
WebSphere MQ

Publish/Subscribe User’s Guide
Version 7.0

SC34-6950-01

���

WebSphere MQ

Publish/Subscribe User’s Guide
Version 7.0

SC34-6950-01

���

Note
Before using this information and the product it supports, be sure to read the general information under notices at the back
of this book.

Second edition (January 2009)

This edition of the book applies to the following:
v IBM WebSphere MQ for Windows, Version 7.0

and to any subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1996, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

Chapter 1. What’s new in
publish/subscribe in WebSphere MQ
Version 7.0? 1
Benefits of WebSphere Version 7.0 publish/subscribe 1

Chapter 2. Introduction to WebSphere
MQ publish/subscribe messaging. . . . 3
Overview of publish/subscribe components 3
Example of a single queue manager
publish/subscribe configuration 4
Publishers and publications 5

State and event information 5
Retained publications 6

Subscribers and subscriptions. 7
Managed queues and publish/subscribe 7
Subscription durability 8
Selection strings 10

Topics 10
Topic strings 11
Constructing topic names. 16
Topic trees. 17
Administrative topic objects 18

Chapter 3. Distributed
publish/subscribe 23
How does distributed publish/subscribe work? . . 23

Proxy subscription aggregation and publication
aggregration 26
More on routing mechanisms 26
Wildcard rules 27

Controlling the flow of publications and
subscriptions 27

Publication scope 27
Subscription scope 28
Overlapping topics 28

Retained publications 28
Distributed publish/subscribe security 29
Distributed publish/subscribe system queues . . . 32

Publish/subscribe system queue errors 33
Publish/subscribe topologies 34

Publish/subscribe clusters 34
Publish/subscribe hierarchies 40

Chapter 4. Writing publish/subscribe
applications 45
Writing publisher applications 45

Example 1: Publisher to a fixed topic 45
Example 2: Publisher to a variable topic 49

Writing subscriber applications 52

Example 1: MQ Publication consumer 54
Example 2: Managed MQ subscriber 56
Example 3: Unmanaged MQ subscriber 63

Publish/subscribe lifecycles 73
Publish/subscribe message properties 78
Message ordering 80
Intercepting publications 81
Publishing options 83
Subscription options 83

Subscriptions and message persistence 83
Subscriptions and retained publications 83
Grouping subscriptions 84

Chapter 5. Publish/subscribe security 87
Example publish/subscribe security setup 95

Grant access to a user to subscribe to a topic . . 95
Grant access to a user to subscribe to a topic
deeper within the tree 96
Grant another user access to subscribe to only
the topic deeper within the tree 98
Change access control to avoid additional
messages 100
Grant access to a user to publish to a topic . . 101
Grant access to a user to publish to a topic
deeper within the tree 102
Grant access for publish and subscribe 104

Subscription security 105
MQSO_ANY_USERID subscription option. . . 106

Chapter 6. Queued publish/subscribe
compatibility. 109
Coexistence with queued publish/subscribe . . . 111
Interoperation with queued publish/subscribe . . 112

Differences from WebSphere MQ Version 6
publish/subscribe 112
Heterogeneous broker topologies 118

Controlling queued publish/subscribe 118
New queue manager attributes for
publish/subscribe 119
Starting queued publish/subscribe 119
Stopping queued publish/subscribe 120
Adding a stream 120
Deleting a stream 121
Connect a queue manager to a broker hierarchy 122
Disconnect a queue manager from a broker
hierarchy 123

Migration to publish/subscribe on WebSphere MQ
V7.0 124

strmqbrk (Migrate WebSphere MQ Version 6.0
broker to Version 7.0). 125
Application migration 126
New queue manager attributes for
publish/subscribe 136
WebSphere MQ publish/subscribe topology
migration. 137

© Copyright IBM Corp. 1996, 2009 iii

|

||

||

||
|
||
||
||
|
||
||
||
||
||
||
||
||

||

|
||
||
||
||
||

||
||
||
||
||
||
||
||
||
||
||
||

||
||
|
||
|
||
|
||
||
|
||
||

|
||
||
||
|
||
||
||
|
||
||
||
||
||
||
|
||
|
||
|
||
||
|
||
|
||

Using publish/subscribe with WebSphere MQ
classes for JMS 140
Migration implications of mapping an alias
queue to a topic object 144
Migrated topologies 144

Notices 147

Index 151

Sending your comments to IBM . . . 153

iv WebSphere MQ: Publish/Subscribe User’s Guide

|
||
|
||
||

Figures

1. Simple publish/subscribe configuration . . . 3
2. Single queue manager publish/subscribe

example 5
3. Example of a topic tree. 18
4. Visualization of a topic tree 19
5. Extended topic tree 19
6. Visualization of an administrative topic object

associated with the Sport/Soccer topic . . . 20
7. Topic tree with several administrative topic

objects 20
8. Publish/subscribe example with two queue

managers 23
9. Propagation of subscriptions through a queue

manager network 24
10. Multiple subscriptions 25
11. Propagation of publications through a queue

manager network 25
12. Proxy subscription security, making a

subscription 30
13. Proxy subscription security, forwarding

publications 31
14. Overlapping clusters: two clusters each

subscribing to different topics 39
15. Overlapping clusters: two clusters each

subscribing to the same topic 39
16. Simple WebSphere MQ publisher to a fixed

topic.. 46
17. Sample output from first publisher example 47
18. Simple WebSphere MQ publisher to a variable

topic.. 50
19. Sample output from second publisher example 51
20. Topic object associations 52
21. MQ publication consumer. 55
22. Output from MQ publication consumer 56
23. Managed MQ subscriber - part 1: declarations

and parameter handling. 59

24. Managed MQ subscriber - part 2: code body. 60
25. Output from managed MQ subscriber. . . . 61
26. Unmanaged MQ subscriber - part 1:

declarations. 67
27. Unmanaged MQ subscriber - part 2: parameter

handling. 68
28. Unmanaged MQ subscriber - part 3: code

body.. 70
29. Publish 130 to NYSE/IBM/PRICE 71
30. Receive the retained publication. 71
31. Resume subscription 72
32. Receive retained publication with new

unmanaged non durable subscription 72
33. Overlapping subscriptions 72
34. Subscription topics cannot be changed . . . 73
35. Managed non-durable subscriber lifelines 75
36. Managed durable subscriber lifelines 76
37. Unmanaged durable subscriber lifelines 78
38. Publish/subscribe security relationships 87
39. Example topic tree security attributes 91
40. Example topic tree security attributes 92
41. Topic object access example 95
42. Example of granting access to a topic within a

topic tree 97
43. Granting access to specific topics within a

topic tree 98
44. Example of granting access control to avoid

additional messages. 100
45. Granting publish access to a topic. 101
46. Granting publish access to a topic within a

topic tree 103
47. Granting access for publishing and

subscribing 104
48. Version 6 streams coexisting with version 7

topics 118

© Copyright IBM Corp. 1996, 2009 v

||
||
|
||
|
||
|
|
|
||
||
|
||
|
||
|
||
|
||
|
||
|
||
||
|
||
||
||
||
||
|
||

||
||
|
||
|
||
|
||
||
||
||
|
||
||
||
||
||
||

||
|
||
|
||
|
||
||
|
||
|
||
|
||

vi WebSphere MQ: Publish/Subscribe User’s Guide

Tables

1. Topic string concatenation examples 17
2. Default values of SYSTEM.BASE.TOPIC 21
3. Publish/subscribe system queues 32
4. Attributes of publish/subscribe system queues 33
5. Point to point vs. publish/subscribe

WebSphere MQ program pattern. 45
6. Point to point vs. subscribe WebSphere MQ

program patterns. 53
7. Errors from MQSUB with different queue

handles and subscription combinations . . . 66
8. Intercepting subscriber options 82
9. MQMD values for republished messages 82

10. Example topic object authorities. 90
11. User IDs used for security checks for

commands 95

12. Example topic object access 95
13. Access requirements for example topics and

topic objects 97
14. Access requirements for example topics and

topic objects 98
15. Example publish access requirements 101
16. Example publish access requirements 103
17. Example publishing and subscribing access

requirements 104
18. Complete list of access authorities resulting

from security examples 105
19. Default publication context information 106
20. Broker command differences 113
21. 119
22. 137

© Copyright IBM Corp. 1996, 2009 vii

||
||
||
||
|
||
|
||
|
||
||
||

||
|
||
|
||
||
||
|
||
|
||

||
||
||

viii WebSphere MQ: Publish/Subscribe User’s Guide

Chapter 1. What’s new in publish/subscribe in WebSphere MQ
Version 7.0?

Publish/subscribe has been changed significantly for WebSphere® MQ Version 7.0.
In previous versions, publish/subscribe messaging was controlled using a
command message interface. This interface is deprecated in Version 7.0
publish/subscribe. Instead, publish/subscribe messaging is now controlled using
new function in the WebSphere MQ API and as a result, publish/subscribe
messaging is much more consistent with point-to-point messaging. This new way
of doing publish/subscribe messaging is documented in the main body of this
book.

Applications written using previous versions of WebSphere MQ publish/subscribe
and make use of the command message interface are encouraged to move to the
new WebSphere MQ publish/subscribe API – however, the command message
interface continues to be supported by means of a process which runs on all
platforms (including z/OS®). As such, if you are already a user of
publish/subscribe you can continue to use your current configuration after
installing WebSphere MQ Version 7.0 without making extensive changes to your
applications or configuration.

Similarly, JMS applications do not have to be modified, although if you do not
chose to use the new Version 7.0 publish/subscribe you will not benefit from the
simplified administration that is now available when using WebSphere MQ as the
provider. Since the command message interface method of doing publish/subscribe
is still supported in Version 7.0 using the PSMODE function, this interface
continues to be documented in the WebSphere MQ Version 7.0 library. This
information is grouped together here Version 6 (queued) publish/subscribe.

Benefits of WebSphere Version 7.0 publish/subscribe
Publish/subscribe messaging is now performed using the WebSphere MQ API,
there are a number of benefits of using this method.

Benefits of the new method of publish/subscribe include:
v In WebSphere MQ Version 7.0, support has been added for publish/subscribe

messaging on z/OS.
v To perform some WebSphere MQ publish/subscribe functions in previous

versions you required WebSphere Event Broker, WebSphere Message Broker or
the MA0C WebSphere MQ SupportPac™ (if you were using WebSphere MQ
Version 5.3), none of these applications are required now unless you want to
route messages according to their content, in which case you can use WebSphere
MQ in combination with WebSphere Message Broker.

v In WebSphere MQ Version 6.0, if you were using WebSphere MQ
publish/subscribe you had to use PCFs or RFH1 headers, this is no longer the
case.

v In WebSphere MQ Version 6.0 if you were using WebSphere Event Broker or
WebSphere Message Broker you had to use RFH1 or RFH2 headers, this is no
longer the case.

© Copyright IBM Corp. 1996, 2009 1

|

|

|

ps19000_.dita

v In WebSphere MQ Version 7.0, the way you publish and subscribe is consistent
with the rest of the WebSphere MQ API, making publish/subscribe more
intuitive and easier to use.

v Native support for non-durable subscriptions has been added, allowing
unconsumed messages and unnecessary subscriptions to be cleaned up at
disconnection. This removes the need that existed in WebSphere MQ Version 6.0
for JMS to tidy up non-durable subscriptions in order to meet JMS specification
requirements.

v By using non-durable subscriptions with JMS publish/subscribe messaging
performance can be improved and resource usage made more efficient.

v The interlock between JMS and the queue manager is improved by using the
new WebSphere MQ publish/subscribe API (rather than a command message
interface).

2 WebSphere MQ: Publish/Subscribe User’s Guide

Chapter 2. Introduction to WebSphere MQ publish/subscribe
messaging

Publish/subscribe messaging allows you to decouple the provider of information,
from the consumers of that information. The sending application and receiving
application do not need to know anything about each other for the information to
be sent and received.

Before a point-to-point WebSphere MQ application can send a message to another
application, it needs to know something about that application. For example, it
needs to know the name of the queue to which to send the information, and might
also specify a queue manager name.

WebSphere MQ publish/subscribe removes the need for your application to know
anything about the target application. All the sending application has to do, is put
a WebSphere MQ message, containing the information that it wants, and assign it a
topic, that denotes the subject of the information, and let WebSphere MQ handle
the distribution of that information. Similarly, the target application does not have
to know anything about the source of the information it receives.

Figure 1 shows the simplest publish/subscribe system. There is one publisher, one
queue manager, and one subscriber. A subscription is sent from the subscriber to
the queue manager, a publication is sent from the publisher to the queue manager,
and the publication is then forwarded by the queue manager to the subscriber.

A typical publish/subscribe system has more than one publisher and more than
one subscriber, and often, more than one queue manager. An application can be
both a publisher and a subscriber.

Overview of publish/subscribe components
Publish/subscribe is the mechanism by which subscribers can receive information,
in the form of messages, from publishers. The interactions between publishers and
subscribers are controlled by queue managers, using standard WebSphere MQ
facilities.

A typical publish/subscribe system has more than one publisher and more than
one subscriber, and often, more than one queue manager. An application can be
both a publisher and a subscriber.

The provider of information is called a publisher. Publishers supply information
about a subject, without needing to know anything about the applications that are

Publication

Publication

Subscription
Queue

Manager SubscriberPublisher

Figure 1. Simple publish/subscribe configuration

© Copyright IBM Corp. 1996, 2009 3

interested in that information. Publishers generate this information in the form of
messages, called publications that they want to publish and define the topic of these
messages.

The consumer of the information is called a subscriber. Subscribers create
subscriptions that describe the topic that the subscriber is interested in. Thus, the
subscription determines which publications are forwarded to the subscriber.
Subscribers can make multiple subscriptions and can receive information from
many different publishers.

Published information is sent in a WebSphere MQ message, and the subject of the
information is identified by its topic. The publisher specifies the topic when it
publishes the information, and the subscriber specifies the topics about which it
wants to receive publications. The subscriber is sent information about only those
topics it subscribes to.

It is the existence of topics that allows the providers and consumers of information
to be decoupled in publish/subscribe messaging by removing the need to include
a specific destination in each message as is required in point-to-point messaging.

Interactions between publishers and subscribers are all controlled by a queue
manager. The queue manager receives messages from publishers, and subscriptions
from subscribers (to a range of topics). The queue manager’s job is to route the
published messages to the subscribers that have registered an interest in the topic
of the messages.

Standard WebSphere MQ facilities are used to distribute messages, so your
applications can use all the features that are available to existing WebSphere MQ
applications. This means that you can use persistent messages to get once-only
assured delivery, and that your messages can be part of a transactional
unit-of-work to ensure that messages are delivered to the subscriber only if they
are committed by the publisher.

Example of a single queue manager publish/subscribe configuration

Figure 2 on page 5 illustrates a basic single queue manager publish/subscribe
configuration. The example shows the configuration for a news service, where
information is available from publishers about several topics:
v Publisher 1 is publishing information about sports results using a topic of Sport
v Publisher 2 is publishing information about stock prices using a topic of Stock
v Publisher 3 is publishing information about film reviews using a topic of Films,

and about television listings using a topic of TV

Three subscribers have registered an interest in different topics, so the queue
manager sends them the information that they are interested in:
v Subscriber 1 receives the sports results and stock prices
v Subscriber 2 receives the film reviews
v Subscriber 3 receives the sports results

None of the subscribers have registered an interest in the television listings, so
these are not distributed.

4 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|

Publishers and publications
In WebSphere MQ publish/subscribe a publisher is an application that makes
information about a specified topic available to a queue manager in the form of a
standard WebSphere MQ message called a publication. A publisher can publish
information about more than one topic.

Publishers use the MQPUT verb to put a message to a previously opened topic,
this message is a publication. The local queue manager then routes the publication
to any subscribers who have subscriptions to the topic of the publication. A
published message can be consumed by more than one subscriber.

In addition to distributing publications to all local subscribers that have
appropriate subscriptions, a queue manager can also distribute the publication to
any other queue managers connected to it, either directly or through a network of
queue managers that have subscribers to the topic.

In a WebSphere MQ publish/subscribe network, a publishing application can also
be a subscriber.

State and event information
Publications can be categorized as either state publications, such as the current
price of a stock, or event publications, such as a trade in that stock.

State publications

State publications contain information about the current state of something, such as
the price of stock or the current score in a soccer match. When something happens
(for example, the stock price changes or the soccer score changes), the previous
state information is no longer required because it is superseded by the new
information.

Queue Manager

Subscriber 3
Topic:
Sport

Subscriber 2
Topic:
Films

Publisher 1
Topic:
Sport

Publisher 2
Topic:
Stock

Publisher 3
Topics:

Films, TV

Subscriber 1
Topics:

Sport, Stock

Figure 2. Single queue manager publish/subscribe example. This shows the relationship
between publishers, subscribers, and queue managers.

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 5

A subscriber will want to receive the current version of the state information when
it starts up, and be sent new information whenever the state changes.

If a publication contains state information, it is often published as a retained
publication. A new subscriber typically wants the current state information
immediately; the subscriber does not want to wait for an event that causes the
information to be republished. Subscribers will automatically receive a topic’s
retained publication when it subscribes unless the subscriber uses the
MQSO_PUBLICATIONS_ON_REQUEST or MQSO_NEW_PUBLICATIONS_ONLY
options.

Event publications

Event publications contain information about individual events that occur, such as a
trade in some stock or the scoring of a particular goal. Each event is independent
of other events.

A subscriber will want to receive information about events as they happen.

Retained publications
By default, after a publication is sent to all interested subscribers it is discarded.
However, a publisher can specify that a copy of a publication should be retained
so that it can be sent to future subscribers who register an interest in the topic.

Deleting publications after they have been sent to all interested subscribers is
suitable for event information, but is not always suitable for state information. By
retaining a message, new subscribers do not have to wait for information to be
published again before they receive initial state information. For example, a
subscriber with a subscription to a stock price would receive the current price
straight away, without waiting for the stock price to change (and hence be
re-published).

The queue manager can retain only one publication for each topic, so a topic’s
existing retained publication is deleted when a new retained publication arrives at
the queue manager. Wherever possible, have no more than one publisher sending
retained publications on any topic.

Subscribers can specify that they do not want to receive retained publications by
using the MQSO_NEW_PUBLICATIONS_ONLY subscription option. Existing
subscribers can ask for duplicate copies of retained publications to be sent to them.

There are times when you might not want to retain publications, even for state
information:
v If all subscriptions to a topic are made before any publications are made on that

topic, and you do not expect, or will not allow, new subscriptions, there is no
need to retain publications because they will be delivered to the complete set of
subscribers the first time they are published.

v If publications occur very frequently, such as every second, a new subscriber (or
a subscriber recovering from a failure) receives the current state almost
immediately after their initial subscription, so there is no need to retain these
publications.

v If the publications are quite large, you could end up needing a considerable
amount of storage space to store the retained publication for each topic. In a
multiple queue manager environment, retained publications are stored by all
queue managers in the network that have a matching subscription.

6 WebSphere MQ: Publish/Subscribe User’s Guide

When deciding whether to use retained publications, consider how subscribing
applications recover from a failure. If the publisher does not use retained
publications, the subscriber application might need to store its current state locally.

To ensure that a publication is retained use the MQPMO_RETAIN put-message
option. If this option is used and the publication cannot be retained, the message
will not be published and the call will fail with MQRC_PUT_NOT_RETAINED.

If a message is a retained publication this will be indicated by the MQIsRetained
message property.

Subscribers and subscriptions
In WebSphere MQ publish/subscribe, a subscriber is an application that requests
information about a specific topic from a queue manager in a publish/subscribe
network. A subscriber can receive messages, about the same or different topics,
from more than one publisher.

Subscriptions can be created manually using an MQSC command or by
applications. These subscriptions are issued to the local queue manager and
contain information about the publications the subscriber wants to receive:
v The topic the subscriber is interested in; this can resolve to multiple topics if

wildcards are used.
v An optional selection string to be applied to published messages.
v A handle to a queue (known as the subscriber queue), on which selected

publications should be placed, and the optional CorrelId.

The local queue manager stores subscription information and when it receives a
publication, scans the information to determine whether there is a subscription that
matches the publication’s topic and selection string. For each matching
subscription, the queue manager directs the publication to the subscriber’s
subscriber queue. The information that a queue manager stores about subscriptions
can be viewed by using the DIS SBSTATUS command.

A subscription is deleted only when one of the following events occurs:
v The subscriber unsubscribes using the MQCLOSE call (if the subscription was

made non-durably).
v The subscription expires.
v The subscription is deleted by the system administrator using the DELETE SUB

command.
v The subscriber application ends (if the subscription was made non-durably).
v The queue manager is stopped or restarted (if the subscription was made

non-durably).

Managed queues and publish/subscribe
When you create a subscription you can choose to use managed queuing. If you
use managed queueing a subscription queue is automatically created when you
create a subscription. Managed queues are tidied up automatically in accordance
with the durability of the subscription. Using managed queues means that you do
not have to worry about creating queues to receive publications and any
unconsumed publications are removed from subscriber queues automatically if a
non-durable subscription connection is closed.

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 7

If an application has no need to use a particular queue as its subscriber queue, the
destination for the publications it receives, it can make use of the managed
subscriptions using the MQSO_MANAGED subscription option. If you create a
managed subscription, the queue manager returns an object handle to the
subscriber for a subscriber queue that the queue manager creates where
publications will be received. The queue’s object handle will be returned allowing
you to browse, get or inquire on the queue (it is not possible to put to or set
attributes of a managed queue unless you have been explicitly given access to
temporary dynamic queues).

The durability of the subscription determines whether the managed queue remains
when the subscribing application’s connection to the queue manager is broken.

Managed subscriptions are particularly useful when used with non-durable
subscriptions because when the application’s connection is ended, unconsumed
messages would otherwise remain on the subscriber queue taking up space in your
queue manager indefinitely. If you are using a managed subscription, the managed
queue will be a temporary dynamic queue and as such will be deleted along with
any unconsumed messages when the connection is broken for any of the following
reasons:
v MQCLOSE with MQCO_REMOVE_SUB is used and the managed Hobj is

closed.
v a connection is lost to an application using a non-durable subscription

(MQSO_NON_DURABLE).
v a subscription is removed because it has expired and the managed Hobj is

closed.

Managed subscriptions can also be used with durable subscriptions but it is
possible that you would want to leave unconsumed messages on the subscriber
queue so that they can be retrieved when the connection is reopened. For this
reason, managed queues for durable subscriptions take the form of a permanent
dynamic queue and will remain when the subscribing application’s connection to
the queue manager is broken.

You can set an expiry on your subscription if you want to use permanent dynamic
managed queue so that although the queue will still exist after the connection is
broken, it will not continue to exist indefinitely.

If you delete the managed queue you will receive an error message.

The managed queues that are created are named with numbers at the end
(timestamps) so that each is unique.

Subscription durability
Subscriptions can be configured to be durable or non-durable. Subscription
durability determines what happens to subscriptions when subscribing applications
disconnect for a queue manager.

Durable subscriptions

Durable subscriptions continue to exist when a subscribing application’s
connection to the queue manager is closed. If a subscription is durable, when the
subscribing application disconnects, the subscription remains in place and can be
used by the subscribing application when it reconnects requesting the subscription
again using the SubName that was returned when the subscription was created.

8 WebSphere MQ: Publish/Subscribe User’s Guide

When subscribing durably, a subscription name (SubName) is required.
Subscription names must be unique within a queue manager so that it can be used
to identify a subscription. This means of identification is necessary when
specifying a subscription you want to resume, if you have either deliberately
closed the handle to the subscription (using the MQCO_KEEP_SUB option) or have
been disconnected from the queue manager. You can resume an existing
subscription by using the MQSUB call with the MQSO_RESUME option.
Subscription names are also displayed if you use the DISPLAY SBSTATUS
command with SUBTYPE ALL or ADMIN.

When an application no longer requires a durable subscription it can be removed
using the MQCLOSE function call with the MQCO_REMOVE_SUB option or it can
be deleted manually use the MQSC command DELETE SUB.

Whether durable subscriptions can be made to a topic can be controlled using the
DURSUB topic attribute.

On return from an MQSUB call using the MQSO_RESUME option, subscription
expiry will be set to the original expiry of the subscription and not the remaining
expiry time.

A queue manager will continue to send publications to satisfy a durable
subscription even if that subscriber application is not connected. This will lead to a
build up of messages on the subscriber queue. The easiest way to avoid this
problem is to use a non-durable subscription wherever appropriate. However,
where it is necessary to use durable subscriptions, a build up of messages can be
avoided if the subscriber subscribes using the
MQSO_PUBLICATIONS_ON_REQUEST option. A subscriber can then control
when it receives publications by using the MQSUBRQ call.

Non-durable subscriptions

Non-durable subscriptions exist only as long as the subscribing application’s
connection to the queue manager remains open. The subscription is removed when
the subscribing application disconnects from the queue manager either deliberately
or by loss of connection. When the connection is closed, the information about the
subscription is removed from the queue manager, and will no longer be shown if
you display subscriptions using the DISPLAY SBSTATUS command. No more
messages will be put to the subscriber queue.

What happens to any unconsumed publications on the subscriber queue for
non-durable subscriptions is determined as follows.
v If a subscribing application is using a managed destination, any publications

that have not been consumed are automatically removed.
v If the subscribing application provides a handle to its own subscriber queue

when it subscribes, unconsumed messages are not removed automatically. It is
the responsibility of the application to clear the queue if that is appropriate. If
the queue is shared by more than one subscriber, or other point-to-point
applications, it might not be appropriate to clear the queue completely.

Although not required for non durable subscriptions, a subscription name if
provided, will be used by the queue manager. Subscription names must be unique
within the queue manager so that it can be used to identify a subscription.

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 9

Selection strings
A selection string is an expression that is applied to a publication to determine
whether it matches a subscription. Selection strings can include wildcard
characters.

When you subscribe, in addition to specifying a topic, you can specify a selection
string to select publications according to their message properties.

Topics

A topic is the subject of the information that is published in a publish/subscribe
message.

Instead of including a specific destination address in each message, messages in
publish/subscribe systems are forwarded to subscribers based on either the subject
that describes the contents of the message, or on the contents of the message itself.

The WebSphere MQ publish/subscribe system is a subject based publish/subscribe
system. A publisher creates a message, and publishes it with a topic string that
best fits the subject of the publication. To receive publications, a subscriber creates
a subscription with a pattern matching topic string to select publication topics. The
queue manager delivers publications to subscribers that have subscriptions that
match the publication topic, and are authorized to receive the publications. The
article, “Topic strings” on page 11, describes the syntax of topics strings and the
two alternative wild card schemes,that subscribers use to create pattern matching
topic strings are described in “Wild card schemes” on page 12.

In subject-based publish/subscribe, publishers, or administrators, are responsible
for classifying subjects into topics. Typically subjects are organized hierarchically,
into topic trees, using the ‘/’ character to create subtopics in the topic string. See
“Topic trees” on page 17 for examples of topic trees. Topics are nodes in the topic
tree. Topics can be leaf-nodes with no further subtopics, or intermediate nodes
with sub-topics.

In parallel with organizing subjects into a hierarchical topic tree, you can associate
topics with administrative topic objects. You assign attributes to a topic, such as
whether the topic is distributed in a cluster, by associating it with an
administrative topic object. The association is made by naming the topic using the
TOPICSTR attribute of the administrative topic object. If you do not explicitly
associate an administrative topic object to a topic, the topic either inherits the
attributes of its closest ancestor in the topic tree that you have associated with an
administrative topic object, or inherits from SYSTEM.BASE.TOPIC. Administrative
topic objects are described in “Administrative topic objects” on page 18.

When you refer to a topic as a publisher or subscriber, you have a choice of
supplying a topic string or referring to a topic object. You can also do both, in
which case the topic string you supply defines a subtopic. The queue manager
identifies the topic by adding the subtopic to the ″master″ topic named in the topic
object, inserting an additional ‘/’ in between the two topic strings. This is
described further in “Constructing topic names” on page 16. The resulting topic
string is used to identify the topic and associate it with an administrative topic
object. The administrative topic object is not necessarily the same topic object as
the topic object corresponding to the master topic.

10 WebSphere MQ: Publish/Subscribe User’s Guide

|
|

In content based publish/subscribe, you define what messages you want to receive
by providing selection strings that search the contents of every message.
WebSphere MQ provides a intermediate form of content based publish/subscribe
using message selectors that scan message properties rather than the full content of
the message, see Selectors. The archetypal use of message selectors is to subscribe
to a topic and then qualify the selection with a numerical property. The selector
enables you to specify you are interested in values only in a certain range;
something you cannot do using either character or topic based wild cards. If you
do need to filter based on the full content of the message, you need to use
WebSphere Message Broker.

Topic strings
Label information you publish as a topic using a topic string. Subscribe to groups
of topics using either character or topic based wild card topic strings.

Topics

A topic string is a character string that identifies the topic of a publish/subscribe
message. You can use any characters you like when you construct a topic string.

Topic string

�� � Any Unicode character ��

Three characters have special meaning in version 7 publish/subscribe. They are
allowed anywhere in a topic string, but use them with caution. The use of the
special characters is explained in “Topic based wild card scheme” on page 12.

A forward slash (/)

The topic level separator. Use the ‘/’ character to structure the topic into a
topic tree.

Avoid empty topic levels, ‘//’, if you can. These correspond to nodes in the
topic hierarchy with no topic string. A leading or trailing ‘/’ in a topic
string corresponds to a leading or trailing empty node and should be
avoided too.

The hash sign (#)

Used in combination with ‘/’ to construct a multilevel wild card in
subscriptions. Take care using ‘#’ adjacent to ‘/’ in topic strings used to
name published topics. “Examples of topic strings” on page 12 shows a
sensible use of ‘#’.

The strings ‘.../#/...’, ‘#/...’ and ‘.../#’ have a special meaning in
subscription topic strings. The strings match all topics at one or more
levels in the topic hierarchy. Thus if you created a topic with one of those
sequences, you could not subscribe to it, without also subscribing to all
topics at multiple levels in the topic hierarchy.

The plus sign (+)

Used in combination with ‘/’ to construct a single-level wildcard in
subscriptions. Take care using ‘+’ adjacent to ‘/’ in topic strings used to
name published topics.

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 11

The strings ‘.../+/...’, ‘+/...’ and ‘.../+’ have a special meaning in
subscription topic strings. The strings match all topics at one level in the
topic hierarchy. Thus if you created a topic with one of those sequences,
you could not subscribe to it, without also subscribing to all topics at one
level in the topic hierarchy.

Examples of topic strings
IBM/Business Area#/Results
IBM/Diversity/%African American

Wild card schemes
There are two wild card schemes used to subscribe to multiple topics. The choice
of scheme is a subscription option.

MQSO_WILDCARD_TOPIC
Select topics to subscribe to using the topic based wild card scheme.

MQSO_WILDCARD_CHAR
Select topics to subscribe to using the character based wild card scheme.

Subscriptions that were created prior to WebSphere MQ Version 7.0 use the
character based wild card scheme.

Examples
IBM/+/Results
#/Results
IBM/Software/Results
IBM/*ware/Results

Topic based wild card scheme:

Topic based wild cards allow subscribers to subscribe to more than one topic at a
time.

Topic based wildcards are a powerful feature of the topic system in WebSphere
MQ publish/subscribe. The multilevel wildcard and single level wildcard can be
used for subscriptions, but they cannot be used within a topic by the publisher of a
message.

The topic based wild card scheme allows you to select publications grouped by
topic level. You can choose for each level in the topic hierarchy, whether the string in
the subscription for that topic level must exactly match the string in the
publication or not. For example the subscription, IBM/+/Results selects all the
topics,
IBM/Software/Results
IBM/Services/Results
IBM/Hardware/Results

There are two types of wild card.

Multilevel wild card

v The multilevel wildcard is used in subscriptions. When used in a
publication it is treated as a literal.

v The multilevel wildcard character ″#″ is used to match any number of
levels within a topic. For example, using the example topic tree shown
above, if you subscribe to ″USA/Alaska/#″, you receive messages on
topics ″USA/Alaska″ and ″USA/Alaska/Juneau″.

12 WebSphere MQ: Publish/Subscribe User’s Guide

v The multilevel wildcard can represent zero or more levels. Therefore,
″USA/#″ can also match the singular ″USA″, where # represents zero
levels. The topic level separator is meaningless in this context, because
there are no levels to separate.

v The multilevel wildcard is only effective when specified on its own or
next to the topic level separator character. Therefore, ″#″ and ″USA/#″
are valid topics where the ″#″ character is treated as a wildcard.
However, although ″USA#″ is also a valid topic string, the ″#″ character
is not regarded as a wildcard and does not have any special meaning.
See “When topic based wild cards are not wild” on page 15 for more
information.

Single level wild card

v The multilevel wildcard in used in subscriptions. When used in a
publication it is treated as a literal.

v The single-level wildcard character ″+″ matches one, and only one, topic
level. For example, ″USA/+″ matches ″USA/Alabama″, but not
″USA/Alabama/Auburn″. Because the single-level wildcard matches
only a single level, ″USA/+″ does not match ″USA″.

v The single-level wildcard can be used at any level in the topic tree, and
in conjunction with the multilevel wildcard. The single-level wildcard
must be specified next to the topic level separator, except when it is
specified on its own. Therefore, ″+″ and ″USA/+″ are valid topics where
the ″+″ character is treated as a wildcard. However, although ″USA+″ is
also a valid topic string, the ″+″ character is not regarded as a wildcard
and does not have any special meaning. See “When topic based wild
cards are not wild” on page 15 for more information.

The syntax for the topic based wild card scheme, described in Topic based wild
card string, has no escape characters. Whether ‘#’ and ‘+’ are treated as wild cards
or not depends on their context. See “When topic based wild cards are not wild”
on page 15 for more information.

Note: The beginning and end of a topic string is treated in a special way. Using $
to denote the end of the string, then $#/... is a multilevel wild card, and $/#/...
is an empty node at the root, followed by a multilevel wild card.

Topic based wild card string

�� �
(1)

Body
Left delimiter Right delimiter

Only delimiters

��

Body:

Topic level name
Body delimiter

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 13

Topic level name:

(2)
Any Unicode character except /

Only delimiters:

(3) (4) (5)
/

#
+ +

(6)
#

(7)
+

Notes:

1 A null or zero length topic string is invalid

2 You are advised not to use any of *, ?, % in level name strings for
compatibility between char based and topic based wildcard schemes.

3 These cases are equivalent to the pattern.

4 / with no wild cards matches a single empty topic.

5 These cases are equivalent to the pattern.

6 Match every topic.

7 Match every topic where there is only one level.

Left delimiter:

(1)
/

(2)
#/

(3)
+/

Body delimiter:

�

�

�

(4)
/
#/

(2)
/#/
+/

(3)
/+/

Right delimiter:

14 WebSphere MQ: Publish/Subscribe User’s Guide

(5)
/

(2)
/#

(3)
/+

Notes:

1 The topic string starts with an empty topic

2 Matches zero or more levels. Multiple multi-level match strings have the
same affect as one multi-level match string.

3 Matches exactly one level.

4 // is an empty topic - a topic object with no topic string.

5 The topic string ends with an empty topic

When topic based wild cards are not wild

The wildcard characters ″+″ and ″#″ have no special meaning when they are mixed
with other characters (including themselves) in a topic level.

This means that topics that contain ″+″ or ″#″ together with other characters in a
topic level can be published.

For example, consider the following two topics:
1. level0/level1/+/level4/#
2. level0/level1/#+/level4/level#

In the first example, the characters ″+″ and ″#″ are treated as wildcards and are
therefore not valid in a topic string that is to be published to but are valid in a
subscription.

In the second example, the characters ″+″ and ″#″ are not treated as wildcards and
therefore the topic string can be both published and subscribed to.

Examples
IBM/+/Results
#/Results
IBM/Software/Results

Character based wild card scheme:

The character based wild card scheme allows you to select topics based on
traditional character matching.

You can select all topics at multiple levels in a topic hierarchy using the string
‘*’. This is equivalent to using the topic based wild card string ‘#’

x/*/y is equivalent to x/#/y in the topic based scheme, and selects all topics in the
topic hierarchy between levels x and y, where x and y are topic names that are not
in the set of levels returned by the wild card.

/+/ in the topic based scheme has no exact equivalent in the character based
scheme. IBM/*/Results would also select IBM/Patents/Software/Results. Only if

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 15

the set of topic names at each level of the hierarchy are unique, can you always
construct queries with the two schemes that yield identical matches.

Used in a general way, * and ? in the character based scheme have no equivalents
in the topic based scheme. The topic based scheme does not perform partial
matching using wild cards. The character based wild card subscription
IBM/*ware/Results has no topic based equivalent.

Note: Matches using character wild card subscriptions are slower than matches
using topic based subscriptions.

Character based wild card string

�� � V6 literal
% *

?
(1)

%
(2)

*
(3)

?

��

V6 literal:

Any unicode character except *, ? and %

Notes:

1 Means ″Escape the following character″, so that it is treated as a literal. %
must be followed by either *, ? or %. See “Examples of topic strings” on page
12.

2 Means ″Match zero or more characters″ in a subscription.

3 Means ″Match exactly one character″ in a subscription.

Examples
IBM/*/Results
IBM/*ware/Results

Constructing topic names
A topic is constructed from the subtopic identified in a topic object, and a subtopic
provided by an application. You can use either subtopic as the topic name, or
combine them to form a new topic name.

In an MQI program the full topic name is created by MQOPEN. It is composed of
two fields:
1. The TOPICSTR attribute of the topic object.
2. The ObjectString parameter defining the subtopic provided by the application.

The resulting topic string is returned in the ResObjectString parameter.

16 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|
|

|
|

|

|

|

These fields are considered to be present if the first character of each field is
neither a blank nor a null character, and the field length is greater than zero. If
only one of the fields is present, it is used unchanged as the topic name. If neither
field has a value the call fails with reason code MQRC_TOPIC_STRING_ERROR.

If both fields are present, a ’/’ character is inserted between the two elements of
the resultant combined topic name.

Table 1 shows examples of topic string concatenation:

Table 1. Topic string concatenation examples

TOPICSTR ObjectString Full topic name Comment

Football/Scores '' Football/Scores The TOPICSTR is
used alone

'' Football/Scores Football/Scores The ObjectString is
used alone

Football Scores Football/Scores A ’/’ character is
added at the
concatenation point

Football /Scores Football//Scores An ’empty node’ is
produced between
the two strings

/Football Scores /Football/Scores The topic starts with
an ’empty node’

Example code snippet

This code snippet, extracted from the example program, Simple WebSphere MQ
publisher to a variable topic, combines a topic object with a variable topic string.
MQOD td = {MQOD_DEFAULT}; /* Topic Descriptor */
td.ObjectType = MQOT_TOPIC; /* Object is a topic */
td.Version = MQOD_VERSION_4; /* Descriptor needs to be V4 */
strncpy(td.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);
td.ObjectString.VSPtr = topicString;
td.ObjectString.VSLength = (MQLONG)strlen(topicString);
td.ResObjectString.VSPtr = resTopicStr;
td.ResObjectString.VSBufSize = sizeof(resTopicStr)-1;
MQOPEN(Hconn, &td, MQOO_OUTPUT | MQOO_FAIL_IF_QUIESCING, &Hobj, &CompCode, &Reason);

Topic trees
Each topic that you define is an element, or node, in the topic tree. The topic tree
can either be empty to start with or contain topics that have been defined
previously using MQSC or PCF commands. You can define a new topic either by
using the create topic commands or by specifying the topic for the first time in a
publication or subscription.

Although you can use any character string to define a topic’s topic string, it is
advisable to choose a topic string that fits into a hierarchical tree structure.
Thoughtful design of topic stings and topic trees can help you with the following
operations:
v Subscribing to multiple topics.
v Establishing security policies.

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 17

|
|
|
|

|
|

|

||

||||

||||
|

||||
|

||||
|
|

||||
|
|

||||
|
|

|

|
|

|
|
|
|
|
|
|
|
|

Although you can construct a topic tree as a flat, linear structure, it is better to
build a topic tree in a hierarchical structure with one or more root topics.

Figure 3 shows an example of a topic tree with one root topic.

Each character string in the figure represents a node in the topic tree. A complete
topic string is created by aggregating nodes from one or more levels in the topic
tree. Levels are separated by the ″/″ character. The format of a fully specified topic
string is: ″root/level2/level3″.

The valid topics in the topic tree shown in Figure 3 are:
″USA″
″USA/Alabama″
″USA/Alaska″
″USA/Alabama/Auburn″
″USA/Alabama/Mobile″
″USA/Alabama/Montgomery″
″USA/Alaska/Juneau″

When you design topic strings and topic trees, remember that the queue manager
does not interpret, or attempt to derive meaning from, the topic string itself. It
simply uses the topic string to send selected messages to subscribers of that topic.

The following principles apply to the construction and content of a topic tree:
v There is no limit to the number of levels in a topic tree.
v There is no limit to the length of the name of a level in a topic tree.
v There can be any number of ″root″ nodes; that is, there can be any number of

topic trees.

Administrative topic objects
An administrative topic object is a WebSphere MQ object that allows you to assign
specific, non-default attributes to topics.

Figure 4 on page 19 shows how a high-level topic of ’Sport’ divided into separate
topics covering different sports can be visualized as a topic tree:

USA

Alabama Alaska

Auburn Mobile Montgomery Juneau

Figure 3. Example of a topic tree

18 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|

|
|
|

Figure 5 shows how the topic tree can be divided further, to separate different
types of information about each sport:

To create the topic tree illustrated, no administrative topic objects need be defined.
If each of the nodes in this tree are defined by a topic string created in a publish or
subscribe operation, each topic in the tree inherits its attributes from its parent.
Attributes are inherited from the parent topic object because by default all
attributes are set to ASPARENT. In this example, therefore, every topic has the
same attributes as the ’Sport’ topic, which again, assuming no administrative topic
object exists for this node, inherits its attributes from SYSTEM.BASE.TOPIC.

Administrative topic objects can be used to define specific attributes for particular
nodes in the topic tree. In the following example, the administrative topic object is
defined to set the durable subscriptions attribute (DURSUB) of the soccer topic to NO:
DEFINE TOPIC(FOOTBALL.EUROPEAN)

TOPICSTR('Sport/Soccer')
DURSUB(NO)
DESCR('Administrative topic object to disallow durable subscriptions')

The topic tree can now be visualized as:

TennisGolf

Sport

Soccer

Figure 4. Visualization of a topic tree

ResultsRankingsFixtures Results

TennisGolf

Sport

Tournaments

Soccer

Figure 5. Extended topic tree

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 19

|

|
|
|

|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

Any applications subscribing to topics beneath Soccer in the tree can still use the
topic strings they used before the administrative topic object was added. However,
an application can now be written to subscribe using the object name
FOOTBALL.EUROPEAN, instead of the string /Sport/Soccer. For example, to subscribe
to /Sport/Soccer/Results, an application can specify MQSD.ObjectName as
FOOTBALL.EUROPEAN and MQSD.ObjectString as Results.

This feature allows you to hide part of the topic tree from application developers.
If you define an administrative topic object at a particular node in the topic tree,
application developers can define their own topics below this, without needing to
have knowledge of topics above the administrative topic object.

Inheriting attributes

If a topic tree has many administrative topic objects, each administrative topic
object, by default, inherits its attributes from its closest parent administrative topic
node. The previous example has been extended in Figure 7:

If all topics at and below /Sport/Soccer need to have the attribute DURSUB set to NO,
the only change that needs to be made is to alter the DURSUB attribute of
FOOTBALL.EUROPEAN to NO.

ResultsRankingsFixtures Results

TennisGolf

Sport

Tournaments

FOOTBALL.EUROPEAN

DURSUBS(NO)

Soccer

Figure 6. Visualization of an administrative topic object associated with the Sport/Soccer topic

PLAYERS.PLAYERB

DURSUBS(ASPARENT)

PlayerB

ResultsMatchupsResultsMatchups

PLAYERS.PLAYERA

DURSUBS(ASPARENT)

PlayerA

TENNIS

DURSUBS(ASPARENT)

TennisGolf

Sport

Fixtures Results

TEAMS.TEAMX

DURSUBS(ASPARENT)

TeamX

Fixtures Results

TEAMS.TEAMY

DURSUBS(ASPARENT)

TeamY

FOOTBAL.EUROPEAN

DURSUBS(YES)

Soccer

Figure 7. Topic tree with several administrative topic objects

20 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|
|

This attribute can be set using the following command:
ALTER TOPIC(FOOTBALL.EUROPEAN) DURSUB(NO)

Because all the administrative topic objects below Sport/Soccer have the DURSUB
attribute set to the default value ASPARENT, all topics below Sport/Soccer will
inherit the value NO for their DURSUB attribute.

All the administrative topic objects at and below Sport/Tennis have the value
ASPARENT for the attribute DURSUB. All topics at and below Sport/Tennis, therefore,
will inherit DURSUB from the SYSTEM.BASE.TOPIC object and will have the value of
YES.

Trying to make a durable subscription to the topic Sport/Soccer/TeamX/Results
would now fail; however, trying to make a durable subscription to
Sport/Tennis/PlayerB/Results would succeed.

SYSTEM.BASE.TOPIC
Base topic for ASPARENT resolution. If a particular topic has no parent
administrative topic objects, or those parent objects also have ASPARENT, any
remaining ASPARENT attributes are inherited from this object.

The default values of the SYSTEM.BASE.TOPIC are:

Table 2. Default values of SYSTEM.BASE.TOPIC

Parameter Value

TOPICSTR ″

DEFPRTY 0

DEFPRESP SYNC

DEFPSIST NO

DESCR ’Base topic for resolving attributes’

DURSUB YES

MDURMDL SYSTEM.DURABLE.MODEL.QUEUE

MNDURMDL SYSTEM.NDURABLE.MODEL.QUEUE

MASTER YES

NPMSGDLV ALLAVAIL

PMSGDLV ALLDUR

PUB ENABLE

SUB ENABLE

If this object does not exist, its default values are still used by WebSphere MQ for
ASPARENT attributes that are not resolved by parent topics further up the topic
tree.

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 21

|

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

|
|
|

22 WebSphere MQ: Publish/Subscribe User’s Guide

Chapter 3. Distributed publish/subscribe

This section discusses how publish/subscribe messaging can be performed
between queue managers, and the 2 different queue manager topologies that can
be used to connect queue managers, clusters and hierarchies.

Queue managers can communicate with other queue managers in your WebSphere
MQ publish/subscribe system, so that subscribers can subscribe to one queue
manager and receive messages that were initially published to another queue
manager. This is illustrated in Figure 8.

Figure 8 shows a publish/subscribe system with two queue managers.
v Queue manager 2 is used by Publisher 4 to publish weather forecast

information, using a topic of Weather, and information about traffic conditions
on major roads, using a topic of Traffic.

v Subscriber 4 also uses this queue manager, and subscribes to information about
traffic conditions using topic Traffic.

v Subscriber 3 also subscribes to information about weather conditions, even
though it uses a different queue manager from the publisher. This is possible
because the queue managers are linked to each other.

How does distributed publish/subscribe work?
WebSphere MQ publish/subscribe uses proxy subscriptions to ensure that
subscribers can receive messages that are published to remote queue managers.

Distributed publish/subscribe uses the same components as distributed queuing to
connect networks of queue managers and consequently, the applications that
connect to those queue managers. To find out more about messaging between
queue managers and the components involved making connections between queue
managers see the Intercommunication documentation.

Queue Manager 1 Queue Manager 2

Subscriber 3
Topics:

Sport, Weather

Subscriber 2
Topic:
Films

Publisher 1
Topic:
Sport

Publisher 2
Topic:
Stock

Publisher 3
Topics:

Films, TV

Subscriber 1
Topics:

Sport, Stock

Subscriber 4
Topics:
Traffic

Publisher 4
Topics:

Weather, Traffic

Figure 8. Publish/subscribe example with two queue managers

© Copyright IBM Corp. 1996, 2009 23

|

|
|
|
|

|

|

|

|

|
|

|
|
|
|
|

Subscribers need not do anything beyond the standard subscription operation in a
distributed publish/subscribe system. When a subscription is made on a queue
manager, the queue manager manages the process by which the subscription is
propagated to connected queue managers. A subscriptions flows to all queue
managers in the network, where proxy subscriptions are created to ensure that
publications get routed back to the queue manager where the subscription was
created originally. This is shown in Figure 9.

A publication is propagated to a remote queue manager only if a subscription to
that topic exists on that remote queue manager.

A queue manager consolidates all the subscriptions that are created on it, whether
from local applications or from remote queue managers. In turn, the queue
manager creates subscriptions for these topics with its neighbors, unless a
subscription already exists. This is shown in Figure 10 on page 25.

When an application publishes information, the receiving queue manager forwards
it (possibly through one or more intermediate queue managers) using transmission
queues to any applications that have valid subscriptions on remote queue
managers. This is shown in Figure 11 on page 25.

Subscriber 1

4 - s
ub

sc
rip

tio
n

3 -
 su

bs
cr

ipt
ion

3 - s
ub

sc
rip

tio
n

2 - subscription

HQ

Europe

London

Asia
1 - subscription

Figure 9. Propagation of subscriptions through a queue manager network. Subscriber 1
registers a subscription for a particular topic on the Asia queue manager (1). The subscription
for this topic is forwarded to all other queue managers in the network (2,3,4).

24 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
||

When a queue manager sends any publications or subscriptions to another queue
manager, it sets its own user ID in the message, and uses its own authority to put
the message. This means that the queue manager must have the authority to put
messages onto other queue managers’ queues (unless the channel is set up to put
incoming messages with the message channel agent’s authority). This also means
that all authorization checks are performed at the publisher’s or subscriber’s local
queue manager.

The interconnected nature of publish/subscribe queue managers means that it
takes some time for the proxy subscription to propagate around all nodes in the
network. The consequence of this is that once a subscription has been made,
remote publications are not necessarily received immediately; this can be
addressed by using PROXYSUB(FORCE) as described in “More on routing
mechanisms” on page 26.

Subscriber 1

Subscriber 2

6 - subscriptionsu
bs

cr
ipt

ion

su
bs

cr
ipt

ion

HQ

Europe

London

Asia
subscription

5 - subscription

subscription

Figure 10. Multiple subscriptions. Subscriber 2 registers a subscription, to the same topic as
in Figure 9 on page 24, on the HQ queue manager (5). The subscription for this topic is
forwarded to the Asia queue manager, so that it is aware that subscriptions exist elsewhere
on the network (6). The subscription does not have to be forwarded to the Europe queue
manager, because a subscription for this topic has already been registered (step 3 in
Figure 9 on page 24).

Subscriber 1
7 - publication

Subscriber 2

Publisher

8 - p
ub

lic
ati

on

9 - publication

9 - publication

10 - publication

subscription

su
bs

cr
ipt

ion

subscription

subscription

HQ

Europe

London

Asia

su
bs

cr
ipt

ion

Figure 11. Propagation of publications through a queue manager network. A publisher sends
a publication, on the same topic as in Figure 10, to the Europe queue manager (7). A
subscription for this topic exists from HQ to Europe, so the publication is forwarded to the HQ
queue manager (8). However, no subscription exists from London to Europe (only from
Europe to London), so the publication is not forwarded to the London queue manager. The
HQ queue manager sends the publication directly to subscriber 2 and to the Asia queue
manager (9), from where it is forwarded to subscriber 1 (10).

Chapter 3. Distributed publish/subscribe 25

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

The subscription operation completes when the proxy subscription has been put on
the appropriate transmission queue for each directly connected queue manager,
and will not include the propagation of the proxy subscription out to the rest of
the topology. Proxy subscriptions are associated with the queue manager name that
created them. If one queue manager is attached, by a hierarchical connection or as
part of a publish/subscribe cluster, to more than one queue manager with the
same queue manager name, this can result in publications failing to reach one or
all of the identically named remote queue managers. To avoid this problem, as
with point-to-point messaging, give queue managers unique names, especially if
they are directly or indirectly connected in a WebSphere MQ network.

Within a distributed publish/subscribe network the flow of publications and
subscriptions can be controlled, and if appropriate, restricted, using publication
and subscription scope.

Proxy subscription aggregation and publication aggregration
Distributed publish/subscribe publications and proxy subscriptions are aggregated
to minimize the quantity of messages passing between publish/subscribe queue
managers.

Proxy subscription aggregation
Proxy subscriptions are aggregated using a simple duplicate elimination
system. For a given resolved topic string, a proxy subscription is sent to
directly connected publish/subscribe queue managers on the first local
subscription or received proxy subscription.

Subsequent subscriptions make use of this existing proxy subscription. The
proxy subscription is cancelled only after the last local subscription or
received proxy subscription is cancelled.

Note: If PROXYSUB(FORCE) is set, a proxy subscription might be sent
before the first local subscription or received proxy subscription, and will
not be cancelled even after the last local subscription or received proxy
subscription is cancelled.

Publication aggregation
It is possible for more than one proxy subscription to match the topic
string of a single publication when the proxy subscriptions contain
wildcards. If a message is published on a queue manager that matches two
or more proxy subscriptions created by a single connected queue manager,
only one copy of the publication is forwarded to the remote queue
manager to satisfy the multiple proxy subscriptions.

More on routing mechanisms
Publish everywhere is an alternative routing mechanism to proxy
subscription-forwarding. Publish everywhere works by publishing to all directly
connected queue managers regardless of proxy subscriptions. Publish everywhere
is not supported in publish/subscribe clusters or hierarchies, but a similar
technique is available by using the PROXYSUB attribute for a high-level topic
object.

PROXYSUB attribute for a high-level topic object is explained in the following
comparison:

Publish everywhere
If publish everywhere routing is available in a publish/subscribe cluster,

26 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|
|

there is no need for any proxy subscriptions and all publications are
published to every member of the publish/subscribe clusters.

The advantages of publish everywhere are the removal of latency
introduced by the propagation of proxy subscriptions, and the removal of
the network overhead caused by proxy subscription propagation where the
subscription is frequently created and deleted.

Proxy-subscription forwarding
To achieve a similar behavior to publish everywhere, alter the topic object,
as follows:
ALTER TOPIC(“SYSTEM.BASE.TOPIC”) PROXYSUB(FORCE)

This forces the sending of a wildcard proxy subscription, for the topic
string associated with this topic object, to every directly connected member
of the publish/subscribe topology, regardless of whether any local
subscriptions have been made.

When this forced proxy subscription has been propagated throughout the
topology, any new subscriptions immediately receive any publications from
other connected queue manager, without suffering latency. Proxy
subscriptions for these new subscriptions are still propagated to each of the
directly connected publish/subscribe queue managers; preventing a break
in flow of publications if this behavior is turned off later.

Wildcard rules
Wildcards in proxy subscriptions are converted to use topic wildcards.

When a subscription for a wildcard is received, it can be either a character, as used
by WebSphere MQ Version 6.0, or a topic, as used by WebSphere Message Broker
Version 6.0 and WebSphere MQ Version 7.0 as follows:
v Character wildcards use ‘*’ to represent any character (including ‘/’).
v Topic wildcards use ‘#’ to represent a portion of the topic space between ‘/’

characters.

In WebSphere MQ Version 7.0, all proxy subscriptions are converted to use topic
wildcards. To achieve this, if a character wildcard is found, it is replaced with a ‘#’
character, back to the nearest ‘/’. For example, ‘/aaa/bbb/c*d’ is converted to
‘/aaa/bbb/#’. This results in remote queue managers sending slightly more
publications than were explicitly subscribed to, but these are filtered out by the
local queue manager as it delivers the publications to its local subscribers.

Controlling the flow of publications and subscriptions
Scope is separated into publication and subscription scope so that queue managers
can pass publications into, but not out of the publish/subscribe cluster, or out of,
but not into the publish/subscribe cluster.

Publication scope
The scope of a publication controls whether queue managers distribute the
publication to remote subscribers.

The PUBSCOPE topic attribute can be used to determine the scope of publications
made to a specific topic. You can set the attribute to one of the following values:

Chapter 3. Distributed publish/subscribe 27

|
|

|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
|
|

|

|

|
|
|

|

|
|

|
|
|
|
|
|

|

|
|
|

|

|
|

|
|

QMGR
The publication is delivered only to local subscribers. These publications
are called local publications. Local publications are not forwarded to remote
queue managers and therefore are not received by remote queue managers’
subscribers.

ALL The publication is delivered to local subscribers and remote subscribers
through directly connected queue managers. These publications are called
global publications.

Publishers can also specify whether a publication is local or global using the
MQPMO_SCOPE_QMGR put message option, if this option is used, it overrides
any behavior that has been set using the PUBSCOPE topic attribute.

Subscription scope
The scope of a subscription controls whether a subscription receives publications
made on remote queue managers. You use the SUBSCOPE topic attribute to
administer the scope of subscriptions.

Subscribers can decide to receive only local publications using the
MQSO_SCOPE_QMGR subscription option. The MQSO_SCOPE_QMGR option
determines whether a proxy subscription is created on remote queue managers in
the network so that they are aware of the subscription and route publications to
the local queue manager. If this option is not used, the subscriber will receive both
local and global publications.

You can set the attribute to one of the following values:

QMGR
The subscription is not propagated to directly connected queue managers,
and receives publications only from local publishers.

ALL The subscription is propagated to directly connected queue managers, and
receives publications from local publishers and remote publishers through
directly connected queue managers.

Overlapping topics
The scope of publications and subscriptions is defined in both local topic objects,
as shown in the following information, and cluster topic objects.

For the following local topic definitions, a local application that subscribes using
topic string ’/football/#’ will not receive remote publications on ’football/myteam’:
DEFINE TOPIC(A) TOPICSTR('/football') SUBSCOPE(ALL)
DEFINE TOPIC(B) TOPICSTR('/football/myteam') SUBSCOPE(QMGR)

Note: Subscribers can restrict SUBSCOPE, so that remote publications are not
received, by using MQSO_SCOPE_QMGR.

Retained publications
It is not good practice for two or more applications to publish retained
publications to the same topic on the same or different queue managers within a
single publish/subscribe topology.

28 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|
|

||
|
|

|
|
|

|

|
|
|

|
|
|
|
|
|

|

|
|
|

||
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|

It is possible that different retained publications could be active at different queue
managers for the same topic, leading to unexpected behavior. As multiple proxy
subscriptions are distributed, multiple retained publications could be received.

Distributed publish/subscribe security
Distributed publish/subscribe internal messages such as proxy subscriptions and
publications are put to distributed publish/subscribe system queues
(SYSTEM.INTER.QMGR.CONTROL, for example) by the receiving channel using
normal channel security rules. The information and diagrams in this topic
highlight the various processes and user IDs involved in the delivery of these
messages.

Local access control

Access to topics for publication and subscriptions is governed by local security
definitions and rules that are described in Topic objects authorization. On z/OS, no
local topic object is required to establish access control. This is also true on
distributed systems, so administrators can choose to apply access control to
clustered topic objects irrespective of whether they exist in the cluster yet.

System administrators are responsible for access control on their local system and
trust other members of the hierarchy or cluster collectives to which they are
attached to be responsible for their own access control policy. It might not be
necessary to impose any access control, or access control can be defined on high
level objects in the topic tree, or fine level access control can be defined for each
subdivision of the topic name space. Because access control is defined for each
separate machine it is likely to be burdensome if fine level control is needed.

Making a proxy subscription

Trust for an organization to connect its queue manager to your queue manager is
confirmed by normal channel authentication means. If that trusted organization is
then allowed to do distributed publish/subscribe, an authority check is done when
the channel puts the message to a distributed publish/subscribe queue; for
example, SYSTEM.INTER.QMGR.CONTROL. The user ID for the queue authority
check depends on the PUTAUT value of the receiving channel (for example, the
user ID of the channel, MCAUSER, message context, and so on, depending on
value and platform). For more information on channel security, see WebSphere MQ
Security.

Proxy subscriptions will be made with the user ID of the distributed
publish/subscribe agent on the remote queue manager (QM2 in Figure 12 on page
30) which can then easily be granted access to local topic object profiles, because
that user ID is defined in the system and there are therefore no domain conflicts.

Chapter 3. Distributed publish/subscribe 29

|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

Sending back remote publications

When a publication is made on the publishing queue manager, a copy satisfies the
proxy subscription that was made, and the context of that message contains the
context of the user ID which made the subscription, QM2 in Figure 13 on page 31.
The proxy subscription is made with a destination queue that is a remote queue, so
the publication message is resolved onto a transmission queue.

Again, trust for an organization to connect its queue manager, QM2, to another
queue manager, QM1, is confirmed by normal channel authentication means. If
that trusted organization is then allowed to do distributed publish/subscribe, an
authority check is done when the channel puts the publication message to the
distributed publish/subscribe publication queue SYSTEM.INTER.QMGR.PUBS. The
user ID for the queue authority check depends on the PUTAUT value of the
receiving channel (for example, the user ID of the channel, MCAUSER, message
context, and so on, depending on value and platform). For more information on
channel security, see WebSphere MQ Security.

When the publication message reaches the subscribing queue manager, another
MQPUT to the topic is done under the authority of that queue manager and the
context with the message is replaced by the context of each of the local subscribers
as they are each given the message.

Subscribing QMgr
(USER:QM1)

Proxying QMgr
(USER:QM2)

XmitQ ControlQ

Channel (MCAUSER:CHL1)
PUTAUT(DEF)

Dist Pub/Sub Agent
(USER:QM1)

Dist Pub/Sub Agent
(USER:QM2)

MQSUB App
(USER:APP1)

'ProxySub req msg'
MD.UserID = MQ1
not APP1

Q access
UserID = CHL1

Proxy MQSub
SubUserID = MQ2
not APP1

Figure 12. Proxy subscription security, making a subscription

30 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

This means that, on a system where little has been considered regarding security,
the distributed publish/subscribe processes are likely to be running under a user
ID in the mqm group, the MCAUSER parameter on a channel will be blank (the
default), and messages are delivered to the various system queues as required.
This makes it easy to set up a proof of concept to demonstrate distributed
publish/subscribe.

On a system where security is more seriously considered, these internal messages
are subject to the same security controls as any message going over the channel.

If the channel is set up with a non-blank MCAUSER and a PUTAUT value
specifying that MCAUSER should be checked, then the MCAUSER in question
must be granted access to SYSTEM.INTER.QMGR.* queues. Where there are
multiple different remote queue managers with channels running under different
MCAUSER ids (for instance, when multiple hierarchical connections are configured
on a single queue manager), then all those user IDs need to be granted access to
the SYSTEM.INTER.QMGR.* queues.

If the channel is set up with a PUTAUT value specifying that the context of the
message is used, then access to the SYSTEM.INTER.QMGR.* queues are checked
based on the user ID inside the internal message. Because all these messages are
put by the distributed publish/subscribe agent’s user ID from the queue manager
that is sending the internal message, or publication message (see Figure 13), it is
not too large a set of user IDs to grant access to the various system queues (one
per remote queue manager), should you want to set up your distributed
publish/subscribe security in this way. It still has all of the same issues that
channel context security always has; that of the different user ID domains and the
fact that the user ID in the message might not be defined on the receiving system.
However, it is a perfectly acceptable way to run if required.

System queue security in the WebSphere MQ z/OS System Setup Guide provides a list
of queues and the access that is required to securely set up your distributed
publish/subscribe environment. If any internal messages or publications fail to be
put due to security violations, the channel writes a message to the log in the
normal manner and the messages can be sent to the dead-letter queue according to
normal channel error processing.

Subscribing QMgr
(USER:QM1)

Publishing QMgr
(USER:QM2)

ControlQ XmitQ

Channel (MCAUSER:CHL2)
PUTAUT(DEF)

Dist Pub/Sub Agent
(USER:QM1)

Dist Pub/Sub Agent
(USER:QM2)

MQSUB App
(USER:APP1)

MQGET...

MQPUT App
(USER:APP2)

'Publication msg'
MD.UserID = MQ2
not APP2
Subscriber context

Delivered publication
MD.UserID = APP1
Subscriber context

Q access
UserID = CHL2

Figure 13. Proxy subscription security, forwarding publications

Chapter 3. Distributed publish/subscribe 31

|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

All inter-queue manager messaging for the purposes of distributed
publish/subscribe runs using normal channel security. No special casing is
required in the security manager on behalf of the distributed publish/subscribe
component.

For information on restricting publications and proxy subscriptions at the topic
level, see Topic objects authorization.

Using default user IDs with a queue manager hierarchy

If you have a hierarchy of queue managers running on different platforms and are
using default user IDs, note that these default user IDs differ between platforms
and might not be known on the target platform. As a result, a queue manager
running on one platform rejects messages received from queue managers on other
platforms with the reason code MQRC_NOT_AUTHORIZED.

To avoid this, grant user access to the queues and topic objects (as a minimum,
that is: SYSTEM.BROKER.DEFAULT.STREAM and
SYSTEM.BROKER.ADMIN.STREAM), to the default user IDs used on other
platforms in your publish/subscribe hierarchy.

The default user IDs are as follows:

Windows MUSR_MQADMIN

UNIX systems mqm

i5/OS QMQM

z/OS The channel initiator address space user ID

User IDs can be case sensitive. The originating queue manager (if Windows, UNIX
or i5/OS) will force the user ID to be all uppercase. The receiving queue manager
(if Windows or UNIX) will force the user ID to be all lowercase. Therefore, all user
IDs created on UNIX will need to be created in their lowercase form. However, if a
message exit has been installed, the forcing to uppercase or lowercase will not take
place and care must be taken to understand how the message exit will process the
user ID.
v On UNIX and Windows ensure the user IDs are specified in lowercase.
v On i5/OS and z/OS ensure the user IDs are specified in uppercase.

Distributed publish/subscribe system queues
Four system queues are used by queue managers when they do publish/subscribe
messaging. You normally need to be aware of their existence only for problem
determination or capacity planning purposes.

Table 3. Publish/subscribe system queues

System queue Purpose

SYSTEM.INTER.QMGR.CONTROL WebSphere MQ distributed publish/subscribe control
queue

SYSTEM.INTER.QMGR.FANREQ WebSphere MQ distributed publish/subscribe
internal proxy subscription fan-out process input
queue

SYSTEM.INTER.QMGR.PUBS WebSphere MQ distributed publish/subscribe
publications

32 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|

|
|

|

|
|
|
|
|

|
|
|
|

|

|||

||

||

||
|

|
|
|
|
|
|
|

|

|

|
|

|
|
|

||

||

||
|

||
|
|

||
|

Table 3. Publish/subscribe system queues (continued)

System queue Purpose

SYSTEM.HIERARCHY.STATE WebSphere MQ distributed publish/subscribe
hierarchy relationship state

On z/OS, you set up the necessary system objects when you create the queue
manager, by including the CSQINS4R and CSQINS4G samples in the CSQINP2
initialization input data set. For more information, see the WebSphere MQ for z/OS
System Setup Guide.

The attributes of the distributed publish/subscribe system queues are as displayed
in Table 4.

Table 4. Attributes of publish/subscribe system queues

Attribute Value

DEFPSIST Yes

DEFSOPT This takes the value EXCL.

MAXMSGL On AIX®, HP-UX, Linux®, i5/OS®, Solaris and Windows® this takes the
value of MAXMSGL parameter of the ALTER QMGR command.

On z/OS this takes the value 100 MB (104 857 600 bytes).

MAXDEPTH On AIX, HP-UX, Linux, i5/OS, Solaris, Windows and z/OS this takes the
value 999 999 999.

SHARE This is a keyword that specifies that the queue can be shared for GET.

STGCLASS On z/OS this takes the value ‘SYSTEM’.

On other platforms this attribute is not used.

Publish/subscribe system queue errors
Errors can occur when distributed publish/subscribe queue manager queues are
unavailable.

If the fan-out request queue SYSTEM.INTER.QMGR.FANREQ is unavailable, the
MQSUB API receives reason codes and error messages written to the error log, on
occasions where proxy subscriptions need to be delivered to directly connected
queue managers.

If the hierarchy relationship state queue SYSTEM.HIERARCHY.STATE is
unavailable, an error message is written to the error log and the publish/subscribe
engine is put into COMPAT mode.

If any other of the SYSTEM.INTER.QMGR queues are unavailable, an error
message is written to the error log, and although function is not disabled, it is
likely that publish/subscribe messages will build up on queues on remote queue
managers.

If the transmission queue to a parent, child or publish/subscribe cluster queue
manager is unavailable:
1. The MQPUT API receives reason codes and the publications are not delivered.

Chapter 3. Distributed publish/subscribe 33

|

||

||
|
|

|
|
|
|

|
|

||

||

||

||

||
|

|

||
|

||

||

|
|

|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|

2. Received inter-queue manager publications are backed out to the input queue,
and subsequently re-attempted, being placed on the dead letter queue if the
backout threshold is reached.

3. Proxy subscriptions are backed out to the fanout request queue, and
subsequently attempted again, being placed on the dead letter queue if the
backout threshold is reached; in which case the proxy subscription will not be
delivered to any connected queue manager.

4. Hierarchy relationship protocol messages fail, and the connection status is
marked as ERROR on the PUBSUB command.

Publish/subscribe topologies
A publish/subscribe topology consists of queue managers and the connections
between them, that support publish/subscribe applications.

A publish/subscribe application can consist of a network of queue managers
connected together. The queue managers can all be on the same physical system,
or they can be distributed over several physical systems. By connecting queue
managers together, publications can be received by an application using any queue
manager in the network.

This provides the following benefits:
v Client applications can communicate with a nearby queue manager rather than

with a distant queue manager, thereby getting better response times.
v By using more than one queue manager, more subscribers can be supported.

You can arrange queue managers that are doing publish/subscribe messaging in
two different ways, clusters and hierarchies. For more information about these two
topologies and to find out which is most appropriate for you, refer to the
information in this chapter.

It is possible to use both topologies in combination by joining clusters together in a
hierarchy.

Publish/subscribe clusters
You can improve the performance of your publish/subscribe network by arranging
your queue managers in a publish/subscribe cluster. A publish/subscribe cluster
consists of a set of queue managers connected together, with direct channel links
between all members, to form all or part of a publish/subscribe network.

A publish/subscribe cluster is a set of queue managers that are fully interconnected
and form part of a multi-queue manager network for publish/subscribe
applications. A cluster that is used for publish/subscribe messaging is no different
from a standard WebSphere MQ cluster. As such, the queue managers within the
publish/subscribe cluster can exist on physically separate computers and each pair
of queue managers is connected together by a pair of channels. For information
about how to plan and configure a WebSphere MQ cluster refer to WebSphere MQ
Queue Manager Clusters.

Using clusters in a publish/subscribe topology provides the following benefits:
v Messages destined for a specific queue manager in the same cluster are

transported directly to that queue manager and do not need to pass through an

34 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|

|
|
|
|

|
|

intermediate queue manager. This improves performance and optimizes
inter-queue manager publish/subscribe traffic, in comparison with a hierarchical
topology.

v There is no single point of failure in this topology. If one queue manager is not
available, publications and subscriptions are still able to flow through the rest of
the publish/subscribe system because each queue manager is directly connected
with each other.

v If your clients are geographically dispersed, you can set up a cluster in each
location, and connect the clusters (by joining a single queue manager in each
cluster) to optimize the flow of publications and subscriptions through the
network.

v You can group clients according to the topics to which they publish and
subscribe.
Clients that share common topics can connect to queue managers within a
cluster. The common publications are transported efficiently within the cluster,
because they pass through only queue managers that have at least one client
with an interest in those common topics.

v A subscribing application can connect to its nearest queue manager, to improve
its own performance. The queue manager receives all messages that match the
subscription registration of the client from all queue managers within the cluster.
The performance of a client application is also improved for other services that
are requested from this queue manager. A client application can use both
publish/subscribe and point-to-point messaging.

v The number of clients per queue manager can be reduced by adding more
queue manager to the cluster to share workload. This makes a publish/subscribe
cluster topology highly scalable.

When you create a cluster it is possible to create a loop causing messages to cycle
forever within the network, nothing will prevent you from doing this but you will
be made aware of it because of the fingerprint that is added by the queue manager
(stored as a message property).

A publish/subscribe cluster is created when a clustered topic is defined. This
definition is shared with all members of the cluster. This means that publications
on the clustered topic are shared with all members of the cluster.

When at least one clustered topic object is defined, all queue managers within the
cluster will be notified about each other.

If you have several queue managers in your publish/subscribe system, many
channels are required to connect these queue managers together. However, the
connections between queue managers can be created automatically to reduce the
administrative work load.

Cluster topics
You can cluster topics in a similar manner to cluster queues, although an
individual administrative topic object can be a member of only one cluster. Topic
objects do not have an equivalent to the CLUSNL (cluster namelist) attribute.

When a cluster topic is defined, the cluster topic object is published to the full
repositories. The full repositories then push all cluster topic definitions to all queue
managers within the cluster.

Chapter 3. Distributed publish/subscribe 35

|
|
|
|

|
|
|

At each queue manager a single topic space is constructed from the local and
cluster topic definitions. When an application subscribes to a topic that resolves to
a clustered topic, WebSphere MQ creates a proxy subscription and sends it, from
the queue manager to which the subscriber connected, to all members of the
cluster in which the clustered topic object is defined.

If a local and cluster topic definition exists for a single topic string, the local
definition is used. Where two or more cluster topic definitions, for a single topic
string, have differing attributes or exist in more than one cluster, a message is
written to the log and the most recently received cluster topic definition is used. It
is acceptable to define two or more cluster topic definitions with identical
attributes for a single topic string.

If you are working in clusters, and a single queue manager defines a local topic
object to override the behavior of a cluster topic object, this does not prevent other
queue managers in the cluster from sending proxy subscriptions to the queue
manager that defined the local topic object. To prevent publications being sent to
those proxy subscriptions, you need to specify PUBSCOPE(QMGR) on the local
topic object.

If the queue manager on which a cluster topic is defined is unavailable, you cannot
alter the cluster topic definition remotely. However, you can use the RESET
CLUSTER command to remove the queue manager from the cluster. You can
define an additional cluster topic definition on the same topic string at a different
queue manager within the cluster; if defined with differing attributes, this
overrides the previous definition and a message is written to the log. If the original
queue manager subsequently becomes available, its clustered topic object must
either be deleted or its definition updated to match the additional cluster
definition.

Cluster topic performance

The performance characteristics of cluster topics requires special consideration as it
differs from cluster queues, and is potentially a source of performance problems in
large or unbalanced clusters.

An important concept in asynchronous messaging performance is balance. Unless
message consumers are balanced with message producers, there is the danger that
a backlog of unconsumed messages might build up and seriously affect the
performance of multiple systems. In a point-to-point messaging topology the
relationship between message consumers and message producers is readily
understood, and estimates of message production and consumption made, queue
manager by queue manager, channel by channel. If there is a lack of balance, the
bottlenecks are readily identified and then remedied.

In a clustered topology an additional consideration is the overhead of managing
clustering. When a new clustered queue is defined, the destination information is
pushed to the full repositories, and only sent to other cluster members when they
first reference a clustered queue. Adding a smaller queue manager server to a
cluster does not necessarily unbalance the performance of cluster management: the
load on the new queue manager is not directly related to the size of the cluster or
the other queue managers in the cluster.

Publish/subscribe topologies present performance challenges in both these
respects.

36 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

1. It is harder to work out whether publishers and subscribers are balanced. Start
from each subscription that resolves to a clustered topic, and work back to the
queue managers having publishers on the topic. Calculate the number of
publications flowing to each subscriber.

2. Publish/subscribe cluster management has much more overhead than
point-to-point cluster management:
a. When a new queue manager joins an existing cluster, it re-synchronizes

with all members of the clusters, possibly causing channels to be started to
each member of the cluster from the new queue manager.

b. When a new subscription is created to a clustered topic, proxy subscriptions
are sent to all members of the cluster, possibly causing channels to be
started to each member of the cluster from the subscribing queue manager.

c. When a new cluster topic is defined, it is first pushed to the full
repositories. It is then immediately pushed to all queue managers in the
cluster, possibly causing channels to be started to each member of the
cluster from the repository.

In short, the cluster management load on any queue manager in the cluster is
proportional to the size of the cluster, and not to the size of the queue manager.

To reduce the impact of publish/subscribe cluster management on the performance
of a cluster consider the following two suggestions:
1. Perform cluster, topic and subscription updates at off-peak times of the day.
2. If you are thinking about adding publish/subscribe topics to an existing large

cluster, just because the cluster is already there, consider if you can define a
much smaller subset of queue managers involved in publish/subscribe and
make that an ″overlapping″ cluster. Although some queue managers are now in
two clusters, the overall impact of publish/subscribe is reduced:
a. The size of the publish/subscribe cluster is smaller.
b. Queue managers not in the publish/subscribe cluster are much less affected

by the impact of management traffic in the publish/subscribe cluster.

Cluster topic names

Cluster topic names are character strings. For example, you could have high-level
cluster topics named ’Sport’, ’Stock’, ’Films’, and ’TV’, and you could divide the
’Sport’ cluster topic into separate, more specific cluster topics covering different
sports:
Sport/Soccer Sport/Golf Sport/Tennis

These cluster topics could then be divided further, to separate different types of
information about each sport:
Sport/Soccer/Fixtures Sport/Soccer/Results Sport/Soccer/Reports

WebSphere MQ publish/subscribe does not recognize that the forward slash (/)
character is being used in a special way, but if you use the forward slash (/)
character as a separator, you can ensure compatibility with other WebSphere
business integration applications.

You can use any character in the single-byte character set for which the machine is
configured in a character string. Consider, however, whether the cluster topic
string might need to be translated to a different character representation, in which
case you must use only those characters that are available in the configured
character set of all relevant machines.

Chapter 3. Distributed publish/subscribe 37

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|

|
|
|
|
|

|

|
|

|

|
|
|
|

|

|
|

|

|
|
|
|

|
|
|
|
|

Cluster topic strings are case sensitive, and a blank character has no special
meaning. As a subscriber, you can specify a cluster topic or range of cluster topics
using wildcards to receive the information in which you are interested.

Key roles for publish/subscribe cluster queue managers
There are two key roles for queue managers in publish/subscribe clusters that you
should consider when designing a publish/subscribe cluster.

Full repositories
You can define full repositories on any queue manager in the
publish/subscribe cluster. As with a normal cluster, a publish/subscribe
cluster should ideally have two full repositories, hosted in highly available
machines.

Cluster topic host
A cluster topic host is a queue manager where a clustered topic object is
defined. You can define clustered topic objects on any queue manager in
the publish/subscribe cluster. When at least one clustered topic exists
within a cluster, the cluster is a publish/subscribe cluster. Ideally, all
clustered topic objects should be identically defined on two queue
managers and these machines should be highly available.

If a single host of a clustered topic object is lost, for example, because of
disk failure, any cluster topic cache records that are based on the clustered
topic object, that already exist in the cluster cache on other queue
managers, are usable within the cluster for a period of up to 30 days, or
until the cache is refreshed.

You can redefine the clustered topic object on a queue manager that is
working correctly. If a new object is not defined within 27 days (inclusive)
after the host queue manager failure, all members of the cluster will report
that an expected object update has not been received.

Full repositories and topic hosts do not need to overlap or be separated. In
publish/subscribe clusters that have just two highly available computers among
many computers, it is good practice to define both the highly available computers
as full repositories and cluster topic hosts.

In publish/subscribe clusters with many highly available computers it is good
practice to define full repositories and cluster topic hosts on separate highly
available computers, so that the operation and maintenance of one function can be
managed without affecting the operation of other functions.

Overlapping cluster support and publish/subscribe
With WebSphere MQ clusters, a single queue manager can be a member of more
than one cluster.

A reason for making a single queue manager a member of more than one cluster is
to create a cluster gateway between two clusters, so that messages originating in
one cluster can be routed to another cluster. Although a WebSphere MQ queue
manager can be a member of more than one cluster and more than one
publish/subscribe cluster, publications are not passed from one cluster to another
by means of overlapping clusters. The scope of proxy subscriptions is limited to
the single cluster in which the clustered topic is defined.

In Figure 14 on page 39, an application connected to queue manager QM3,
subscribing on a topic that resolves to topic object TB (which exists only in
CLUSTER 1) results in proxy subscriptions being sent from queue manager QM3 to

38 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

both queue managers QM1 and QM2. An application connected to queue manager
QM3, subscribing on a topic that resolved to topic object TC (which exists only in
the CLUSTER 2) results in proxy subscriptions being sent from queue manager
QM3 to both queue managers QM4 and QM5.

In Figure 15 messages are output to the log of queue manager QM3 informing
users that the topic object TA exists in two clusters. An application connected to
queue manager QM3, subscribing on a topic that resolved to topic object TA (which
exists in both CLUSTER 1 and CLUSTER 2) results in proxy subscriptions being
sent to one cluster only – so either to queue managers QM1 and QM2 or to queue
managers QM4 and QM5. The cluster chosen depends on which cluster topic
object was added last to the cluster cache in queue manager QM3.

QM1

QM4

QM3

QM2

QM5

CLUSTER 1

CLUSTER 2TB

TC

Figure 14. Overlapping clusters: two clusters each subscribing to different topics

QM1

QM4

QM3

QM2

QM5

CLUSTER 1

CLUSTER 2TA

TA

Figure 15. Overlapping clusters: two clusters each subscribing to the same topic

Chapter 3. Distributed publish/subscribe 39

|

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

Publish/subscribe messages, for example, application publications and proxy
subscriptions, are transmitted only over cluster channels that are part of the
publish/subscribe cluster in which the cluster topic that the message relates to is
defined.

For example, for the following topic definitions:
v Topic: TA in CLUSTER 1 with TopicString: /football
v Topic: TA in CLUSTER 2 with TopicString: /tennis

A subscription for TA made on queue manager QM3 resolves to TopicString
/tennis, assuming that this was the latest definition to be made, and causes receipt
of publications on CLUSTER 2 for topic /tennis.

If any queue manager receives multiple definitions on the same topic string which
differ in any detail, including cluster name, the behavior of publications and
subscriptions on those topics or topic string is undefined. An informational
message is issued to alert the administrator to the duplicate definition.

Subscription scope and publication scope in publish/subscribe
clusters
The scope of publications and subscriptions is defined in the cluster topic object.

If a cluster topic object is defined with SUBSCOPE(QMGR), the definition is shared
with the cluster, but the scope of subscriptions based on that topic is local only and
publications are not received from the cluster.

If a cluster topic object is defined with PUBSCOPE(QMGR), the definition is shared
with the cluster, but the scope of publications based on that topic is local only and
they are not sent to other queue managers in the cluster.

These two attributes are commonly used together to isolate a queue manager from
interacting with other members of the cluster on particular topics. The queue
manager neither publishes or receives publications on those topics to and from
other members of the cluster. Note that this does not prevent publication or
subscription if topic objects are defined on subtopics.

REFRESH CLUSTER considerations

The REFRESH CLUSTER command can cause temporary disruption to
publish/subscribe traffic in a publish/subscribe cluster. We therefore recommend
only to run REFRESH CLUSTER command when under the guidance of your IBM
Support Center.

The disruption can occur as follows:
v Up to 10 second pauses in message delivery.
v MQOPEN and MQPUT failures, for example,

MQRC_NO_DESTINATIONS_AVAILABLE.

Publish/subscribe hierarchies
Queue managers can be grouped together in a hierarchy, where the hierarchy
contains one or more queue managers that are directly connected. Queue managers
are connected together using a connection-time parent and child relationship.
When two queue managers are connected together for the first time, the child
queue manager is connected to the parent queue manager.

40 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|

|

|

|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|

|
|
|
|

|

|

|
|

|

|
|
|
|
|

When the parent and child queue managers are connected in a hierarchy there is
no functional difference between them until you disconnect queue managers from
the hierarchy.

Note: WebSphere MQ hierarchical connections require that the queue manager
attribute PSMODE is set to ENABLED.

Connect a queue manager to a broker hierarchy
You can connect a local queue manager to a parent queue manager to modify a
broker hierarchy.

Before you begin
1. You need to enable queued publish/subscribe mode. See “Starting queued

publish/subscribe” on page 119.
2. The change is propagated to the parent queue manager using a WebSphere MQ

connection. There are two ways to establish the connection.
a. Connect the queue managers to a WebSphere MQ cluster.
b. Establish a point-to-point channel connection using a transmission queue, or

queue manager alias, with the same name as the parent queue manager.
For example, suppose you are connecting to a queue manager called
PARENT. Define a queue manager alias for PARENT that resolves to the
transmission queue to parent. To place messages for PARENT on the
transmission queue PARENT.XMITQ, use the following MQSC command to
define the queue manager alias.
DEFINE QREMOTE (PARENT) RNAME('') RQMNAME(PARENT) XMITQ(PARENT.XMITQ)

About this task

In WebSphere MQ Version 6.0, when the appropriate channels and queues are
defined, brokers connect to one another as defined by parameters provided on the
strmqbrk command.

The strmqbrk command works differently in WebSphere MQ Version 7.0 and you
can no longer use it to connect children to parents. Instead you use the ALTER QMGR
PARENT (PARENT) runmqsc command.

In WebSphere MQ Version 7, distributed publish/subscribe is typically
implemented by using queue manager clusters and clustered topic definitions. For
interoperability with WebSphere MQ Version 6 and WebSphere Message Broker
V6.1 and WebSphere Event Broker V6.1 and earlier, you can also connect version 7
queue managers to a broker hierarchy as long as queued publish/subscribe mode
is enabled.

ALTER QMGR PARENT(PARENT)

Example

The first example shows how to attach QM2 as a child of QM1, and then querying
QM2 for its connection.
C:>runmqsc QM2
5724-H72 (C) Copyright IBM Corp. 1994, 2008. ALL RIGHTS RESERVED.
Starting MQSC for queue manager QM2
alter qmgr parent(QM1)

1 : alter qmgr parent(QM1)
AMQ8005: WebSphere MQ queue manager changed.

Chapter 3. Distributed publish/subscribe 41

|
|
|

|
|

|
|
|

|

|
|

|
|

|

|
|

|
|
|
|
|

|

|

|
|
|

|
|
|

|
|
|
|
|
|

|

|

|
|

|
|
|
|
|
|

display pubsub type(All)
14 : display pubsub type(All)

AMQ8723: Display pub/sub status details.
QMNAME(QM2) TYPE(LOCAL)

AMQ8723: Display pub/sub status details.
QMNAME(QM1) TYPE(PARENT)

The next example shows the result of querying QM1 for its connections
C:\Documents and Settings\Admin>runmqsc QM1
5724-H72 (C) Copyright IBM Corp. 1994, 2008. ALL RIGHTS RESERVED.
Starting MQSC for queue manager QM1.
display pubsub type(all)

1 : display pubsub type(all)
AMQ8723: Display pub/sub status details.

QMNAME(QM1) TYPE(LOCAL)
AMQ8723: Display pub/sub status details.

QMNAME(QM2) TYPE(CHILD)

What to do next

You can define topics on one broker or queue manager that are available to
publishers and subscribers on the connected queue managers.

Disconnect a queue manager from a broker hierarchy
Disconnect a child queue manager from a parent queue manager in a broker
hierarchy.

About this task

In WebSphere MQ Version 6.0, queue managers were disconnected from one
another using the dltmqbrk command, and required that all child queue managers
were disconnected first. In WebSphere MQ Version 7, the dltmqbrk command is
used to discard WebSphere MQ Version 6 broker resources after migration to
version 7 using the strmqbrk command.

You disconnect a version 7 queue manager from a broker hierarchy using the
ALTER QMGR command. Unlike version 6, you can disconnect version 7 queue
managers in any order and at any time.

The corresponding request to update the parent is sent when the connection
between the queue managers is running.

ALTER QMGR PARENT(' ')

Example
C:\Documents and Settings\Admin>runmqsc QM2
5724-H72 (C) Copyright IBM Corp. 1994, 2008. ALL RIGHTS RESERVED.
Starting MQSC for queue manager QM2.

1 : alter qmgr parent('')
AMQ8005: WebSphere MQ queue manager changed.

2 : display pubsub type(child)
AMQ8147: WebSphere MQ object not found.
display pubsub type(parent)

3 : display pubsub type(parent)
AMQ8147: WebSphere MQ object not found.

42 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|

|
|
|
|
|

|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|

What to do next

You can delete any streams, queues and manually defined channels that are no
longer needed.

Chapter 3. Distributed publish/subscribe 43

|

|
|

44 WebSphere MQ: Publish/Subscribe User’s Guide

Chapter 4. Writing publish/subscribe applications

Start writing publish/subscribe WebSphere MQ applications. We assume you have
already written point to point WebSphere MQ applications before.

Writing publisher applications
Get started with writing publisher applications by studying two examples. The
first is modelled as closely as possible on a point to point application putting
messages on a queue, and the second demonstrates creating topics dynamically - a
more common pattern for publisher applications.

Writing a simple WebSphere MQ publisher application is just like writing a
WebSphere MQ point to point application that puts messages to a queue (Table 5).
The difference is you MQPUT messages to a topic, not to a queue.

Table 5. Point to point vs. publish/subscribe WebSphere MQ program pattern.

Step Point to point MQ Call Publish MQ Call

Connect to a queue manager MQCONN MQCONN

Open queue MQOPEN

Open topic MQOPEN

Put message(s) MQPUT MQPUT

Close topic MQCLOSE

Close queue MQCLOSE

Disconnect from queue manager MQDISC MQDISC

To make that concrete, there are two examples of applications to publish stock
prices. In the first example (“Example 1: Publisher to a fixed topic”), that is
modelled very closely on putting messages to a queue, the administrator creates a
topic definition in a similar way to creating a queue. The programmer codes
MQPUT to write messages to the topic instead of writing them to a queue. In the
second example (“Example 2: Publisher to a variable topic” on page 49), the
pattern of interaction of the program with WebSphere MQ is similar. The difference
is the programmer provides the topic to which the message is written, rather than
the administrator. In practice this usually means the topic string is content defined,
or provided ″out of band″, that is, provided by human input, or by another source
of information.
Related concepts

“Writing subscriber applications” on page 52
There are many more patterns of subscriber application than publisher. Three are
illustrated: a WebSphere MQ application consuming messages from a queue, an
application that creates a subscription and requires no knowledge of queuing, and
finally an example that uses both queuing and subscriptions.

Example 1: Publisher to a fixed topic
A WebSphere MQ program to illustrate publishing to an administratively defined
topic.

Note: The compact coding style is intended for readability not production use.

© Copyright IBM Corp. 1996, 2009 45

|

|

|
|

|
|

|
|
|
|

|
|
|

||

|||

|||

|||

|||

|||

|||

|||

|||
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|
|

|
|

See the output in Figure 17 on page 47

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>
int main(int argc, char **argv)
{

char topicNameDefault[] = "IBMSTOCKPRICE";
char publicationDefault[] = "129";
MQCHAR48 qmName = "";

MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */
MQHOBJ Hobj = MQHO_NONE; /* object handle sub queue */
MQLONG CompCode = MQCC_OK; /* completion code */
MQLONG Reason = MQRC_NONE; /* reason code */
MQOD td = {MQOD_DEFAULT}; /* Topic Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
MQCHAR resTopicStr[151]; /* Returned vale of topic string */
char * topicName = topicNameDefault;
char * publication = publicationDefault;
memset (resTopicStr, 0 , sizeof(resTopicStr));

switch(argc){ /* replace defaults with args if provided */
default:

publication = argv[2];
case(2):

topicName = argv[1];
case(1):

printf("Optional parameters: TopicObject Publication\n");
}
do {

MQCONN(qmName, &Hconn, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
td.ObjectType = MQOT_TOPIC; /* Object is a topic */
td.Version = MQOD_VERSION_4; /* Descriptor needs to be V4 */
strncpy(td.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);
td.ResObjectString.VSPtr = resTopicStr;
td.ResObjectString.VSBufSize = sizeof(resTopicStr)-1;
MQOPEN(Hconn, &td, MQOO_OUTPUT | MQOO_FAIL_IF_QUIESCING, &Hobj, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
pmo.Options = MQPMO_FAIL_IF_QUIESCING | MQPMO_RETAIN;
MQPUT(Hconn, Hobj, &md, &pmo, (MQLONG)strlen(publication)+1, publication, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQDISC(&Hconn, &CompCode, &Reason);

} while (0);
if (CompCode == MQCC_OK)

printf("Published \"%s\" using topic \"%s\" to topic string \"%s\"\n",
publication, td.ObjectName, resTopicStr);

printf("Completion code %d and Return code %d\n", CompCode, Reason);
}

Figure 16. Simple WebSphere MQ publisher to a fixed topic.

46 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

The lines of code selected below illustrate aspects of writing a publisher
application for WebSphere MQ.

char topicNameDefault[] = "IBMSTOCKPRICE";
A default topic name is defined in the program. You can override it by
providing the name of a different topic object as the first argument to the
program.

MQCHAR resTopicStr[151];
resTopicStr is pointed at by td.ResObjectString.VSPtr and is used by
MQOPEN to return the resolved topic string. Make the length of resTopicStr
one larger than the length passed in td.ResObjectString.VSBufSize to give
space for null termination.

memset (resTopicStr, 0, sizeof(resTopicStr));
Initialize resTopicStr to nulls to ensure the resolved topic string returned
in an MQCHARV is null terminated.

td.ObjectType = MQOT_TOPIC
There is a new type of object for publish/subscribe: the topic object.

td.Version = MQOD_VERSION_4;
To use the new type of object, you must use at least version 4 of the object
descriptor.

strncpy(td.ObjectName, topicName, MQ_OBJECT_NAME_LENGTH);
The topicName is the name of a topic object, sometimes called an
administrative topic object. In the example the topic object needs to be
created beforehand, using WebSphere MQ Explorer or this MQSC
command,
DEFINE TOPIC(IBMSTOCKPRICE) TOPICSTR(NYSE/IBM/PRICE) REPLACE;

td.ResObjectString.VSPtr = resTopicStr;
The resolved topic string is echoed in the final printf in the program. Set
up the MQCHARV ResObjectString structure for WebSphere MQ to return the
resolved string back to the program.

MQOPEN(Hconn, &td, MQOO_OUTPUT | MQOO_FAIL_IF_QUIESCING, &Hobj, &CompCode,
&Reason);

Open the topic for output; just like opening a queue for output.

pmo.Options = MQPMO_FAIL_IF_QUIESCING | MQPMO_RETAIN;
You want new subscribers to be able receive the publication, and by
specifying MQPMO_RETAIN in the publisher, when we start a subscriber it
receives the latest publication, published before the subscriber started, as
its first matching publication. The alternative is to provide subscribers with
publications published only after the subscriber started. In addition a
subscriber has the option to decline to receive a retained publication by
specifying MQSO_NEW_PUBLICATIONS_ONLY in its subscription.

X:\Publish1\Debug>PublishStock
Optional parameters: TopicObject Publication
Published "129" using topic "IBMSTOCKPRICE" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

X:\Publish1\Debug>PublishStock IBMSTOCKPRICE 155
Optional parameters: TopicObject Publication
Published "155" using topic "IBMSTOCKPRICE" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

Figure 17. Sample output from first publisher example

Chapter 4. Writing publish/subscribe applications 47

|
|
|
|
|
|
|
|
|
||
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

MQPUT(Hconn, Hobj, &md, &pmo, (MQLONG)strlen(publication)+1, publication,
&CompCode, &Reason);

Add 1 to the length of the string passed to MQPUT to pass the null
termination character to WebSphere MQ as part of the message buffer.

What does the first example demonstrate? The example imitates as closely as
possible the tried and tested traditional pattern for writing point to point
WebSphere MQ programs. An important feature of the WebSphere MQ
programming pattern is that the programmer is not concerned where messages are
sent. The programmer’s task is to connect to a queue manager, and pass to it the
messages that are to be distributed to recipients. In the point-to-point paradigm,
the programmer opens a queue (probably an alias queue) that the administrator
has configured. The alias routes messages to a target queue, either on the local
queue manager, or to a remote queue manager. Whilst the messages are waiting to
be delivered, they are stored on queues somewhere between the source and the
destination.

In the publish/subscribe pattern, instead of opening a queue, the programmer
opens a topic. In our example, the topic is associated with a topic string by an
administrator. The queue manager forwards the publication, using queues, to local
or remote subscribers that have subscriptions that match the publication’s topic
string. In the case of retained publications the queue manager keeps the latest copy
of the publication, even if it has no subscribers at present. The retained publication
is available to forward to future subscribers. The publisher application plays no
part in selecting or routing the publication to a destination; its task is to create and
put publications to the topics defined by the administrator.

This fixed topic example is atypical of many publish/subscribe applications: it is
static. It requires an administrator to define the topic strings and change the topics
that are published on. Commonly publish/subscribe applications need to have
knowledge of some or all of the topic tree. Perhaps topics change frequently, or
perhaps although the topics do not change much, the number of topic
combinations is very large and it is too onerous for an administrator to define a
topic node for every topic string that might need to be published on. Perhaps topic
strings are not known in advance of publication; a publisher application might use
information from the publication content to specify a topic string, or it might have
out of band information about topic strings to publish on, such as input from a
browser. To cater for more dynamic styles of publishing, the next example shows
how to create topics dynamically, as part of the publisher application.

Topics couple publishers and subscribers together. Designing the rules, or
architecture, for naming topics, and organizing them in topic trees is a very
important step in developing a publish/subscribe solution. Look carefully at the
extent to which organization of the topic tree binds of publisher and subscriber
programs together, and binds them to the content of the topic tree. Ask yourself
the question whether changes in the topic tree will impact publisher and subscriber
applications, and how you can minimize the impact. Built into the architecture of
the WebSphere MQ publish/subscribe model is the notion of an administrative
topic object that provides the root part, or root subtree, of a topic. The topic object
gives you the option of defining the root part of the topic tree administratively that
simplifies application programming and operations, and consequently improves
maintainability. For example, if you are deploying multiple publish/subscribe
applications that have isolated topic trees, then by administratively defining the
root part of the topic tree, you can guarantee the isolation of topic trees, even if
there is no consistency in the topic naming conventions adopted by the different
applications.

48 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

In practice, publisher applications cover a spectrum from solely using fixed topics,
as in this example, and variable topics, as in the next. “Example 2: Publisher to a
variable topic” also demonstrates combining the use of topics and topic strings.
Related concepts

“Example 2: Publisher to a variable topic”
A Websphere MQ program to illustrate publishing to a programmatically defined
topic.
“Writing subscriber applications” on page 52
There are many more patterns of subscriber application than publisher. Three are
illustrated: a WebSphere MQ application consuming messages from a queue, an
application that creates a subscription and requires no knowledge of queuing, and
finally an example that uses both queuing and subscriptions.

Example 2: Publisher to a variable topic
A Websphere MQ program to illustrate publishing to a programmatically defined
topic.

Note: The compact coding style is intended for readability not production use.

Chapter 4. Writing publish/subscribe applications 49

|
|
|

|

|
|
|

|
|
|
|
|

|

|
|

|
|

See the output in Figure 19 on page 51.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>
int main(int argc, char **argv)
{

char topicNameDefault[] = "STOCKS";
char topicStringDefault[] = "IBM/PRICE";
char publicationDefault[] = "130";
MQCHAR48 qmName = "";

MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */
MQHOBJ Hobj = MQHO_NONE; /* object handle sub queue */
MQLONG CompCode = MQCC_OK; /* completion code */
MQLONG Reason = MQRC_NONE; /* reason code */
MQOD td = {MQOD_DEFAULT}; /* Topic Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
MQCHAR resTopicStr[151]; /* Returned value of topic string */
char * topicName = topicNameDefault;
char * topicString = topicStringDefault;
char * publication = publicationDefault;
memset (resTopicStr, 0 , sizeof(resTopicStr));

switch(argc){ /* Replace defaults with args if provided */
default:

publication = argv[3];
case(3):

topicString = argv[2];
case(2):

if (strcmp(argv[1],"/")) /* "/" invalid = No topic object */
topicName = argv[1];

else
*topicName = '\0';

case(1):
printf("Provide parameters: TopicObject TopicString Publication\n");

}

printf("Publish \"%s\" to topic \"%-.48s\" and topic string \"%s\"\n", publication, topicName, topicString);
do {

MQCONN(qmName, &Hconn, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
td.ObjectType = MQOT_TOPIC; /* Object is a topic */
td.Version = MQOD_VERSION_4; /* Descriptor needs to be V4 */
strncpy(td.ObjectName, topicName, MQ_Q_NAME_LENGTH);
td.ObjectString.VSPtr = topicString;
td.ObjectString.VSLength = (MQLONG)strlen(topicString);
td.ResObjectString.VSPtr = resTopicStr;
td.ResObjectString.VSBufSize = sizeof(resTopicStr)-1;
MQOPEN(Hconn, &td, MQOO_OUTPUT | MQOO_FAIL_IF_QUIESCING, &Hobj, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
pmo.Options = MQPMO_FAIL_IF_QUIESCING | MQPMO_RETAIN;
MQPUT(Hconn, Hobj, &md, &pmo, (MQLONG)strlen(publication)+1, publication, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQDISC(&Hconn, &CompCode, &Reason);

} while (0);
if (CompCode == MQCC_OK)

printf("Published \"%s\" to topic string \"%s\"\n", publication, resTopicStr);
printf("Completion code %d and Return code %d\n", CompCode, Reason);

}

Figure 18. Simple WebSphere MQ publisher to a variable topic.
50 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

There are a few points to note about this example.

char topicNameDefault[] = "STOCKS";
The default topic name STOCKS defines part of the topic string. You can
override this topic name by providing it as the first argument to the
program, or eliminate the use of the topic name by supplying / as the first
parameter.

char topicString[101] = "IBM/PRICE";
IBM/PRICE is the default topic string. You can override this topic string by
providing it as the second argument to the program.

The queue manager combines the topic string provided by the STOCKS topic
object, "NYSE", with the topic string provided by the program "IBM/PRICE"
and inserts a "/"between the two yielding "NYSE/IBM/PRICE" as the
resolved topic string. The resulting topic string is the same as the one
defined in the IBMSTOCKPRICE topic object, and has precisely the same
effect.

The administrative topic object associated with the resolved topic string is
not necessarily the same topic object as passed to MQOPEN by the publisher.
WebSphere MQ uses the tree implicit in the resolved topic string to work
out which administrative topic object defines the attributes associated with
the publication.

Suppose there are two topic objects A and B, and A defines topic "a", and B
defines topic "a/b" (Figure 20 on page 52). If the publisher program refers
to topic object A and provides topic string "b", resolving the topic to the
topic string "a/b", then the publication inherits its properties from topic
object B because the topic matches the topic string "a/b" defined for B.

if (strcmp(argv[1],"/"))
argv[1] is the optionally provided topicName. "/" is invalid as a topic
name; here it signifies that there is no topic name, and the topic string is
provided entirely by the program. The output in Figure 19 shows the
whole topic string being supplied dynamically by the program.

strncpy(td.ObjectName, topicName, MQ_OBJECT_NAME_LENGTH);
For the default case, the optional topicName needs to be created
beforehand, using WebSphere MQ Explorer or this MQSC command:
DEFINE TOPIC(STOCKS) TOPICSTR(NYSE) REPLACE;

td.ObjectString.VSPtr = topicString;
The topic string is a MQCHARV field in the topic descriptor

X:\Publish2\Debug>PublishStock
Provide parameters: TopicObject TopicString Publication
Publish "130" to topic "STOCKS" and topic string "IBM/PRICE"
Published "130" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

X:\Publish2\Debug>PublishStock / NYSE/IBM/PRICE 131
Provide parameters: TopicObject TopicString Publication
Publish "131" to topic "" and topic string "NYSE/IBM/PRICE"
Published "131" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

Figure 19. Sample output from second publisher example

Chapter 4. Writing publish/subscribe applications 51

|
|
|
|
|
|
|
|
|
|
|
||
|
|

|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|

|

What does the second example demonstrate? Although the code is very similar to
the first example - effectively there are only two lines difference - the result is a
significantly different program to the first. The programmer controls the
destinations to which publications are sent. In conjunction with an
″administrator-light″ style used to design subscriber applications, no topics or
queues need to be predefined to route publications from publishers to subscribers.

In the point-to-point messaging paradigm, queues have to be defined before
messages are able to flow. For publish/subscribe, they do not, although WebSphere
MQ implements publish/subscribe using its underlying queuing system; the
benefits of guaranteed delivery, transactionality and loose coupling associated with
messaging and queueing are inherited by publish/subscribe applications.

A designer has to decide whether publisher, and subscriber, programs are to be
aware of the underlying topic tree or not, and also whether subscriber programs
are aware of queueing or not. Study the subscriber example applications next.
They are designed to be used with the publisher examples, typically publishing
and subscribing to NYSE/IBM/PRICE.
Related concepts

“Example 1: Publisher to a fixed topic” on page 45
A WebSphere MQ program to illustrate publishing to an administratively defined
topic.
“Writing subscriber applications”
There are many more patterns of subscriber application than publisher. Three are
illustrated: a WebSphere MQ application consuming messages from a queue, an
application that creates a subscription and requires no knowledge of queuing, and
finally an example that uses both queuing and subscriptions.

Writing subscriber applications
There are many more patterns of subscriber application than publisher. Three are
illustrated: a WebSphere MQ application consuming messages from a queue, an
application that creates a subscription and requires no knowledge of queuing, and
finally an example that uses both queuing and subscriptions.

In Table 6 on page 53 the three styles of consumer or subscriber are listed, together
with the sequences of WebSphere MQ function calls that characterize them.

Subscribe
(As Parent)

Subscribe
(Inhibited)

TOPIC A

TOPIC B

a

a/b

Figure 20. Topic object associations

52 WebSphere MQ: Publish/Subscribe User’s Guide

|

||
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

1. The first style, MQ Publication Consumer, is identical to a point to point MQ
program that only does MQGET. The application has no knowledge that it is
consuming publications - it is simply reading messages from a queue. The
subscription that causes publications to get routed to the queue is created
administratively using WebSphere MQ Explorer or a command.

2. The second style is the preferred pattern for most subscriber applications. The
subscriber application creates the subscription, and then gets publications. The
queue management is all performed by the queue manager.

3. In the third style, the subscriber application elects to open and close the
underlying queue that is used for publications as well as issue subscriptions to
fill the queue with publications.

One way to understand these styles is to study the example C programs listed in
Table 6 for each of the styles. The examples are designed to be run in conjunction
with the publisher example found in publisher examples.

Table 6. Point to point vs. subscribe WebSphere MQ program patterns.

Step
MQ message
consumer

“Example 1:
MQ
Publication
consumer” on
page 54

“Example 2:
Managed MQ
subscriber” on
page 56

“Example 3:
Unmanaged
MQ subscriber”
on page 63

Connect to a
queue manager

MQCONN MQCONN MQCONN MQCONN

Open queue MQOPEN MQOPEN MQOPEN

Subscribe MQSUB MQSUB

Put message(s) MQGET MQGET MQGET MQGET

Close queue MQCLOSE MQCLOSE (MQCLOSE) MQCLOSE

Close subscription MQCLOSE MQCLOSE

Disconnect from
queue manager

MQDISC MQDISC MQDISC MQDISC

Using MQCLOSE is always optional, either to release resources, pass MQCLOSE
options, or just for symmetry with MQOPEN. Since you are unlikely to need to
specify the MQCLOSE options when the subscription queue is closed in the
Managed MQ subscriber case, and the symmetry argument is not relevant, the
subscription queue is not explicitly closed in the Managed MQ subscriber example
below.

Another way to understand publish/subscribe application patterns is too look at
the interactions between the different entities involved. Lifeline, or UML sequence
diagrams are a good way to study interactions. Three lifeline examples are
described in “Publish/subscribe lifecycles” on page 73.

Chapter 4. Writing publish/subscribe applications 53

|
|
|
|
|

|
|
|

|
|
|

|
|
|

||

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
||||

|||||

|||||

|||||

|||||

|||||

|
|
||||

|
|
|
|
|
|
|

|
|
|
|

Related concepts

“Writing publisher applications” on page 45
Get started with writing publisher applications by studying two examples. The
first is modelled as closely as possible on a point to point application putting
messages on a queue, and the second demonstrates creating topics dynamically - a
more common pattern for publisher applications.
“Publish/subscribe lifecycles” on page 73
Consider the lifecycles of topics, subscriptions, subscribers, publications, publishers
and queues in designing publish/subscribe applications.

Example 1: MQ Publication consumer
The MQ Publication consumer is a WebSphere MQ message consumer that does
not subscribe to topics itself.

To create the subscription and publication queue for this example run the
following commands, or define the objects using WebSphere MQ Explorer.
DEFINE QLOCAL(STOCKTICKER) REPLACE;
DEFINE SUB(IBMSTOCKPRICESUB) DEST(STOCKTICKER) TOPICOBJ(IBMSTOCKPRICE) REPLACE;

The IBMSTOCKPRICESUB subscription references the IBMSTOCK topic object created for
the publisher example and the local queue STOCKTICKER. The topic object IBMSTOCK
defines the topic string that is used in the subscription, NYSE/IBM/PRICE. Note that
the topic object and the queue used to receive publications need to be defined
before the subscription is created.

There are a number of valuable facets to the MQ publication consumer pattern:
1. Multiprocessing: sharing out of the work of reading publications. The

publications all go onto the single queue associated with the subscription topic.
Multiple consumers can open the queue using MQOO_INPUT_SHARED.

2. Centrally managed subscriptions. Applications do not construct their own
subscription topics or subscriptions; the administrator is responsible for where
publications are sent.

3. Subscription concentration: multiple different subscriptions can be sent to a
single queue.

4. Subscription durability: the queue receives all publications whether or not
consumers are active.

5. Migration and coexistence: the consumer code works equally well for a
point-to-point and a publish/subscribe scenario.

The subscription creates a relationship between the topic string NYSE/IBM/PRICE
and the queue STOCKTICKER. Publications, including any currently retained
publication, are forwarded to STOCKTICKER from the moment the subscription is
created.

An administratively created subscription can be managed or unmanaged. A
managed subscription takes effect as soon as it has been created, just like an
unmanaged subscription. Not all the pattern facets are available to a managed
subscription. See “Example 3: Unmanaged MQ subscriber” on page 63

Note: The compact coding style is intended for readability not production use.

54 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|
|
|
|

|
|
|

|

|
|

|
|

|
|

|
|
|
|
|

|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|

The results are shown in Figure 22 on page 56

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>
int main(int argc, char **argv)
{

MQCHAR publicationBuffer[101];
MQCHAR48 subscriptionQueueDefault = "STOCKTICKER";
MQCHAR48 qmName = ""; /* Use default queue manager */

MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */
MQHOBJ Hobj = MQHO_NONE; /* object handle sub queue */
MQLONG CompCode = MQCC_OK; /* completion code */
MQLONG Reason = MQRC_NONE; /* reason code */
MQLONG messlen = 0;
MQOD od = {MQOD_DEFAULT}; /* Unmanaged subscription queue */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* Put message options */
char * publication=publicationBuffer;
char * subscriptionQueue = subscriptionQueueDefault;

switch(argc){ /* Replace defaults with args if provided */
default:

subscriptionQueue = argv[1]
case(1):

printf("Optional parameter: subscriptionQueue\n");
}

do {
MQCONN(qmName, &Hconn, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
strncpy(od.ObjectName, subscriptionQueue, MQ_Q_NAME_LENGTH);
MQOPEN(Hconn, &od, MQOO_INPUT_AS_Q_DEF | MQOO_FAIL_IF_QUIESCING , &Hobj, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
gmo.Options = MQGMO_WAIT | MQGMO_NO_SYNCPOINT | MQGMO_CONVERT;
gmo.WaitInterval = 10000;
printf("Waiting %d seconds for publications from %s\n", gmo.WaitInterval/1000, subscriptionQueue);
do {

memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;
memset(publication, 0, sizeof(publicationBuffer));
MQGET(Hconn, Hobj, &md, &gmo, sizeof(publicationBuffer)-1, publication, &messlen,

&CompCode, &Reason);
if (Reason == MQRC_NONE)

printf("Received publication \"%s\"\n", publication);
}
while (CompCode == MQCC_OK);
if (CompCode != MQCC_OK && Reason != MQRC_NO_MSG_AVAILABLE) break;
MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQDISC(&Hconn, &CompCode, &Reason);

} while (0);
printf("Completion code %d and Return code %d\n", CompCode, Reason);

}

Figure 21. MQ publication consumer.

Chapter 4. Writing publish/subscribe applications 55

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

There are a couple of standard WebSphere MQ C language programming tips to be
aware of:

memset(publication, 0, sizeof(publicationBuffer));
Ensure the message has trailing a trailing null for easy formatting using
printf. The publisher example includes the trailing null in the message
buffer passed to MQPUT by adding 1 to strlen(publication). Setting MQCHAR
buffers to null is good programming style for WebSphere MQ C programs
that use the buffers to store strings, ensuring a null follows an array of
characters that does not completely fill the buffer.

MQGET(Hconn, Hobj, &md, &gmo, sizeof(publicationBuffer)-1, publication,
&messlen, &CompCode, &Reason);

Reserve one null at the end of the message buffer to ensure the returned
message has trailing null in case "if (messlen == strlen(publication));"
is true. This tip complements the preceding one, and ensures that there is
at least one null in publicationBuffer that is not overwritten by the
contents of publication.

Related concepts

“Example 2: Managed MQ subscriber”
The managed MQ subscriber is the core pattern for most subscriber applications.
The example requires no administrative definition of queues, topics or
subscriptions.
“Example 3: Unmanaged MQ subscriber” on page 63
The unmanaged subscriber is an important class of subscriber application. With it,
you combine the benefits of publish/subscribe with control of queuing and
consumption of publications. The example demonstrates different ways of
combining subscriptions and queues.
“Writing publisher applications” on page 45
Get started with writing publisher applications by studying two examples. The
first is modelled as closely as possible on a point to point application putting
messages on a queue, and the second demonstrates creating topics dynamically - a
more common pattern for publisher applications.

Example 2: Managed MQ subscriber
The managed MQ subscriber is the core pattern for most subscriber applications.
The example requires no administrative definition of queues, topics or
subscriptions.

This simplest kind of managed subscriber typically makes use of a non-durable
subscription. The example focuses on a non-durable subscription. The subscription
only lasts only as long as the lifetime of the subscription handle from MQSUB. Any
publications that match the topic string during the lifetime of the subscription are
sent to the subscription queue (and possibly a retained publication if the flag
MQSO_NEW_PUBLICATIONS_ONLY is not set or defaulted, an earlier publication
matching the topic string was retained, and the publication was persistent or the
queue manager has not terminated, since the publication was created).

X:\Subscribe1\Debug>Subscribe1
Optional parameter: subscriptionQueue
Waiting 10 seconds for publications from STOCKTICKER
Received publication "129"
Completion code 0 and Return code 0

Figure 22. Output from MQ publication consumer

56 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|
|
||
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

You can also use a durable subscription with this pattern. Typically if a managed
durable subscription is used it is done for reliability reasons, rather than to
establish a subscription that, without any errors occurring, would outlive the
subscriber. See the discussion of different lifecycles associated with managed,
unmanaged, durable and non-durable subscriptions in the related topics section.

Durable subscriptions are often associated with persistent publications, and
non-durable subscriptions with non-persistent publications, but there is no
necessary relationship between subscription durability and publication persistence.
All four combinations of persistence and durability are possible.

For the managed non-durable case we are considering, the queue manager creates
a subscription queue that is purged and deleted when the queue is closed. The
publications are removed from the queue when the non-durable subscription is
closed.

The valuable facets of the managed non-durable pattern exemplified by this code
are listed below.
1. On demand subscription: the subscription topic string is dynamic. It is

provided by the application when it runs.
2. Self managing queue: the subscription queue is self defining and managing.
3. Self managing subscription lifecycle: non-durable subscriptions only exist for the

duration of the subscriber application.
v If you define a durable managed subscription, then it results in a permanent

subscription queue and publications continue to be stored on it with no
subscriber programs being active. The queue manager deletes the queue (and
clears any unretrieved publications from it) only after the application or
administrator has chosen to delete the subscription. The subscription can be
deleted using an administrative command, or by closing the subscription
with the MQCO_REMOVE_SUB option.

v Consider setting SubExpiry for durable subscriptions so that publications
cease to be sent to the queue and the subscriber can consume any remaining
publications before removing the subscription and causing the queue
manager to delete the queue and any remaining publications on it.

4. Flexible topic string deployment: Subscription topic management is simplified
by defining the root part of the subscription using an administratively defined
topic. The root part of the topic tree is then hidden from the application. By
hiding the root part an application can be deployed without the application
inadvertently creating a topic tree that overlaps with another topic tree created
by another instance, or another application.

5. Administered topics: by using a topic string in which the first part matches an
administratively defined topic object, publications are managed according to
the attributes of the topic object.
v For example, if the first part of the topic string matches the topic string

associated with a clustered topic object, then the subscription can receive
publications from other members of the cluster

v The selective matching of administratively defined topic objects and
programmatically defined subscriptions enables you to combine the benefits
of both. The administrator provides attributes for topics, and the
programmer dynamically defines ″sub-topics″ without being concerned about
the management of topics.

v It is the resultant topic string which is used to match the topic object that
provides the attributes associated with the topic, and not necessarily the

Chapter 4. Writing publish/subscribe applications 57

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

topic object named in sd.Objectname, thought they usually turn out to be one
and the same. See the discussion in “Example 2: Publisher to a variable
topic” on page 49.

By making the subscription durable in the example, publications continue to be
sent to the subscription queue after the subscriber has closed the subscription with
the MQCO_KEEP_SUB option. The queue continues to receive publications when the
subscriber is not active. You can override this behavior by creating the subscription
with the MQSO_PUBLICATIONS_ON_REQUEST option and using MQSUBRQ to request the
retained publication.

The subscription can be resumed later by opening the subscription with the
MQCO_RESUME option.

You can use the queue handle, Hobj, returned by MQSUB in a number of ways. The
queue handle is used in the example to inquire on the name of the subscription
queue. Managed queues are opened using the default model queues
SYSTEM.NDURABLE.MODEL.QUEUE or SYSTEM.DURABLE.MODEL.QUEUE. You can override
the defaults by providing your own durable and non-durable model queues on a
topic by topic basis as properties of the topic object associated with the
subscription.

Regardless of the attributes inherited from the model queues, you cannot reuse a
managed queue handle to create an additional subscription. Nor can you obtain
another handle for the managed queue by opening the managed queue a second
time using the returned queue name. The queue behaves as if it has been opened
for exclusive input.

Unmanaged queues are more flexible than managed queues. You can, for example
share unmanaged queues, or define multiple subscriptions on the one queue. The
next example, “Example 3: Unmanaged MQ subscriber” on page 63 demonstrates
how to combine subscriptions with an unmanaged subscription queue.

Note: The compact coding style is intended for readability not production use.

58 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

There are some additional comments to make about the declarations in this
example.

MQHOBJ Hobj = MQHO_NONE;
You cannot explicitly open a non-durable managed subscription queue to
receive publications, but you do need to allocate storage for the object
handle the queue manager returns when it opens the queue for you. It is
important to initialize the handle to MQHO_OBJECT. This indicates to the
queue manager that it needs to return a queue handle to the subscription
queue.

MQSD sd = {MQSD_DEFAULT};
The new subscription descriptor, used in MQSUB.

The results are shown in Figure 25 on page 61.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>

void inquireQname(MQHCONN HConn, MQHOBJ Hobj, MQCHAR48 qName);

int main(int argc, char **argv)
{

MQCHAR48 topicNameDefault = "STOCKS";
char topicStringDefault[] = "IBM/PRICE";
MQCHAR48 qmName = ""; /* Use default queue manager */
MQCHAR48 qName = ""; /* Allocate to query queue name */
char publicationBuffer[101]; /* Allocate to receive messages */
char resTopicStrBuffer[151]; /* Allocate to resolve topic string */

MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */
MQHOBJ Hobj = MQHO_NONE; /* publication queue handle */
MQHOBJ Hsub = MQSO_NONE; /* subscription handle */
MQLONG CompCode = MQCC_OK; /* completion code */
MQLONG Reason = MQRC_NONE; /* reason code */
MQLONG messlen = 0;
MQSD sd = {MQSD_DEFAULT}; /* Subscription Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* put message options */

char * topicName = topicNameDefault;
char * topicString = topicStringDefault;
char * publication = publicationBuffer;
char * resTopicStr = resTopicStrBuffer;
memset(resTopicStr, 0, sizeof(resTopicStrBuffer));

switch(argc){ /* Replace defaults with args if provided */
default:

topicString = argv[2];
case(2):

if (strcmp(argv[1],"/")) /* "/" invalid = No topic object */
topicName = argv[1];

else
*topicName = '\0';

case(1):
printf("Optional parameters: topicName, topicString\nValues \"%s\" \"%s\"\n",

topicName, topicString);
}

Figure 23. Managed MQ subscriber - part 1: declarations and parameter handling.

Chapter 4. Writing publish/subscribe applications 59

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|

MQCHAR48 qName;
Although the example doesn’t require knowledge of the subscription
queue, we do inquire the name of the subscription queue - the MQINQ
binding is a little awkward in the C language, so you may find this part of
the example useful to study.

do {
MQCONN(qmName, &Hconn, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
strncpy(sd.ObjectName, topicName, MQ_Q_NAME_LENGTH);
sd.ObjectString.VSPtr = topicString;
sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
sd.Options = MQSO_CREATE | MQSO_MANAGED | MQSO_NON_DURABLE | MQSO_FAIL_IF_QUIESCING ;
sd.ResObjectString.VSPtr = resTopicStr;
sd.ResObjectString.VSBufSize = sizeof(resTopicStrBuffer)-1;
MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
gmo.Options = MQGMO_WAIT | MQGMO_NO_SYNCPOINT | MQGMO_CONVERT;
gmo.WaitInterval = 10000;
inquireQname(Hconn, Hobj, qName);
printf("Waiting %d seconds for publications matching \"%s\" from \"%-0.48s\"\n",

gmo.WaitInterval/1000, resTopicStr, qName);
do {

memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;
memset(publicationBuffer, 0, sizeof(publicationBuffer));
MQGET(Hconn, Hobj, &md, &gmo, sizeof(publicationBuffer-1),

publication, &messlen, &CompCode, &Reason);
if (Reason == MQRC_NONE)

printf("Received publication \"%s\"\n", publication);
}
while (CompCode == MQCC_OK);
if (CompCode != MQCC_OK && Reason != MQRC_NO_MSG_AVAILABLE) break;
MQCLOSE(Hconn, &Hsub, MQCO_REMOVE_SUB, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQDISC(&Hconn, &CompCode, &Reason);

} while (0);
printf("Completion code %d and Return code %d\n", CompCode, Reason);

return;
}
void inquireQname(MQHCONN Hconn, MQHOBJ Hobj, MQCHAR48 qName) {
#define _selectors 1
#define _intAttrs 1

MQLONG select[_selectors] = {MQCA_Q_NAME}; /* Array of attribute selectors */
MQLONG intAttrs[_intAttrs]; /* Array of integer attributes */
MQLONG CompCode, Reason;
MQINQ(Hconn, Hobj, _selectors, select, _intAttrs, intAttrs, MQ_Q_NAME_LENGTH, qName,

&CompCode, &Reason);
if (CompCode != MQCC_OK) {

printf("MQINQ failed with Condition code %d and Reason %d\n", CompCode, Reason);
strcpy(qName, "unknown queue");

}
return;

}

Figure 24. Managed MQ subscriber - part 2: code body.

60 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

||

There are some additional comments to make about the code in this example.

strncpy(sd.ObjectName, topicName, MQ_Q_NAME_LENGTH);
If topicName is null or blank (default value), the topic name is not used to
compute the resolved topic string.

sd.ObjectString.VSPtr = topicString;
Rather than solely use a predefined topic object, in this example the
programmer provides a topic object and a topic string, that are combined
by MQSUB. Notice the topic string is a MQCHARV structure.

sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
An alternative to setting the length of a MQCHARV field.

sd.Options = MQSO_CREATE | MQSO_MANAGED | MQSO_NON_DURABLE |
MQSO_FAIL_IF_QUIESCING;

After defining the topic string, the sd.Options flags need the most careful
attention. There are many options, we shall specify only the most
commonly used ones in this example, the others are left to default.
1. As the subscription is non-durable, in other words, it has a lifetime of

the open subscription in the application, set the MQSO_CREATE flag. You
can also set the (default) MQSO_NON_DURABLE flag for readability.

2. Complementing MQSO_CREATE is MQSO_RESUME. Both flags may be set
together; the queue manager either creates a new subscription or
resumes an existing subscription, whichever is appropriate. However, if
you do specify MQSO_RESUME you must also initialize the MQCHARV
structure for sd.SubName, even if there is no subscription to resume.
Failure to initialize SubName results in a return code of 2440:
MQRC_SUB_NAME_ERROR from MQSUB.

Note: MQSO_RESUME is always ignored for a non-durable managed
subscription: but specifying it without initializing the MQCHARV structure
for sd.SubName does cause the error.

3. In addition there is a third flag affecting how the subscription is
opened, MQSO_ALTER. Given the right permissions, the properties of a
resumed subscription are changed to match other attributes specified in
MQSUB.

Note: At least one of the MQSO_CREATE, MQSO_RESUME and MQSO_ALTER
flags must be specified. See the discussion in MQSD Options. There are
examples of using all three flags in “Example 3: Unmanaged MQ
subscriber” on page 63.

4. Set MQSO_MANAGED for the queue manager to manage the subscription for
you automatically.

W:\Subscribe2\Debug>solution2
Optional parameters: topicName, topicString
Values "STOCKS" "IBM/PRICE"
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from "SYSTEM.MANAGED.NDURABLE.48A0AC7403300020 "
Received publication "150"
Completion code 0 and Return code 0

W:\Subscribe2\Debug>solution2 / NYSE/IBM/PRICE
Optional parameters: topicName, topicString
Values "" "NYSE/IBM/PRICE"
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from "SYSTEM.MANAGED.NDURABLE.48A0AC7403310020 "
Received publication "150"
Completion code 0 and Return code 0

Figure 25. Output from managed MQ subscriber

Chapter 4. Writing publish/subscribe applications 61

|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
Optionally, omit setting the length of MQCHARV for null terminated strings
and use the null terminator flag instead.

sd.ResObjectString.VSPtr = resTopicStr;
The resulting topic string is echoed in first printf in the program. Set up
MQCHARV ResObjectString for WebSphere MQ to return the resolved string
back to our program.

Note: We initialized resTopicStringBuffer to nulls in
memset(resTopicStr, 0, sizeof(resTopicStrBuffer)). Returned topic
strings do not end with a trailing null.

sd.ResObjectString.VSBufSize = sizeof(resTopicStrBuffer)-1;
Set the buffer size of the sd.ResObjectString to one less than its actual
size. This prevents overwriting the null terminator we provided, in case
the resolved topic string fills the entire buffer.

Note: No error is returned if the topic string is longer than
sizeof(resTopicStrBuffer)-1. Even if VSLength > VSBufSiz the length
returned in sd.ResObjectString.VSLength is the length of the complete
string and not necessarily the length of the returned string. Test
sd.ResObjectString.VSLength < sd.ResObjectString.VSBufSiz to confirm
the topic string is complete.

MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);
The MQSUB function creates a subscription. If it is non-durable you are
probably not interested in its name, though you can inspect its status in
WebSphere MQ Explorer. You can provide the sd.SubName parameter as
input, so you know what name to look for; you obviously have to avoid
name clashes with other subscriptions.

MQCLOSE(Hconn, &Hsub, MQCO_REMOVE_SUB, &CompCode, &Reason);
Closing both the subscription and the subscription queue is optional. In the
example the subscription is closed, but not the queue. The MQCLOSE
MQCO_REMOVE_SUB option is the default in this case anyway as the
subscription is non-durable. Using MQCO_KEEP_SUB is an error.

Note: the subscription queue is not closed by MQSUB, and its handle, Hobj,
remains valid until the queue is closed by MQCLOSE or MQDISC. If the
application terminates prematurely, the queue and subscription are cleaned
up by the queue manager sometime after application termination.

62 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

Related concepts

“Example 1: MQ Publication consumer” on page 54
The MQ Publication consumer is a WebSphere MQ message consumer that does
not subscribe to topics itself.
“Example 3: Unmanaged MQ subscriber”
The unmanaged subscriber is an important class of subscriber application. With it,
you combine the benefits of publish/subscribe with control of queuing and
consumption of publications. The example demonstrates different ways of
combining subscriptions and queues.
“Writing publisher applications” on page 45
Get started with writing publisher applications by studying two examples. The
first is modelled as closely as possible on a point to point application putting
messages on a queue, and the second demonstrates creating topics dynamically - a
more common pattern for publisher applications.

Example 3: Unmanaged MQ subscriber
The unmanaged subscriber is an important class of subscriber application. With it,
you combine the benefits of publish/subscribe with control of queuing and
consumption of publications. The example demonstrates different ways of
combining subscriptions and queues.

The unmanaged pattern is more commonly associated with durable subscriptions
than non-durable. Typically the lifecycle of a subscription created by an unmanaged
subscriber is independent of the lifecycle of the subscribing application itself. By
making the subscription durable the subscription receives publications even when
no subscribing application is active.

You can create durable managed subscriptions to achieve the same result, but some
applications require more flexibility and control over queues and messages than is
possible with a managed subscription. For a durable managed subscription, the
queue manager creates a permanent queue for the publications that match the
subscription topic. It deletes the queue and associated publications when the
subscription is deleted.

Typically durable managed subscriptions are used if the lifecycle of the application
and the subscription is essentially the same, but hard to guarantee. By making the
subscription durable, and having the publisher create persistent publications, there
are no lost messages should the queue manager or subscriber terminate
prematurely and need to be recovered.

The queue manager implicitly opens the durable managed subscription queue for a
subscriber in such a way that shared processing of the queue is not possible. In
addition, you cannot create more than one subscription for each managed queue
and you may find the queues harder to manage because you have less control over
the names of the queues. For these reasons, consider whether the unmanaged MQ
subscriber is a better fit for applications requiring durable subscriptions than the
managed MQ subscriber.

The code in Figure 28 on page 70 demonstrates an unmanaged durable
subscription pattern. For illustration the code also creates unmanaged, non-durable
subscriptions. The pattern facets exemplified by this code are,
1. On demand subscriptions: the subscription topic strings are dynamic. They are

provided by the application when it runs.

Chapter 4. Writing publish/subscribe applications 63

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

2. Simplified subscription topic management: subscription topic management is
simplified by defining the root part of the subscription topic string using an
administratively defined topic. This hides the root part of the topic tree from
the application. By hiding the root part a subscriber can be deployed to
different topic trees.

3. Flexible subscription management: you can define a subscription either
administratively, or create it on-demand in a subscriber program. There is no
difference between administratively and programmatically created
subscriptions, except an attribute that shows how the subscription was created.
There is a third type of subscription that is created automatically by the queue
manager for distribution of subscriptions. All subscriptions are displayed in the
WebSphere MQ Explorer.

4. Flexible association of subscriptions with queues: a predefined local queue is
associated with a subscription by the MQSUB function. There are different ways
to use MQSUB to associate subscriptions with queues:
a. Associate a subscription with a queue having no existing subscriptions,

MQSO_CREATE + (Hobj from MQOPEN).
b. Associate a new subscription with a queue having existing subscriptions,

MQSO_CREATE + (Hobj from MQOPEN).
c. Move a existing subscription to a different queue, MQSO_ALTER + (Hobj from

MQOPEN).
d. Resume an existing subscription associated with an existing queue,

MQSO_RESUME + (Hobj = MQHO_NONE), or MQSO_RESUME + (Hobj = from MQOPEN
of queue with existing subscription).

v By combining MQSO_CREATE | MQSO_RESUME | MQSO_ALTER in different
combinations, you can cater for different input states of the subscription and
the queue without having to code multiple versions of MQSUB with different
sd.Options values.

v Alternatively, by coding a specific choice of MQSO_CREATE | MQSO_RESUME |
MQSO_ALTER the queue manager returns an error (Table 7 on page 66) if the
states of the subscription and queue provided as input to MQSUB are
inconsistent with the value of sd.Options. Figure 34 on page 73 shows the
results of issuing MQSUB for Subscription X with different individual settings
of the sd.Options flag, and passing it three different object handles.

Explore different inputs to the example program in Figure 27 on page 68 to
become familiar with these different kinds of error. One common error, RC =
2440, that is not included in the cases listed in the table, is a subscription name
error. it is commonly caused by passing a null or invalid subscription name
with MQSO_RESUME or MQSO_ALTER.

5. Multiprocessing: you can share out of the work of reading publications to
multiple consumers. The publications all go onto the single queue associated
with the subscription topic. Consumers have a choice of opening the queue
directly using MQOPEN or resuming the subscription using MQSUB.

6. Subscription concentration: multiple subscriptions can be created on the same
queue. Be cautious with this capability as it can lead to ″overlapping″
subscriptions, and receiving the same publication multiple times. The
MQSO_GROUP_SUB option eliminates duplicate publications caused by overlapping
subscriptions.

7. Subscriber and consumer separation: As well as the three consumer models
illustrated in the examples, another model is to separate the consumer from the
subscriber. It is a variation of the unmanaged MQ Subscriber, but rather than
issue the MQOPEN and MQSUB in the same program, one program subscribes to
publications, and another program consumes them. For example, the subscriber

64 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

might be part of a publish/subscribe cluster and the consumer attached to a
queue manager outside the queue manager cluster. The consumer receives
publications through standard distributed queuing by defining the subscription
queue as a remote queue definition.

Understanding the behavior of MQSO_CREATE | MQSO_RESUME | MQSO_ALTER is
important, especially if you plan to simplify your code by using combinations of
these options. Study the table Table 7 on page 66 that shows the results of passing
different queue handles to MQSUB, and the results of running the example
program shown in Figure 29 on page 71 to Figure 34 on page 73.

The scenario used to construct the table has one subscription X and two queues, A
and B. The subscription name parameter sd.SubName is set to X, the name of a
subscription attached to queue A. Queue B has no subscription attached to it.

Examine the top left cell. MQSUB is passed subscription X and the queue handle to
queue A .
1. MQSO_CREATE fails because the queue handle corresponds to the queue A which

already has a subscription to X. Contrast this behavior to the cell to the right:
there, the call succeeds because queue B does not have a subscription to X
attached to it.

2. MQSO_RESUME succeeds because the queue handle corresponds to the queue A
which already has a subscription to X. In contrast, the call fails in the cell to the
right.

3. MQSO_ALTER behaves in a similar way to MQSO_RESUME with respect to opening
the subscription and queue. However if the attributes contained within the
subscription descriptor passed to MQSUB differ from the attributes of the
subscription, MQSO_RESUME fails, whereas MQSO_ALTER succeeds as long as the
program instance has permission to alter the attributes. Note that you can
never change the topic string in a subscription; but rather than return an error,
MQSUB ignores the topic name and topic string values in the subscription
descriptor and uses the values in the existing subscription.

Next, look at the cell below. MQSUB is passed subscription X and the queue handle
to queue B.
1. MQSO_CREATE succeeds and creates subscription X on queue B because this is a

new subscription on queue B.
2. MQSO_RESUME fails. MQSUB looks for subscription X on queue B and does not find

it, but rather than returning RC = 2428 - subscription X does not exist, it returns
RC = 2019 - Subscription queue does not match queue object handle. The behavior of
the third option MQSO_ALTER suggests the reason for this unexpected error. MQSUB
expects the queue handle to point to a queue with a subscription. It checks this
first before checking whether the subscription named in sd.SubName exists.

3. MQSO_ALTER succeeds, and moves the subscription from queue A to queue B.
4. A case that is not shown in the table is if the subscription name of the

subscription on queue A does not match the subscription name in sd.SubName.
That call fails with a RC = 2428 - subscription X does not exist on Queue A.

Chapter 4. Writing publish/subscribe applications 65

|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|

|

|
|
|

Table 7. Errors from MQSUB with different queue handles and subscription combinations

Queue A
Subscription X

Queue B
No subscription

Queue A
No subscription

Queue B
No subscription

Hobj for Queue
A passed to
MQSUB

MQSO_CREATE
RC = 2432 - Subscription X
already exists on Queue A

MQSO_RESUME
Resumes subscription X on
Queue A

MQSO_ALTER
Resumes subscription X on
Queue A and makes
permitted alterations

MQSO_CREATE
Creates subscription X on
Queue A

MQSO_RESUME
RC = 2428 - Subscription X
does not exist on Queue A

MQSO_ALTER
RC = 2428 - Subscription X
does not exist on Queue A

Hobj for Queue
B passed to
MQSUB

MQSO_CREATE
Creates new subscription X
on Queue B

MQSO_RESUME
RC = 2019 - Subscription
queue does not match
queue object handle

MQSO_ALTER
Move subscription X from
Queue A to Queue B

MQSO_CREATE
Creates new subscription X
on Queue B

MQSO_RESUME
RC = 2428 - subscription X
does not exist on Queue B

MQSO_ALTER
RC = 2428 - subscription X
does not exist on Queue B

MQHO_NONE
passed to
MQSUB

MQSO_CREATE
RC = 2019 - Bad object
handle: set MQSO_MANAGED
flag to create a managed
subscription and create a
managed queue

MQSO_RESUME
Resumes subscription X on
Queue A and returns Hobj
to Queue A

MQSO_ALTER
Resumes subscription X on
Queue A, returns Hobj to
Queue A and makes
permitted alterations

MQSO_CREATE
RC = 2019 - Bad object
handle: set MQSO_MANAGED
flag to create a managed
subscription and create a
managed queue

MQSO_RESUME
RC = 2428 - No
subscription X

MQSO_ALTER
RC = 2019 - Bad object
handle: No queue A or B

Note: The compact coding style is intended for readability not production use.

66 WebSphere MQ: Publish/Subscribe User’s Guide

||

|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|

|
|

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>

void inquireQname(MQHCONN HConn, MQHOBJ Hobj, MQCHAR48 qName);

int main(int argc, char **argv)
{

MQCHAR48 topicNameDefault = "STOCKS";
char topicStringDefault[] = "IBM/PRICE";
char subscriptionNameDefault[] = "IBMSTOCKPRICESUB";
char subscriptionQueueDefault[] = "STOCKTICKER";
char publicationBuffer[101]; /* Allocate to receive messages */
char resTopicStrBuffer[151]; /* Allocate to resolve topic string */
MQCHAR48 qmName = ""; /* Default queue manager */
MQCHAR48 qName = ""; /* Allocate storage for MQINQ */

MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */
MQHOBJ Hobj = MQHO_NONE; /* subscription queue handle */
MQHOBJ Hsub = MQSO_NONE; /* subscription handle */
MQLONG CompCode = MQCC_OK; /* completion code */
MQLONG Reason = MQRC_NONE; /* reason code */
MQLONG messlen = 0;
MQOD od = {MQOD_DEFAULT}; /* Unmanaged subscription queue */
MQSD sd = {MQSD_DEFAULT}; /* Subscription Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
MQLONG sdOptions = MQSO_CREATE | MQSO_RESUME | MQSO_DURABLE | MQSO_FAIL_IF_QUIESCING;

char * topicName = topicNameDefault;
char * topicString = topicStringDefault;
char * subscriptionName = subscriptionNameDefault;
char * subscriptionQueue = subscriptionQueueDefault;
char * publication = publicationBuffer;
char * resTopicStr = resTopicStrBuffer;
memset(resTopicStrBuffer, 0, sizeof(resTopicStrBuffer));

Figure 26. Unmanaged MQ subscriber - part 1: declarations.

Chapter 4. Writing publish/subscribe applications 67

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

There are some additional comments to make about the parameter handling in this
example.

switch((argv[5][0]))
You have the choice of entering Alter | Create | Resume in parameter 5,
to test the effect of overriding part of the MQSUB option setting used by
default in the example. The default setting used by the example is
MQSO_CREATE | MQSO_RESUME | MQSO_DURABLE.

switch(argc){ /* Replace defaults with args if provided */
default:

switch((argv[5][0])) {
case('A'): sdOptions = MQSO_ALTER | MQSO_DURABLE | MQSO_FAIL_IF_QUIESCING;

break;
case('C'): sdOptions = MQSO_CREATE | MQSO_DURABLE | MQSO_FAIL_IF_QUIESCING;

break;
case('R'): sdOptions = MQSO_RESUME | MQSO_DURABLE | MQSO_FAIL_IF_QUIESCING;

break;
default: ;

}
case(5):

if (strcmp(argv[4],"/")) /* "/" invalid = No subscription */
subscriptionQueue = argv[4];

else {
*subscriptionQueue = '\0';
if (argc > 5) {

if (argv[5][0] == 'C') {
sdOptions = sdOptions + MQSO_MANAGED;

}
}
else

sdOptions = sdOptions + MQSO_MANAGED;
}

case(4):
if (strcmp(argv[3],"/")) /* "/" invalid = No subscription */

subscriptionName = argv[3];
else {

*subscriptionName = '\0';
sdOptions = sdOptions - MQSO_DURABLE;

}
case(3):

if (strcmp(argv[2],"/")) /* "/" invalid = No topic string */
topicString = argv[2];

else
*topicString = '\0';

case(2):
if (strcmp(argv[1],"/")) /* "/" invalid = No topic object */

topicName = argv[1];
else

*topicName = '\0';
case(1):

sd.Options = sdOptions;
printf("Optional parameters: "
printf("topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)\n");
printf("Values \"%-.48s\" \"%s\" \"%s\" \"%-.48s\" sd.Options=%d\n",

topicName, topicString, subscriptionName, subscriptionQueue, sd.Options);
}

Figure 27. Unmanaged MQ subscriber - part 2: parameter handling.

68 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

Note: Setting MQSO_ALTER or MQSO_RESUME without setting MQSO_DURABLE is
an error, and sd.SubName must be set and refer to a subscription that can be
resumed or altered.

*subscriptionQueue = '\0';
sdOptions = sdOptions + MQSO_MANAGED;

If the default subscription queue, STOCKTICKER is replaced by a null string
then as long as MQSO_CREATE is set, the example sets the MQSO_MANAGED flag
and creates a dynamic subscription queue. If Alter or Resume are set in
the fifth parameter the behavior of the example will depend on the value
of subscriptionName.

*subscriptionName = '\0';
sdOptions = sdOptions - MQSO_DURABLE;

If the default subscription, IBMSTOCKPRICESUB, is replaced by a null string
then the example removes the MQSO_DURABLE flag. If you run the example
providing the default values for the other parameters an additional
temporary subscription destined to STOCKTICKER is created and receives
duplicate publications. Next time you run the example, without any
parameters, you receive just one publication again.

Chapter 4. Writing publish/subscribe applications 69

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

There are some additional comments to make on the code in this example,

if (strlen(subscriptionQueue))
If there is no subscription queue name then the example uses MQHO_NONE as
the value of Hobj.

do {
MQCONN(qmName, &Hconn, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
if (strlen(subscriptionQueue)) {

strncpy(od.ObjectName, subscriptionQueue, MQ_Q_NAME_LENGTH);
MQOPEN(Hconn, &od, MQOO_INPUT_AS_Q_DEF | MQOO_FAIL_IF_QUIESCING | MQOO_INQUIRE,

&Hobj, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;

}
strncpy(sd.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);
sd.ObjectString.VSPtr = topicString;
sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
sd.SubName.VSPtr = subscriptionName;
sd.SubName.VSLength = MQVS_NULL_TERMINATED;
sd.ResObjectString.VSPtr = resTopicStr;
sd.ResObjectString.VSBufSize = sizeof(resTopicStrBuffer)-1;
MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
gmo.Options = MQGMO_WAIT | MQGMO_NO_SYNCPOINT | MQGMO_CONVERT;
gmo.WaitInterval = 10000;
inquireQname(Hconn, Hobj, qName);
printf("Waiting %d seconds for publications matching \"%s\" from %-0.48s\n",

gmo.WaitInterval/1000, resTopicStr, qName);
do {

memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;
MQGET(Hconn, Hobj, &md, &gmo, sizeof(publication), publication, &messlen, &CompCode, &Reason);
if (Reason == MQRC_NONE)

printf("Received publication \"%s\"\n", publication);
}
while (CompCode == MQCC_OK);
if (CompCode != MQCC_OK && Reason != MQRC_NO_MSG_AVAILABLE) break;
MQCLOSE(Hconn, &Hsub, MQCO_NONE, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQDISC(&Hconn, &CompCode, &Reason);

} while (0);
printf("Completion code %d and Return code %d\n", CompCode, Reason);

}
void inquireQname(MQHCONN Hconn, MQHOBJ Hobj, MQCHAR48 qName) {
#define _selectors 1
#define _intAttrs 1

MQLONG select[_selectors] = {MQCA_Q_NAME}; /* Array of attribute selectors */
MQLONG intAttrs[_intAttrs]; /* Array of integer attributes */
MQLONG CompCode, Reason;
MQINQ(Hconn, Hobj, _selectors, select, _intAttrs, intAttrs, MQ_Q_NAME_LENGTH, qName, &CompCode, &Reason);
if (CompCode != MQCC_OK) {

printf("MQINQ failed with Condition code %d and Reason %d\n", CompCode, Reason);
strncpy(qName, "unknown queue", MQ_Q_NAME_LENGTH);

}
return;

}

Figure 28. Unmanaged MQ subscriber - part 3: code body.

70 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|

MQOPEN(...);
The subscription queue is opened and the queue handle saved in Hobj.

MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);
The subscription is opened using the Hobj passed from MQOPEN (or
MQHO_NONE if there is no subscription queue name). An unmanaged queue
can be resumed without explicitly opening it with an MQOPEN.

MQCLOSE(Hconn, &Hsub, MQCO_NONE, &CompCode, &Reason);
The subscription is closed using the subscription handle. Depending on
whether the subscription is durable or not, the subscription is closed with
an implicit MQCO_KEEP_SUB or MQCO_REMOVE_SUB. You can close a durable
subscription with MQCO_REMOVE_SUB, but you cannot close a non-durable
subscription with MQCO_KEEP_SUB. The action of MQCO_REMOVE_SUB is to
remove the subscription which stops any further publications being sent to
the subscription queue.

MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
No special action is taken if the subscription is unmanaged. If the queue is
managed and the subscription closed with either an explicit or implicit
MQCO_REMOVE_SUB, then all publications are purged from the queue and
queue deleted at this point.

Results from the example illustrate aspects of publish/subscribe.
1. In Figure 29 the example starts by publishing 130 on the NYSE/IBM/PRICE topic.

2. In Figure 30 execution of the example using default parameters receives the
retained publication 130.
The provided topic object and topic string are ignored, as shown in Figure 34
on page 73. The topic object and topic string are always taken from the
subscription object, when one is provided, and the topic string is immutable.
The actual behavior of the example depends on the choice or combination of
MQSO_CREATE, MQSO_RESUME, and MQSO_ALTER. In this example MQSO_RESUME is the
option selected.

3. In (Figure 31 on page 72) no publications are received, because the durable
subscription has already received the retained publication. In this example, the
subscription is resumed by providing only the subscription name without the
queue name. If the queue name was provided, the queue would be opened first
and the handle passed to MQSUB.

W:\Subscribe3\Debug>..\..\Publish2\Debug\publishstock
Provide parameters: TopicObject TopicString Publication
Publish "130" to topic "STOCKS" and topic string "IBM/PRICE"
Published "130" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

Figure 29. Publish 130 to NYSE/IBM/PRICE

W:\Subscribe3\Debug>solution3
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "STOCKS" "IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8206
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER
Received publication "130"
Completion code 0 and Return code 0

Figure 30. Receive the retained publication

Chapter 4. Writing publish/subscribe applications 71

|
|
|
|
|
||
|
|

|
|
|
|
|
|
||
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

Note: The 2038 error from MQINQ is due to the implicit MQOPEN of STOCKTICKER
by MQSUB not including the MQOO_INQUIRE option. Avoid the 2038 return code
from MQINQ by opening the queue explicitly.

4. In Figure 32, the example creates a non-durable unmanaged subscription using
STOCKTICKER as the destination. Because this is a new subscription, it
receives the retained publication.

5. To demonstrate overlapping subscriptions, another publication is sent, changing
the retained publication. Next, a new non-durable, unmanaged subscription is
created by not providing a subscription name (Figure 33). The retained
publication is received twice, once for the new subscription, and once for the
durable IBMSTOCKPRICESUB subscription that is still active on the STOCKTICKER
queue.
The example is an illustration it is the queue that has subscriptions, and not the
application. Despite not referring to the IBMSTOCKPRICESUB subscription in this
invocation of the application, the application receives the publication twice:
once from the durable subscription that was created administratively, and once
from the non-durable subscription created by the application itself.

6. In Figure 34 on page 73 the example demonstrates that providing a new topic
string and an existing subscription does not result in a changed subscription.
a. In the first case, Resume resumes the existing subscription, as you might

expect, and ignores the changed topic string.
b. In the second case, Alter causes an error, RC = 2510, Topic not alterable.

W:\Subscribe3\Debug>solution3 STOCKS IBM/PRICE IBMSTOCKPRICESUB / Resume
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "STOCKS" "IBM/PRICE" "IBMSTOCKPRICESUB" "" sd.Options=8204
MQINQ failed with Condition code 2 and Reason 2038
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from unknown queue
Completion code 0 and Return code 0

Figure 31. Resume subscription

W:\Subscribe3\Debug>solution3 STOCKS IBM/PRICE / STOCKTICKER Create
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "STOCKS" "IBM/PRICE" "" "STOCKTICKER" sd.Options=8194
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER
Received publication "130"
Completion code 0 and Return code 0

Figure 32. Receive retained publication with new unmanaged non durable subscription

W:\Subscribe3\Debug>..\..\Publish2\Debug\publishstock
Provide parameters: TopicObject TopicString Publication
Publish "130" to topic "STOCKS" and topic string "IBM/PRICE"
Published "130" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

W:\Subscribe3\Debug>solution3 STOCKS IBM/PRICE / STOCKTICKER Create
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "STOCKS" "IBM/PRICE" "" "STOCKTICKER" sd.Options=8194
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER
Received publication "130"
Received publication "130"
Completion code 0 and Return code 0

Figure 33. Overlapping subscriptions

72 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|
|
|
||
|
|

|
|
|
|
|
|
||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|

c. In the third example, Create causes an error RC = 2432, Sub already
exists.

Related concepts

“Example 1: MQ Publication consumer” on page 54
The MQ Publication consumer is a WebSphere MQ message consumer that does
not subscribe to topics itself.
“Example 2: Managed MQ subscriber” on page 56
The managed MQ subscriber is the core pattern for most subscriber applications.
The example requires no administrative definition of queues, topics or
subscriptions.
“Writing publisher applications” on page 45
Get started with writing publisher applications by studying two examples. The
first is modelled as closely as possible on a point to point application putting
messages on a queue, and the second demonstrates creating topics dynamically - a
more common pattern for publisher applications.

Publish/subscribe lifecycles
Consider the lifecycles of topics, subscriptions, subscribers, publications, publishers
and queues in designing publish/subscribe applications.

The lifecycle of an object, such as a subscription, starts with its creation and ends
with its deletion. It may also include other states and changes that it goes through,
such as temporary suspension, having parent and children topics, expiration and
deletion.

Traditionally WebSphere MQ objects such as queues are created administratively,
or by administrative programs using Programmable Command Format (PCF).
Publish/subscribe is different in providing the MQSUB and MQCLOSE API verbs to
create and delete subscriptions, having the concept of managed subscriptions that
not only create and delete queues, but also clean up unconsumed messages, and
having associations between administratively created topic objects and
programmatically or administratively created topic strings.

This functional richness caters for a wide range of publish/subscribe requirements,
and also simplifies designing some common patterns of publish/subscribe
application. Managed subscriptions, for example, simplify both the programming
and administration of a subscription that is intended to last only as long as the

W:\Subscribe3\Debug>solution3 "" NASDAC/IBM/PRICE IBMSTOCKPRICESUB STOCKTICKER Resume
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "" "NASDAC/IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8204
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER
Received publication "130"
Completion code 0 and Return code 0

W:\Subscribe3\Debug>solution3 "" NASDAC/IBM/PRICE IBMSTOCKPRICESUB STOCKTICKER Alter
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "" "NASDAC/IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8201
Completion code 2 and Return code 2510

W:\Subscribe3\Debug>solution3 "" NASDAC/IBM/PRICE IBMSTOCKPRICESUB STOCKTICKER Create
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "" "NASDAC/IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8202
Completion code 2 and Return code 2432

Figure 34. Subscription topics cannot be changed

Chapter 4. Writing publish/subscribe applications 73

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|

|

|

|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

program that created it. Unmanaged subscriptions simplify programming where
there is a looser connection between subscribing and consuming publications.
Centrally created subscriptions are useful where the pattern is one of routing
publication traffic to consumers based on a centralized model of control, for
example sending flight information to automated gates, whereas programmatically
created subscriptions might be used if gate staff are responsible for subscribing to
the passengers records for that flight, by entering a flight number at a gate.

In this last example a managed durable subscription might be appropriate:
managed, because the subscriptions are being created very often, and have a clear
endpoint when the gate closes and the subscription can be programmatically
removed; durable, to avoid losing a passenger record due to the gate subscriber
program going down for one reason or another1. To initiate the publication of
passenger records to the gate, a possible design would be for the gate application
to both subscribe to the passenger records using the gate number, and publish the
gate opening event using the gate number. The publisher responds to the gate
opening event by publishing the passenger records - which might then also go to
other interested parties, such as billing, to record the flight is taking place, and to
customer services, to text notifications to passengers’ mobile phones of the gate
number.

The centrally managed subscription might use a durable unmanaged model,
routing passenger lists to the gate using a predefined queue for each gate.

The following three examples of publish/subscribe lifecycles illustrate how
managed non-durable, managed durable, and unmanaged durable subscribers
interact with subscriptions, topics, queues, publishers and the queue manager, and
how the responsibilities might be divided between administration and the
subscriber programs.

Managed non-durable subscriber

“Publish/subscribe lifecycles” on page 73 shows an application creating a managed
non-durable subscription, getting two messages that are published to the topic
identified in the subscription, and terminating. The interactions labeled in an italic
grey font with dotted arrows are implicit.

There are some points to note.
1. The application creates a subscription on a topic that has already been

published to twice. When the subscriber receives its first publication, it receives
the second publication which is the currently retained publication.

2. The queue manager creates a temporary subscription queue as well as creating
a subscription for the topic.

3. The subscription has an expiry. When the subscription expires no more
publications on the topic are sent to this subscription, but the subscriber
continues to get messages published before the subscription expired.
Publication expiry is not affected by subscription expiry.

4. The fourth publication is not placed on the subscription queue and
consequently the last MQGET does not return a publication.

5. Although the subscriber closes its subscription, it does not close its connection
to the queue or the queue manager.

1. The publisher must send the passenger records as persistent messages to avoid other possible failures, of course.

74 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|

|

|
|
|

|
|

|
|
|
|

|
|

|
|

6. The queue manager cleans up shortly after the application terminates. Because
the subscription is managed and non-durable, the subscription queue is
deleted.

Managed durable subscriber

The managed durable subscriber takes the previous example a step further, and
shows a managed subscription surviving the termination and restart of the
subscribing application.

There are some new points to note.
1. In this example, unlike the last, the publication topic did not exist before it was

defined in the subscription.
2. The first time the subscriber terminates, it closes the subscription with the

option MQCO_KEEP_SUB. That is the default behavior for implicitly closing a
managed durable subscription.

3. When the subscriber resumes the subscription, the subscription queue is
reopened.

4. The new publication 2, placed on the queue before it is reopened, is available
to MQGET, even after the subscription has been removed.
Even though the subscription is durable, the subscriber reliably receives all
messages sent by the publisher only if both the subscription is durable and the
messages persistent. Message persistence depends on the setting of the
Persistent field in the MQMD of the message sent by the publisher. A subscriber
has no control over this.

Application
Queue

manager Subscription PublisherQueue Topic

MQCONN

MQSUB

MQCLOSE

MQGET

MQGET

MQGET

Subscribe

MQOPEN

Closes open handles, deletes queue

Expiry

MQPUT

MQPUT

1

2

2

2

3

2

3

4

Figure 35. Managed non-durable subscriber lifelines

Chapter 4. Writing publish/subscribe applications 75

|

||
|
|

|
|
|

|

|

|
|
|

|

|
|

|
|
|

|
|

|
|

|
|
|
|
|

5. Closing the subscription with the flag MQCO_REMOVE_SUB removes the
subscription, stopping any further publications being placed on the
subscription queue. When the subscription queue is closed, then the queue
manager removes the unread publication 3, and then deletes the queue. The
action is equivalent to administratively deleting the subscription.

Note: Do not delete the queue manually, or issue MQCLOSE with the option
MQCO_DELETE, or MQCO_PURGE_DELETE. The visible implementation details of a
managed subscription is not part of the supported WebSphere MQ interface.
The queue manager manage cannot manage a subscription reliably unless it has
complete control.

Unmanaged durable subscriber

An administrator is added in the third example: the unmanaged durable
subscriber. It is a good example to show how the administrator might interact with
a publish/subscribe application.

The points to note are listed.

Application
Queue

manager Subscription PublisherQueue Topic

MQCONN

MQCONN

MQDISC

MQDISC

MQOPEN

MQSUB(resume)

MQSUB(create)

MQGET

MQGET

MQCLOSE(keep_sub)

MQCLOSE

MQCLOSE(remove_sub)

MQCLOSE/MQDISC)

Subscribe

MQOPEN

Unsubscribe

MQPUT
MQPUT 1

1

1

2

2

3

3

2

3

4

Figure 36. Managed durable subscriber lifelines

76 WebSphere MQ: Publish/Subscribe User’s Guide

|

||
|
|

|
|
|
|
|

|
|
|
|
|

|

|

|
|
|

|

1. The publisher puts a message, 1, to a topic that later becomes associated with
the topic object that is used for subscription. The topic object defines a topic
string that matches the topic that was published to by using wild-cards.

2. The topic has a retained publication.
3. The administrator creates a topic object, a queue and a subscription. The topic

object and queue need to be defined before the subscription.
4. The application opens the queue associated with the subscription and passes

MQSUB the handle of the queue. It could, alternatively, simply open the
subscription, passing it the queue handle MQHO_NONE. The converse is not true, it
cannot resume a subscription by passing it only queue handle without a
subscription name - a queue might have multiple subscriptions.

5. The application opens the subscription using the option MQSO_RESUME even
though it is the first time it has opened the subscription. It is resuming an
administratively created subscription.

6. The subscriber receives the retained publication, 1. Publication 2, although
published before any publications were received by the subscriber, was
published after the subscription started, and is the second publication on the
subscription queue.

Note: If the retained publication is not published as a persistent message, then
it is lost after queue manager restart.

7. In this example the subscription is durable. It is possible for a program to
create an unmanaged non-durable subscription; it should be obvious this is not
something an administrator can do.

8. The effect of the option MQCO_REMOVE_SUB on closing the subscription is to
remove the subscription just as if the administrator had deleted it. This stops
any further publications being sent to the queue, but does not affect
publications that are already on the queue, even when the queue is closed,
unlike a managed durable subscription.

9. The administrator later deletes the remaining message, 3, and deletes the
queue.

Chapter 4. Writing publish/subscribe applications 77

|
|
|

|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|

|

A normal pattern for an unmanaged subscription is for queue and subscription
housekeeping to be performed by the administrator. Typically one would not
attempt to emulate the behavior of a managed subscriber and tidy up queues and
subscriptions programmatically in application code. If you find yourself needing to
write management logic, question whether you can achieve the same results using
a managed pattern. It is not easy to write tightly synchronized, completely reliable
management code. It is easier to tidy up later, either manually, or using a
automated management program, when you can be sure that messages,
subscriptions, and queues can be simply deleted, regardless of their state.

Publish/subscribe message properties
Several message properties relate to Websphere MQ publish/subscribe messaging.

Application
Queue

manager Subscription PublisherAdmin Queue Topic

MQCONN

MQCONN

MQDISC

MQDISC

MQOPEN

MQOPEN

MQSUB(resume)

MQSUB(resume)

MQGET

MQGET

MQCLOSE(keep_sub)

MQCLOSE

MQCLOSE(remove_sub)

MQCLOSE)

Create topic

Create queue

Clear messages

Delete queue

Create subscription
Subscribe

Unsubscribe

MQPUT

MQPUT

1

1

1

2

2

3

3

2

3

4

Figure 37. Unmanaged durable subscriber lifelines

78 WebSphere MQ: Publish/Subscribe User’s Guide

|

||
|
|
|
|
|
|
|
|
|
|
|

|
|

|

PubAccountingToken

This is the value that will be in the AccountingToken field of the Message
Descriptor (MQMD) of all publication messages matching this subscription.
AccountingToken is part of the identity context of the message. For more
information about message context, see the WebSphere MQ Application Programming
Guide. For more information about the AccountingToken field in the MQMD, see
the WebSphere Application Programming Reference.

PubApplIdentityData

This is the value that will be in the ApplIdentityData field of the Message
Descriptor (MQMD) of all publication messages matching this subscription.
ApplIdentityData is part of the identity context of the message. For more
information about message context, see the WebSphere MQ Application Programming
Guide. For more information about the ApplIdentityData field in the MQMD, see
the WebSphere Application Programming Reference.

If the option MQSO_SET_IDENTITY_CONTEXT is not specified, the
ApplIdentityData which will be set in each message published for this subscription
is blanks, as default context information.

If the option MQSO_SET_IDENTITY_CONTEXT is specified, the
PubApplIdentityData is being generated by the user and this field is an input field
which contains the ApplIdentityData to be set in each publication for this
subscription.

PubPriority

This is the value that will be in the Priority field of the Message Descriptor
(MQMD) of all publication messages matching this subscription. For more
information about the Priority field in the MQMD, see the WebSphere Application
Programming Reference.

The value must be greater than or equal to zero; zero is the lowest priority. The
following special values can also be used:
v MQPRI_PRIORITY_AS_Q_DEF - When a subscription queue is provided in the

Hobj field in the MQSUB call, and is not a managed handle, then the priority for
the message is taken from the DefProirity attribute of this queue. If the queue so
identified is a cluster queue or there is more than one definition in the
queue-name resolution path then the priority is determined when the
publication message is put to the queue as described for Priority in the MQMD
in the WebSphere MQ Application Programming Reference. If the MQSUB call uses a
managed handle, the priority for the message is taken from the DefPriority
attribute of the model queue associated with the topic subscribed to.

v MQPRI_PRIORITY_AS_PUBLISHED - The priority for the message is the
priority of the original publication. This is the initial value of this field.

SelectionString

This variable length field will be returned on output from an MQSUB call using
the MQSO_RESUME option, if a big enough buffer is provided. If the buffer
provided on the call is not big enough (by the value in VSBufSize) only the length
of the selection string will be returned in the VSLength field of the MQCHARV
and the contents of the buffer will not be altered. The MQSUB call with the

Chapter 4. Writing publish/subscribe applications 79

|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

MQSO_RESUME option can then be issued again providing a buffer long enough
to fit VSLength bytes.

SubCorrelId

Attention: a correlation identifier can only be passed between queue managers in
a publish/subscribe cluster, not a hierarchy.

All publications sent to match this subscription will contain this correlation
identifier in the message descriptor. If multiple subscriptions use the same queue
to get their publications from, using MQGET by correlation id allows only
publications for a specific subscription to be obtained. This correlation identifier
can either be generated by the queue manager or by the user.

If the option MQSO_SET_CORREL_ID is not specified, the correlation identifier is
generated by the queue manager and this field is an output field which contains
the correlation identifier which will be set in each message published for this
subscription.

If the option MQSO_SET_CORREL_ID is specified, the correlation identifier is
being generated by the user and this field is an input field which contains the
correlation identifier to be set in each publication for this subscription. In this case,
if the field contains MQCI_NONE, the correlation identifier which will be set in
each message published for this subscription will be the correlation identifier
created by the original put of the message.

If the option MQSO_GROUP_SUB is specified and the correlation identifier
specified is the same as an existing grouped subscription using the same queue
and an overlapping topic string, only the most significant subscription in the group
is provided with a copy of the publication.

SubUserData

This is the subscription user data. The data provided on the subscription in this
field will be included as the MQSubUserData message property of every
publication sent to this subscription.

Message ordering
For a given topic, messages are published by the queue manager in the same order
as they are received from publishing applications (subject to reordering based on
message priority). This normally means that each subscriber receives messages
from a particular queue manager, on a particular topic, from a particular publisher
in the order that they are published by that publisher.

However, as with all WebSphere MQ messages, it is possible for messages,
occasionally, to be delivered out of order. This can happen in the following
situations:
v If a link in the network goes down and subsequent messages are rerouted along

another link
v If a queue becomes temporarily full, or put-inhibited, so that a message is put to

a dead-letter queue and therefore delayed, while subsequent messages pass
straight through.

80 WebSphere MQ: Publish/Subscribe User’s Guide

|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|
|

v If the administrator deletes a queue manager when publishers and subscribers
are still operating, causing queued messages to be put to the dead-letter queue
and subscriptions to be interrupted.

If these circumstances cannot occur, publications are always delivered in order.

Intercepting publications
You can intercept a publication, modify it, and then republish it before it reaches
any other subscriber.

You might want to intercept a publication before it reaches a subscriber in order to
do one of the following actions:
v Attach additional information to the message
v Block the message
v Transform the message

You can perform the same operation on each message or vary the operation
depending on something in the message or message header.

After the message has been intercepted, it can be passed on to an application
capable of doing message transformation.

To intercept a publication use the subscription level subscription attribute. The
interceptor is simply another subscriber to the topic the messages it must intercept
are being published on. The interceptor then republishes the message so that it can
be received by other subscribers.

To ensure the interceptor receives the messages before any other subscribers, make
sure it has the highest subscription level of all subscribers by using the SubLevel
field in the MQSD. By default, subscribers have a SubLevel of 1.
v If you have one intercepting subscriber it should be configured to subscribe at a

SubLevel of 9.
v If more than one intercepting application is required to receive the publication,

set the sublevel of each interceptor’s subscription appropriately to determine the
order in which these intercepting applications receive the publication.

The interceptor with the highest subscription level receives the publication first,
after which it is republished and received by the subscription with the next highest
subscription level, and so on. When configuring multiple intercepting applications,
there should be no more than one at each SubLevel value which republishes the
message; otherwise duplicate publications will be sent to the final set of
subscribing applications because more than one interceptor republishes the
message to the next SubLevel down.

By default, applications publish to a topic using a PubLevel of 9. PubLevel is a field
in the MQPMO. If there are any subscriptions with a SubLevel of 9, only those
subscriptions are given a copy of the publication. If there are no subscriptions with
a SubLevel of 9, the publications are given to all those subscriptions on this topic
which have the highest SubLevel.

An intercepting application should make its subscription using the options
described in Table 8 on page 82.

Chapter 4. Writing publish/subscribe applications 81

|
|
|

|

|
|

|
|

|
|

|

|

|

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

Table 8. Intercepting subscriber options

Subscription option Notes

MQSO_SET_CORREL_ID and SubCorrelId
set to MQCI_NONE

This ensures that the CorrelId in the
publication message when it is re-published
by the interceptor, is the one set by the
original publisher, in case any subscriptions
at a lower SubLevel has requested that.

Attention: a correlation identifier can only
be passed between queue managers in a
publish/subscribe cluster, not a hierarchy.

PubPriority set to
MQPRI_PRIORITY_AS_PUBLISHED

This ensures that the Priority in the
publication message when it is re-published
by the interceptor, is the one set by the
original publisher, in case any subscriptions
at a lower SubLevel has requested that.

An intercepting application should process the publication message (for example,
transform or encrypt it) and then republish it to the same topic at a publication
level one lower than the subscription level which intercepted it. For example, a
subscription with a SubLevel of 9 should republish the message with a PubLevel of
8. In order to republish the message correctly, several pieces of information are
required as shown in Table 9, and the intercepting application should use the same
MQMD as in the original message and use MQPMO_PASS_ALL_CONTEXT to
ensure all information in that MQMD is preserved and passed on to the next
application (ordinary subscriber or interceptor).

Table 9. MQMD values for republished messages

Republish message using MQPUT Information in publication message

MQOD.ObjectString Message property MQTopicString

MQPMO.Options should OR with the
information in the message

Message property MQPubOptions

An intercepting subscriber is a normal subscriber and as such can use any of the
normal publish/subscribe or WebSphere MQ functions.

A maximum of 8 intercepting applications can be implemented (with subscription
levels from 9 down to 2 inclusive). In this case the final recipient of the message
will have a subscription level of 1.

You can have a subscriber with subscription level 0 that serves as a catchall if no
other subscriber is interested in the message. This configuration can be useful
because you can monitor the messages this subscriber receives and check why no
other subscribers received it and whether it is correct that it not be received by
anyone else.

Retained publications

If the publication is put by the original application with put-message option
MQPMO_RETAIN, it will only be retained if it is received by a subscriber with a
subscription level of 1 or 0. In order to ensure that the instruction to retain this
publication is preserved as the publication passes through an intercepting
application, the MQPMO options are carried with the publication as a message

82 WebSphere MQ: Publish/Subscribe User’s Guide

||

||

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

||

||

||

|
|
|

|

|
|

|
|
|

|
|
|
|
|

|

|
|
|
|
|

property and must be used on the republishing MQPUT call by the intercepting
application.

Publishing options
Several options are available that control the way messages are published.

Withholding reply-to information from subscribers

If you do not want subscribers to be able to reply to publications they receive, it is
possible to withhold information in the ReplyToQ and ReplyToQgr fields of the
MQMD by using the MQPMO_SUPPRESS_REPLYTO put-message option. If this
option is used, the queue manager removes that information from the MQMD
when it receives the publication before forwarding it to any subscribers.

This option cannot be used in combination with a report option that needs a
ReplyToQ, if this is attempted the call with fail with
MQRC_MISSING_REPLY_TO_Q.

Publication level

Using publication levels is a way of controlling which subscribers receive the
publication. The publication level denotes the level of subscription targeted by the
publication. Only subscriptions with the highest subscription level less than or
equal to the publication’s publication level, will receive the publication. This value
must be in the range zero to nine; zero is the lowest publication level. The initial
value of this field is 9. One of the uses of publication and subscription levels is to
intercept publications.

Subscription options

Subscriptions and message persistence

Queue managers maintain the persistence of the publications they forward to
subscribers as set by the publisher, unless changed by options specified when the
subscription is registered. These options are:
v Nonpersistent
v Persistent
v Persistence as queue
v Persistence as publisher (the default)

The system administrator can determine which users are allowed to have
publications sent persistently.

Subscriptions and retained publications
To control when retained publications are received, subscribers can use two
subscription options.

Publish on request only, MQSO_PUBLICATIONS_ON_REQUEST

If you want a subscriber to have control of when it receives publications you can
use the MQSO_PUBLICATIONS_ON_REQUEST subscription option. A subscriber
can then control when it receives publications by using the MQSUBRQ call

Chapter 4. Writing publish/subscribe applications 83

|
|

|
|

|

|

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|

|

|
|
|

|

|

|

|

|
|

|

|
|

|

|
|
|

(specifying the Hsub handle that was returned from the original MQSUB call) to
request that it is sent a topic’s retained publication. Subscribers using the
MQSO_PUBLICATIONS_ON_REQUEST subscription option, do not receive any
non-retained publications.

If you specify MQSO_PUBLICATIONS_ON_REQUEST you must use MQSUBRQ to
retrieve any publication. If you do not use MQSO_PUBLICATIONS_ON_REQUEST
you get messages as they are published.

If a subscriber uses the MQSUBRQ call and uses wildcards in the subscription’s
topic, the subscription might match multiple topics or nodes on a topic tree, all of
whose retained messages (if any exist) will be sent to the subscriber.

This option can be particularly helpful when used with durable subscriptions
because a queue manager will continue to send publications to a subscriber if it
subscribed durably even if that subscriber application is not running. This could
lead to a buildup of messages on the subscriber queue. This build up can be
avoided if the subscriber registers using the
MQSO_PUBLICATIONS_ON_REQUEST option. Alternatively, you can use
non-durable subscriptions if appropriate to your application to avoid a build up of
unwanted messages.

If a subscription is durable and a publisher uses retained publications the
subscriber application can use the MQSUBRQ call to refresh its state information
after a restart. The subscriber must then refresh its state periodically using the
MQSUBRQ call.

No publications will be sent as a result of the MQSUB call using this option. A
durable subscription that has been resumed following disconnection will use the
MQSO_PUBLICATIONS_ON_REQUEST option if the original subscription was
configured to use this option.

New publications only, MQSO_NEW_PUBLICATIONS_ONLY

If a retained publication exists on a topic, any subscribers that make a subscription
after the publication was made will receive a copy of that publication. If a
subscriber does not want to receive any publications that were made prior to the
subscription being made, the subscriber can use the
MQSO_NEW_PUBLICATIONS_ONLY subscription option.

Grouping subscriptions
You can group subscriptions to eliminate receiving duplicate publications from
overlapping subscriptions.

Think about grouping subscriptions if you have set up a queue to receive
publications, and have a number of overlapping subscriptions feeding publications
to the queue. This situation is similar to the example in Overlapping subscriptions.

You can eliminate receiving duplicate publications by setting the option
MQSO_GROUP_SUB when you subscribe to a topic. The result is that when more
than one subscription in the group matches the topic of a publication, only one
subscription is responsible for placing the publication on the queue. The other
subscriptions that matched the publication topic are ignored.

84 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|

|

|
|

|
|
|

|
|
|
|
|

The subscription responsible for placing the publication on the queue is chosen on
the basis that it has the longest matching topic string, before encountering any
wild cards. In other words, it can be thought of as the closest matching
subscription. Its properties are propagated to the publication, including whether it
has the MQSO_NOT_OWN_PUBS property. If it does, no publication is delivered
to the queue, even though other matching subscriptions might not have the
MQSO_NOT_OWN_PUBS property.

You cannot place all your subscriptions in a single group to eliminate duplicate
publications. The basic rules for grouping subscriptions are:
1. Only applicable to non-managed subscriptions.
2. By definition, a group of subscriptions deliver publications to one queue.
3. Each subscription must be at the same subscription level.
4. The publication message for each subscription in the group has the same

CorrelId.
To ensure each subscription results in a publication message with the same
CorrelId, set MQSO_SET_CORREL_ID to create your own CorrelId in the
publication, and set the same SubCorrelId in each subscription. Do not set
SubCorrelId to the value MQCI_NONE.

Fuller details of the rules for grouping subscriptions are to be found in
MQSO_GROUP_SUB.

Chapter 4. Writing publish/subscribe applications 85

|
|
|
|
|
|
|

|
|

|

|

|

|
|

|
|
|
|

|
|

86 WebSphere MQ: Publish/Subscribe User’s Guide

Chapter 5. Publish/subscribe security

The components and interactions that are involved in publish/subscribe are
described as an introduction to the more detailed explanations and examples that
follow.

There are a number of components involved in publishing and subscribing to a
topic. Some of the relationships between these components are illustrated in
Figure 38 and described below.

“Topics” on page 10
Topics are identified by topic strings, and are usually organized into “Topic
trees” on page 17. You need to associate a topic with a topic object to
control access to the topic. “Topic security model” on page 90 explains how
you secure topics using topic objects.

“Administrative topic objects” on page 18
You can control who has access to a topic, and for what purpose, by using

Publisher access
authorities

Associate topic
with topic object

Adopt subscribers
identity

Channel
security

Authority to
publish topic

Authority to
subscribe to topic

Authority to put and
get from queue

Subscribers
access authorities

Authority to
put to queue

Authority to
create topic

Distributed
queuing

Queue

Subscription

TopicTopic Object

Publisher

MQOPEN

MQSUB/
MQOPEN

Admin

Subscriber

Figure 38. Publish/subscribe security relationships

© Copyright IBM Corp. 1996, 2009 87

the command setmqaut against a list of administrative topic objects. See
the examples, “Grant access to a user to subscribe to a topic” on page 95
and “Grant access to a user to publish to a topic” on page 101.

Subscriptions

You subscribe to one or more topics by creating a subscription supplying a
topic string, which can include wild cards, to match against the topic
strings of publications. “Subscribing using the topic object name” on page
91 explains how to check your authorization to use an existing topic object
for the subscription, and “Subscribing using a topic string where the topic
node does not exist” on page 92 the case where the topic in the
subscription does not correspond to an existing topic object. If the
subscription includes wild cards, “Subscribing using a topic string that
contains wildcard characters” on page 92 explains the rules for associating
a topic string containing wild cards with a topic object, and then applying
authorization to all the matching topics that result.

A subscription also contains information about the identity of the
subscriber, the identity of the destination queue onto which the
publications are to be placed, and information about how the publication is
to be placed on the destination queue.

As well as defining which subscribers have the authority to subscribe to
certain topics, you can restrict subscriptions to being used by only one
subscriber. You can also control what information about the subscriber is
adopted by the queue manager when publications are placed onto the
destination queue; see “Subscription security” on page 105.

Queues

The destination queue is an important queue to secure. It is local to the
subscriber, and publications that matched the subscription are placed onto
it. You need to consider access to the destination queue twice over.
1. From the perspective of putting a publication onto the queue
2. From the perspective of getting the publication off the queue.

In the first instance it is the queue manager using an identity provided by
the subscriber that places the publication onto the queue; in the second it is
either the subscriber, or a program that has been delegated the task of
getting publications, that takes messages off the queue. The section,
“Authority to destination queues” on page 93 provides more details.

There are no topic object aliases, but you can use an alias queue as the
alias for a topic object. If you do so, then as well as checking authority to
use the topic for publish or subscribe, the queue manager also checks
authority to use the queue.

“Distributed publish/subscribe security” on page 29

Your permission to publish or subscribe to a topic is checked on the local
queue manager using local identities and authorizations. Authorization
does not depend on the whether the topic is defined or not, nor where it is
defined. Consequently, you need to perform topic authorization on every
queue manager in a cluster when clustered topics are used.

Note: This differs from the security model for queues; though you can
achieve the same result for queues by defining a queue alias locally for
every clustered queue.

88 WebSphere MQ: Publish/Subscribe User’s Guide

Queue managers exchange subscriptions in a cluster. In most WebSphere
MQ cluster configurations, channels are configured with PUTAUT=DEF to
place messages onto target queues using the authority of the channel
process. You can modify the channel configuration to use PUTAUT=CTX to
require the subscribing user to have authority to propagate a subscription
onto another queue manager in a cluster.

“Distributed publish/subscribe security” on page 29 describes how to
change your channel definitions to control who is allowed to propagate
subscriptions onto other servers in the cluster.

Authorization
You can apply authorization to topic objects, just like queues and other
objects, and there are three authorization operations, pub, sub, and resume
that you can apply only to topics. The details are described in Specifying
authorities for different object types.

Function calls

In publish and subscribe programs, like in queued programs, authorization
checks are made when objects are opened, created, changed or deleted in
some way; checks are not made when MQPUT or MQGET MQI calls are
made to put and get publications.

To publish a topic, perform an MQOPEN on the topic, which performs the
authorization checks, and then publish messages to the topic using the
MQPUT command, which performs no authorization checks.

To subscribe to a topic, typically you perform an MQSUB command to
create or resume the subscription, and also to open the destination queue
to receive publications; or you perform a separate MQOPEN to open the
destination queue and then perform the MQSUB to create or resume the
subscription.

Whichever calls you use, the queue manager checks that you can subscribe
to the topic and get the resulting publications from the destination queue.
If the destination queue is unmanaged, authorization checks are also made
that the queue manager will be able to place publications on the
destination queue with the identity it will adopt when a matching topic is
published. It is assumed that the queue manager is always able to place
publications onto unmanaged destination queues.

Roles

Users are involved in four roles in running publish/subscribe applications:
1. Publisher
2. Subscriber
3. Topic administrator
4. WebSphere MQ Administrator - member of group mqm

The WebSphere MQ administrator uses the setmqaut −n TopicObjects
−topic −g −Pubs&Subs ±pub ±sub ±resume command to authorize the
publishers and subscribers in the Pubs&Subs group to publish and
subscribe to the topic objects listed in the TopicObjects profile.

The WebSphere MQ administrator might also authorize a ″topic″
administrator to be responsible for managing topic objects.

In addition you need to extend the security administration tasks, already
performed by the WebSphere MQ administrator, to the queues and
channels responsible for moving publications and subscriptions.

Chapter 5. Publish/subscribe security 89

Topic security model

Only defined topic objects, that are specified as administration nodes, have
associated security attributes. For a description of topic objects see “Administrative
topic objects” on page 18. These attributes specify whether a specified user ID, or
security group, is permitted to perform a subscribe or a publish operation on each
topic object.

The security attributes are associated with the appropriate administration node in
the topic tree. When an authority check is made for a particular user ID during a
subscribe or publish operation, the authority granted is based on a set of rules
dependent on the security attributes associated with the appropriate topic tree
nodes.

You can represent the security attributes as an access control list, thereby indicating
what authority a particular operating system user ID, or security group, has to the
topic object.

Consider the following example where the topic objects have been defined with
the security attributes, or authorities shown:

Table 10. Example topic object authorities

Topic name Topic string
Authorities - not
z/OS z/OS authorities

SECROOT SEC none NONE

SECGOOD SEC/GOOD usr1+subscribe ALTER

Hlq.SUBSCRIBE.SECGOOD

SECBAD SEC/BAD none NONE

Hlq.SUBSCRIBE.SECBAD

SECCOMB SEC/COMB none NONE

Hlq.SUBSCRIBE.SECCOMB

SECCOMBB SEC/COMB/
GOOD/BAD

none NONE

Hlq.SUBSCRIBE.SECCOMBB

SECCOMBG SEC/COMB/
GOOD

usr2+subscribe ALTER

Hlq.SUBSCRIBE.SECCOMBG

SECCOMBN SEC/COMB/
BAD

none NONE

Hlq.SUBSCRIBE.SECCOMBN

The examples listed give the following authorizations:
v At the root of the tree /SEC no user has authority at that node.
v usr1 has been granted subscribe authority to the object /SEC/GOOD
v usr2 has been granted subscribe authority to the object /SEC/COMB/GOOD

The topic tree with the associated security attributes at each node can be
represented as:

90 WebSphere MQ: Publish/Subscribe User’s Guide

|

Subscribing using the topic object name

When subscribing to a topic object by specifying the MQCHAR48 name, the
corresponding node in the topic tree is located. If the security attributes associated
with the topic node indicate that the user has authority to subscribe, then access is
granted.

If not, the parent node in the tree is considered to determine if the user has
authority to subscribe to that node. If so, then access is also granted. If not, then
the parent of that node is considered, and so on, until a node is located that grants
subscribe authority to the user, or until the root node is considered without
authority having been granted. In the latter case, access is denied.

This means that if any node in the path grants authority to subscribe to that user
or application, the subscriber is allowed to subscribe at that node, or anywhere
below that node in the topic tree.

The root node in the above example is SEC; note, it is possible that the root node
will always be a topic object.

The security attributes indicate that a particular user ID has subscribe authority, if
the access control list indicates that the user ID itself has authority, or that an
operating system security group of which the user ID is a member has authority.

So, for example:
v If usr1 tries to subscribe, using a topic string of SEC/GOOD, the subscription

would be allowed as the user ID has access to the node associated with that
topic. However, if usr1 tried to subscribe using topic string SEC/COMB/GOOD the
subscription would not be allowed as the user ID does not have access to the
node associated with it.

v If usr2 tries to subscribe, using a topic string of SEC/COMB/GOOD the subscription
would be allowed to as the user ID has access to the node associated with the
topic. However, if usr2 tried to subscribe to SEC/GOOD the subscription would not
be allowed as the user ID does not have access to the node associated with it.

v If usr2 tries to subscribe using a topic string of SEC/COMB/GOOD/BAD the
subscription would be allowed to because the user ID has access to the parent
node SEC/COMB/GOOD.

SEC/COMB/GOOD/BAD
None

SEC/COMB/GOOD
Usr2 = subscribe / ALTER

SEC/COMB/BAD
None

SEC/COMB
None

SEC
None

SEC/BAD
None

SEC/GOOD
Usr1 = subscribe / ALTER

Figure 39. Example topic tree security attributes

Chapter 5. Publish/subscribe security 91

v If usr1 or usr2 tries to subscribe using a topic string of /SEC/COMB/BAD, neither
would be allowed as they do not have access to the topic node associated with
it, or the parent nodes of that topic.

A subscribe operation specifying a topic object name in the case where the topic
object does not exist results in an MQRC_UNKNOWN_OBJECT_NAME error.

Subscribing using a topic string where the topic node exists

The behavior is the same as when specifying the topic by the MQCHAR48 object
name.

Subscribing using a topic string where the topic node does not
exist

When an application subscribes specifying a topic string representing a topic node
that does not currently exist in the topic tree, the authority check is performed as
outlined in the previous section, starting with the parent node of that which is
represented by the topic string. If the authority is granted, a new node
representing the topic string is created in the topic tree.

For example, if usr1 tries to subscribe to a topic SEC/GOOD/NEW, this would be
allowed as usr1 has access to the parent node SEC/GOOD and a new topic node is
created in the tree as the following diagram shows. As this is not a topic object it
does not have any security attributes associated with it directly; the attributes are
inherited from its parent.

Subscribing using a topic string that contains wildcard
characters

When an application attempts to connect by specifying a topic string that contains
a wildcard character, the authority check is made against the node in the topic tree
that matches the fully qualified part of the topic string.

So, if an application needs to subscribe to SEC/COMB/GOOD/*, an authority check is
carried out as outlined in the previous two sections on the node SEC/COMB/GOOD in
the topic tree.

SEC/COMB/GOOD/BAD
None

SEC/COMB/GOOD
Usr2 = subscribe / ALTER

SEC/COMB/BAD
None

SEC/GOOD/NEW
None

SEC/COMB
None

SEC
None

SEC/BAD
None

SEC/GOOD
Usr1 = subscribe / ALTER

Figure 40. Example topic tree security attributes

92 WebSphere MQ: Publish/Subscribe User’s Guide

Similarly, if an application needs to subscribe to SEC/COMB/*/GOOD, an authority
check is carried out on the node SEC/COMB.

Authority to destination queues

When subscribing to a topic, one of the parameters on the call is the handle hobj,
this is:
v The hobj of a queue that has been opened for output to receive the publications.
v Blank and:

– The MQSO_MANAGED option has been specified, and
– The subscription does not exist, and
– Create is specified,

in which case a managed queue is created.
v Blank, and you are altering or resuming an existing subscription, in which the

destination queue can be either a managed or non managed queue.

In each case the application or user making the MQSUB request, has to have the
authority to put messages to that destination queue it has provided; in effect
authority to have published messages put on that queue, in order for the subscribe
request to continue. This follows the existing rules for queue security checking.

This includes Alternate user ID and Context security checks where required. In
order to be able to set any of the Identity context fields you have to specify the
MQSO_SET_IDENTITY_CONTEXT option as well as the MQSO_CREATE or
MQSO_ALTER option. You are not allowed to set any of the Identity context fields
on an MQSO_RESUME request.

If the destination is a managed queue, no security checks are performed against
the managed destination. If you are allowed to subscribe to that topic the
assumption is that you can use managed destinations.

Publish using the topic name or topic string where the topic
node exists

The security model for the publish operation is the same as that for the subscribe
operation, except that there is no wildcard character in the topic string case to
consider.

The authorities to publish and subscribe are distinct; a user or group can have one
authority without necessarily having the other.

When publishing to a topic object by specifying either the MQCHAR48 name or
the topic string, the corresponding node in the topic tree is located. If the security
attributes associated with the topic node indicates that the user has authority to
publish, then access is granted.

If not, then the parent node in the tree is considered to determine if the user has
authority to publish to that node. If so, then access is also granted. If not, then the
parent of that node is considered, and so on until a node is located which grants
publish authority to the user, or until the root node is considered without authority
having been granted. In the latter case, access is denied.

Chapter 5. Publish/subscribe security 93

This means that if any node in the path grants authority to publish to that user or
application, the publisher is allowed to publish at that node or anywhere below
that node in the topic tree.

Publish using the topic name or topic string where the topic
node does not exist

As with the subscribe operation, when an application publishes, specifying a topic
string representing a topic node that does not currently exist in the topic tree, the
authority check is performed starting with the parent node of that which is
represented by the topic string. If the authority is granted, a new node
representing the topic string is created in the topic tree.

Publish using an alias queue that resolves to a topic object

If you publish, using an alias queue that resolves to a topic object then security
checking occurs on both the open of the alias queue that you specify and the
underlying topic to which it resolves.

The security check on the alias queue looks to see that the user has authority to
put messages to that alias queue and the security check on the topic looks to see
that the user can Publish to that topic. This is different behavior from that which
takes place when an alias queue resolves to other queues.

Closing a subscription

There is additional security checking if you close a subscription using the MQCO_
SUB_ REMOVE option and you did not create the subscription under this handle.

A security check is performed to ensure that you have the correct authority to do
this as the action results in the removal of the subscription.

A similar process to that used to determine if a user has the correct level of
authority to subscribe to a topic is followed to determine if the user has the correct
level of authority required to perform the close remove request. If the security
attributes associated with the topic node indicate that the user has authority , then
access is granted. If not, then the parent node in the tree is considered to
determine if the user has authority to close remove that subscription and so on
until either authority is granted or the root node is reached.

Note that the security check takes place during close processing.

Defining, altering, and deleting a subscription

When a subscription is created administratively, rather that through an MQSUB
API request, no subscribe security checks take place to see if the subscription can
be created or altered, as the administrator has already been given this authority
through the command, and command resource security associated with the
command.

Security checks are performed to ensure that publications can be put to the
destination queue associated with the subscription in the same way they are
performed for a MQSUB request.

The user ID that is used for these security checks depends upon the command
being issued and the contents of the SUBUSER parameter on the command if it is

94 WebSphere MQ: Publish/Subscribe User’s Guide

specified, as follows:

Table 11. User IDs used for security checks for commands

Command SUBUSER specified
and blank

SUBUSER specified
and completed

SUBUSER not
specified

DEFINE Use the administrator
ID

Use the User ID
specified in
SUBUSER

Use the
administrator’s ID

ALTER Use the administrator
ID

Use the User ID
specified in
SUBUSER

Use the User ID from
the existing
subscription

The only security check performed when deleting subscriptions using the DELETE
SUB command is the command security check.

Example publish/subscribe security setup
This section describes a scenario that has access control setup on topics in a way
that allows the security control to be applied as required.

Grant access to a user to subscribe to a topic
This topic is the first one in a list of tasks that tells you how to grant access to
topics by more than one user.

About this task

This task assumes that no administrative topic objects exist, nor have any profiles
been defined for subscription or publication. The applications are creating new
subscriptions, rather than resuming existing ones, and are doing so using the topic
string only.

An application can make a subscription by providing a topic object, or a topic
string, or a combination of both. Whichever way the application selects, the effect
is to make a subscription at a certain point in the topic tree. If this point in the
topic tree is represented by an administrative topic object, a security profile is
checked based on the name of that topic object.

Table 12. Example topic object access

Topic Subscribe access required Topic object

Price No user None

Price/Fruit USER1 FRUIT

FRUIT

Price

Fruit

Figure 41. Topic object access example

Chapter 5. Publish/subscribe security 95

|

|
|
|

|

|
|

|

|
|

|

|
|
|
|

|
|
|
|
|
|

||

|||

|||

|||
|

Define a new topic object as follows:
1. Issue the MQSC command DEF TOPIC(FRUIT) TOPICSTR('Price/Fruit').
2. Grant access as follows:

a. z/OS. Grant access to USER1 to subscribe to topic "Price/Fruit" by granting
the user access to the hlq.SUBSCRIBE.FRUIT profile. Do this, using the
following RACF® commands:
RDEFINE MXTOPIC hlq.SUBSCRIBE.FRUIT UACC(NONE)
PERMIT hlq.SUBSCRIBE.FRUIT CLASS(MXTOPIC) ID(USER1) ACCESS(ALTER)

b. Other platforms. Grant access to USER1 to subscribe to topic "Price/Fruit"
by granting the user access to the FRUIT profile. Do this, using the following
setmqaut command:
setmqaut –t topic –n FRUIT –p USER1 +sub

Results

When USER1 attempts to subscribe to topic "Price/Fruit" the result is success.

When USER2 attempts to subscribe to topic "Price/Fruit" the result is failure with
an MQRC_NOT_AUTHORIZED message, together with:
v On z/OS, the following messages seen on the console that show the full security

path through the topic tree that has been attempted:
ICH408I USER(USER2) ...

hlq.SUBSCRIBE.FRUIT ...

ICH408I USER(USER2) ...
hlq.SUBSCRIBE.SYSTEM.BASE.TOPIC ...

v On other platforms, the following authorization event:
MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC
TopicString “Price/Fruit”

Note that this is an illustration of what you see; not all the fields.

Grant access to a user to subscribe to a topic deeper within
the tree

This topic is the second in a list of tasks that tells you how to grant access to topics
by more than one user.

Before you begin

This topic uses the setup described in “Grant access to a user to subscribe to a
topic” on page 95.

About this task

If the point in the topic tree where the application makes the subscription is not
represented by an administrative topic object, move up the tree until the closest
parent administrative topic object is located. The security profile is checked, based
on the name of that topic object.

96 WebSphere MQ: Publish/Subscribe User’s Guide

|

|

|

|
|
|

|
|

|
|
|

|

|

|

|
|

|
|

|
|
|
|
|

|

|
|
|
|
|

|

|

|

|
|

|

|
|

|

|
|
|
|

|

Table 13. Access requirements for example topics and topic objects

Topic Subscribe access required Topic object

Price No user None

Price/Fruit USER1 FRUIT

Price/Fruit/Apples USER1

Price/Fruit/Oranges USER1

In the previous task USER1 was granted access to subscribe to topic “Price/Fruit”
by granting it access to the hlq.SUBSCRIBE.FRUIT profile on z/OS and subscribe
access to the FRUIT profile on other platforms. This single profile also grants USER1
access to subscribe to “Price/Fruit/Apples”, “Price/Fruit/Oranges” and
“Price/Fruit/#”.

When USER1 attempts to subscribe to topic "Price/Fruit/Apples" the result is
success.

When USER2 attempts to subscribe to topic "Price/Fruit/Apples" the result is
failure with an MQRC_NOT_AUTHORIZED message, together with:
v On z/OS, the following messages seen on the console that show the full security

path through the topic tree that has been attempted:
ICH408I USER(USER2) ...

hlq.SUBSCRIBE.FRUIT ...

ICH408I USER(USER2) ...
hlq.SUBSCRIBE.SYSTEM.BASE.TOPIC ...

v On other platforms, the following authorization event:
MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC
TopicString “Price/Fruit/Apples”

Note the following:
v The messages you receive on z/OS are identical to those received in the

previous task as the same topic objects and profiles are controlling the access.

FRUIT

Price

Fruit

Apples Oranges

Figure 42. Example of granting access to a topic within a topic tree

Chapter 5. Publish/subscribe security 97

|

|
|
|
||

|||

|||

|||

|||

|||
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|

|

|
|
|
|
|

|

|
|

v The event message you receive on other platforms is similar to the one received
in the previous task, but the actual topic string is different.

Grant another user access to subscribe to only the topic
deeper within the tree

This topic is the third in a list of tasks that tells you how to grant access to
subscribe to topics by more than one user.

Before you begin

This topic uses the setup described in “Grant access to a user to subscribe to a
topic deeper within the tree” on page 96.

About this task

In the previous task USER2 was refused access to topic “Price/Fruit/Apples”. This
topic tells you how to grant access to that topic, but not to any other topics.

Table 14. Access requirements for example topics and topic objects

Topic Subscribe access required Topic object

Price No user None

Price/Fruit USER1 FRUIT

Price/Fruit/Apples USER1 and USER2 APPLE

Price/Fruit/Oranges USER1

Define a new topic object as follows:
1. Issue the MQSC command DEF TOPIC(APPLE) TOPICSTR('Price/Fruit/Apples').
2. Grant access as follows:

a. z/OS.
In the previous task USER1 was granted access to subscribe to topic
“Price/Fruit/Apples” by granting the user access to the
hlq.SUBSCRIBE.FRUIT profile.

FRUIT

APPLE

Price

Fruit

Apples Oranges

Figure 43. Granting access to specific topics within a topic tree

98 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|
|

|
|

|

|

|
|

|

|
|

|

|
|

|

||

|||

|||

|||

|||

|||
|

|

|

|

|

|
|
|

This single profile also granted USER1 access to subscribe to
“Price/Fruit/Oranges” “Price/Fruit/#” and this access remains even with
the addition of the new topic object and the profiles associated with it.
Grant access to USER2 to subscribe to topic "Price/Fruit/Apples" by
granting the user access to the hlq.SUBSCRIBE.APPLE profile. Do this, using
the following RACF commands:
RDEFINE MXTOPIC hlq.SUBSCRIBE.APPLE UACC(NONE)
PERMIT hlq.SUBSCRIBE.FRUIT APPLE(MXTOPIC) ID(USER2) ACCESS(ALTER)

b. Other platforms.
In the previous task USER1 was granted access to subscribe to topic
“Price/Fruit/Apples” by granting the user subscribe access to the FRUIT
profile.
This single profile also granted USER1 access to subscribe to
“Price/Fruit/Oranges" and “Price/Fruit/#”, and this access remains even
with the addition of the new topic object and the profiles associated with it.
Grant access to USER2 to subscribe to topic "Price/Fruit/Apples" by
granting the user subscribe access to the APPLE profile. Do this, using the
following setmqaut command:
setmqaut –t topic –n APPLE –p USER2 +sub

Results

On z/OS, when USER1 attempts to subscribe to topic "Price/Fruit/Apples" the
first security check on the hlq.SUBSCRIBE.APPLE profile fails, but on moving up the
tree the hlq.SUBSCRIBE.FRUIT profile allows USER1 to subscribe, so the
subscription succeeds and no return code is sent to the MQSUB call. However, a
RACF ICH message is generated for the first check:

ICH408I USER(USER1) ...
hlq.SUBSCRIBE.APPLE ...

When USER2 attempts to subscribe to topic "Price/Fruit/Apples" the result is
success because the security check passes on the first profile.

When USER2 attempts to subscribe to topic "Price/Fruit/Oranges" the result is
failure with an MQRC_NOT_AUTHORIZED message, together with:
v On z/OS, the following messages seen on the console that show the full security

path through the topic tree that has been attempted:
ICH408I USER(USER2) ...

hlq.SUBSCRIBE.FRUIT ...

ICH408I USER(USER2) ...
hlq.SUBSCRIBE.SYSTEM.BASE.TOPIC ...

v On other platforms, the following authorization event:
MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC
TopicString “Price/Fruit/Oranges”

The disadvantage of this setup is that, on z/OS, you receive additional ICH
messages on the console. You can avoid this if you secure the topic tree in a
different manner.

Chapter 5. Publish/subscribe security 99

|
|
|

|
|
|

|
|

|

|
|
|

|
|
|

|
|
|

|

|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|

Change access control to avoid additional messages
This topic is the fourth in a list of tasks that tells you how to grant access to
subscribe to topics by more than one user and to avoid additional RACF ICH408I
messages on z/OS.

Before you begin

This topic enhances the setup described in “Grant another user access to subscribe
to only the topic deeper within the tree” on page 98 so that you avoid additional
error messages.

About this task

This topic tells you how to grant access to topics deeper in the tree, and how to
remove access to the topic lower down the tree when no user requires it.

Define a new topic object as follows:
1. Issue the MQSC command DEF TOPIC(ORANGE) TOPICSTR('Price/Fruit/

Oranges').
2. Grant access as follows:

a. z/OS.
Define a new profile and add access to that profile, and the existing profiles.
Do this, using the following RACF commands:
RDEFINE MXTOPIC hlq.SUBSCRIBE.ORANGE UACC(NONE)
PERMIT hlq.SUBSCRIBE.ORANGE CLASS(MXTOPIC) ID(USER1) ACCESS(ALTER)
PERMIT hlq.SUBSCRIBE.APPLE CLASS(MXTOPIC) ID(USER1) ACCESS(ALTER)

b. Other platforms.
Setup the equivalent access by using the following setmqaut commands:
setmqaut –t topic –n ORANGE –p USER1 +sub
setmqaut -t topic -n APPLE -p USER1 +sub

Results

On z/OS, when USER1 attempts to subscribe to topic "Price/Fruit/Apples" the
first security check on the hlq.SUBSCRIBE.APPLE profile succeeds.

FRUIT

APPLE ORANGE

Price

Fruit

Apples Oranges

Figure 44. Example of granting access control to avoid additional messages.

100 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|
|

|

|
|
|

|

|
|
|

|

|
|

|

|

|
|

|

|

|
|

|
|
|

|

|

|
|

|

|
|

Similarly, when USER2 attempts to subscribe to topic "Price/Fruit/Apples" the
result is success because the security check passes on the first profile.

When USER2 attempts to subscribe to topic "Price/Fruit/Oranges" the result is
failure with an MQRC_NOT_AUTHORIZED message, together with:
v On z/OS, the following messages seen on the console that show the full security

path through the topic tree that has been attempted:
ICH408I USER(USER2) ...

hlq.SUBSCRIBE.ORANGE ...

ICH408I USER(USER2) ...
hlq.SUBSCRIBE.FRUIT ...

ICH408I USER(USER2) ...
hlq.SUBSCRIBE.SYSTEM.BASE.TOPIC ...

v On other platforms, the following authorization event:
MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames ORANGE, FRUIT, SYSTEM.BASE.TOPIC
TopicString “Price/Fruit/Oranges”

Grant access to a user to publish to a topic
This topic is the first one in a list of tasks that tells you how to grant access to
publish topics by more than one user.

About this task

This task assumes that no administrative topic objects exist on the right hand side
of the topic tree, nor have any profiles been defined for publication. The
assumption used is that publishers are using the topic string only.

An application can publish to a topic by providing a topic object, or a topic string,
or a combination of both. Whichever way the application selects, the effect is to
publish at a certain point in the topic tree. If this point in the topic tree is
represented by an administrative topic object, a security profile is checked based
on the name of that topic object. For example:

Table 15. Example publish access requirements

Topic Publish access required Topic object

Price No user None

Price/Vegetables USER1 VEG

Define a new topic object as follows:

VEG

Price

Fruit Vegetables

Figure 45. Granting publish access to a topic

Chapter 5. Publish/subscribe security 101

|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|
|

|

|
|
|

|
|
|
|
|
|

||

|||

|||

|||
|

|

1. Issue the MQSC command DEF TOPIC(VEG) TOPICSTR('Price/Vegetables').
2. Grant access as follows:

a. z/OS. Grant access to USER1 to publish to topic "Price/Vegetables" by
granting the user access to the hlq.PUBLISH.VEG profile. Do this, using the
following RACF commands:
RDEFINE MXTOPIC hlq.PUBLISH.VEG UACC(NONE)
PERMIT hlq.PUBLISH.VEG CLASS(MXTOPIC) ID(USER1) ACCESS(UPDATE)

b. Other platforms. Grant access to USER1 to publish to topic
"Price/Vegetables" by granting the user access to the VEG profile. Do this,
using the following setmqaut command:
setmqaut –t topic –n VEG –p USER1 +pub

Results

When USER1 attempts to publish to topic "Price/Vegetables" the result is success;
that is, the MQOPEN call succeeds.

When USER2 attempts to publish to topic "Price/Vegetables" the MQOPEN call
fails with an MQRC_NOT_AUTHORIZED message, together with:
v On z/OS, the following messages seen on the console that show the full security

path through the topic tree that has been attempted:
ICH408I USER(USER2) ...

hlq.PUBLISH.VEG ...

ICH408I USER(USER2) ...
hlq.PUBLISH.SYSTEM.BASE.TOPIC ...

v On other platforms, the following authorization event:
MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_OPEN_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames VEG, SYSTEM.BASE.TOPIC
TopicString “Price/Vegetables”

Note that this is an illustration of what you see; not all the fields.

Grant access to a user to publish to a topic deeper within the
tree

This topic is the second in a list of tasks that tells you how to grant access to
publish to topics by more than one user.

Before you begin

This topic uses the setup described in “Grant access to a user to publish to a topic”
on page 101.

About this task

If the point in the topic tree where the application publishes is not represented by
an administrative topic object, move up the tree until the closest parent
administrative topic object is located. The security profile is checked, based on the
name of that topic object.

102 WebSphere MQ: Publish/Subscribe User’s Guide

|

|

|
|
|

|
|

|
|
|

|

|

|
|

|
|

|
|

|
|
|
|
|

|

|
|
|
|
|

|

|

|

|
|

|

|
|

|

|
|
|
|

|

Table 16. Example publish access requirements

Topic Subscribe access required Topic object

Price No user None

Price/Vegetables USER1 VEG

Price/Vegetables/Potatoes USER1

Price/Vegetables/Onions USER1

In the previous task USER1 was granted access to publish topic
“Price/Vegetables/Potatoes” by granting it access to the hlq.PUBLISH.VEG profile
on z/OS or publish access to the VEG profile on other platforms. This single profile
also grants USER1 access to publish at“Price/Vegetables/Onions”.

When USER1 attempts to publish at topic "Price/Vegetables/Potatoes" the result is
success; that is the MQOPEN call succeeds.

When USER2 attempts to subscribe to topic "Price/Vegetables/Potatoes" the result
is failure; that is, the MQOPEN call fails with an MQRC_NOT_AUTHORIZED message,
together with:
v On z/OS, the following messages seen on the console that show the full security

path through the topic tree that has been attempted:
ICH408I USER(USER2) ...

hlq.PUBLISH.VEG ...

ICH408I USER(USER2) ...
hlq.PUBLISH.SYSTEM.BASE.TOPIC ...

v On other platforms, the following authorization event:
MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_OPEN_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames VEG, SYSTEM.BASE.TOPIC
TopicString “Price/Vegetables/Potatoes”

Note the following:
v The messages you receive on z/OS are identical to those received in the

previous task as the same topic objects and profiles are controlling the access.
v The event message you receive on other platforms is similar to the one received

in the previous task, but the actual topic string is different.

VEG

Price

Fruit

Potatoes Onions

Vegetables

Figure 46. Granting publish access to a topic within a topic tree

Chapter 5. Publish/subscribe security 103

|

|
|
|
||

|||

|||

|||

|||

|||
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|

|

|
|

|
|

Grant access for publish and subscribe
This topic is the last in a list of tasks that tells you how to grant access to publish
and subscribe to topics by more than one user.

Before you begin

This topic uses the setup described in “Grant access to a user to publish to a topic
deeper within the tree” on page 102.

About this task

In a previous task USER1 was given access to subscribe to the topic “Price/Fruit”.
This topic tells you how to grant access to that user to publish to that topic.

Table 17. Example publishing and subscribing access requirements

Topic Subscribe access
required

Publish access
required

Topic object

Price No user No user None

Price/Fruit USER1 USER1 FRUIT

Price/Fruit/Apples USER1 and USER2 APPLE

Price/Fruit/Oranges USER1 ORANGE

Grant access as follows:
1. z/OS.

In an earlier task USER1 was granted access to subscribe to topic “Price/Fruit”
by granting the user access to the hlq.SUBSCRIBE.FRUIT profile.
In order to publish to the “Price/Fruit” topic, grant access to USER1 to the
hlq.PUBLISH.FRUIT profile. Do this, using the following RACF commands:
RDEFINE MXTOPIC hlq.PUBLISH.FRUIT UACC(NONE)
PERMIT hlq.PUBLISH.FRUIT CLASS(MXTOPIC) ID(USER1) ACCESS(ALTER)

2. Other platforms.

FRUIT

APPLE

VEG

ORANGE

Price

Fruit

Apples Potatoes Onions

Vegetables

Oranges

Figure 47. Granting access for publishing and subscribing

104 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|
|

|

|
|

|

|
|

|

|
|

|

||

||
|
|
|
|

||||

||||

||||

||||
|

|

|

|
|

|
|

|
|

|

Grant access to USER1 to publish to topic "Price/Fruit" by granting the user
publish access to the FRUIT profile. Do this, using the following setmqaut
command:
setmqaut –t topic –n FRUIT –p USER1 +pub

Results

On z/OS, when USER1 attempts to publish to topic "Price/Fruit" the security
check on the MQOPEN call passes.

When USER2 attempts to publish at topic "Price/Fruit" the result is failure with an
MQRC_NOT_AUTHORIZED message, together with:
v On z/OS, the following messages seen on the console that show the full security

path through the topic tree that has been attempted:
ICH408I USER(USER2) ...

hlq.PUBLISH.FRUIT ...

ICH408I USER(USER2) ...
hlq.PUBLISH.SYSTEM.BASE.TOPIC ...

v On other platforms, the following authorization event:
MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_OPEN_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC
TopicString “Price/Fruit”

Following the complete set of these tasks, gives USER1 and USER2 the following
access authorities for publish and subscribe to the topics listed:

Table 18. Complete list of access authorities resulting from security examples

Topic Subscribe access
required

Publish access
required

Topic object

Price No user No user None

Price/Fruit USER1 USER1 FRUIT

Price/Fruit/Apples USER1 and USER2 APPLE

Price/Fruit/Oranges USER1 ORANGE

Price/Vegetables USER1 VEG

Price/Vegetables/
Potatoes

Price/Vegetables/
Onions

Where you have different requirements for security access at different levels within
the topic tree, careful planning ensures that you do not receive extraneous security
warnings on the z/OS console log. Setting up security at the correct level within
the tree avoids misleading security messages.

Subscription security

MQSO_ALTERNATE_USER_AUTHORITY

The AlternateUserId field contains a user identifier to use to validate this MQSUB
call. The call can succeed only if this AlternateUserId is authorized to subscribe to

Chapter 5. Publish/subscribe security 105

|
|
|

|

|

|
|

|
|

|
|

|
|
|
|
|

|

|
|
|
|
|

|
|

||

||
|
|
|
|

||||

||||

||||

||||

||||

|
|
|||

|
|
|||

|

|
|
|
|

the topic with the specified access options, regardless of whether the user identifier
under which the application is running is authorized to do so.

MQSO_SET_IDENTITY_CONTEXT

The subscription is to use the accounting token and application identity data
supplied in the PubAccountingToken and PubApplIdentityData fields.

If this option is specified, the same authorization check is carried out as if the
destination queue was accessed using an MQOPEN call with
MQOO_SET_IDENTITY_CONTEXT, except in the case where the
MQSO_MANAGED option is also used in which case there is no authorization
check on the destination queue.

If this option is not specified, the publications sent to this subscriber will have
default context information associated with them as follows:

Table 19. Default publication context information

Field in MQMD Value used

UserIdentifier The user id associated with the subscription
(see SUBUSER field on DISPLAY SBSTATUS)
at the time the publication is made.

AccountingToken Determined from the environment if
possible; set to MQACT_NONE otherwise.

ApplIdentityData Set to blanks.

This option is only valid with MQSO_CREATE and MQSO_ALTER. If used with
MQSO_RESUME, the PubAccountingToken and PubApplIdentityData fields are
ignored, so this option has no effect.

If a subscription is altered without using this option where previously the
subscription had supplied identity context information, default context information
will be generated for the altered subscription.

If a subscription allowing different user ids to use it with option
MQSO_ANY_USERID, is resumed by a different user ID, default identity context
will be generated for the new user ID now owning the subscription and any
subsequent publications will be delivered containing the new identity context.

AlternateSecurityId

This is a security identifier that is passed with the AlternateUserId to the
authorization service to allow appropriate authorization checks to be performed.
AlternateSecurityId is used only if MQSO_ALTERNATE_USER_AUTHORITY is
specified, and the AlternateUserId field is not entirely blank up to the first null
character or the end of the field.

MQSO_ANY_USERID subscription option

When MQSO_ANY_USERID is specified, the identity of the subscriber is not
restricted to a single userid. This allows any user to alter or resume the
subscription when they have suitable authority. Only a single user may have the
subscription at any one time. An attempt to resume use of a subscription currently
in use by another application will cause the call to fail with
MQRC_SUBSCRIPTION_IN_USE.

106 WebSphere MQ: Publish/Subscribe User’s Guide

To add this option to an existing subscription the MQSUB call (using
MQSO_ALTER) must come from the same userid as the original subscription.

If an MQSUB call refers to an existing subscription with MQSO_ANY_USERID set,
and the userid differs from the original subscription, the call succeeds only if the
new userid has authority to subscribe to the topic. After successful completion,
future publications to this subscriber are put to the subscriber’s queue with the
new userid set in the publication.

MQSO_FIXED_USERID

When MQSO_FIXED_USERID is specified, the subscription can only be altered or
resumed by a single owning userid. This userid is the last userid to alter the
subscription that set this option, thereby removing the MQSO_ANY_USERID
option, or if no alters have taken place, it is the userid that created the
subscription.

If an MQSUB verb refers to an existing subscription with MQSO_ANY_USERID set
and alters the subscription (using MQSO_ALTER) to use option
MQSO_FIXED_USERID, the userid of the subscription is now fixed at this new
user id. The call succeeds only if the new userid has authority to subscribe to the
topic.

If a userid other than the one recorded as owning a subscription trys to resume or
alter an MQSO_FIXED_USERID subscription, the call will fail with
MQRC_IDENTITY_MISMATCH. The owning user id of a subscription can be
viewed using the DISPLAY SBSTATUS command.

If neither MQSO_ANY_USERID or MQSO_FIXED_USERID is specified, the default
is MQSO_FIXED_USERID.

Chapter 5. Publish/subscribe security 107

108 WebSphere MQ: Publish/Subscribe User’s Guide

Chapter 6. Queued publish/subscribe compatibility

WebSphere MQ version 6 publish/subscribe and Message and Event Broker
version 6 publish/subscribe coexist and interoperate with version 7
publish/subscribe, with some restrictions. WebSphere MQ version 6
publish/subscribe is deprecated in version 7.

WebSphere® MQ Version 7.0 provides publish/subscribe function that is integrated
into the queue manager. Applications use new MQI verbs to define topics and
subscriptions, and to publish and subscribe. There are also new administrative
commands to define topics and subscriptions, and to organize publish/subscribe
into clusters and hierarchies.

Earlier versions of publish/subscribe were not integrated into the queue manager,
but were implemented by separate publish/subscribe brokers. Unlike integrated
publish/subscribe, which extends the normal MQI verbs to perform
publish/subscribe, in earlier versions of WebSphere MQ you place messages
containing MQRFH1, MQRFH2 or PCF commands onto special queues to communicate
with the publish/subscribe broker. This is known as ″queued″ publish/subscribe.

Documentation of version 6 publish/subscribe is available with WebSphere MQ
Version 6, or free to download as an information center or a PDF file from
WebSphere MQ Version 6 Publish/Subscribe User’s Guide.

You can continue to run queued publish/subscribe alongside integrated
publish/subscribe.
v You can publish and subscribe on one system to topics defined on a different

system; for example, you can write a new WebSphere MQ Version 7
publish/subscribe application that uses topics defined using the WebSphere
Version 6 queued publish/subscribe system. This is known as publish/subscribe
interoperability. It is discussed further in the topic, “Interoperation with queued
publish/subscribe” on page 112.

v You can run new WebSphere MQ Version 7 publish/subscribe applications
alongside existing queued publish/subscribe programs on a version 7 queue
manager. This is called coexistance, and it is discussed further in the topic
“Coexistence with queued publish/subscribe” on page 111.

v If you use the publish/subscribe broker that is part of WebSphere Message
Broker V6.1 to run your queued publish/subscribe applications, or the
publish/subscribe broker that is part of the earlier members of the WebSphere
Message and Event broker family, you can continue to do so should you choose
to run the broker on WebSphere MQ Version 7. Queued publish/subscribe
programs running on WebSphere Message and Event Broker can coexist with
integrated publish/subscribe programs running on the same WebSphere MQ
Version 7 queue manager. This is described in the Coexistance topic.

v If you have upgraded your queue manager from version 6 to version 7, you
must migrate the version 6 publish/subscribe broker to version 7 to continue to
run your queued publish/subscribe applications on the version 7 queue
manager. This is described in Strmqbrk (Migrate WebSphere MQ Version 6.0
broker to Version 7.0).

v The commands to manage the integrated publish/subscribe broker in
WebSphere Version 7 have changed. The new commands are described in the
topic “Controlling queued publish/subscribe” on page 118.

© Copyright IBM Corp. 1996, 2009 109

|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqnar.doc/amqnar10.htm

v JMS publish/subscribe applications, by default, use integrated publish/subscribe
in WebSphere MQ Version 7. This is called normal mode, and selected by setting
PROVIDERVERSION=7. The selection of transport for JMS publish/subscribe is
described in Rules for selecting the WebSphere MQ messaging provider mode.

Queued publish/subscribe systems

The queued publish/subscribe systems that work with version 7 publish/subscribe
are listed below.

SupportPac MA0C
MA0C was a fully supported SupportPac. It added publish/subscribe
messaging to WebSphere MQ. It is known as ″queued″ publish/subscribe,
or ″command-based″ publish/subscribe because it uses MQRFH1 and PCF
commands to register publications and subscriptions. It performs these and
other publish/subscribe functions by implementing a WebSphere MQ
publish/subscribe Broker. MA0C was integrated into WebSphere MQ 5.3 in
CSD08, and was superseded by WebSphere MQ Version 6.0.

SupportPac MA88
MA88 provided JMS support for WebSphere MQ, including its
publish/subscribe messaging programming interface. MA0C was one
option to implement the publish/subscribe interface. You could also use
the WebSphere Event or Integration brokers as the publish/subscribe
engine. MA88 was superseded by WebSphere MQ 5.3.

WebSphere MQ Version 6 (queued) publish/subscribe
Websphere MQ version 6 superseded MA0C, and supported the JMS and
AMI publish/subscribe interfaces in addition to the MQRFH1 and PCF
command based programming interfaces.

SupportPac MS0Q
MS0Q extended the IBM WebSphere MQ Version 6 Explorer to provide a
topic based view of the WebSphere MQ V6 publish/subscribe broker.
MS0Q has been superseded by the WebSphere MQ Version 7 Explorer,
which browses topics defined in both version 6 and 7.

WebSphere Message Broker Version 6 publish/subscribe
WebSphere Message Broker Version 6, and previous and related products,
include a variety message transports that provide publish/subscribe
support. The message broker enterprise messaging transport includes
support for the MA0C and WebSphere Version 6 queued
publish/subscribe.

Migration

Because queued publish/subscribe coexists and interoperates with the integrated
publish/subscribe in WebSphere MQ Version 7, you can undertake migration step
by step. Migration is discussed in the topic, Migration to publish/subscribe on
WebSphere MQ V7.0. A sequence of steps you might take are listed below.
1. Install a version 7 queue managers, enable queued mode publish/subscribe,

add the new queue manager to your existing version 6 broker hierarchy and
run your existing queued publish/subscribe programs on the version 7 queue
manager.

2. Upgrade your existing version 6 queue managers to version 7, run strmqbrk to
migrate the broker to version 7, and run your existing queued
publish/subscribe applications.

110 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|

3. Write new, or migrate existing publish/subscribe programs using the integrated
publish/subscribe MQI interface. Guidance on migrating version 6 applications
is provided in Publish/subscribe command messages. Guidance on writing
new publish/subscribe applications is provided in Chapter 4, “Writing
publish/subscribe applications,” on page 45.

4. Migrate broker hierarchies to clusters, to remove dependence on running the
queued publish/subscribe broker, and to improve performance by connecting
queue managers directly, rather than through a indirect hierarchical network of
brokers. Topology migration is described in WebSphere MQ publish/subscribe
topology migration.

Coexistence with queued publish/subscribe
Coexistence is controlled with a new queue manager attribute, PSMODE. Using
this attribute you can continue to run existing publish/subscribe applications
without modification, and at the same time run new publish/subscribe programs
that use the WebSphere MQ Version 7 publish/subscribe interface.

Programs written to the WebSphere MQ Version 7 publish/subscribe interface run
only on the Version 7 release of WebSphere MQ, and above.

Programs written to the version 6 queued publish/subscribe interfaces run either
on version 7 with the queue manager attribute PSMODE set to ENABLED, or on
the WebSphere Message or Event Broker Version 6.1 publish/subscribe broker with
the queue manager attribute PSMODE set to COMPAT.

Note: If the queue manager is providing enterprise messaging support for the
WebSphere Message or Event Broker, then queued publish/subscribe programs
must use the publish/subscribe broker provided by the WebSphere Message or
Event Broker. New publish/subscribe programs can use version 7 integrated
publish/subscribe on the same queue manager. This has implications for
interoperability between a version 6 and version 7 publish/subscribe program
running on the same queue manager as a message broker. See the topic,
“Interoperation with queued publish/subscribe” on page 112, for more details.

The PSMODE queue manager attribute controls which kind of publish/subscribe
programs run on a version 7 queue manager. It has three modes as described
below.

PSMODE
Controls whether the publish/subscribe engine and the queued
publish/subscribe interface are running, and therefore controls whether
applications can publish or subscribe by using the application
programming interface and the queues that are monitored by the queued
publish/subscribe interface.

COMPAT
The publish/subscribe engine is running. It is therefore possible to
publish or subscribe by using the application programming
interface.

The queued publish/subscribe interface is not running. Any
publish/subscribe messages put to the queues that are monitored
by the queued publish/subscribe interface will not be acted upon.

Use this setting for compatibility with WebSphere Message Broker
V6 or earlier versions that use this queue manager, because

Chapter 6. Queued publish/subscribe compatibility 111

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

WebSphere Message Broker needs to read the same queues from
which the queued publish/subscribe interface would normally
read.

DISABLED
The publish/subscribe engine and the queued publish/subscribe
interface are not running. It is therefore not possible to publish or
subscribe by using the application programming interface. Any
publish/subscribe messages put to the queues that are monitored
by the queued publish/subscribe interface will not be acted upon.

ENABLED
The publish/subscribe engine and the queued publish/subscribe
interface are running. It is therefore possible to publish or
subscribe by using the application programming interface and the
queues that are being monitored by the queued publish/subscribe
interface. This is the queue manager’s initial default value.

Note: Changing the PSMODE attribute can change the PSMODE status.
Use DISPLAY PUBSUB, or on i5/OS DSPMQM, to determine the current
state of the publish/subscribe engine and the queued publish/subscribe
interface.

Interoperation with queued publish/subscribe
The WebSphere MQ publish/subscribe brokers need to exchange publications and
subscriptions when they are connected together. There are some differences in the
way the queued and integrated publish/subscribe interfaces and brokers work,
and what can be connected together, and you need to take these differences into
account when writing applications and administering publish/subscribe brokers
that interoperate.

An example of the interoperation of publish/subscribe is a results service. The
subscriber, using MQSUB and running on a WebSphere MQ version 7 queue
manager, subscribes to the Soccer/Scores topic in the results service that is defined
on a WebSphere MQ Version 6 queue manager. The soccer results service publisher
is an existing application, written to the WebSphere MQ version 6
publish/subscribe interface. The publisher is running on WebSphere MQ Version 6
and publishes to the Soccer/Scores topic. WebSphere MQ Version 6 sends the
publication to the subscriber’s queue on WebSphere MQ Version 7. Two different
kinds of publish/subscribe broker are involved. They share the same topic space,
and publications and subscriptions flow between them.

Another example would be to migrate the Version 6 queue manager to version 7.
The publisher application continues to run unchanged in queued mode on the
migrated queue manager. It interoperates with the version 7 subscriber that runs as
a WebSphere MQ Version 7 publish/subscribe application.

Differences from WebSphere MQ Version 6 publish/subscribe
Queued publish/subscribe programs and queued broker administration differ in
version 7 from version 6. The differences in program behavior are slight; the
administration differences are more extensive. Many version 6 programs coexist
and interoperate with version 7, without change.

There are many changes in the implementation of version 7 queued
publish/subscribe from the implementation in version 6. Queued

112 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|

publish/subscribe in version 7 makes use of integrated publish/subscribe. Only
the changes that result, that might affect your applications or administration
procedures are described here. The use of queued publish/subscribe is deprecated
in version 7.

Administration

The version 6 WebSphere MQ publish/subscribe broker is integrated into version 7
publish/subscribe. The commands you used to control a version 6
publish/subscribe broker are obsolete, and replace by commands to control version
7 publish/subscribe. The new commands, as they relate to controlling queued
publish/subscribe, are described in the topic “Controlling queued
publish/subscribe” on page 118. Table 20 relates the old and new commands.

Table 20. Broker command differences

Operation

WebSphere
MQ Version
6 WebSphere MQ Version 7

Remove
broker from
hierarchy

clrmqbrk
See “Disconnect a queue manager from a broker hierarchy” on
page 42 for instructions how to disconnect a version 7 queue
manager from a hierarchy.

Delete
broker

dltmqbrk

There is no publish/susbcribe broker in version 7. The
dltmqbrk command removes version 6 broker resources after
running the command strmqbrk to migrate the version 6
broker to version 7 publish/subscribe.

Display
broker

dspmqbrk
Use the mqsc command DISPLAY PUBSUB to display
publish/subscribe status.

Stop broker endmqbrk
See “Stopping queued publish/subscribe” on page 120 for
instructions how to stop queued publish/subscribe in version
7.

Migrate
broker to
WebSphere
Message
Broker

migmqbrk

You should run the migmqbrk command on a version 6 queue
manager. Once you have upgraded to Version 7 there is no
migration from version 7 publish/subscribe to the version 6.1
WebSphere Message Broker publish/subscribe broker.

Start broker strmqbrk

In version 7 the strmqbrk command migrates the version 6
broker to version 7. See “Starting queued publish/subscribe”
on page 119 for instructions how to start queued
publish/subscribe in version 7.

Configuration data

The broker stanza parameters in WebSphere MQ Version 6 publish/subscribe are
described in Broker configuration stanza. They are replaced with queue manager
attributes, which are described in New queue manager attributes for
publish/subscribe.

Interoperation with WebSphere Message Broker

You cannot connect the WebSphere Message Broker V6.1 publish/subscribe broker
to WebSphere MQ Version 7 using clusters or broker hierarchies. Messages flow
between the broker and WebSphere MQ, but because no cluster or hierarchy
connection can be established, subscriptions and publications are not passed
directly between the broker publication node and the WebSphere MQ queue
manager.

Chapter 6. Queued publish/subscribe compatibility 113

|
|
|
|

|

|
|
|
|
|
|

||

|

|
|
||

|
|
|
|
|
|
|

|
||

|
|
|
|

|
||
|
|

||
|
|
|

|
|
|
|
|

|

|
|
|
|

||

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqnar.doc/zclemqb.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqnar.doc/zdltmqb.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqnar.doc/zdspmqb.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqnar.doc/zendmqb.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqnar.doc/amq6263.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqnar.doc/zstrmqb.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqnar.doc/qmini.htm

Metatopics

Metatopics are a special set of topics recognized by the WebSphere MQ Version 6
broker. See Metatopics.

Metatopics are not provided by WebSphere MQ Version 7. Instead you can inquire
on the list of topic names, and on individual topics and subscriptions.

If you send a subscription to a metatopic, it is ignored.

Register Publisher and Deregister Publisher commands

The Register Publisher and Deregister Publisher commands do nothing in version
7, except return a successful response message to a request. Your publisher
program is not affected by the change.

Routing exit

The WebSphere MQ Version 6 publish/subscribe has an exit for customizing and
routing publications, which is described in Message broker exit. This exit is no
longer supported.

Using the MQSD sublevel field, an intermediate subscriber can intercept
publications to customize or block them, before they arrive at the ultimate
subscribers, see “Intercepting publications” on page 81.

Streams

There are significant changes in how streams are implemented in WebSphere MQ
version 7.

Although streams are not supported by the integrated publish/subscribe MQI
interface, your version 6 queued publish/subscribe applications using streams
interoperate without change with version 7 integrated publish/subscribe
applications. This is because streams are mapped to topic space in version 7, see
“Streams and topics” on page 115

Wildcards

The wildcard schemes used by version 6 and version 7 publish subscribe are
different.

The earlier WebSphere MQ Version 6 publish/subscribe scheme, uses the
characters described in Matching topic strings in WebSphere MQ Version 6.

An asterisk (*)
Match zero or more characters.

A question mark (?)
Match exactly one character.

The percent sign (%)
Escape ″*″, ″?″, or ″%″ in a topic string.

WebSphere MQ Version 7 and WebSphere Message Broker V6.1 use a different
scheme to specify subscriptions. The version 7 topic string scheme is described in
“Topics” on page 10.

114 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|

|
|

|

|

|
|
|

|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqnar.doc/mqps037.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqnar.doc/amq6220.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqnar.doc/amq6223.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqnar.doc/amq6214.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqnar.doc/amqnar1011.htm

A forward slash (/)
Topic level separator.

The hash sign (#)
Multilevel wildcard.

The plus sign (+)
Single-level wildcard.

There is no special escape character. When ″#″ or ″+″ are mixed with characters
other than ″/″ they are treated as normal characters. Thus ″/+/″ and ″/#/″ are not
valid topic strings and are single-level or multilevel wildcards respectively,
whereas ″/+ve/″ matches only the subtopic ″+ve″.

To use the version 6 wildcard scheme when subscribing with a version 7
subscriber, set the MQSO_WILDCARD_CHAR option.

For a discussion of how WebSphere Message Broker handles WebSphere MQ
Version 6 wildcards see the topic Wildcard characters.

Streams and topics
WebSphere MQ Version 6 publication streams are mapped to topics by WebSphere
MQ Version 7. Default mapping is performed when a version 6 broker is migrated
to version 7. You can add and tailor mappings for different configurations.

WebSphere MQ Version 6 publish/subscribe has the concept of a publication
stream that does not exist in the WebSphere MQ Version 7 publish/subscribe
model. In version 6, streams provide a way of separating the flow of information
for different topics. A stream is implemented as a queue, defined at each broker
that supports the stream. Each queue has the same name (the name of the stream).

The default stream SYSTEM.BROKER.DEFAULT.STREAM is set up automatically for all
the brokers on a network, and no additional configuration is required to use the
default stream. Think of the default stream as an unnamed default topic space.
Topics published to the default stream are immediately available to all connected
brokers, including version 7 brokers running with queued publish/subscribe
enabled. Named streams are like separate, named, topic spaces. The named stream
must be defined on each broker where it is used.

If you define a topic on WebSphere MQ Version 7, the topic is available to both
version 6 and version 7 publishers and subscribers, with no special configuration.
For example, suppose a topic is defined, with the topic string Soccer/Results. To
receive soccer results, a version 6 application subscribes to Soccer/Results on
SYSTEM.BROKER.DEFAULT.STREAM. A version 7 publisher publishes to Soccer/Results
by opening the topic object and making MQPUT calls to it.

If the version 6 and 7 brokers are on different queue managers, then once the
brokers are connected in the same broker hierarchy, no further configuration is
required for the publications and subscriptions to flow between them.

The same interoperability works in reverse, too. So if the topic Soccer/Results is
registered by a version 6 queued publish/subscribe application, then a version 7
application can subscribe to it using MQSUB.

Chapter 6. Queued publish/subscribe compatibility 115

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r1m0/topic/com.ibm.etools.mft.doc/aq19840_.htm

Named streams

The version 6 solution designer might have decided to place all sports publications
into a named stream called Sport. In version 6 a stream is often replicated
automatically onto other brokers using the model queue,
SYSTEM.BROKER.MODEL.STREAM. However, for the stream to be available to a version
7 broker running with queued publish/subscribe enabled, the stream needs to be
added manually.

If you have just upgraded a queue manager from version 6 to version 7, running
the command strmqbrk migrates version 6 publish/subscribe broker resources to
version 7, and maps the streams that have been defined to topics. The stream
Sport is mapped to the topic Sport.

Version 6 applications subscribing to Soccer/Results on stream Sport work
without change. New version 7 applications subscribing to the topic Sport using
MQSUB, and supplying the topic string Soccer/Results work as well too. When
the topic Sport is created by strmqbrk, it is defined with the topic string Sport. A
subscription to Soccer/Results is actually realized as a subscription to
Sport/Soccer/Results, and so publications to the Sport stream are mapped to
different place in topic space to publications to a different stream, such as
Business.

There are scenarios for which the automatic migration performed by strmqbrk is
not the answer, and you need to manually add streams on a version 7 queue
manager. The task of adding a stream to a version 7 queue manager is described in
the topic, Adding a stream. You might need to add streams manually for three
reasons.
1. You continue to maintain publish/subscribe applications on version 6 queue

managers, which interoperate with newly written version 7 publish/subscribe
applications. You need to add new streams to version 7 to flow publications
between the new streams and the topics on version 7.

2. You continue to develop your version 6 based publish/subscribe applications
that are running on version 7 queue managers, rather than migrate the
applications to the version 7 publish/subscribe MQI interface. You need to add
new streams to the version 7 queue managers.

3. The default mapping of streams to topics leads to a ″collision″ in topic space,
and publications on a stream have the same topic string as publications from
elsewhere.

Mapping between streams and topics

A version 6 stream is mimicked in version 7 by creating a special queue for
publications, giving it the same name as the version 6 stream2. The queue is
identified to the publish/subscribe engine by adding it to the special namelist
called SYSTEM.QPUBSUB.QUEUE.NAMELIST. You can add as many streams as you need,
by adding additional special queues to the namelist. Finally you need to add
topics, with the same names as the streams, and the same topic strings as the
stream name, so you can publish and subscribe to the topics.

However, in exceptional circumstances, you can give the topics corresponding to
the streams any topic strings you choose when you define the topics in version 7.

2. The special queue for publications is sometimes called the stream queue, because that is how it appears to version 6
publish/subscribe applications.

116 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|

The purpose of the topic string is to give the topic a unique place in version 7
topic space. Usually the stream name serves that purpose perfectly. Sometimes,
however, there may overlap between stream names and the version 7 topic space,
in which case as long as you keep the topic strings unique, you can choose another
string for the topic string.

The topic string defined in the topic definition is prefixed in the normal way to the
topic string provided by publishers and subscribers using the MQOPEN or
MQSUB MQI calls. The choice of prefix topic string has no effect on applications -
which is why you can choose any topic string that keeps the publications unique
in the topic space.

The remapping of different steams onto different topics relies on the prefixes used
for the topic strings being unique, to separate one set of topics completely from
another. You should define a universal topic naming convention that is rigidly
adhered to for the mapping to work. In version 6, if topic strings collided you
could use streams to separate the topic spaces. In version 7, you use the prefixing
mechanism to remap a topic string to another place in topic space.

Note: When you delete a stream, delete all the subscriptions on the stream first.
This is most important if any of the subscriptions originate from other brokers in
the broker hierarchy.

Example

In Figure 48 on page 118, topic 'Sport' has the topic string 'xyz' resulting in
publications originating from stream 'Sport' being prefixed with the string 'xyz'
in the version 7 queue manager topic space. Publishing or subscribing in version 7
to the topic 'Sport' prefixes 'xyz' to the topic string. If the publication flows to a
version 6 subscriber, the prefix 'xyz' is removed from the publication and it is
placed in the 'Sport' stream. Conversely, when a publication flows from version 6
to version 6 from the 'Sport' stream to the 'Sport' topic, the prefix 'xyz' is
added to the topic string.

Chapter 6. Queued publish/subscribe compatibility 117

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

Heterogeneous broker topologies
Version 6 WebSphere MQ publish/subscribe brokers are organized into broker
hierarchies, WebSphere Message Brokers are organized into collectives, and in
WebSphere MQ version 7 clusters or broker hierarchies are used to distribute
publishers and subscribers over multiple queue managers.

Version 6 and version 7 WebSphere MQ publish/subscribe interoperate, using
broker hierarchies. You cannot connect the WebSphere Message Broker V6.1
publish/subscribe broker to WebSphere MQ Version 7 using clusters or broker
hierarchies.

You use a different procedure in WebSphere Version 7 to WebSphere MQ Version 6
to add a queue manager to a broker hierarchy.

Set the value of the queue manager attribute PARENT to the name (or alias) of the
parent queue manager in the hierarchy. The procedure is described in the topic,
“Publish/subscribe hierarchies” on page 40. To delete a parent: assign a different
parent, or remove the value of the attribute altogether.

Note: If you are using named streams in your WebSphere MQ Version 6 broker
hierarchy, you also need to add the streams manually to each version 7 queue
manager added to the hierarchy.

Controlling queued publish/subscribe
Start, stop and display the status of queued publish/subscribe. Add and remove
streams, and add and delete queue managers from a broker hierarchy.

V6 Queue manager V7 Queue manager

Stream 'Sport'

Topic 'Sport'

TopicStr 'xyz'

M
QPUB/M

QSUB

(T
op

ic
'S

po
rt'

.

To
pic

Str
'S

oc
ce

r/R
es

ult
s')

'SYSTEM.QPUBSUB
.QUEUE.NAMELIST'

Queue 'Sport'

Names 'Sport'

Topic space

Namelist

Publication
Soccer/Results

Publication
xyz'Soccer/Results'

Figure 48. Version 6 streams coexisting with version 7 topics

118 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|
|

|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|

New queue manager attributes for publish/subscribe
Five attributes, formerly held in the queue manager configuration file, qm.ini, are
now replaced by attributes of the queue manager.

In WebSphere MQ Version 6.0, the attributes listed in the following table were held
in the Brokers stanza of the qm.ini file (or the registry in Windows). In WebSphere
MQ Version 7.0, they are replaced by the queue manager attributes listed, which
can be set by the MQSC command ALTER QMGR or the PCF command Change
Queue Manager.

Table 21.

Attribute in qm.ini

Queue manager attribute

(PCF parameter name) MQSC parameter name

MaxMsgRetryCount PubSubMaxMsgRetryCount PSRTYCNT

DiscardNonPersistentInputMsg PubSubNPInputMsg PSNPMSG

DLQNonPersistentResponse PubSubNPResponse PSNPRES

DiscardNonPersistentResponse PubSubNPResponse PSNPRES

SyncPointIfPersistent PubSubsyncPoint PSSYNCPT

Starting queued publish/subscribe

The task of starting the publish/subscribe broker in WebSphere MQ Version 7 has
changed to enabling the (deprecated) queued publish/subscribe interface rather
than running the strmqbrk command.

Before you begin

Read the description of PSMODE to understand the three modes of
publish/subscribe:
v COMPAT
v DISABLED
v ENABLED

You must use strmqbrk to migrate Version 6 publish/subscribe broker state to
version 7 if you are working with an upgraded queue manager.

About this task

Using the QMGR PSMODE attribute you can start either the queued
publish/subscribe interface (also known as the broker), or the publish/subscribe
engine (also known as Version 7 publish/subscribe) or both. To start queued
publish/subscribe you need to set PSMODE to ENABLED. The default is
ENABLED.

Queued publish/subscribe is deprecated.

Use WebSphere MQ Explorer or the runmqsc command to enable the queued
publish/subscribe interface if the interface is not already enabled.

Example

ALTER QMGR PSMODE(ENABLED)

Chapter 6. Queued publish/subscribe compatibility 119

|

|
|

|
|
|
|
|

||

|

|

||

|||

|||

|||

|||

|||
|

|

|
|
|

|

|
|

|

|

|

|
|

|

|
|
|
|
|

|

|
|

|

|

What to do next

WebSphere MQ now processes queued publish/subscribe commands and
publish/subscribe MQI calls.

Stopping queued publish/subscribe

The task of stopping the publish/subscribe broker in WebSphere MQ Version 7 has
changed to disabling the queued publish/subscribe interface rather than running
the endmqbrk command.

Before you begin

Queued publish/subscribe is deprecated.

Read the description of PSMODE to understand the three modes of
publish/subscribe:
v COMPAT
v DISABLED
v ENABLED

About this task

Using the QMGR PSMODE attribute you can stop either the queued
publish/subscribe interface (also known as the broker), or the publish/subscribe
engine (also known as Version 7 publish/subscribe) or both. To stop queued
publish/subscribe you need to set PSMODE to COMPAT. To stop the
publish/subscribe engine entirely, set PSMODE to DISABLED.

Use WebSphere MQ Explorer or the runmqsc command to disable the queued
publish/subscribe interface.

Example

ALTER QMGR PSMODE(COMPAT)

What to do next

WebSphere MQ now processes only Version 7 MQI publish/subscribe calls.

Adding a stream
You can add streams manually to WebSphere MQ Version 7 queue managers to
coexist with streams migrated from version 6 queue managers.

Before you begin

Familiarize yourself with the way publish/subscribe streams operate in WebSphere
MQ version 7 onwards by reading the topic, “Streams and topics” on page 115.

About this task

Use PCF commands, runmqsc, or WebSphere MQ Explorer to do these steps.
1. Define a local queue with the same name as the version 6 stream.
2. Define a local topic with the same name as the version 6 stream.

120 WebSphere MQ: Publish/Subscribe User’s Guide

|

|
|

|

|
|
|

|

|

|
|

|

|

|

|

|
|
|
|
|

|
|

|

|

|

|

|

|
|

|

|
|

|

|

|

|

3. Add the name of the queue to the namelist, SYSTEM.QPUBSUB.QUEUE.NAMELIST
4. Repeat these three steps for all queue managers at version 7 or above that are

in the Publish/Subscribe hierarchy.

Adding ’Sport’

For example, if version 6 and version 7 queue managers are working in the same
publish/subscribe hierarchy, and the version 6 queue managers share a stream
called 'Sport', create a queue and a topic on version 7 queue managers called
'Sport', with a topic string 'Sport'.

A version 7 publish application, publishing to topic 'Sport', with topic string
'Soccer/Results', creates the resultant topic string 'Sport/Soccer/Results'. On
version 7 queue managers , subscribers to topic 'Sport', with topic string
'Soccer/Results' receive the publication.

On version 6 queue managers, subscribers to stream 'Sport', with topic string
'Soccer/Results' receive the publication.
runmqsc QM1
5724-H72 (C) Copyright IBM Corp. 1994, 2008. ALL RIGHTS RESERVED.
Starting MQSC for queue manager QM1.
define qlocal('Sport')

1 : define qlocal('Sport')
AMQ8006: WebSphere MQ queue created.
define topic('Sport') topicstr('Sport')

2 : define topic('Sport') topicstr('Sport')
AMQ8690: WebSphere MQ topic created.
alter namelist(SYSTEM.QPUBSUB.QUEUE.NAMELIST) NAMES('Sport', 'SYSTEM.BROKER.DEFAULT.STREAM', 'SYSTEM.BROKER.ADMIN.STREAM')

3 : alter namelist(SYSTEM.QPUBSUB.QUEUE.NAMELIST) NAMES('Sport', 'SYSTEM.BROKER.DEFAULT.STREAM', 'SYSTEM.BROKER.ADMIN.STREAM')
AMQ8551: WebSphere MQ namelist changed.

Note: You need to provide the existing names in a namelist as well as new names
you are adding to the alter namelist command.

What to do next

Information about the stream is passed to other brokers in the hierarchy.

If a broker is version 6, administer it as a version 6 broker. That is, you have a
choice of creating the stream queue manually, or letting the broker create the
stream queue dynamically when it is needed. The queue is based on the model
queue definition, SYSTEM.BROKER.MODEL.STREAM.

If a broker is version 7, you need to configure each version 7 queue manager in the
hierarchy manually.

Deleting a stream
Before deleting a stream from a WebSphere MQ Version 7 queue manager you
must ensure that there are no remaining subscriptions to the stream.

Before you begin

The use of queued publish/subscribe is deprecated in WebSphere MQ Version 7.0.

Before you delete a stream, quiesce all applications that use the stream.

Chapter 6. Queued publish/subscribe compatibility 121

|

|
|

|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|

|
|

|

|
|

|

|

|

You must be absolutely certain that there are no subscriptions left on the stream
you are about to delete. If publications continue to flow to a deleted stream, it
takes a lot of administrative effort to restore the system to a cleanly working state.

About this task

This task describes how to delete a stream from a WebSphere MQ Version 7.0, or
later, queue manager. For instructions on deleting the stream from any version 6
queue managers it is connected to, see Deleting a stream.
1. Find all the connected brokers that host this stream.
2. Cancel all subscriptions to the stream on all the brokers.
3. Remove the queue (with the same name as the stream) from the namelist,

SYSTEM.QPUBSUB.QUEUE.NAMELIST.
4. Delete or purge all the messages from the queue with the same name as the

stream.
5. Delete the queue with the same name as the stream.
6. Delete the associated topic object.

What to do next
1. Repeat steps 3 to 5 on all the other connected version 7, or later, queue

managers hosting the stream.
2. Remove the stream from all other connected version 6, or earlier, queue

managers.

Connect a queue manager to a broker hierarchy
You can connect a local queue manager to a parent queue manager to modify a
broker hierarchy.

Before you begin
1. You need to enable queued publish/subscribe mode. See “Starting queued

publish/subscribe” on page 119.
2. The change is propagated to the parent queue manager using a WebSphere MQ

connection. There are two ways to establish the connection.
a. Connect the queue managers to a WebSphere MQ cluster.
b. Establish a point-to-point channel connection using a transmission queue, or

queue manager alias, with the same name as the parent queue manager.
For example, suppose you are connecting to a queue manager called
PARENT. Define a queue manager alias for PARENT that resolves to the
transmission queue to parent. To place messages for PARENT on the
transmission queue PARENT.XMITQ, use the following MQSC command to
define the queue manager alias.
DEFINE QREMOTE (PARENT) RNAME('') RQMNAME(PARENT) XMITQ(PARENT.XMITQ)

About this task

In WebSphere MQ Version 6.0, when the appropriate channels and queues are
defined, brokers connect to one another as defined by parameters provided on the
strmqbrk command.

The strmqbrk command works differently in WebSphere MQ Version 7.0 and you
can no longer use it to connect children to parents. Instead you use the ALTER QMGR
PARENT (PARENT) runmqsc command.

122 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|

|

|
|
|

|

|

|
|

|
|

|

|

|

|
|

|
|

|

|
|

|

|
|

|
|

|

|
|

|
|
|
|
|

|

|

|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.amqnar.doc/amq622y.htm

In WebSphere MQ Version 7, distributed publish/subscribe is typically
implemented by using queue manager clusters and clustered topic definitions. For
interoperability with WebSphere MQ Version 6 and WebSphere Message Broker
V6.1 and WebSphere Event Broker V6.1 and earlier, you can also connect version 7
queue managers to a broker hierarchy as long as queued publish/subscribe mode
is enabled.

ALTER QMGR PARENT(PARENT)

Example

The first example shows how to attach QM2 as a child of QM1, and then querying
QM2 for its connection.
C:>runmqsc QM2
5724-H72 (C) Copyright IBM Corp. 1994, 2008. ALL RIGHTS RESERVED.
Starting MQSC for queue manager QM2
alter qmgr parent(QM1)

1 : alter qmgr parent(QM1)
AMQ8005: WebSphere MQ queue manager changed.
display pubsub type(All)

14 : display pubsub type(All)
AMQ8723: Display pub/sub status details.

QMNAME(QM2) TYPE(LOCAL)
AMQ8723: Display pub/sub status details.

QMNAME(QM1) TYPE(PARENT)

The next example shows the result of querying QM1 for its connections
C:\Documents and Settings\Admin>runmqsc QM1
5724-H72 (C) Copyright IBM Corp. 1994, 2008. ALL RIGHTS RESERVED.
Starting MQSC for queue manager QM1.
display pubsub type(all)

1 : display pubsub type(all)
AMQ8723: Display pub/sub status details.

QMNAME(QM1) TYPE(LOCAL)
AMQ8723: Display pub/sub status details.

QMNAME(QM2) TYPE(CHILD)

What to do next

You can define topics on one broker or queue manager that are available to
publishers and subscribers on the connected queue managers.

Disconnect a queue manager from a broker hierarchy
Disconnect a child queue manager from a parent queue manager in a broker
hierarchy.

About this task

In WebSphere MQ Version 6.0, queue managers were disconnected from one
another using the dltmqbrk command, and required that all child queue managers
were disconnected first. In WebSphere MQ Version 7, the dltmqbrk command is
used to discard WebSphere MQ Version 6 broker resources after migration to
version 7 using the strmqbrk command.

You disconnect a version 7 queue manager from a broker hierarchy using the
ALTER QMGR command. Unlike version 6, you can disconnect version 7 queue
managers in any order and at any time.

Chapter 6. Queued publish/subscribe compatibility 123

|
|
|
|
|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|

|
|
|
|
|

|
|
|

The corresponding request to update the parent is sent when the connection
between the queue managers is running.

ALTER QMGR PARENT(' ')

Example
C:\Documents and Settings\Admin>runmqsc QM2
5724-H72 (C) Copyright IBM Corp. 1994, 2008. ALL RIGHTS RESERVED.
Starting MQSC for queue manager QM2.

1 : alter qmgr parent('')
AMQ8005: WebSphere MQ queue manager changed.

2 : display pubsub type(child)
AMQ8147: WebSphere MQ object not found.
display pubsub type(parent)

3 : display pubsub type(parent)
AMQ8147: WebSphere MQ object not found.

What to do next

You can delete any streams, queues and manually defined channels that are no
longer needed.

Migration to publish/subscribe on WebSphere MQ V7.0
Publish/subscribe function in WebSphere MQ Version 7.0 is performed by the
queue manager, rather than by a separate publish/subscribe broker. When you
migrate your systems to WebSphere MQ Version 7.0, publish/subscribe function is
not automatically migrated. You must upgrade publish/subscribe information to
WebSphere MQ Version 7.0 separately.

In WebSphere MQ V6, applications perform publish and subscribe operations by
placing special request messages on certain queues. The WebSphere MQ V6
Publish/Subscribe Broker then reads and acts on these messages (for example by
publishing messages to subscribing applications). State information such as who is
subscribing to which publications is owned and maintained by the
publish/subscribe broker. This broker is started and stopped independently from
the queue manager.

In WebSphere MQ V7, newly written publish/subscribe applications do not
communicate with the broker in order to publish or subscribe; they use the new
API directly. The verb MQPUT is used to publish messages to a topic and MQSUB
is used to subscribe. The queue manager itself performs the publish/subscribe
function, so no separate publish/subscribe broker is required.

When you upgrade a queue manager from WebSphere MQ V6 to WebSphere MQ
V7, the publish/subscribe broker is not upgraded. State information must be
migrated from the WebSphere MQ publish/subscribe broker into the queue
manager. Data that is migrated includes subscriptions, retained publications,
hierarchy relations, and authorities. You migrate a queue manager by using the
strmqbrk command, which previously started the publish/subscribe broker.

WebSphere MQ V6 publish/subscribe brokers could be connected into hierarchies
so that publications and subscriptions could flow between them. After migrating
(using strmqbrk) these hierarchies continue to function in WebSphere MQ V7.
WebSphere MQ V7 also contains a new method of allowing publications and
subscriptions flow between queue managers; publish/subscribe clusters. An
advantage of using publish/subscribe clusters mean that no queue manager

124 WebSphere MQ: Publish/Subscribe User’s Guide

|
|

|

|

|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

provides a single point of failure to the flow of publications or subscriptions. To
migrate to a publish/subscribe cluster, first migrate to a WebSphere MQ V7
hierarchy using strmqbrk and then convert it to a cluster by creating cluster topics
and altering parent/child relations.

strmqbrk (Migrate WebSphere MQ Version 6.0 broker to
Version 7.0)

Migrate the persistent state of a Websphere MQ publish/subscribe broker.

Purpose

Use the strmqbrk command to migrate WebSphere MQ Version 6.0
publish/subscribe broker’s state to WebSphere MQ Version 7.0 publish/subscribe.
If the queue manager has already been migrated, no action is taken.

In WebSphere MQ Version 6.0, strmqbrk started a broker. The WebSphere MQ
Version 7.0 publish/subscribe engine cannot be started in this manner. To enable
publish/subscribe for a queue manager, use the ALTER QMGR command; for
details, see ALTER QMGRin the WebSphere MQ Script (MQSC) Command Reference.

You can also use the runmqbrk command. This has the same parameters as
strmqbrk and exactly the same effect.

Syntax

AIX, HP-UX, Linux, Solaris, and Windows

�� strmqbrk
-p ParentQMgrName -m QMgrName -f

�

�
-l LogFileName

��

Optional parameters

AIX, HP-UX, Linux, Solaris, and Windows

-p ParentQMgrName

Note: This option is deprecated.
If you specify the current parent queue manager, a warning message is issued
and migration continues. If you specify a different queue manger, a warning is
issued and migration is not performed.

-m QMgrName
The name of the queue manager to be migrated. If you do not specify this
parameter, the command is routed to the default queue manager.

-f Force migration. This option specifies that objects created during the migration
replace existing objects with the same name. If this option is not specified, if
migration would create a duplicate object, a warning is issued, the object is not
created, and migration continues.

-l LogFileName
Log migration activity to the file specified in LogFileName.

Chapter 6. Queued publish/subscribe compatibility 125

|
|
|
|

|

|

|

|

|
|
|

|
|
|
|

|
|

|

|

||||||||||||||||||||||||||||||
|

|
||||||||||||||

|

|

|

|

|
|
|
|

|
|
|

||
|
|
|

|
|

Syntax

i5/OS

�� STRMQMBRK
-PARENTMQM (ParentQMgrName) -MQMNAME QMgrName

��

Optional parameters

AIX, HP-UX, Linux, Solaris, and Windows

-PARENTMQM(ParentQMgrName)

Note: This option is deprecated.
If you specify the current parent queue manager, a warning message is issued
and migration continues. If you specify a different queue manger, a warning is
issued and migration is not performed.

-MQMNAME QMgrName
The name of the queue manager to be migrated. If you do not specify this
parameter, the command is routed to the default queue manager.

Application migration
The WebSphere MQ Version 6.0 publish/subscribe command message interface is
being deprecated. If you have applications that use this interface directly, you
should migrate those applications to use the new Version 7.0 publish/subscribe
functions.

The following sections explain how to replace existing command messages.

Identity

In WebSphere MQ Version 6 there were two ways of identifying a subscriber.
These were referred to as the traditional identity and the subscription name.

The traditional identity was also used to identify a publisher. The traditional
identity was a combination of queue name, queue manager name, and optional
correlation identifier.

A publisher no longer has an explicit publisher identity, but can be identified in
the same way as any only WebSphere MQ application, by means of its connection
to the queue manager. Since there is no explicit registration of a publisher, or his
identity over and above what can be obtained by displaying the connections to the
queue manager, there is no longer a need for the anonymous option on Register
Publisher. Your application must now use the SubName field in the MQSD to
identify a subscriber.

The correlation identifier also had a secondary use which was to allow subscribers
to MQGET by CorrelId to only get publications for a particular subscription, if
there were multiple subscriptions all using the same queue. This is provided by
using the SubCorrelId field returned in the MQSD at MQSUB time.

126 WebSphere MQ: Publish/Subscribe User’s Guide

|

|

|||||||||||||||||||||||||

|

|

|

|

|
|
|
|

|
|
|

|

|
|
|
|

|

|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

Stream Name

MQPS_STREAM_NAME is deprecated since stream names are part of the full topic
name. Stream names can be mapped to administrative topic objects, and then the
topic name used along with the stream name can be mapped to a topic string to be
concatenated with the topic string from the topic object. For example, if the
application was previously using a stream queue name of
SYSTEM.BROKER.RESULTS.STREAM and a topic of Sport/Soccer/State/
LatestScore/*, then a topic object can be created whose name is
SYSTEM.BROKER.RESULTS.STREAM which is defined to have a TOPICSTR of /
and the new application will provide a two part topic name in the MQOD or
MQSD using an ObjectName of SYSTEM.BROKER.RESULTS.STREAM and an
ObjectString of Sport/Soccer/State/LatestScore/*.

If an administrative topic object that does not exist is used in place of a stream
name, the error (effectively mapping to MQRCCF_STREAM_ERROR) which is
given is MQRC_UNKNOWN_OBJECT_NAME. supported.

Application migration details

When migrating to use the MQ API to do publish/subscribe, the code within any
one application program must be consistent.

The application program must not contain a mixture of these deprecated APIs and
the new MQ API options. An entire application suite, such as the combination of a
subscribing application program and a publishing application program, does not
all need to be migrated at the same time. Interaction between a publishing
application program using the deprecated APIs and a subscribing application using
the new MQ API is supported.

Delete Publication - Version 7 replacement

The Delete Publication command message contains a number of parameters. This
should be replaced by using the PCF ClearTopic command. This section details the
equivalent options or fields in the PCF command message to show how an
application would migrate from using the Delete Publication command message to
using the PCF ClearTopic command message.

Required parameters

MQPS_COMMAND with value MQPS_DELETE_PUBLICATION is implied when
you use the ClearTopic command.

MQPS_TOPIC is provided in a field in the ClearTopic command message. If your
application provided more than one MQPS_TOPIC in a single Delete Publication
command message, it must now issue a separate ClearTopic call for each separate
topic string.

Optional parameters

MQPS_DELETE_OPTIONS is replaced with an attribute of the ClearTopic
command message.

For MQPS_STREAM_NAME see WebSphere MQ Publish/Subscribe User’s Guide.

Error codes

Chapter 6. Queued publish/subscribe compatibility 127

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|

|
|
|
|

|

|
|

|

|

If your application checked for any of the following error codes, the equivalent
MQRC error codes are shown in the following table:

Reason codes in NameValueString of the
broker response message. MQRC equivalent

MQRCCF_STREAM_ERROR MQRC_UNKNOWN_OBJECT_NAME

MQRCCF_TOPIC_ERROR MQRC_OBJECT_STRING_ERROR

MQRCCF_INCORRECT_STREAM See Note 1

Notes:

1. No equivalent since there is no need to provide the stream name twice, once in the
command and once by putting it to the stream queue, so you cannot have a mismatch.

Deregister publisher - Version 7 replacement

The Deregister Publisher command message contains a number of parameters. You
should replace it with the MQCLOSE verb. This section details the equivalent
options or fields in the MQ API to show how to migrate an application from the
Deregister Publisher command message to MQCLOSE.

A difference in behaviour will be seen because a Register Publisher command
could leave an application registered even when it was not connected, whereas the
equivalent MQOPEN will only show a publisher’s intent when the application is
connected and keeps the handle from MQOPEN available. Even without issuing
MQCLOSE, an application will be deregistered when the queue manager detects
that the application’s connection is lost.

Required parameters

MQPS_COMMAND with value MQPS_REGISTER_PUBLISHER is implied when
closing a handle to a topic previously opened using MQOPEN with the
MQOO_OUTPUT option.

Optional parameters

If your application provided a queue and queue manager name (either by using
MQPS_Q_MGR_NAME and MQPS_Q_NAME in the command message, or from
the ReplyToQ and ReplyToQMgr fields in MQMD of the command message) these
attributes are now implied by the provision of the handle obtained when opening
the topic.

MQPS_REGISTRATION_OPTIONS is replaced with options on the MQCLOSE call.
See MQCLOSE for more details. Note that there are two ways you could have
specified each of these options in your application, a string constant, MQPS_* or an
integer constant, MQREGO_*. Both are replaced by the use of a single numeric
constant.

String constant Integer constant
MQCLOSE Options field
constant

MQPS_CORREL_ID_AS_
IDENTITY

MQREGO_CORREL_ID_AS_
IDENTITY

See Version 6 (queued)
publish/subscribe

MQPS_DEREGISTER_ALL MQREGO_DEREGISTER_
ALL

See Note 1

128 WebSphere MQ: Publish/Subscribe User’s Guide

|
|

||
||

||

||

||

|

|
|
|

|

|
|
|
|

|
|
|
|
|
|

|

|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
||
|
|

|
|
|
|
|
|

||
|
|

ps19000_.dita
ps19000_.dita

String constant Integer constant
MQCLOSE Options field
constant

Notes:

1. Since only one topic can be opened by the MQOPEN call, closing the handle closes that
one topic. There is no need for an equivalent option. If many topics are opened, simply
issuing MQDISC will close them all, saving the need to MQCLOSE each handle.

For MQPS_STREAM_NAME see Version 6 (queued) publish/subscribe, although in
this case, the stream name is implied by the provision of the handle obtained when
opening the topic. MQPS_TOPIC is implied by the provision of the handle
obtained when opening the topic.

Error codes

If your application checked for any of the following error codes, the equivalent
MQRC error codes are shown in the following table:

Reason codes in NameValueString of the
broker response message. MQRC equivalent

MQRCCF_STREAM_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_TOPIC_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_NOT_REGISTERED MQRC_HOBJ_ERROR (See note 1)

MQRCCF_Q_MGR_NAME_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_Q_NAME_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_DUPLICATE_IDENTITY MQRC_HOBJ_ERROR (See note 1)

MQRCCF_UNKNOWN_STREAM MQRC_HOBJ_ERROR (See note 1)

MQRCCF_REG_OPTIONS_ERROR MQRC_OPTIONS_ERROR

Notes:

1. This error code implies the same type of problem, but since all of these fields are now
implied by the provision of the handle obtained when opening the topic, this is the
only equivalent error.

Deregister subscriber - Version 7 replacement

The Deregister Subscriber command message contains a number of parameters.
This should be replaced by using the MQCLOSE verb. This section details the
equivalent options or fields in the MQ API to show how an application would
migrate from using the Deregister Subscriber command message to using
MQCLOSE. If the Deregister Subscriber command message was used in a different
program from that of the Register Subscriber command message, the application
must now first use the MQSUB call with the MQSO_RESUME option to get a
handle to the subscription, in order to deregister it.

Required parameters

MQPS_COMMAND with value MQPS_DEREGISTER_SUBSCRIBER is replaced by
the use of the MQCLOSE verb with the option MQCO_REMOVE_SUB.

Optional parameters

Chapter 6. Queued publish/subscribe compatibility 129

||
|
|

|

|
|
|
|

|
|
|
|

|

|
|

||
||

||

||

||

||

||

||

||

||

|

|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|

|

ps19000_.dita

If your application provided a queue and queue manager name (either by using
MQPS_Q_MGR_NAME and MQPS_Q_NAME in the command message, or from
the ReplyToQ and ReplyToQMgr fields in MQMD of the command message) these
attributes are now implied by the provision of the handle obtained when
subscribing to the topic.

MQPS_REGISTRATION_OPTIONS is replaced with Options on the MQCLOSE
call. See MQCLOSE for more details. Note that there are two ways you could have
specified each of these options in your application, a string constant, MQPS_* or an
integer constant, MQREGO_*. Both are replaced by the use of a single numeric
constant.

String constant Integer constant
MQCLOSE Options field
constant

MQPS_CORREL_ID_AS_
IDENTITY

MQREGO_CORREL_ID_AS_
IDENTITY

See Note 1

MQPS_DEREGISTER_ALL MQREGO_DEREGISTER_
ALL

See Note 2

MQPS_FULL_RESPONSE MQREGO_FULL_RESPONSE See Note 3

MQPS_LEAVE_ONLY MQREGO_LEAVE_ONLY See Note 4

MQPS_VARIABLE_USER_ID MQREGO_VARIABLE_
USER_ID

See Note 1

Notes:

1. This option is implied by the provision of the handle obtained when subscribing to the
topic.

2. Since only one topic (separate topic string that is – of course wildcards can still be used
within one topic string) can be subscribed to by the MQSUB call, closing the handle
closes that one topic. There is no need for an equivalent option. If many topics are
opened, simply issuing MQDISC will close them all, saving the need to MQCLOSE
each handle.

3. Use of this option is implied in the use of the MQSUB verb. The fields returned in the
response message are now populated in the MQSD structure. See MQSUB for more
details. Because an MQSUB call must be made in order to obtain the handle to pass to
the MQCLOSE call, this option is deprecated.

4. Use of these options are deprecated and moved to spiCONN for the one environment
where they are needed.

For MQPS_STREAM_NAME see Version 6 (queued) publish/subscribe, although in
this case, the stream name is implied by the provision of the handle obtained when
subscribing to the topic. MQPS_SUBSCRIPTION_IDENTITY is replaced by a field
in spiCONN for the one environment where it is needed.
MQPS_SUBSCRIPTION_NAME is replaced by the field in the MQSD called
SubName and is therefore implied by the provision of the handle obtained when
subscribing to the topic. MQPS_TOPIC is provided in a field in the MQSD called
ObjectString, and is therefore implied by the provision of the handle obtained
when subscribing to the topic.

See MQSD for more details

Error codes

If your application checked for any of the following error codes, the equivalent
MQRC error codes are shown in the following table:

130 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|
|

|
|
|
|
|

|
||
|
|

|
|
|
|
|

||
|
|

|||

|||

||
|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|

|

|
|

ps19000_.dita

Reason codes in NameValueString of the
broker response message. MQRC equivalent

MQRCCF_STREAM_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_TOPIC_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_NOT_REGISTERED MQRC_HOBJ_ERROR (See note 1)

MQRCCF_Q_MGR_NAME_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_Q_NAME_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_DUPLICATE_IDENTITY MQRC_HOBJ_ERROR (See note 1)

MQRCCF_UNKNOWN_STREAM MQRC_HOBJ_ERROR (See note 1)

MQRCCF_REG_OPTIONS_ERROR MQRC_OPTIONS_ERROR

Notes:

1. This error code implies the same type of problem, but because all of these fields are
now implied by the provision of the handle obtained when opening the topic, this is
the only equivalent error.

Publish - Version 7 replacement

The Publish command message contains a number of parameters. This should be
replaced by using the MQPUT/MQPUT1 verbs. This section details the equivalent
options or fields in the MQ API to show how an application would migrate from
using the Publish command message to using MQPUT/MQPUT1.

Required parameters

MQPS_COMMAND with value MQPS_PUBLISH is implied when putting a
message to an object handle opening a topic for MQOO_OUTPUT. If your
application did not use Register Publisher, see the details in Publish for remaining
unregistered.

MQPS_TOPIC is provided in a field in the MQOD called ObjectString. See MQOD
- Object Descriptor for more details. If your application provided more than one
MQPS_TOPIC in a single Register Publisher command message, it must now issue
a separate MQOPEN call for each separate topic string.

Optional parameters

MQPS_INTEGER_DATA can be replaced with a message property.

MQPS_PUBLICATION_OPTIONS is replaced with the Options field in the
MQPMO structure. See MQPMO for more details. Note that there are two ways
you could have specified each of these options in your application, a string
constant, MQPS_* or an integer constant, MQREGO_*. Both are replaced by the use
of a single numeric constant.

String constant Integer constant
MQCLOSE Options field
constant

MQPS_CORREL_ID_AS_
IDENTITY

MQREGO_CORREL_ID_
AS_IDENTITY

See Version 6 (queued)
publish/subscribe for more
information

MQPS_IS_RETAINED_
PUBLICATION

MQREGO_IS_RETAINED_
PUBLICATION

See Note 1

Chapter 6. Queued publish/subscribe compatibility 131

||
||

||

||

||

||

||

||

||

||

|

|
|
|
|

|

|
|
|
|

|

|
|
|
|

|
|
|
|

|

|

|
|
|
|
|

|
||
|
|

|
|
|
|
|
|
|

|
|
|
|
|

ps19000_.dita
ps19000_.dita

String constant Integer constant
MQCLOSE Options field
constant

MQPS_NO_REGISTRATION MQREGO_NO_
REGISTRATION

See Note 2

MQPS_OTHER_
SUBSCRIBERS_ONLY

MQREGO_OTHER_
SUBSCRIBERS_ONLY

See Note 3

MQPS_RETAIN_
PUBLICATION

MQREGO_RETAIN_
PUBLICATION

MQPMO_RETAIN

Notes:

1. A message property will contain this information

2. This option is deprecated because publishers are no longer registered

3. This option is deprecated. If an application does not want to receive its own
publications it should subscribe using the option MQSO_NO_LOCAL on the MQSUB
call.

MQPS_Q_MGR_NAME is replaced by the ReplyToQMgr in the MQMD of the
publication. If the publisher specifies MQPMO_NO_DIRECT_REQUEST the
ReplyToQMgr will not contain the publishers queue manager name, otherwise it
will.

MQPS_Q_NAME is replaced by the ReplyToQ in the MQMD of the publication. If
the publisher does not set this, it is not available.

MQPS_REGISTRATION_OPTIONS is replaced with Options in the MQPMO. See
MQPMO for more details. These are exactly the same as those in the section on
Register Publisher below.

MQPS_SEQUENCE_NUMBER is replaced with a message property.

For MQPS_STREAM_NAME see Version 6 (queued) publish/subscribe.
MQPS_STRING_DATA is replaced with a message property.

Register publisher - Version 7 replacement

The Register Publisher command message contains a number of parameters. This
should be replaced by using the MQOPEN verb. This section details the equivalent
options or fields in the MQ API to show how an application would migrate from
using the Register Publisher command message to using MQOPEN. A difference in
behaviour will be seen because a Register Publisher command could leave an
application registered even when it was not connected, whereas MQOPEN will
only show a publishers intent when the application is connected and keeps the
handle from MQOPEN available.

Required parameters

MQPS_COMMAND with value MQPS_REGISTER_PUBLISHER is implied when
opening a topic for MQOO_OUTPUT. If your application did not use Register
Publisher, see the details in Publish for remaining unregistered.

MQPS_TOPIC is provided in a field in the MQOD called ObjectString. See MQOD
- Object Descriptor for more details. If your application provided more than one
MQPS_TOPIC in a single Register Publisher command message, it must now issue
a separate MQOPEN call for each separate topic string.

132 WebSphere MQ: Publish/Subscribe User’s Guide

||
|
|

||
|
|

|
|
|
|
|

|
|
|
|
|

|

|

|

|
|
|
|

|
|
|
|

|
|

|
|
|

|

|
|

|

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

ps19000_.dita

Optional parameters

If your application provided a queue and queue manager name (either by using
MQPS_Q_MGR_NAME and MQPS_Q_NAME in the command message, or from
the ReplyToQ and ReplyToQMgr fields in MQMD of the command message) in
order for subscribing applications to be able to directly contact the publisher, then
your application must now provide these details on each published message.

MQPS_REGISTRATION_OPTIONS is replaced with Options in the MQPMO. See
MQPMO for more details. Note that there are two ways you could have specified
each of these options in your application, a string constant, MQPS_* or an integer
constant, MQREGO_*. Both are replaced by the use of a single numeric constant.

String constant Integer constant
MQCLOSE Options field
constant

MQPS_ANONYMOUS MQREGO_ANONYMOUS See Version 6 (queued)
publish/subscribe

MQPS_CORREL_ID_
AS_IDENTITY

MQREGO_CORREL_ID_
AS_IDENTITY

See Version 6 (queued)
publish/subscribe

MQPS_DIRECT_REQUEST MQREGO_DIRECT_
REQUEST

See Note 1

MQPS_LOCAL MQREGO_LOCAL MQPMO_SCOPE_QMGR

Notes:

1. Use of this option is implied if the ReplyToQ and ReplyToQMgr fields are provided in
the MQMD of the message put. If these fields are not provided, the queue manager will
still fill in the ReplyToQMgr as the queue manager local to the publisher. To remain
completely anonymous and not even provide this information to subscribers, your
application should use the MQPMO_NO_DIRECT_REQUEST option.

For MQPS_STREAM_NAME see Version 6 (queued) publish/subscribe.

Register subscriber - Version 7 replacement

The Register Subscriber command message contains a number of parameters. This
should be replaced by using the MQSUB verb. This section details the equivalent
options or fields in the MQ API to show how an application would migrate from
using the Register Subscriber command message to using MQSUB.

Required parameters

MQPS_COMMAND with value MQPS_REGISTER_SUBSCRIBER is replaced by the
use of the MQSUB verb. If your application did not use Register Subscriber then
the use of the MQSUB verb is not required for equivalent behaviour.

MQPS_TOPIC is provided in a field in the MQSD called ObjectString. See MQSD
for more details. If your application provided more than one MQPS_TOPIC in a
single Register Subscriber command message, it must now issue a separate
MQSUB call for each separate topic string.

Optional parameters

If your application provided a non-local queue name and/or a queue manager
name other than the one connected to (either by using MQPS_Q_MGR_NAME and
MQPS_Q_NAME in the command message, or from the ReplyToQ and

Chapter 6. Queued publish/subscribe compatibility 133

|

|
|
|
|
|

|
|
|
|

|
||
|
|

|||
|

|
|
|
|
|
|

||
|
|

|||

|

|
|
|
|
|
|

|

|

|
|
|
|

|

|
|
|

|
|
|
|

|

|
|
|

ps19000_.dita
ps19000_.dita
ps19000_.dita
ps19000_.dita
ps19000_.dita

ReplyToQMgr fields in MQMD of the command message) then your application
must now provide an object handle, which has been returned by a MQOPEN call
for that queue, in the Hobj parameter of the MQSUB verb.

If your application provided the name of a queue local to the queue manager it
connected to, it now has the option to request that the queue manager manage
where the publications are sent. This can be done by using the MQSO_MANAGED
option in the field in the MQSD called Options.

MQPS_REGISTRATION_OPTIONS is replaced with a field in the MQSD called
Options. See MQSD for more details. Note that there are two ways you could have
specified each of these options in your application, a string constant, MQPS_* or an
integer constant, MQREGO_*. Both are replaced by the use of a single numeric
constant.

String constant Integer constant
MQCLOSE Options field
constant

MQPS_ADD_NAME MQREGO_ADD_NAME See Note 1

MQPS_ANONYMOUS MQREGO_ANONYMOUS See Identity

MQPS_CORREL_ID_AS_
IDENTITY

MQREGO_CORREL_ID_
AS_IDENTITY

See Identity (also see Note 7)

MQPS_DUPLICATES_OK MQREGO_DUPLICATES_OK See Note 2

MQPS_FULL_RESPONSE MQREGO_FULL_RESPONSE See Note 3

MQPS_INCLUDE_STREAM_
NAME

MQREGO_INCLUDE_
STREAM_NAME

See Note 4

MQPS_INFORM_IF_
RETAINED

MQREGO_INFORM_IF_
RETAINED

See Note 5

MQPS_JOIN_EXCLUSIVE MQREGO_JOIN_
EXCLUSIVE

See Note 6

MQPS_JOIN_SHARED MQREGO_JOIN_SHARED See Note 6

MQPS_LOCAL MQREGO_LOCAL MQSO_SCOPE_QMGR

MQPS_LOCKED MQREGO_LOCKED See Note 6

MQPS_NEW_
PUBLICATIONS_ONLY

MQREGO_NEW_PUB
LICATIONS_ONLY

MQSO_NEW_
PUBLICATIONS_ONLY

MQPS_NO_ALTERATION MQREGO_NO_
ALTERATION

MQSO_RESUME

MQPS_NON_PERSISTENT MQREGO_NON_
PERSISTENT

MQSO_NON_PERSISTENT

MQPS_PERSISTENT MQREGO_PERSISTENT MQSO_PERSISTENT

MQPS_PERSISTENT_AS_
PUBLISH

MQREGO_PERSISTENT_
AS_PUBLISH

MQSO_PERSISTENT_AS_
PUBLISH

MQPS_PERSISTENT_AS_Q MQREFO_PERSISTENT_
AS_Q

MQSO_PERSISTENT_AS_
QUEUE_DEF

MQPS_PUBLISH_ON_
REQUEST_ONLY

MQREGO_PUBLISH_ON_
REQUEST_ONLY

MQSO_PUBLICATIONS_
ON_REQUEST

MQPS_VARIABLE_USER_ID MQREGO_VARIABLE_
USER_ID

MQSO_ANY_USERID, (also
see Note 7)

134 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|

|
|
|
|

|
|
|
|
|

|
||
|
|

|||

|||

|
|
|
|
|

|||

|||

|
|
|
|
|

|
|
|
|
|

||
|
|

|||

|||

|||

|
|
|
|
|
|

||
|
|

||
|
|

|||

|
|
|
|
|
|

||
|
|
|

|
|
|
|
|
|

||
|
|
|

String constant Integer constant
MQCLOSE Options field
constant

Notes:

1. Use of this option is deprecated since the only identity of a subscription is the
SubName. See Deprecation.

2. Use of this option is deprecated since the queued interface has been removed.

3. Use of this option is implied in the use of the MQSUB verb. The fields returned in the
response message are now populated in the MQSD structure. See MQSD for more
details.

4. Use of this option is deprecated since stream names are part of the full topic name.

5. Use of this option is deprecated since the information about whether a publication is a
retained publication or not is a message property that is always present.

6. Use of these options are deprecated and moved to spiCONN for the one environment
where they are needed.

7. A tick in this column indicates this option is also relevant for Request Update.

For MQPS_STREAM_NAME see Version 6 (queued) publish/subscribe, although in
this case, the stream name is implied by the provision of the handle obtained when
subscribing to the topic.

MQPS_SUBSCRIPTION_IDENTITY is replaced by a field in spiCONN for the one
environment where it is needed.

MQPS_SUBSCRIPTION_NAME is replaced by the field in the MQSD called
SubName. See MQSD for more details.

MQPS_SUBSCRIPTION_USER_DATA is replaced by the field in the MQSD called
SubUserData. See MQSD for more details.

Error codes

If your application checked for any of the following error codes, the equivalent
MQRC error codes are shown in the following table:

Reason codes in NameValueString of the
broker response message. MQRC equivalent

MQRCCF_STREAM_ERROR

MQRCCF_TOPIC_ERROR

MQRCCF_Q_MGR_NAME_ERROR

MQRCCF_Q_NAME_ERROR

MQRCCF_DUPLICATE_IDENTITY MQRC_IDENTITY_MISMATCH

MQRCCF_CORREL_ID_ERROR

MQRCCF_NOT_AUTHORIZED

MQRCCF_UNKNOWN_STREAM

MQRCCF_REG_OPTIONS_ERROR

MQRCCF_DUPLICATE_SUBSCRIPTION MQRC_SUB_ALREADY_EXISTS

MQRCCF_SUB_NAME_ERROR

MQRCCF_SUB_IDENTITY_ERROR See note 1

MQRCCF_SUBSCRIPTION_IN_USE MQRC_SUBSCRIPTION_IN_USE

Chapter 6. Queued publish/subscribe compatibility 135

||
|
|

|

|
|

|

|
|
|

|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|

|
|

||
||

||

||

||

||

||

||

||

||

||

||

||

||

||

ps19000_.dita
ps19000_.dita

Reason codes in NameValueString of the
broker response message. MQRC equivalent

MQRCCF_SUBSCRIPTION_LOCKED See note 1

MQRCCF_ALREADY_JOINED See note 1

Notes:

1. No equivalent since the use of SubIdentity is deprecated since the only identity of a
subscription is the SubName. See Deprecation.

Request Update - Version 7 replacement

The Request Update command message contains a number of parameters. This
should be replaced by using the MQSUBRQ verb. This section details the
equivalent options or fields in the MQ API to show how an application would
migrate from using the Request Update command message to using MQSUBRQ.

Required parameters

MQPS_COMMAND with value MQPS_REQUEST_UPDATE is replaced by the use
of the MQSUBRQ verb.

MQPS_TOPIC is implied by the use of the Hsub handle returned from the MQSUB
call which is used as a parameter on the MQSUBRQ call.

Optional parameters

QMgrName, QName and StreamName are used in exactly the same way in
Request Update command messages as they are in Register Subscriber command
messages.

See “Register subscriber - Version 7 replacement” on page 133 for details of how to
migrate the use of these fields.

See “Register subscriber - Version 7 replacement” on page 133 for details of how to
migrate your application’s use of MQPS_REGISTRATION_OPTIONS in this
command message.

For MQPS_STREAM_NAME see Version 6 (queued) publish/subscribe.

MQPS_SUBSCRIPTION_NAME is implied by the use of the Hsub handle returned
from the MQSUB call which is used as a parameter on the MQSUBRQ call.

New queue manager attributes for publish/subscribe
Five attributes, formerly held in the queue manager configuration file, qm.ini, are
now replaced by attributes of the queue manager.

In WebSphere MQ Version 6.0, the attributes listed in the following table were held
in the Brokers stanza of the qm.ini file (or the registry in Windows). In WebSphere
MQ Version 7.0, they are replaced by the queue manager attributes listed, which
can be set by the MQSC command ALTER QMGR or the PCF command Change
Queue Manager.

136 WebSphere MQ: Publish/Subscribe User’s Guide

|
||

||

||

||

|

|
|
|

|

|
|
|
|

|

|
|

|
|

|

|
|
|

|
|

|
|
|

|

|
|

|

|
|

|
|
|
|
|

ps19000_.dita
ps19000_.dita

Table 22.

Attribute in qm.ini

Queue manager attribute

(PCF parameter name) MQSC parameter name

MaxMsgRetryCount PubSubMaxMsgRetryCount PSRTYCNT

DiscardNonPersistentInputMsg PubSubNPInputMsg PSNPMSG

DLQNonPersistentResponse PubSubNPResponse PSNPRES

DiscardNonPersistentResponse PubSubNPResponse PSNPRES

SyncPointIfPersistent PubSubsyncPoint PSSYNCPT

WebSphere MQ publish/subscribe topology migration
This section contains topics that describe various scenarios for migration to
WebSphere MQ Version 7.0 publish/subscribe.

Migrating a WebSphere MQ Version 6.0 publish/subscribe
hierarchy to a Version 7.0 publish/subscribe cluster - all queue
managers simultaneously
How to migrate an entire existing Websphere MQ Version 6.0 hierarchy, where the
parent and child queue managers are on separate computers, to a Websphere
Version 7.0 publish/subscribe cluster, migrating all queue managers at the same
time.

Before you begin

To migrate the hierarchy, perform the following steps:

About this task
1. Install WebSphere MQ Version 7.0 on all of the computers that contain queue

managers in the hierarchy, to upgrade all queue managers in the hierarchy to
WebSphere MQ Version 7.0.

2. Use the strmqbrk control command on each queue manager to migrate all
publish/subscribe configuration data into WebSphere MQ Version 7.0.

3. Create a new cluster or nominate an existing cluster, which need not be an
existing publish/subscribe cluster. You can do this using WebSphere MQ Script
commands (MQSC), or any other type of administration command or utility
that is available on your platform, such as the WebSphere MQ Explorer. These
methods are described in WebSphere MQ Queue Manager Clusters.

4. Ensure that each queue manager is in the cluster by using the MQSC command
DISPLAY CLUSQMGR(*), described in WebSphere MQ Script (MQSC) Command
Reference. If a queue manager that should be in the cluster is not, then add it.
For more information, refer to WebSphere MQ Queue Manager Clusters

5. To remove the hierarchical relationship on each child queue manager within the
hierarchy, execute the following MQSC command: ALTER QMGR PARENT(' ')

6. Before proceeding to the next step, to confirm that all the hierarchical
relationships have been cancelled, use the MQSC command DISPLAY PUBSUB
TYPE(ALL) on each queue manager.

7. On one of the queue managers within the cluster, define one cluster topic by
executing the following MQSC command: ALTER TOPIC(<topic name>)
PUBSCOPE(ALL) SUBSCOPE(ALL) CLUSTER(<cluster>) Use a high-level topic, but
not the root. For information about cluster topic naming, see Cluster topics.

Chapter 6. Queued publish/subscribe compatibility 137

||

|

|

||

|||

|||

|||

|||

|||
|

|

|
|

|
|
|
|
|
|
|

|

|

|

|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|

Example

What to do next

Alternative procedure for i5/OS:

The following steps show an alternative procedure for WebSphere MQ for i5/OS,
using CL commands and panels in place of MQSC commands.
1. Install WebSphere MQ Version 7.0 on all of the computers that contain queue

managers in the hierarchy, to upgrade all queue managers in the hierarchy to
WebSphere MQ Version 7.0.

2. Use the strmqbrk command on each queue manager to migrate all
publish/subscribe configuration data into WebSphere MQ Version 7.0.

3. Create a new cluster or nominate an existing cluster, which need not be an
existing publish/subscribe cluster. You can do this using WebSphere MQ Script
commands (MQSC), or any other type of administration command or utility
that is available on your platform, such as the WebSphere MQ Explorer. These
methods are described in WebSphere MQ Queue Manager Clusters

4. Ensure that each queue manager is in the cluster. If a queue manager that
should be in the cluster is not, then add it.

5. Execute WRKMQMPS PUBSUBNAME(<parent_queue_manager>) to display the
hierarchy.

6. On each child queue manager within the hierarchy, use option 4=Remove to
detach from the parent, followed by option 34=Work with Pub/Sub to move
down the sub-hierarchy. Repeat options 4 and 34 until no child queue
managers are displayed.

7. Repeat step 6 for each child queue manager belonging to
PUBSUBNAME(<parent_queue_manager>) until no child queue managers are
displayed.

8. On one of the queue managers within the cluster, define at least one cluster
topic by executing the following command: CHGMQMTOP TOPNAME(<topic name>)
PUBSCOPE(*ALL) SUBSCOPE(*ALL) CLUSTER(<cluster>) MQMNAME(<queue manager
name>) Use a high-level topic, but not the root. For information about cluster
topic naming, see .

Migrating a WebSphere MQ Version 6.0 publish/subscribe
hierarchy to a Version 7.0 publish/subscribe cluster - queue
manager by queue manager
How to migrate an existing WebSphere MQ Version 6.0 hierarchy, where the parent
and child queue managers are on separate computers, to a WebSphere Version 7.0
publish/subscribe cluster, one queue manager at a time.

Before you begin

To migrate the hierarchy, perform the following steps:

About this task
1. Create a new cluster or nominate an existing cluster, which need not be an

existing publish/subscribe cluster. You can do this using WebSphere MQ Script
commands (MQSC), or any other type of administration command or utility
that is available on your platform, such as the WebSphere MQ Explorer. These
methods are described in WebSphere MQ Queue Manager Clusters

2. Select the first queue manager to migrate into the publish/subscribe cluster. To
cause the least disruption, select a queue manager that is a leaf node.

138 WebSphere MQ: Publish/Subscribe User’s Guide

|

|

|

|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|

|

|
|
|
|
|

|
|

3. Install WebSphere MQ Version 7.0 on the computer that contains the selected
queue manager in the hierarchy, to migrate the queue manager to WebSphere
MQ Version 7.0.

4. Use the strmqbrk command on this queue manager to migrate all
publish/subscribe configuration data into WebSphere MQ Version 7.0.

5. Join this queue manager into the cluster.
6. If this queue manager has a hierarchical relationship to an existing member of

the cluster, use the MQSC command ALTER QMGR PARENT(' ') at the child
queue manager to cancel the relationship. Before proceeding to the next step, to
confirm that the hierarchical relationship has been cancelled, use the MQSC
command DISPLAY PUBSUB TYPE(PARENT) at the child queue manager.

7. If this is the first queue manager to be migrated into the publish/subscribe
cluster, define at least one cluster topic by executing the MQSC command ALTER
TOPIC(<topic name="">) PUBSCOPE(ALL) SUBSCOPE(ALL) CLUSTER(<cluster>)

Note: Use a high-level topic, but not the root. For information about cluster
topic naming, see Cluster topics in WebSphere MQ Publish/Subscribe User’s Guide.

8. To migrate the remainder of the hierarchy without introducing loops, repeat
recursively from step 3 for each child queue manager that is not already in the
cluster, and repeat recursively from step 3 for each parent queue manager that
is not already in the cluster.

Example

What to do next

Migrating a WebSphere MQ Version 6.0 two queue manager
publish/subscribe hierarchy to a Version 7.0 hierarchy - parent
first
How to migrate an existing WebSphere MQ Version 6.0 hierarchy, where the parent
and child queue managers are on separate computers, into a WebSphere Version
7.0 hierarchy, migrating the parent queue manager first.

Before you begin

To migrate the hierarchy, perform the following steps:

About this task
1. Install WebSphere MQ Version 7.0 on the computer that contains the parent

queue manager in the hierarchy, to migrate the parent queue manager to
WebSphere MQ Version 7.0.

2. Use the strmqbrk command on the parent queue manager to migrate all
publish/subscribe configuration data into WebSphere MQ Version 7.0. At this
point you can either run as a mixed WebSphere MQ Version 6.0 and Version 7.0
hierarchy or continue with the migration by upgrading the child in the next
step.

3. Install WebSphere MQ Version 7.0 on the computer that contains the child
queue manager in the hierarchy, to migrate the child queue manager to
WebSphere MQ Version 7.0.

4. Use the strmqbrk command on the child queue manager to migrate all
publish/subscribe configuration data into WebSphere MQ Version 7.0, and
check the migration log to verify that the migration was successful. The
migration log is in the queue manager directory: for example,

Chapter 6. Queued publish/subscribe compatibility 139

|
|
|

|
|

|

|
|
|
|
|

|
|
|

|
|

|
|
|
|

|

|

|
|
|
|
|
|

|

|

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

/var/mqm/<QMgrName> on Linux or C:\Program Files\IBM\
WebSphereMQ\qmgrs\<QMgrName> on Windows, unless you have specified
otherwise on the command line.

Example

What to do next

Migrating a WebSphere MQ Version 6.0 two publish/subscribe
queue manager hierarchy to a Version 7.0 hierarchy - child first
How to migrate an existing WebSphere MQ Version 6.0 hierarchy, where the parent
and child queue managers are on separate computers, into a WebSphere Version
7.0 hierarchy, migrating the child queue manager first.

About this task

To migrate the hierarchy, perform the following steps:
1. Install WebSphere MQ Version 7.0 on the computer that contains the child

queue manager in the hierarchy, to migrate the child queue manager to
WebSphere MQ Version 7.0.

2. Use the strmqbrk command on the child queue manager to migrate all
publish/subscribe configuration data into WebSphere MQ Version 7.0. At this
point you can either run as a mixed WebSphere MQ Version 6.0 and Version 7.0
hierarchy or continue with the migration by upgrading the parent in the next
step.

3. Install WebSphere MQ Version 7.0 on the computer that contains the parent
queue manager in the hierarchy, to migrate the parent queue manager to
WebSphere MQ Version 7.0.

4. Use the strmqbrk command on the parent queue manager to migrate all
publish/subscribe configuration data into WebSphere MQ Version 7.0, and
check the migration log to verify that the migration was successful. The
migration log is in the queue manager directory: for example,
/var/mqm/<QMgrName> on Linux or C:\Program Files\IBM\
WebSphereMQ\qmgrs\<QMgrName> on Windows, unless you have specified
otherwise on the command line.

Using publish/subscribe with WebSphere MQ classes for JMS

Existing WebSphere MQ classes for JMS applications run unchanged after you
upgrade your queue manager to Websphere MQ V7.0. In some circumstances, you
must specify whether WebSphere MQ classes for JMS uses WebSphere MQ Version
6.0 or Version 7.0 publish/subscribe function.

The circumstances in which you must specify whether WebSphere MQ classes for
JMS uses WebSphere MQ Version 6.0 or Version 7.0 publish/subscribe function are
described later in this topic. The advantages of using WebSphere MQ Version 7.0
publish/subscribe function, compared with WebSphere MQ Version 6.0
Publish/Subscribe, WebSphere Event Broker, or WebSphere Message Broker, are
introduced in WebSphere MQ Using Java.

WebSphere MQ messaging provider

The WebSphere MQ messaging provider has two modes of operation:
v WebSphere MQ messaging provider normal mode

140 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|

|

|

|
|
|
|
|

|

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|

|

|

v WebSphere MQ messaging provider migration mode

The WebSphere MQ messaging provider normal mode uses all the features of the
WebSphere MQ Version 7.0 queue managers to implement JMS. This mode is used
only to connect to a WebSphere MQ queue manager and can connect to WebSphere
MQ Version 7.0 queue managers in either client or bindings mode. The WebSphere
MQ messaging provider normal mode is optimized to use the new WebSphere MQ
Version 7.0 function.

The WebSphere MQ messaging provider migration mode is based on WebSphere
MQ Version 6.0 function and uses only features that were available in the
WebSphere MQ Version 6.0 queue manager to implement JMS. You can connect to
a WebSphere MQ Version 7.0 queue manager using WebSphere MQ messaging
provider migration mode but you cannot use any of the Version 7.0 optimizations.
This mode allows connections to either of the following queue manager versions:
v WebSphere MQ Version 7.0 queue manager in bindings or client mode, but this

mode uses only those features that were available to a WebSphere MQ Version
6.0 queue manager

v WebSphere MQ Version 6.0 or earlier queue manager in client mode

If you want to connect to WebSphere Event Broker or WebSphere Message Broker
using either WebSphere MQ Enterprise Transport or WebSphere MQ Real-Time
Transport, use the WebSphere MQ messaging provider migration mode. If you use
WebSphere MQ Real-Time Transport, the WebSphere MQ messaging provider
migration mode is automatically selected, because you have explicitly selected
properties in the connection factory object. Connection to WebSphere Event Broker
or WebSphere Message Broker using the WebSphere MQ Enterprise Transport
follows the general rules for mode selection described in “Rules for selecting the
WebSphere MQ messaging provider mode.”

Rules for selecting the WebSphere MQ messaging provider
mode

If you are not using WebSphere MQ Real-Time Transport, the mode of operation
used is determined primarily by the PROVIDERVERSION property of the
connection factory. If you cannot change the connection factory you are using, you
can use a client configuration property called
com.ibm.msg.client.wmq.overrideProviderVersion, which overrides any setting on
the connection factory. This override applies to all connection factories in the JVM
but the actual connection factory objects are not modified. You can set
PROVIDERVERSION to three possible values: 7, 6, or unspecified:

PROVIDERVERSION=7
Uses the WebSphere MQ messaging provider normal mode.

If you set PROVIDERVERSION to 7 only the WebSphere MQ messaging
provider normal mode of operation is available. If the queue manager that
is connected to as a result of the other settings in the connection factory is
not a Version 7.0 queue manager, the createConnection() method fails with
an exception.

The WebSphere MQ messaging provider normal mode uses the sharing
conversations feature, and the number of conversations that can be shared
is controlled by the SHARECNV() property on the server connection
channel. If this property is set to 0, you cannot use WebSphere MQ
messaging provider normal mode and the createConnection() method fails
with an exception.

Chapter 6. Queued publish/subscribe compatibility 141

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

PROVIDERVERSION=6
Uses the WebSphere MQ messaging provider migration mode.

The WebSphere MQ classes for JMS use the features and algorithms
supplied with WebSphere MQ Version 6.0. If you want to connect to
WebSphere Event Broker or WebSphere Message Broker using WebSphere
MQ Enterprise Transport, you must use this mode. You can connect to a
WebSphere MQ Version 7.0 queue manager using this mode, but none of
the new features of a Version 7.0 queue manager are used, for example,
read ahead or streaming.

PROVIDERVERSION=unspecified
This is the default value and the actual text is ″unspecified″.

A connection factory that was created with a previous version of
WebSphere MQ classes for JMS in JNDI takes this value when the
connection factory is used with V7.0 of WebSphere MQ classes for JMS.
The following algorithm is used to determine which mode of operation is
used. This algorithm is used when the createConnection() method is called
and uses other aspects of the connection factory to determine if WebSphere
MQ messaging provider normal mode or WebSphere MQ messaging
provider migration mode is required.
v Firstly, an attempt to use WebSphere MQ messaging provider normal

mode is made.
v If the queue manager connected is not WebSphere MQ Version 7.0, the

connection is closed and WebSphere MQ messaging provider migration
mode is used instead.

v If the SHARECNV() property on the server connection channel is set to
0, the connection is closed and WebSphere MQ messaging provider
migration mode is used instead.

v If BROKERVER is set to V1 or unspecified, WebSphere MQ messaging
provider normal mode continues to be used, and therefore any
publish/subscribe operations use the new WebSphere MQ V7.0 features.
If WebSphere Event Broker or WebSphere Message Broker are used in
compatibility mode (and you want to use Version 6.0 publish/subscribe
function rather than the WebSphere MQ Version 7 publish/subscribe
function), set PROVIDERVERSION to 6 to ensure WebSphere MQ
messaging provider migration mode is used.

v If BROKERVER is set to V2 and BROKERQMGR is nonblank, this means
BROKERQMGR has been explicitly changed from the default, so the
assumption is the connection factory really is intended for use with
WebSphere Event Broker or WebSphere Message Broker and WebSphere
MQ Enterprise Transport. Therefore WebSphere MQ messaging provider
migration mode is used.

v If BROKERVER is set to V2, BROKERQMGR is blank, the specified
BROKERCONQ command queue exists and can be opened for output
(that is, MQOPEN for output succeeds), and PSMODE on the queue
manager is set to COMPAT or DISABLED, WebSphere MQ messaging
provider migration mode is used.

You can find further guidance about using PROVIDERVERSION in “When to use
PROVIDERVERSION ” on page 143.

142 WebSphere MQ: Publish/Subscribe User’s Guide

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

When to use PROVIDERVERSION

There are two scenarios where you cannot use the algorithm described in “Rules
for selecting the WebSphere MQ messaging provider mode” on page 141; consider
using PROVIDERVERSION in these scenarios.
1. If WebSphere Event Broker or WebSphere Message Broker is in compatibility

mode, you must specify PROVIDERVERSION for them to work correctly.
2. If you are using WebSphere Application Server Version 6.0.1, Version 6.0.2, or

Version 6.1, you define connection factories using the WebSphere Application
Server administrative console.
In WebSphere Application Server the default value of the BROKERVER
property on a connection factory is V2. The default BROKERVER property for
connection factories created by using JMSAdmin or WebSphere MQ Explorer is
V1. This property is now ″unspecified″ in WebSphere MQ Version 7.0.

If BROKERVER is set to V2 (either because it was created by WebSphere
Application Server or the connection factory has been used for publish/subscribe
before) and the existing queue manager has a BROKERCONQ defined (because it
has been used for publish/subscribe messaging before), the WebSphere MQ
messaging provider migration mode is used.

However, if you want the application to use peer-to-peer communication and the
application is using an existing queue manager that has previously been used for
publish/subscribe, and has a connection factory with BROKERVER set to 2 (which
is the default if the connection factory was created in WebSphere Application
Server), the WebSphere MQ messaging provider migration mode is used. Using
WebSphere MQ messaging provider migration mode in this case is unnecessary;
use WebSphere MQ messaging provider normal mode instead. You can use one of
the following methods to work around this:
v Set BROKERVER to V1 or unspecified. This is dependent on your application.
v Set PROVIDERVERSION to 7; this is a custom property in WebSphere

Application Server Version 6.1. The option to set custom properties in
WebSphere Application Server Version 6.1 and later is not currently documented
in the WebSphere Application Server Information Center.
Alternatively, use the client configuration property (see “Rules for selecting the
WebSphere MQ messaging provider mode” on page 141 for details about how
you can specify this system property for all environments), or modify the queue
manager connected so it does not have the BROKERCONQ, or make the queue
unusable.

Subscription name migration on the JMS client
On the JMS client, if the ConnectionFactory property brokerPubQ is not the
default, WebSphere MQ adds the stream name to the subscription name.

In WebSphere MQ Version 6.0, a subscription name needed to be unique only
within the stream and not across the queue manager. In WebSphere MQ Version
7.0, a subscription name must be unique across the queue manager. Therefore to
migrate WebSphere MQ Version 6.0 durable subscriptions to WebSphere MQ
Version 7.0, the subscription names must be unique. WebSphere MQ does this
when it migrates the queue manager, by appending the stream name to the
existing subscription name. For any existing durable subscription that uses a
stream other than the default of ″SYSTEM.BROKER.DEFAULT.STREAM″ the
migration process appends the stream name to the subscription name.

Chapter 6. Queued publish/subscribe compatibility 143

|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

On the JMS client, if the ConnectionFactory property brokerPubQ is not the
default, it is assumed that a WebSphere MQ Version 6.0 durable subscription is
being resumed, and WebSphere MQ Version 7.0 appends the stream name to match
the action of the migration process. Subscription names that use the default stream
are migrated across with the subscription name unchanged.

Migration implications of mapping an alias queue to a topic
object

WebSphere MQ Version 7.0 introduces an extension to the alias queue object that
allows an alias queue to be mapped to a topic object.

The new TARGTYPE attribute allows you to specify that a queue alias resolves to a
queue or a topic. The TARGQ attribute, defined in WebSphere MQ Version 6.0 as
the name of the queue to which the alias queue resolves, is renamed to TARGET in
WebSphere MQ Version 7.0 and generalized to allow you to specify the name of
either a queue or a topic. The attribute name TARGQ is retained for compatibility
with your existing programs.

This feature is useful for migrating your existing applications to a
publish/subscribe message model.

A useful example of this feature is the queue to which statistics messages are
written. Prior to WebSphere MQ Version 7.0 there could be only a single consumer
of a statistic message because a single statistics message only was written to a
queue and got from a queue.

By defining a queue alias that points to a topic object, it is possible for each person
interested in processing statistics messages to subscribe to the topic, rather than
getting from the queue, allowing multiple consumers of the statistics information.

Within a queue sharing group it is possible to define a queue alias as a group
object - this means that each queue manager in the queue sharing group will create
a queue alias definition with the same name and the same properties as the
QSGDISP(GROUP) object.

The new TARGTYPE attribute may be set or altered in a QSGDISP(GROUP) object
by a new Version 7.0 queue manager, so that the queue alias refers to a topic
object. However, any Version 6 queue managers in the queue sharing group do not
understand and will ignore the new TARGTYPE attribute. A V6 queue manager
will interpret the queue alias as referring to a queue object, regardless of the
setting of TARGTYPE.

Defining a queue alias is described in WebSphere MQ System Administration Guide.

Migrated topologies
If you have a WebSphere MQ publish/subscribe broker network, you can continue
to use this network unchanged. The introduction of WebSphere Message Broker or
WebSphere Event Broker to your environment, and the creation of brokers in that
broker domain, does not affect your WebSphere MQ publish/subscribe broker
domain until you take specific action to connect the two networks.

If you want to have two separate, independent networks, you do not have to do
anything. You can retain your existing WebSphere MQ publish/subscribe network,
and install and configure a WebSphere Message Broker or WebSphere Event Broker
network, without any interaction.

144 WebSphere MQ: Publish/Subscribe User’s Guide

|
|
|
|
|

|

|

|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|
|

Heterogeneous networks
A heterogeneous network is a network of brokers, some of which form a WebSphere
MQ publish/subscribe network and some of which belong to WebSphere Message
Broker or WebSphere Event Broker.

With WebSphere Message Broker and WebSphere Event Broker, there are two ways
in which a broker can be joined to the WebSphere MQ publish/subscribe network;
it can be joined as a leaf node or as a parent node.

Leaf node
When a broker is joined as a leaf node, it is joined as a child broker of another
broker in the WebSphere MQ publish/subscribe network.

Adding the broker as a leaf node rather than as a parent node causes the new
broker to receive only some of the WebSphere MQ publish/subscribe message
traffic that is directed to the brokers for which this new broker is a child broker.

Parent node
When a broker is joined as a parent node, it is joined as a parent broker of one or
more brokers in the WebSphere MQ publish/subscribe network.

Adding the broker as a parent node rather than as a leaf node causes the new
broker to receive all the WebSphere MQ publish/subscribe message traffic that is
directed to the child brokers for which this new broker is the parent broker.

Chapter 6. Queued publish/subscribe compatibility 145

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

146 WebSphere MQ: Publish/Subscribe User’s Guide

Notices

This information was developed for products and services offered in the United
States. IBM® may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing,
IBM Corporation,
North Castle Drive,
Armonk, NY 10504-1785,
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation,
Licensing,
2-31 Roppongi 3-chome, Minato-k,u
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2009 147

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

The following are trademarks of International Business Machines Corporation in
the United States, or other countries, or both:

AIX DB2 Universal Database i5/OS
IBM IBMLink MQSeries
OS/2 RACF SupportPac
Tivoli WebSphere z/OS

Java™ and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

148 WebSphere MQ: Publish/Subscribe User’s Guide

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

UNIX® is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 149

150 WebSphere MQ: Publish/Subscribe User’s Guide

Index

A
ALTER QMGR command 41, 122
ALTER TOPIC command

PROXYSUB attribute 26

B
broker

controlling 119

C
cluster queue managers,

publish/subscribe
key roles 38
other considerations 40

cluster scope
PUBSCOPE topic attribute 40
SUBSCOPE topic attribute 40

clustered topics
publish/subscribe 35

clusters, use of
publish/subscribe 34

control commands
migrate broker function

(strmqbrk) 125
controlling brokers 119

D
DEFINE QREMOTE command 41, 122
DiscardNonPersistentInputMsg 119, 136
DiscardNonPersistentResponse 119, 136
DISPLAY PUBSUB command 41, 122
distributed publish/subscribe

security 29
DLQNonPersistentResponse 119, 136

E
event publications 6
example

multiple queue manager
configuration 23

multiple subscriptions 24
propagation of publications 25
propagation of subscriptions 24
publish/subscribe queue manger

configuration 4

L
lifelines, publish/subscribe 73

M
managing brokers 119
MaxMsgRetryCount 119, 136

message order 80
migrating

publish/subscribe 124
multiple subscriptions, example 24

P
proxy subscription aggregation

publish/subscribe 26
proxy subscriptions 23
PROXYSUB attribute

ALTER TOPIC command 26
PSMODE parameter

ALTER QMGR 111
publication aggregation

publish/subscribe 26
Publication consumer 54
publication propagation, example 25
publish everywhere 26
publish/subscribe

examples
Automated airline gate 73
Manual airline gate 73

lifecycles 73
managing 73
overlapping topics 28
proxy subscription aggregation 26
publication aggregation 26
publication scope 27
publish everywhere 26
PUBSCOPE topic attribute 27

cluster scope 40
scope 27
SUBSCOPE topic attribute 28

cluster scope 40
subscription scope 28
system queue errors 33
upgrading 124
wild card rules 27
writing applications 45

publish/subscribe cluster queue
managers, key roles 38

publish/subscribe cluster queue
managers, other considerations 40

publish/subscribe clustered topics 35
publish/subscribe clusters 34
publish/subscribe clusters and

hierarchies
more about routing mechanism 26
proxy subscriptions 23
queue manager names 23

publisher
applications

similarity with point-to-point 45
types 45
writing 45

fixed topics 45
introduction 3
variable topics 45

Publisher
application 45, 49

Publisher (continued)
fixed topic 45
variable topic 49

Q
queue manager hierarchies

connecting 41, 122
queue managers

hierarchies 41
parent and child 41

queues
system

for publish/subscribe 32

R
retained publication

introduction 6
routing mechanism 23

S
security

distributed publish/subscribe 29
state publications 5
strmqbrk command 125
subscriber

applications
examples 52
patterns 52
styles 52

introduction 4
managed 56, 63
message arrival order 80
self-managed 56
unmanaged 63

subscription
concentration 54
control 54
durable 54, 56, 63
managed 54, 63
multiprocessing 54
non-durable 56, 63
on demand 63
unmanaged 63

subscription propagation, example 24
SyncPointIfPersistent 119, 136
system design 23

T
topic attribute

PUBSCOPE 27
SUBSCOPE 28

topics
introduction 4
overlapping 28

© Copyright IBM Corp. 1996, 2009 151

U
upgrading

publish/subscribe 124

W
wild card rules

publish/subscribe 27

152 WebSphere MQ: Publish/Subscribe User’s Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM , you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use 44-1962-816151
– From within the U.K., use 01962-816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1996, 2009 153

154 WebSphere MQ: Publish/Subscribe User’s Guide

����

SC34-6950-01

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
W

eb
Sp

he
re

M
Q

Pu
bl

ish
/S

ub
sc

ri
be

U
se

r’
s

G
ui

de
Ve

rs
io

n
7.0

	Contents
	Figures
	Tables
	Chapter 1. What's new in publish/subscribe in WebSphere MQ Version 7.0?
	Benefits of WebSphere Version 7.0 publish/subscribe

	Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging
	Overview of publish/subscribe components
	Example of a single queue manager publish/subscribe configuration
	Publishers and publications
	State and event information
	Retained publications

	Subscribers and subscriptions
	Managed queues and publish/subscribe
	Subscription durability
	Selection strings

	Topics
	Topic strings
	Wild card schemes

	Constructing topic names
	Topic trees
	Administrative topic objects
	SYSTEM.BASE.TOPIC

	Chapter 3. Distributed publish/subscribe
	How does distributed publish/subscribe work?
	Proxy subscription aggregation and publication aggregration
	More on routing mechanisms
	Wildcard rules

	Controlling the flow of publications and subscriptions
	Publication scope
	Subscription scope
	Overlapping topics

	Retained publications
	Distributed publish/subscribe security
	Distributed publish/subscribe system queues
	Publish/subscribe system queue errors

	Publish/subscribe topologies
	Publish/subscribe clusters
	Cluster topics
	Key roles for publish/subscribe cluster queue managers
	Overlapping cluster support and publish/subscribe
	Subscription scope and publication scope in publish/subscribe clusters
	REFRESH CLUSTER considerations

	Publish/subscribe hierarchies
	Connect a queue manager to a broker hierarchy
	Disconnect a queue manager from a broker hierarchy

	Chapter 4. Writing publish/subscribe applications
	Writing publisher applications
	Example 1: Publisher to a fixed topic
	Example 2: Publisher to a variable topic

	Writing subscriber applications
	Example 1: MQ Publication consumer
	Example 2: Managed MQ subscriber
	Example 3: Unmanaged MQ subscriber

	Publish/subscribe lifecycles
	Publish/subscribe message properties
	Message ordering
	Intercepting publications
	Publishing options
	Subscription options
	Subscriptions and message persistence
	Subscriptions and retained publications
	Grouping subscriptions

	Chapter 5. Publish/subscribe security
	Example publish/subscribe security setup
	Grant access to a user to subscribe to a topic
	Grant access to a user to subscribe to a topic deeper within the tree
	Grant another user access to subscribe to only the topic deeper within the tree
	Change access control to avoid additional messages
	Grant access to a user to publish to a topic
	Grant access to a user to publish to a topic deeper within the tree
	Grant access for publish and subscribe

	Subscription security
	MQSO_ANY_USERID subscription option

	Chapter 6. Queued publish/subscribe compatibility
	Coexistence with queued publish/subscribe
	Interoperation with queued publish/subscribe
	Differences from WebSphere MQ Version 6 publish/subscribe
	Streams and topics

	Heterogeneous broker topologies

	Controlling queued publish/subscribe
	New queue manager attributes for publish/subscribe
	Starting queued publish/subscribe
	Stopping queued publish/subscribe
	Adding a stream
	Deleting a stream
	Connect a queue manager to a broker hierarchy
	Disconnect a queue manager from a broker hierarchy

	Migration to publish/subscribe on WebSphere MQ V7.0
	strmqbrk (Migrate WebSphere MQ Version 6.0 broker to Version 7.0)
	Application migration
	Delete Publication - Version 7 replacement
	Deregister publisher - Version 7 replacement
	Deregister subscriber - Version 7 replacement
	Publish - Version 7 replacement
	Register publisher - Version 7 replacement
	Register subscriber - Version 7 replacement
	Request Update - Version 7 replacement

	New queue manager attributes for publish/subscribe
	WebSphere MQ publish/subscribe topology migration
	Migrating a WebSphere MQ Version 6.0 publish/subscribe hierarchy to a Version 7.0 publish/subscribe cluster - all queue managers simultaneously
	Migrating a WebSphere MQ Version 6.0 publish/subscribe hierarchy to a Version 7.0 publish/subscribe cluster - queue manager by queue manager
	Migrating a WebSphere MQ Version 6.0 two queue manager publish/subscribe hierarchy to a Version 7.0 hierarchy - parent first
	Migrating a WebSphere MQ Version 6.0 two publish/subscribe queue manager hierarchy to a Version 7.0 hierarchy - child first

	Using publish/subscribe with WebSphere MQ classes for JMS
	Subscription name migration on the JMS client

	Migration implications of mapping an alias queue to a topic object
	Migrated topologies
	Heterogeneous networks
	Leaf node
	Parent node

	Notices
	Index
	A
	B
	C
	D
	E
	L
	M
	P
	Q
	R
	S
	T
	U
	W

	Sending your comments to IBM

