QMgrName | * RegParams
Parameters QMgrName, and * are optional.

If RegParams is specified alone: Modifies queue manager configuration information
in the Windows Registry related to the default
queue manager.

If QMgrName and RegParams
are specified:

Modifies queue manager configuration information
in the Windows Registry related to the queue
manager specified by QMgrName.

If * and RegParams are
specified:

Modifies WebSphere MQ configuration
information in the Windows Registry.

The parameter, RegParams, specifies the Registry stanzas to change, and the
changes that are to be made. RegParams takes one of the following forms:
v -c add -s stanza -v attribute=value

v -c remove -s stanza -v [attribute|*]

v -c display -s stanza -v [attribute|*]

If you are specifying queue manager configuration information, the valid
values for stanza are:
XAResourceManager\name
ApiExitLocal\name
CHANNELS
ExitPath
InstanceData
Log
QueueManagerStartup
TCP
LU62
SPX
NetBios
Connection
QMErrorLog
Broker

Chapter 6. WebSphere MQ control commands 281

|
|
|
|
|
|
|
|
|
|
|
|
|
|

If you are modifying WebSphere MQ configuration information, the valid
values for stanza are:
ApiExitCommon\name
ApiExitTemplate\name
ACPI
AllQueueManagers
CHANNELS
DefaultQueueManager
LogDefaults
ExitProperties

The following are usage considerations:
v amqmdain does not validate the values you specify for name, attribute, or

value.
v When you specify add, and an attribute already exists, it is modified.
v If a stanza does not exist, amqmdain creates it.
v When you specify remove, you can use the value * to remove all attributes.
v When you specify display, you can use the value * to display all attributes

which have been defined. Note that this only displays the attributes which
have been defined and not the complete list of valid attributes.

v If you use remove to delete the only attribute in a stanza, the stanza itself is
deleted.

v Any modification you make to the Registry re-secures all WebSphere MQ
Registry entries.

ServiceOptions

The options available when defining, or altering, a ROOT custom service.

-m QMgrName
The name of the associated queue manager.

If no parameter is supplied: The service is defined as a ROOT custom service
with no associated queue manager.

If QMgrName is supplied: The queue manager specified by QMgrName is
used.

If you omit this parameter, the service is defined as a ROOT custom service
with no associated queue manager.

-i Initiation
Specifies the initiation type. Possible values are:

auto Sets the ROOT custom service to automatic startup (when
the machine starts up, or more precisely when the
AMQMSRVN process starts up). For example:

amqmdain svc alter ServiceName –i auto

interactive Sets the ROOT custom service to manual startup that then
runs under the logged on (interactive) user. For example:

amqmdain svc alter ServiceName –i interactive

service Sets the ROOT custom service to manual startup that then
runs as a service. For example:

amqmdain svc alter ServiceName –i service

amqmdain auto QmgrNameIf you omit this parameter, automatic startup is set.

-t Service
Specifies the ROOT custom service type. Possible values are:

282 WebSphere MQ: System Administration Guide

|

|
|
|

|
|
|

|

|||
|

|

|||
|

|

process The ROOT custom service is not expected to run to
completion. To end the ROOT custom service, issue the svc
end ServiceName command.

command The ROOT custom service is expected to run to completion.

If you omit this parameter, Service is specified as process.

-s command
The command to execute when the ROOT custom service starts.

-e command
The command to execute when the ROOT custom service ends.

-x Execution
Specifies the execution type. Possible values are:

prefix The ROOT custom service starts before the associated queue
manager starts.

suffix The ROOT custom service starts after the associated queue
manager starts.

If you omit this parameter, Execution is specified as suffix.

Examples

The following example adds an XAResourceManager to queue manager TEST. The
commands issued are:
amqmdain reg TEST -c add -s XAResourceManager\Sample -v SwitchFile=sf1
amqmdain reg TEST -c add -s XAResourceManager\Sample -v ThreadOfControl=THREAD
amqmdain reg TEST -c add -s XAResourceManager\Sample -v XAOpenString=openit
amqmdain reg TEST -c add -s XAResourceManager\Sample -v XACloseString=closeit

To display the values set by the commands above, use:
amqmdain reg TEST -c display -s XAResourceManager\Sample -v *

The display would look something like this:
0784726, 5639-B43 (C) Copyright IBM Corp. 1994, 2002. ALL RIGHTS RESERVED.
Displaying registry value for Queue Manager 'TEST'

Attribute = Name, Value = Sample
Attribute = SwitchFile, Value = sf1
Attribute = ThreadOfControl, Value = THREAD
Attribute = XAOpenString, Value = openit
Attribute = XACloseString, Value = closeit

To remove the XAResourceManager from queue manager TEST, use:
amqmdain reg TEST -c remove -s XAResourceManager\Sample -v *

Return codes

0 Command completed normally
-2 Syntax error
-3 Failed to initialize COM library
-4 Failed to initialize COM components
-7 Failed to configure service
-9 Unexpected Registry error
-10 Unable to access required service interface (IMQDService)
-11 Unable to access required service interface (ICustomService)
-12 Unable to access required service interface (ICustomServices)

Chapter 6. WebSphere MQ control commands 283

-13 Unable to access required service interface (IUnknown)
-14 Specified service not found
-15 Specified service name already exists
-16 Failed to configure service principal name
-17 Failed to start service
-18 Failed to end service
-19 Failed to delete service
-20 Failed to store service definition
-21 Service initiation type could not be configured
-22 Service flags could not be configured
-23 Service flags could not be read
-24 Service dependency could not be configured
-25 Service start command could not be configured
-26 Service end command could not be configured
-27 Service name could not be configured

Note:

1. If the qmgr start QMgrName command is issued, all return codes that can be
returned with strmqm, can be returned here also. For a list of these return
codes, see “strmqm” on page 365.

2. If the qmgr end QMgrName command is issued, all return codes that can be
returned with endmqm, can be returned here also. For a list of these return
codes, see “endmqm” on page 324.

amqtcert

Migrate certificates from WebSphere MQ 5.3 or 5.3.1 (Windows only).

Purpose

The amqtcert command applies to WebSphere MQ for Windows only.

The amqtcert command is used to migrate SSL Certificates from WebSphere MQ
for Windows Version 5.3, or Version 5.3.1. SSL Certificate Migration instructions are
detailed in the WebSphere MQ Migration Information. SSL Certificate Migration
occurs after migrating WebSphere MQ for Windows Version 5.3, or Version 5.3.1.

In this section when referring to a WebSphere MQ Certificate Store file, we are
specifically referring to a WebSphere MQ for Windows Version 5.3, or Version 5.3.1,
Certificate Store file.

To use this command, you must be either an administrator or a member of the
mqm group.

The amqtcert command is used to migrate certificates from a client’s or queue
manager’s WebSphere MQ Certificate Store file to a GSKit key database file. The
filename of the WebSphere MQ Certificate Store file is of the form xxx.sto, where
xxx is your chosen name. The filename of the GSKit key database file is of the
form yyy.kdb, where yyy is your chosen name.

The amqtcert command is used to perform the following types of migration:

Automatic migration
The migration is deferred.

284 WebSphere MQ: System Administration Guide

|

The time at which the migration occurs depends on whether it is being
done for a queue manager or a WebSphere MQ client. On a queue
manager the migration occurs when the queue manager starts. On a
WebSphere MQ client the migration occurs when the first SSL channel
starts.

Manual migration
The migration occurs immediately.

The command is also used to set the state information relating to automatic
migration, held in the Windows registry, for each queue manager or client.

Syntax

�� amqtcert –a –p Password –c FileName
–e ExpTime –m QMgrName

–m *
–g FileName –w FileName Manual migration options
–l –a

–c FileName
–m QMgrName

–r –c *
–c FileName
–m QMgrName
–m *

��

Manual migration options:

–p Password
–e ExpTime –u ClntLogonID –i ListNumber

–m QMgrName

Keywords and parameters

-a Specifies automatic migration.

When used in conjunction with the -m or -c parameters, it prepares the
specified queue manager or client to automatically migrate the WebSphere MQ
Certificate Store.

When used in conjunction with the -l parameter, it lists the contents of the
registry entries for automatic migration.

-c FileName|*
FileName specifies the absolute (rather than relative) directory path name and
filename (excluding the .sto suffix) of the client’s WebSphere MQ Certificate
Store. If there are any spaces in FileName then it must be enclosed in quotes. In
manual migration, the -c parameter is not required.

FileName is used to identify a specific client WebSphere MQ Certificate Store.
For automatic migration, the filename is stored in the registry and flagged as
requiring automatic migration.

When the client connects to the queue manager, the key repository value
(either MQSSLKEYR or the KeyRepository field of the MQSCO) being used by
the client is compared against the list of stored filenames flagged as requiring
automatic migration; if the values match then migration takes place. The
filename is cleared from the registry list once successful migration has taken
place.

Chapter 6. WebSphere MQ control commands 285

-c * is used only in combination with the -r flag and specifies all client entries
in the registry.

-e ExpTime
The expiration time (in days) of the GSKit key database password. The default
is 60 days.

-g Filename
Use manual migration. The absolute (rather than relative) directory path name
and filename (excluding the .kdb suffix) of a GSKit key database. If there are
any spaces in FileName then it must be enclosed in quotes. The -w parameter
must also be specified.

-l In combination with the -c FileName or -m QMgrName parameters, it lists the
certificates in a WebSphere MQ Certificate Store.

In combination with the -a parameter, it lists the contents of the registry entries
for automatic migration.

-m QMgrName|*
QMgrName specifies the name of an individual queue manager. * represents all
queue managers.

When specifying manual migration of a queue manager certificate store, the -m
QMgrName parameter is mandatory. This allows the correct label to be given to
the assigned personal certificate when it is written to the GSkit key database
file (see the description of the -u parameter for more details). The * value is
not valid for manual migration.

When specifying automatic migration, the names of the source certificate store
and the target key database file are derived from the queue manager’s
SSLKeyRepository attribute.

-p Password
The password for the GSKit key database. This must be specified for automatic
or manual migration. The maximum password length is 255 bytes.

-r Remove the registry state information relating to automatic migration.

-u ClntLogonID
This parameter is only applicable when the command is used for manual
migration of clients. The -i ListNumber parameter must also be specified.

In the WebSphere MQ Certificate Store there is usually one certificate assigned
to the client. During migration, the copy of this certificate is modified before it
is stored in the GSKit database.

The modification sets the certificate’s Friendly Name attribute to the string
ibmwebspheremq, followed in lower case by the client logon ID. The previous
Friendly Name value, if any, is lost. This Friendly Name value becomes the
label in the GSKit key database.

If neither -u nor -m are specified on manual migration, it is assumed to be a
client migration. The ClntLogonId used is the userid used by the current
amqtcert user to logon.

-i ListNumber

This parameter is only applicable when the command is used for manual
migration of clients. The -u ClntLogonID parameter must also be specified.

This parameter is used to identify a specific personal certificate which is to
have its GSKit label set to the value specified by the -u ClntLogonID parameter.

286 WebSphere MQ: System Administration Guide

Prior to using amqtcert with -i ListNumber specified, you must execute
amqtcert with -l specified to list the certificates in a WebSphere MQ Certificate
Store. You must identify the required personal certificate from the list, then
execute amqtcert again, specifying -i ListNumber with the required certificate
number.

For example, after executing amqtcert -l -c C:\SSL\Client\key you might
identify the following personal certificate from the list displayed as the
required certificate:
Certificate 14
Certificate Type: Personal
Subject: personalcert@ibm.com, personalcert@ibm.com
Issuer: BE, GlobalSign nv-sa, PersonalSign Class 1 CA, GlobalSign

PersonalSign Class 1 CA
Valid From: 14/10/2004 to 14/11/2004
Certificate Usage: <All>

You will then execute amqtcert and specify -i ListNumber as -i 14.

ListNumber must be a number greater than 0.

If ListNumber references a valid personal certificate, which is not the currently
assigned certificate, then:
v The assigned certificate is not modified.
v The assigned certificate is not given a label of the form

ibmwebspheremq<xxxxx> in the GSkit key database file, and ceases to be
assigned.

v The certificate referenced by ListNumber becomes the assigned certificate in
the GSKit key database.

If ListNumber does not reference a valid personal certificate, then the command
fails and no migration occurs for any certificates (personal or otherwise).

-w FileName
Use manual migration. FileName is the absolute (rather than relative) directory
path name and filename (excluding the .sto suffix) of a WebSphere MQ
Certificate Store. If there are any spaces in FileName then it must be enclosed in
quotes. The -g parameter must also be specified.

Examples

Return codes

1 Error accessing certificate store
2 Auto migration failed
3 Invalid argument combination
4 Certificate expired
5 Certificate import failed
6 Certificate is an orphan
7 Create file failed
8 Duplicate registry entry
9 WebSphere MQ Certificate Store file is empty
16 WebSphere MQ Certificate Store file found
17 WebSphere MQ Certificate Store file not found
18 GSKit add certificate failed
19 GSKit error
20 GSKit initialization error
21 GSkit add CA certificate error

Chapter 6. WebSphere MQ control commands 287

22 Load library failed
23 No memory to allocate tables for migrating root/intermediate certificates
24 No memory
25 WebSphere MQ Certificate Store file cannot be opened
32 User not authorized to run amqtcert command
33 Windows operation failed
34 Windows export of personal certificate failed
35 GSKit create new key database error
36 Windows registry error
37 amqtcert command usage error
38 Queue manager name error
39 Unexpected system return code
40 Local mqm group not found
41 Invalid arguments
48 Bad argument
49 Invalid -i ListNumber parameter

Related commands

amqccert Check certificate chains

Listing the contents of certificate stores
amqtcert -l -c C:\SSL\Client\key

Lists the contents of the client’s WebSphere MQ Certificate Store.

amqtcert -l -m QM1
Lists the contents of the QM1 queue manager’s WebSphere MQ Certificate
Store.

Manually migrating certificate stores
amqtcert -g C:\SSL\Client\key -w C:\SSL\Client\key -p MyPassword

Manually migrates the client WebSphere MQ Certificate Store, specified by
the -w parameter value, to the GSKit key database specified by the -g
parameter value. It sets the password of the GSKit key database (called
key.kdb) to MyPassword. It also sets the GSkit label (of the certificate which
was assigned in the WebSphere MQ client store) to
ibmwebspheremq<mylogonid>, where <mylogonid> stands for the logon id of
the current user in lower case.

amqtcert -g C:\GSKitSSL\Client\key -w C:\SSL\Client\key -p MyPassword -u
MyClientID -i 14

Manually migrates a client’s WebSphere MQ Certificate Store, specified by
the -w parameter value, to the GSKit key database specified by the -g
parameter value. This command sets the password of the GSKit key
database (named key.kdb) to MyPassword. It also sets the GSKit label of the
certificate specified by -i to ibmwebspheremq<mylogonid>, where
<mylogonid> stands for the logon id of the current user in lower case.

amqtcert -g "C:\Program Files\IBM\WebSphere MQ\Qmgrs\QM1\SSL\key" -w
"C:\Program Files\IBM\WebSphere MQ\Qmgrs\QM1\SSL\key" -p MyPassword -m QM1

Manually migrates the WebSphere MQ Certificate Store for queue manager
QM1, specified by the -w parameter value, to the GSKit key database
specified by the -g parameter value. It sets the password of the GSKit key

288 WebSphere MQ: System Administration Guide

database (named key.kdb) to MyPassword. It also sets the GSkit label (of the
certificate which was assigned to queue manager QM1) to
ibmwebspheremqqm1.

Automatically migrating certificate stores
amqtcert -a -p MyPassword -m QM1

Automatically migrates the WebSphere MQ Certificate Store for queue
manager QM1, and sets the GSKit key database password to MyPassword

amqtcert -a -p MyPassword -c C:\SSL\Client\key
Automatically migrates the specified client WebSphere MQ Certificate
Store, and sets the GSKit key database password to ″MyPassword″.

amqtcert -a -p MyPassword -m *
Automatically migrates the WebSphere MQ Certificate Stores for all queue
managers, and sets the GSKit key database password to MyPassword.

Listing the contents of registry entries
amqtcert -l -a

Lists the contents of the registry entries for automatic migration.

Removing state information
amqtcert -r -c C:\SSL\Client\key

Removes the registry state information relating to automatic migration for
the specified client WebSphere MQ Certificate Store.

amqtcert -r -c *
Removes the registry state information relating to automatic migration for
all clients.

amqtcert -r -m QM1
Removes the registry state information relating to automatic migration for
queue manager QM1.

amqtcert -r -m *
Removes the registry state information relating to automatic migration for
all queue managers.

crtmqcvx

Create data conversion code from data type structures.

Purpose

Use the crtmqcvx command to create a fragment of code that performs data
conversion on data type structures. The command generates a C function that can
be used in an exit to convert C structures.

The command reads an input file containing structures to be converted, and writes
an output file containing code fragments to convert those structures.

For information about using this command, see the WebSphere MQ Application
Programming Guide.

Chapter 6. WebSphere MQ control commands 289

|

Syntax

�� crtmqcvx SourceFile TargetFile ��

Required parameters

SourceFile
The input file containing the C structures to convert.

TargetFile
The output file containing the code fragments generated to convert the
structures.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples

The following example shows the results of using the data conversion command
against a source C structure. The command issued is:
crtmqcvx source.tmp target.c

The input file, source.tmp looks like this:

The output file, target.c, produced by the command is shown below. You can use
these code fragments in your applications to convert data structures. However, if
you do so, the fragment uses macros supplied in the header file amqsvmha.h.

/* This is a test C structure which can be converted by the */
/* crtmqcvx utility */

struct my_structure
{

int code;
MQLONG value;

};

290 WebSphere MQ: System Administration Guide

crtmqm

Create a queue manager.

Purpose

Use the crtmqm command to create a queue manager and define the default and
system objects. The objects created by crtmqm are listed in Chapter 8, “System and
default objects,” on page 523. When a queue manager has been created, use the
strmqm command to start it.

Syntax

�� crtmqm
-c Text -d DefaultTransmissionQueue

�

�
-h MaximumHandleLimit

-lc

-ll -ld LogPath
�

�
-lf LogFilePages -lp LogPrimaryFiles

�

�
-ls LogSecondaryFiles -q

-ss

-sa
-si

�

MQLONG Convertmy_structure(
PMQBYTE *in_cursor,
PMQBYTE *out_cursor,
PMQBYTE in_lastbyte,
PMQBYTE out_lastbyte,
MQHCONN hConn,
MQLONG opts,
MQLONG MsgEncoding,
MQLONG ReqEncoding,
MQLONG MsgCCSID,
MQLONG ReqCCSID,
MQLONG CompCode,
MQLONG Reason)

{
MQLONG ReturnCode = MQRC_NONE;

ConvertLong(1); /* code */

AlignLong();
ConvertLong(1); /* value */

Fail:
return(ReturnCode);

}

Chapter 6. WebSphere MQ control commands 291

|

|
|
|
|

|||

�
-g ApplicationGroup -t IntervalValue

�

�
-u DeadLetterQueue -x MaximumUncommittedMessages -z

�

� QMgrName ��

Required parameters

QMgrName
The name of the queue manager to create. The name can contain up to 48
characters. This must be the last item in the command.

Optional parameters

-c Text
Descriptive text for this queue manager. You can use up to 64 characters; the
default is all blanks.

If you include special characters, enclose the description in double quotes. The
maximum number of characters is reduced if the system is using a double-byte
character set (DBCS).

-d DefaultTransmissionQueue
The name of the local transmission queue where remote messages are put if a
transmission queue is not explicitly defined for their destination. There is no
default.

-h MaximumHandleLimit
The maximum number of handles that any one application can have open at
the same time.

Specify a value in the range 1 through 999 999 999. The default value is 256.

The next six parameter descriptions relate to logging, which is described in “Using
the log for recovery” on page 227.

Note: Choose the logging arrangements with care, because some cannot be
changed once they are committed.

-lc Use circular logging. This is the default logging method.

-ll Use linear logging.

-ld LogPath
The directory used to hold log files.

In WebSphere MQ for Windows, the default is C:\Program
Files\IBM\WebSphere MQ\log (assuming that C is your data drive).

In WebSphere MQ for UNIX systems, the default is /var/mqm/log.

User ID mqm and group mqm must have full authorities to the log files. If you
change the locations of these files, you must give these authorities yourself.
This occurs automatically if the log files are in their default locations.

292 WebSphere MQ: System Administration Guide

-lf LogFilePages
The log data is held in a series of files called log files. The log file size is
specified in units of 4 KB pages.

In WebSphere MQ for UNIX systems, the default number of log file pages is
4096, giving a log file size of 16 MB. The minimum number of log file pages is
64 and the maximum is 65 535.

In WebSphere MQ for Windows systems, the default number of log file pages
is 4096, giving a log file size of 16 MB. The minimum number of log file pages
is 32 and the maximum is 65 535.

Note: The size of the log files specified during queue manager creation cannot
be changed for a queue manager.

-lp LogPrimaryFiles
The log files allocated when the queue manager is created.

The minimum number of primary log files you can have is 2 and the
maximum is 254 on Windows, or 510 on UNIX systems. The default is 3.

The total number of primary and secondary log files must not exceed 255 on
Windows, or 511 on UNIX systems, and must not be less than 3.

Operating system limits can reduce the maximum possible log size.

The value is examined when the queue manager is created or started. You can
change it after the queue manager has been created. However, a change in the
value is not effective until the queue manager is restarted, and the effect might
not be immediate.

For more information on primary log files, see “What logs look like” on page
218.

To calculate the size of the primary log files, see “Calculating the size of the
log” on page 222.

-ls LogSecondaryFiles
The log files allocated when the primary files are exhausted.

The minimum number of secondary log files is 1 and the maximum is 253 on
Windows, or 509 on UNIX systems. The default number is 2.

The total number of primary and secondary log files must not exceed 255 on
Windows, or 511 on UNIX systems, and must not be less than 3.

Operating system limits can reduce the maximum possible log size.

The value is examined when the queue manager is started. You can change this
value, but changes do not become effective until the queue manager is
restarted, and even then the effect might not be immediate.

For more information on the use of secondary log files, see “What logs look
like” on page 218.

To calculate the size of the secondary log files, see “Calculating the size of the
log” on page 222.

-q Makes this queue manager the default queue manager. The new queue
manager replaces any existing default queue manager.

If you accidentally use this flag and want to revert to an existing queue
manager as the default queue manager, change the default queue manager as
described in “Making an existing queue manager the default” on page 23.

Chapter 6. WebSphere MQ control commands 293

|
|
|

|
|
|

-g ApplicationGroup
The name of the group containing members allowed to:
v Run MQI applications
v Update all IPCC resources
v Change the contents of some queue manager directories

This option applies only to WebSphere MQ for AIX, Solaris, HP-UX, and
Linux.

The default value is -g all, which allows unrestricted access.

The -g ApplicationGroup value is recorded in the queue manager configuration
file, qm.ini.

The mqm user ID and the user executing the command must belong to the
specified ApplicationGroup.

-sa
Automatic queue manager startup.

The queue manager is configured to start automatically when the machine
starts up, or more precisely, when the AMQMSRVN process starts up.

This is the default option if you create a queue manager from WebSphere MQ
Explorer.

Queue managers created in WebSphere MQ releases earlier than V7 retain their
existing startup type.

-si Interactive (manual) queue manager startup.

The queue manager is configured to start only when manually requested using
the strmqm command. The queue manager then runs under the logged on
(interactive) user. Queue managers configured with interactive startup end
when the user who started them logs off.

-ss Service (manual) queue manager startup.

A queue manager configured to start only when manually requested using the
strmqm command. The queue manager then runs as a child of the
AMQMSRVN process. Queue managers configured with service startup
continue to run even after the interactive user has logged off.

This is the default option if you create a queue manager from the command
line.

-t IntervalValue
The trigger time interval in milliseconds for all queues controlled by this queue
manager. This value specifies the time after receiving a trigger-generating
message when triggering is suspended. That is, if the arrival of a message on a
queue causes a trigger message to be put on the initiation queue, any message
arriving on the same queue within the specified interval does not generate
another trigger message.

You can use the trigger time interval to ensure that your application is allowed
sufficient time to deal with a trigger condition before it is alerted to deal with
another on the same queue. You might choose to see all trigger events that
happen; if so, set a low or zero value in this field.

Specify a value in the range 0 through 999 999 999. The default is 999 999 999
milliseconds, a time of more than 11 days. Allowing the default to be used
effectively means that triggering is disabled after the first trigger message.

294 WebSphere MQ: System Administration Guide

|

|
|

|
|

|
|

|
|

||

|
|
|
|

||

|
|
|
|

|
|

However, an application can enable triggering again by servicing the queue
using a command to alter the queue to reset the trigger attribute.

-u DeadLetterQueue
The name of the local queue that is to be used as the dead-letter
(undelivered-message) queue. Messages are put on this queue if they cannot be
routed to their correct destination.

The default is no dead-letter queue.

-x MaximumUncommittedMessages
The maximum number of uncommitted messages under any one syncpoint.
That is, the sum of:
v The number of messages that can be retrieved from queues
v The number of messages that can be put on queues
v Any trigger messages generated within this unit of work

This limit does not apply to messages that are retrieved or put outside a
syncpoint.

Specify a value in the range 1 through 999 999 999. The default value is
10 000 uncommitted messages.

-z Suppresses error messages.

This flag is used within WebSphere MQ to suppress unwanted error messages.
Because using this flag can result in loss of information, do not use it when
entering commands on a command line.

Return codes

0 Queue manager created
8 Queue manager already exists
39 Invalid parameter specified
49 Queue manager stopping
69 Storage not available
70 Queue space not available
71 Unexpected error
72 Queue manager name error
74 The WebSphere MQ service is not started.
100 Log location invalid
111 Queue manager created. However, there was a problem processing the default

queue manager definition in the product configuration file. The default queue
manager specification might be incorrect.

115 Invalid log size
119 Permission denied (Windows only)

Examples
1. This command creates a default queue manager called Paint.queue.manager,

with a description of Paint shop, and creates the system and default objects. It
also specifies that linear logging is to be used:
crtmqm -c "Paint shop" -ll -q Paint.queue.manager

2. This command creates a default queue manager called Paint.queue.manager,
creates the system and default objects, and requests two primary and three
secondary log files:
crtmqm -c "Paint shop" -ll -lp 2 -ls 3 -q Paint.queue.manager

Chapter 6. WebSphere MQ control commands 295

||

||

||

3. This command creates a queue manager called travel, creates the system and
default objects, sets the trigger interval to 5000 milliseconds (or 5 seconds), and
specifies SYSTEM.DEAD.LETTER.QUEUE as its dead-letter queue.
crtmqm -t 5000 -u SYSTEM.DEAD.LETTER.QUEUE travel

Related commands

strmqm Start queue manager
endmqm End queue manager
dltmqm Delete queue manager

dltmqm

Delete a queue manager.

Purpose

Use the dltmqm command to delete a specified queue manager and all objects
associated with it. Before you can delete a queue manager you must end it using
the endmqm command.

In WebSphere MQ for Windows, it is an error to delete a queue manager when
queue manager files are open. If you get this error, close the files and reissue the
command.

Syntax

�� dltmqm
-z

QMgrName ��

Required parameters

QMgrName
The name of the queue manager to delete.

Optional parameters

-z Suppresses error messages.

Return codes

0 Queue manager deleted
3 Queue manager being created
5 Queue manager running
16 Queue manager does not exist
24 A process that was using the previous instance of the queue manager has not yet

disconnected.
25 An error occurred while creating or checking the directory structure for the

queue manager.
27 Queue manager could not obtain data lock.
28 Queue manager deleted, however there was a problem removing it from the

Service Control Manager.
29 Queue manager deleted, however there was a problem removing it from Active

Directory.
33 An error occurred while deleting the directory structure for the queue manager.

296 WebSphere MQ: System Administration Guide

|

|
|
||
||
|
||
|
||

49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
74 The WebSphere MQ service is not started.
100 Log location invalid.
112 Queue manager deleted. However, there was a problem processing the default

queue manager definition in the product configuration file. The default queue
manager specification might be incorrect.

119 Permission denied (Windows only).

Examples
1. The following command deletes the queue manager saturn.queue.manager.

dltmqm saturn.queue.manager

2. The following command deletes the queue manager travel and also suppresses
any messages caused by the command.
dltmqm -z travel

Usage notes

In WebSphere MQ for Windows, it is an error to delete a queue manager when
queue manager files are open. If you get this error, close the files and reissue the
command.

Deleting a cluster queue manager does not remove it from the cluster. To check
whether the queue manager you want to delete is part of a cluster, issue the
command DIS CLUSQMGR(*) and check if this queue manager is listed in the
output. If it is listed as a cluster queue manager you must remove the queue
manager from the cluster before deleting it. See the related link for instructions.

If you do delete a cluster queue manager without first removing it from the cluster,
the cluster will continue to regard the deleted queue manager as a member of the
cluster for at least 30 days. You can remove it from the cluster using the command
RESET CLUSTER on a full repository queue manager. Note that recreating a queue
manager with an identical name and then trying to remove that queue manager
from the cluster does not result in the cluster queue manager being removed from
the cluster, because the newly created queue manager, although having the same
name, does not have the same queue manager ID (QMID) and is therefore treated
as a different queue manager by the cluster.

Related commands

crtmqm Create queue manager
strmqm Start queue manager
endmqm End queue manager

dmpmqaut

Dump a list of current authorizations for a range of WebSphere MQ object types
and profiles.

Chapter 6. WebSphere MQ control commands 297

||

||

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

Purpose

Use the dmpmqaut command to dump the current authorizations to a specified
object.

Syntax

�� dmpmqaut
-m QMgrName -n Profile

-l
-t ObjectType

�

�
-s ServiceComponent -p PrincipalName

-g GroupName
-e
-x

��

Optional parameters

-m QMgrName
Dump authority records only for the queue manager specified. If you omit this
parameter, only authority records for the default queue manager are dumped.

-n Profile
The name of the profile for which to dump authorizations. The profile name
can be generic, using wildcard characters to specify a range of names as
explained in “Using OAM generic profiles” on page 133.

-l Dump only the profile name and type. Use this option to generate a terse list of
all defined profile names and types.

-t ObjectType
The type of object for which to dump authorizations. Possible values are:

authinfo Authentication information object, for use with Secure
Sockets Layer (SSL) channel security

channel or chl A channel

clntconn or clcn A client connection channel

listener or lstr A listener

namelist or nl A namelist

process or prcs A process

queue or q A queue or queues matching the object name parameter

qmgr A queue manager

service or srvc A service

topic or top A topic

-s ServiceComponent
If installable authorization services are supported, specifies the name of the
authorization service for which to dump authorizations. This parameter is
optional; if you omit it, the authorization inquiry is made to the first installable
component for the service.

-p PrincipalName
This parameter applies to WebSphere MQ for Windows only; UNIX systems
keep only group authority records.

298 WebSphere MQ: System Administration Guide

|||

The name of a user for whom to dump authorizations to the specified object.
The name of the principal can optionally include a domain name, specified in
the following format:
userid@domain

For more information about including domain names on the name of a
principal, see “Principals and groups” on page 123.

-g GroupName
The name of the user group for which to dump authorizations. You can specify
only one name, which must be the name of an existing user group. On
Windows systems, you can use only local groups.

-e Display all profiles used to calculate the cumulative authority that the entity
has to the object specified in -n Profile. The variable Profile must not
contain any wildcard characters.

The following parameters must also be specified:
v -m QMgrName

v -n Profile

v -t ObjectType

and either -p PrincipalName, or -g GroupName.

-x Display all profiles with exactly the same name as specified in -n Profile.
This option does not apply to the QMGR object, so a dump request of the
form dmpmqaut -m QM -t QMGR ... -x is not valid.

Examples

The following examples show the use of dmpmqaut to dump authority records for
generic profiles:
1. This example dumps all authority records with a profile that matches queue

a.b.c for principal user1.
dmpmqaut -m qm1 -n a.b.c -t q -p user1

The resulting dump would look something like this:
profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq

Note: UNIX users cannot use the -p option; they must use -g groupname
instead.

2. This example dumps all authority records with a profile that matches queue
a.b.c.
dmpmqaut -m qmgr1 -n a.b.c -t q

The resulting dump would look something like this:
profile: a.b.c
object type: queue
entity: Administrator
type: principal
authority: all
- - - - - - - - - - - - - - - - -
profile: a.b.*
object type: queue
entity: user1

Chapter 6. WebSphere MQ control commands 299

|
|

type: principal
authority: get, browse, put, inq
- - - - - - - - - - - - - - - - -
profile: a.**
object type: queue
entity: group1
type: group
authority: get

3. This example dumps all authority records for profile a.b.*, of type queue.
dmpmqaut -m qmgr1 -n a.b.* -t q

The resulting dump would look something like this:
profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq

4. This example dumps all authority records for queue manager qmX.
dmpmqaut -m qmX

The resulting dump would look something like this:
profile: q1
object type: queue
entity: Administrator
type: principal
authority: all
- - - - - - - - - - - - - - - - -
profile: q*
object type: queue
entity: user1
type: principal
authority: get, browse
- - - - - - - - - - - - - - - - -
profile: name.*
object type: namelist
entity: user2
type: principal
authority: get
- - - - - - - - - - - - - - - - -
profile: pr1
object type: process
entity: group1
type: group
authority: get

5. This example dumps all profile names and object types for queue manager
qmX.
dmpmqaut -m qmX -l

The resulting dump would look something like this:
profile: q1, type: queue
profile: q*, type: queue
profile: name.*, type: namelist
profile: pr1, type: process

Note:

1. For WebSphere MQ for Windows only, all principals displayed include domain
information, for example:

300 WebSphere MQ: System Administration Guide

profile: a.b.*
object type: queue
entity: user1@domain1
type: principal
authority: get, browse, put, inq

2. Each class of object has authority records for each group or principal. These
records have the profile name @CLASS and track the crt (create) authority
common to all objects of that class. If the crt authority for any object of that
class is changed then this record is updated. For example:
profile: @class
object type: queue
entity: test
entity type: principal
authority: crt

This shows that members of the group test have crt authority to the class
queue.

3. For WebSphere MQ for Windows only, members of the “Administrators” group
are by default given full authority. This authority, however, is given
automatically by the OAM, and is not defined by the authority records. The
dmpmqaut command displays authority defined only by the authority records.
Unless an authority record has been explicitly defined, therefore, running the
dmpmqaut command against the “Administrators” group will display no
authority record for that group.

Related commands

dspmqaut Display authority
setmqaut Set or reset authority

dmpmqlog

Display and format a portion of the WebSphere MQ system log.

Purpose

Use the dmpmqlog command to dump a formatted version of the WebSphere MQ
system log to standard out.

The log to be dumped must have been created on the same type of operating
system as that being used to issue the command.

Syntax

�� dmpmqlog
-b
-s StartLSN
-n ExtentNumber

-e EndLSN -f LogFilePath
�

�
-m QMgrName

��

Optional parameters

Dump start point
Use one of the following parameters to specify the log sequence number (LSN)

Chapter 6. WebSphere MQ control commands 301

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|

|

at which the dump should start. If you omit this, dumping starts by default
from the LSN of the first record in the active portion of the log.

-b Start dumping from the base LSN. The base LSN identifies the start of the
log extent that contains the start of the active portion of the log.

-s StartLSN
Start dumping from the specified LSN. The LSN is specified in the format
nnnn:nnnn:nnnn:nnnn.

If you are using a circular log, the LSN value must be equal to or greater
than the base LSN value of the log.

-n ExtentNumber
Start dumping from the specified extent number. The extent number must
be in the range 0–9 999 999.

This parameter is valid only for queue managers using linear logging.

-e EndLSN
End dumping at the specified LSN. The LSN is specified in the format
nnnn:nnnn:nnnn:nnnn.

-f LogFilePath
The absolute (rather than relative) directory path name to the log files. The
specified directory must contain the log header file (amqhlctl.lfh) and a
subdirectory called active. The active subdirectory must contain the log files.
By default, log files are assumed to be in the directories specified in the
WebSphere MQ configuration information. If you use this option, queue names
associated with queue identifiers are shown in the dump only if you use the
-m option to name a queue manager name that has the object catalog file in its
directory path.

On a system that supports long file names this file is called qmqmobjcat and,
to map the queue identifiers to queue names, it must be the file used when the
log files were created. For example, for a queue manager named qm1, the
object catalog file is located in the directory ..\qmgrs\qm1\qmanager\. To
achieve this mapping, you might need to create a temporary queue manager,
for example named tmpq, replace its object catalog with the one associated
with the specific log files, and then start dmpmqlog, specifying -m tmpq and -f
with the absolute directory path name to the log files.

-m QMgrName
The name of the queue manager. If you omit this parameter, the name of the
default queue manager is used.

Note: Do not dump the log while the queue manager is running, and do not
start the queue manager while dmpmqlog is running.

dspmq

Display information about queue managers.

Purpose

Use the dspmq command to display names and details of the queue managers on
a system.

302 WebSphere MQ: System Administration Guide

|
|

|

Syntax

�� dspmq
-m QMgrName

�

-s

-o all

-o default
-o status

��

Required parameters

None

Optional parameters

-m QMgrName
The queue manager for which to display details. If you give no name, all
queue manager names are displayed.

-s Displays the operational status of the queue managers. This is the default
status setting.

The parameter -o status is equivalent to -s.

-o all
Displays the operational status of the queue managers, and whether any are
the default queue manager.

-o default
Displays whether any of the queue managers are the default queue manager.

-o status
Displays the operational status of the queue managers.

Queue Manager States

The following is a list of the different states a queue manager can be in:

Starting
Running
Quiescing
Ending immediately
Ending preemptively
Ended normally
Ended immediately
Ended unexpectedly
Ended preemptively

Return codes

0 Command completed normally
36 Invalid arguments supplied
71 Unexpected error
72 Queue manager name error

Chapter 6. WebSphere MQ control commands 303

|

|

||
|
|
|
|
|
|
|
|
|

|

dspmqaut

dspmqaut displays the authorizations of a specific WebSphere MQ object.

Purpose

Use the dspmqaut command to display the current authorizations to a specified
object.

If a user ID is a member of more than one group, this command displays the
combined authorizations of all the groups.

Only one group or principal can be specified.

For more information about authorization service components, see “Installable
services” on page 106, “Service components” on page 108, and “Authorization
service” on page 398.

Syntax

�� dspmqaut
-m QMgrName

-n Profile -t ObjectType �

� -g GroupName
-p PrincipalName -s ServiceComponent

��

Required parameters

-n Profile
The name of the profile for which to display authorizations. The authorizations
apply to all WebSphere MQ objects with names that match the profile name
specified. The profile name can be generic, using wildcard characters to specify
a range of names as explained in “Using OAM generic profiles” on page 133.

If you give an explicit profile name (without any wildcard characters), the
object identified must exist.

This parameter is required, unless you are displaying the authorizations of a
queue manager, in which case you must not include it and instead specify the
queue manager name using the -m parameter.

-t ObjectType
The type of object on which to make the inquiry. Possible values are:

authinfo Authentication information object, for use with Secure
Sockets Layer (SSL) channel security

channel or chl A channel

clntconn or clcn A client connection channel

listener or lstr A Listener

namelist or nl A namelist

process or prcs A process

queue or q A queue or queues matching the object name parameter

qmgr A queue manager

304 WebSphere MQ: System Administration Guide

|

|

|

service or srvc A service

topic or top A topic

Optional parameters

-m QMgrName
The name of the queue manager on which to make the inquiry. This parameter
is optional if you are displaying the authorizations of your default queue
manager.

-g GroupName
The name of the user group on which to make the inquiry. You can specify
only one name, which must be the name of an existing user group. On
Windows systems, you can use only local groups.

-p PrincipalName
The name of a user for whom to display authorizations to the specified object.

For WebSphere MQ for Windows only, the name of the principal can optionally
include a domain name, specified in the following format:
userid@domain

For more information about including domain names on the name of a
principal, see “Principals and groups” on page 123.

-s ServiceComponent
If installable authorization services are supported, specifies the name of the
authorization service to which the authorizations apply. This parameter is
optional; if you omit it, the authorization inquiry is made to the first installable
component for the service.

Returned parameters

Returns an authorization list, which can contain none, one, or more authorization
values. Each authorization value returned means that any user ID in the specified
group or principal has the authority to perform the operation defined by that
value.

Table 24 shows the authorities that can be given to the different object types.

Table 24. Specifying authorities for different object types

Authority Queue Process Queue
manager

Namelist Topic Auth
info

Clntconn Channel Listener Service

all Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

alladm Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

allmqi Yes Yes Yes Yes Yes Yes No No No No

none Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

altusr No No Yes No No No No No No No

browse Yes No No No No No No No No No

chg Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

clr Yes No No No Yes No No No No No

connect No No Yes No No No No No No No

crt Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Chapter 6. WebSphere MQ control commands 305

|||

|

||||

Table 24. Specifying authorities for different object types (continued)

Authority Queue Process Queue
manager

Namelist Topic Auth
info

Clntconn Channel Listener Service

ctrl No No No No Yes No No Yes Yes Yes

ctrlx No No No No No No No Yes No No

dlt Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

dsp Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

get Yes No No No No No No No No No

pub No No No No Yes No No No No No

put Yes No No No Yes No No No No No

inq Yes Yes Yes Yes No Yes No No No No

passall Yes No No No Yes No No No No No

passid Yes No No No Yes No No No No No

res No No No No Yes No No No No No

set Yes Yes Yes No No No No No No No

setall Yes No Yes No Yes No No No No No

setid Yes No Yes No Yes No No No No No

sub No No No No Yes No No No No No

The following list defines the authorizations associated with each value:

all Use all operations relevant to the object.
alladm Perform all administration operations relevant to the object.
allmqi Use all MQI calls relevant to the object.
altusr Specify an alternate user ID on an MQI call.
browse Retrieve a message from a queue by issuing an MQGET call with the

BROWSE option.
chg Change the attributes of the specified object, using the appropriate command

set.
clr Clear a queue (PCF command Clear queue only) or a topic.
ctrl Start, and stop the specified channel, listener, or service. And ping the

specified channel.
ctrlx Reset or resolve the specified channel.
connect Connect the application to the specified queue manager by issuing an

MQCONN call.
crt Create objects of the specified type using the appropriate command set.
dlt Delete the specified object using the appropriate command set.
dsp Display the attributes of the specified object using the appropriate command

set.
get Retrieve a message from a queue by issuing an MQGET call.
inq Make an inquiry on a specific queue by issuing an MQINQ call.
passall Pass all context.
passid Pass the identity context.
pub Publish.
put Put a message on a specific queue by issuing an MQPUT call.
res Resume.
set Set attributes on a queue from the MQI by issuing an MQSET call.
setall Set all context on a queue.
setid Set the identity context on a queue.
sub Subscribe.

306 WebSphere MQ: System Administration Guide

|

||

The authorizations for administration operations, where supported, apply to these
command sets:
v Control commands
v MQSC commands
v PCF commands

Return codes

0 Successful operation
26 Queue manager running as a standby instance.
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
133 Unknown object name
145 Unexpected object name
146 Object name missing
147 Object type missing
148 Invalid object type
149 Entity name missing

Examples
v The following example shows a command to display the authorizations on

queue manager saturn.queue.manager associated with user group staff:
dspmqaut -m saturn.queue.manager -t qmgr -g staff

The results from this command are:
Entity staff has the following authorizations for object:

get
browse
put
inq
set
connect
altusr
passid
passall
setid

v The following example displays the authorities user1 has for queue a.b.c:
dspmqaut -m qmgr1 -n a.b.c -t q -p user1

The results from this command are:
Entity user1 has the following authorizations for object:

get
put

Related commands

dmpmqaut Dump authority
setmqaut Set or reset authority

dspmqcsv

Display the status of a command server

Chapter 6. WebSphere MQ control commands 307

||

|

Purpose

Use the dspmqcsv command to display the status of the command server for the
specified queue manager.

The status can be one of the following:
v Starting
v Running
v Running with SYSTEM.ADMIN.COMMAND.QUEUE not enabled for gets
v Ending
v Stopped

Syntax

�� dspmqcsv
QMgrName

��

Required parameters

None

Optional parameters

QMgrName
The name of the local queue manager for which the command server status is
being requested.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples

The following command displays the status of the command server associated with
venus.q.mgr:
dspmqcsv venus.q.mgr

Related commands

strmqcsv Start a command server
endmqcsv End a command server

dspmqfls

Display the file names corresponding to WebSphere MQ objects.

Purpose

Use the dspmqfls command to display the real file system name for all WebSphere
MQ objects that match a specified criterion. You can use this command to identify
the files associated with a particular object. This is useful for backing up specific

308 WebSphere MQ: System Administration Guide

|

objects. See “Understanding WebSphere MQ file names” on page 17 for
information about name transformation.

Syntax

�� dspmqfls
-m QMgrName -t ObjType

GenericObjName ��

Required parameters

GenericObjName
The name of the object. The name is a string with no flag and is a required
parameter. Omitting the name returns an error.

This parameter supports a wild card character * at the end of the string.

Optional parameters

-m QMgrName
The name of the queue manager for which to examine files. If you omit this
name, the command operates on the default queue manager.

-t ObjType
The object type. The following list shows the valid object types. The
abbreviated name is shown first followed by the full name.

* or all All object types; this is the default

authinfo Authentication information object, for use with Secure
Sockets Layer (SSL) channel security

channel or chl A channel

clntconn or clcn A client connection channel

catalog or ctlg An object catalog

namelist or nl A namelist

listener or lstr A listener

process or prcs A process

queue or q A queue or queues matching the object name parameter

qalias or qa An alias queue

qlocal or ql A local queue

qmodel or qm A model queue

qremote or qr A remote queue

qmgr A queue manager object

service or srvc A service

Note:

1. The dspmqfls command displays the name of the directory containing the
queue, not the name of the queue itself.

2. In WebSphere MQ for UNIX systems, you need to prevent the shell from
interpreting the meaning of special characters, for example, *. The way you do
this depends on the shell you are using, but might involve the use of single
quotation marks, double quotation marks, or a backslash.

Chapter 6. WebSphere MQ control commands 309

Return codes

0 Command completed normally
10 Command completed but not entirely as expected
20 An error occurred during processing

Examples
1. The following command displays the details of all objects with names

beginning SYSTEM.ADMIN defined on the default queue manager.
dspmqfls SYSTEM.ADMIN*

2. The following command displays file details for all processes with names
beginning PROC defined on queue manager RADIUS.
dspmqfls -m RADIUS -t prcs PROC*

dspmqrte

Determine the route that a message has taken through a queue manager network.

Purpose

The WebSphere MQ display route application (dspmqrte) can be executed on all
platforms except z/OS. You can execute the WebSphere MQ display route
application as a client to a WebSphere MQ for z/OS queue manager by specifying
the -c parameter when issuing the dspmqrte command.

Note: To run a client application against a WebSphere MQ for z/OS queue
manager, the Client Attachment feature must be installed.

The WebSphere MQ display route application generates and puts a trace-route
message into a queue manager network. As the trace-route message travels
through the queue manager network, activity information is recorded. When the
trace-route message reaches its target queue, the activity information is collected by
the WebSphere MQ display route application and displayed. For more information,
and examples of using the WebSphere MQ display route application, see the
Monitoring WebSphere MQ book.

Syntax

�� dspmqrte
-c

Generation options

-i CorrelId Display options
�

� -q TargetQName
-m QMgrName

��

Generation options:

-ac
-ar

-d Deliver -f Forward
�

310 WebSphere MQ: System Administration Guide

|

|
|
|
|

|
|

|

�
(1)

-l Persistence
-o -p Priority

�

�
-qm TargetQMgrName

�

-ro none
,

ReportOption

�

�
-rq ReplyToQ

-rqm ReplyToQMgr
-s Activities

�

�
-t Detail -ts TopicString -xp PassExpiry

�

�
-xs Expiry

Display options

(2)
-n

Display options:

-b

�

-v summary

-v all
none
outline

,

DisplayOption

�

�
-w WaitTime

Notes:

1 If Persistence is specified as yes, and is accompanied by a request for a
trace-route reply message (-ar), or any report generating options (-ro
ReportOption), then you must specify the parameter -rq ReplyToQ. The reply-to
queue must not resolve to a temporary dynamic queue.

2 If this parameter is accompanied by a request for a trace-route reply message
(-ar), or any of the report generating options (-ro ReportOption), then a
specific (non-model) reply-to queue must be specified using -rq ReplyToQ. By
default, activity report messages are requested.

Required parameters

-q TargetQName
If the WebSphere MQ display route application is being used to send a
trace-route message into a queue manager network, TargetQName specifies the
name of the target queue.

Chapter 6. WebSphere MQ control commands 311

||

If the WebSphere MQ display route application is being used to view
previously gathered activity information, TargetQName specifies the name of
the queue where the activity information is stored.

Optional parameters

-c Specifies that the WebSphere MQ display route application connects as a client
application. For more information on how to set up client machines, see the
WebSphere MQ Clients book.

If you do not specify this parameter, the WebSphere MQ display route
application does not connect as a client application.

-i CorrelId
This parameter is used when the WebSphere MQ display route application is
used to display previously accumulated activity information only. There can be
many activity reports and trace-route reply messages on the queue specified by
-q TargetQName. CorrelId is used to identify the activity reports, or a trace-route
reply message, related to a trace-route message. Specify the message identifier
of the original trace-route message in CorrelId.

The format of CorrelId is a 48 character hexadecimal string.

-m QMgrName
The name of the queue manager to which the WebSphere MQ display route
application connects. The name can contain up to 48 characters.

If you do not specify this parameter, the default queue manager is used.

Generation options

The following parameters are used when the WebSphere MQ display route
application is used to put a trace-route message into a queue manager network.

-ac
Specifies that activity information is to be accumulated within the trace-route
message.

If you do not specify this parameter, activity information is not accumulated
within the trace-route message.

-ar Requests that a trace-route reply message containing all accumulated activity
information is generated in the following circumstances:
v The trace-route message is discarded by a WebSphere MQ Version 7.0 queue

manager.
v The trace-route message is put to a local queue (target queue or dead-letter

queue) by a WebSphere MQ Version 7.0 queue manager.
v The number of activities performed on the trace-route message exceeds the

value of specified in -s Activities.

For more information on trace-route reply messages, see the Monitoring
WebSphere MQ book.

If you do not specify this parameter, a trace-route reply message will not be
requested.

-d Deliver
Specifies whether the trace-route message is to be delivered to the target queue
on arrival. Possible values for Deliver are:

312 WebSphere MQ: System Administration Guide

|

|

yes On arrival, the trace-route message is put to the target
queue, even if the queue manager does not support
trace-route messaging.

no On arrival, the trace-route message is not put to the target
queue.

If you do not specify this parameter, the trace-route message is not put to the
target queue.

-f Forward
Specifies the type of queue manager that the trace-route message can be
forwarded to. Queue managers use an algorithm when determining whether to
forward a message to a remote queue manager. For details of this algorithm,
see Monitoring WebSphere MQ. The possible values for Forward are:

all The trace-route message is forwarded to any queue
manager.
Warning: If forwarded to a WebSphere MQ queue manager
prior to Version 6.0, the trace-route message will not be
recognized and can be delivered to a local queue despite
the value of the -d Deliver parameter.

supported The trace-route message is only forwarded to a queue
manager that will honor the Deliver parameter from the
TraceRoute PCF group.

If you do not specify this parameter, the trace-route message will only be
forwarded to a queue manager that will honor the Deliver parameter.

-l Persistence
Specifies the persistence of the generated trace-route message. Possible values
for Persistence are:

yes The generated trace-route message is persistent.
(MQPER_PERSISTENT).

no The generated trace-route message is not persistent.
(MQPER_NOT_PERSISTENT).

q The generated trace-route message inherits its persistence
value from the queue specified by -q TargetQName.
(MQPER_PERSISTENCE_AS_Q_DEF).

A trace-route reply message, or any report messages, returned will share the
same persistence value as the original trace-route message.

If Persistence is specified as yes, you must specify the parameter -rq ReplyToQ.
The reply-to queue must not resolve to a temporary dynamic queue.

If you do not specify this parameter, the generated trace-route message is not
persistent.

-o Specifies that the target queue is not bound to a specific destination. Typically
this parameter is used when the trace-route message is to be put across a
cluster. The target queue is opened with option MQOO_BIND_NOT_FIXED.

If you do not specify this parameter, the target queue is bound to a specific
destination.

-p Priority
Specifies the priority of the trace-route message. The value of Priority is either

Chapter 6. WebSphere MQ control commands 313

greater than or equal to 0, or MQPRI_PRIORITY_AS_Q_DEF.
MQPRI_PRIORITY_AS_Q_DEF specifies that the priority value is taken from
the queue specified by -q TargetQName.

If you do not specify this parameter, the priority value is taken from the queue
specified by -q TargetQName.

-qm TargetQMgrName
Qualifies the target queue name; normal queue manager name resolution will
then apply. The target queue is specified with -q TargetQName.

If you do not specify this parameter, the queue manager to which the
WebSphere MQ display route application is connected is used as the reply-to
queue manager.

-ro none | ReportOption

none Specifies no report options are set.

ReportOption Specifies report options for the trace-route message.
Multiple report options can be specified using a comma as a
separator. Possible values for ReportOption are:

activity The report option MQRO_ACTIVITY is set.

coa The report option
MQRO_COA_WITH_FULL_DATA is set.

cod The report option
MQRO_COD_WITH_FULL_DATA is set.

exception
The report option
MQRO_EXCEPTION_WITH_FULL_DATA is set.

expiration
The report option
MQRO_EXPIRATION_WITH_FULL_DATA is set.

discard The report option MQRO_DISCARD_MSG is set.

If neither -ro ReportOption nor -ro none are specified, then the
MQRO_ACTIVITY and MQRO_DISCARD_MSG report options are specified.

-rq ReplyToQ
Specifies the name of the reply-to queue that all responses to the trace-route
message are sent to. If the trace-route message is persistent, or if the -n
parameter is specified, a reply-to queue must be specified that is not a
temporary dynamic queue.

If you do not specify this parameter, the system default model queue,
SYSTEM.DEFAULT.MODEL.QUEUE is used as the reply-to queue. Using this
model queue causes a temporary dynamic queue, for the WebSphere MQ
display route application, to be created.

-rqm ReplyToQMgr
Specifies the name of the queue manager where the reply-to queue resides. The
name can contain up to 48 characters.

If you do not specify this parameter, the queue manager to which the
WebSphere MQ display route application is connected is used as the reply-to
queue manager.

-s Activities
Specifies the maximum number of recorded activities that can be performed on

314 WebSphere MQ: System Administration Guide

behalf of the trace-route message before it is discarded. This prevents the
trace-route message from being forwarded indefinitely if caught in an infinite
loop. The value of Activities is either greater than or equal to 1, or
MQROUTE_UNLIMITED_ACTIVITIES. MQROUTE_UNLIMITED_ACTIVITIES
specifies that an unlimited number of activities can be performed on behalf of
the trace-route message.

If you do not specify this parameter, an unlimited number of activities can be
performed on behalf of the trace-route message.

-t Detail
Specifies the activities that are recorded. The possible values for Detail are:

low Activities performed by user-defined application are
recorded only.

medium Activities specified in low are recorded. Additionally,
activities performed by MCAs are recorded.

high Activities specified in low, and medium are recorded.
MCAs do not expose any further activity information at this
level of detail. This option is available to user-defined
applications that are to expose further activity information
only. For example, if a user-defined application determines
the route a message takes by considering certain message
characteristics, the routing logic could be included with this
level of detail.

If you do not specify this parameter, medium level activities are recorded.

-ts TopicString
Specifies a topic string to which the WebSphere MQ display route application
is to publish a trace-route message, and puts this application into topic mode.
In this mode, the application traces all of the messages that result from the
publish request.

-xp PassExpiry
Specifies whether the report option MQRO_DISCARD_MSG and the remaining
expiry time from the trace-route message is passed on to the trace-route reply
message. Possible values for PassExpiry are:

yes The report option MQRO_PASS_DISCARD_AND_EXPIRY is
specified in the message descriptor of the trace-route
message.

If a trace-route reply message, or activity reports, are
generated for the trace-route message, the
MQRO_DISCARD_MSG report option (if specified), and the
remaining expiry time are passed on.

This is the default value.

no The report option MQRO_PASS_DISCARD_AND_EXPIRY is
not specified.

If a trace-route reply message is generated for the
trace-route message, the discard option and remaining
expiry time from the trace-route message are not passed on.

If you do not specify this parameter, the
MQRO_PASS_DISCARD_AND_EXPIRY report option is not specified in the
trace-route message.

Chapter 6. WebSphere MQ control commands 315

|
|
|
|
|

-xs Expiry
Specifies the expiry time for the trace-route message, in seconds.

If you do not specify this parameter, the expiry time is specified as 60 seconds.

-n Specifies that activity information returned for the trace-route message is not to
be displayed.

If this parameter is accompanied by a request for a trace-route reply message,
(-ar), or any of the report generating options from (-ro ReportOption), then a
specific (non-model) reply-to queue must be specified using -rq ReplyToQ. By
default, activity report messages are requested.

After the trace-route message is put to the specified target queue, a 48
character hexadecimal string is returned containing the message identifier of
the trace-route message. The message identifier can be used by the WebSphere
MQ display route application to display the activity information for the
trace-route message at a later time, using the -i CorrelId parameter.

If you do not specify this parameter, activity information returned for the
trace-route message is displayed in the form specified by the -v parameter.

Display options

The following parameters are used when the WebSphere MQ display route
application is used to display collected activity information.

-b Specifies that the WebSphere MQ display route application will only browse
activity reports or a trace-route reply message related to a message. This allows
activity information to be displayed again at a later time.

If you do not specify this parameter, the WebSphere MQ display route
application will destructively get activity reports or a trace-route reply message
related to a message.

-v summary | all | none | outline DisplayOption

summary The queues that the trace-route message was routed
through are displayed.

all All available information is displayed.

none No information is displayed.

316 WebSphere MQ: System Administration Guide

outline DisplayOption Specifies display options for the trace-route message.
Multiple display options can be specified using a comma as
a separator.

If no values are supplied the following is displayed:

v The application name

v The type of each operation

v Any operation specific parameters

Possible values for DisplayOption are:

activity All non-PCF group parameters in Activity PCF
groups are displayed.

identifiers
Values with parameter identifiers
MQBACF_MSG_ID or MQBACF_CORREL_ID are
displayed. This overrides msgdelta.

message
All non-PCF group parameters in Message PCF
groups are displayed. When this value is specified,
you cannot specify msgdelta.

msgdelta
All non-PCF group parameters in Message PCF
groups, that have changed since the last operation,
are displayed. When this value is specified, you
cannot specify message.

operation
All non-PCF group parameters in Operation PCF
groups are displayed.

traceroute
All non-PCF group parameters in TraceRoute PCF
groups are displayed.

If you do not specify this parameter, a summary of the message route is
displayed.

-w WaitTime
Specifies the time, in seconds, that the WebSphere MQ display route
application will wait for activity reports, or a trace-route reply message, to
return to the specified reply-to queue.

If you do not specify this parameter, the wait time is specified as the expiry
time of the trace-route message, plus 60 seconds.

Return codes

0 Command completed normally
10 Invalid arguments supplied
20 An error occurred during processing

Examples
1. The following command puts a trace-route message into a queue manager

network with the target queue specified as TARGET.Q. Providing queue
managers on route are enabled for activity recording, activity reports are
generated. Depending on the queue manager attribute, ACTIVREC, activity

Chapter 6. WebSphere MQ control commands 317

reports are either delivered to the reply-to queue ACT.REPORT.REPLY.Q, or are
delivered to a system queue. The trace-route message is discarded on arrival at
the target queue.
dspmqrte -q TARGET.Q -rq ACT.REPORT.REPLY.Q

Providing one or more activity reports are delivered to the reply-to queue,
ACT.REPORT.REPLY.Q, the WebSphere MQ display route application orders and
displays the activity information.

2. The following command puts a trace-route message into a queue manager
network with the target queue specified as TARGET.Q. Activity information is
accumulated within the trace-route message, but activity reports are not
generated. On arrival at the target queue the trace-route message is discarded.
Depending on the value of the target queue manager attribute, ROUTEREC, a
trace-route reply message can be generated and delivered to either the reply-to
queue, TRR.REPLY.TO.Q, or to a system queue.
dspmqrte -ac -ar -ro discard -rq TRR.REPLY.TO.Q -q TARGET.Q

Providing a trace-route reply message is generated and is delivered to the
reply-to queue TRR.REPLY.TO.Q, the WebSphere MQ display route application
orders and displays the activity information that was accumulated in the
trace-route message.

For more examples of using the WebSphere MQ display route application and its
output, see the Monitoring WebSphere MQ book.

dspmqtrc

Format and display WebSphere MQ trace (Unix platforms only).

Purpose

The dspmqtrc command is supported on UNIX systems only. Use the dspmqtrc
command to display WebSphere MQ formatted trace output.

The runtime SSL trace files have the names AMQ.SSL.TRC and AMQ.SSL.TRC.1.
You cannot format any of the SSL trace files. The SSL trace files are binary files
and, if they are transferred to IBM support via FTP, they should be transferred in
binary transfer mode.

Syntax

�� dspmqtrc
-t FormatTemplate -h -s

�

�
-o OutputFilename

InputFileName ��

Required parameters

InputFileName
The name of the file containing the unformatted trace, for example:
/var/mqm/trace/AMQ12345.01.TRC

318 WebSphere MQ: System Administration Guide

|

|

|
|
|
|

If you provide one input file, dspmqtrc formats it either to stdout or to the
output file you name. If you provide more than one input file, any output file
you name is ignored, and formatted files are named AMQyyyyy.zz.FMT, based on
the PID of the trace file.

Optional parameters

-t FormatTemplate
The name of the template file containing details of how to display the trace. If
this parameter is not supplied, the default template file location is used:

For AIX systems, the default value is as follows:
/usr/mqm/lib/amqtrc2.fmt

For all UNIX systems other than AIX systems, the default value is as follows:
/opt/mqm/lib/amqtrc.fmt

-h Omit header information from the report.

-s Extract trace header and put to stdout.

-o output_filename
The name of the file into which to write formatted data.

Related commands

endmqtrc End trace
strmqtrc Start trace

dspmqtrn

Display in-doubt transactions.

Purpose

Use the dspmqtrn command to display details of in-doubt transactions. This
includes transactions coordinated by WebSphere MQ and by an external
transaction manager.

For each in-doubt transaction, a transaction number (a human-readable transaction
identifier), the transaction state, and the transaction ID are displayed. (Transaction
IDs can be up to 128 characters long, hence the need for a transaction number.)

Syntax

�� dspmqtrn
-e -i -m QMgrName

��

Optional parameters

-e Requests details of externally coordinated, in-doubt transactions. Such
transactions are those for which WebSphere MQ has been asked to prepare to
commit, but has not yet been informed of the transaction outcome.

-i Requests details of internally coordinated, in-doubt transactions. Such

Chapter 6. WebSphere MQ control commands 319

|
|

|

|

|

|

|

transactions are those for which each resource manager has been asked to
prepare to commit, but WebSphere MQ has yet to inform the resource
managers of the transaction outcome.

Information about the state of the transaction in each of its participating
resource managers is displayed. This information can help you assess the
affects of failure in a particular resource manager.

Note: If you specify neither -e nor -i, details of both internally and externally
coordinated in-doubt transactions are displayed.

-m QMgrName
The name of the queue manager for which to display transactions. If you omit
the name, the default queue manager’s transactions are displayed.

Return codes

0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
102 No transactions found

Related commands

rsvmqtrn Resolve transaction

dspmqver

Display WebSphere MQ version and build information.

Purpose

Use the dspmqver command to display WebSphere MQ version and build
information.

Syntax

�� dspmqver
-p Components -f Fields -b -v

��

Optional parameters

-p Components
Display information for the components specified by Component. Either a single
component, or multiple components can be specified. To specify multiple
components, sum the values of the required components, then specify
Component as the total of the summation. Available components and related
values follow:

1 WebSphere MQ server, or client.

2 WebSphere MQ classes for Java.

320 WebSphere MQ: System Administration Guide

|

4 WebSphere MQ classes for Java Message Service.

8 WebScale Distribution Hub

The default value is 1.

-f Fields
Display information for the fields specified by Field. Either a single field, or
multiple fields can be specified. To specify multiple fields, sum the values of
the required fields, then specify Field as the total of the summation. Available
fields and related values follow:

1 Name

2
Version, in the form V.R.M.F:
Where V=Version, R=Release, M=Modification,
and F=Fix pack

4 CMVC level

8 Build type

Information for each selected field is displayed on a separate line when the
dspmqver command is run.

The default value is 15. This displays information for all fields.

-b Omit header information from the report.

-v Display verbose output.

Return codes

0 Command completed normally.
10 Command completed with unexpected results.
20 An error occurred during processing.

Examples

The following command displays WebSphere MQ version and build information,
using the default settings for -p Components and -f Fields:
dspmqver

The following command displays version and build information for the WebSphere
MQ classes for Java:
dspmqver -p 2

The following command displays the Common Services for Java Platform Standard
Edition, IBM WebSphere MQ, Java Message Service Client, and WebSphere MQ
classes for Java Message Service:
dspmqver -p 4

The following command displays the build level of the WebScale Distribution Hub:
dspmqver -p 8 -f 4

endmqcsv

Stop the command server for a queue manager.

Chapter 6. WebSphere MQ control commands 321

|
|
|

|

|

|

Purpose

Use the endmqcsv command to stop the command server on the specified queue
manager.

If the queue manager attribute, SCMDSERV, is specified as QMGR then changing
the state of the command server using endmqcsv does not effect how the queue
manager acts upon the SCMDSERV attribute at the next restart.

Syntax

�� endmqcsv
-c

-i
QMgrName ��

Required parameters

QMgrName
The name of the queue manager for which to end the command server.

Optional parameters

-c Stops the command server in a controlled manner. The command server is
allowed to complete the processing of any command message that it has
already started. No new message is read from the command queue.

This is the default.

-i Stops the command server immediately. Actions associated with a command
message currently being processed might not complete.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples
1. The following command stops the command server on queue manager

saturn.queue.manager:
endmqcsv -c saturn.queue.manager

The command server can complete processing any command it has already
started before it stops. Any new commands received remain unprocessed in the
command queue until the command server is restarted.

2. The following command stops the command server on queue manager pluto
immediately:
endmqcsv -i pluto

Related commands

strmqcsv Start a command server
dspmqcsv Display the status of a command server

322 WebSphere MQ: System Administration Guide

endmqlsr

End all listener process for a queue manager.

Purpose

The endmqlsr command ends all listener processes for the specified queue
manager.

You do not need to stop the queue manager before issuing the endmqlsr
command. If any of the listeners are configured to have inbound channels running
within the runmqlsr listener process, rather than within a pool process, the request
to end that listener might fail if channels are still active. In this case a message is
written indicating how many listeners were successfully ended and how many
listeners are still running.

If the listener attribute, CONTROL, is specified as QMGR then changing the state
of the listener using endmqlsr does not effect how the queue manager acts upon
the CONTROL attribute at the next restart.

Syntax

�� endmqlsr
-w -m QMgrName

��

Optional parameters

-m QMgrName
The name of the queue manager. If you omit this, the command operates on
the default queue manager.

-w Wait before returning control.

Control is returned to you only after all listeners for the specified queue
manager have stopped.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

endmqdnm

Stop the .NET monitor for a queue (Windows only).

Purpose

The endmqdnm command applies to WebSphere MQ for Windows only.

Use the endmqdnm control command to stop a .NET monitor.

Chapter 6. WebSphere MQ control commands 323

|

|
|
|
|
|
|

|

Syntax

�� endmqdnm -q QueueName
-m QMgrName

��

Required parameters

-q QueueName
The name of the application queue that the .NET monitor is monitoring.

Optional parameters

-m QMgrName
The name of the queue manager that hosts the application queue.

If omitted, the default queue manager is used.

Return codes

0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
71 Unexpected error
72 Queue manager name error
133 Unknown object name error

endmqm

Stop a queue manager.

Purpose

Use the endmqm command to end (stop) a specified queue manager. This
command stops a queue manager in one of three modes:
v Controlled or quiesced shutdown
v Immediate shutdown
v Preemptive shutdown

The attributes of the queue manager and the objects associated with it are not
affected. You can restart the queue manager using the strmqm (Start queue
manager) command.

To delete a queue manager, stop it and then use the dltmqm (Delete queue
manager) command.

Issuing the endmqm command will effect any client application connected through
a server-connection channel. The effect varies depending on the parameter used,
but it is as though a STOP CHANNEL command was issued in one of the three
possible modes. See WebSphere MQ Clients, for information on the effects of STOP
CHANNEL modes on server-connection channels. The endmqm optional
parameter descriptions state which STOP CHANNEL mode they will be equivalent
to.

324 WebSphere MQ: System Administration Guide

|

|
|

|

|

|

Syntax

�� endmqm
-c

-w
-i
-p

-z
QMgrName ��

Required parameters

QMgrName
The name of the message queue manager to be stopped.

Optional parameters

-c Controlled (or quiesced) shutdown. This is the default.

The queue manager stops, but only after all applications have disconnected.
Any MQI calls currently being processed are completed.

Control is returned to you immediately and you are not notified of when the
queue manager has stopped.

The effect on any client applications connected through a server-connection
channel is equivalent to a STOP CHANNEL command issued in QUIESCE
mode.

-w Wait shutdown.

This type of shutdown is equivalent to a controlled shutdown except that
control is returned to you only after the queue manager has stopped. You
receive the message Waiting for queue manager qmName to end while
shutdown progresses.

The effect on any client applications connected through a server-connection
channel is equivalent to a STOP CHANNEL command issued in QUIESCE
mode.

-i Immediate shutdown. The queue manager stops after it has completed all the
MQI calls currently being processed. Any MQI requests issued after the
command has been issued fail. Any incomplete units of work are rolled back
when the queue manager is next started.

Control is returned after the queue manager has ended.

The effect on any client applications connected through a server-connection
channel is equivalent to a STOP CHANNEL command issued in FORCE mode.

-p Preemptive shutdown.

Use this type of shutdown only in exceptional circumstances. For example,
when a queue manager does not stop as a result of a normal endmqm
command.

The queue manager might stop without waiting for applications to disconnect
or for MQI calls to complete. This can give unpredictable results for
WebSphere MQ applications. The shutdown mode is set to immediate shutdown.
If the queue manager has not stopped after a few seconds, the shutdown mode
is escalated, and all remaining queue manager processes are stopped.

The effect on any client applications connected through a server-connection
channel is equivalent to a STOP CHANNEL command issued in TERMINATE
mode.

Chapter 6. WebSphere MQ control commands 325

-z Suppresses error messages on the command.

Return codes

0 Queue manager ended
3 Queue manager being created
16 Queue manager does not exist
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
119 Permission denied

Examples

The following examples show commands that stop the specified queue managers.
1. This command ends the queue manager named mercury.queue.manager in a

controlled way. All applications currently connected are allowed to disconnect.
endmqm mercury.queue.manager

2. This command ends the queue manager named saturn.queue.manager
immediately. All current MQI calls complete, but no new ones are allowed.
endmqm -i saturn.queue.manager

Related commands

crtmqm Create a queue manager
strmqm Start a queue manager
dltmqm Delete a queue manager

endmqtrc

End trace for some or all of the entities that are being traced.

Purpose

Use the endmqtrc command to end tracing for the specified entity or all
entities.The endmqtrc command ends only the trace that is described by its
parameters.

Syntax

The syntax of this command is as follows:

�� endmqtrc
-m QMgrName -i PidTids -p Apps -e

�

�
-a

��

326 WebSphere MQ: System Administration Guide

||

|

|
|

||||

Optional parameters

-m QMgrName
The name of the queue manager for which to end tracing.

A maximum of one -m flag and associated queue manager name can be
supplied on the command.

The following wildcards are allowed: asterisk (*), replacing zero or more
characters and question mark (?), replacing any single character.

You can specify the -m flag and a queue manager name on the same command
as the -i flag, and the -p flag.

Note: In the following sequence of commands, the endmqtrc -m * command
has no effect:
strmqtrc -m qm1
endmqtrc -m *

The command endmqtrc -m * ends only a trace that is started with strmqtrc
-m *; start and end trace parameters must match exactly. To end all tracing
safely, use endmqtrc -a.

-i PidTids
Process identifier (PID) and thread identifier (TID) for which to end tracing.
You cannot use the -i flag with the -e flag. If you try to use the -i flag with the
-e flag, then an error message is issued. This parameter should be used only
under the guidance of IBM Service personnel.

-p Apps
The named processes for which to end tracing. Apps is a comma-separated list.
You must specify each name in the list exactly as the program name would be
displayed in the ″Program Name″ FDC header. Asterisk (*) or question mark
(?) wildcards are allowed. You cannot use the -p flag with the -e flag. If you try
to use the -p flag with the -e flag, then an error message is issued.

-e Ends early tracing of all processes.

Using endmqtrc with no parameters has the same effect as endmqtrc -e. You
cannot specify the -e flag with the -m flag, the -i flag or the -p flag.

-a Ends all tracing.

This flag must be specified alone.

Return codes

AMQ5611 This message is issued if you supply invalid arguments to the command.

Examples

This command ends tracing of data for a queue manager called QM1.
endmqtrc -m QM1

The following examples are a sequence that shows how the endmqtrc command
ends only the trace that is described by its parameters.
1. The following command enables tracing for queue manager QM1 and process

amqxxx.exe:
strmqtrc -m QM1 -p amqxxx.exe

2. The following command enables tracing for queue manager QM2:

Chapter 6. WebSphere MQ control commands 327

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|

|

strmqtrc -m QM2

3. The following command ends tracing for queue manager QM2 only. Tracing of
queue manager QM1 and process amqxxx.exe continues:
endmqtrc -m QM2

Related commands

dspmqtrc Display formatted trace output
strmqtrc Start trace

mqftapp

Start the graphical interface to File Transfer (Windows and Linux x86 platforms
only).

Purpose

The mqftapp command is available with the File Transfer Application on
WebSphere MQ for Windows, and WebSphere MQ for Linux (x86 platform)
servers only.

Use the mqftapp command to run the File Transfer Application graphical user
interface (GUI).

Alternatively, on WebSphere MQ for Windows you can start the File Transfer
Application by selecting it through the start menu.

When run for the first time, the graphical user interface must be configured. For
instructions of how to do this, see “Configuring the GUI” on page 548.

Syntax

The syntax of this command follows:

�� mqftapp ��

Related commands

mqftrcv Receive file on server

mqftrcvc Receive file on client

mqftsnd Send file from server

mqftsndc Send file from client

mqftrcv

Process files received on a server using the WebSphere MQ file transfer application
(Windows and Linux x86 platforms only).

328 WebSphere MQ: System Administration Guide

|

|
|

|

|

|
|

|
|

Purpose

The mqftrcv command is available with the File Transfer Application on
WebSphere MQ for Windows, and WebSphere MQ for Linux (x86 platform)
servers only.

Use the mqftrcv command to do one of the following:
v Receive a file.
v Extract a file.
v Delete a file.
v View sent files.

Syntax

�� mqftrcv -q QueueName
-m QMgrName -c CorrelId

�

�
-u MsgId -s UserData -v

-a

-l
-i
-o
-d
-g

-y
-e

-y

�

�
-r FileName -f FileName

��

Required parameters

-q QueueName
The local name of the destination queue.

Optional parameters

-m QMgrName
The name of the queue manager that hosts the destination queue. A queue
manager that does not have the File Transfer Application installed can be
specified. If you omit this parameter, the default queue manager is used.

-c CorrelId
Select all files matching CorrelId. Selection can be combined with -s UserData,
and -f FileName.

-u MsgID
Select the message that has a message ID that matches MsgID. Used to select
other messages.

-s UserData
Select files by locating any occurrence of the character string UserData, in part
or all of the file’s UserData. The comparison is case sensitive, and wildcard
characters cannot be used.

Chapter 6. WebSphere MQ control commands 329

Selection can be combined with -c CorrelId, and -f FileName.

-v Return the CorrelId, and MsgId of the file.

-a List all files and messages, in the following order:
1. Complete files, ordered by queue name
2. Incomplete files, ordered by queue name
3. Other messages, ordered by queue name

This is the default value. For more information on file status see “File status”
on page 550.

-l List all complete files, ordered by queue name.

-i List all incomplete files, ordered by queue name.

-o List all other messages, ordered by queue name.

-d Delete the specified file, or the group of messages. If more than one file
matches the selection criteria, no files are deleted and a return code is
returned.

-g Receive a complete file. Message associated with the file are removed. If a file
already exists of the same name, do one of the following:
v Specify the -y parameter, so that the existing file is overwritten.
v Specify the -r FileName parameter, so that the file is renamed.

-e Extract a complete, or incomplete file. Messages associated with the file are not
removed. If a file already exists of the same name, do one of the following:
v Specify the -y parameter, so that the existing file is overwritten.
v Specify the -r FileName parameter, so that the file is renamed.

-y Replace an existing file of the same name. Used with optional parameters -g,
and -e.

-r FileName
Assign new file name and/or file location.

Used to rename, or to relocate a file. The file is assigned the name specified in
FileName. A fully qualified file name can be specified to relocate the file. If the
file name, or path, contains embedded spaces, it must be specified in double
quotes. One file can be specified only, and you cannot use wildcard characters.

-f FileName
Select all files matching FileName. The fully qualified file name can be
specified. If the file name contains embedded spaces, it must be specified in
double quotes. You cannot use wildcard characters.

Selection can be combined with -c CorrelId, and -s UserData.

Return codes

0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
69 Storage not available
71 Unexpected error
163 Queue name required
164 Cannot open queue
165 Cannot open file
166 Cannot put to queue

330 WebSphere MQ: System Administration Guide

167 No file name specified (Send)
168 Message length is too small to send data
169 Sending file has changed
170 Cannot get from queue
171 Cannot write to file
172 CorrelId is invalid
173 MsgId is invalid
174 No messages to receive
175 File for delete is not unique

Examples

This command lists all files and messages on the queue, MY.QUEUE, located on the
default queue manager:
mqftrcv -q MY.QUEUE -a

This command gets the first complete file on the queue, MY.QUEUE, located on
queue manager QM1:
mqftrcv -q MY.QUEUE -m QM1 -g

This command gets the complete file, named My document.txt, on the queue,
MY.QUEUE, located on the default queue manager:
mqftrcv -q MY.QUEUE -g -f "My document.txt"

This command gets the complete file, named My document.txt, also marked URGENT,
on the queue, MY.QUEUE, located on queue manager QM1 :
mqftrcv -q MY.QUEUE -m QM1 -g -f "My document.txt" -s "URGENT"

Related commands

mqftapp Run File Transfer Application
mqftrcvc Receive file on client
mqftsnd Send file from server
mqftsndc Send file from client

mqftrcvc

Process files received on a client (Windows and Linux x86 platforms only).

Purpose

The mqftrcvc command is available with the File Transfer Application on
WebSphere MQ for Windows, and WebSphere MQ for Linux (x86 platform)
clients only.

Use the mqftrcvc command to do one of the following:
v Receive a file from a connected server.
v Extract a file from a connected server.
v Delete a file from a connected server.
v View sent files on a connected server.

Chapter 6. WebSphere MQ control commands 331

|

Syntax

�� mqftrcvc -q QueueName
-m QMgrName -c CorrelId

�

�
-u MsgId -s UserData -v

-a

-l
-i
-o
-d
-g

-y
-e

-y

�

�
-r FileName -f FileName

��

Required parameters

-q QueueName
The local name of the destination queue.

Optional parameters

-m QMgrName
The name of the queue manager that hosts the destination queue. A queue
manager that does not have the File Transfer Application installed can be
specified. If you omit this parameter, the default queue manager is used.

-c CorrelId
Select all files matching CorrelId. Selection can be combined with -s UserData,
and -f FileName.

-u MsgID
Select the message that has a message ID that matches MsgID. Used to select
other messages.

-s UserData
Select files by locating any occurrence of the character string UserData, in part
or all of the file’s UserData. The comparison is case sensitive, and wildcard
characters cannot be used.

Selection can be combined with -c CorrelId, and -f FileName.

-v Return the CorrelId, and MsgId of the file.

-a List all files and messages, in the following order:
1. Complete files, ordered by queue name
2. Incomplete files, ordered by queue name
3. Other messages, ordered by queue name

This is the default value. For more information on file status see “File status”
on page 550.

-l List all complete files, ordered by queue name.

-i List all incomplete files, ordered by queue name.

332 WebSphere MQ: System Administration Guide

-o List all other messages, ordered by queue name.

-d Delete the specified file, or the group of messages. If more than one file
matches the selection criteria, no files are deleted and a return code is
returned.

-g Receive a complete file. Message associated with the file are removed. If a file
already exists of the same name, do one of the following:
v Specify the -y parameter, so that the existing file is overwritten.
v Specify the -r FileName parameter, so that the file is renamed.

-e Extract a complete, or incomplete file. Messages associated with the file are not
removed. If a file already exists of the same name, do one of the following:
v Specify the -y parameter, so that the existing file is overwritten.
v Specify the -r FileName parameter, so that the file is renamed.

-y Replace an existing file of the same name. Used with optional parameters -g,
and -e.

-r FileName
Assign new file name and/or file location.

Used to rename, or to relocate a file. The file is assigned the name specified in
FileName. A fully qualified file name can be specified to relocate the file. If the
file name, or path, contains embedded spaces, it must be specified in double
quotes. One file can be specified only, and you cannot use wildcard characters.

-f FileName
Select all files matching FileName. The fully qualified file name can be
specified. If the file name contains embedded spaces, it must be specified in
double quotes. You cannot use wildcard characters.

Selection can be combined with -c CorrelId, and -s UserData.

Return codes

0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
69 Storage not available
71 Unexpected error
163 Queue name required
164 Cannot open queue
165 Cannot open file
166 Cannot put to queue
167 No file name specified (Send)
168 Message length is too small to send data
169 Sending file has changed
170 Cannot get from queue
171 Cannot write to file
172 CorrelId is invalid
173 MsgId is invalid
174 No messages to receive
175 File for delete is not unique

Chapter 6. WebSphere MQ control commands 333

Examples

This command lists all files and messages on the queue, MY.QUEUE, located on the
default queue manager:
mqftrcvc -q MY.QUEUE -a

This command gets the first complete file on the queue, MY.QUEUE, located on
queue manager QM1:
mqftrcvc -q MY.QUEUE -m QM1 -g

This command gets the complete file, named My document.txt, on the queue,
MY.QUEUE, located on the default queue manager:
mqftrcvc -q MY.QUEUE -g -f "My document.txt"

This command gets the complete file, named My document.txt, also marked URGENT,
on the queue, MY.QUEUE, located on queue manager QM1 :
mqftrcvc -q MY.QUEUE -m QM1 -g -f "My document.txt" -s "URGENT"

Related commands

mqftapp Run File Transfer Application
mqftrcv Receive file on server
mqftsnd Send file from server
mqftsndc Send file from client

mqftsnd

Send a file from a server using the WebSphere MQ file transfer application
(Windows and Linux x86 platforms only).

Purpose

The mqftsnd command is available with the File Transfer Application on
WebSphere MQ for Windows, and WebSphere MQ for Linux (x86 platform)
servers only.

Use the mqftsnd command to send a file from a WebSphere MQ server using the
File Transfer Application.

Syntax

�� mqftsnd -q QueueName
-m QMgrName -t TargetQMgrName

�

�
-v -l MsgLength

-p yes

-p no
-p queue

-s UserData
�

334 WebSphere MQ: System Administration Guide

|
|

� -f FileName ��

Required parameters

-q QueueName
The local name of the destination queue.

-f FileName
The name of the file to be transmitted. The fully qualified file name can be
specified. If the file name contains embedded spaces, it must be specified in
double quotes. One file can be specified only, and you cannot use wildcard
characters.

Note: The file is not deleted from it’s original location during a send.

Optional parameters

-m QMgrName
The name of the queue manager that has access to the file at it’s origin. If you
omit this parameter, the default queue manager is used.

-t TargetQMgrName
The name of the queue manager that hosts the destination queue. If you omit
this parameter, the queue manager specified by QMgrName is used.

-v Return the CorrelId of the file.

-l MessageSize
The maximum size of a segmented message in bytes.

If a file is too large to be sent as a single message, the file is segmented into a
number smaller messages, known as segments, and all these segments are
transmitted instead. When all the segments reach their destination, the target
queue manager reassembles them to form the original file.

Specify a value between 250 and the queue manager’s maximum message
length. To determine the maximum message length, use the
MQIA_MAX_MSG_LENGTH selector with the MQINQ call.

The default value is 100000.

-p yes
Messages are persistent. This is the default value.

-p no
Messages are not persistent.

-p queue
Messages persistence is defined by the queue.

-s UserData
An character string that contains user information relevant to the file being
sent. The content of this data is of no significance to the target queue manager.

Return codes

0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
69 Storage not available

Chapter 6. WebSphere MQ control commands 335

71 Unexpected error
163 Queue name required
164 Cannot open queue
165 Cannot open file
166 Cannot put to queue
167 No file name specified (Send)
168 Message length is too small to send data
169 Sending file has changed
170 Cannot get from queue
171 Cannot write to file
172 CorrelId is invalid
173 MsgId is invalid
174 No messages to receive
175 File for delete is not unique

Examples

This command sends a file from the default queue manager, to the queue DEST.Q,
located on queue manager QM2:
mqftsnd -q DEST.Q -t QM2 -f "My document.txt"

This command sends a file as non-persistent messages from queue manager QM1,
to the queue DEST.Q, located on the default queue manager, setting the maximum
segment size to 50000 bytes:
mqftsnd -q DEST.Q -m QM1 -l 50000 -p no -f "C:\My Downloads\My document.idd"

Related commands

mqftapp Run File Transfer Application
mqftrcv Receive file on server
mqftrcvc Receive file on client
mqftsndc Send file from client

mqftsndc

Send a file from a client using the WebSphere MQ file transfer application
(Windows and Linux x86 platforms only).

Purpose

The mqftsndc command is available with the File Transfer Application on
WebSphere MQ for Windows, and WebSphere MQ for Linux (x86 platform)
clients only.

Use the mqftsndc command to send a file from a WebSphere MQ client using the
File Transfer Application.

Syntax

�� mqftsndc -q QueueName
-m QMgrName -t TargetQMgrName

�

336 WebSphere MQ: System Administration Guide

|
|

�
-v -l MsgLength

-p yes

-p no
-p queue

-s UserData
�

� -f FileName ��

Required parameters

-q QueueName
The local name of the destination queue.

-f FileName
The name of the file to be transmitted. The fully qualified file name can be
specified. If the file name contains embedded spaces, it must be specified in
double quotes. One file can be specified only, and you cannot use wildcard
characters.

Note: The file is not deleted from it’s original location during a send.

Optional parameters

-m QMgrName
The name of the queue manager that has access to the file at it’s origin. If you
omit this parameter, the default queue manager is used.

-t TargetQMgrName
The name of the queue manager that hosts the destination queue. If you omit
this parameter, the queue manager specified by QMgrName is used.

-v Return the CorrelId of the file.

-l MessageSize
The maximum size of a segmented message in bytes.

If a file is too large to be sent as a single message, the file is segmented into a
number smaller messages, known as segments, and all these segments are
transmitted instead. When all the segments reach their destination, the target
queue manager reassembles them to form the original file.

Specify a value between 250 and the queue manager’s maximum message
length. To determine the maximum message length, use the
MQIA_MAX_MSG_LENGTH selector with the MQINQ call.

The default value is 100000.

-p yes
Messages are persistent. This is the default value.

-p no
Messages are not persistent.

-p queue
Messages persistence is defined by the queue.

-s UserData
An character string that contains user information relevant to the file being
sent. The content of this data is of no significance to the target queue manager.

Chapter 6. WebSphere MQ control commands 337

Return codes

0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
69 Storage not available
71 Unexpected error
163 Queue name required
164 Cannot open queue
165 Cannot open file
166 Cannot put to queue
167 No file name specified (Send)
168 Message length is too small to send data
169 Sending file has changed
170 Cannot get from queue
171 Cannot write to file
172 CorrelId is invalid
173 MsgId is invalid
174 No messages to receive
175 File for delete is not unique

Examples

This command sends a file from the default queue manager, to the queue DEST.Q,
located on queue manager QM2:
mqftsndc -q DEST.Q -t QM2 -f "My document.txt"

This command sends a non-persistent file from queue manager QM1, to the queue
DEST.Q, located on the default queue manager, setting the maximum segment size
to 50000 bytes:
mqftsndc -q DEST.Q -m QM1 -l 50000 -p no -f "C:\My Downloads\My document.idd"

Related commands

mqftapp Run File Transfer Application
mqftrcv Receive file on server
mqftrcvc Receive file on client
mqftsnd Send file from server

rcdmqimg

Write the image of an object or group of objects to the log for media recovery.

Purpose

Use the rcdmqimg command to write an image of an object, or group of objects, to
the log for use in media recovery. This command can only be used when using
linear logging. Use the associated command rcrmqobj to recreate the object from
the image.

You use this command with an active queue manager. Further activity on the
queue manager is logged so that, although the image becomes out of date, the log
records reflect any changes to the object.

338 WebSphere MQ: System Administration Guide

|

Syntax

�� rcdmqimg
-m QMgrName -z -l

-t ObjectType �

� GenericObjName ��

Required parameters

GenericObjName
The name of the object to record. This parameter can have a trailing asterisk to
record that any objects with names matching the portion of the name before
the asterisk.

This parameter is required unless you are recording a queue manager object or
the channel synchronization file. Any object name you specify for the channel
synchronization file is ignored.

-t ObjectType
The types of object for which to record images. Valid object types are:

* or all All the object types

authinfo Authentication information object, for use with Secure
Sockets Layer (SSL) channel security

channel or chl Channels

clntconn or clcn Client connection channels

catalog or ctlg An object catalog

listener or lstr Listeners

namelist or nl Namelists

process or prcs Processes

queue or q All types of queue

qalias or qa Alias queues

qlocal or ql Local queues

qmodel or qm Model queues

qremote or qr Remote queues

qmgr Queue manager object

service or srvc Service

syncfile Channel synchronization file.

topic or top Topics

Note: When using WebSphere MQ for UNIX systems, you need to prevent the
shell from interpreting the meaning of special characters, for example, *. How you
do this depends on the shell you are using, but might involve the use of single
quotation marks, double quotation marks, or a backslash.

Optional parameters

-m QMgrName
The name of the queue manager for which to record images. If you omit this,
the command operates on the default queue manager.

-z Suppresses error messages.

Chapter 6. WebSphere MQ control commands 339

|

-l Writes messages containing the names of the oldest log files needed to restart
the queue manager and to perform media recovery. The messages are written
to the error log and the standard error destination. (If you specify both the -z
and -l parameters, the messages are sent to the error log, but not to the
standard error destination.)

When issuing a sequence of rcdmqimg commands, include the -l parameter
only on the last command in the sequence, so that the log file information is
gathered only once.

Return codes

0 Successful operation
26 Queue manager running as a standby instance.
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
68 Media recovery not supported
69 Storage not available
71 Unexpected error
72 Queue manager name error
119 User not authorized
128 No objects processed
131 Resource problem
132 Object damaged
135 Temporary object cannot be recorded

Examples

The following command records an image of the queue manager object
saturn.queue.manager in the log.
rcdmqimg -t qmgr -m saturn.queue.manager

Related commands

rcrmqobj Recreate a queue manager object

rcrmqobj

Recreate an object, or group of objects, from their images contained in the log.

Purpose

Use this command to recreate an object, or group of objects, from their images
contained in the log. This command can only be used when using linear logging.
Use the associated command, rcdmqimg, to record the object images to the log.

Use this command on a running queue manager. All activity on the queue
manager after the image was recorded is logged. To recreate an object, replay the
log to recreate events that occurred after the object image was captured.

Syntax

340 WebSphere MQ: System Administration Guide

||

|

�� rcrmqobj
-m QMgrName -z

-t ObjectType GenericObjName ��

Required parameters

GenericObjName
The name of the object to re-create. This parameter can have a trailing asterisk
to re-create any objects with names matching the portion of the name before
the asterisk.

This parameter is required unless the object type is the channel
synchronization file; any object name supplied for this object type is ignored.

-t ObjectType
The types of object to re-create. Valid object types are:

* or all All object types

authinfo Authentication information object, for use with Secure
Sockets Layer (SSL) channel security

channel or chl Channels

clntconn or clcn Client connection channels

clchltab Client channel table

listener or lstr Listener

namelist or nl Namelists

process or prcs Processes

queue or q All types of queue

qalias or qa Alias queues

qlocal or ql Local queues

qmodel or qm Model queues

qremote or qr Remote queues

service or srvc Service

syncfile Channel synchronization file.

You can use this option when circular logs are configured
but syncfile will fail if the channel scratchpad files, which
are used to rebuild syncfile, are damaged or missing.

topic or top Topics

Note: When using WebSphere MQ for UNIX systems, you need to prevent the
shell from interpreting the meaning of special characters, for example, *. How you
do this depends on the shell you are using, but might involve the use of single
quotation marks, double quotation marks, or a backslash.

Optional parameters

-m QMgrName
The name of the queue manager for which to recreate objects. If omitted, the
command operates on the default queue manager.

-z Suppresses error messages.

Chapter 6. WebSphere MQ control commands 341

|

|
|
|

||

Return codes

0 Successful operation
26 Queue manager running as a standby instance.
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
66 Media image not available
68 Media recovery not supported
69 Storage not available
71 Unexpected error
72 Queue manager name error
119 User not authorized
128 No objects processed
135 Temporary object cannot be recovered
136 Object in use

Examples
1. The following command recreates all local queues for the default queue

manager:
rcrmqobj -t ql *

2. The following command recreates all remote queues associated with queue
manager store:
rcrmqobj -m store -t qr *

Related commands

rcdmqimg Record an object in the log

rsvmqtrn

Resolve in-doubt transactions

Purpose

Use the rsvmqtrn command to commit or back out internally or externally
coordinated in-doubt transactions.

Note: Use this command only when you are certain that transactions cannot be
resolved by the normal protocols. Issuing this command might result in the loss of
transactional integrity between resource managers for a distributed transaction.

Syntax

�� rsvmqtrn -a
-b Transaction
-c
-r RMID

-m QMgrName ��

Required parameters

-m QMgrName
The name of the queue manager.

342 WebSphere MQ: System Administration Guide

||

|

|
|

|
|
|

|

Optional parameters

-a The queue manager resolves all internally-coordinated, in-doubt transactions
(that is, all global units of work).

-b Backs out the named transaction. This flag is valid for externally-coordinated
transactions (that is, for external units of work) only.

-c Commits the named transaction. This flag is valid for externally-coordinated
transactions (that is, external units of work) only.

-r RMID
The resource manager whose participation in the in-doubt transaction can be
ignored. This flag is valid for internally-coordinated transactions only, and for
resource managers that have had their resource manager configuration entries
removed from the queue manager configuration information.

Note: The queue manager does not call the resource manager. Instead, it
marks the resource manager’s participation in the transaction as being
complete.

Transaction
The transaction number of the transaction being committed or backed out. Use
the dspmqtrn command to find the relevant transaction number. This
parameter is required with the -b, -c, and -r RMID parameters.

Return codes

0 Successful operation
32 Transactions could not be resolved
34 Resource manager not recognized
35 Resource manager not permanently unavailable
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
85 Transactions not known

Related commands

dspmqtrn Display list of prepared transactions

runmqchi

Run a channel initiator process to automate starting channels.

Purpose

Use the runmqchi command to run a channel initiator process. For more
information about the use of this command, refer to WebSphere MQ
Intercommunication.

The channel initiator is started by default as part of the queue manager.

Chapter 6. WebSphere MQ control commands 343

|

Syntax

�� runmqchi
-q InitiationQName -m QMgrName

��

Optional parameters

-q InitiationQName
The name of the initiation queue to be processed by this channel initiator. If
you omit it, SYSTEM.CHANNEL.INITQ is used.

-m QMgrName
The name of the queue manager on which the initiation queue exists. If you
omit the name, the default queue manager is used.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If errors occur that result in return codes of either 10 or 20, review the queue
manager error log that the channel is associated with for the error messages, and
the system error log for records of problems that occur before the channel is
associated with the queue manager. For more information about error logs, see
“Error logs” on page 251.

runmqchl

Start a sender or requester channel

Purpose

Use the runmqchl command to run either a sender (SDR) or a requester (RQSTR)
channel.

The channel runs synchronously. To stop the channel, issue the MQSC command
STOP CHANNEL.

Syntax

�� runmqchl -c ChannelName
-m QMgrName

��

Required parameters

-c ChannelName
The name of the channel to run.

Optional parameters

-m QMgrName
The name of the queue manager with which this channel is associated. If you
omit the name, the default queue manager is used.

344 WebSphere MQ: System Administration Guide

|

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If return codes 10 or 20 are generated, review the error log of the associated queue
manager for the error messages, and the system error log for records of problems
that occur before the channel is associated with the queue manager.

runmqdlq

Start the dead-letter queue handler to monitor and process messages on the
dead-letter queue.

Purpose

Use the runmqdlq command to start the dead-letter queue (DLQ) handler, which
monitors and handles messages on a dead-letter queue.

Syntax

�� runmqdlq
QName

QMgrName

��

Description

Use the dead-letter queue handler to perform various actions on selected messages
by specifying a set of rules that can both select a message and define the action to
be performed on that message.

The runmqdlq command takes its input from stdin. When the command is
processed, the results and a summary are put into a report that is sent to stdout.

By taking stdin from the keyboard, you can enter runmqdlq rules interactively.

By redirecting the input from a file, you can apply a rules table to the specified
queue. The rules table must contain at least one rule.

If you use the DLQ handler without redirecting stdin from a file (the rules table),
the DLQ handler reads its input from the keyboard. In WebSphere MQ for AIX,
Solaris, HP-UX, and Linux, the DLQ handler does not start to process the named
queue until it receives an end_of_file (Ctrl+D) character. In WebSphere MQ for
Windows, it does not start to process the named queue until you press the
following sequence of keys: Ctrl+Z, Enter, Ctrl+Z, Enter.

For more information about rules tables and how to construct them, see “The DLQ
handler rules table” on page 191.

Optional parameters

The MQSC command rules for comment lines and for joining lines also apply to
the DLQ handler input parameters.

Chapter 6. WebSphere MQ control commands 345

|
|

QName
The name of the queue to be processed.

If you omit the name, the dead-letter queue defined for the local queue
manager is used. If you enter one or more blanks (’ ’), the dead-letter queue of
the local queue manager is explicitly assigned.

QMgrName
The name of the queue manager that owns the queue to be processed.

If you omit the name, the default queue manager for the installation is used. If
you enter one or more blanks (’ ’), the default queue manager for this
installation is explicitly assigned.

runmqdnm

Start processing messages on a queue using the .NET monitor (Windows only).

Purpose

The runmqdnm command applies to WebSphere MQ for Windows only.

runmqdnm can be run from the command line, or as a triggered application.

Use the runmqdnm control command to start processing messages on an
application queue with a .NET monitor.

Syntax

�� runmqdnm -q QueueName -a AssemblyName
-m QMgrName

�

�
-c ClassName -u UserParameter -s Syncpoint

�

�
-d Conversion -n MaxThreads -t Timeout

�

�
-b BackoutThreshold -r QueueName -p ContextOption

��

Required parameters

-q QueueName
The name of the application queue to monitor.

-a AssemblyName
The name of the .NET assembly.

Optional parameters

-m QMgrName
The name of the queue manager that hosts the application queue.

If omitted, the default queue manager is used.

-c ClassName
The name of the .NET class that implements the IMQObjectTrigger interface.
This class must reside in the specified assembly.

346 WebSphere MQ: System Administration Guide

|

If omitted, the specified assembly is searched to identify classes that implement
the IMQObjectTrigger interface:
v If one class is found, then ClassName takes the name of this class.
v If no classes or multiple classes are found, then the .NET monitor is not

started and a message is written to the console.

-u UserData
User defined data. This data is passed to the Execute method when the .NET
monitor calls it. User data must be comprised of ASCII characters only, with no
double-quotes, NULLs, or carriage returns.

If omitted, null is passed to the Execute method.

-s Syncpoint
Specifies whether syncpoint control is required when messages are retrieved
from the application queue. Possible values are:

YES Messages are retrieved under syncpoint control
(MQGMO_SYNCPOINT).

NO Messages are not retrieved under syncpoint control
(MQGMO_NO_SYNCPOINT).

PERSISTENT Persistent messages are retrieved under syncpoint control
(MQGMO_SYNCPOINT_IF_PERSISTENT).

If omitted, the value of Syncpoint is dependent on your transactional model:
v If distributed transaction coordination (DTC) is being used, then Syncpoint is

specified as YES.
v If distributed transaction coordination (DTC) is not being used, then

Syncpoint is specified as PERSISTENT.

-d Conversion
Specifies whether data conversion is required when messages are retrieved
from the application queue. Possible values are:

YES Data conversion is required (MQGMO_CONVERT).

NO Data conversion is not required (no get message option
specified).

If omitted, Conversion is specified as NO.

-n MaxThreads
The maximum number of active worker threads.

If omitted, MaxThreads is specified as 20.

-t Timeout
The time, in seconds, that the .NET monitor will wait for further messages to
arrive on the application queue. If you specify -1, the .NET monitor will wait
indefinitely.

If omitted when run from the command line, the .NET monitor will wait
indefinitely.

If omitted when run as a triggered application, the .NET monitor will wait for
10 seconds.

-b BackoutThreshold
Specifies the backout threshold for messages retrieved from the application
queue. Possible values are:

Chapter 6. WebSphere MQ control commands 347

-1 The backout threshold is taken from the application queue
attribute, BOTHRESH.

0 The backout threshold is not set.

1 or more Explicitly sets the backout threshold.

If omitted, BackoutThreshold is specified as -1.

-r QueueName
The queue to which messages, whose backout count exceeds the backout
threshold, are put.

If omitted, the value of QueueName is dependent on the value of the
BOQNAME attribute from the application queue:
v If BOQNAME is non-blank, then QueueName takes the value of BOQNAME.
v If BOQNAME is blank, then QueueName is specified as the queue manager

dead letter queue. If a dead letter queue has not been assigned to the queue
manager, then backout processing is not available.

-p ContextOption
Specifies whether context information from a message that is being backed out
is passed to the backed out message. Possible values are:

NONE No context information is passed.

IDENTITY Identity context information is passed only.

ALL All context information is passed.

If omitted, ContextOption is specified as ALL.

Return codes

0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
71 Unexpected error
72 Queue manager name error
133 Unknown object name error

runmqlsr

Run a listener process to listen for remote requests on various communication
protocols.

Purpose

Use the runmqlsr command to start a listener process.

This command is run synchronously and will wait until the listener process has
finished before returning to the caller.

Syntax

�� runmqlsr -t �

348 WebSphere MQ: System Administration Guide

|
|

�

�

�

tcp
-p Port -i IPAddr -b Backlog

lu62 -n TpName

netbios
-a Adapter
-l LocalName
-e Names
-s Sessions
-o Commands

spx
-x Socket
-b Backlog

�

�
-m QMgrName

��

Required parameters

-t The transmission protocol to be used:

tcp Transmission Control Protocol / Internet Protocol (TCP/IP)

lu62 SNA LU 6.2 (Windows only)

netbios NetBIOS (Windows only)

spx SPX (Windows only)

Optional parameters

-p Port
The port number for TCP/IP. This flag is valid for TCP only. If you omit the
port number, it is taken from the queue manager configuration information, or
from defaults in the program. The default value is 1414.

-i IPAddr
The IP address for the listener, specified in one of the following formats:
v IPv4 dotted decimal
v IPv6 hexadecimal notation
v Alphanumeric format

This flag is valid for TCP/IP only.

On systems that are both IPv4 and IPv6 capable you can split the traffic by
running two separate listeners, one listening on all IPv4 addresses and one
listening on all IPv6 addresses. If you omit this parameter, the listener listens
on all configured IPv4 and IPv6 addresses.

-n TpName
The LU 6.2 transaction program name. This flag is valid only for the LU 6.2
transmission protocol. If you omit the name, it is taken from the queue
manager configuration information.

-a Adapter
The adapter number on which NetBIOS listens. By default the listener uses
adapter 0.

Chapter 6. WebSphere MQ control commands 349

-l LocalName
The NetBIOS local name that the listener uses. The default is specified in the
queue manager configuration information.

-e Names
The number of names that the listener can use. The default value is specified
in the queue manager configuration information.

-s Sessions
The number of sessions that the listener can use. The default value is specified
in the queue manager configuration information.

-o Commands
The number of commands that the listener can use. The default value is
specified in the queue manager configuration information.

-x Socket
The SPX socket on which SPX listens. The default value is hexadecimal 5E86.

-m QMgrName
The name of the queue manager. By default the command operates on the
default queue manager.

-b Backlog
The number of concurrent connection requests that the listener supports. See
“LU62, NETBIOS, TCP, and SPX” on page 114 for a list of default values and
further information.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing: the AMQMSVRN process did not start.

Examples

The following command runs a listener on the default queue manager using the
NetBIOS protocol. The listener can use a maximum of five names, five commands,
and five sessions. These resources must be within the limits set in the queue
manager configuration information.
runmqlsr -t netbios -e 5 -s 5 -o 5

runmqsc

Run WebSphere MQ commands on a queue manager.

Purpose

Use the runmqsc command to issue MQSC commands to a queue manager. MQSC
commands enable you to perform administration tasks, for example defining,
altering, or deleting a local queue object. MQSC commands and their syntax are
described in the WebSphere MQ Script (MQSC) Command Reference.

350 WebSphere MQ: System Administration Guide

|

|

Syntax

�� runmqsc
-e -v -w WaitTime

-x
QMgrName

��

Description

You can invoke the runmqsc command in three ways:

Verify command
Verify MQSC commands but do not run them. An output report is
generated indicating the success or failure of each command. This mode is
available on a local queue manager only.

Run command directly
Send MQSC commands directly to a local queue manager.

Run command indirectly
Run MQSC commands on a remote queue manager. These commands are
put on the command queue on a remote queue manager and run in the
order in which they were queued. Reports from the commands are
returned to the local queue manager.

Indirect mode operation is performed through the default queue manager.

The runmqsc command takes its input from stdin. When the commands are
processed, the results and a summary are put into a report that is sent to stdout.

By taking stdin from the keyboard, you can enter MQSC commands interactively.

By redirecting the input from a file, you can run a sequence of frequently-used
commands contained in the file. You can also redirect the output report to a file.

Optional parameters

-e Prevents source text for the MQSC commands from being copied into a report.
This is useful when you enter commands interactively.

-v Verifies the specified commands without performing the actions. This mode is
only available locally. The -w and -x flags are ignored if they are specified at
the same time.

-w WaitTime
Run the MQSC commands on another queue manager. You must have the
required channel and transmission queues set up for this. See “Preparing
channels and transmission queues for remote administration” on page 60 for
more information.

WaitTime
The time, in seconds, that runmqsc waits for replies. Any replies
received after this are discarded, but the MQSC commands still run.
Specify a time between 1 and 999 999 seconds.

Each command is sent as an Escape PCF to the command queue
(SYSTEM.ADMIN.COMMAND.QUEUE) of the target queue manager.

The replies are received on queue SYSTEM.MQSC.REPLY.QUEUE and
the outcome is added to the report. This can be defined as either a
local queue or a model queue.

Chapter 6. WebSphere MQ control commands 351

|

Indirect mode operation is performed through the default queue
manager.

This flag is ignored if the -v flag is specified.

-x The target queue manager is running under z/OS. This flag applies only in
indirect mode. The -w flag must also be specified. In indirect mode, the MQSC
commands are written in a form suitable for the WebSphere MQ for z/OS
command queue.

QMgrName
The name of the target queue manager on which to run the MQSC commands,
by default, the default queue manager.

Return codes

00 MQSC command file processed successfully
10 MQSC command file processed with errors; report contains reasons for failing

commands
20 Error; MQSC command file not run

Examples
1. Enter this command at the command prompt:

runmqsc

Now you can enter MQSC commands directly at the command prompt. No
queue manager name is specified, so the MQSC commands are processed on
the default queue manager.

2. Use one of these commands, as appropriate in your environment, to specify
that MQSC commands are to be verified only:
runmqsc -v BANK < "/u/users/commfile.in"

runmqsc -v BANK < "c:\users\commfile.in"

This command verifies the MQSC commands in file commfile.in. The queue
manager name is BANK. The output is displayed in the current window.

3. These commands run the MQSC command file mqscfile.in against the default
queue manager.
runmqsc < "/var/mqm/mqsc/mqscfile.in" > "/var/mqm/mqsc/mqscfile.out"

runmqsc < "c:\Program Files\IBM\WebSphere MQ\mqsc\mqscfile.in" >
"c:\Program Files\IBM\WebSphere MQ\mqsc\mqscfile.out"

In this example, the output is directed to file mqscfile.out.

runmqtmc
Start the trigger monitor on a client.

Purpose

Use the runmqtmc command to invoke a trigger monitor for a client. For further
information about using trigger monitors, refer to the WebSphere MQ Application
Programming Guide.

Once a trigger monitor has started, it will continuously monitor the specified
initiation queue. The trigger monitor will not stop until the queue manager ends,

352 WebSphere MQ: System Administration Guide

|
|

see “endmqm” on page 324. While the client trigger monitor is running it keeps
the dead letter queue open.

Syntax

�� runmqtmc
-m QMgrName -q InitiationQName

��

Optional parameters

-m QMgrName
The name of the queue manager on which the client trigger monitor operates,
by default the default queue manager.

-q InitiationQName
The name of the initiation queue to be processed, by default
SYSTEM.DEFAULT.INITIATION.QUEUE.

Return codes

0 Not used. The client trigger monitor is designed to run continuously and
therefore not to end. The value is reserved.

10 Client trigger monitor interrupted by an error.
20 Error; client trigger monitor not run.

Examples

For examples of using this command, refer to the WebSphere MQ Application
Programming Guide.

runmqtrm

Start the trigger monitor on a server.

Purpose

Use the runmqtrm command to invoke a trigger monitor. For further information
about using trigger monitors, refer to the WebSphere MQ Application
Programming Guide.

Once a trigger monitor has started, it will continuously monitor the specified
initiation queue. The trigger monitor will not stop until the queue manager ends,
see “endmqm” on page 324. While the trigger monitor is running it keeps the dead
letter queue open.

Syntax

�� runmqtrm
-m QMgrName -q InitiationQName

��

Optional parameters

-m QMgrName
The name of the queue manager on which the trigger monitor operates, by
default the default queue manager.

Chapter 6. WebSphere MQ control commands 353

|

-q InitiationQName
Specifies the name of the initiation queue to be processed, by default
SYSTEM.DEFAULT.INITIATION.QUEUE.

Return codes

0 Not used. The trigger monitor is designed to run continuously and therefore not
to end. Hence a value of 0 would not be seen. The value is reserved.

10 Trigger monitor interrupted by an error.
20 Error; trigger monitor not run.

setmqaut

Change the authorizations to a profile, object, or class of objects. Authorizations
can be granted to, or revoked from, any number of principals or groups.

For more information about authorization service components, see “Installable
services” on page 106, “Service components” on page 108, and “Authorization
service” on page 398.

Syntax

�� setmqaut
-m QMgrName

-n Profile -t ObjectType �

�
-s ServiceComponent

� -p PrincipalName
-g GroupName

�

� � MQI authorizations
Context authorizations
Administration authorizations
Generic authorizations
+remove
-remove

��

MQI authorizations:

354 WebSphere MQ: System Administration Guide

|
|

� +altusr
-altusr
+browse
-browse
+connect
-connect
+get
-get
+inq
-inq
+pub
-pub
+put
-put
+set
-set
+sub
-sub
+resume
-resume

Context authorizations:

� +passall
-passall
+passid
-passid
+setall
-setall
+setid
-setid

Administration authorizations:

� +chg
-chg
+clr
-clr
+crt
-crt
+dlt
-dlt
+dsp
-dsp
+ctrl
-ctrl
+ctrlx
-ctrlx

Chapter 6. WebSphere MQ control commands 355

||||||

Generic authorizations:

� +all
-all
+alladm
-alladm
+allmqi
-allmqi
+none

Description

Use setmqaut both to grant an authorization, that is, give a principal or user group
permission to perform an operation, and to revoke an authorization, that is, remove
the permission to perform an operation. You must specify the principals and user
groups to which the authorizations apply, the queue manager, object type, and the
profile name identifying the object or objects.

The authorizations that can be given are categorized as follows:
v Authorizations for issuing MQI calls
v Authorizations for MQI context
v Authorizations for issuing commands for administration tasks
v Generic authorizations

Each authorization to be changed is specified in an authorization list as part of the
command. Each item in the list is a string prefixed by a plus sign (+) or a minus
sign (-). For example, if you include +put in the authorization list, you grant
authority to issue MQPUT calls against a queue. Alternatively, if you include -put
in the authorization list, you revoke the authority to issue MQPUT calls.

You can specify any number of principals, user groups, and authorizations in a
single command, but you must specify at least one principal or user group.

If a principal is a member of more than one user group, the principal effectively
has the combined authorities of all those user groups. On Windows systems, the
principal also has all the authorities that have been granted to it explicitly using
the setmqaut command.

On UNIX systems, all authorities are held by user groups internally, not by
principals. This has the following implications:
v If you use the setmqaut command to grant an authority to a principal, the

authority is actually granted to the primary user group of the principal. This
means that the authority is effectively granted to all members of that user group.

v If you use the setmqaut command to revoke an authority from a principal, the
authority is actually revoked from the primary user group of the principal. This
means that the authority is effectively revoked from all members of that user
group.

To alter authorizations for a cluster sender channel that has been automatically
generated by a repository, see WebSphere MQ Queue Manager Clusters. This book
describes how the authority is inherited from a cluster receiver channel object.

356 WebSphere MQ: System Administration Guide

|
|

|
|

|

|
|

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

Required parameters

-t ObjectType
The type of object for which to change authorizations.

Possible values are:

authinfo An authentication information object

channel or chl A channel

clntconn or clcn A client connection channel

lstr or listener A listener

namelist or nl A namelist

process or prcs A process

queue or q A queue

qmgr A queue manager

srvc or service A service

topic or top A topic

-n Profile
The name of the profile for which to change authorizations. The authorizations
apply to all WebSphere MQ objects with names that match the profile name
specified. The profile name can be generic, using wildcard characters to specify
a range of names as explained in “Using OAM generic profiles” on page 133.

If you give an explicit profile name (without any wildcard characters), the
object identified must exist.

This parameter is required, unless you are changing the authorizations of a
queue manager, in which case you must not include it. To change the
authorizations of a queue manager use the queue manager name, for example
setmqaut -m QMGR -t qmgr -p user1 +connect

where QMGR is the name of the queue manager and user1 is the user
requesting the change.

Optional parameters

-m QMgrName
The name of the queue manager of the object for which to change
authorizations. The name can contain up to 48 characters.

This parameter is optional if you are changing the authorizations of your
default queue manager.

-p PrincipalName
The name of the principal for which to change authorizations.

For WebSphere MQ for Windows only, the name of the principal can optionally
include a domain name, specified in the following format:
userid@domain

For more information about including domain names on the name of a
principal, see “Principals and groups” on page 123.

You must have at least one principal or group.

-g GroupName
The name of the user group for which to change authorizations. You can

Chapter 6. WebSphere MQ control commands 357

|

|

|||

specify more than one group name, but each name must be prefixed by the -g
flag. On Windows systems, you can use only local groups.

-s ServiceComponent
The name of the authorization service to which the authorizations apply (if
your system supports installable authorization services). This parameter is
optional; if you omit it, the authorization update is made to the first installable
component for the service.

+remove or -remove
Remove the specified profile. The authorizations associated with the profile no
longer apply to WebSphere MQ objects with names that match the profile.

This option cannot be used with the option -t qmgr.

Authorizations
The authorizations to be granted or revoked. Each item in the list is prefixed
by a plus sign (+), indicating that authority is to be granted, or a minus sign
(-), indicating that authority is to be revoked.

For example, to grant authority to issue MQPUT calls, specify +put in the list.
To revoke the authority to issue MQPUT calls, specify -put.

Table 25 shows the authorities that can be given to the different object types.

Table 25. Specifying authorities for different object types

Authority Queue Process Queue
manager

Namelist Topic Auth
info

Clntconn Channel Listener Service

all Yes Yes Yes Yes No Yes Yes Yes Yes Yes

alladm1 Yes Yes Yes Yes No Yes Yes Yes Yes Yes

allmqi2 Yes Yes Yes Yes No Yes No No No No

none Yes Yes Yes Yes No Yes Yes Yes Yes Yes

altusr No No Yes No No No No No No No

browse Yes No No No No No No No No No

chg Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

clr Yes No No No Yes No No No No No

connect No No Yes No No No No No No No

crt Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

ctrl No No No No Yes No No Yes Yes Yes

ctrlx No No No No No No No Yes No No

dlt Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

dsp Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

get Yes No No No No No No No No No

put Yes No No No No No No No No No

inq Yes Yes Yes Yes No Yes No No No No

passall Yes No No No No No No No No No

passid Yes No No No No No No No No No

set Yes Yes Yes No No No No No No No

setall Yes No Yes No No No No No No No

setid Yes No Yes No No No No No No No

pub No No No No Yes No No No No No

358 WebSphere MQ: System Administration Guide

|
|
|

|

|
|
|

|
|

|

|

|

|||||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|||

|

|

|||||||||||

Table 25. Specifying authorities for different object types (continued)

Authority Queue Process Queue
manager

Namelist Topic Auth
info

Clntconn Channel Listener Service

sub No No No No Yes No No No No No

resume No No No No Yes No No No No No

Note:

1. alladm authority is equivalent to the subset of the individual authorities chg, clr, crt, dlt, dsp, ctrl, and ctrlx
appropriate to the object type.

2. allmqi authority is equivalent to the subset of the individual authorities altusr, browse, connect, get, inq, pub,
put, resume, set, and sub appropriate to the object type.

Return codes

0 Successful operation
26 Queue manager running as a standby instance.
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
133 Unknown object name
145 Unexpected object name
146 Object name missing
147 Object type missing
148 Invalid object type
149 Entity name missing
150 Authorization specification missing
151 Invalid authorization specification

Examples
1. This example shows a command that specifies that the object on which

authorizations are being given is the queue orange.queue on queue manager
saturn.queue.manager. If the queue does not exist, the command fails.
setmqaut -m saturn.queue.manager -n orange.queue -t queue

-g tango +inq +alladm

The authorizations are given to a user group called tango, and the associated
authorization list specifies that the user group can:
v Issue MQINQ calls
v Perform all administration operations on that object

2. In this example, the authorization list specifies that a user group called foxy:
v Cannot issue any MQI calls to the specified queue
v Can perform all administration operations on the specified queue

If the queue does not exist, the command fails.
setmqaut -m saturn.queue.manager -n orange.queue -t queue

-g foxy -allmqi +alladm

3. This example gives user1 full access to all queues with names beginning a.b. on
queue manager qmgr1. The profile is persistent and applies to any object with
a name that matches the profile.
setmqaut -m qmgr1 -n a.b.* -t q -p user1 +all

Chapter 6. WebSphere MQ control commands 359

|

|||||||||||

|||||||||||

|

|
|

|
|

||

|

4. This example deletes the specified profile.
setmqaut -m qmgr1 -n a.b.* -t q -p user1 -remove

5. This example creates a profile with no authority.
setmqaut -m qmgr1 -n a.b.* -t q -p user1 +none

Related commands

“dmpmqaut” on page 297“dspmqaut” on page 304

Authorizations for MQI calls

altusr Use another user’s authority for MQOPEN and MQPUT1 calls.
browse Retrieve a message from a queue using an MQGET call with the BROWSE

option.
connect Connect the application to the specified queue manager using an MQCONN

call.
get Retrieve a message from a queue using an MQGET call.
inq Make an inquiry on a specific queue using an MQINQ call.
pub Publish a message on a topic using the MQPUT call.
put Put a message on a specific queue using an MQPUT call.
resume Resume a subscription using the MQSUB call.
set Set attributes on a queue from the MQI using an MQSET call.
sub Create, alter or resume a subscription to a topic using the MQSUB call.

Note: If you open a queue for multiple options, you must be authorized for each
option.

Authorizations for context

passall Pass all context on the specified queue. All the context fields are copied from
the original request.

passid Pass identity context on the specified queue. The identity context is the same
as that of the request.

setall Set all context on the specified queue. This is used by special system utilities.
setid Set identity context on the specified queue. This is used by special system

utilities.

Authorizations for commands

chg Change the attributes of the specified object.
clr Clear the specified queue or a topic.
crt Create objects of the specified type.
dlt Delete the specified object.
dsp Display the attributes of the specified object.
ctrl For listeners and services, start and stop the specified channel, listener, or

service.

For channels, start, stop, and ping the specified channel.

For topics, define, alter, or delete subscriptions.
ctrlx Reset or resolve the specified channel.

Authorizations for generic operations

all Use all operations applicable to the object.
alladm Use all administration operations applicable to the object.

360 WebSphere MQ: System Administration Guide

||

||

||

||
|

|

|

allmqi Use all MQI calls applicable to the object.
none No authority. Use this to create profiles without authority.

setmqcrl

Administer CRL (certificate revocation list) LDAP definitions in an Active Directory
(Windows only).

Purpose

The setmqcrl command applies to WebSphere MQ for Windows only.

Use the setmqcrl command to configure and administer support for publishing
CRL (certificate revocation list) LDAP definitions in an Active Directory.

A domain administrator must use this command, or setmqscp, initially to prepare
the Active Directory for WebSphere MQ usage and to grant WebSphere MQ users
and administrators the relevant authorities to access and update the WebSphere
MQ Active Directory objects. You can also use the setmqcrl command to display
all the currently configured CRL server definitions available on the Active
Directory, that is, those definitions referred to by the queue manager’s CRL
namelist.

The only types of CRL servers supported are LDAP servers.

Syntax

�� setmqcrl
-a

-m QMgrName
-r

-m QMgrName

�

�
-d

��

Optional parameters

You must specify one of -a (add), -r (remove) or -d (display).

-a Adds the WebSphere MQ client connections Active Directory container, if it
does not already exist. You must be a user with the appropriate privileges to
create subcontainers in the System container of your domain. The WebSphere
MQ folder is called CN=IBM-MQClientConnections. Do not delete this folder in
any other way than by using the setmqscp command.

-d Displays the WebSphere MQ CRL server definitions.

-r Removes the WebSphere MQ CRL server definitions.

-m [* | qmgr]
Modifies the specified parameter (-a or -r) so that only the specified queue
manager is affected. You must include this option with the -a parameter.

* | qmgr
* specifies that all queue managers are affected. This enables you to
migrate a specific WebSphere MQ CRL server definitions file from one
queue manager alone.

Chapter 6. WebSphere MQ control commands 361

|
|

Examples

The following command creates the IBM-MQClientConnections folder and allocates
the required permissions to WebSphere MQ administrators for the folder, and to
child objects created subsequently. (In this, it is functionally equivalent to setmqscp
-a.)
setmqcrl -a

The following command migrates existing CRL server definitions from a local
queue manager, Paint.queue.manager, to the Active Directory, deleting any other
CRL definitions from the Active Directory first:
setmqcrl -a -m Paint.queue.manager

setmqprd
Enroll a WebSphere MQ production license.

A license is normally enrolled as part of the installation process. For further
information about the installation process, see the WebSphere MQ Quick Beginnings
guide for your operating system.

Syntax

�� setmqprd LicenseFile ��

Required parameters

LicenseFile
Specifies the fully-qualified name of the production license certificate file.

This is usually amqpcert.lic.

setmqscp

Publish client connection channel definitions in an Active Directory (Windows
only).

Purpose

The setmqscp command applies to WebSphere MQ for Windows only.

Use the setmqscp command to configure and administer support for publishing
client connection channel definitions in an Active Directory.

Initially, this command is used by a domain administrator to:
v Prepare the Active Directory for WebSphere MQ use
v Grant WebSphere MQ users and administrators the relevant authorities to access

and update the WebSphere MQ Active Directory objects

You can also use the setmqscp command to display all the currently configured
client connection channel definitions available on the Active Directory.

362 WebSphere MQ: System Administration Guide

|
|
|

|
|

Syntax

�� setmqscp
-a

-m QMgrName
-r

-m QMgrName

�

�
-d

��

Optional parameters

You must specify one of -a (add), -r (remove) or -d (display).

-a Adds the WebSphere MQ client connections Active Directory container, if it
does not already exist. You must be a user with the appropriate privileges to
create subcontainers in the System container of your domain. The WebSphere
MQ folder is called CN=IBM-MQClientConnections. Do not delete this folder in
any other way than by using the setmqscp -r command.

-d Displays the service connection points.

-r Removes the service connection points. If you omit -m, and no client
connection definitions exist in the IBM-MQClientConnections folder, the folder
itself is removed from the Active Directory.

-m [* | qmgr]
Modifies the specified parameter (-a or -r) so that only the specified queue
manager is affected.

* | qmgr
* specifies that all queue managers are affected. This enables you to
migrate a specific client connection table file from one queue manager
alone, if required.

Examples

The following command creates the IBM-MQClientConnections folder and allocates
the required permissions to WebSphere MQ administrators for the folder, and to
child objects created subsequently:
setmqscp -a

The following command migrates existing client connection definitions from a local
queue manager, Paint.queue.manager, to the Active Directory:
setmqscp -a -m Paint.queue.manager

The following command migrates all client connection definitions on the local
server to the Active Directory:
setmqscp -a -m *

strmqcfg
Start the WebSphere MQ Explorer (Windows and Linux x86 platforms only).

Purpose

The strmqcfg command is available on WebSphere MQ for Windows, and
WebSphere MQ for Linux (x86 platform) only.

Chapter 6. WebSphere MQ control commands 363

For WebSphere MQ for Windows only, note that if you use runas to execute this
command, you must define the Environment Variable APPDATA.

On Linux, the WebSphere MQ Explorer might fail to start if you have more than
one Eclipse installation. If this happens, start the WebSphere MQ Explorer using a
different user ID to the one you use for the other Eclipse installation.

On Linux, to start the WebSphere MQ Explorer successfully, you must be able to
write a file to your home directory, and the home directory must exist.

Syntax

The syntax of this command follows:

�� strmqcfg
-c -i -x

��

Optional parameters

-c -clean is passed to Eclipse. This causes Eclipse to delete any cached data used
by the Eclipse runtime.

-i -init is passed to Eclipse. This causes Eclipse to discard configuration
information used by the Eclipse runtime.

-x Output debug messages to the console.

strmqcsv

Start the command server for a queue manager.

Purpose

Use the strmqcsv command to start the command server for the specified queue
manager. This enables WebSphere MQ to process commands sent to the command
queue.

If the queue manager attribute, SCMDSERV, is specified as QMGR then changing
the state of the command server using strmqcsv does not effect how the queue
manager acts upon the SCMDSERV attribute at the next restart.

Syntax

�� strmqcsv
-a QMgrName

��

Required parameters

None

Optional parameters

-a Blocks the following PCF commands from modifying or displaying authority
information:
v Inquire authority records (MQCMD_INQUIRE_AUTH_RECS)

364 WebSphere MQ: System Administration Guide

|
|

|
|
|

|
|

||

||
|

||

|

v Inquire entity authority (MQCMD_INQUIRE_ENTITY_AUTH)
v Set authority record (MQCMD_SET_AUTH_REC).
v Delete authority record (MQCMD_DELETE_AUTH_REC).

QMgrName
The name of the queue manager on which to start the command server. If
omitted, the default queue manager is used.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples

The following command starts a command server for queue manager earth:
strmqcsv earth

Related commands

endmqcsv End a command server
dspmqcsv Display the status of a command server

strmqm
Start a queue manager.

Purpose

Use the strmqm command to start a queue manager.

If the queue manager start up takes more than a few seconds WebSphere MQ
shows intermittent messages detailing the start up progress. For more information
about these messages see WebSphere MQ Messages.

Syntax

�� strmqm
-c
-r
-a

-si
-ss

-d Information -z -ns
�

�
QMgrName

��

Optional parameters

-c Starts the queue manager, redefines the default and system objects, then stops
the queue manager. Any existing system and default objects belonging to the
queue manager are replaced if you specify this flag, and any non-default
system object values will be reset (for example, the value of MCAUSER is set
to blank).

Use the crtmqm command to create the default and system objects for a queue
manager.

Chapter 6. WebSphere MQ control commands 365

|

|||

|
|
|
|
|

|
|

-ns
Prevents any of the following processes from starting automatically when the
queue manager starts:
v The channel initiator
v The command server
v Listeners
v Services

-r Updates the backup queue manager. The backup queue manager is not started.

WebSphere MQ updates the backup queue manager’s objects by reading the
queue manager log and replaying updates to the object files.

For more information on using backup queue managers, see “Backing up and
restoring WebSphere MQ” on page 230.

-a Activate the specified backup queue manager. The backup queue manager is
not started.

When activated, a backup queue manager can be started using the control
command strmqm QMgrName. The requirement to activate a backup queue
manager prevents accidental startup.

When activated, a backup queue manager can no longer be updated.

For more information on using backup queue managers, see “Backing up and
restoring WebSphere MQ” on page 230.

-d Information
Specifies whether information messages are displayed. Possible values for
Information follow:

all All information messages are displayed. This is the
default value.

minimal The minimal number of information messages are
displayed.

none No information messages are displayed. This
parameter is equivalent to -z.

The -z parameter takes precedence over this parameter.

-z Suppresses error messages.

This flag is used within WebSphere MQ to suppress unwanted information
messages. Because using this flag could result in loss of information, do not
use it when entering commands on a command line.

This parameter takes precedence over the -d parameter.

-si Interactive (manual) queue manager startup type. This option is available on
WebSphere MQ for Windows only.

The queue manager runs under the logged on (interactive) user. Queue
managers configured with interactive startup end when the user who started
them logs off.

If you set this parameter, it overrides any startup type set previously by the
crtmqm command, the amqmdain command, or the WebSphere MQ Explorer.

If you do not specify a startup type of either -si or -ss, the queue manager
startup type specified on the crtmqm command is used.

366 WebSphere MQ: System Administration Guide

||
|

|
|
|

|
|

|
|

-ss Service (manual) queue manager startup type. This option is available on
WebSphere MQ for Windows only.

The queue manager runs as a service. Queue managers configured with service
startup continue to run even after the interactive user has logged off.

If you set this parameter, it overrides any startup type set previously by the
crtmqm command, the amqmdain command, or the WebSphere MQ Explorer.

QMgrName
The name of a local queue manager. If omitted, the default queue manager is
used.

Return codes

0 Queue manager started
3 Queue manager being created
5 Queue manager running
16 Queue manager does not exist
23 Log not available
24 A process that was using the previous instance of the queue manager has not yet

disconnected.
26 Queue manager running as a standby instance.
30 Queue manager started as a standby instance
31 Queue manager has an active instance which does permit standby instances.
39 Invalid parameter specified
43 Queue manager has an active instance which does not permit standby instances.
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
74 The WebSphere MQ service is not started.
100 Log location invalid
119 User not authorized to start the queue manager

Examples

The following command starts the queue manager account:
strmqm account

Related commands

crtmqm Create a queue manager
dltmqm Delete a queue manager
endmqm End a queue manager

strmqtrc

Enable trace at a specified level of detail, or report the level of tracing in effect.

Purpose

Use the strmqtrc command to enable tracing.

Chapter 6. WebSphere MQ control commands 367

||
|

|
|

|
|

|
|
|

||
||
||
||
||

||

|

Syntax

The syntax of this command is as follows:

�� strmqtrc
-m QMgrName -e

�

-t TraceType
�

�
-x TraceType -l MaxSize -d 0

-1
NumOfBytes

�

�
-i PidTids -p Apps -s -b StartTrigger

�

�
-c StopTrigger

��

Description

The strmqtrc command enables tracing. The command has optional parameters
that specify the level of tracing you want:
v One or more queue managers
v Levels of trace detail
v One or more Websphere MQ processes. The processes can be either part of the

Websphere MQ product or customer applications that use the Websphere MQ
API

v Specific threads within customer applications, either by WebSphere MQ thread
number or by operating system thread number

v Events. These can be either the entry or exit from internal WebSphere MQ
functions or the occurrence of a first failure data capture (FDC).

Each combination of parameters on an individual invocation of the command are
interpreted by WebSphere MQ as having a logical AND between them. You can
invoke the strmqtrc command multiple times, regardless of whether tracing is
already enabled. If tracing is already enabled, the trace options that are in effect are
modified to those specified on the most recent invocation of the command.
Multiple invocations of the command, without an intervening enqmqtrc command,
are interpreted by WebSphere MQ as having a logical OR between them. The
maximum number of concurrent strmqtrc commands that can be in effect at one
time is 16.

In WebSphere MQ for Windows, the output file is created in the \<mqmwork>\trace
directory, where <mqmwork> is the directory selected to hold WebSphere MQ data
files.

In WebSphere MQ for AIX, HP-UX, Solaris, and Linux, the output file is created in
the directory /var/mqm/trace.

368 WebSphere MQ: System Administration Guide

|||||||

||

|
|

|

|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

For examples of trace data generated by this command see “Tracing” on page 255.

Optional parameters

-m QMgrName
The name of the queue manager to trace.

If more than one trace specification applies to a given entity being traced, the
actual trace includes all the specified options.

The following wildcards are allowed: asterisk (*), replacing zero or more
characters and question mark (?), replacing any single character.

-e Requests early tracing of all processes, making it possible to trace the creation
or startup of a queue manager. If you include this flag, any process belonging
to any component of any queue manager traces its early processing. The
default is not to perform early tracing.

You cannot use the -e flag with the -m flag, -i flag, the -p flag or the -b flag. If
you try to use the -e flag with the -i flag, the -p flag or the -b flag, then an
error message is issued.

-t TraceType
The points to trace and the amount of trace detail to record. By default all
trace points are enabled and a default-detail trace is generated.

Alternatively, you can supply one or more of the options in the following list.
For each tracetype value you specify, including -t all, specify either -t parms
or -t detail to obtain the appropriate level of trace detail. If you do not
specify either -t parms or -t detail for any particular trace type, only a
default-detail trace is generated for that trace type.

If you supply multiple trace types, each must have its own -t flag. You can
include any number of -t flags, provided that each has a valid trace type
associated with it.

It is not an error to specify the same trace type on multiple -t flags.

all Output data for every trace point in the system (the default).
The all parameter activates tracing at default detail level.

api Output data for trace points associated with the MQI and major
queue manager components.

commentary Output data for trace points associated with comments in the
WebSphere MQ components.

comms Output data for trace points associated with data flowing over
communications networks.

csdata Output data for trace points associated with internal data
buffers in common services.

csflows Output data for trace points associated with processing flow in
common services.

detail Activate tracing at high-detail level for flow processing trace
points.

Explorer Output data for trace points associated with the WebSphere MQ
Explorer.

java Output data for trace points associated with applications using
the WebSphere MQ classes for Java API.

lqmdata Output data for trace points associated with internal data
buffers in the local queue manager.

Chapter 6. WebSphere MQ control commands 369

|
|

|
|
|
|

|
|
|

|||
|

lqmflows Output data for trace points associated with processing flow in
the local queue manager.

otherdata Output data for trace points associated with internal data
buffers in other components.

otherflows Output data for trace points associated with processing flow in
other components.

parms Activate tracing at default-detail level for flow processing trace
points.

remotedata Output data for trace points associated with internal data
buffers in the communications component.

remoteflows Output data for trace points associated with processing flow in
the communications component.

servicedata Output data for trace points associated with internal data
buffers in the service component.

serviceflows Output data for trace points associated with processing flow in
the service component.

soap Output data for trace points associated with WebSphere MQ
Transport for SOAP.

ssl Output data associated with using GSKit to enable Secure
Sockets Layer (SSL) channel security.

versiondata Output data for trace points associated with the version of
WebSphere MQ running.

-x TraceType
The points not to trace. By default all trace points are enabled and a
default-detail trace is generated. The trace points you can specify are those
listed for the -t flag.

You can use the -x flag with tracetype values to exclude those entry points you
do not want to record. This is useful in reducing the amount of trace
produced.

If you supply multiple trace types, each must have its own -x flag. You can
include any number of -x flags, provided that each has a valid tracetype
associated with it.

-l MaxSize
The maximum size of a trace file (AMQppppp.qq.TRC) in megabytes (MB). For
example, if you specify a MaxSize of 1, the size of the trace is limited to 1 MB.

When a trace file reaches the specified maximum, it is renamed to
AMQppppp.qq.TRS and a new AMQppppp.qq.TRC file is started. If a previous copy
of an AMQppppp.qq.TRS file exists, it is deleted.

The highest value that MaxSize can be set to is 2048 MB.

-d 0
Trace no user data.

-d -1 or all
Trace all user data.

-d NumOfBytes

v For a communication trace; trace the specified number of bytes of data
including the transmission segment header (TSH).

370 WebSphere MQ: System Administration Guide

|
|

|
|
|

|

v For an MQPUT or MQGET call; trace the specified number of bytes of
message data held in the message buffer.

v Values between one and 15 are not allowed.

-i PidTids
Process identifier (PID) and thread identifier (TID) to which the trace
generation is restricted. You cannot use the -i flag with the -e flag. If you try to
use the -i flag with the -e flag, then an error message is issued. This parameter
should be used only under the guidance of IBM Service personnel.

-p Apps
The named processes to which the trace generation is restricted. Apps is a
comma-separated list. You must specify each name in the list exactly as the
program name would be displayed in the ″Program Name″ FDC header.
Asterisk (*) or question mark (?) wildcards are allowed. You cannot use the -p
flag with the -e flag. If you try to use the -p flag with the -e flag, then an error
message is issued.

-s Reports the tracing options that are currently in effect. You must use this
parameter on its own with no other parameters.

A limited number of slots are available for storing trace commands. When all
slots are in use, then no more trace commands can be accepted unless they
replace an existing slot. Slot numbers are not fixed, so if the command in slot
number 0 is removed, for example by an endmqtrc command, then all the
other slots move up, with slot 1 becoming slot 0, for example. An asterisk (*) in
a field means that no value is defined, and is equivalent to the asterisk
wildcard.

An example of the output from this command is as follows:
Listing Trace Control Array

Used slots = 2 of 15

EarlyTrace [OFF]
TimedTrace [OFF]
TraceUserData [0]
MaxSize [0]
Trace Type [1]

Slot position 1

Untriggered
Queue Manager [avocet]
Application [*]
PID.TID [?]
TraceOptions [1f4ffff]
TraceInterval [0]
Trace Start Time [0]
Trace Stop Time [0]
Start Trigger [KN346050K]
Start Trigger [KN346080]

Slot position 2

Untriggered
Queue Manager [*]
Application [*]
PID.TID [?]
TraceOptions [1fcffff]
TraceInterval [0]

Chapter 6. WebSphere MQ control commands 371

|
|
|
|
|

|
|
|
|
|
|
|

||
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Trace Start Time [0]
Trace Stop Time [0]
Start Trigger [KN346050K]
Start Trigger [KN346080]

-b Start_Trigger
FDC probe IDs for which tracing should be turned on. Start_Trigger is a
comma-separated list of FDC probe IDs. You can use asterisk (*) and question
mark (?) wildcards in the specification of probe IDs. You cannot use the -b flag
with the -e flag. If you try to use the -b flag with the -e flag, then an error
message is issued. This parameter should be used only under the guidance of
IBM Service personnel.

Table 26.

Start_Trigger Effect

FDC=comma-separated list of FDC probe
IDs.

Turns tracing on when any FDCs with the
specified FDC probe IDs are generated.

-c Stop_Trigger
FDC probe IDs for which tracing should be turned off, or interval in seconds
after which tracing should be turned off. Stop_Trigger is a comma-separated list
of FDC probe IDs. You can use asterisk (*) and question mark (?) wildcards in
the specification of probe IDs. This parameter should be used only under the
guidance of IBM Service personnel.

Table 27.

Stop_Trigger Effect

FDC=comma-separated list of FDC probe
IDs.

Turns tracing off when any FDCs with the
specified FDC probe IDs are generated.

interval=n where n is an unsigned integer
between 1 and 32,000,000.

Turns tracing off n seconds after it starts or,
if it tracing is already enabled, turns tracing
off n seconds after this instance of the
command is issued.

Return codes

AMQ7024 Non-valid arguments supplied to the command.
AMQ8304 Nine concurrent traces (the maximum) already running.

Examples

This command enables tracing of processing flow from common services and the
local queue manager for a queue manager called QM1 in WebSphere MQ for UNIX
systems. Trace data is generated at the default level of detail.
strmqtrc -m QM1 -t csflows -t lqmflows -t parms

This command disables tracing of SSL activity on a queue manager called QM1.
Other trace data is generated at the parms level of detail.
strmqtrc -m QM1 -x ssl -t parms

This command enables high-detail tracing of the processing flow for all
components:
strmqtrc -t all -t detail

372 WebSphere MQ: System Administration Guide

|
|
|
|

|
|
|
|
|
|
|

||

||

|
|
|
|
|

|
|
|
|
|
|

||

||

|
|
|
|

|
|
|
|
|
|
|

|

|
|

|

|
|

|

This command enables tracing when FDC KN346050 or FDC KN346080 occur on
any process that is using queue manager QM1:
strmqtrc -m QM1 -b FDC=KN346050,KN346080

This command enables tracing when FDC KN34650 occurs, and stops tracing when
FDC KN346080 occurs. In both cases the FDC must occur on a process that is
using queue manager QM1:
strmqtrc -m QM1 -b FDC=KN346050 -c FDC=KN346080

The next examples use the -p and -m flags to show the following:
v How a combination of parameters on an individual invocation of the command

are interpreted by Websphere MQ as having a logical AND between them.
v How multiple invocations of the command, without an intervening enqmqtrc

command, are interpreted by Websphere MQ as having a logical OR between
them:

1. This command enables tracing for all threads that result from any executing
process called amqxxx.exe:
strmqtrc -p amqxxx.exe

2.

v If you invoke the following command after the command in step 1, without
an intervening endmqtrc command, then tracing is limited to all threads that
result from any executing process called amqxxx.exe and that are using queue
manager QM2:
strmqtrc -p amqxxx.exe -m QM2

v If you invoke the following command after the command in step 1, without
an intervening endmqtrc command, then tracing is limited to all processes
and threads that result from executing amqxxx.exe or that are using queue
manager QM2:
strmqtrc -m QM2

Related commands

dspmqtrc Display formatted trace output
endmqtrc End trace

Managing keys and certificates

To manage keys, certificates, and certificate requests, use one of the following:

The gsk7cmd command
The gsk7cmd command is available on UNIX systems only.

The gsk7cmd command provides functions that are similar to those of the
iKeyman GUI, described in WebSphere MQ Security. The gsk7cmd
command provides a shell script to run iKeycmd.

The runmqckm command
The runmqckm command is available on Windows systems only.

The runmqckm command provides functions that are similar to those of
the iKeyman GUI, described in WebSphere MQ Security.

The gsk7capicmd command
The gsk7capicmd command is available on Windows and UNIX systems.

Chapter 6. WebSphere MQ control commands 373

|
|

|

|
|
|

|

|

|
|

|
|
|

|
|

|

|

|
|
|
|

|

|
|
|
|

|

|
|

The gsk7capicmd command provides functions that are similar to those of
the iKeyman GUI, described in WebSphere MQ Security. The gsk7capicmd
command provides a shell script to run GSKCapiCmd. The command
syntax for gsk7capicmd is the same as the syntax for runmqckm.

If you need to manage SSL certificates in a way that is FIPS and Common
Criteria compliant, use the gsk7capicmd command instead of the gsk7cmd
or runmqckm commands. This is because the gsk7capicmd command
supports stronger encryption than the other commands.

Before you run gsk7capicmd on Windows, set your PATH environment
variable to include the GSkit binary and library directories. For example, at
the command line, enter:
set PATH=%PATH%;C:\Program Files\IBM\gsk7\bin;C:\Program Files\IBM\gsk7\lib

Use the gsk7cmd, runmqckm, and gsk7capicmd commands to do the following:
v Create the type of CMS key database files that WebSphere MQ requires
v Create certificate requests
v Import personal certificates
v Import CA certificates
v Manage self-signed certificates

Both the gsk7cmd and runmqckm commands execute an underlying WebSphere
MQ component called iKeycmd. A default properties file, ikeycmd.properties, is
provided as a sample file that you can modify.

The gsk7capicmd command executes an underlying WebSphere MQ component
called GSKCapiCmd. There is no default properties file provided.

This chapter contains the following sections:
v “Preparing to use the gsk7cmd and gsk7capicmd commands”
v “gsk7cmd, runmqckm, and gsk7capicmd commands” on page 375
v “gsk7cmd, runmqckm, and gsk7capicmd options” on page 387

Preparing to use the gsk7cmd and gsk7capicmd commands

The gsk7cmd command is available on UNIX systems only. If you are using
certificates or keys stored on PKCS #11 cryptographic hardware, note that iKeycmd
and iKeyman are 32-bit programs. External modules required for PKCS #11
support will be loaded into a 32-bit process, therefore you must have a 32-bit
PKCS #11 library installed for the administration of cryptographic hardware. The
HP Itanium platform is the only exception, as the iKeyman program is 64–bit on
the HP Itanium platform.

The gsk7capicmd command is available on both UNIX and Windows systems.

To run the gsk7cmd and gsk7capicmd command line interfaces, set your PATH
environment variable to include /usr/bin and /bin. For example, on UNIX:
export PATH=$PATH:/usr/bin:/bin

Additionally, for the gsk7cmd command only, set the JAVA_HOME environment
variable to one of the following:

AIX export JAVA_HOME=/usr/mqm/ssl/jre

374 WebSphere MQ: System Administration Guide

|
|
|
|

|
|
|
|

|
|
|

|

|

|
|

|

HP-UX export JAVA_HOME=/opt/mqm/ssl/jre
Linux export JAVA_HOME=/opt/mqm/ssl/jre
Solaris export JAVA_HOME=/opt/mqm/ssl

gsk7cmd, runmqckm, and gsk7capicmd commands

Each command specifies at least one object. Commands for PKCS #11 device
operations might specify additional objects. Commands for key database,
certificate, and certificate request objects also specify an action.

This section describes commands according to the object of the command. The
object can be one of the following:

–keydb
Actions apply to a key database

–cert Actions apply to a certificate

–certreq
Actions apply to a certificate request

–help Displays help

–version
Displays version information

The following sections describe the actions that you can take on key database,
certificate, and certificate request objects:
v “Commands for a CMS key database only”
v “Commands for CMS or PKCS #12 key databases” on page 376
v “Commands for cryptographic device operations” on page 380

See “gsk7cmd, runmqckm, and gsk7capicmd options” on page 387 for a
description of the options on these commands.

Commands for a CMS key database only
–keydb –changepw

Change the password for a CMS key database:

Using the gsk7cmd and runmqckm commands:
-keydb -changepw -db filename -pw password -new_pw new_password

-expire days -stash

Using the gsk7capicmd command:
-keydb -changepw -db filename -pw password -new_pw new_password

-expire days -stash -fips -strong

–keydb –create
Create a CMS key database:

Using the gsk7cmd and runmqckm commands:
-keydb -create -db filename -pw password -type cms -expire days -stash

Using the gsk7capicmd command:
-keydb -create -db filename -pw password -type cms -expire days -stash

-fips -strong

Chapter 6. WebSphere MQ control commands 375

|

|

|

|

|

–keydb –stashpw
Stash the password of a CMS key database into a file:

Using the gsk7cmd and runmqckm commands:
-keydb -stashpw -db filename -pw password

Using the gsk7capicmd command:
-keydb -stashpw -db filename -pw password -fips

–cert –getdefault
Get the default personal certificate:

Using the gsk7cmd and runmqckm commands:
-cert -getdefault -db filename -pw password

Using the gsk7capicmd command:
-cert -getdefault -db filename -pw password -fips

–cert –modify
Modify a certificate.

Note: Currently, the only field that can be modified is the Certificate Trust
field.

Using the gsk7cmd and runmqckm commands:
-cert -modify -db filename -pw password -label label

-trust enable | disable

Using the gsk7capicmd command:
-cert -modify -db filename -pw password -label label

-trust enable | disable -fips

–cert –setdefault
Set the default personal certificate:

Using the gsk7cmd and runmqckm commands:
-cert -setdefault -db filename -pw password -label label

Using the gsk7capicmd command:
-cert -setdefault -db filename -pw password -label label -fips

Commands for CMS or PKCS #12 key databases
–keydb –changepw

Change the password for a key database:

For the gsk7cmd and runmqckm commands:
-keydb -changepw -db filename -pw password -new_pw new_password -expire days

For the gsk7capicmd command:
-keydb -changepw -db filename -pw password -new_pw new_password -expire days

-fips -strong

–keydb –convert
For the gsk7cmd and runmqckm commands, convert the key database
from one format to another:
-keydb -convert -db filename -pw password

-old_format cms | pkcs12 -new_format cms

376 WebSphere MQ: System Administration Guide

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|
|

|

For the gsk7capicmd command, convert an old version CMS key database
to the new version CMS key database:
-keydb -convert -db filename -pw password

-new_db filename -new_pw password -strong -fips

–keydb –create
Create a key database:

Using the gsk7cmd and runmqckm commands:
-keydb -create -db filename -pw password -type cms | pkcs12

Using the gsk7capicmd command:
-keydb -create -db filename -pw password -type cms -fips -strong

–keydb –delete
Delete a key database:
-keydb -delete -db filename -pw password

–keydb –list
List currently-supported types of key database:

Using the gsk7cmd and runmqckm commands:
-keydb -list

Using the gsk7capicmd command:
-keydb -list -fips

–cert –add
Add a certificate from a file into a key database:
-cert -add -db filename -pw password -label label -file filename

-format ascii | binary

Using the gsk7capicmd command:
-cert -add -db filename -pw password -label label -file filename

-format ascii | binary -fips

–cert –create
Create a self-signed certificate:

Using the gsk7cmd or runmqckmcommands:
-cert -create -db filename -pw password -label label -dn distinguished_name

-size 1024 | 512 -x509version 3 | 1 | 2 -expire days

Using the gsk7capicmd command:
-cert -create -db filename -pw password -label label -dn distinguished_name

-size 2048 | 1024 | 512 -x509version 3 | 1 | 2 -expire days
-fips -sigalg md5 | sha1 | sha224 | sha256 | sha384 | sha512

–cert –delete
Delete a certificate:

Using the gsk7cmd or runmqckmcommands:
-cert -delete -db filename -pw password -label label

Using the gsk7capicmd command:
-cert -delete -db filename -pw password -label label -fips

–cert –details
List the detailed information for a specific certificate:

Using the gsk7cmd or runmqckm commands:

Chapter 6. WebSphere MQ control commands 377

|
|

|
|

|

|

|

|

|

|

|

|
|

|

|

|
|
|

|

|

|

|

-cert -details -db filename -pw password -label label

Using the gsk7capicmd command:
-cert -details -db filename -pw password -label label -fips

–cert –export
Export a personal certificate and its associated private key from a key
database into a PKCS #12 file, or to another key database:

Using the gsk7cmd or runmqckm commands:
-cert -export -db filename -pw password -label label -type cms | pkcs12

-target filename -target_pw password -target_type cms | pkcs12

Using the gsk7capicmd command:
-cert -export -db filename -pw password -label label -type cms | pkcs12

-target filename -target_pw password -target_type cms | pkcs12
-encryption strong | weak -fips

–cert –extract
Extract a certificate from a key database:

Using the gsk7cmd or runmqckm commands:
-cert -extract -db filename -pw password -label label -target filename

-format ascii | binary

Using the gsk7capicmd command:
-cert -extract -db filename -pw password -label label -target filename

-format ascii | binary -fips

–cert –import
Import a personal certificate from a key database:

For the gsk7cmd and runmqckm commands:
-cert -import -file filename -pw password -type pkcs12 -target filename

-target_pw password -target_type cms -label label

The -label option is required and specifies the label of the certificate that is
to be imported from the source key database.

The -new_label option is optional and allows the imported certificate to be
given a different label in the target key database from the label in the
source database.

For the gsk7capicmd command:
-cert -import -file filename -pw password -type cms -target filename

-target_pw password -target_type cms -label label -fips

The -label option is required and specifies the label of the certificate that is
to be imported from the source key database.

The -new_label option is optional and allows the imported certificate to be
given a different label in the target key database from the label in the
source database.

–cert –list
List all certificates in a key database:

For the gsk7cmd and runmqckm commands:
-cert -list all | personal | CA

-db filename -pw password

For the gsk7capicmd command:

378 WebSphere MQ: System Administration Guide

|

|

|

|

|
|
|

|

|

|
|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|
|

|

|

-cert -list all | personal | CA
-db filename -pw password -fips

–cert –receive
Receive a certificate from a file:

For the gsk7cmd and runmqckm commands:
-cert -receive -file filename -db filename -pw password

-format ascii | binary -default_cert yes | no

For the gsk7capicmd command:
-cert -receive -file filename -db filename -pw password

-format ascii | binary -default_cert yes | no -fips

–cert –sign
Sign a certificate:

For the gsk7cmd and runmqckm commands:
-cert -sign -db filename -file filename -pw password

-label label -target filename
-format ascii | binary -expire days

For the gsk7capicmd command:
-cert -sign -db filename -file filename -pw password

-label label -target filename
-format ascii | binary -expire days -fips
-sigalg md5 | sha1 | sha224 | sha256 | sha384 | sha512

–certreq –create
Create a certificate request:

For the gsk7cmd and runmqckm commands:
-certreq -create -db filename -pw password

-label label -dn distinguished_name
-size 1024 | 512 -file filename

For the gsk7capicmd command:
-certreq -create -db filename -pw password

-label label -dn distinguished_name
-size 2048 | 1024 | 512 -file filename -fips
-sigalg md5 | sha1 | sha224 | sha256 | sha384 | sha512

–certreq –delete
Delete a certificate request:

For the gsk7cmd and runmqckm commands:
-certreq -delete -db filename -pw password -label label

For the gsk7capicmd command:
-certreq -delete -db filename -pw password -label label -fips

–certreq –details
List the detailed information of a specific certificate request:

For the gsk7cmd and runmqckm commands:
-certreq -details -db filename -pw password -label label

For the gsk7capicmd command:
-certreq -details -db filename -pw password -label label -fips

List the detailed information about a certificate request and show the full
certificate request:

Chapter 6. WebSphere MQ control commands 379

|
|

|

|

|
|

|

|

|
|
|
|

|

|

|
|
|
|

|

|

|

|

|

|

Using the gsk7cmd and runmqckm commands:
-certreq -details -showOID -db filename

-pw password -label label

Using the gsk7capicmd command:
-certreq -details -showOID -db filename

-pw password -label label -fips

–certreq –extract
Extract a certificate request from a certificate request database into a file:

For the gsk7cmd and runmqckm commands:
-certreq -extract -db filename -pw password

-label label -target filename

Using the gsk7capicmd command:
-certreq -extract -db filename -pw password

-label label -target filename -fips

–certreq –list
List all certificate requests in the certificate request database:

For the gsk7cmd and runmqckm commands:
-certreq -list -db filename -pw password

Using the gsk7capicmd command:
-certreq -list -db filename -pw password -fips

–certreq –recreate
Recreate a certificate request:

For the gsk7cmd and runmqckm commands:
-certreq -recreate -db filename -pw password

-label label -target filename

Using the gsk7capicmd command:
-certreq -recreate -db filename -pw password

-label label -target filename -fips

Commands for cryptographic device operations
–keydb –changepw

Change the password for a cryptographic device:

Using the gsk7cmd and runmqckm commands:
-keydb -changepw -crypto module_name -tokenlabel token_label

-pw password -new_pw new_password

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-keydb -changepw -db filename -crypto module_name -tokenlabel token_label

-pw password -new_pw new_password -fips -strong

380 WebSphere MQ: System Administration Guide

|

|

|
|

|

|

|
|

|

|

|

|

|
|

|

|
|

|

|

|
|

–keydb –list
List currently-supported types of key database:

Using the gsk7cmd and runmqckm commands:
-keydb -list

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-keydb -list -fips

–cert –add
Add a certificate from a file to a cryptographic device:

Using the gsk7cmd and runmqckm commands:
-cert -add -crypto module_name -tokenlabel token_label

-pw password -label label -file filename -format ascii | binary

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-cert -add -crypto module_name -tokenlabel token_label

-pw password -label label -file filename -format ascii | binary
-fips

–cert –create
Create a self-signed certificate on a cryptographic device:

Using the gsk7cmd and runmqckm commands:
-cert -create -crypto module_name -tokenlabel token_label

-pw password -label label -dn distinguished_name -size 1024 | 512
-x509version 3 | 1 | 2 -default_cert no | yes -expire days

Note: You cannot import a certificate containing multiple OU
(organizational unit) attributes in the distinguished name.
If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:

Chapter 6. WebSphere MQ control commands 381

|

|

|

|

|

|
|
|

|

|

-cert -create -crypto module_name -tokenlabel token_label
-pw password -label label -dn distinguished_name
-size 2048 | 1024 | 512 -x509version 3 | 1 | 2
-default_cert no | yes -expire days
-fips -sigalg md5 | sha1 | sha224 | sha256 | sha384

–cert –delete
Delete a certificate on a cryptographic device:

Using the gsk7cmd and runmqckm commands:
-cert -delete -crypto module_name -tokenlabel token_label

-pw password -label label

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-cert -delete -crypto module_name -tokenlabel token_label

-pw password -label label -fips

–cert –details
List the detailed information for a specific certificate on a cryptographic
device:

Using the gsk7cmd and runmqckm commands:
-cert -details -crypto module_name -tokenlabel token_label

-pw password -label label

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-cert -details -crypto module_name -tokenlabel token_label

-pw password -label label -fips

List the detailed information and show the full certificate for a specific
certificate on a cryptographic device:

Using the gsk7cmd and runmqckm commands:
-cert -details -showOID -crypto module_name -tokenlabel token_label

-pw password -label label

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

382 WebSphere MQ: System Administration Guide

|
|
|
|
|

|

|

|
|

|

|

|
|

|

Using the gsk7capicmd command:
-cert -details -showOID -crypto module_name -tokenlabel token_label

-pw password -label label -fips

–cert –extract
Extract a certificate from a key database:

Using the gsk7cmd and runmqckm commands:
-cert -extract -crypto module_name -tokenlabel token_label

-pw password -label label -target filename -format ascii | binary

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-cert -extract -crypto module_name -tokenlabel token_label

-pw password -label label -target filename -format ascii | binary
-fips

–cert –import
Import a certificate to a cryptographic device with secondary key database
support:

Using the gsk7cmd and runmqckm commands:
-cert -import -db filename -pw password -label label -type cms

-crypto module_name -tokenlabel token_label -pw password
-secondaryDB filename -secondaryDBpw password

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-cert -import -db filename -pw password -label label -type cms

-crypto module_name -tokenlabel token_label -pw password
-secondaryDB filename -secondaryDBpw password -fips

Import a PKCS #12 certificate to a cryptographic device with secondary
key database support:

Using the gsk7cmd and runmqckm commands:
-cert -import -file filename -pw password -type pkcs12

-crypto module_name -tokenlabel token_label -pw password
-secondaryDB filename -secondaryDBpw password

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to

Chapter 6. WebSphere MQ control commands 383

|

|
|

|

|

|
|
|

|

|

|

iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-cert -import -file filename -pw password -type pkcs12

-crypto module_name -tokenlabel token_label -pw password
-secondaryDB filename -secondaryDBpw password -fips

Note: You cannot import a certificate containing multiple OU
(organizational unit) attributes in the distinguished name.

–cert –list
List all certificates on a cryptographic device:

Using the gsk7cmd and runmqckm commands:
-cert -list all | personal | CA

-crypto module_name -tokenlabel token_label -pw password

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-cert -list all | personal | CA

-crypto module_name -tokenlabel token_label -pw password -fips

–cert –receive
Receive a certificate from a file to a cryptographic device with secondary
key database support:

Using the gsk7cmd and runmqckm commands:
-cert -receive -file filename -crypto module_name -tokenlabel token_label

-pw password -default_cert yes | no
-secondaryDB filename -secondaryDBpw password -format ascii | binary

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-cert -receive -file filename -crypto module_name -tokenlabel token_label

-pw password -default_cert yes | no
-secondaryDB filename -secondaryDBpw password -format ascii | binary
-fips

–certreq –create
Create a certificate request on a cryptographic device:

Using the gsk7cmd and runmqckm commands:
-certreq -create -crypto module_name -tokenlabel token_label

-pw password -label label -dn distinguished_name
-size 1024 | 512 -file filename

384 WebSphere MQ: System Administration Guide

|

|

|

|
|

|

|
|
|
|

|

Note: You cannot import a certificate containing multiple OU
(organizational unit) attributes in the distinguished name.
If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-certreq -create -crypto module_name -tokenlabel token_label

-pw password -label label -dn distinguished_name
-size 2048 | 1024 | 512 -file filename -fips
-sigalg md5 | sha1 | sha224 | sha256 | sha384 | sha512

–certreq –delete
Delete a certificate request from a cryptographic device:

Using the gsk7cmd and runmqckm commands:
-certreq -delete -crypto module_name -tokenlabel token_label

-pw password -label label

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-certreq -delete -crypto module_name -tokenlabel token_label

-pw password -label label -fips

–certreq –details
List the detailed information of a specific certificate request on a
cryptographic device:

Using the gsk7cmd and runmqckm commands:
-certreq -details -crypto module_name -tokenlabel token_label

-pw password -label label

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-certreq -details -crypto module_name -tokenlabel token_label

-pw password -label label -fips

List the detailed information about a certificate request and show the full
certificate request on a cryptographic device:

Using the gsk7cmd and runmqckm commands:

Chapter 6. WebSphere MQ control commands 385

|

|
|
|
|

|

|

|
|

|

|

|
|

|

-certreq -details -showOID -crypto module_name -tokenlabel token_label
-pw password -label label

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-certreq -details -showOID -crypto module_name -tokenlabel token_label

-pw password -label label -fips

–certreq –extract
Extract a certificate request from a certificate request database on a
cryptographic device into a file:

Using the gsk7cmd and runmqckm commands:
-certreq -extract -crypto module_name -tokenlabel token_label

-pw password -label label -target filename

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-certreq -extract -crypto module_name -tokenlabel token_label

-pw password -label label -target filename -fips

–certreq –list
List all certificate requests in the certificate request database on a
cryptographic device:

Using the gsk7cmd and runmqckm commands:
-certreq -list -crypto module_name -tokenlabel token_label

-pw password

If you are using certificates or keys stored on PKCS #11 cryptographic
hardware, note that iKeycmd and iKeyman are 32-bit programs. External
modules required for PKCS #11 support will be loaded into a 32-bit
process, therefore you must have a 32-bit PKCS #11 library installed for the
administration of cryptographic hardware, and must specify this library to
iKeycmd or iKeyman. The HP Itanium platform is the only exception, as
the iKeyman program is 64–bit on the HP Itanium platform.

Using the gsk7capicmd command:
-certreq -list -crypto module_name -tokenlabel token_label

-pw password -fips

386 WebSphere MQ: System Administration Guide

|

|
|

|

|

|
|

|

|

|
|

gsk7cmd, runmqckm, and gsk7capicmd options

Table 28 lists the options that can be present on the command line. Note that the
meaning of an option can depend on the object and action specified in the
command.

Table 28. Options that can be used with gsk7cmd, runmqckm , and gsk7capicmd

Option Description

-crypto Name of the module to manage a PKCS #11 cryptographic device.

The value after –crypto is optional if you specify the module name in
the properties file. Properties files are provided for gsk7cmd and
runmqckm only.If you are using certificates or keys stored on PKCS
#11 cryptographic hardware, note that iKeycmd and iKeyman are
32-bit programs. External modules required for PKCS #11 support will
be loaded into a 32-bit process, therefore you must have a 32-bit
PKCS #11 library installed for the administration of cryptographic
hardware, and must specify this library to iKeycmd or iKeyman. The
HP Itanium platform is the only exception, as the iKeyman program
is 64–bit on the HP Itanium platform.

-db Fully qualified path name of a key database.

-default_cert Sets a certificate as the default certificate. The value can be yes or no.
The default is no.

-dn X.500 distinguished name. The value is a string enclosed in double
quotes, for example “CN=John Smith,O=IBM,OU=Test,C=GB”. Note that
the CN, O, and C attributes are required. Note that only the CN
attribute is required.
Note: Avoid using multiple OU attributes in distinguished names
when you create self-signed certificates. When you create such
certificates, only the last entered OU value is accepted into the
certificate.
Note: You can use multiple OU attributes in distinguished names
when you create self-signed certificates. Add additional OU key and
value pairs to the specified distinguished name. For example:
"CN=weblinux.Raleigh.ibm.com,O=ibm,OU=IBM HTTP
Server,OU=GSKit\\, Gold Coast,L=RTP,ST=NC,C=US"

-encryption Strength of encryption used in certificate export command. The value
can be strong or weak. The default is strong.

-expire Expiration time in days of either a certificate or a database password.
The default is 365 days for a certificate password.

There is no default time for a database password: use the -expire
option to set a database password expiration time explicitly.

-file File name of a certificate or certificate request.

-fips specifies that the command is run in FIPS mode. This mode disables
the use of the BSafe cryptographic library. Only the ICC component is
used and this component must be successfully initialized in FIPS
mode. When in FIPS mode, the ICC component uses algorithms that
have been FIPS 140-2 validated. If the ICC component does not
initialize in FIPS mode, the gsk7capicmd command fails.

-format Format of a certificate. The value can be ascii for Base64_encoded
ASCII or binary for Binary DER data. The default is ascii.

-label Label attached to a certificate or certificate request.

-new_format New format of key database (applicable to gsk7cmd and runmqckm
only)..

Chapter 6. WebSphere MQ control commands 387

||

||

||

|
|
|
|
|
|
|
|
|
|

||

||
|

||
|
|
|
|
|
|
|
|
|
|
|
|

||
|

||
|

|
|

||

||
|
|
|
|
|

||
|

||

||
|

Table 28. Options that can be used with gsk7cmd, runmqckm , and
gsk7capicmd (continued)

Option Description

-new_label Used on a certificate import command, this option allows a certificate
to be imported with a different label from the label it had in the
source key database.

-new_pw New database password.

-old_format Old format of key database (applicable to gsk7cmd and runmqckm
only).

-pw Password for the key database or PKCS #12 file.

-secondaryDB Name of a secondary key database for PKCS #11 device operations.

-secondaryDBpw Password for the secondary key database for PKCS #11 device
operations.

-showOID Displays the full certificate or certificate request.

-sigalg The hashing algorithm used during the creation of a certificate
request, a self-signed certificate, or the signing of a certificate. This
hashing algorithm is used to create the signature associated with the
newly-created certificate or certificate request. The value can be md5,
sha1, sha224, sha256, sha384, or sha512. The default is sha1.

-size Key size.

For gsk7cmd, runmqckm, the value can be 512 or 1024. The default is
1024.

For the gsk7capicmd command, the value can be 512, 1024, or 2048.
The default is 1024.

-stash Stash the key database password to a file.

-strong Check that the password entered satisfies the minimum requirements
for the passwords strength. The minimum requirements for a
password are as follows:

v The password must be a minimum length of 14 characters.

v The password must contain a minimum of one lower case
character, one upper case character, and one digit or special
character. Special characters include the asterisk (*), the dollar sign
($), the number sign (#) and the percent sign (%). A space is
classified as a special character.

v Each character can only occur a maximum of three times in a
password.

v A maximum of two consecutive characters in the password can be
identical.

v All characters described above are in the standard ASCII printable
character set within the range from 0x20 to 0x7E inclusive.

-target Destination file or database.

-target_pw Password for the key database if -target specifies a key database.

-target_type Type of database specified by -target operand. See -type option for
permitted values.

-tokenLabel Label of a PKCS #11 cryptographic device.

-trust Trust status of a CA certificate. The value can be enable or disable.
The default is enable.

388 WebSphere MQ: System Administration Guide

|
|

||

||
|
|

||

||
|

||

||

||
|

||

||
|
|
|
|

||

|
|

|
|

||

||
|
|

|

|
|
|
|
|

|
|

|
|

|
|

||

||

||
|

||

||
|

Table 28. Options that can be used with gsk7cmd, runmqckm , and
gsk7capicmd (continued)

Option Description

-type Type of database. The value can be:

v cms for a CMS key database

v pkcs12 for a PKCS #12 file.

-x509version Version of X.509 certificate to create. The value can be 1, 2, or 3. The
default is 3.

Chapter 6. WebSphere MQ control commands 389

|
|

||

||

|

|

||
|
|

390 WebSphere MQ: System Administration Guide

Chapter 7. WebSphere MQ installable services and the API
exit

Installable services and components

This chapter introduces the installable services and the functions and components
associated with them. We document the interface to these functions so that you, or
software vendors, can supply components.

The chapter includes:
v “Why installable services?”
v “Functions and components” on page 392
v “Initialization” on page 394
v “Configuring services and components” on page 394
v “Creating your own service component” on page 396
v “Using multiple service components” on page 397

The installable services interface is described in “Installable services interface
reference information” on page 404.

Why installable services?

The main reasons for providing WebSphere MQ installable services are:
v To provide you with the flexibility of choosing whether to use components

provided by WebSphere MQ products, or replace or augment them with others.
v To allow vendors to participate, by providing components that might use new

technologies, without making internal changes to WebSphere MQ products.
v To allow WebSphere MQ to exploit new technologies faster and cheaper, and so

provide products earlier and at lower prices.

Installable services and service components are part of the WebSphere MQ product
structure. At the center of this structure is the part of the queue manager that
implements the function and rules associated with the Message Queue Interface
(MQI). This central part requires a number of service functions, called installable
services, in order to perform its work. The installable services are:
v Authorization service
v Name service

Each installable service is a related set of functions implemented using one or more
service components. Each component is invoked using a properly-architected,
publicly-available interface. This enables independent software vendors and other
third parties to provide installable components to augment or replace those
provided by the WebSphere MQ products. Table 29 on page 392 summarizes the
services and components that can be used.

© Copyright IBM Corp. 1994, 2009 391

Table 29. Installable service components summary

Installable service Supplied
component

Function Requirements

Authorization
service

Object Authority
Manager (OAM)

Provides authorization
checking on commands
and MQI calls. Users can
write their own
component to augment or
replace the OAM.

(Appropriate platform
authorization facilities
are assumed)

Name service None v User defined

Note: Shared queues
must have their Scope
attribute set to CELL.

v A third-party or
user-written name
manager

Functions and components

Each service consists of a set of related functions. For example, the name service
contains function for:
v Looking up a queue name and returning the name of the queue manager where

the queue is defined
v Inserting a queue name into the service’s directory
v Deleting a queue name from the service’s directory

It also contains initialization and termination functions.

An installable service is provided by one or more service components. Each
component can perform some or all of the functions that are defined for that
service. For example, in WebSphere MQ for AIX, the supplied authorization service
component, the OAM, performs all the available functions. See “Authorization
service interface” on page 401 for more information. The component is also
responsible for managing any underlying resources or software (for example, an
LDAP directory) that it needs to implement the service. Configuration files provide
a standard way of loading the component and determining the addresses of the
functional routines that it provides.

Figure 33 on page 393 shows how services and components are related:
v A service is defined to a queue manager by stanzas in a configuration file.
v Each service is supported by supplied code in the queue manager. Users cannot

change this code and therefore cannot create their own services.
v Each service is implemented by one or more components; these can be supplied

with the product or user-written. Multiple components for a service can be
invoked, each supporting different facilities within the service.

v Entry points connect the service components to the supporting code in the
queue manager.

392 WebSphere MQ: System Administration Guide

Entry-points

Each service component is represented by a list of the entry-point addresses of the
routines that support a particular installable service. The installable service defines
the function to be performed by each routine.

The ordering of the service components when they are configured defines the
order in which entry-points are called in an attempt to satisfy a request for the
service.

In the supplied header file cmqzc.h, the supplied entry points to each service have
an MQZID_ prefix.

Return codes

Service components provide return codes to the queue manager to report on a
variety of conditions. They report the success or failure of the operation, and
indicate whether the queue manager is to proceed to the next service component.
A separate Continuation parameter carries this indication.

Component data

A single service component might require data to be shared between its various
functions. Installable services provide an optional data area to be passed on each
invocation of a given service component. This data area is for the exclusive use of
the service component. It is shared by all the invocations of a given function, even
if they are made from different address spaces or processes. It is guaranteed to be
addressable from the service component whenever it is called. You must declare
the size of this area in the ServiceComponent stanza.

Queue manager
Entry points

to the service

XYZ name service

ABC name service

Service
components

MQZ_INIT_NAME

MQZ_TERM_NAME

MQZ_INSERT_NAME

MQZ_DELETE_NAME

MQZ_LOOKUP_NAME

Service stanza
defines the service

to the queue manager

Supplied or
user-written

code

Figure 33. Understanding services, components, and entry points

Chapter 7. WebSphere MQ installable services and the API exit 393

Initialization

When the component initialization routine is invoked, it must call the queue
manager MQZEP function for each entry-point supported by the component.
MQZEP defines an entry-point to the service. All the undefined exit points are
assumed to be NULL.

Primary initialization

A component is always invoked with this option once, before it is invoked in any
other way.

Secondary initialization

A component can be invoked with this option on certain platforms. For example, it
can be invoked once for each operating system process, thread, or task by which
the service is accessed.

If secondary initialization is used:
v The component can be invoked more than once for secondary initialization. For

each such call, a matching call for secondary termination is issued when the
service is no longer needed.
For naming services this is the MQZ_TERM_NAME call.
For authorization services this is the MQZ_TERM_AUTHORITY call.

v The entry points must be re-specified (by calling MQZEP) each time the
component is called for primary and secondary initialization.

v Only one copy of component data is used for the component; there is not a
different copy for each secondary initialization.

v The component is not invoked for any other calls to the service (from the
operating system process, thread, or task, as appropriate) before secondary
initialization has been carried out.

v The component must set the Version parameter to the same value for primary
and secondary initialization.

Primary termination

The primary termination component is always invoked with this option once,
when it is no longer required. No further calls are made to this component.

Secondary termination

The secondary termination component is invoked with this option, if it has been
invoked for secondary initialization.

Configuring services and components

Configure service components using the queue manager configuration files, except
on Windows systems, where each queue manager has its own stanza in the
Registry. Each service used must have a Service stanza, which defines the service
to the queue manager.

For each component within a service, there must be a ServiceComponent stanza.
This identifies the name and path of the module containing the code for that
component.

394 WebSphere MQ: System Administration Guide

The authorization service component, known as the Object Authority Manager
(OAM), is supplied with the product. When you create a queue manager, the
queue manager configuration file (or the Registry on Windows systems) is
automatically updated to include the appropriate stanzas for the authorization
service and for the default component (the OAM). For the other components, you
must configure the queue manager configuration file manually.

The code for each service component is loaded into the queue manager when the
queue manager is started, using dynamic binding, where this is supported on the
platform.

Service stanza format

The format of the Service stanza is:
Service:

Name=<service_name>
EntryPoints=<entries>

where:

<service_name>
The name of the service. This is defined by the service.

<entries>
The number of entry-points defined for the service. This includes the
initialization and termination entry points.

Service stanza format for Windows systems

On Windows systems, the Service stanza includes a SecurityPolicy attribute.

The format of the stanza is:
Service:

Name=<service_name>
EntryPoints=<entries>
SecurityPolicy=<policy>

where:

<service_name>
The name of the service. This is defined by the service.

<entries>
The number of entry-points defined for the service. This includes the
initialization and termination entry points.

<policy>
NTSIDsRequired (the Windows Security Identifier), or Default. If you do
not specify NTSIDsRequired, the Default value is used. This attribute is
valid only if Name has a value of AuthorizationService.

See also “Configuring authorization service stanzas: Windows systems” on page
400.

Service component stanza format

The format of the Service component stanza is:

Chapter 7. WebSphere MQ installable services and the API exit 395

|

|
|

ServiceComponent:
Service=<service_name>
Name=<component_name>
Module=<module_name>
ComponentDataSize=<size>

where:

<service_name>
The name of the service. This must match the Name specified in a service
stanza.

<component_name>
A descriptive name of the service component. This must be unique, and
contain only the characters that are valid for the names of WebSphere MQ
objects (for example, queue names). This name occurs in operator messages
generated by the service. We recommend that you use a name starting
with a company trademark or similar distinguishing string.

<module_name>
The name of the module to contain the code for this component. Specify a
full path name.

<size> The size in bytes of the component data area passed to the component on
each call. Specify zero if no component data is required.

These two stanzas can appear in any order and the stanza keys under them can
also appear in any order. For either of these stanzas, all the stanza keys must be
present. If a stanza key is duplicated, the last one is used.

At startup time, the queue manager processes each service component entry in the
configuration file in turn. It then loads the specified component module, invoking
the entry-point of the component (which must be the entry-point for initialization
of the component), passing it a configuration handle.

Creating your own service component

To create your own service component:
v For all platforms, ensure that the header file cmqzc.h is included in your

program.
v For UNIX systems: Create the shared library by compiling the program and

linking it with the shared libraries libmqm* and libmqmzf*. (The threading
suffixes and file extensions vary by platform.)

Note: Because the agent can run in a threaded environment, you must build the
OAM and Name Service to run in a threaded environment. This includes using
the threaded versions of libmqm and libmqmzf.

v For Windows: Create a DLL by compiling the program, and linking it with the
libraries MQM.LIB and MQMZF.LIB.
See the WebSphere MQ Application Programming Guide for details of how to
compile and link code for shared libraries.

v Add stanzas to the queue manager configuration file to define the service to the
queue manager and to specify the location of the module. Refer to the
individual chapters for each service, for more information.

v Stop and restart the queue manager to activate the component.

396 WebSphere MQ: System Administration Guide

Using multiple service components

You can install more than one component for a given service. This allows
components to provide only partial implementations of the service, and to rely on
other components to provide the remaining functions.

Example of using multiple components

Suppose you create two a name services components called ABC_name_serv and
XYZ_name_serv.

ABC_name_serv
This component supports inserting a name in, or deleting a name from, the
service directory, but does not support looking up a queue name.

XYZ_name_serv
This component supports looking up a queue name, but does not support
inserting a name in, or deleting a name from, the service directory.

What the components do:

Component ABC_name_serv holds a database of queue names, and uses two simple
algorithms to either insert, or delete, a name from the service directory.

Component XYZ_name_serv uses a simple algorithm that returns a fixed
queue-manager name for any queue name with which it is invoked. It does not
hold a database of queue names, and therefore does not support the insert and
delete functions.

How the component is used:

The components are installed on the same queue manager. The ServiceComponent
stanzas are ordered so that component ABC_name_serv is invoked first. Any calls to
insert or delete a queue in a component directory are handled by component
ABC_name_serv; it is the only one that implements these functions. However, a
lookup call that component ABC_name_serv cannot resolve is passed on to the
lookup-only component, XYZ_name_serv. This component supplies a
queue-manager name from its simple algorithm.

Omitting entry points when using multiple components

If you decide to use multiple components to provide a service, you can design a
service component that does not implement certain functions. The installable
services framework places no restrictions on which you can omit. However, for
specific installable services, omission of one or more functions might be logically
inconsistent with the purpose of the service.

Example of entry points used with multiple components

Table 30 on page 398 shows an example of the installable name service for which
the two components have been installed. Each supports a different set of functions
associated with this particular installable service. For insert function, the ABC
component entry-point is invoked first. Entry points that have not been defined to
the service (using MQZEP) are assumed to be NULL. An entry-point for
initialization is provided in the table, but this is not required because initialization
is carried out by the main entry-point of the component.

Chapter 7. WebSphere MQ installable services and the API exit 397

When the queue manager has to use an installable service, it uses the entry-points
defined for that service (the columns in Table 30). Taking each component in turn,
the queue manager determines the address of the routine that implements the
required function. It then calls the routine, if it exists. If the operation is successful,
any results and status information are used by the queue manager.

Table 30. Example of entry-points for an installable service

Function number ABC name service
component

XYZ name service
component

MQZID_INIT_NAME
(Initialize)

ABC_initialize() XYZ_initialize()

MQZID_TERM_NAME
(Terminate)

ABC_terminate() XYZ_terminate()

MQZID_INSERT_NAME
(Insert)

ABC_Insert() NULL

MQZID_DELETE_NAME
(Delete)

ABC_Delete() NULL

MQZID_LOOKUP_NAME
(Lookup)

NULL XYZ_Lookup()

If the routine does not exist, the queue manager repeats this process for the next
component in the list. In addition, if the routine does exist but returns a code
indicating that it could not perform the operation, the attempt continues with the
next available component. Routines in service components might return a code that
indicates that no further attempts to perform the operation should be made.

Authorization service

The authorization service is an installable service that enables queue managers to
invoke authorization facilities, for example, checking that a user ID has authority
to open a queue.

This service is a component of the WebSphere MQ security enabling interface (SEI),
which is part of the WebSphere MQ framework.

This chapter discusses:
v “Object authority manager (OAM)”
v “Authorization service on UNIX systems” on page 399
v “Authorization service on Windows systems” on page 400
v “Authorization service interface” on page 401

Object authority manager (OAM)

The authorization service component supplied with the WebSphere MQ products is
called the Object Authority Manager (OAM). By default, the OAM is active and
works with the control commands dspmqaut (display authority),dmpmqaut
(dump authority), and setmqaut (set or reset authority).

The syntax of these commands and how to use them are described in “The control
commands” on page 276.

398 WebSphere MQ: System Administration Guide

The OAM works with the entity of a principal or group. These entities vary from
platform to platform.

When an MQI request is made or a command is issued, the OAM checks the
authorization of the entity associated with the operation to see whether it can:
v Perform the requested operation.
v Access the specified queue manager resources.

The authorization service enables you to augment or replace the authority checking
provided for queue managers by writing your own authorization service
component.

Defining the service to the operating system

The authorization service stanzas in the queue manager configuration file qm.ini
(or Registry on Windows systems), define the authorization service to the queue
manager. See “Configuring services and components” on page 394 for information
about the types of stanza.

Refreshing the OAM after changing a user’s authorization

In WebSphere MQ, you can update the OAM’s authorization group information
immediately after changing a user’s authorization group membership, reflecting
changes made at the operating system level, without needing to stop and restart
the queue manager.

Note: When you change authorizations with the setmqaut command, the OAM
implements such changes immediately.
Queue managers store authorization data on a local queue called
SYSTEM.AUTH.DATA.QUEUE. This data is managed by amqzfuma.exe.

Migrating from MQSeries Version 5.1

All authorization data is migrated from the authorization files to the authorization
queue the first time that you restart the queue manager after migrating from
MQSeries Version 5.1. If the OAM detects a missing file:
1. If the authorization applies to a single object, the OAM gives the mqm group

(or Administrator on Windows systems) access to the object and continues with
the migration. Message AMQ5528 is written to the queue manager’s error log.
Refer to WebSphere MQ Messages for more information about message
AMQ5528.

2. If the authorization applies to a class of objects, the OAM stops the migration.
The queue manager does not start until the file has been replaced.

Authorization service on UNIX systems

On these platforms:

Principal
Is a UNIX system user ID, or an ID associated with an application program
running on behalf of a user.

Group Is a UNIX system-defined collection of principals.

Authorizations can be granted or revoked at the group level only. A request to
grant or revoke a user’s authority updates the primary group for that user.

Chapter 7. WebSphere MQ installable services and the API exit 399

Configuring authorization service stanzas: UNIX systems

On UNIX systems, each queue manager has its own queue manager configuration
file.

For example, on AIX, the default path and file name of the queue manager
configuration file for queue manager QMNAME is /var/mqm/qmgrs/QMNAME/qm.ini.

The Service stanza and the ServiceComponent stanza for the default authorization
component are added to qm.ini automatically, but can be overridden by mqsnoaut.
Any other ServiceComponent stanzas must be added manually.

For example, the following stanzas in the queue manager configuration file define
two authorization service components on WebSphere MQ for AIX:

The service component stanza (MQSeries.UNIX.auth.service) defines the default
authorization service component, the OAM. If you remove this stanza and restart
the queue manager, the OAM is disabled and no authorization checks are made.

Authorization service on Windows systems

On Windows systems:

Principal
Is a Windows user ID, or an ID associated with an application program
running on behalf of a user.

Group Is a Windows group.

Authorizations can be granted or revoked at the principal or group level.

Configuring authorization service stanzas: Windows systems
On WebSphere MQ for Windows each queue manager has its own stanza in the
registry.

The Service stanza and the ServiceComponent stanza for the default authorization
component are added to the Registry automatically, but can be overridden using
mqsnoaut. Any other ServiceComponent stanzas must be added manually.

You can also add the SecurityPolicy attribute using the WebSphere MQ services.
The SsecurityPolicy attribute applies only if the service specified on the Service

Service:
Name=AuthorizationService
EntryPoints=13

ServiceComponent:
Service=AuthorizationService
Name=MQSeries.UNIX.auth.service
Module=/usr/mqm/lib/amqzfu
ComponentDataSize=0

ServiceComponent:
Service=AuthorizationService
Name=user.defined.authorization.service
Module=/usr/bin/udas01
ComponentDataSize=96

Figure 34. UNIX authorization service stanzas in qm.ini

400 WebSphere MQ: System Administration Guide

stanza is the authorization service, that is, the default OAM. The SecurityPolicy
attribute allows you to specify the security policy for each queue manager. The
possible values are:

Default
Specify Default if you want the default security policy to take effect. If a
Windows security identifier (NT SID) is not passed to the OAM for a
particular user ID, an attempt is made to obtain the appropriate SID by
searching the relevant security databases.

NTSIDsRequired
Requires that an NT SID is passed to the OAM when performing security
checks.

For information about the Service stanza format, see “Service stanza format for
Windows systems” on page 395. For more general information about security, see
“WebSphere MQ security” on page 119.

The service component stanza, MQSeries.WindowsNT.auth.service defines the
default authorization service component, the OAM. If you remove this stanza and
restart the queue manager, the OAM is disabled and no authorization checks are
made.

Authorization service interface

The authorization service provides the following entry points for use by the queue
manager:

MQZ_AUTHENTICATE_USER
Authenticates a user ID and password, and can set identity context fields.

MQZ_CHECK_AUTHORITY
Checks whether an entity has authority to perform one or more operations
on a specified object.

MQZ_COPY_ALL_AUTHORITY
Copies all the current authorizations that exist for a referenced object to
another object.

MQZ_DELETE_AUTHORITY
Deletes all authorizations associated with a specified object.

MQZ_ENUMERATE_AUTHORITY_DATA
Retrieves all the authority data that matches the selection criteria specified.

MQZ_FREE_USER
Frees associated allocated resources.

MQZ_GET_AUTHORITY
Gets the authority that an entity has to access a specified object.

MQZ_GET_EXPLICIT_AUTHORITY
Gets either the authority that a named group has to access a specified
object (but without the additional authority of the nobody group) or the
authority that the primary group of the named principal has to access a
specified object.

MQZ_INIT_AUTHORITY
Initializes authorization service component.

MQZ_INQUIRE
Queries the supported functionality of the authorization service.

Chapter 7. WebSphere MQ installable services and the API exit 401

|
|
|

MQZ_REFRESH_CACHE
Refresh all authorizations.

MQZ_SET_AUTHORITY
Sets the authority that an entity has to a specified object.

MQZ_TERM_AUTHORITY
Terminates authorization service component.

In addition, on WebSphere MQ for Windows, the authorization service provides
the following entry points for use by the queue manager:
v MQZ_CHECK_AUTHORITY_2

v MQZ_GET_AUTHORITY_2

v MQZ_GET_EXPLICIT_AUTHORITY_2

v MQZ_SET_AUTHORITY_2

These entry points support the use of the Windows Security Identifier (NT SID).

These names are defined as typedefs, in the header file cmqzc.h, which can be used
to prototype the component functions.

The initialization function (MQZ_INIT_AUTHORITY) must be the main entry
point for the component. The other functions are invoked through the entry point
address that the initialization function has added into the component entry point
vector.

See “Creating your own service component” on page 396 for more information.

Name service

The name service is an installable service that provides support to the queue
manager for looking up the name of the queue manager that owns a specified
queue. No other queue attributes can be retrieved from a name service.

The name service enables an application to open remote queues for output as if
they were local queues. A name service is not invoked for objects other than
queues.

Note: The remote queues must have their Scope attribute set to CELL.

When an application opens a queue, it looks for the name of the queue first in the
queue manager’s directory. If it does not find it there, it looks in as many name
services as have been configured, until it finds one that recognizes the queue
name. If none recognizes the name, the open fails.

The name service returns the owning queue manager for that queue. The queue
manager then continues with the MQOPEN request as if the command had
specified the queue and queue manager name in the original request.

The name service interface (NSI) is part of the WebSphere MQ framework.

This chapter discusses:
v “How the name service works” on page 403

402 WebSphere MQ: System Administration Guide

How the name service works

If a queue definition specifies the Scope attribute as queue manager, that is,
SCOPE(QMGR) in MQSC, the queue definition (along with all the queue
attributes) is stored in the queue manager’s directory only. This cannot be replaced
by an installable service.

If a queue definition specifies the Scope attribute as cell, that is, SCOPE(CELL) in
MQSC, the queue definition is again stored in the queue manager’s directory,
along with all the queue attributes. However, the queue and queue-manager name
are also stored in a name service. If no service is available that can store this
information, a queue with the Scope cell cannot be defined.

The directory in which the information is stored can be managed by the service, or
the service can use an underlying service, for example, an LDAP directory, for this
purpose. In either case, definitions stored in the directory must persist, even after
the component and queue manager have terminated, until they are explicitly
deleted.

Note:

1. To send a message to a remote host’s local queue definition (with a scope of
CELL) on a different queue manager within a naming directory cell, you need
to define a channel.

2. You cannot get messages directly from the remote queue, even when it has a
scope of CELL.

3. No remote queue definition is required when sending to a queue with a scope
of CELL.

4. The naming service centrally defines the destination queue, although you still
need a transmission queue to the destination queue manager and a pair of
channel definitions. In addition, the transmission queue on the local system
must have the same name as the queue manager owning the target queue, with
the scope of cell, on the remote system.
For example, if the remote queue manager has the name QM01, the
transmission queue on the local system must also have the name QM01. See
WebSphere MQ Intercommunication for further information.

Name service interface

A name service provides the following entry points for use by the queue manager:

MQZ_INIT_NAME
Initialize the name service component.

MQZ_TERM_NAME
Terminate the name service component.

MQZ_LOOKUP_NAME
Look up the queue-manager name for the specified queue.

MQZ_INSERT_NAME
Insert an entry containing the owning queue-manager name for the
specified queue into the directory used by the service.

MQZ_DELETE_NAME
Delete the entry for the specified queue from the directory used by the
service.

Chapter 7. WebSphere MQ installable services and the API exit 403

If there is more than one name service configured:
v For lookup, the MQZ_LOOKUP_NAME function is invoked for each service in

the list until the queue name is resolved (unless any component indicates that
the search should stop).

v For insert, the MQZ_INSERT_NAME function is invoked for the first service in
the list that supports this function.

v For delete, the MQZ_DELETE_NAME function is invoked for the first service in
the list that supports this function.

Do not have more than one component that supports the insert and delete
functions. However, a component that only supports lookup is feasible, and could
be used, for example, as the last component in the list to resolve any name that is
not known by any other name service component to a queue manager at which the
name can be defined.

In the C programming language the names are defined as function datatypes using
the typedef statement. These can be used to prototype the service functions, to
ensure that the parameters are correct.

The header file that contains all the material specific to installable services is
cmqzc.h for the C language.

Apart from the initialization function (MQZ_INIT_NAME), which must be the
component’s main entry point, functions are invoked by the entry point address
that the initialization function has added, using the MQZEP call.

The following examples of UNIX configuration file stanzas for the name service
specify a name service component provided by the (fictitious) ABC company.

Note: On Windows systems, name service stanza information is stored in the
Registry.

Installable services interface reference information
This collection of topics provides reference information for the installable services.

The functions and data types are listed in alphabetic order within the group for
each service type.

How the functions are shown

For each function there is a description, including the function identifier (for
MQZEP).

Stanza for name service
Service:

Name=NameService
EntryPoints=5

Stanza for name service component, provided by ABC
ServiceComponent:

Service=NameService
Name=ABC.Name.Service
Module=/usr/lib/abcname
ComponentDataSize=1024

Figure 35. Name service stanzas in qm.ini (for UNIX systems)

404 WebSphere MQ: System Administration Guide

The parameters are shown listed in the order they must occur. They must all be
present.

Parameters and data types

Each parameter name is followed by its data type in parentheses. These are the
elementary data types described in the WebSphere MQ Application Programming
Reference manual.

The C language invocation is also given, after the description of the parameters.

MQZEP – Add component entry point
This function is invoked by a service component, during initialization, to add an
entry point to the entry point vector for that service component.

Syntax

MQZEP(Hconfig, Function, EntryPoint, CompCode, Reason)

C invocation
MQZEP (Hconfig, Function, EntryPoint, &CompCode, &Reason);

Declare the parameters as follows:
MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Function; /* Function identifier */
PMQFUNC EntryPoint; /* Function entry point */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

Hconfig (MQHCONFIG) – input

Configuration handle.

This handle represents the component which is being configured for this particular
installable service. It must be the same as the one passed to the component
configuration function by the queue manager on the component initialization call.

Function (MQLONG) – input

Function identifier.

Valid values for this are defined for each installable service.

If MQZEP is called more than once for the same function, the last call made
provides the entry point which is used.

EntryPoint (PMQFUNC) – input

Function entry point.

This is the address of the entry point provided by the component to perform the
function.

Chapter 7. WebSphere MQ installable services and the API exit 405

The value NULL is valid, and indicates that the function is not provided by this
component. NULL is assumed for entry points which are not defined using
MQZEP.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_FUNCTION_ERROR
(2281, X’8E9’) Function identifier not valid.

MQRC_HCONFIG_ERROR
(2280, X’8E8’) Configuration handle not valid.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

MQZ_AUTHENTICATE_USER – Authenticate user
This function is provided by an MQZAS_VERSION_5 authorization service
component, and is invoked by the queue manager to authenticate a user, or to set
identity context fields. It is invoked when WebSphere MQ’s user application
context is established.

The application context is established during connect calls at the point where the
application’s user context is initialized, and at each point where the application’s
user context is changed. Each time a connect call is made, the application’s user
context information is reacquired in the IdentityContext field.

The function identifier for this function (for MQZEP) is
MQZID_AUTHENTICATE_USER.

Syntax

MQZ_AUTHENTICATE_USER(QMgrName, SecurityParms, ApplicationContext,
IdentityContext, CorrelationPtr, ComponentData, Continuation, CompCode,
Reason)

406 WebSphere MQ: System Administration Guide

C invocation
MQZ_AUTHENTICATE_USER (QMgrName, SecurityParms, ApplicationContext,

IdentityContext, &CorrelationPtr, ComponentData,
&Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCSP SecurityParms; /* Security parameters */
MQZAC ApplicationContext; /* Application context */
MQZIC IdentityContext; /* Identity context */
MQPTR CorrelationPtr; /* Correlation pointer */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

SecurityParms (MQCSP) – input

Security parameters.

Data relating to the user ID, password, and authentication type. If the
AuthenticationType attribute of the MQCSP structure is specified as
MQCSP_AUTH_USER_ID_AND_PWD, both the user ID and password are
compared against the equivalent fields in the IdentityContext (MQZIC) parameter
to determine whether they match. For more information, see the WebSphere MQ
Application Programming Reference.

During an MQCONN MQI call this parameter contains null, or default values.

ApplicationContext (MQZAC) – input

Application context.

Data relating to the calling application. See “MQZAC – Application context” on
page 457 for details.

During every MQCONN or MQCONNX MQI call, the user context information in
the MQZAC structure is reacquired.

IdentityContext (MQZIC) – input/output

Identity context.

Chapter 7. WebSphere MQ installable services and the API exit 407

On input to the authenticate user function, this identifies the current identity
context. The authenticate user function can change this, at which point the queue
manager adopts the new identity context. See “MQZIC – Identity context” on page
464 for more details on the MQZIC structure.

CorrelationPtr (MQPTR) – output

Correlation pointer.

Specifies the address of any correlation data. This pointer is subsequently passed
on to other OAM calls.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output

Continuation flag.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on other components.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

408 WebSphere MQ: System Administration Guide

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

MQZ_CHECK_AUTHORITY – Check authority
This function is provided by a MQZAS_VERSION_1 authorization service
component, and is invoked by the queue manager to check whether an entity has
authority to perform a particular action, or actions, on a specified object.

The function identifier for this function (for MQZEP) is
MQZID_CHECK_AUTHORITY.

Syntax

MQZ_CHECK_AUTHORITY(QMgrName, EntityName, EntityType, ObjectName,
ObjectType, Authority, ComponentData, Continuation, CompCode, Reason)

C invocation
MQZ_CHECK_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,

ObjectType, Authority, ComponentData,
&Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority to be checked */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

EntityName (MQCHAR12) – input

Entity name.

The name of the entity whose authorization to the object is to be checked. The
maximum length of the string is 12 characters; if it is shorter than that it is padded
to the right with blanks. The name is not terminated by a null character.

Chapter 7. WebSphere MQ installable services and the API exit 409

It is not essential for this entity to be known to the underlying security service. If it
is not known, the authorizations of the special nobody group (to which all entities
are assumed to belong) are used for the check. An all-blank name is valid and can
be used in this way.

EntityType (MQLONG) – input

Entity type.

The type of entity specified by EntityName. It is one of the following:

MQZAET_PRINCIPAL
Principal.

MQZAET_GROUP
Group.

ObjectName (MQCHAR48) – input

Object name.

The name of the object to which access is required. The maximum length of the
string is 48 characters; if it is shorter than that it is padded to the right with
blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input

Object type.

The type of entity specified by ObjectName. It is one of the following:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel.

MQOT_CLNTCONN_CHANNEL
Client connection channel.

MQOT_LISTENER
Listener.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

410 WebSphere MQ: System Administration Guide

Authority (MQLONG) – input

Authority to be checked.

If one authorization is being checked, this field is equal to the appropriate
authorization operation (MQZAO_* constant). If more than one authorization is
being checked, it is the bitwise OR of the corresponding MQZAO_* constants.

The following authorizations apply to use of the MQI calls:

MQZAO_CONNECT
Ability to use the MQCONN call.

MQZAO_BROWSE
Ability to use the MQGET call with a browse option.

This allows the MQGMO_BROWSE_FIRST,
MQGMO_BROWSE_MSG_UNDER_CURSOR, or
MQGMO_BROWSE_NEXT option to be specified on the MQGET call.

MQZAO_INPUT
Ability to use the MQGET call with an input option.

This allows the MQOO_INPUT_SHARED, MQOO_INPUT_EXCLUSIVE, or
MQOO_INPUT_AS_Q_DEF option to be specified on the MQOPEN call.

MQZAO_OUTPUT
Ability to use the MQPUT call.

This allows the MQOO_OUTPUT option to be specified on the MQOPEN
call.

MQZAO_INQUIRE
Ability to use the MQINQ call.

This allows the MQOO_INQUIRE option to be specified on the MQOPEN
call.

MQZAO_SET
Ability to use the MQSET call.

This allows the MQOO_SET option to be specified on the MQOPEN call.

MQZAO_PASS_IDENTITY_CONTEXT
Ability to pass identity context.

This allows the MQOO_PASS_IDENTITY_CONTEXT option to be specified
on the MQOPEN call, and the MQPMO_PASS_IDENTITY_CONTEXT
option to be specified on the MQPUT and MQPUT1 calls.

MQZAO_PASS_ALL_CONTEXT
Ability to pass all context.

This allows the MQOO_PASS_ALL_CONTEXT option to be specified on
the MQOPEN call, and the MQPMO_PASS_ALL_CONTEXT option to be
specified on the MQPUT and MQPUT1 calls.

MQZAO_SET_IDENTITY_CONTEXT
Ability to set identity context.

This allows the MQOO_SET_IDENTITY_CONTEXT option to be specified
on the MQOPEN call, and the MQPMO_SET_IDENTITY_CONTEXT option
to be specified on the MQPUT and MQPUT1 calls.

Chapter 7. WebSphere MQ installable services and the API exit 411

MQZAO_SET_ALL_CONTEXT
Ability to set all context.

This allows the MQOO_SET_ALL_CONTEXT option to be specified on the
MQOPEN call, and the MQPMO_SET_ALL_CONTEXT option to be
specified on the MQPUT and MQPUT1 calls.

MQZAO_ALTERNATE_USER_AUTHORITY
Ability to use alternate user authority.

This allows the MQOO_ALTERNATE_USER_AUTHORITY option to be
specified on the MQOPEN call, and the
MQPMO_ALTERNATE_USER_AUTHORITY option to be specified on the
MQPUT1 call.

MQZAO_ALL_MQI
All of the MQI authorizations.

This enables all of the authorizations described above.

The following authorizations apply to administration of a queue manager:

MQZAO_CREATE
Ability to create objects of a specified type.

MQZAO_DELETE
Ability to delete a specified object.

MQZAO_DISPLAY
Ability to display the attributes of a specified object.

MQZAO_CHANGE
Ability to change the attributes of a specified object.

MQZAO_CLEAR
Ability to delete all messages from a specified queue.

MQZAO_AUTHORIZE
Ability to authorize other users for a specified object.

MQZAO_CONTROL
Ability to start or stop a listener, service, or non-client channel object, and
the ability to ping a non-client channel object.

MQZAO_CONTROL_EXTENDED
Ability to reset a sequence number, or resolve an indoubt message on a
non-client channel object.

MQZAO_ALL_ADMIN
All of the administration authorizations, other than MQZAO_CREATE.

The following authorizations apply to both use of the MQI and to administration
of a queue manager:

MQZAO_ALL
All authorizations, other than MQZAO_CREATE.

MQZAO_NONE
No authorizations.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

412 WebSphere MQ: System Administration Guide

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output

Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_NOT_AUTHORIZED
(2035, X’7F3’) Not authorized for access.

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

Chapter 7. WebSphere MQ installable services and the API exit 413

MQZ_CHECK_AUTHORITY_2 – Check authority (extended)
This function is provided by a MQZAS_VERSION_2 authorization service
component, and is invoked by the queue manager to check whether an entity has
authority to perform a particular action, or actions, on a specified object.

The function identifier for this function (for MQZEP) is
MQZID_CHECK_AUTHORITY.

MQZ_CHECK_AUTHORITY_2 is similar to MQZ_CHECK_AUTHORITY, but with
the EntityName parameter replaced by the EntityData parameter.

Syntax

MQZ_CHECK_AUTHORITY_2(QMgrName, EntityData, EntityType, ObjectName,
ObjectType, Authority, ComponentData, Continuation, CompCode, Reason)

C invocation
MQZ_CHECK_AUTHORITY_2 (QMgrName, &EntityData, EntityType,

ObjectName, ObjectType, Authority, ComponentData,
&Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQZED EntityData; /* Entity data */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority to be checked */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

EntityData (MQZED) – input

Entity data.

Data relating to the entity whose authorization to the object is to be checked. See
“MQZED – Entity descriptor” on page 462 for details.

414 WebSphere MQ: System Administration Guide

It is not essential for this entity to be known to the underlying security service. If it
is not known, the authorizations of the special nobody group (to which all entities
are assumed to belong) are used for the check. An all-blank name is valid and can
be used in this way.

EntityType (MQLONG) – input

Entity type.

The type of entity specified by EntityData. It is one of the following:

MQZAET_PRINCIPAL
Principal.

MQZAET_GROUP
Group.

ObjectName (MQCHAR48) – input

Object name.

The name of the object to which access is required. The maximum length of the
string is 48 characters; if it is shorter than that it is padded to the right with
blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input

Object type.

The type of entity specified by ObjectName. It is one of the following:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel.

MQOT_CLNTCONN_CHANNEL
Client connection channel.

MQOT_LISTENER
Listener.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

MQOT_TOPIC
Topics.

Chapter 7. WebSphere MQ installable services and the API exit 415

Authority (MQLONG) – input

Authority to be checked.

If one authorization is being checked, this field is equal to the appropriate
authorization operation (MQZAO_* constant). If more than one authorization is
being checked, it is the bitwise OR of the corresponding MQZAO_* constants.

The following authorizations apply to use of the MQI calls:

MQZAO_CONNECT
Ability to use the MQCONN call.

MQZAO_BROWSE
Ability to use the MQGET call with a browse option.

This allows the MQGMO_BROWSE_FIRST,
MQGMO_BROWSE_MSG_UNDER_CURSOR, or
MQGMO_BROWSE_NEXT option to be specified on the MQGET call.

MQZAO_INPUT
Ability to use the MQGET call with an input option.

This allows the MQOO_INPUT_SHARED, MQOO_INPUT_EXCLUSIVE, or
MQOO_INPUT_AS_Q_DEF option to be specified on the MQOPEN call.

MQZAO_OUTPUT
Ability to use the MQPUT call.

This allows the MQOO_OUTPUT option to be specified on the MQOPEN
call.

MQZAO_INQUIRE
Ability to use the MQINQ call.

This allows the MQOO_INQUIRE option to be specified on the MQOPEN
call.

MQZAO_SET
Ability to use the MQSET call.

This allows the MQOO_SET option to be specified on the MQOPEN call.

MQZAO_PASS_IDENTITY_CONTEXT
Ability to pass identity context.

This allows the MQOO_PASS_IDENTITY_CONTEXT option to be specified
on the MQOPEN call, and the MQPMO_PASS_IDENTITY_CONTEXT
option to be specified on the MQPUT and MQPUT1 calls.

MQZAO_PASS_ALL_CONTEXT
Ability to pass all context.

This allows the MQOO_PASS_ALL_CONTEXT option to be specified on
the MQOPEN call, and the MQPMO_PASS_ALL_CONTEXT option to be
specified on the MQPUT and MQPUT1 calls.

MQZAO_SET_IDENTITY_CONTEXT
Ability to set identity context.

This allows the MQOO_SET_IDENTITY_CONTEXT option to be specified
on the MQOPEN call, and the MQPMO_SET_IDENTITY_CONTEXT option
to be specified on the MQPUT and MQPUT1 calls.

416 WebSphere MQ: System Administration Guide

MQZAO_SET_ALL_CONTEXT
Ability to set all context.

This allows the MQOO_SET_ALL_CONTEXT option to be specified on the
MQOPEN call, and the MQPMO_SET_ALL_CONTEXT option to be
specified on the MQPUT and MQPUT1 calls.

MQZAO_ALTERNATE_USER_AUTHORITY
Ability to use alternate user authority.

This allows the MQOO_ALTERNATE_USER_AUTHORITY option to be
specified on the MQOPEN call, and the
MQPMO_ALTERNATE_USER_AUTHORITY option to be specified on the
MQPUT1 call.

MQZAO_ALL_MQI
All of the MQI authorizations.

This enables all of the authorizations described above.

The following authorizations apply to administration of a queue manager:

MQZAO_CREATE
Ability to create objects of a specified type.

MQZAO_DELETE
Ability to delete a specified object.

MQZAO_DISPLAY
Ability to display the attributes of a specified object.

MQZAO_CHANGE
Ability to change the attributes of a specified object.

MQZAO_CLEAR
Ability to delete all messages from a specified queue.

MQZAO_AUTHORIZE
Ability to authorize other users for a specified object.

MQZAO_CONTROL
Ability to start or stop a listener, service, or non-client channel object, and
the ability to ping a non-client channel object.

MQZAO_CONTROL_EXTENDED
Ability to reset a sequence number, or resolve an indoubt message on a
non-client channel object.

MQZAO_ALL_ADMIN
All of the administration authorizations, other than MQZAO_CREATE.

The following authorizations apply to both use of the MQI and to administration
of a queue manager:

MQZAO_ALL
All authorizations, other than MQZAO_CREATE.

MQZAO_NONE
No authorizations.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

Chapter 7. WebSphere MQ installable services and the API exit 417

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output

Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY_2 this has the same effect as
MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_NOT_AUTHORIZED
(2035, X’7F3’) Not authorized for access.

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

418 WebSphere MQ: System Administration Guide

MQZ_COPY_ALL_AUTHORITY – Copy all authority
This function is provided by an authorization service component. It is invoked by
the queue manager to copy all of the authorizations that are currently in force for a
reference object to another object.

The function identifier for this function (for MQZEP) is
MQZID_COPY_ALL_AUTHORITY.

Syntax

MQZ_COPY_ALL_AUTHORITY(QMgrName, RefObjectName, ObjectName, ObjectType,
ComponentData, Continuation, CompCode, Reason)

C invocation
MQZ_COPY_ALL_AUTHORITY (QMgrName, RefObjectName, ObjectName, ObjectType,

ComponentData, &Continuation, &CompCode,
&Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR48 RefObjectName; /* Reference object name */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

RefObjectName (MQCHAR48) – input

Reference object name.

The name of the reference object, the authorizations for which are to be copied.
The maximum length of the string is 48 characters; if it is shorter than that it is
padded to the right with blanks. The name is not terminated by a null character.

ObjectName (MQCHAR48) – input

Object name.

The name of the object for which accesses are to be set. The maximum length of
the string is 48 characters; if it is shorter than that it is padded to the right with
blanks. The name is not terminated by a null character.

Chapter 7. WebSphere MQ installable services and the API exit 419

ObjectType (MQLONG) – input

Object type.

The type of object specified by RefObjectName and ObjectName. It is one of the
following:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel.

MQOT_CLNTCONN_CHANNEL
Client connection channel.

MQOT_LISTENER
Listener.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

MQOT_TOPIC
Topic.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output

Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_COPY_ALL_AUTHORITY this has the same effect as
MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

420 WebSphere MQ: System Administration Guide

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

MQRC_UNKNOWN_REF_OBJECT
(2294, X’8F6’) Reference object unknown.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

MQZ_DELETE_AUTHORITY – Delete authority
This function is provided by an authorization service component, and is invoked
by the queue manager to delete all of the authorizations associated with the
specified object.

The function identifier for this function (for MQZEP) is
MQZID_DELETE_AUTHORITY.

Syntax

MQZ_DELETE_AUTHORITY(QMgrName, ObjectName, ObjectType,ComponentData,
Continuation, CompCode, Reason)

C invocation
MQZ_DELETE_AUTHORITY (QMgrName, ObjectName, ObjectType, ComponentData,

&Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */

Chapter 7. WebSphere MQ installable services and the API exit 421

MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

ObjectName (MQCHAR48) – input

Object name.

The name of the object for which accesses are to be deleted. The maximum length
of the string is 48 characters; if it is shorter than that it is padded to the right with
blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input

Object type.

The type of entity specified by ObjectName. It is one of the following:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel.

MQOT_CLNTCONN_CHANNEL
Client connection channel.

MQOT_LISTENER
Listener.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

422 WebSphere MQ: System Administration Guide

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output

Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_DELETE_AUTHORITY this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

Chapter 7. WebSphere MQ installable services and the API exit 423

MQZ_ENUMERATE_AUTHORITY_DATA – Enumerate authority
data

This function is provided by an MQZAS_VERSION_4 authorization service
component, and is invoked repeatedly by the queue manager to retrieve all of the
authority data that matches the selection criteria specified on the first invocation.

The function identifier for this function (for MQZEP) is
MQZID_ENUMERATE_AUTHORITY_DATA.

Syntax

MQZ_ENUMERATE_AUTHORITY_DATA(QMgrName, StartEnumeration, Filter,
AuthorityBufferLength, AuthorityBuffer, AuthorityDataLength, ComponentData,
Continuation, CompCode, Reason)

C invocation
MQZ_ENUMERATE_AUTHORITY_DATA (QMgrName, StartEnumeration, &Filter,

AuthorityBufferLength,
&AuthorityBuffer,
&AuthorityDataLength, ComponentData,
&Continuation, &CompCode,
&Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQLONG StartEnumeration; /* Flag indicating whether call should

start enumeration */
MQZAD Filter; /* Filter */
MQLONG AuthorityBufferLength; /* Length of AuthorityBuffer */
MQZAD AuthorityBuffer; /* Authority data */
MQLONG AuthorityDataLength; /* Length of data returned in

AuthorityBuffer */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

StartEnumeration (MQLONG) – input

Flag indicating whether call should start enumeration.

424 WebSphere MQ: System Administration Guide

This indicates whether the call should start the enumeration of authority data, or
continue the enumeration of authority data started by a previous call to
MQZ_ENUMERATE_AUTHORITY_DATA. The value is one of the following:

MQZSE_START
Start enumeration.

The call is invoked with this value to start the enumeration of authority
data. The Filter parameter specifies the selection criteria to be used to
select the authority data returned by this and successive calls.

MQZSE_CONTINUE
Continue enumeration.

The call is invoked with this value to continue the enumeration of
authority data. The Filter parameter is ignored in this case, and can be
specified as the null pointer (the selection criteria are determined by the
Filter parameter specified by the call that had StartEnumeration set to
MQZSE_START).

Filter (MQZAD) – input

Filter.

If StartEnumeration is MQZSE_START, Filter specifies the selection criteria to be
used to select the authority data to return. If Filter is the null pointer, no selection
criteria are used, that is, all authority data is returned. See “MQZAD – Authority
data” on page 459 for details of the selection criteria that can be used.

If StartEnumeration is MQZSE_CONTINUE, Filter is ignored, and can be
specified as the null pointer.

AuthorityBufferLength (MQLONG) – input

Length of AuthorityBuffer.

This is the length in bytes of the AuthorityBuffer parameter. The authority buffer
must be big enough to accommodate the data to be returned.

AuthorityBuffer (MQZAD) – output

Authority data.

This is the buffer in which the authority data is returned. The buffer must be big
enough to accommodate an MQZAD structure, an MQZED structure, plus the
longest entity name and longest domain name defined.

Note: This parameter is defined as an MQZAD, as the MQZAD always occurs at
the start of the buffer. However, if the buffer is actually declared as an MQZAD,
the buffer will be too small – it needs to be bigger than an MQZAD so that it can
accommodate the MQZAD, MQZED, plus entity and domain names.

AuthorityDataLength (MQLONG) – output

Length of data returned in AuthorityBuffer.

Chapter 7. WebSphere MQ installable services and the API exit 425

This is the length of the data returned in AuthorityBuffer. If the authority buffer is
too small, AuthorityDataLength is set to the length of the buffer required, and the
call returns completion code MQCC_FAILED and reason code
MQRC_BUFFER_LENGTH_ERROR.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output

Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_ENUMERATE_AUTHORITY_DATA this has the same effect as
MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_BUFFER_LENGTH_ERROR
(2005, X’7D5’) Buffer length parameter not valid.

426 WebSphere MQ: System Administration Guide

MQRC_NO_DATA_AVAILABLE
(2379, X’94B’) No data available.

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

MQZ_FREE_USER – Free user
This function is provided by a MQZAS_VERSION_5 authorization service
component, and is invoked by the queue manager to free associated allocated
resource.

It is invoked when an application has finished running under all user contexts, for
example during an MQDISC MQI call.

The function identifier for this function (for MQZEP) is MQZID_FREE_USER.

Syntax

MQZ_FREE_USER(QMgrName, FreeParms, ComponentData, Continuation, CompCode,
Reason)

C invocation
MQZ_AUTHENTICATE_USER (QMgrName, SecurityParms, ApplicationContext,

IdentityContext, CorrelationPtr, ComponentData,
&Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQZFP FreeParms; /* Resource to be freed */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

FreeParms (MQZFP) – input

Free parameters.

Chapter 7. WebSphere MQ installable services and the API exit 427

A structure containing data relating to the resource to be freed. See “MQZFP – Free
parameters” on page 465 for details.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

Continuation (MQLONG) – output

Continuation flag.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on other components.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

MQZ_GET_AUTHORITY – Get authority
This function is provided by a MQZAS_VERSION_1 authorization service
component, and is invoked by the queue manager to retrieve the authority that an
entity has to access the specified object.

The function identifier for this function (for MQZEP) is
MQZID_GET_AUTHORITY.

428 WebSphere MQ: System Administration Guide

Syntax

MQZ_GET_AUTHORITY(QMgrName, EntityName, EntityType, ObjectName, ObjectType,
Authority, ComponentData, Continuation, CompCode, Reason)

C invocation
MQZ_GET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,

ObjectType, &Authority, ComponentData,
&Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority of entity */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

EntityName (MQCHAR12) – input

Entity name.

The name of the entity whose access to the object is to be retrieved. The maximum
length of the string is 12 characters; if it is shorter than that it is padded to the
right with blanks. The name is not terminated by a null character.

EntityType (MQLONG) – input

Entity type.

The type of entity specified by EntityName. The following value can be specified:

MQZAET_PRINCIPAL
Principal.

MQZAET_GROUP
Group.

ObjectName (MQCHAR48) – input

Object name.

Chapter 7. WebSphere MQ installable services and the API exit 429

The name of the object for which the entity’s authority is to be retrieved. The
maximum length of the string is 48 characters; if it is shorter than that it is padded
to the right with blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input

Object type.

The type of entity specified by ObjectName. It is one of the following:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel.

MQOT_CLNTCONN_CHANNEL
Client connection channel.

MQOT_LISTENER
Listener.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

MQOT_TOPIC
Topic.

Authority (MQLONG) – output

Authority of entity.

If the entity has one authority, this field is equal to the appropriate authorization
operation (MQZAO_* constant). If it has more than one authority, this field is the
bitwise OR of the corresponding MQZAO_* constants.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

430 WebSphere MQ: System Administration Guide

Continuation (MQLONG) – output

Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_GET_AUTHORITY this has the same effect as
MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_NOT_AUTHORIZED
(2035, X’7F3’) Not authorized for access.

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

MQRC_UNKNOWN_ENTITY
(2292, X’8F4’) Entity unknown to service.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

MQZ_GET_AUTHORITY_2 – Get authority (extended)
This function is provided by a MQZAS_VERSION_2 authorization service
component, and is invoked by the queue manager to retrieve the authority that an
entity has to access the specified object.

Chapter 7. WebSphere MQ installable services and the API exit 431

The function identifier for this function (for MQZEP) is
MQZID_GET_AUTHORITY.

MQZ_GET_AUTHORITY_2 is similar to MQZ_GET_AUTHORITY, but with the
EntityName parameter replaced by the EntityData parameter.

Syntax

MQZ_GET_AUTHORITY_2(QMgrName, EntityData, EntityType, ObjectName,
ObjectType, Authority, ComponentData, Continuation, CompCode, Reason)

C invocation
MQZ_GET_AUTHORITY_2 (QMgrName, &EntityData, EntityType, ObjectName,

ObjectType, &Authority, ComponentData,
&Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQZED EntityData; /* Entity data */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority of entity */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

EntityData (MQZED) – input

Entity data.

Data relating to the entity whose access to the object is to be retrieved. See
“MQZED – Entity descriptor” on page 462 for details.

EntityType (MQLONG) – input

Entity type.

The type of entity specified by EntityData. The following value can be specified:

MQZAET_PRINCIPAL
Principal.

432 WebSphere MQ: System Administration Guide

MQZAET_GROUP
Group.

ObjectName (MQCHAR48) – input

Object name.

The name of the object for which the entity’s authority is to be retrieved. The
maximum length of the string is 48 characters; if it is shorter than that it is padded
to the right with blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input

Object type.

The type of entity specified by ObjectName. It is one of the following:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel.

MQOT_CLNTCONN_CHANNEL
Client connection channel.

MQOT_LISTENER
Listener.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

MQOT_TOPIC
Topic.

Authority (MQLONG) – output

Authority of entity.

If the entity has one authority, this field is equal to the appropriate authorization
operation (MQZAO_* constant). If it has more than one authority, this field is the
bitwise OR of the corresponding MQZAO_* constants.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

Chapter 7. WebSphere MQ installable services and the API exit 433

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output

Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_GET_AUTHORITY_2 this has the same effect as
MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_NOT_AUTHORIZED
(2035, X’7F3’) Not authorized for access.

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

MQRC_UNKNOWN_ENTITY
(2292, X’8F4’) Entity unknown to service.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

434 WebSphere MQ: System Administration Guide

MQZ_GET_EXPLICIT_AUTHORITY – Get explicit authority
This function is provided by a MQZAS_VERSION_1 authorization service
component, and is invoked by the queue manager to retrieve the authority that a
named group has to access a specified object (but without the additional authority
of the nobody group), or the authority that the primary group of the named
principal has to access a specified object.

The function identifier for this function (for MQZEP) is
MQZID_GET_EXPLICIT_AUTHORITY.

Syntax

MQZ_GET_EXPLICIT_AUTHORITY(QMgrName, EntityName, EntityType, ObjectName,
ObjectType, Authority, ComponentData, Continuation, CompCode, Reason)

C invocation
MQZ_GET_EXPLICIT_AUTHORITY (QMgrName, EntityName, EntityType,

ObjectName, ObjectType, &Authority,
ComponentData, &Continuation,
&CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority of entity */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

EntityName (MQCHAR12) – input

Entity name.

The name of the entity whose access to the object is to be retrieved. The maximum
length of the string is 12 characters; if it is shorter than that it is padded to the
right with blanks. The name is not terminated by a null character.

Chapter 7. WebSphere MQ installable services and the API exit 435

EntityType (MQLONG) – input

Entity type.

The type of entity specified by EntityName. The following value can be specified:

MQZAET_PRINCIPAL
Principal.

MQZAET_GROUP
Group.

ObjectName (MQCHAR48) – input

Object name.

The name of the object for which the entity’s authority is to be retrieved. The
maximum length of the string is 48 characters; if it is shorter than that it is padded
to the right with blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input

Object type.

The type of entity specified by ObjectName. It is one of the following:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel.

MQOT_CLNTCONN_CHANNEL
Client connection channel.

MQOT_LISTENER
Listener.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

MQOT_TOPIC
Topic.

Authority (MQLONG) – output

Authority of entity.

436 WebSphere MQ: System Administration Guide

If the entity has one authority, this field is equal to the appropriate authorization
operation (MQZAO_* constant). If it has more than one authority, this field is the
bitwise OR of the corresponding MQZAO_* constants.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output

Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_GET_EXPLICIT_AUTHORITY this has the same effect as
MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_NOT_AUTHORIZED
(2035, X’7F3’) Not authorized for access.

Chapter 7. WebSphere MQ installable services and the API exit 437

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

MQRC_UNKNOWN_ENTITY
(2292, X’8F4’) Entity unknown to service.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

MQZ_GET_EXPLICIT_AUTHORITY_2 – Get explicit authority
(extended)

This function is provided by a MQZAS_VERSION_2 authorization service
component, and is invoked by the queue manager to retrieve the authority that a
named group has to access a specified object (but without the additional authority
of the nobody group), or the authority that the primary group of the named
principal has to access a specified object.

The function identifier for this function (for MQZEP) is
MQZID_GET_EXPLICIT_AUTHORITY.

MQZ_GET_EXPLICIT_AUTHORITY_2 is similar to
MQZ_GET_EXPLICIT_AUTHORITY, but with the EntityName parameter replaced
by the EntityData parameter.

Syntax

MQZ_GET_EXPLICIT_AUTHORITY_2(QMgrName, EntityData, EntityType, ObjectName,
ObjectType, Authority, ComponentData, Continuation, CompCode, Reason)

C invocation
MQZ_GET_EXPLICIT_AUTHORITY_2 (QMgrName, &EntityData, EntityType,

ObjectName, ObjectType, &Authority,
ComponentData, &Continuation,
&CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQZED EntityData; /* Entity data */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority of entity */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

438 WebSphere MQ: System Administration Guide

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

EntityData (MQZED) – input

Entity data.

Data relating to the entity whose access to the object is to be retrieved. See
“MQZED – Entity descriptor” on page 462 for details.

EntityType (MQLONG) – input

Entity type.

The type of entity specified by EntityData. The following value can be specified:

MQZAET_PRINCIPAL
Principal.

MQZAET_GROUP
Group.

ObjectName (MQCHAR48) – input

Object name.

The name of the object for which the entity’s authority is to be retrieved. The
maximum length of the string is 48 characters; if it is shorter than that it is padded
to the right with blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input

Object type.

The type of entity specified by ObjectName. It is one of the following:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel.

MQOT_CLNTCONN_CHANNEL
Client connection channel.

MQOT_LISTENER
Listener.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

Chapter 7. WebSphere MQ installable services and the API exit 439

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

MQOT_TOPIC
Topic.

Authority (MQLONG) – output

Authority of entity.

If the entity has one authority, this field is equal to the appropriate authorization
operation (MQZAO_* constant). If it has more than one authority, this field is the
bitwise OR of the corresponding MQZAO_* constants.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output

Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_GET_EXPLICIT_AUTHORITY_2 this has the same effect as
MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

440 WebSphere MQ: System Administration Guide

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_NOT_AUTHORIZED
(2035, X’7F3’) Not authorized for access.

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

MQRC_UNKNOWN_ENTITY
(2292, X’8F4’) Entity unknown to service.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

MQZ_INIT_AUTHORITY – Initialize authorization service
This function is provided by an authorization service component, and is invoked
by the queue manager during configuration of the component. It is expected to call
MQZEP in order to provide information to the queue manager.

The function identifier for this function (for MQZEP) is
MQZID_INIT_AUTHORITY.

Syntax

MQZ_INIT_AUTHORITY(Hconfig, Options, QMgrName, ComponentDataLength,
ComponentData, Version, CompCode, Reason)

C invocation
MQZ_INIT_AUTHORITY (Hconfig, Options, QMgrName, ComponentDataLength,

ComponentData, &Version, &CompCode,
&Reason);

The parameters passed to the service are declared as follows:
MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Options; /* Initialization options */
MQCHAR48 QMgrName; /* Queue manager name */
MQLONG ComponentDataLength; /* Length of component data */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Version; /* Version number */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

Hconfig (MQHCONFIG) – input

Configuration handle.

Chapter 7. WebSphere MQ installable services and the API exit 441

This handle represents the particular component being initialized. It is to be used
by the component when calling the queue manager with the MQZEP function.

Options (MQLONG) – input

Initialization options.

It is one of the following:

MQZIO_PRIMARY
Primary initialization.

MQZIO_SECONDARY
Secondary initialization.

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

ComponentDataLength (MQLONG) – input

Length of component data.

Length in bytes of the ComponentData area. This length is defined in the component
configuration data.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This is initialized to all zeroes before calling the component’s primary initialization
function. This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions (including the
initialization function) provided by this component are preserved, and presented
the next time one of this component’s functions is called.

Version (MQLONG) – input/output

Version number.

On input to the initialization function, this identifies the highest version number
that the queue manager supports. The initialization function must change this, if
necessary, to the version of the interface which it supports. If on return the queue
manager does not support the version returned by the component, it calls the
component’s MQZ_TERM_AUTHORITY function and makes no further use of this
component.

The following values are supported:

442 WebSphere MQ: System Administration Guide

MQZAS_VERSION_1
Version 1.

MQZAS_VERSION_2
Version 2.

MQZAS_VERSION_3
Version 3.

MQZAS_VERSION_4
Version 4.

MQZAS_VERSION_5
Version 5.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_INITIALIZATION_FAILED
(2286, X’8EE’) Initialization failed for an undefined reason.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

MQZ_INQUIRE – Inquire authorization service
This function is provided by a MQZAS_VERSION_5 authorization service
component, and is invoked by the queue manager to query the supported
functionality.

Where multiple service components are used, service components are called in
reverse order to the order they were installed in.

The function identifier for this function (for MQZEP) is MQZID_INQUIRE.

Chapter 7. WebSphere MQ installable services and the API exit 443

Syntax

MQZ_INQUIRE(QMgrName, SelectorCount, Selectors, IntAttrCount, IntAttrs,
CharAttrLength, CharAttrs, SelectorReturned, ComponentData, Continuation,
CompCode, Reason)

C invocation
MQZ_INQUIRE (QMgrName, SelectorCount, Selectors, IntAttrCount,

&IntAttrs, CharAttrLength, &CharAttrs,
SelectorReturned, ComponentData, &Continuation,
&CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQLONG SelectorCount; /* Selector count */
MQLONG Selectors[n]; /* Selectors */
MQLONG IntAttrCount; /* IntAttrs count */
MQLONG IntAttrs[n]; /* Integer attributes */
MQLONG CharAttrCount; /* CharAttrs count */
MQLONG CharAttrs[n]; /* Chatacter attributes */
MQLONG SelectorReturned[n]; /* Selector returned */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

SelectorCount (MQLONG) – input

Number of selectors.

The number of selectors supplied in the Selectors parameter.

The value must be between zero and 256.

Selectors (MQLONG×SelectorCount) – input

Selectors.

Array of selectors. Each selector identifies a required attribute and must be of one
of the following types:
v MQIACF_* (integer)
v MQCACF_* (character)

444 WebSphere MQ: System Administration Guide

Selectors can be specified in any order. The number of selectors in the array is
indicated by the SelectorCount parameter.

Integer attributes identified by selectors are returned in the IntAttrs parameter in
the same order as they appear in Selectors.

Character attributes identified by selectors are returned in the CharAttrs parameter
in the same order as they in appear Selectors.

IntAttrCount (MQLONG) – input

Number of integer attributes.

The number of integer attributes supplied in the IntAttrs parameter.

The value must be between zero and 256.

IntAttrs (MQLONG×IntAttrCount) – output

Integer attributes.

Array of integer attributes. The integer attributes are returned in the same order as
the corresponding integer selectors in the Selectors array.

CharAttrCount (MQLONG) – input

Length of the character attributes buffer.

The length in bytes of the CharAttrs parameter.

The value must at least sum of the lengths of the requested character attributes. If
no character attributes are requested, zero is a valid value.

CharAttrs (MQLONG×CharAttrCount) – output

Character attributes buffer.

Buffer containing character attributes, concatenated together. The character
attributes are returned in the same order as the corresponding character selectors
in the Selectors array.

The length of the buffer is given by the CharAttrCount parameter.

SelectorReturned (MQLONG×SelectorCount) – input

Selector returned.

Array of values identifying which attributes have been returned from the set
requested for by the selectors in the Selectors parameter. The number of values in
this array is indicated by the SelectorCount parameter. Each value in the array
relates to the selector from the corresponding position in the Selectors array. Each
value is one of the following:

MQZSL_RETURNED
The attribute requested by the corresponding selector in the Selectors
parameter has been returned.

Chapter 7. WebSphere MQ installable services and the API exit 445

MQZSL_NOT_RETURNED
The attribute requested by the corresponding selector in the Selectors
parameter has not been returned.

The array is initialized with all values as MQZSL_NOT_RETURNED. When an
authorization service component returns an attribute, it sets the appropriate value
in the array to MQZSL_RETURNED. This allows any other authorization service
components, to which the inquire call is made, to identify which attributes have
already been returned.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output

Continuation flag.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on other components.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_WARNING
Partial completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_WARNING:

446 WebSphere MQ: System Administration Guide

MQRC_CHAR_ATTRS_TOO_SHORT
Not enough space for character attributes.

MQRC_INT_COUNT_TOO_SMALL
Not enough space for integer attributes.

If CompCode is MQCC_FAILED:

MQRC_SELECTOR_COUNT_ERROR
Number of selectors is not valid.

MQRC_SELECTOR_ERROR
Attribute selector not valid.

MQRC_SELECTOR_LIMIT_EXCEEDED
Too many selectors specified.

MQRC_INT_ATTR_COUNT_ERROR
Number of integer attributes is not valid.

MQRC_INT_ATTRS_ARRAY_ERROR
Integer attributes array not valid.

MQRC_CHAR_ATTR_LENGTH_ERROR
Number of character attributes is not valid.

MQRC_CHAR_ATTRS_ERROR
Character attributes string is not valid.

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

MQZ_REFRESH_CACHE – Refresh all authorizations
This function is provided by an MQZAS_VERSION_3 authorization service
component, and is invoked by the queue manager to refresh the list of
authorizations held internally by the component.

The function identifier for this function (for MQZEP) is
MQZID_REFRESH_CACHE (8L).

Syntax

MQZ_REFRESH_CACHE(QMgrName, ComponentData, Continuation, CompCode, Reason)

C invocation
MQZ_REFRESH_CACHE (QMgrName, ComponentData,

&Continuation, &CompCode, &Reason);

Declare the parameters as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) - input

Queue manager name.

Chapter 7. WebSphere MQ installable services and the API exit 447

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

ComponentData (MQBYTE*ComponentDataLength) - input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) - output

Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_REFRESH_CACHE this has the same effect as
MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) - output

Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_ERROR

(2289, X’8F1’) Unexpected error occurred accessing service.

For more information on this reason code, see WebSphere MQ Messages.

448 WebSphere MQ: System Administration Guide

MQZ_SET_AUTHORITY – Set authority
This function is provided by a MQZAS_VERSION_1 authorization service
component, and is invoked by the queue manager to set the authority that an
entity has to access the specified object.

The function identifier for this function (for MQZEP) is MQZID_SET_AUTHORITY.

Note: This function overrides any existing authorities. To preserve any existing
authorities you must set them again with this function.

Syntax

MQZ_SET_AUTHORITY(QMgrName, EntityName, EntityType, ObjectName, ObjectType,
Authority, ComponentData, Continuation, CompCode, Reason)

C invocation
MQZ_SET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,

ObjectType, Authority, ComponentData,
&Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority to be checked */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

EntityName (MQCHAR12) – input

Entity name.

The name of the entity whose access to the object is to be set. The maximum
length of the string is 12 characters; if it is shorter than that it is padded to the
right with blanks. The name is not terminated by a null character.

Chapter 7. WebSphere MQ installable services and the API exit 449

EntityType (MQLONG) – input

Entity type.

The type of entity specified by EntityName. The following value can be specified:

MQZAET_PRINCIPAL
Principal.

MQZAET_GROUP
Group.

ObjectName (MQCHAR48) – input

Object name.

The name of the object to which access is required. The maximum length of the
string is 48 characters; if it is shorter than that it is padded to the right with
blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input

Object type.

The type of entity specified by ObjectName. It is one of the following:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel.

MQOT_CLNTCONN_CHANNEL
Client connection channel.

MQOT_LISTENER
Listener.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

MQOT_TOPIC
Topic.

Authority (MQLONG) – input

Authority to be checked.

450 WebSphere MQ: System Administration Guide

If one authorization is being set, this field is equal to the appropriate authorization
operation (MQZAO_* constant). If more than one authorization is being set, it is
the bitwise OR of the corresponding MQZAO_* constants.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output

Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_SET_AUTHORITY this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_NOT_AUTHORIZED
(2035, X’7F3’) Not authorized for access.

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

Chapter 7. WebSphere MQ installable services and the API exit 451

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

MQRC_UNKNOWN_ENTITY
(2292, X’8F4’) Entity unknown to service.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

MQZ_SET_AUTHORITY_2 – Set authority (extended)
This function is provided by a MQZAS_VERSION_2 authorization service
component, and is invoked by the queue manager to set the authority that an
entity has to access the specified object.

The function identifier for this function (for MQZEP) is MQZID_SET_AUTHORITY.

Note: This function overrides any existing authorities. To preserve any existing
authorities you must set them again with this function.

MQZ_SET_AUTHORITY_2 is similar to MQZ_SET_AUTHORITY, but with the
EntityName parameter replaced by the EntityData parameter.

Syntax

MQZ_SET_AUTHORITY_2(QMgrName, EntityData, EntityType, ObjectName,
ObjectType, Authority, ComponentData, Continuation, CompCode, Reason)

C invocation
MQZ_SET_AUTHORITY_2 (QMgrName, &EntityData, EntityType, ObjectName,

ObjectType, Authority, ComponentData,
&Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQZED EntityData; /* Entity data */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority to be checked */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

452 WebSphere MQ: System Administration Guide

EntityData (MQZED) – input

Entity data.

Data relating to the entity whose access to the object is to be set. See “MQZED –
Entity descriptor” on page 462 for details.

EntityType (MQLONG) – input

Entity type.

The type of entity specified by EntityData. The following value can be specified:

MQZAET_PRINCIPAL
Principal.

MQZAET_GROUP
Group.

ObjectName (MQCHAR48) – input

Object name.

The name of the object to which access is required. The maximum length of the
string is 48 characters; if it is shorter than that it is padded to the right with
blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input

Object type.

The type of entity specified by ObjectName. It is one of the following:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel.

MQOT_CLNTCONN_CHANNEL
Client connection channel.

MQOT_LISTENER
Listener.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

Chapter 7. WebSphere MQ installable services and the API exit 453

MQOT_TOPIC
Topic.

Authority (MQLONG) – input

Authority to be checked.

If one authorization is being set, this field is equal to the appropriate authorization
operation (MQZAO_* constant). If more than one authorization is being set, it is
the bitwise OR of the corresponding MQZAO_* constants.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output

Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_SET_AUTHORITY_2 this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

454 WebSphere MQ: System Administration Guide

If CompCode is MQCC_FAILED:

MQRC_NOT_AUTHORIZED
(2035, X’7F3’) Not authorized for access.

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

MQRC_UNKNOWN_ENTITY
(2292, X’8F4’) Entity unknown to service.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

MQZ_TERM_AUTHORITY – Terminate authorization service
This function is provided by an authorization service component, and is invoked
by the queue manager when it no longer requires the services of this component.
The function must perform any cleanup required by the component.

The function identifier for this function (for MQZEP) is
MQZID_TERM_AUTHORITY.

Syntax

MQZ_TERM_AUTHORITY(Hconfig, Options, QMgrName, ComponentData, CompCode,
Reason)

C invocation
MQZ_TERM_AUTHORITY (Hconfig, Options, QMgrName, ComponentData,

&CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Options; /* Termination options */
MQCHAR48 QMgrName; /* Queue manager name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

Hconfig (MQHCONFIG) – input

Configuration handle.

This handle represents the particular component being terminated.

Options (MQLONG) – input

Termination options.

It is one of the following:

MQZTO_PRIMARY
Primary termination.

Chapter 7. WebSphere MQ installable services and the API exit 455

MQZTO_SECONDARY
Secondary termination.

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter on the MQZ_INIT_AUTHORITY call.

When the MQZ_TERM_AUTHORITY call has completed, the queue manager
discards this data.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

MQRC_TERMINATION_FAILED
(2287, X’8FF’) Termination failed for an undefined reason.

456 WebSphere MQ: System Administration Guide

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

MQZAC – Application context
The MQZAC structure is used on the MQZ_AUTHENTICATE_USER call for the
ApplicationContext parameter. This parameter specifies data related to the calling
application.

C declaration
typedef struct tagMQZAC MQZAC;
struct tagMQZAC {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQPID ProcessId; /* Process identifier */
MQTID ThreadId; /* Thread identifier */
MQCHAR28 ApplName; /* Application name */
MQCHAR12 UserID; /* User identifier */
MQCHAR12 EffectiveUserID; /* Effective user identifier */
MQLONG Environment; /* Environment */
MQLONG CallerType; /* Caller type */
MQLONG AuthenticationType; /* Authentication type */
MQLONG BindType; /* Bind type */

};

Fields

StrucId (MQCHAR4)

Structure identifier.

The value is:

MQZAC_STRUC_ID
Identifier for application context structure.

For the C programming language, the constant
MQZAC_STRUC_ID_ARRAY is also defined; this has the same value as
MQZAC_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the service.

Version (MQLONG)

Structure version number.

The value is:

MQZAC_VERSION_1
Version-1 application context structure.

The following constant specifies the version number of the current version:

MQZAC_CURRENT_VERSION
Current version of application context structure.

This is an input field to the service.

Chapter 7. WebSphere MQ installable services and the API exit 457

ProcessId (MQPID)

Process identifier.

The process identifier of the application.

ThreadId (MQTID)

Thread identifier.

The thread identifier of the application.

ApplName (MQCHAR28)

Application name.

The application name.

UserID (MQCHAR12)

User identifier.

On UNIX systems this field specifies the application’s real user ID. On Windows
this field specifies the application’s user ID.

EffectiveUserID (MQCHAR12)

Effective user identifier.

On UNIX systems this field specifies the application’s effective user ID. On
Windows this field is blank.

Environment (MQLONG)

Environment.

This field specifies the environment from which the call was made.

The value is one of the following:

MQXE_COMMAND_SERVER
Command server.

MQXE_MQSC
runmqsc command interpreter.

MQXE_MCA
Message channel agent

MQXE_OTHER
Undefined environment

CallerType (MQLONG)

Caller Type.

This field specifies the type of program that made the call.

The value is one of the following:

458 WebSphere MQ: System Administration Guide

MQXACT_EXTERNAL
The call is external to the queue manager.

MQXACT_INTERNAL
The call is internal to the queue manager.

AuthenticationType (MQLONG)

Authentication Type.

This field specifies the type of authentication being performed.

The value is one of the following:

MQZAT_INITIAL_CONTEXT
The authentication call is due to user context being initialized. This value is
used during an MQCONN or MQCONNX call.

MQZAT_CHANGE_CONTEXT
The authentication call is due to the user context being changed. This value
is used when the MCA changes the user context.

BindType (MQLONG)

Bind Type.

This field specifies the type of binding in use.

The value is one of the following:

MQCNO_FASTPATH_BINDING
Fastpath binding.

MQCNO_SHARED_BINDING
Shared binding.

MQCNO_ISOLATED_BINDING
Isolated binding.

MQZAD – Authority data
The MQZAD structure is used on the MQZ_ENUMERATE_AUTHORITY_DATA
call for two parameters, one input and one output.
v MQZAD is used for the Filter parameter which is input to the call. This

parameter specifies the selection criteria that are to be used to select the
authority data returned by the call.

v MQZAD is also used for the AuthorityBuffer parameter which is output from
the call. This parameter specifies the authorizations for one combination of
profile name, object type, and entity.

C declaration
typedef struct tagMQZAD MQZAD;
struct tagMQZAD {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQCHAR48 ProfileName; /* Profile name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority */
PMQZED EntityDataPtr; /* Address of MQZED structure identifying an

Chapter 7. WebSphere MQ installable services and the API exit 459

entity */
MQLONG EntityType; /* Entity type */
MQAUTHOPT Options; /* Options */

};

Fields

StrucId (MQCHAR4)

Structure identifier.

The value is:

MQZAD_STRUC_ID
Identifier for authority data structure.

For the C programming language, the constant
MQZAD_STRUC_ID_ARRAY is also defined; this has the same value as
MQZAD_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the service.

Version (MQLONG)

Structure version number.

The value is:

MQZAD_VERSION_1
Version-1 authority data structure.

The following constant specifies the version number of the current version:

MQZAD_CURRENT_VERSION
Current version of authority data structure.

This is an input field to the service.

ProfileName (MQCHAR48)

Profile name.

For the Filter parameter, this field is the profile name whose authority data is
required. If the name is entirely blank up to the end of the field or the first null
character, authority data for all profile names is returned.

For the AuthorityBuffer parameter, this field is the name of a profile that matches
the specified selection criteria.

ObjectType (MQLONG)

Object type.

For the Filter parameter, this field is the object type for which authority data is
required. If the value is MQOT_ALL, authority data for all object types is returned.

For the AuthorityBuffer parameter, this field is the object type to which the profile
identified by ProfileName applies.

460 WebSphere MQ: System Administration Guide

The value is one of the following; for the Filter parameter, the value MQOT_ALL
is also valid:

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel.

MQOT_CLNTCONN_CHANNEL
Client connection channel.

MQOT_LISTENER
Listener.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

Authority (MQLONG)

Authority.

For the Filter parameter, this field is ignored.

For the AuthorityBuffer parameter, this field represents the authorizations that the
entity has to the objects identified by ProfileName and ObjectType. If the entity has
only one authority, the field is equal to the appropriate authorization value
(MQZAO_* constant). If the entity has more than one authority, the field is the
bitwise OR of the corresponding MQZAO_* constants.

EntityDataPtr (PMQZED)

Address of MQZED structure identifying an entity.

For the Filter parameter, this field points to an MQZED structure that identifies
the entity whose authority data is required. If EntityDataPtr is the null pointer,
authority data for all entities is returned.

For the AuthorityBuffer parameter, this field points to an MQZED structure that
identifies the entity whose authority data has been returned.

EntityType (MQLONG)

Entity type.

For the Filter parameter, this field specifies the entity type for which authority
data is required. If the value is MQZAET_NONE, authority data for all entity types
is returned.

Chapter 7. WebSphere MQ installable services and the API exit 461

For the AuthorityBuffer parameter, this field specifies the type of the entity
identified by the MQZED structure pointed to by EntityDataPtr.

The value is one of the following; for the Filter parameter, the value
MQZAET_NONE is also valid:

MQZAET_PRINCIPAL
Principal.

MQZAET_GROUP
Group.

Options (MQAUTHOPT)

Options.

This field specifies options that give control over the profiles that are displayed.

One of the following must be specified:

MQAUTHOPT_NAME_ALL_MATCHING
Displays all profiles

MQAUTHOPT_NAME_EXPLICIT
Displays profiles that have exactly the same name as specified in the
ProfileName field.

In addition, one of the following must also be specified:

MQAUTHOPT_ENTITY_SET
Display all profiles used to calculate the cumulative authority that the
entity has to the object specified by ProfileName. The ProfileName field
must not contain any wildcard characters.
v If the specified entity is a principal, for each member of the set {entity,

groups} the most applicable profile that applies to the object is
displayed.

v If the specified entity is a group, the most applicable profile from the
group that applies to the object is displayed.

v If this value is specified, then the values of ProfileName, ObjectType,
EntityType, and the entity name specified in the EntityDataPtr MQZED
structure, must all be non-blank.

If you have specified MQAUTHOPT_NAME_ALL_MATCHING, you can also
specify the following:

MQAUTHOPT_ENTITY_EXPLICIT
Displays profiles that have exactly the same entity name as the entity name
specified in the EntityDataPtr MQZED structure.

MQZED – Entity descriptor
The MQZED structure describes the information that is passed to the
MQZAS_VERSION_2 authorization service calls.

C declaration
typedef struct tagMQZED MQZED;
struct tagMQZED {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */

462 WebSphere MQ: System Administration Guide

PMQCHAR EntityNamePtr; /* Address of entity name */
PMQCHAR EntityDomainPtr; /* Address of entity domain name */
MQBYTE40 SecurityId; /* Security identifier */
MQPTR CorrelationPtr; /* Address of correlation data */

Fields

StrucId (MQCHAR4)

Structure identifier.

The value is:

MQZED_STRUC_ID
Identifier for entity descriptor structure.

For the C programming language, the constant
MQZED_STRUC_ID_ARRAY is also defined; this has the same value as
MQZED_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the service.

Version (MQLONG)

Structure version number.

The value is:

MQZED_VERSION_1
Version-1 entity descriptor structure.

The following constant specifies the version number of the current version:

MQZED_CURRENT_VERSION
Current version of entity descriptor structure.

This is an input field to the service.

EntityNamePtr (PMQCHAR)

Address of entity name.

This is a pointer to the name of the entity whose authorization is to be checked.

EntityDomainPtr (PMQCHAR)

Address of entity domain name.

This is a pointer to the name of the domain containing the definition of the entity
whose authorization is to be checked.

SecurityId (MQBYTE40)

Security identifier.

This is the security identifier whose authorization is to be checked.

CorrelationPtr (MQPTR)

Correlation pointer.

Chapter 7. WebSphere MQ installable services and the API exit 463

This facilitates the passing of correlational data between the authenticate user
function and other appropriate OAM functions.

MQZIC – Identity context
The MQZIC structure is used on the MQZ_AUTHENTICATE_USER call for the
IdentityContext parameter.

The MQZIC structure contains identity context information, that identifies the user
of the application that first put the message on a queue:
v The queue manager fills the UserIdentifier field with a name that identifies the

user, the way that the queue manager can do this depends on the environment
in which the application is running.

v The queue manager fills the AccountingToken field with a token or number that
it determined from the application that put the message.

v Applications can use the ApplIdentityData field for any extra information that
they want to include about the user (for example, an encrypted password).

Suitably authorized applications may set the identity context using the
MQZ_AUTHENTICTAE_USER function.

A Windows systems security identifier (SID) is stored in the AccountingToken field
when a message is created under WebSphere MQ for Windows. The SID can be
used to supplement the UserIdentifier field and to establish the credentials of a
user.

C declaration
typedef struct tagMQZED MQZED;
struct tagMQZED {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQCHAR12 UserIdentifier; /* User identifier */
MQBYTE32 AccountingToken; /* Accounting token */
MQCHAR32 ApplIdentityData; /* Application data relating to identity */

};

Fields

StrucId (MQCHAR4)

Structure identifier.

The value is:

MQZIC_STRUC_ID
Identifier for identity context structure.

For the C programming language, the constant
MQZIC_STRUC_ID_ARRAY is also defined; this has the same value as
MQZIC_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the service.

Version (MQLONG)

Structure version number.

The value is:

464 WebSphere MQ: System Administration Guide

MQZIC_VERSION_1
Version-1 identity context structure.

The following constant specifies the version number of the current version:

MQZIC_CURRENT_VERSION
Current version of identity context structure.

This is an input field to the service.

UserIdentifier (MQCHAR12)

User identifier.

This is part of the identity context of the message.

UserIdentifier specifies the user identifier of the application that originated the
message. The queue manager treats this information as character data, but does not
define the format of it. For more information on the UserIdentifier field, see
WebSphere MQ Application Programming Reference.

AccountingToken (MQBYTE32)

Accounting token.

This is part of the identity context of the message.

AccountingToken allows an application to cause work done as a result of the
message to be appropriately charged. The queue manager treats this information as
a string of bits and does not check its content. For more information on the
AccountingToken field, see WebSphere MQ Application Programming Reference.

ApplIdentityData (MQCHAR32)

Application data relating to identity.

This is part of the identity context of the message.

ApplIdentityData is information that is defined by the application suite that can be
used to provide additional information about the origin of the message. For
example, it could be set by applications running with suitable user authority to
indicate whether the identity data is trusted. For more information on the
ApplIdentityData field, see WebSphere MQ Application Programming Reference.

MQZFP – Free parameters
The MQZFP structure is used on the MQZ_FREE_USER call for the
FreeParmsparameter. This parameter specifies data related to resource to be freed.

C declaration
typedef struct tagMQZFP MQZFP;
struct tagMQZFP {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQBYTE8 Reserved; /* Reserved field */
MQPTR CorrelationPtr; /* Address of correlation data */

};

Fields

Chapter 7. WebSphere MQ installable services and the API exit 465

StrucId (MQCHAR4)

Structure identifier.

The value is:

MQZFP_STRUC_ID
Identifier for free parameters structure.

For the C programming language, the constant
MQZFP_STRUC_ID_ARRAY is also defined; this has the same value as
MQZFP_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the service.

Version (MQLONG)

Structure version number.

The value is:

MQZFP_VERSION_1
Version-1 free parameters structure.

The following constant specifies the version number of the current version:

MQZFP_CURRENT_VERSION
Current version of free parameters structure.

This is an input field to the service.

Reserved (MQBYTE8)

Reserved field.

The initial value is null.

CorrelationPtr (MQPTR)

Correlation pointer.

Address of correlation data relating to the resource to be freed.

MQZ_DELETE_NAME – Delete name
This function is provided by a name service component, and is invoked by the
queue manager to delete an entry for the specified queue.

The function identifier for this function (for MQZEP) is MQZID_DELETE_NAME.

Syntax

MQZ_DELETE_NAME(QMgrName, QName, ComponentData, Continuation, CompCode,
Reason)

C invocation
MQZ_DELETE_NAME (QMgrName, QName, ComponentData, &Continuation,

&CompCode, &Reason);

466 WebSphere MQ: System Administration Guide

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR48 QName; /* Queue name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the name
service interface does not require the component to make use of it in any defined
manner.

QName (MQCHAR48) – input

Queue name.

The name of the queue for which an entry is to be deleted. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a
null character.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_NAME call.

Continuation (MQLONG) – output

Continuation indicator set by component.

For MQZ_DELETE_NAME, the queue manager does not attempt to invoke another
component, whatever is returned in Continuation.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

MQZCI_STOP
Do not continue with next component.

Chapter 7. WebSphere MQ installable services and the API exit 467

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_WARNING:

MQRC_UNKNOWN_Q_NAME
(2288, X’8F0’) Queue name not found.

Note: It may not be possible to return this code if the underlying service
simply responds with success for this case.

If CompCode is MQCC_FAILED:

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

MQZ_INIT_NAME – Initialize name service
This function is provided by a name service component, and is invoked by the
queue manager during configuration of the component. It is expected to call
MQZEP in order to provide information to the queue manager.

The function identifier for this function (for MQZEP) is MQZID_INIT_NAME.

Syntax

MQZ_INIT_NAME(Hconfig, Options, QMgrName, ComponentDataLength,
ComponentData, Version, CompCode, Reason)

C invocation
MQZ_INIT_NAME (Hconfig, Options, QMgrName, ComponentDataLength,

ComponentData, &Version, &CompCode, &Reason);

468 WebSphere MQ: System Administration Guide

The parameters passed to the service are declared as follows:
MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Options; /* Initialization options */
MQCHAR48 QMgrName; /* Queue manager name */
MQLONG ComponentDataLength; /* Length of component data */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Version; /* Version number */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

Hconfig (MQHCONFIG) – input

Configuration handle.

This handle represents the particular component being initialized. It is to be used
by the component when calling the queue manager with the MQZEP function.

Options (MQLONG) – input

Initialization options.

It is one of the following:

MQZIO_PRIMARY
Primary initialization.

MQZIO_SECONDARY
Secondary initialization.

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the name
service interface does not require the component to make use of it in any defined
manner.

ComponentDataLength (MQLONG) – input

Length of component data.

Length in bytes of the ComponentData area. This length is defined in the component
configuration data.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This is initialized to all zeroes before calling the component’s primary initialization
function. This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions (including the

Chapter 7. WebSphere MQ installable services and the API exit 469

initialization function) provided by this component are preserved, and presented
the next time one of this component’s functions is called.

Component data is in shared memory accessible to all processes. Therefore primary
initialization is the first process initialization and secondary initialization is any
subsequent process initialization.

Version (MQLONG) – input/output

Version number.

On input to the initialization function, this identifies the highest version number
that the queue manager supports. The initialization function must change this, if
necessary, to the version of the interface which it supports. If on return the queue
manager does not support the version returned by the component, it calls the
component’s MQZ_TERM_NAME function and makes no further use of this
component.

The following value is supported:

MQZNS_VERSION_1
Version 1.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_INITIALIZATION_FAILED
(2286, X’8EE’) Initialization failed for an undefined reason.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

470 WebSphere MQ: System Administration Guide

MQZ_INSERT_NAME – Insert name
This function is provided by a name service component, and is invoked by the
queue manager to insert an entry for the specified queue, containing the name of
the queue manager that owns the queue. If the queue is already defined in the
service, the call fails.

The function identifier for this function (for MQZEP) is MQZID_INSERT_NAME.

Syntax

MQZ_INSERT_NAME(QMgrName, QName, ResolvedQMgrName, ComponentData,
Continuation, CompCode, Reason)

C invocation
MQZ_INSERT_NAME (QMgrName, QName, ResolvedQMgrName, ComponentData,

&Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR48 QName; /* Queue name */
MQCHAR48 ResolvedQMgrName; /* Resolved queue manager name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the name
service interface does not require the component to make use of it in any defined
manner.

QName (MQCHAR48) – input

Queue name.

The name of the queue for which an entry is to be inserted. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a
null character.

ResolvedQMgrName (MQCHAR48) – input

Resolved queue manager name.

The name of the queue manager to which the queue resolves. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a
null character.

Chapter 7. WebSphere MQ installable services and the API exit 471

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_NAME call.

Continuation (MQLONG) – output

Continuation indicator set by component.

For MQZ_INSERT_NAME, the queue manager does not attempt to invoke another
component, whatever is returned in Continuation.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_Q_ALREADY_EXISTS
(2290, X’8F2’) Queue object already exists.

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

472 WebSphere MQ: System Administration Guide

MQZ_LOOKUP_NAME – Lookup name
This function is provided by a name service component, and is invoked by the
queue manager to retrieve the name of the owning queue manager, for a specified
queue.

The function identifier for this function (for MQZEP) is MQZID_LOOKUP_NAME.

Syntax

MQZ_LOOKUP_NAME(QMgrName, QName, ResolvedQMgrName, ComponentData,
Continuation, CompCode, Reason)

C invocation
MQZ_LOOKUP_NAME (QMgrName, QName, ResolvedQMgrName, ComponentData,

&Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR48 QName; /* Queue name */
MQCHAR48 ResolvedQMgrName; /* Resolved queue manager name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the name
service interface does not require the component to make use of it in any defined
manner.

QName (MQCHAR48) – input

Queue name.

The name of the queue which is to be resolved. This name is padded with blanks
to the full length of the parameter; the name is not terminated by a null character.

ResolvedQMgrName (MQCHAR48) – output

Resolved queue manager name.

If the function completes successfully, this is the name of the queue manager that
owns the queue.

The name returned by the service component must be padded on the right with
blanks to the full length of the parameter; the name must not be terminated by a
null character, or contain leading or embedded blanks.

Chapter 7. WebSphere MQ installable services and the API exit 473

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

Component data is in shared memory accessible to all processes.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_NAME call.

Continuation (MQLONG) – output

Continuation indicator set by component.

For MQZ_LOOKUP_NAME, the queue manager decides whether to invoke
another name service component, as follows:
v If CompCode is MQCC_OK, no further components are invoked, whatever value is

returned in Continuation.
v If CompCode is not MQCC_OK, a further component is invoked, unless

Continuation is MQZCI_STOP. This value should not be set without good
reason.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

474 WebSphere MQ: System Administration Guide

MQRC_SERVICE_ERROR
(2289, X’8F1’) Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

MQRC_UNKNOWN_Q_NAME
(2288, X’8F0’) Queue name not found.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

MQZ_TERM_NAME – Terminate name service
This function is provided by a name service component, and is invoked by the
queue manager when it no longer requires the services of this component. The
function must perform any cleanup required by the component.

The function identifier for this function (for MQZEP) is MQZID_TERM_NAME.

Syntax

MQZ_TERM_NAME(Hconfig, Options, QMgrName, ComponentData, CompCode, Reason)

C invocation
MQZ_TERM_NAME (Hconfig, Options, QMgrName, ComponentData, &CompCode,

&Reason);

The parameters passed to the service are declared as follows:
MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Options; /* Termination options */
MQCHAR48 QMgrName; /* Queue manager name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Parameter descriptions

Hconfig (MQHCONFIG) – input

Configuration handle.

This handle represents the particular component being terminated.

Options (MQLONG) – input

Termination options.

It is one of the following:

MQZTO_PRIMARY
Primary termination.

MQZTO_SECONDARY
Secondary termination.

QMgrName (MQCHAR48) – input

Queue manager name.

Chapter 7. WebSphere MQ installable services and the API exit 475

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the name
service interface does not require the component to make use of it in any defined
manner.

ComponentData (MQBYTE×ComponentDataLength) –
input/output

Component data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

Component data is in shared memory accessible to all processes.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter on the MQZ_INIT_NAME call.

When the MQZ_TERM_NAME call has completed, the queue manager discards
this data.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

MQRC_TERMINATION_FAILED
(2287, X’8FF’) Termination failed for an undefined reason.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

476 WebSphere MQ: System Administration Guide

API exits

API exits let you write code that changes the behavior of WebSphere MQ API calls,
such as MQPUT and MQGET, and then insert that code immediately before or
immediately after those calls. The insertion is automatic; the queue manager drives
the exit code at the registered points.

This chapter explains why you might want to use API exits, then describes what
administration tasks are involved in enabling them. The sections are:
v “Why use API exits”
v “How you use API exits”
v “What happens when an API exit runs?” on page 479
v “Configuring API exits” on page 479

We give a brief introduction to writing API exits in “How to write an API exit” on
page 478. For detailed information about writing API exits, aimed at application
programmers, see the WebSphere MQ Application Programming Guide.

Why use API exits

There are many reasons why you might want to insert code that modifies the
behavior of applications at the level of the queue manager. Each of your
applications has a specific job to do, and its code should do that task as efficiently
as possible. At a higher level, you might want to apply standards or business
processes to a particular queue manager for all the applications that use that queue
manager. It is more efficient to do this above the level of individual applications,
and thus without having to change the code of each application affected.

Here are a few suggestions of areas in which API exits might be useful:
v For security, you can provide authentication, checking that applications are

authorized to access a queue or queue manager. You can also police applications’
use of the API, authenticating the individual API calls, or even the parameters
they use.

v For flexibility, you can respond to rapid changes in your business environment
without changing the applications that rely on the data in that environment. You
could, for example, have API exits that respond to changes in interest rates,
currency exchange rates, or the price of components in a manufacturing
environment.

v For monitoring use of a queue or queue manager, you can trace the flow of
applications and messages, log errors in the API calls, set up audit trails for
accounting purposes, or collect usage statistics for planning purposes.

How you use API exits

This section gives a brief overview of the tasks involved in setting up API exits.

How to configure WebSphere MQ for API exits

You configure WebSphere MQ to enable API exits by changing the configuration
information in the usual ways:
v On WebSphere MQ for Windows, use the WebSphere MQ Explorer or the

amqmdain command to make changes to configuration information within the
Windows Registry.

Chapter 7. WebSphere MQ installable services and the API exit 477

v On WebSphere MQ for Linux (x86 platform), use the WebSphere MQ Explorer to
update the WebSphere MQ configuration files, mqs.ini and qm.ini.

v On other systems directly update WebSphere MQ configuration files, mqs.ini
and qm.ini.

In either case, you provide information to:
v Name the API exit
v Identify the module and entry point of the API exit code to run
v Optionally pass data with the exit
v Identify the sequence of this exit in relation to other exits

For detailed information on this configuration, see “Configuring API exits” on
page 479. For a description of how API exits run, see “What happens when an API
exit runs?” on page 479.

How to write an API exit

This section introduces writing API exits. For detailed information, aimed at
application programmers, see the WebSphere MQ Application Programming Guide.

You write your exits using the C programming language. To help you do so, we
provide a sample exit, amqsaxe0, that generates trace entries to a named file. When
you start writing exits, we recommend that you use this as your starting point.

Exits are available for every API call, as follows:
v MQCONN/MQCONNX, to provide a queue manager connection handle for use

on subsequent API calls
v MQDISC, to disconnect from a queue manager
v MQBEGIN, to begin a global unit of work (UOW)
v MQBACK, to back out a UOW
v MQCMIT, to commit a UOW
v MQOPEN, to open an MQSeries resource for subsequent access
v MQCLOSE, to close an MQSeries resource that had previously been opened for

access
v MQGET, to retrieve a message from a queue that has previously been opened

for access
v MQPUT1, to place a message on to a queue
v MQPUT, to place a message on to a queue that has previously been opened for

access
v MQINQ, to inquire on the attributes of an MQSeries resource that has previously

been opened for access
v MQSET, to set the attributes of a queue that has previously been opened for

access

Within API exits, these calls take the general form:
MQ_call_EXIT (parameters)

where call is the API call name (PUT, GET, and so on), and the parameters control
the function of the exit, primarily providing communication between the exit and
the external control blocks MQAXP (the exit parameter structure) and MQAXC (the
exit context structure).

478 WebSphere MQ: System Administration Guide

What happens when an API exit runs?

The API exit routines to run are identified in stanzas on UNIX systems, and in
Registry entries on Windows systems. In this section we talk about the stanzas in
the configuration files mqs.ini and qm.ini, however equivalent information is
available in the Registry on Windows systems, accessible through the WebSphere
MQ Explorer.

The definition of the routines can occur in three places:
1. ApiExitCommon, in the mqs.ini file, identifies routines, for the whole of

WebSphere MQ, applied when queue managers start up. These can be
overridden by routines defined for individual queue managers.

2. ApiExitTemplate, in the mqs.ini file, identifies routines, for the whole of
WebSphere MQ, copied to the ApiExitLocal set when a new queue manager is
created.

3. ApiExitLocal, in the qm.ini file, identifies routines applicable to a particular
queue manager.

When a new queue manager is created, the ApiExitTemplate definitions in mqs.ini
are copied to the ApiExitLocal definitions in qm.ini for the new queue manager.
When a queue manager is started, both the ApiExitCommon and ApiExitLocal
definitions are used. The ApiExitLocal definitions replace the ApiExitCommon
definitions if both identify a routine of the same name. The Sequence attribute,
described in “Attributes for all stanzas” on page 480 determines the order in which
the routines defined in the stanzas run.

Configuring API exits

This section tells you how to configure API exits. We start in “Configuring API
exits on UNIX systems,” explaining how to add the stanzas, followed by
“Configuring API exits on Windows systems” on page 482, which tells you how to
use the WebSphere MQ Explorer.

Configuring API exits on UNIX systems

You define your API exits in new stanzas in the mqs.ini and qm.ini files. The
sections below describe these stanzas, and the attributes within them that define
the exit routines and the sequence in which they run. For guidance on the process
of changing these stanzas, see “Changing the configuration information” on page
481.

On Linux (x86 platform) systems you can use the WebSphere MQ Explorer to edit
these entries in mqs.ini and qm.ini.

Stanzas in mqs.ini are:

ApiExitCommon
When any queue manager starts, the attributes in this stanza are read, and
then overridden by the API exits defined in qm.ini.

ApiExitTemplate
When any queue manager is created, the attributes in this stanza are
copied into the newly created qm.ini file under the ApiExitLocal stanza.

The stanza in qm.ini is:

Chapter 7. WebSphere MQ installable services and the API exit 479

ApiExitLocal
When the queue manager starts, API exits defined here override the
defaults defined in mqs.ini.

Attributes for all stanzas:

All these stanzas have the following attributes:

Name=ApiExit_name
The descriptive name of the API exit passed to it in the ExitInfoName field
of the MQAXP structure.

This name must be unique, no longer than 48 characters, and contain only
valid characters for the names of WebSphere MQ objects (for example,
queue names).

Function=function_name
The name of the function entry point into the module containing the API
exit code. This entry point is the MQ_INIT_EXIT function.

The length of this field is limited to MQ_EXIT_NAME_LENGTH.

Module=module_name
The module containing the API exit code.

If this field contains the full path name of the module it is used as is.

If this field contains just the module name, the module is located using the
ExitsDefaultPath attribute in the ExitPath in qm.ini.

On platforms that support separate threaded libraries (AIX, HP/UX, and
Linux), you must provide both a non-threaded and a threaded version of
the API exit module. The threaded version must have an _r suffix. The
threaded version of the WebSphere MQ application stub implicitly appends
_r to the given module name before it is loaded.

The length of this field is limited to the maximum path length the platform
supports.

Data=data_name
Data to be passed to the API exit in the ExitData field of the MQAXP
structure.

If you include this attribute, leading and trailing blanks are removed, the
remaining string is truncated to 32 characters, and the result is passed to
the exit. If you omit this attribute, the default value of 32 blanks is passed
to the exit.

The maximum length of this field is 32 characters.

Sequence=sequence_number
The sequence in which this API exit is called relative to other API exits. An
exit with a low sequence number is called before an exit with a higher
sequence number. There is no need for the sequence numbering of exits to
be contiguous; a sequence of 1, 2, 3 has the same result as a sequence of 7,
42, 1096. If two exits have the same sequence number, the queue manager
decides which one to call first. You can tell which was called after the event
by putting the time or a marker in ExitChainArea indicated by the
ExitChainAreaPtr in MQAXP or by writing your own log file.

This attribute is an unsigned numeric value.

Sample stanzas:

480 WebSphere MQ: System Administration Guide

The mqs.ini file below contains the following stanzas:

ApiExitTemplate
This stanza defines an exit with the descriptive name
OurPayrollQueueAuditor, module name auditor, and sequence number 2.
A data value of 123 is passed to the exit.

ApiExitCommon
This stanza defines an exit with the descriptive name MQPoliceman, module
name tmqp, and sequence number 1. The data passed is an instruction
(CheckEverything).

mqs.ini

ApiExitTemplate:
Name=OurPayrollQueueAuditor
Sequence=2
Function=EntryPoint
Module=/usr/ABC/auditor
Data=123

ApiExitCommon:
Name=MQPoliceman
Sequence=1
Function=EntryPoint
Module=/usr/MQPolice/tmqp
Data=CheckEverything

The qm.ini file below contains an ApiExitLocal definition of an exit with the
descriptive name ClientApplicationAPIchecker, module name ClientAppChecker,
and sequence number 3.
qm.ini

ApiExitLocal:
Name=ClientApplicationAPIchecker
Sequence=3
Function=EntryPoint
Module=/usr/Dev/ClientAppChecker
Data=9.20.176.20

Changing the configuration information:

The WebSphere MQ configuration file, mqs.ini, contains information relevant to all
the queue managers on a particular node. You can find it in the /var/mqm directory.

A queue manager configuration file, qm.ini, contains information relevant to a
specific queue manager. There is one queue manager configuration file for each
queue manager, held in the root of the directory tree occupied by the queue
manager. For example, the path and the name for a configuration file for a queue
manager called QMNAME is:
/var/mqm/qmgrs/QMNAME/qm.ini

Before editing a configuration file, back it up so that you have a copy you can
revert to if the need arises.

You can edit configuration files either:
v Automatically, using commands that change the configuration of queue

managers on the node
v Manually, using a standard text editor

Chapter 7. WebSphere MQ installable services and the API exit 481

If you set an incorrect value on a configuration file attribute, the value is ignored
and an operator message is issued to indicate the problem. (The effect is the same
as missing out the attribute entirely.)

Configuring API exits on Windows systems

You configure API exits on Windows systems using the WebSphere MQ Explorer
or the amqmdain command to update the Windows Registry.

When using the WebSphere MQ Explorer you can modify the ApiExitCommon,
ApiExitTemplate and ApiExitLocal stanzas as follows:
v The ApiExitCommon and ApiExitTemplate stanza are defined on the WebSphere

MQ properties page, under Exits.
v The ApiExitLocal stanza is defined on the queue manager properties page,

under Exits.

When entering, or changing, the attributes for an exit, the attributes are those
defined in “Attributes for all stanzas” on page 480.

API exit reference information

This chapter provides reference information for the API exit. It includes:
v Data structures used by an API exit function:

– “MQACH – API exit chain header” on page 484
– “MQAXC – API exit context” on page 486
– “MQAXP – API exit parameter” on page 490
– “MQXEPO – Register entry point options” on page 501

v Calls an API exit function can issue:
– “MQXEP – Register entry point” on page 498

v Definitions of the API exit functions:
– “MQ_BACK_EXIT – Back out changes” on page 503
– “MQ_BEGIN_EXIT – Begin unit of work” on page 504
– “MQ_CLOSE_EXIT – Close object” on page 506
– “MQ_CMIT_EXIT – Commit changes” on page 507
– “MQ_CONNX_EXIT – Connect queue manager (extended)” on page 508
– “MQ_DISC_EXIT – Disconnect queue manager” on page 509
– “MQ_GET_EXIT – Get message” on page 510
– “MQ_INIT_EXIT – Initialize exit environment” on page 512
– “MQ_INQ_EXIT – Inquire object attributes” on page 513
– “MQ_OPEN_EXIT – Open object” on page 514
– “MQ_PUT_EXIT – Put message” on page 515
– “MQ_PUT1_EXIT – Put one message” on page 516
– “MQ_SET_EXIT – Set object attributes” on page 518
– “MQ_TERM_EXIT – Terminate exit environment” on page 521

The data structures, calls, and exits are described in the order shown above
(alphabetic order within each type).

482 WebSphere MQ: System Administration Guide

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

General usage notes

This section contains general usage notes that relate to all API exit functions.
1. All exit functions can issue the MQXEP call; this call is designed specifically for

use from API exit functions.
2. The MQ_INIT_EXIT function cannot issue any MQ calls other than MQXEP.
3. All other exit functions can issue the following MQ calls:
v MQBACK, MQBEGIN, MQCLOSE, MQCMIT, MQCONN, MQCONNX,

MQDISC, MQGET, MQINQ, MQOPEN, MQPUT, MQPUT1, MQSET
4. If an exit function issues the MQCONN call, or the MQCONNX call with the

MQCNO_HANDLE_SHARE_NONE option, the call completes with reason
code MQRC_ALREADY_CONNECTED, and the handle returned is the same as
the one passed to the exit as a parameter.

5. In general when an API exit function issues an MQI call, API exits are not be
called recursively. However, if an exit function issues the MQCONNX call with
the MQCNO_HANDLE_SHARE_BLOCK or
MQCNO_HANDLE_SHARE_NO_BLOCK options, the call returns a new
shared handle. This provides the exit suite with a connection handle of its own,
and hence a unit of work that is independent of the application’s unit of work.
The exit suite can use this handle to put and get messages within its own unit
of work, and commit or back out that unit of work; all of this can be done
without affecting the application’s unit of work in any way.
Because the exit function is using a connection handle that is different from the
handle being used by the application, MQ calls issued by the exit function
result in the relevant API exit functions being invoked. Exit functions can
therefore be invoked recursively. Note that both the ExitUserArea field in
MQAXP and the exit chain area have connection-handle scope. Consequently,
an exit function cannot use those areas to signal to another instance of itself
invoked recursively that it is already active.

6. Exit functions can also put and get messages within the application’s unit of
work. When the application commits or backs out the unit of work, all
messages within the unit of work are committed or backed out together,
regardless of who placed them in the unit of work (application or exit
function). However, the exit can cause the application to exceed system limits
sooner than would otherwise be the case (for example, by exceeding the
maximum number of uncommitted messages in a unit of work).
When an exit function uses the application’s unit of work in this way, the exit
function should usually avoid issuing the MQCMIT call, as this commits the
application’s unit of work and might impair the correct functioning of the
application. However, the exit function might sometimes need to issue the
MQBACK call, if the exit function encounters a serious error that prevents the
unit of work being committed (for example, an error putting a message as part
of the application’s unit of work). When MQBACK is called, take care to ensure
that the application unit of work boundaries are not changed. In this situation
the exit function must set the appropriate values to ensure that completion
code MQCC_WARNING and reason code MQRC_BACKED_OUT are returned
to the application, so that the application can detect the fact that the unit of
work has been backed out.
If an exit function uses the application’s connection handle to issue MQ calls,
those calls do not themselves result in further invocations of API exit functions.

7. If an MQXR_BEFORE exit function terminates abnormally, the queue manager
might be able to recover from the failure. If it can, the queue manager

Chapter 7. WebSphere MQ installable services and the API exit 483

|

continues processing as though the exit function had returned
MQXCC_FAILED. If the queue manager cannot recover, the application is
terminated.

8. If an MQXR_AFTER exit function terminates abnormally, the queue manager
might be able to recover from the failure. If it can, the queue manager
continues processing as though the exit function had returned
MQXCC_FAILED. If the queue manager cannot recover, the application is
terminated. Be aware that in the latter case, messages retrieved outside a unit
of work are lost (this is the same situation as the application failing
immediately after removing a message from the queue).

9. The MCA process performs a two phase commit.
If an API exit intercepts an MQCMIT from a prepared MCA process and
attempts to perform an action within the unit of work, then the action will fail
with reason code MQRC_UOW_NOT_AVAILABLE.

MQACH – API exit chain header

The MQACH structure describes the header information that must be present at
the start of each exit chain area.
v The address of the first area in the chain in given by the ExitChainAreaPtr field

in MQAXP. If there is no chain, ExitChainAreaPtr is the null pointer.
v The address of the next area in the chain is given by the NextChainAreaPtr field

in MQACH. For the last area in the chain, NextChainAreaPtr is the null pointer.

Any exit function can create a chain area in dynamically-obtained storage (for
example, by using malloc), and add that area to the chain at the desired location
(start, middle, or end). The exit function must ensure that it sets all fields in
MQACH to valid values.

The exit suite that creates the chain area is responsible for destroying that chain
area before termination (the MQ_TERM_EXIT function is a convenient point at
which to do this). However, adding and removing chain areas from the chain must
be done only by an exit function when it is invoked by the queue manager; this
restriction is necessary to avoid serialization problems.

Exit chain areas are made available to all exit suites, and must not be used to hold
private data. Use ExitUserArea in MQAXP to hold private data.

In general there is no correspondence between the chain of exit functions that are
invoked for an API call, and the chain of exit chain areas:
v Some exit functions might not have chain areas.
v Other exit functions might each have multiple chain areas.
v The order of the chain areas might be different from the order of the exit

functions that own those chain areas.

Fields

The MQACH structure contains the following fields:

StrucId (MQCHAR4):

Structure identifier.

The value is:

484 WebSphere MQ: System Administration Guide

MQACH_STRUC_ID
Identifier for API exit chain header structure.

For the C programming language, the constant
MQACH_STRUC_ID_ARRAY is also defined; this has the same value as
MQACH_STRUC_ID, but is an array of characters instead of a string.

This initial value of this field is MQACH_STRUC_ID.

Version (MQLONG):

Structure version number.

The value is:

MQACH_VERSION_1
Version-1 API exit chain header structure.

The following constant specifies the version number of the current version:

MQACH_CURRENT_VERSION
Current version of API exit chain header structure.

Note: When a new version of the MQACH structure is introduced, the layout of
the existing part is not changed. The exit function must therefore check that the
version number is equal to or greater than the lowest version that contains the
fields that the exit function needs to use.

The initial value of this field is MQACH_CURRENT_VERSION.

StrucLength (MQLONG):

Length of MQACH structure.

This is the length of the MQACH structure itself; this length excludes the
exit-defined data that follows the MQACH structure (see the ChainAreaLength
field).
v The exit function that creates the MQACH structure must set this field to the

length of the MQACH.
v An exit function that wants to access the exit-defined data should use

StrucLength as the offset of the exit-defined data from the start of the MQACH
structure.

The following value is defined:

MQACH_LENGTH_1
Length of version-1 MQACH structure.

The following constant specifies the length of the current version:

MQACH_CURRENT_LENGTH
Length of current version of exit chain area header.

The initial value of this field is MQACH_CURRENT_LENGTH.

ChainAreaLength (MQLONG):

Total length of chain area.

Chapter 7. WebSphere MQ installable services and the API exit 485

This is the total length of the chain area. It is equal to the sum of the length of the
MQACH plus the length of the exit-defined data that follows the MQACH.

The initial value of this field is zero.

ExitInfoName (MQCHAR48):

Exit information name.

This is a name that is used to identify the exit suite to which the chain area
belongs.

The length of this field is given by MQ_EXIT_INFO_NAME_LENGTH. The initial
value of this field is the null string in C.

NextChainAreaPtr (PMQACH):

Address of next MQACH structure in chain.

This is the address of the next chain area in the chain. If the current chain area is
the last one in the chain, NextChainAreaPtr is the null pointer.

The initial value of this field is the null pointer.

C declaration
typedef struct tagMQACH MQACH;
struct tagMQACH {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG StrucLength; /* Length of MQACH structure */
MQLONG ChainAreaLength; /* Total length of chain area */
MQCHAR48 ExitInfoName; /* Exit information name */
PMQACH NextChainAreaPtr; /* Address of next MQACH structure in

chain */
};

MQAXC – API exit context

The MQAXC structure describes the context information that is passed to an API
exit. The context information relates to the environment in which the application is
running.

Fields

The MQAXC structure contains the following fields:

StrucId (MQCHAR4):

Structure identifier.

The value is:

MQAXC_STRUC_ID
Identifier for API exit parameter structure.

For the C programming language, the constant
MQAXC_STRUC_ID_ARRAY is also defined; this has the same value as
MQAXC_STRUC_ID, but is an array of characters instead of a string.

486 WebSphere MQ: System Administration Guide

This is an input field to the exit.

Version (MQLONG):

Structure version number.

The value is:

MQAXC_VERSION_1
Version-1 API exit parameter structure.

The following constant specifies the version number of the current version:

MQAXC_CURRENT_VERSION
Current version of API exit parameter structure.

Note: When a new version of the MQAXC structure is introduced, the layout of
the existing part is not changed. The exit should therefore check that the version
number is equal to or greater than the lowest version which contains the fields that
the exit needs to use.

This is an input field to the exit.

Environment (MQLONG):

Environment.

This indicates the environment from which the API call was issued. The value is
one of the following:

MQXE_COMMAND_SERVER
Command server.

MQXE_MQSC
The “runmqsc” command interpreter.

MQXE_MCA
Message channel agent.

MQXE_MCA_SVRCONN
Message channel agent acting on behalf of a client.

MQXE_OTHER
Environment not defined.

This is an input field to the exit.

UserId (MQCHAR12):

User identifier.

This is the user identifier associated with the program that issued the API call. For
a client connection (MQXE_MCA_SVRCONN), UserId contains the user identifier
of the adopted user, and not the user identifier of the MCA.

The length of this field is given by MQ_USER_ID_LENGTH. This is an input field
to the exit.

SecurityId (MQBYTE40):

Chapter 7. WebSphere MQ installable services and the API exit 487

Security identifier.

This is the security identifier associated with the program that issued the API call.
For a client connection (MQXE_MCA_SVRCONN), SecurityId contains the
security identifier of the adopted user, and not the security identifier of the MCA.
If the security identifier is not known, SecurityId has the value:

MQSID_NONE
No security identifier specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQSID_NONE_ARRAY is
also defined; this has the same value as MQSID_NONE, but is an array of
characters instead of a string.

The length of this field is given by MQ_SECURITY_ID_LENGTH. This is an input
field to the exit.

ConnectionName (MQCHAR264):

Connection name.

For a client connection (MQXE_MCA_SVRCONN), this field contains the address
of the client (for example, the TCP/IP address). In other cases, this field is blank.

The length of this field is given by MQ_CONN_NAME_LENGTH. This is an input
field to the exit.

LongMCAUserIdLength (MQLONG):

Length of long MCA user identifier.

For MQXE_MCA and MQXE_MCA_SVRCONN, this is the length in bytes of the
full MCA user identifier pointed to by LongMCAUserIdPtr. In other cases, this field
is zero.

This is an input field to the exit.

LongRemoteUserIdLength (MQLONG):

Length of long remote user identifier.

For MQXE_MCA and MQXE_MCA_SVRCONN, this is the length in bytes of the
full remote user identifier pointed to by LongRemoteUserIdPtr. In other cases, this
field is zero.

This is an input field to the exit.

LongMCAUserIdPtr (MQPTR):

Address of long MCA user identifier.

For MQXE_MCA and MQXE_MCA_SVRCONN, this is the address of the full
MCA user identifier. The length of the full identifier is given by
LongMCAUserIdLength. In other cases, this field is the null pointer.

This is an input field to the exit.

488 WebSphere MQ: System Administration Guide

LongRemoteUserIdPtr (MQPTR):

Address of long remote user identifier.

For MQXE_MCA and MQXE_MCA_SVRCONN, this is the address of the full
remote user identifier. The length of the full identifier is given by
LongRemoteUserIdLength. In other cases, this field is the null pointer.

This is an input field to the exit.

ApplName (MQCHAR28):

Application name.

This is the name of the application that issued the API call. This name is obtained
in the same way as the default value for the PutApplName field in MQMD.

The length of this field is given by MQ_APPL_NAME_LENGTH. This is an input
field to the exit.

ApplType (MQLONG):

Application type.

This is the type of the application that issued the API call. The value is the same as
MQAT_DEFAULT for the environment for which the application was compiled.

This is an input field to the exit.

ProcessId (MQPID):

The WebSphere MQ process identifier.

This is the same identifier used in WebSphere MQ trace and FFST dumps, but
might be different from the operating system process identifier. Where applicable,
the exit handler sets this field on entry to each exit function.

This is an input field to the exit.

ThreadId (MQTID):

The WebSphere MQ thread identifier.

This is the same identifier used in WebSphere MQ trace and FFST dumps, but
might be different from the operating system thread identifier. Where applicable,
the exit handler sets this field on entry to each exit function.

This is an input field to the exit.

C declaration
typedef struct tagMQAXC MQAXC;
struct tagMQAXC {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Environment; /* Environment */
MQCHAR12 UserId; /* User identifier */
MQBYTE40 SecurityId; /* Security identifier */
MQCHAR264 ConnectionName; /* Connection name */

Chapter 7. WebSphere MQ installable services and the API exit 489

MQLONG LongMCAUserIdLength; /* Length of long MCA user
identifier */

MQLONG LongRemoteUserIdLength; /* Length of long remote user
identifier */

MQPTR LongMCAUserIdPtr; /* Address of long MCA user
identifier */

MQPTR LongRemoteUserIdPtr; /* Address of long remote user
identifier */

MQCHAR28 ApplName; /* Application name */
MQLONG ApplType; /* Application type */
MQPID ProcessId; /* Process identifier */
MQTID ThreadId; /* Thread identifier */

};

MQAXP – API exit parameter

The MQAXP structure describes the information that is passed to an API exit.

Fields

The MQAXP structure contains the following fields:

StrucId (MQCHAR4):

Structure identifier.

The value is:

MQAXP_STRUC_ID
Identifier for API exit parameter structure.

For the C programming language, the constant
MQAXP_STRUC_ID_ARRAY is also defined; this has the same value as
MQAXP_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the exit.

Version (MQLONG):

Structure version number.

The value is:

MQAXP_VERSION_1
Version-1 API exit parameter structure.

The following constant specifies the version number of the current version:

MQAXP_CURRENT_VERSION
Current version of API exit parameter structure.

Note: When a new version of the MQAXP structure is introduced, the layout of
the existing part is not changed. The exit should therefore check that the version
number is equal to or greater than the lowest version which contains the fields that
the exit needs to use.

This is an input field to the exit.

ExitId (MQLONG):

490 WebSphere MQ: System Administration Guide

Type of exit.

This indicates the type of exit being called. The value is:

MQXT_API_EXIT
API exit.

This is an input field to the exit.

ExitReason (MQLONG):

Reason for invoking exit.

This indicates the reason why the exit is being called. Possible values are:

MQXR_CONNECTION
Connection level processing.

The exit is invoked with this value twice for each connection:
v Before the MQCONN or MQCONNX call, so that the exit can perform

connection-level initialization. The Function field has the value
MQXF_INIT in this case.
The MQXF_INIT exit function should be used for general initialization
of the exit suite, and the MQXF_CONN or MQXF_CONNX exit
functions should be used specifically for processing the MQCONN or
MQCONNX calls.

v After the MQDISC call, so that the exit can perform connection-level
termination. The Function field has the value MQXF_TERM in this case.
The MQXF_TERM exit function should be used for general termination
of the exit suite, and the MQXF_DISC exit function should be used
specifically for processing the MQDISC call.

MQXR_BEFORE
Before API execution.

The Function field can have any of the MQXF_* values other than
MQXF_INIT or MQXF_TERM.

For the MQGET call, this value occurs with the:
v MQXF_GET exit function before API execution
v MQXF_DATA_CONV_ON_GET exit function after API execution but

before data conversion

MQXR_AFTER
After API execution.

The Function field can have any of the MQXF_* values other than
MQXF_INIT, MQXF_TERM, or MQXF_DATA_CONV_ON_GET.

For the MQGET call, this value occurs with the:
v MQXF_GET exit function after both API execution and data conversion

have been completed

This is an input field to the exit.

ExitResponse (MQLONG):

Response from exit.

Chapter 7. WebSphere MQ installable services and the API exit 491

This is set by the exit function to indicate the outcome of the processing performed
by the exit. It must be one of the following:

MQXCC_OK
Exit completed successfully.

This value can be set by all MQXR_* exit functions. The ExitResponse2
field must be set by the exit function to indicate how processing should
continue.

Note: Returning MQXCC_OK does not imply that the completion code for
the API call is MQCC_OK, or that the reason code is MQRC_NONE.

MQXCC_FAILED
Exit failed.

This value can be set by all MQXR_* exit functions. It causes the queue
manager to set the completion code for the API call to MQCC_FAILED,
and the reason code to one of the following values:

Exit function Reason code set by queue manager
MQXF_INIT MQRC_API_EXIT_INIT_ERROR
MQXF_TERM MQRC_API_EXIT_TERM_ERROR
All others MQRC_API_EXIT_ERROR

However, the values set by the queue manager can be altered by an exit
function later in the chain.

The ExitResponse2 field is ignored; the queue manager continues
processing as though MQXR2_SUPPRESS_CHAIN had been returned:
v For an MQXR_BEFORE exit function, processing continues with the

MQXR_AFTER exit function that matches this MQXR_BEFORE exit
function (that is, all intervening MQXR_BEFORE and MQXR_AFTER exit
functions, plus the API call itself, are skipped).

v For an MQXR_AFTER exit function, processing continues with the next
MQXR_AFTER exit function in the chain.

MQXCC_SUPPRESS_FUNCTION
Suppress function.

If an MQXR_BEFORE exit function returns this value, the queue manager
sets the completion code for the API call to MQCC_FAILED, the reason
code to MQRC_SUPPRESSED_BY_EXIT, and the API call is skipped. If
returned by the MQXF_DATA_CONV_ON_GET exit function, data
conversion is skipped.

The ExitResponse2 field must be set by the exit function to indicate
whether the remaining MQXR_BEFORE exit functions and their matching
MQXR_AFTER exit functions should be invoked. Any of these exit
functions can alter the completion code and reason code of the API call
that were set by the queue manager.

If an MQXR_AFTER or MQXR_CONNECTION exit function returns this
value, the queue manager continues processing as though the exit had
returned MQXCC_FAILED.

MQXCC_SKIP_FUNCTION
Skip function.

This is the same as MQXCC_SUPPRESS_FUNCTION, except the exit
function can set the completion code and reason code of the API call.

492 WebSphere MQ: System Administration Guide

MQXCC_SUPPRESS_EXIT
Suppress exit.

If an MQXR_BEFORE or MQXR_AFTER exit function returns this value,
the queue manager deregisters immediately all of the exit functions
belonging to this exit suite. The only exception is the MQXF_TERM exit
function, which will be invoked at termination of the connection if
registered when MQXCC_SUPPRESS_EXIT is returned. Note that if an
MQXR_BEFORE exit function returns this value, the matching
MQXR_AFTER exit function will not be invoked after the API call, since
that exit function will no longer be registered.

The ExitResponse2 field must be set by the exit function to indicate
whether the remaining MQXR_BEFORE exit functions and their matching
MQXR_AFTER exit functions should be invoked.

If an MQXR_CONNECTION exit function returns this value, the queue
manager continues processing as though the exit had returned
MQXCC_FAILED.

If the exit function sets ExitResponse to a value that is not valid, the queue
manager continues processing as though the exit had returned MQXCC_FAILED.

On entry to the exit function, ExitResponse has the value MQXCC_OK.

This is an output field from the exit.

ExitResponse2 (MQLONG):

Secondary response from exit.

This is the secondary exit response code that can be set by an MQXR_BEFORE exit
function to provide additional information to the queue manager. If set by an
MQXR_AFTER or MQXR_CONNECTION exit function, the value is ignored. The
value must be one of the following:

MQXR2_DEFAULT_CONTINUATION
Default continuation.

Continuation with the next exit function in the chain depends on the value
of the ExitResponse field:
v If ExitResponse is MQXCC_OK or MQXCC_SUPPRESS_EXIT, the next

MQXR_BEFORE exit function in the chain is invoked.
v If ExitResponse is MQXCC_SUPPRESS_FUNCTION or

MQXCC_SKIP_FUNCTION, no further MQXR_BEFORE exit functions
are invoked for this particular API call.

MQXR2_CONTINUE_CHAIN
Continue with next MQXR_BEFORE exit function in chain.

MQXR2_SUPPRESS_CHAIN
Skip remaining MQXR_BEFORE exit functions in chain.

All subsequent MQXR_BEFORE exit functions in the chain, and their
matching MQXR_AFTER exit functions, are skipped for this particular API
call. The MQXR_AFTER exit functions that match the current exit function
and earlier MQXR_BEFORE exit functions are not skipped.

Chapter 7. WebSphere MQ installable services and the API exit 493

If the exit function sets ExitResponse2 to a value that is not valid, the queue
manager continues processing as though the exit had returned
MQXR2_DEFAULT_CONTINUATION.

This is an output field from the exit.

Feedback (MQLONG):

Feedback.

This is a field that allows the exit functions belonging to an exit suite to
communicate feedback codes both to each other, and to exit functions belonging to
other exit suites. The field is initialized to MQFB_NONE before the first invocation
of the first exit function in the first exit suite (the MQXF_INIT exit function), and
thereafter any changes made to this field by exit functions are preserved across the
invocations of the exit functions.

This is an input/output field to the exit.

APICallerType (MQLONG):

API caller type.

This indicates the type of program that issued the API call that caused the exit
function to be invoked. The value is one of the following:

MQXACT_EXTERNAL
Caller is external to the queue manager.

MQXACT_INTERNAL
Caller is internal to the queue manager.

This is an input field to the exit.

ExitUserArea (MQBYTE16):

Exit user area.

This is a field that allows exit functions belonging to the same exit suite to share
data with each other, but not with other exit suites. The field is initialized to
MQXUA_NONE (binary zero) before the first invocation of the first exit function in
the exit suite (the MQXF_INIT exit function), and thereafter any changes made to
this field by exit functions are preserved across the invocations of the exit
functions. The queue manager resets the field to MQXUA_NONE when control
returns from the MQXF_TERM exit function to the queue manager.

The following value is defined:

MQXUA_NONE
No user information.

The value is binary zero for the length of the field.

For the C programming language, the constant MQXUA_NONE_ARRAY is
also defined; this has the same value as MQXUA_NONE, but is an array of
characters instead of a string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH. This is an
input/output field to the exit.

494 WebSphere MQ: System Administration Guide

ExitData (MQCHAR32):

Exit data.

On input to each exit function, this field is set to the character data associated with
the definition of the exit suite to which the exit function belongs. If no value has
been defined for that data, ExitData is blank.

The length of this field is given by MQ_EXIT_DATA_LENGTH. This is an input
field to the exit.

ExitInfoName (MQCHAR48):

Exit information name.

This is a name that is used to identify the exit suite to which the exit function
belongs.

The length of this field is given by MQ_EXIT_INFO_NAME_LENGTH. This is an
input field to the exit.

ExitPDArea (MQBYTE48):

Problem determination area.

This is a field that is available for the exit to use, to assist with problem
determination. The field is initialized to MQXPDA_NONE (binary zero) before
each invocation of the exit function. The exit function can set this field to any
value it chooses. When the exit returns control to the queue manager, the contents
of ExitPDArea are written to the trace file, if tracing is active.

The following value is defined:

MQXPDA_NONE
No problem-determination information.

The value is binary zero for the length of the field.

For the C programming language, the constant MQXPDA_NONE_ARRAY
is also defined; this has the same value as MQXPDA_NONE, but is an
array of characters instead of a string.

The length of this field is given by MQ_EXIT_PD_AREA_LENGTH. This is an
input/output field to the exit.

QMgrName (MQCHAR48):

Name of local queue manager.

This is the name of the queue manager that invoked the exit function. QMgrName is
never blank.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. This is an
input field to the exit.

ExitChainAreaPtr (PMQACH):

Address of first MQACH structure in chain.

Chapter 7. WebSphere MQ installable services and the API exit 495

The exit chain area allows exit functions belonging to one exit suite to share data
with exit functions belonging to another exit suite. The exit chain area is a chain of
MQACH structures that is made available to all exit functions. The address of the
first MQACH structure in the chain is passed to each exit function in the
ExitChainAreaPtr field. The exit function can scan the chain, and examine or alter
the data contained within it. However, this should be done only with the prior
agreement of the owner of the data.

If there is no current exit chain area, ExitChainAreaPtr is the NULL pointer. An
exit function can at any time create an MQACH structure in storage obtained
dynamically (for example, by using the C function malloc), and add it to the chain.
The exit suite which creates an MQACH is responsible for freeing the storage
associated with the MQACH before the exit suite terminates.

If data is to be shared between different exit functions belonging to the same exit
suite, but that data is not to be made available to other exit suites, the
ExitUserArea field should be used in preference to ExitChainAreaPtr.

This is an input/output field to the exit.

Hconfig (MQHCONFIG):

Configuration handle.

This handle represents the set of exit functions that belong to the exit suite whose
name is given by the ExitInfoName field. The queue manager generates a new
configuration handle when the MQXF_INIT exit function is invoked, and passes
that handle to the other exit functions that belong to the exit suite. This handle
must be specified on the MQXEP call in order to register the entry point for an exit
function.

This is an input field to the exit.

Function (MQLONG):

API function identifier.

This is the identifier of the API call that is about to be executed (when ExitReason
has the value MQXR_BEFORE), or the API call that has just been executed (when
ExitReason has the value MQXR_AFTER). If ExitReason has the value
MQXR_CONNECTION, Function indicates whether the exit should perform
initialization or termination. The value is one of the following:

MQXF_INIT
Initialization of exit suite.

MQXF_TERM
Termination of exit suite.

MQXF_CONN
MQCONN call.

MQXF_CONNX
MQCONNX call.

MQXF_DISC
MQDISC call.

496 WebSphere MQ: System Administration Guide

MQXF_OPEN
MQOPEN call.

MQXF_CLOSE
MQCLOSE call.

MQXF_PUT1
MQPUT1 call.

MQXF_PUT
MQPUT call.

MQXF_GET
MQGET call.

MQXF_DATA_CONV_ON_GET
Data conversion on MQGET call.

MQXF_INQ
MQINQ call.

MQXF_SET
MQSET call.

MQXF_BEGIN
MQBEGIN call.

MQXF_CMIT
MQCMIT call.

MQXF_BACK
MQBACK call.

MQXF_SUB
MQSUB call

MQXF_SUBRQ
MQSUBRQ call

This is an input field to the exit.

ExitMsgHandle (MQHMSG):

When Function is MQXF_GET and ExitReason is MQXR_AFTER, a valid message
handle is returned in this field allowing the API exit access to the message
descriptor fields and any other properties matching the ExitProperties string
specified in the MQXEPO structure when registering the API exit.

Any non-message descriptor properties that are returned in the ExitMsgHandle will
not be available from the MsgHandle in the MQGMO structure if one was specified,
or in the message data.

When Function is MQXF_GET and ExitReason is MQXR_BEFORE, if the exit
program sets this field to MQHM_NONE then it will suppress the populating of
the ExitMsgHandle properties.

This field is not set if Version is less then MQAXP_VERSION_2.

This is an input/output field to the exit.

Chapter 7. WebSphere MQ installable services and the API exit 497

|
|

|
|

|

|

|
|
|
|

|
|
|

|
|
|

|

|

C declaration
typedef struct tagMQAXP MQAXP;
struct tagMQAXP {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG ExitId; /* Type of exit */
MQLONG ExitReason; /* Reason for invoking exit */
MQLONG ExitResponse; /* Response from exit */
MQLONG ExitResponse2; /* Secondary response from exit */
MQLONG Feedback; /* Feedback */
MQLONG APICallerType; /* API caller type */
MQBYTE16 ExitUserArea; /* Exit user area */
MQCHAR32 ExitData; /* Exit data */
MQCHAR48 ExitInfoName; /* Exit information name */
MQBYTE48 ExitPDArea; /* Problem determination area */
MQCHAR48 QMgrName; /* Name of local queue manager */
PMQACH ExitChainAreaPtr; /* Address of first MQACH

structure in chain */
MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Function; /* API function identifier */
MQHMSG ExitMsgHandle; /* Exit message handle */

};

MQXEP – Register entry point

This call is used by an exit function to register the entry points of other exit
functions in the exit suite. This is usually done by the MQ_INIT_EXIT function,
but can be done by any exit function in the exit suite.

The MQXEP call is also used to deregister entry points. This is usually done by the
MQ_TERM_EXIT function, but can be done by any exit function in the exit suite.

Syntax

Parameters

The MQXEP call has the following parameters.

Hconfig (MQHCONFIG) – input:

Configuration handle.

This handle represents the exit suite to which the current exit function belongs.
The queue manager generates this configuration handle when the MQ_INIT_EXIT
function is invoked, and uses the Hconfig field in the MQAXP structure to pass the
handle to each exit function in the exit suite.

ExitReason (MQLONG) – input:

Exit reason.

This specifies when to call the entry point being registered or deregistered. It must
be one of the following:

MQXR_CONNECTION
Connection level processing.

MQXEP (Hconfig, ExitReason, Function, EntryPoint, ExitOpts,
pCompCode, pReason)

498 WebSphere MQ: System Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

The Function parameter must have the value MQXF_INIT or
MQXF_TERM.

MQXR_BEFORE
Before API execution.

The Function parameter can have any of the MQXF_* values other than
MQXF_INIT or MQXF_TERM.

MQXR_AFTER
After API execution.

The Function parameter can have any of the MQXF_* values other than
MQXF_INIT, MQXF_TERM, or MQXF_DATA_CONV_ON_GET.

Function (MQLONG) – input:

Function identifier.

This specifies the API call for which the entry point is being registered or
deregistered. It must be one of the following:

MQXF_INIT
Initialization of exit suite.

MQXF_TERM
Termination of exit suite.

MQXF_CONN
MQCONN call.

MQXF_CONNX
MQCONNX call.

MQXF_DISC
MQDISC call.

MQXF_OPEN
MQOPEN call.

MQXF_CLOSE
MQCLOSE call.

MQXF_PUT1
MQPUT1 call.

MQXF_PUT
MQPUT call.

MQXF_GET
MQGET call.

MQXF_DATA_CONV_ON_GET
Data conversion on MQGET call.

MQXF_INQ
MQINQ call.

MQXF_SET
MQSET call.

MQXF_BEGIN
MQBEGIN call.

MQXF_CMIT
MQCMIT call.

Chapter 7. WebSphere MQ installable services and the API exit 499

MQXF_BACK
MQBACK call.

If the MQXEP call is used more than once to register different entry points for a
particular combination of Function and ExitReason, the last call made provides the
entry point that is used.

EntryPoint (PMQFUNC) – input:

Exit function entry point.

This is the address of the entry point being registered.

If the value specified is the null pointer, it indicates either that the exit function is
not provided, or that a previously-registered exit function is being deregistered.
The null pointer is assumed for entry points which are not defined using MQXEP.

ExitOpts (MQXEPO) – input:

Exit reason.

The MQXEPO structure allows API exits to register for specific properties to be
returned in the ExitMsgHandle of the MQAXP structure.

If a null pointer is specified for this field then the default values of the MQXEPO
structure are assumed.

See “MQXEPO – Register entry point options” on page 501 for details.

pCompCode (PMQLONG) – output:

Completion code.

The value returned is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

pReason (PMQLONG) – output:

Reason code qualifying pCompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

MQRC_EXIT_REASON_ERROR
(2377, X’949’) Exit reason not valid.

MQRC_FUNCTION_ERROR
(2281, X’8E9’) Function identifier not valid.

500 WebSphere MQ: System Administration Guide

|

|

|

|
|

|
|

|

MQRC_HCONFIG_ERROR
(2280, X’8E8’) Configuration handle not valid.

MQRC_PROPERTY_NAME_ERROR
(2442, X’098A’) Exit properties field is not valid.

MQRC_RESERVED_VALUE_ERROR
(2378, X’94A’) Reserved value not valid.

MQRC_RESOURCE_PROBLEM
(2102, X’836’) Insufficient system resources available.

MQRC_UNEXPECTED_ERROR
(2195, X’893’) Unexpected error occurred.

MQRC_XEPO_ERROR
(2507, X’09CB’) Exit options structure not valid.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

C invocation
MQXEP (Hconfig, ExitReason, Function, EntryPoint, &ExitOpts,

&CompCode, &Reason);

Declare the parameters as follows:
MQHCONFIG Hconfig; /* Configuration handle */
MQLONG ExitReason; /* Exit reason */
MQLONG Function; /* Function identifier */
PMQFUNC EntryPoint; /* Exit function entry point */
MQPTR ExitOpts; /* Exit options structure */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQXEPO – Register entry point options
The following table summarizes the fields in the structure.

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options Options

ExitProperties Exit properties ExitProperties

Overview
The MQXEPO structure allows applications to specify options that control how API
exit entry points are registered.

The structure is an input parameter on the MQXEP call.

Fields

The MQXEPO structure contains the following fields; the fields are described in
alphabetic order:

ExitProperties (MQCHARV):

Chapter 7. WebSphere MQ installable services and the API exit 501

|
|

|
|

|
|
|

|

|
|
|
|
|
|
|

|

|

||||

|||

|||

|||

|||
|

|
|
|

|

|

|
|

|

This specifies the set of properties that are made available from the ExitMsgHandle
field of the MQAXP structure.

The ExitProperties name indicates the prefix for all properties belonging to the exit.
For example, an ExitProperties name of “ABC” causes all properties with the prefix
of “ABC.” to be made available from the ExitMsgHandle field of the MQAXP
structure after an MQGET call. If you include a period “.” or the wildcard
character “%” in the ExitProperties name the MQXEP call fails with
MQRC_PROPERTY_NAME_ERROR.

Any properties added to the ExitMsgHandle field are not made available to the
application getting the data, from the MsgHandle field of the MQGMO structure, if
one was specified, or in the message data.

This field only applies for the exit after the MQGET call, and is ignored if the entry
point being registered is not MQXF_GET for ExitReason MQXR_AFTER.

This is always an input field. The initial value of this field is
MQCHARV_DEFAULT.

Options (MQLONG):

Register entry point options structure - Options field.

The value must be:

MQXEPO_NONE
No options specified

This is always an input field. The initial value of this field is MQXEPO_NONE.

StrucId (MQCHAR4):

This is the structure identifier. The value must be:

MQXEPO_STRUC_ID
Identifier for register entry point options structure.

For the C programming language, the constant QXEPO_STRUC_ID_ARRAY is also
defined, and has the same value as MQXEPO _STRUC_ID. However,
QXEPO_STRUC_ID_ARRAY is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQXEPO_STRUC_ID.

Version (MQLONG):

This is the structure version number. The value must be:

MQXEPO_VERSION_1
Version-1 register entry point options structure.

The following constant specifies the version number of the current version:

MQXEPO_CURRENT_VERSION
Current version of register entry point options structure.

This is always an input field. The initial value of this field is
MQXEPO_VERSION_1.

502 WebSphere MQ: System Administration Guide

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|

|

|

|
|

|

|

|

|
|

|
|
|

|

|

|

|
|

|

|
|

|
|

Language declarations
This structure is supported in the following programming languages.

C declaration:
typedef struct tagMQXEPO MQXEPO;
struct tagMQXEPO {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Options; /* Options that control the

action of MQXEP */
MQCHARV ExitProperties; /* Exit properties */

};

MQ_BACK_EXIT – Back out changes

Exit providers can supply an MQ_BACK_EXIT function to intercept the MQBACK
call. If the unit of work is being coordinated by an external unit-of-work manager,
MQ_BACK_EXIT is also invoked in response to the application issuing the
unit-of-work manager’s back-out call.

Syntax

Parameters

The MQ_BACK_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

pHconn (PMQHCONN) – input/output:

Connection handle.

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

C invocation
MQ_BACK_EXIT (&ExitParms, &ExitContext, &Hconn,

&CompCode, &Reason);

The parameters passed to the exit are declared as follows:

MQ_BACK_EXIT (pExitParms, pExitContext, pHconn, pCompCode,
pReason)

Chapter 7. WebSphere MQ installable services and the API exit 503

|
|

|

|
|
|
|
|
|
|
|

|

PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_BEGIN_EXIT – Begin unit of work

Exit providers can supply an MQ_BEGIN_EXIT function to intercept the
MQBEGIN call.

Syntax

Parameters

The MQ_BEGIN_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

pHconn (PMQHCONN) – input/output:

Connection handle.

ppBeginOptions (PPMQBO) – input/output:

Options that control the action of MQBEGIN.

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

C invocation
MQ_BEGIN_EXIT (&ExitParms, &ExitContext, &Hconn,

&pBeginOptions, &CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PPMQBO ppBeginOptions; /* Options that control the action of

MQBEGIN */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_BEGIN_EXIT (pExitParms, pExitContext, pHconn, ppBeginOptions,
pCompCode, pReason)

504 WebSphere MQ: System Administration Guide

MQ_CALLBACK_EXIT – Callback

Exit providers can supply an MQ_CALLBACK_EXIT function to intercept
messages and notifications sent to a message consumer. The exit is called before
and after the consumer function has been called.

Syntax

Parameters

The MQ_CALLBACK_EXIT call has the following parameters:

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

pHconn (PMQHCONN) – input/output:

Connection handle.

ppHobj (PPMQHOBJ) – input/output:

Object handle.

ppMsgDesc (PPMQMD) – input/output:

Message descriptor.

ppGetMsgOpts (PPMQGMO) – input/output:

Options that control the action of MQGET.

ppBuffer (PPMQVOID) – input/output:

Area to contain the message data.

ppContext (PPMCBC) – input/output:

Context data for the callback.

Usage notes
1. The Callback exit is invoked before the consumer is invoked and after the

consumer’s consumer function has completed. Although the MQMD and
MQGMO structures are alterable, changing the values in the before exit does
not redrive the retrieval of a message from the queue as the message has
already been removed from the queue to be delivered to the consumer function

MQ_CALLBACK_EXIT (pExitParms, pExitContext, pHconn, ppMsgDesc, ppGetMsgOpts, ppBuffer,
ppMQCBContext)

Chapter 7. WebSphere MQ installable services and the API exit 505

|
|
|

|

|
|
|

|

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

C invocation
MQ_CALLBACK_EXIT (&ExitParms, &ExitContext, &Hconn, &pMsgDesc,

&pGetMsgOpts, &pBuffer, &pContext);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PPMQMD ppMsgDesc; /* Message descriptor */
PPMQGMO ppGetMsgOpts; /* Options that define the operation of the consumer */
PPMQVOID ppBuffer; /* Area to conatin the message data */
PPMQCBC ppContext; /* Context data for the callback */

MQ_CLOSE_EXIT – Close object

Exit providers can supply an MQ_CLOSE_EXIT function to intercept the
MQCLOSE call.

Syntax

Parameters

The MQ_CLOSE_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

pHconn (PMQHCONN) – input/output:

Connection handle.

ppHobj (PPMQHOBJ) – input/output:

Object handle.

pOptions (PMQLONG) – input/output:

Options that control the action of MQCLOSE.

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

MQ_CLOSE_EXIT (pExitParms, pExitContext, pHconn, ppHobj, pOptions,
pCompCode, pReason)

506 WebSphere MQ: System Administration Guide

|
|
|

|

|
|
|
|
|
|
|

|

C invocation
MQ_CLOSE_EXIT (&ExitParms, &ExitContext, &Hconn, &pHobj,

&Options, &CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PPMQHOBJ ppHobj; /* Object handle */
PMQLONG pOptions; /* Options that control the action of MQCLOSE */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_CMIT_EXIT – Commit changes

Exit providers can supply an MQ_CMIT_EXIT function to intercept the MQCMIT
call. If the unit of work is being coordinated by an external unit-of-work manager,
MQ_CMIT_EXIT is also invoked in response to the application issuing the
unit-of-work manager’s commit call.

Syntax

Parameters

The MQ_CMIT_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

pHconn (PMQHCONN) – input/output:

Connection handle.

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

C invocation
MQ_CMIT_EXIT (&ExitParms, &ExitContext, &Hconn,

&CompCode, &Reason);

The parameters passed to the exit are declared as follows:

MQ_CMIT_EXIT (pExitParms, pExitContext, pHconn, pCompCode,
pReason)

Chapter 7. WebSphere MQ installable services and the API exit 507

PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_CONNX_EXIT – Connect queue manager (extended)

Exit providers can supply an MQ_CONNX_EXIT function to intercept the
MQCONN and MQCONNX calls.

Syntax

Parameters

The MQ_CONNX_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

pQMgrName (PMQCHAR48) – input/output:

Name of queue manager.

ppConnectOpts (PPMQCNO) – input/output:

Options that control the action of MQCONNX.

ppHconn (PPMQHCONN) – input/output:

Connection handle.

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

Usage notes
1. The MQ_CONNX_EXIT function interface described here is used for both the

MQCONN call and the MQCONNX call. However, separate entry points are
defined for these two calls. To intercept both calls, the MQXEP call must be
used at least twice – once with function identifier MQXF_CONN, and again
with MQXF_CONNX.
Because the MQ_CONNX_EXIT interface is the same for MQCONN and
MQCONNX, a single exit function can be used for both calls; the Function field

MQ_CONNX_EXIT (pExitParms, pExitContext, pQMgrName, ppConnectOpts,
ppHconn, pCompCode, pReason)

508 WebSphere MQ: System Administration Guide

in the MQAXP structure indicates which call is in progress. Alternatively, the
MQXEP call can be used to register different exit functions for the two calls.

2. When a message channel agent (MCA) responds to an inbound client
connection, the MCA can issue a number of MQ calls before the client state is
fully known. These MQ calls result in the API exit functions being invoked
with the MQAXC structure containing data relating to the MCA, and not to the
client (for example, user identifier and connection name). However, once the
client state is fully known, subsequent MQ calls result in the API exit functions
being invoked with the appropriate client data in the MQAXC structure.

3. All MQXR_BEFORE exit functions are invoked before any parameter validation
is performed by the queue manager. The parameters might therefore be invalid
(including invalid pointers for the addresses of parameters).
The MQ_CONNX_EXIT function is invoked before any authorization checks are
performed by the queue manager.

4. The exit function must not change the name of the queue manager specified on
the MQCONN or MQCONNX call. If the name is changed by the exit function,
the results are undefined.

5. An MQXR_BEFORE exit function for the MQ_CONNX_EXIT cannot issue MQ
calls other than MQXEP.

C invocation
MQ_CONNX_EXIT (&ExitParms, &ExitContext, QMgrName,

&pConnectOpts, &pHconn, &CompCode,
&Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQCHAR48 pQMgrName; /* Name of queue manager */
PPMQCNO ppConnectOpts; /* Options that control the action of

MQCONNX */
PPMQHCONN ppHconn; /* Connection handle */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_DISC_EXIT – Disconnect queue manager

Exit providers can supply an MQ_DISC_EXIT function to intercept the MQDISC
call.

Syntax

Parameters

The MQ_DISC_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

MQ_DISC_EXIT (pExitParms, pExitContext, ppHconn, pCompCode,
pReason)

Chapter 7. WebSphere MQ installable services and the API exit 509

Exit context structure.

ppHconn (PPMQHCONN) – input/output:

Connection handle.

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

C invocation
MQ_DISC_EXIT (&ExitParms, &ExitContext, &pHconn,

&CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PPMQHCONN ppHconn; /* Connection handle */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_GET_EXIT – Get message

Exit providers can supply an MQ_GET_EXIT function to intercept the MQGET call.
The same exit function interface is used for the MQXF_DATA_CONV_ON_GET
exit function.

Syntax

Parameters

The MQ_GET_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

pHconn (PMQHCONN) – input/output:

Connection handle.

pHobj (PMQHOBJ) – input/output:

Object handle.

ppMsgDesc (PPMQMD) – input/output:

MQ_GET_EXIT (pExitParms, pExitContext, pHconn, pHobj, ppMsgDesc,
ppGetMsgOpts, pBufferLength, ppBuffer, ppDataLength, pCompCode, pReason)

510 WebSphere MQ: System Administration Guide

Message descriptor.

ppGetMsgOpts (PPMQGMO) – input/output:

Options that control the action of MQGET.

pBufferLength (PMQLONG) – input/output:

Length in bytes of the ppBuffer area.

ppBuffer (PPMQVOID) – input/output:

Area to contain the message data.

ppDataLength (PPMQLONG) – input/output:

Length of the message.

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

Usage notes
1. The MQ_GET_EXIT function interface described here is used for both the

MQXF_GET exit function and the MQXF_DATA_CONV_ON_GET exit function.
However, separate entry points are defined for these two exit functions, so to
intercept both the MQXEP call must be used twice – once with function
identifier MQXF_GET, and again with MQXF_DATA_CONV_ON_GET.
Because the MQ_GET_EXIT interface is the same for MQXF_GET and
MQXF_DATA_CONV_ON_GET, a single exit function can be used for both; the
Function field in the MQAXP structure indicates which exit function has been
invoked. Alternatively, the MQXEP call can be used to register different exit
functions for the two cases.

2. There is no MQXR_AFTER exit function for MQXF_DATA_CONV_ON_GET;
the MQXR_AFTER exit function for MQXF_GET provides the required
capability for exit processing after data conversion.

C invocation
MQ_GET_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj,

&pMsgDesc, &pGetMsgOpts, &BufferLength,
&pBuffer, &pDataLength, &CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PMQHOBJ pHobj; /* Object handle */
PPMQMD ppMsgDesc; /* Message descriptor */
PPMQGMO ppGetMsgOpts; /* Options that control the action of MQGET */
PMQLONG pBufferLength; /* Length in bytes of the pBuffer area */
PPMQVOID ppBuffer; /* Area to contain the message data */
PPMQLONG ppDataLength; /* Length of the message */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

Chapter 7. WebSphere MQ installable services and the API exit 511

MQ_INIT_EXIT – Initialize exit environment

Exit providers can supply an MQ_INIT_EXIT function to perform connection-level
initialization.

Syntax

Parameters

The MQ_INIT_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

Usage notes
1. The MQ_INIT_EXIT function can issue the MQXEP call to register the

addresses of the exit functions for the particular MQ calls to be intercepted. It is
not necessary to intercept all MQ calls, or to intercept both MQXR_BEFORE
and MQXR_AFTER calls. For example, an exit suite could choose to intercept
only the MQXR_BEFORE call of MQPUT.

2. Storage that is to be used by exit functions in the exit suite can be acquired by
the MQ_INIT_EXIT function. Alternatively, exit functions can acquire storage
when they are invoked, as and when needed. However, all storage should be
freed before the exit suite is terminated; the MQ_TERM_EXIT function can free
the storage, or an exit function invoked earlier.

3. If MQ_INIT_EXIT returns MQXCC_FAILED in the ExitResponse field of
MQAXP, or fails in some other way, the MQCONN or MQCONNX call that
caused MQ_INIT_EXIT to be invoked also fails, with the CompCode and Reason
parameters set to appropriate values.

4. An MQ_INIT_EXIT function cannot issue MQ calls other than MQXEP.

C invocation
MQ_INIT_EXIT (&ExitParms, &ExitContext, &CompCode,

&Reason);

The parameters passed to the exit are declared as follows:

MQ_INIT_EXIT (pExitParms, pExitContext, pCompCode, pReason)

512 WebSphere MQ: System Administration Guide

PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_INQ_EXIT – Inquire object attributes

Exit providers can supply an MQ_INQ_EXIT function to intercept the MQINQ call.

Syntax

Parameters

The MQ_INQ_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

pHconn (PMQHCONN) – input/output:

Connection handle.

pHobj (PMQHOBJ) – input/output:

Object handle.

pSelectorCount (PMQLONG) – input/output:

Count of selectors.

ppSelectors (PPMQLONG) – input/output:

Array of attribute selectors.

pIntAttrCount (PMQLONG) – input/output:

Count of integer attributes.

ppIntAttrs (PPMQLONG) – input/output:

Array of integer attributes.

pCharAttrLength (PMQLONG) – input/output:

Length of character attributes buffer.

ppCharAttrs (PPMQCHAR) – input/output:

Character attributes.

MQ_INQ_EXIT (pExitParms, pExitContext, pHconn, pHobj, pSelectorCount,
ppSelectors, pIntAttrCount, ppIntAttrs, pCharAttrLength, ppCharAttrs, pCompCode, pReason)

Chapter 7. WebSphere MQ installable services and the API exit 513

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

C invocation
MQ_INQ_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj,

&SelectorCount, &pSelectors, &IntAttrCount,
&pIntAttrs, &CharAttrLength, &pCharAttrs,
&CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PMQHOBJ pHobj; /* Object handle */
PMQLONG pSelectorCount; /* Count of selectors */
PPMQLONG ppSelectors; /* Array of attribute selectors */
PMQLONG pIntAttrCount; /* Count of integer attributes */
PPMQLONG ppIntAttrs; /* Array of integer attributes */
PMQLONG pCharAttrLength; /* Length of character attributes buffer */
PPMQCHAR ppCharAttrs; /* Character attributes */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_OPEN_EXIT – Open object

Exit providers can supply an MQ_OPEN_EXIT function to intercept the MQOPEN
call.

Syntax

Parameters

The MQ_OPEN_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

pHconn (PMQHCONN) – input/output:

Connection handle.

ppObjDesc (PPMQOD) – input/output:

Object descriptor.

MQ_OPEN_EXIT (pExitParms, pExitContext, pHconn, ppObjDesc,
pOptions, ppHobj, pCompCode, pReason)

514 WebSphere MQ: System Administration Guide

pOptions (PMQLONG) – input/output:

Options that control the action of MQ_OPEN_EXIT.

ppHobj (PPMQHOBJ) – input/output:

Object handle.

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

C invocation
MQ_OPEN_EXIT (&ExitParms, &ExitContext, &Hconn,

&pObjDesc, &Options, &pHobj, &CompCode,
&Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PPMQOD ppObjDesc; /* Object descriptor */
PMQLONG pOptions; /* Options that control the action of

MQ_OPEN_EXIT */
PPMQHOBJ ppHobj; /* Object handle */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_PUT_EXIT – Put message

Exit providers can supply an MQ_PUT_EXIT function to intercept the MQPUT call.

Syntax

Parameters

The MQ_PUT_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

pHconn (PMQHCONN) – input/output:

Connection handle.

MQ_PUT_EXIT (pExitParms, pExitContext, pHconn, pHobj, ppMsgDesc,
ppPutMsgOpts, pBufferLength, ppBuffer, pCompCode, pReason)

Chapter 7. WebSphere MQ installable services and the API exit 515

pHobj (PMQHOBJ) – input/output:

Object handle.

ppMsgDesc (PPMQMD) – input/output:

Message descriptor.

ppPutMsgOpts (PPMQPMO) – input/output:

Options that control the action of MQPUT.

pBufferLength (PMQLONG) – input/output:

Length of the message in pBuffer.

ppBuffer (PPMQVOID) – input/output:

Message data.

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

Usage notes
v Report messages generated by the queue manager skip the normal call

processing. As a result, such messages cannot be intercepted by the
MQ_PUT_EXIT function or the MQPUT1 function. However, report messages
generated by the message channel agent are processed normally, and hence can
be intercepted by the MQ_PUT_EXIT function or the MQ_PUT1_EXIT function.
To be sure to intercepting all of the report messages generated by the MCA, both
MQ_PUT_EXIT and MQ_PUT1_EXIT should be used.

C invocation
MQ_PUT_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj,

&pMsgDesc, &pPutMsgOpts, &BufferLength,
&pBuffer, &CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PMQHOBJ pHobj; /* Object handle */
PPMQMD ppMsgDesc; /* Message descriptor */
PPMQPMO ppPutMsgOpts; /* Options that control the action of MQPUT */
PMQLONG pBufferLength; /* Length of the message in pBuffer */
PPMQVOID ppBuffer; /* Message data */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_PUT1_EXIT – Put one message

Exit providers can supply an MQ_PUT1_EXIT function to intercept the MQPUT1
call.

516 WebSphere MQ: System Administration Guide

Syntax

Parameters

The MQ_PUT1_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

pHconn (PMQHCONN) – input/output:

Connection handle.

ppObjDesc (PPMQOD) – input/output:

Object descriptor.

ppMsgDesc (PPMQMD) – input/output:

Message descriptor.

ppPutMsgOpts (PPMQPMO) – input/output:

Options that control the action of MQPUT1.

pBufferLength (PMQLONG) – input/output:

Length of the message in ppBuffer.

ppBuffer (PPMQVOID) – input/output:

Message data.

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

C invocation
MQ_PUT1_EXIT (&ExitParms, &ExitContext, &Hconn,

&pObjDesc, &pMsgDesc, &pPutMsgOpts,
&BufferLength, &pBuffer, &CompCode,
&Reason);

The parameters passed to the exit are declared as follows:

MQ_PUT1_EXIT (pExitParms, pExitContext, pHconn, ppObjDesc,
ppMsgDesc, ppPutMsgOpts, pBufferLength, ppBuffer, pCompCode, pReason)

Chapter 7. WebSphere MQ installable services and the API exit 517

PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PPMQOD ppObjDesc; /* Object descriptor */
PPMQMD ppMsgDesc; /* Message descriptor */
PPMQPMO ppPutMsgOpts; /* Options that control the action of MQPUT1 */
PMQLONG pBufferLength; /* Length of the message in pBuffer */
PPMQVOID ppBuffer; /* Message data */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_SET_EXIT – Set object attributes

Exit providers can supply an MQ_SET_EXIT function to intercept the MQSET call.

Syntax

Parameters

The MQ_SET_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

pHconn (PMQHCONN) – input/output:

Connection handle.

pHobj (PMQHOBJ) – input/output:

Object handle.

pSelectorCount (PMQLONG) – input/output:

Count of selectors.

ppSelectors (PPMQLONG) – input/output:

Array of attribute selectors.

pIntAttrCount (PMQLONG) – input/output:

Count of integer attributes.

ppIntAttrs (PPMQLONG) – input/output:

Array of integer attributes.

pCharAttrLength (PMQLONG) – input/output:

MQ_SET_EXIT (pExitParms, pExitContext, pHconn, pHobj, pSelectorCount,
ppSelectors, pIntAttrCount, ppIntAttrs, pCharAttrLength, ppCharAttrs, pCompCode, pReason)

518 WebSphere MQ: System Administration Guide

Length of character attributes buffer.

ppCharAttrs (PPMQCHAR) – input/output:

Character attributes.

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

C invocation
MQ_SET_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj,

&SelectorCount, &pSelectors, &IntAttrCount,
&pIntAttrs, &CharAttrLength, &pCharAttrs,
&CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PMQHOBJ pHobj; /* Object handle */
PMQLONG pSelectorCount; /* Count of selectors */
PPMQLONG ppSelectors; /* Array of attribute selectors */
PMQLONG pIntAttrCount; /* Count of integer attributes */
PPMQLONG ppIntAttrs; /* Array of integer attributes */
PMQLONG pCharAttrLength; /* Length of character attributes buffer */
PPMQCHAR ppCharAttrs; /* Character attributes */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_SUB_EXIT – Register subscription

Exit providers can supply an MQ_SUB_EXIT function to intercept the MQSUB call.

Syntax

Parameters

The MQ_SUB_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

pHconn (PMQHCONN) – input/output:

Connection handle.

MQ_SUB_EXIT
(pExitParms, pExitContext, pHconn, ppSubDesc, ppHobj, ppHsub, pCompCode, pReason)

Chapter 7. WebSphere MQ installable services and the API exit 519

|
|

|

|

|
||

|

|

|

|

|

|

|

|

ppSubDesc (PPMQSD) – input/output:

Array of attribute selectors.

ppHobj (PPMQHOBJ) – input/output:

Object handle.

ppHsub (PPMQHOBJ) – input/output:

Array of integer attributes.

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

C invocation
MQ_SUB_EXIT (&ExitParms, &ExitContext, &Hconn, &pObjDesc, &Options,
&pHobj, &CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PPMQSD ppSubDesc; /* Subscription Descriptor */
PPMQHOBJ ppHobj; /* Object handle */
PPMQHOBJ ppHsub; /* Subscription handle */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_SUBRQ_EXIT – Subscription request

Exit providers can supply an MQ_SUBRQ_EXIT function to intercept the
MQSUBRQ call.

Syntax

Parameters

The MQ_SUBRQ_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

pHconn (PMQHCONN) – input/output:

MQ_SUBRQ_EXIT
(pExitParms, pExitContext, pHconn, ppHsub, pAction, ppSubRqOpts, pCompCode, pReason)

520 WebSphere MQ: System Administration Guide

|
|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

|
|
|
|
|
|
|
|

|

|
|

|
||

|

|

|

|

|

|

|

Connection handle.

ppHSub (PPMQHOBJ) – input/output:

Subscription handle

pAction (PMQLONG) – input/output:

Action

ppSubRqOpts (PPMQSRO) – input/output:

Subscription request options

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

C invocation
MQ_SUBRQ_EXIT (&ExitParms, &ExitContext, &Hconn, &pHsub, &Action, &pSubRqOpts,
&CompCode, &Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PPMQHOBJ ppHsub; /* Subscription handle */
PMQLONG pAction; /* Action */
PPMQSRO ppSubRqOpts; /* Subscription Request Options */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

MQ_TERM_EXIT – Terminate exit environment

Exit providers can supply an MQ_INIT_EXIT function to perform connection-level
termination.

Syntax

Parameters

The MQ_TERM_EXIT call has the following parameters.

pExitParms (PMQAXP) – input/output:

Exit parameter structure.

pExitContext (PMQAXC) – input/output:

Exit context structure.

MQ_TERM_EXIT (pExitParms, pExitContext, pCompCode, pReason)

Chapter 7. WebSphere MQ installable services and the API exit 521

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

|
|
|
|
|
|
|
|

|

pCompCode (PMQLONG) – input/output:

Completion code.

pReason (PMQLONG) – input/output:

Reason code qualifying pCompCode.

Usage notes
1. The MQ_TERM_EXIT function is optional. It is not necessary for an exit suite

to register a termination exit if there is no termination processing to be done.
If functions belonging to the exit suite acquire resources during the connection,
an MQ_TERM_EXIT function is a convenient point at which to free those
resources, for example, freeing storage obtained dynamically.

2. If an MQ_TERM_EXIT function is registered when the MQDISC call is issued,
the exit function is invoked after all of the MQDISC exit functions have been
invoked.

3. If MQ_TERM_EXIT returns MQXCC_FAILED in the ExitResponse field of
MQAXP, or fails in some other way, the MQDISC call that caused
MQ_TERM_EXIT to be invoked also fails, with the CompCode and Reason
parameters set to appropriate values.

C invocation
MQ_TERM_EXIT (&ExitParms, &ExitContext, &CompCode,

&Reason);

The parameters passed to the exit are declared as follows:
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

522 WebSphere MQ: System Administration Guide

Chapter 8. System and default objects

Lists the system and default objects created by the crtmqm command

When you create a queue manager using the crtmqm control command, the system
objects and the default objects are created automatically.
v The system objects are those WebSphere MQ objects needed to operate a queue

manager or channel.
v The default objects define all the attributes of an object. When you create an

object, such as a local queue, any attributes that you do not specify explicitly are
inherited from the default object.

The following tables list the system and default objects created by crtmqm:
v Table 31 lists the system and default queue objects.
v Table 32 on page 524 lists the system and default topic objects.
v Table 33 on page 524 lists the system and default channel objects.
v Table 34 on page 525 lists the system and default authentication information

objects.
v Table 35 on page 525 lists the system and default listener objects.
v Table 36 on page 525 lists the system and default namelist objects.
v Table 37 on page 525 lists the system and default process objects.
v Table 38 on page 525 lists the system and default service objects.

Table 31. System and default objects: queues

Object name Description

SYSTEM.ADMIN.ACCOUNTING.QUEUE The queue that holds accounting monitoring
data.

SYSTEM.ADMIN.ACTIVITY.QUEUE The queue that holds returned activity reports.

SYSTEM.ADMIN.CHANNEL.EVENT Event queue for channels.

SYSTEM.ADMIN.COMMAND.QUEUE Administration command queue. Used for
remote MQSC commands and PCF commands.

SYSTEM.ADMIN.CONFIG.EVENT Event queue for configuration events.

SYSTEM.ADMIN.PERFM.EVENT Event queue for performance events.

SYSTEM.ADMIN.QMGR.EVENT Event queue for queue manager events.

SYSTEM.ADMIN.STATISTICS.QUEUE The queue that holds statistics monitoring data.

SYSTEM.ADMIN.TRACE.ROUTE.QUEUE The queue that holds returned trace-route reply
messages.

SYSTEM.AUTH.DATA.QUEUE The queue that holds access control lists for the
queue manager.

SYSTEM.CHANNEL.INITQ Channel initiation queue.

SYSTEM.CHANNEL.SYNCQ The queue that holds the synchronization data
for channels.

SYSTEM.CICS.INITIATION.QUEUE Default CICS initiation queue.

SYSTEM.CLUSTER.COMMAND.QUEUE The queue used to carry messages to the
repository queue manager.

© Copyright IBM Corp. 1994, 2009 523

|

|

|

|
|

|
|

|
|
|

|

|

|

|

|
|

|

|

|

|

||

||

||
|

||

||

||
|

||

||

||

||

||
|

||
|

||

||
|

||

||
|

Table 31. System and default objects: queues (continued)

Object name Description

SYSTEM.CLUSTER.REPOSITORY.QUEUE The queue used to store all repository
information.

SYSTEM.CLUSTER.TRANSMIT.QUEUE The transmission queue for all messages to all
clusters.

SYSTEM.DEAD.LETTER.QUEUE Dead-letter (undelivered-message) queue.

SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue.

SYSTEM.DEFAULT.INITIATION.QUEUE Default initiation queue.

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue.

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue.

SYSTEM.MQEXPLORER.REPLY.MODEL The WebSphere MQ Explorer reply-to queue.
This is a model queue that creates a temporary
dynamic queue for replies to the WebSphere
MQ Explorer.

SYSTEM.MQSC.REPLY.QUEUE MQSC command reply-to queue. This is a
model queue that creates a temporary dynamic
queue for replies to remote MQSC commands.

SYSTEM.PENDING.DATA.QUEUE Support deferred messages in JMS.

Table 32. System and default objects: topics

Object name Description

SYSTEM.BASE.TOPIC Base topic for ASPARENT resolution. If a
particular topic has no parent administrative
topic objects, or those parent objects also have
ASPARENT, any remaining ASPARENT
attributes are inherited from this object.

SYSTEM.DEFAULT.TOPIC Default topic definition.

Table 33. System and default objects: channels

Object name Description

SYSTEM.AUTO.RECEIVER Dynamic receiver channel.

SYSTEM.AUTO.SVRCONN Dynamic server-connection channel.

SYSTEM.DEF.CLUSRCVR Default receiver channel for the cluster, used to
supply default values for any attributes not
specified when a CLUSRCVR channel is created
on a queue manager in the cluster.

SYSTEM.DEF.CLUSSDR Default sender channel for the cluster, used to
supply default values for any attributes not
specified when a CLUSSDR channel is created
on a queue manager in the cluster.

SYSTEM.DEF.RECEIVER Default receiver channel.

SYSTEM.DEF.REQUESTER Default requester channel.

SYSTEM.DEF.SENDER Default sender channel.

SYSTEM.DEF.SERVER Default server channel.

SYSTEM.DEF.SVRCONN Default server-connection channel.

524 WebSphere MQ: System Administration Guide

|

||

||
|

||
|

||

||

||

||

||

||

||
|
|
|

||
|
|

||
|

||

||

||
|
|
|
|

||
|

||

||

||

||

||
|
|
|

||
|
|
|

||

||

||

||

||

Table 33. System and default objects: channels (continued)

Object name Description

SYSTEM.DEF.CLNTCONN Default client-connection channel.

Table 34. System and default objects: authentication information objects

Object name Description

SYSTEM.DEFAULT.AUTHINFO.
CRLLDAP

Default authentication information object.

Table 35. System and default objects: listeners

Object name Description

SYSTEM.DEFAULT.LISTENER.TCP Default TCP listener.

SYSTEM.DEFAULT.LISTENER.LU62
(Windows only)

Default LU62 listener.

SYSTEM.DEFAULT.LISTENER.NETBIOS
(Windows only)

Default NETBIOS listener.

SYSTEM.DEFAULT.LISTENER.SPX
(Windows only)

Default SPX listener.

Table 36. System and default objects: namelists

Object name Description

SYSTEM.DEFAULT.NAMELIST Default namelist.

Table 37. System and default objects: processes

Object name Description

SYSTEM.DEFAULT.PROCESS Default process definition.

Table 38. System and default objects: services

Object name Description

SYSTEM.DEFAULT.SERVICE Default service.

SYSTEM.BROKER Publish/subscribe broker

Windows default configuration objects

On Windows systems, you set up a default configuration using the WebSphere MQ
Postcard application.

Note: You cannot set up a default configuration if other queue managers exist on
your computer.

Many of the names used for the Windows default configuration objects involve the
use of a short TCP/IP name. This is the TCP/IP name of the computer, without
the domain part; for example the short TCP/IP name for the computer
mycomputer.hursley.ibm.com is mycomputer. In all cases, where this name has to be
truncated, if the last character is a period (.), it is removed.

Chapter 8. System and default objects 525

|

||

||
|

||

||

|
|
|

|

||

||

||

|
|
|

|
|
|

|
|
|

|

||

||

||
|

||

||

||
|

||

||

||

||
|

|
|

|
|

|
|

|
|
|
|
|

Any characters within the short TCP/IP name that are not valid for WebSphere
MQ object names (for example, hyphens) are replaced by an underscore character.

Valid characters for WebSphere MQ object names are: a to z, A to Z, 0 to 9, and the
four special characters / % . and _.

The cluster name for the Windows default configuration is DEFAULT_CLUSTER.

If the queue manager is not a repository queue manager, the objects listed in
Table 39 are created.

Table 39. Objects created by the Windows default configuration application

Object Name

Queue manager The short TCP/IP name prefixed with the characters QM_.
The maximum length of the queue manager name is 48
characters. Names exceeding this limit are truncated at 48
characters. If the last character of the name is a period (.),
this is replaced by a space ().

The queue manager has a command server, a channel
listener, and channel initiator associated with it. The channel
listener listens on the standard WebSphere MQ port, port
number 1414. Any other queue managers created on this
machine must not use port 1414 while the default
configuration queue manager still exists.

Generic cluster receiver
channel

The short TCP/IP name prefixed with the characters
TO_QM_. The maximum length of the generic cluster
receiver name is 20 characters. Names exceeding this limit
are truncated at 20 characters. If the last character of the
name is a period (.), this is replaced by a space ().

Cluster sender channel The cluster sender channel is initially created with the name
TO_+QMNAME+. Once WebSphere MQ has established a
connection to the repository queue manger for the default
configuration cluster, this name is replaced with the name of
the repository queue manager for the default configuration
cluster, prefixed with the characters TO_. The maximum
length of the cluster sender channel name is 20 characters.
Names exceeding this limit are truncated at 20 characters. If
the last character of the name is a period (.), this is replaced
by a space ().

Local message queue The local message queue is called default.

Local message queue for use
by the WebSphere MQ
Postcard application

The local message queue for use by the WebSphere MQ
Postcard application is called postcard.

Server connection channel The server connection channel allows clients to connect to
the queue manager. Its name is the short TCP/IP name,
prefixed with the characters S_. The maximum length of the
server connection channel name is 20 characters. Names
exceeding this limit are truncated at 20 characters. If the last
character of the name is a period (.), this is replaced by a
space ().

If the queue manager is a repository queue manager, the default configuration is
similar to that described in Table 39, but with the following differences:
v The queue manager is defined as a repository queue manager for the default

configuration cluster.

526 WebSphere MQ: System Administration Guide

|
|

|
|

|

|
|

||

||

||
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|

||

|
|
|

|
|

||
|
|
|
|
|
|
|

|
|

|
|

v There is no cluster-sender channel defined.
v A local cluster queue that is the short TCP/IP name prefixed with the characters

clq_default_ is created. The maximum length of this name is 48 characters.
Names exceeding this length are truncated at 48 characters.

If you request remote administration facilities, the server connection channel,
SYSTEM.ADMIN.SVRCONN is also created.

SYSTEM.BASE.TOPIC
Base topic for ASPARENT resolution. If a particular topic has no parent
administrative topic objects, or those parent objects also have ASPARENT, any
remaining ASPARENT attributes are inherited from this object.

The default values of the SYSTEM.BASE.TOPIC are:

Table 40. Default values of SYSTEM.BASE.TOPIC

Parameter Value

TOPICSTR ″

DEFPRTY 0

DEFPRESP SYNC

DEFPSIST NO

DESCR ’Base topic for resolving attributes’

DURSUB YES

MDURMDL SYSTEM.DURABLE.MODEL.QUEUE

MNDURMDL SYSTEM.NDURABLE.MODEL.QUEUE

MASTER YES

NPMSGDLV ALLAVAIL

PMSGDLV ALLDUR

PUB ENABLE

SUB ENABLE

If this object does not exist, its default values are still used by WebSphere MQ for
ASPARENT attributes that are not resolved by parent topics further up the topic
tree.

Chapter 8. System and default objects 527

|

|
|
|

|
|

|
|

|
|
|

|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

|
|
|

528 WebSphere MQ: System Administration Guide

Chapter 9. Directory structure (Windows systems)

Table 41 shows the directories found under the root C:\Program
Files\IBM\WebSphere MQ\.If you are using 64-bit Windows, the root directory is
C:\Program Files (x86)\IBM\WebSphere MQ\ If you have installed WebSphere
MQ for Windows under a different directory, the root is modified appropriately.

Table 41. WebSphere MQ for Windows directory structure

\bin Contains binary files (commands and DDLs).

\bin64 Contains binary files (commands and DDLs 64-bit only).

\config Contains configuration information.

\conv Contains files for data conversion in folder \table.

\doc Contains files for Wizard help.

\errors Contains the system error log files:

v AMQERR01.LOG

v AMQERR02.LOG

v AMQERR03.LOG

These files contain information related errors that are not associated with a particular queue
manager. AMQERR01.LOG contains the most recent error information.

This folder also holds any FFST files that are produced.

\eclipse Contains files for Help Center

\eclipse\SDK33 Contains files for Eclipse system

\exits Contains channel exit programs.

\exits64 Contains channel exit programs (64-bit only).

\gskit Contains GSKit files.

\java Contains Java files.

\licenses Contains a folder for each national language. Each folder contains license information.

\log Contains a folder for each queue manager. The following subdirectories and files will exist
for each queue manager after you have been using that queue manager for some time.

AMQHLCTL.LFH
Log control file.

Active This directory contains the log files numbered S0000000.LOG, S0000001.LOG,
S00000002.LOG, and so on.

\Non_IBM_License Contains non-IBM license files.

\qmgrs Contains a folder for each queue manager; the contents of these folders are described in
Table 42 on page 530. Also contains the folder \@SYSTEM\errors,

\tivoli Contains the signature file used by Tivoli®.

\tools Contains all the WebSphere MQ sample programs. These are described in WebSphere MQ for
Windows Quick Beginnings.

\trace Contains all trace files.

\uninst Contains files necessary to uninstall WebSphere MQ.

© Copyright IBM Corp. 1994, 2009 529

|

|

|
|
|
|

||

||

||

||

||

||

||

|

|

|

|
|

|

||

||

||

||

||

||

||

||
|

|
|

||
|

||

||
|

||

||
|

||

||
|

Table 42 shows the directory structure for each queue manager in the C:\Program
Files\IBM\WebSphere MQ\qmgrs\ folder. The queue manager might have been
transformed as described in “Understanding WebSphere MQ file names” on page
17.

Table 42. Content of a \queue-manager-name\ folder for WebSphere MQ for Windows

@app Contains files used internally by Websphere MQ

@ipcc Contains files used internally by Websphere MQ

@qmpersist Contains files used internally by Websphere MQ

amqalchk.fil Contains a checkpoint file containing information about the last checkpoint.

AMQRSYNA.DAT Contains files used internally by Websphere MQ

\authinfo Contains a file for each authentication information object.

\channel Contains a file for each channel object.

\clntconn Contains a file for each client connection channel object.

\errors Contains error log files associated with the queue manager:

v AMQERR01.LOG

v AMQERR02.LOG

v AMQERR03.LOG

AMQERR01.LOG contains the most recent error information.

\listener Contains a file for each listener object.

\namelist Contains a file for each WebSphere MQ namelist.

\Plugcomp Directory reserved for use by WebSphere MQ installable services.

\Procdef Contains a file for each WebSphere MQ process definition. Where possible, the
file name matches the associated process definition name, but some characters
have to be altered. There might be a directory called @MANGLED here
containing process definitions with transformed or mangled names.

\Qmanager Contains the following files:

Qmanager
The queue manager object.

QMQMOBJCAT
The object catalogue containing the list of all WebSphere MQ objects,
used internally.
Note: If you are using a FAT system, this name is transformed and a
subdirectory created containing the file with its name transformed.

QAADMIN
File used internally for controlling authorizations.

\Queues Each queue has a directory here containing a single file called Q. Where
possible, the directory name matches the associated queue name but some
characters have to be altered. There might be a directory called @MANGLED
here containing queues with transformed or mangled names.

\services Contains a file for each service object.

\ssl Contains SSL certificate stores.

\Startprm Contains temporary files used internally.

\topic Contains one directory for each topic.

530 WebSphere MQ: System Administration Guide

|
|
|
|

||

||

||

||

||

||

||

||

||

||

|

|

|

|

||

||

||

||
|
|
|

||

|
|

|
|
|
|
|

|
|

||
|
|
|

||

||

||

||
|
|

Chapter 10. Directory structure (UNIX systems)

Figure 36 on page 532 shows the general layout of the data and log directories
associated with a specific queue manager. The directories shown apply to the
default installation. If you change this, the locations of the files and directories are
modified accordingly. For information about the location of the product files, see
one of the following:
v WebSphere MQ for AIX Quick Beginnings
v WebSphere MQ for HP-UX Quick Beginnings
v WebSphere MQ for Solaris Quick Beginnings
v WebSphere MQ for Linux Quick Beginnings

In Figure 36 on page 532, the layout is representative of WebSphere MQ after a
queue manager has been in use for some time. The actual structure that you have
depends on which operations have occurred on the queue manager.

© Copyright IBM Corp. 1994, 2009 531

|

|

|
|
|
|
|

|

|

|

|

|
|
|
|

By default, the following directories and files are located in the directory
/var/mqm/qmgrs/qmname/ (where qmname is the name of the queue manager).

Table 43. Default content of a /var/mqm/qmgrs/qmname/ directory on UNIX systems

amqalchk.fil Checkpoint file containing information about the last checkpoint.

auth/ Contained subdirectories and files associated with authority in
WebSphere MQ prior to Version 6.0.

log/

exits/

errors

trace

qmname/

@ SYSTEM/

service.env

mqs.ini

qmgrs/ errors/

qmname/ amqhlctl.lfh

active/

/var/mqm/

QMANAGER

QMQMOBJCAT
subpool.lck

esem/

isem/

msem/

shmem/

ssem/

AMQCLCHL.TAB

esem/

isem/

msem/

shmem/

ssem/

esem/

isem/

msem/

shmem/

ssem/

S0000000.LOG

S0000001.LOG

S0000002.LOG

AMQERR01.LOG

AMQERR02.LOG

AMQERR03.LOG

amqalchk.fil

auth/

authinfo/

channel/

clntconn/

dce/

errors/

esem/

isem/

listener/

msem/

namelist/

plugcomp/

procdef/

qmanager/

qmgrloc/

qm.ini

qmstatus.ini

queues/

services/

service.env

shmem/

spipe/

ssem/

ssl/

startprm/

topic/

zsocketapp/

zsocketEC/

@app

@ipcc/

@qmpersist

mqclient.ini

Figure 36. Default directory structure (UNIX systems) after a queue manager has been started

532 WebSphere MQ: System Administration Guide

|

|
|
|
|
|

||

||

||
|

Table 43. Default content of a /var/mqm/qmgrs/qmname/ directory on UNIX
systems (continued)

authinfo/ Each WebSphere MQ authentication information definition is associated
with a file in this directory. The file name matches the authentication
information definition name—subject to certain restrictions; see
“Understanding WebSphere MQ file names” on page 17.

channel/ Each WebSphere MQ channel definition is associated with a file in this
directory. The file name matches the channel definition name—subject
to certain restrictions; see “Understanding WebSphere MQ file names”
on page 17.

clntconn/ Each WebSphere MQ client connection channel definition is associated
with a file in this directory. The file name matches the client connection
channel definition name—subject to certain restrictions; see
“Understanding WebSphere MQ file names” on page 17.

dce/ Used for DCE support prior to WebSphere MQ Version 6.0.

errors/ Directory containing FFSTs, client application errors, and operator
message files from newest to oldest:

v AMQERR01.LOG

v AMQERR02.LOG

v AMQERR03.LOG

esem/ Directory containing files used internally.

isem/ Directory containing files used internally.

listener/ Each WebSphere MQ listener definition is associated with a file in this
directory. The file name matches the listener definition name—subject to
certain restrictions; see “Understanding WebSphere MQ file names” on
page 17.

msem/ Directory containing files used internally.

namelist/ Each WebSphere MQ namelist definition is associated with a file in this
directory. The file name matches the namelist definition name—subject
to certain restrictions; see “Understanding WebSphere MQ file names”
on page 17.

plugcomp/ Empty directory reserved for use by installable services.

procdef/ Each WebSphere MQ process definition is associated with a file in this
directory. The file name matches the process definition name—subject to
certain restrictions; see “Understanding WebSphere MQ file names” on
page 17.

qmanager/
QMANAGER

The queue manager object.

QMQMOBJCAT
The object catalog containing the list of all WebSphere MQ
objects; used internally.

qmgrlocl/ Location of machine specific files relating to the queue manager.

qm.ini Queue manager configuration file.

queues/ Each queue has a directory in here containing a single file called q.

The file name matches the queue name, subject to certain restrictions;
see “Understanding WebSphere MQ file names” on page 17.

services/ Each WebSphere MQ service definition is associated with a file in this
directory. The file name matches the service definition name—subject to
certain restrictions; see “Understanding WebSphere MQ file names” on
page 17.

Chapter 10. Directory structure (UNIX systems) 533

|
|

||
|
|
|

||
|
|
|

||
|
|
|

||

||
|

|

|

|

||

||

||
|
|
|

||

||
|
|
|

||

||
|
|
|

|
|
|

|
|
|

||

||

||

|
|

||
|
|
|

Table 43. Default content of a /var/mqm/qmgrs/qmname/ directory on UNIX
systems (continued)

shmem/ Directory containing files used internally.

spipe/ Used internally by channel processes.

ssem/ Directory containing files used internally.

ssl/ Directory for SSL key database files.

startprm/ Directory containing temporary files used internally.

topic/ Each WebSphere MQ topic definition is associated with a file in this
directory. The file name matches the topic definition name—subject to
certain restrictions; see “Understanding WebSphere MQ file names” on
page 17.

zsocketapp/ Used internally for isolated bindings.

zsocketEC/ Used internally for isolated bindings.

@ipcc/
AMQCLCHL.TAB

Client channel table file.

esem/ Directory containing files used internally.

isem/ Directory containing files used internally.

msem/ Directory containing files used internally.

shmem/
Directory containing files used internally.

ssem/ Directory containing files used internally.

@qmpersist
esem/ Directory containing files used internally.

isem/ Directory containing files used internally.

msem/ Directory containing files used internally.

shmem/
Directory containing files used internally.

ssem/ Directory containing files used internally.

@qmpersist
esem/ Directory containing files used internally.

isem/ Directory containing files used internally.

msem/ Directory containing files used internally.

shmem/
Directory containing files used internally.

ssem/ Directory containing files used internally.

@app
esem/ Directory containing files used internally.

isem/ Directory containing files used internally.

msem/ Directory containing files used internally.

shmem/
Directory containing files used internally.

ssem/ Directory containing files used internally.

By default, the following directories and files are found in /var/mqm/log/qmname/
(where qmname is the name of the queue manager).

534 WebSphere MQ: System Administration Guide

|
|

||

||

||

||

||

||
|
|
|

||

||

|
|
|

||

||

||

|
|

||

|
||

||

||

|
|

||

|
||

||

||

|
|

||

|
||

||

||

|
|

||
|

|
|

The following subdirectories and files exist after you have installed WebSphere
MQ, created and started a queue manager, and have been using that queue
manager for some time.

amqhlctl.lfh Log control file.

active/ This directory contains the log files numbered S0000000.LOG,
S0000001.LOG, S0000002.LOG, and so on.

Chapter 10. Directory structure (UNIX systems) 535

|
|
|

|||

||
|
|
|

536 WebSphere MQ: System Administration Guide

Chapter 11. Stopping and removing queue managers manually

If the standard methods for stopping and removing queue managers fail, try the
methods described here.

Stopping a queue manager manually

The standard way of stopping queue managers, using the endmqm command,
should work even in the event of failures within the queue manager. In exceptional
circumstances, if this method of stopping a queue manager fails, you can use one
of the procedures described here to stop it manually.

Stopping queue managers in WebSphere MQ for Windows
Stopping queue managers in WebSphere MQ for Windows

To stop a queue manager running under WebSphere MQ for Windows:
1. List the names (IDs) of the processes currently running using the Windows

Task Manager, or the tasklist command.
2. End the processes using Task Manager, or the taskkill command, in the

following order (if they are running):

AMQZMUC0 Critical process manager
AMQZXMA0 Execution controller
AMQZFUMA OAM process
AMQZLAA0 LQM agents
AMQZLSA0 LQM agents
AMQZMUF0 Utility Manager
AMQZMGR0 Process controller
AMQZMUR0 Restartable process manager
AMQFQPUB Publish Subscribe process
AMQFCXBA Broker worker process
AMQRMPPA Process pooling process
AMQCRSTA Non-threaded responder job process
AMQCRS6B LU62 receiver channel and client connection
AMQRRMFA The repository process (for clusters)
AMQZDMAA Deferred message processor
AMQPCSEA The command server
RUNMQTRM Invoke a trigger monitor for a server
RUNMQDLQ Invoke dead-letter queue handler
RUNMQCHI The channel initiator process
RUNMQLSR The channel listener process
AMQXSSVN Shared memory servers
AMQZTRCN Trace

3. Stop the WebSphere MQ service from Services on the Windows Control Panel.
4. If you have tried all methods and the queue manager has not stopped, reboot

your system.

The Windows Task Manager and the tasklist command give limited information
about tasks. For more information to help to determine which processes relate to a

© Copyright IBM Corp. 1994, 2009 537

|

|

|
|

|
|

|
|
|
|

|

|

|

|
|

|
|

|||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
|

|

|
|

|
|

particular queue manager, consider using a tool such as Process Explorer
(procexp.exe), available for download from the Microsoft Web site
(www.microsoft.com).

Stopping queue managers in WebSphere MQ for UNIX
systems

To stop a queue manager running under WebSphere MQ for UNIX systems:
1. Find the process IDs of the queue manager programs that are still running

using the ps command. For example, if the queue manager is called QMNAME, use
the following command:
ps -ef | grep QMNAME

2. End any queue manager processes that are still running. Use the kill command,
specifying the process IDs discovered using the ps command.
End the processes in the following order:

amqzmuc0 Critical process manager
amqzxma0 Execution controller
amqzfuma OAM process
amqzlaa0 LQM agents
amqzlsa0 LQM agents
amqzmuf0 Utility Manager
amqzmgr0 Process controller
amqzmur0 Restartable process manager
amqfqpub Publish Subscribe process
amqfcxba Broker worker process
amqrmppa Process pooling process
amqcrsta Non-threaded responder job process
amqcrs6b LU62 receiver channel and client connection
amqrrmfa The repository process (for clusters)
amqzdmaa Deferred message processor
amqpcsea The command server
runmqtrm Invoke a trigger monitor for a server
runmqdlq Invoke dead-letter queue handler
runmqchi The channel initiator process
runmqlsr The channel listener process
amqxssvn Shared memory servers
amqztrcn Trace

Note: Processes that fail to stop can be ended using kill -9.

If you stop the queue manager manually, FFSTs might be taken, and FDC files
placed in /var/mqm/errors. Do not regard this as a defect in the queue manager.

The queue manager should restart normally, even after you have stopped it using
this method.

Removing queue managers manually

If you want to delete the queue manager after stopping it manually, use the
dltmqm command. If, for some reason, this command fails to delete the queue
manager, use the manual processes described here.

538 WebSphere MQ: System Administration Guide

|
|
|

|

|

|

|
|
|

|

|
|

|

|||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
|

|

|
|

|
|

|
|

|
|
|

http://www.microsoft.com

Removing queue managers in WebSphere MQ for Windows

If you encounter problems with the dltmqm command in WebSphere MQ for
Windows, use the following procedure to delete a queue manager:
1. Type REGEDIT from the command prompt to start the Registry Editor.
2. Select the HKEY_LOCAL_MACHINE window.
3. Navigate the tree structure in the left-hand pane of the Registry Editor to the

following key:
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion

Make a note of the values within this key called WorkPath and LogPath.
Within each of the directories named by these values, you are going to delete
a subdirectory containing the data for the queue manager that you are trying
to delete. You now need to find out the name of the subdirectory which
corresponds to your queue manager.

4. Navigate the tree structure to the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\
Configuration\QueueManager

Within this key there is a key for each of the queue managers on this
computer containing the configuration information for the queue manager.
The name of this queue manager key is the name of the subdirectory in which
the queue manager’s data is stored in the file system. By default, this name is
the same as the queue manager name, but the name might be a
transformation of the queue manager name.

5. Examine the keys within the current key. Look for the key that contains a
value called Name. Name contains the name of the queue manager you are
trying to delete. Make a note of the name of the key containing the name of
the queue manager you are trying to delete. This is the subdirectory name.

6. Locate the queue manager data directory. The name of this directory is the
WorkPath followed by the subdirectory name. Delete this directory, and all
subdirectories and files.

7. Locate the queue manager’s log directory. The name of this directory is the
LogPath followed by the subdirectory name. Delete this directory, and all
subdirectories and files.

8. Remove the registry entries that refer to the deleted queue manager. First,
navigate the tree structure in the Registry Editor to the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\
Configuration\DefaultQueueManager

9. If the value called Name within this key matches the name of the queue
manager you are deleting, delete the DefaultQueueManager key.

10. Navigate the tree to the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\
Configuration\Services

11. Within this key, delete the key whose name matches the subdirectory name of
the queue manager which you are deleting.

12. Navigate the tree to the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\
Configuration\QueueManager

13. Within this key, delete the key whose name matches the subdirectory name of
the queue manager which you are deleting.

Chapter 11. Stopping and removing queue managers manually 539

|

|
|

|

|

|
|

|

|
|
|
|
|

|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|

|
|

|
|

|

|
|

|
|

Removing queue managers from the automatic startup list

If for any reason the WebSphere MQ Explorer cannot be used to change the startup
state of a particular queue manager, use the following routine to carry out the
same procedure manually:
1. Stop the WebSphere MQ Explorer either from the taskbar icon or from the

control panel.
2. Type REGEDIT on the command line.
3. Select the HKEY_LOCAL_MACHINE window.
4. Navigate the tree structure to find the following key:

LOCAL_MACHINE\Software\IBM\MQSeries\CurrentVersion\Configuration\
Services\<QMgrName>\QueueManager

5. Change the startup value to 0. (1 means automatic and 0 means manual.)
6. Close the Registry Editor.
7. Run amqmdain regsec.

Removing queue managers in WebSphere MQ for UNIX
systems

The manual removal of a queue manager is potentially very disruptive,
particularly if multiple queue managers are being used on a single system. This is
because, to completely remove a queue manager, you must delete files, shared
memory, and semaphores.

If you need to delete a queue manager manually, use the following procedure:
1. Stop the queue manager running, and execute the following command, as user

mqm:
amqiclen -x -m QMGR

This ensures that all IPC resources that are specifically reserved for queue
manager QMGR are removed.

2. Locate the queue manager directory from the configuration file
/var/mqm/mqs.ini. To do this, look for the QueueManager stanza naming the
queue manager to be deleted.
Its Prefix and Directory attributes identify the queue manager directory. For a
Prefix attribute of <Prefix> and a Directory attribute of <Directory>, the full
path to the queue manager directory is: <Prefix>/qmgrs/<Directory>

3. Locate the queue manager log directory from the qm.ini configuration file in
the queue manager directory. The LogPath attribute of the Log stanza identifies
this directory.

4. Delete the queue manager directory, all subdirectories and files.
5. Delete the queue manager log directory, all subdirectories and files.
6. Remove the queue manager’s QueueManager stanza from the /var/mqm/mqs.ini

configuration file.
7. If the queue manager being deleted is also the default queue manager, remove

the DefaultQueueManager stanza from the /var/mqm/mqs.ini configuration file.

540 WebSphere MQ: System Administration Guide

|

|
|
|

|
|

|

|

|

|
|

|

|

|

|

|

|
|
|
|

|

|
|

|

|
|

|
|
|

|
|
|

|
|
|

|

|

|
|

|
|

Chapter 12. File Transfer Application

This chapter explains how to use the File Transfer Application.

The chapter includes:
v “Introduction”
v “Installing and configuring” on page 542
v “Using the File Transfer Application” on page 549

Introduction

The File Transfer Application allows you to send and receive files in the form of
WebSphere MQ messages. You can use the File Transfer Application to send and
receive binary files (for example, image files, wordprocessor files, spreadsheet files,
or zip files).

The File Transfer Application is available on both WebSphere MQ for Windows,
and WebSphere MQ for Linux (x86 platform) servers, and clients.

The File Transfer Application includes a graphical user interface (GUI), and a
command-line interface. Both interfaces invoke the same underlying WebSphere
MQ functionality and can be used to transfer the same types of file.

There are three principal users of the File Transfer Application:

System administrators
Set up the File Transfer Application for end-users, by defining queues as
sources and destinations in the File Transfer Application GUI.

Non-experienced end-users
These are non-expert IT users working within the business, for example car
showroom managers. Users in this group want to send and receive files
such as daily sales figures and stock reports, using the File Transfer
Application GUI.

Experienced end-users
These are expert IT users working within the business, who have an
understanding of WebSphere MQ. Users in this group want to send and
receive files from the command-line.

Advantages
v Files of any type can be transferred. Because the File Transfer Application does not

distinguish between files of different types, you can send and receive files in any
format (for example, spreadsheets, memos, letters). You can even send and
receive image and sound files.

v File transfer is technology independent. Files can be transferred between dissimilar
operating platforms (for example Windows, UNIX), using TCP/IP.

v Transferred files cannot be accidentally duplicated. Files are sent once-and-once-only
to a specified destination.

v Files are transferred securely. High-level data security and integrity is provided if
SSL (secure sockets layer) encrypted message channels are used.

© Copyright IBM Corp. 1994, 2009 541

v The sender and receiver run independently. The sender and receiver do not both
have to be running at the same time.
If the receiver is currently unavailable or busy, the file is held on a queue. When
the receiver becomes available, the file is then automatically transferred. The
persistent option assures maximum reliability (non-persistent messages are
automatically deleted from the queue on the receiving machine, when the queue
manager restarts).

v The system is scalable. An administrator can add new sources and destinations to
the File Transfer Application GUI, so that they become accessible to users.

v The File Transfer Application GUI. The File Transfer Application provides a GUI.

Components

The File Transfer Application consists of the following main components:

Sender
This is a program that puts a file stored in the local file system onto a
queue, as one or more WebSphere MQ messages.

Receiver
This is a program that receives files and stores them in a local file system.

File Transfer Application GUI
The GUI allows non-experienced users to send files, receive files, and
create a list of sent/received files in an intuitive way. Users of the GUI
need no knowledge of how the underlying WebSphere MQ technology
works.

Available when installed from a WebSphere MQ server CD.

A command line interface
This provides a way for experienced users to send and receive files by
issuing commands from the command line. Additional functionality is
available with the File Transfer Application GUI. Users of the command
line interface need to have an understanding of how WebSphere MQ
works.

Installing and configuring

The File Transfer Application is used to transfer files between remote machines.
The File Transfer Application can be installed on a WebSphere MQ server or on a
WebSphere MQ client. For a file to be transferred between two remote machines,
the File Transfer Application must be installed on both the sender machine and the
receiver machine. Having installed the File Transfer Application additional setup
and configuration tasks must be performed.

Installing the File Transfer Application on a WebSphere MQ
server

A WebSphere MQ installation server CD must be used to install the File Transfer
Application on a WebSphere MQ server. To install the File Transfer Application on
a WebSphere MQ server, do one of the following:
v Install the File Transfer Application during an initial installation of a WebSphere

MQ server.
v Add the File Transfer Application by modifying a WebSphere MQ server

installation after the initial installation has taken place.

542 WebSphere MQ: System Administration Guide

During the initial installation

To install the File Transfer Application on a WebSphere MQ server during the
initial installation of WebSphere MQ, do the following:
1. Follow the WebSphere MQ custom installation instructions on the appropriate

platform to the point where you specify the components that will be installed:
v For the WebSphere MQ server installation instructions on Windows, see the

WebSphere MQ for Windows Quick Beginnings.
v For the WebSphere MQ server installation instructions on Linux (x86

platform), see the WebSphere MQ for Linux Quick Beginnings.
2. Ensure that Server File Transfer is selected.
3. Follow the WebSphere MQ server installation instructions to completion.

The File Transfer Application is now installed.

Modifying the installation

To install the File Transfer Application on a WebSphere MQ server by modifying
the installation after the initial installation has taken place, do the following:
1. Follow the instructions for modifying an installation on the appropriate

platform to the point where you specify the components that are to be added:
v For the instructions for modifying an installation on Windows, see the

WebSphere MQ for Windows Quick Beginnings.
v For the instructions for modifying an installation on Linux (x86 platform),

see the WebSphere MQ for Linux Quick Beginnings.
2. Ensure that Server File Transfer is selected.
3. Follow the instructions for modifying the installation to completion.

The File Transfer Application is now installed.

Installing the File Transfer Application on a WebSphere MQ
client

Either a WebSphere MQ installation server CD, or a WebSphere MQ installation
client CD, can be used to install the File Transfer Application on a WebSphere MQ
client.

Note: If you require the File Transfer Application GUI, use a WebSphere MQ
installation server CD.

To install the File Transfer Application on a WebSphere MQ client, do one of the
following:
v Install the File Transfer Application during an initial installation of a WebSphere

MQ client.
v Add the File Transfer Application by modifying an installation after the initial

installation has taken place.

During the initial installation

To install the File Transfer Application on a WebSphere MQ client during the initial
installation, do the following:
1. Follow the WebSphere MQ custom installation instructions on the appropriate

platform to the point where you specify the components that will be installed:

Chapter 12. File Transfer Application 543

v For the WebSphere MQ client installation instructions on Windows, see the
WebSphere MQ for Windows Quick Beginnings.

v For the WebSphere MQ client installation instructions on Linux (x86
platform), see the WebSphere MQ for Linux Quick Beginnings.

2. Ensure that Client File Transfer is selected.
3. Follow the WebSphere MQ installation instructions to completion.

The File Transfer Application is now installed.

Modifying the installation

To install the File Transfer Application on a WebSphere MQ client by modifying
the installation after the initial installation has taken place, do the following:
1. Follow the instructions for modifying an installation on the appropriate

platform to the point where you specify the components that are to be added:
v For the instructions for modifying an installation on Windows, see the

WebSphere MQ for Windows Quick Beginnings.
v For the instructions for modifying an installation on Linux (x86 platform),

see the WebSphere MQ for Linux Quick Beginnings.
2. Ensure that Client File Transfer is selected.
3. Follow the instructions for modifying an installations to completion.

The File Transfer Application is now installed

Setup tasks

The setup tasks are required when the File Transfer Application is used to send
files between a queue manager and a remote WebSphere MQ client, or between
two remote queue managers. If files are sent between local queue managers or
clients, the following setup tasks are not required.

Sending files between remote queue managers

You can set up two queue managers to allow the File Transfer Application to send
and receive files between them.

In the following illustration summarized in Figure 37 on page 545, queue managers
HEAD.OFFICE.QM, and SHOWROOM.QM are used.

544 WebSphere MQ: System Administration Guide

These steps outline how to setup sender and receiver channels. However, you can
use other channel configurations. See WebSphere MQ Intercommunication.
1. Issue the following commands on the queue manager HEAD.OFFICE.QM to create

the channels, listener, and the transmission queue:
a. Define the sender channel:

DEFINE CHANNEL (OFFICE.TO.SHOWROOM) +
CHLTYPE(SDR) +
CONNAME (SHOWROOM.COMPANY.COM) +
XMITQ (SHOWROOM.QM) +
TRPTYPE(TCP)

b. Define the receiver channel:
DEFINE CHANNEL (SHOWROOM.TO.OFFICE) +

CHLTYPE(RCVR) +
TRPTYPE(TCP)

c. Define the listener:
DEFINE LISTENER (HEAD.OFFICE) +

TRPTYPE (TCP) +
PORT (1414)

d. Define the transmission queue:
DEFINE QLOCAL (SHOWROOM.QM) +

USAGE (XMITQ)

Note:

a. The TCP/IP connection names specified for the CONNAME attribute in the
sender channel definitions are for illustration only. This is the network name
of the machine at the other end of the connection. Use the values
appropriate for your network.

b. Sender and receiver channels have been used. However other channel
configurations are available. See the WebSphere MQ Intercommunication
manual.

2. Issue the following commands on the queue manager SHOWROOM.QM to create the
channels, listener, and the transmission queue:
a. Define the sender channel:

showroom.to.office

office.to.showroom

FTA FTA

Send Receive

Receive Send

QREMOTE:
DEST.AT.HEAD.OFFICE

QLOCAL:
SOURCE.AT.HEAD.OFFICE

QLOCAL:
SOURCE.AT.SHOWROOM

SHOWROOM.COMPANY.COM SERVER.COMPANY.COM

QREMOTE:
DEST.AT.SHOWROOM

SHOWROOM.QM HEAD.OFFICE.QM

Figure 37. Using the File Transfer Application to send files between remote queue managers

Chapter 12. File Transfer Application 545

|
|

|
|

|

|
|
|
|
|

|

|
|
|

|

|
|
|

|

|
|

|

|
|
|
|

|
|
|

|
|

|

DEFINE CHANNEL (SHOWROOM.TO.OFFICE) +
CHLTYPE(SDR) +
CONNAME (SERVER.COMPANY.COM) +
XMITQ (HEAD.OFFICE.QM) +
TRPTYPE(TCP)

b. Define the receiver channel:
DEFINE CHANNEL (OFFICE.TO.SHOWROOM) +

CHLTYPE(RCVR) +
TRPTYPE(TCP)

c. Define the listener:
DEFINE LISTENER (SHOWROOM) +

TRPTYPE (TCP) +
PORT (1414)

d. Define the transmission queue:
DEFINE QLOCAL (HEAD.OFFICE.QM) +

USAGE (XMITQ)

3. Start the listener and the sender channel on the queue manager HEAD.OFFICE.QM
by using the following MQSC commands:
a. Start the listener:

START LISTENER (HEAD.OFFICE)

b. Start the sender channel:
START CHANNEL (OFFICE.TO.SHOWROOM)

Note: The receiver channels do not need to be started because it is the sender
channels that initiate the delivery of messages.

4. Start the listener and the sender channel on the queue manager SHOWROOM.QM by
using the following MQSC commands:
a. Start the listener:

START LISTENER (SHOWROOM)

b. Start the sender channel:
START CHANNEL (SHOWROOM.TO.OFFICE)

5. Define a remote queue definition for the destination queue and a source queue
on the queue manager HEAD.OFFICE.QM, using the following MQSC commands:
a. Define a remote queue definition for the destination queue (the queue

where files will be sent):
DEFINE QREMOTE (DEST.AT.SHOWROOM) +

RNAME (SOURCE.AT.SHOWROOM) +
RQMNAME (SHOWROOM.QM)

b. Define a source queue (the queue where files will be received):
DEFINE QLOCAL (SOURCE.AT.HEAD.OFFICE)

To avoid potential problems, ensure that local queues are dedicated to the File
Transfer Application.

6. Define a remote queue definition for the destination queue and a source queue
on the queue manager SHOWROOM.QM, using the following MQSC commands:
a. Define a remote queue definition for the destination queue (the queue

where files will be sent):
DEFINE QREMOTE (DEST.AT.HEAD.OFFICE) +

RNAME (SOURCE.AT.HEAD.OFFICE) +
RQMNAME (HEAD.OFFICE.QM)

b. Define a source queue (the queue where files will be received):
DEFINE QLOCAL (SOURCE.AT.SHOWROOM)

546 WebSphere MQ: System Administration Guide

|
|
|
|
|

|

|
|
|

|

|
|
|

|

|
|

|
|

|

|

|

|

|
|

|
|

|

|

|

|

|
|

|
|

|
|
|

|

|

|
|

|
|

|
|

|
|
|

|

|

To avoid potential problems, ensure that local queues are dedicated to the File
Transfer Application.

7. Ensure that all the users of the File Transfer Application are members of the
mqm group, or, on Windows platforms, ensure all users are members of the
local Administrators group .

You have now setup both queue managers for use with the File Transfer
Application.

Sending files between a queue manager and a remote
WebSphere MQ client

This section shows how to setup a queue manager and a remote WebSphere MQ
client to allow the File Transfer Application to be used to send and receive files
between them. For illustration, the queue manager HEAD.OFFICE.QM, and the
WebSphere MQ client CARSHOWROOM are used. Figure 38 summarizes the
configuration that the following instructions form.

To configure the queue manager HEAD.OFFICE.QM, and the remote WebSphere MQ
client, do the following:
1. Define a server communication channel on the queue manager HEAD.OFFICE.QM,

using the following MQSC command:
a. Define a server communication channel:

DEFINE CHANNEL (TO.HEAD.OFFICE) +
CHLTYPE(SVRCONN) +
TRPTYPE(TCP) +
MCAUSER (string)

Note: For MCAUSER (string), specify string as a user from the mqm group,
or administrators group on the queue manager HEAD.OFFICE.

2. Define and start a listener on the queue manager HEAD.OFFICE.QM, using the
following MQSC command:
a. Define a listener:

DEFINE LISTENER (HEAD.OFFICE) +
TRPTYPE (TCP) +
PORT (1414)

b. Start the listener:
START LISTENER (HEAD.OFFICE)

FTA FTA

QLOCAL:
CARSHOWROOM.INPUT

QLOCAL:
CARSHOWROOM.OUTPUT

SERVER.COMPANY.COM

TO.HEAD.OFFICE

HEAD.OFFICE.QM

CLIENT

Receive

Receive

Send

Send

Figure 38. Using the File Transfer Application to send files between a queue manager and a remote client

Chapter 12. File Transfer Application 547

|
|

|
|
|

3. Define a source queue, and a destination queue on the queue manager
HEAD.OFFICE.QM to be used by the WebSphere MQ client, using the following
MQSC commands:
a. Define a destination queue (the queue where the WebSphere MQ client will

send files):
DEFINE QLOCAL (CARSHOWROOM.OUTPUT)

b. Define a source queue (the queue from which the WebSphere MQ client will
receive files):
DEFINE QLOCAL (CARSHOWROOM.INPUT)

It is recommended that local queues are dedicated to the File Transfer
Application.

4. On the WebSphere MQ client, create an MQI channel by defining the
MQSERVER environment variable as follows:
TO.HEAD.OFFICE/TCP/SERVER.COMPANY.COM(1414)

For more information on specifying the environment variable MQSERVER, see
the WebSphere MQ Clients book.

Note: If you intend to implement SSL security, you must establish the MQI
channel using a client channel definition table, and not by specifying the
environment variable MQSERVER.
For more information on establishing MQI channels, see the WebSphere MQ
Clients book.

5. Ensure that all the users of the File Transfer Application are members of the
mqm group, or alternatively the local Administrators group on Windows.

Configuring the GUI

For every WebSphere MQ server or client system on which you intend to run the
File Transfer Application GUI, you must perform some initial configuration tasks
on the GUI. Before you can configure the File Transfer Application GUI, you must
have setup up your system, see “Setup tasks” on page 544.

For information on what the File Transfer Application GUI provides, see
“Components” on page 542.

To configure the File Transfer Application GUI, do the following:
1. Start the File Transfer Application by issuing the control command mqftapp, or

by selecting it through the start menu.
The first time you start File Transfer Application, a message prompts you to
complete the initial setup.

2. Click OK. The Queue Manager panel is displayed.
3. In the Name field, type the name of the queue manager to which the File

Transfer Application is connecting.

Note: Ensure the queue manager is running.
4. Select either the Local or Remote radio button.

If connecting to a local queue manager, click the Local radio button.
If connecting to a remote queue manager, click the Remote radio button.

5. Click OK. The File Transfer panel is displayed, showing a list of queues.

548 WebSphere MQ: System Administration Guide

6. Check the tick box next to every queue that is to be used as a destination
queue.

7. Select the Sources tab.
8. Check the tick box next to every queue that is to be used as a source queue.
9. Click OK.

The File Transfer Application GUI is now configured.

File Transfer Application channel security

When using the File Transfer Application, a file is transferred over a message
channel or an MQI channel. To ensure channels are secure you can use the Secure
Sockets Layer (SSL), or channel exits. For information on channel security, see
“Channel security” on page 137.

Using the File Transfer Application

Once a system administrator has set up the File Transfer Application for use, files
can be sent and received using WebSphere MQ messaging. This section explains
how a sender of a file, or receiver of a file, uses the File Transfer Application.

Sending a file

This task shows you how to send a file to another destination using the File
Transfer Application GUI. You can also send files from the command line, or shell,
by using mqftsnd on a WebSphere MQ server, or mqftsndc on a WebSphere MQ
client, see “Using the command line” on page 551.
1. Start the File Transfer Application by issuing the control command mqftapp, or

by selecting it through the start menu.
2. Click the Send tab.
3. Click the Browse button.
4. In the browser dialog, select the file to transfer, then click OK.
5. In the Comments field, type any accompanying comments. This field can be

used to help identify different versions of the same file, for example: Week 3
sales - version 2.

6. In the Destination pane, click the required destination, for example:
DESTINATION.AT.HEAD.OFFICE.

7. Click Send.
8. Look for confirmation that the file was sent in the Show files sent and

received list.

The File Transfer Application transfers the specified file to the selected location.
You can check that the file was sent by looking in the Session log.

Receiving a file

This task shows how to receive a file from another destination using the File
Transfer Application GUI. You can also receive files from the command line, or
shell, by using mqftrcv on a WebSphere MQ server, or mqftrcvc on a WebSphere
MQ client, see “Using the command line” on page 551.
1. Start the File Transfer Application by issuing the control command mqftapp, or

by selecting it through the start menu.

Chapter 12. File Transfer Application 549

2. Click the Receive tab.
3. Click the Files from drop-down list to display the source where the file to be

received is held, for example: SOURCE.AT.SHOWROOM.
4. Select the source to display the files stored there.
5. Select the file to receive, for example: Stocks 14 Aug 03.doc.
6. Look for confirmation that the file was received in the Show files sent and

received list.

The selected file is received, and an icon representing the file is automatically
displayed on the desktop. Double-click the icon to view the file. You can also check
that the file was received by looking in the Session log.

Listing all sent and received files

This task shows how to create a list of all files sent and received using the File
Transfer Application GUI.
1. Start the File Transfer Application by issuing the control command mqftapp, or

by selecting it through the start menu.
2. In the Session Log pane, click History Log....
3. View the list of all files sent or received. The list shows all files sent or received

since the File Transfer Application was first used, or since the log was last
cleared.

4. Click Save as.
5. Navigate to a folder on the hard drive (c:) on your machine where you want to

save the list.
6. In the File name field, type a meaningful file name, for example: File log 9

Apr 03.
7. In the Save as type field, type .txt.
8. Click the Save button.
9. Click the Done button.

File status

When a File Transfer Application receiver receives files, they can be listed using
the File Transfer Application GUI, or by using either of the receive file control
commands. For information on the receive file control commands see “mqftrcv”
on page 328, and “mqftrcvc” on page 331. Information about files in the source
queue are returned as one of the following:

Complete file
When a file is too large to be transferred as a single WebSphere MQ
message, the file is segmented into a number of smaller messages, known
as segments. These segments are then transmitted.

A complete file is a file where every message that forms the file has been
transferred to the destination queue.

Incomplete file
An incomplete file, is a file where a subset of the messages that form the
file have been transferred to the queue. If you are using the File Transfer
Application GUI, by clicking Receive again, you will see the file’s
percentage complete figure increase.

550 WebSphere MQ: System Administration Guide

Other message
Other messages, are messages that have not been sent using the File
Transfer Application. They are not related to a file.

If a dead letter queue has been associated with the queue manager and a
receive file command is issued, then other messages are put on the dead
letter queue. If a dead letter queue has not been associated with the queue
manager, then other messages are left on the queue.

Using the command line

This section describes how to use the File Transfer Application commands directly,
without the use of the File Transfer Application GUI. If you want to use the File
Transfer Application, your user ID must be a member of the mqm group. For more
information about this, see “Setup tasks” on page 544. In addition, note the
following environment-specific information:

WebSphere MQ for Windows
All File Transfer Application commands can be issued from a command
line. Command names and their flags are not case sensitive: you can enter
them in uppercase, lowercase, or a combination of uppercase and
lowercase. However, arguments to specify objects (such as queue names)
are case sensitive. In the syntax descriptions, the hyphen (-) is used as a
flag indicator. You can use the forward slash (/) instead of the hyphen.

WebSphere MQ for Linux (x86 platform)
All File Transfer Application commands can be issued from a shell. All
commands are case-sensitive.

The control commands available with the File Transfer Application follow:

Table 44. File Transfer Application command files

Command name Purpose

mqftapp Run the File Transfer Application GUI. For more
information, see “mqftapp” on page 328.

mqftsnd Send a file from a WebSphere MQ server. For more
information, see “mqftsnd” on page 334.

mqftrcv Receive a file on a WebSphere MQ server. For more
information, see “mqftrcv” on page 328.

mqftsndc Send a file from a WebSphere MQ client. For more
information, see “mqftsndc” on page 336.

mqftrcvc Receive a file on a WebSphere MQ client. For more
information, see “mqftrcvc” on page 331.

The command line interface, sender, and receiver components are included as part
of the WebSphere MQ clients for Windows and Linux (x86 platform). The clients
are available as free downloads:
www-3.ibm.com/software/info1/websphere/index.jsp

Chapter 12. File Transfer Application 551

||

||

||
|

||
|

||
|

||
|

||
|
|

552 WebSphere MQ: System Administration Guide

Chapter 13. Comparing command sets

The tables in this appendix compare the facilities available from the different
administration command sets, and state whether you can perform each function
from within the WebSphere MQ Explorer.

Note: The following tables do not apply to WebSphere MQ for z/OS or
WebSphere MQ for i5/OS. For information on how to use PCF commands on z/OS
and on i5/OS, see WebSphere MQ Programmable Command Formats and
Administration Interface. For information on how to use MQSC commands on
z/OS and on i5/OS, see WebSphere MQ Script (MQSC) Command Reference.

Queue manager commands
Table 45. Queue manager commands

Description PCF command MQSC command Control command WebSphere MQ
Explorer equivalent?

Change Queue
Manager

Change Queue
Manager

ALTER QMGR No equivalent Yes

Create queue
manager

No equivalent No equivalent crtmqm Yes

Delete queue
manager

No equivalent No equivalent dltmqm Yes

Inquire Queue
Manager

Inquire Queue
Manager

DISPLAY QMGR No equivalent Yes

Inquire Queue
Manager Status

Inquire Queue
Manager Status

DISPLAY QMSTATUS dspmq Yes

Ping Queue Manager Ping Queue Manager PING QMGR No equivalent No

Refresh Queue
Manager

No equivalent REFRESH QMGR No equivalent No

Reset Queue Manager Reset Queue Manager RESET QMGR No equivalent No

Start queue manager No equivalent No equivalent strmqm Yes

Stop queue manager No equivalent No equivalent endmqm Yes

Command server commands
Table 46. Commands for command server administration

Description PCF command MQSC command Control command WebSphere MQ
Explorer equivalent?

Display command
server

Inquire Queue
Manager Status

DISPLAY QMSTATUS dspmqcsv Yes

Start command server Change Queue
Manager

ALTER QMGR strmqcsv Yes

Stop command server No equivalent No equivalent endmqcsv Yes

© Copyright IBM Corp. 1994, 2009 553

|

|

|
|
|

|
|
|
|
|

|
|

||

|||||
|

|
|
|
|
|||

|
|
||||

|
|
||||

|
|
|
|
|||

|
|
|
|
|||

|||||

|
|
||||

|||||

|||||

|||||
|

|
|

||

|||||
|

|
|
|
|
|||

||
|
|||

|||||
|

Authority commands
Table 47. Commands for authority administration

PCF command MQSC command Control command WebSphere MQ Explorer
equivalent?

Delete authority record No equivalent setmqaut Yes

Inquire authority records No equivalent dmpmqaut Yes

Inquire entity authority No equivalent dspmqaut Yes

Refresh Security REFRESH SECURITY No equivalent Yes

Set authority record No equivalent setmqaut Yes

Cluster commands
Table 48. Cluster commands

PCF command MQSC command Control command WebSphere MQ Explorer
equivalent?

Inquire Cluster Queue
Manager

DISPLAY CLUSQMGR No equivalent Yes

Refresh Cluster REFRESH CLUSTER No equivalent Yes

Reset Cluster RESET CLUSTER No equivalent No

Resume Queue Manager
Cluster

RESUME QMGR No equivalent Yes

Suspend Queue Manager
Cluster

SUSPEND QMGR No equivalent Yes

Authentication information commands
Table 49. Authentication information commands

PCF command MQSC command Control command WebSphere MQ Explorer
equivalent?

Change Authentication
Information Object

ALTER AUTHINFO No equivalent Yes

Copy Authentication
Information Object

DEFINE AUTHINFO(x)
LIKE(y)

No equivalent Yes

Create Authentication
Information Object

DEFINE AUTHINFO No equivalent Yes

Delete Authentication
Information Object

DELETE AUTHINFO No equivalent Yes

Inquire Authentication
Information Object

DISPLAY AUTHINFO No equivalent Yes

554 WebSphere MQ: System Administration Guide

|
|

||

||||
|

||||

||||

||||

||||

||||
|

|
|

||

||||
|

|
|
|||

||||

||||

|
|
|||

|
|
|||

|

|
|

||

||||
|

|
|
|||

|
|
|
|
||

|
|
|||

|
|
|||

|
|
|||

|

Channel commands
Table 50. Channel commands

PCF command MQSC command Control command WebSphere MQ Explorer
equivalent?

Change Channel ALTER CHANNEL No equivalent Yes

Copy Channel DEFINE CHANNEL(x)
LIKE(y)

No equivalent Yes

Create Channel DEFINE CHANNEL No equivalent Yes

Delete Channel DELETE CHANNEL No equivalent Yes

Inquire Channel DISPLAY CHANNEL No equivalent Yes

Inquire Channel Names DISPLAY CHANNEL No equivalent Yes

Inquire Channel Status DISPLAY CHSTATUS No equivalent Yes

Ping Channel PING CHANNEL No equivalent Yes

Reset Channel RESET CHANNEL No equivalent Yes

Resolve Channel RESOLVE CHANNEL No equivalent Yes

Start Channel START CHANNEL runmqchl Yes

Start Channel Initiator START CHINIT runmqchi No

Stop Channel STOP CHANNEL No equivalent Yes

Listener commands
Table 51. Listener commands

PCF command MQSC command Control command WebSphere MQ Explorer
equivalent?

Change Listener ALTER LISTENER No equivalent Yes

Copy Listener DEFINE LISTENER(x)
LIKE(y)

No equivalent Yes

Create Listener DEFINE LISTENER No equivalent Yes

Delete Listener DELETE LISTENER No equivalent Yes

Inquire Listener DISPLAY LISTENER No equivalent Yes

Inquire Listener Status DISPLAY LSSTATUS No equivalent Yes

Start Channel Listener START LISTENER 1 runmqlsr Yes

Stop Listener STOP LISTENER endmqlsr 2 Yes

Notes:

1. Used with listener objects only

2. Stops all active listeners

Namelist commands
Table 52. Namelist commands

PCF command MQSC command Control command WebSphere MQ Explorer
equivalent?

Change Namelist ALTER NAMELIST No equivalent Yes

Chapter 13. Comparing command sets 555

|
|

||

||||
|

||||

||
|
||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

|
|

||

||||
|

||||

||
|
||

||||

||||

||||

||||

||||

||||

|

|

|
|

|
|

||

||||
|

||||

Table 52. Namelist commands (continued)

PCF command MQSC command Control command WebSphere MQ Explorer
equivalent?

Copy Namelist DEFINE NAMELIST(x)
LIKE(y)

No equivalent Yes

Create Namelist DEFINE NAMELIST No equivalent Yes

Delete Namelist DELETE NAMELIST No equivalent Yes

Inquire Namelist DISPLAY NAMELIST No equivalent Yes

Inquire Namelist Names DISPLAY NAMELIST No equivalent Yes

Process commands
Table 53. Process commands

PCF command MQSC command Control command WebSphere MQ Explorer
equivalent?

Change Process ALTER PROCESS No equivalent Yes

Copy Process DEFINE PROCESS(x)
LIKE(y)

No equivalent Yes

Create Process DEFINE PROCESS No equivalent Yes

Delete Process DELETE PROCESS No equivalent Yes

Inquire Process DISPLAY PROCESS No equivalent Yes

Inquire Process Names DISPLAY PROCESS No equivalent Yes

Queue commands
Table 54. Queue commands

PCF command MQSC command Control command WebSphere MQ
Explorer equivalent?

Change Queue
ALTER QLOCAL
ALTER QALIAS
ALTER QMODEL
ALTER QREMOTE

No equivalent Yes

Clear Queue CLEAR QLOCAL No equivalent Yes

Copy Queue
DEFINE QLOCAL(x) LIKE(y)
DEFINE QALIAS(x) LIKE(y)
DEFINE QMODEL(x) LIKE(y)
DEFINE QREMOTE(x) LIKE(y)

No equivalent Yes

Create Queue
DEFINE QLOCAL
DEFINE QALIAS
DEFINE QMODEL
DEFINE QREMOTE

No equivalent Yes

556 WebSphere MQ: System Administration Guide

|

||||
|

||
|
||

||||

||||

||||

||||
|

|
|

||

||||
|

||||

||
|
||

||||

||||

||||

||||
|

|
|

||

||||
|

|
|
|
|
|

||

||||

|
|
|
|
|

||

|
|
|
|
|

||

Table 54. Queue commands (continued)

PCF command MQSC command Control command WebSphere MQ
Explorer equivalent?

Delete Queue
DELETE QLOCAL
DELETE QALIAS
DELETE QMODEL
DELETE QREMOTE

No equivalent Yes

Inquire Queue DISPLAY QUEUE No equivalent Yes

Inquire Queue Names DISPLAY QUEUE No equivalent Yes

Inquire Queue Status DISPLAY QSTATUS No equivalent Yes

Reset Queue Statistics No equivalent No equivalent No

Service commands
Table 55. Service commands

PCF command MQSC command Control command WebSphere MQ Explorer
equivalent?

Change Service ALTER SERVICE No equivalent Yes

Copy Service DEFINE SERVICE(x)
LIKE(y)

No equivalent Yes

Create Service DEFINE SERVICE No equivalent Yes

Delete Service DELETE SERVICE No equivalent Yes

Inquire Service DISPLAY SERVICE No equivalent Yes

Inquire Service Status DISPLAY SVSTATUS No equivalent Yes

Start Service START SERVICE No equivalent Yes

Stop Service STOP SERVICE No equivalent Yes

Other commands
Table 56. Other commands

Description PCF command MQSC command Control command WebSphere MQ
Explorer equivalent?

Create conversion exit No equivalent No equivalent crtmqcvx No

Display files used by
objects

No equivalent No equivalent dspmqfls No

Display formatted
trace

No equivalent No equivalent dspmqtrc 1 No

Display version
information

No equivalent No equivalent dspmqver No

Display transactions No equivalent No equivalent dspmqtrn No

Dump log No equivalent No equivalent dmpmqlog No

End trace No equivalent No equivalent endmqtrc Yes

Escape Escape No equivalent No equivalent No

Record media image No equivalent No equivalent rcdmqimg No

Chapter 13. Comparing command sets 557

|

||||
|

|
|
|
|
|

||

||||

||||

||||

||||
|

|
|

||

||||
|

||||

||
|
||

||||

||||

||||

||||

||||

||||
|

|
|

||

|||||
|

|||||

|
|
||||

|
|
||||

|
|
||||

|||||

|||||

|||||

|||||

|||||

Table 56. Other commands (continued)

Description PCF command MQSC command Control command WebSphere MQ
Explorer equivalent?

Recreate media object No equivalent No equivalent rcrmqobj No

Resolve transactions No equivalent No equivalent rsvmqtrn No

Run client trigger
monitor

No equivalent No equivalent runmqtmc No

Run dead-letter
queue handler

No equivalent No equivalent runmqdlq No

Run MQSC
commands

No equivalent No equivalent runmqsc No

Run trigger monitor No equivalent No equivalent runmqtrm No

Set service connection
points

No equivalent No equivalent setmqscp 2 No

Start WebSphere MQ
trace

No equivalent No equivalent strmqtrc Yes

WebSphere MQ
Services control

No equivalent No equivalent amqmdain 2 No

Notes:

1. Not supported on WebSphere MQ for Windows.

2. Supported by WebSphere MQ for Windows only.

558 WebSphere MQ: System Administration Guide

|

|||||
|

|||||

|||||

|
|
||||

|
|
||||

|
|
||||

|||||

|
|
||||

|
|
||||

|
|
||||

|

|

|
|
|

Chapter 14. WebSphere MQ and UNIX System V IPC
resources

A queue manager uses some IPC resources. Use ipcs -a to find out what resources
are being used.

This information applies to WebSphere MQ running on UNIX systems only.

WebSphere MQ uses System V interprocess communication (IPC) resources
(semaphores and shared memory segments) to store and pass data between system
components. These resources are used by queue manager processes and
applications that connect to the queue manager. WebSphere MQ clients do not use
IPC resources, except for WebSphere MQ trace control. Use the UNIX command
ipcs -a to get full information on the number and size of the IPC resources
currently in use on the machine.

Clearing WebSphere MQ shared memory resources

When a WebSphere MQ queue manager is ended normally, the queue manager
removes the majority of the IPC resources that it was using. A small number of
IPC resources remain and this is as designed: some of the IPC resources are
intended to persist between queue manager restarts. The number of IPC resources
remaining varies to some extent, depending on the operating conditions.

There are some situations when a larger proportion of the IPC resources in use by
a queue manager might persist after that queue manager has ended:
v If applications are connected to the queue manager when it stops (perhaps

because the queue manager was shut down using endmqm -i or endmqm -p), the
IPC resources used by these applications might not be released.

v If the queue manager ends abnormally (for example, if an operator issues the
system kill command), some IPC resources might be left allocated after all queue
manager processes have terminated.

In these cases, the IPC resources are not released back to the system until you
restart (strmqm) or delete (dltmqm) the queue manager.

IPC resources allocated by WebSphere MQ are maintained automatically by the
allocating queue managers. You are strongly recommended not to perform manual
actions on or remove these IPC resources.

However, if it is necessary to remove IPC resources owned by mqm, follow these
instructions. WebSphere MQ provides a utility to release the residual IPC resources
allocated by a queue manager. This utility clears the internal queue manager state
at the same time as it removes the corresponding IPC resource. Thus, this utility
ensures that the queue manager state and IPC resource allocation are kept in step.
To free residual IPC resources, follow these steps:
1. End the queue manager and all connecting applications.
2. Log on as user mqm.
3. Type the following:

On Solaris, HP-UX, and Linux:
/opt/mqm/bin/amqiclen -x -m QMGR

© Copyright IBM Corp. 1994, 2009 559

|

|

|

|
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|

|

|

|

|

|

On AIX:
/usr/mqm/bin/amqiclen -x -m QMGR

This command does not report any status. However, if some WebSphere
MQ-allocated resources could not be freed, the return code is nonzero.

4. Explicitly remove any remaining IPC resources that were created by user mqm.

Note: If a non-mqm application attempted to connect to WebSphere MQ before
starting any queue managers, there might still be some WebSphere MQ IPC
resources remaining even after following the above steps. These remaining
resources were not created by user mqm and there is no straightforward way to
reliably recognize them. However, these resources are very small and are reused
when WebSphere MQ is next restarted.

Shared memory on AIX
If certain application types fail to connect because of an AIX memory limitation, in
most cases this can be resolved by setting the environment variable EXTSHM=ON.

Some 32-bit processes on AIX might encounter an operating system limitation that
affects their ability to connect to WebSphere MQ queue managers. Every standard
connection to WebSphere MQ uses shared memory, but unlike other UNIX
platforms, AIX allows 32-bit processes to attach only 11 shared memory sets.

Most 32-bit processes will not encounter this limit, but applications with high
memory requirements might fail to connect to WebSphere MQ with reason code
2102: MQRC_RESOURCE_PROBLEM. The following application types might see
this error:
v Programs running in 32-bit Java virtual machines
v Programs using the large or very large memory models
v Programs connecting to many queue managers or databases
v Programs that attach to shared memory sets on their own

AIX offers an extended shared memory feature for 32-bit processes that allows
them to attach more shared memory. To run an application with this feature,
export the environment variable EXTSHM=ON before starting your queue
managers and your program. The EXTSHM=ON feature prevents this error in most
cases, but it is incompatible with programs that use the SHM_SIZE option of the
shmctl function.

WebSphere MQ client applications and all 64-bit processes are unaffected by this
limitation. They can connect to WebSphere MQ queue managers regardless of
whether EXTSHM has been set.

560 WebSphere MQ: System Administration Guide

|

|

|
|

|

|
|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|

|

|

|

|
|
|
|
|
|

|
|
|

Chapter 15. WebSphere MQ and UNIX Process Priority

Recommended ways to set process priority nice values.

This information applies to WebSphere MQ running on UNIX systems only.

If you run a process in the background, that process can be given a higher nice
value (and hence lower priority) by the invoking shell. This might have general
WebSphere MQ performance implications. In highly-stressed situations, if there are
many ready-to-run threads at a higher priority and some at a lower priority,
operating system scheduling characteristics can deprive the lower priority threads
of CPU time.

It is strongly recommended that independently started processes associated with
queue managers, such as runmqlsr, have the same nice values as the queue
manager they are associated with. Ensure the shell does not assign a higher nice
value to these background processes. For example, in ksh, use the setting “set +o
bgnice” to stop ksh from raising the nice value of background processes. You can
verify the nice values of running processes by examining the NI column of a “ps
-efl” listing.

It is also recommended that you start WebSphere MQ application processes with
the same nice value as the queue manager. If they run with different nice values, an
application thread might block a queue manager thread, or vice versa, causing
performance to degrade.

© Copyright IBM Corp. 1994, 2009 561

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

562 WebSphere MQ: System Administration Guide

Chapter 16. Common Criteria

WebSphere MQ V7.0 has not been evaluated to Common Criteria EAL4. If you
need to be Common Criteria compliant, use WebSphere MQ V6.0.1.1, which has
been evaluated to Common Criteria EAL4 on some operating systems.

© Copyright IBM Corp. 1994, 2009 563

|

|

|
|
|

|

564 WebSphere MQ: System Administration Guide

Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing,
IBM Corporation,
North Castle Drive,
Armonk, NY 10504-1785,
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation,
Licensing,
2-31 Roppongi 3-chome, Minato-k,u
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2009 565

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

The following are trademarks of International Business Machines Corporation in
the United States, or other countries, or both:

AIX CICS DB2
Encina FFST First Failure Support

Technology
i5/OS iSeries IBM
Informix Lotus Notes MQSeries
Notes RACF System i®

System z® Tivoli TXSeries
WebSphere z/OS

566 WebSphere MQ: System Administration Guide

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 567

568 WebSphere MQ: System Administration Guide

Index

A
access control 122, 132
access settings 134, 136
accidental deletion of default queue

manager 293
AccountingToken field

MQZIC structure 465
ACPI (Advanced Configuration and

Power Interface) 104
ACTION keyword, rules table 194
administration

authority 120
control commands 19
description of 16
for database managers 175
introduction to 13
local, definition of 14
MQAI, using 56
MQSC commands 14, 29
object name transformation 18
PCF commands 54
queue manager name

transformation 17
remote administration, definition

of 14
remote objects 57
understanding WebSphere MQ file

names 17
using control commands 14
using PCF commands 15
using the WebSphere MQ

Explorer 71
writing Eclipse plug-ins 85

ADSI (Active Directory Service Interfaces)
description of 56
IBMMQSeries namespace 56

Advanced Configuration and Power
Interface (ACPI) 104

AIX
trace data, sample 260

AIX operating system
DB2 switch load file, creating 166
Informix switch load file,

creating 171
MQAI support 55
Oracle switch load file, creating 168
performance of nonpersistent

messages 249
security 129
sybswit, creating the Sybase switch

load file 173
trace data, example 264
tracing 256, 262

alert monitor application, using 80
alias queues

DEFINE QALIAS command 43
defining alias queues 43
remote queues as queue manager

aliases 68
reply-to queues 68
working with alias queues 43

aliases
queue manager aliases 68
working with alias queues 43

AllQueueManagers stanza, mqs.ini 99
alternate-user authority 125
amqccert command (check certificate

chains) 277
amqmdain (WebSphere MQ Services

control) command
format 279
keywords 279
parameters 279
purpose 278
return codes 278, 283, 287

AMQMSRVN
changing the password 83

amqsdlq, the sample DLQ handler 191
amqtcert command (transfer

certificates) 284
amqzsc (XA switch load module) 185
amqzsc21 (XA switch load module) 185
amqzsca (XA switch load module) 185
API exit

MQXEP 498
API exits 12
APICallerType field

MQAXP structure 494
ApiExitCommon stanza, mqs.ini 105
ApiExitLocal stanza, qm.ini 118
ApiExitTemplate stanza, mqs.ini 105
application programs

design considerations 250
message length, effects on

performance 250
MQI local administration, support

for 28
persistent messages, effect on

performance 250
programming errors, examples

of 242
receiving messages 2
retrieving messages from queues 3
searching for messages, effect on

performance 250
sending messages 2
threads, application design 251
time-independent applications 1

application queues
defining application queues for

triggering 52
ApplicationContext parameter

authenticate user call 407
APPLIDAT keyword, rules table 193
ApplIdentityData field

MQZIC structure 465
ApplName field

MQAXC structure 489
MQZAC structure 458

APPLNAME keyword, rules table 193
ApplType field

MQAXC structure 489

APPLTYPE keyword, rules table 193
attributes

changing local queue attributes 40
LIKE attribute, DEFINE command 39
queue manager 36, 37
queues 6
WebSphere MQ and PCF commands,

a comparison 55
authentication information objects

description of 9
authority

administration 120
alternate-user 125
context 125
grant or revoke command 354

Authority field
MQZAD structure 461

Authority parameter
check authority (extended) call 416
check authority call 411
get authority (extended) call 433
get authority call 430
get explicit authority (extended)

call 440
get explicit authority call 437
set authority (extended) call 454
set authority call 451

AuthorityBuffer parameter
enumerate authority data call 425

AuthorityBufferLength parameter
enumerate authority data call 425

AuthorityDataLength parameter
enumerate authority data call 426

authorization
migrating data from MQSeries Version

5.1 399
refreshing the OAM after changing a

user’s 399
authorization service 12, 391

component 398
defining to WebSphere MQ for UNIX

systems 399
defining to WebSphere MQ for

Windows 399
stanza, UNIX systems 400
stanza, Windows 401
user interface 401

authorizations
MQI 141
specification tables 140

automatic definition of channels 62

B
backing up queue manager data 230
browsing queues 41
building libraries for TXSeries

for Multiplatforms version 6 187
built-in formats, data conversion 69

© Copyright IBM Corp. 1994, 2009 569

C
calculating the size of logs 222
calls

detailed description
MQ_BACK_EXIT 503
MQ_BEGIN_EXIT 504
MQ_CALLBACK_EXIT 505
MQ_CLOSE_EXIT 506
MQ_CMIT_EXIT 507
MQ_CONNX_EXIT 508
MQ_DISC_EXIT 509
MQ_GET_EXIT 510
MQ_INIT_EXIT 512
MQ_INQ_EXIT 513
MQ_OPEN_EXIT 514
MQ_PUT_EXIT 515
MQ_PUT1_EXIT 516
MQ_SET_EXIT 518
MQ_SUB_EXIT 519
MQ_SUBRQ_EXIT 520
MQ_TERM_EXIT 521

case-sensitive control commands 19
ccsid.tbl, data conversion 69
certificates, checking chains with

amqccert 277
certificates, migrating with amqtcert 284
certificates, transferring with

amqtcert 284
ChainAreaLength field

MQACH structure 486
changing

CCSID 70
local queue attributes 40
queue manager attributes 37
the default queue manager 23

channel exits
security 139

channels
administering a remote queue

manager from a local one 59
auto-definition of 62
channel commands 555
CHANNELS stanza, qm.ini 112
defining channels for remote

administration 61
description of 9, 57
escape command authorizations 144
exits 11, 139
preparing channels for remote

administration 60
remote queuing 57
security 137
starting 62
using the run channel (runmqchl)

command 344
using the run initiator (runmqchi)

command 343
CHANNELS stanza, qm.ini 112
character code sets, updating 69
CharAttrCount parameter

inquire authorization service call 445
CharAttrs parameter

inquire authorization service call 445
check certificate chains, amqccert

command 277

CICS
enabling the two-phase commit

process 188
requirements, two-phase commit

process 185
switch load files 186, 187
task termination exit, UE014015 188
two-phase commit process 185
user exits, enabling 188
XA-compliance 184

circular logging 219
clearing a local queue 40
clearing WebSphere MQ shared memory

resources 559
client connection channels

description of 9
clients and servers

definitions 10
problem determination 269
start client trigger monitor

(runmqtmc) command 352
clusters

cluster membership, the WebSphere
MQ Explorer 74

cluster transmission queues 7
description of 8, 58
ExitProperties stanza attributes 101
remote queuing 57
showing and hiding, WebSphere MQ

Explorer 79
coded character sets, specifying 69
COM+

errors 214
command files 33
command queues

command server status 63
description of 7
mandatory for remote

administration 60
command server

authentication information
commands 554

cluster commands 554
command server commands 553
commands for authority

administration 554
display command server (dspmqcsv)

command 308
displaying status 63
end command server (endmqcsv)

command 322
listener commands 555
namelist commands 555
remote administration 62
service commands 557
starting a command server 63
starting the command server

(strmqcsv) command 364
stopping a command server 63

command sets
comparison of sets 553
control commands 19
MQSC commands 29
PCF commands 54

commands
check certificate chains (amqccert)

command 277

commands (continued)
comparison of command sets 553
control commands 19
create queue manager (crtmqm)

command 291
data conversion (crtmqcvx)

command 289
delete queue manager (dltmqm)

command 296
display authority (dspmqaut)

command 304
display command server (dspmqcsv)

command 308
display version information

(dspmqver) 320
display WebSphere MQ files

(dspmqfls) command 308
display WebSphere MQ formatted

trace (dspmqtrc) command 318
display WebSphere MQ queue

managers (dspmq) command 302
display WebSphere MQ transactions

(dspmqtrn) command 319
dmpmqaut 134
dspmqaut 136
dump authority (dmpmqaut)

command 298
dump log (dmpmqlog)

command 301
end .NET monitor (endmqdnm) 323
end command server (endmqcsv)

command 322
end listener (endmqlsr)

command 323
end queue manager (endmqm)

command 324
end WebSphere MQ trace (endmqtrc)

command 326
enroll production license

(setmqprd) 362
for authentication information

objects 554
for authority administration 554
for channel objects 555
for clusters 554
for command server

administration 553
for listeners 555
for namelist objects 555
for process objects 556
for queue objects 556
for service objects 557
grant or revoke authority

(setmqaut) 354
gsk7cmd 375
help with syntax 276
issuing MQSC commands using an

ASCII file 29
other commands 557
PCF commands 54
queue manager objects 553
receive file on client (mqftrcvc) 331
receive file on server (mqftrcv) 329
record media image (rcdmqimg)

command 338
recreate object (rcrmqobj)

command 340

570 WebSphere MQ: System Administration Guide

commands (continued)
resolve WebSphere MQ transactions

(rsvmqtrn) command 342
run .NET monitor (runmqdnm) 346
run channel (runmqchl)

command 344
run channel initiator (runmqchi) 343
run dead-letter queue handler 345
run DLQ handler (runmqdlq)

command 190
run File Transfer Application

(mqftapp) 328
run listener (runmqlsr)

command 348
run MQSC commands (runmqsc) 350
runmqckm 375
runmqsc command, to issue MQSC

commands 29
send file from client (mqftsndc) 336
send file from server (mqftsnd) 334
services control (amqmdain)

command 278
set CRL LDAP server definitions 361
set service connection points

(setmqscp) 362
setmqaut 132
shell, WebSphere MQ for UNIX

systems 20
start client trigger monitor

(runmqtmc) command 352
start command server (strmqcsv) 364
start queue manager (strmqm) 365
start trigger monitor (runmqtrm) 353
start WebSphere MQ Explorer

(strmqcfg) 363
start WebSphere MQ trace

(strmqtrc) 367
transfer certificates (amqtcert)

command 284
verifying MQSC commands 34
WebSphere MQ display route

application (dspmqrte) 310
CompCode parameter

authenticate user call 408
check authority (extended) call 418
check authority call 413
copy all authority call 421
delete authority call 423
enumerate authority data call 426
free user call 428
get authority (extended) call 434
get authority call 431
get explicit authority (extended)

call 440
get explicit authority call 437
initialize authorization service

call 443
initialize name service call 470
inquire authorization service call 446
insert name call 472
lookup name call 474
MQ_GET_EXIT call 511
MQZ_DELETE_NAME call 468
MQZEP call 406
set authority (extended) call 454
set authority call 451

CompCode parameter (continued)
terminate authorization service

call 456
terminate name service call 476

ComponentData parameter
authenticate user call 408
check authority (extended) call 418
check authority call 413
copy all authority call 420
delete authority call 423
enumerate authority data call 426
free user call 428
get authority (extended) call 434
get authority call 430
get explicit authority (extended)

call 440
get explicit authority call 437
initialize authorization service

call 442
initialize name service call 469
inquire authorization service call 446
insert name call 472
lookup name call 474
MQZ_DELETE_NAME call 467
refresh all authorizations call 448
set authority (extended) call 454
set authority call 451
terminate authorization service

call 456
terminate name service call 476

ComponentDataLength parameter
initialize authorization service

call 442
initialize name service call 469

components, File Transfer
Application 541

components, installable services 391
configuration file

authorization service 399
configuration files

AllQueueManagers stanza,
mqs.ini 99

ApiExitCommon, mqs.ini 105
ApiExitLocal, qm.ini 118
ApiExitTemplate, mqs.ini 105
backing up of 24
CHANNELS stanza, qm.ini 112
databases, qm.ini 111
DefaultQueueManager stanza,

mqs.ini 100
editing 94
example mqs.ini file, MQSeries for

UNIX systems 95
ExitPath stanza, qm.ini 117
ExitProperties stanza, mqs.ini 101
Log stanza, qm.ini 108
LogDefaults stanza, mqs.ini 101
LU62 stanza, qm.ini 115
mqs.ini, description of 95
NETBIOS stanza, qm.ini 115
priorities 95
queue manager configuration file,

qm.ini 96
QueueManager stanza, mqs.ini 105
RestrictedMode stanza, qm.ini 111
Service stanza, qm.ini 106

configuration files (continued)
ServiceComponent stanza,

qm.ini 108
SPX stanza, qm.ini 115
TCP stanza, qm.ini 115
XAResourceManager stanza,

qm.ini 111
configuring

database products 161
DB2 165
Informix 169
logs 108
multiple databases 173
Oracle 167
Sybase 171

configuring your system for database
coordination 161

ConnectionName field
MQAXC structure 488

context authority 125
Continuation parameter

authenticate user call 408
check authority (extended) call 418
check authority call 413
copy all authority call 420
delete authority call 423
enumerate authority data call 426
free user call 428
get authority (extended) call 434
get authority call 431
get explicit authority (extended)

call 440
get explicit authority call 437
inquire authorization service call 446
insert name call 472
lookup name call 474
MQZ_DELETE_NAME call 467
refresh all authorizations call 448
set authority (extended) call 454
set authority call 451

control commands
case sensitivity of 19
categories of 19
changing the default queue

manager 23
controlled shutdown 25
creating a default queue manager 23
creating a queue manager 20
crtmqm, creating a default queue

manager 23
endmqm, stopping a queue

manager 25
for WebSphere MQ for Windows

systems 19
forWebSphere MQ for UNIX

systems 20
immediate shutdown 26
preemptive shutdown 26
quiesced shutdown 26
restarting a queue manager,

strmqm 27
runmqsc, using interactively 31
starting a queue manager 25
stopping a queue manager,

endmqm 25
strmqm, restarting a queue

manager 27

Index 571

control commands (continued)
strmqm, starting a queue

manager, 25
using 19

controlled shutdown of a queue
manager 25, 26

CorrelationPtr field
MQZED structure 464
MQZFP structure 466

CorrelationPtr parameter
authenticate user call 408

CorrelId, performance
considerations 250

creating
a default queue manager 23
a dynamic (temporary) queue 3
a model queue 3
a predefined (permanent) queue 3
a process definition 53
a queue manager 20, 291
a transmission queue 67

creating service components 396
crtmqcvx (data conversion) command

examples 290
format 289
parameters 290
purpose 289
return codes 290

crtmqm (create queue manager)
command

examples 295
format 291
parameters 292
purpose 291
related commands 296
return codes 295

CURDEPTH, current queue depth 39
current queue depth, CURDEPTH 39

D
data conversion

built-in formats 69
ccsid.tbl, uses for 69
ConvEBCDICNewline attribute,

AllQueueManagers stanza 99
converting user-defined message

formats 70
data conversion (crtmqcvx)

command 289
data conversion for the WebSphere

MQ Explorer 79
default data conversion 69
EBCDIC NL character conversion to

ASCII 99
introduction 69
updating coded character sets 69

data types, detailed description
structure

MQACH 484
MQAXC 486
MQAXP 490
MQXEPO 501
MQZAC 457
MQZAD 459
MQZED 462
MQZFP 465

data types, detailed description
(continued)

structure (continued)
MQZIC 464

database managers
changing the configuration

information 178
connections to 161
coordination

application program crashes 159
configuring database product 161
configuring for 161
database crashes 158
installing database product 161
introduction 157
restrictions 159
switch function pointers 160
switch load files 160

database manager instances,
removing 178

dspmqtrn command, checking
outstanding units of work 176

in-doubt units of work 175
multiple databases, configuring 173
restrictions, database coordination

support 159
rsvmqtrn command, explicit

resynchronization of units of
work 177

security considerations 174
server crashes 158
switch load files, creating 162
syncpoint coordination 182

database products
configuring 161
installing 161

DB2
adding XAResourceManager

stanza 166
configuring 165
DB2 configuration parameters,

changing 166
environment variable settings 165
explicit resynchronization of units of

work 177
security considerations 174
switch load file, creating 165
switch load file, creating on

UNIX 166
switch load file, creating on Windows

systems 165
DCE Generic Security Service (GSS)

name service, installable service 12
DCOMCNFG.EXE, WebSphere MQ

Explorer 83
dead-letter header, MQDLH 190
dead-letter queue handler

ACTION keyword, rules table 194
action keywords, rules table 194
APPLIDAT keyword, rules table 193
APPLNAME keyword, rules

table 193
APPLTYPE keyword, rules table 193
control data 192
DESTQ keyword, rules table 193
DESTQM keyword, rules table 194
example of a rules table 199

dead-letter queue handler (continued)
FEEDBACK keyword, rules table 194
FORMAT keyword, rules table 194
FWDQ keyword, rules table 195
FWDQM keyword, rules table 195
HEADER keyword, rules table 195
INPUTQ, rules table 192
INPUTQM keyword, rules table 192
invoking the DLQ handler 190
MSGTYPE keyword, rules table 194
pattern-matching keywords, rules

table 193
patterns and actions (rules) 193
PERSIST keyword, rules table 194
processing all DLQ messages 198
processing rules, rules table 197
PUTAUT keyword, rules table 195
REASON keyword, rules table 194
REPLYQ keyword, rules table 194
REPLYQM keyword, rules table 194
RETRY keyword, rules table 195
RETRYINT, rules table 192
rule table conventions 196
rules table, description of 191
sample, amqsdlq 191
syntax rules, rules table 196
USERID keyword, rules table 194
WAIT keyword, rules table 192

dead-letter queues
defining a dead-letter queue 38
description of 7
DLQ handler 345
MQDLH, dead-letter header 190
specifying 22

debugging
command syntax errors 243
common command errors 243
common programming errors 242
further checks 244
preliminary checks 240

default configuration, Windows
systems 16

default data conversion 69
default transmission queues 67
DefaultQueueManager stanza,

mqs.ini 100
defaults

changing the default queue
manager 23

creating a default queue manager 23
objects 10, 523
queue manager 21
reverting to the original default queue

manager 24
transmission queue 22

defining
a model queue 45
an alias queue 43
an initiation queue 53
WebSphere MQ queues 5

deleting
a local queue 41
a queue manager using the dltmqm

command 296
queue managers,WebSphere MQ for

UNIX systems 540
Windows queue managers 539

572 WebSphere MQ: System Administration Guide

deleting (continued)
Windows queue managers, automatic

startup list 540
DESTQ keyword, rules table 193
DESTQM keyword, rules table 194
determining current queue depth 39
diagnostics

Java 269
directories

directory structure (UNIX) 531
directory structure, Windows

systems 529
display

current authorizations (dmpmqaut)
command 298

current authorizations (dspmqaut)
command 304

default object attributes 39
file system name (dspmqfls)

command 308
process definitions 54
queue manager attributes 36
queue managers (dspmq)

command 302
status of command server 63
status of command server (dspmqcsv)

command 308
WebSphere MQ formatted trace

(dspmqtrc) command 318
WebSphere MQ transactions

(dspmqtrn) command 319
display version information, dspmqver

command 320
distributed queuing, incorrect

output 246
dltmqm (delete queue manager)

command
examples 296
format 296
parameters 296
purpose 296
related commands 278, 288, 296
return codes 296

dmpmqaut (dump authority) command
purpose 298

dmpmqlog (dump log) command
format 301
parameters 301
purpose 301

domain controller
security 154

dspmq (display WebSphere MQ queue
managers) command

format 303
parameters 303
purpose 302
Queue Manager States 303
return codes 303

dspmqaut (display authority) command
dspmqaut command 307
examples 299, 307
format 304
parameters 304
purpose 304
related commands 307
results 305
return codes 307

dspmqcsv (display command server)
command

examples 308
format 308
parameters 308
purpose 308
related commands 308
return codes 308

dspmqfls (display WebSphere MQ files)
command

examples 310
format 309
parameters 309
purpose 308
return codes 310

dspmqrte
format 310
parameters 310

dspmqtrc (display WebSphere MQ
formatted trace) command

format 318
parameters 318
purpose 318
related commands 319

dspmqtrn (display WebSphere MQ
transactions) command

format 319
parameters 319
purpose 319
related commands 320
return codes 320

dspmqver
examples 321
format 320
parameters 320

dump
dumping log records (dmpmqlog

command) 236
dumping the contents of a recovery

log 236
formatted system log (dmpmqlog)

command 301
dynamic binding 395
dynamic definition of channels 62
dynamic queues

description of 3

E
EBCDIC NL character conversion to

ASCII 99
EffectiveUserID field

MQZAC structure 458
ending

a queue manager 25
interactive MQSC commands 32

endmqcsv (end command server)
command

examples 322
format 322
parameters 322
purpose 322
related commands 322
return codes 322

endmqdnm
format 323
parameters 323

endmqlsr (end listener) command
format 323
parameters 323
purpose 323
return codes 323

endmqm (end queue manager) command
examples 326
format 325
parameters 325
purpose 324
related commands 326
return codes 326

endmqtr (end WebSphere MQ trace)
command

examples 327
format of 326
parameters 327
purpose of 326
related commands 328
return codes 327
syntax of 327

enroll production license, setmqprd
command 362

EntityData parameter
check authority (extended) call 414
get authority (extended) call 432
get explicit authority (extended)

call 439
set authority (extended) call 453

EntityDataPtr field
MQZAD structure 461

EntityDomainPtr field
MQZED structure 463

EntityName parameter
check authority call 409
get authority call 429
get explicit authority call 435
set authority call 449

EntityNamePtr field
MQZED structure 463

EntityType field
MQZAD structure 461

EntityType parameter
check authority (extended) call 415
check authority call 410
get authority (extended) call 432
get authority call 429
get explicit authority (extended)

call 439
get explicit authority call 436
set authority (extended) call 453
set authority call 450

EntryPoint parameter
MQXEP call 500
MQZEP call 405

Environment field
MQAXC structure 487

environment variables
DB2INSTANCE 165
INFORMIXDIR 170
INFORMIXSERVER 170
MQS_TRACE_OPTIONS 263
MQSPREFIX 99
ONCONFIG 170
ORACLE_HOME, Oracle 167
ORACLE_SID, Oracle 167
SYBASE_OCS, Sybase 172

Index 573

environment variables (continued)
SYBASE, Sybase 172

error codes, ignoring under UNIX
systems 253

error codes, ignoring under Windows
systems 253

error logs
description of 251
errors occurring before log

established 252
log files 252

error messages, MQSC commands 31
escape PCFs 55
event queues

description of 7
examples

amqccert command 277
amqmdain command 283
amqtcert command 287
creating a transmission queue 67
crtmqcvx command 290
crtmqm command 295
dltmqm command 296
dmpmqaut command 299
dspmqaut command 307
dspmqcsv command 308
dspmqfls command 310
dspmqrte command 317
dspmqver command 321
endmqcsv command 322
endmqm command 326
endmqtrc command 327
mqftrcv command 331
mqftrcvc command 334
mqftsnd command 336
mqftsndc command 338
mqs.ini file, MQSeries for UNIX

systems 95
programming errors 242
qm.ini file, WebSphere MQ for UNIX

systems 98
rcdmqimg command 340
rcrmqobj command 342
runmqlsr command 350
runmqsc command 352
runmqtmc command 353
setmqaut command 359
setmqscp command 362, 363
strmqcsv command 365
strmqm command 367
strmqtrc command 372
trace data (AIX) 264

ExitChainAreaPtr field
MQAXP structure 496

ExitContext parameter
MQ_INIT_EXIT call 508

ExitData field
MQAXP structure 495

ExitId field
MQAXP structure 491

ExitInfoName field
MQACH structure 486
MQAXP structure 495

ExitPath stanza, qm.ini 117
ExitPDArea field

MQAXP structure 495
ExitProperties field 502

ExitProperties stanza, mqs.ini 101
ExitReason field

MQAXP structure 491
ExitReason parameter

MQXEP call 498
ExitResponse field

MQAXP structure 492
ExitResponse2 field

MQAXP structure 493
ExitUserArea field

MQAXP structure 494
extending queue manager facilities 11
EXTSHM, using 560

F
Feedback field

MQAXP structure 494
FEEDBACK keyword, rules table 194
feedback, MQSC commands 31
FFST (first-failure support technology)

UNIX systems 267
Windows NT 264

file names 17
file sizes, for logs 222
File Transfer Application 541
files

log control file 218
log files, in problem

determination 252
logs 218
names 17
queue manager configuration 96
sizes, for logs 222
understanding names 17
WebSphere MQ configuration 95
XA switch load files 183

Filter parameter
enumerate authority data call 425

FORMAT keyword, rules table 194
FreeParms parameter

free user call 428
function

MQZ_REFRESH_CACHE 447
Function field

MQAXP structure 496
Function parameter

MQXEP call 499
MQZEP call 405

FWDQ keyword, rules table 195
FWDQM keyword, rules table 195

G
generic profiles, OAM 133
global units of work

adding XAResourcemanager stanza to
qm.ini, Informix 171

adding XAResourcemanager stanza to
qm.ini, Oracle 168

adding XAResourceManager stanza,
DB2 166

definition of 13, 157
groups

creating 127
managing 127

groups (continued)
security 123

gsk7capicmd
commands 375
options 387
preparing 374

gsk7cmd
commands 375
options 387
preparing 374

guidelines for creating queue
managers 21

H
Hconfig field

MQAXP structure 496
Hconfig parameter

initialize authorization service
call 442

initialize name service call 469
MQXEP call 498
MQZEP call 405
terminate authorization service

call 455
terminate name service call 475

HEADER keyword, rules table 195
help with command syntax 276
heuristically completed transactions 342
HP-UX

MQAI support for 55
security 128
sybswit, creating the Sybase switch

load file 173
trace 256
trace data, sample 257

I
i5/OS

levels supported by the WebSphere
MQ Explorer 72

IBMMQSeries namespace, ADSI
support 56

IdentityContext parameter
authenticate user call 408

ignoring error codes under UNIX
systems 253

ignoring error codes under Windows
systems 253

indirect mode, runmqsc command 64
indoubt transactions

database managers 175
display WebSphere MQ transactions

(dspmqtrn) command 319
using the resolve WebSphere MQ

(rsvmqtrn) command 342
Informix

configuration 169
database, creation 170
environment variable settings,

checking 170
INFORMIXDIR, environment

variable 170
ONCONFIG, environment

variable 170

574 WebSphere MQ: System Administration Guide

Informix (continued)
switch load file, creating 170
switch load file, creating on

UNIX 171
switch load file, creating on Windows

systems 170
XAResourceManager stanza, adding

to qm.ini 171
initialization 394
initiation queues

defining 53
description of 6

input, standard 31
installable service

authorization service 398
component

authenticate user 406
check authority 409
check authority (extended) 414
copy all authority 419
delete authority 421
enumerate authority data 424
free user 427
get authority 428
get authority (extended) 432
get explicit authority 435
get explicit authority

(extended) 438
initialize authorization

service 441
initialize name service 468
inquire authorization service 443
insert name 471
lookup name 473
MQZ_DELETE_NAME 466
MQZEP 405
set authority 449
set authority (extended) 452
terminate authorization

service 455
terminate name service 475

Component data 393
component entry-points 393
components 392
configuring services 394
functions 392
initialization 394
multiple components 397
name service 402
name service interface 403
return information 393

installable services 447
authorization service 12
definition of 12
installable services, list of 12
interface to 404
name service 12
service component 12

installing
database products 161

IntAttrCount parameter
inquire authorization service call 445

IntAttrs parameter
inquire authorization service call 445

interprocess communication
resources 559

IPC resources
clearing WebSphere MQ shared

memory resources 559
EXTSHM 560
shared memory on AIX 560

issuing
MQSC commands remotely 63
MQSC commands using an ASCII

file 29
MQSC commands using runmqsc

command 29

J
Java diagnostics 269
Java tracing 269

L
LIKE attribute, DEFINE command 39
linear logging 219
Linux

security 131
trace data, sample 259

listener
end listener (endmqlsr)

command 323
starting 62
using the run listener (runmqlsr)

command 348
listener objects

description of 9
listeners

defining listeners for remote
administration 61

local administration
creating a queue manager 20
definition of 14
issuing MQSC commands using an

ASCII file 29
runmqsc command, to issue MQSC

commands 29
support for application programs 28
using the WebSphere MQ

Explorer 71
writing Eclipse plug-ins 85

local queues 38
changing queue attributes, commands

to use 40
clearing 40
copying a local queue definition 39
defining 38
defining application queues for

triggering 52
deleting 41
description of 8
monitoring performance of WebSphere

MQ for Windows queues 42
specific queues used by WebSphere

MQ 6
working with local queues 38

local unit of work
definition of 13, 156

Log stanza, qm.ini 108
LogDefaults stanza, mqs.ini 101

logging
calculating the size of logs 222
checkpoint records 220
checkpoints 219, 220
circular logging 219
contents of logs 217
linear logging 219
locations for log files 227
log file reuse 220
media recovery 228
parameters 22
types of 219
what happens when a disk fills

up? 224
logs

calculating the size of logs 222
checkpoints 219, 220
configuring 108
dumping log records (dmpmqlog

command) 236
dumping the contents of 236
error logs 251
errors occurring before error log

established 252
format of a log 218
log control file 218
log files, in problem

determination 252
Log stanza, qm.ini 108
logging parameters 22
managing 224, 225
media recovery, linear logs 228
oldest required for recovery and

restart 339
output from the dmpmqlog

command 237
overheads 222
parameters 22
persistent messages, effect upon log

sizes 223
primary log files 218
protecting 230
recreating objects (rcrmqobj)

command 340
reuse of 220
secondary log files 218
types of logging 219
types of logs 217
using logs for recovery 227
what happens when a disk fills

up? 224
LongMCAUserIdLength field

MQAXC structure 488
LongMCAUserIdPtr field

MQAXC structure 488
LongRemoteUserIdLength field

MQAXC structure 488
LongRemoteUserIdPtr field

MQAXC structure 489
LU62 stanza, qm.ini 115

M
managing objects for triggering 52
manual removal of a queue

manager 538

Index 575

manually stopping a queue
manager 537

maximum line length, MQSC
commands 33

MCA (message channel agent) 190
media images

automatic media recovery failure,
scenario 236

description of 228
oldest log required for recovery 339
record media image (rcdmqimg)

command 338
recording media images 228
recovering damaged objects during

start up 229
recovering media images 228

message channel agent (MCA) 190
message length, decreasing 40
message queuing 1
message-driven processing 1
messages

application data 2
containing unexpected

information 245
converting user-defined message

formats 70
definition of 2
message descriptor 2
message length, effects on

performance 250
message lengths 2
message-driven processing 1
not appearing on queues 244
operator messages 254
persistent messages, effect on

performance 250
persistent messages, when

determining log sizes 223
queuing 1
retrieval algorithms 3
retrieving messages from queues 3
sending and receiving 2
undelivered 254
variable length 250

migrate certificates, amqtcert
command 284

migrating authorization data from
MQSeries Version 5.1 399

model queues
creating a model queue 3
DEFINE QMODEL command 45
defining 45
working with 45

monitoring
performance of WebSphere MQ for

Windows queues 42
start client trigger monitor

(runmqtmc) command 352
starting a trigger monitor (runmqtrm

command) 353
MQ_BACK_EXIT call 503
MQ_BEGIN_EXIT call 504
MQ_CALLBACK_EXIT call 505
MQ_CLOSE_EXIT call 506
MQ_CMIT_EXIT call 507
MQ_CONNX_EXIT call 508
MQ_DISC_EXIT call 509

MQ_GET_EXIT call 510
MQ_INIT_EXIT call 512
MQ_INQ_EXIT call 513
MQ_OPEN_EXIT call 514
MQ_PUT_EXIT call 515
MQ_PUT1_EXIT call 516
MQ_SET_EXIT call 518
MQ_SUB_EXIT call 519
MQ_SUBRQ_EXIT call 520
MQ_TERM_EXIT call 521
MQACH structure 484
MQACH_* values 484
MQAI (WebSphere MQ administrative

interface)
description of 55

MQAXC structure 486
MQAXC_* values 486
MQAXP structure 490
MQAXP_* values 490
MQDLH, dead-letter header 190
mqftapp

format 328
related commands 328

mqftapp (start WebSphere MQfile
transfer) command

purpose 328
mqftrcv

examples 331
format 329
parameters 329
related commands 331
return codes 329

mqftrcvc
examples 334
format 331
parameters 331
related commands 334
return codes 331

mqftsnd
examples 336
format 334
parameters 334
related commands 336
return codes 334

mqftsndc
examples 338
format 336
parameters 336
related commands 338
return codes 336

MQI (message-queuing interface)
authorization specification tables 140
authorizations 141
definition of 1
local administration support 28
queue manager calls 8
receiving messages 2
sending messages 2

MQI authorizations 141
mqm group 121
MQOPEN authorizations 141
MQOT_* values 461
MQPUT and MQPUT1, performance

considerations 251
MQPUT authorizations 141
MQS_TRACE_OPTIONS, environment

variable 263

mqs.ini configuration file
AllQueueManagers stanza 99
ApiExitCommon stanza 105
ApiExitTemplate 105
DefaultQueueManager stanza 100
definition of 94
editing 94
ExitProperties stanza 101
LogDefaults stanza 101
path to 35
priorities 95
QueueManager stanza 105

MQSID_* values 488
MQSPREFIX, environment variable 99
MQXACT_* values 494
MQXCC_* values 492
MQXEP call 498
MQXEPO structure 501
MQXPDA_* values 495
MQXR_* values 491
MQXR2_* values 493
MQXUA_* values 494
MQZ_AUTHENTICATE_USER call 406
MQZ_CHECK_AUTHORITY call 409
MQZ_CHECK_AUTHORITY_2 call 414
MQZ_COPY_ALL_AUTHORITY

call 419
MQZ_DELETE_AUTHORITY call 421
MQZ_DELETE_NAME call 466
MQZ_ENUMERATE_AUTHORITY

_DATA call 424
MQZ_FREE_USER call 427
MQZ_GET_AUTHORITY call 428
MQZ_GET_AUTHORITY_2 call 432
MQZ_GET_EXPLICIT_AUTHORITY

call 435
MQZ_GET_EXPLICIT_AUTHORITY_2

call 438
MQZ_INIT_AUTHORITY call 441
MQZ_INIT_NAME call 468
MQZ_INQUIRE call 443
MQZ_INSERT_NAME call 471
MQZ_LOOKUP_NAME call 473
MQZ_REFRESH_CACHE function 447
MQZ_SET_AUTHORITY call 449
MQZ_SET_AUTHORITY_2 call 452
MQZ_TERM_AUTHORITY call 455
MQZ_TERM_NAME call 475
MQZAC structure 457
MQZAC_* values 457
MQZAD structure 459
MQZAD_* values 460
MQZAET_* values 462
MQZAO_* values 461
MQZAO, constants and authority 141
MQZED structure 462
MQZED_* values 463
MQZEP call 405
MQZFP structure 465
MQZFP_* values 466
MQZIC structure 464
MQZIC_* values 464
MQZSE_* values 425
MSCS

interaction with MSDTC 214
PostOnlineCommand 213
PreOfflineCommand 213

576 WebSphere MQ: System Administration Guide

MSCS (Microsoft Cluster Server)
introduction 16

MSDTC
interaction with MSCS 214

MsgId, performance considerations when
using 250

MSGTYPE keyword, rules table 194
MTS (Microsoft Transaction Server)

introduction 189
services 189

multiple service components 397
MUSR_MQADMIN 84

changing the password 83

N
name service 12, 391

interface (NSI) 402
name transformations 17
namelists

description of 9
naming conventions

national language support 273
object names 4
queue manager name

transformation 17
national language support

data conversion 69
EBCDIC NL character conversion to

ASCII 99
naming conventions for 273
operator messages 254

nested groups 155
NETBIOS stanza, qm.ini 115
NextChainAreaPtr field

MQACH structure 486
NL character, EBCDIC conversion to

ASCII 99
Nonpersistent messages, tuning in

AIX 249
NSI (WebSphere MQ name service

interface) 402

O
OAM 132

migrating authorization data from
MQSeries Version 5.1 399

refreshing after changing a user’s
authorization 399

OAM (Object Authority Manager)
authorization service, installable

service 12
overview 12
using the grant or revoke authority

(setmqaut) command 354
OAM generic profiles 133
object authority manager 398
object authority manager (OAM) 132
object name transformation 18
ObjectName parameter

check authority (extended) call 415
check authority call 410
copy all authority call 419
delete authority call 422
get authority (extended) call 433

ObjectName parameter (continued)
get authority call 430
get explicit authority (extended)

call 439
get explicit authority call 436
set authority (extended) call 453
set authority call 450

objects
access to 119
administration of 14
attributes of 4
automation of administration

tasks 15
default configuration, Windows

systems 16
default object attributes,

displaying 39
description of 8, 9, 58
display file system name (dspmqfls)

command 308
local queues 8
managing objects for triggering 52
media images 228
multiple queues 8
name transformation 18
naming conventions 4, 273
object name transformation 18
process definitions 8
queue manager objects used by MQI

calls 8
queue managers 8
recovering damaged objects during

start up 229
recovering from media images 228
recreate (rcrmqobj) command 340
remote administration 57
remote queue objects 68
remote queues 8
system default objects 10
types of 3
using MQSC commands to

administer 14
ObjectType field

MQZAD structure 460
ObjectType parameter

check authority (extended) call 415
check authority call 410
copy all authority call 420
delete authority call 422
get authority (extended) call 433
get authority call 430
get explicit authority (extended)

call 439
get explicit authority call 436
set authority (extended) call 453
set authority call 450

operator
commands, no response from 247
messages 254

options
gsk7cmd 387
runmqckm 387

Options field 502
Options parameter

initialize authorization service
call 442

initialize name service call 469

Options parameter (continued)
terminate authorization service

call 455
terminate name service call 475

Oracle
configuration parameters,

changing 169
configuring 167
environment variable settings,

checking 167
ORACLE_HOME, environment

variable 167
ORACLE_SID, environment

variable 167
security considerations 174
switch load file, creating 168
switch load file, creating on

UNIX 168
switch load file, creating on Windows

systems 168
XAResourceManager stanza, adding

to qm.ini 168
output, standard 31
overheads, for logs 222

P
pAction parameter

MQ_SUBRQ_EXIT call 521
pBufferLength parameter

MQ_GET_EXIT call 511
MQ_PUT_EXIT call 516
MQ_PUT1_EXIT call 517

PCF (programmable command format)
Active Directory Service Interfaces

(ADSI) 56
administration tasks 15
attributes in MQSC commands and

PCF 55
authorization specification tables 140
automating administrative tasks using

PCF 54
escape PCFs 55
MQAI, using to simplify use of 56
object attribute names 4

pCharAttrLength parameter
MQ_INQ_EXIT call 513
MQ_SET_EXIT call 519

pCompCode parameter
MQ_BACK_EXIT call 503
MQ_BEGIN_EXIT call 504
MQ_CLOSE_EXIT call 506
MQ_CONNX_EXIT call 508
MQ_DISC_EXIT call 510
MQ_INIT_EXIT call 512
MQ_INQ_EXIT call 514
MQ_OPEN_EXIT call 515
MQ_PUT_EXIT call 516
MQ_PUT1_EXIT call 517
MQ_SET_EXIT call 519
MQ_SUB_EXIT call 520
MQ_SUBRQ_EXIT call 521
MQ_TERM_EXIT call 522
MQXEP call 500

performance
advantages of using MQPUT1 251
application design, impact on 250

Index 577

performance (continued)
CorrelId, effect on 250
message length, effects on 250
message persistence, effect on 250
MsgId, effect on 250
nonpersistent messages in AIX 249
Performance Monitor 42
syncpoints, effects on 251
threads, effect on 251
trace 256, 262
tracing Windows, performance

considerations 255
Performance Monitor 42
permanent (predefined) queues 3
PERSIST keyword, rules table 194
persistent messages, effect on

performance 250
pExitContext parameter

MQ_GET_EXIT call 510
MQ_INIT_EXIT call 503, 504, 505,

506, 507, 510, 512, 513
MQ_OPEN_EXIT call 514
MQ_PUT_EXIT call 515
MQ_PUT1_EXIT call 517
MQ_SET_EXIT call 518
MQ_SUB_EXIT call 519
MQ_SUBRQ_EXIT call 520
MQ_TERM_EXIT call 522

pExitParms parameter
MQ_GET_EXIT call 510
MQ_INIT_EXIT call 503, 504, 505,

506, 507, 508, 509, 512, 513
MQ_OPEN_EXIT call 514
MQ_PUT_EXIT call 515
MQ_PUT1_EXIT call 517
MQ_SET_EXIT call 518
MQ_SUB_EXIT call 519
MQ_SUBRQ_EXIT call 520
MQ_TERM_EXIT call 521

pHconn parameter
MQ_BACK_EXIT call 503
MQ_BEGIN_EXIT call 504
MQ_CLOSE_EXIT call 505, 506
MQ_CMIT_EXIT call 507
MQ_GET_EXIT call 510
MQ_INQ_EXIT call 513
MQ_OPEN_EXIT call 514
MQ_PUT_EXIT call 516
MQ_PUT1_EXIT call 517
MQ_SET_EXIT call 518
MQ_SUB_EXIT call 520
MQ_SUBRQ_EXIT call 521

pHobj parameter
MQ_GET_EXIT call 510
MQ_INQ_EXIT call 513
MQ_PUT_EXIT call 516
MQ_SET_EXIT call 518

pIntAttrCount parameter
MQ_INQ_EXIT call 513
MQ_SET_EXIT call 518

PKCS #11
devices, gsk7cmd commands for 375

plug-ins
enabling and disabling 88
writing 86

pOptions parameter
MQ_CLOSE_EXIT call 506

pOptions parameter (continued)
MQ_OPEN_EXIT call 515

PostOnlineCommand 213
ppBeginOptions parameter 504
ppBuffer parameter

MQ_GET_EXIT call 505, 511
MQ_PUT_EXIT call 516
MQ_PUT1_EXIT call 517

ppCharAttrs parameter
MQ_INQ_EXIT call 514
MQ_SET_EXIT call 519

ppConnectOpts parameter 508
ppContext parameter

MQ_CALLBACK_EXIT call 505
ppDataLength parameter

MQ_GET_EXIT call 511
ppGetMsgOpts parameter 505, 511
ppHconn parameter

MQ_CONNX_EXIT call 508
MQ_DISC_EXIT call 510

ppHobj parameter
MQ_CLOSE_EXIT call 505, 506
MQ_OPEN_EXIT call 515
MQ_SUB_EXIT call 520

ppHsub parameter
MQ_SUB_EXIT call 520

ppHSub parameter
MQ_SUBRQ_EXIT call 521

ppIntAttrs parameter
MQ_INQ_EXIT call 513
MQ_SET_EXIT call 518

ppMsgDesc parameter
MQ_GET_EXIT call 505, 511
MQ_PUT_EXIT call 516
MQ_PUT1_EXIT call 517

ppObjDesc parameter
MQ_OPEN_EXIT call 515
MQ_PUT1_EXIT call 517

ppPutMsgOpts parameter
MQ_PUT_EXIT call 516
MQ_PUT1_EXIT call 517

ppSelectors parameter
MQ_INQ_EXIT call 513
MQ_SET_EXIT call 518

ppSubDesc parameter
MQ_SUB_EXIT call 520

ppSubRqOpts parameter
MQ_SUBRQ_EXIT call 521

pQMgrName parameter
MQ_CONNX_EXIT call 508

pReason parameter
MQ_BACK_EXIT call 503
MQ_BEGIN_EXIT call 504
MQ_CLOSE_EXIT call 507
MQ_CMIT_EXIT call 507
MQ_CONNX_EXIT call 508
MQ_DISC_EXIT call 510
MQ_GET_EXIT call 511
MQ_INIT_EXIT call 512
MQ_INQ_EXIT call 514
MQ_OPEN_EXIT call 515
MQ_PUT_EXIT call 516
MQ_PUT1_EXIT call 517
MQ_SET_EXIT call 519
MQ_SUB_EXIT call 520
MQ_SUBRQ_EXIT call 521
MQ_TERM_EXIT call 522

pReason parameter (continued)
MQXEP call 500

predefined (permanent) queues 3
preemptive shutdown of a queue

manager 26
PreOfflineCommand 213
preparing

gsk7capicmd 374
gsk7cmd 374

primary initialization 394
primary termination 394
principals 123
problem determination

application design
considerations 250

applications or systems running
slowly 249

clients 269
command errors 243
common programming errors 242
configuration files 254
has the application run successfully

before? 241
incorrect output, definition of 244
incorrect output, distributed

queuing 246
intermittent problems 243
introduction 240
log files 252
no response from operator

commands 247
preliminary checks 240
problems affecting parts of a

network 243
problems caused by service

updates 243
problems that occur at specific times

in the day 243
problems with shutdown 26
questions to ask 240
queue failures, problems caused

by 248
queue manager, problems creating or

starting 248
remote queues, problems

affecting 248
reproducing the problem 241
return codes 241, 242
searching for messages, performance

effects 250
things to check first 240
trace 256, 262
undelivered messages 254
WebSphere MQ error messages 240
what is different since the last

successful run? 241
Windows Application Event Log 241

process definitions
creating 53
description of 8
displaying 54
process commands 556

ProcessId field
MQAXC structure 489
MQZAC structure 458

processing, message-driven 1

578 WebSphere MQ: System Administration Guide

ProfileName field
MQZAD structure 460

profiles, OAM generic 133
programming errors, examples of 242

further checks 244, 249
secondary checks 244, 249

pSelectorCount parameter
MQ_INQ_EXIT call 513
MQ_SET_EXIT call 518

PUTAUT keyword, rules table 195

Q
qm.ini configuration file

ApiExitLocal stanza 118
CHANNELS stanza 112
definition of 96
editing 94
ExitPath stanza 117
Log stanza 108
LU62 stanza 115
NETBIOS stanza 115
priorities 95
RestrictedMode stanza 111
Service stanza 106
ServiceComponent stanza 108
SPX stanza 115
TCP stanza 115
XAResourceManager stanza 111

QMgrName field
MQAXP structure 495

QMgrName parameter
authenticate user call 407
check authority (extended) call 414
check authority call 409
copy all authority call 419
delete authority call 422
enumerate authority data call 424
free user call 427
get authority (extended) call 432
get authority call 429
get explicit authority (extended)

call 439
get explicit authority call 435
initialize authorization service

call 442
initialize name service call 469
inquire authorization service call 444
insert name call 471
lookup name call 473
MQZ_DELETE_NAME call 467
refresh all authorizations call 448
set authority (extended) call 452
set authority call 449
terminate authorization service

call 456
terminate name service call 476

QName parameter
insert name call 471
lookup name call 473
MQZ_DELETE_NAME call 467

queue browser, sample 41
queue depth, current 39
queue manager

ini file
authorization service 399

queue manager ini file 399

queue managers
accidental deletion of default 293
activating a backup queue

manager 233
attributes, changing 37
attributes, displaying 36
backing up queue manager data 230
CCSID, changing 70
changing the CCSID 70
changing the default queue

manager 23
checking certificates chains (amqccert)

command 277
command server 62
configuration files, backing up 24
controlled shutdown 25
creating a default queue manager 23
creating a queue manager 20, 291
default configuration, Windows

systems 16
default for each node 21
deleting a queue manager (dltmqm)

command 296
description of 8
display queue managers (dspmq)

command 302
dumping formatted system log

(dmpmqlog) command 301
dumping the contents of a recovery

log 236
end queue manager (endmqm)

command 324
extending queue manager

facilities 11
guidelines for creating a queue

manager 21
immediate shutdown 26
limiting the numbers of 21
linear logging 219
log maintenance, recovery 217
name transformation 17
objects used in MQI calls 8
oldest log required to restart 339
preemptive shutdown 26
preparing for remote

administration 59
qm.ini files 96
queue manager aliases 68
queue manager commands 553
quiesced shutdown 26
recording media images 228
remote administration 57
removing a queue manager

manually 538
restoring queue manager data 230,

231
reverting to the original default 24
showing and hiding, using the

WebSphere MQ Explorer 79
specifying unique names for 21
starting a queue manager 25
starting a queue manager

automatically 25
starting a queue manager, strmqm

command 365
stopping a queue manager 25

queue managers (continued)
stopping a queue manager

manually 537
transferring certificates (amqtcert)

command 284
WebSphere MQ services control

(amqmdain) command 278
z/OS queue manager 64

QueueManager stanza, mqs.ini 105
queues

alias 43
application queues 52
attributes 6
browsing 41
changing queue attributes 40
clearing local queues 40
current queue depth, determining 39
dead-letter, defining 38
defaults, transmission queues 22
defining WebSphere MQ queues 5
definition of 2
deleting a local queue 41
distributed, incorrect output

from 246
dynamic (temporary) queues 3
extending queue manager

facilities 11
for MQSeries applications 28
initiation queues 53
local definition of a remote queue 65
local queues 8
local, working with 38
model queues 3, 45
multiple queues 8
predefined (permanent) queues 3
preparing transmission queues for

remote administration 60
queue commands 556
queue manager aliases 68
queue managers, description of 8
remote queue objects 68
reply-to queues 68
retrieving messages from 3
specific local queues used by

WebSphere MQ 6
specifying dead-letter queues 22
specifying undelivered-message 22

quiesced shutdown of a queue
manager 26

preemptive shutdown 26

R
rcdmqimg (record media image)

command
examples 340
format 339
parameters 339
purpose 338
related commands 340
return codes 340

rcrmqobj (recreate object) command
examples 342
format 340
parameters 341
purpose 340
related commands 342

Index 579

rcrmqobj (recreate object) command
(continued)

return codes 342
REASON keyword, rules table 194
Reason parameter

authenticate user call 408
check authority (extended) call 418
check authority call 413
copy all authority call 421
delete authority call 423
enumerate authority data call 426
free user call 428
get authority (extended) call 434
get authority call 431
get explicit authority (extended)

call 441
get explicit authority call 437
initialize authorization service

call 443
initialize name service call 470
inquire authorization service call 446
insert name call 472
lookup name call 474
MQZ_DELETE_NAME call 468
MQZEP call 406
set authority (extended) call 454
set authority call 451
terminate authorization service

call 456
terminate name service call 476

receiver channel, automatic definition
of 62

receiving a file 541
recovery

activating a backup queue
manager 233

automatic media recovery failure,
scenario 236

backing up queue manager data 230
backing up WebSphere MQ 231
checkpoints, recovery logs 220
disk drive failure, scenario 234
making sure messages are not lost

using logs 217
media images, recovering 228
recovering a damaged queue manager

object, scenario 235
recovering a damaged single object,

scenario 236
recovering damaged objects at other

times 229
recovering damaged objects during

start up 229
recovering from problems 227
restoring queue manager data 231
scenarios 234
using the log for recovery 227

redirecting input and output, MQSC
commands 32, 35

RefObjectName parameter
copy all authority call 419

refreshing the OAM after changing a
user’s authorization 399

Register entry point options 501
remote administration

administering a remote queue
manager from a local one 59

remote administration (continued)
command server 62
defining channels, listeners, and

transmission queues 61
definition of remote

administration 14
initial problems 64
of objects 57
preparing channels for 60
preparing queue managers for 59
preparing transmission queues for 60
security, connecting remote queue

managers, the WebSphere MQ
Explorer 76

using the WebSphere MQ
Explorer 71

writing Eclipse plug-ins 85
remote issuing of MQSC commands 63
remote queue objects 68
remote queues

as reply-to queue aliases 68
defining remote queues 65
recommendations for remote

queuing 64
remote queuing 57
removing a queue manager

manually 538
reply-to queue aliases 68
reply-to queues

description of 7
reply-to queue aliases 68

REPLYQ keyword, rules table 194
REPLYQM keyword, rules table 194
Reserved field

MQZFP structure 466
ResolvedQMgrName parameter

insert name call 471
lookup name call 473

resources
updating under syncpoint control 13

resources, IPC 559
restarting a queue manager 27

oldest logs required 339
restoring queue manager data 230
RestrictedMode stanza, qm.ini 111
restrictions

access to MQM objects 119
database coordination support 159
on object names 273

retrieval algorithms for messages 3
RETRY keyword, rules table 195
RETRYINT keyword, rules tables 192
return codes

amqccert command 278
amqmdain command 283
amqtcert command 287
crtmqcvx command 290
crtmqm command 295
dltmqm command 296
dspmq command 303
dspmqcsv command 308
dspmqfls command 310
dspmqrte command 317
dspmqtrn command 320
dspmqver command 321
endmqcsv command 322
endmqlsr command 323

return codes (continued)
endmqm command 326
endmqtrc command 327
mqftrcv command 329
mqftrcvc command 331
mqftsnd command 334
mqftsndc command 336
problem determination 242
rcdmqimg command 340
rcrmqobj command 342
rsvmqtrn command 343
runmqchi command 344
runmqchl command 345
runmqdnm command 323, 346
runmqlsr command 350
runmqsc command 352
runmqtmc command 353
runmqtrm command 354
setmqaut command 359
strmqcsv command 365
strmqm command 367
strmqtrc command 372

Rich Client Platform mode, starting the
WebSphere MQ Explorer in 80

rsvmqtrn (resolve WebSphere MQ
transactions) command

format 342
parameters 342
purpose 342
related commands 343
return codes 343

rules table (DLQ handler)
ACTION keyword 194
action keywords 194
APPLIDAT keyword 193
APPLNAME keyword 193
APPLTYPE keyword 193
control-data entry 192
conventions 196
description of 191
DESTQ keyword 193
DESTQM keyword 194
example of a rules table 199
FEEDBACK keyword 194
FORMAT keyword 194
FWDQ keyword 195
FWDQM keyword 195
HEADER keyword 195
INPUTQ keyword 192
INPUTQM keyword 192
MSGTYPE keyword 194
pattern-matching keywords 193
patterns and actions 193
PERSIST keyword 194
processing rules 197
PUTAUT keyword 195
REASON keyword 194
REPLYQ keyword 194
REPLYQM keyword 194
RETRY keyword 195
RETRYINT keyword 192
syntax rules 196
USERID keyword 194
WAIT keyword 192

runmqchi (run channel initiator)
command

format 344

580 WebSphere MQ: System Administration Guide

runmqchi (run channel initiator)
command (continued)

parameters 344
purpose 343
return codes 344

runmqchl (run channel) command
format 344
parameters 344
purpose 344
return codes 345

runmqckm
commands 375
options 387

runmqdlq (run DLQ handler) command
format 345
parameters 345
purpose 345
run DLQ handler (runmqdlq)

command 190
usage 345

runmqdnm
format 346
parameters 346
return codes 323, 346

runmqlsr (run listener) command
example 350
format 348
parameters 349
purpose 348
return codes 350

runmqsc (run WebSphere MQ
commands) command

ending 32
examples 352
feedback 31
format 351
indirect mode 64
parameters 351
problems, resolving 35
purpose 350
redirecting input and output 32, 35
return codes 352
usage 351
using 32, 35
using interactively 31
verifying 34

runmqtmc (start client trigger monitor)
command

examples 353
format 353
parameters 353
purpose 352
return codes 353

runmqtrm (start trigger monitor)
command

format 353
parameters 353
purpose 353
return codes 354

S
samples

trace data (AIX) 260
trace data (HP-UX) 257
trace data (Linux) 259
trace data (Solaris) 258

samples (continued)
Windows trace data, sample 256

secondary initialization 394
secondary termination 394
secure sockets layer (SSL)

channel parameters 140
MQSC commands 139
overview 13
protecting channels 139
queue manager parameters 139

security
access control 122, 132
access settings 134, 136
administration authority 120
AIX 129
alternate-user authority 125
authority, alternate-user 125
authority, context 125
authorizations to use the WebSphere

MQ Explorer 75
channel exits 139
channel security 13
channels 137
checks 121
checks, preventing 137
connecting to remote queue managers,

the WebSphere MQ Explorer 76
considerations for transactional

support 174
context authority 125
dmpmqaut command 134
domain controller 154
dspmqaut command 136
groups 123, 127
HP-UX 128
identifiers 124
Linux 131
MQI authorizations 141
mqm group 121
name service security, overview 13
nested groups 155
OAM 12, 132
object authority manager (OAM) 12,

132
principals 123
protecting log files 230
restoring queue manager data 230
security for the WebSphere MQ

Explorer 75, 81
SecurityPolicy attribute, Service

stanza 106
setmqaut command 132
Solaris 130
SSL 13
template files 155
transmission queues 138
user ID 123
using the grant or revoke authority

(setmqaut) command 354
WebSphere MQ objects 121
WebSphere MQ Services 155
Windows 153
Windows 2003 127
Windows systems 124
Windows XP 127

security enabling interface (SEI) 398

security exits
WebSphere MQ Explorer 76

SecurityId field
MQAXC structure 488
MQZED structure 463

SecurityParms parameter
authenticate user call 407

SEI (WebSphere MQ security enabling
interface) 398

SelectorCount parameter
inquire authorization service call 444

SelectorReturned parameter
inquire authorization service call 445

Selectors parameter
inquire authorization service call 444

sending a file 541
server-connection channel, automatic

definition of 62
servers 10
service component 12

authorization 398
creating your own 396
multiple 397
stanza 395

service objects
description of 10

service stanza 394
Service stanza, qm.ini 106
ServiceComponent stanza, qm.ini 108
services 46
Services snap-in

WebSphere MQ services control
(amqmdain) command 278

Set WebSphere MQ CRL definitions 361
Set WebSphere MQ Service Connection

Points 362
setmqaut (grant or revoke authority)

command 354
examples 359
parameters 357
return codes 359
usage 356

setmqcrl (set CRL server definitions)
command

purpose 361
setmqprd

format 362
parameters 362

setmqprd (enroll production license)
command

purpose 362
setmqscp (set service connection points)

command
examples 362, 363
format 361, 363
purpose 362

setmquat (set/reset authority) command
examples 317
parameters 311
purpose 310
return codes 317

shared memory on AIX 560
shared memory resources, clearing

WebSphere MQ 559
shell commands, WebSphere MQ for

UNIX systems 20
shutting down a queue manager 25

Index 581

shutting down a queue manager
(continued)

a queue manager, quiesced 26
controlled 25
immediate 26
preemptive 26

SIDs (security identifiers) 124
Solaris

MQAI support for 55
security 130
sybswit, creating the Sybase switch

load file 173
trace 256
trace data, sample 258

specifying coded character sets 69
SPX stanza, qm.ini 115
SSL

amqccert command 277
amqtcert command 284

stanza
authorization service, UNIX

systems 400
authorization service, Windows 401

stanzas
AllQueueManagers, mqs.ini 99
ApiExitCommon, mqs.ini 105
ApiExitLocal, qm.ini 118
ApiExitTemplate, mqs.ini 105
CHANNELS, qm.ini 112
CICS XAD resource definition

stanza 188
DefaultQueueManager, mqs.ini 100
ExitPath, qm.ini 117
ExitProperties, mqs.ini 101
Log, qm.ini 108
LogDefaults, mqs.ini 101
LU62, qm.ini 115
NETBIOS, qm.ini 115
QueueManager, mqs.ini 105
RestrictedMode stanza, qm.ini 111
Service, qm.ini 106
ServiceComponent, qm.ini 108
SPX, qm.ini 115
TCP, qm.ini 115
XAResourceManager, qm.ini 111

StartEnumeration parameter
enumerate authority data call 425

starting
a channel 62
a command server 63
a listener 62
a queue manager 25
a queue manager automatically 25

stdin, on runmqsc 32
stdout, on runmqsc 32
stopping

a queue manager manually 537
command server 63

strmqcfg
format 364

strmqcsv (start command server)
command

examples 365
format 364
parameters 364
purpose 364
related commands 365

strmqcsv (start command server)
command (continued)

return codes 365
strmqm (start queue manager) command

examples 367
format 365
parameters 365
purpose 320, 365
related commands 367
return codes 321, 367

strmqm control command 27
strmqtrc (start WebSphere MQ trace)

command
examples 372
format 368
parameters 369
purpose 367
related commands 373
return codes 372
usage 368

StrucId field
MQACH structure 484
MQAXC structure 486
MQAXP structure 490
MQXEPO structure 502
MQZAC structure 457
MQZAD structure 460
MQZED structure 463
MQZFP structure 466
MQZIC structure 464

StrucLength field
MQACH structure 485

switch load files
introduction 160

switch load files, creating 162
Sybase

configuring 171
environment variable settings,

checking 172
security considerations 174
switch load file, creating 172
Sybase XA support, enabling 172
SYBASE_OCS, environment

variable 172
SYBASE, environment variable 172
sybswit, creating the switch load file

on UNIX 173
sybswit, creating the switch load file

on Windows systems 172
XAResourceManager stanza,

adding 173
syncpoint coordination 182

WebSphere MQ 183
syncpoint, performance

considerations 251
syntax, help with 276
system default objects 10
system objects 523

T
task termination exit, CICS 188
TCP stanza, qm.ini 115
template files, security 155
temporary (dynamic) queues 3
termination 394

ThreadId field
MQAXC structure 489

ThreadID field
MQZAC structure 458

time-independent applications 1
timed out responses from MQSC

commands 64
trace

AIX 256
data sample (AIX) 260, 264
data sample (HP-UX) 257
data sample (Linux) 259
data sample (Solaris) 258
data sample (Windows) 256
display WebSphere MQ formatted

trace (dspmqtrc) command 318
HP-UX 256
performance considerations 256, 262
Solaris 256
starting WebSphere MQ trace

(strmqtrc command) 367
Windows, performance

considerations 255
tracing

Java 269
transactional support

syncpoint coordination 182
transactional support 156
updating under syncpoint control 13
WebSphere MQ XA switch

structure 183
transactions

display WebSphere MQ transactions
(dspmqtrn) command 319

security considerations 174
using the resolve WebSphere MQ

(rsvmqtrn command) 342
transfer certificates, amqtcert

command 284
transferring a file as an MQ

message 541
transmission queues

cluster transmission queues 7
creating 67
default 22
default transmission queues 67
defining transmission queues remote

administration 61
description of 6
preparing transmission queues for

remote administration 60
security 138

triggering
defining an application queue for

triggering 52
managing objects for triggering 52
message-driven processing 1
start client trigger monitor

(runmqtmc) command 352
start trigger monitor (runmqtrm)

command 353
Tuning nonpersistent messages in

AIX 249
Tuxedo

WebSphere MQ and XA support 187
two-phase commit process, CICS 185
types of logging 219

582 WebSphere MQ: System Administration Guide

U
units of work

explicit resynchronization of
(rsvmqtrn command) 177

global 157
introduction 156
local 156
mixed outcomes 177

UNIX
IPC resources 559
process priority 561

UNIX operating system
DB2 switch load file, creating 166
directory structure 531
example mqs.ini file 95
example qm.ini file 98
Informix switch load file,

creating 171
issuing control commands 20
levels supported by the WebSphere

MQ Explorer 72
object authority manager (OAM) 12
Oracle switch load file, creating 168
queue managers, deleting 540
switch load structures, library

names 183
sybswit, creating the Sybase switch

load file 173
updating coded character sets 69
user exits

channel exits 11
CICS task termination exit,

UE014015 188
data conversion exits 11
enabling CICS user exits 188

user ID 123
user-defined message formats 70
UserId field

MQAXC structure 487
UserID field

MQZAC structure 458
USERID keyword, rules table 194
UserIdentifier field

MQZIC structure 465
using EXTSHM 560

V
verifying MQSC commands 34
Version field

MQACH structure 485
MQAXC structure 487
MQAXP structure 490
MQXEPO structure 502
MQZAC structure 457
MQZAD structure 460
MQZED structure 463
MQZFP structure 466
MQZIC structure 464

Version parameter
initialize authorization service

call 442
initialize name service call 470

W
WAIT keyword, rules table 192
WebSphere MQ 320

attributes of MQSC commands 55
commands 29
issuing MQSC commands using an

ASCII file 29
name service interface (NSI) 402
runmqsc command, to issue MQSC

commands 29
security enabling interface (SEI) 398

WebSphere MQ alert monitor, using 80
WebSphere MQ command files

input 33
output reports 33
running 34

WebSphere MQ commands
attributes of 55
authorization 144
command files, input 33
command files, output reports 33
command files, running 34
ending interactive input 32
escape PCFs 55
issuing interactively 31
issuing MQSC commands

remotely 63
maximum line length 33
object attribute names 4
overview 14, 29
problems using MQSC commands

remotely 64
problems, list 35
problems, resolving 35
redirecting input and output 32, 35
runmqsc control command,

modes 15, 30
syntax errors 31
timed out command responses 64
using 32, 35
verifying 34

WebSphere MQ Explorer
alert monitor application 80
AMQ7604 84
AMQMSRVN

changing the password 83
authorizations to use 75
cluster membership 74
connecting to remote queue managers,

security 76
controlling access 82
data conversion 79
DCOMCNFG.EXE, using 83
description of 16
introduction 15
MUSR_MQADMIN

changing the password 83
performance considerations 73
Prepare WebSphere MQ Wizard 81
prerequisite software 73
remote queue manager, using the

WebSphere MQ Explorer 76
required resource definitions 74
security exits, using 76
security implications 75, 81
showing and hiding queue managers

and clusters 79

WebSphere MQ Explorer (continued)
SSL security, the WebSphere MQ

Explorer 76
SSL security, using 76
SSL, connect using 76
starting in RCP 80
user rights for AMQMSRVN 82
using 80

WebSphere MQ for AIX
amqzsc 185
amqzsc21 185
amqzsca 185
XA switch load module 185

WebSphere MQ for HP-UX
amqzsc 185
XA switch load module 185

WebSphere MQ queues, defining 5
WebSphere MQ Services

security 155
WebSphere MQ Services snap-in

AMQMSRVN
changing the password 83

controlling access 82
DCOMCNFG.EXE, using 83
MUSR_MQADMIN

changing the password 83
security implications 81
WebSphere MQ services control

(amqmdain) command 278
WebSphere MQ Taskbar application

using 80
Windows 2003

security 127
Windows operating system

adding a queue manager to 25
adding XAResourceManager

information for DB2 166
control commands for 19
db2swit.dll, creating 165
default configuration 16
default configuration objects, list

of 525
deleting queue managers 539
deletions from automatic startup

list 540
directory structure 529
editing configuration information 93
Event Viewer application, problem

determination 252
FFST, examining 264
Informix switch load file,

creating 170
levels supported by the WebSphere

MQ Explorer 72
MQAI support for 55
object authority manager (OAM) 12
oraswit.dll, creating 168
Performance Monitor 42
registry 93
security 124
SecurityPolicy attribute, Service

stanza 106
switch load structures, library

names 183
sybswit, creating the Sybase switch

load file 172
tracing, considerations 255

Index 583

Windows operating system (continued)
using the WebSphere MQ

Explorer 71
viewing configuration

information 93
Windows trace data, sample 256
writing Eclipse plug-ins 85

Windows Registry
deleting queue managers in

Windows 539
deletions from automatic startup

list 540
description of 93
using in problem determination 252

Windows XP
security 127

Windows, security 153
working with 46

X
XA support

building libraries for CICS 186, 187
CICS switch load files 186, 187
switch load module 185
WebSphere MQ with Tuxedo 187

XA switch load files
description of 183

XAD resource definition stanza,
CICS 188

XAResourceManager stanza, qm.ini 111

Z
z/OS

levels supported by the WebSphere
MQ Explorer 72

z/OS queue manager 64

584 WebSphere MQ: System Administration Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM , you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use 44-1962-816151
– From within the U.K., use 01962-816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1994, 2009 585

586 WebSphere MQ: System Administration Guide

����

SC34-6928-01

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
W

eb
Sp

he
re

M
Q

Sy
st

em
Ad

m
in

is
tr

at
io

n
G

ui
de

Ve
rs

io
n

7.0

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	Introduction to WebSphere MQ
	WebSphere MQ and message queuing
	Time-independent applications
	Message-driven processing

	Messages and queues
	What is a message?
	What is a queue?

	Objects
	Object names
	Managing objects
	Object attributes
	WebSphere MQ queues
	WebSphere MQ queue managers
	Process definitions
	Clusters
	Namelists
	Authentication information objects
	Channels
	Client connection channels
	Listeners
	Services
	System default objects

	Clients and servers
	WebSphere MQ applications in a client-server environment

	Extending queue manager facilities
	User exits
	API exits
	Installable services

	Security
	Object Authority Manager (OAM) facility
	User-written or third party channel exits
	Channel security using SSL

	Transactional support

	An introduction to WebSphere MQ administration
	Local and remote administration
	Performing administration tasks using commands
	Control commands
	WebSphere MQ Script (MQSC) commands
	PCF commands

	Further methods of administration
	Using the WebSphere MQ Explorer
	Using the Windows Default Configuration application
	Using the Microsoft Cluster Service (MSCS)

	Understanding WebSphere MQ file names
	Queue manager name transformation
	Object name transformation

	Chapter 2. Administration using WebSphere MQ commands
	Managing queue managers
	Using control commands
	Using control commands on Windows systems
	Using control commands on UNIX systems

	Using the WebSphere MQ Explorer
	Creating a queue manager
	Guidelines for creating queue managers
	Creating a default queue manager
	Making an existing queue manager the default
	Backing up configuration files after creating a queue manager

	Starting a queue manager
	Starting a queue manager automatically

	Stopping a queue manager
	Quiesced shutdown
	Immediate shutdown
	Preemptive shutdown
	If you have problems shutting down a queue manager

	Restarting a queue manager
	Deleting a queue manager
	

	Administering local WebSphere MQ objects
	Supporting application programs that use the MQI
	Performing local administration tasks using MQSC commands
	WebSphere MQ object names
	Standard input and output
	Using MQSC commands interactively
	Running MQSC commands from text files
	Running MQSC commands from batch files
	Resolving problems with MQSC commands

	Working with queue managers
	Displaying queue manager attributes
	Altering queue manager attributes

	Working with local queues
	Defining a local queue
	Displaying default object attributes
	Copying a local queue definition
	Changing local queue attributes
	Clearing a local queue
	Deleting a local queue
	Browsing queues
	Monitoring local queues with the Windows Performance Monitor
	Enabling large queues

	Working with alias queues
	Defining an alias queue
	Using other commands with alias queues

	Working with model queues
	Defining a model queue
	Using other commands with model queues

	Working with services
	Defining a service object
	Managing services
	Additional environment variables
	Replaceable inserts on service definitions
	Examples on using service objects

	Managing objects for triggering
	Defining an application queue for triggering
	Defining an initiation queue
	Defining a process
	Displaying attributes of a process definition

	Automating administration tasks
	PCF commands
	PCF object attributes
	Escape PCFs
	Using the MQAI to simplify the use of PCFs
	Active Directory Services Interfaces

	Administering remote WebSphere MQ objects
	Channels, clusters, and remote queuing
	Remote administration using clusters

	Remote administration from a local queue manager
	Preparing queue managers for remote administration
	Preparing channels and transmission queues for remote administration
	Managing the command server for remote administration
	Issuing MQSC commands on a remote queue manager
	Recommendations for issuing commands remotely
	If you have problems using MQSC commands remotely

	Creating a local definition of a remote queue
	Understanding how local definitions of remote queues work
	An alternative way of putting messages on a remote queue
	Using other commands with remote queues
	Defining a transmission queue

	Using remote queue definitions as aliases
	Queue manager aliases
	Reply-to queue aliases

	Data conversion
	When a queue manager cannot convert messages in built-in formats
	File ccsid.tbl
	Converting messages in user-defined formats
	Changing the queue manager CCSID

	Chapter 3. Administration using the WebSphere MQ Explorer
	Administration using the WebSphere MQ Explorer
	What you can do with the WebSphere MQ Explorer
	Remote queue managers
	Deciding whether to use the WebSphere MQ Explorer

	Setting up the WebSphere MQ Explorer
	Prerequisite software
	Required definitions for administration
	Cluster membership
	Security
	Data conversion

	Using the WebSphere MQ Explorer
	Showing and hiding queue managers and clusters
	Using the WebSphere MQ Taskbar application (Windows only)
	Starting the WebSphere MQ Explorer in standalone mode or Eclipse workbench mode

	Security on Windows
	Using Active directory (Windows only)
	Controlling access (Windows only)
	Changing the password of the AMQMSRVN user account
	WebSphere MQ coordinating with DB2 as the resource manager

	Extending the WebSphere MQ Explorer
	Who this chapter is for
	What you need to know to understand this chapter
	Introduction
	Importing the sample Eclipse plug-ins

	Writing an Eclipse plug-in for the WebSphere MQ Explorer
	Accessing the WebSphere MQ Explorer Javadoc
	Utilizing extension points

	Applying plug-ins to the WebSphere MQ Explorer

	Chapter 4. Configuring WebSphere MQ
	Configuring WebSphere MQ
	Changing configuration information on Windows systems
	Viewing configuration information

	Changing configuration information on UNIX systems
	Editing configuration files
	The WebSphere MQ configuration file, mqs.ini
	Queue manager configuration files, qm.ini

	Attributes for changing WebSphere MQ configuration information
	All queue managers
	Default queue manager
	Exit properties
	Log defaults for WebSphere MQ
	Advanced Configuration and Power Interface (ACPI)
	API exits
	Queue managers

	Changing queue manager configuration information
	Installable services
	Queue manager logs
	Restricted mode
	XA resource managers
	Attributes of channels
	LU62, NETBIOS, TCP, and SPX
	Exit path
	Queue manager error logs
	Queue manager default bind type

	WebSphere MQ security
	Authority to administer WebSphere MQ
	Managing the mqm group

	Authority to work with WebSphere MQ objects
	When security checks are made
	How access control is implemented by WebSphere MQ
	Identifying the user ID
	Alternate-user authority
	Context authority

	Connecting to WebSphere MQ using Terminal Services
	Configuring additional authority for Windows applications connecting to WebSphere MQ
	Creating and managing groups
	Windows
	HP-UX
	AIX
	Solaris
	Linux

	Using the OAM to control access to objects
	Giving access to a WebSphere MQ object
	Using OAM generic profiles
	Displaying access settings
	Changing and revoking access to a WebSphere MQ object
	Preventing security access checks

	Channel security
	Protecting channel initiator definitions
	Transmission queues
	Channel exits
	Protecting channels with SSL

	How authorizations work
	Authorizations for MQI calls
	Authorizations for MQSC commands in escape PCFs
	Authorizations for PCF commands

	Guidelines for Windows
	When you get a 'group not found' error
	When you have problems with WebSphere MQ and domain controllers
	Applying security template files
	Nested groups

	Transactional support
	Introducing units of work
	Scenario 1: Queue manager performs the coordination
	Database coordination
	DB2 configuration
	Oracle configuration
	Informix configuration
	Sybase configuration
	Multiple database configurations
	Security considerations
	Administration tasks
	XA dynamic registration

	Scenario 2: Other software provides the coordination
	External syncpoint coordination
	Using CICS
	Using the Microsoft Transaction Server (COM+)

	The WebSphere MQ dead-letter queue handler
	Invoking the DLQ handler
	The sample DLQ handler, amqsdlq

	The DLQ handler rules table
	Control data
	Rules (patterns and actions)
	Rules table conventions

	How the rules table is processed
	Ensuring that all DLQ messages are processed

	An example DLQ handler rules table

	Supporting the Microsoft Cluster Service (MSCS)
	Introducing MSCS clusters
	Setting up WebSphere MQ for MSCS clustering
	Setup symmetry
	MSCS security
	Using multiple queue managers with MSCS
	Cluster modes

	Creating a queue manager for use with MSCS
	Creating a queue manager from a command prompt
	Creating a queue manager using the WebSphere MQ Explorer

	Moving a queue manager to MSCS storage
	Putting a queue manager under MSCS control
	Summary of looksAlive and isAlive polling
	Removing a queue manager from MSCS control
	Taking a queue manager offline from MSCS
	Returning a queue manager from MSCS storage

	Hints and tips on using MSCS
	Verifying that MSCS is working
	Manual startup
	MSCS and queue managers
	Always use MSCS to manage clusters
	Working in Active/Active mode
	PostOnlineCommand and PreOfflineCommand
	Using preferred nodes
	Performance benchmarking
	If COM+ errors occur in the Application Event log

	WebSphere MQ MSCS support utility programs

	Chapter 5. Recovery and problem determination
	Availability, recovery and restart
	Making sure that messages are not lost (logging)
	What logs look like
	Types of logging

	Using checkpointing to ensure complete recovery
	Checkpointing with long-running transactions

	Calculating the size of the log
	Managing logs
	What happens when a disk gets full
	Managing log files

	Using the log for recovery
	Recovering from power loss or communications failures
	Recovering damaged objects

	Protecting WebSphere MQ log files
	Backing up and restoring WebSphere MQ
	Backing up queue manager data
	Restoring queue manager data
	Using a backup queue manager
	Creating a backup queue manager
	Updating a backup queue manager
	Starting a backup queue manager

	Recovery scenarios
	Disk drive failures
	Damaged queue manager object
	Damaged single object
	Automatic media recovery failure

	Dumping the contents of the log using the dmpmqlog command

	Problem determination
	Preliminary checks
	Has WebSphere MQ run successfully before?
	Are there any error messages?
	Does the Windows Application Event Log show any WebSphere MQ errors? (Windows only)
	Are there any return codes explaining the problem?
	Can you reproduce the problem?
	Have any changes been made since the last successful run?
	Has the application run successfully before?
	Problems with commands
	Does the problem affect specific parts of the network?
	Does the problem occur at specific times of the day?
	Is the problem intermittent?
	Have you applied any service updates?

	Looking at problems in more detail
	Have you obtained incorrect output?
	Have you failed to receive a response from a PCF command?
	Are some of your queues failing?
	Are you receiving an error code when creating or starting a queue manager? (Windows only)
	Does the problem affect only remote queues?
	Is your application or system running slowly?

	Application design considerations
	Effect of message length
	Effect of message persistence
	Searching for a particular message
	Queues that contain messages of different lengths
	Frequency of syncpoints
	Use of the MQPUT1 call
	Number of threads in use

	Error logs
	Error log files
	Error log access restrictions under UNIX systems
	Ignoring error codes under UNIX systems
	Ignoring error codes under Windows systems
	Operator messages

	Dead-letter queues
	Configuration files and problem determination
	Tracing
	Tracing WebSphere MQ for Windows
	Tracing WebSphere MQ for UNIX systems
	Trace files
	Tracing Secure Sockets Layer (SSL) iKeyman and IKEYCMD functions
	Tracing with the AIX system trace

	First-failure support technology (FFST)
	FFST: WebSphere MQ for Windows
	FFST: WebSphere MQ for UNIX systems

	Problem determination with WebSphere MQ clients
	Terminating clients

	Java diagnostics
	Using com.ibm.mq.commonservices
	Java trace and FFDC files

	Chapter 6. WebSphere MQ control commands
	How to use WebSphere MQ control commands
	Names of WebSphere MQ objects
	Syntax diagrams
	How to read railroad diagrams

	Example syntax diagram
	Syntax help
	Examples

	The control commands
	amqccert
	amqmdain
	amqtcert
	Listing the contents of certificate stores
	Manually migrating certificate stores
	Automatically migrating certificate stores
	Listing the contents of registry entries
	Removing state information

	crtmqcvx
	crtmqm
	dltmqm
	dmpmqaut
	dmpmqlog
	dspmq
	dspmqaut
	dspmqcsv
	dspmqfls
	dspmqrte
	dspmqtrc
	dspmqtrn
	dspmqver
	endmqcsv
	endmqlsr
	endmqdnm
	endmqm
	endmqtrc
	mqftapp
	mqftrcv
	mqftrcvc
	mqftsnd
	mqftsndc
	rcdmqimg
	rcrmqobj
	rsvmqtrn
	runmqchi
	runmqchl
	runmqdlq
	runmqdnm
	runmqlsr
	runmqsc
	runmqtmc
	runmqtrm
	setmqaut
	Authorizations for MQI calls
	Authorizations for context
	Authorizations for commands
	Authorizations for generic operations

	setmqcrl
	setmqprd
	setmqscp
	strmqcfg
	strmqcsv
	strmqm
	strmqtrc

	Managing keys and certificates
	Preparing to use the gsk7cmd and gsk7capicmd commands
	gsk7cmd, runmqckm, and gsk7capicmd commands
	Commands for a CMS key database only
	Commands for CMS or PKCS #12 key databases
	Commands for cryptographic device operations

	gsk7cmd, runmqckm, and gsk7capicmd options

	Chapter 7. WebSphere MQ installable services and the API exit
	Installable services and components
	Why installable services?
	Functions and components
	Entry-points
	Return codes
	Component data

	Initialization
	Primary initialization
	Secondary initialization
	Primary termination
	Secondary termination

	Configuring services and components
	Service stanza format
	Service stanza format for Windows systems
	Service component stanza format

	Creating your own service component
	Using multiple service components
	Example of using multiple components
	Omitting entry points when using multiple components
	Example of entry points used with multiple components

	Authorization service
	Object authority manager (OAM)
	Defining the service to the operating system
	Refreshing the OAM after changing a user's authorization
	Migrating from MQSeries Version 5.1

	Authorization service on UNIX systems
	Configuring authorization service stanzas: UNIX systems

	Authorization service on Windows systems
	Configuring authorization service stanzas: Windows systems

	Authorization service interface

	Name service
	How the name service works
	Name service interface

	Installable services interface reference information
	How the functions are shown
	MQZEP – Add component entry point
	Hconfig (MQHCONFIG) – input
	Function (MQLONG) – input
	EntryPoint (PMQFUNC) – input
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_AUTHENTICATE_USER – Authenticate user
	QMgrName (MQCHAR48) – input
	SecurityParms (MQCSP) – input
	ApplicationContext (MQZAC) – input
	IdentityContext (MQZIC) – input/output
	CorrelationPtr (MQPTR) – output
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_CHECK_AUTHORITY – Check authority
	QMgrName (MQCHAR48) – input
	EntityName (MQCHAR12) – input
	EntityType (MQLONG) – input
	ObjectName (MQCHAR48) – input
	ObjectType (MQLONG) – input
	Authority (MQLONG) – input
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_CHECK_AUTHORITY_2 – Check authority (extended)
	QMgrName (MQCHAR48) – input
	EntityData (MQZED) – input
	EntityType (MQLONG) – input
	ObjectName (MQCHAR48) – input
	ObjectType (MQLONG) – input
	Authority (MQLONG) – input
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_COPY_ALL_AUTHORITY – Copy all authority
	QMgrName (MQCHAR48) – input
	RefObjectName (MQCHAR48) – input
	ObjectName (MQCHAR48) – input
	ObjectType (MQLONG) – input
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_DELETE_AUTHORITY – Delete authority
	QMgrName (MQCHAR48) – input
	ObjectName (MQCHAR48) – input
	ObjectType (MQLONG) – input
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_ENUMERATE_AUTHORITY_DATA – Enumerate authority data
	QMgrName (MQCHAR48) – input
	StartEnumeration (MQLONG) – input
	Filter (MQZAD) – input
	AuthorityBufferLength (MQLONG) – input
	AuthorityBuffer (MQZAD) – output
	AuthorityDataLength (MQLONG) – output
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_FREE_USER – Free user
	QMgrName (MQCHAR48) – input
	FreeParms (MQZFP) – input
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_GET_AUTHORITY – Get authority
	QMgrName (MQCHAR48) – input
	EntityName (MQCHAR12) – input
	EntityType (MQLONG) – input
	ObjectName (MQCHAR48) – input
	ObjectType (MQLONG) – input
	Authority (MQLONG) – output
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_GET_AUTHORITY_2 – Get authority (extended)
	QMgrName (MQCHAR48) – input
	EntityData (MQZED) – input
	EntityType (MQLONG) – input
	ObjectName (MQCHAR48) – input
	ObjectType (MQLONG) – input
	Authority (MQLONG) – output
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_GET_EXPLICIT_AUTHORITY – Get explicit authority
	QMgrName (MQCHAR48) – input
	EntityName (MQCHAR12) – input
	EntityType (MQLONG) – input
	ObjectName (MQCHAR48) – input
	ObjectType (MQLONG) – input
	Authority (MQLONG) – output
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_GET_EXPLICIT_AUTHORITY_2 – Get explicit authority (extended)
	QMgrName (MQCHAR48) – input
	EntityData (MQZED) – input
	EntityType (MQLONG) – input
	ObjectName (MQCHAR48) – input
	ObjectType (MQLONG) – input
	Authority (MQLONG) – output
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_INIT_AUTHORITY – Initialize authorization service
	Hconfig (MQHCONFIG) – input
	Options (MQLONG) – input
	QMgrName (MQCHAR48) – input
	ComponentDataLength (MQLONG) – input
	ComponentData (MQBYTEComponentDataLength) – input/output
	Version (MQLONG) – input/output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_INQUIRE – Inquire authorization service
	QMgrName (MQCHAR48) – input
	SelectorCount (MQLONG) – input
	Selectors (MQLONGSelectorCount) – input
	IntAttrCount (MQLONG) – input
	IntAttrs (MQLONGIntAttrCount) – output
	CharAttrCount (MQLONG) – input
	CharAttrs (MQLONGCharAttrCount) – output
	SelectorReturned (MQLONGSelectorCount) – input
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_REFRESH_CACHE – Refresh all authorizations
	QMgrName (MQCHAR48) - input
	ComponentData (MQBYTE*ComponentDataLength) - input/output
	Continuation (MQLONG) - output
	CompCode (MQLONG) - output
	Reason (MQLONG) - output

	MQZ_SET_AUTHORITY – Set authority
	QMgrName (MQCHAR48) – input
	EntityName (MQCHAR12) – input
	EntityType (MQLONG) – input
	ObjectName (MQCHAR48) – input
	ObjectType (MQLONG) – input
	Authority (MQLONG) – input
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_SET_AUTHORITY_2 – Set authority (extended)
	QMgrName (MQCHAR48) – input
	EntityData (MQZED) – input
	EntityType (MQLONG) – input
	ObjectName (MQCHAR48) – input
	ObjectType (MQLONG) – input
	Authority (MQLONG) – input
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_TERM_AUTHORITY – Terminate authorization service
	Hconfig (MQHCONFIG) – input
	Options (MQLONG) – input
	QMgrName (MQCHAR48) – input
	ComponentData (MQBYTEComponentDataLength) – input/output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZAC – Application context
	StrucId (MQCHAR4)
	Version (MQLONG)
	ProcessId (MQPID)
	ThreadId (MQTID)
	ApplName (MQCHAR28)
	UserID (MQCHAR12)
	EffectiveUserID (MQCHAR12)
	Environment (MQLONG)
	CallerType (MQLONG)
	AuthenticationType (MQLONG)
	BindType (MQLONG)

	MQZAD – Authority data
	StrucId (MQCHAR4)
	Version (MQLONG)
	ProfileName (MQCHAR48)
	ObjectType (MQLONG)
	Authority (MQLONG)
	EntityDataPtr (PMQZED)
	EntityType (MQLONG)
	Options (MQAUTHOPT)

	MQZED – Entity descriptor
	StrucId (MQCHAR4)
	Version (MQLONG)
	EntityNamePtr (PMQCHAR)
	EntityDomainPtr (PMQCHAR)
	SecurityId (MQBYTE40)
	CorrelationPtr (MQPTR)

	MQZIC – Identity context
	StrucId (MQCHAR4)
	Version (MQLONG)
	UserIdentifier (MQCHAR12)
	AccountingToken (MQBYTE32)
	ApplIdentityData (MQCHAR32)

	MQZFP – Free parameters
	StrucId (MQCHAR4)
	Version (MQLONG)
	Reserved (MQBYTE8)
	CorrelationPtr (MQPTR)

	MQZ_DELETE_NAME – Delete name
	QMgrName (MQCHAR48) – input
	QName (MQCHAR48) – input
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_INIT_NAME – Initialize name service
	Hconfig (MQHCONFIG) – input
	Options (MQLONG) – input
	QMgrName (MQCHAR48) – input
	ComponentDataLength (MQLONG) – input
	ComponentData (MQBYTEComponentDataLength) – input/output
	Version (MQLONG) – input/output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_INSERT_NAME – Insert name
	QMgrName (MQCHAR48) – input
	QName (MQCHAR48) – input
	ResolvedQMgrName (MQCHAR48) – input
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_LOOKUP_NAME – Lookup name
	QMgrName (MQCHAR48) – input
	QName (MQCHAR48) – input
	ResolvedQMgrName (MQCHAR48) – output
	ComponentData (MQBYTEComponentDataLength) – input/output
	Continuation (MQLONG) – output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	MQZ_TERM_NAME – Terminate name service
	Hconfig (MQHCONFIG) – input
	Options (MQLONG) – input
	QMgrName (MQCHAR48) – input
	ComponentData (MQBYTEComponentDataLength) – input/output
	CompCode (MQLONG) – output
	Reason (MQLONG) – output

	API exits
	Why use API exits
	How you use API exits
	How to configure WebSphere MQ for API exits
	How to write an API exit

	What happens when an API exit runs?
	Configuring API exits
	Configuring API exits on UNIX systems
	Configuring API exits on Windows systems

	API exit reference information
	General usage notes
	MQACH – API exit chain header
	Fields
	C declaration

	MQAXC – API exit context
	Fields
	C declaration

	MQAXP – API exit parameter
	Fields
	C declaration

	MQXEP – Register entry point
	Syntax
	Parameters
	C invocation

	MQXEPO – Register entry point options
	Overview
	Fields
	Language declarations

	MQ_BACK_EXIT – Back out changes
	Syntax
	Parameters
	C invocation

	MQ_BEGIN_EXIT – Begin unit of work
	Syntax
	Parameters
	C invocation

	MQ_CALLBACK_EXIT – Callback
	Syntax
	Parameters
	Usage notes
	C invocation

	MQ_CLOSE_EXIT – Close object
	Syntax
	Parameters
	C invocation

	MQ_CMIT_EXIT – Commit changes
	Syntax
	Parameters
	C invocation

	MQ_CONNX_EXIT – Connect queue manager (extended)
	Syntax
	Parameters
	Usage notes
	C invocation

	MQ_DISC_EXIT – Disconnect queue manager
	Syntax
	Parameters
	C invocation

	MQ_GET_EXIT – Get message
	Syntax
	Parameters
	Usage notes
	C invocation

	MQ_INIT_EXIT – Initialize exit environment
	Syntax
	Parameters
	Usage notes
	C invocation

	MQ_INQ_EXIT – Inquire object attributes
	Syntax
	Parameters
	C invocation

	MQ_OPEN_EXIT – Open object
	Syntax
	Parameters
	C invocation

	MQ_PUT_EXIT – Put message
	Syntax
	Parameters
	Usage notes
	C invocation

	MQ_PUT1_EXIT – Put one message
	Syntax
	Parameters
	C invocation

	MQ_SET_EXIT – Set object attributes
	Syntax
	Parameters
	C invocation

	MQ_SUB_EXIT – Register subscription
	Syntax
	Parameters
	C invocation

	MQ_SUBRQ_EXIT – Subscription request
	Syntax
	Parameters
	C invocation

	MQ_TERM_EXIT – Terminate exit environment
	Syntax
	Parameters
	Usage notes
	C invocation

	Chapter 8. System and default objects
	Windows default configuration objects
	SYSTEM.BASE.TOPIC

	Chapter 9. Directory structure (Windows systems)
	Chapter 10. Directory structure (UNIX systems)
	Chapter 11. Stopping and removing queue managers manually
	Stopping a queue manager manually
	Stopping queue managers in WebSphere MQ for Windows
	Stopping queue managers in WebSphere MQ for UNIX systems

	Removing queue managers manually
	Removing queue managers in WebSphere MQ for Windows
	Removing queue managers from the automatic startup list

	Removing queue managers in WebSphere MQ for UNIX systems

	Chapter 12. File Transfer Application
	Introduction
	Advantages
	Components

	Installing and configuring
	Installing the File Transfer Application on a WebSphere MQ server
	During the initial installation
	Modifying the installation

	Installing the File Transfer Application on a WebSphere MQ client
	During the initial installation
	Modifying the installation

	Setup tasks
	Sending files between remote queue managers
	Sending files between a queue manager and a remote WebSphere MQ client

	Configuring the GUI
	File Transfer Application channel security

	Using the File Transfer Application
	Sending a file
	Receiving a file
	Listing all sent and received files
	File status
	Using the command line

	Chapter 13. Comparing command sets
	Queue manager commands
	Command server commands
	Authority commands
	Cluster commands
	Authentication information commands
	Channel commands
	Listener commands
	Namelist commands
	Process commands
	Queue commands
	Service commands
	Other commands

	Chapter 14. WebSphere MQ and UNIX System V IPC resources
	Clearing WebSphere MQ shared memory resources
	Shared memory on AIX

	Chapter 15. WebSphere MQ and UNIX Process Priority
	Chapter 16. Common Criteria
	Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Sending your comments to IBM

