
WebSphere MQ

Using Java

Version 7.0

SC34-6935-00

���

WebSphere MQ

Using Java

Version 7.0

SC34-6935-00

���

Note

Before using this information and the product it supports, be sure to read the general information under notices at the back

of this book.

First edition (April 2008)

This edition of the book applies to the following products:

v IBM WebSphere MQ, Version 7.0

v IBM WebSphere MQ for z/OS, Version 7.0

and to any subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1996, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures v

Tables vii

Chapter 1. Using Java 1

Terms used in this book 1

What is new in Version 7.0? 2

Should I use WebSphere MQ classes for Java or

WebSphere MQ classes for JMS? 2

Chapter 2. WebSphere MQ classes for

JMS 5

Getting started with WebSphere MQ classes for JMS 5

What is WebSphere MQ classes for JMS? 5

Why should I use WebSphere MQ classes for JMS? 6

Prerequisites for WebSphere MQ classes for JMS . 7

Installation and configuration of WebSphere MQ

classes for JMS 8

What is installed for WebSphere MQ classes for

JMS 8

Running WebSphere MQ classes for JMS

applications under the Java security manager . . 14

The WebSphere MQ resource adapter 15

Using WebSphere MQ classes for JMS 42

Post installation setup for WebSphere MQ classes

for JMS applications 42

The point-to-point installation verification test for

WebSphere MQ classes for JMS 45

The publish/subscribe installation verification

test for WebSphere MQ classes for JMS 49

The installation verification test program for the

WebSphere MQ resource adapter 53

Scripts provided with WebSphere MQ classes for

JMS 56

Support for OSGi 57

Solving problems 58

Problem determination for the WebSphere MQ

resource adapter 62

Introduction to WebSphere MQ classes for JMS for

programmers 65

Introduction to WebSphere MQ classes for JMS 65

What is new in WebSphere MQ Version 7.0? . . 67

Writing WebSphere MQ classes for JMS applications 74

The JMS model 74

JMS messages 77

Creating and configuring connection factories

and destinations in a WebSphere MQ classes for

JMS application 97

Building a connection in a JMS application . . 109

Creating a session in a JMS application 110

Creating destinations in a JMS application . . . 110

Sending messages in a JMS application 115

Receiving messages in a JMS application . . . 117

Closing down a WebSphere MQ classes for JMS

application 121

Handling errors in WebSphere MQ classes for

JMS 121

Accessing WebSphere MQ features from a

WebSphere MQ classes for JMS application . . 126

XA support in WebSphere MQ classes for JMS 150

Using a real-time connection to a broker of

WebSphere Event Broker or WebSphere Message

Broker 150

WebSphere MQ classes for JMS Application Server

Facilities 154

ConnectionConsumer 155

Planning an application 155

Error handling 160

The function of a server session pool 161

Using the WebSphere MQ JMS administration tool 163

Invoking the administration tool 163

Configuration 164

Administration commands 166

Manipulating subcontexts 167

Administering JMS objects 167

Using WebSphere MQ Explorer for JMS

configuration 171

Properties of WebSphere MQ classes for JMS

objects 171

Property dependencies 203

The ENCODING property 205

SSL properties 205

Rules for selecting the WebSphere MQ

messaging provider mode 207

When to use PROVIDERVERSION 208

WebSphere MQ classes for JMS packages 209

Chapter 3. WebSphere MQ classes for

Java 211

Getting started with WebSphere MQ classes for

Java 211

What are WebSphere MQ classes for Java? . . . 211

Why should I use WebSphere MQ classes for

Java? 211

Connection options for WebSphere MQ classes

for Java 211

Prerequisites for WebSphere MQ classes for Java 212

Installation and configuration of WebSphere MQ

classes for Java 213

What is installed for WebSphere MQ classes for

Java 213

Running WebSphere MQ classes for Java

applications under the Java Security Manager . 217

Running WebSphere MQ classes for Java

applications under CICS Transaction Server . . 217

Using WebSphere MQ classes for Java 218

Configuring your queue manager to accept

client connections 218

Verifying your WebSphere MQ classes for Java

installation with the sample application . . . 219

© Copyright IBM Corp. 1996, 2008 iii

Solving WebSphere MQ classes for Java

problems 220

Introduction for programmers 221

The WebSphere MQ classes for Java interface 221

What is new in Websphere MQ Version 7.0? . . 221

Writing WebSphere MQ classes for Java

applications 223

Connection differences 223

Operations on queue managers 225

Accessing queues, topics, and processes . . . 228

Handling messages 229

Publish/subscribe in WebSphere MQ classes for

Java 231

Handling WebSphere MQ message headers . . 231

Handling PCF messages 237

Handling message properties 237

Handling errors in WebSphere MQ classes for

Java 238

Getting and setting attribute values in

WebSphere MQ classes for Java 239

Multithreaded programs in Java 240

Using channel exits in WebSphere MQ classes

for Java 241

Channel compression in WebSphere MQ classes

for Java 246

Sharing a TCP/IP connection in WebSphere MQ

classes for Java 247

Connection pooling in WebSphere MQ classes

for Java 248

JTA/JDBC coordination using WebSphere MQ

classes for Java 254

Secure Sockets Layer (SSL) support 257

Running WebSphere MQ classes for Java

applications 263

Tracing WebSphere MQ classes for Java

programs 264

Environment-dependent behavior 264

Core classes in WebSphere MQ classes for Java 264

Restrictions and variations for core classes . . . 265

Features outside the core 267

Restrictions under CICS Transaction Server . . 269

Running WebSphere MQ classes for Java

applications within Java EE 270

WebSphere MQ classes for Java packages 272

Notices 273

Index 277

Sending your comments to IBM . . . 283

iv WebSphere MQ: Using Java

Figures

1. The initial page of the IVT program 54

2. Page showing the results of a successful IVT 55

3. Page showing the results of an IVT that failed 56

4. The layered architecture for IBM JMS

providers 67

5. The relationship between WebSphere MQ

classes for JMS and WebSphere MQ classes for

Java 69

6. JMS objects and their relationships 75

7. How messages are transformed between JMS

and WebSphere MQ using the MQRFH2

header 82

8. How JMS messages are transformed to

WebSphere MQ messages with no MQRFH2

header 95

9. ServerSessionPool and ServerSession

functionality 162

© Copyright IBM Corp. 1996, 2008 v

vi WebSphere MQ: Using Java

Tables

 1. WebSphere MQ classes for JMS installation

directories 9

 2. Samples directories 9

 3. CLASSPATH setting to compile and run

WebSphere MQ classes for JMS applications,

including the sample applications 10

 4. The location of the WebSphere MQ classes for

JMS libraries for each platform 11

 5. The directory containing wmq.jmsra.rar for

each platform 16

 6. Support for non-transacted and transacted

connections 16

 7. Properties of the ResourceAdapter object that

are associated with diagnostic tracing 18

 8. The levels of detail for diagnostic tracing 19

 9. Properties of the ResourceAdapter object that

are associated with the connection pool . . . 20

10. Properties of an ActivationSpec object that are

used to create a JMS connection 21

11. Properties of an ActivationSpec object that are

used to create a JMS connection consumer . . 27

12. Properties of a ConnectionFactory object 32

13. Properties that are common to a Queue object

and a Topic object 39

14. Properties that are specific to a Queue object 40

15. Properties that are specific to a Topic object 40

16. Scripts provided with WebSphere MQ classes

for JMS 56

17. The JMS domain independent and domain

specific interfaces 76

18. Possible values for NameValueCCSID field 83

19. MQRFH2 folders and properties used by JMS 84

20. Property data types 85

21. JMS header fields mapping to MQMD fields 86

22. JMS properties mapping to MQMD fields 86

23. JMS provider specific properties mapping to

MQMD fields 86

24. Outgoing message field mapping 87

25. Outgoing message JMS property mapping 88

26. Outgoing message JMS provider specific

property mapping 88

27. Incoming message JMS header field mapping 92

28. Incoming message property mapping 93

29. Incoming message provider specific JMS

property mapping 93

30. Supported conversions from one data type to

another 103

31. Property names and valid values for use in

queue and topic URIs 113

32. Property names and descriptions 128

33. Property names, values, and set methods 128

34. Property names, descriptions, and types 131

35. Property names and descriptions 135

36. Property names, values, and set methods 135

37. CipherSpecs supported by WebSphere MQ

and their equivalent CipherSuites 142

38. The WebSphere MQ exits directory 145

39. Administration verbs 166

40. Syntax and description of commands used to

manipulate subcontexts 167

41. The JMS object types that are handled by the

administration tool 167

42. Syntax and description of commands used to

manipulate administered objects 168

43. Property names, descriptions and values 172

44. Property names and applicable object types 186

45. Property names, set methods and values 189

46. WebSphere MQ classes for Java installation

directories 214

47. Samples directories 214

48. CLASSPATH setting to run WebSphere MQ

classes for Java applications, including the

WebSphere MQ classes for Java sample

applications 215

49. The location of the WebSphere MQ classes for

Java libraries for each platform 216

50. The directory for channel exit programs 244

51. CipherSpecs supported by WebSphere MQ

and their equivalent CipherSuites 262

© Copyright IBM Corp. 1996, 2008 vii

viii WebSphere MQ: Using Java

Chapter 1. Using Java

Note: Before using this information and the product it supports, be sure to read

the general information under notices.

Terms used in this book

The following terms are used in this collection of topics, with the following

meanings.

The term i5/OS® means any release of i5/OS or OS/400® supported by the current

version of WebSphere® MQ for i5/OS.

The term z/OS® means any release of z/OS supported by the current version of

WebSphere MQ for z/OS.

Linux® is used as a general term for any of the following platforms:

v Linux (POWER™ platform)

v Linux (x86 platform)

v Linux (x86-64 platform)

v Linux (zSeries® s390x platform)

UNIX® system is used as a general term for any of the following platforms:

v AIX®

v HP-UX

v Linux

v Solaris

Windows® system, or just Windows, is used as a general term for any of the

following platforms:

v Windows 2000

v Windows Server 2003

v Windows XP

v Windows Vista

The term real-time connection to a broker refers to a connection between an

application and a broker of WebSphere Event Broker or WebSphere Message

Broker in which the application and the broker exchange messages using

WebSphere MQ Real-Time Transport. Depending on the configuration, messages

might also be delivered to the application using WebSphere MQ Multicast

Transport.

The term IP address means either an Internet Protocol Version 4 (IPv4) address,

expressed as a sequence of decimal numbers separated by dots, or an Internet

Protocol Version 6 (IPv6) address, expressed as a sequence of hexadecimal numbers

separated by colons.

© Copyright IBM Corp. 1996, 2008 1

What is new in Version 7.0?

Websphere MQ classes for Java™ and Websphere MQ classes for JMS, as supplied

in WebSphere MQ Version 7.0, contain a number of enhancements compared to

previous releases.

Enhancements to Websphere MQ classes for JMS include:

v A layered architecture for generic IBM® JMS providers, with specific features for

Websphere MQ classes for JMS

v Embedded publish/subscribe function

v Asynchronous message consumption

v Message selection performed within the queue manager

v Multiple connections to the queue manager using the same MQI channel can

share a single TCP connection

v Read ahead for nonpersistent messages on a client connection

v Sending messages on a client connection without determining whether the

queue manager has received the message safely

v New channel exit interfaces are provided, which offer improved functionality

and performance

v Better access to JMS properties in a WebSphere MQ application

v Serviceability improvements

In WebSphere MQ Version 7.0, the implementation of WebSphere MQ classes for

JMS is no longer dependent on WebSphere MQ classes for Java. WebSphere MQ

classes for Java and WebSphere MQ classes for JMS are now peers that use a

common Java interface to the MQI.

Enhancements to Websphere MQ classes for Java include:

v Extensions to the API to support publish/subscribe applications

v Asynchronous message consumption

v Asynchronous message put

v Message selection performed within the queue manager

v Multiple connections to the queue manager using the same MQI channel can

share a single TCP connection

v Read ahead for nonpersistent messages on a client connection

v Java classes to process various types of message header

v Java classes to process PCF-structured messages

v Properties can be added to any message.

v New channel exit interfaces are provided, which offer improved functionality

and performance

v A client configuration file can be used to specify client configuration options.

Should I use WebSphere MQ classes for Java or WebSphere MQ

classes for JMS?

A Java application can use either WebSphere MQ classes for Java or WebSphere

MQ classes for JMS to access WebSphere MQ resources. Each approach has its

advantages.

2 WebSphere MQ: Using Java

WebSphere MQ classes for Java encapsulates the Message Queue Interface (MQI),

the native WebSphere MQ API, and uses the same object model as other

object-oriented interfaces, whereas WebSphere MQ classes for Java Message Service

implements Sun’s Java Message Service (JMS) interfaces.

If you are familiar with WebSphere MQ in environments other than Java, using

either procedural or object-oriented languages, you can transfer your existing

knowledge to the Java environment by using WebSphere MQ classes for Java. You

can also exploit the full range of features of WebSphere MQ, not all of which are

available in WebSphere MQ classes for JMS.

If you are not familiar with Websphere MQ, or already have JMS experience, you

might find it easier to use the familiar JMS API to access WebSphere MQ resources,

by using WebSphere MQ classes for JMS. JMS is also an integral part of the Java

Platform, Enterprise Edition (Java EE) platform. Java EE applications can use

message-driven beans (MDBs) to process messages asynchronously, and MDBs can

process only JMS messages. JMS is also the standard mechanism for Java EE to

interact with asynchronous messaging systems such as WebSphere MQ. Every

application server that is Java EE compliant must include a JMS provider, therefore

you can use JMS to communicate between different application servers or you can

port an application from one JMS provider to another without any change to the

application.

See the linked topics for more information about the advantages of each approach.

Chapter 1. Using Java 3

4 WebSphere MQ: Using Java

Chapter 2. WebSphere MQ classes for JMS

This collection of topics contains the documentation for WebSphere MQ classes for

JMS.

Getting started with WebSphere MQ classes for JMS

This topic provides an overview of WebSphere MQ classes for JMS and tells you

what you need to know before using WebSphere MQ classes for JMS.

What is WebSphere MQ classes for JMS?

WebSphere MQ classes for Java Message Service (WebSphere MQ classes for JMS)

is the JMS provider that is supplied with WebSphere MQ. As well as implementing

the interfaces defined in the javax.jms package, WebSphere MQ classes for JMS

provides two sets of extensions to the JMS API.

The JMS specification defines a set of interfaces that applications can use to

perform messaging operations. The latest version of the specification is Version 1.1.

The javax.jms package defines the JMS interfaces, and a JMS provider implements

these interfaces for a specific messaging product. WebSphere MQ classes for JMS is

a JMS provider that implements the JMS interfaces for WebSphere MQ.

The JMS specification expects ConnectionFactory and Destination objects to be

administered objects. An administrator creates and maintains administered objects

in a central repository, and a JMS application retrieves these objects using the Java

Naming and Directory Interface (JNDI). WebSphere MQ classes for JMS supports

the use of administered objects, and an administrator can use either the WebSphere

MQ JMS administration tool or WebSphere MQ Explorer to create and maintain

administered objects.

WebSphere MQ classes for JMS also provides two sets of extensions to the JMS

API. The main focus of these extensions concerns creating and configuring

connection factories and destinations dynamically at run time, but the extensions

also provide function that is not directly related to messaging, such as function for

problem determination.

The WebSphere MQ JMS extensions

Previous releases of WebSphere MQ classes for JMS contain extensions that

are implemented in objects such as MQConnectionFactory, MQQueue, and

MQTopic objects. These objects have properties and methods that are

specific to WebSphere MQ. The objects can be administered objects, or an

application can create the objects dynamically at run time. This release of

WebSphere MQ classes for JMS maintains these extensions, which are now

known as the WebSphere MQ JMS extensions. You can continue to use,

without change, any applications that use these extensions.

The IBM JMS extensions

This release of WebSphere MQ classes for JMS provides a more generic set

of extensions to the JMS API, which are not specific to WebSphere MQ as

the messaging system. These extensions are known as the IBM JMS

extensions and have the following broad objectives:

v To provide a greater level of consistency across IBM JMS providers

© Copyright IBM Corp. 1996, 2008 5

v To make it easier to write a bridge application between two IBM

messaging systems

v To make it easier to port an application from one IBM JMS provider to

another

The extensions provide function that is similar to that provided in Message

Service Client for C/C++ and Message Service Client for .NET.

Why should I use WebSphere MQ classes for JMS?

A Java application can use either WebSphere MQ classes for Java or WebSphere

MQ classes for JMS to access WebSphere MQ resources. Using WebSphere MQ

classes for JMS has a number of advantages.

Consider the following advantages:

v You can reuse JMS skills.

WebSphere MQ classes for JMS is a JMS provider that implements the JMS

interfaces for WebSphere MQ as the messaging system. If your organization is

new to WebSphere MQ, but already has JMS application development skills, you

might find it easier to use the familiar JMS API to access WebSphere MQ

resources rather than one of the other APIs provided with WebSphere MQ.

v JMS is an integral part of Java Platform, Enterprise Edition (Java EE).

JMS is the natural API to use for messaging on the Java EE platform. Every

application server that is Java EE compliant must include a JMS provider. You

can use JMS in application clients, servlets, JavaServer pages (JSPs), enterprise

Java beans (EJBs), and message driven beans (MDBs). Note in particular that

Java EE applications use MDBs to process messages asynchronously, and all

messages are delivered to MDBs as JMS messages.

v An administrator can create and maintain JMS administered objects in a central

repository, and WebSphere MQ classes for JMS applications can retrieve these

objects using the Java Naming and Directory Interface (JNDI).

JMS connection factories and destinations encapsulate WebSphere MQ specific

information such as queue manager names, channel names, connection options,

queue names, and topic names. If connection factories and destinations are

stored as administered objects, this information is not hard coded into an

application. This arrangement therefore provides the application with a degree

of independence from the underlying WebSphere MQ configuration.

v JMS is an industry standard API that can provide application portability.

A JMS application can use JNDI to retrieve connection factories and destinations

that are stored as administered objects, and use only the interfaces defined in the

javax.jms package to perform messaging operations. The application is then

entirely independent of any JMS provider, such as WebSphere MQ classes for

JMS, and can be ported from one JMS provider to another without any change

to the application.

If JNDI is not available in a particular application environment, a WebSphere

MQ classes for JMS application can use extensions to the JMS API to create and

configure connection factories and destinations dynamically at run time. The

application is then completely self contained, but is tied to WebSphere MQ

classes for JMS as the JMS provider.

v Bridge applications might be easier to write using JMS.

A bridge application is an application that receives messages from one

messaging system and sends them to another messaging system. Writing a

bridge application can be complicated using product specific APIs and message

6 WebSphere MQ: Using Java

formats. Instead, you can write a bridge application using two JMS providers,

one for each messaging system. The application then uses only one API, the JMS

API, and processes only JMS messages.

Prerequisites for WebSphere MQ classes for JMS

To develop and run WebSphere MQ classes for JMS applications, you need certain

software components as prerequisites.

For the latest information about the prerequisites for WebSphere MQ classes for

JMS, see the WebSphere MQ readme file.

To develop WebSphere MQ classes for JMS applications, you need a Java 2

Software Development Kit (SDK) at Version 1.4.2 or later.

To run WebSphere MQ classes for JMS applications, you need the following

software components:

v A WebSphere MQ queue manager

v A Java Runtime Environment (JRE), for each system on which you run

applications

v For i5/OS, QShell, which is option 30 of the operating system

v For z/OS, UNIX System Services (USS)

To determine which Java 2 SDKs are supported for your platform, see

http://www.ibm.com/software/integration/wmq/requirements/index.html. The

supported JREs are those JREs that are embedded in the supported Java 2 SDKs.

If you require SSL connections to use cryptographic modules that are FIPS 140-2

certified, you need the IBM Java JSSE FIPS provider (IBMJSSEFIPS). Every IBM

Java 2 SDK and JRE at Version 1.4.2 or later contains IBMJSSEFIPS.

You can use Internet Protocol Version 6 (IPv6) addresses in your WebSphere MQ

classes for JMS applications provided IPv6 addresses are supported by your Java

virtual machine (JVM) and the TCP/IP implementation on your operating system.

The WebSphere MQ JMS administration tool (see “Using the WebSphere MQ JMS

administration tool” on page 163) also accepts IPv6 addresses.

The WebSphere MQ JMS administration tool and WebSphere MQ Explorer use the

Java Naming and Directory Interface (JNDI) to access a directory service, which

stores administered objects. WebSphere MQ classes for JMS applications can also

use JNDI to retrieve administered objects from a directory service. A service

provider is code that provides access to a directory service by mapping JNDI calls

to calls to the directory service. The following service providers are supplied with

WebSphere MQ classes for JMS:

v A Lightweight Directory Access Protocol (LDAP) service provider in the files

ldap.jar and providerutil.jar. The LDAP service provider provides access to a

directory service based on an LDAP server.

v A file system service provider in the files fscontext.jar and providerutil.jar. The

file system service provider provides access to a directory service based on the

local file system.

If you intend to use a directory service based on an LDAP server, you must install

and configure an LDAP server, or have access to an existing LDAP server. In

particular, you must configure the LDAP server to store Java objects. For

Chapter 2. WebSphere MQ classes for JMS 7

http://www.ibm.com/software/integration/wmq/requirements/index.html

information about how to install and configure your LDAP server, see the

documentation that is supplied with the server.

Installation and configuration of WebSphere MQ classes for JMS

This topic describes the directories and files that are created when you install

WebSphere MQ classes for JMS and tells you how to configure WebSphere MQ

classes for JMS after installation.

What is installed for WebSphere MQ classes for JMS

A number of files and directories are created when you install WebSphere MQ

classes for JMS. After installation, you must set certain environment variables

before you can run WebSphere MQ classes for JMS applications. On Windows,

however, these environment variables are set automatically during installation.

When you start an application, you might need to specify the location of the Java

Native Interface (JNI) libraries as a parameter on the java command.

WebSphere MQ classes for JMS is installed as a optional component when you

install WebSphere MQ. See the following documentation for information about

installing WebSphere MQ:

 WebSphere MQ for AIX Quick Beginnings

 WebSphere MQ for HP-UX Quick Beginnings

 WebSphere MQ for i5/OS Quick Beginnings

 WebSphere MQ for Linux Quick Beginnings

 WebSphere MQ for Solaris Quick Beginnings

 WebSphere MQ for Windows Quick Beginnings

 WebSphere MQ for z/OS Program Directory

WebSphere MQ classes for JMS is contained in the file com.ibm.mqjms.jar.

The support for creating WebSphere MQ message headers and messages

containing Programmable Command Format (PCF) commands is contained in the

files com.ibm.mq.headers.jar and com.ibm.mq.pcf.jar.

The following JAR and DLL files are used when an application uses a real-time

connection to a broker for publish/subscribe messaging:

v CL3Export.jar

v CL3Nonexport.jar

v dhbcore.jar

v rmm.jar

v PgmIpLayer.dll

The dhbcore.jar file is also used when an application connects to a queue manager

using a connection factory whose PROVIDERVERSION property specifies a version

number less than 7 or when an application connects to a queue manager which is

at a version earlier than Version 7.0.

The file mqjbnd.dll is used when an application connects to a queue manager in

bindings mode.

The file mqexitsub02.dll is used when an application uses channel exit programs

written in C or C++.

8 WebSphere MQ: Using Java

The following JAR files are used when an application uses the Java Naming and

Directory Interface (JNDI) to retrieve administered objects from a directory service:

v fscontext.jar

v jndi.jar

v ldap.jar

v providerutil.jar

The file jta.jar is used when an application uses the Java Transaction API (JTA).

The Javadoc tool has been used to generate the HTML pages containing the

specifications of the WebSphere MQ classes for JMS API. The HTML pages are in

the doc/WMQJMSClasses subdirectory of the WebSphere MQ classes for JMS

installation directory. On UNIX systems and Windows, this subdirectory contains

the individual HTML pages but, on i5/OS and z/OS, the HTML pages are in a file

called wmqjms_javadoc.jar.

Installation directories for WebSphere classes for JMS

On each platform, the WebSphere MQ classes for JMS files are installed in one

directory. The sample applications, which include the installation verification

programs (IVPs), are installed in a different directory.

Table 1 shows where the WebSphere MQ classes for JMS files are installed on each

platform.

 Table 1. WebSphere MQ classes for JMS installation directories

Platform Directory

AIX /usr/mqm/java

HP-UX, Linux, and Solaris /opt/mqm/java

i5/OS /QIBM/ProdData/mqm/java

Windows install_dir\java

z/OS install_dir/mqm/V7R0M0/java

Note: install_dir is the directory where you installed WebSphere MQ. On Windows, this

directory is normally C:\Program Files\IBM\WebSphere MQ. On z/OS, this directory is

likely to be /usr/lpp.

Some sample applications, such as the installation verification programs (IVPs), are

supplied with WebSphere MQ classes for JMS. Table 2 shows where the sample

applications are installed on each platform.

 Table 2. Samples directories

Platform Directory

AIX /usr/mqm/samp/jms

HP-UX, Linux, and Solaris /opt/mqm/samp/jms

i5/OS /QIBM/ProdData/mqm/java/samples/jms

Windows install_dir\tools\jms

z/OS install_dir/mqm/V7R0M0/java/samples/jms

Note: install_dir is the directory where you installed WebSphere MQ. On Windows, this

directory is normally C:\Program Files\IBM\WebSphere MQ. On z/OS, this directory is

likely to be /usr/lpp.

Chapter 2. WebSphere MQ classes for JMS 9

Environment variables used by WebSphere MQ classes for JMS

Before you can compile and run WebSphere MQ classes for JMS applications, the

setting for your CLASSPATH environment variable must include the WebSphere

MQ classes for JMS Java archive (JAR) file. Depending on your requirements, you

might need to add other JAR files to your class path. To run the scripts provided

with WebSphere MQ classes for JMS, other environment variables must be set.

To compile and run WebSphere MQ classes for JMS applications, use the

CLASSPATH setting for your platform as shown in Table 3. The setting includes

the samples directory, so that you can compile and run the WebSphere MQ classes

for JMS sample applications. Alternatively, you can specify the class path on the

java command instead of using the environment variable.

 Table 3. CLASSPATH setting to compile and run WebSphere MQ classes for JMS

applications, including the sample applications

Platform CLASSPATH setting

AIX CLASSPATH=/usr/mqm/java/lib/com.ibm.mqjms.jar:

/usr/mqm/samp/jms:

HP-UX, Linux,

and Solaris

CLASSPATH=/opt/mqm/java/lib/com.ibm.mqjms.jar:

/opt/mqm/samp/jms:

i5/OS CLASSPATH=/QIBM/ProdData/mqm/java/lib/com.ibm.mqjms.jar:

/QIBM/ProdData/mqm/java/samples/jms:

Windows CLASSPATH=install_dir\java\lib\com.ibm.mqjms.jar;

install_dir\tools\jms;

z/OS CLASSPATH=install_dir/mqm/V7R0M0/java/lib/com.ibm.mqjms.jar:

install_dir/mqm/V6R0M0/java/samples/jms:

Note: install_dir is the directory where you installed WebSphere MQ. On Windows, this

directory is normally C:\Program Files\IBM\WebSphere MQ. On z/OS, this directory is

likely to be /usr/lpp.

The manifest of the JAR file com.ibm.mqjms.jar contains references to most of the

other JAR files required by WebSphere MQ classes for JMS applications, and so

you do not need to add these JAR files to your class path. These JAR files include

those required by applications that use the Java Naming and Directory Interface

(JNDI) to retrieve administered objects from a directory service and by applications

that use the Java Transaction API (JTA).

However, you must include additional JAR files in your class path in the following

circumstances:

v If your application performs XA operations in client mode, you must add the

extended transactional client JAR file, com.ibm.mqetclient.jar, to your class path.

v If you are using channel exit classes that implement the channel exit interfaces

defined in the com.ibm.mq package, instead of those defined in the

com.ibm.mq.exits package, you must add the Websphere MQ classes for Java

JAR file, com.ibm.mq.jar, to your class path.

v If you compile your Java code using a Java 2 Software Development Kit (SDK)

at Version 1.4.2, you must add the following JAR files to your class path:

– jms.jar

– com.ibm.mq.jmqi.jar

Additionally, if your application uses JNDI to retrieve administered objects from

a directory service, you must also add the following JAR files to your class path:

– fscontext.jar

10 WebSphere MQ: Using Java

– jndi.jar

– ldap.jar

– providerutil.jar

And if your application uses the JTA, you must also add jta.jar to your class

path.

Note that these additional JAR files are required only for compiling your

applications, not for running them.

The scripts provided with WebSphere MQ classes for JMS use the following

environment variables:

MQ_JAVA_DATA_PATH

This environment variable specifies the directory for log and trace output.

MQ_JAVA_INSTALL_PATH

This environment variable specifies the directory where WebSphere MQ

classes for JMS is installed, as shown in Table 1 on page 9.

MQ_JAVA_LIB_PATH

This environment variable specifies the directory where the WebSphere MQ

classes for JMS libraries are stored, as shown in Table 4.

On Windows, all the environment variables are set automatically during

installation. On any other platform, you must set them yourself. On a UNIX

system, you can use the script setjmsenv (if you are using a 32-bit JVM) or

setjmsenv64 (if you are using a 64-bit JVM) to set the environment variables. On

AIX, these scripts are in the /usr/mqm/java/bin directory and, on HP-UX, Linux,

and Solaris, they are in the /opt/mqm/java/bin directory.

On i5/OS, you must set the environment variable QIBM_MULTI_THREADED to Y.

You can then run multithreaded applications in the same way that you run single

threaded applications.

The Java Native Interface (JNI) libraries required by WebSphere

MQ classes for JMS applications

When you start a WebSphere MQ classes for JMS application that connects in

bindings mode, or one that connects in client mode and uses channel exit

programs written in languages other than Java, you must specify the location of

the Java Native Interface (JNI) libraries as a parameter on the java command.

To specify the location of the Java Native Interface (JNI) libraries, start your

application using a java command with the following format:

java -Djava.library.path=library_path application_name

where library_path is the path to the directory containing the WebSphere MQ

classes for JMS libraries. The JNI libraries are in the same directory. Table 4 shows

the location of the WebSphere MQ classes for JMS libraries for each platform.

 Table 4. The location of the WebSphere MQ classes for JMS libraries for each platform

Platform Directory containing the WebSphere MQ

classes for JMS libraries

AIX /usr/mqm/java/lib (32-bit libraries)

/usr/mqm/java/lib64 (64-bit libraries)

Chapter 2. WebSphere MQ classes for JMS 11

Table 4. The location of the WebSphere MQ classes for JMS libraries for each

platform (continued)

Platform Directory containing the WebSphere MQ

classes for JMS libraries

HP-UX

Linux (POWER, x86-64

and zSeries s390x platforms)

Solaris (x86-64 and Sparc platforms)

/opt/mqm/java/lib (32-bit libraries)

/opt/mqm/java/lib64 (64-bit libraries)

Linux (x86 platform)

Linux (zSeries platform)

/opt/mqm/java/lib

Windows install_dir\java\lib (32-bit libraries)

install_dir\java\lib64 (64-bit libraries)

z/OS install_dir/mqm/V7R0M0/java/lib

(31-bit and 64-bit libraries)

Note: install_dir is the directory where you installed WebSphere MQ. On Windows, this

directory is normally C:\Program Files\IBM\WebSphere MQ. On z/OS, this directory is

likely to be /usr/lpp.

Notes:

1. On AIX, HP-UX, Linux (POWER platform), or Solaris, use either the 32-bit

libraries or the 64-bit libraries. Use the 64-bit libraries only if you are running

your application in a 64-bit Java virtual machine (JVM) on a 64-bit platform.

Otherwise, use the 32-bit libraries.

2. On Windows, you can use the PATH environment variable to specify the

location of the WebSphere MQ classes for JMS libraries instead of specifying

their location on the java command. The directory containing the WebSphere

MQ classes for JMS libraries is automatically added to the system path during

the installation of WebSphere MQ classes for JMS.

3. To use WebSphere MQ classes for JMS in bindings mode on i5/OS, make sure

that the library QMQMJAVA is in your library list.

4. On z/OS, you can use either a 31-bit or 64-bit Java virtual machine (JVM) when

running applications in WebSphere Application Server. In other environments

on z/OS, you can use only a 31-bit JVM. However, in any environment on

z/OS, you do not have to specify which JNI libraries to use; WebSphere MQ

classes for JMS can determine for itself which JNI libraries to load.

The WebSphere MQ classes for JMS configuration file

A WebSphere MQ classes for JMS configuration file specifies properties that are

used to configure WebSphere MQ classes for JMS.

The format of a WebSphere MQ classes for JMS configuration file is that of a

standard Java properties file. A sample configuration file called jms.config is

supplied in the bin subdirectory of the WebSphere MQ classes for JMS installation

directory. This file documents all the supported properties and their default values.

You can choose the name and location of a WebSphere MQ classes for JMS

configuration file. When you start your application, use a java command with the

following format:

java -Dcom.ibm.msg.client.config.location=config_file_url application_name

In the command, config_file_url is a uniform resource locator (URL) that specifies

the name and location of the WebSphere MQ classes for JMS configuration file.

URLs of the following types are supported: http, file, ftp, and jar.

12 WebSphere MQ: Using Java

Here is an example of a java command:

java -Dcom.ibm.msg.client.config.location=file:/D:/mydir/myjms.config MyAppClass

This command identifies the WebSphere MQ classes for JMS configuration file as

the file D:\mydir\mjms.config on the local Windows system.

When an application starts, WebSphere MQ classes for JMS reads the contents of

the configuration file and stores the specified properties in an internal property

store. If the java command does not identify a configuration file, or if the

configuration file cannot be found, WebSphere MQ classes for JMS uses the default

values for all the properties. If required, you can override any property in the

configuration file by specifying it as a system property on the java command.

A WebSphere MQ classes for JMS configuration file can be used with any of the

supported transports between an application and a queue manager or broker.

Note that you cannot specify startup trace by setting a property in the WebSphere

MQ classes for JMS configuration file. You can specify startup trace only by setting

a system property on the java command, as shown in the following example:

java -Dcom.ibm.msg.client.commonservices.trace.startup=true

 -Dcom.ibm.msg.client.config.location=file:/D:/mydir/myjms.config

 MyAppClass

Overriding properties specified in a WebSphere MQ client

configuration file

A WebSphere MQ client configuration file can also specify properties that are used

to configure WebSphere MQ classes for JMS. However, properties specified in a

WebSphere MQ client configuration file apply only when an application connects

to a queue manager in client mode.

If required, you can override any property in a WebSphere MQ configuration file

by specifying it as a property in a WebSphere MQ classes for JMS configuration

file. To override a property in a WebSphere MQ client configuration file, use an

entry with the following format in the WebSphere MQ classes for JMS

configuration file:

com.ibm.mq.cfg.stanza.propName=propValue

The variables in the entry have the following meanings:

stanza The name of the stanza in the WebSphere MQ client configuration file that

contains the property

propName

The name of the property as specified in the WebSphere MQ client

configuration file

propValue

The value of the property that overrides the value specified in the

WebSphere MQ client configuration file

Alternatively, you can override a property in a WebSphere MQ client configuration

file by specifying the property as a system property on the java command. Use the

preceding format to specify the property as a system property.

Chapter 2. WebSphere MQ classes for JMS 13

STEPLIB configuration on z/OS

On z/OS, the STEPLIB used at runtime must contain the WebSphere MQ

SCSQAUTH and SCSQANLE libraries. From UNIX System Services, you can add

these using a line in your .profile as shown below, replacing thlqual with the

high level data set qualifier that you chose when installing WebSphere MQ:

export STEPLIB=thlqual.SCSQAUTH:thlqual.SCSQANLE:$STEPLIB

In other environments, you typically need to edit the startup JCL to include

SCSQAUTH and SCSQANLE on the STEPLIB concatenation:

STEPLIB DD DSN=thlqual.SCSQAUTH,DISP=SHR

 DD DSN=thlqual.SCSQANLE,DISP=SHR

Running WebSphere MQ classes for JMS applications under

the Java security manager

WebSphere MQ classes for JMS can run with the Java security manager enabled. To

run applications successfully with the security manager enabled, you must

configure your Java virtual machine (JVM) with a suitable policy configuration file.

The simplest way to do this is to change the policy configuration file supplied with

your Java Runtime Environment (JRE). On most systems, this file is in the

directory lib/security/java.policy relative to your JRE directory. You can edit the

policy configuration file using your preferred editor or the policytool program

supplied with your JRE.

Here is an example of two entries in a policy configuration file that allow

WebSphere MQ classes for JMS to run successfully under the default security

manager:

grant codeBase "file:/opt/mqm/java/lib/*" {

 permission java.io.FilePermission "/var/mqm/-", "read, execute";

 permission java.io.FilePermission "/var/mqm/trace/-", "read, write";

 permission java.io.FilePermission "/opt/mqm/-", "read, execute";

 permission java.io.FilePermission "/opt/mqtest/-", "read";

 permission java.util.PropertyPermission "*", "read, write";

 permission java.util.logging.LoggingPermission "control";

 permission java.net.SocketPermission "*", "connect, resolve";

 permission java.lang.RuntimePermission "loadLibrary.mqjbnd";

 permission java.lang.RuntimePermission "loadLibrary.libqmqjexitstub02";

 permission java.lang.RuntimePermission "loadLibrary.mqjxs_r";

 permission java.lang.RuntimePermission "loadLibrary.mqjx_r";

 permission java.lang.RuntimePermission "getenv.*";

 permission java.lang.RuntimePermission "createClassLoader";

 permission java.io.FilePermission "FFDC/-", "read, write";

 permission java.io.FilePermission "mqclient.ini", "read";

 permission java.io.FilePermission "*", "read, write";

};

grant codeBase "file:/opt/mqtest/base/lib/*" {

 permission java.util.PropertyPermission "*", "read";

 permission java.io.FilePermission "/var/mqm/-", "read, execute";

 permission java.io.FilePermission "/opt/mqm/-", "read, execute";

 permission java.io.FilePermission "/opt/mqtest/-", "read, execute";

 permission java.util.PropertyPermission "APIJMS_PROVIDER_VERSION", "write";

 permission java.util.PropertyPermission "com.ibm.jsse2.JSSEFIPS", "write";

};

14 WebSphere MQ: Using Java

In the example, the first grant statement contains the permissions required by

WebSphere MQ classes for JMS, and the second grant statement contains the

permissions required by a WebSphere MQ classes for JMS application. In the first

grant statement, the permission:

permission java.io.FilePermission "/opt/mqtest/-", "read";

is needed to allow WebSphere MQ classes for JMS to access the Java archive (JAR)

files of an application. To use these grant statements in your policy configuration

file, you might need to modify the path names depending on where you have

installed WebSphere MQ classes for JMS and where you store your applications.

The sample applications supplied with WebSphere MQ classes for JMS, and scripts

to run them, do not enable the security manager.

The WebSphere MQ resource adapter

The Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA)

provides a standard way of connecting applications running in a Java EE

environment to an Enterprise Information System (EIS) such as WebSphere MQ or

DB2®. The WebSphere MQ resource adapter implements the JCA 1.5 interfaces, and

allows JMS applications and message driven beans (MDBs), running in an

application server, to access the resources of a WebSphere MQ queue manager. The

resource adapter supports both the point-to-point domain and the

publish/subscribe domain.

The WebSphere MQ resource adapter supports two types of communication

between an application and a queue manager:

Outbound communication

An application starts a connection to a queue manager, and then sends JMS

messages to JMS destinations and receives JMS messages from JMS

destinations in a synchronous manner.

Inbound communication

A JMS message arriving at a JMS destination is delivered to an MDB,

which processes the message asynchronously.

The WebSphere MQ resource adapter is supported on all WebSphere MQ Version

7.0 platforms except z/OS. You can install it on any application server that is

certified as compliant with the J2EE 1.4 specification. Using the resource adapter,

an application can connect to a WebSphere MQ Version 7.0 queue manager in

either client mode or bindings mode, or to a WebSphere MQ Version 6.0 or

WebSphere MQ Version 5.3 queue manager in client mode only.

Other required documentation

Every application server provides its own set of administration interfaces. Some

application servers provide graphical user interfaces to define JCA resources, but

others require the administrator to write XML deployment plans. It is therefore

beyond the scope of this documentation to provide information about how to

configure the WebSphere MQ resource adapter for each application server. This

documentation focuses only on what you need to configure, and you must refer to

your application server’s own documentation for information about how to

configure a JCA resource adapter.

To understand this documentation, you must be familiar with JMS and WebSphere

MQ classes for JMS, as described in the chapters from “Writing WebSphere MQ

Chapter 2. WebSphere MQ classes for JMS 15

classes for JMS applications” on page 74 through to “WebSphere MQ classes for

JMS Application Server Facilities” on page 154. Many of the properties used to

configure the WebSphere MQ resource adapter are equivalent to properties of

WebSphere MQ classes for JMS objects and have the same function.

Installation of the WebSphere MQ resource adapter

The WebSphere MQ resource adapter is supplied as a resource archive (RAR) file

called wmq.jmsra.rar. This file is installed with WebSphere MQ classes for JMS in

the directory shown in Table 5.

 Table 5. The directory containing wmq.jmsra.rar for each platform

Platform Directory

AIX /usr/mqm/java/lib/jca

HP-UX, Linux, and Solaris /opt/mqm/java/lib/jca

i5/OS /QIBM/ProdData/mqm/java/lib/jca

Windows install_dir\java\lib\jca

Note: install_dir is the directory where you installed the WebSphere MQ server or

WebSphere MQ client. The default directory is C:\Program Files\IBM\WebSphere MQ, but

you might have chosen a different directory.

The RAR file contains WebSphere MQ classes for JMS and the WebSphere MQ

implementation of the JCA interfaces.

You must install the WebSphere MQ resource adapter RAR file in your application

server, but the way you do this depends on the application server. See the

documentation for your application server for information about how to install a

resource adapter RAR file.

For non-transacted client connections, no other files are required.

For bindings connections on UNIX systems, you must ensure that the directory

containing the Java Native Interface (JNI) libraries is in the system path. For the

location of this directory, which also contains the WebSphere MQ classes for JMS

libraries, see Table 4 on page 11. On Windows, this directory is automatically

added to the system path during the installation of WebSphere MQ classes for JMS.

Distributed transactions are supported by default in bindings mode but, in client

mode, they are supported only in the following cases:

v If you are using WebSphere Application Server, Version 6

v For any other application server, if the extended transactional client JAR file,

com.ibm.mqetclient.jar, is in the class path

Table 6 summarizes the support for non-transacted and transacted connections. For

an explanation of client and bindings modes, see “Connection modes for

WebSphere MQ classes for JMS” on page 43.

 Table 6. Support for non-transacted and transacted connections

Type of connection Non-transacted connections Transacted connections

Client mode Supported by default Supported if you are using

WebSphere Application Server,

Version 6 or if

com.ibm.mqetclient.jar is in the

class path

16 WebSphere MQ: Using Java

Table 6. Support for non-transacted and transacted connections (continued)

Type of connection Non-transacted connections Transacted connections

Bindings mode Supported if the JNI libraries are

in the system path

Supported if the JNI libraries are

in the system path

The WebSphere MQ resource adapter and the version of WebSphere MQ classes for

JMS used by the resource adapter must be at the same release level.

WebSphere Application Server, Version 6 and the WebSphere MQ resource

adapter:

 WebSphere Application Server, Version 6 contains a version of WebSphere MQ

classes for JMS that provides all the function of the WebSphere MQ resource

adapter. A WebSphere MQ classes for JMS application running in WebSphere

Application Server, Version 6 does not therefore need the WebSphere MQ resource

adapter in order to access the resources of a WebSphere MQ queue manager.

However, if you do use the WebSphere MQ resource adapter instead, you must set

the WebSphere Application Server environment variable MQ_INSTALL_ROOT to

the fully qualified path name of the directory where you installed WebSphere MQ.

An application running in WebSphere Application Server then uses the version of

WebSphere MQ classes for JMS that is supplied with WebSphere MQ and is

compatible with the WebSphere MQ resource adapter. For example, on HP-UX,

Linux, or Solaris, the value of MQ_INSTALL_ROOT must be /opt/mqm instead of

the default value ${WAS_LIBS_DIR}/WMQ.

Configuration of the WebSphere MQ resource adapter

To configure the WebSphere MQ resource adapter, you define various JCA

resources and system properties.

Define JCA resources in the following categories:

v The properties of the ResourceAdapter object, which represent the global

properties of the resource adapter, such as the level of diagnostic tracing. These

properties are described in “Configuration of the ResourceAdapter object” on

page 18.

v The properties of an ActivationSpec object, which determine how an MDB is

activated for inbound communication. These properties are described in

“Configuration for inbound communication” on page 21.

v The properties of a ConnectionFactory object, which the application server uses

to create a JMS ConnectionFactory object for outbound communication. These

properties are described in “Configuration for outbound communication” on

page 30.

v The properties of an administered destination object, which the application

server uses to create a JMS Queue object or JMS Topic object for outbound

communication. These properties are also described in “Configuration for

outbound communication” on page 30.

The WebSphere MQ resource adapter RAR file contains a file called

META-INF/ra.xml, which contains a deployment descriptor for the resource

adapter. This deployment descriptor is defined by the XML schema at

http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd and contains information

about the resource adapter and the services that it provides. An application server

might also require a deployment plan for the resource adapter. This deployment

Chapter 2. WebSphere MQ classes for JMS 17

http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd

plan is specific to the application server. For example, WebSphere Application

Server Community Edition requires a deployment plan called geronimo-ra.xml.

If you are using Secure Sockets Layer (SSL), specify the locations of the key store

file and trust store file as JVM system properties, as in the following example:

java ... -Djavax.net.ssl.keyStore=key_store_location

 -Djavax.net.ssl.trustStore=trust_store_location

 -Djavax.net.ssl.keyStorePassword=key_store_password

These properties cannot be properties of an ActivationSpec or ConnectionFactory

object, and you cannot specify more than one key store for an application server.

The properties apply to the whole JVM, and might therefore affect the application

server if other applications, running in the application server, are using SSL

connections. The application server might also reset these properties to different

values. For more information about using SSL with WebSphere MQ classes for

JMS, see “Using Secure Sockets Layer (SSL) with WebSphere MQ classes for JMS”

on page 137.

An installation verification test (IVT) program is supplied with the WebSphere MQ

resource adapter, but you must configure the resource adapter before you can run

the program. For information about what you need to configure in order to run the

IVT program, see “The installation verification test program for the WebSphere MQ

resource adapter” on page 53.

Configuration of the ResourceAdapter object:

 The ResourceAdapter object encapsulates the global properties of the WebSphere

MQ resource adapter. The object has two sets of properties:

v Properties associated with diagnostic tracing

v Properties associated with the connection pool managed by the resource adapter

The way you define these properties depends on the administration interfaces

provided by your application server.

Table 7 lists the properties of the ResourceAdapter object that are associated with

diagnostic tracing.

 Table 7. Properties of the ResourceAdapter object that are associated with diagnostic

tracing

Name of property Type Default value Description

traceEnabled String false A flag to enable or disable diagnostic tracing.

If the value is false, tracing is turned off. If

the value is true, a trace is sent to the

location specified by the traceDestination

property.

traceDestination String wmq_jca.trc The location to where a diagnostic trace is

sent. If the value is System.err, the trace is

directed to the system error stream instead of

a file. Similarly, if the value is System.out, the

trace is directed to the system output stream.

traceLevel String 3 The level of detail in a diagnostic trace. The

value can be in the range 0, which produces

no trace, to 10, which provides the most

detail. See Table 8 on page 19 for a

description of each level.

18 WebSphere MQ: Using Java

Table 7. Properties of the ResourceAdapter object that are associated with diagnostic

tracing (continued)

Name of property Type Default value Description

timestampsEnabled String true A flag to enable or disable time stamps in a

diagnostic trace. If the value is true, time

stamps are added. If the value is false, time

stamps are not added.

An application server might add time stamps

to a stream automatically. In this case, set the

value of the property to false to avoid the

duplication of time stamps.

logWriterEnabled String true A flag to enable or disable the sending of a

diagnostic trace to a LogWriter object

provided by the application server. If the

value is true, the trace is sent to a LogWriter

object instead of the location specified by the

traceDestination property. If the value is false,

any LogWriter object provided by the

application server is not used.

Table 8 describes the levels of detail for diagnostic tracing.

 Table 8. The levels of detail for diagnostic tracing

Level

number Level of detail

0 No trace.

1 The trace contains error messages.

3 The trace contains error and warning messages.

6 The trace contains error, warning, and information messages.

8 The trace contains error, warning, and information messages, and entry and exit

information for methods.

9 The trace contains error, warning, and information messages, entry and exit

information for methods, and diagnostic data.

10 The trace contains all trace information.

Note: Any level that is not included in this table is equivalent to the next lowest level. For

example, specifying a trace level of 4 is equivalent to specifying a trace level of 3.

However, the levels that are not included might be used in future releases of the

WebSphere MQ resource adapter, so it is better to avoid using these levels.

If diagnostic tracing is turned off, error and warning messages are written to the

system error stream. If diagnostic tracing is turned on, error messages are written

to the system error stream and to the trace destination, but warning messages are

written only to the trace destination. However, the trace contains warning

messages only if the trace level is 3 or higher.

The resource adapter manages an internal connection pool of JMS connections that

are used to deliver messages to MDBs. Table 9 on page 20 lists the properties of the

ResourceAdapter object that are associated with the connection pool.

Chapter 2. WebSphere MQ classes for JMS 19

Table 9. Properties of the ResourceAdapter object that are associated with the connection

pool

Name of property Type Default value Description

maxConnections String 10 The maximum number of connections

to a WebSphere MQ queue manager.

connectionConcurrency String 5 The maximum number of MDBs that

can be supplied by each connection.

reconnectionRetryCount String 5 The maximum number of attempts

made by the resource adapter to

reconnect to a WebSphere MQ queue

manager if a connection fails.

reconnectionRetryInterval String 300 000 The time, in milliseconds, that the

resource adapter waits before making

another attempt to reconnect to a

WebSphere MQ queue manager.

When an MDB is deployed in the application server, the resource adapter attempts

to use an existing JMS connection from the connection pool. Each connection can

supply more than one MDB up to the maximum specified by the

connectionConcurrency property. If there are no connections in the pool, or if all

the connections are fully utilized, a new connection is created provided the

maximum number of connections specified by the maxConnections property is not

exceeded. The maximum number of MDBs that can be deployed is therefore equal

to the product of the maxConnections and connectionConcurrency properties,

which is 50 by default. If the number of deployed MDBs reaches the maximum,

any attempt to deploy another MDB fails. If an MDB is stopped, its connection can

be used by another MDB.

If MDBs are likely to receive a high volume of messages, you might need to reduce

the value of the connectionConcurrency property. If you need to limit the number

of connections, because of restrictions imposed by a firewall for example, you

might need to increase the value of the connectionConcurrency property. In

general, if many MDBs are to be deployed, increase the value of the

maxConnections property.

The reconnectionRetryCount and reconnectionRetryInterval properties govern the

behavior of the resource adapter when connections to a WebSphere MQ queue

manager fail, because of a network failure for example. When a connection fails,

the resource adapter suspends the delivery of messages to all MDBs supplied by

that connection for an interval specified by the reconnectionRetryInterval property.

The resource adapter then attempts to reconnect to the queue manager. If the

attempt fails, the resource adapter makes further attempts to reconnect at intervals

specified by the reconnectionRetryInterval property until the limit imposed by the

reconnectionRetryCount property is reached. If all attempts fail, delivery is stopped

permanently until the MDBs are restarted manually.

In general, the ResourceAdapter object requires no administration. However, to

enable diagnostic tracing on a UNIX system for example, you can set the following

properties:

traceEnabled: true

traceDestination: /tmp/wmq_jca.trace

traceLevel: 10

20 WebSphere MQ: Using Java

These properties have no effect if the resource adapter has not been started, which

is the case, for example, when applications using WebSphere MQ resources are

running only in the client container. In this situation, you can set the properties for

diagnostic tracing as Java Virtual Machine (JVM) system properties. You can do

this by using the -D flag on the java command, as in the following example:

java ... -DtraceEnabled=true -DtraceDestination=System.err -DtraceLevel=6

You do not need to define all the properties of the ResourceAdapter object. Any

properties left unspecified take their default values. In a managed environment, it

is better not to mix the two ways of specifying properties. If you do mix them, the

JVM system properties take precedence over the properties of the ResourceAdapter

object.

Configuration for inbound communication:

To configure inbound communication, define the properties of one or more

ActivationSpec objects.

 The properties of an ActivationSpec object determine how a message drive bean

(MDB) receives JMS messages from a WebSphere MQ queue. The transactional

behavior of the MDB is defined in its deployment descriptor.

An ActivationSpec object has two sets of properties:

v Properties that are used to create a JMS connection to a WebSphere MQ queue

manager

v Properties that are used to create a JMS connection consumer that delivers

messages asynchronously as they arrive on a specified queue

The way in which you define the properties of an ActivationSpec object depends

on the administration interfaces provided by your application server.

Table 10 lists the properties of an ActivationSpec object that are used to create a

JMS connection to a WebSphere MQ queue manager.

 Table 10. Properties of an ActivationSpec object that are used to create a JMS connection

Name of property Type Valid values (default value in bold) Description

brokerCCDurSubQueue1 String v SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

v A queue name

The name of the queue

from which a connection

consumer receives durable

subscription messages

brokerCCSubQueue1 String v SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

v A queue name

The name of the queue

from which a connection

consumer receives

nondurable subscription

messages

brokerControlQueue1 String v SYSTEM.BROKER.CONTROL.QUEUE

v A queue name

The name of the broker

control queue

brokerQueueManager1 String v ″″ (empty string)

v A queue manager name

The name of the queue

manager on which the

broker is running

brokerSubQueue1 String v SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

v A queue name

The name of the queue

from which a nondurable

message consumer

receives messages

Chapter 2. WebSphere MQ classes for JMS 21

Table 10. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

brokerVersion1 String v unspecified - After the broker has been

migrated from V6 to V7, set this property so

that RFH2 headers are no longer used. After

migration this property is no longer relevant.

v V1 - To use a WebSphere MQ Publish/Subscribe

broker, or to use a broker of WebSphere MQ

Integrator, WebSphere MQ Event Broker,

WebSphere Business Integration Event Broker, or

WebSphere Business Integration Message Broker

in compatibility mode. This is the default value

if TRANSPORT is set to BIND or CLIENT.

v V2 - To use a broker of WebSphere MQ

Integrator, WebSphere MQ Event Broker,

WebSphere Business Integration Event Broker, or

WebSphere Business Integration Message Broker

in native mode. This is the default value if

TRANSPORT is set to DIRECT or DIRECTHTTP.

The version of the broker

being used

ccdtURL String v null

v A uniform resource locator (URL)

A URL that identifies the

name and location of the

file containing the client

channel definition table

and specifies how the file

can be accessed

CCSID String v 819

v A coded character set identifier supported by

the Java virtual machine (JVM)

The coded character set

identifier for a connection

channel String v SYSTEM.DEF.SVRCONN

v The name of an MQI channel

The name of the MQI

channel to use

cleanupInterval1 int v 3 600 000

v A positive integer

The interval, in

milliseconds, between

background runs of the

publish/subscribe cleanup

utility

cleanupLevel1 String v SAFE

v NONE

v STRONG

v FORCE

v NONDUR

The cleanup level for a

broker based subscription

store

clientID String v null

v A client identifier

The client identifier for a

connection

cloneSupport String v DISABLED - Only one instance of a durable

topic subscriber can run at a time.

v ENABLED - Two or more instances of the same

durable topic subscriber can run simultaneously,

but each instance must run in a separate Java

virtual machine (JVM).

Whether two or more

instances of the same

durable topic subscriber

can run simultaneously

failIfQuiesce boolean v true

v false

Whether calls to certain

methods fail if the queue

manager is in a quiescing

state

22 WebSphere MQ: Using Java

Table 10. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

headerCompression String v NONE

v SYSTEM - RLE message header compression is

performed

A list of the techniques

that can be used for

compressing header data

on a connection

hostName String v localhost

v A host name

v An IP address

The host name or IP

address of the system on

which the queue manager

resides

localAddress String v null

v A string in the format:

[host_name][(low_port[,high_port])]

where host_name is a host name or IP address,

low_port and high_port are TCP port numbers,

and brackets denote an optional component

For a connection to a

queue manager, this

property specifies either

or both of the following:

v The local network

interface to be used

v The local port, or range

of local ports, to be

used

messageBatchSize1 int v 10

v Any positive integer

The maximum number of

messages to be taken from

a queue in one packet

when using asynchronous

message delivery

messageCompression String v NONE

v A list of one or more of the following values

separated by blank characters:

 RLE

 ZLIBFAST

 ZLIBHIGH

A list of the techniques

that can be used for

compressing message data

on a connection

messageRetention1 boolean v true - Unwanted messages remain on the input

queue

v false - Unwanted messages are dealt with

according to their disposition options

Whether or not the

connection consumer

keeps unwanted messages

on the input queue

messageSelection1 String v CLIENT

v BROKER

Determines whether

message selection is done

by WebSphere MQ classes

for JMS or by the broker.

Message selection by the

broker is not supported

when brokerVersion has

the value 1.

password String v null

v A password

The default password to

use when creating a

connection to the queue

manager

Chapter 2. WebSphere MQ classes for JMS 23

Table 10. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

pollingInterval1 int v 5000

v Any positive integer

If each message listener

within a session has no

suitable message on its

queue, this is the

maximum interval, in

milliseconds, that elapses

before each message

listener tries again to get a

message from its queue. If

it frequently happens that

no suitable message is

available for any of the

message listeners in a

session, consider

increasing the value of

this property. This

property is relevant only

if TRANSPORT has the

value BIND or CLIENT.

port int v 1414

v A TCP port number

The port on which the

queue manager listens

providerVersion string v unspecified

v A string in one of the following formats

– V.R.M.F

– V.R.M

– V.R

– V

where V, R, M and F are integer values greater

than or equal to zero.

The version, release,

modification level and fix

pack of the queue

manager to which the

MDB intends to connect.

queueManager String v ″″ (empty string)

v A queue manager name

The name of the queue

manager to connect to

readAheadAllowed int v DESTINATION - Determine whether read

ahead is allowed by referring to the queue or

topic definition.

v DISABLED - Read ahead is not allowed.

v ENABLED - Read ahead is allowed.

v QUEUE - Determine whether read ahead is

allowed by referring to the queue definition.

v TOPIC - Determine whether read ahead is

allowed by referring to the topic definition.

Whether the MDB is

allowed to use read ahead

to get nonpersistent

messages from the

destination into an

internal buffer before

receiving them

readAheadClosePolicy int v ALL - All messages in the internal read ahead

buffer are delivered to the MDB before it stops.

v CURRENT - Only the current MDB invocation

completes, potentially leaving messages in the

internal read ahead buffer, which are then

discarded.

What happens to

messages in the internal

read ahead buffer when

the MDB is stopped by

the administrator.

receiveExit String v null

v A string comprising one or more items

separated by commas, where each item is the

fully qualified name of a class that implements

the WebSphere MQ classes for Java interface,

MQReceiveExit

Identifies a channel

receive exit program, or a

sequence of receive exit

programs to be run in

succession

24 WebSphere MQ: Using Java

Table 10. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

receiveExitInit String v null

v A string comprising one or more items of user

data separated by commas

The user data that is

passed to channel receive

exit programs when they

are called

rescanInterval1 int v 5000

v Any positive integer

When a message

consumer in the

point-to-point domain

uses a message selector to

select which messages it

wants to receive,

WebSphere MQ classes for

JMS searches the

WebSphere MQ queue for

suitable messages in the

sequence determined by

the MsgDeliverySequence

attribute of the queue.

When WebSphere MQ

classes for JMS finds a

suitable message and

delivers it to the

consumer, WebSphere MQ

classes for JMS resumes

the search for the next

suitable message from its

current position in the

queue. WebSphere MQ

classes for JMS continues

to search the queue in this

way until it reaches the

end of the queue, or until

the interval of time in

milliseconds, as

determined by the value

of this property, has

expired. In each case,

WebSphere MQ classes for

JMS returns to the

beginning of the queue to

continue its search, and a

new time interval

commences.

securityExit String v null

v The fully qualified name of a class that

implements the WebSphere MQ classes for Java

interface, MQSecurityExit

Identifies a channel

security exit program

securityExitInit String v null

v A string of user data

The user data that is

passed to a channel

security exit program

when it is called

sendExit String v null

v A string comprising one or more items

separated by commas, where each item is the

fully qualified name of a class that implements

the WebSphere MQ classes for Java interface,

MQSendExit

Identifies a channel send

exit program, or a

sequence of send exit

programs to be run in

succession

Chapter 2. WebSphere MQ classes for JMS 25

Table 10. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

sendExitInit String v null

v A string comprising one or more items of user

data separated by commas

The user data that is

passed to channel send

exit programs when they

are called

shareConvAllowed boolean v false - A client connection cannot share its

socket.

v true - A client connection can share its socket.

Whether a client

connection can share its

socket with other

top-level JMS connections

from the same process to

the same queue manager,

if the channel definitions

match

sparseSubscriptions1 boolean v false - Subscriptions receive frequent matching

messages.

v true - Subscriptions receive infrequent matching

messages. This value requires that the

subscription queue can be opened for browse.

Controls the message

retrieval policy of a

TopicSubscriber object

sslCertStores String v null

v A string of one or more LDAP URLs separated

by blanks. Each LDAP URL has the format:

ldap://host_name[:port]

where host_name is a host name or IP address,

port is a TCP port number, and brackets denote

an optional component.

The Lightweight Directory

Access Protocol (LDAP)

servers that hold

certificate revocation lists

(CRLs) for use on an SSL

connection

sslCipherSuite String v null

v The name of a CipherSuite

The CipherSuite to use for

an SSL connection

sslFipsRequired2 boolean v false

v true

Whether an SSL

connection must use a

CipherSuite that is

supported by the IBM

Java JSSE FIPS provider

(IBMJSSEFIPS)

sslPeerName String v null

v A template for distinguished names

For an SSL connection, a

template that is used to

check the distinguished

name in the digital

certificate provided by the

queue manager

sslResetCount int v 0

v An integer in the range 0 to 999 999 999

The total number bytes

sent and received by an

SSL connection before the

secret keys used by SSL

are renegotiated

sslSocketFactory String A string representing the fully-qualified class name

of a class providing an implementation of the

javax.net.ssl.SSLSocketFactory interface, optionally

including an argument to be passed to the

constructor method, enclosed in parentheses.

Any connections

established in the scope of

the administered object

use sockets obtained from

this implementation of the

SSLSocketFactory

interface.

26 WebSphere MQ: Using Java

Table 10. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

statusRefreshInterval1 int v 60000

v Any positive integer

The interval, in

milliseconds, between

refreshes of the long

running transaction that

detects when a subscriber

loses its connection to the

queue manager. This

property is relevant only

if subscriptionStore has

the value QUEUE.

subscriptionStore1 String v BROKER

v MIGRATE

v QUEUE

Determines where

WebSphere MQ classes for

JMS stores persistent data

about active subscriptions

transportType String v CLIENT

v BINDINGS

v BINDINGS_THEN_CLIENT

Whether a connection to

a queue manager uses

client mode or bindings

mode. If the

value BINDINGS_

THEN_CLIENT is

specified, the resource

adapter first tries

to make a connection

in bindings mode, and

if this fails then tries

to make a client

 mode connection.

username String v null

v A user name

The default user name to

use when creating a

connection to a queue

manager

wildcardFormat int v CHAR- Recognizes character wildcards only, as

used in broker version 1

v TOPIC - Recognizes topic level wildcards only,

as used in broker version 2

Which version of wildcard

syntax is to be used

Notes:

1. This property can be used with Version 7.0 of WebSphere MQ classes for JMS but has no effect for an

application connected to a Version 7.0 queue manager unless the providerVersion property is set to a version

number less than 7.

2. For important information about using the sslFipsRequired property, see “Limitations of the WebSphere MQ

resource adapter” on page 41.

Table 11 lists the properties of an ActivationSpec object that are used to create a

JMS connection consumer.

 Table 11. Properties of an ActivationSpec object that are used to create a JMS connection consumer

Name of property Type Valid values (default value in bold) Description

destination String A destination name The destination from which to receive

messages. The useJNDI property determines

how the value of this property is

interpreted.

Chapter 2. WebSphere MQ classes for JMS 27

Table 11. Properties of an ActivationSpec object that are used to create a JMS connection consumer (continued)

Name of property Type Valid values (default value in bold) Description

destinationType String v javax.jms.Queue

v javax.jms.Topic

The type of destination, a queue or a topic

maxMessages int v 1

v A positive integer

The maximum number of messages that can

be assigned to a server session at one time

maxPoolDepth int v 10

v A positive integer

The maximum number of server sessions in

the server session pool used by the

connection consumer

messageSelector String v null

v An SQL92 message selector

expression

A message selector expression specifying

which messages are to be delivered

poolTimeout int v 300 000

v A positive integer

The period of time, in milliseconds, that an

unused server session is held open in the

server session pool before being closed due

to inactivity

startTimeout int v 10 000

v A positive integer

The period of time, in milliseconds, within

which delivery of a message to an MDB

must start after the work to deliver the

message has been scheduled. If this period

of time elapses, the message is rolled back

onto the queue.

subscriptionDurability String v NonDurable - A nondurable

subscription is used to deliver

messages to an MDB subscribing

to the topic.

v Durable - A durable subscription

is used to deliver messages to an

MDB subscribing to the topic.

Whether a durable or nondurable

subscription is used to deliver messages to

an MDB subscribing to the topic

subscriptionName String v ″″ (empty string)

v A subscription name

The name of the durable subscription

useJNDI boolean v false - The property called

destination is interpreted as the

name of a WebSphere MQ queue

or a topic.

v true - The property called

destination is interpreted as the

name of a javax.jms.Queue object

or javax.jms.Topic object in the

application server’s JNDI

namespace.

Determines how the value of the property

called destination is interpreted

The ActivationSpec properties called destination and destinationType must be

defined explicitly. All the other properties are optional.

An ActivationSpec object can have conflicting properties. For example, you can

specify SSL properties for a connection in bindings mode. In this case, the behavior

is determined by the transport type and the messaging domain, which is either

point-to-point or publish/subscribe as determined by the destinationType property.

Any properties that are not applicable to the specified transport type or messaging

domain are ignored.

If you define a property that requires other properties to be defined, but you do

not define these other properties, the ActivationSpec object throws an

28 WebSphere MQ: Using Java

InvalidPropertyException exception when its validate() method is called during the

deployment of an MDB. The exception is reported to the administrator of the

application server in a manner that depends on the application server. For

example, if you set the subscriptionDurability property to Durable, indicating that

you want use durable subscriptions, you must also define the subscriptionName

property.

If the properties called ccdtURL and channel are both defined, an

InvalidPropertyException exception is thrown. However, if you define the ccdtURL

property only, leaving the property called channel with its default value of

SYSTEM.DEF.SVRCONN, no exception is thrown, and the client channel definition

table identified by the ccdtURL property is used to start a JMS connection.

Most of the properties of an ActivationSpec object are equivalent to properties of

WebSphere MQ classes for JMS objects or parameters of WebSphere MQ classes for

JMS methods. However, three tuning properties, and one usability property, have

no equivalents in WebSphere MQ classes for JMS:

startTimeout

The time, in milliseconds, that the work manager of the application server

waits for resources to become available after the resource adapter

schedules a Work object to deliver a message to an MDB. If this period of

time elapses before delivery of the message starts, the Work object times

out, the message is rolled back onto the queue, and the resource adapter

can then make another attempt to deliver the message. A warning is

written to diagnostic trace, if enabled, but this does not otherwise affect the

process of delivering messages. You might expect this condition to occur

only at times when the application server is experiencing a very high load.

If the condition occurs regularly, consider increasing the value of this

property to give the work manager longer to schedule message delivery.

maxPoolDepth

The maximum number of server sessions in the server session pool used

by a connection consumer. The connection consumer uses a server session

to deliver a message to an MDB. A larger pool depth allows more

messages to be delivered concurrently in high volume situations, but uses

more resources of the application server. If many MDBs are to be

deployed, consider making the pool depth smaller in order to maintain the

load on the application server at a manageable level. Note that each

connection consumer uses its own server session pool, so that this property

does not define the total number of server sessions available to all

connection consumers.

poolTimeout

The period of time, in milliseconds, that an unused server session is held

open in the server session pool before being closed due to inactivity. A

transient increase in the message workload causes additional server

sessions to be created in order to distribute the load but, after the message

workload returns to normal, the additional server sessions remain in the

pool and are not used.

 Every time a server session is used, it is marked with a timestamp.

Periodically a scavenger thread checks that each server session has been

used within the period specified by this property. If a server session has

not been used, it is closed and removed from the server session pool. A

server session might not be closed immediately after the specified period

has elapsed, this property represents the minimum period of inactivity

before removal.

Chapter 2. WebSphere MQ classes for JMS 29

useJNDI

For a description of this property, see Table 11 on page 27.

To deploy an MDB, first define the properties of an ActivationSpec object,

specifying the properties that the MDB requires. The following example is a typical

set of properties that you might define explicitly:

channel: SYSTEM.DEF.SVRCONN

destination: SYSTEM.DEFAULT.LOCAL.QUEUE

destinationType: javax.jms.Queue

hostName: 192.168.0.42

messageSelector: color=’red’

port: 1414

queueManager: ExampleQM

transportType: CLIENT

The application server uses the properties to create an ActivationSpec object, which

is then associated with an MDB. The properties of the ActivationSpec object

determine how messages are delivered to the MDB. Deployment of the MDB fails

if the MDB requires distributed transactions but the resource adapter does not

support distributed transactions. For information about how to install the resource

adapter so that distributed transactions are supported, see “Installation of the

WebSphere MQ resource adapter” on page 16.

If more than one MDB is receiving messages from the same destination, then a

message sent in the point-to-point domain is received by only one MDB, even if

other MDBs are eligible to receive the message. In particular, if two MDBs are

using different message selectors, and an incoming message matches both message

selectors, only one of the MDBs receives the message. The MDB chosen to receive a

message is undefined, and you cannot rely on a specific MDB receiving the

message. Messages sent in the publish/subscribe domain are received by all

eligible MDBs.

Poison messages:

 In some circumstances, a message delivered to an MDB might be rolled back onto

a WebSphere MQ queue. This can happen, for example, if a message is delivered

within a unit of work that is subsequently rolled back. A message that is rolled

back is generally delivered again, but a badly formatted message might repeatedly

cause an MDB to fail and therefore cannot be delivered. Such a message is called a

poison message. You can configure WebSphere MQ so that WebSphere MQ classes

for JMS automatically transfers a poison message to another queue for further

investigation or discards the message. For information about how to configure

WebSphere MQ in this way, see “Handling poison messages” on page 157.

Configuration for outbound communication:

To configure outbound communication, define the properties of a

ConnectionFactory object and an administered destination object.

 When using outbound communication, an application running in an application

server starts a connection to a queue manager, and then sends messages to its

queues and receives messages from its queues in a synchronous manner. For

example, the following servlet method, doGet(), uses outbound communication:

protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

...

30 WebSphere MQ: Using Java

// Look up ConnectionFactory and Queue objects from the JNDI namespace

 InitialContext ic = new InitialContext();

 ConnectionFactory cf = (javax.jms.ConnectionFactory) ic.lookup("myCF");

 Queue q = (javax.jms.Queue) ic.lookup("myQueue");

// Create and start a connection

 Connection c = cf.createConnection();

 c.start();

// Create a session and message producer

 Session s = c.createSession(false, Session.AUTO_ACKNOWLEDGE);

 MessageProducer pr = s.createProducer(q);

// Create and send a message

 Message m = s.createTextMessage("Hello, World!");

 pr.send(m);

// Create a message consumer and receive the message just sent

 MessageConsumer co = s.createConsumer(q);

 Message mr = co.receive(5000);

// Close the connection

 c.close();

}

When the servlet receives an HTTP GET request, it retrieves a ConnectionFactory

object and a Queue object from the JNDI namespace, and uses the objects to send a

message to a WebSphere MQ queue. The servlet then receives the message that it

has just sent.

To configure outbound communication, define JCA resources in the following

categories:

v The properties of a ConnectionFactory object, which the application server uses

to create a JMS ConnectionFactory object.

v The properties of an administered destination object, which the application

server uses to create a JMS Queue object or JMS Topic object.

The way you define these properties depends on the administration interfaces

provided by your application server. ConnectionFactory, Queue, and Topic objects

created by the application server are bound into a JNDI namespace from where

they can be retrieved by an application.

Typically, you define one ConnectionFactory object for each queue manager that

applications might need to connect to, one Queue object for each queue that

applications might need to access in the point-to-point domain, and one Topic

object for each topic that applications might want to publish or subscribe to. A

ConnectionFactory object can be domain independent. Alternatively, it can be

domain specific, a QueueConnectionFactory object for the point-to-point domain or

a TopicConnectionFactory object for the publish/subscribe domain.

Table 12 on page 32 lists the properties of a ConnectionFactory object.

Chapter 2. WebSphere MQ classes for JMS 31

Table 12. Properties of a ConnectionFactory object

Name of property Type Valid values (default value in bold) Description

brokerCCSubQueue1 String v SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

v A queue name

The name of the queue from

which a connection

consumer receives

nondurable subscription

messages

brokerControlQueue1 String v SYSTEM.BROKER.CONTROL.QUEUE

v A queue name

The name of the broker

control queue

brokerPubQueue1 String v SYSTEM.BROKER.DEFAULT.STREAM

v A queue name

The name of the queue

where published messages

are sent (the stream queue)

brokerQueueManager1 String v ″″ (empty string)

v A queue manager name

The name of the queue

manager on which the

broker is running

brokerSubQueue1 String v SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

v A queue name

The name of the queue from

which a nondurable message

consumer receives messages

brokerVersion1 String v unspecified - After the broker has been

migrated from V6 to V7, set this property so

that RFH2 headers are no longer used. After

migration this property is no longer relevant.

v V1 - To use a WebSphere MQ

Publish/Subscribe broker, or to use a broker of

WebSphere MQ Integrator, WebSphere MQ

Event Broker, WebSphere Business Integration

Event Broker, or WebSphere Business

Integration Message Broker in compatibility

mode. This is the default value if TRANSPORT

is set to BIND or CLIENT.

v V2 - To use a broker of WebSphere MQ

Integrator, WebSphere MQ Event Broker,

WebSphere Business Integration Event Broker,

or WebSphere Business Integration Message

Broker in native mode. This is the default value

if TRANSPORT is set to DIRECT or

DIRECTHTTP.

The version of the broker

being used

ccdtURL String v null

v A uniform resource locator (URL)

A URL that identifies the

name and location of the file

containing the client channel

definition table and specifies

how the file can be accessed

CCSID String v 819

v A coded character set identifier supported by

the Java virtual machine (JVM)

The coded character set

identifier for a connection

channel String v SYSTEM.DEF.SVRCONN

v The name of an MQI channel

The name of the MQI

channel to use

cleanupInterval1 int v 3 600 000

v A positive integer

The interval, in milliseconds,

between background runs of

the publish/subscribe

cleanup utility

32 WebSphere MQ: Using Java

Table 12. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

cleanupLevel1 String v SAFE

v NONE

v STRONG

v FORCE

v NONDUR

The cleanup level for a

broker based subscription

store

clientID String v null

v A client identifier

The client identifier for a

connection

cloneSupport String v DISABLED - Only one instance of a durable

topic subscriber can run at a time.

v ENABLED - Two or more instances of the same

durable topic subscriber can run

simultaneously, but each instance must run in a

separate Java virtual machine (JVM).

Whether two or more

instances of the same

durable topic subscriber can

run simultaneously

failIfQuiesce boolean v true

v false

Whether calls to certain

methods fail if the queue

manager is in a quiescing

state

headerCompression String v NONE

v SYSTEM - RLE message header compression is

performed.

A list of the techniques that

can be used for compressing

header data on a connection

hostName String v localhost

v A host name

v An IP address

The host name or IP address

of the system on which the

queue manager resides

localAddress String v null

v A string in the format:

[host_name][(low_port[,high_port])]

where host_name is a host name or IP address,

low_port and high_port are TCP port numbers,

and brackets denote an optional component

For a connection to a queue

manager, this property

specifies either or both of

the following:

v The local network

interface to be used

v The local port, or range of

local ports, to be used

messageCompression String v NONE

v A list of one or more of the following values

separated by blank characters:

 RLE

 ZLIBFAST

 ZLIBHIGH

A list of the techniques that

can be used for compressing

message data on a

connection

messageSelection1 String v CLIENT

v BROKER

Determines whether

message selection is done by

WebSphere MQ classes for

JMS or by the broker.

Message selection by the

broker is not supported

when brokerVersion has the

value 1.

password String v null

v A password

The default password to use

when creating a connection

to the queue manager

Chapter 2. WebSphere MQ classes for JMS 33

Table 12. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

pollingInterval1 int v 5000

v Any positive integer

If each message listener

within a session has no

suitable message on its

queue, this is the maximum

interval, in milliseconds, that

elapses before each message

listener tries again to get a

message from its queue. If it

frequently happens that no

suitable message is available

for any of the message

listeners in a session,

consider increasing the value

of this property. This

property is relevant only if

TRANSPORT has the value

BIND or CLIENT.

port int v 1414

v A TCP port number

The port on which the

queue manager listens

providerVersion string v unspecified

v A string in one of the following formats

– V.R.M.F

– V.R.M

– V.R

– V

where V, R, M and F are integer values greater

than or equal to zero.

The version, release,

modification level and fix

pack of the queue manager

to which the application

intends to connect.

pubAckInterval1 int v 25

v A positive integer

The number of messages

published by a publisher

before WebSphere MQ

classes for JMS requests an

acknowledgement from the

broker.

putAsyncAllowed int v QUEUE - Determine whether asynchronous

puts are allowed by referring to the queue

definition.

v TOPIC - Determine whether asynchronous puts

are allowed by referring to the topic definition.

v DESTINATION - Determine whether

asynchronous puts are allowed by referring to

the queue or topic definition.

v DISABLED - Asynchronous puts are not

allowed.

v ENABLED - Asynchronous puts are allowed.

Whether message producers

are allowed to use

asynchronous puts to send

messages to this destination

queueManager String v ″″ (empty string)

v A queue manager name

The name of the queue

manager to connect to

34 WebSphere MQ: Using Java

Table 12. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

readAheadAllowed int v DESTINATION - Determine whether read

ahead is allowed by referring to the queue or

topic definition.

v DISABLED - Read ahead is not allowed.

v ENABLED - Read ahead is allowed.

v QUEUE - Determine whether read ahead is

allowed by referring to the queue definition.

v TOPIC - Determine whether read ahead is

allowed by referring to the topic definition.

Whether message consumers

and queue browsers are

allowed to use read ahead to

get nonpersistent messages

from the destination into an

internal buffer before

receiving them

receiveExit String v null

v A string comprising one or more items

separated by commas, where each item is the

fully qualified name of a class that implements

the WebSphere MQ classes for Java interface,

MQReceiveExit

Identifies a channel receive

exit program, or a sequence

of receive exit programs to

be run in succession

receiveExitInit String v null

v A string comprising one or more items of user

data separated by commas

The user data that is passed

to channel receive exit

programs when they are

called

rescanInterval1 int v 5000

v Any positive integer

When a message consumer

in the point-to-point domain

uses a message selector to

select which messages it

wants to receive, WebSphere

MQ classes for JMS searches

the WebSphere MQ queue

for suitable messages in the

sequence determined by the

MsgDeliverySequence

attribute of the queue. When

WebSphere MQ classes for

JMS finds a suitable message

and delivers it to the

consumer, WebSphere MQ

classes for JMS resumes the

search for the next suitable

message from its current

position in the queue.

WebSphere MQ classes for

JMS continues to search the

queue in this way until it

reaches the end of the

queue, or until the interval

of time in milliseconds, as

determined by the value of

this property, has expired. In

each case, WebSphere MQ

classes for JMS returns to

the beginning of the queue

to continue its search, and a

new time interval

commences.

securityExit String v null

v The fully qualified name of a class that

implements the WebSphere MQ classes for Java

interface, MQSecurityExit

Identifies a channel security

exit program

Chapter 2. WebSphere MQ classes for JMS 35

Table 12. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

securityExitInit String v null

v A string of user data

The user data that is passed

to a channel security exit

program when it is called

sendCheckCount int v 0

v Any positive integer

The number of send calls to

allow between checking for

asynchronous put errors,

within a single

non-transacted JMS session

sendExit String v null

v A string comprising one or more items

separated by commas, where each item is the

fully qualified name of a class that implements

the WebSphere MQ classes for Java interface,

MQSendExit

Identifies a channel send

exit program, or a sequence

of send exit programs to be

run in succession

sendExitInit String v null

v A string comprising one or more items of user

data separated by commas

The user data that is passed

to channel send exit

programs when they are

called

shareConvAllowed boolean v false - A client connection cannot share its

socket.

v true - A client connection can share its socket.

Whether a client connection

can share its socket with

other top-level JMS

connections from the same

process to the same queue

manager, if the channel

definitions match

sparseSubscriptions1 boolean v false - Subscriptions receive frequent matching

messages.

v true - Subscriptions receive infrequent

matching messages. This value requires that

the subscription queue can be opened for

browse.

Controls the message

retrieval policy of a

TopicSubscriber object

sslCertStores String v null

v A string of one or more LDAP URLs separated

by blanks. Each LDAP URL has the format:

ldap://host_name[:port]

where host_name is a host name or IP address,

port is a TCP port number, and brackets denote

an optional component.

The Lightweight Directory

Access Protocol (LDAP)

servers that hold certificate

revocation lists (CRLs) for

use on an SSL connection

sslCipherSuite String v null

v The name of a CipherSuite

The CipherSuite to use for

an SSL connection

sslFipsRequired2 boolean v false

v true

Whether an SSL connection

must use a CipherSuite that

is supported by the IBM

Java JSSE FIPS provider

(IBMJSSEFIPS)

sslPeerName String v null

v A template for distinguished names

For an SSL connection, a

template that is used to

check the distinguished

name in the digital

certificate provided by the

queue manager

36 WebSphere MQ: Using Java

Table 12. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

sslResetCount int v 0

v An integer in the range 0 to 999 999 999

The total number bytes sent

and received by an SSL

connection before the secret

keys used by SSL are

renegotiated

sslSocketFactory String A string representing the fully-qualified class

name of a class providing an implementation of

the javax.net.ssl.SSLSocketFactory interface,

optionally including an argument to be passed to

the constructor method, enclosed in parentheses.

Any connections established

in the scope of the

administered destination

object use sockets obtained

from this implementation of

the SSLSocketFactory

interface.

statusRefreshInterval1 int v 60000

v Any positive integer

The interval, in milliseconds,

between refreshes of the

long running transaction

that detects when a

subscriber loses its

connection to the queue

manager. This property is

relevant only if SUBSTORE

has the value QUEUE.

subscriptionStore1 String v BROKER

v MIGRATE

v QUEUE

Determines where

WebSphere MQ classes for

JMS stores persistent data

about active subscriptions

targetClientMatching boolean v true

v false

Whether a reply message,

sent to the queue identified

by the JMSReplyTo header

field of an incoming

message, has an MQRFH2

header only if the incoming

message has an MQRFH2

header

temporaryModel String v SYSTEM.DEFAULT.MODEL.QUEUE

v Any string

The name of the model

queue from which JMS

temporary queues are

created

tempQPrefix String v ″″ (empty string)

v A prefix that can be used to form the name of a

WebSphere MQ dynamic queue. The rules for

forming the prefix are the same as those for

forming the contents of the DynamicQName field

in a WebSphere MQ object descriptor, structure

MQOD, but the last non blank character must

be an asterisk (*). If the value of the property is

the empty string, WebSphere MQ classes for

JMS uses the value AMQ.* when creating a

dynamic queue.

The prefix that is used to

form the name of a

WebSphere MQ dynamic

queue.

Chapter 2. WebSphere MQ classes for JMS 37

Table 12. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

tempTopicPrefix String Any non-null string consisting only of valid

characters for a WebSphere MQ topic string

When creating temporary

topics, JMS will generate a

topic string of the form

“TEMP/
TEMPTOPICPREFIX/
unique_id”, or if this

property is left with the

default value, just

“TEMP/unique_id”.

Specifying a non-empty

TEMPTOPICPREFIX allows

specific model queues to be

defined for creating the

managed queues for

subscribers to temporary

topics created under this

connection.

transportType String v CLIENT

v BINDINGS

v BINDINGS_THEN_CLIENT

Whether a connection to a

queue manager uses client

mode or bindings mode.If

the value

BINDINGS_THEN_CLIENT

is specified, the resource

adapter first tries to make a

connection in bindings

mode, and if this fails then

tries to make a client mode

connection.

username String v null

v A user name

The default user name to

use when creating a

connection to a queue

manager

wildcardFormat int v CHAR- Recognizes character wildcards only, as

used in broker version 1

v TOPIC - Recognizes topic level wildcards only,

as used in broker version 2

Which version of wildcard

syntax is to be used

Notes:

1. This property can be used with Version 7.0 of WebSphere MQ classes for JMS but has no effect for an

application connected to a Version 7.0 queue manager unless the providerVersion property is set to a version

number less than 7.

2. For important information about using the sslFipsRequired property, see “Limitations of the WebSphere MQ

resource adapter” on page 41.

The following example shows a typical set of properties of a ConnectionFactory

object:

channel: SYSTEM.DEF.SVRCONN

hostName: 192.168.0.42

port: 1414

queueManager: ExampleQM

transportType: CLIENT

Table 13 on page 39 lists the properties that are common to a Queue object and a

Topic object.

38 WebSphere MQ: Using Java

Table 13. Properties that are common to a Queue object and a Topic object

Name of property Type Valid values (default value in bold) Description

CCSID String v 1208

v A coded character set identifier supported

by the Java virtual machine (JVM)

The coded character set

identifier for the destination

encoding String v NATIVE

v A string of three characters:

– The first character specifies the

representation of binary integers:

- N denotes normal encoding.

- R denotes reverse encoding.
– The second character specifies the

representation of packed decimal integers:

- N denotes normal encoding.

- R denotes reverse encoding.
– The third character specifies the

representation of floating point numbers:

- N denotes standard IEEE encoding.

- R denotes reverse IEEE encoding.

- 3 denotes zSeries encoding.

NATIVE is equivalent to the string NNN.

The representation of binary

integers, packed decimal

integers, and floating point

numbers for the destination.

expiry String v APP - The expiry time of a message is

determined by the message producer.

v UNLIM - A message never expires.

v 0 - A message never expires.

v A positive integer representing the expiry

time of a message in milliseconds.

The expiry time of a message

sent to the destination

failIfQuiesce String v true

v false

Whether an attempt to access

the destination fails if the

queue manager is in a

quiescing state

persistence String v APP - The persistence of a message is

determined by the message producer.

v QDEF - The persistence of a message is

determined by the DefPersistence attribute

of the WebSphere MQ queue.

v PERS - A message is persistent.

v NON - A message is nonpersistent.

v HIGH - The persistence of a message is

determined by the

NonPersistentMessageClass attribute of the

WebSphere MQ queue according to the

explanation in “JMS persistent messages” on

page 136.

The persistence of a message

sent to the destination

priority String v APP - The priority of a message is

determined by the message producer.

v QDEF - The priority of a message is

determined by the DefPriority attribute of

the WebSphere MQ queue.

v An integer in the range 0, lowest priority, to

9, highest priority.

The priority of a message sent

to the destination

Chapter 2. WebSphere MQ classes for JMS 39

Table 13. Properties that are common to a Queue object and a Topic object (continued)

Name of property Type Valid values (default value in bold) Description

targetClient String v JMS - The target of a message is a JMS

application.

v MQ - The target of a message is a non-JMS

WebSphere MQ application.

Whether the target of a

message sent to the destination

is a JMS application. A

message whose target is a JMS

application contains an

MQRFH2 header.

Table 14 lists the properties that are specific to a Queue object.

 Table 14. Properties that are specific to a Queue object

Name of property Type Valid values (default value in bold) Description

baseQueueManagerName String v ″″ (empty string)

v A queue manager name

The name of the queue manager that

owns the underlying WebSphere MQ

queue

baseQueueName String v ″″ (empty string)

v A queue name

The name of the underlying WebSphere

MQ queue

Table 15 lists the properties that are specific to a Topic object.

 Table 15. Properties that are specific to a Topic object

Name of property Type Valid values (default value in bold) Description

baseTopicName String v ″″ (empty string)

v A topic name

The name of the underlying

topic

brokerCCDurSubQueue1 String v

 SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

v A queue name

The name of the queue from

which a connection consumer

receives durable subscription

messages

brokerDurSubQueue1 String v SYSTEM.JMS.D.SUBSCRIBER.QUEUE

v A queue name

The name of the queue from

which a durable topic

subscriber receives messages

brokerPubQueue1 String v Not set

v A queue name

The name of the queue where

published messages are sent

(the stream queue). The value

of this property overrides the

value of the brokerPubQueue

property of the

ConnectionFactory object.

However, if you do not set the

value of this property, the

value of the brokerPubQueue

property of the

ConnectionFactory object is

used instead.

brokerPubQueueManager1 String v ″″ (empty string)

v A queue manager name

The name of the queue

manager that owns the queue

where messages published on

the topic are sent

40 WebSphere MQ: Using Java

Table 15. Properties that are specific to a Topic object (continued)

Name of property Type Valid values (default value in bold) Description

brokerVersion1 String v Not set

v 1

v 2

The version of the broker being

used. The value of this

property overrides the value of

the brokerVersion property of

the ConnectionFactory object.

However, if you do not set the

value of this property, the

value of the brokerVersion

property of the

ConnectionFactory object is

used instead.

Note:

1. This property can be used with Version 7.0 of WebSphere MQ classes for JMS but has no effect for an

application connected to a Version 7.0 queue manager unless the providerVersion property of the

ConnectionFactory object is set to a version number less than 7.

The following example shows a set of properties of a Queue object:

expiry: UNLIM

persistence: QDEF

baseQueueManagerName: ExampleQM

baseQueueName: SYSTEM.DEFAULT.LOCAL.QUEUE

The following example shows a set of properties of a Topic object:

expiry: UNLIM

persistence: NON

baseTopicName: myTestTopic

Limitations of the WebSphere MQ resource adapter

When you use the WebSphere MQ resource adapter, some features of WebSphere

MQ are unavailable or limited.

The WebSphere MQ resource adapter has the following limitations:

v The WebSphere MQ resource adapter is supported on all WebSphere MQ

platforms, except z/OS.

v The WebSphere MQ resource adapter does not support real-time connections to

a broker. It supports only connections to a WebSphere MQ queue manager in

client or bindings mode.

v The WebSphere MQ resource adapter does not support channel exit programs

that are written in languages other than Java.

v While an application server is running, the value of the sslFipsRequired property

must be true for all JCA resources or false for all JCA resources. This is a

requirement even if the JCA resources are not used concurrently. If the

sslFipsRequired property has different values for different JCA resources,

WebSphere MQ issues the reason code

MQRC_UNSUPPORTED_CIPHER_SUITE, even if an SSL connection is not being

used.

v You cannot specify more than one key store for an application server. If

connections are made to more than one queue manager, all the connections must

use the same key store.

v If you use a client channel definition table (CCDT) with more than one suitable

client connection channel definition, in the event of a failure the resource

adapter might select a different channel definition and therefore a different

Chapter 2. WebSphere MQ classes for JMS 41

queue manager from the CCDT, which would cause problems for transaction

recovery. The resource adapter does not take any action to prevent such a

configuration from being used, and it is your responsibility to avoid

configurations that may cause problems for transaction recovery.

Using WebSphere MQ classes for JMS

This topic describes how to run WebSphere MQ classes for JMS applications. It

tells you how to configure WebSphere MQ, and how to run the installation

verification test programs. It describes the scripts provided with WebSphere MQ

classes for JMS and the support for OSGi, and provides guidance on solving

problems.

Post installation setup for WebSphere MQ classes for JMS

applications

This topic tells you what authorities WebSphere MQ classes for JMS applications

need in order to access the resources of a queue manager. It also introduces

connection modes and describes how to configure a queue manager so that

applications can connect in client mode.

Remember to check the WebSphere MQ readme file. It might contain

information that supersedes the information in this topic.

Queues that require authorization for non-privileged users

Non-privileged users need authorization granted to access the queues used by

JMS. For details about access control in WebSphere MQ, see the chapter about

protecting WebSphere MQ objects in the WebSphere MQ System Administration

Guide.

For the point-to-point domain, the following authorities are required:

v Queues that are used by MessageProducer objects need put authority.

v Queues that are used by MessageConsumer and QueueBrowser objects need get,

inq, and browse authorities.

v The QueueSession.createTemporaryQueue() method needs access to the model

queue specified by the TEMPMODEL property of the QueueConnectionFactory

object. By default this model queue is SYSTEM.DEFAULT.MODEL.QUEUE.

For the publish/subscribe domain, the following queues are used if WebSphere

MQ classes for JMS is in WebSphere MQ messaging provider migration mode:

v SYSTEM.JMS.ADMIN.QUEUE

v SYSTEM.JMS.REPORT.QUEUE

v SYSTEM.JMS.MODEL.QUEUE

v SYSTEM.JMS.PS.STATUS.QUEUE

v SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

v SYSTEM.JMS.D.SUBSCRIBER.QUEUE

v SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

v SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

v SYSTEM.BROKER.CONTROL.QUEUE

42 WebSphere MQ: Using Java

Additionally, if WebSphere MQ classes for JMS is in this mode, any application

that publishes messages needs access to the stream queue specified by the

TopicConnectionFactory or Topic object. By default, this queue is

SYSTEM.BROKER.DEFAULT.STREAM.

If you use ConnectionConsumer, additional authorization might be needed.

Queues to be read by the ConnectionConsumer must have get, inq and browse

authorities. The system dead-letter queue, and any backout-requeue queue or

report queue used by the ConnectionConsumer must have put and passall

authorities.

Connection modes for WebSphere MQ classes for JMS

A WebSphere MQ classes for JMS application can connect to a queue manager in

either client or bindings mode. In client mode, WebSphere MQ classes for JMS

connects to the queue manager over TCP/IP. In bindings mode, WebSphere MQ

classes for JMS connects directly to the queue manager using the Java Native

Interface (JNI).

An application running in WebSphere Application Server on z/OS can connect to a

queue manager in either bindings or client mode, but an application running in

any other environment on z/OS can connect to a queue manager only in bindings

mode. An application running on any other platform can connect to a queue

manager in either bindings or client mode.

The following sections describe each of the connection modes in more detail.

Client mode

To connect to a queue manager in client mode, a WebSphere MQ classes for JMS

application can run on the same system on which the queue manager is running,

or on a different system. In each case, WebSphere MQ classes for JMS connects to

the queue manager over TCP/IP.

Bindings mode

To connect to a queue manager in bindings mode, a WebSphere MQ classes for

JMS application must run on the same system on which the queue manager is

running. WebSphere MQ classes for JMS connects directly to the queue manager

using the Java Native Interface (JNI). In some environments, connecting in

bindings mode can provide better performance than connecting in client mode.

Configuring your queue manager so that WebSphere MQ classes

for JMS applications can connect in client mode

To configure your queue manager so that WebSphere MQ classes for JMS

applications can connect in client mode, you must create a server connection

channel definition and start a listener.

On z/OS, the Client Attachment feature must be installed.

Creating a server connection channel definition

On all platforms, you can use the MQSC command DEFINE CHANNEL to create a

server connection channel definition. See the following example:

DEFINE CHANNEL(JAVA.CHANNEL) CHLTYPE(SVRCONN) TRPTYPE(TCP)

Chapter 2. WebSphere MQ classes for JMS 43

On i5/OS, you can use the CL command CRTMQMCHL instead, as in the

following example:

CRTMQMCHL CHLNAME(JAVA.CHANNEL) CHLTYPE(*SVRCN)

 TRPTYPE(*TCP)

 MQMNAME(QMGRNAME)

In this command, QMGRNAME is the name of your queue manager.

You can also create a server connection channel definition using WebSphere MQ

Explorer, which runs on Linux and Windows, or the operations and control panels

on z/OS.

The name of the channel (JAVA.CHANNEL in the previous examples) must be the

same as the channel name specified by the CHANNEL property of the connection

factory that your application uses to connect to the queue manager. The default

value of the CHANNEL property is SYSTEM.DEF.SVRCONN.

Starting a listener

You must start a listener for your queue manager if one is not already started.

On all platforms, you can use the MQSC command START LISTENER to start a

listener but, except on z/OS, you must first create a listener object by using the

MQSC command DEFINE LISTENER. See the following example:

DEFINE LISTENER(LISTENER.TCP) TRPTYPE(TCP) PORT(1414)

START LISTENER(LISTENER.TCP)

On z/OS, you use only the START LISTENER command, as in the following

example, but note that the channel initiator address space must be started before

you can start a listener:

START LISTENER TRPTYPE(TCP) PORT(1414)

On i5/OS, you can also use the CL command STRMQMLSR to start a listener, as

in the following example:

STRMQMLSR PORT(1414) MQMNAME(QMGRNAME)

In this command, QMGRNAME is the name of your queue manager.

On UNIX systems and Windows, you can also use the control command runmqlsr

to start a listener, as in the following example:

runmqlsr -t tcp -p 1414 -m QMgrName

In this command, QMgrName is the name of your queue manager.

You can also start a listener using WebSphere MQ Explorer, which runs on Linux

and Windows, or the operations and control panels on z/OS.

The number of the port on which the listener is listening must be the same as the

port number specified by the PORT property of the connection factory that your

application uses to connect to the queue manager. The default value of the PORT

property is 1414.

44 WebSphere MQ: Using Java

The point-to-point installation verification test for WebSphere

MQ classes for JMS

A point-to-point installation verification test (IVT) program is supplied with

WebSphere MQ classes for JMS. The program connects to a queue manager in

either bindings or client mode, sends a message to the queue called

SYSTEM.DEFAULT.LOCAL.QUEUE, and then receives the message from the

queue. The program can create and configure all the objects that it requires

dynamically at run time, or it can use JNDI to retrieve administered objects from a

directory service.

Run the installation verification test without using JNDI first because the test is self

contained and does not require the use of a directory service. For a description of

administered objects, see “Object types” on page 167.

The point-to-point installation verification test without using JNDI

In this test, the IVT program creates and configures all the objects that it requires

dynamically at run time and does not use JNDI.

A script is provided to run the IVT program. The script is called IVTRun on UNIX

systems and IVTRun.bat on Windows, and is in the bin subdirectory of the

WebSphere MQ classes for JMS installation directory.

To run the test in bindings mode, enter the following command:

IVTRun -nojndi [-m qmgr] [-v providerVersion] [-t]

To run the test in client mode, enter the following command:

IVTRun -nojndi -client -m qmgr -host hostname [-port port] [-channel channel]

 [-v providerVersion] [-ccsid ccsid] [-t]

The parameters on the commands have the following meanings:

-m qmgr

The name of the queue manager to which the IVT program connects. If

you run the test in bindings mode and omit this parameter, the IVT

program connects to the default queue manager.

-host hostname

The host name or IP address of the system on which the queue manager is

running.

-port port

The number of the port on which the listener of the queue manager is

listening. The default value is 1414.

-channel channel

The name of the MQI channel that the IVT program uses to connect to the

queue manager. The default value is SYSTEM.DEF.SVRCONN.

-v providerVersion

The release level of the queue manager to which the IVT program expects

to connect.

 This parameter is used to set the PROVIDERVERSION property of an

MQQueueConnectionFactory object and has the same valid values as those

of the PROVIDERVERSION property. For more information about this

Chapter 2. WebSphere MQ classes for JMS 45

parameter therefore, including its valid values, see the description of the

PROVIDERVERSION property in “Properties of WebSphere MQ classes for

JMS objects” on page 171.

The default value is unspecified.

-ccsid ccsid

The identifier (CCSID) of the coded character set, or code page, to be used

by the connection. The default value is 819.

-t Tracing is switched on. By default, tracing is switched off.

A successful test produces output similar to the following sample output:

5724-H72, 5655-R36, 5724-L26, 5655-L82 (c) Copyright IBM Corp. 2008. All Rights Reserved.

Websphere MQ classes for Java(tm) Message Service 7.0

Installation Verification Test

Creating a QueueConnectionFactory

Creating a Connection

Creating a Session

Creating a Queue

Creating a QueueSender

Creating a QueueReceiver

Creating a TextMessage

Sending the message to SYSTEM.DEFAULT.LOCAL.QUEUE

Reading the message back again

Got message

 JMSMessage class: jms_text

 JMSType: null

 JMSDeliveryMode: 2

 JMSExpiration: 0

 JMSPriority: 4

 JMSMessageID: ID:414d5120514d5f6d627720202020202001edb14620005e03

 JMSTimestamp: 1187170264000

 JMSCorrelationID: null

 JMSDestination: queue:///SYSTEM.DEFAULT.LOCAL.QUEUE

 JMSReplyTo: null

 JMSRedelivered: false

 JMSXUserID: mwhite

 JMS_IBM_Encoding: 273

 JMS_IBM_PutApplType: 28

 JMSXAppID: WebSphere MQ Client for Java

 JMSXDeliveryCount: 1

 JMS_IBM_PutDate: 20070815

 JMS_IBM_PutTime: 09310400

 JMS_IBM_Format: MQSTR

 JMS_IBM_MsgType: 8

A simple text message from the MQJMSIVT

Reply string equals original string

Closing QueueReceiver

Closing QueueSender

Closing Session

Closing Connection

IVT completed OK

IVT finished

The point-to-point installation verification test using JNDI

In this test, the IVT program uses JNDI to retrieve administered objects from a

directory service.

Before you can run the test, you must configure a directory service that is based on

a Lightweight Directory Access Protocol (LDAP) server or the local file system. You

must also configure the WebSphere MQ JMS administration tool so that it can use

the directory service to store administered objects. For more information about

46 WebSphere MQ: Using Java

these prerequisites, see “Prerequisites for WebSphere MQ classes for JMS” on page

7. For information about how to configure the WebSphere MQ JMS administration

tool, see “Configuration” on page 164.

The IVT program must be able to use JNDI to retrieve an

MQQueueConnectionFactory object and an MQQueue object from the directory

service. A script is provided to create these administered objects for you. The script

is called IVTSetup on UNIX systems and IVTSetup.bat on Windows, and is in the

bin subdirectory of the WebSphere MQ classes for JMS installation directory. To

run the script, enter the following command:

IVTSetup

The script invokes the WebSphere MQ JMS administration tool to create the

administered objects.

The MQQueueConnectionFactory object is bound with the name ivtQCF and is

created with the default values for all its properties, which means that the IVT

program runs in bindings mode and connects to the default queue manager. If you

want the IVT program to run in client mode, or connect to a queue manager other

than the default queue manager, you must use the WebSphere MQ JMS

administration tool or WebSphere MQ Explorer to change the appropriate

properties of the MQQueueConnectionFactory object. For information about how

to use the WebSphere MQ JMS administration tool, see “Using the WebSphere MQ

JMS administration tool” on page 163. For information about how to use

WebSphere MQ Explorer, see the help provided with WebSphere MQ Explorer.

The MQQueue object is bound with the name ivtQ and is created with the default

values for all its properties, except for the QUEUE property, which has the value

SYSTEM.DEFAULT.LOCAL.QUEUE.

When you have created the administered objects, you can run the IVT program. To

run the test using JNDI, enter the following command:

IVTRun -url "providerURL" [-icf initCtxFact] [-t]

The parameters on the command have the following meanings:

-url ″providerURL″

The uniform resource locator (URL) of the directory service. The URL can

have one of the following formats:

v ldap://hostname/contextName, for a directory service based on an LDAP

server

v file:/directoryPath, for a directory service based on the local file

system

Note that you must enclose the URL in quotation marks (″).

-icf initCtxFact

The class name of the initial context factory, which must be one of the

following values:

v com.sun.jndi.ldap.LdapCtxFactory, for a directory service based on an

LDAP server. This is the default value.

v com.sun.jndi.fscontext.RefFSContextFactory, for a directory service

based on the local file system.

-t Tracing is switched on. By default, tracing is switched off.

Chapter 2. WebSphere MQ classes for JMS 47

A successful test produces output similar to that for a successful test without using

JNDI. The main difference is that the output indicates that the test is using JNDI to

retrieve an MQQueueConnectionFactory object and an MQQueue object.

Although not strictly necessary, it is good practice to tidy up after the test by

deleting the administered objects created by the IVTSetup script. A script is

provided for this purpose. The script is called IVTTidy on UNIX systems and

IVTTidy.bat on Windows, and is in the bin subdirectory of the WebSphere MQ

classes for JMS installation directory.

Problem determination for the point-to-point installation

verification test

The installation verification test might fail for the following reasons:

v If the IVT program writes a message indicating that it cannot find a class, check

that your class path is set correctly, as described in “Environment variables used

by WebSphere MQ classes for JMS” on page 10.

v The test might fail with the following message:

Failed to connect to queue manager ’qmgr’ with connection mode ’connMode’

and host name ’hostname’

and an associated reason code of 2059. The variables in the message have the

following meanings:

qmgr The name of the queue manager to which the IVT program is trying to

connect. This message insert is blank if the IVT program is trying to

connect to the default queue manager in bindings mode.

connMode

The connection mode, which is either Bindings or Client.

hostname

The host name or IP address of the system on which the queue manager

is running.

This message means that the queue manager to which the IVT program is trying

to connect is not available. Check that the queue manager is running and, if the

IVT program is trying to connect to the default queue manager, make sure that

the queue manager is defined as the default queue manager for your system.

v The test might fail with the following message:

Failed to open MQ queue ’SYSTEM.DEFAULT.LOCAL.QUEUE’

This message means that the queue SYSTEM.DEFAULT.LOCAL.QUEUE does

not exist on the queue manager to which the IVT program is connected.

Alternatively, if the queue does exist, the IVT program cannot open the queue

because it is not enabled for putting and getting messages. Check that the queue

exists and that it is enabled for putting and getting messages.

v The test might fail with the following message:

Unable to bind to object

This message means that there is a connection to the LDAP server, but that the

LDAP server is not correctly configured. Either the LDAP server is not

configured for storing Java objects, or the permissions on the objects or the suffix

are not correct. For more help in this situation, see the documentation for your

LDAP server.

48 WebSphere MQ: Using Java

The publish/subscribe installation verification test for

WebSphere MQ classes for JMS

A publish/subscribe installation verification test (IVT) program is supplied with

WebSphere MQ classes for JMS. The program connects to a queue manager in

either bindings or client mode, subscribes to a topic, publishes a message on the

topic, and then receives the message that it has just published. The program can

create and configure all the objects that it requires dynamically at run time, or it

can use JNDI to retrieve administered objects from a directory service.

Run the installation verification test without using JNDI first because the test is self

contained and does not require the use of a directory service. For a description of

administered objects, see “Object types” on page 167.

The publish/subscribe installation verification test without using

JNDI

In this test, the IVT program creates and configures all the objects that it requires

dynamically at run time and does not use JNDI.

A script is provided to run the IVT program. The script is called PSIVTRun on

UNIX systems and PSIVTRun.bat on Windows, and is in the bin subdirectory of

the WebSphere MQ classes for JMS installation directory.

To run the test in bindings mode, enter the following command:

PSIVTRun -nojndi [-m qmgr] [-bqm brokerQmgr] [-v providerVersion] [-t]

To run the test in client mode, enter the following command:

PSIVTRun -nojndi -client -m qmgr -host hostname [-port port] [-channel channel]

 [-bqm brokerQmgr] [-v providerVersion] [-ccsid ccsid] [-t]

The parameters on the commands have the following meanings:

-m qmgr

The name of the queue manager to which the IVT program connects. If

you run the test in bindings mode and omit this parameter, the IVT

program connects to the default queue manager.

-host hostname

The host name or IP address of the system on which the queue manager is

running.

-port port

The number of the port on which the listener of the queue manager is

listening. The default value is 1414.

-channel channel

The name of the MQI channel that the IVT program uses to connect to the

queue manager. The default value is SYSTEM.DEF.SVRCONN.

-bqm brokerQmgr

The name of the queue manager on which the broker is running. The

default value is the name of the queue manager to which the IVT program

connects.

 This parameter is relevant only if the -v parameter specifies a queue

manager version number less than 7 and you are using WebSphere Event

Broker or WebSphere Message Broker as the publish/subscribe broker.

Chapter 2. WebSphere MQ classes for JMS 49

-v providerVersion

The release level of the queue manager to which the IVT program expects

to connect.

 This parameter is used to set the PROVIDERVERSION property of an

MQTopicConnectionFactory object and has the same valid values as those

of the PROVIDERVERSION property. For more information about this

parameter therefore, including its valid values, see the description of the

PROVIDERVERSION property in “Properties of WebSphere MQ classes for

JMS objects” on page 171.

The default value is unspecified.

-ccsid ccsid

The identifier (CCSID) of the coded character set, or code page, to be used

by the connection. The default value is 819.

-t Tracing is switched on. By default, tracing is switched off.

A successful test produces output similar to the following sample output:

5724-H72, 5655-R36, 5724-L26, 5655-L82 (c) Copyright IBM Corp. 2008. All Rights Reserved.

Websphere MQ classes for Java(tm) Message Service 7.0

Publish/Subscribe Installation Verification Test

Creating a TopicConnectionFactory

Creating a Connection

Creating a Session

Creating a Topic

Creating a TopicPublisher

Creating a TopicSubscriber

Creating a TextMessage

Adding text

Publishing the message to topic://MQJMS/PSIVT/Information

Waiting for a message to arrive [5 secs max]...

Got message:

 JMSMessage class: jms_text

 JMSType: null

 JMSDeliveryMode: 2

 JMSExpiration: 0

 JMSPriority: 4

 JMSMessageID: ID:414d5120514d5f6d627720202020202001edb14620006706

 JMSTimestamp: 1187182520203

 JMSCorrelationID: ID:414d5120514d5f6d627720202020202001edb14620006704

 JMSDestination: topic://MQJMS/PSIVT/Information

 JMSReplyTo: null

 JMSRedelivered: false

 JMSXUserID: mwhite

 JMS_IBM_Encoding: 273

 JMS_IBM_PutApplType: 26

 JMSXAppID: QM_mbw

 JMSXDeliveryCount: 1

 JMS_IBM_PutDate: 20070815

 JMS_IBM_ConnectionID: 414D5143514D5F6D627720202020202001EDB14620006601

 JMS_IBM_PutTime: 12552020

 JMS_IBM_Format: MQSTR

 JMS_IBM_MsgType: 8

A simple text message from the MQJMSPSIVT program

Reply string equals original string

Closing TopicSubscriber

Closing TopicPublisher

Closing Session

Closing Connection

PSIVT finished

50 WebSphere MQ: Using Java

The publish/subscribe installation verification test using JNDI

In this test, the IVT program uses JNDI to retrieve administered objects from a

directory service.

Before you can run the test, you must configure a directory service that is based on

a Lightweight Directory Access Protocol (LDAP) server or the local file system. You

must also configure the WebSphere MQ JMS administration tool so that it can use

the directory service to store administered objects. For more information about

these prerequisites, see “Prerequisites for WebSphere MQ classes for JMS” on page

7. For information about how to configure the WebSphere MQ JMS administration

tool, see “Configuration” on page 164.

The IVT program must be able to use JNDI to retrieve an

MQTopicConnectionFactory object and an MQTopic object from the directory

service. A script is provided to create these administered objects for you. The script

is called IVTSetup on UNIX systems and IVTSetup.bat on Windows, and is in the

bin subdirectory of the WebSphere MQ classes for JMS installation directory. To

run the script, enter the following command:

IVTSetup

The script invokes the WebSphere MQ JMS administration tool to create the

administered objects.

The MQTopicConnectionFactory object is bound with the name ivtTCF and is

created with the default values for all its properties, which means that the IVT

program runs in bindings mode, connects to the default queue manager, and uses

the embedded publish/subscribe function. If you want the IVT program to run in

client mode, connect to a queue manager other than the default queue manager, or

use WebSphere Event Broker or WebSphere Message Broker instead of the

embedded publish/subscribe function, you must use the WebSphere MQ JMS

administration tool or WebSphere MQ Explorer to change the appropriate

properties of the MQTopicConnectionFactory object. For information about how to

use the WebSphere MQ JMS administration tool, see “Using the WebSphere MQ

JMS administration tool” on page 163. For information about how to use

WebSphere MQ Explorer, see the help provided with WebSphere MQ Explorer.

The MQTopic object is bound with the name ivtT and is created with the default

values for all its properties, except for the TOPIC property, which has the value

MQJMS/PSIVT/Information.

When you have created the administered objects, you can run the IVT program. To

run the test using JNDI, enter the following command:

PSIVTRun -url "providerURL" [-icf initCtxFact] [-t]

The parameters on the command have the following meanings:

-url ″providerURL″

The uniform resource locator (URL) of the directory service. The URL can

have one of the following formats:

v ldap://hostname/contextName, for a directory service based on an LDAP

server

v file:/directoryPath, for a directory service based on the local file

system

Note that you must enclose the URL in quotation marks (″).

Chapter 2. WebSphere MQ classes for JMS 51

-icf initCtxFact

The class name of the initial context factory, which must be one of the

following values:

v com.sun.jndi.ldap.LdapCtxFactory, for a directory service based on an

LDAP server. This is the default value.

v com.sun.jndi.fscontext.RefFSContextFactory, for a directory service

based on the local file system.

-t Tracing is switched on. By default, tracing is switched off.

A successful test produces output similar to that for a successful test without using

JNDI. The main difference is that the output indicates that the test is using JNDI to

retrieve an MQTopicConnectionFactory object and an MQTopic object.

Although not strictly necessary, it is good practice to tidy up after the test by

deleting the administered objects created by the IVTSetup script. A script is

provided for this purpose. The script is called IVTTidy on UNIX systems and

IVTTidy.bat on Windows, and is in the bin subdirectory of the WebSphere MQ

classes for JMS installation directory.

Problem determination for the publish/subscribe installation

verification test

The installation verification test might fail for the following reasons:

v If the IVT program writes a message indicating that it cannot find a class, check

that your class path is set correctly, as described in “Environment variables used

by WebSphere MQ classes for JMS” on page 10.

v The test might fail with the following message:

Failed to connect to queue manager ’qmgr’ with

connection mode ’connMode’ and host name ’hostname’

and an associated reason code of 2059. The variables in the message have the

following meanings:

qmgr The name of the queue manager to which the IVT program is trying to

connect. This message insert is blank if the IVT program is trying to

connect to the default queue manager in bindings mode.

connMode

The connection mode, which is either Bindings or Client.

hostname

The host name or IP address of the system on which the queue manager

is running.

This message means that the queue manager to which the IVT program is trying

to connect is not available. Check that the queue manager is running and, if the

IVT program is trying to connect to the default queue manager, make sure that

the queue manager is defined as the default queue manager for your system.

v The test might fail with the following message:

Unable to bind to object

This message means that there is a connection to the LDAP server, but that the

LDAP server is not correctly configured. Either the LDAP server is not

configured for storing Java objects, or the permissions on the objects or the suffix

are not correct. For more help in this situation, see the documentation for your

LDAP server.

52 WebSphere MQ: Using Java

The installation verification test program for the WebSphere

MQ resource adapter

The installation verification test (IVT) program is supplied as an enterprise archive

(EAR) file called wmq.jmsra.ivt.ear. This file is installed with WebSphere MQ

classes for JMS in the same directory as the WebSphere MQ resource adapter RAR

file, wmq.jmsra.rar. For information about where these files are installed, see

“Installation of the WebSphere MQ resource adapter” on page 16.

You must deploy the IVT program on your application server. The IVT program

runs as a servlet and tests that a message can be sent to, and received from, a

WebSphere MQ classes for JMS Queue or Topic object. Optionally, you can use the

IVT program to verify that the WebSphere MQ resource adapter has been correctly

configured to support distributed transactions.

Before you can run the IVT program, you must define the properties of a

ConnectionFactory object and a Queue or Topic object as JCA resources, and ensure

that your application server creates JMS objects from these definitions and binds

them into a JNDI namespace. You can choose the properties of the objects, but the

following set of properties is a simple example:

ConnectionFactory object

channel: SYSTEM.DEF.SVRCONN

hostName: 192.168.0.42

port: 1414

queueManager: ExampleQM

transportType: CLIENT

Queue object

baseQueueManagerName: ExampleQM

baseQueueName: SYSTEM.DEFAULT.LOCAL.QUEUE

By default, the IVT program expects a ConnectionFactory object to be bound in the

JNDI namespace with the name IVTCF and a Queue object to be bound with the

name IVTQueue. You can use different names, and you can use a Topic object

instead of a Queue object as a destination. But if you do, you must enter the

names of the objects on the initial page of the IVT program.

After you have deployed the IVT program, and the application server has created

the JMS objects and bound them into the JNDI namespace, you can start the IVT

program by entering a URL in the following format into your Web browser:

http://app_server_host:port/WMQ_IVT/

where app_server_host is the IP address or host name of the system on which your

application server is running, and port is the number of the TCP port on which the

application server is listening. Here is an example:

http://localhost:9080/WMQ_IVT/

Figure 1 on page 54 shows the initial page of the IVT program.

Chapter 2. WebSphere MQ classes for JMS 53

On the initial page, the Connection Factory field already contains the name IVTCF

and the Destination field already contains the name IVTQueue. If you want to run

the IVT program using a ConnnectionFactory object and a Queue or Topic object

that are bound in the JNDI namespace with different names, you must enter the

JNDI names of the objects into these fields, replacing the existing contents.

If you want to verify that the WebSphere MQ resource adapter can support

distributed transactions, select the Transactional Test check box.

The Transactional EJB Name field specifies the JNDI name of the enterprise Java

bean (EJB) to be used for the transactional test. By default, the IVT program

expects the EJB to be bound with the name ejb/ejbs/WMQ_TransactedIVT, and

this name is the initial value of the field. However, application servers use different

naming conventions, and this name might not match the JNDI name used by your

application server. The IVT program attempts to use some common variations of

the default name but, if none of these variations are valid, the IVT program fails

with a javax.naming.NameNotFoundException exception. If this happens, you

must set this field to the JNDI name used by your application server, replacing the

existing contents of the field. To help you work out the JNDI name used by your

application server, the file ejb-jar.xml contains the following definition for the EJB:

<display-name>WMQ_TransactedIVT</display-name>

<enterprise-beans>

 <session id="WMQ_TransactedIVT">

 <ejb-name>WMQ_TransactedIVT</ejb-name>

 <home>ejbs.WMQ_TransactedIVTHome</home>

 <remote>ejbs.WMQ_TransactedIVT</remote>

 <ejb-class>ejbs.WMQ_TransactedIVTBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 </session>

</enterprise-beans>

To run the test, click Run IVT. Figure 2 on page 55 shows the page that is

displayed if the IVT is successful.

Figure 1. The initial page of the IVT program

54 WebSphere MQ: Using Java

If the IVT fails, a page similar to that shown in Figure 3 on page 56 is displayed.

To obtain further information about the cause of the failure, click View Stack

Trace.

Figure 2. Page showing the results of a successful IVT

Chapter 2. WebSphere MQ classes for JMS 55

Scripts provided with WebSphere MQ classes for JMS

A number of scripts are provided to assist with common tasks that need to be

performed when using WebSphere MQ classes for JMS.

Table 16 lists all the scripts and their uses. The scripts are in the bin subdirectory

of the WebSphere MQ classes for JMS installation directory.

 Table 16. Scripts provided with WebSphere MQ classes for JMS

Utility Use

Cleanup1 This script is maintained for compatibility with previous

releases but performs no function.

DefaultConfiguration Runs the default configuration application on platforms

other than Windows.

formatLog1 This script is maintained for compatibility with previous

releases but performs no function.

IVTRun1

IVTSetup1

IVTTidy1

Used in the point-to-point installation verification test, as

described in “The point-to-point installation verification

test for WebSphere MQ classes for JMS” on page 45.

JMSAdmin1 Runs the WebSphere MQ JMS administration tool, as

described in “Invoking the administration tool” on page

163.

JMSAdmin.config The configuration file for the WebSphere MQ JMS

administration tool, as described in “Configuration” on

page 164.

Figure 3. Page showing the results of an IVT that failed

56 WebSphere MQ: Using Java

Table 16. Scripts provided with WebSphere MQ classes for JMS (continued)

Utility Use

postcard1 Runs the JMS Postcard application.

PSIVTRun1 Runs the publish/subscribe installation verification test

program, as described in “The publish/subscribe

installation verification test for WebSphere MQ classes for

JMS” on page 49.

PSReportDump.class This class is maintained for compatibility with previous

releases, but performs no function.

setjmsenv Sets the environment variables for running a WebSphere

MQ classes for JMS application in a 32-bit Java virtual

machine (JVM) on a UNIX system, as described in

“Environment variables used by WebSphere MQ classes for

JMS” on page 10.

setjmsenv64 Sets the environment variables for running a WebSphere

MQ classes for JMS application in a 64-bit JVM on a UNIX

system, as described in “Environment variables used by

WebSphere MQ classes for JMS” on page 10.

Note:

1. On Windows, the file name has the extension .bat .

Support for OSGi

Open Services Gateway Initiative (OSGi) provides a framework that supports the

deployment of applications as bundles. Eight OSGi bundles are supplied as part of

WebSphere MQ classes for JMS.

OSGi provides a general purpose, secure, and managed Java framework, which

supports the deployment of applications that come in the form of bundles. OSGi

compliant devices can download and install bundles, and remove them when they

are no longer required. The framework manages the installation and update of

bundles in a dynamic and scalable fashion.

WebSphere MQ classes for JMS includes the following OSGi bundles. The bundles

are in the java/osgi subdirectory of your WebSphere MQ installation, or the

Java\lib\osgi folder on Windows.

com.ibm.msg.client.osgi.jms_1.0.0.0.jar

The common layer of code in WebSphere MQ classes for JMS (for

information about the layered architecture of WebSphere MQ classes for

JMS, see “A layered architecture” on page 67)

com.ibm.msg.client.osgi.jms.prereq_1.0.0.0.jar

The prerequisite Java archive (JAR) files for the common layer

com.ibm.msg.client.osgi.commonservices.j2se_1.0.0.0.jar

Common services for Java Platform, Standard Edition (Java SE)

applications

com.ibm.msg.client.osgi.nls_1.0.0.0.jar

Messages for the common layer

com.ibm.msg.client.osgi.wmq_7.0.0.0.jar

The WebSphere MQ messaging provider in WebSphere MQ classes for JMS

(for information about the layered architecture of WebSphere MQ classes

for JMS, see “A layered architecture” on page 67)

Chapter 2. WebSphere MQ classes for JMS 57

com.ibm.msg.client.osgi.wmq.prereq_7.0.0.0.jar

The prerequisite JAR files for the WebSphere MQ messaging provider

com.ibm.msg.client.osgi.wmq.nls_7.0.0.0.jar

Messages for the WebSphere MQ messaging provider

com.ibm.mq.osgi.directip_7.0.0.0.jar

The JAR files to allow the WebSphere MQ messaging provider to create a

real-time connection to a broker

These bundles have been written to the OSGi Release 4 specification. They do not

work in an OSGi Release 3 environment.

You must set your system path or library path correctly so that the OSGi runtime

environment can find any required DLL files or shared libraries.

If you use the OSGi bundles for WebSphere MQ classes for JMS, temporary topics

do not work. In addition, channel exit classes written in Java are not supported

because of an inherent problem in loading classes in a multiple class loader

environment such as OSGi. A user bundle can be aware of the WebSphere MQ

classes for JMS bundles, but the WebSphere MQ classes for JMS bundles are not

aware of any user bundle. As a result, the class loader used in a WebSphere MQ

classes for JMS bundle cannot load a channel exit class that is in a user bundle.

For more information about OSGi, see the OSGi Alliance Web site at

http://www.osgi.org.

Solving problems

If a program does not complete successfully, run one of the installation verification

programs, as described in “The point-to-point installation verification test for

WebSphere MQ classes for JMS” on page 45 and “The publish/subscribe

installation verification test for WebSphere MQ classes for JMS” on page 49, and

follow the advice given in the diagnostic messages.

Tracing programs

The WebSphere MQ classes for JMS trace facility is provided to help IBM staff to

diagnose customer problems. Various properties are provided to control its

behavior.

Trace is turned off by default, because the output rapidly becomes large, and is

unlikely to be of use in normal circumstances.

Except where otherwise stated, all the properties described in the following

information are set in the WebSphere MQ classes for JMS configuration file. For

information about this file, see “The WebSphere MQ classes for JMS configuration

file” on page 12.

If you are asked to provide trace output, turn tracing on by setting the property

com.ibm.msg.client.commonservices.trace.status to ON. To turn tracing off, set the

property com.ibm.msg.client.commonservices.trace.status to OFF.

Configure the trace output using the following properties:

com.ibm.msg.client.commonservices.trace.outputName

The directory and file name to which trace output will be sent.

58 WebSphere MQ: Using Java

http://www.osgi.org

Defaults to a file named mqjms_PID.trc in the current working directory where

PID is the current process ID. If a process ID is not available, a random

number is generated and prefixed with the letter f. To include the process ID in

a file name you specify, use the string %PID%. Any directory referenced must

already exist, and you must have write permission for this directory. If you do

not have write permission, the trace output is written to System.err.

com.ibm.msg.client.commonservices.trace.include

A list of packages and classes that will be traced, or the special values ALL or

NONE.

 Separate package or class names with a semicolon (;). Defaults to ALL and

traces all packages and classes in WebSphere MQ classes for JMS.

Note that you can include a package but then exclude subpackages of that

package. For example, if you include package ″a.b″ and exclude package

″a.b.x″, the trace includes everything in ″a.b.y″, ″a.b.z″ and so on, but not

″a.b.x″ or ″a.b.x.1″.

com.ibm.msg.client.commonservices.trace.exclude

A list of packages and classes that will not be traced, or the special values ALL

or NONE.

 Separate package or class names with a semicolon (;). Defaults to NONE and

therefore excludes no packages and classes in WebSphere MQ classes for JMS

from being traced.

Note that you can exclude a package but then include subpackages of that

package. For example, if you exclude package ″a.b″ and include package

″a.b.x″, the trace includes everything in ″a.b.x″ and ″a.b.x.1″ and so on, but not

″a.b.y″ or ″a.b.z″.

Any package or class that is specified, at the same level, as both included and

excluded is included.

com.ibm.msg.client.commonservices.trace.maxBytes

The maximum number of bytes that will be traced from any byte arrays.

 If set to a positive integer, when a byte array is formatted to be written out to

the trace file, it will be truncated at this number of bytes rather than the whole

array being output. This allows for the amount of data being written to the

trace file to be reduced, especially in cases where large byte arrays are being

traced out, and therefore helps to reduce both the size of the resulting trace file

and the performance impact of tracing the application.

A value of 0 for this property means that none of the contents of any byte

arrays will be sent to the trace file.

The default value is -1, which indicates that the amount of data to be output is

unlimited.

com.ibm.msg.client.commonservices.trace.limit

The maximum number of bytes to be written to a trace output file.

 This property works in conjunction with the

com.ibm.msg.client.commonservices.trace.count property. When the number of

bytes of trace output that is approximately equal to the specified maximum

have been written to a trace output file, the file is closed and a new trace

output file is started.

A value of 0 means that a trace output file has zero length. The default value is

-1, which means that the amount of data to be written to a trace output file is

unlimited.

Chapter 2. WebSphere MQ classes for JMS 59

com.ibm.msg.client.commonservices.trace.count

The number of trace output files to cycle through.

 When the current trace output file reaches the maximum size as specified by

the com.ibm.msg.client.commonservices.trace.limit property, the file is closed

and further trace output is written to the next trace output file in sequence.

Each trace output file is distinguished by a numeric suffix appended to the file

name. The current or most recent trace output file is mqjms.trc.0, the next most

recent trace output file is mqjms.trc.1, and so on.

The default value is 1, which means that, when the current trace output file

reaches the maximum size, the file is closed and deleted, and a new trace

output file with the same name is started. Therefore, only one trace output file

exists at a time.

com.ibm.msg.client.commonservices.trace.parameter

Controls whether method parameters and return values are included in the

trace.

 Defaults to TRUE. If set to FALSE then only method signatures are traced.

com.ibm.msg.client.commonservices.trace.startup

There is a an initialization phase of WebSphere MQ classes for JMS during

which resources are allocated, which includes the initialization of the main

trace facility.

 If set to TRUE, startup trace is used, that is, trace information is produced

immediately and therefore includes the setup of all components, including the

trace facility itself. This information can be used to help diagnose configuration

problems. Startup trace information is always written to System.err.

Defaults to FALSE.

Because this property is checked before initialization is complete, the property

can be specified only on the command line as a Java system property, not

within the WebSphere MQ classes for JMS configuration file.

com.ibm.msg.client.commonservices.trace.compress

Whether trace output is compressed.

 The default is FALSE.

If set to TRUE, the trace output is compressed. The default file name will have

a .trz extension. If compression is set to FALSE, the default value, the file will

have a .trc extension to indicate it is uncompressed. However if the file name

for the trace output has been specified in

com.ibm.msg.client.commonservices.trace.outputName that name is used

instead; no suffix will be applied to the file.

Compressed trace output is smaller than uncompressed and, because there is

less I/O to be performed, it can be written out faster than uncompressed trace,

meaning tracing will have less impact on the performance of WebSphere MQ

classes for JMS.

If the com.ibm.msg.client.commonservices.trace.limit or

com.ibm.msg.client.commonservices.trace.count properties are also set, this

results in multiple compressed trace files being created in place of multiple flat

files.

The nature of the trace compression algorithm means that if WebSphere MQ

classes for JMS ends in an uncontrolled manner, the file might not be correctly

completed and closed. For this reason, trace compression should be used only

in cases where WebSphere MQ classes for JMS can close down in a controlled

60 WebSphere MQ: Using Java

manner (that is, when the problems being investigated do not cause the JVM

itself to stop unexpectedly). Do not use trace compression when diagnosing

problems that can result in System.Halt() shutdowns or abnormal, uncontrolled

JVM terminations.

com.ibm.msg.client.commonservices.trace.level

Specifies a filtering level for the trace. The defined trace levels are as follows:

 TRACE_NONE 0

TRACE_EXCEPTION 1

TRACE_WARNING 3

TRACE_INFO 6

TRACE_ENTRYEXIT 8

TRACE_DATA 9

TRACE_ALL Integer.MAX_VALUE

Each trace level includes all lower levels. For example, if trace level is set at

TRACE_INFO, then any trace point with a defined level of

TRACE_EXCEPTION, TRACE_WARNING, or TRACE_INFO appears in trace.

All other trace points will be excluded.

To dynamically enable or disable trace from within an application, or to change the

trace level, use the methods of the com.ibm.msg.client.services.Trace class.

setOn()

Turns the trace facility on.

setOff()

Turns the trace facility off.

setStatus(boolean traceOn)

Turns the trace facility on or off, depending on the value of traceOn.

isOn() Checks whether the trace facility is on.

setTraceLevel(int newTraceLevel)

Sets the tracing detail level.

getTraceLevel()

Returns the tracing detail level.

If a severe or unrecoverable error occurs, first-failure support technology (FFST™)

information is recorded in a file with a name of the format JMSCCxxxx.FDC, where

xxxx is an incrementing, four-digit count used to differentiate subsequent .FDC

files. .FDC files are always written to a directory called FDC. If trace is active and

the com.ibm.msg.client.commonservices.trace.outputName property is set, the FDC

directory is created as a subdirectory of the directory to which the trace file is

being written. If trace is not active or

com.ibm.msg.client.commonservices.trace.outputName is not set, the FDC directory

is created as a subdirectory of the current working directory.

Note: When trace is activated, it creates a file named mqjms.trc.lck. If you use a

version of Java earlier than Java 5, this file is not removed when trace ends. This is

caused by a defect in the Java class libraries. You can delete this file manually after

the trace file has been closed.

Tracing using MQJMS_TRACE_LEVEL:

Chapter 2. WebSphere MQ classes for JMS 61

To maintain backwards compatibility, the trace parameters used by versions of

WebSphere MQ classes for JMS earlier than Version 7.0 are still supported.

However, these should be considered deprecated for any new application.

 You can enable trace by setting the Java property MQJMS_TRACE_LEVEL to one

of the following values:

on In versions earlier than Version 7.0, this value traces WebSphere MQ

classes for JMS calls only

base In versions earlier than Version 7.0, this value traces both WebSphere MQ

classes for JMS calls and the underlying WebSphere MQ classes for Java

calls

In Version 7.0, both these values behave as if the

com.ibm.msg.client.commonservices.trace.status property is set to ON.

To disable trace, you can set MQJMS_TRACE_LEVEL to off.

Setting MQJMS_TRACE_DIR to /somepath/tracedir is equivalent to setting the

com.ibm.msg.client.commonservices.trace.outputName property to

/somepath/tracedir/mqjms_%PID%.trc.

Logging

The WebSphere MQ classes for JMS log facility is provided to report serious

problems, particularly those that might indicate configuration errors rather than

programming errors. By default, log output is sent to the System.err stream, which

usually appears on the stderr of the console in which the JVM is run.

You can redirect log output to a file by setting the property

com.ibm.msg.client.commonservices.log.outputName. If the value of the property

identifies a directory, log output is written to a file called mqjms.log in that

directory. If the value of the property identifies a specific file, log output is written

to that file.

You can set this property in the WebSphere MQ classes for JMS configuration file

or as a system property on the java command. In the following example, the

property is set as a system property and identifies a specific file:

java -Djava.library.path=library_path

 -Dcom.ibm.msg.client.commonservices.log.outputName=/mydir/mylog.txt

 MyAppClass

In the command, library_path is the path to the directory containing the WebSphere

MQ classes for JMS libraries (see “The Java Native Interface (JNI) libraries required

by WebSphere MQ classes for JMS applications” on page 11).

Problem determination for the WebSphere MQ resource

adapter

When using the WebSphere MQ resource adapter, most errors cause exceptions to

be thrown, and these exceptions are reported to the user in a manner that depends

on the application server. The resource adapter makes extensive use of linked

exceptions to report problems. Typically, the first exception in a chain is a high

level description of the error, and subsequent exceptions in the chain provide the

more detailed information that is required to diagnose the problem.

62 WebSphere MQ: Using Java

For example, if the IVT program fails to obtain a connection to a WebSphere MQ

queue manager, the following exception might be thrown:

javax.jms.JMSException: MQJCA0001: An exception occurred in the JMS layer.

 See the linked exception for details.

Linked to this exception is a second exception:

javax.jms.JMSException: MQJMS2005: failed to create an MQQueueManager for

 ’localhost:ExampleQM’

This exception is thrown by WebSphere MQ classes for JMS and has a further

linked exception:

com.ibm.mq.MQException: MQJE001: An MQException occurred: Completion Code 2,

 Reason 2059

This final exception indicates the source of the problem. Reason code 2059 is

MQRC_Q_MGR_NOT_AVAILABLE, which indicates that the queue manager

specified in the definition of the ConnectionFactory object might not have been

started.

If the information provided by exceptions is not sufficient to diagnose a problem,

you might need to request a diagnostic trace. For information about how to enable

diagnostic tracing, see “Configuration of the WebSphere MQ resource adapter” on

page 17.

Configuration problems commonly occur in the following areas:

v “Problems in deploying the resource adapter”

v “Problems in deploying MDBs”

v “Problems in creating connections for outbound communication” on page 64

Problems in deploying the resource adapter

Failures in deploying the resource adapter are generally caused by not configuring

JCA resources correctly. For example, a property of the ResourceAdapter object

might not be specified correctly, or the deployment plan required by the

application server might not be written correctly. Failures might also occur when

the application server attempts to create objects from the definitions of JCA

resources and bind the objects into the JNDI namespace, but certain properties are

not specified correctly or the format of a resource definition is incorrect.

The resource adapter can also fail to deploy because it loaded incorrect versions of

JCA or WebSphere MQ classes for JMS classes from JAR files in the class path. This

kind of failure can commonly occur on a system where WebSphere MQ is already

installed. On such a system, the application server might find existing copies of the

WebSphere MQ classes for JMS JAR files and load classes from them in preference

to the classes supplied in the WebSphere MQ resource adapter RAR file. If the

extended transactional client JAR file, com.ibm.mqetclient.jar, cannot be loaded

when the resource adapter is deployed, a warning is written to the diagnostic

trace, if enabled, but this does not cause deployment to fail.

Problems in deploying MDBs

Failures might occur when the application server attempts to start message

delivery to an MDB. This kind of failure is typically caused by an error in the

definition of the associated ActivationSpec object, or because the resources

referenced in the definition are not available. For example, the queue manager

might not be running, or a specified queue might not exist.

Chapter 2. WebSphere MQ classes for JMS 63

An ActivationSpec object attempts to validate its properties when the MDB is

deployed, and deployment fails if the ActivationSpec object has any properties that

are mutually exclusive or does not have all the required properties. However, not

all problems associated with the properties of the ActivationSpec object can be

detected at this time.

Deployment might also fail if an MDB is transacted and the connection is in client

mode, but distributed transactions are not available because the extended

transactional client JAR file, com.ibm.mqetclient.jar, is not in the class path.

Failures to start message delivery are reported to the user in a manner that

depends on the application server. Typically, these failures are reported in the logs

and diagnostic trace of the application server. If enabled, the diagnostic trace of the

WebSphere MQ resource adapter also records these failures.

Problems in creating connections for outbound communication

Failures in outbound communication commonly occur when an application

attempts to look up and use a ConnectionFactory object in a JNDI namespace. A

JNDI exception is thrown if the ConnectionFactory object cannot be found in the

namespace. A ConnectionFactory object might not be found for the following

reasons:

v The application specified an incorrect name for the ConnectionFactory object.

v The application server was not able to create the ConnectionFactory object and

bind it into the namespace. In this case, the startup logs of the application server

usually contain information about the failure.

If the application successfully retrieves the ConnectionFactory object from the JNDI

namespace, an exception might still be thrown when the application calls the

ConnectionFactory.createConnection() method. An exception in this context

indicates that it is not possible to create a connection to a WebSphere MQ queue

manager. Here are some common reasons why an exception might be thrown:

v The queue manager is not available, or cannot be found using the properties of

the ConnectionFactory object. For example, the queue manager is not running,

or the specified host name, IP address, or port number of the queue manager is

incorrect.

v The user is not authorized to connect to the queue manager. For a client

connection, if the createConnection() call does not specify a user name, and the

application server supplies no user identity information, the JVM process ID is

passed to the queue manager as the user name. For the connection to succeed,

this process ID must be a valid user name in the system on which the queue

manager is running.

v The application is a transacted EJB and therefore the connection must be

transacted, but distributed transactions are not available because the extended

transactional client JAR file, com.ibm.mqetclient.jar, is not in the class path.

v The ConnectionFactory object has a property called ccdtURL and a property

called channel. These properties are mutually exclusive.

v On an SSL connection, the SSL related properties, or the SSL related attributes in

the server connection channel definition, have not been specified correctly.

v The sslFipsRequired property has different values for different JCA resources.

For more information about this limitation, see “Limitations of the WebSphere

MQ resource adapter” on page 41.

64 WebSphere MQ: Using Java

Introduction to WebSphere MQ classes for JMS for programmers

This topic introduces WebSphere MQ classes for JMS from the point of view of the

programmer. It also summarizes the main enhancements that are contained in the

latest release of WebSphere MQ classes for JMS.

Introduction to WebSphere MQ classes for JMS

WebSphere MQ classes for JMS is the JMS provider that is supplied with

WebSphere MQ. As well as implementing the interfaces defined in the javax.jms

package, WebSphere MQ classes for JMS provides two sets of extensions to the

JMS API. Both Java Platform, Standard Edition (Java SE) and Java Platform,

Enterprise Edition (Java EE) applications can use WebSphere MQ classes for JMS.

The JMS specification defines a set of interfaces that applications can use to

perform messaging operations. The latest version of the specification is Version 1.1.

The javax.jms package specifies the details of the JMS interfaces, and a JMS

provider implements these interfaces for a specific messaging product. WebSphere

MQ classes for JMS is a JMS provider that implements the JMS interfaces for

WebSphere MQ.

The flow of logic within a JMS application starts with ConnectionFactory and

Destination objects. The application uses a ConnectionFactory object to create a

Connection object, which represents the application’s active connection to a

messaging server. The application uses the Connection object to create a Session

object, which is a single threaded context for producing and consuming messages.

The application can then use the Session object and a Destination object to create a

MessageProducer object, which the application uses to send messages to the

specified destination. The destination is either a queue or a topic in the messaging

system and is encapsulated by the Destination object. The application can also use

the Session object and a Destination object to create a MessageConsumer object,

which the application uses to receive messages that have been sent to the specified

destination.

The JMS specification expects ConnectionFactory and Destination objects to be

administered objects. An administrator creates and maintains administered objects

in a central repository, and a JMS application retrieves these objects using the Java

Naming and Directory Interface (JNDI). The repository of administered objects can

range from a simple file to a Lightweight Directory Access Protocol (LDAP)

directory.

WebSphere MQ classes for JMS supports the use of administered objects. An

application can use all the features of WebSphere MQ that are exposed through

WebSphere MQ classes for JMS without having any WebSphere MQ specific

information hard coded into the application itself. This arrangement provides the

application with a degree of independence from the underlying WebSphere MQ

configuration. To achieve this, the application can use JNDI to retrieve connection

factories and destinations that are stored as administered objects, and use only the

interfaces defined in the javax.jms package to perform messaging operations. An

administrator can use the WebSphere MQ JMS administration tool or WebSphere

MQ Explorer to create and maintain administered objects in a central repository.

An application server, however, typically provides its own repository for

administered objects and its own tools for creating and maintaining the objects. A

Java EE application can therefore use JNDI to retrieve administered objects either

from the applications server’s own repository or from a central repository.

Chapter 2. WebSphere MQ classes for JMS 65

WebSphere MQ classes for JMS also provides extensions to the JMS API. Previous

releases of WebSphere MQ classes for JMS contain extensions that are implemented

in MQConnectionFactory, MQQueue, and MQTopic objects. These objects have

properties and methods that are specific to WebSphere MQ. The objects can be

administered objects, or an application can create the objects dynamically at run

time. This release of WebSphere MQ classes for JMS maintains these extensions,

and you can continue to use, without change, any applications that use these

extensions. These extensions are known as the WebSphere MQ JMS extensions. Note

that, in this set of documentation, objects that are created dynamically by an

application at run time are not considered to be administered objects.

In addition to the WebSphere MQ JMS extensions, this release of WebSphere MQ

classes for JMS provides a more generic set of extensions to the JMS API. These

extensions are known as the IBM JMS extensions, and have the following broad

objectives:

v To provide a greater level of consistency across IBM JMS providers

v To make it easier to write a bridge application between two IBM messaging

systems

v To make it easier to port an application from one IBM JMS provider to another

The main focus of these extensions concerns creating and configuring connection

factories and destinations dynamically at run time, but the extensions also provide

function that is not directly related to messaging, such as function for problem

determination.

Both Java SE and Java EE applications can use WebSphere MQ classes for JMS. On

the Java EE platform, WebSphere MQ classes for JMS supports two types of

communication between a component of an application and a WebSphere MQ

queue manager:

Outbound communication

Using the JMS API directly, an application component creates a connection

to a queue manager, and then sends and receives messages.

 For example, the application component can be an application client, a

servlet, a JavaServer page (JSP), an enterprise Java bean (EJB), or a message

driven bean (MDB). In this type of communication, the application server

container provides only low level functions in support of messaging

operations, such as connection pooling and thread management.

Inbound communication

A message arriving at a destination is delivered to an MDB, which then

processes the message.

 Java EE applications use MDBs to process messages asynchronously. An

MDB acts as a JMS message listener and is implemented by an

onMessage() method, which defines how a message is processed. An MDB

is deployed in the EJB container of an application server. The precise way

in which an MDB is configured depends on which application server you

are using, but the configuration information must specify which queue

manager to connect to, how to connect to the queue manager, which

destination to monitor for messages, and the transactional behavior of the

MDB. This information is then used by the EJB container. When a message

satisfying the MDB’s selection criteria arrives at the specified destination,

the EJB container uses WebSphere MQ classes for JMS to retrieve the

message from the queue manager, and then delivers the message to the

MDB by calling its onMessage() method.

66 WebSphere MQ: Using Java

What is new in WebSphere MQ Version 7.0?

WebSphere MQ classes for JMS, as supplied in WebSphere MQ Version 7.0,

contains a number of enhancements compared to previous releases. Some of these

enhancements are as a result of changes to the implementation of WebSphere MQ

classes for JMS, and some are as a result of WebSphere MQ classes for JMS

exploiting changes to the underlying WebSphere MQ function.

The following sections summarize the key enhancements.

A layered architecture

In previous releases of WebSphere MQ, the implementation of WebSphere MQ

classes for JMS has been entirely specific to WebSphere MQ. Other IBM products

that provide messaging systems have also included JMS providers, but these JMS

providers have very little or nothing in common with the implementation of

WebSphere MQ classes for JMS.

In WebSphere MQ V7.0, WebSphere MQ classes for JMS now has a layered

architecture. The top layer of code is a common layer that can be used by any IBM

JMS provider. When an application calls a JMS method, any processing of the call

that is not specific to a messaging system is performed by the common layer,

which also provides a consistent response to the call. Any processing of the call

that is specific to a messaging system is delegated to a lower layer. Figure 4 shows

the layered architecture.

Moving to a layered architecture has following objectives:

v To improve the consistency of behavior of the various IBM JMS providers

v To make it easier to write an bridge application between two IBM messaging

systems

v To make it easier to port an application from one IBM JMS provider to another

This implementation of WebSphere MQ classes for JMS also introduces a new set

of extensions to the JMS API. These extensions are known as the IBM JMS

WebSphere MQ classes for JMS

Common layer

Messaging
provider for

WebSphere MQ

Messaging
provider A

Messaging
provider B

Figure 4. The layered architecture for IBM JMS providers

Chapter 2. WebSphere MQ classes for JMS 67

extensions. The main focus of these extensions concerns creating and configuring

connection factories and destinations dynamically at run time.

An application using the IBM JMS extensions starts by creating a

JmsFactoryFactory object, specifying as a parameter a constant that identifies the

chosen messaging system. The application uses the JmsFactoryFactory object to

create connection factories and destinations that have the correct specialized classes

for the chosen messaging system.

The application can then configure the connection factories and destinations by

setting their properties. The IBM JMS extensions provide a set of methods to set

properties. These methods are independent of any messaging system. Each data

type has its own set method, and each property is identified by a name, which is

defined as a static final member of the WMQConstants class. When an application

calls one of these methods, one of the parameters on the call is the name of the

property, and the other parameter is the value of the property.

For example, if WebSphere MQ is the messaging system, one of the properties of a

connection factory is the name of the queue manager to connect to. Using the IBM

JMS extensions, an application sets the name of the queue manager to JUPITER by

calling the following method:

JmsConnectionFactory myCF;

...

myCF.setStringProperty(WMQConstants.WMQ_QUEUE_MANAGER, "JUPITER");

By contrast, an application can perform the same function by calling the following

method:

MQConnectionFactory myCF;

...

myCF.setQueueManager("JUPITER");

This method is a WebSphere MQ JMS extension and is specific to WebSphere MQ

as the messaging system. The use of this method therefore makes the application

potentially less easy to port to another IBM JMS provider.

The relationship between WebSphere MQ classes for JMS and

WebSphere MQ classes for Java

In previous releases of WebSphere MQ, WebSphere MQ classes for JMS was

implemented almost entirely as a layer of code on top of WebSphere MQ classes

for Java. This arrangement has caused some confusion among application

developers because setting fields or calling methods in the MQEnvironment class

can cause unwanted and unexpected effects on the runtime behavior of code that

is written using WebSphere MQ classes for JMS. In addition, the implementation of

WebSphere MQ classes for JMS had some constraints in areas where the JMS API is

not a natural fit on top of WebSphere MQ classes for Java, and these constraints

have led to some issues regarding runtime performance.

In WebSphere MQ V7.0, the implementation of WebSphere MQ classes for JMS is

no longer dependent on WebSphere MQ classes for Java. WebSphere MQ classes

for Java and WebSphere MQ classes for JMS are now peers that use a common

Java interface to the MQI. This arrangement allows more scope for optimizing

performance, and means that setting fields or calling methods in the

MQEnvironment class has no effect on the runtime behavior of code that is written

using WebSphere MQ classes for JMS. Figure 5 on page 69 shows the relationship

between WebSphere MQ classes for JMS and WebSphere MQ classes for Java in

68 WebSphere MQ: Using Java

previous releases of WebSphere MQ and in WebSphere MQ V7.0.

In order to maintain compatibility with earlier releases, channel exit classes written

in Java can still use the WebSphere MQ classes for Java interfaces, even if the

channel exit classes are called from WebSphere MQ classes for JMS. However,

using the WebSphere MQ classes for Java interfaces means that your applications

are still dependent on the WebSphere MQ classes for Java JAR file, com.ibm.mq.jar.

If you do not want com.ibm.mq.jar in your class path, you can use the new set of

interfaces in the com.ibm.mq.exits package instead.

You can now create and configure JMS administered objects with the WebSphere

MQ Explorer.

Publish/subscribe messaging

WebSphere MQ V7.0 contains embedded publish/subscribe function. This function

replaces WebSphere MQ Publish/Subscribe, which was supplied with WebSphere

MQ V6.0.

WebSphere MQ classes for JMS applications can use the embedded

publish/subscribe function, and can use it instead of using WebSphere Event

Broker or WebSphere Message Broker for publish/subscribe messaging with

WebSphere MQ as the transport. Configuring WebSphere MQ classes for JMS to

use the new function is simpler than configuring WebSphere MQ classes for JMS to

use WebSphere MQ Publish/Subscribe, WebSphere Event Broker, or WebSphere

Message Broker. Administrators and application developers no longer need to

manage publication queues, subscriber queues, subscription stores, and subscriber

cleanup. In addition, ConnectionFactory and Topic objects have a smaller number

of properties.

The embedded publish/subscribe function also provides some additional features

such as retained publications and a choice of two wildcard schemes for specifying

a range of topics to which an application wishes to subscribe.

Previous releases
of WebSphere MQ WebSphere MQ V7.0

WebSphere MQ
classes for JMS

WebSphere MQ
classes for Java

Client
connection Bindings

connection

Queue manager Queue manager

Common Java interface to the MQI

Bindings
connection

implementation

Client
connection

implementation

WebSphere MQ
classes for Java

WebSphere MQ
classes for JMS

Figure 5. The relationship between WebSphere MQ classes for JMS and WebSphere MQ

classes for Java

Chapter 2. WebSphere MQ classes for JMS 69

An application can still use a real-time connection to a broker of WebSphere Event

Broker or WebSphere Message Broker for publish/subscribe messaging. This

support is unchanged.

Applications using WebSphere MQ Publish/Subscribe can use the embedded

publish/subscribe function without change when the queue manager to which

they are connected is upgraded. Properties that are set by an application, but are

not required by the embedded publish/subscribe function, are ignored.

WebSphere MQ messaging provider

The WebSphere MQ messaging provider has two modes of operation:

v WebSphere MQ messaging provider normal mode

v WebSphere MQ messaging provider migration mode

The WebSphere MQ messaging provider normal mode uses all the features of the

WebSphere MQ Version 7.0 queue managers to implement JMS. This mode is used

only to connect to a WebSphere MQ queue manager and can connect to WebSphere

MQ Version 7.0 queue managers in either client or bindings mode. This mode is

optimized to use the new WebSphere MQ Version 7.0 function.

The WebSphere MQ messaging provider migration mode is based on WebSphere

MQ Version 6.0 function and uses only features that were available in the

WebSphere MQ Version 6.0 queue manager to implement JMS. You can connect to

a WebSphere MQ Version 7.0 queue manager using WebSphere MQ messaging

provider migration mode but you cannot use any of the Version 7.0 optimizations.

This mode allows connections to either of the following queue manager versions:

1. WebSphere MQ Version 7.0 queue manager in bindings or client mode, but this

mode uses only those features that were available to a WebSphere MQ Version

6.0 queue manager

2. WebSphere MQ Version 6.0 or earlier queue manager in client mode

If you want to connect to WebSphere Event Broker or WebSphere Message Broker

using either WebSphere MQ Enterprise Transport, use the WebSphere MQ

messaging provider migration mode. If you use WebSphere MQ Real-Time

Transport, the WebSphere MQ messaging provider migration mode is

automatically selected, because you have explicitly selected properties in the

connection factory object. Connection to WebSphere Event Broker or WebSphere

Message Broker using the WebSphere MQ Enterprise Transport follows the general

rules for mode selection described in Rules for selecting the WebSphere MQ

messaging provider mode .

Asynchronous message consumption

WebSphere MQ V7.0 supports asynchronous message consumption. An application

can register a callback function for a destination. When a suitable message is sent

to the destination, WebSphere MQ calls the function and passes the message as a

parameter. The function then processes the message asynchronously. In previous

releases of WebSphere MQ, this feature was available only when using WebSphere

MQ classes for JMS.

WebSphere MQ classes for JMS has been changed to exploit this new feature in

WebSphere MQ V7.0. The implementation of JMS message listeners is now a more

natural fit with WebSphere MQ, and WebSphere MQ classes for JMS no longer has

to poll a destination to check whether a suitable message has been sent to the

70 WebSphere MQ: Using Java

destination. The performance of JMS message listeners is improved as a result,

particularly when an application uses multiple message listeners in a session to

monitor multiple destinations. Message throughput is increased, and the time

taken to deliver a message to a message listener after it has arrived at a destination

is reduced.

Message driven beans (MDBs) have similar performance improvements. In

addition, because of another enhancement to WebSphere MQ function, multiple

MDBs that are consuming messages from the same destination now experience

reduced contention on the messages.

Message selection

With the exception of selecting messages by message identifier or correlation

identifier, all message selection in previous releases of WebSphere MQ was done

by WebSphere MQ classes for JMS. In WebSphere MQ V7.0, all message selection is

done by the queue manager on all platforms except z/OS. For an application

connected to a z/OS queue manager, message selection is done by the queue

manager in the publish/subscribe domain, but is still done by WebSphere MQ

classes for JMS in the point-to-point domain.

As a result, message throughput is increased for applications that consume

messages using message selection, where the message selection is done by the

queue manager. The performance improvement is greater for an application that

connects in client mode because only those messages that satisfy the selection

criteria are transported over the network, and WebSphere MQ classes for JMS sees

only those messages that it delivers to the application.

Sharing a communications connection

In previous releases of WebSphere MQ, if a WebSphere MQ client application

connected to a queue manager more than once using the same MQI channel, each

instance of the MQI channel required a separate TCP connection. In WebSphere

MQ V7.0, each connection to the queue manager using the same MQI channel can

share a single TCP connection. This arrangement means that fewer network

resources are required and the total time taken to create multiple connections to

the queue manager is reduced, particularly when using SSL because the SSL

handshake takes place only once at the start of the TCP connection.

WebSphere MQ classes for JMS exploits this enhancement. For an application that

connects to a queue manager in client mode, WebSphere MQ classes for JMS might

create more than one connection to a queue manager using the MQI channel

whose name is specified as a property of the ConnectionFactory object. Each of

these connections to the queue manager can now share a single TCP connection.

Read ahead on client connections

If an application uses a client connection to consume nonpersistent messages from

a destination, the destination can be configured so that WebSphere MQ classes for

JMS uses a buffer to store the messages of interest before delivering them to the

application. This optimization is called read ahead and can be used by applications

that consume messages synchronously by calling the receive() method, and by

message listeners and MDBs, which consume messages asynchronously. Read

ahead is particularly effective for destinations with a large number of messages

that need to be consumed rapidly.

Chapter 2. WebSphere MQ classes for JMS 71

Read ahead does not apply to persistent messages because, if persistent messages

were read into a buffer, the queue manager would no longer be able to recover the

messages following a failure. However, an application that consumes messages

from a destination with a mixture of persistent and nonpersistent messages can

still use read ahead. The order of the messages is preserved, but the runtime

benefits of read ahead apply only to the nonpersistent messages.

When deciding whether to use read ahead, consider the following points:

v If an application is consuming messages from a destination that is configured for

read ahead, and the application ends for any reason, any nonpersistent messages

that are currently stored in the buffer are discarded.

v If all the following conditions are true, messages sent to a queue in a session

might not be received in the order in which they were sent:

– An application uses two message consumers in the same session to consume

the messages from the queue.

– Each message consumer uses a different Destination object for the queue.

– Any or both of the Destination objects are configured for read ahead.

Sending messages

When an application sends messages to a destination, the destination can be

configured so that, when the application calls send(), WebSphere MQ classes for

JMS forwards the message to the queue manager and returns control back to the

application without determining whether the queue manager has received the

message safely. WebSphere MQ classes for JMS can work in this way only for

nonpersistent messages and for persistent messages sent in a transacted session.

For messages sent in a transacted session, the application ultimately determines

whether the queue manager has received the messages safely when it calls

commit(). For nonpersistent messages sent in a session that is not transacted, the

SENDCHECKCOUNT property of the ConnectionFactory object specifies how

many messages are to be sent before WebSphere MQ classes for JMS checks that

the queue manager has received the messages safely.

This optimization is of most benefit to an application that connects to a queue

manager in client mode and needs to send a sequence of messages in rapid

succession, but does not require immediate feedback from the queue manager for

each message sent.

Channel exits

When called from WebSphere MQ classes for JMS, channel exit programs written

in C or C++ now behave in the same way as when they are called from a

Websphere MQ client. The performance of channel exit classes written in Java has

been improved, and you can now write channel exit classes using a new set of

interfaces in the com.ibm.mq.exits package instead of using the interfaces in

WebSphere MQ classes for Java.

Message properties

A JMS message consists of a set of header fields, a set of properties, and a body

that contains the application data. As a minimum, a WebSphere MQ message

consists of a message descriptor and the application data.

72 WebSphere MQ: Using Java

When a WebSphere MQ classes for JMS application sends a JMS message,

WebSphere MQ classes for JMS maps the JMS message into a WebSphere MQ

message. Some of the JMS header fields and properties are mapped into fields in

the message descriptor, and some are mapped into fields in an additional

WebSphere MQ header called an MQRFH2 header. When a WebSphere MQ classes

for JMS application receives a JMS message, WebSphere MQ classes for JMS

performs the reverse mapping.

An application that is using the MQI to receive messages from a WebSphere MQ

classes for JMS application must therefore be able to handle an MQRFH2 header. If

the application cannot handle an MQRFH2 header, the TARGCLIENT property of

the Destination object can be set to tell WebSphere MQ classes for JMS not to

include an MQRFH2 header in the WebSphere MQ messages. However, by

excluding the MQRFH2 header, the information held in some of the JMS header

fields and properties is lost.

Similarly, an application that is using the MQI to send messages to a WebSphere

MQ classes for JMS application must include an MQRFH2 header in each message.

If an MQRFH2 header is not included, WebSphere MQ classes for JMS can set only

those JMS header fields and properties that can be derived from the fields in a

message descriptor.

WebSphere MQ V7.0 provides some additional support for applications that use

the MQI to receive messages from, and send messages to, WebSphere MQ classes

for JMS applications.

When an application calls MQGET to receive a message from a WebSphere MQ

classes for JMS application, the application can choose to receive the message in

one of the following ways:

1. The message is delivered with a message descriptor, an MQRFH2 header that

contains data derived from JMS header fields and properties, and the

application data.

2. The message is delivered with a message descriptor, the application data, and a

set of message properties.

In option 2, each message property represents a JMS header field or property that

was originally mapped by WebSphere MQ classes for JMS into a field in an

MQRFH2 header. After the MQGET call, the application can use the MQINQMP

call to get the values of the message properties. Using option 2 instead of option 1

to receive a message simplifies the application logic in the following ways:

v The application does not have to parse the variable portion of the MQRFH2

header, which contains the JMS header field and property data encoded in an

XML-like format.

v The application does not have to convert the character data in the variable

portion of the MQRFH2 header.

Correspondingly, before an application calls MQPUT to send a message to a

WebSphere MQ classes for JMS application, the application can use the MQSETMP

call to set the values of message properties instead of constructing an MQRFH2

header.

Serviceability

WebSphere MQ classes for JMS contains a number of improvements related to

serviceability:

Chapter 2. WebSphere MQ classes for JMS 73

v Tracing.

WebSphere MQ classes for JMS contains a class that an application can use to

control tracing. An application can start and stop tracing, specify the required

level of detail in a trace, and customize trace output in various ways..

v Logging.

WebSphere MQ classes for JMS maintains a log file, which contains messages

about errors that you need to correct. The messages are written in plain text.

WebSphere MQ classes for JMS contains a class that an application can use to

specify the location of the log file and its maximum size.

v First Failure Support Technology™ (FFST).

If a serious failure occurs, WebSphere MQ classes for JMS generates an FFST

report in an FDC file. The FFST report contains information that IBM Service can

use to diagnose the problem more quickly.

v Version information.

WebSphere MQ classes for JMS contains a class that an application can use to

query the version of WebSphere MQ classes for JMS.

v Exception messages.

Exception messages have been enhanced to provide more information about the

causes of errors and the actions required to correct errors.

v Application servers.

The integration of the serviceability features of WebSphere MQ classes for JMS

with those of WebSphere Application Server has been improved.

MQC is replaced by MQConstants

A new package, com.ibm.mq.constants, is supplied with WebSphere MQ Version

7.0. This package contains the class MQConstants, which implements a number of

interfaces. MQConstants contains definitions of all the constants that were in the

MQC interface and a number of new constants. The interfaces in this package

closely follow the names of the constants header files used in Websphere MQ.

For example, the interface CMQC contains a constant MQOO_INPUT_SHARED;

this corresponds to the header file cmqc.h and the constant

MQOO_INPUT_SHARED.

com.ibm.mq.constants can be used with both WebSphere MQ classes for Java and

WebSphere MQ classes for JMS.

MQC is still present, and has the constants it previously had; however, for any

new applications, you should use the com.ibm.mq.constants package.

Writing WebSphere MQ classes for JMS applications

After a brief introduction to the JMS model, this topic provides detailed guidance

on how to write WebSphere MQ classes for JMS applications.

The JMS model

The JMS model defines a set of interfaces that Java applications can use to perform

messaging operations. WebSphere MQ classes for JMS, as a JMS provider, defines

how JMS objects are related to WebSphere MQ concepts. The JMS specification

expects certain JMS objects to be administered objects.

74 WebSphere MQ: Using Java

The JMS specification and the javax.jms package define a set of interfaces that Java

applications can use to perform messaging operations. The following list

summarizes the main JMS interfaces:

Destination

A destination is where an application sends messages, or it is a source

from which an application receives messages, or both.

ConnectionFactory

A ConnectionFactory object encapsulates a set of configuration properties

for a connection. An application uses a connection factory to create a

connection.

Connection

A Connection object encapsulates an application’s active connection to a

messaging server. An application uses a connection to create sessions.

Session

A session is a single threaded context for sending and receiving messages.

An application uses a session to create messages, message producers, and

message consumers. A session is either transacted or not transacted.

Message

A Message object encapsulates a message that an application sends or

receives.

MessageProducer

An application uses a message producer to send messages to a destination.

MessageConsumer

An application uses a message consumer to receive messages sent to a

destination.

Figure 6 shows these objects and their relationships.

Creates

Creates

CreatesSends to Receives from

CreatesCreates

ConnectionFactory

Connection

Session

Message DestinationDestination

MessageConsumerMessageProducer

Figure 6. JMS objects and their relationships

Chapter 2. WebSphere MQ classes for JMS 75

A Destination, ConnectionFactory, or Connection object can be used concurrently

by different threads of a multithreaded application, but a Session,

MessageProducer, or MessageConsumer object cannot be used concurrently by

different threads. The simplest way of ensuring that a Session, MessageProducer,

or MessageConsumer object is not used concurrently is to create a separate Session

object for each thread.

JMS support two styles of messaging:

v Point-to-point messaging

v Publish/subscribe messaging

These styles of messaging are also referred to as messaging domains, and you can

combine both styles of messaging in an application. In the point-to-point domain, a

destination is a queue and, in the publish/subscribe domain, a destination is a

topic.

With versions of JMS before JMS 1.1, programming for the point-to-point domain

uses one set of interfaces and methods, and programming for the

publish/subscribe domain uses another set. The two sets are similar, but separate.

With JMS 1.1, you can use a common set of interfaces and methods that support

both messaging domains. The common interfaces provide a domain independent

view of each messaging domain. Table 17 lists the JMS domain independent

interfaces and their corresponding domain specific interfaces.

 Table 17. The JMS domain independent and domain specific interfaces

Domain independent

interfaces

Domain specific interfaces

for the point-to-point

domain

Domain specific interfaces

for the publish/subscribe

domain

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver

QueueBrowser

TopicSubscriber

JMS 1.1 retains all the domain specific interfaces, and so existing applications can

still use these interfaces. For new applications, however, consider using the domain

independent interfaces.

In WebSphere MQ classes for JMS, JMS objects are related to WebSphere MQ

concepts in the following ways:

v A Connection object has properties that are derived from the properties of the

connection factory that was used to create the connection. These properties

control how an application connects to a queue manager. Examples of these

properties are the name of the queue manager and, for an application that

connects to the queue manager in client mode, the host name or IP address of

the system on which the queue manager is running.

v A Session object encapsulates a WebSphere MQ connection handle, which

therefore defines the transactional scope of the session.

v A MessageProducer object and a MessageConsumer object each encapsulates a

WebSphere MQ object handle.

76 WebSphere MQ: Using Java

When using WebSphere MQ classes for JMS, all the normal rules of WebSphere

MQ apply. Note, in particular, that an application can send a message to a remote

queue but it can receive a message only from a queue that is owned by the queue

manager to which the application is connected.

The JMS specification expects ConnectionFactory and Destination objects to be

administered objects. An administrator creates and maintains administered objects

in a central repository, and a JMS application retrieves these objects using the Java

Naming and Directory Interface (JNDI).

In WebSphere MQ classes for JMS, the implementation of the Destination interface

is an abstract superclass of Queue and Topic, and so an instance of Destination is

either a Queue object or a Topic object. The domain independent interfaces treat a

queue or a topic as a destination. The messaging domain for a MessageProducer or

MessageConsumer object is determined by whether the destination is a queue or a

topic.

In WebSphere MQ classes for JMS therefore, objects of the following types can be

administered objects:

v ConnectionFactory

v QueueConnectionFactory

v TopicConnectionFactory

v Queue

v Topic

v XAConnectionFactory

v XAQueueConnectionFactory

v XATopicConnectionFactory

JMS messages

JMS messages are composed of the following parts:

Header

All messages support the same set of header fields. Header fields contain

values that are used by both clients and providers to identify and route

messages.

Properties

Each message contains a built-in facility to support application-defined

property values. Properties provide an efficient mechanism to filter

application-defined messages.

Body JMS defines several types of message body that cover the majority of

messaging styles currently in use.

 JMS defines five types of message body:

Stream

A stream of Java primitive values. It is filled and read sequentially.

Map A set of name-value pairs, where names are strings and values are

Java primitive types. The entries can be accessed sequentially or

randomly by name. The order of the entries is undefined.

Text A message containing a java.lang.String.

Object

A message that contains a serializable Java object

Chapter 2. WebSphere MQ classes for JMS 77

Bytes A stream of uninterpreted bytes. This message type is for literally

encoding a body to match an existing message format.

The JMSCorrelationID header field is used to link one message with another. It

typically links a reply message with its requesting message. JMSCorrelationID can

hold a provider-specific message ID, an application-specific String, or a

provider-native byte[] value.

Message selectors

A message contains a built-in facility to support application-defined property

values. In effect, this provides a mechanism to add application-specific header

fields to a message. Properties allow an application, using message selectors, to

have a JMS provider select or filter messages on its behalf, using

application-specific criteria. Application-defined properties must obey the following

rules:

v Property names must obey the rules for a message selector identifier.

v Property values can be boolean, byte, short, int, long, float, double, and String.

v The JMSX and JMS_ name prefixes are reserved.

Property values are set before sending a message. When a client receives a

message, the message properties are read-only. If a client attempts to set properties

at this point, a MessageNotWriteableException is thrown. If clearProperties is

called, the properties can now be both read from, and written to.

A property value might duplicate a value in a message’s body. JMS does not define

a policy for what should or should not be made into a property. However,

application developers must be aware that JMS providers probably handle data in

a message’s body more efficiently than data in a message’s properties. For best

performance, applications must use message properties only when they need to

customize a message’s header. The primary reason for doing this is to support

customized message selection.

A JMS message selector allows a client to specify the messages that it is interested

in by using the message header. Only messages whose headers match the selector

are delivered.

Message selectors cannot refer to message body values.

A message selector matches a message when the selector evaluates to true when

the message’s header field and property values are substituted for their

corresponding identifiers in the selector.

A message selector is a String, whose syntax is based on a subset of the SQL92

conditional expression syntax. The order in which a message selector is evaluated

is from left to right within a precedence level. You can use parentheses to change

this order. Predefined selector literals and operator names are written here in

upper case; however, they are not case-sensitive.

A selector can contain:

v Literals

– A string literal is enclosed in single quotes. A doubled single quote represents

a single quote. Examples are ’literal’ and ’literal’’s’. Like Java string literals,

these use the Unicode character encoding.

78 WebSphere MQ: Using Java

– An exact numeric literal is a numeric value without a decimal point, such as

57, -957, and +62. Numbers in the range of Java long are supported.

– An approximate numeric literal is a numeric value in scientific notation, such

as 7E3 or -57.9E2, or a numeric value with a decimal, such as 7., -95.7, or +6.2.

Numbers in the range of Java double are supported.

– The boolean literals TRUE and FALSE.
v Identifiers:

– An identifier is an unlimited length sequence of Java letters and Java digits,

the first of which must be a Java letter. A letter is any character for which the

method Character.isJavaLetter returns true. This includes _ and $. A letter or

digit is any character for which the method Character.isJavaLetterOrDigit

returns true.

– Identifiers cannot be the names NULL, TRUE, or FALSE.

– Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, or IS.

– Identifiers are either header field references or property references.

– Identifiers are case-sensitive.

– Message header field references are restricted to:

- JMSDeliveryMode

- JMSPriority

- JMSMessageID

- JMSTimestamp

- JMSCorrelationID

- JMSType

JMSMessageID, JMSTimestamp, JMSCorrelationID, and JMSType values can

be null, and if so, are treated as a NULL value.

– Any name beginning with JMSX is a JMS-defined property name.

– Any name beginning with JMS_ is a provider-specific property name.

– Any name that does not begin with JMS is an application-specific property

name. If there is a reference to a property that does not exist in a message, its

value is NULL. If it does exist, its value is the corresponding property value.
v White space is the same as it is defined for Java: space, horizontal tab, form

feed, and line terminator.

v Expressions:

– A selector is a conditional expression. A selector that evaluates to true

matches; a selector that evaluates to false or unknown does not match.

– Arithmetic expressions are composed of themselves, arithmetic operations,

identifiers (whose value is treated as a numeric literal), and numeric literals.

– Conditional expressions are composed of themselves, comparison operations,

and logical operations.
v Standard bracketing (), to set the order in which expressions are evaluated, is

supported.

v Logical operators in precedence order: NOT, AND, OR.

v Comparison operators: =, >, >=, <, <=, <> (not equal).

– Only values of the same type can be compared. One exception is that it is

valid to compare exact numeric values and approximate numeric values. (The

type conversion required is defined by the rules of Java numeric promotion.)

If there is an attempt to compare different types, the selector is always false.

Chapter 2. WebSphere MQ classes for JMS 79

– String and boolean comparison is restricted to = and <>. Two strings are

equal only if they contain the same sequence of characters.
v Arithmetic operators in precedence order:

– +, - unary.

– *, /, multiplication, and division.

– +, -, addition, and subtraction.

– Arithmetic operations on a NULL value are not supported. If they are

attempted, the complete selector is always false.

– Arithmetic operations must use Java numeric promotion.
v arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3

comparison operator:

– Age BETWEEN 15 and 19 is equivalent to age >= 15 AND age <= 19.

– Age NOT BETWEEN 15 and 19 is equivalent to age < 15 OR age > 19.

– If any of the expressions of a BETWEEN operation are NULL, the value of the

operation is false. If any of the expressions of a NOT BETWEEN operation are

NULL, the value of the operation is true.
v identifier [NOT] IN (string-literal1, string-literal2,...) comparison operator where

identifier has a String or NULL value.

– Country IN (’UK’, ’US’, ’France’) is true for ’UK’ and false for ’Peru’. It is

equivalent to the expression (Country = ’UK’) OR (Country = ’US’) OR

(Country = ’France’).

– Country NOT IN (’UK’, ’US’, ’France’) is false for ’UK’ and true for ’Peru’. It

is equivalent to the expression NOT ((Country = ’UK’) OR (Country = ’US’)

OR (Country = ’France’)).

– If the identifier of an IN or NOT IN operation is NULL, the value of the

operation is unknown.
v identifier [NOT] LIKE pattern-value [ESCAPE escape-character] comparison

operator, where identifier has a string value. pattern-value is a string literal,

where _ stands for any single character and % stands for any sequence of

characters (including the empty sequence). All other characters stand for

themselves. The optional escape-character is a single character string literal,

whose character is used to escape the special meaning of the _ and % in

pattern-value.

– phone LIKE ’12%3’ is true for 123 and 12993 and false for 1234.

– word LIKE ’l_se’ is true for lose and false for loose.

– underscored LIKE ’_%’ ESCAPE ’\’ is true for _foo and false for bar.

– phone NOT LIKE ’12%3’ is false for 123 and 12993 and true for 1234.

– If the identifier of a LIKE or NOT LIKE operation is NULL, the value of the

operation is unknown.
v identifier IS NULL comparison operator tests for a null header field value, or a

missing property value.

– prop_name IS NULL.
v identifier IS NOT NULL comparison operator tests for the existence of a

non-null header field value or a property value.

– prop_name IS NOT NULL.

The following message selector selects messages with a message type of car, color

of blue, and weight greater than 2500 lbs:

"JMSType = ’car’ AND color = ’blue’ AND weight > 2500"

80 WebSphere MQ: Using Java

As noted above, property values can be NULL. The evaluation of selector

expressions that contain NULL values is defined by SQL 92 NULL semantics. The

following is a brief description of these semantics:

v SQL treats a NULL value as unknown.

v Comparison or arithmetic with an unknown value always yields an unknown

value.

v The IS NULL and IS NOT NULL operators convert an unknown value into the

respective TRUE and FALSE values.

Although SQL supports fixed decimal comparison and arithmetic, JMS message

selectors do not. This is why exact numeric literals are restricted to those without a

decimal. It is also why there are numerics with a decimal as an alternate

representation for an approximate numeric value.

SQL comments are not supported.

Mapping JMS messages onto WebSphere MQ messages

This section describes how the JMS message structure that is described in the first

part of this chapter is mapped onto a WebSphere MQ message. It is of interest to

programmers who want to transmit messages between JMS and traditional

WebSphere MQ applications. It is also of interest to people who want to

manipulate messages transmitted between two JMS applications, for example, in a

message broker implementation.

This section does not apply if an application uses a real-time connection to a

broker. When an application uses a real-time connection, all communication is

performed directly over TCP/IP; no WebSphere MQ queues or messages are

involved.

WebSphere MQ messages are composed of three components:

v The WebSphere MQ Message Descriptor (MQMD)

v A WebSphere MQ MQRFH2 header

v The message body.

The MQRFH2 is optional, and its inclusion in an outgoing message is governed by

a flag in the JMS Destination class. You can set this flag using the WebSphere MQ

JMS administration tool. Because the MQRFH2 carries JMS-specific information,

always include it in the message when the sender knows that the receiving

destination is a JMS application. Normally, omit the MQRFH2 when sending a

message directly to a non-JMS application. This is because such an application

does not expect an MQRFH2 in its WebSphere MQ message.

If an incoming message does not have an MQRFH2 header, the Queue or Topic

object derived from the JMSReplyTo header field of the message, by default, has

this flag set so that a reply message sent to the queue or topic also does not have

an MQRFH2 header. You can switch off this behavior of including an MQRFH2

header in a reply message only if the original message has an MQRFH2 header by

setting the TARGCLIENTMATCHING property of the connection factory to NO.

Figure 7 on page 82 shows how the structure of a JMS message is transformed to a

WebSphere MQ message and back again:

Chapter 2. WebSphere MQ classes for JMS 81

The structures are transformed in two ways:

Mapping

Where the MQMD includes a field that is equivalent to the JMS field, the

JMS field is mapped onto the MQMD field. Additional MQMD fields are

exposed as JMS properties, because a JMS application might need to get or

set these fields when communicating with a non-JMS application.

Copying

Where there is no MQMD equivalent, a JMS header field or property is

passed, possibly transformed, as a field inside the MQRFH2.

The MQRFH2 header:

 This section describes the MQRFH Version 2 header, which carries JMS-specific

data that is associated with the message content. The MQRFH2 Version 2 is an

extensible header, and can also carry additional information that is not directly

associated with JMS. However, this section covers only its use by JMS.

There are two parts of the header, a fixed portion and a variable portion.

Fixed portion

The fixed portion is modelled on the standard WebSphere MQ header

pattern and consists of the following fields:

StrucId (MQCHAR4)

Structure identifier.

 Must be MQRFH_STRUC_ID (value: “RFH ”) (initial value).

MQRFH_STRUC_ID_ARRAY (value: “R”,“F”,“H”,“ ”) is also

defined in the usual way.

Version (MQLONG)

Structure version number.

 Must be MQRFH_VERSION_2 (value: 2) (initial value).

StrucLength (MQLONG)

Total length of MQRFH2, including the NameValueData fields.

 The value set into StrucLength must be a multiple of 4 (the data in

the NameValueData fields can be padded with space characters to

achieve this).

Mapping Mapping

Copying Copying

WebSphere MQ
Message

Other Data

RFH2

MQMD

DataJMS Message

JMS Application

Header

Data

Properties

JMS Application

JMS Message

Header

Data

Properties

Figure 7. How messages are transformed between JMS and WebSphere MQ using the

MQRFH2 header

82 WebSphere MQ: Using Java

Encoding (MQLONG)

Data encoding.

 Encoding of any numeric data in the portion of the message

following the MQRFH2 (the next header, or the message data

following this header).

CodedCharSetId (MQLONG)

Coded character set identifier.

 Representation of any character data in the portion of the message

following the MQRFH2 (the next header, or the message data

following this header).

Format (MQCHAR8)

Format name.

 Format name for the portion of the message following the

MQRFH2.

Flags (MQLONG)

Flags.

 MQRFH_NO_FLAGS =0. No flags set.

NameValueCCSID (MQLONG)

The coded character set identifier (CCSID) for the NameValueData

character strings contained in this header. The NameValueData can

be coded in a character set that differs from the other character

strings that are contained in the header (StrucID and Format).

 If the NameValueCCSID is a 2-byte Unicode CCSID (1200, 13488,

or 17584), the byte order of the Unicode is the same as the byte

ordering of the numeric fields in the MQRFH2. (For example,

Version, StrucLength, and NameValueCCSID itself.)

The NameValueCCSID takes values from the following table:

 Table 18. Possible values for NameValueCCSID field

Value Meaning

1200 UCS2 open-ended

1208 UTF8

13488 UCS2 2.0 subset

17584 UCS2 2.1 subset (includes Euro symbol)

Variable portion

The variable portion follows the fixed portion. The variable portion

contains a variable number of MQRFH2 folders. Each folder contains a

variable number of elements or properties. Folders group together related

properties. The MQRFH2 headers created by JMS can contain up to three

folders:

The <mcd> folder

This contains properties that describe the shape or format of the

message. For example, the Msd property identifies the message as

being Text, Bytes, Stream, Map, Object, or null. This folder is

always present in a JMS MQRFH2.

Chapter 2. WebSphere MQ classes for JMS 83

The <jms> folder

This is used to transport JMS header fields, and JMSX properties

that cannot be fully expressed in the MQMD. This folder is always

present in a JMS MQRFH2.

The <usr> folder

This is used to transport any application-defined properties

associated with the message. This folder is present only if the

application has set some application-defined properties.

The <mqext> folder

This is used to transport IBM defined properties that are used only

by WebSphere Application Server. This folder is present only if the

application has set at least one of these properties.

Table 19 shows a full list of property names.

 Table 19. MQRFH2 folders and properties used by JMS

JMS field name Java type MQRFH2

folder name

Property name Type/values

JMSDestination Destination jms Dst string

JMSExpiration long jms Exp i8

JMSPriority int jms Pri i4

JMSDeliveryMode int jms Dlv i4

JMSCorrelationID String jms Cid string

JMSReplyTo Destination jms Rto string

JMSTimestamp long jms Tms i8

JMSType String mcd Type, Set, Fmt string

JMSXGroupID String jms Gid string

JMSXGroupSeq int jms Seq i4

xxx (user defined) Any usr xxx any

mcd Msd

 jms_none

jms_text

jms_bytes

jms_map

jms_stream

jms_object

The syntax used to express the properties in the variable portion is as

follows:

NameValueLength (MQLONG)

Length in bytes of the NameValueData string that immediately

follows this length field (it does not include its own length). The

value set into NameValueLength is always a multiple of 4 (the

NameValueData field is padded with space characters to achieve

this).

NameValueData (MQCHARn)

A single character string, whose length in bytes is given by the

preceding NameValueLength field. It contains a folder holding a

sequence of properties. Each property is a name/type/value

triplet, contained within an XML element whose name is the folder

name, as follows:

84 WebSphere MQ: Using Java

<foldername> triplet1 triplet2 tripletn </foldername>

 The closing </foldername> tag can be followed by spaces as

padding characters. Each triplet is encoded using an XML-like

syntax:

 <name dt=’datatype’>value</name>

The dt=’datatype’ element is optional and is omitted for many

properties, because the data type is predefined. If it is included,

one or more space characters must be included before the dt= tag.

name is the name of the property; see Table 19 on page 84.

datatype

must match, after folding, one of the data types listed in

Table 20.

value is a string representation of the value to be conveyed,

using the definitions in Table 20.

A null value is encoded using the following syntax:

<name dt=’datatype’ xsi:nil=’true’></name>

Do not use xsi:nil=’false’.

 Table 20. Property data types

Data type Definition

string Any sequence of characters excluding < and &

boolean The character 0 or 1 (0 = false, 1 = true)

bin.hex Hexadecimal digits representing octets

i1 A number, expressed using digits 0..9, with optional sign (no fractions or

exponent). Must lie in the range -128 to 127 inclusive

i2 A number, expressed using digits 0..9, with optional sign (no fractions or

exponent). Must lie in the range -32768 to 32767 inclusive

i4 A number, expressed using digits 0..9, with optional sign (no fractions or

exponent). Must lie in the range -2147483648 to 2147483647 inclusive

i8 A number, expressed using digits 0..9, with optional sign (no fractions or

exponent). Must lie in the range -9223372036854775808 to

92233720368547750807 inclusive

int A number, expressed using digits 0..9, with optional sign (no fractions or

exponent). Must lie in the same range as i8. This can be used in place of

one of the i* types if the sender does not want to associate a particular

precision with the property

r4 Floating point number, magnitude <= 3.40282347E+38, >= 1.175E-37

expressed using digits 0..9, optional sign, optional fractional digits,

optional exponent

r8 Floating point number, magnitude <= 1.7976931348623E+308, >= 2.225E-307

expressed using digits 0..9, optional sign, optional fractional digits,

optional exponent

A string value can contain spaces. You must use the following

escape sequences in a string value:

v & for the & character

v < for the < character

Chapter 2. WebSphere MQ classes for JMS 85

You can use the following escape sequences, but they are not

required:

v > for the > character

v ' for the ’ character

v " for the " character

JMS fields and properties with corresponding MQMD fields:

 Table 21 lists the JMS header fields and Table 22 lists the JMS properties that are

mapped directly to MQMD fields. Table 23 lists the provider specific properties

and the MQMD fields that they are mapped to.

 Table 21. JMS header fields mapping to MQMD fields

JMS header field Java

type

MQMD field C type

JMSDeliveryMode int Persistence MQLONG

JMSExpiration long Expiry MQLONG

JMSPriority int Priority MQLONG

JMSMessageID String MessageID MQBYTE24

JMSTimestamp long

 PutDate

PutTime

 MQCHAR8

MQCHAR8

JMSCorrelationID String CorrelId MQBYTE24

Note:

1. JMS_IBM_Character_Set property value is a String value that contains the Java

character set equivalent for the numeric CodedCharacterSetId value. MQMD field

CodedCharacterSetId is a numeric value that contains the equivalent of the Java

character set string specified by the JMS_IBM_Character_Set property.

 Table 22. JMS properties mapping to MQMD fields

JMS property Java

type

MQMD field C type

JMSXUserID String UserIdentifier MQCHAR12

JMSXAppID String PutApplName MQCHAR28

JMSXDeliveryCount int BackoutCount MQLONG

JMSXGroupID String GroupId MQBYTE24

JMSXGroupSeq int MsgSeqNumber MQLONG

 Table 23. JMS provider specific properties mapping to MQMD fields

JMS provider specific property Java

type

MQMD field C type

JMS_IBM_Report_Exception int Report MQLONG

JMS_IBM_Report_Expiration int Report MQLONG

JMS_IBM_Report_COA int Report MQLONG

JMS_IBM_Report_COD int Report MQLONG

JMS_IBM_Report_PAN int Report MQLONG

JMS_IBM_Report_NAN int Report MQLONG

86 WebSphere MQ: Using Java

Table 23. JMS provider specific properties mapping to MQMD fields (continued)

JMS provider specific property Java

type

MQMD field C type

JMS_IBM_Report_Pass_Msg_ID int Report MQLONG

JMS_IBM_Report_Pass_Correl_ID int Report MQLONG

JMS_IBM_Report_Discard_Msg int Report MQLONG

JMS_IBM_MsgType int MsgType MQLONG

JMS_IBM_Feedback int Feedback MQLONG

JMS_IBM_Format String Format1 MQCHAR8

JMS_IBM_PutApplType int PutApplType MQLONG

JMS_IBM_Encoding int Encoding MQLONG

JMS_IBM_Character_Set String CodedCharacterSetId MQLONG

JMS_IBM_PutDate String PutDate MQCHAR8

JMS_IBM_PutTime String PutTime MQCHAR8

JMS_IBM_Last_Msg_In_Group boolean MsgFlags MQLONG

Note:

1. JMS_IBM_Format represents the format of the message body. This can be defined by

the application setting the JMS_IBM_Format property of the message (note that there is

an 8 character limit), or can default to the WebSphere MQ format of the message body

appropriate to the JMS message type. JMS_IBM_Format maps to the MQMD Format

field only if the message contains no RFH or RFH2 sections. In a typical message, it

will map to the Format field of the RFH2 immediately preceding the message body.

Mapping JMS fields onto WebSphere MQ fields (outgoing messages):

 Table 24 shows how the JMS header fields are mapped into MQMD/RFH2 fields at

send() or publish() time. Table 25 on page 88 shows how JMS properties and

Table 26 on page 88 shows how JMS provider specific properties are mapped to

MQMD fields at send() or publish() time,

For fields marked Set by Message Object, the value transmitted is the value held in

the JMS message immediately before the send() or publish() operation. The value

in the JMS message is left unchanged by the operation.

For fields marked Set by Send Method, a value is assigned when the send() or

publish() is performed (any value held in the JMS message is ignored). The value

in the JMS message is updated to show the value used.

Fields marked as Receive-only are not transmitted and are left unchanged in the

message by send() or publish().

 Table 24. Outgoing message field mapping

JMS header field name MQMD field used for

transmission

Header Set by

JMSDestination MQRFH2 Send Method

JMSDeliveryMode Persistence MQRFH2 Send Method

JMSExpiration Expiry MQRFH2 Send Method

JMSPriority Priority MQRFH2 Send Method

JMSMessageID MessageID Send Method

Chapter 2. WebSphere MQ classes for JMS 87

Table 24. Outgoing message field mapping (continued)

JMS header field name MQMD field used for

transmission

Header Set by

JMSTimestamp PutDate/PutTime Send Method

JMSCorrelationID CorrelId MQRFH2 Message Object

JMSReplyTo ReplyToQ/ReplyToQMgr MQRFH2 Message Object

JMSType MQRFH2 Message Object

JMSRedelivered Receive-only

Note:

1. MQMD field CodedCharacterSetId is a numeric value that contains the equivalent of the Java character set string

specified by the JMS_IBM_Character_Set property.

 Table 25. Outgoing message JMS property mapping

JMS property name MQMD field used for

transmission

Header Set by

JMSXUserID UserIdentifier Send Method

JMSXAppID PutApplName Send Method

JMSXDeliveryCount Receive-only

JMSXGroupID GroupId MQRFH2 Message Object

JMSXGroupSeq MsgSeqNumber MQRFH2 Message Object

 Table 26. Outgoing message JMS provider specific property mapping

JMS provider specific property name MQMD field used for

transmission

Header Set by

JMS_IBM_Report_Exception Report Message Object

JMS_IBM_Report_Expiration Report Message Object

JMS_IBM_Report_COA/COD Report Message Object

JMS_IBM_Report_NAN/PAN Report Message Object

JMS_IBM_Report_Pass_Msg_ID Report Message Object

JMS_IBM_Report_Pass_Correl_ID Report Message Object

JMS_IBM_Report_Discard_Msg Report Message Object

JMS_IBM_MsgType MsgType Message Object

JMS_IBM_Feedback Feedback Message Object

JMS_IBM_Format Format Message Object

JMS_IBM_PutApplType PutApplType Send Method

JMS_IBM_Encoding Encoding Message Object

JMS_IBM_Character_Set CodedCharacterSetId Message Object

JMS_IBM_PutDate PutDate Send Method

JMS_IBM_PutTime PutTime Send Method

JMS_IBM_Last_Msg_In_Group MsgFlags Message Object

Mapping JMS header fields at send() or publish():

 The following notes relate to the mapping of JMS fields at send() or publish():

88 WebSphere MQ: Using Java

JMSDestination to MQRFH2

This is stored as a string that serializes the salient characteristics of the

destination object, so that a receiving JMS can reconstitute an equivalent

destination object. The MQRFH2 field is encoded as URI (see “Uniform

resource identifiers (URIs)” on page 112 for details of the URI notation).

JMSReplyTo to MQMD ReplyToQ, ReplyToQMgr, MQRFH2

The queue and queue manager name are copied to the MQMD ReplyToQ

and ReplyToQMgr fields respectively. The destination extension

information (other useful details that are kept in the destination object) is

copied into the MQRFH2 field. The MQRFH2 field is encoded as a URI

(see “Uniform resource identifiers (URIs)” on page 112 for details of the

URI notation).

JMSDeliveryMode to MQMD Persistence

The JMSDeliveryMode value is set by the send() or publish() Method or

MessageProducer, unless the Destination Object overrides it. The

JMSDeliveryMode value is mapped to the MQMD Persistence field as

follows:

v JMS value PERSISTENT is equivalent to MQPER_PERSISTENT

v JMS value NON_PERSISTENT is equivalent to

MQPER_NOT_PERSISTENT

If the MQQueue persistence property is not set to

JMSC.MQJMS_PER_QDEF, the delivery mode value is also encoded in the

MQRFH2.

JMSExpiration to/from MQMD Expiry, MQRFH2

JMSExpiration stores the time to expire (the sum of the current time and

the time to live), whereas MQMD stores the time to live. Also,

JMSExpiration is in milliseconds, but MQMD.expiry is in centiseconds.

v If the send() method sets an unlimited time to live, MQMD Expiry is set

to MQEI_UNLIMITED, and no JMSExpiration is encoded in the

MQRFH2.

v If the send() method sets a time to live that is less than 214748364.7

seconds (about 7 years), the time to live is stored in MQMD. Expiry, and

the expiration time (in milliseconds), are encoded as an i8 value in the

MQRFH2.

v If the send() method sets a time to live greater than 214748364.7 seconds,

MQMD.Expiry is set to MQEI_UNLIMITED. The true expiration time in

milliseconds is encoded as an i8 value in the MQRFH2.

JMSPriority to MQMD Priority

Directly map JMSPriority value (0-9) onto MQMD priority value (0-9). If

JMSPriority is set to a non-default value, the priority level is also encoded

in the MQRFH2.

JMSMessageID from MQMD MessageID

All messages sent from JMS have unique message identifiers assigned by

WebSphere MQ. The value assigned is returned in the MQMD messageId

field after the MQPUT call, and is passed back to the application in the

JMSMessageID field. The WebSphere MQ messageId is a 24-byte binary

value, whereas the JMSMessageID is a string. The JMSMessageID is

composed of the binary messageId value converted to a sequence of 48

hexadecimal characters, prefixed with the characters ID:. JMS provides a

hint that can be set to disable the production of message identifiers. This

hint is ignored, and a unique identifier is assigned in all cases. Any value

that is set into the JMSMessageId field before a send() is overwritten.

Chapter 2. WebSphere MQ classes for JMS 89

JMSTimestamp to MQRFH2

During a send, the JMSTimestamp field is set according to the JVM’s clock.

This value is set into the MQRFH2. Any value that is set into the

JMSTimestamp field before a send() is overwritten. See also the

JMS_IBM_PutDate and JMS_IBM_PutTime properties.

JMSType to MQRFH2

This string is set into the MQRFH2 mcd.Type field. If it is in URI format, it

can also affect mcd.Set and mcd.Fmt fields. See also “Using a real-time

connection to a broker of WebSphere Event Broker or WebSphere Message

Broker” on page 150.

JMSCorrelationID to MQMD CorrelId, MQRFH2

The JMSCorrelationID can hold one of the following:

A provider specific message ID

This is a message identifier from a message previously sent or

received, and so should be a string of 48 hexadecimal digits that

are prefixed with ID:. The prefix is removed, the remaining

characters are converted into binary, and then they are set into the

MQMD CorrelId field. No CorrelId value is encoded in the

MQRFH2.

A provider-native byte[] value

The value is copied into the MQMD CorrelId field - padded with

nulls, or truncated to 24 bytes if necessary. No CorrelId value is

encoded in the MQRFH2.

An application-specific string

The value is copied into the MQRFH2. The first 24 bytes of the

string, in UTF8 format, are written into the MQMD CorrelID.

Mapping JMS property fields:

 These notes refer to the mapping of JMS property fields in WebSphere MQ

messages:

JMSXUserID from MQMD UserIdentifier

JMSXUserID is set on return from send call.

JMSXAppID from MQMD PutApplName

JSMXAppID is set on return from send call.

JMSXGroupID to MQRFH2 (point-to-point)

For point-to-point messages, the JMSXGroupID is copied into the MQMD

GroupID field. If the JMSXGroupID starts with the prefix ID:, it is

converted into binary. Otherwise, it is encoded as a UTF8 string. The value

is padded or truncated if necessary to a length of 24 bytes. The

MQMF_MSG_IN_GROUP flag is set.

JMSXGroupID to MQRFH2 (publish/subscribe)

For publish/subscribe messages, the JMSXGroupID is copied into the

MQRFH2 as a string.

JMSXGroupSeq MQMD MsgSeqNumber (point-to-point)

For point-to-point messages, the JMSXGroupSeq is copied into the MQMD

MsgSeqNumber field. The MQMF_MSG_IN_GROUP flag is set.

JMSXGroupSeq MQMD MsgSeqNumber (publish/subscribe)

For publish/subscribe messages, the JMSXGroupSeq is copied into the

MQRFH2 as an i4.

90 WebSphere MQ: Using Java

Mapping JMS provider-specific fields:

 The following notes refer to the mapping of JMS Provider specific fields into

WebSphere MQ messages:

JMS_IBM_Report_<name> to MQMD Report

A JMS application can set the MQMD Report options, using the following

JMS_IBM_Report_XXX properties. The single MQMD is mapped to several

JMS_IBM_Report_XXX properties. The application must set the value of

these properties to the standard WebSphere MQ MQRO_ constants

(included in com.ibm.mq.MQC). So, for example, to request COD with full

Data, the application must set JMS_IBM_Report_COD to the value

MQC.MQRO_COD_WITH_FULL_DATA.

JMS_IBM_Report_Exception

MQRO_EXCEPTION or

MQRO_EXCEPTION_WITH_DATA or

MQRO_EXCEPTION_WITH_FULL_DATA

JMS_IBM_Report_Expiration

MQRO_EXPIRATION or

MQRO_EXPIRATION_WITH_DATA or

MQRO_EXPIRATION_WITH_FULL_DATA

JMS_IBM_Report_COA

MQRO_COA or

MQRO_COA_WITH_DATA or

MQRO_COA_WITH_FULL_DATA

JMS_IBM_Report_COD

MQRO_COD or

MQRO_COD_WITH_DATA or

MQRO_COD_WITH_FULL_DATA

JMS_IBM_Report_PAN

MQRO_PAN

JMS_IBM_Report_NAN

MQRO_NAN

JMS_IBM_Report_Pass_Msg_ID

MQRO_PASS_MSG_ID

JMS_IBM_Report_Pass_Correl_ID

MQRO_PASS_CORREL_ID

JMS_IBM_Report_Discard_Msg

MQRO_DISCARD_MSG

JMS_IBM_MsgType to MQMD MsgType

Value maps directly onto MQMD MsgType. If the application has not set

an explicit value of JMS_IBM_MsgType, a default value is used. This

default value is determined as follows:

v If JMSReplyTo is set to a WebSphere MQ queue destination, MSGType is

set to the value MQMT_REQUEST

Chapter 2. WebSphere MQ classes for JMS 91

v If JMSReplyTo is not set, or is set to anything other than a WebSphere

MQ queue destination, MsgType is set to the value

MQMT_DATAGRAM

JMS_IBM_Feedback to MQMD Feedback

Value maps directly onto MQMD Feedback.

JMS_IBM_Format to MQMD Format

Value maps directly onto MQMD Format.

JMS_IBM_Encoding to MQMD Encoding

If set, this property overrides the numeric encoding of the Destination

Queue or Topic.

JMS_IBM_Character_Set to MQMD CodedCharacterSetId

If set, this property overrides the coded character set property of the

Destination Queue or Topic.

JMS_IBM_PutDate from MQMD PutDate

The value of this property is set, during send, directly from the PutDate

field in the MQMD. Any value that is set into the JMS_IBM_PutDate

property before a send is overwritten. This field is a String of eight

characters, in the WebSphere MQ Date format of YYYYMMDD. This

property can be used in conjunction with the JMS_IBM_PutTime property

to determine the time the message was put according to the queue

manager.

JMS_IBM_PutTime from MQMD PutTime

The value of this property is set, during send, directly from the PutTime

field in the MQMD. Any value that is set into the JMS_IBM_PutTime

property before a send is overwritten. This field is a String of eight

characters, in the WebSphere MQ Time format of HHMMSSTH. This

property can be used in conjunction with the JMS_IBM_PutDate property

to determine the time the message was put according to the queue

manager.

JMS_IBM_Last_Msg_In_Group to MQMD MsgFlags

For point-to-point messaging, this boolean value maps to the

MQMF_LAST_MSG_IN_GROUP flag in the MQMD MsgFlags field. It is

normally used in conjunction with the JMSXGroupID and JMSXGroupSeq

properties to indicate to a legacy WebSphere MQ application that this is

the last message in a group. This property is ignored for publish/subscribe

messaging.

Mapping WebSphere MQ fields onto JMS fields (incoming messages):

 Table 27 shows how JMS header fields and Table 28 on page 93 shows how JMS

property fields are mapped into MQMD/MQRFH2 fields at send() or publish()

time. Table 29 on page 93 shows how JMS provider specific properties are mapped.

 Table 27. Incoming message JMS header field mapping

JMS header field name MQMD field retrieved from MQRFH2 field

retrieved from

JMSDestination jms.Dst

JMSDeliveryMode Persistence1 jms.Dlv1

JMSExpiration jms.Exp

JMSPriority Priority

JMSMessageID MessageID

92 WebSphere MQ: Using Java

Table 27. Incoming message JMS header field mapping (continued)

JMS header field name MQMD field retrieved from MQRFH2 field

retrieved from

JMSTimestamp

 PutDate1

PutTime1

jms.Tms1

JMSCorrelationID CorrelId1 jms.Cid1

JMSReplyTo

 ReplyToQ1

ReplyToQMgr1

jms.Rto1

JMSType mcd.Type, mcd.Set,

mcd.Fmt

JMSRedelivered BackoutCount

Note:

1. For properties that can have values retrieved from the MQRFH2 or the MQMD, if both

are available, the setting in the MQRFH2 is used.

2. JMS_IBM_Character_Set property value is a String value that contains the Java

character set equivalent for the numeric CodedCharacterSetId value.

 Table 28. Incoming message property mapping

JMS property name MQMD field retrieved from MQRFH2 field

retrieved from

JMSXUserID UserIdentifier

JMSXAppID PutApplName

JMSXDeliveryCount BackoutCount

JMSXGroupID GroupId1 jms.Gid1

JMSXGroupSeq MsgSeqNumber1 jms.Seq1

Note:

1. For properties that can have values retrieved from the MQRFH2 or the MQMD, if both

are available, the setting in the MQRFH2 is used.

 Table 29. Incoming message provider specific JMS property mapping

JMS property name MQMD field retrieved from MQRFH2 field

retrieved from

JMS_IBM_Report_Exception Report

JMS_IBM_Report_Expiration Report

JMS_IBM_Report_COA Report

JMS_IBM_Report_COD Report

JMS_IBM_Report_PAN Report

JMS_IBM_Report_NAN Report

JMS_IBM_Report_ Pass_Msg_ID Report

JMS_IBM_Report_Pass_Correl_ID Report

JMS_IBM_Report_Discard_Msg Report

JMS_IBM_MsgType MsgType

JMS_IBM_Feedback Feedback

JMS_IBM_Format Format

Chapter 2. WebSphere MQ classes for JMS 93

Table 29. Incoming message provider specific JMS property mapping (continued)

JMS property name MQMD field retrieved from MQRFH2 field

retrieved from

JMS_IBM_PutApplType PutApplType

JMS_IBM_Encoding

1 Encoding

JMS_IBM_Character_Set

1 CodedCharacterSetId

JMS_IBM_PutDate PutDate

JMS_IBM_PutTime PutTime

JMS_IBM_Last_Msg_In_Group MsgFlags

1. Only set if the incoming message is a Bytes Message.

Exchanging messages between a JMS application and a traditional WebSphere

MQ application:

 This section describes what happens when a JMS application exchanges messages

with a traditional WebSphere MQ application that has no knowledge of the

MQRFH2 header. Figure 8 on page 95 shows the mapping.

The administrator indicates that the JMS application is communicating with such

an application by setting the TARGCLIENT property of the destination to MQ.

This indicates that no MQRFH2 header is to be produced. Note that, if this is not

done, the receiving application must be able to handle the MQRFH2 header.

The mapping from JMS to MQMD targeted at a traditional WebSphere MQ

application is the same as mapping from JMS to MQMD targeted at a JMS

application. If WebSphere MQ classes for JMS receives a WebSphere MQ message

with the MQMD Format field set to other than MQFMT_RFH2, data is being

received from a non-JMS application. If the format is MQFMT_STRING, the

message is received as a JMS text message. Otherwise, it is received as a JMS bytes

message. Because there is no MQRFH2, only those JMS properties that are

transmitted in the MQMD can be restored.

If WebSphere MQ classes for JMS receives a message that does not have an

MQRFH2 header, the TARGCLIENT property of the Queue or Topic object derived

from the JMSReplyTo header field of the message is set to MQ by default. This

means that a reply message sent to the queue or topic also does not have an

MQRFH2 header. You can switch off this behavior of including an MQRFH2

header in a reply message only if the original message has an MQRFH2 header by

setting the TARGCLIENTMATCHING property of the connection factory to NO.

94 WebSphere MQ: Using Java

Message body:

This topic discusses the encoding of the message body itself. The encoding

depends on the type of JMS message.

 ObjectMessage

An ObjectMessage is an object serialized by the Java Runtime in the

normal way.

TextMessage

A TextMessage is an encoded string. For an outgoing message, the string is

encoded in the character set given by the destination object. This defaults

to UTF8 encoding (the UTF8 encoding starts with the first character of the

message; there is no length field at the start). It is, however, possible to

specify any other character set supported by WebSphere MQ classes for

JMS. Such character sets are used mainly when you send a message to a

non-JMS application.

 If the character set is a double-byte set (including UTF16), the destination

object’s integer encoding specification determines the order of the bytes.

An incoming message is interpreted using the character set and encoding

that are specified in the message itself. These specifications are in the last

WebSphere MQ header (or MQMD if there are no headers). For JMS

messages, the last header is usually the MQRFH2.

BytesMessage

A BytesMessage is, by default, a sequence of bytes as defined by the JMS

1.0.2 specification and associated Java documentation.

 For an outgoing message that was assembled by the application itself, the

destination object’s encoding property can be used to override the

encodings of integer and floating point fields contained in the message. For

example, you can request that floating point values are stored in S/390®

rather than IEEE format).

An incoming message is interpreted using the numeric encoding specified

in the message itself. This specification is in the rightmost WebSphere MQ

header (or MQMD if there are no headers). For JMS messages, the

rightmost header is usually the MQRFH2.

If a BytesMessage is received, and is re-sent without modification, its body

is transmitted byte for byte, as it was received. The destination object’s

encoding property has no effect on the body. The only string-like entity

that can be sent explicitly in a BytesMessage is a UTF8 string. This is

Mapping Mapping

Mapping Mapping

Copying Copying

WebSphere MQ
Message

Traditional WebSphere MQ Application

Data

MQMD

JMS Message

JMS Application

Header

Data

Properties

JMS Application

JMS Message

Header

Data

Properties

Figure 8. How JMS messages are transformed to WebSphere MQ messages with no

MQRFH2 header

Chapter 2. WebSphere MQ classes for JMS 95

encoded in Java UTF8 format, and starts with a 2-byte length field. The

destination object’s character set property has no effect on the encoding of

an outgoing BytesMessage. The character set value in an incoming

WebSphere MQ message has no effect on the interpretation of that message

as a JMS BytesMessage.

Non-Java applications are unlikely to recognize the Java UTF8 encoding.

Therefore, for a JMS application to send a BytesMessage that contains text

data, the application itself must convert its strings to byte arrays, and write

these byte arrays into the BytesMessage.

MapMessage

A MapMessage is a string containing XML name/type/value triplets

encoded as:

<map>

 <elt name="elementname1" dt="datatype1">value1</elt>

 <elt name="elementname2" dt="datatype2">value2</elt>

 ...

</map>

where datatype is one of the data types listed in Table 20 on page 85. The

default data type is string, and so the attribute dt="string" is omitted for

string elements.

 The character set used to encode or interpret the XML string that forms the

body of a map message is determined according to the rules that apply to

a text message.

Versions of WebSphere MQ classes for JMS earlier than Version 5.3

encoded the body of a map message in the following format:

<map>

 <elementname1 dt="datatype1">value1</elementname1>

 <elementname2 dt="datatype2">value2</elementname2>

 ...

</map>

Version 5.3 and later versions of WebSphere MQ classes for JMS can

interpret either format, but versions of WebSphere MQ classes for JMS

earlier than Version 5.3 cannot interpret the current format.

If an application needs to send map messages to another application that is

using a version of WebSphere MQ classes for JMS earlier than Version 5.3,

the sending application must call the connection factory method

setMapNameStyle(JMSC.MAP_NAME_STYLE_COMPATIBLE) to specify that the

map messages are sent in the previous format. By default, all map

messages are sent in the current format.

StreamMessage

A StreamMessage is like a map message, but without element names:

<stream>

 <elt dt="datatype1">value1</elt>

 <elt dt="datatype2">value2</elt>

 ...

</stream>

where datatype is one of the data types listed in Table 20 on page 85. The

default data type is string, and so the attribute dt="string" is omitted for

string elements.

96 WebSphere MQ: Using Java

The character set used to encode or interpret the XML string that makes up

the StreamMessage body is determined following the rules that apply to a

TextMessage.

The MQRFH2.format field is set as follows:

MQFMT_NONE

for ObjectMessage, BytesMessage, or messages with no body.

MQFMT_STRING

for TextMessage, StreamMessage, or MapMessage.

Creating and configuring connection factories and

destinations in a WebSphere MQ classes for JMS application

A WebSphere MQ classes for JMS application can create connection factories and

destinations by retrieving them as administered objects from a Java Naming and

Directory Interface (JNDI) namespace, by using the IBM JMS extensions, or by

using the WebSphere MQ JMS extensions. An application can also use the IBM JMS

extensions or WebSphere MQ JMS extensions to set the properties of connection

factories and destinations.

Connection factories and destinations are starting points in the flow of logic of a

JMS application. An application uses a ConnectionFactory object to create a

connection to a messaging server, and uses a Queue or Topic object as a target to

send messages to or a source from which to receive messages. An application

therefore needs to create at least one connection factory and one or more

destinations. Having created a connection factory or destination, the application

might then need to configure the object by setting one or more of its properties.

In summary, an application can create and configure connection factories and

destinations in the following ways:

Using JNDI to retrieve administered objects

An administrator can use the WebSphere MQ JMS administration tool or

WebSphere MQ Explorer to create and configure connection factories and

destinations as administered objects in a JNDI namespace. An application

can then retrieve the administered objects from the JNDI namespace.

Having retrieved an administered object, the application can, if required,

set or change one or more of its properties by using either the IBM JMS

extensions or the WebSphere MQ JMS extensions.

Using the IBM JMS extensions

An application can use the IBM JMS extensions to create connection

factories and destinations dynamically at run time. The application first

creates a JmsFactoryFactory object, and then uses methods of this object to

create connection factories and destinations. Having created a connection

factory or destination, the application can use methods inherited from the

JmsPropertyContext interface to set its properties. Alternatively, the

application can use a uniform resource identifier (URI) to specify one or

more properties of a destination when it creates the destination.

Using the WebSphere MQ JMS extensions

An application can also use the WebSphere MQ JMS extensions to create

connection factories and destinations dynamically at run time. The

application uses the supplied constructors to create connection factories

and destinations. Having created a connection factory or destination, the

application can use methods of the object to set its properties.

Chapter 2. WebSphere MQ classes for JMS 97

Alternatively, the application can use a URI to specify one or more

properties of a destination when it creates the destination.

Using JNDI to retrieve administered objects in a JMS application

To retrieve administered objects from a Java Naming and Directory Interface

(JNDI) namespace, a JMS application must create an initial context and then use

the lookup() method to retrieve the objects.

Before an application can retrieve administered objects from a JNDI namespace, an

administrator must first create the administered objects. The administrator can use

the WebSphere MQ JMS administration tool or WebSphere MQ Explorer to create

and maintain administered objects in a JNDI namespace. For information about

how to use the WebSphere MQ JMS administration tool, see “Using the WebSphere

MQ JMS administration tool” on page 163. For information about how to use

WebSphere MQ Explorer, see the help provided with WebSphere MQ Explorer. An

application server, however, typically provides its own repository for administered

objects and its own tools for creating and maintaining the objects.

To retrieve administered objects from a JNDI namespace, an application must first

create an initial context, as shown in the following example:

import javax.jms.*;

import javax.naming.*;

import javax.naming.directory.*;

.

.

.

String url = "ldap://server.company.com/o=company_us,c=us";

String icf = "com.sun.jndi.ldap.LdapCtxFactory";

.

java.util.Hashtable environment = new java.util.Hashtable();

environment.put(Context.PROVIDER_URL, url);

environment.put(Context.INITIAL_CONTEXT_FACTORY, icf);

Context ctx = new InitialDirContext(environment);

In this code, the String variables url and icf have the following meanings:

url The uniform resource locator (URL) of the directory service. The URL can

have one of the following formats:

v ldap://hostname/contextName, for a directory service based on an LDAP

server

v file:/directoryPath, for a directory service based on the local file

system

icf The class name of the initial context factory, which can be one of the

following values:

v com.sun.jndi.ldap.LdapCtxFactory, for a directory service based on an

LDAP server

v com.sun.jndi.fscontext.RefFSContextFactory, for a directory service

based on the local file system

Note that some combinations of a JNDI package and a Lightweight Directory

Access Protocol (LDAP) service provider can cause LDAP error 84 to occur. To

resolve this problem, insert the following line of code before the call to

InitialDirContext():

environment.put(Context.REFERRAL, "throw");

98 WebSphere MQ: Using Java

After an initial context is obtained, the application can retrieve administered

objects from the JNDI namespace by using the lookup() method, as shown in the

following example:

ConnectionFactory factory;

Queue queue;

Topic topic;

.

.

.

factory = (ConnectionFactory)ctx.lookup("cn=myCF");

queue = (Queue)ctx.lookup("cn=myQ");

topic = (Topic)ctx.lookup("cn=myT");

This code retrieves the following objects from an LDAP based namespace:

v A ConnectionFactory object bound with the name myCF

v A Queue object bound with the name myQ

v A Topic object bound with the name myT

For more information about using JNDI, see the JNDI documentation provided by

Sun Microsystems, Inc..

Using the IBM JMS extensions

WebSphere MQ classes for JMS contains a set of extensions to the JMS API called

the IBM JMS extensions. An application can use these extensions to create

connection factories and destinations dynamically at run time, and to set the

properties of WebSphere MQ classes for JMS objects. The extensions can be used

with any messaging provider.

The IBM JMS extensions are a set of interfaces and classes in the following

packages:

v com.ibm.msg.client.jms

v com.ibm.msg.client.services

These extensions provide the following function:

v A factory based mechanism for creating connection factories and destinations

dynamically at run time, instead of retrieving them as administered objects from

a Java Naming and Directory Interface (JNDI) namespace

v A set of methods for setting the properties of WebSphere MQ classes for JMS

objects

v A set of exception classes with methods for obtaining detailed information about

a problem

v A set of methods for controlling tracing

v A set of methods for obtaining version information about WebSphere MQ classes

for JMS

With regard to creating connection factories and destinations dynamically at run

time, and setting and getting their properties, the IBM JMS extensions provide an

alternative set of interfaces to the WebSphere MQ JMS extensions. However,

whereas the WebSphere MQ JMS extensions are specific to the WebSphere MQ

messaging provider, the IBM JMS extensions are not specific to WebSphere MQ

and can be used with any messaging provider within the layered architecture

described in “A layered architecture” on page 67.

The interface com.ibm.msg.client.wmq.WMQConstants contains the definitions of

constants, which an application can use when setting the properties of WebSphere

Chapter 2. WebSphere MQ classes for JMS 99

MQ classes for JMS objects using the IBM JMS extensions. The interface contains

constants for the WebSphere MQ messaging provider and JMS constants that are

independent of any messaging provider.

The examples of code that follow assume that the following import statements

have been run:

import com.ibm.msg.client.jms.*;

import com.ibm.msg.client.services.*;

import com.ibm.msg.client.wmq.WMQConstants;

Creating connection factories and destinations

Before an application can create connection factories and destinations using the

IBM JMS extensions, it must first create a JmsFactoryFactory object. To create a

JmsFactoryFactory object, the application calls the getInstance() method of the

JmsFactoryFactory class, as shown in the following example:

JmsFactoryFactory ff = JmsFactoryFactory.getInstance(JmsConstants.WMQ_PROVIDER);

The parameter on the getInstance() call is a constant that identifies the WebSphere

MQ messaging provider as the chosen messaging provider. The application can

then use the JmsFactoryFactory object to create connection factories and

destinations.

To create a connection factory, the application calls the createConnectionFactory()

method of the JmsFactoryFactory object, as shown in the following example:

JmsConnectionFactory factory = ff.createConnectionFactory();

This statement creates a JmsConnectionFactory object with the default values for

all its properties, which means that the application connects to the default queue

manager in bindings mode. If you want an application to connect in client mode,

or connect to a queue manager other than the default queue manager, the

application must set the appropriate properties of the JmsConnectionFactory object

before creating the connection. For information about how to do this, see “Setting

the properties of WebSphere MQ classes for JMS objects” on page 101.

The JmsFactoryFactory class also contains methods to create connection factories of

the following types:

v JmsQueueConnectionFactory

v JmsTopicConnectionFactory

v JmsXAConnectionFactory

v JmsXAQueueConnectionFactory

v JmsXATopicConnectionFactory

To create a Queue object, the application calls the createQueue() method of the

JmsFactoryFactory object, as shown in the following example:

JmsQueue q1 = ff.createQueue("Q1");

This statement creates an JmsQueue object with the default values for all its

properties. The object represents a WebSphere MQ queue called Q1 that belongs to

the local queue manager. This queue can be a local queue, an alias queue, or a

remote queue definition.

The createQueue() method can also accept a queue uniform resource identifier

(URI) as a parameter. A queue URI is a string that specifies the name of a

100 WebSphere MQ: Using Java

WebSphere MQ queue and, optionally, the name of the queue manager that owns

the queue, and one or more properties of the JmsQueue object. The following

statement contains an example of a queue URI:

JmsQueue q2 = ff.createQueue("queue://QM2/Q2?persistence=2&priority=5");

The JmsQueue object created by this statement represents a WebSphere MQ queue

called Q2 that is owned by queue manager QM2, and all messages sent to this

destination are persistent and have a priority of 5. For more information about

queue URIs, see “Uniform resource identifiers (URIs)” on page 112. For an

alternative way of setting the properties of a JmsQueue object, see “Setting the

properties of WebSphere MQ classes for JMS objects.”

To create a Topic object, an application can use the createTopic() method of the

JmsFactoryFactory object, as shown in the following example:

JmsTopic t1 = ff.createTopic("Sport/Football/Results");

This statement creates a JmsTopic object with the default values for all its

properties. The object represents a topic called Sport/Football/Results.

The createTopic() method can also accept a topic URI as a parameter. A topic URI

is a string that specifies the name of a topic and, optionally, one or more properties

of the JmsTopic object. The following statements contain an example of a topic

URI:

String s1 = "topic://Sport/Tennis/Results?persistence=1&priority=0";

JmsTopic t2 = ff.createTopic(s1);

The JmsTopic object created by these statements represents a topic called

Sport/Tennis/Results, and all messages sent to this destination are nonpersistent

and have a priority of 0. For more information about topic URIs, see “Uniform

resource identifiers (URIs)” on page 112. For an alternative way of setting the

properties of a JmsTopic object, see “Setting the properties of WebSphere MQ

classes for JMS objects.”

After an application has created a connection factory or destination, that object can

be used only with the selected messaging provider.

Setting the properties of WebSphere MQ classes for JMS objects

To set the properties of WebSphere MQ classes for JMS objects using the IBM JMS

extensions, an application uses the methods of the

com.ibm.msg.client.JmsPropertyContext interface.

For each Java data type, the JmsPropertyContext interface contains a method to set

the value of a property with that data type, and a method to get to get the value of

a property with that data type. For example, an application calls the

setIntProperty() method to set a property with an integer value, and calls the

getIntProperty() method to get a property with an integer value.

Instances of classes in the com.ibm.mq.jms package also inherit the methods of the

JmsPropertyContext interface. An application can therefore use these methods to

set the properties of MQConnectionFactory, MQQueue, and MQTopic objects.

When an application creates a WebSphere MQ classes for JMS object, any

properties with default values are set automatically. When an application sets a

property, the new value replaces any previous value the property had. After a

property has been set, it cannot be deleted, but its value can be changed.

Chapter 2. WebSphere MQ classes for JMS 101

If an application attempts to set a property to a value that is not valid value for the

property, WebSphere MQ classes for JMS throws a JMSException exception. If an

application attempts to get a property that has not been set, the behavior is as

described in the JMS specification. WebSphere MQ classes for JMS throws a

NumberFormatException exception for primitive data types and returns null for

referenced data types.

In addition to the predefined properties of a WebSphere MQ classes for JMS object,

an application can set its own properties. These application defined properties are

ignored by WebSphere MQ classes for JMS.

For more information about the properties of WebSphere MQ classes for JMS

objects, see “Properties of WebSphere MQ classes for JMS objects” on page 171.

The following code is an example of how to set properties using the IBM JMS

extensions. The code sets five properties of a connection factory.

factory.setIntProperty(WMQConstants.WMQ_CONNECTION_MODE,

 WMQConstants.WMQ_CM_CLIENT);

factory.setStringProperty(WMQConstants.WMQ_QUEUE_MANAGER, "QM1");

factory.setStringProperty(WMQConstants.WMQ_HOST_NAME, "HOST1");

factory.setIntProperty(WMQConstants.WMQ_PORT, 1415);

factory.setStringProperty(WMQConstants.WMQ_CHANNEL, "QM1.SVR");

The effect of setting these properties is that the application connects to queue

manager QM1 in client mode using an MQI channel called QM1.SVR. The queue

manager is running on a system with host name HOST1, and the listener for the

queue manager is listening in port number 1415.

The JmsPropertyContext interface also contains the setObjectProperty() method,

which an application can use to set properties. The second parameter of the

method is an object that encapsulates the value of the property. For example, the

following code creates an Integer object that encapsulates the integer 1415, and

then calls setObjectProperty() to set the PORT property of a connection factory to

the value 1415:

Integer port = new Integer(1415);

factory.setObjectProperty(WMQConstants.WMQ_PORT, port);

This code is therefore equivalent to the following statement:

factory.setIntProperty(WMQConstants.WMQ_PORT, 1415);

Conversely, the getObjectProperty() method returns an object that encapsulates the

value of a property.

Implicit conversion of a property value from one data type to another

When an application uses a method of the JmsPropertyContext interface to set or

get the property of a WebSphere MQ classes for JMS object, the value of the

property can be implicitly converted from one data type to another.

For example, the following statement sets the PRIORITY property of the JmsQueue

object q1:

q1.setStringProperty(WMQConstants.WMQ_PRIORITY, "5");

The PRIORITY property has an integer value, and so the setStringProperty() call

implicitly converts the string “5” (the source value) to the integer 5 (the target

value), which then becomes the value of the PRIORITY property.

102 WebSphere MQ: Using Java

Conversely, the following statement gets the PRIORITY property of the JmsQueue

object q1:

String s1 = q1.getStringProperty(WMQConstants.WMQ_PRIORITY);

The integer 5 (the source value), which is the value of the PRIORITY property, is

implicitly converted to the string “5” (the target value) by the getStringProperty()

call.

The conversions supported by WebSphere MQ classes for JMS are shown in

Table 30.

 Table 30. Supported conversions from one data type to another

Source data type Supported target data types

boolean String

byte int, long, short, String

char String

double String

float double, String

int long, String

long String

short int, long, String

String boolean, byte, double, float, int, long, short

The general rules governing the supported conversions are as follows:

v Numeric values can be converted from one data type to another provided no

data is lost during the conversion. For example, a value with data type int can

be converted into a value with data type long, but cannot be converted into a

value with data type short.

v A value of any data type can be converted into a string.

v A string can be converted to a value of any other data type (except char)

provided the string is in the correct format for the conversion. If an application

attempts to convert a string that is not in the correct format, WebSphere MQ

classes for JMS throws a NumberFormatException exception.

v If an application attempts a conversion that is not supported, WebSphere MQ

classes for JMS throws a MessageFormatException exception.

The specific rules for converting a value from one data type to another are as

follows:

v When converting a boolean value to a string, the value true is converted to the

string “true”, and the value false is converted to the string “false”.

v When converting a string to a boolean value, the string “true” (not case

sensitive) is converted to true, and the string “false” (not case sensitive) is

converted to false. Any other string is converted to false.

v When converting a string to a value with data type byte, int, long, or short, the

string must have the following format:

 [blanks][sign]digits

The meanings of the components of the string are as follows:

blanks Optional leading blank characters.

Chapter 2. WebSphere MQ classes for JMS 103

sign An optional plus sign (+) or minus sign (-).

digits A contiguous sequence of digits (0-9). At least one digit must be present.
After the sequence of digits, the string can contain other characters that are not

digits, but the conversion stops as soon as the first of these characters is reached.

The string is assumed to represent a decimal integer.

If the string is not in the correct format, WebSphere MQ classes for JMS throws a

NumberFormatException exception.

v When converting a string to a value with data type double or float, the string

must have the following format:

 [blanks][sign]digits[e_char[e_sign]e_digits]

The meanings of the components of the string are as follows:

blanks Optional leading blank characters.

sign An optional plus sign (+) or minus sign (-).

digits A contiguous sequence of digits (0-9). At least one digit must be present.

e_char An exponent character, which is either E or e.

e_sign An optional plus sign (+) or minus sign (-) for the exponent.

e_digits

A contiguous sequence of digits (0-9) for the exponent. At least one digit

must be present if the string contains an exponent character.
After the sequence of digits, or the optional characters representing an exponent,

the string can contain other characters that are not digits, but the conversion

stops as soon as the first of these characters is reached. The string is assumed to

represent a decimal floating point number with an exponent that is a power of

10.

If the string is not in the correct format, WebSphere MQ classes for JMS throws a

NumberFormatException exception.

v When converting a numeric value (including a value with data type byte) to a

string, the value is converted to the string representation of the value as a

decimal number, not the string containing the ASCII character for that value. For

example, the integer 65 is converted to the string “65”, not the string “A”.

Setting more than one property in a single call

The JmsPropertyContext interface also contains the setBatchProperties() method,

which an application can use to set more than one property in a single call. The

parameter of the method is a Map object that encapsulates a set of property

name-value pairs.

For example, the following code uses the setBatchProperties() method to set the

same five properties of a connection factory as shown in “Setting the properties of

WebSphere MQ classes for JMS objects” on page 101. The code creates an instance

of the HashMap class, which implements the Map interface.

HashMap batchProperties = new HashMap();

batchProperties.put(WMQConstants.WMQ_CONNECTION_MODE,

 new Integer(WMQConstants.WMQ_CM_CLIENT));

batchProperties.put(WMQConstants.WMQ_QUEUE_MANAGER, "QM1");

batchProperties.put(WMQConstants.WMQ_WMQ_HOST_NAME, "HOST1");

batchProperties.put(WMQConstants.WMQ_PORT, "1414");

batchProperties.put(WMQConstants.WMQ_CHANNEL, "QM1.SVR");

factory.setBatchProperties(batchProperties);

104 WebSphere MQ: Using Java

Note that the second parameter of the Map.put() method must be an object.

Therefore a property value with a primitive data type must be encapsulated within

an object or represented by a string, as shown in the example.

The setBatchProperties() method validates each property. If the setBatchProperties()

method cannot set a property because, for example, its value is not valid, none of

the specified properties are set.

Property names and values

If an application uses the methods of the JmsPropertyContext interface to set and

get the properties of WebSphere MQ classes for JMS objects, the application can

specify the names and values of properties in any of the following ways. Each of

the accompanying examples shows how to set the PRIORITY property of the

JmsQueue object q1 so that a message sent to the queue has the priority specified

on the send() call.

Using the property names and values that are defined as constants in the

com.ibm.msg.client.wmq.WMQConstants interface

The following statement is an example of how to specify the names and

values of properties in this way:

q1.setIntProperty(WMQConstants.WMQ_PRIORITY, WMQConstants.WMQ_PRI_APP);

Using the property names and values that can be used in queue and topic

uniform resource identifiers (URIs)

The following statement is an example of how to specify the names and

values of properties in this way:

q1.setIntProperty("priority", -2);

Only the names and values of properties of destinations can be specified in

this way.

Using the property names and values that are recognized by the WebSphere MQ

JMS administration tool

The following statement is an example of how to specify the names and

values of properties in this way:

q1.setStringProperty("PRIORITY", "APP");

The short form of the property name is also acceptable, as shown in the

following statement:

q1.setStringProperty("PRI", "APP");

When an application gets a property, the value returned depends on the way in

which the application specifies the name of the property. For example, if an

application specifies the constant WMQConstants.WMQ_PRIORITY as the property

name, the value returned is the integer -2:

int n1 = getIntProperty(WMQConstants.WMQ_PRIORITY);

The same value is returned if the application specifies the string ″priority″ as the

property name:

int n2 = getIntProperty("priority");

However, if the application specifies the string ″PRIORITY″ or ″PRI″ as the

property name, the value returned is the string ″APP″:

String s1 = getStringProperty("PRI");

Chapter 2. WebSphere MQ classes for JMS 105

Internally, WebSphere MQ classes for JMS stores property names and values as the

literal values defined in the com.ibm.msg.client.wmq.WMQConstants interface.

This is the defined canonical format for property names and values. As a general

rule, if an application sets properties using one of the other two ways of specifying

property names and values, WebSphere MQ classes for JMS has to convert the

names and values from the specified input format into the canonical format.

Similarly, if an application gets properties using one of the other two ways of

specifying property names and values, WebSphere MQ classes for JMS must

convert the names from the specified input format into the canonical format, and

convert the values from the canonical format into the required output format.

Having to perform these conversions might have implications for performance.

Property names and values returned by exceptions, in trace files, or in the

WebSphere MQ classes for JMS log are always in the canonical format.

Using the Map interface

The JmsPropertyContext interface extends the java.util.Map interface. An

application can therefore use the methods of the Map interface to access the

properties of a WebSphere MQ classes for JMS object.

For example, the following code prints out the names and values of all the

properties of a connection factory. The code uses only the methods of the Map

interface to get the names and values of the properties.

// Get the names of all the properties

Set propNames = factory.keySet();

// Loop round all the property names and get the property values

Iterator iterator = propNames.iterator();

while (iterator.hasNext()){

 String pName = (String)iterator.next();

 System.out.println(pName+"="+factory.get(pName));

}

Using the methods of the Map interface does not bypass any property validations

or conversions.

Using the WebSphere MQ JMS extensions

WebSphere MQ classes for JMS contains a set of extensions to the JMS API called

the WebSphere MQ JMS extensions. An application can use these extensions to

create connection factories and destinations dynamically at run time, and to set the

properties of connection factories and destinations.

WebSphere MQ classes for JMS contains a set of classes in the packages

com.ibm.jms and com.ibm.mq.jms. These classes implement the JMS interfaces and

contain the WebSphere MQ JMS extensions. The examples of code that follow

assume that these packages have been imported by the following statements:

import com.ibm.jms.*;

import com.ibm.mq.jms.*;

An application can use the WebSphere MQ JMS extensions to perform the

following functions:

v Create connection factories and destinations dynamically at run time, instead of

retrieving them as administered objects from a Java Naming and Directory

Interface (JNDI) namespace

v Set the properties of connection factories and destinations

106 WebSphere MQ: Using Java

Creating connection factories

To create a connection factory, an application can use the MQConnectionFactory

constructor, as shown in the following example:

MQConnectionFactory factory = new MQConnectionFactory();

This statement creates an MQConnectionFactory object with the default values for

all its properties, which means that the application connects to the default queue

manager in bindings mode. If you want an application to connect in client mode,

or connect to a queue manager other than the default queue manager, the

application must set the appropriate properties of the MQConnectionFactory object

before creating the connection. For information about how to do this, see “Setting

the properties of connection factories.”

An application can create connection factories of the following types in a similar

way:

v MQQueueConnectionFactory

v MQTopicConnectionFactory

v MQXAConnectionFactory

v MQXAQueueConnectionFactory

v MQXATopicConnectionFactory

Setting the properties of connection factories

An application can set the properties of a connection factory by calling the

appropriate methods of the connection factory. The connection factory can either be

an administered object or an object created dynamically at run time.

Consider the following code, for example:

MQConnectionFactory factory = new MQConnectionFactory();

.

factory.setTransportType(JMSC.MQJMS_TP_CLIENT_MQ_TCPIP);

factory.setQueueManager("QM1");

factory.setHostName("HOST1");

factory.setPort(1415);

factory.setChannel("QM1.SVR");

This code creates an MQConnectionFactory object and then sets five properties of

the object. The effect of setting these properties is that the application connects to

queue manager QM1 in client mode using an MQI channel called QM1.SVR. The

queue manager is running on a system with host name HOST1, and the listener for

the queue manager is listening in port number 1415.

For a real-time connection to a broker, an application can use the following code:

MQConnectionFactory factory = new MQConnectionFactory();

.

factory.setTransportType(JMSC.MQJMS_TP_DIRECT_TCPIP);

factory.setHostName("HOST2");

factory.setPort(1507);

This code assumes that the broker is running on a system with host name HOST2

and listening on port number 1507.

An application that uses a real-time connection to a broker can use only the

publish/subscribe style of messaging. It cannot use the point-to-point style of

messaging.

Chapter 2. WebSphere MQ classes for JMS 107

Only certain combinations of properties of a connection factory are valid. For

information about which combinations are valid, see “Property dependencies” on

page 203.

For more information about the properties of a connection factory, and the

methods used to set its properties, see “Properties of WebSphere MQ classes for

JMS objects” on page 171.

Creating destinations

To create a Queue object, an application can use the MQQueue constructor, as

shown in the following example:

MQQueue q1 = new MQQueue("Q1");

This statement creates an MQQueue object with the default values for all its

properties. The object represents a WebSphere MQ queue called Q1 that belongs to

the local queue manager. This queue can be a local queue, an alias queue, or a

remote queue definition.

An alternative form of the MQQueue constructor has two parameters, as shown in

the following example:

MQQueue q2 = new MQQueue("QM2", "Q2");

The MQQueue object created by this statement represents a WebSphere MQ queue

called Q2 that is owned by queue manager QM2. The queue manager identified in

this way can be the local queue manager or a remote queue manager. If it is a

remote queue manager, WebSphere MQ must be configured so that, when the

application sends a message to this destination, Websphere MQ can route the

message from the local queue manager to the remote queue manager.

The MQQueue constructor can also accept a queue uniform resource identifier

(URI) as a single parameter. A queue URI is a string that specifies the name of a

WebSphere MQ queue and, optionally, the name of the queue manager that owns

the queue, and one or more properties of the MQQueue object. The following

statement contains an example of a queue URI:

MQQueue q3 = new MQQueue("queue://QM3/Q3?persistence=2&priority=5");

The MQQueue object created by this statement represents a WebSphere MQ queue

called Q3 that is owned by queue manager QM3, and all messages sent to this

destination are persistent and have a priority of 5. For more information about

queue URIs, see “Uniform resource identifiers (URIs)” on page 112. For an

alternative way of setting the properties of an MQQueue object, see “Setting the

properties of destinations” on page 109.

To create a Topic object, an application can use the MQTopic constructor, as shown

in the following example:

MQTopic t1 = new MQTopic("Sport/Football/Results");

This statement creates an MQTopic object with the default values for all its

properties. The object represents a topic called Sport/Football/Results.

The MQTopic constructor can also accept a topic URI as a parameter. A topic URI

is a string that specifies the name of a topic and, optionally, one or more properties

of the MQTopic object. The following statement contains an example of a topic

URI:

108 WebSphere MQ: Using Java

MQTopic t2 = new MQTopic("topic://Sport/Tennis/Results?persistence=1&priority=0");

The MQTopic object created by this statement represents a topic called

Sport/Tennis/Results, and all messages sent to this destination are nonpersistent

and have a priority of 0. For more information about topic URIs, see “Uniform

resource identifiers (URIs)” on page 112. For an alternative way of setting the

properties of an MQTopic object, see “Setting the properties of destinations.”

Setting the properties of destinations

An application can set the properties of a destination by calling the appropriate

methods of the destination. The destination can either be an administered object or

an object created dynamically at run time.

Consider the following code, for example:

MQQueue q1 = new MQQueue("Q1");

.

q1.setPersistence(JMSC.MQJMS_PER_PER);

q1.setPriority(5);

This code creates an MQQueue object and then sets two properties of the object.

The effect of setting these properties is that all messages sent to the destination are

persistent and have a priority of 5.

An application can set the properties of MQTopic object in a similar way, as shown

in the following example:

MQTopic t1 = new MQTopic("Sport/Football/Results");

.

t1.setPersistence(JMSC.MQJMS_PER_NON);

t1.setPriority(0);

This code creates an MQTopic object and then sets two properties of the object. The

effect of setting these properties is that all messages sent to the destination are

nonpersistent and have a priority of 0.

For more information about the properties of a destination, and the methods used

to set its properties, see “Properties of WebSphere MQ classes for JMS objects” on

page 171.

Building a connection in a JMS application

To build a connection, a JMS application uses a ConnectionFactory object to create

a Connection object and then starts the connection.

To create a Connection object, an application uses the createConnection() method of

a ConnectionFactory object, as shown in the following example:

ConnectionFactory factory;

Connection connection;

.

.

.

connection = factory.createConnection();

The QueueConnectionFactory interface and the TopicConnectionFactory interface

each inherits the createConnection() method from the ConnectionFactory interface.

You can therefore use the createConnection() method to create a domain specific

object, as shown in the following example:

Chapter 2. WebSphere MQ classes for JMS 109

QueueConnectionFactory qcf;

Connection connection;

.

.

.

connection = qcf.createConnection();

This fragment of code creates a QueueConnection object. An application can now

perform a domain independent operation on this object, or an operation that is

applicable only to the point-to-point domain. However, if the application attempts

to perform an operation that is applicable only to the publish/subscribe domain,

an IllegalStateException exception is thrown with the following message:

JMSMQ1112: Operation for a domain specific object was not valid.

 Operation createProducer() is not valid for type com.ibm.mq.jms.MQTopic

This is because the connection was created from a domain specific connection

factory.

The JMS specification states that a connection is created in the stopped state. Until

a connection starts, a message consumer that is associated with the connection

cannot receive any messages. To start a connection, an application uses the start()

method of a Connection object, as shown in the following example:

connection.start();

Creating a session in a JMS application

To create a session, a JMS application uses the createSession() method of a

Connection object.

The createSession() method has two parameters:

1. A parameter that specifies whether the session is transacted or not transacted

2. A parameter that specifies the acknowledgement mode for the session

For example, the following code creates a session that is not transacted and has an

acknowledgement mode of AUTO_ACKNOWLEDGE:

Session session;

.

boolean transacted = false;

session = connection.createSession(transacted, Session.AUTO_ACKNOWLEDGE);

A Session object, and any MessageProducer or MessageConsumer object created

from it, cannot be used concurrently by different threads of a multithreaded

application. The simplest way of ensuring that these objects are not used

concurrently is to create a separate Session object for each thread.

Creating destinations in a JMS application

Instead of retrieving destinations as administered objects from a Java Naming and

Directory Interface (JNDI) namespace, a JMS application can use a session to create

destinations dynamically at run time. An application can use a uniform resource

identifier (URI) to identify a WebSphere MQ queue or a topic and, optionally, to

specify one or more properties of a Queue or Topic object.

Using a session to create Queue objects

To create a Queue object, an application can use the createQueue() method of a

Session object, as shown in the following example:

110 WebSphere MQ: Using Java

Session session;

.

Queue q1 = session.createQueue("Q1");

This code creates a Queue object with the default values for all its properties. The

object represents a WebSphere MQ queue called Q1 that belongs to the local queue

manager. This queue can be a local queue, an alias queue, or a remote queue

definition.

The createQueue() method also accepts a queue URI as a parameter. A queue URI

is a string that specifies the name of a WebSphere MQ queue and, optionally, the

name of the queue manager that owns the queue and one or more properties of

the Queue object. The following statement contains an example of a queue URI:

Queue q2 = session.createQueue("queue://QM2/Q2?persistence=2&priority=5");

The Queue object created by this statement represents a WebSphere MQ queue

called Q2 that is owned by a queue manager called QM2, and all messages sent to

this destination are persistent and have a priority of 5. The queue manager

identified in this way can be the local queue manager or a remote queue manager.

If it is a remote queue manager, WebSphere MQ must be configured so that, when

the application sends a message to this destination, Websphere MQ can route the

message from the local queue manager to queue manager QM2. For more

information about URIs, see “Uniform resource identifiers (URIs)” on page 112.

Note that the parameter on the createQueue() method contains provider specific

information. Therefore, using the createQueue() method to create a Queue object,

instead of retrieving a Queue object as an administered object from a JNDI

namespace, might make your application less portable.

An application can create a TemporaryQueue object by using the

createTemporaryQueue() method of a Session object, as shown in the following

example:

TemporaryQueue q3 = session.createTemporaryQueue();

Although a session is used to create a temporary queue, the scope of a temporary

queue is the connection that was used to create the session. Any of the

connection’s sessions can create message producers and message consumers for the

temporary queue. The temporary queue remains until the connection ends or the

application explicitly deletes the temporary queue by using the

TemporaryQueue.delete() method, whichever is the sooner.

When an application creates a temporary queue, WebSphere MQ classes for JMS

creates a dynamic queue in the queue manager to which the application is

connected. The TEMPMODEL property of the connection factory specifies the

name of the model queue that is used to create the dynamic queue, and the

TEMPQPREFIX property of the connection factory specifies the prefix that is used

to form the name of the dynamic queue.

Using a session to create Topic objects

To create a Topic object, an application can use the createTopic() method of a

Session object, as shown in the following example:

Session session;

.

Topic t1 = session.createTopic("Sport/Football/Results");

Chapter 2. WebSphere MQ classes for JMS 111

This code creates an Topic object with the default values for all its properties. The

object represents a topic called Sport/Football/Results.

The createTopic() method also accepts a topic URI as a parameter. A topic URI is a

string that specifies the name of a topic and, optionally, one or more properties of

the Topic object. The following code contains an example of a topic URI:

String uri = "topic://Sport/Tennis/Results?persistence=1&priority=0";

Topic t2 = session.createTopic(uri);

The Topic object created by this code represents a topic called

Sport/Tennis/Results, and all messages sent to this destination are nonpersistent

and have a priority of 0. For more information about topic URIs, see “Uniform

resource identifiers (URIs).”

Note that the parameter on the createTopic() method contains provider specific

information. Therefore, using the createTopic() method to create a Topic object,

instead of retrieving a Topic object as an administered object from a JNDI

namespace, might make your application less portable.

An application can create a TemporaryTopic object by using the

createTemporaryTopic() method of a Session object, as shown in the following

example:

TemporaryTopic t3 = session.createTemporaryTopic();

Although a session is used to create a temporary topic, the scope of a temporary

topic is the connection that was used to create the session. Any of the connection’s

sessions can create message producers and message consumers for the temporary

topic. The temporary topic remains until the connection ends or the application

explicitly deletes the temporary topic by using the TemporaryTopic.delete()

method, whichever is the sooner.

When an application creates a temporary topic, WebSphere MQ classes for JMS

creates a topic whose name commences with the characters TEMP/tempTopicPrefix,

where tempTopicPrefix is the value of the TEMPTOPICPREFIX property of the

connection factory.

Uniform resource identifiers (URIs)

A queue URI is a string that specifies the name of a WebSphere MQ queue and,

optionally, the name of the queue manager that owns the queue and one or more

properties of the Queue object created by the application. A topic URI is a string

that specifies the name of a topic and, optionally, one or more properties of the

Topic object created by the application.

A queue URI has the following format:

queue://[qMgrName]/qName[?propertyName1=propertyValue1

 &propertyName2=propertyValue2

 &...]

A topic URI has the following format:

topic://topicName[?propertyName1=propertyValue1

 &propertyName2=propertyValue2

 &...]

The variables in these formats have the following meanings:

112 WebSphere MQ: Using Java

qMgrName

The name of the queue manager that owns the queue identified by the

URI.

 The queue manager can the local queue manager or a remote queue

manager. If it is a remote queue manager, WebSphere MQ must be

configured so that, when an application sends a message to the queue,

Websphere MQ can route the message from the local queue manager to the

remote queue manager.

If no name is specified, the local queue manager is assumed.

qName The name of the WebSphere MQ queue.

 The queue can be a local queue, an alias queue, or a remote queue

definition.

For the rules for creating queue names, see the section ″Rules for naming

WebSphere MQ objects″ in WebSphere MQ Intercommunication.

topicName

The name of the topic.

 For the rules for creating topic names, see the section ″Rules for naming

WebSphere MQ objects″ in WebSphere MQ Intercommunication. Avoid the

use of the wildcard characters +, #, *, and ? in topic names. Topic names

containing these characters can cause unexpected results when you

subscribe to them. See the section ″Using topic strings″ in WebSphere MQ

Application Programming Reference.

propertyName1, propertyName2, ...

The names of the properties of the Queue or Topic object created by the

application. Table 31 lists the valid property names that can be used in a

URI.

 If no properties are specified, the Queue or Topic object has the default

values for all its properties.

propertyValue1, propertyValue2, ...

The values of the properties of the Queue or Topic object created by the

application. Table 31 lists the valid property values that can be used in a

URI.

Brackets ([]) denotes an optional component, and the ellipsis (...) means that the list

of property name-value pairs, if present, can contain one or more name-value

pairs.

Table 31 lists the valid property names and valid values that can be used in queue

and topic URIs. Although the WebSphere MQ JMS administration tool uses

symbolic constants for the values of properties, URIs cannot contain symbolic

constants.

 Table 31. Property names and valid values for use in queue and topic URIs

Property name Description Valid values

CCSID How the character data in the

body of a message is represented

when WebSphere MQ classes for

JMS forwards the message to the

destination

v Any coded character set

identifier supported by

WebSphere MQ.

Chapter 2. WebSphere MQ classes for JMS 113

Table 31. Property names and valid values for use in queue and topic URIs (continued)

Property name Description Valid values

encoding How the numerical data in the

body of a message is represented

when WebSphere MQ classes for

JMS forwards the message to the

destination

v Any valid value for the Encoding

field in a WebSphere MQ

message descriptor.

expiry The time to live for messages sent

to the destination

v -2 - As specified on the send()

call or, if not specified on the

send() call, the default time to

live of the message producer.

v 0 - A message sent to the

destination never expires.

v A positive integer specifying the

time to live in milliseconds.

multicast The multicast setting for a topic

when using a real-time connection

to a broker

The following list contains the

valid values. Associated with each

value is the corresponding value of

the MULTICAST property as used

in the WebSphere MQ JMS

administration tool. For a

description of the MULTICAST

property and its valid values, see

“Properties of WebSphere MQ

classes for JMS objects” on page

171.

v -1 - ASCF

v 0 - DISABLED

v 3 - NOTR

v 5 - RELIABLE

v 7 - ENABLED

persistence The persistence of messages sent to

the destination

v -2 - As specified on the send()

call or, if not specified on the

send() call, the default

persistence of the message

producer.

v -1 - As specified by the

DefPersistence attribute of the

WebSphere MQ queue or topic.

v 1 - Nonpersistent.

v 2 - Persistent.

v 3 - Equivalent to the value

HIGH for the PERSISTENCE

property as used in the

WebSphere MQ JMS

administration tool. For an

explanation of this value, see

“JMS persistent messages” on

page 136.

114 WebSphere MQ: Using Java

Table 31. Property names and valid values for use in queue and topic URIs (continued)

Property name Description Valid values

priority The priority of messages sent to

the destination

v -2 - As specified on the send()

call or, if not specified on the

send() call, the default priority

of the message producer.

v -1 - As specified by the

DefPriority attribute of the

WebSphere MQ queue or topic.

v An integer in the range 0-9

specifying the priority of

messages sent to the destination.

targetClient Whether messages sent to the

destination contain an MQRFH2

header

v 0 - Messages contain an

MQRFH2 header.

v 1 - Messages do not contain an

MQRFH2 header.

For example, the following URI identifies a WebSphere MQ queue called Q1 that is

owned by the local queue manager. A Queue object created using this URI has the

default values for all its properties.

queue:///Q1

The following URI identifies a WebSphere MQ queue called Q2 that is owned by a

queue manager called QM2. All messages sent to this destination have a priority of

6. The remaining properties of the Queue object created using this URI have their

default values.

queue://QM2/Q2?priority=6

The following URI identifies a topic called Sport/Athletics/Results. All messages

sent to this destination are nonpersistent and have a priority of 0. The remaining

properties of the Topic object created using this URI have their default values.

topic://Sport/Athletics/Results?persistence=1&priority=0

Sending messages in a JMS application

Before a JMS application can send messages to a destination, it must first create a

MessageProducer object for the destination. To send a message to the destination,

the application creates a Message object and then calls the send() method of the

MessageProducer object.

An application uses a MessageProducer object to send messages. An application

normally creates a MessageProducer object for a specific destination, which can be

a queue or a topic, so that all messages sent using the message producer are sent

to the same destination. Therefore, before an application can create a

MessageProducer object, it must first create a Queue or Topic object. For

information about how to create a Queue or Topic object, see the following topics:

v “Using JNDI to retrieve administered objects in a JMS application” on page 98

v “Using the IBM JMS extensions” on page 99

v “Using the WebSphere MQ JMS extensions” on page 106

v “Creating destinations in a JMS application” on page 110

To create a MessageProducer object, an application uses the createProducer()

method of a Session object, as shown in the following example:

MessageProducer producer = session.createProducer(destination);

Chapter 2. WebSphere MQ classes for JMS 115

The parameter destination is a Queue or Topic object that the application has

created previously.

Before an application can send a message, it must create a Message object. The

body of a message contains the application data, and JMS defines five types of

message body:

v Bytes

v Map

v Object

v Stream

v Text

Each type of message body has its own JMS interface, which is a sub-interface of

the Message interface, and a method in the Session interface for creating a message

with that type of body. For example, the interface for a text message is called

TextMessage, and an application uses the createTextMessage() method of a Session

object to create a text message, as shown in the following statement:

TextMessage outMessage = session.createTextMessage(outString);

For more information about messages and message bodies, see “JMS messages” on

page 77.

To send a message, an application uses the send() method of a MessageProducer

object, as shown in the following example:

producer.send(outMessage);

An application can use the send() method to send messages in either messaging

domain. The nature of the destination determines which messaging domain is

used. However, TopicPublisher, the sub-interface of MessageProducer that is

specific to the publish/subscribe domain, also has a publish() method, which can

be used instead of the send() method. The two methods are functionally the same.

An application can create a MessageProducer object with no specified destination.

In this case, the application must specify the destination when calling the send()

method.

If an application sends a message within a transaction, the message is not

delivered to its destination until the transaction is committed. This means that an

application cannot send a message and receive a reply to the message within the

same transaction.

When an application sends messages to a destination, the destination can be

configured so that, when the application calls send(), WebSphere MQ classes for

JMS forwards the message to the queue manager and returns control back to the

application without determining whether the queue manager has received the

message safely. The destination is configured by setting the PUTASYNCALLOWED

property of the Queue or Topic object and the DefPutResponse attribute of the

underlying WebSphere MQ queue or topic. WebSphere MQ classes for JMS can

work in this way only for nonpersistent messages and for persistent messages sent

in a transacted session.

For messages sent in a transacted session, the application ultimately determines

whether the queue manager has received the messages safely when it calls

commit(). If an application sends persistent messages within a transacted session,

and one or more of the messages are not received safely, the transaction fails to

116 WebSphere MQ: Using Java

commit and produces an exception. However, if an application sends nonpersistent

messages within a transacted session, and one or more of the messages are not

received safely, the transaction commits successfully. The application does not

receive any feedback that the nonpersistent messages did not arrive safely.

For nonpersistent messages sent in a session that is not transacted, the

SENDCHECKCOUNT property of the ConnectionFactory object specifies how

many messages are to be sent before WebSphere MQ classes for JMS checks that

the queue manager has received the messages safely. If a check discovers that one

or more messages were not received safely, and the application has registered an

exception listener with the connection, Websphere MQ classes for JMS calls the

onException() method of the exception listener to pass a JMS exception to the

application. The JMS exception has an error code of JMSWMQ0028 and the

following reason:

At least one asynchronous put message failed or gave a warning.

The JMS Exception also has a linked exception that provides more details. The

default value of the SENDCHECKCOUNT property is 0, which means that no such

checks are made.

This optimization is of most benefit to an application that connects to a queue

manager in client mode and needs to send a sequence of messages in rapid

succession, but does not require immediate feedback from the queue manager for

each message sent. However, an application can still use this optimization even if it

connects to a queue manager in bindings mode, but the expected performance

benefit is not as great.

Receiving messages in a JMS application

An application uses a message consumer to receive messages. A durable topic

subscriber is a message consumer that receives all messages sent to a destination,

including those sent while the consumer is inactive. An application can select

which messages it wants to receive by using a message selector, and can receive

messages asynchronously by using a message listener.

An application uses a MessageConsumer object to receive messages. An application

creates a MessageConsumer object for a specific destination, which can be a queue

or a topic, so that all messages received using the message consumer are received

from the same destination. Therefore, before an application can create a

MessageConsumer object, it must first create a Queue or Topic object. For

information about how to create a Queue or Topic object, see the following topics:

v “Using JNDI to retrieve administered objects in a JMS application” on page 98

v “Using the IBM JMS extensions” on page 99

v “Using the WebSphere MQ JMS extensions” on page 106

v “Creating destinations in a JMS application” on page 110

To create a MessageConsumer object, an application uses the createConsumer()

method of a Session object, as shown in the following example:

MessageConsumer consumer = session.createConsumer(destination);

The parameter destination is a Queue or Topic object that the application has

created previously.

The application then uses the receive() method of the MessageConsumer object to

receive a message from the destination, as shown in the following example:

Chapter 2. WebSphere MQ classes for JMS 117

Message inMessage = consumer.receive(1000);

The parameter on the receive() call specifies how long in milliseconds the method

waits for a suitable message to arrive if no message is available immediately. If you

omit this parameter, the call blocks indefinitely until a suitable message arrives. If

you do not want the application to wait for a message, use the receiveNoWait()

method instead.

The receive() method returns a message of a specific type. For example, when an

application receives a text message, the object returned by the receive() call is a

TextMessage object.

However, the declared type of object returned by a receive() call is a Message

object. Therefore, in order to extract the data from the body of a message that has

just been received, the application must cast from the Message class to the more

specific subclass, such as TextMessage. If the type of the message is not known, the

application can use the instanceof operator to determine the type. It is always

good practice for an application to determine the type of a message before casting

so that errors can be handled gracefully.

The following code uses the instanceof operator and shows how to extract the

data from the body of a text message:

if (inMessage instanceof TextMessage) {

 String replyString = ((TextMessage) inMessage).getText();

 .

 .

 .

} else {

 // Print error message if Message was not a TextMessage.

 System.out.println("Reply message was not a TextMessage");

}

If an application sends a message within a transaction, the message is not

delivered to its destination until the transaction is committed. This means that an

application cannot send a message and receive a reply to the message within the

same transaction.

If a message consumer receives messages from a destination that is configured for

read ahead, any nonpersistent messages that are in the read ahead buffer when the

application ends are discarded.

In the publish/subscribe domain, JMS identifies two types of message consumer,

nondurable topic subscriber and durable topic subscriber, which are described in

the following two sections.

Nondurable topic subscribers

A nondurable topic subscriber receives only those messages that are published

while the subscriber is active. A nondurable subscription starts when an

application creates a nondurable topic subscriber and ends when the application

closes the subscriber, or when the subscriber falls out of scope. As an extension in

WebSphere MQ classes for JMS, a nondurable topic subscriber also receives

retained publications, but not when using a real-time connection to a broker.

118 WebSphere MQ: Using Java

To create a nondurable topic subscriber, an application can use the domain

independent createConsumer() method, specifying a Topic object as the destination.

Alternatively, an application can use the domain specific createSubscriber() method,

as shown in the following example:

TopicSubscriber subscriber = session.createSubscriber(topic);

The parameter topic is a Topic object that the application has created previously.

Durable topic subscribers

Restriction: An application cannot create durable topic subscribers when using a

real-time connection to a broker.

A durable topic subscriber receives all messages that are published during the life

of a durable subscription. These messages include all those that are published

while the subscriber is not active. As an extension in WebSphere MQ classes for

JMS, a durable topic subscriber also receives retained publications.

To create a durable topic subscriber, an application uses the

createDurableSubscriber() method of a Session object, as shown in the following

example:

TopicSubscriber subscriber = session.createDurableSubscriber(topic, "D_SUB_000001");

On the createDurableSubscriber() call, the first parameter is a Topic object that the

application has created previously, and the second parameter is a name that is

used to identify the durable subscription.

The session used to create a durable topic subscriber must have an associated

client identifier. The client identifier associated with a session is the same as the

client identifier for the connection that is used to create the session. The client

identifier can be specified by setting the CLIENTID property of the

ConnectionFactory object. Alternatively, an application can specify the client

identifier by calling the setClientID() method of the Connection object.

The name that is used to identify a durable subscription must be unique only

within the client identifier, and therefore the client identifier forms part of the full,

unique identifier of a durable subscription. To continue using a durable

subscription that was created previously, an application must create a durable topic

subscriber using a session with the same client identifier as that associated with

the durable subscription, and using the same subscription name.

A durable subscription starts when an application creates a durable topic

subscriber using a client identifier and subscription name for which no durable

subscription currently exists. However, a durable subscription does not end when

the application closes the durable topic subscriber. To end a durable subscription,

an application must call the unsubscribe() method of a Session object that has the

same client identifier as that associated with the durable subscription. The

parameter on the unsubscribe() call is the subscription name, as shown in the

following example:

session.unsubscribe("D_SUB_000001");

The scope of a durable subscription is a queue manager. If a durable subscription

exists on one queue manager, and an application connected to another queue

manager creates a durable subscription with the same client identifier and

subscription name, the two durable subscriptions are completely independent.

Chapter 2. WebSphere MQ classes for JMS 119

Message selectors

An application can specify that only those messages that satisfy certain criteria are

returned by successive receive() calls. When creating a MessageConsumer object,

the application can specify a Structured Query Language (SQL) expression that

determines which messages are retrieved. This SQL expression is called a message

selector. The message selector can contain the names of JMS message header fields

and message properties. For information about how to construct a message

selector, see “Message selectors” on page 78.

The following example shows how an application can select messages based on a

user defined property called myProp:

MessageConsumer consumer;

.

consumer = session.createConsumer(destination, "myProp = ’blue’");

The JMS specification does not allow an application to change the message selector

of a message consumer. After an application creates a message consumer with a

message selector, the message selector remains for the life of that consumer. If an

application requires more than one message selector, the application must create a

message consumer for each message selector.

Note that, when an application is connected to a Version 7 queue manager, the

MSGSELECTION property of the connection factory has no effect. To optimize

performance, all message selection is done by the queue manager on all platforms

except z/OS. For an application connected to a z/OS queue manager, message

selection is done by the queue manager in the publish/subscribe domain, but is

done by WebSphere MQ classes for JMS in the point-to-point domain.

Suppressing local publications

An application can create a message consumer that ignores publications published

on the consumer’s own connection. The application does this by setting the third

parameter on a createConsumer() call to true, as shown in the following example:

MessageConsumer consumer = session.createConsumer(topic, null, true);

On a createDurableSubscriber() call, the application does this by setting the fourth

parameter to true, as shown in the following example

String selector = "company = ’IBM’";

TopicSubscriber subscriber = session.createDurableSubscriber(topic, "D_SUB_000001",

 selector, true);

Asynchronous delivery of messages

An application can receive messages asynchronously by registering a message

listener with a message consumer. The message listener has a method called

onMessage, which is called asynchronously when a suitable message is available

and whose purpose is to process the message. The following code illustrates the

mechanism:

import javax.jms.*;

public class MyClass implements MessageListener

{

 // The method that is called asynchronously when a suitable message is available

 public void onMessage(Message message)

 {

 System.out.println("Message is "+message);

120 WebSphere MQ: Using Java

// The code to process the message

 .

 .

 .

 }

}

.

.

.

// Main program (possibly in another class)

.

// Creating the message listener

MyClass listener = new MyClass();

// Registering the message listener with a message consumer

consumer.setMessageListener(listener);

// The main program now continues with other processing

An application can use a session either for receiving messages synchronously using

receive() calls, or for receiving messages asynchronously using message listeners,

but not for both. If an application needs to receive messages synchronously and

asynchronously, it must create separate sessions.

Closing down a WebSphere MQ classes for JMS application

It is important for a WebSphere MQ classes for JMS application to close certain

JMS objects explicitly before stopping. Finalizers might not be called, so do not rely

on them to free resources. Do not allow an application to terminate with

compressed trace active.

Garbage collection alone cannot release all WebSphere MQ classes for JMS and

WebSphere MQ resources in a timely manner, especially if an application creates

many short lived JMS objects at the session level or lower. It is therefore important

for an application to close a Connection, Session, MessageConsumer, or

MessageProducer object when it is no longer required.

Do not use finalizers in an application to close JMS objects. Because finalizers

might not be called, resources might not be freed. When a Connection is closed it

closes all the Sessions that were created from it. Similarly, the MessageConsumers

and MessageProducers created from a Session are closed when the Session is

closed. However, consider closing Sessions, MessageConsumers, and

MessageProducers explicitly to ensure resources are freed in a timely manner.

If trace compression is activated, System.Halt() shutdowns and abnormal,

uncontrolled JVM terminations are likely to result in a corrupt trace file. Where

possible, turn off the trace facility when you have collected the trace information

you need. If you are tracing an application up to an abnormal end, use

uncompressed trace output.

Handling errors in WebSphere MQ classes for JMS

This topic describes the exceptions that can be thrown by JMS API calls or

delivered to an exception handler, and how an application can obtain information

from exceptions. It also tells you about the WebSphere MQ classes for JMS error

log and the first failure support technology (FFST) information that is generated if

a serious internal error occurs.

Chapter 2. WebSphere MQ classes for JMS 121

Exceptions in WebSphere MQ classes for JMS

A WebSphere MQ classes for JMS application must be able to handle exceptions

that are thrown by a JMS API calls or delivered to an exception handler. Compared

to previous versions, most exception messages and error codes have changed in

Version 7 of WebSphere MQ classes for JMS. If your application parses or tests

exception messages and error codes, it probably needs to be modified in order to

use Version 7.

WebSphere MQ classes for JMS reports runtime problems by throwing exceptions.

JMSException is the root class for exceptions thrown by JMS methods, and

catching JMSException exceptions provides a generic way of handling all JMS

related exceptions.

Every JMSException exception encapsulates the following information:

v A provider specific exception message, which an application obtains by calling

the Throwable.getMessage() method.

v A provider specific error code, which an application obtains by calling the

JMSException.getErrorCode() method.

v A linked exception. An exception thrown by a JMS API call is often the result of

a lower level problem, which is reported by another exception linked to this

exception. An application obtains a linked exception by calling the

JMSException.getLinkedException() or the Throwable.getCause() method.

Most exceptions thrown by WebSphere MQ classes for JMS are instances of

subclasses of JMSException. These subclasses implement the

com.ibm.msg.client.jms.JmsExceptionDetail interface, which provides the following

additional information:

v An explanation of the exception message, which an application obtains by

calling the JmsExceptionDetail.getExplanation() method.

v A recommended user response to the exception, which an application obtains by

calling the JmsExceptionDetail.getUserAction() method.

v The keys for the message inserts in the exception message. An application

obtains an iterator for all the keys by calling the JmsExceptionDetail.getKeys()

method.

v The message inserts in the exception message. For example, a message insert

might be the name of the queue that caused the exception, and it might be

useful for an application to be able to access that name. An application obtains

the message insert corresponding to a specified key by calling the

JmsExceptionDetail.getValue() method.

All the methods in the JmsExceptionDetail interface might return null if no details

are available.

For example, if an application tries to create a message producer for a WebSphere

MQ queue that does not exist, an exception is thrown with the following

information:

Message : JMSWMQ2008: Failed to open MQ queue ’Q_test’.

Class : class com.ibm.msg.client.jms.DetailedInvalidDestinationException

Error Code : JMSWMQ2008

Explanation : JMS attempted to perform an MQOPEN, but WebSphere MQ reported an

 error.

User Action : Use the linked exception to determine the cause of this error. Check

 that the specified queue and queue manager are defined correctly.

122 WebSphere MQ: Using Java

The exception thrown, com.ibm.msg.client.jms.DetailedInvalidDestinationException,

is a subclass of javax.jms.InvalidDestinationException and implements the

com.ibm.msg.client.jms.JmsExceptionDetail interface.

Linked exceptions

A linked exception provides further information about a runtime problem.

Therefore, for each JMSException exception that is thrown, an application should

check the linked exception. The linked exception itself might have another linked

exception, and so the linked exceptions form a chain leading back to the original

underlying problem. A linked exception is implemented by using the chained

exception mechanism of the java.lang.Throwable class, and an application obtains a

linked exception by calling the Throwable.getCause() method. For a JMSException

exception, the getLinkedException() method actually delegates to the

Throwable.getCause() method.

For example, if an application specifies an incorrect port number when connecting

to a queue manager, the exceptions form the following chain:

com.ibm.msg.client.jms.DetailIllegalStateException

 |

 +--->com.ibm.mq.MQException

 |

 +--->com.ibm.mq.jmqi.JmqiException

 |

 +--->java.net.ConnectionException

Typically, each exception in a chain is thrown from a different layer in the code.

For example, the exceptions in the preceding chain are thrown by the following

layers:

v The first exception, an instance of a subclass of JMSException, is thrown by the

common layer in WebSphere MQ classes for JMS.

v The next exception, an instance of com.ibm.mq.MQException, is thrown by the

WebSphere MQ messaging provider.

v The next exception, an instance of com.ibm.mq.jmqi.JmqiException, is thrown by

the common Java interface to the MQI.

v The final exception, an instance of java.net.ConnectionException, is thrown by

the Java class library.

For more information about the layered architecture of WebSphere MQ classes for

JMS, see “A layered architecture” on page 67.

Using code similar to the following code, an application can iterate through this

chain to extract all the appropriate information:

import com.ibm.msg.client.jms.JmsExceptionDetail;

import com.ibm.mq.MQException;

import com.ibm.mq.jmqi.JmqiException;

import javax.jms.JMSException;

.

.

.

catch (JMSException je) {

 System.err.println("Caught JMSException");

 // Check for linked exceptions in JMSException

 Throwable t = je;

 while (t != null) {

 // Write out the message that is applicable to all exceptions

 System.err.println("Exception Msg: " + t.getMessage());

 // Write out the exception stack trace

Chapter 2. WebSphere MQ classes for JMS 123

t.printStackTrace(System.err);

 // Add on specific information depending on the type of exception

 if (t instanceof JMSException) {

 JMSException je1 = (JMSException) t;

 System.err.println("JMS Error code: " + je1.getErrorCode());

 if (t instanceof JmsExceptionDetail){

 JmsExceptionDetail jed = (JmsExceptionDetail)je1;

 System.err.println("JMS Explanation: " + jed.getExplanation());

 System.err.println("JMS Explanation: " + jed.getUserAction());

 }

 } else if (t instanceof MQException) {

 MQException mqe = (MQException) t;

 System.err.println("WMQ Completion code: " + mqe.getCompCode());

 System.err.println("WMQ Reason code: " + mqe.getReason());

 } else if (t instanceof JmqiException){

 JmqiException jmqie = (JmqiException)t;

 System.err.println("WMQ Log Message: " + jmqie.getWmqLogMessage());

 System.err.println("WMQ Explanation: " + jmqie.getWmqMsgExplanation());

 System.err.println("WMQ Msg Summary: " + jmqie.getWmqMsgSummary());

 System.err.println("WMQ Msg User Response: "

 + jmqie.getWmqMsgUserResponse());

 System.err.println("WMQ Msg Severity: " + jmqie.getWmqMsgSeverity());

 }

 // Get the next cause

 t = t.getCause();

 }

}

Note that an application should always check the type of each exception in a chain

because the type of exception can vary and exceptions of different types

encapsulate different information.

Obtaining WebSphere MQ specific information about a problem

Instances of com.ibm.mq.MQException and com.ibm.mq.jmqi.JmqiException

encapsulate WebSphere MQ specific information about a problem.

An MQException exception encapsulates the following information:

v A completion code, which an application obtains by calling the getCompCode()

method

v A reason code, which an application obtains by calling the getReason() method

A JmqiException exception also encapsulates a completion code and a reason code.

Additionally, however, a JmqiException exception encapsulates the information in

an AMQnnnn or CSQnnnn message, if one is associated with the exception. By

calling the appropriate methods of the exception, an application can obtain the

various components of this message, such as the severity, explanation, and user

response.

For examples of how to use of the methods mentioned in this section, see the

sample code in “Linked exceptions” on page 123.

Upgrading from previous versions of WebSphere MQ classes for JMS

Compared to previous versions of WebSphere MQ classes for JMS, most error

codes and exception messages have changed in Version 7. The reason for these

124 WebSphere MQ: Using Java

changes is that WebSphere MQ classes for JMS now has a layered architecture and

exceptions are thrown from different layers in the code.

For example, if an application tries to connect to a queue manager that does not

exist, a previous version of WebSphere MQ classes for JMS threw a JMSException

exception with the following information:

MQJMS2005: Failed to create MQQueueManager for ’localhost:QM_test’.

This exception contained a linked MQException exception with the following

information:

MQJE001: Completion Code 2, Reason 2058

By comparison in the same circumstances, Version 7 of WebSphere MQ classes for

JMS throws a JMSException exception with the following information:

Message : JMSWMQ0018: Failed to connect to queue manager ’QM_test’ with

 connection mode ’Client’ and host name ’localhost’.

Class : class com.ibm.msg.client.jms.DetailedJMSException

Error Code : JMSWMQ0018

Explanation : null

User Action : Check the queue manager is started and if running in client mode,

 check there is a listener running. Please see the linked exception

 for more information.

This exception contains a linked MQException exception with the following

information:

Message : JMSCMQ0001: WebSphere MQ call failed with compcode ’2’ (’MQCC_FAILED’)

 reason ’2058’ (’MQRC_Q_MGR_NAME_ERROR’).

Class : class com.ibm.mq.MQException

Completion Code : 2

Reason Code : 2058

If your application parses or tests exception messages returned by the

Throwable.getMessage() method, or error codes returned by the

JMSException.getErrorCode() method, your application probably needs to be

modified in order to use Version 7 of WebSphere MQ classes for JMS.

Exception listeners

An application can register an exception listener with a Connection object.

Subsequently, if a problem occurs that makes the connection unusable, WebSphere

MQ classes for JMS delivers an exception to the exception listener by calling its

onException() method. The application then has the opportunity to reestablish the

connection.

By default, WebSphere MQ classes for JMS also delivers an exception to the

exception listener if a problem occurs while trying to deliver a message

asynchronously. However, this behavior is more than that required by the JMS

specification. To be consistent with the JMS specification, you must ensure that the

ASYNCEXCEPTION property of the connection factory is set to

ASYNC_EXCEPTIONS_CONNECTIONBROKEN. Then, if a problem occurs while

trying to deliver a message asynchronously, WebSphere MQ classes for JMS writes

an exception to its log and does not deliver an exception to the exception listener.

For any other type of problem, a JMSException exception is thrown by the current

JMS API call.

Chapter 2. WebSphere MQ classes for JMS 125

If an application does not register an exception listener with a Connection object,

any exceptions that would have been delivered to the exception listener are written

to the WebSphere MQ classes for JMS log.

Logging errors in WebSphere MQ classes for JMS

Information about runtime problems that might require corrective action by the

user is written to the WebSphere MQ classes for JMS log.

For example, if an application attempts to set a property of a connection factory,

but the name of the property is not recognized, WebSphere MQ classes for JMS

writes information about the problem to its log.

By default, the file containing the log is called mqjms.log and is in the current

working directory. However, you can change the name and location of the log file

by setting the com.ibm.msg.client.commonservices.log.outputName property in the

WebSphere MQ classes for JMS configuration file. For information about the

WebSphere MQ classes for JMS configuration file, see “The WebSphere MQ classes

for JMS configuration file” on page 12.

First failure support technology (FFST) in WebSphere MQ

classes for JMS

If a serious internal error occurs within WebSphere MQ classes for JMS, first failure

support technology (FFST) information is generated.

The FFST information is written to a file is called JMSCnnnn.FDC, where nnnn is a

four digit number. This file is in a directory called FDC, which is a subdirectory of

the directory to which trace output is written. By default, trace output is written to

the current working directory, but you can redirect trace output to a different

directory by setting the com.ibm.msg.client.commonservices.trace.outputName

property in the WebSphere MQ classes for JMS configuration file. For information

about the WebSphere MQ classes for JMS configuration file, see “The WebSphere

MQ classes for JMS configuration file” on page 12.

If tracing is enabled when FFST information is generated, the FFST information is

also be written to the trace file.

Accessing WebSphere MQ features from a WebSphere MQ

classes for JMS application

WebSphere MQ classes for JMS provides facilities to exploit a number of features

of WebSphere MQ.

 Attention: These features are outside the JMS specification or, in certain cases,

violate the JMS specification. If you use them, your application is unlikely to be

compatible with other JMS providers. Those features which do not comply with

the JMS specification are labelled with an Attention notice.

Reading and writing the message descriptor from a WebSphere

MQ classes for JMS application

You control the ability to access the message descriptor (MQMD) by setting

properties on a Destination and a Message.

The function described in this topic is available only when connecting to a

WebSphere MQ queue manager at Version 7.0 or later and the

PROVIDERVERSION property of the ConnectionFactory is ″7″ or greater, or is

unspecified.

126 WebSphere MQ: Using Java

Some WebSphere MQ applications require specific values to be set in the MQMD

of messages sent to them. WebSphere MQ classes for JMS provides message

attributes that allow JMS applications to set MQMD fields and so enable JMS

applications to ″drive″ WebSphere MQ applications.

You must set the Destination object property WMQ_MQMD_WRITE_ENABLED to

true for the setting of MQMD properties to have any effect. You can then use the

property setting methods of the message (for example setStringProperty) to assign

values to the MQMD fields. All MQMD fields are exposed except StrucId and

Version; BackoutCount can be read but not written to.

This example results in a message being put to a queue or topic with

MQMD.UserIdentifier set to “JoeBloggs”.

 // Create a ConnectionFactory, connection, session, producer, message

 // ...

 // Create a destination

 // ...

 // Enable MQMD write

 dest.setBooleanProperty(WMQConstants.WMQ_MQMD_WRITE_ENABLED, true);

 // Optionally, set a message context if applicable for this MD field

 dest.setIntProperty(WMQConstants.WMQ_MQMD_MESSAGE_CONTEXT,

 WMQConstants.WMQ_MDCTX_SET_IDENTITY_CONTEXT);

 // On the message, set property to provide custom UserId

 msg.setStringProperty("JMS_IBM_MQMD_UserIdentifier", "JoeBloggs");

 // Send the message

 // ...

It is necessary to set WMQ_MQMD_MESSAGE_CONTEXT before setting

JMS_IBM_MQMD_UserIdentifier. For more information about the use of

WMQ_MQMD_MESSAGE_CONTEXT, see “Message object properties” on page

130.

Similarly, you can extract the contents of the MQMD fields by setting

WMQ_MQMD_READ_ENABLED to true before receiving a message and then

using the get methods of the message, such as getStringProperty. Any properties

received are read-only.

This example results in the value field holding the value of the

MQMD.ApplIdentityData field of a message got from a queue or a topic.

 // Create a ConnectionFactory, connection, session, consumer

 // ...

 // Create a destination

 // ...

 // Enable MQMD read

 dest.setBooleanProperty(WMQConstants.WMQ_MQMD_READ_ENABLED, true);

 // Receive a message

 // ...

 // Get desired MQMD field value using a property

 String value = rcvMsg.getStringProperty("JMS_IBM_MQMD_ApplIdentityData");

Destination object properties:

Chapter 2. WebSphere MQ classes for JMS 127

Two properties of the Destination object control access to the MQMD from JMS,

and a third controls message context.

 Table 32. Property names and descriptions

Property Short form Description

WMQ_MQMD_WRITE_ENABLED MDW Whether a JMS application can set

the values of MQMD fields

WMQ_MQMD_READ_ENABLED MDR Whether a JMS application can

extract the values of MQMD fields

WMQ_MQMD_MESSAGE_

CONTEXT

MDCTX What level of message context is to

be set by the JMS application. The

application must be running with

appropriate context authority for this

property to take effect

 Table 33. Property names, values, and set methods

Property Valid values in

administration tool

(defaults in bold)

Valid values in programs Set method

WMQ_MQMD_

WRITE_ENABLED

v NO

All JMS_IBM_MQMD*

properties are ignored

and their values are not

copied into the

underlying MQMD

structure.

v YES

JMS_IBM_MQMD*

properties are processed.

Their values are copied

into the underlying

MQMD structure.

v False

v True

setMQMDWriteEnabled

128 WebSphere MQ: Using Java

Table 33. Property names, values, and set methods (continued)

Property Valid values in

administration tool

(defaults in bold)

Valid values in programs Set method

WMQ_MQMD_

READ_ENABLED

v NO

When sending messages,

the JMS_IBM_MQMD*

properties on a sent

message are not updated

to reflect the updated

field values in the

MQMD.

When receiving

messages, none of the

JMS_IBM_MQMD*

properties are available

on a received message,

even if the sender had

set some or all of them.

v YES

When sending messages,

all of the

JMS_IBM_MQMD*

properties on a sent

message are updated to

reflect the updated field

values in the MQMD,

including those that the

sender did not set

explcitly.

When receiving

messages, all of the

JMS_IBM_MQMD*

properties are available

on a received message,

including those that the

sender did not set

explicitly.

v False

v True

setMQMDReadEnabled

Chapter 2. WebSphere MQ classes for JMS 129

Table 33. Property names, values, and set methods (continued)

Property Valid values in

administration tool

(defaults in bold)

Valid values in programs Set method

WMQ_MQMD_MESSAGE

_CONTEXT

v DEFAULT

The MQOPEN API call

and the MQPMO

structure will specify no

explicit message context

options.

v SET_IDENTITY_

CONTEXT

The MQOPEN API call

specifies the message

context option MQOO_

SET_IDENTITY_

CONTEXT and the

MQPMO structure

specifies MQPMO_SET_

IDENTITY_CONTEXT.

v SET_ALL_CONTEXT
The MQOPEN API call

specifies the message

context option

MQOO_SET_ALL_

CONTEXT and the

MQPMO structure

specifies MQPMO_

SET_ALL_CONTEXT.

v WMQ_MDCTX_

DEFAULT

v

WMQ_MDCTX_SET_

 IDENTITY_CONTEXT

v

WMQ_MDCTX_SET_

 ALL_CONTEXT

setMQMDMessageContext

Message object properties:

Message object properties prefixed JMS_IBM_MQMD allow you to set or read the

corresponding MQMD field.

 Sending messages

All MQMD fields except StrucId and Version are represented. These properties

refer only to the MQMD fields; where a property occurs both in the MQMD and in

the MQRFH2 header, the version in the MQRFH2 is not set or extracted.

Any of these properties can be set, except JMS_IBM_MQMD_BackoutCount. Any

value set for JMS_IBM_MQMD_BackoutCount is ignored.

If a property has a maximum length and you supply a value that is too long, the

value is truncated.

For certain properties, you must also set the WMQ_MQMD_MESSAGE_CONTEXT

property on the Destination object. The application must be running with

appropriate context authority for this property to take effect. If you do not set

WMQ_MQMD_MESSAGE_CONTEXT to an appropriate value, the property value

is ignored. If you set WMQ_MQMD_MESSAGE_CONTEXT to an appropriate

value but you do not have sufficient context authority for the queue manager, a

JMSException is issued. Properties requiring specific values of

WMQ_MQMD_MESSAGE_CONTEXT are as follows.

130 WebSphere MQ: Using Java

The following properties require WMQ_MQMD_MESSAGE_CONTEXT to be set to

WMQ_MDCTX_SET_IDENTITY_CONTEXT or

WMQ_MDCTX_SET_ALL_CONTEXT:

v JMS_IBM_MQMD_UserIdentifier

v JMS_IBM_MQMD_AccountingToken

v JMS_IBM_MQMD_ApplIdentityData

The following properties require WMQ_MQMD_MESSAGE_CONTEXT to be set to

WMQ_MDCTX_SET_ALL_CONTEXT :

v JMS_IBM_MQMD_PutApplType

v JMS_IBM_MQMD_PutApplName

v JMS_IBM_MQMD_PutDate

v JMS_IBM_MQMD_PutTime

v JMS_IBM_MQMD_ApplOriginData

Receiving messages

All these properties are available on a received message if

WMQ_MQMD_READ_ENABLED property is set to true, irrespective of the actual

properties the producing application has set. An application cannot modify the

properties of a received message unless all properties are cleared first, according to

the JMS specification. The received message can be forwarded without modifying

the properties.

Attention: If your application receives a message from a destination with

WMQ_MQMD_READ_ENABLED property set to true, and forwards it to a

destination with WMQ_MQMD_WRITE_ENABLED set to true, this results in all

the MQMD field values of the received message being copied into the forwarded

message.

Table of properties

This table lists the properties of the Message object representing the MQMD fields.

See the links for full descriptions of the fields and their allowable values.

 Table 34. Property names, descriptions, and types

Property Description Java Type Link to full description

JMS_IBM_MQMD_Report Options for report

messages

Integer Report

JMS_IBM_MQMD_MsgType Message type Integer MsgType

JMS_IBM_MQMD_Expiry Message lifetime Integer Expiry

JMS_IBM_MQMD_Feedback Feedback or reason code Integer Feedback

JMS_IBM_MQMD_Encoding Numeric encoding of

message data

Integer Encoding

JMS_IBM_MQMD_CodedCharSetId Character set identifier of

message data

Integer CodedCharSetId

JMS_IBM_MQMD_Format Format name of message

data

String Format

JMS_IBM_MQMD_Priority

1 Message priority Integer Priority

JMS_IBM_MQMD_Persistence Message persistence Integer Persistence

JMS_IBM_MQMD_MsgId

2 Message identifier Object (byte[])

4 MsgId

Chapter 2. WebSphere MQ classes for JMS 131

Table 34. Property names, descriptions, and types (continued)

Property Description Java Type Link to full description

JMS_IBM_MQMD_CorrelId

3 Correlation identifier Object (byte[])

4 CorrelId

JMS_IBM_MQMD_BackoutCount Backout counter Integer BackoutCount

JMS_IBM_MQMD_ReplyToQ Name of reply queue String ReplyToQ

JMS_IBM_MQMD_ReplyToQMgr Name of reply queue

manager

String ReplyToQMgr

JMS_IBM_MQMD_UserIdentifier User identifier String UserIdentifier

JMS_IBM_MQMD_AccountingToken Accounting token Object (byte[])

4 AccountingToken

JMS_IBM_MQMD_ApplIdentityData Application data relating

to identity

String ApplIdentityData

JMS_IBM_MQMD_PutApplType Type of application that

put the message

Integer PutApplType

JMS_IBM_MQMD_PutApplName Name of application that

put the message

String PutApplName

JMS_IBM_MQMD_PutDate Date when message was

put

String PutDate

JMS_IBM_MQMD_PutTime Time when message was

put

String PutTime

JMS_IBM_MQMD_ApplOriginData Application data relating

to origin

String ApplOriginData

JMS_IBM_MQMD_GroupId Group identifier Object (byte[])

4 GroupId

JMS_IBM_MQMD_MsgSeqNumber Sequence number of

logical message within

group

Integer MsgSeqNumber

JMS_IBM_MQMD_Offset Offset of data in physical

message from start of

logical message

Integer Offset

JMS_IBM_MQMD_MsgFlags Message flags Integer MsgFlags

JMS_IBM_MQMD_OriginalLength Length of original

message

Integer OriginalLength

1. Attention: If you assign a value to JMS_IBM_MQMD_Priority that is not within the range 0-9, this violates the

JMS specification.

2. Attention: The JMS specification states that the message ID must be set by the JMS provider and that it must

either be unique or null. If you assign a value to JMS_IBM_MQMD_MsgId, this value is copied to the

JMSMessageID. Thus it is not set by the JMS provider and might not be unique: this violates the JMS

specification.

3. Attention: If you assign a value to JMS_IBM_MQMD_CorrelId that starts with the string ’ID:’, this violates the

JMS specification.

4. Attention: The use of byte array properties on a message violates the JMS specification.

Accessing WebSphere MQ Message data from a WebSphere MQ

classes for JMS application

You can access the complete WebSphere MQ message data including the MQRFH2

header (if present) and any other WebSphere MQ headers (if present) within a

WebSphere MQ classes for JMS application as the body of a JMSBytesMessage.

132 WebSphere MQ: Using Java

The function described in this topic is available only when connecting to a

WebSphere MQ queue manager at Version 7.0 or later and the WebSphere MQ

messaging provider is in normal mode.

Use the WMQ_MESSAGE_BODY property of a Destination object to indicate

whether the JMS application accesses the whole of a WebSphere MQ message

(including the MQRFH2 header, if present) as the body of a JMSBytesMessage.

Sending a message

When sending messages, WMQ_MESSAGE_BODY takes precedence over

WMQ_TARGET_CLIENT.

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_JMS, WebSphere MQ

classes for JMS automatically generates an MQRFH2 header based on the settings

of the JMS Message properties and header fields.

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_MQ, no additional

header is added to the message body

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_UNSPECIFIED, the

default value, WebSphere MQ classes for JMS does or does not generate and

include an MQRFH2 header, depending on the value of WMQ_TARGET_CLIENT.

When you send a JMSBytesMessage, you can use the following properties to

override the default format settings for the JMS message body when the

WebSphere MQ message is constructed:

v JMS_IBM_Format or JMS_IBM_MQMD_Format: This property specifies the

format of the WebSphere MQ header or application payload that starts the JMS

message body if there is no preceding Websphere MQ header.

v JMS_IBM_Character_Set or JMS_IBM_MQMD_CodedCharSetId: This property

specifies the CCSID of the WebSphere MQ header or application payload that

starts the JMS message body if there is no preceding Websphere MQ header.

v JMS_IBM_Encoding or JMS_IBM_MQMD_Encoding: This property specifies the

encoding of the WebSphere MQ header or application payload that starts the

JMS message body if there is no preceding Websphere MQ header.

If both are specified, the JMS_IBM_MQMD properties override the corresponding

JMS_IBM_ properties.

This example results in a message being put to a queue or topic, with its body

containing the application payload without an automatically generated MQRFH2

header being added.

// Create a ConnectionFactory, connection, session, producer, message

 // ...

 // Create a destination

 // ...

 // Set message body to be MQ

 dest.setIntProperty(WMQConstants.WMQ_MESSAGE_BODY, WMQConstants.WMQ_MESSAGE_

 BODY_MQ);

 // Send the message

Chapter 2. WebSphere MQ classes for JMS 133

Receiving a message

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_JMS, the inbound

JMS message type and body are determined by the contents of the MQRFH2

header (if present) or the MQMD (if there is no MQRFH2) in the received

Websphere MQ message.

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_MQ, the inbound

JMS message type is JMSBytesMessage. The JMS message body is the message data

returned by the underlying MQGET API call and the length of message body is the

length returned by the MQGET call. The character set and encoding of the data in

the message body is determined by the CodedCharSetId and Encoding fields of the

MQMD. The format of the data in the message body is determined by the Format

field of the MQMD

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_UNSPECIFIED, the

default value, WebSphere MQ classes for JMS sets it to

WMQ_MESSAGE_BODY_JMS.

When you receive a JMSBytesMessage, you can decode it by reference to the

following properties:

v JMS_IBM_Format or JMS_IBM_MQMD_Format: This property specifies the

format of the WebSphere MQ header or application payload that starts the JMS

message body if there is no preceding Websphere MQ header.

v JMS_IBM_Character_Set or JMS_IBM_MQMD_CodedCharSetId: This property

specifies the CCSID of the WebSphere MQ header or application payload that

starts the JMS message body if there is no preceding Websphere MQ header.

v JMS_IBM_Encoding or JMS_IBM_MQMD_Encoding: This property specifies the

encoding of the WebSphere MQ header or application payload that starts the

JMS message body if there is no preceding Websphere MQ header.

This example results in a received message that is a JMSBytesMessage, irrespective

of the content of the received message and of the format field of the received

MQMD.

// Create a ConnectionFactory, connection, session, consumer

 // ...

 // Create a destination

 // ...

 // Set message body to be MQ

 dest.setIntProperty(WMQConstants.WMQ_MESSAGE_BODY, WMQConstants.WMQ_MESSAGE_

 BODY_MQ);

 // Receive the message

Destination property WMQ_MESSAGE_BODY:

WMQ_MESSAGE_BODY determines whether a JMS application processes the

MQRFH2 of a WebSphere MQ message as part of the message payload (that is, as

part of the JMS message body).

134 WebSphere MQ: Using Java

Table 35. Property names and descriptions

Property Short form Description

WMQ_MESSAGE_BODY MBODY Whether a JMS application processes

the MQRFH2 of a WebSphere MQ

message as part of the message

payload (that is, as part of the JMS

message body).

 Table 36. Property names, values, and set methods

Property Valid values in

administration tool

(defaults in bold)

Valid values in programs Set method

WMQ_MESSAGE_BODY v UNSPECIFIED

When sending,

WebSphere MQ classes

for JMS does or does

not generate and

include an MQRFH2

header, depending on

the value of WMQ_

TARGET_CLIENT.

When receiving, acts as

value JMS.

v JMS

When sending,

WebSphere MQ classes

for JMS automatically

generates an MQRFH2

header and includes it

in the WebSphere MQ

message.

When receiving,

WebSphere MQ classes

for JMS set the JMS

message properties

according to values in

the MQRFH2 (if

present); it does not

present the MQRFH2

as part of the JMS

message body.

v MQ

When sending,

WebSphere MQ classes

for JMS does not

generate an MQRFH2.

When receiving,

WebSphere MQ classes

for JMS presents the

MQRFH2 and any other

headers as part of the

JMS message body.

v WMQ_MESSAGE_

 BODY_UNSPECIFIED

v WMQ_MESSAGE_

 BODY_JMS

v WMQ_MESSAGE_

 BODY_MQ

setMessageBodyStyle

Chapter 2. WebSphere MQ classes for JMS 135

JMS persistent messages

A WebSphere MQ queue has an attribute called NonPersistentMessageClass. The

value of this attribute determines whether nonpersistent messages on the queue

are discarded when the queue manager restarts.

You can set the attribute for a local queue by using the WebSphere MQ Script

(MQSC) command, DEFINE QLOCAL, with either of the following parameters:

NPMCLASS(NORMAL)

Nonpersistent messages on the queue are discarded when the queue

manager restarts. This is the default value.

NPMCLASS(HIGH)

Nonpersistent messages on the queue are not discarded when the queue

manager restarts following a quiesced or immediate shutdown.

Nonpersistent messages might be discarded, however, following a

preemptive shutdown or a failure.

This topic describes how WebSphere MQ classes for JMS applications can use this

queue attribute to provide better performance for JMS persistent messages.

The PERSISTENCE property of a Queue or Topic object can have the value HIGH.

You can use the WebSphere MQ JMS administration tool to set this value, or an

application can call the Destination.setPersistence() method passing the value

JMSC.MQJMS_PER_NPHIGH as a parameter.

If an application sends a JMS persistent message or a JMS nonpersistent message

to a destination whose PERSISTENCE property has the value HIGH, and the

underlying WebSphere MQ queue is set to NPMCLASS(HIGH), the message is put

on the queue as a WebSphere MQ nonpersistent message. If the PERSISTENCE

property of the destination does not have the value HIGH, or if the underlying

queue is set to NPMCLASS(NORMAL), a JMS persistent message is put on the

queue as a WebSphere MQ persistent message, and a JMS nonpersistent message is

put on the queue as a WebSphere MQ nonpersistent message.

If a JMS persistent message is put on a queue as a WebSphere MQ nonpersistent

message, and you want to ensure that the message is not discarded following a

quiesced or immediate shutdown of a queue manager, all queues through which

the message might be routed must be set to NPMCLASS(HIGH). In the

publish/subscribe domain, these queues include subscriber queues. As an aid to

enforcing this configuration, WebSphere MQ classes for JMS throws an

InvalidDestinationException if an application tries to create a message consumer

for a destination whose PERSISTENCE property has the value HIGH and the

underlying WebSphere MQ queue is set to NPMCLASS(NORMAL).

Setting the PERSISTENCE property of a destination to HIGH has no effect on how

a message is received from that destination. A message sent as a JMS persistent

message is received as a JMS persistent message, and a message sent as a JMS

nonpersistent message is received as a JMS nonpersistent message.

When an application sends the first message to a destination whose PERSISTENCE

property has the value HIGH, or when an application creates the first message

consumer for a destination whose PERSISTENCE property has the value HIGH,

WebSphere MQ classes for JMS issues an MQINQ call to determine whether

NPMCLASS(HIGH) is set on the underlying WebSphere MQ queue. The

application must therefore have the authority to inquire on the queue. In addition,

136 WebSphere MQ: Using Java

WebSphere MQ classes for JMS preserves the result of the MQINQ call until the

destination is deleted, and does not issue more MQINQ calls. Therefore, if you

change the NPMCLASS setting on the underlying queue while the application is

still using the destination, WebSphere MQ classes for JMS does not notice the new

setting.

By allowing JMS persistent messages to be put on WebSphere MQ queues as

WebSphere MQ nonpersistent messages, you are gaining performance at the

expense of some reliability. If you require maximum reliability for JMS persistent

messages, do not send the messages to a destination whose PERSISTENCE

property has the value HIGH.

Using Secure Sockets Layer (SSL) with WebSphere MQ classes

for JMS

WebSphere MQ classes for JMS applications can use SSL encryption. To do this

they require a JSSE provider.

WebSphere MQ classes for JMS connections using TRANSPORT(CLIENT) support

Secure Sockets Layer (SSL) encryption. SSL provides communication encryption,

authentication, and message integrity. It is typically used to secure communications

between any two peers on the Internet or within an intranet.

WebSphere MQ classes for JMS uses Java Secure Socket Extension (JSSE) to handle

SSL encryption, and therefore requires a JSSE provider. J2SE v1.4 JVMs have a JSSE

provider built in. Details of how to manage and store certificates can vary from

provider to provider. For information about this, see your JSSE provider’s

documentation.

This section assumes that your JSSE provider is correctly installed and configured,

and that suitable certificates have been installed and made available to your JSSE

provider.

If your WebSphere MQ classes for JMS application uses a client channel definition

table to connect to a queue manager, see “Using a client channel definition table”

on page 146.

SSL administrative properties for WebSphere MQ classes for JMS:

This section introduces the SSL administrative properties.

SSLCIPHERSUITE object property:

Set SSLCIPHERSUITE to enable SSL encryption on a ConnectionFactory object.

 To enable SSL encryption on a ConnectionFactory object, use JMSAdmin to set the

SSLCIPHERSUITE property to a CipherSuite supported by your JSSE provider.

This must match the CipherSpec set on the target channel. However, CipherSuites

are distinct from CipherSpecs and therefore have different names. “SSL

CipherSpecs and CipherSuites” on page 141 contains a table mapping the

CipherSpecs supported by WebSphere MQ to their equivalent CipherSuites as

known to JSSE. For more information about CipherSpecs and CipherSuites with

WebSphere MQ, see WebSphere MQ Security.

For example, to set up a ConnectionFactory object that can be used to create a

connection over an SSL enabled MQI channel with a CipherSpec of

RC4_MD5_EXPORT, issue the following command to JMSAdmin:

Chapter 2. WebSphere MQ classes for JMS 137

ALTER CF(my.cf) SSLCIPHERSUITE(SSL_RSA_EXPORT_WITH_RC4_40_MD5)

This can also be set from an application, using the setSSLCipherSuite() method on

an MQConnectionFactory object.

For convenience, if a CipherSpec is specified on the SSLCIPHERSUITE property,

JMSAdmin attempts to map the CipherSpec to an appropriate CipherSuite and

issues a warning. This attempt to map is not made if the property is specified by

an application.

SSLFIPSREQUIRED object property:

If you require a connection to use a CipherSuite that is supported by the IBM Java

JSSE FIPS provider (IBMJSSEFIPS), set the SSLFIPSREQUIRED property of the

connection factory to YES.

 The default value of this property is NO, which means that a connection can use

any CipherSuite that is supported by WebSphere MQ.

If an application uses more than one connection, the value of SSLFIPSREQUIRED

that is used when the application creates the first connection determines the value

that is used when the application creates any subsequent connection. This means

that the value of the SSLFIPSREQUIRED property of the connection factory that is

used to create a subsequent connection is ignored. You must restart the application

if you want to use a different value of SSLFIPSREQUIRED.

An application can set this property by calling the setSSLFipsRequired() method of

a ConnectionFactory object. The property is ignored if no CipherSuite is set.

SSLPEERNAME object property:

Use SSLPEERNAME to specify a distinguished name pattern, to ensure that your

JMS application connects to the correct queue manager.

 A JMS application can ensure that it connects to the correct queue manager by

specifying a distinguished name (DN) pattern. The connection succeeds only if the

queue manager presents a DN that matches the pattern. For more details of the

format of this pattern, see the related topics.

The DN is set using the SSLPEERNAME property of a ConnectionFactory object.

For example, the following JMSAdmin command sets a ConnectionFactory object

to expect the queue manager to identify itself with a Common Name beginning

with the characters QMGR., and with at least two Organizational Unit names, the

first of which must be IBM and the second WEBSPHERE:

ALTER CF(my.cf) SSLPEERNAME(CN=QMGR.*, OU=IBM, OU=WEBSPHERE)

Checking is not case sensitive and semicolons can be used in place of commas.

SSLPEERNAME can also be set from an application using the setSSLPeerName()

method on an MQConnectionFactory object. If this property is not set, no checking

is performed on the Distinguished Name supplied by the queue manager. This

property is ignored if no CipherSuite is set.

SSLCERTSTORES object property:

Use SSLCERTSTORES to specify a list of LDAP servers to use for certificate

revocation list (CRL) checking.

138 WebSphere MQ: Using Java

It is common to use a certificate revocation list (CRL) to identify certificates that

are no longer trusted. CRLs are typically hosted on LDAP servers. JMS allows an

LDAP server to be specified for CRL checking under Java 2 v1.4 or later. The

following JMSAdmin example directs JMS to use a CRL hosted on an LDAP server

named crl1.ibm.com:

ALTER CF(my.cf) SSLCRL(ldap://crl1.ibm.com)

Note: To use a CertStore successfully with a CRL hosted on an LDAP server, make

sure that your Java Software Development Kit (SDK) is compatible with the CRL.

Some SDKs require that the CRL conforms to RFC 2587, which defines a schema

for LDAP v2. Most LDAP v3 servers use RFC 2256 instead.

If your LDAP server is not running on the default port of 389, you can specify the

port by appending a colon (:) and the port number to the host name. If the

certificate presented by the queue manager is present in the CRL hosted on

crl1.ibm.com, the connection is not completed. To avoid a single point of failure,

JMS allows multiple LDAP servers to be supplied by supplying a list of LDAP

servers delimited by the space character. Here is an example:

ALTER CF(my.cf) SSLCRL(ldap://crl1.ibm.com ldap://crl2.ibm.com)

When multiple LDAP servers are specified, JMS tries each one in turn until it finds

a server with which it can successfully verify the queue manager’s certificate. Each

server must contain identical information.

A string in this format can be supplied by an application on the

MQConnectionFactory.setSSLCertStores() method. Alternatively, the application can

create one or more java.security.cert.CertStore objects, place these in a suitable

Collection object, and supply this Collection object to the setSSLCertStores()

method. In this way, the application can customize CRL checking. See your JSSE

documentation for details on constructing and using CertStore objects.

The certificate presented by the queue manager when a connection is being set up

is validated as follows:

1. The first CertStore object in the Collection identified by sslCertStores is used to

identify a CRL server.

2. An attempt is made to contact the CRL server.

3. If the attempt is successful, the server is searched for a match for the certificate.

a. If the certificate is found to be revoked, the search process is over and the

connection request fails with reason code

MQRC_SSL_CERTIFICATE_REVOKED.

b. If the certificate is not found, the search process is over and the connection

is allowed to proceed.
4. If the attempt to contact the server is unsuccessful, the next CertStore object is

used to identify a CRL server and the process repeats from step 2.

If this was the last CertStore in the Collection, or if the Collection contains no

CertStore objects, the search process has failed and the connection request fails

with reason code MQRC_SSL_CERT_STORE_ERROR.

The Collection object determines the order in which CertStores are used.

If your application uses setSSLCertStores() to set a Collection of CertStore objects,

the MQConnectionFactory can no longer be bound into a JNDI namespace.

Attempting to do so causes an exception. If the sslCertStores property is not set, no

Chapter 2. WebSphere MQ classes for JMS 139

revocation checking is performed on the certificate provided by the queue

manager. This property is ignored if no CipherSuite is set.

SSLRESETCOUNT object property:

This property represents the total number of bytes sent and received by a

connection before the secret key that is used for encryption is renegotiated.

 The number of bytes sent is the number before encryption, and the number of

bytes received is the number after decryption. The number of bytes also includes

control information sent and received by WebSphere MQ classes for JMS.

For example, to configure a ConnectionFactory object that can be used to create a

connection over an SSL enabled MQI channel whose secret key is renegotiated

after 4 MB of data have flowed, issue the following command to JMSAdmin:

ALTER CF(my.cf) SSLRESETCOUNT(4194304)

An application can set this property by calling the setSSLResetCount() method of a

ConnectionFactory object.

If the value of this property is zero, which is the default value, the secret key is

never renegotiated. The property is ignored if no CipherSuite is set.

In some environments, you must not set the reset count to a value other than zero.

If you do set the reset count to a value other than zero, a client connection fails

when it attempts to renegotiate the secret key. These environments are:

v an HP or Sun V1.4.2 JDK

v any V1.4.2 JDK when using FIPS mode

v any V5.0 or later JDK

For more information about the secret key that is used for encryption on an SSL

enabled channel, see WebSphere MQ Security.

SSLSocketFactory object property:

To customize other aspects of the SSL connection for an application, create an

SSLSocketFactory and configure JMS to use it.

 You might want to customize other aspects of the SSL connection for an

application. For example, you might want to initialize cryptographic hardware or

change the keystore and truststore in use. To do this, the application must first

create a javax.net.ssl.SSLSocketFactory object that is customized accordingly. See

your JSSE documentation for information about how to do this, because the

customizable features vary from provider to provider. After a suitable

SSLSocketFactory object is obtained, use the

MQConnectionFactory.setSSLSocketFactory() method to configure JMS to use the

customized SSLSocketFactory object.

If your application uses the setSSLSocketFactory() method to set a customized

SSLSocketFactory object, the MQConnectionFactory object can no longer be bound

into a JNDI namespace. Attempting to do so causes an exception. If this property is

not set, the default SSLSocketFactory object is used. See your JSSE documentation

for details of the behavior of the default SSLSocketFactory object. This property is

ignored if no CipherSuite is set.

140 WebSphere MQ: Using Java

Important: Do not assume that the use of the SSL properties ensures security

when a ConnectionFactory object is retrieved from a JNDI namespace that is not

itself secure. Specifically, the standard LDAP implementation of JNDI is not secure.

An attacker can imitate the LDAP server, misleading a JMS application into

connecting to the wrong server without noticing. With suitable security

arrangements in place, other implementations of JNDI (such as the fscontext

implementation) are secure.

Making changes to the JSSE keystore or truststore:

If you make changes to the keystore or truststore, you must take certain actions for

the changes to be picked up.

 If you change the contents of the JSSE keystore or truststore, or change the location

of the keystore or truststore file, WebSphere MQ classes for JMS applications that

are running at the time do not automatically pick up the changes. For the changes

to take effect, the following actions must be performed:

v The applications must close all their connections, and destroy any unused

connections in connection pools.

v If your JSSE provider caches information from the keystore and truststore, this

information must be refreshed.

After these actions have been performed, the applications can then re-create their

connections.

Depending on how you design your applications, and on the function provided by

your JSSE provider, it might be possible to perform these actions without stopping

and restarting your applications. However, stopping and restarting the applications

might be the simplest solution.

SSL CipherSpecs and CipherSuites:

CipherSpecs supported by WebSphere MQ and their equivalent CipherSuites.

 Table 37 on page 142 lists the CipherSpecs supported by WebSphere MQ and their

equivalent CipherSuites. The table also indicates whether a WebSphere MQ classes

for JMS application can connect to a queue manager if a CipherSpec is specified at

the server end of the MQI channel and the equivalent CipherSuite is specified at

the client end. For each combination of CipherSpec and CipherSuite, whether the

application can connect to the queue manager depends on the value of the

SSLFIPSREQUIRED property of the ConnectionFactory object.

At the server end of an MQI channel, the name of a CipherSpec can be specified as

the value of the SSLCIPH parameter on a DEFINE CHANNEL

CHLTYPE(SVRCONN) command. At the client end of an MQI channel, the name

of a CipherSuite can be specified in the following ways:

v An application can call the setSSLCipherSuite() method of a ConnectionFactory

object.

v Using the WebSphere MQ JMS administration tool, you can set the

SSLCIPHERSUITE property of a ConnectionFactory object.

Chapter 2. WebSphere MQ classes for JMS 141

Table 37. CipherSpecs supported by WebSphere MQ and their equivalent CipherSuites

CipherSpec Equivalent CipherSuite Connection

possible if

SFIPS1 is

set to NO?

Connection

possible if

SFIPS1 is

set to YES?

NULL_MD5 SSL_RSA_WITH_NULL_MD5 Yes No

NULL_SHA SSL_RSA_WITH_NULL_SHA Yes No

RC4_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC4_40_MD5 Yes No

RC4_MD5_US SSL_RSA_WITH_RC4_128_MD5 Yes No

RC4_SHA_US SSL_RSA_WITH_RC4_128_SHA Yes No

RC2_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 Yes No

DES_SHA_EXPORT SSL_RSA_WITH_DES_CBC_SHA Yes No

RC4_56_SHA_EXPORT1024 SSL_RSA_EXPORT1024_WITH_RC4_56_SHA No No

DES_SHA_EXPORT1024 SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA No No

TRIPLE_DES_SHA_US SSL_RSA_WITH_3DES_EDE_CBC_SHA Yes No

TLS_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA No Yes

TLS_RSA_WITH_AES_256_CBC_SHA SSL_RSA_WITH_AES_256_CBC_SHA No Yes

AES_SHA_US2

TLS_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHA No No3

TLS_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHA No Yes

FIPS_WITH_DES_CBC_SHA SSL_RSA_FIPS_WITH_DES_CBC_SHA Yes No4

FIPS_WITH_3DES_EDE_CBC_SHA SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA Yes No

Notes:

1. When using the WebSphere MQ JMS administration tool, SFIPS is the short

name of the ConnectionFactory property SSLFIPSREQUIRED.

2. This CipherSpec has no equivalent CipherSuite.

3. This CipherSpec was FIPS 140-2 certified prior to 19th May 2007.

4. This CipherSpec was FIPS 140-2 certified prior to 19th May 2007. The name

FIPS_WITH_DES_CBC_SHA is historical and reflects the fact that this

CipherSpec was previously FIPS-compliant.

Using channel exits with WebSphere MQ classes for JMS

This topic describes how to write channel exits in Java, how to assign channel

exits, and how to pass user data to channel exits when they are called. The topic

also describes how to use channel exits written in C and C++, and how to assign a

sequence of send and receive exits that are run in succession.

Note that only an application that connects to a queue manager in client mode can

use channel exits. An application cannot use channel exits if it connects in bindings

mode.

Writing channel exits in Java for WebSphere MQ classes for JMS:

You create channel exits by defining Java classes that implement specified

interfaces.

 Three interfaces are defined in the com.ibm.mq.exits package:

142 WebSphere MQ: Using Java

v WMQSendExit, for a send exit

v WMQReceiveExit, for a receive exit

v WMQSecurityExit, for a security exit

The following sample code defines a class that implements all three interfaces:

public class MyMQExits implements WMQSendExit, WMQReceiveExit, WMQSecurityExit {

 // Default constructor

 public MyMQExits(){

 }

 // This method implements the send exit interface

 public ByteBuffer channelSendExit(MQCXP channelExitParms,

 MQCD channelDefinition,

 ByteBuffer agentBuffer)

 {

 // Fill in the body of the send exit here

 }

 // This method implements the receive exit interface

 public ByteBuffer channelReceiveExit(MQCXP channelExitParms,

 MQCD channelDefinition,

 ByteBuffer agentBuffer)

 {

 // Fill in the body of the receive exit here

 }

 // This method implements the security exit interface

 public ByteBuffer channelSecurityExit(MQCXP channelExitParms,

 MQCD channelDefinition,

 ByteBuffer agentBuffer)

 {

 // Fill in the body of the security exit here

 }

}

Each exit receives as parameters an MQCXP object and an MQCD object. These

objects represent the MQCXP and MQCD structures defined in the procedural

interface.

When a send exit is called, the agentBuffer parameter contains the data that is

about to be sent to the server queue manager. A length parameter is not required

because the expression agentBuffer.length provides the length of the data. The send

exit returns as its value the data to be sent to the server queue manager. However,

if the send exit is not the last send exit in a sequence of send exits, the data

returned is passed instead to the next send exit in the sequence. A send exit can

return a modified version of the data that it receives in the agentBuffer parameter,

or it can return the data unchanged. The simplest possible exit body is therefore:

{ return agentBuffer; }

When a receive exit is called, the agentBuffer parameter contains the data that has

been received from the server queue manager. The receive exit returns as its value

the data to be passed to the application by WebSphere MQ classes for JMS.

However, if the receive exit is not the last receive exit in a sequence of receive

exits, the data returned is passed instead to the next receive exit in the sequence.

When a security exit is called, the agentBuffer parameter contains the data that has

been received in a security flow from the security exit at the server end of the

connection. The security exit returns as its value the data to be sent in a security

flow to the server security exit.

Channel exits are called with a buffer that has a backing array. For best

performance, the exit should return a buffer with a backing array.

Chapter 2. WebSphere MQ classes for JMS 143

Up to 32 characters of user data can be passed to a channel exit when it is called.

The exit accesses the user data by calling the getExitData() method of the MQCXP

object. Although the exit can change the user data by calling the setExitData()

method, the user data is refreshed every time the exit is called. Any changes made

to the user data are therefore lost. However, the exit can pass data from one call to

the next by using the exit user area of the MQCXP object. The exit accesses the exit

user area by reference by calling the getExitUserArea() method.

Every exit class must have a constructor. The constructor can be either the default

constructor, as shown in the previous example, or a constructor with a string

parameter. The constructor is called to create an instance of the exit class for each

exit defined in the class. Therefore, in the previous example, an instance of the

MyMQExits class is created for the send exit, another instance is created for the

receive exit, and a third instance is created for the security exit. When a constructor

with a string parameter is called, the parameter contains the same user data that is

passed to the channel exit for which the instance is being created. If an exit class

has both a default constructor and a single parameter constructor, the single

parameter constructor takes precedence.

Do not close the connection from within a channel exit.

When data is sent to the server end of a connection, SSL encryption is performed

after any channel exits are called. Similarly, when data is received from the server

end of a connection, SSL decryption is performed before any channel exits are

called.

In versions of WebSphere MQ classes for JMS earlier than Version 7.0, channel exits

were implemented using the interfaces MQSendExit, MQReceiveExit, and

MQSecurityExit. You can still use these interfaces, but the new interfaces are

preferred for improved function and performance.

Assigning channel exits for WebSphere MQ classes for JMS:

A WebSphere MQ classes for JMS application can use channel security, send, and

receive exits on the MQI channel that starts when the application connects to a

queue manager. The application can use exits written in Java, C, or C++. The

application can also use a sequence of send or receive exits that are run in

succession.

 The SENDEXIT property of an MQConnectionFactory object specifies a send exit,

or a sequence of send exits, used by a connection. The value of the property is a

string that comprises one or more items separated by commas. Each item identifies

a send exit in one of the following ways:

v The name of a class that implements the WMQSendExit interface (for a send exit

written in Java)

v A string in the format libraryName(entryPointName) (for a send exit written in C

or C++)

You can set the SENDEXIT property by using the WebSphere MQ JMS

administration tool or WebSphere MQ Explorer. Alternatively, an application can

set the property by calling the setSendExit() method.

In a similar way, the RECEXIT property of an MQConnectionFactory object

specifies the receive exit, or sequence of receive exits, used by a connection, and

the SECEXIT property specifies the security exit used by a connection. You can set

these properties by using the WebSphere MQ JMS administration tool or

144 WebSphere MQ: Using Java

WebSphere MQ Explorer. Alternatively, an application can set the properties by

calling the setReceiveExit() and setSecurityExit() methods.

Channel exits are loaded by their own class loader. To find a channel exit, the class

loader searches the following locations in the specified order. The class loader

loads the first occurrence that it finds.

1. The class path specified by the property

com.ibm.mq.cfg.ClientExitPath.JavaExitsClasspath. You can set this property in

the WebSphere MQ client configuration file, in the WebSphere MQ classes for

JMS configuration file, or as a system property on the java command. The

value of this property is treated like a normal Java class path.

2. The class path specified by the property com.ibm.mq.exitClasspath. You can set

this property in the WebSphere MQ classes for JMS configuration file or as a

system property on the java command. The value of this property is treated

like a normal Java class path.

Note that this property is now deprecated.

3. The WebSphere MQ exits directory, as shown in Table 38. The class loader first

searches the directory for class files that are not packaged in Java archive (JAR)

files. If the channel exit is not found, the class loader then searches the JAR

files in the directory.

 Table 38. The WebSphere MQ exits directory

Platform Directory

AIX, HP-UX, Linux, and Solaris /var/mqm/exits (32-bit channel exits)

/var/mqm/exits64 (64-bit channel exits)

Windows install_data_dir\exits

Note: install_data_dir is the directory that you chose for the WebSphere MQ data files

during installation. The default directory is C:\Program Files\IBM\WebSphere MQ.

The parent of the class loader is the class loader that is used to load WebSphere

MQ classes for JMS. It is therefore possible for the parent class loader to load a

channel exit if it cannot be found in any of the preceding locations. However, in an

environment such as an application server, you are not likely to be able to

influence the choice of the parent class loader.

Your application must have the correct security permission to load a channel exit

class.

The MQSendExit, MQReceiveExit, and MQSecurityExit interfaces supplied with

versions of WebSphere MQ earlier than Version 7.0 are still supported. If you use

channel exits that implement these interfaces, com.ibm.mq.jar must be present in

the class path.

For information about how to write channel exits in C or C++, see WebSphere MQ

Intercommunication. You must store channel exit programs written in C or C++ in

the directory shown in Table 38.

If your application uses a client channel definition table to connect to a queue

manager, see “Using a client channel definition table” on page 146.

Specifying the user data to be passed to channel exits when using WebSphere

MQ classes for JMS:

Up to 32 characters of user data can be passed to a channel exit when it is called.

Chapter 2. WebSphere MQ classes for JMS 145

The SENDEXITINIT property of an MQConnectionFactory object specifies the user

data that is passed to each send exit when it is called. The value of the property is

a string that comprises one or more items of user data separated by commas. The

position of each item of user data within the string determines which send exit, in

a sequence of send exits, the user data is passed to. For example, the first item of

user data in the string is passed to the first send exit in a sequence of send exits.

You can set the SENDEXITINIT property by using the WebSphere MQ JMS

administration tool or WebSphere MQ Explorer. Alternatively, an application can

set the property by calling the setSendExitInit() method.

In a similar way, the RECEXITINIT property of a ConnectionFactory object

specifies the user data that is passed to each receive exit, and the SECEXITINIT

property specifies the user data passed to a security exit. You can set these

properties by using the WebSphere MQ JMS administration tool or WebSphere MQ

Explorer. Alternatively, an application can set the properties by calling the

setReceiveExitInit() and setSecurityExitInit() methods.

Note the following rules when specifying user data that is passed to channel exits:

v If the number of items of user data in a string is more than the number of exits

in a sequence, the excess items of user data are ignored.

v If the number of items of user data in a string is less than the number of exits in

a sequence, each unspecified item of user data is set to an empty string. Two

commas in succession within a string, or a comma at the beginning of a string,

also denotes an unspecified item of user data.

If an application uses a client channel definition table to connect to a queue

manager, any user data specified in a client connection channel definition is passed

to channel exits when they are called. For more information about using a client

channel definition table, see “Using a client channel definition table.”

Using a client channel definition table

As an alternative to creating a client connection channel definition by setting

certain properties of a ConnectionFactory object, a WebSphere MQ classes for JMS

application can use client connection channel definitions that are stored in a client

channel definition table. These definitions are created by WebSphere MQ Script

(MQSC) commands or WebSphere MQ Programmable Command Format (PCF)

commands. When the application creates a Connection object, WebSphere MQ

classes for JMS searches the client channel definition table for a suitable client

connection channel definition, and uses the channel definition to start an MQI

channel. For more information about client channel definition tables and how to

construct one, see WebSphere MQ Clients.

To use a client channel definition table, the CCDTURL property of a

ConnectionFactory object must be set to a URL object. The URL object encapsulates

a uniform resource locator (URL) that identifies the name and location of the file

containing the client channel definition table and specifies how the file can be

accessed. You can set the CCDTURL property by using the WebSphere MQ JMS

administration tool, or an application can set the property by creating a URL object

and calling the setCCDTURL() method of the ConnectionFactory object.

For example, if the file ccdt1.tab contains a client channel definition table and is

stored on the same system on which the application is running, the application can

set the CCDTURL property in the following way:

146 WebSphere MQ: Using Java

java.net.URL chanTab1 = new URL("file:///home/admdata/ccdt1.tab");

factory.setCCDTURL(chanTab1);

As another example, suppose the file ccdt2.tab contains a client channel definition

table and is stored on a system that is different to the one on which the application

is running. If the file can be accessed using the FTP protocol, the application can

set the CCDTURL property in the following way:

java.net.URL chanTab2 = new URL("ftp://ftp.server/admdata/ccdt2.tab");

factory.setCCDTURL(chanTab2);

In addition to setting the CCDTURL property of the ConnectionFactory object, the

QMANAGER property of the same object must be set to one of the following

values:

v The name of a queue manager

v An asterisk (*) followed by the name of a queue manager group

v An asterisk (*)

v An empty string, or a string containing all blank characters

These are the same values that can be used for the QMgrName parameter on an

MQCONN call issued by a client application that is using Message Queue Interface

(MQI). For more information about the meaning of these values therefore, see the

WebSphere MQ Application Programming Reference and WebSphere MQ Clients. You

can set the QMANAGER property by using the WebSphere MQ JMS

administration tool or WebSphere MQ Explorer. Alternatively, an application can

set the property by calling the setQueueManager() method of the

ConnectionFactory object.

If an application then creates a Connection object from the ConnectionFactory

object, WebSphere MQ classes for JMS accesses the client channel definition table

identified by the CCDTURL property, uses the QMANAGER property to search the

table for a suitable client connection channel definition, and then uses the channel

definition to start an MQI channel to a queue manager. The way that WebSphere

MQ classes for JMS uses the QMANAGER property to search the client channel

definition table is also as described in the WebSphere MQ Application Programming

Reference and WebSphere MQ Clients.

Note that the CCDTURL and CHANNEL properties of a ConnectionFactory object

cannot both be set when the application calls the createConnection() method. If

both properties are set, the method throws an exception. The CCDTURL or

CHANNEL property is considered to be set if its value is anything other than null,

an empty string, or a string containing all blank characters.

When WebSphere MQ classes for JMS finds a suitable client connection channel

definition in the client channel definition table, it uses only the information

extracted from the table to start an MQI channel. Any channel related properties of

the ConnectionFactory object are ignored.

In particular, note the following points if you are using Secure Sockets Layer (SSL):

v An MQI channel uses SSL only if the channel definition extracted from the client

channel definition table specifies the name of a CipherSpec supported by

WebSphere MQ classes for JMS.

v A client channel definition table also contains information about the location of

Lightweight Directory Access Protocol (LDAP) servers that hold certificate

revocation lists (CRLs). WebSphere MQ classes for JMS uses only this

information to access LDAP servers that hold CRLs.

Chapter 2. WebSphere MQ classes for JMS 147

For more information about using SSL with a client channel definition table, see

WebSphere MQ Clients.

Note also the following points if you are using channel exits:

v An MQI channel uses only the channel exits and associated user data specified

by the channel definition extracted from the client channel definition table.

v A channel definition extracted from a client channel definition table can specify

channel exits that are written in Java. This means, for example, that the SCYEXIT

parameter on the DEFINE CHANNEL command to create a client connection

channel definition can specify the name of a class that implements the

WMQSecurityExit interface. Similarly, the SENDEXIT parameter can specify the

name of a class that implements the WMQSendExit interface, and the RCVEXIT

parameter can specify the name of a class that implements the WMQReceiveExit

interface. For more information about how to write a channel exit in Java, see

“Using channel exits with WebSphere MQ classes for JMS” on page 142.

The use of channel exits written in a language other than Java is also supported.

For information about how to specify the SCYEXIT, SENDEXIT, and RCVEXIT

parameters on the DEFINE CHANNEL command for channel exits written in

another language, see the WebSphere MQ Script (MQSC) Command Reference.

Sharing a TCP/IP connection

Multiple instances of an MQI channel can be made to share a single TCP/IP

connection

If a channel is defined with the SHARECNV parameter set to a value greater than

1, then that number of conversations can share a channel instance. To enable a

connection factory to exploit this function, set SHARECONVALLOWED to YES. If

more than one suitable channel is defined in a client channel definition table

(CCDT), the AFFINITY and CLNTWGHT channel attributes influence which

channel definition is used. For more information about the SHARECNV parameter,

see the description of the DEFINE CHANNEL command in WebSphere MQ Script

(MQSC) Command Reference. For more information about AFFINITY and

CLNTWGHT, see the descripitons of channel attributes in WebSphere MQ

Intercommunication.

Specifying a range of ports for client connections

Use the LOCALADDRESS property to specify a range of ports that your

application can bind to.

When a WebSphere MQ classes for JMS application attempts to connect to a

WebSphere MQ queue manager in client mode, a firewall might allow only those

connections that originate from specified ports or a range of ports. In this situation,

you can use the LOCALADDRESS property of a ConnectionFactory,

QueueConnectionFactory, or TopicConnectionFactory object to specify a port, or a

range of ports, that the application can bind to.

You can set the LOCALADDRESS property by using the WebSphere MQ JMS

administration tool, or by calling the setLocalAddress() method in a JMS

application. Here is an example of setting the property from within an application:

mqConnectionFactory.setLocalAddress("9.20.0.1(2000,3000)");

When the application connects to a queue manager subsequently, the application

binds to a local IP address and port number in the range 9.20.0.1(2000) to

9.20.0.1(3000).

148 WebSphere MQ: Using Java

In a system with more than one network interface, you can also use the

LOCALADDRESS property to specify which network interface must be used for a

connection.

For a real-time connection to a broker, the LOCALADDRESS property is relevant

only when multicast is used. In this case, you can use the property to specify

which local network interface must be used for a connection, but the value of the

property must not contain a port number, or a range of port numbers.

Connection errors might occur if you restrict the range of ports. If an error occurs,

a JMSException is thrown with an embedded MQException that contains the

WebSphere MQ reason code MQRC_Q_MGR_NOT_AVAILABLE and the following

message:

Socket connection attempt refused due to LOCAL_ADDRESS_PROPERTY restrictions

An error might occur if all the ports in the specified range are in use, or if the

specified IP address, host name, or port number is not valid (a negative port

number, for example).

Because WebSphere MQ classes for JMS might create connections other than those

required by an application, always consider specifying a range of ports. In general,

every session created by an application requires one port and WebSphere MQ

classes for JMS might require three or four additional ports. If a connection error

does occur, increase the range of ports.

Connection pooling, which is used by default in WebSphere MQ classes for JMS,

might have an effect on the speed at which ports can be reused. As a result, a

connection error might occur while ports are being freed.

Channel compression

Compressing the data that flows on a WebSphere MQ channel can improve the

performance of the channel and reduce network traffic. Using function supplied

with WebSphere MQ, you can compress the data that flows on message channels

and MQI channels and, on either type of channel, you can compress header data

and message data independently of each other. By default, no data is compressed

on a channel. For a full description of channel compression, including how it is

implemented in WebSphere MQ, see WebSphere MQ Intercommunication, for

message channels, and WebSphere MQ Clients, for MQI channels.

A WebSphere MQ classes for JMS application specifies the techniques that can be

used for compressing header or message data on a connection by creating a

java.util.Collection object. Each compression technique is an Integer object in the

collection, and the order in which the application adds the compression techniques

to the collection is the order in which the compression techniques are negotiated

with the queue manager when the application creates the connection. The

application can then pass the collection to a ConnectionFactory object by calling

the setHdrCompList() method, for header data, or the setMsgCompList() method,

for message data. When the application is ready, it can create the connection.

The following code fragments illustrate the approach just described. The first code

fragment shows you how to implement header data compression:

Collection headerComp = new Vector();

headerComp.add(new Integer(JMSC.MQJMS_COMPHDR_SYSTEM));

.

.

.

Chapter 2. WebSphere MQ classes for JMS 149

((MQConnectionFactory) cf).setHdrCompList(headerComp);

.

.

.

connection = cf.createConnection();

The second code fragment shows you how to implement message data

compression:

Collection msgComp = new Vector();

msgComp.add(new Integer(JMSC.MQJMS_COMPMSG_RLE));

msgComp.add(new Integer(JMSC.MQJMS_COMPMSG_ZLIB_HIGH));

.

.

.

((MQConnectionFactory) cf).setMsgCompList(msgComp);

.

.

.

connection = cf.createConnection();

In the second example, the compression techniques are negotiated in the order

RLE, then ZLIB_HIGH, when the connection is created. The compression technique

that is selected cannot be changed during the lifetime of the Connection object.

Note that, to use compression on a connection, the setHdrCompList() and the

setMsgCompList() methods must be called before creating the Connection object.

Using read ahead with WebSphere MQ classes for JMS

A WebSphere MQ classes for JMS client can be configured to use read ahead. Read

ahead allows messages to be sent to a client before an application requests them.

Using read ahead can improve performance when browsing messages or

consuming non persistent messages from a client application. This performance

improvement is available to both MQI and JMS applications. Client applications

using MQGET or asynchronous consume will benefit from the performance

improvements when browsing messages or consuming non-persistent messages.

For general information about the read ahead facility, see the topic on improving

performance of non-persistent messages in WebSphere MQ Application Programming

Guide.

In WebSphere MQ classes for JMS, you use the READAHEADALLOWED property

of a Queue or Topic object to determine whether message consumers and queue

browsers are allowed to use read ahead on that object, and the

READAHEADCLOSEPOLICY to determine what happens to messages in the

internal read ahead buffer when the message consumer is closed.

XA support in WebSphere MQ classes for JMS

JMS supports XA-compliant transactions only within an application server

environment; you cannot use XA outside an application server. If you require XA

functionality, you must configure your application appropriately. Refer to your

application server’s own documentation for information about how to configure

applications to use distributed transactions.

Using a real-time connection to a broker of WebSphere Event

Broker or WebSphere Message Broker

A WebSphere MQ classes for JMS application can use a real-time connection to a

broker of WebSphere Event Broker or WebSphere Message Broker for

150 WebSphere MQ: Using Java

publish/subscribe messaging. Both the broker and WebSphere MQ classes for JMS

must be configured to enable a real-time connection.

When an application uses a real-time connection to a broker of WebSphere Event

Broker or WebSphere Message Broker, the application and the broker exchange

messages using WebSphere MQ Real-Time Transport. Depending on the

configuration, messages can also be delivered to the application using WebSphere

MQ Multicast Transport.

For information about how an application can connect to a WebSphere MQ queue

manager and use WebSphere MQ Enterprise Transport to exchange messages with

a broker of WebSphere Event Broker or WebSphere Message Broker, see the

documentation for previous releases of WebSphere MQ classes for JMS. Note that,

in order to use WebSphere MQ Enterprise Transport, an application must connect

to a queue manager using a connection factory running in WebSphere MQ

messaging provider migration mode.

Configuring a broker of WebSphere Event Broker or WebSphere

Message Broker for a real-time connection

For a WebSphere MQ classes for JMS application to use a real-time connection to a

broker of WebSphere Event Broker or WebSphere Message Broker, you must

configure the broker by creating and deploying a message flow to read messages

from the TCP/IP port on which the broker is listening and publish the messages.

Depending on your requirements, you might need to configure the broker in

additional ways.

To configure the broker, you must create and deploy one of the following message

flows:

v A message flow that contains a Real-timeOptimizedFlow message processing

node

v A message flow that contains a Real-timeInput message processing node and a

Publication message processing node

You must configure the Real-timeOptimizedFlow or Real-timeInput node to listen

on the TCP/IP port used for real-time connections. By default, the port number for

real-time connections is 1506.

You must also configure the broker if you have any of the following requirements:

v If you want the application to connect to the broker using Secure Sockets Layer

(SSL) authentication

v If you want the application to connect to the broker using HTTP tunnelling

v If you want messages to be delivered to a message consumer using multicast

For information about how to configure a broker, see the WebSphere Event Broker

Information Center or WebSphere Message Broker Information Center.

Configuring WebSphere MQ classes for JMS for a real-time

connection to a broker of WebSphere Event Broker or

WebSphere Message Broker

For a WebSphere MQ classes for JMS application to use a real-time connection to a

broker of WebSphere Event Broker or WebSphere Message Broker, WebSphere MQ

classes for JMS must be configured by setting certain properties of the connection

factory. Depending on your requirements, WebSphere MQ classes for JMS might

need to be configured in additional ways.

Chapter 2. WebSphere MQ classes for JMS 151

To configure WebSphere MQ classes for JMS, the following properties of the

connection factory must be set:

v The TRANSPORT property must be set to DIRECT.

However, for an application to connect using HTTP tunnelling, the TRANSPORT

property must be set to DIRECTHTTP instead. See “Using HTTP tunnelling” on

page 153.

v The HOSTNAME property must be set to the host name or IP address of the

system on which the broker is running.

v The PORT property must be set to the number of the port on which the broker

is listening for real-time connections.

An application can set these properties dynamically at run time by using the IBM

JMS extensions or the WebSphere MQ JMS extensions. Alternatively, if the

connection factory is an administered object, an administrator can set these

properties by using the WebSphere MQ JMS administration tool or WebSphere MQ

Explorer.

For information about properties, and the methods used by applications to set their

values, see “Properties of WebSphere MQ classes for JMS objects” on page 171. For

information about how to use the WebSphere MQ JMS administration tool, see

“Using the WebSphere MQ JMS administration tool” on page 163. For information

about how to use WebSphere MQ Explorer, see the help provided with WebSphere

MQ Explorer.

If you have any of the following requirements, WebSphere MQ classes for JMS

requires additional configuration:

v If you want an application to connect to the broker using Secure Sockets Layer

(SSL) authentication

v If you want an application to connect to the broker using HTTP tunnelling

v If you want an application to connect to the broker through a proxy server

v If you want messages to be delivered to a message consumer using multicast

The following sections describe how to configure WebSphere MQ classes for JMS

for each of these requirements.

Using Secure Sockets Layer (SSL) authentication

SSL authentication can be used on a real-time connection to a broker. Only

authentication is supported for this type of connection. You cannot use SSL to

encrypt and decrypt the message data that flows between the application and the

broker or to detect tampering of the data.

Note the difference between this situation and that when an application connects

to a queue manager in client mode. In the latter case, you can use the WebSphere

MQ SSL support to encrypt and decrypt the message data that flows between the

application and the queue manager and to detect tampering of the data, as well as

to provide authentication.

If you want to protect message data on a real-time connection to a broker, you can

use the function provided by the broker instead. You can assign a quality of

protection (QoP) value to each topic whose messages you want to protect. You can

therefore select a different level of message protection for each topic. For more

information about the message protection provided by a broker, see the WebSphere

Event Broker Information Center or WebSphere Message Broker Information Center.

152 WebSphere MQ: Using Java

To use SSL authentication on a real-time connection to a broker, the DIRECTAUTH

property of the connection factory must be set to CERTIFICATE.

If you want to use SSL for mutual authentication, the Authentication Protocol Type

property of the broker must specify the option R for symmetric SSL. If you want to

use SSL only for authenticating the broker, the Authentication Protocol Type

property of the broker must specify the option S for asymmetric SSL. But, in this

case, the application must connect to the broker by calling createConnection() with

a user ID and password as parameters, as in the following example:

factory.createConnection("user1", "user1pw");

The broker then uses the user ID and password, instead of SSL, to authenticate the

application. For more information about how to configure the broker for SSL

authentication, see the WebSphere Event Broker Information Center or WebSphere

Message Broker Information Center.

Notes:

1. The value of the DIRECTAUTH property determines whether SSL

authentication is used on a real-time connection to a broker, not the value of

the SSLCIPHERSUITE property.

2. When SSL authentication is used on a real-time connection to a broker, the

SSLPEERNAME and SSLCRL properties are used to perform the same checks

as those performed when an application connects to a queue manager in client

mode.

3. WebSphere MQ classes for JMS can use the same Java Secure Socket Extension

(JSSE) keystore and truststore configuration to provide the SSL support in

either of the following situations:

v When an application uses a real-time connection to a broker

v When an application connects to a queue manager in client mode

Using HTTP tunnelling

A WebSphere MQ classes for JMS application can connect to a broker using HTTP

tunnelling, which means that the application connects to the broker using the

HTTP protocol as though connecting to a Web site.

To use HTTP tunnelling on a real-time connection to a broker, the TRANSPORT

property of the connection factory must be set to DIRECTHTTP.

HTTP tunnelling cannot be used in conjunction with SSL authentication,

connecting through a proxy server, or delivering messages using multicast.

Connecting through a proxy server

A WebSphere MQ classes for JMS application can use a real-time connection to a

broker by connecting through a proxy server. WebSphere MQ classes for JMS

connects directly to the proxy server and uses the Internet protocol defined in RFC

2817 to ask the proxy server to forward the connection request to the broker.

To connect to a broker through a proxy server, the following properties of the

connection factory must be set:

v The PROXYHOSTNAME property must be set to the host name or IP address of

the system on which the proxy server is running.

Chapter 2. WebSphere MQ classes for JMS 153

v The PROXYPORT property must be set to the number of the port on which the

proxy server is listening.

If the PROXYHOSTNAME property is not set, or is set to the empty string,

WebSphere MQ classes for JMS attempts to connect directly to the broker using

only the HOSTNAME and PORT properties, and does not attempt to connect

through a proxy server.

Delivering messages using multicast

Using a real-time connection to a broker, messages can be delivered to a message

consumer using multicast.

To enable multicast, the MULTICAST property of the Topic object must be set to

the required multicast option. Alternatively, if the MULTICAST property of the

Topic object is set to ASCF, the MULTICAST property of the connection factory

must be set to the required multicast option.

WebSphere MQ classes for JMS supports both the Packet Transfer Layer (PTL) and

the Pragmatic General Multicast (PGM) multicast protocols, and includes support

for both implementations of the PGM protocol, PGM/IP and PGM UDP

encapsulated. However, PGM/IP support is available only on the following

platforms:

v AIX (32-bit only)

v HP-UX PA-RISC (32-bit only)

v Linux (x86 platform)

v Linux (zSeries platform, 32-bit only)

v Solaris SPARC (32-bit only)

v Windows (32-bit only)

v z/OS

WebSphere MQ classes for JMS Application Server Facilities

This topic describes how WebSphere MQ classes for JMS implements the

ConnectionConsumer class and advanced functionality in the Session class. It also

summarizes the function of a server session pool.

WebSphere MQ classes for JMS supports the Application Server Facilities (ASF)

that are specified in the Java Message Service Specification, Version 1.1 (see Sun’s Java

Web site at http://java.sun.com). This specification identifies three roles within this

programming model:

v The JMS provider supplies ConnectionConsumer and advanced Session

functionality.

v The application server supplies ServerSessionPool and ServerSession

functionality.

v The client application uses the functionality that the JMS provider and

application server supply.

The information in this topic does not apply if an application uses a real-time

connection to a broker.

154 WebSphere MQ: Using Java

http://java.sun.com

ConnectionConsumer

The JMS specification enables an application server to integrate closely with a JMS

implementation by using the ConnectionConsumer interface. This feature provides

concurrent processing of messages. Typically, an application server creates a pool

of threads, and the JMS implementation makes messages available to these threads.

A JMS-aware application server (such as WebSphere Application Server) can use

this feature to provide high-level messaging functionality, such as message driven

beans.

Normal applications do not use the ConnectionConsumer, but expert JMS clients

might use it. For such clients, the ConnectionConsumer provides a

high-performance method to deliver messages concurrently to a pool of threads.

When a message arrives on a queue or a topic, JMS selects a thread from the pool

and delivers a batch of messages to it. To do this, JMS runs an associated

MessageListener’s onMessage() method.

You can achieve the same effect by constructing multiple Session and

MessageConsumer objects, each with a registered MessageListener. However, the

ConnectionConsumer provides better performance, less use of resources, and

greater flexibility. In particular, fewer Session objects are required.

Planning an application

This topic tells you how to plan an application including:

v “General principles for point-to-point messaging”

v “General principles for publish/subscribe messaging” on page 156

v “Handling poison messages” on page 157

v “Removing messages from the queue” on page 158

General principles for point-to-point messaging

When an application creates a ConnectionConsumer from a QueueConnection

object, it specifies a JMS queue object and a selector string. The

ConnectionConsumer then begins to provide messages to sessions in the associated

ServerSessionPool. Messages arrive on the queue, and if they match the selector,

they are delivered to sessions in the associated ServerSessionPool.

In WebSphere MQ terms, the queue object refers to either a QLOCAL or a QALIAS

on the local queue manager. If it is a QALIAS, that QALIAS must refer to a

QLOCAL. The fully-resolved WebSphere MQ QLOCAL is known as the underlying

QLOCAL. A ConnectionConsumer is said to be active if it is not closed and its

parent QueueConnection is started.

It is possible for multiple ConnectionConsumers, each with different selectors, to

run against the same underlying QLOCAL. To maintain performance, unwanted

messages must not accumulate on the queue. Unwanted messages are those for

which no active ConnectionConsumer has a matching selector. You can set the

QueueConnectionFactory so that these unwanted messages are removed from the

queue (for details, see “Removing messages from the queue” on page 158). You can

set this behavior in one of two ways:

v Use the JMS administration tool to set the QueueConnectionFactory to

MRET(NO).

v In your program, use:

Chapter 2. WebSphere MQ classes for JMS 155

MQQueueConnectionFactory.setMessageRetention(JMSC.MQJMS_MRET_NO)

If you do not change this setting, the default is to retain such unwanted messages

on the queue.

When you set up the WebSphere MQ queue manager, consider the following

points:

v The underlying QLOCAL must be enabled for shared input. To do this, use the

following MQSC command:

ALTER QLOCAL(your.qlocal.name) SHARE GET(ENABLED)

v Your queue manager must have an enabled dead-letter queue. If a

ConnectionConsumer experiences a problem when it puts a message on the

dead-letter queue, message delivery from the underlying QLOCAL stops. To

define a dead-letter queue, use:

ALTER QMGR DEADQ(your.dead.letter.queue.name)

v The user that runs the ConnectionConsumer must have authority to perform

MQOPEN with MQOO_SAVE_ALL_CONTEXT and

MQOO_PASS_ALL_CONTEXT. For details, see the WebSphere MQ

documentation for your specific platform.

v If unwanted messages are left on the queue, they degrade the system

performance. Therefore, plan your message selectors so that between them, the

ConnectionConsumers will remove all messages from the queue.

For details about MQSC commands, see the WebSphere MQ Script (MQSC)

Command Reference.

General principles for publish/subscribe messaging

ConnectionConsumers receive messages for a specified Topic. A

ConnectionConsumer can be durable or non-durable. You must specify which

queue or queues the ConnectionConsumer uses.

When an application creates a ConnectionConsumer from a TopicConnection

object, it specifies a Topic object and a selector string. The ConnectionConsumer

then begins to receive messages that match the selector on that Topic, including

any retained publications for the topic subscribed to.

Alternatively, an application can create a durable ConnectionConsumer that is

associated with a specific name. This ConnectionConsumer receives messages that

have been published on the Topic since the durable ConnectionConsumer was last

active. It receives all such messages that match the selector on the Topic. However,

if the ConnectionConsumer is using read-ahead, it can lose nonpersistent messages

that are in the client buffer when it closes.

If WebSphere MQ classes for JMS is in WebSphere MQ messaging provider

migration mode, a separate queue is used for non-durable ConnectionConsumer

subscriptions. The CCSUB configurable option on the TopicConnectionFactory

specifies the queue to use. Normally, the CCSUB specifies a single queue for use

by all ConnectionConsumers that use the same TopicConnectionFactory. However,

it is possible to make each ConnectionConsumer generate a temporary queue by

specifying a queue name prefix followed by an asterisk (*).

If WebSphere MQ classes for JMS is in WebSphere MQ messaging provider

migration mode, the CCDSUB property of the Topic specifies the queue to use for

durable subscriptions. Again, this can be a queue that already exists or a queue

name prefix followed by an asterisk (*). If you specify a queue that already exists,

156 WebSphere MQ: Using Java

all durable ConnectionConsumers that subscribe to the Topic use this queue. If you

specify a queue name prefix followed by an asterisk (*), a queue is generated the

first time that a durable ConnectionConsumer is created with a given name. This

queue is reused later when a durable ConnectionConsumer is created with the

same name.

When you set up the WebSphere MQ queue manager, consider the following

points:

v Your queue manager must have an enabled dead-letter queue. If a

ConnectionConsumer experiences a problem when it puts a message on the

dead-letter queue, message delivery from the underlying QLOCAL stops. To

define a dead-letter queue, use:

ALTER QMGR DEADQ(your.dead.letter.queue.name)

v The user that runs the ConnectionConsumer must have authority to perform

MQOPEN with MQOO_SAVE_ALL_CONTEXT and

MQOO_PASS_ALL_CONTEXT. For details, see the WebSphere MQ

documentation for your platform.

v You can optimize performance for an individual ConnectionConsumer by

creating a separate, dedicated, queue for it. This is at the cost of extra resource

usage.

Handling poison messages

Sometimes, a badly-formatted message arrives on a queue. Such a message might

make the receiving application fail and back out the receipt of the message. In this

situation, such a message might be received, then returned to the queue,

repeatedly. These messages are known as poison messages. The

ConnectionConsumer must be able to detect poison messages and reroute them to

an alternative destination.

When an application uses ConnectionConsumers, the circumstances in which a

message is backed out depend on the session that the application server provides:

v When the session is non-transacted, with AUTO_ACKNOWLEDGE or

DUPS_OK_ACKNOWLEDGE, a message is backed out only after a system error,

or if the application terminates unexpectedly.

v When the session is non-transacted with CLIENT_ACKNOWLEDGE,

unacknowledged messages can be backed out by the application server calling

Session.recover().

Typically, the client implementation of MessageListener or the application server

calls Message.acknowledge(). Message.acknowledge() acknowledges all messages

delivered on the session so far.

v When the session is transacted, unacknowledged messages can be backed out by

the application server calling Session.rollback().

v If the application server supplies an XASession, messages are committed or

backed out depending on a distributed transaction. The application server takes

responsibility for completing the transaction.

The WebSphere MQ queue manager keeps a record of the number of times that

each message has been backed out. When this number reaches a configurable

threshold, the ConnectionConsumer requeues the message on a named requeue

queue. If this requeue fails for any reason, the message is removed from the queue

and either requeued to the dead-letter queue, or discarded. See “Removing

messages from the queue” on page 158 for more details.

Chapter 2. WebSphere MQ classes for JMS 157

The threshold and the name of the requeue queue are attributes of a WebSphere

MQ queue. The names of the attributes are BackoutThreshold and

BackoutRequeueQName. The queue they apply to is as follows:

v For point-to-point messaging, this is the underlying local queue.

v For publish/subscribe messaging in WebSphere MQ messaging provider normal

mode, it is the model queue from which the topic’s managed queue is created

v For publish/subscribe messaging in WebSphere MQ messaging provider

migration mode, it is the CCSUB queue defined on the TopicConnectionFactory,

or the CCDSUB queue defined on the Topic.

To set the BackoutThreshold and BackoutRequeueQName attributes, issue the

following MQSC command:

ALTER QLOCAL(your.queue.name) BOTHRESH(threshold) BOQUEUE(your.requeue.queue.name)

For publish/subscribe messaging, if your system creates a dynamic queue for each

subscription, these settings are obtained from the WebSphere MQ classes for JMS

model queue, SYSTEM.JMS.MODEL.QUEUE. To alter these settings, you can use:

ALTER QMODEL(SYSTEM.JMS.MODEL.QUEUE) BOTHRESH(threshold) BOQUEUE(your.requeue.queue.name)

If the threshold is zero, poison message handling is disabled, and poison messages

remain on the input queue. Otherwise, when the backout count reaches the

threshold, the message is sent to the named requeue queue. If the backout count

reaches the threshold, but the message cannot go to the requeue queue, the

message is sent to the dead-letter queue or discarded. This situation occurs if the

requeue queue is not defined, or if the ConnectionConsumer cannot send the

message to the requeue queue. See “Removing messages from the queue” for

further details.

The embedded JMS provider in WebSphere Application Server, Version 5.0 and

Version 5.1 handles poison messages in a way that is different to that just

described for WebSphere MQ classes for JMS. For information about how the

embedded JMS provider handles poison messages, see the relevant WebSphere

Application Server information center.

Removing messages from the queue

When an application uses ConnectionConsumers, JMS might need to remove

messages from the queue in a number of situations:

Badly formatted message

A message might arrive that JMS cannot parse.

Poison message

A message might reach the backout threshold, but the

ConnectionConsumer fails to requeue it on the backout queue.

No interested ConnectionConsumer

For point-to-point messaging, when the QueueConnectionFactory is set so

that it does not retain unwanted messages, a message arrives that is

unwanted by any of the ConnectionConsumers.

In these situations, the ConnectionConsumer attempts to remove the message from

the queue. The disposition options in the report field of the message’s MQMD set

the exact behavior. These options are:

MQRO_DEAD_LETTER_Q

The message is requeued to the queue manager’s dead-letter queue. This is

the default.

158 WebSphere MQ: Using Java

MQRO_DISCARD_MSG

The message is discarded.

The ConnectionConsumer also generates a report message, and this also depends

on the report field of the message’s MQMD. This message is sent to the message’s

ReplyToQ on the ReplyToQmgr. If there is an error while the report message is

being sent, the message is sent to the dead-letter queue instead. The exception

report options in the report field of the message’s MQMD set details of the report

message. These options are:

MQRO_EXCEPTION

A report message is generated that contains the MQMD of the original

message. It does not contain any message body data.

MQRO_EXCEPTION_WITH_DATA

A report message is generated that contains the MQMD, any MQ headers,

and 100 bytes of body data.

MQRO_EXCEPTION_WITH_FULL_DATA

A report message is generated that contains all data from the original

message.

default

No report message is generated.

When report messages are generated, the following options are honored:

v MQRO_NEW_MSG_ID

v MQRO_PASS_MSG_ID

v MQRO_COPY_MSG_ID_TO_CORREL_ID

v MQRO_PASS_CORREL_ID

If a ConnectionConsumer cannot follow the disposition options or exception report

options in the message’s MQMD, its action depends on the persistence of the

message. If the message is non-persistent, the message is discarded and no report

message is generated. If the message is persistent, delivery of all messages from

the QLOCAL stops.

It is important to define a dead-letter queue, and to check it regularly to ensure

that no problems occur. Particularly, ensure that the dead-letter queue does not

reach its maximum depth, and that its maximum message size is large enough for

all messages.

When a message is requeued to the dead-letter queue, it is preceded by a

WebSphere MQ dead-letter header (MQDLH). See the WebSphere MQ Application

Programming Reference for details about the format of the MQDLH. You can

identify messages that a ConnectionConsumer has placed on the dead-letter queue,

or report messages that a ConnectionConsumer has generated, by the following

fields:

v PutApplType is MQAT_JAVA (0x1C)

v PutApplName is “MQ JMS ConnectionConsumer”

These fields are in the MQDLH of messages on the dead-letter queue, and the

MQMD of report messages. The feedback field of the MQMD, and the Reason field

of the MQDLH, contain a code describing the error. For details about these codes,

see “Error handling” on page 160. Other fields are as described in the WebSphere

MQ Application Programming Reference.

Chapter 2. WebSphere MQ classes for JMS 159

Error handling

This section covers various aspects of error handling, including “Recovering from

error conditions” and “Reason and feedback codes.”

Recovering from error conditions

If a ConnectionConsumer experiences a serious error, message delivery to all

ConnectionConsumers with an interest in the same QLOCAL stops. Typically, this

occurs if the ConnectionConsumer cannot requeue a message to the dead-letter

queue, or it experiences an error when reading messages from the QLOCAL.

When this occurs, any ExceptionListener that is registered with the affected

Connection is notified.

You can use these to identify the cause of the problem. In some cases, the system

administrator must intervene to resolve the problem.

There are two ways in which an application can recover from these error

conditions:

v Call close() on all affected ConnectionConsumers. The application can create

new ConnectionConsumers only after all affected ConnectionConsumers are

closed and any system problems are resolved.

v Call stop() on all affected Connections. Once all Connections are stopped and

any system problems are resolved, the application should be able to start() all

Connections successfully.

Reason and feedback codes

To determine the cause of an error, you can use:

v The feedback code in any report messages

v The reason code in the MQDLH of any messages in the dead-letter queue

ConnectionConsumers generate the following reason codes.

MQRC_BACKOUT_THRESHOLD_REACHED (0x93A; 2362)

Cause The message has reached the Backout Threshold defined on the

QLOCAL, but no Backout Queue is defined.

 On platforms where you cannot define the Backout Queue, the

message has reached the JMS-defined backout threshold of 20.

Action

If this is not wanted, define the Backout Queue for the relevant

QLOCAL. Also look for the cause of the multiple backouts.

MQRC_MSG_NOT_MATCHED (0x93B; 2363)

Cause In point-to-point messaging, there is a message that does not

match any of the selectors for the ConnectionConsumers

monitoring the queue. To maintain performance, the message is

requeued to the dead-letter queue.

Action

To avoid this situation, ensure that ConnectionConsumers using

the queue provide a set of selectors that deal with all messages, or

set the QueueConnectionFactory to retain messages.

160 WebSphere MQ: Using Java

Alternatively, investigate the source of the message.

MQRC_JMS_FORMAT_ERROR (0x93C; 2364)

Cause JMS cannot interpret the message on the queue.

Action

Investigate the origin of the message. JMS usually delivers

messages of an unexpected format as a BytesMessage or

TextMessage. Occasionally, this fails if the message is very badly

formatted.

 Other codes that appear in these fields are caused by a failed attempt to requeue

the message to a Backout Queue. In this situation, the code describes the reason

that the requeue failed. To diagnose the cause of these errors, refer to the

WebSphere MQ Application Programming Reference.

If the report message cannot be put on the ReplyToQ, it is put on the dead-letter

queue. In this situation, the feedback field of the MQMD is filled in as described

above. The reason field in the MQDLH explains why the report message could not

be placed on the ReplyToQ.

The function of a server session pool

This topic summarizes the function of a server session pool.

Figure 9 on page 162 summarizes the principles of ServerSessionPool and

ServerSession functionality.

Chapter 2. WebSphere MQ classes for JMS 161

1. The ConnectionConsumers get message references from the queue.

2. Each ConnectionConsumer selects specific message references.

3. The ConnectionConsumer buffer holds the selected message references.

4. The ConnectionConsumer requests one or more ServerSessions from the

ServerSessionPool.

5. ServerSessions are allocated from the ServerSessionPool.

6. The ConnectionConsumer assigns message references to the ServerSessions and

starts the ServerSession threads running.

7. Each ServerSession retrieves its referenced messages from the queue. It passes

them to the onMessage method from the MessageListener that is associated with

the JMS Session.

8. After it completes its processing, the ServerSession is returned to the pool.

A B C D E

ConnectionConsumer

A B C D E

ConnectionConsumer

A B C D E

ConnectionConsumer

A B C D E F G

Message queue

1

2

3

4

A B SSt

JMS Session

C D E SSu

JMS Session

ServerSessionPool

SSa

Server sessions

5

5

8

8

7

6

Figure 9. ServerSessionPool and ServerSession functionality

162 WebSphere MQ: Using Java

An application server normally supplies ServerSessionPool and ServerSession

functionality.

Using the WebSphere MQ JMS administration tool

The administration tool enables administrators to define the properties of eight

types of WebSphere MQ classes for JMS object and to store them within a JNDI

namespace. Applications can then use JNDI to retrieve these administered objects

from the namespace.

The WebSphere MQ classes JMS objects that you can administer by using the tool

are:

v MQConnectionFactory

v MQQueueConnectionFactory

v MQTopicConnectionFactory

v MQQueue

v MQTopic

v MQXAConnectionFactory

v MQXAQueueConnectionFactory

v MQXATopicConnectionFactory

For details about these objects, refer to “Administering JMS objects” on page 167.

The tool also allows administrators to manipulate directory namespace subcontexts

within the JNDI. See “Manipulating subcontexts” on page 167.

You can also create and configure JMS administered objects with the WebSphere

MQ Explorer.

Invoking the administration tool

The administration tool has a command line interface. You can use this

interactively, or use it to start a batch process. The interactive mode provides a

command prompt where you can enter administration commands. In the batch

mode, the command to start the tool includes the name of a file that contains an

administration command script.

To start the tool in interactive mode, enter the command:

JMSAdmin [-t] [-v] [-cfg config_filename]

where:

-t Enables trace (default is trace off)

-v Produces verbose output (default is terse output)

-cfg config_filename

Names an alternative configuration file (see “Configuration” on page 164)

A command prompt is displayed, which indicates that the tool is ready to accept

administration commands. This prompt initially appears as:

InitCtx>

indicating that the current context (that is, the JNDI context to which all naming

and directory operations currently refer) is the initial context defined in the

PROVIDER_URL configuration parameter (see “Configuration” on page 164).

Chapter 2. WebSphere MQ classes for JMS 163

As you traverse the directory namespace, the prompt changes to reflect this, so

that the prompt always displays the current context.

To start the tool in batch mode, enter the command:

JMSAdmin <test.scp

where test.scp is a script file that contains administration commands (see

“Administration commands” on page 166). The last command in the file must be

the END command.

Configuration

Configure the administration tool with values for the following properties:

INITIAL_CONTEXT_FACTORY

The service provider that the tool uses. The supported values for this

property are as follows:

v com.sun.jndi.ldap.LdapCtxFactory (for LDAP)

v com.sun.jndi.fscontext.RefFSContextFactory (for file system context)

On z/OS, com.ibm.jndi.LDAPCtxFactory is also supported and provides

access to an LDAP server. However, this is incompatible with

com.sun.jndi.ldap.LdapCtxFactory, in that objects created using one

InitialContextFactory cannot be read or modified using the other.

You can also use an InitialContextFactory that is not in the list above. See

“Using an unlisted InitialContextFactory” on page 165 for more details.

PROVIDER_URL

The URL of the session’s initial context; the root of all JNDI operations

carried out by the tool. Two forms of this property are supported:

v ldap://hostname/contextname

v file:[drive:]/pathname

SECURITY_AUTHENTICATION

Whether JNDI passes security credentials to your service provider. This

property is used only when an LDAP service provider is used. This

property can take one of three values:

v none (anonymous authentication)

v simple (simple authentication)

v CRAM-MD5 (CRAM-MD5 authentication mechanism)

If a valid value is not supplied, the property defaults to none. See

“Security” on page 165 for more details about security with the

administration tool.

These properties are set in a configuration file. When you invoke the tool, you can

specify this configuration by using the -cfg command-line parameter, as described

in “Invoking the administration tool” on page 163. If you do not specify a

configuration file name, the tool attempts to load the default configuration file

(JMSAdmin.config). It looks for this file first in the current directory, and then in the

<MQ_JAVA_INSTALL_PATH>/bin directory, where <MQ_JAVA_INSTALL_PATH> is the path

to your WebSphere MQ classes for JMS installation.

The configuration file is a plain-text file that consists of a set of key-value pairs,

separated by =. This is shown in the following example:

164 WebSphere MQ: Using Java

#Set the service provider

 INITIAL_CONTEXT_FACTORY=com.sun.jndi.ldap.LdapCtxFactory

#Set the initial context

 PROVIDER_URL=ldap://polaris/o=ibm_us,c=us

#Set the authentication type

 SECURITY_AUTHENTICATION=none

(A # in the first column of the line indicates a comment, or a line that is not used.)

The installation comes with a sample configuration file that is called

JMSAdmin.config, and is found in the <MQ_JAVA_INSTALL_PATH>/bin directory. Edit

this file to suit the setup of your system.

Using an unlisted InitialContextFactory

You can use the administration tool to connect to JNDI contexts other than those

listed in “Configuration” on page 164 by using three parameters defined in the

JMSAdmin configuration file.

To use a different InitialContextFactory:

1. Set the INITIAL_CONTEXT_FACTORY property to the required class name.

2. Define the behavior of the InitialContextFactory using the

USE_INITIAL_DIR_CONTEXT, NAME_PREFIX and

NAME_READABILITY_MARKER properties.

The settings for these properties are described in the sample configuration file

comments.

You do not need to define the three properties listed here, if you use one of the

supported INITIAL_CONTEXT_FACTORY values. However, you can give them

values to override the system defaults. If you omit one or more of the three

InitialContextFactory properties, the administration tool provides suitable defaults

based on the values of the other properties.

Security

You need to understand the effect of the SECURITY_AUTHENTICATION property

described in “Configuration” on page 164.

v If you set this parameter to none, JNDI does not pass any security credentials to

the service provider, and anonymous authentication is performed.

v If you set the parameter to either simple or CRAM-MD5, security credentials are

passed through JNDI to the underlying service provider. These security

credentials are in the form of a user distinguished name (User DN) and

password.

If security credentials are required, you are prompted for these when the tool

initializes. Avoid this by setting the PROVIDER_USERDN and

PROVIDER_PASSWORD properties in the JMSAdmin configuration file.

Note: If you do not use these properties, the text typed, including the password, is

echoed to the screen. This may have security implications.

The tool does no authentication itself; the task is delegated to the LDAP server.

The LDAP server administrator must set up and maintain access privileges to

different parts of the directory. If authentication fails, the tool displays an

appropriate error message and terminates.

Chapter 2. WebSphere MQ classes for JMS 165

More detailed information about security and JNDI is in the documentation at

Sun’s Java web site (http://java.sun.com).

Administration commands

When the command prompt is displayed, the tool is ready to accept commands.

Administration commands are generally of the following form:

verb [param]*

where verb is one of the administration verbs listed in Table 39. All valid

commands consist of at least one (and only one) verb, which appears at the

beginning of the command in either its standard or short form.

The parameters a verb can take depend on the verb. For example, the END verb

cannot take any parameters, but the DEFINE verb can take any number of

parameters. Details of the verbs that take at least one parameter are discussed in

later sections of this chapter.

 Table 39. Administration verbs

Verb Short form Description

ALTER ALT Change at least one of the properties of a given

administered object

DEFINE DEF Create and store an administered object, or create a new

subcontext

DISPLAY DIS Display the properties of one or more stored administered

objects, or the contents of the current context

DELETE DEL Remove one or more administered objects from the

namespace, or remove an empty subcontext

CHANGE CHG Alter the current context, allowing the user to traverse the

directory namespace anywhere below the initial context

(pending security clearance)

COPY CP Make a copy of a stored administered object, storing it

under an alternative name

MOVE MV Alter the name under which an administered object is

stored

END Close the administration tool

Verb names are not case-sensitive.

Usually, to terminate commands, you press the carriage return key. However, you

can override this by typing the + symbol directly before the carriage return. This

enables you to enter multiline commands, as shown in the following example:

DEFINE Q(BookingsInputQueue) +

 QMGR(QM.POLARIS.TEST) +

 QUEUE(BOOKINGS.INPUT.QUEUE) +

 PORT(1415) +

 CCSID(437)

Lines beginning with one of the characters *, #, or / are treated as comments, or

lines that are ignored.

166 WebSphere MQ: Using Java

Manipulating subcontexts

Use the verbs CHANGE, DEFINE, DISPLAY and DELETE to manipulate directory

namespace subcontexts. Their use is described in Table 40.

 Table 40. Syntax and description of commands used to manipulate subcontexts

Command syntax Description

DEFINE CTX(ctxName) Attempts to create a new child subcontext of the current

context, having the name ctxName. Fails if there is a

security violation, if the subcontext already exists, or if the

name supplied is not valid.

DISPLAY CTX Displays the contents of the current context. Administered

objects are annotated with a, subcontexts with [D]. The Java

type of each object is also displayed.

DELETE CTX(ctxName) Attempts to delete the current context’s child context

having the name ctxName. Fails if the context is not found,

is non-empty, or if there is a security violation.

CHANGE CTX(ctxName) Alters the current context, so that it now refers to the child

context having the name ctxName. One of two special

values of ctxName can be supplied:

=UP moves to the current context’s parent

=INIT moves directly to the initial context

Fails if the specified context does not exist, or if there is a

security violation.

Administering JMS objects

This section describes the eight types of object that the administration tool can

handle. It includes details about each of their configurable properties and the verbs

that can manipulate them.

You can also create and configure JMS administered objects with the WebSphere

MQ Explorer.

Object types

Table 41 shows the eight types of administered objects. The Keyword column

shows the strings that you can substitute for TYPE in the commands shown in

Table 42 on page 168.

 Table 41. The JMS object types that are handled by the administration tool

Object Type Keyword Description

MQConnectionFactory CF The WebSphere MQ implementation

of the JMS ConnectionFactory

interface. This represents a factory

object for creating connections in the

both the point-to-point and

publish/subscribe domains.

MQQueueConnectionFactory QCF The WebSphere MQ implementation

of the JMS QueueConnectionFactory

interface. This represents a factory

object for creating connections in the

point-to-point domain.

Chapter 2. WebSphere MQ classes for JMS 167

Table 41. The JMS object types that are handled by the administration tool (continued)

Object Type Keyword Description

MQTopicConnectionFactory TCF The WebSphere MQ implementation

of the JMS TopicConnectionFactory

interface. This represents a factory

object for creating connections in the

publish/subscribe domain.

MQQueue Q The WebSphere MQ implementation

of the JMS Queue interface. This

represents a destination for messages

in the point-to-point domain.

MQTopic T The WebSphere MQ implementation

of the JMS Topic interface. This

represents a destination for messages

in the publish/subscribe domain.

MQXAConnectionFactory1 XACF The WebSphere MQ implementation

of the JMS XAConnectionFactory

interface. This represents a factory

object for creating connections in both

the point-to-point and

publish/subscribe domains, and

where the connections use the XA

versions of JMS classes.

MQXAQueueConnectionFactory1 XAQCF The WebSphere MQ implementation

of the JMS

XAQueueConnectionFactory interface.

This represents a factory object for

creating connections in the

point-to-point domain that use the XA

versions of JMS classes.

MQXATopicConnectionFactory1 XATCF The WebSphere MQ implementation

of the JMS XATopicConnectionFactory

interface. This represents a factory

object for creating connections in the

publish/subscribe domain that use

the XA versions of JMS classes.

Note:

1. These classes are provided for use by vendors of application servers. They are unlikely

to be directly useful to application programmers.

Verbs used with JMS objects

You can use the verbs ALTER, DEFINE, DISPLAY, DELETE, COPY, and MOVE to manipulate

administered objects in the directory namespace. Table 42 summarizes their use.

Substitute TYPE with the keyword that represents the required administered object,

as listed in Table 41 on page 167.

 Table 42. Syntax and description of commands used to manipulate administered objects

Command syntax Description

ALTER TYPE(name) [property]* Attempts to update the given administered object’s

properties with the ones supplied. Fails if there is a

security violation, if the specified object cannot be

found, or if the new properties supplied are not

valid.

168 WebSphere MQ: Using Java

Table 42. Syntax and description of commands used to manipulate administered

objects (continued)

Command syntax Description

DEFINE TYPE(name) [property]* Attempts to create an administered object of type

TYPE with the supplied properties, and store it under

the name name in the current context. Fails if there is

a security violation, if the supplied name is not valid

or already exists, or if the properties supplied are not

valid.

DISPLAY TYPE(name) Displays the properties of the administered object of

type TYPE, bound under the name name in the current

context. Fails if the object does not exist, or if there is

a security violation.

DELETE TYPE(name) Attempts to remove the administered object of type

TYPE, having the name name, from the current context.

Fails if the object does not exist, or if there is a

security violation.

 COPY TYPE(nameA)

TYPE(nameB)

Makes a copy of the administered object of type TYPE,

having the name nameA, naming the copy nameB. This

all occurs within the scope of the current context.

Fails if the object to be copied does not exist, if an

object of name nameB already exists, or if there is a

security violation.

MOVE TYPE(nameA)

TYPE(nameB)

Moves (renames) the administered object of type

TYPE, having the name nameA, to nameB. This all occurs

within the scope of the current context. Fails if the

object to be moved does not exist, if an object of

name nameB already exists, or if there is a security

violation.

Creating objects

Objects are created and stored in a JNDI namespace using the following command

syntax:

DEFINE TYPE(name) [property]*

That is, the DEFINE verb, followed by a TYPE(name) administered object reference,

followed by zero or more properties (see “Properties of WebSphere MQ classes for

JMS objects” on page 171).

LDAP naming considerations:

 To store your objects in an LDAP environment, you must give them names that

comply with certain conventions. One of these is that object and subcontext names

must include a prefix, such as cn= (common name), or ou= (organizational unit).

The administration tool simplifies the use of LDAP service providers by allowing

you to refer to object and context names without a prefix. If you do not supply a

prefix, the tool automatically adds a default prefix to the name you supply. For

LDAP this is cn=.

You can change the default prefix by setting the NAME_PREFIX property in the

JMSAdmin configuration file, as described in “Using an unlisted

InitialContextFactory” on page 165.

Chapter 2. WebSphere MQ classes for JMS 169

This is shown in the following example.

InitCtx> DEFINE Q(testQueue)

InitCtx> DISPLAY CTX

 Contents of InitCtx

 a cn=testQueue com.ibm.mq.jms.MQQueue

 1 Object(s)

 0 Context(s)

 1 Binding(s), 1 Administered

Note that, although the object name supplied (testQueue) does not have a prefix,

the tool automatically adds one to ensure compliance with the LDAP naming

convention. Likewise, submitting the command DISPLAY Q(testQueue) also causes

this prefix to be added.

You might need to configure your LDAP server to store Java objects. For

information to assist with this configuration, see the documentation for your LDAP

server.

Sample error conditions

The following are examples of the error conditions that might arise when creating

an object:

CipherSpec mapped to CipherSuite

InitCtx/cn=Trash> DEFINE QCF(testQCF) SSLCIPHERSUITE(RC4_MD5_US)

 WARNING: Converting CipherSpec RC4_MD5_US to

 CipherSuite SSL_RSA_WITH_RC4_128_MD5

Invalid property for object

InitCtx/cn=Trash> DEFINE QCF(testQCF) PRIORITY(4)

 Unable to create a valid object, please check the parameters supplied

 Invalid property for a QCF: PRI

Invalid type for property value

InitCtx/cn=Trash> DEFINE QCF(testQCF) CCSID(english)

 Unable to create a valid object, please check the parameters supplied

 Invalid value for CCS property: English

Property clash - client/bindings

InitCtx/cn=Trash> DEFINE QCF(testQCF) HOSTNAME(polaris.hursley.ibm.com)

 Unable to create a valid object, please check the parameters supplied

 Invalid property in this context: Client-bindings attribute clash

Property clash - Exit initialization

InitCtx/cn=Trash> DEFINE QCF(testQCF) SECEXITINIT(initStr)

 Unable to create a valid object, please check the parameters supplied

 Invalid property in this context: ExitInit string supplied

 without Exit string

Property value outside valid range

InitCtx/cn=Trash> DEFINE Q(testQ) PRIORITY(12)

 Unable to create a valid object, please check the parameters supplied

 Invalid value for PRI property: 12

Unknown property

InitCtx/cn=Trash> DEFINE QCF(testQCF) PIZZA(ham and mushroom)

 Unable to create a valid object, please check the parameters supplied

 Unknown property: PIZZA

170 WebSphere MQ: Using Java

The following are examples of error conditions that might arise on Windows when

looking up JNDI administered objects from a JMS application.

1. If you are using the WebSphere JNDI provider,

com.ibm.websphere.naming.WsnInitialContextFactory, you must use a forward

slash (/) to access administered objects defined in sub-contexts; for example,

jms/MyQueueName. If you use a backslash (\), an InvalidNameException is

thrown.

2. If you are using the Sun JNDI provider,

com.sun.jndi.fscontext.RefFSContextFactory, you must use a backslash (\) to

access administered objects defined in sub-contexts; for example, ctx1\\fred. If

you use a forward slash (/), a NameNotFoundException is thrown.

Using WebSphere MQ Explorer for JMS configuration

Use the WebSphere MQ Explorer graphical user interface to create JMS objects

from WebSphere MQ objects, and WebSphere MQ objects from JMS objects, as well

as for administering and monitoring other WebSphere MQ objects.

Before you create and configure JMS administered objects with the WebSphere MQ

Explorer, add an initial context to define the root of the JNDI namespace in which

the JMS objects are stored in the naming and directory service. For more

information, refer to the WebSphere MQ Explorer user assistance for JMS

administered objects.

You can perform the following tasks with the WebSphere MQ Explorer, either

contextually from an existing object in the WebSphere MQ Explorer, or from within

a create new object wizard. Refer to the WebSphere MQ Explorer help for

examples of the WebSphere MQ Explorer user assistance for some typical tasks.

v Create a JMS Connection Factory from any of the following WebSphere MQ

objects:

1. A WebSphere MQ queue manager, whether on your local computer or on a

remote system.

2. A WebSphere MQ channel

3. A WebSphere MQ listener
v Add a WebSphere MQ queue manager to WebSphere MQ Explorer using a JMS

Connection Factory

v Create a JMS queue from a WebSphere MQ queue

v Create a WebSphere MQ queue from a JMS queue

v Create a JMS topic from a WebSphere MQ topic, which can be a WebSphere MQ

object or a dynamic topic

v Create a WebSphere MQ topic from a JMS topic

Properties of WebSphere MQ classes for JMS objects

All objects in WebSphere MQ classes for JMS have properties. Different properties

apply to different object types. Different properties have different allowable values,

and symbolic property values differ between the administration tool and program

code.

WebSphere MQ classes for JMS provides facilities to set and query the properties

of objects using the WebSphere MQ JMS administration tool, WebSphere MQ

Explorer, or in an application. Many of the properties are relevant only to a

specific subset of the object types.

Chapter 2. WebSphere MQ classes for JMS 171

Table 43 gives a brief description of each property and shows the valid property

values for each property used in the administration tool.

Table 44 on page 186 gives a brief description of each property and shows for each

property which object types it applies to. The object types are identified using

keywords; see “Object types” on page 167 for an explanation of these.

A property consists of a name-value pair in the format:

PROPERTY_NAME(property_value)

Table 45 on page 189 lists the name of each property, and the set method that is

used to set the value of the property in an application. This table also shows the

valid property values for each property and the mapping between symbolic

property values used in the tool and their programmable equivalents.

Property names are not case-sensitive, and are restricted to the set of recognized

names shown in these tables.

Numbers refer to notes at the end of each table. See also “Property dependencies”

on page 203.

 Table 43. Property names, descriptions and values

Property Description Valid values in administration tool (defaults in

bold)

ASYNCEXCEPTION This property determines

whether WebSphere MQ

classes for JMS informs an

ExceptionListener only

when a connection is

broken, or when any

exception occurs

asynchronously to a JMS

API call. This applies to all

Connections created from

this ConnectionFactory that

have an ExceptionListener

registered.

v ASYNC_EXCEPTIONS_ALL

Any exception detected asynchronously, outside

the scope of a synchronous API call, and all

connection broken exceptions are sent to the

ExceptionListener.

v ASYNC_EXCEPTIONS_CONNECTIONBROKEN

Only exceptions indicating a broken connection are

sent to the ExceptionListener. Any other exceptions

occurring during asynchronous processing are not

reported to the ExceptionListener, and hence the

application is not informed of these exceptions.

BROKERCCDURSUBQ1 The name of the queue

from which durable

subscription messages are

retrieved for a

ConnectionConsumer

v SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

v Any valid string.

BROKERCCSUBQ1 The name of the queue

from which non-durable

subscription messages are

retrieved for a

ConnectionConsumer

v SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

v Any valid string.

BROKERCONQ1 Broker’s control queue

name

v SYSTEM.BROKER.CONTROL.QUEUE

v Any string

BROKERDURSUBQ1 The name of the queue

from which durable

subscription messages are

retrieved

v SYSTEM.JMS.D.SUBSCRIBER.QUEUE

v Any valid string.

BROKERPUBQ1 The name of the queue

where published messages

are sent (the stream queue)

v SYSTEM.BROKER.DEFAULT.STREAM

v Any string

172 WebSphere MQ: Using Java

Table 43. Property names, descriptions and values (continued)

Property Description Valid values in administration tool (defaults in

bold)

BROKERPUBQMGR1 The name of the queue

manager that owns the

queue where messages

published on the topic are

sent

v null

v Any string

BROKERQMGR1 The name of the queue

manager on which the

broker is running

v null

v Any string

BROKERSUBQ1 The name of the queue

from which non-durable

subscription messages are

retrieved

v SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

v Any valid string.

BROKERVER1 The version of the broker

being used

v unspecified - After the broker has been migrated

from V6 to V7, set this property so that RFH2

headers are no longer used. After migration this

property is no longer relevant.

v V1 - To use a WebSphere MQ Publish/Subscribe

broker, or to use a broker of WebSphere MQ

Integrator, WebSphere MQ Event Broker,

WebSphere Business Integration Event Broker, or

WebSphere Business Integration Message Broker in

compatibility mode. This is the default value if

TRANSPORT is set to BIND or CLIENT.

v V2 - To use a broker of WebSphere MQ Integrator,

WebSphere MQ Event Broker, WebSphere Business

Integration Event Broker, or WebSphere Business

Integration Message Broker in native mode. This is

the default value if TRANSPORT is set to DIRECT

or DIRECTHTTP.

CCDTURL2 A uniform resource locator

(URL) that identifies the

name and location of the

file containing the client

channel definition table and

specifies how the file can be

accessed

v null

v A uniform resource locator (URL)

CCSID The coded character set ID

to be used for a connection

or destination

v 819 - This is the default for a connection factory.

v 1208 - This is the default for a destination.

v Any positive integer

CHANNEL2 The name of the client

connection channel being

used

v SYSTEM.DEF.SVRCONN

v Any string

CLEANUP1 Cleanup Level for BROKER

or MIGRATE Subscription

Stores

v SAFE - use safe cleanup

v ASPROP - use safe, strong, or no cleanup

according to a property set on the Java command

line

v NONE - use no cleanup

v STRONG - use strong cleanup

CLEANUPINT1 The interval, in

milliseconds, between

background executions of

the publish/subscribe

cleanup utility

v 3600000

v Any positive integer

Chapter 2. WebSphere MQ classes for JMS 173

Table 43. Property names, descriptions and values (continued)

Property Description Valid values in administration tool (defaults in

bold)

CLIENTID The client identifier for a

connection

v null

v Any string

CLONESUPP Whether two or more

instances of the same

durable topic subscriber can

run simultaneously

v DISABLED - Only one instance of a durable topic

subscriber can run at a time.

v ENABLED3 - Two or more instances of the same

durable topic subscriber can run simultaneously,

but each instance must run in a separate Java

virtual machine (JVM).

COMPHDR A list of the techniques that

can be used for

compressing header data on

a connection

v NONE

v SYSTEM - RLE message header compression is

performed

COMPMSG A list of the techniques that

can be used for

compressing message data

on a connection

v NONE

v A list of one or more of the following values

separated by blank characters:

 RLE

 ZLIBFAST

 ZLIBHIGH

CONNOPT Options that control how

the application connects to

the queue manager

v STANDARD - The nature of the binding between

the application and the queue manager depends on

the platform on which the queue manager is

running and how the queue manager is configured.

v SHARED - The application and the local queue

manager agent run in separate units of execution

but share some resources.

v ISOLATED - The application and the local queue

manager agent run in separate units of execution

and share no resources.

v FASTPATH - The application and the local queue

manager agent run in the same unit of execution.

v SERIALQM - The application requests exclusive

use of the connection tag within the scope of the

queue manager.

v SERIALQSG - The application requests exclusive

use of the connection tag within the scope of the

queue sharing group to which the queue manager

belongs.

v RESTRICTQM - The application requests shared

use of the connection tag, but there are restrictions

on the shared use of the connection tag within the

scope of the queue manager.

v RESTRICTQSG - The application requests shared

use of the connection tag, but there are restrictions

on the shared use of the connection tag within the

scope of the queue sharing group to which the

queue manager belongs.

CONNTAG A tag that the queue

manager associates with the

resources updated by the

application within a unit of

work while the application

is connected to the queue

manager

v A byte array of 128 elements, where each element

is 0

v Any string. The value is truncated if it is longer

than 128 bytes.

174 WebSphere MQ: Using Java

Table 43. Property names, descriptions and values (continued)

Property Description Valid values in administration tool (defaults in

bold)

DESCRIPTION A description of the stored

object

v null

v Any string

DIRECTAUTH Whether SSL authentication

is used on a real-time

connection to a broker4

v BASIC - No authentication, username

authentication, or password authentication

v CERTIFICATE - Public key certificate

authentication

ENCODING How numerical data in the

body of a message is

represented when the

message is sent to this

destination. The property

specifies the representation

of binary integers, packed

decimal integers, and

floating point numbers.

See “The ENCODING property” on page 205

EXPIRY The period after which

messages at a destination

expire

v APP - Expiry can be defined by the JMS

application.

v UNLIM - No expiry occurs.

v 0 - No expiry occurs

v Any positive integer representing expiry in

milliseconds.

FAILIFQUIESCE Whether calls to certain

methods fail if the queue

manager is in a quiescing

state

v YES - Calls to certain methods fail if the queue

manager is in a quiescing state. If an application

detects that the queue manager is quiescing, the

application can complete its immediate task and

close the connection, allowing the queue manager

to stop.

v NO - No method call fails because the queue

manager is in a quiescing state. If you specify this

value, an application cannot detect that the queue

manager is quiescing. The application might

continue to perform operations against the queue

manager, and therefore prevent the queue manager

from stopping.

HOSTNAME For a connection to a queue

manager, the host name or

IP address of the system on

which the queue manager is

running or, for a real-time

connection to a broker, the

host name or IP address of

the system on which the

broker is running

v localhost

v Any string

Chapter 2. WebSphere MQ classes for JMS 175

Table 43. Property names, descriptions and values (continued)

Property Description Valid values in administration tool (defaults in

bold)

LOCALADDRESS For a connection to a queue

manager, this property

specifies either or both of

the following:

v The local network

interface to be used

v The local port, or range

of local ports, to be used

For a real-time connection

to a broker, this property is

relevant only when

multicast is used, and

specifies the local network

interface to be used.

v ″″ (empty string)

v A string in the format [ip-addr][(low-port[,high-port])]

Here are some examples:

9.20.4.98

The channel binds to address 9.20.4.98

locally

9.20.4.98(1000)

The channel binds to address 9.20.4.98

locally and uses port 1000

9.20.4.98(1000,2000)

The channel binds to address 9.20.4.98

locally and uses a port in the range 1000

to 2000

(1000) The channel binds to port 1000 locally

(1000,2000)

The channel binds to a port in the range

1000 to 2000 locally
You can specify a host name instead of an IP

address.

For a real-time connection to a broker, this

property is relevant only when multicast is used,

and the value of the property must not contain a

port number, or a range of port numbers. The only

valid values of the property in this case are null,

an IP address, or a host name.

MAPNAMESTYLE Allows compatibility style

to be used for MapMessage

element names.

v STANDARD - the standard

com.ibm.jms.JMSMapMessage element naming

format is to be used.

v COMPATIBLE - the older

com.ibm.jms.JMSMapMessage element naming

format is to be used. This is needed only if map

messages are being sent to an application that is

using a version of WebSphere MQ classes for JMS

earlier than Version 5.3.

MAXBUFFSIZE The maximum number of

received messages that can

be stored in an internal

message buffer while

waiting to be processed by

the application. This

property applies only when

TRANSPORT has the value

DIRECT or DIRECTHTTP.

v 1000

v Any positive integer

MSGBATCHSZ1 The maximum number of

messages to be taken from a

queue in one packet when

using asynchronous

message delivery

v 10

v Any positive integer

MSGRETENTION Whether the connection

consumer keeps unwanted

messages on the input

queue

v Yes - Unwanted messages remain on the input

queue

v No - Unwanted messages are dealt with according

to their disposition options

176 WebSphere MQ: Using Java

Table 43. Property names, descriptions and values (continued)

Property Description Valid values in administration tool (defaults in

bold)

MSGSELECTION1 Determines whether

message selection is done

by the WebSphere MQ

classes for JMS or by the

broker. If TRANSPORT has

the value DIRECT, message

selection is always done by

the broker and the value of

MSGSELECTION is

ignored. Message selection

by the broker is not

supported when

BROKERVER has the value

V1.

v CLIENT - Message selection is done by WebSphere

MQ classes for JMS.

v BROKER - Message selection is done by the broker.

MULTICAST To enable multicast on a

real-time connection to a

broker and, if enabled, to

specify the precise way in

which multicast is used to

deliver messages from the

broker to a message

consumer. The property has

no effect on how a message

producer sends messages to

a broker.4

v DISABLED - Messages are not delivered to a

message consumer using multicast transport. This

is the default value for ConnectionFactory and

TopicConnectionFactory objects.

v ASCF - Messages are delivered to a message

consumer according to the multicast setting for the

connection factory associated with the message

consumer. The multicast setting for the connection

factory is noted at the time that the message

consumer is created. This value is valid only for

Topic objects, and is the default value for Topic

objects.

v ENABLED - If the topic is configured for multicast

in the broker, messages are delivered to a message

consumer using multicast transport. A reliable

quality of service is used if the topic is configured

for reliable multicast.

v RELIABLE - If the topic is configured for reliable

multicast in the broker, messages are delivered to

the message consumer using multicast transport

with a reliable quality of service. If the topic is not

configured for reliable multicast, you cannot create

a message consumer for the topic.

v NOTR - If the topic is configured for multicast in

the broker, messages are delivered to the message

consumer using multicast transport. A reliable

quality of service is not used even if the topic is

configured for reliable multicast.

OPTIMISTICPUBLICATION1 Whether WebSphere MQ

classes for JMS returns

control immediately to a

publisher that has just

published a message, or

whether it returns control

only after it has completed

all the processing associated

with the call and can report

the outcome to the

publisher

v NO - When a publisher publishes a message,

WebSphere MQ classes for JMS does not return

control to the publisher until it has completed all

the processing associated with the call and can

report the outcome to the publisher.

v YES - When a publisher publishes a message,

WebSphere MQ classes for JMS returns control to

the publisher immediately, before it has completed

all the processing associated with the call and can

report the outcome to the publisher. WebSphere

MQ classes for JMS reports the outcome only when

the publisher commits the message.

Chapter 2. WebSphere MQ classes for JMS 177

Table 43. Property names, descriptions and values (continued)

Property Description Valid values in administration tool (defaults in

bold)

OUTCOMENOTIFICATION1 Whether WebSphere MQ

classes for JMS returns

control immediately to a

subscriber that has just

acknowledged or

committed a message, or

whether it returns control

only after it has completed

all the processing associated

with the call and can report

the outcome to the

subscriber

v YES - When a subscriber acknowledges or commits

a message, WebSphere MQ classes for JMS does

not return control to the subscriber until it has

completed all the processing associated with the

call and can report the outcome to the subscriber.

v NO5 - When a subscriber acknowledges or commits

a message, WebSphere MQ classes for JMS returns

control to the subscriber immediately, before it has

completed all the processing associated with the

call and can report the outcome to the subscriber.

PERSISTENCE The persistence of messages

sent to a destination

v APP - Persistence is defined by the JMS

application.

v QDEF - Persistence takes the value of the queue

default.

v PERS - Messages are persistent.

v NON - Messages are nonpersistent.

v HIGH - See “JMS persistent messages” on page

136.

POLLINGINT1 If each message listener

within a session has no

suitable message on its

queue, this is the maximum

interval, in milliseconds,

that elapses before each

message listener tries again

to get a message from its

queue. If it frequently

happens that no suitable

message is available for any

of the message listeners in a

session, consider increasing

the value of this property.

This property is relevant

only if TRANSPORT has

the value BIND or CLIENT.

v 5000

v Any positive integer

PORT For a connection to a queue

manager, the number of the

port on which the queue

manager is listening or, for

a real-time connection to a

broker, the number of the

port on which the broker is

listening for real-time

connections

v 1414 - This is the default value if TRANSPORT is

set to CLIENT.

v 1506 - This is the default value if TRANSPORT is

set to DIRECT or DIRECTHTTP.

v Any positive integer

PRIORITY The priority for messages

sent to a destination

v APP - Priority is defined by the JMS application.

v QDEF - Priority takes the value of the queue

default.

v Any integer in the range 0-9.

178 WebSphere MQ: Using Java

Table 43. Property names, descriptions and values (continued)

Property Description Valid values in administration tool (defaults in

bold)

PROCESSDURATION1 Whether a subscriber

guarantees to process

quickly any message it

receives before returning

control to WebSphere MQ

classes for JMS

v UNKNOWN - A subscriber can give no guarantee

about how quickly it can process any message it

receives.

v SHORT - A subscriber guarantees to process

quickly any message it receives before returning

control to WebSphere MQ classes for JMS.

PROVIDERVERSION The version, release,

modification level and fix

pack of the queue manager

to which the application

intends to connect.

v unspecified

v A string in one of the following formats

– V.R.M.F

– V.R.M

– V.R

– V

where V, R, M and F are integer values greater

than or equal to zero.

A value of 7 or greater indicates that this is intended

as a WebSphere MQ Version 7.0 ConnectionFactory

for connections to a WebSphere MQ Version 7.0

queue manager. A value lower than 7 (for example

″6.0.2.0″), indicates that it is intended for use with

queue managers earlier than Version 7.0. The default

value, unspecified, allows connections to any level of

queue manager, determining the applicable properties

and functionality available based on the queue

manager’s capabilities.

PROXYHOSTNAME The host name or IP

address of the system on

which the proxy server is

running when using a

real-time connection to a

broker through a proxy

server4

v null

v The host name of the proxy server

PROXYPORT The number of the port on

which the proxy server is

listening when using a

real-time connection to a

broker through a proxy

server4

v 443

v The port number of the proxy server

Chapter 2. WebSphere MQ classes for JMS 179

Table 43. Property names, descriptions and values (continued)

Property Description Valid values in administration tool (defaults in

bold)

PUBACKINT1 The number of messages

published by a publisher

before WebSphere MQ

classes for JMS requests an

acknowledgement from the

broker. If you lower the

value of this property,

WebSphere MQ classes for

JMS requests

acknowledgements more

often, and therefore the

performance of the

publisher decreases. If you

raise the value, WebSphere

MQ classes for JMS takes a

longer time to throw an

exception if the broker fails.

This property is relevant

only if TRANSPORT has

the value BIND or CLIENT.

v 25

v Any positive integer

PUTASYNCALLOWED Whether message producers

are allowed to use

asynchronous puts to send

messages to this destination

v AS_Q_DEF6 - Determine whether asynchronous

puts are allowed by referring to the queue

definition.

v AS_TOPIC_DEF6 - Determine whether

asynchronous puts are allowed by referring to the

topic definition.

v AS_DEST6 - Determine whether asynchronous

puts are allowed by referring to the queue or topic

definition.

v NO - Asynchronous puts are not allowed.

v YES - Asynchronous puts are allowed.

QMANAGER The name of the queue

manager to connect to. But,

if your application uses a

client channel definition

table to connect to a queue

manager, see “Using a client

channel definition table” on

page 146.

v ″″ (empty string)

v Any string

QUEUE The underlying name of the

queue representing this

destination

Any string

READAHEADALLOWED Whether message

consumers and queue

browsers are allowed to use

read ahead to get

nonpersistent messages

from this destination into

an internal buffer before

receiving them

v AS_Q_DEF7 - Determine whether read ahead is

allowed by referring to the queue definition.

v AS_TOPIC_DEF7 - Determine whether read ahead

is allowed by referring to the topic definition.

v AS_DEST7 - Determine whether read ahead is

allowed by referring to the queue or topic

definition.

v NO - Read ahead is not allowed.

v YES - Read ahead is allowed.

180 WebSphere MQ: Using Java

Table 43. Property names, descriptions and values (continued)

Property Description Valid values in administration tool (defaults in

bold)

READAHEADCLOSEPOLICY For messages being

delivered to an

asynchronous message

listener, what happens to

messages in the internal

read ahead buffer when the

message consumer is closed.

v DELIVER_CURRENT - Only the current message

listener invocation completes before returning,

potentially leaving messages in the internal read

ahead buffer, which are then discarded.

v DELIVER_ALL - All messages in the internal read

ahead buffer are delivered to the application’s

message listener before returning.

RECEIVEISOLATION1 Whether a subscriber might

receive messages that have

not been committed on the

subscriber queue

v COMMITTED - A subscriber receives only those

messages on the subscriber queue that have been

committed.

v UNCOMMITTED8 - A subscriber can receive

messages that have not been committed on the

subscriber queue.

RECEXIT Identifies a channel receive

exit, or a sequence of

receive exits to be run in

succession

v null

v A string comprising one or more items separated

by commas, where each item is one of the

following:

– The name of a class that implements the

WMQReceiveExit interface (for a channel receive

exit written in Java)

– A string in the format

libraryName(entryPointName) (for a channel

receive exit not written in Java)

RECEXITINIT The user data that is passed

to channel receive exits

when they are called

v null

v A string comprising one or more items of user data

separated by commas.

Chapter 2. WebSphere MQ classes for JMS 181

Table 43. Property names, descriptions and values (continued)

Property Description Valid values in administration tool (defaults in

bold)

RESCANINT1 When a message consumer

in the point-to-point

domain uses a message

selector to select which

messages it wants to

receive, WebSphere MQ

classes for JMS searches the

WebSphere MQ queue for

suitable messages in the

sequence determined by the

MsgDeliverySequence

attribute of the queue.

When WebSphere MQ

classes for JMS finds a

suitable message and

delivers it to the consumer,

WebSphere MQ classes for

JMS resumes the search for

the next suitable message

from its current position in

the queue. WebSphere MQ

classes for JMS continues to

search the queue in this

way until it reaches the end

of the queue, or until the

interval of time in

milliseconds, as determined

by the value of this

property, has expired. In

each case, WebSphere MQ

classes for JMS returns to

the beginning of the queue

to continue its search, and a

new time interval

commences.

v 5000

v Any positive integer

SECEXIT Identifies a channel security

exit

v null

v The name of a class that implements the

WMQSecurityExit interface (for a channel security

exit written in Java)

v A string in the format libraryName(entryPointName)

(for a channel security exit not written in Java)

SECEXITINIT The user data that is passed

to a channel security exit

when it is called

v null

v Any string

SENDCHECKCOUNT The number of send calls to

allow between checking for

asynchronous put errors,

within a single

non-transacted JMS session

v 0

v Any positive integer

182 WebSphere MQ: Using Java

Table 43. Property names, descriptions and values (continued)

Property Description Valid values in administration tool (defaults in

bold)

SENDEXIT Identifies a channel send

exit, or a sequence of send

exits to be run in succession

v null

v A string comprising one or more items separated

by commas, where each item is one of the

following:

– The name of a class that implements the

WMQSendExit interface (for a channel send exit

written in Java)

– A string in the format

libraryName(entryPointName) (for a channel send

exit not written in Java)

SENDEXITINIT The user data that is passed

to channel send exits when

they are called

v null

v A string comprising one or more items of user data

separated by commas

SHARECONVALLOWED Whether a client connection

can share its socket with

other top-level JMS

connections from the same

process to the same queue

manager, if the channel

definitions match

v NO

v YES

SPARSESUBS1 Controls the message

retrieval policy of a

TopicSubscriber object

v NO - Subscriptions receive frequent matching

messages.

v YES - Subscriptions receive infrequent matching

messages. This value requires that the subscription

queue can be opened for browse.

SSLCIPHERSUITE The CipherSuite to use for

an SSL connection

v null

v See “SSL properties” on page 205

SSLCRL CRL servers to check for

SSL certificate revocation

v null

v Space-separated list of LDAP URLs. See “SSL

properties” on page 205

SSLFIPSREQUIRED Whether an SSL connection

must use a CipherSuite that

is supported by the IBM

Java JSSE FIPS provider

(IBMJSSEFIPS)

v NO - An SSL connection can use any CipherSuite

that is not supported by the IBM Java JSSE FIPS

provider (IBMJSSEFIPS).

v YES - An SSL connection must use a CipherSuite

that is supported by IBMJSSEFIPS.

SSLPEERNAME For SSL, a distinguished name

skeleton that must match

that provided by the queue

manager

v null

v See “SSL properties” on page 205

SSLRESETCOUNT For SSL, the total number

bytes sent and received by a

connection before the secret

key that is used for

encryption is renegotiated.

v 0

v Zero, or any positive integer less than or equal to

999 999 999. See “SSL properties” on page 205

Chapter 2. WebSphere MQ classes for JMS 183

Table 43. Property names, descriptions and values (continued)

Property Description Valid values in administration tool (defaults in

bold)

STATREFRESHINT1 The interval, in

milliseconds, between

refreshes of the long

running transaction that

detects when a subscriber

loses its connection to the

queue manager. This

property is relevant only if

SUBSTORE has the value

QUEUE.

v 60000

v Any positive integer

SUBSTORE1 Where WebSphere MQ

classes for JMS stores

persistent data relating to

active subscriptions

v BROKER - Use the broker-based subscription store

to hold details of subscriptions

v MIGRATE - Transfer subscription information from

the queue-based subscription store to the

broker-based subscription store

v QUEUE - Use the queue-based subscription store

to hold details of subscriptions

SYNCPOINTALLGETS Whether all gets are to be

performed under syncpoint

v No

v Yes

TARGCLIENT Whether the WebSphere

MQ RFH2 format is used to

exchange information with

target applications

v JMS - The target of the message is a JMS

application.

v MQ - The target of the message is a non-JMS

WebSphere MQ application.

TARGCLIENTMATCHING Whether a reply message,

sent to the queue identified

by the JMSReplyTo header

field of an incoming

message, has an MQRFH2

header only if the incoming

message has an MQRFH2

header

v YES - If an incoming message does not have an

MQRFH2 header, the TARGCLIENT property of

the Queue object derived from the JMSReplyTo

header field of the message is set to MQ. If the

message does have an MQRFH2 header, the

TARGCLIENT property is set to JMS instead.

v NO - The TARGCLIENT property of the Queue

object derived from the JMSReplyTo header field of

an incoming message is always set to JMS.

TEMPMODEL The name of the model

queue from which JMS

temporary queues are

created

v SYSTEM.DEFAULT.MODEL.QUEUE

v Any string

TEMPQPREFIX The prefix that is used to

form the name of a

WebSphere MQ dynamic

queue

v ″″ (empty string) - The prefix used is CSQ.* on

z/OS and AMQ.* on all other platforms.

v Any string that conforms to the rules for forming

the contents of the DynamicQName field in a

WebSphere MQ object descriptor (structure

MQOD), but the last non blank character must be

an asterisk.

184 WebSphere MQ: Using Java

Table 43. Property names, descriptions and values (continued)

Property Description Valid values in administration tool (defaults in

bold)

TEMPTOPICPREFIX When creating temporary

topics, JMS will generate a

topic string of the form

“TEMP/
TEMPTOPICPREFIX/
unique_id”, or if this

property is left with the

default value, just

“TEMP/unique_id”.

Specifying a non-empty

TEMPTOPICPREFIX allows

specific model queues to be

defined for creating the

managed queues for

subscribers to temporary

topics created under this

connection.

v ″″ (empty string)

v Any non-null string consisting only of valid

characters for a WebSphere MQ topic string

TOPIC The underlying name of the

topic representing this

destination

Any string

TRANSPORT The nature of a connection

to a queue manager or

broker

v BIND - For a connection to a queue manager in

bindings mode

v CLIENT - For a connection to a queue manager in

client mode

v DIRECT - For a real-time connection to a broker

not using HTTP tunnelling

v DIRECTHTTP - For a real-time connection to a

broker using HTTP tunnelling

USECONNPOOLING Whether to use connection

pooling

v Yes

v No

WILDCARDFORMAT Which version of wildcard

syntax is to be used

v CHAR_ONLY - Recognizes character wildcards

only, as used in broker version 1

v TOPIC_ONLY - Recognizes topic level wildcards

only, as used in broker version 2

WMQ_MQMD_MESSAGE_

 CONTEXT

What level of message

context is to be set by the

JMS application. The

application must be running

with appropriate context

authority for this property

to take effect

v DEFAULT - The MQOPEN API call and the

MQPMO structure will specify no explicit message

context options

v SET_IDENTITY_CONTEXT - The MQOPEN API

call specifies the message context option

MQOO_SET_IDENTITY_CONTEXT and the

MQPMO structure specifies

MQPMO_SET_IDENTITY_CONTEXT.

v SET_ALL_CONTEXT - The MQOPEN API call

specifies the message context option

MQOO_SET_ALL_CONTEXT and the MQPMO

structure specifies MQPMO_SET_ALL_CONTEXT

Chapter 2. WebSphere MQ classes for JMS 185

Table 43. Property names, descriptions and values (continued)

Property Description Valid values in administration tool (defaults in

bold)

WMQ_MQMD_READ_

 ENABLED

Whether a JMS application

can extract the values of

MQMD fields

v NO - When sending messages, the

JMS_IBM_MQMD* properties on a sent message

are not updated to reflect the updated field values

in the MQMD.

When receiving messages, none of the

JMS_IBM_MQMD* properties are available on a

received message, even if the sender had set some

or all of them.

v Yes - When sending messages, all of the

JMS_IBM_MQMD* properties on a sent message

are updated to reflect the updated field values in

the MQMD, including those that the sender did

not set explcitly.

When receiving messages, all of the

JMS_IBM_MQMD* properties are available on a

received message, including those that the sender

did not set explicitly.

WMQ_MQMD_WRITE_

 ENABLED

Whether a JMS application

can set the values of

MQMD fields

v NO - All JMS_IBM_MQMD* properties are ignored

and their values are not copied into the underlying

MQMD structure

v YES - JMS_IBM_MQMD* properties are processed.

Their values are copied into the underlying

MQMD structure
v

Note:

1. This property can be used with Version 7.0 of WebSphere MQ classes for JMS but has no effect for an

application connected to a Version 7.0 queue manager unless the PROVIDERVERSION property of the

connection factory is set to a version number less than 7.

2. The CCDTURL and CHANNEL properties of an object must not both be set at the same time.

3. Running two or more instances of the same durable topic subscriber simultaneously contravenes the Java

Message Service Specification, Version 1.1.

4. See “Using a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker” on

page 150.

5. If you specify NO, and a message is rolled back after WebSphere MQ classes for JMS has returned control to the

subscriber, the subscriber still retains a copy of the message but is not informed of the rollback. In this situation,

a subscriber might receive the same message more than once.

6. The values PUTASYNCALLOWED_AS_Q_DEF, PUTASYNCALLOWED_AS_TOPIC_DEF, and

PUTASYNCALLOWED_AS_DEST are synonymous and can be used interchangeably.

7. The values READAHEADALLOWED_AS_Q_DEF, READAHEADALLOWED_AS_TOPIC_DEF, and

READAHEADALLOWED_AS_DEST are synonymous and can be used interchangeably.

8. The value UNCOMMITTED has an effect only if PROCESSDURATION has the value SHORT. It has no effect if

PROCESSDURATION has the value UNKNOWN. If you specify UNCOMMITTED, ensure that a subscriber

acknowledges or commits each message individually.

 Table 44. Property names and applicable object types

Property Short form Object type

CF QCF TCF Q T XACF XAQCF XATCF

ASYNCEXCEPTION AEX Y Y Y Y Y Y

BROKERCCDURSUBQ1 CCDSUB Y

BROKERCCSUBQ1 CCSUB Y Y Y Y

186 WebSphere MQ: Using Java

Table 44. Property names and applicable object types (continued)

Property Short form Object type

CF QCF TCF Q T XACF XAQCF XATCF

BROKERCONQ1 BCON Y Y Y Y

BROKERDURSUBQ1 BDSUB Y

BROKERPUBQ1 BPUB Y Y Y Y Y

BROKERPUBQMGR1 BPQM Y

BROKERQMGR1 BQM Y Y Y Y

BROKERSUBQ1 BSUB Y Y Y Y

BROKERVER1 BVER Y2 Y2 Y Y Y

CCDTURL3 CCDT Y Y Y Y Y Y

CCSID CCS Y Y Y Y Y Y Y Y

CHANNEL3 CHAN Y Y Y Y Y Y

CLEANUP1 CL Y Y Y Y

CLEANUPINT1 CLINT Y Y Y Y

CLIENTID CID Y2 Y Y2 Y Y Y

CLONESUPP CLS Y Y Y Y Y Y

COMPHDR HC Y Y Y Y

COMPMSG MC Y Y Y Y Y Y

CONNOPT CNOPT Y Y Y Y Y Y

CONNTAG CNTAG Y Y Y Y Y Y

DESCRIPTION DESC Y2 Y Y2 Y Y Y Y Y

DIRECTAUTH DAUTH Y2 Y2

ENCODING ENC Y Y

EXPIRY EXP Y Y

FAILIFQUIESCE FIQ Y Y Y Y Y Y Y Y

HOSTNAME HOST Y2 Y Y2 Y Y Y

LOCALADDRESS LA Y2 Y Y2 Y Y Y

MAPNAMESTYLE MNST Y Y Y Y Y Y

MAXBUFFSIZE MBSZ Y2 Y2

MSGBATCHSZ1 MBS Y Y Y Y Y Y

MSGRETENTION MRET Y Y Y Y

MSGSELECTION1 MSEL Y Y Y Y

MULTICAST MCAST Y2 Y2 Y

OPTIMISTICPUBLICATION1 OPTPUB Y Y

OUTCOMENOTIFICATION1 NOTIFY Y Y

PERSISTENCE PER Y Y

POLLINGINT1 PINT Y Y Y Y Y Y

PORT PORT Y2 Y Y2 Y Y Y

PRIORITY PRI Y Y

PROCESSDURATION1 PROCDUR Y Y

PROVIDERVERSION PVER Y Y Y Y Y Y

Chapter 2. WebSphere MQ classes for JMS 187

Table 44. Property names and applicable object types (continued)

Property Short form Object type

CF QCF TCF Q T XACF XAQCF XATCF

PROXYHOSTNAME PHOST Y2 Y2

PROXYPORT PPORT Y2 Y2

PUBACKINT1 PAI Y Y Y Y

PUTASYNCALLOWED PAALD Y Y

QMANAGER QMGR Y Y Y Y Y Y Y

QUEUE QU Y

READAHEADALLOWED RAALD Y Y

READAHEADCLOSEPOLICY RACP Y Y

RECEIVEISOLATION1 RCVISOL Y Y

RECEXIT RCX Y Y Y Y Y Y

RECEXITINIT RCXI Y Y Y Y Y Y

RESCANINT1 RINT Y Y Y Y

SECEXIT SCX Y Y Y Y Y Y

SECEXITINIT SCXI Y Y Y Y Y Y

SENDCHECKCOUNT SCC Y Y Y Y Y Y

SENDEXIT SDX Y Y Y Y Y Y

SENDEXITINIT SDXI Y Y Y Y Y Y

SHARECONVALLOWED SCALD Y Y Y Y Y Y

SPARSESUBS1 SSUBS Y Y

SSLCIPHERSUITE SCPHS Y Y Y Y Y Y

SSLCRL SCRL Y Y Y Y Y Y

SSLFIPSREQUIRED SFIPS Y Y Y Y Y Y

SSLPEERNAME SPEER Y Y Y Y Y Y

SSLRESETCOUNT SRC Y Y Y Y Y Y

STATREFRESHINT1 SRI Y Y Y Y

SUBSTORE1 SS Y Y Y Y

SYNCPOINTALLGETS SPAG Y Y Y Y Y Y

TARGCLIENT TC Y Y

TARGCLIENTMATCHING TCM Y Y Y Y

TEMPMODEL TM Y Y Y Y

TEMPQPREFIX TQP Y Y Y Y

TEMPTOPICPREFIX TTP Y Y Y Y

TOPIC TOP Y

TRANSPORT TRAN Y2 Y Y2 Y Y Y

USECONNPOOLING UCP Y Y Y Y Y Y

WILDCARDFORMAT WCFMT Y Y Y Y Y

WMQ_MQMD_MESSAGE_

 CONTEXT

MDCTX

188 WebSphere MQ: Using Java

Table 44. Property names and applicable object types (continued)

Property Short form Object type

CF QCF TCF Q T XACF XAQCF XATCF

WMQ_MQMD_READ_

 ENABLED

MDR

WMQ_MQMD_WRITE_

 ENABLED

MDW Y Y

Note:

1. This property can be used with Version 7.0 of WebSphere MQ classes for JMS but has no effect for an

application connected to a Version 7.0 queue manager unless the PROVIDERVERSION property of the

connection factory is set to a version number less than 7.

2. Only the BROKERVER, CLIENTID, DESCRIPTION, DIRECTAUTH, HOSTNAME, LOCALADDRESS,

MAXBUFFSIZE, MULTICAST, PORT, PROXYHOSTNAME, PROXYPORT, and TRANSPORT properties are

supported for a ConnectionFactory or TopicConnectionFactory object when using a real-time connection to a

broker.

3. The CCDTURL and CHANNEL properties of an object must not both be set at the same time.

 Table 45. Property names, set methods and values

Property Set method Valid values in administration

tool (defaults in bold)

Valid values in programs

ASYNCEXCEPTION setAsyncExceptions v ASYNC_EXCEPTIONS_ALL

Any exception detected

asynchronously, outside the

scope of a synchronous API

call, and all connection broken

exceptions are sent to the

ExceptionListener.

v ASYNC_EXCEPTIONS_

 CONNECTIONBROKEN

Only exceptions indicating a

broken connection are sent to

the ExceptionListener. Any

other exceptions occurring

during asynchronous

processing are not reported to

the ExceptionListener, and

hence the application is not

informed of these exceptions.

BROKERCCDURSUBQ1 setBrokerCCDurSubQueue v SYSTEM.JMS.D.CC.

 SUBSCRIBER.QUEUE

v Any valid string.

BROKERCCSUBQ1 setBrokerCCSubQueue v SYSTEM.JMS.ND.CC.

 SUBSCRIBER.QUEUE

v Any valid string.

BROKERCONQ1 setBrokerControlQueue v SYSTEM.BROKER.

 CONTROL.QUEUE

v Any string

BROKERDURSUBQ1 setBrokerDurSubQueue v SYSTEM.JMS.D.

 SUBSCRIBER.QUEUE

v Any valid string.

BROKERPUBQ1 setBrokerPubQueue v SYSTEM.BROKER.

 DEFAULT.STREAM

v Any string

BROKERPUBQMGR1 setBrokerPubQueueManager v null

v Any string

Chapter 2. WebSphere MQ classes for JMS 189

Table 45. Property names, set methods and values (continued)

Property Set method Valid values in administration

tool (defaults in bold)

Valid values in programs

BROKERQMGR1 setBrokerQueueManager v null

v Any string

BROKERSUBQ1 setBrokerSubQueue v SYSTEM.JMS.ND.

 SUBSCRIBER.QUEUE

v Any valid string.

BROKERVER1 setBrokerVersion v V1 - To use a WebSphere MQ

Publish/Subscribe broker, or

to use a broker of WebSphere

MQ Integrator, WebSphere

MQ Event Broker, WebSphere

Business Integration Event

Broker, or WebSphere

Business Integration Message

Broker in compatibility mode.

This is the default value if

TRANSPORT is set to BIND

or CLIENT.

v V2 - To use a broker of

WebSphere MQ Integrator,

WebSphere MQ Event Broker,

WebSphere Business

Integration Event Broker, or

WebSphere Business

Integration Message Broker in

native mode. This is the

default value if TRANSPORT

is set to DIRECT or

DIRECTHTTP.

v unspecified - After the broker

has been migrated from V6 to

V7, set this property so that

RFH2 headers are no longer

used. After migration this

property is no longer relevant.

v JMSC.MQJMS_BROKER_V1

v JMSC.MQJMS_BROKER_V2

v JMSC.MQJMS_BROKER_

 UNSPECIFIED

CCDTURL2 setCCDTURL v null

v A uniform resource locator

(URL)

CCSID CCSID v 819 - This is the default for a

connection factory.

v 1208 - This is the default for a

destination.

v Any positive integer

CHANNEL2 setChannel v SYSTEM.DEF.SVRCONN

v Any string

CLEANUP1 setCleanupLevel v SAFE - use safe cleanup

v ASPROP - use safe, strong, or

no cleanup according to a

property set on the Java

command line

v NONE - use no cleanup

v STRONG - use strong cleanup

v JMSC.MQJMS_CLEANUP_

 NONE

v JMSC.MQJMS_CLEANUP_

 SAFE

v JMSC.MQJMS_CLEANUP_

 STRONG

v JMSC.MQJMS_CLEANUP_

 AS_PROPERTY

CLEANUPINT1 setCleanupInterval v 3600000

v Any positive integer

CLIENTID setClientId v null

v Any string

190 WebSphere MQ: Using Java

Table 45. Property names, set methods and values (continued)

Property Set method Valid values in administration

tool (defaults in bold)

Valid values in programs

CLONESUPP setCloneSupport v DISABLED - Only one

instance of a durable topic

subscriber can run at a time.

v ENABLED3 - Two or more

instances of the same durable

topic subscriber can run

simultaneously, but each

instance must run in a

separate Java virtual machine

(JVM).

v JMSC.MQJMS_CLONE_

 DISABLED

v

JMSC.MQJMS_CLONE_

 ENABLED

COMPHDR setHdrCompList v NONE

v SYSTEM - RLE message

header compression is

performed

v JMSC.MQJMS_COMPHDR_

 NONE

v JMSC.MQJMS_COMPHDR_

 SYSTEM

COMPMSG setMsgCompList v NONE

v A list of one or more of the

following values separated by

blank characters:

 RLE

 ZLIBFAST

 ZLIBHIGH

v JMSC.MQJMS_COMPMSG_

 NONE

v JMSC.MQJMS_COMPMSG_

 RLE

v JMSC.MQJMS_COMPMSG_

 ZLIBFAST

v JMSC.MQJMS_COMPMSG_

 ZLIBHIGH

Chapter 2. WebSphere MQ classes for JMS 191

Table 45. Property names, set methods and values (continued)

Property Set method Valid values in administration

tool (defaults in bold)

Valid values in programs

CONNOPT4 setMQConnectionOptions v STANDARD - The nature of

the binding between the

application and the queue

manager depends on the

platform on which the queue

manager is running and how

the queue manager is

configured.

v SHARED - The application

and the local queue manager

agent run in separate units of

execution but share some

resources.

v ISOLATED - The application

and the local queue manager

agent run in separate units of

execution and share no

resources.

v FASTPATH - The application

and the local queue manager

agent run in the same unit of

execution.

v SERIALQM - The application

requests exclusive use of the

connection tag within the

scope of the queue manager.

v SERIALQSG - The application

requests exclusive use of the

connection tag within the

scope of the queue sharing

group to which the queue

manager belongs.

v RESTRICTQM - The

application requests shared

use of the connection tag, but

there are restrictions on the

shared use of the connection

tag within the scope of the

queue manager.

v RESTRICTQSG - The

application requests shared

use of the connection tag, but

there are restrictions on the

shared use of the connection

tag within the scope of the

queue sharing group to which

the queue manager belongs.

v JMSC.MQCNO_

 STANDARD_BINDING

v JMSC.MQCNO_

 SHARED_BINDING

v JMSC.MQCNO_

 ISOLATED_BINDING

v JMSC.MQCNO_

 FASTPATH_BINDING

v JMSC.MQCNO_

 SERIALIZE_CONN_TAG_

 Q_MGR

v JMSC.MQCNO_

 SERIALIZE_CONN_TAG_

 QSG

v JMSC.MQCNO_

 RESTRICT_CONN_TAG_

 Q_MGR

v JMSC.MQCNO_

 RESTRICT_CONN_TAG_

 QSG

CONNTAG5 setConnTag v A byte array of 128 elements,

where each element is 0

v Any string. The value is

truncated if it is longer than

128 bytes.

DESCRIPTION setDescription v null

v Any string

DIRECTAUTH setDirectAuth v BASIC - No authentication,

username authentication, or

password authentication

v CERTIFICATE - Public key

certificate authentication

v JMSC.MQJMS_

 DIRECTAUTH_BASIC

v JMSC.MQJMS_

 DIRECTAUTH_

 CERTIFICATE

192 WebSphere MQ: Using Java

Table 45. Property names, set methods and values (continued)

Property Set method Valid values in administration

tool (defaults in bold)

Valid values in programs

ENCODING setEncoding See “The ENCODING property”

on page 205

EXPIRY setExpiry v APP - Expiry can be defined

by the JMS application.

v UNLIM - No expiry occurs.

v 0 - No expiry occurs

v Any positive integer

representing expiry in

milliseconds.

v JMSC.MQJMS_EXP_APP

v JMSC.MQJMS_EXP_

 UNLIMITED

FAILIFQUIESCE setFailIfQuiesce v YES - Calls to certain methods

fail if the queue manager is in

a quiescing state. If an

application detects that the

queue manager is quiescing,

the application can complete

its immediate task and close

the connection, allowing the

queue manager to stop.

v NO - No method call fails

because the queue manager is

in a quiescing state. If you

specify this value, an

application cannot detect that

the queue manager is

quiescing. The application

might continue to perform

operations against the queue

manager, and therefore

prevent the queue manager

from stopping.

v JMSC.MQJMS_FIQ_YES

v JMSC.MQJMS_FIQ_NO

HOSTNAME setHostName v localhost

v Any string

Chapter 2. WebSphere MQ classes for JMS 193

Table 45. Property names, set methods and values (continued)

Property Set method Valid values in administration

tool (defaults in bold)

Valid values in programs

LOCALADDRESS setLocalAddress v ″″ (empty string)

v A string in the format

[ip-addr][(low-port[,high-port])]

Here are some examples:

9.20.4.98 The channel binds

to address 9.20.4.98

locally

9.20.4.98(1000)

The channel binds

to address 9.20.4.98

locally and uses

port 1000

9.20.4.98(1000,2000)

The channel binds

to address 9.20.4.98

locally and uses a

port in the range

1000 to 2000

(1000) The channel binds

to port 1000 locally

(1000,2000)

The channel binds

to a port in the

range 1000 to 2000

locally
You can specify a host name

instead of an IP address.

For a real-time connection to a

broker, this property is

relevant only when multicast

is used, and the value of the

property must not contain a

port number, or a range of

port numbers. The only valid

values of the property in this

case are null, an IP address, or

a host name.

MAPNAMESTYLE setMapNameStyle v STANDARD - the standard

com.ibm.jms.JMSMapMessage

element naming format is to

be used.

v COMPATIBLE - the older

com.ibm.jms.JMSMapMessage

element naming format is to

be used. This is needed only if

map messages are being sent

to an application that is using

a version of WebSphere MQ

classes for JMS earlier than

Version 5.3.

v JMSC.MAP_NAME_

 STYLE_STANDARD

v JMSC.MAP_NAME_

 STYLE_COMPATIBLE

MAXBUFFSIZE setMaxBufferSize v 1000

v Any positive integer

MSGBATCHSZ1 setMsgBatchSize v 10

v Any positive integer

MSGRETENTION setMessageRetention v Yes - Unwanted messages

remain on the input queue

v No - Unwanted messages are

dealt with according to their

disposition options

v JMSC.MQJMS_MRET_YES

v JMSC.MQJMS_MRET_NO

194 WebSphere MQ: Using Java

Table 45. Property names, set methods and values (continued)

Property Set method Valid values in administration

tool (defaults in bold)

Valid values in programs

MSGSELECTION1 setMessageSelection v CLIENT - Message selection is

done by WebSphere MQ

classes for JMS.

v BROKER - Message selection

is done by the broker.

v JMSC.MQJMS_MSEL_

 CLIENT

v JMSC.MQJMS_MSEL_

 BROKER

MULTICAST setMulticast v DISABLED - Messages are

not delivered to a message

consumer using multicast

transport. This is the default

value for ConnectionFactory

and TopicConnectionFactory

objects.

v ASCF - Messages are

delivered to a message

consumer according to the

multicast setting for the

connection factory associated

with the message consumer.

The multicast setting for the

connection factory is noted at

the time that the message

consumer is created. This

value is valid only for Topic

objects, and is the default

value for Topic objects.

v ENABLED - If the topic is

configured for multicast in the

broker, messages are delivered

to a message consumer using

multicast transport. A reliable

quality of service is used if

the topic is configured for

reliable multicast.

v RELIABLE - If the topic is

configured for reliable

multicast in the broker,

messages are delivered to the

message consumer using

multicast transport with a

reliable quality of service. If

the topic is not configured for

reliable multicast, you cannot

create a message consumer for

the topic.

v NOTR - If the topic is

configured for multicast in the

broker, messages are delivered

to the message consumer

using multicast transport. A

reliable quality of service is

not used even if the topic is

configured for reliable

multicast.

v JMSC.MQJMS_

 MULTICAST_DISABLED

v JMSC.MQJMS_

 MULTICAST_AS_CF

v JMSC.MQJMS_

 MULTICAST_ENABLED

v JMSC.MQJMS_

 MULTICAST_RELIABLE

v JMSC.MQJMS_

 MULTICAST_NOT_

 RELIABLE

Chapter 2. WebSphere MQ classes for JMS 195

Table 45. Property names, set methods and values (continued)

Property Set method Valid values in administration

tool (defaults in bold)

Valid values in programs

OPTIMISTICPUBLICATION1 setOptimisticPublication v NO - When a publisher

publishes a message,

WebSphere MQ classes for

JMS does not return control to

the publisher until it has

completed all the processing

associated with the call and

can report the outcome to the

publisher.

v YES - When a publisher

publishes a message,

WebSphere MQ classes for

JMS returns control to the

publisher immediately, before

it has completed all the

processing associated with the

call and can report the

outcome to the publisher.

WebSphere MQ classes for

JMS reports the outcome only

when the publisher commits

the message.

v false

v true

OUTCOMENOTIFICATION1 setOutcomeNotification v YES - When a subscriber

acknowledges or commits a

message, WebSphere MQ

classes for JMS does not

return control to the

subscriber until it has

completed all the processing

associated with the call and

can report the outcome to the

subscriber.

v NO6 - When a subscriber

acknowledges or commits a

message, WebSphere MQ

classes for JMS returns control

to the subscriber immediately,

before it has completed all the

processing associated with the

call and can report the

outcome to the subscriber.

v true

v false

PERSISTENCE setPersistence v APP - Persistence is defined

by the JMS application.

v QDEF - Persistence takes the

value of the queue default.

v PERS - Messages are

persistent.

v NON - Messages are

nonpersistent.

v HIGH - See “JMS persistent

messages” on page 136.

v JMSC.MQJMS_PER_APP

v JMSC.MQJMS_PER_QDEF

v JMSC.MQJMS_PER_PER

v JMSC.MQJMS_PER_NON

v JMSC.MQJMS_PER_NPHIGH

POLLINGINT1 setPollingInterval v 5000

v Any positive integer

PORT setPort v 1414 - This is the default

value if TRANSPORT is set to

CLIENT.

v 1506 - This is the default

value if TRANSPORT is set to

DIRECT or DIRECTHTTP.

v Any positive integer

196 WebSphere MQ: Using Java

Table 45. Property names, set methods and values (continued)

Property Set method Valid values in administration

tool (defaults in bold)

Valid values in programs

PRIORITY setPriority v APP - Priority is defined by

the JMS application.

v QDEF - Priority takes the

value of the queue default.

v Any integer in the range 0-9.

v JMSC.MQJMS_PRI_APP

v JMSC.MQJMS_PRI_QDEF

PROCESSDURATION1 setProcessDuration v UNKNOWN - A subscriber

can give no guarantee about

how quickly it can process

any message it receives.

v SHORT - A subscriber

guarantees to process quickly

any message it receives before

returning control to

WebSphere MQ classes for

JMS.

v JMSC.MQJMS_

 PROCESSING_UNKNOWN

v JMSC.MQJMS_

 PROCESSING_SHORT

PROVIDERVERSION setProviderVersion v unspecified

v A string in one of the

following formats

– V.R.M.F

– V.R.M

– V.R

– V

where V, R, M and F are

integer values greater than or

equal to zero.

A value of 7 or greater indicates

that this is intended as a

WebSphere MQ Version 7.0

ConnectionFactory for

connections to a WebSphere MQ

Version 7.0 queue manager. A

value lower than 7 (for example

″6.0.2.0″), indicates that it is

intended for use with queue

managers earlier than Version

7.0. The default value,

unspecified, allows connections

to any level of queue manager,

determining the applicable

properties and functionality

available based on the queue

manager’s capabilities.

PROXYHOSTNAME setProxyHostName v null

v The host name of the proxy

server

PROXYPORT setProxyPort v 443

v The port number of the proxy

server

PUBACKINT1 setPubAckInterval v 25

v Any positive integer

Chapter 2. WebSphere MQ classes for JMS 197

Table 45. Property names, set methods and values (continued)

Property Set method Valid values in administration

tool (defaults in bold)

Valid values in programs

PUTASYNCALLOWED setPutAsyncAllowed v AS_Q_DEF7 - Determine

whether asynchronous puts

are allowed by referring to the

queue definition.

v AS_TOPIC_DEF7 - Determine

whether asynchronous puts

are allowed by referring to the

topic definition.

v AS_DEST7 - Determine

whether asynchronous puts

are allowed by referring to the

queue or topic definition.

v NO - Asynchronous puts are

not allowed.

v YES - Asynchronous puts are

allowed.

v JMSC.MQJMS_PUT_

 ASYNC_ALLOWED_

 AS_Q_DEF

v JMSC.MQJMS_PUT_

 ASYNC_ALLOWED_

 AS_TOPIC_DEF

v JMSC.MQJMS_PUT_

 ASYNC_ALLOWED_

 AS_DEST

v JMSC.MQJMS_PUT_

 ASYNC_ALLOWED_

 DISABLED

v JMSC.MQJMS_PUT_

 ASYNC_ALLOWED_

 ENABLED

QMANAGER setQueueManager v ″″ (empty string)

v Any string

QUEUE Any string

READAHEADALLOWED setReadAheadAllowed v AS_Q_DEF8 - Determine

whether read ahead is

allowed by referring to the

queue definition.

v AS_TOPIC_DEF8 - Determine

whether read ahead is

allowed by referring to the

topic definition.

v AS_DEST8 - Determine

whether read ahead is

allowed by referring to the

queue or topic definition.

v NO - Read ahead is not

allowed.

v YES - Read ahead is allowed.

v JMSC.MQJMS_READ_

 AHEAD_ALLOWED_

 AS_Q_DEF

v JMSC.MQJMS_READ_

 AHEAD_ALLOWED_

 AS_TOPIC_DEF

v JMSC.MQJMS_READ_

 AHEAD_ALLOWED_

 AS_DEST

v JMSC.MQJMS_READ_

 AHEAD_ALLOWED_

 DISABLED

v JMSC.MQJMS_READ_

 AHEAD_ALLOWED_

 ENABLED

READAHEADCLOSEPOLICY setReadAheadClosePolicy v DELIVER_CURRENT - Only

the current message listener

invocation completes before

returning, potentially leaving

messages in the internal read

ahead buffer, which are then

discarded.

v DELIVER_ALL - All

messages in the internal read

ahead buffer are delivered to

the application’s message

listener before returning.

v JMSC.MQJMS_READ_

 AHEAD_

 DELIVERCURRENT

v JMSC.MQJMS_READ_

 AHEAD_DELIVERALL

RECEIVEISOLATION1 setReceiveIsolation v COMMITTED - A subscriber

receives only those messages

on the subscriber queue that

have been committed.

v UNCOMMITTED9 - A

subscriber can receive

messages that have not been

committed on the subscriber

queue.

v JMSC.MQJMS_RCVISOL_

 COMMITTED

v JMSC.MQJMS_RCVISOL_

 UNCOMMITTED

198 WebSphere MQ: Using Java

Table 45. Property names, set methods and values (continued)

Property Set method Valid values in administration

tool (defaults in bold)

Valid values in programs

RECEXIT setReceiveExit v null

v A string comprising one or

more items separated by

commas, where each item is

one of the following:

– The name of a class that

implements the

WMQReceiveExit interface

(for a channel receive exit

written in Java)

– A string in the format

libraryName(entryPointName)

(for a channel receive exit

not written in Java)

RECEXITINIT setReceiveExitInit v null

v A string comprising one or

more items of user data

separated by commas.

RESCANINT1 setRescanInterval v 5000

v Any positive integer

SECEXIT setSecurityExit v null

v The name of a class that

implements the

WMQSecurityExit interface

(for a channel security exit

written in Java)

v A string in the format

libraryName(entryPointName)

(for a channel security exit not

written in Java)

SECEXITINIT setSecurityExitInit v null

v Any string

SENDCHECKCOUNT1 setSendCheckCount v 0

v Any positive integer

SENDEXIT setSendExit v null

v A string comprising one or

more items separated by

commas, where each item is

one of the following:

– The name of a class that

implements the

WMQSendExit interface

(for a channel send exit

written in Java)

– A string in the format

libraryName(entryPointName)

(for a channel send exit not

written in Java)

SENDEXITINIT setSendExitInit v null

v A string comprising one or

more items of user data

separated by commas

SHARECONVALLOWED setShareConvAllowed v NO

v YES

v JMSC.MQJMS_SHARE_

 CONV_ALLOWED_NO

v JMSC.MQJMS_SHARE_

CONV_ALLOWED_YES

Chapter 2. WebSphere MQ classes for JMS 199

Table 45. Property names, set methods and values (continued)

Property Set method Valid values in administration

tool (defaults in bold)

Valid values in programs

SPARSESUBS1 setSparseSubscriptions v NO - Subscriptions receive

frequent matching messages.

v YES - Subscriptions receive

infrequent matching messages.

This value requires that the

subscription queue can be

opened for browse.

v true

v false

SSLCIPHERSUITE setSSLCipherSuite v null

v See “SSL properties” on page

205

SSLCRL setSSLCertStores v null

v Space-separated list of LDAP

URLs. See “SSL properties” on

page 205

SSLFIPSREQUIRED setSSLFipsRequired v NO - An SSL connection can

use any CipherSuite that is

not supported by the IBM

Java JSSE FIPS provider

(IBMJSSEFIPS).

v YES - An SSL connection must

use a CipherSuite that is

supported by IBMJSSEFIPS.

v false

v true

SSLPEERNAME setSSLPeerName v null

v See “SSL properties” on page

205

SSLRESETCOUNT setSSLResetCount v 0

v Zero, or any positive integer

less than or equal to 999 999

999. See “SSL properties” on

page 205

STATREFRESHINT1 setStatusRefreshInterval v 60000

v Any positive integer

SUBSTORE1 setSubscriptionStore v BROKER - Use the

broker-based subscription

store to hold details of

subscriptions

v MIGRATE - Transfer

subscription information from

the queue-based subscription

store to the broker-based

subscription store

v QUEUE - Use the

queue-based subscription

store to hold details of

subscriptions

v JMSC.MQJMS_SUBSTORE_

 BROKER

v h

v JMSC.MQJMS_SUBSTORE_

 MIGRATE

v JMSC.MQJMS_SUBSTORE_

 QUEUE

SYNCPOINTALLGETS setSyncpointAllGets v No

v Yes

TARGCLIENT10 setTargetClient v JMS - The target of the

message is a JMS application.

v MQ - The target of the

message is a non-JMS

WebSphere MQ application.

v JMSC.MQJMS_CLIENT_

 JMS_COMPLIANT

v JMSC.MQJMS_CLIENT_

 NONJMS_MQ

200 WebSphere MQ: Using Java

Table 45. Property names, set methods and values (continued)

Property Set method Valid values in administration

tool (defaults in bold)

Valid values in programs

TARGCLIENTMATCHING setTargClientMatching v YES - If an incoming message

does not have an MQRFH2

header, the TARGCLIENT

property of the Queue object

derived from the JMSReplyTo

header field of the message is

set to MQ. If the message

does have an MQRFH2

header, the TARGCLIENT

property is set to JMS instead.

v NO - The TARGCLIENT

property of the Queue object

derived from the JMSReplyTo

header field of an incoming

message is always set to JMS.

v true

v false

TEMPMODEL setTemporaryModel v SYSTEM.DEFAULT.

 MODEL.QUEUE

v Any string

TEMPQPREFIX setTempQPrefix v ″″ (empty string) - The prefix

used is CSQ.* on z/OS and

AMQ.* on all other platforms.

v Any string that conforms to

the rules for forming the

contents of the DynamicQName

field in a WebSphere MQ

object descriptor (structure

MQOD), but the last non

blank character must be an

asterisk.

TEMPTOPICPREFIX setTempTopicPrefix v ″″ (empty string)

v Any non-null string consisting

only of valid characters for a

WebSphere MQ topic string

TOPIC Any string

TRANSPORT setTransportType v BIND - For a connection to a

queue manager in bindings

mode

v CLIENT - For a connection to

a queue manager in client

mode

v DIRECT - For a real-time

connection to a broker not

using HTTP tunnelling

v DIRECTHTTP - For a

real-time connection to a

broker using HTTP tunnelling

v JMSC.MQJMS_TP_

 BINDINGS_MQ

v JMSC.MQJMS_TP_

 CLIENT_MQ_TCPIP

v JMSC.MQJMS_TP_

 DIRECT_TCPIP

v JMSC.MQJMS_TP_

 DIRECT_HTTP

USECONNPOOLING setUseConnectionPooling v Yes

v No

WILDCARDFORMAT setWildCardFormat v CHAR_ONLY - Recognizes

character wildcards only, as

used in broker version 1

v TOPIC_ONLY - Recognizes

topic level wildcards only, as

used in broker version 2

v JMSC.MQJMS_

 WILDCARD_CHAR_ONLY

v JMSC.MQJMS_

 WILDCARD_TOPIC_ONLY

Chapter 2. WebSphere MQ classes for JMS 201

Table 45. Property names, set methods and values (continued)

Property Set method Valid values in administration

tool (defaults in bold)

Valid values in programs

WMQ_MQMD_MESSAGE_

 CONTEXT

setMQMDMessageContext v DEFAULT - The MQOPEN

API call and the MQPMO

structure will specify no

explicit message context

options

v SET_IDENTITY_CONTEXT -

The MQOPEN API call

specifies the message context

option

MQOO_SET_IDENTITY_

CONTEXT and the MQPMO

structure specifies

MQPMO_SET_IDENTITY_

CONTEXT.

v SET_ALL_CONTEXT - The

MQOPEN API call specifies

the message context option

MQOO_SET_ALL_CONTEXT

and the MQPMO structure

specifies MQPMO_SET_ALL

_CONTEXT

v WMQ_MDCTX_DEFAULT

v WMQ_MDCTX_SET_

IDENTITY_CONTEXT

v WMQ_MDCTX_SET_

ALL_CONTEXT

WMQ_MQMD_READ_

 ENABLED

setMQMDReadEnabled v NO - When sending

messages, the

JMS_IBM_MQMD* properties

on a sent message are not

updated to reflect the updated

field values in the MQMD.

When receiving messages,

none of the

JMS_IBM_MQMD* properties

are available on a received

message, even if the sender

had set some or all of them.

v Yes - When sending messages,

all of the JMS_IBM_MQMD*

properties on a sent message

are updated to reflect the

updated field values in the

MQMD, including those that

the sender did not set

explcitly.

When receiving messages, all

of the JMS_IBM_MQMD*

properties are available on a

received message, including

those that the sender did not

set explicitly.

v False

v True

WMQ_MQMD_WRITE_

 ENABLED

setMQMDWriteEnabled v NO - All JMS_IBM_MQMD*

properties are ignored and

their values are not copied

into the underlying MQMD

structure

v YES - JMS_IBM_MQMD*

properties are processed. Their

values are copied into the

underlying MQMD structure
v

v False

v True

202 WebSphere MQ: Using Java

Table 45. Property names, set methods and values (continued)

Property Set method Valid values in administration

tool (defaults in bold)

Valid values in programs

Notes::

 1. This property can be used with Version 7.0 of WebSphere MQ classes for JMS but has no effect for an application connected to

a Version 7.0 queue manager unless the PROVIDERVERSION property of the connection factory is set to a version number

less than 7.

 2. The CCDTURL and CHANNEL properties of an object must not both be set at the same time.

 3. Running two or more instances of the same durable topic subscriber simultaneously contravenes the Java Message Service

Specification, Version 1.1.

 4. The binding options, STANDARD, SHARED, ISOLATED, and FASTPATH, are ignored if the application connects in client

mode. The SHARED, ISOLATED, and FASTPATH options are ignored by a queue manager running on z/OS. The connection

tag options, SERIALQM, SERIALQSG, RESTRICTQM, and RESTRICTQSG, are supported only by a queue manager running

on z/OS. For a more detailed explanation of the connection options, see the WebSphere MQ Application Programming

Reference.

 5. The CONNTAG property is supported only by a queue manager running on z/OS.

 6. If you specify NO, and a message is rolled back after WebSphere MQ classes for JMS has returned control to the subscriber,

the subscriber still retains a copy of the message but is not informed of the rollback. In this situation, a subscriber might

receive the same message more than once.

 7. The values PUTASYNCALLOWED_AS_Q_DEF, PUTASYNCALLOWED_AS_TOPIC_DEF, and

PUTASYNCALLOWED_AS_DEST are synonymous and can be used interchangeably.

 8. The values READAHEADALLOWED_AS_Q_DEF, READAHEADALLOWED_AS_TOPIC_DEF, and

READAHEADALLOWED_AS_DEST are synonymous and can be used interchangeably.

 9. The value UNCOMMITTED has an effect only if PROCESSDURATION has the value SHORT. It has no effect if

PROCESSDURATION has the value UNKNOWN. If you specify UNCOMMITTED, ensure that a subscriber acknowledges or

commits each message individually.

10. The TARGCLIENT property indicates whether the WebSphere MQ RFH2 format is used to exchange information with target

applications.

The MQJMS_CLIENT_JMS_COMPLIANT constant indicates that the RFH2 format is used to send information. Applications

that use WebSphere MQ classes for JMS understand the RFH2 format. Set the MQJMS_CLIENT_JMS_COMPLIANT constant

when you exchange information with a target WebSphere MQ classes for JMS application.

The MQJMS_CLIENT_NONJMS_MQ constant indicates that the RFH2 format is not used to send information. Typically, this

value is used for an existing WebSphere MQ application (that is, one that does not handle RFH2).

Property dependencies

Some properties have dependencies on each other. This might mean that it is

meaningless to supply a property unless another property is set to a particular

value.

The specific property groups where this can occur are:

v Client properties

v Properties for a real-time connection to a broker

v Exit initialization strings

Client properties

For a connection to a queue manager, the following properties are relevant

only if TRANSPORT has the value CLIENT:

v HOSTNAME

v PORT

v CHANNEL

v LOCALADDRESS

v CCDTURL

v CCSID

v COMPHDR

Chapter 2. WebSphere MQ classes for JMS 203

v COMPMSG

v RECEXIT

v RECEXITINIT

v SECEXIT

v SECEXITINIT

v SENDEXIT

v SENDEXITINIT

v SHARECONVALLOWED

v SSLCIPHERSUITE

v SSLCRL

v SSLFIPSREQUIRED

v SSLPEERNAME

v SSLRESETCOUNT

Using the administration tool, you cannot set values for these properties if

TRANSPORT has the value BIND.

If TRANSPORT has the value CLIENT, the default value of the

BROKERVER property is V1 and the default value of the PORT property is

1414. If you set the value of BROKERVER or PORT explicitly, a later

change to the value of TRANSPORT does not override your choices.

Properties for a real-time connection to a broker

Only the following properties are relevant if TRANSPORT has the value

DIRECT or DIRECTHTTP:

v BROKERVER

v CLIENTID

v DESCRIPTION

v DIRECTAUTH

v HOSTNAME

v LOCALADDRESS

v MAXBUFFSIZE

v MULTICAST (supported only for DIRECT)

v PORT

v PROXYHOSTNAME (supported only for DIRECT)

v PROXYPORT (supported only for DIRECT)

If TRANSPORT has the value DIRECT or DIRECTHTTP, the default value

of the BROKERVER property is V2, and the default value of the PORT

property is 1506. If you set the value of BROKERVER or PORT explicitly, a

later change to the value of TRANSPORT does not override your choices.

Exit initialization strings

Do not set any of the exit initialization strings without supplying the

corresponding exit name. The exit initialization properties are:

v RECEXITINIT

v SECEXITINIT

v SENDEXITINIT

For example, specifying RECEXITINIT(myString) without specifying

RECEXIT(some.exit.classname) causes an error.

204 WebSphere MQ: Using Java

The ENCODING property

The ENCODING property comprises three sub-properties, in twelve possible

combinations.

The valid values that the ENCODING property can take are constructed from the

three sub-properties:

integer encoding

Either normal or reversed

decimal encoding

Either normal or reversed

floating-point encoding

IEEE normal, IEEE reversed, or z/OS

The ENCODING property is expressed as a three-character string with the following

syntax:

{N|R}{N|R}{N|R|3}

In this string:

v N denotes normal

v R denotes reversed

v 3 denotes z/OS

v The first character represents integer encoding

v The second character represents decimal encoding

v The third character represents floating-point encoding

This provides a set of twelve possible values for the ENCODING property.

There is an additional value, the string NATIVE, which sets appropriate encoding

values for the Java platform.

The following examples show valid combinations for ENCODING:

 ENCODING(NNR)

 ENCODING(NATIVE)

 ENCODING(RR3)

SSL properties

Enable Secure Sockets Layer (SSL) encryption using the SSLCIPHERSUITE

property. You can then change the characteristics of the SSL encryption using

several other properties.

When you specify TRANSPORT(CLIENT), you can enable Secure Sockets Layer

(SSL) encrypted communication using the SSLCIPHERSUITE property. Set this

property to a valid CipherSuite provided by your JSSE provider; it must match the

CipherSpec named on the SVRCONN channel named by the CHANNEL property.

However, CipherSpecs (as specified on the SVRCONN channel) and CipherSuites

(as specified on ConnectionFactory objects) use different naming schemes to

represent the same SSL encryption algorithms. If a recognized CipherSpec name is

specified on the SSLCIPHERSUITE property, JMSAdmin issues a warning and

maps the CipherSpec to its equivalent CipherSuite. See “SSL CipherSpecs and

CipherSuites” on page 141 for a list of CipherSpecs recognized by WebSphere MQ

and JMSAdmin.

Chapter 2. WebSphere MQ classes for JMS 205

If you require a connection to use a CipherSuite that is supported by the IBM Java

JSSE FIPS provider (IBMJSSEFIPS), set the SSLFIPSREQUIRED property of the

connection factory to YES. The default value of this property is NO, which means

that a connection can use any supported CipherSuite. The property is ignored if

SSLCIPHERSUITE is not set.

The SSLPEERNAME matches the format of the SSLPEER parameter, which can be

set on channel definitions. It is a list of attribute name and value pairs separated

by commas or semicolons. For example:

SSLPEERNAME(CN=QMGR.*, OU=IBM, OU=WEBSPHERE)

The set of names and values makes up a distinguished name. For more details about

distinguished names and their use with WebSphere MQ, see WebSphere MQ

Security.

The example given checks the identifying certificate presented by the server at

connect-time. For the connection to succeed, the certificate must have a Common

Name beginning QMGR., and must have at least two Organizational Unit names,

the first of which is IBM and the second WEBSPHERE. Checking is not

case-sensitive.

If SSLPEERNAME is not set, no such checking is performed. SSLPEERNAME is

ignored if SSLCIPHERSUITE is not set.

The SSLCRL property specifies zero or more CRL (Certificate Revocation List)

servers. Use of this property requires a JVM at Java 2 v1.4. This is a

space-delimited list of entries of the form:

ldap://hostname:[port]

optionally followed by a single /. If port is omitted, the default LDAP port of 389

is assumed. At connect-time, the SSL certificate presented by the server is checked

against the specified CRL servers. See WebSphere MQ Security for more about CRL

security.

If SSLCRL is not set, no such checking is performed. SSLCRL is ignored if

SSLCIPHERSUITE is not set.

The SSLRESETCOUNT property represents the total number of bytes sent and

received by a connection before the secret key that is used for encryption is

renegotiated. The number of bytes sent is the number before encryption, and the

number of bytes received is the number after decryption. The number of bytes also

includes control information sent and received by WebSphere MQ classes for JMS.

For example, to configure a ConnectionFactory object that can be used to create a

connection over an SSL enabled MQI channel whose secret key is renegotiated

after 4 MB of data have flowed, issue the following command to JMSAdmin:

ALTER CF(my.cf) SSLRESETCOUNT(4194304)

If the value of SSLRESETCOUNT is zero, which is the default value, the secret key

is never renegotiated. The SSLRESETCOUNT property is ignored if

SSLCIPHERSUITE is not set.

If you are using an HP or Sun Java 2 Software Development Kit (SDK) or Java

Runtime Environment (JRE), do not set SSLRESETCOUNT to a value other than

206 WebSphere MQ: Using Java

zero. If you do set SSLRESETCOUNT to a value other than zero, a connection fails

when it attempts to renegotiate the secret key.

For more information about the secret key that is used for encryption on an SSL

enabled channel, see WebSphere MQ Security.

Rules for selecting the WebSphere MQ messaging provider

mode

The WebSphere MQ messaging provider has two modes of operation: WebSphere

MQ messaging provider normal mode and WebSphere MQ messaging provider

migration mode. The WebSphere MQ messaging provider normal mode uses all

the features of the WebSphere MQ Version 7.0 queue managers to implement JMS.

This mode is used only to connect to a WebSphere MQ queue manager and can

connect to WebSphere MQ Version 7.0 queue managers in either client or bindings

mode. This mode is optimized to use the new WebSphere MQ Version 7.0 function.

If you are not using WebSphere MQ Real-Time Transport, the mode of operation

used is determined primarily by the PROVIDERVERSION property of the

connection factory. If you cannot change the connection factory you are using, you

can use a client configuration property instead called

com.ibm.msg.client.wmq.overrideProviderVersion that overrides any setting on the

connection factory. This override applies to all connection factories in the JVM but

the actual connection factory objects are not modified. You can set

PROVIDERVERSION to three possible values: 7, 6, or unspecified:

PROVIDERVERSION=7

Uses the WebSphere MQ messaging provider normal mode.

 If you set PROVIDERVERSION to 7 only the WebSphere MQ messaging

provider normal mode of operation is available. If the queue manager that

is connected to as a result of the other settings in the connection factory is

not a Version 7.0 queue manager, the createConnection() method fails with

an exception.

The WebSphere MQ messaging provider normal mode uses the sharing

conversations feature and the number of conversations that can be shared

is controlled by the SHARECONV() property on the server connection

channel. If this property is set to 0, you cannot use WebSphere MQ

messaging provider normal mode and the createConnection() method fails

with an exception.

PROVIDERVERSION=6

Uses the WebSphere MQ messaging provider migration mode.

 The WebSphere MQ classes for JMS use the features and algorithms

supplied with WebSphere MQ Version 6.0. If you want to connect to

WebSphere Event Broker or WebSphere Message Broker using WebSphere

MQ Enterprise Transport, you must use this mode. You can connect to a

WebSphere MQ Version 7.0 queue manager using this mode, but none of

the new features of a Version 7.0 queue manager are used, for example,

read ahead or streaming.

PROVIDERVERSION=unspecified

This is the default value and the actual text is ″unspecified″.

 A connection factory that was created with a previous version of

WebSphere MQ classes for JMS in JNDI takes this value when the

connection factory is used with the new version of WebSphere MQ classes

Chapter 2. WebSphere MQ classes for JMS 207

for JMS. The following algorithm is used to determine which mode of

operation is used. This algorithm is used when the createConnection()

method is called and uses other aspects of the connection factory to

determine if WebSphere MQ messaging provider normal mode or

WebSphere MQ messaging provider migration mode is required.

v Firstly, an attempt to use WebSphere MQ messaging provider normal

mode is made.

v If the queue manager connected is not WebSphere MQ Version 7.0, the

connection is closed and WebSphere MQ messaging provider migration

mode is used instead.

v If the SHARECONV() property on the server connection channel is set to

0, the connection is closed and WebSphere MQ messaging provider

migration mode is used instead.

v If BROKERVER is set to 1 or the new default ″unspecified″ value,

WebSphere MQ messaging provider normal mode continues to be used,

and therefore any publish/subscribe operations use the new WebSphere

MQ V7.0 features.

If WebSphere Event Broker or WebSphere Message Broker are used in

compatibility mode (and you want to use Version 6.0 publish/subscribe

function rather than the WebSphere MQ Version 7 publish/subscribe

function), set PROVIDERVERSION to 6 ensure WebSphere MQ

messaging provider migration mode is used.

v If BROKERVER is set to V2 and the value of BROKERQMGR is one of

the following:

– If BROKERQMGR is nonblank, this means BROKERQMGR has been

explicitly changed from the default, so the assumption is the

connection factory really is intended for use with WebSphere Event

Broker or WebSphere Message Broker and WebSphere MQ Enterprise

Transport. Therefore WebSphere MQ messaging provider migration

mode is used.

– If BROKERQMGR is blank and if the specified BROKERCONQ

command queue exists and can be opened for output (that is,

MQOPEN for output succeeds) and PSMODE on the queue manager

is set to COMPAT or DISABLED, WebSphere MQ messaging provider

migration mode is used.

You can find further guidance about using PROVIDERVERSION in When to use

PROVIDERVERSION

When to use PROVIDERVERSION

There are two scenarios where you cannot use the algorithm described in Rules for

selecting the WebSphere MQ messaging provider mode; consider using

PROVIDERVERSION in these scenarios.

1. If WebSphere Event Broker or WebSphere Message Broker is in compatibility

mode, you must specify PROVIDERVERSION for them to work correctly.

2. If you are using WebSphere Application Server Version 6.0.1, WebSphere

Application Server Version 6.0.2, or WebSphere Application Server Version 6.1,

connection factories are defined using the WebSphere Application Server

administrative console.

In WebSphere Application Server the default value of the BROKERVER

property on a connection factory is V2. The default BROKERVER property for

208 WebSphere MQ: Using Java

connection factories created by using JMSAdmin or WebSphere MQ Explorer is

V1. This property is now ″unspecified″ in WebSphere MQ Version 7.0.

If BROKVERVER is set to V2 (either because it was created by WebSphere

Application Server or the connection factory has been used for publish/subscribe

before) and has an existing queue manager that has a BROKECONQ defined

(because it has been used for publish/subscribe messaging before), the WebSphere

MQ messaging provider migration mode is used.

However, if you want the application to use peer-to-peer communication and the

application is using an existing queue manager that has ever done

publish/subscribe, and has a connection factory with BROKERVER set to 2 (if the

connection factory was created in WebSphere Application Server this is the

default), the WebSphere MQ messaging provider migration mode is used. Using

WebSphere MQ messaging provider migration mode in this case is unnecessary;

use WebSphere MQ messaging provider normal mode instead. You can use one of

the following methods to work around this:

v Set BROKERVER to 1 or unspecified. This is dependent on your application.

v Set PROVIDERVERSION to 7, which is a custom property in WebSphere

Application Server Version 6.1. The option to set custom properties in

WebSphere Application Server Version 6.1 and later is not currently documented

in the WebSphere Application Server Information Center.

Alternatively, use the client configuration property (see Rules for selecting the

WebSphere MQ messaging provider mode for details about how you can specify

this system property for all environments), or modify the queue manager

connected so it does not have the BROKERCONQ, or make the queue unusable.

WebSphere MQ classes for JMS packages

For details of the Java classes and interfaces in the various packages the comprise

WebSphere MQ classes for JMS see the information center or the Javadoc

documentation included on the product CDs.

Package com.ibm.jms

This package contains a set of classes that implement the JMS message interfaces.

Package com.ibm.mq

WebSphere MQ classes for Java consist of a set classes that provide an object

model that maps directly to the WMQ object model.

Package com.ibm.mq.constants

This package contains the Java versions of the MQ header files, which are

implemented as Java interfaces which define constants used with the main MQI.

Package com.ibm.mq.exits

This package comprises a set of classes and interfaces which allow the Java

programmer to work with MQ Channel Exits.

Chapter 2. WebSphere MQ classes for JMS 209

Package com.ibm.mq.jmqi

The Java Message Queueing Interface (JMQI) is the interface which represents the

native MQI in the Java environment.

Package com.ibm.mq.jms

WebSphere MQ classes for Java Message Service consist of a number of Java

classes and interfaces that are based on the Sun javax.jms package of interfaces and

classes.

Package com.ibm.msg.client.jms

This package contains interfaces and classes that extend the javax.jms interfaces

and classes, providing additional functionality in a way that is independent of

WebSphere MQ.

Package com.ibm.msg.client.services

Provides other services and information associated with the Classes for JMS.

Package com.ibm.msg.client.wmq

This package comprises a set of classes and interfaces specific to IBM WebSphere

MQ Provider.

Package com.ibm.msg.client.wmq.common

This package comprises a set of helper classes and interfaces specific to IBM

WebSphere MQ Provider.

210 WebSphere MQ: Using Java

Chapter 3. WebSphere MQ classes for Java

This collection of topics contains the documentation for WebSphere MQ classes for

Java.

Getting started with WebSphere MQ classes for Java

This collection of topics gives an overview of WebSphere MQ classes for Java and

their uses.

What are WebSphere MQ classes for Java?

WebSphere MQ classes for Java allow you to use WebSphere MQ in a Java

environment.

WebSphere MQ classes for Java allow a Java application to:

v Connect to WebSphere MQ as a WebSphere MQ client

v Connect directly to a WebSphere MQ queue manager

WebSphere MQ classes for Java encapsulate the Message Queue Interface (MQI),

the native WebSphere MQ API.

WebSphere MQ classes for Java use a similar object model to the C++ and .NET

interfaces to WebSphere MQ.

Why should I use WebSphere MQ classes for Java?

A Java application can use either WebSphere MQ classes for Java or WebSphere

MQ classes for JMS to access WebSphere MQ resources. There are a number of

advantages to using WebSphere MQ classes for Java.

If the following points are significant in your installation, consider using

Websphere MQ classes for Java:

v WebSphere MQ classes for Java encapsulate the Message Queue Interface (MQI),

the native WebSphere MQ API.

– If you are familiar with the use of the MQI in procedural languages, you can

transfer this knowledge to the Java environment.

– You can exploit the full range of features of WebSphere MQ, beyond those

available through JMS.
v WebSphere MQ classes for Java use a similar object model to the C++ and .NET

interfaces to WebSphere MQ. If you are familiar with these interfaces, you can

transfer this knowledge to the Java environment.

Connection options for WebSphere MQ classes for Java

WebSphere MQ classes for Java can connect in client or bindings mode.

Programmable options allow WebSphere MQ classes for Java to connect to

WebSphere MQ in either of the following ways:

v As a WebSphere MQ client using Transmission Control Protocol/Internet

Protocol (TCP/IP)

v In bindings mode, connecting directly to WebSphere MQ using the Java Native

Interface (JNI)

© Copyright IBM Corp. 1996, 2008 211

Clients cannot be run on z/OS, but clients on other platforms can connect to a

WebSphere MQ for z/OS queue manager if the Client Attach Facility is installed.

The following sections describe the client mode and bindings mode connection

options in more detail.

Client connection

To connect to a queue manager in client mode, a WebSphere MQ classes for JMS

application can run on the same system on which the queue manager is running,

or on a different system. In each case, WebSphere MQ classes for JMS connects to

the queue manager over TCP/IP.

Bindings connection

When used in bindings mode, WebSphere MQ classes for Java uses the Java Native

Interface (JNI) to call directly into the existing queue manager API, rather than

communicating through a network. In most environments, connecting in bindings

mode provides better performance for WebSphere MQ classes for Java applications

than connecting in client mode, by avoiding the overheads of TCP/IP

communication.

Prerequisites for WebSphere MQ classes for Java

To use WebSphere MQ classes for Java, you need certain other software products.

For the latest information about the prerequisites for WebSphere MQ classes for

Java, see the WebSphere MQ README file.

To develop WebSphere MQ classes for Java applications, you need a Java

Development Kit (JDK), Version 1.4.2 or later. A suitable JDK is supplied with

WebSphere MQ.

To run WebSphere MQ classes for Java applications, you need the following

software components:

v A WebSphere MQ queue manager, for applications that connect to a queue

manager

v A Java Runtime Environment (JRE), for each system on which you run

applications. A suitable JRE is supplied with WebSphere MQ.

v For i5/OS, QShell, which is option 30 of the operating system

v For z/OS, UNIX System Services (USS)

To determine the supported JDKs for your platform, see www.ibm.com/software/
integration/websphere/mqplatforms/supported.html. The supported JREs are

those JREs that are embedded in the supported JDKs.

If you require SSL connections to use cryptographic modules that have been FIPS

140-2 certified, you need the IBM Java JSSE FIPS provider (IBMJSSEFIPS). Every

IBM JDK and JRE at Version 1.4.2 or later contains IBMJSSEFIPS.

You can use Internet Protocol Version 6 (IPv6) addresses in your WebSphere MQ

classes for Java applications if IPv6 is supported by your Java virtual machine

(JVM) and the TCP/IP implementation on your operating system.

212 WebSphere MQ: Using Java

Installation and configuration of WebSphere MQ classes for Java

This chapter describes the directories and files that are created when you install

WebSphere MQ classes for Java, and tells you how to configure WebSphere MQ

classes for Java after installation.

What is installed for WebSphere MQ classes for Java

The latest version of WebSphere MQ classes for Java is installed with WebSphere

MQ. You might need to override default installation options to make sure this is

done.

Refer to the following documents for more information about installing WebSphere

MQ:

 WebSphere MQ for AIX Quick Beginnings

 WebSphere MQ for HP-UX Quick Beginnings

 WebSphere MQ for i5/OS Quick Beginnings

 WebSphere MQ for Linux Quick Beginnings

 WebSphere MQ for Solaris Quick Beginnings

 WebSphere MQ for Windows Quick Beginnings

 WebSphere MQ for z/OS Program Directory

WebSphere MQ classes for Java are contained in the Java archive (JAR) files,

com.ibm.mq.jar, and com.ibm.mq.jmqi.jar.

Support for standard message headers, such as Programmable Command Format

(PCF), is contained in the JAR file com.ibm.mq.headers.jar.

Support for Programmable Command Format (PCF) is contained in the JAR file

com.ibm.mq.pcf.jar.

The following Java library from Sun Microsystems is distributed with WebSphere

MQ classes for Java:

v connector.jar (Version 1.0)

The sample application called Postcard is in the JAR file com.ibm.mq.postcard.jar.

For more information about this application, see the Quick Beginnings information

for your operating platform.

The Javadoc tool has been used to generate the HTML pages containing the

specifications of the WebSphere MQ classes for Java and WebSphere MQ classes for

JMS APIs. The HTML pages are in the doc subdirectory of the WebSphere MQ

classes for JMS installation directory. On UNIX systems and Windows, the doc

subdirectory contains the individual HTML pages but, on i5/OS and z/OS, the

HTML pages are in a file called wmqjms_javadoc.jar.

When installation is complete, files and samples are installed in the locations

shown in “Installation directories for WebSphere MQ classes for Java” on page 214.

After installation, on any platform other than Windows, you must update your

environment variables as described in “Environment variables relevant to

WebSphere MQ classes for Java” on page 214.

Chapter 3. WebSphere MQ classes for Java 213

Installation directories for WebSphere MQ classes for Java

WebSphere MQ classes for Java files are installed in different locations according to

platform.

Table 46 shows where the WebSphere MQ classes for Java files are installed.

 Table 46. WebSphere MQ classes for Java installation directories

Platform Directory

AIX /usr/mqm/java/lib

HP-UX, Linux, and Solaris /opt/mqm/java/lib

i5/OS /QIBM/ProdData/mqm/java/lib

Windows install_dir\java\lib

z/OS install_dir/mqm/V7R0M0/java/lib

Note: install_dir is the directory in which you installed WebSphere MQ. On Windows, this

directory is normally C:\Program Files\IBM\WebSphere MQ. On z/OS, this directory is

likely to be /usr/lpp.

Some sample applications, such as the Installation Verification Programs (IVPs), are

supplied with WebSphere MQ. Table 47 shows where the sample applications are

installed. The WebSphere MQ classes for Java samples are in a subdirectory called

wmqjava.

 Table 47. Samples directories

Platform Directory

AIX /usr/mqm/samp/wmqjava/

HP-UX, Linux, and Solaris /opt/mqm/samp/wmqjava/

i5/OS /QIBM/ProdData/mqm/java/samples

Windows install_dir\tools\wmqjava\

z/OS install_dir/mqm/V7R0M0/java/samples

Note: install_dir is the directory in which you installed WebSphere MQ. On Windows, this

directory is normally C:\Program Files\IBM\WebSphere MQ. On z/OS, this directory is

likely to be /usr/lpp.

Environment variables relevant to WebSphere MQ classes for

Java

Some environment variables must be set. Specimen values for classpath are given.

For WebSphere MQ classes for Java applications to run, their class path must

include the appropriate WebSphere MQ classes for Java directory. To run the

sample applications, the class path must also include the appropriate samples

directories. This information can be provided in the Java invocation command or

in the CLASSPATH environment variable.

Table 48 on page 215 shows the appropriate CLASSPATH setting to use on each

platform to run WebSphere MQ classes for Java applications, including the sample

applications.

214 WebSphere MQ: Using Java

Table 48. CLASSPATH setting to run WebSphere MQ classes for Java applications,

including the WebSphere MQ classes for Java sample applications

Platform CLASSPATH setting

AIX CLASSPATH=/usr/mqm/java/lib/com.ibm.mq.jar:

/usr/mqm/samp/wmqjava:

HP-UX, Linux,

and Solaris

CLASSPATH=/opt/mqm/java/lib/com.ibm.mq.jar:

/opt/mqm/samp/wmqjava:

i5/OS CLASSPATH=/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jar:

/QIBM/ProdData/mqm/java/samples/wmqjava:

Windows CLASSPATH=install_dir\Java\lib\com.ibm.mq.jar;

install_dir\tools\wmqjava;

z/OS CLASSPATH=install_dir/mqm/V7R0M0/java/lib/com.ibm.mq.jar:

install_dir/mqm/V7R0M0/java/samples/wmqjava:

Note: install_dir is the directory in which you installed WebSphere MQ. On Windows, this

directory is normally C:\Program Files\IBM\WebSphere MQ. On z/OS, this directory is

likely to be /usr/lpp.

The scripts provided with WebSphere MQ classes for Java use the following

environment variables:

MQ_JAVA_DATA_PATH

This environment variable specifies the directory for log and trace output.

MQ_JAVA_INSTALL_PATH

This environment variable specifies the directory where WebSphere MQ

classes for Java are installed, as shown in Table 46 on page 214.

MQ_JAVA_LIB_PATH

This environment variable specifies the directory where the WebSphere MQ

classes for Java libraries are stored, as shown in Table 49 on page 216.

Some scripts supplied with WebSphere MQ classes for Java, such as

IVTRun, use this environment variable.

On Windows, all the environment variables are set automatically during

installation. On any other platform, you must set them yourself. On a UNIX

system, you can use the script setjmsenv (if you are using a 32-bit JVM) or

setjmsenv64 (if you are using a 64-bit JVM) to set the environment variables. On

AIX, these scripts are in the /usr/mqm/java/bin directory and, on HP-UX, Linux,

and Solaris, they are in the /opt/mqm/java/bin directory.

On i5/OS, the environment variable QIBM_MULTI_THREADED must be set to Y.

You can then run multithreaded applications in the same way that you run single

threaded applications.

The WebSphere MQ classes for Java libraries

The location of the WebSphere MQ classes for Java libraries varies according to

platform. Specify this location when you start an application.

To specify the location of the Java Native Interface (JNI) libraries, start your

application using a java command with the following format:

java -Djava.library.path=library_path application_name

where library_path is the path to the WebSphere MQ classes for Java libraries,

which include the JNI libraries. Table 49 on page 216 shows the location of the

WebSphere MQ classes for Java libraries for each platform.

Chapter 3. WebSphere MQ classes for Java 215

Table 49. The location of the WebSphere MQ classes for Java libraries for each platform

Platform Directory containing the WebSphere MQ

classes for Java libraries

AIX /usr/mqm/java/lib (32-bit libraries)

/usr/mqm/java/lib64 (64-bit libraries)

HP-UX

Linux (POWER, x86-64

and zSeries s390x platforms)

Solaris (x86-64 and Sparc platforms)

/opt/mqm/java/lib (32-bit libraries)

/opt/mqm/java/lib64 (64-bit libraries)

Linux (x86 platform) /opt/mqm/java/lib

Windows install_dir\Java\lib (32-bit libraries)

install_dir\Java\lib64 (64-bit libraries)

z/OS install_dir/mqm/V7R0M0/java/lib

(31-bit and 64-bit libraries)

Note: install_dir is the directory in which you installed WebSphere MQ. On Windows, this

directory is normally C:\Program Files\IBM\WebSphere MQ. On z/OS, this directory is

likely to be /usr/lpp.

Note:

1. On AIX, HP-UX, Linux (POWER platform), or Solaris, use either the 32-bit

libraries or the 64-bit libraries. Use the 64-bit libraries only if you are running

your application in a 64-bit Java virtual machine (JVM) on a 64-bit platform.

Otherwise, use the 32-bit libraries.

2. On Windows, you can use the PATH environment variable to specify the

location of the WebSphere MQ classes for Java libraries instead of specifying

their location on the java command.

3. To use WebSphere MQ classes for Java in bindings mode on i5/OS, ensure that

the library QMQMJAVA is in your library list.

4. On z/OS, you can use either a 31-bit or 64-bit Java virtual machine (JVM) when

running applications in WebSphere Application Server. In other environments

on z/OS, you can use only a 31-bit JVM. You do not have to specify which

libraries to use and you do not need to modify the system path to use 64-bit

support.

STEPLIB configuration on z/OS

On z/OS, the STEPLIB used at runtime must contain the WebSphere MQ

SCSQAUTH and SCSQANLE libraries.

From UNIX System Services, you can add these using a line in your .profile as

shown below, replacing thlqual with the high level data set qualifier that you

chose when installing WebSphere MQ:

export STEPLIB=thlqual.SCSQAUTH:thlqual.SCSQANLE:$STEPLIB

In other environments, you typically need to edit the startup JCL to include

SCSQAUTH on the STEPLIB concatenation:

 STEPLIB DD DSN=thlqual.SCSQAUTH,DISP=SHR

 DD DSN=thlqual.SCSQANLE,DISP=SHR

216 WebSphere MQ: Using Java

Running WebSphere MQ classes for Java applications under

the Java Security Manager

WebSphere MQ classes for Java can run with the Java Security Manager enabled.

To successfully run applications with the Security Manager enabled, you must

configure your JVM with a suitable policy definition file.

The simplest way to do this is to change the policy file supplied with the JRE. On

most systems this file is stored in the path lib/security/java.policy, relative to

your JRE directory. You can edit policy files using your preferred editor or the

policytool program supplied with your JRE.

You need to give authority to the com.ibm.mq.jmqi.jar file so that it can:

v Create sockets (in client mode)

v Load the native library (in bindings mode)

v Read various properties from the environment

The system property os.name must be available to the WebSphere MQ classes for

Java when running under the Java Security Manager.

Here is an example of a policy file entry that allows WebSphere MQ classes for

Java to run successfully under the default security manager. Replace the string

/opt/mqm in this example with the location where WebSphere MQ classes for Java

are installed on your system.

grant codeBase "file:/opt/mqm/java/lib/com.ibm.mq.jmqi.jar" {

 permission java.net.SocketPermission "*","connect";

 permission java.lang.RuntimePermission "loadLibrary.*";

};

This example of a policy file enables the WebSphere MQ classes for Java to work

correctly under the security manager, but you might still need to enable your own

code to run correctly before your applications will work.

The sample code shipped with WebSphere MQ classes for Java has not been

specifically enabled for use with the security manager; however the IVT tests run

with the above policy file and the default security manager in place.

Running WebSphere MQ classes for Java applications under

CICS Transaction Server

A WebSphere MQ classes for Java application can be run as a transaction under

CICS® Transaction Server.

To run a WebSphere MQ classes for Java application as a transaction under CICS

Transaction Server for OS/390® or CICS Transaction Server for z/OS, perform the

following steps:

1. Define the application and transaction to CICS by using the supplied CEDA

transaction.

2. Ensure that the WebSphere MQ CICS adapter is installed in your CICS system.

(See WebSphere MQ for z/OS System Setup Guide for details.)

3. Ensure that the JVM environment specified in CICS includes the appropriate

CLASSPATH and LIBPATH entries.

4. Initiate the transaction by using any of your normal processes.

Chapter 3. WebSphere MQ classes for Java 217

For more information on running CICS Java transactions, refer to your CICS

system documentation.

Using WebSphere MQ classes for Java

This collection of topics tells you how to configure your system to run the sample

applications to verify your WebSphere MQ classes for Java installation, and how to

modify the procedures to run your own applications.

The procedures depend on the connection option you want to use. Follow the

instructions in the section that is appropriate for your requirements.

Remember to check the WebSphere MQ README file for later or more specific

information for your environment.

Before attempting to run any WebSphere MQ classes for Java applications in

bindings mode, make sure that you have configured WebSphere MQ as described

in the Quick Beginnings book for your platform or the WebSphere MQ for z/OS

System Setup Guide.

Configuring your queue manager to accept client connections

To configure your queue manager to accept incoming connection requests from

clients, define a server connection channel and start a listener program.

TCP/IP client

1. Define a server connection channel. You can either use the WebSphere MQ

Explorer or the following procedures, depending on your platform:

For i5/OS:

a. Start your queue manager by using the STRMQM command.

b. Define a sample channel called JAVA.CHANNEL by issuing the

following command:

CRTMQMCHL CHLNAME(JAVA.CHANNEL) CHLTYPE(*SVRCN) MQMNAME(QMGRNAME)

 MCAUSERID(SOMEUSERID)

 TEXT(’Sample channel for WebSphere MQ classes for Java’)

where QMGRNAME is the name of your queue manager, and

SOMEUSERID is an i5/OS user ID with appropriate authority to the

WebSphere MQ resources.

For z/OS:

Note: You must have the Client attachment feature installed on your

target queue manager in order to connect using TCP/IP.

a. Start your queue manager by using the START QMGR command.

b. Define a sample channel called JAVA.CHANNEL by issuing the

following command:

DEF CHL(’JAVA.CHANNEL’) CHLTYPE(SVRCONN) TRPTYPE(TCP) +

DESCR(’Sample channel for WebSphere MQ classes for Java’)

For other platforms:

a. Start your queue manager by using the strmqm command.

b. Type the following command to start the runmqsc program:

 runmqsc [QMNAME]

218 WebSphere MQ: Using Java

c. Define a sample channel called JAVA.CHANNEL by issuing the

following command:

DEF CHL(’JAVA.CHANNEL’) CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(’ ’) +

DESCR(’Sample channel for WebSphere MQ classes for Java’)

2. Start a listener program with the following commands:

For UNIX and Windows systems:

Issue one of the following commands:

v runmqlsr -t tcp [-m QMNAME] -p nnnn

Note: If you use the default queue manager, you can omit the -m

option. If you use the default port, 1414, you can omit the -p option.

v START LISTENER TRPTYPE(TCP) PORT(nnnn)

Replace the string nnnn with your chosen port number.

For i5/OS:

Issue the command:

 STRMQMLSR MQMNAME(QMGRNAME)

where QMGRNAME is the name of your queue manager.

For z/OS:

a. Ensure your channel initiator is started. If not, start it by issuing the

START CHINIT command.

b. Start the listener by issuing the command:

START LISTENER TRPTYPE(TCP) PORT(nnnn)

Replace the string nnnn with your chosen port number.

Verifying your WebSphere MQ classes for Java installation

with the sample application

An installation verification program, MQIVP, is supplied with WebSphere MQ

classes for Java. You can use this program to test all the connection modes of

WebSphere MQ classes for Java.

The program prompts for a number of choices and other data to determine which

connection mode you want to verify. Use the following procedure to verify your

installation:

1. If you are going to run the program in client mode, configure your queue

manager as described in “Configuring your queue manager to accept client

connections” on page 218.

2. The user ID associated with the program when it runs must have authority to

access certain resources of the queue manager. Grant the following authorities

to the user ID:

v The authority to connect to the queue manager, and the authority to inquire

on the attributes of the queue manager object

v The authority to put messages on the queue

SYSTEM.DEFAULT.LOCAL.QUEUE, and the authority to get messages from

the queue

For information about how to grant authorities, see the following books:

v WebSphere MQ for i5/OS System Administration Guide, if the queue

manager is running on i5/OS

v WebSphere MQ System Administration Guide, if the queue manager is

running on a UNIX system or Windows

Chapter 3. WebSphere MQ classes for Java 219

v WebSphere MQ for z/OS System Setup Guide, if the queue manager is

running on z/OS

If you are going to run the program in client mode, see also WebSphere MQ

Clients.

Perform the remaining steps of this procedure on the system on which you are

going to run the program.

3. Make sure that you have updated your CLASSPATH environment variable

according to the instructions in “Environment variables relevant to WebSphere

MQ classes for Java” on page 214.

4. At a command prompt, enter:

java -Djava.library.path=library_path MQIVP

where library_path is the path to the WebSphere MQ classes for Java libraries

(see “The WebSphere MQ classes for Java libraries” on page 215).

The program tries to:

a. Connect to the queue manager

b. Open the queue SYSTEM.DEFAULT.LOCAL.QUEUE, put a message on the

queue, get a message from the queue, and then close the queue

c. Disconnect from the queue manager

d. Return a message if the operations are successful
5. At the prompt marked

(§):

v To use a TCP/IP connection, enter a WebSphere MQ server host name.

v To use native connection (bindings mode), leave the field blank. (Do not

enter a name.)

Here is an example of the prompts and responses you might see. The actual

prompts and your responses depend on your WebSphere MQ network.

Please enter the IP address of the MQ server : ipaddress(§)

Please enter the port to connect to : (1414)(§§)

Please enter the server connection channel name : channelname(§§)

Please enter the queue manager name : qmname

Success: Connected to queue manager.

Success: Opened SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Put a message to SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Got a message from SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Closed SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Disconnected from queue manager

Tests complete -

SUCCESS: This MQ Transport is functioning correctly.

Press Enter to continue ...

Note:

1. On z/OS, leave the field blank at prompt marked

(§).

2. If you choose server connection, you do not see the prompts marked

(§§).

3. On i5/OS, you can issue the command java MQIVP only from QShell.

Alternatively, you can run the application by using the CL command RUNJVA

CLASS(MQIVP).

Solving WebSphere MQ classes for Java problems

Initially, run the installation verification program. You might also have to use the

trace facility.

220 WebSphere MQ: Using Java

If a program does not complete successfully, run the installation verification

program, and follow the advice given in the diagnostic messages. This program is

described in “Verifying your WebSphere MQ classes for Java installation with the

sample application” on page 219.

If the problems continue and you need to contact the IBM service team, you might

be asked to turn on the trace facility. Do this as shown in the following example.

To trace the MQIVP program, enter the following command:

 java -Djava.library.path=library_path MQIVP -trace

where library_path is the path to the WebSphere MQ classes for Java libraries (see

“The WebSphere MQ classes for Java libraries” on page 215).

For more information about how to use trace, see “Tracing WebSphere MQ classes

for Java programs” on page 264.

Introduction for programmers

This collection of topics contains general information for programmers.

For more detailed information about writing programs, see “Writing WebSphere

MQ classes for Java applications” on page 223.

The WebSphere MQ classes for Java interface

The procedural WebSphere MQ application programming interface is built around

verbs such as those listed below:

 MQBACK, MQBEGIN, MQCLOSE, MQCMIT, MQCONN, MQDISC,

 MQGET, MQINQ, MQOPEN, MQPUT, MQSET, MQSUB, MQSUBRQ

These verbs all take, as a parameter, a handle to the WebSphere MQ object on

which they are to operate. Because Java is object-oriented, the Java programming

interface turns this round. Your program consists of a set of WebSphere MQ

objects, which you act upon by calling methods on those objects.

When you use the procedural interface, you disconnect from a queue manager by

using the call MQDISC(Hconn, CompCode, Reason), where Hconn is a handle to

the queue manager.

In the Java interface, the queue manager is represented by an object of class

MQQueueManager. You disconnect from the queue manager by calling the

disconnect() method on that class.

// declare an object of type queue manager

MQQueueManager queueManager=new MQQueueManager();

...

// do something...

...

// disconnect from the queue manager

queueManager.disconnect();

What is new in Websphere MQ Version 7.0?

Websphere MQ classes for Java, as supplied in WebSphere MQ Version 7.0,

contains a number of enhancements compared to previous releases.

The following sections summarize the key enhancements.

Chapter 3. WebSphere MQ classes for Java 221

Embedded publish/subscribe function

The API is extended to support publish/subscribe applications. For more

information, see “Publish/subscribe in WebSphere MQ classes for Java” on page

231.

Read ahead

A WebSphere MQ classes for Java client can be configured to use read ahead. Read

ahead allows messages to be sent to a client before an application requests them.

For more information, see “Improving the performance of nonpersistent messages”

on page 231.

Asynchronous put

In WebSphere MQ Version 7.0, you can choose to put a message to a queue or

topic using the MQPUT or MQPUT1 call without the application waiting for the

queue manager to complete the call. In procedural languages, this is done by using

the MQPUT or MQPUT1 call, setting the MQPMO_ASYNC_REPONSE option. In

WebSphere MQ classes for Java, you set MQPMO_ASYNC_RESPONSE in the

MQPutMessageOptions parameter passed to MQDestination.put(). For more

information, see “Putting messages asynchronously using WebSphere MQ classes

for Java” on page 231

Sharing a communications connection

In WebSphere MQ V7.0, each connection to the queue manager using the same

MQI channel can share a single TCP connection. This arrangement means that

fewer network resources are required and the total time taken to create multiple

connections to the queue manager is reduced, particularly when using SSL because

the SSL handshake takes place only once at the start of the TCP connection. For

more information, see “Sharing a TCP/IP connection in WebSphere MQ classes for

Java” on page 247.

Message properties

WebSphere MQ V7.0 introduces the general availability of message properties,

previously only available in WebSphere MQ classes for JMS. You can add new

properties to any message without affecting applications that currently process that

message. For more information, see “Handling message properties” on page 237.

Existing applications which rely on the presence of MQRFH2s containing

properties must be changed to use the get*Property methods or to specify

MQC.MQGMO_PROPERTIES_FORCE_MQRFH2 to continue receiving properties

in the MQRFH2 format. If the application cannot be changed then the queue

attribute PropertyControl can be changed to the value MQPROP_FORCE_MQRFH2

so that properties are always returned in MQRFH2 form.

WebSphere MQ message headers

Java classes representing various types of message header are provided, with two

helper classes to assist with reading and parsing header content. For more

information, see “Handling WebSphere MQ message headers” on page 231.

222 WebSphere MQ: Using Java

PCF messages

Java classes are provided to create and parse PCF-structured messages, and to

facilitate sending PCF requests and collecting PCF responses. For more

information, see “Handling PCF messages” on page 237.

Channel exits

Three new interfaces are defined. Use these to define classes to use as channel

exits. The old channel exit interfaces are also still supported, but the new interfaces

offer improved functionality and performance. For more information, see “Using

channel exits in WebSphere MQ classes for Java” on page 241.

Client configuration files

On all platforms, the WebSphere® MQ client configuration file is used to specify

the client configuration options. These apply to WebSphere MQ classes for Java

applications as well as to applications using procedural languages. For more

information see WebSphere MQ System Administration Guide.

MQC is replaced by MQConstants

A new package, com.ibm.mq.constants, is supplied with WebSphere MQ Version

7.0. This package contains the class MQConstants, which implements a number of

interfaces. MQConstants contains definitions of all the constants that were in the

MQC interface and a number of new constants. The interfaces in this package

closely follow the names of the constants header files used in Websphere MQ.

For example, the interface CMQC contains a constant MQOO_INPUT_SHARED;

this corresponds to the header file cmqc.h and the constant

MQOO_INPUT_SHARED.

com.ibm.mq.constants can be used with both WebSphere MQ classes for Java and

WebSphere MQ classes for JMS.

MQC is still present, and has the constants it previously had; however, for any

new applications, you should use the com.ibm.mq.constants package.

Writing WebSphere MQ classes for Java applications

This collection of topics provides information to assist with writing Java

applications to interact with WebSphere MQ systems.

To use WebSphere MQ classes for Java to access WebSphere MQ queues, you write

Java applications that contain calls that put messages onto, and get messages from,

WebSphere MQ queues. For details of individual classes, see “WebSphere MQ

classes for Java packages” on page 272.

Connection differences

The way you program for WebSphere MQ classes for Java has some dependencies

on the connection modes you want to use.

Client connections

When WebSphere MQ classes for Java is used as a client, it is similar to the

WebSphere MQ C client, but has a number of differences.

Chapter 3. WebSphere MQ classes for Java 223

If you are programming for WebSphere MQ classes for Java for use as a client, be

aware of the following differences:

v It supports only TCP/IP.

v It does not read any WebSphere MQ environment variables at startup.

v Information that would be stored in a channel definition and in environment

variables is stored in a class called Environment. Alternatively, this information

can be passed as parameters when the connection is made.

v Error and exception conditions are written to a log specified in the MQException

class. The default error destination is the Java console.

v It accesses client configuration information from an WebSphere MQ client

configuration file rather than a qm.ini file. Values in qm.ini have no effect.

When used in client mode, WebSphere MQ classes for Java does not support the

MQBEGIN call.

For general information on WebSphere MQ clients, see WebSphere MQ Clients.

Bindings mode

The bindings mode of WebSphere MQ classes for Java differs from the client mode

in three main ways.

If you are programming for WebSphere MQ classes for Java for use in bindings

mode, be aware of the following differences from client mode:

v The bindings support the MQBEGIN call

v Fast-path bindings into the WebSphere MQ queue manager are supported

v Most of the parameters provided by the MQEnvironment class not relevant to

bindings mode and are ignored

Note: WebSphere MQ for i5/OS and WebSphere MQ for z/OS do not support the

use of MQBEGIN to initiate global units of work that are coordinated by the queue

manager.

Defining which connection to use

The type of connection to use is determined by the setting of variables in the

MQEnvironment class.

Two variables are used:

MQEnvironment.properties

The connection type is determined by the value associated with the key

name MQC.TRANSPORT_PROPERTY. Possible values are as follows:

MQC.TRANSPORT_MQSERIES_BINDINGS

Connect in bindings mode

MQC.TRANSPORT_MQSERIES_CLIENT

Connect in client mode

MQC.TRANSPORT_MQSERIES

Connection mode is determined by the value of the hostname property

MQEnvironment.hostname

Set the value of this variable as follows:

v For client connections, set this to the host name of the WebSphere MQ

server to which you want to connect

224 WebSphere MQ: Using Java

v For bindings mode, leave this unset, or set it to null

Operations on queue managers

This collection of topics describes how to connect to, and disconnect from, a queue

manager using WebSphere MQ classes for Java.

Setting up the WebSphere MQ environment

For an application to connect to a queue manager in client mode, the application

must specify the channel name, host name, and port number.

The information in this section is not relevant if your application connects to a

queue manager in bindings mode.

You can specify the channel name, host name, and port number in one of two

ways; either as fields in the MQEnvironment class or as properties of the

MQQueueManager object.

If you set fields in MQEnvironment, they apply to your whole application, except

where they are overridden by a properties Hashtable. To specify the channel name

and host name in MQEnvironment, use the following code:

MQEnvironment.hostname = "host.domain.com";

MQEnvironment.channel = "java.client.channel";

This is equivalent to an MQSERVER environment variable setting of:

"java.client.channel/TCP/host.domain.com".

By default, the Java clients attempt to connect to a WebSphere MQ listener at port

1414. To specify a different port, use the code:

MQEnvironment.port = nnnn;

If you pass properties to a queue manager object at its creation, they apply only to

that queue manager. Create entries in a Hashtable with keys of hostname, channel,

and, optionally, port, and with appropriate values. To use the default port, 1414,

you can omit the port entry. Create the MQQueueManager using a constructor that

accepts the properties Hashtable.

Connecting to a queue manager

Connect to a queue manager by creating a new instance of the MQQueueManager

class. Disconnect from a queue manager by calling the disconnect() method.

You are now ready to connect to a queue manager by creating a new instance of

the MQQueueManager class:

MQQueueManager queueManager = new MQQueueManager("qMgrName");

To disconnect from a queue manager, call the disconnect() method on the queue

manager:

queueManager.disconnect();

If you call the disconnect method, all open queues and processes that you have

accessed through that queue manager are closed. However, it is good

programming practice to close these resources explicitly when you finish using

them. To do this, use the close() method on the relevant objects.

Chapter 3. WebSphere MQ classes for Java 225

The commit() and backout() methods on a queue manager are equivalent to the

MQCMIT and MQBACK calls that are used with the procedural interface.

Using a client channel definition table with WebSphere MQ

classes for Java

A WebSphere MQ classes for Java client application can use client connection

channel definitions stored in a client channel definition table.

As an alternative to creating a client connection channel definition by setting

certain fields and environment properties in the MQEnvironment class or passing

them to an MQQueueManager in a properties Hashtable, a WebSphere MQ classes

for Java client application can use client connection channel definitions that are

stored in a client channel definition table. These definitions are created by

WebSphere MQ Script (MQSC) commands or WebSphere MQ Programmable

Command Format (PCF) commands, or using the WebSphere MQ Explorer. When

the application creates an MQQueueManager object, the WebSphere MQ classes for

Java client searches the client channel definition table for a suitable client

connection channel definition, and uses the channel definition to start an MQI

channel. For more information about client channel definition tables and how to

construct one, see WebSphere MQ Clients.

To use a client channel definition table, an application must first create a URL

object. The URL object encapsulates a uniform resource locator (URL) that

identifies the name and location of the file containing the client channel definition

table and specifies how the file can be accessed.

For example, if the file ccdt1.tab contains a client channel definition table and is

stored on the same system on which the application is running, the application can

create a URL object in the following way:

java.net.URL chanTab1 = new URL("file:///home/admdata/ccdt1.tab");

As another example, suppose the file ccdt2.tab contains a client channel definition

table and is stored on a system that is different to the one on which the application

is running. If the file can be accessed using the FTP protocol, the application can

create a URL object in the following way:

java.net.URL chanTab2 = new URL("ftp://ftp.server/admdata/ccdt2.tab");

After the application has created a URL object, the application can create an

MQQueueManager object using one of the constructors that takes a URL object as

a parameter. Here is an example:

MQQueueManager mars = new MQQueueManager("MARS", chanTab2);

This statement causes the WebSphere MQ classes for Java client to access the client

channel definition table identified by the URL object chanTab2, search the table for

a suitable client connection channel definition, and then use the channel definition

to start an MQI channel to the queue manager called MARS.

Note the following points that apply if an application uses a client channel

definition table:

v When the application creates an MQQueueManager object using a constructor

that takes a URL object as a parameter, no channel name must be set in the

MQEnvironment class, either as a field or as an environment property. If a

channel name is set, the WebSphere MQ classes for Java client throws an

226 WebSphere MQ: Using Java

MQException. The field or environment property specifying the channel name is

considered to be set if its value is anything other than null, an empty string, or a

string containing all blank characters.

v The queueManagerName parameter on the MQQueueManager constructor can

have one of the following values:

– The name of a queue manager

– An asterisk (*) followed by the name of a queue manager group

– An asterisk (*)

– Null, an empty string, or a string containing all blank characters

These are the same values that can be used for the QMgrName parameter on an

MQCONN call issued by a client application that is using Message Queue

Interface (MQI). For more information about the meaning of these values

therefore, see the WebSphere MQ Application Programming Reference and

WebSphere MQ Clients. The way that the WebSphere MQ classes for Java client

uses the queueManagerName parameter to search the client channel definition

table is also as described in these books. If your application uses connection

pooling, see also “Controlling the default connection pool” on page 248.

v When the WebSphere MQ classes for Java client finds a suitable client

connection channel definition in the client channel definition table, it uses only

the information extracted from this channel definition to start an MQI channel.

Any channel related fields or environment properties that the application might

have set in the MQEnvironment class are ignored.

In particular, note the following points if you are using Secure Sockets Layer

(SSL):

– An MQI channel uses SSL only if the channel definition extracted from the

client channel definition table specifies the name of a CipherSpec supported

by the WebSphere MQ classes for Java client.

– A client channel definition table also contains information about the location

of Lightweight Directory Access Protocol (LDAP) servers that hold certificate

revocation lists (CRLs). The WebSphere MQ classes for Java client uses only

this information to access LDAP servers that hold CRLs.

For more information about using SSL with a client channel definition table, see

WebSphere MQ Clients.

Note also the following points if you are using channel exits:

– An MQI channel uses the channel exits and associated user data specified by

the channel definition extracted from the client channel definition table in

preference to channel exits and data specified using other methods.

– A channel definition extracted from a client channel definition table can

specify channel exits that are written in Java, C, or C++. For more information

about how to write a channel exit in Java, see “Using channel exits in

WebSphere MQ classes for Java” on page 241. For more information about

how to write a channel exit in other languages, see “Using channel exits not

written in Java with WebSphere MQ classes for Java” on page 245.

Specifying a range of ports for client connections

You can specify a port, or a range of ports, that an application can bind to in either

of two ways.

When a WebSphere MQ classes for Java application attempts to connect to a

WebSphere MQ queue manager in client mode, a firewall might allow only those

Chapter 3. WebSphere MQ classes for Java 227

connections that originate from specified ports or range of ports. In this situation,

you can specify a port, or a range of ports, that the application can bind to. You

can do this in the following ways:

v You can set the localAddressSetting field in the MQEnvironment class. Here is

an example:

MQEnvironment.localAddressSetting = "9.20.0.1(2000,3000)";

v You can set the environment property MQC.LOCAL_ADDRESS_PROPERTY.

Here is an example:

(MQEnvironment.properties).put(MQC.LOCAL_ADDRESS_PROPERTY,

 "9.20.0.1(2000,3000)");

v When you can construct the MQQueueManager object, you can pass a properties

Hashtable containing a LOCAL_ADDRESS_PROPERTY with the value

″9.20.0.1(2000,3000)″

In each of these examples, when the application connects to a queue manager

subsequently, the application binds to a local IP address and port number in the

range 9.20.0.1(2000) to 9.20.0.1(3000).

In a system with more than one network interface, you can also use the

localAddressSetting field, or the environment property

MQC.LOCAL_ADDRESS_PROPERTY, to specify which network interface must be

used for a connection.

Connection errors might occur if you restrict the range of ports. If an error occurs,

an MQException is thrown containing the WebSphere MQ reason code

MQRC_Q_MGR_NOT_AVAILABLE and the following message:

Socket connection attempt refused due to LOCAL_ADDRESS_PROPERTY restrictions

An error might occur if all the ports in the specified range are in use, or if the

specified IP address, host name, or port number is not valid (a negative port

number, for example).

Accessing queues, topics, and processes

To access queues, topics, and processes, use methods of the MQQueueManager

class. The MQOD (object descriptor structure) is collapsed into the parameters of

these methods.

Queues

To open a queue you can use the accessQueue method of the MQQueueManager

class. For example, on a queue manager called queueManager, use the following

code:

MQQueue queue = queueManager.accessQueue("qName");

The accessQueue method returns a new object of class MQQueue.

When you have finished using the queue, use the close() method to close it, as in

the following example:

queue.close();

You can also create a queue by using the MQQueue constructor. The parameters

are exactly the same as for the accessQueue method, with the addition of a queue

manager parameter. For example:

MQQueue queue = new MQQueue(queueManager,

 "qName");

228 WebSphere MQ: Using Java

You can specify a number of options when you create queues. For details of these,

see the description of the MQQueue class in this manual. Constructing a queue

object in this way enables you to write your own subclasses of MQQueue.

Topics

Similarly, you can open a topic using the accessTopic method of the

MQQueueManager class and close it using its close() method, and you can create a

topic by using the MQTopic constructor.

You can specify a number of options when you create topics. For details of these,

see the description of the MQTopic class in this manual. Constructing a topic object

in this way enables you to write your own subclasses of MQTopic.

A topic must be opened either for publication or for subscription. The

MQQueueManager class has eight accessTopic methods and the Topic class has

eight constructors. In each case, four of these have a destination parameter and

four have a subscriptionName parameter (including two that have both). These

can only be used to open the topic for subscriptions. The two remaining methods

have an openAs parameter, and the topic can be opened for either publication or

subscription depending on the value of the openAs parameter.

To create a topic as a durable subscriber use either an accessTopic method of the

MQQueueManager class or an MQTopic constructor that accepts a subscription

name and, in either case, set the CMQC.MQSO_DURABLE option.

Processes

To access a process, use the accessProcess method of the MQQueueManager.

The accessProcess method returns a new object of class MQProcess.

When you have finished using the process object, use the close() method to close it,

as in the following example:

process.close();

You can also create a process by using the MQProcess constructor. The parameters

are exactly the same as for the accessProcess method, with the addition of a queue

manager parameter. Constructing a process object in this way enables you to write

your own subclasses of MQProcess.

Handling messages

Messages are represented by the MQMessage class. You put and get messages

using methods of the MQDestination class, which has subclasses of MQQueue and

MQTopic.

Put messages onto queues or topics using the put() method of the MQDestination

class. You get messages from queues or topics using the get() method of the

MQDestination class. Unlike the procedural interface, where MQPUT and MQGET

put and get arrays of bytes, the Java programming language puts and gets

instances of the MQMessage class. The MQMessage class encapsulates the data

buffer that contains the actual message data, together with all the MQMD (message

descriptor) parameters and message properties that describe that message.

Chapter 3. WebSphere MQ classes for Java 229

To build a new message, create a new instance of the MQMessage class, and use

the writeXXX methods to put data into the message buffer.

When the new message instance is created, all the MQMD parameters are

automatically set to their default values, as defined in the WebSphere MQ

Application Programming Reference. The put() method of MQDestination also

takes an instance of the MQPutMessageOptions class as a parameter. This class

represents the MQPMO structure. The following example creates a message and

puts it onto a queue:

// Build a new message containing my age followed by my name

MQMessage myMessage = new MQMessage();

myMessage.writeInt(25);

String name = "Charlie Jordan";

myMessage.writeInt(name.length());

myMessage.writeBytes(name);

// Use the default put message options...

MQPutMessageOptions pmo = new MQPutMessageOptions();

// put the message!

queue.put(myMessage,pmo);

The get() method of MQDestination returns a new instance of MQMessage, which

represents the message just taken from the queue. It also takes an instance of the

MQGetMessageOptions class as a parameter. This class represents the MQGMO

structure.

You do not need to specify a maximum message size, because the get() method

automatically adjusts the size of its internal buffer to fit the incoming message. Use

the readXXX methods of the MQMessage class to access the data in the returned

message.

The following example shows how to get a message from a queue:

// Get a message from the queue

MQMessage theMessage = new MQMessage();

MQGetMessageOptions gmo = new MQGetMessageOptions();

queue.get(theMessage,gmo); // has default values

// Extract the message data

int age = theMessage.readInt();

int strLen = theMessage.readInt();

byte[] strData = new byte[strLen];

theMessage.readFully(strData,0,strLen);

String name = new String(strData,0);

You can alter the number format that the read and write methods use by setting

the encoding member variable.

You can alter the character set to use for reading and writing strings by setting the

characterSet member variable.

See the description of class com.ibm.mq.MQMessage later in this book for more

details.

Note: The writeUTF() method of MQMessage automatically encodes the length of

the string as well as the Unicode bytes it contains. When your message will be

read by another Java program (using readUTF()), this is the simplest way to send

string information.

230 WebSphere MQ: Using Java

Improving the performance of nonpersistent messages

To improve performance when browsing messages or consuming nonpersistent

messages from a client application, you can use read ahead. Client applications

using MQGET or asynchronous consume will benefit from the performance

improvements when browsing messages or consuming nonpersistent messages.

For general information about the read ahead facility, see the topic on improving

performance of non-persistent messages in WebSphere MQ Application Programming

Guide.

In WebSphere MQ classes for Java, you use the CMQC.MQSO_READ_AHEAD and

CMQC.MQSO_NO_READ_AHEAD properties of an MQQueue or MQTopic object

to determine whether message consumers and queue browsers are allowed to use

read ahead on that object.

Putting messages asynchronously using WebSphere MQ classes

for Java

To put a message asynchronously, set MQPMO_ASYNC_RESPONSE.

You put messages onto queues or topics using the put() method of the

MQDestination class. To put a message asynchronously, that is, allowing the

operation to complete without waiting for a response from the queue manager, you

can set MQPMO_ASYNC_RESPONSE in the options field of

MQPutMessageOptions. To determine the success or failure of asynchronous puts,

use the MQQueueManager.getAsyncStatus call.

Publish/subscribe in WebSphere MQ classes for Java

In WebSphere MQ classes for Java, the topic is represented by the MQTopic class,

and you publish to it using the MQTopic.put() methods.

For general information about WebSphere MQ publish/subscribe, see the

Publish/Subscribe User’s Guide.

Handling WebSphere MQ message headers

Java classes are provided representing different types of message header. Two

helper classes are also provided.

Header objects are described by the MQHeader interface, which provides

general-purpose methods for accessing header fields and for reading and writing

message content. Each header type has its own class that implements the

MQHeader interface and adds getter and setter methods for individual fields. For

example, the MQRFH2 header type is represented by the MQRFH2 class; the

MQDLH header type by the MQDLH class, and so on. The header classes perform

any necessary data conversion automatically, and can read or write data in any

specified numeric encoding or character set (CCSID).

Two helper classes, MQHeaderIterator and MQHeaderList, assist with reading and

decoding (parsing) the header content in messages:

v The MQHeaderIterator class works like a java.util.Iterator. For as long as there

are more headers in the message, the next() method returns true, and the

nextHeader() or next() method returns the next header object.

v The MQHeaderList works like a java.util.List. Like the MQHeaderIterator, it

parses header content, but it also allows you to to search for particular headers,

add new headers, remove existing headers, update header fields and then write

Chapter 3. WebSphere MQ classes for Java 231

the header content back to a message. Alternatively, you can create an empty

MQHeaderList, then populate it with header instances and write it to a message

once or repeatedly.

The MQHeaderIterator and MQHeaderList classes use the information in the

MQHeaderRegistry to know which WebSphere MQ header classes are associated

with particular message types and formats. The MQHeaderRegistry is configured

with knowledge of all current WebSphere MQ formats and header types and their

implementation classes, and you can also register your own header types.

Support is provided for the following commonly used Websphere MQ headers

v MQRFH – Rules and formatting header

v MQRFH2 – Like MQRFH, used to pass messages to and from a message broker

belonging to WebSphere Message Broker. Also used to contain message

properties

v MQCIH – CICS Bridge

v MQDLH – Dead letter header

v MQIIH – IMS™ information header

v MQRMH – reference message header

v MQSAPH – SAP header

v MQWIH – Work information header

v MQXQH - Transmission Queue header

v MQDH – Distribution header

v MQEPH – Encapsulated PCF header

You can also define classes representing your own headers.

Printing all the headers in a message

In this example, an instance of MQHeaderIterator parses the headers in an

MQMessage that has been received from a queue. The MQHeader objects returned

from the nextHeader() method display their structure and contents when their

toString method is invoked.

import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQHeader;

import com.ibm.mq.headers.MQHeaderIterator;

...

MQMessage message = ... // Message received from a queue.

MQHeaderIterator it = new MQHeaderIterator (message);

while (it.hasNext ())

{

 MQHeader header = it.nextHeader ();

 System.out.println ("Header type " + header.type () + ": " + header);

}

Skipping over the headers in a message

In this example, the skipHeaders() method of MQHeaderIterator positions the

message read cursor immediately after the last header.

import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQHeaderIterator;

...

MQMessage message = ... // Message received from a queue.

MQHeaderIterator it = new MQHeaderIterator (message);

it.skipHeaders ();

232 WebSphere MQ: Using Java

Finding the reason code in a dead-letter message

In this example, the read method populates the MQDLH object by reading from

the message. After the read operation, the message read cursor is positioned

immediately after the MQDLH header content.

Messages on the queue manager’s dead-letter queue are prefixed with a dead-letter

header (MQDLH). To decide how to handle these messages - for example, to

determine whether to retry or discard them - a dead-letter handling application

must look at the reason code contained in the MQDLH.

import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQDLH;

...

MQMessage message = ... // Message received from the dead-letter queue.

MQDLH dlh = new MQDLH ();

dlh.read (message);

System.out.println ("Reason: " + dlh.getReason ());

All header classes also provide a convenience constructor to initialize themselves

directly from the message in a single step. So the code in this example could be

simplified as follows:

import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQDLH;

...

MQMessage message = ... // Message received from the dead-letter queue.

MQDLH dlh = new MQDLH (message);

System.out.println ("Reason: " + dlh.getReason ());

Reading and removing the MQDLH from a dead-letter message

In this example, MQDLH is used to remove the header from a dead-letter message.

A dead-letter handling application will typically resubmit messages that have been

rejected if their reason code indicates a transient error. Before resubmitting the

message, it must remove the MQDLH header.

This example performs the following steps (see the comments in the example

code):

1. The MQHeaderList reads the entire message, and each header encountered in

the message becomes an item in the list.

2. Dead-letter messages contain an MQDLH as their first header, so this can be

found in the first item of the header list. The MQDLH has already been

populated from the message when the MQHeaderList is built, so there is no

need to invoke its read method.

3. The reason code is extracted using the getReason() method provided by the

MQDLH class.

4. The reason code has been inspected, and indicates that it is appropriate to

resubmit the message. The MQDLH is removed using the MQHeaderList

remove() method.

5. The MQHeaderList writes its remaining content to a new message object. The

new message now contains everything in the original message except the

MQDLH and can be written to a queue. The true argument to the constructor

and to the write method indicates that the message body is to be held within

the MQHeaderList, and written out again.

Chapter 3. WebSphere MQ classes for Java 233

6. The format field in the message descriptor of the new message now contains

the value that was previously in the MQDLH format field. The message data

matches the numeric encoding and CCSID set in the message descriptor.
import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQDLH;

import com.ibm.mq.headers.MQHeaderList;

...

MQMessage message = ... // Message received from the dead-letter queue.

MQHeaderList list = new MQHeaderList (message, true); // Step 1.

MQDLH dlh = (MQDLH) list.get (0); // Step 2.

int reason = dlh.getReason (); // Step 3.

...

list.remove (dlh); // Step 4.

MQMessage newMessage = new MQMessage ();

list.write (newMessage, true); // Step 5.

newMessage.format = list.getFormat (); // Step 6.

Printing the content of a message

This example uses MQHeaderList to print out the content of a message, including

its headers.

The output contains a view of all the header contents as well as the body of the

message. The MQHeaderList class decodes all the headers in one go, whereas the

MQHeaderIterator steps through them one at a time under application control. You

might use this technique to provide a simple debugging tool when writing

Websphere MQ applications.

import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQHeaderList;

...

MQMessage message = ... // Message received from a queue.

System.out.println (new MQHeaderList (message, true));

This example also prints out the message descriptor fields, using the MQMD class.

The copyFrom() method of the com.ibm.mq.headers.MQMD class populates the

header object from the message descriptor fields of the MQMessage rather than by

reading the message body.

import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQMD;

import com.ibm.mq.headers.MQHeaderList;

...

MQMessage message = ...

MQMD md = new MQMD ();

...

md.copyFrom (message);

System.out.println (md + "\n" + new MQHeaderList (message, true));

Finding a specific type of header in a message

This example uses the indexOf(String) method of MQHeaderList to find an

MQRFH2 header in a message, if one is present.

import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQHeaderList;

import com.ibm.mq.headers.MQRFH2;

...

MQMessage message = ...

MQHeaderList list = new MQHeaderList (message);

int index = list.indexOf ("MQRFH2");

if (index >= 0)

234 WebSphere MQ: Using Java

{

 MQRFH2 rfh = (MQRFH2) list.get (index);

 ...

}

Analyzing an MQRFH2 header

This example shows how to access a known field value in a named folder, using

the MQRFH2 class.

The MQRFH2 class provides a number of ways to access not only the fields in the

fixed part of the structure, but also the XML-encoded folder contents that are

carried within the NameValueData field. This example shows how to access a

known field value in a named folder - in this instance, the Rto field in the jms

folder, which represents the reply queue name in an MQ JMS message.

MQRFH2 rfh = ...

String value = rfh.getStringFieldValue ("jms", "Rto");

To discover the contents of an MQRFH2 (as opposed to requesting specific fields

directly), you can use the getFolders method to return a list of MQRFH2.Element,

which represents the structure of a folder that could contain fields and other

folders. Setting a field or folder to null removes it from the MQRFH2. When you

manipulate the NameValueData folder contents in this way, the StrucLength field

is automatically updated accordingly.

Reading and writing byte streams other than MQMessage objects

These examples use the header classes to parse and manipulate WebSphere MQ

header content when the data source is not an MQMessage object.

You can use the header classes to parse and manipulate WebSphere MQ header

content even when the data source is something other than an MQMessage object.

The MQHeader interface implemented by every header class provides the methods

int read (java.io.DataInput message, int encoding, int characterSet) and

int write (java.io.DataOutput message, int encoding, int characterSet). The

com.ibm.mq.MQMessage class implements the java.io.DataInput and

java.io.DataOutput interfaces. This means that you can use the two MQHeader

methods above to read and write MQMessage content, overriding the encoding

and CCSID specified in the message descriptor. This is useful for messages that

contain a chain of headers in different encodings.

You can also obtain DataInput and DataOutput objects from other data streams, for

example file or socket streams, or byte arrays carried in JMS messages. The

java.io.DataInputStream and java.io.DataOutputStream classes implement

DataInput and DataOutput respectively. This example reads WebSphere MQ

header content from a byte array:

import java.io.*;

import com.ibm.mq.headers.*;

...

byte [] bytes = ...

DataInput in = new DataInputStream (new ByteArrayInputStream (bytes));

MQHeaderIterator it = new MQHeaderIterator (in, CMQC.MQENC_NATIVE,

 CMQC.MQCCSI_DEFAULT);

The line starting MQHeaderIterator could be replaced with

MQDLH dlh = new MQDLH (in, CMQC.MQENC_NATIVE, CMQC.MQCCSI_DEFAULT);

// or any other header type

This example writes to a byte array using a DataOutputStream:

Chapter 3. WebSphere MQ classes for Java 235

MQHeader header = ... // Could be any header type

ByteArrayOutputStream out = new ByteArrayOutputStream ();

header.write (new DataOutputStream (out), CMQC.MQENC_NATIVE, CMQC.MQCCSI_DEFAULT);

byte [] bytes = out.toByteArray ();

When you work with streams in this way, be careful to use the correct values for

the encoding and characterSet arguments. When reading headers, specify the

encoding and CCSID with which the byte content was originally written. When

writing headers, specify the encoding and CCSID that you want to produce. The

data conversion is performed automatically by the header classes.

Creating classes for new header types

You can create Java classes for header types not supplied with WebSphere MQ

classes for Java.

To add a Java class representing a new header type that you can use in the same

way as any header class supplied with WebSphere MQ classes for Java, you create

a class that implements the MQHeader interface. The simplest approach is to

extend the com.ibm.mq.headers.impl.Header class. This example produces a

fully-functional class representing the MQTM header structure. You do not have to

add individual getter and setter methods for each field, but it is a useful

convenience for users of the header class. The generic getValue and setValue

methods that take a string for the field name will work for all fields defined in the

header type. The inherited read, write and size methods will enable instances of

the new header type to be read and written and will calculate the header size

correctly based upon its field definition. The type definition is created just once,

however many instances of this header class are created. To make the new header

definition available for decoding using the MQHeaderIterator or MQHeaderList

classes, you would register it using the MQHeaderRegistry. Note however that the

MQTM header class is in fact already provided in this package and registered in

the default registry.

import com.ibm.mq.headers.impl.Header;

import com.ibm.mq.headers.impl.HeaderField;

import com.ibm.mq.headers.CMQC;

public class MQTM extends Header {

 final static HeaderType TYPE = new HeaderType ("MQTM");

 final static HeaderField StrucId = TYPE.addMQChar ("StrucId", CMQC.MQTM_STRUC_ID);

 final static HeaderField Version = TYPE.addMQLong ("Version", CMQC.MQTM_VERSION_1);

 final static HeaderField QName = TYPE.addMQChar ("QName", CMQC.MQ_Q_NAME_LENGTH);

 final static HeaderField ProcessName = TYPE.addMQChar ("ProcessName",

 CMQC.MQ_PROCESS_NAME_LENGTH);

 final static HeaderField TriggerData = TYPE.addMQChar ("TriggerData",

 CMQC.MQ_TRIGGER_DATA_LENGTH);

 final static HeaderField ApplType = TYPE.addMQLong ("ApplType");

 final static HeaderField ApplId = TYPE.addMQChar ("ApplId", 256);

 final static HeaderField EnvData = TYPE.addMQChar ("EnvData", 128);

 final static HeaderField UserData = TYPE.addMQChar ("UserData", 128);

 protected MQTM (HeaderType type){

 super (type);

 }

 public String getStrucId () {

 return getStringValue (StrucId);

 }

 public int getVersion () {

 return getIntValue (Version);

 }

 public String getQName () {

 return getStringValue (QName);

236 WebSphere MQ: Using Java

}

 public void setQName (String value) {

 setStringValue (QName, value);

 }

 // ...Add convenience getters and setters for remaining fields in the same way.

}

Handling PCF messages

Java classes are provided to create and parse PCF-structured messages, and to

facilitate sending PCF requests and collecting PCF responses.

Classes PCFMessage & MQCFGR represent arrays of PCF parameter structures.

They provide convenience methods for adding and retrieving PCF parameters.

PCF parameter structures are represented by the classes MQCFH, MQCFIN,

MQCFIN64, MQCFST, MQCFBS, MQCFIL, MQCFIL64 MQCFSL, and MQCFGR.

These share basic operational interfaces:

v Methods to read and write message content: read (), write (), and size ()

v Methods to manipulate parameters: getValue (), setValue (), getParameter () and

others

v The enumerator method .nextParameter (), which parses PCF content in an

MQMessage

The PCF filter parameter is used in inquire commands to provide a filter function.

It in encapsulated in the following classes:

v MQCFIF – integer filter

v MQCFSF – string filter

v MQCFBF – byte filter

Two agent classes, PCFAgent and PCFMessageAgent are provided to manage the

connection to a Queue Manager, the command server queue, and an associated

response queue. PCFMessageAgent extends PCFAgent and should normally be

used in preference to it. The PCFMessageAgent class converts the received

MQMessages and passes them back to the caller as a PCFMessage array. PCFAgent

simply returns an array of MQMessages, which you have to parse before use.

Handling message properties

Function calls to process message handles have no equivalent in WebSphere MQ

classes for Java. To set, return, or delete message handle properties, use methods of

the MQMessage class.

For general information about message properties, see .

In WebSphere MQ classes for Java access to messages is through the MQMessage

class. Message handles are therefore not provided in the Java environment and

there is no equivalent to the WebSphere MQ function calls MQCRTMH,

MQDLTMH, MQMHBUF, and MQBUFMH

To set message handle properties in the procedural interface, you use the call

MQSETMP. In WebSphere MQ classes for Java, use the appropriate method of the

MQMessage class:

v setBooleanProperty

v setByteProperty

v setBytesProperty

Chapter 3. WebSphere MQ classes for Java 237

v setShortProperty

v setIntProperty

v setInt2Property

v setInt4Property

v setInt8Property

v setLongProperty

v setFloatProperty

v setDoubleProperty

v setStringProperty

v setObjectProperty

These are sometimes referred to collectively as the set*property methods.

To return the value of message handle properties in the procedural interface, you

use the call MQINQMP. In WebSphere MQ classes for Java, use the appropriate

method of the MQMessage class:

v getBooleanProperty

v getByteProperty

v getBytesProperty

v getShortProperty

v getIntProperty

v getInt2Property

v getInt4Property

v getInt8Property

v getLongProperty

v getFloatProperty

v getDoubleProperty

v getStringProperty

v getObjectProperty

These are sometimes referred to collectively as the get*property methods.

To delete the value of message handle properties in the procedural interface, you

use the call MQDLTMP. In WebSphere MQ classes for Java, use the deleteProperty

method of the MQMessage class.

Handling errors in WebSphere MQ classes for Java

Handle errors arising from WebSphere MQ classes for Java using Java try and

catch blocks.

Methods in the Java interface do not return a completion code and reason code.

Instead, they throw an exception whenever the completion code and reason code

resulting from a WebSphere MQ call are not both zero. This simplifies the program

logic so that you do not have to check the return codes after each call to

WebSphere MQ. You can decide at which points in your program you want to deal

with the possibility of failure. At these points, you can surround your code with

try and catch blocks, as in the following example:

try {

 myQueue.put(messageA,putMessageOptionsA);

 myQueue.put(messageB,putMessageOptionsB);

}

238 WebSphere MQ: Using Java

catch (MQException ex) {

 // This block of code is only executed if one of

 // the two put methods gave rise to a non-zero

 // completion code or reason code.

 System.out.println("An error occurred during the put operation:" +

 "CC = " + ex.completionCode +

 "RC = " + ex.reasonCode);

 System.out.println("Cause exception:" + ex.getCause());

}

The WebSphere MQ call reason codes reported back in Java exceptions are

documented in WebSphere MQ for z/OS Messages and Codes for z/OS and WebSphere

MQ Messages for all other platforms.

Exceptions that are thrown while a WebSphere MQ classes for Java application is

running are also written to the log. However, an application can call the

MQException.logExclude() method to prevent exceptions associated with a specific

reason code from being logged. You might want to do this in situations where you

expect many exceptions associated with a specific reason code to be thrown, and

you do not want the log to be filled with these exceptions. For example, if your

application attempts to get a message from a queue each time it iterates around a

loop and, for most of these attempts, you expect no suitable message to be on the

queue, you might want to prevent exceptions associated with the reason code

MQRC_NO_MSG_AVAILABLE from being logged. If an application has previously

prevented exceptions associated with a specific reason code from being logged, it

can allow these exceptions to be logged again by calling the method

MQException.logInclude().

Sometimes the reason code does not convey all details associated with the error.

For each exception that is thrown, an application should check the linked

exception. The linked exception itself might have another linked exception, and so

the linked exceptions form a chain leading back to the original underlying

problem. A linked exception is implemented by using the chained exception

mechanism of the java.lang.Throwable class, and an application obtains a linked

exception by calling the Throwable.getCause() method. From an exception that is

an instance of MQException, MQException.getCause() retrieves the underlying

instance of com.ibm.mq.jmqi.JmqiException, and getCause from this exception

retrieves the underlying java.lang.Exception that caused the error.

Getting and setting attribute values in WebSphere MQ classes

for Java

getXXX() and setXXX() methods are provided for many common attributes. Others

can be accessed using the generic inquire() and set() methods.

For many of the common attributes, the classes MQManagedObject,

MQDestination, MQQueue, MQTopic, MQProcess, and MQQueueManager contain

getXXX() and setXXX() methods. These methods allow you to get and set their

attribute values. Note that for MQDestination, MQQueue, and MQTopic, the

methods work only if you specify the appropriate inquire and set flags when you

open the object.

For less common attributes, the MQQueueManager, MQDestination, MQQueue,

MQTopic,, and MQProcess classes all inherit from a class called

MQManagedObject. This class defines the inquire() and set() interfaces.

Chapter 3. WebSphere MQ classes for Java 239

When you create a new queue manager object by using the new operator, it is

automatically opened for inquire. When you use the accessProcess() method to

access a process object, that object is automatically opened for inquire. When you

use the accessQueue() method to access a queue object, that object is not

automatically opened for either inquire or set operations. This is because adding

these options automatically can cause problems with some types of remote queues.

To use the inquire, set, getXXX, and setXXX methods on a queue, you must specify

the appropriate inquire and set flags in the openOptions parameter of the

accessQueue() method. The same is true for destination and topic objects.

The inquire and set methods take three parameters:

v selectors array

v intAttrs array

v charAttrs array

You do not need the SelectorCount, IntAttrCount, and CharAttrLength parameters

that are found in MQINQ, because the length of an array in Java is always known.

The following example shows how to make an inquiry on a queue:

// inquire on a queue

final static int MQIA_DEF_PRIORITY = 6;

final static int MQCA_Q_DESC = 2013;

final static int MQ_Q_DESC_LENGTH = 64;

int[] selectors = new int[2];

int[] intAttrs = new int[1];

byte[] charAttrs = new byte[MQ_Q_DESC_LENGTH]

selectors[0] = MQIA_DEF_PRIORITY;

selectors[1] = MQCA_Q_DESC;

queue.inquire(selectors,intAttrs,charAttrs);

System.out.println("Default Priority = " + intAttrs[0]);

System.out.println("Description : " + new String(charAttrs,0));

Multithreaded programs in Java

The Java runtime environment is inherently multithreaded. WebSphere MQ classes

for Java allows a queue manager object to be shared across multiple threads but

ensures that all access to the target queue manager is synchronized.

Multithreaded programs are hard to avoid in Java. Consider a simple program that

connects to a queue manager and opens a queue at startup. The program displays

a single button on the screen. When a user presses that button, the program fetches

a message from the queue.

The Java runtime environment is inherently multithreaded. Therefore, your

application initialization occurs in one thread, and the code that executes in

response to the button press executes in a separate thread (the user interface

thread).

With the C based WebSphere MQ client, this would cause a problem, because there

are limitations to the sharing of handles across multiple threads. WebSphere MQ

classes for Java relaxes this constraint, allowing a queue manager object (and its

associated queue, topic and process objects) to be shared across multiple threads.

The implementation of WebSphere MQ classes for Java ensures that, for a given

connection (MQQueueManager object instance), all access to the target WebSphere

MQ queue manager is synchronized. A thread that wants to issue a call to a queue

240 WebSphere MQ: Using Java

manager is blocked until all other calls in progress for that connection are

complete. If you require simultaneous access to the same queue manager from

multiple threads within your program, create a new MQQueueManager object for

each thread that requires concurrent access. (This is equivalent to issuing a

separate MQCONN call for each thread.)

Using channel exits in WebSphere MQ classes for Java

An overview of how to use channel exits in an application using the WebSphere

MQ classes for Java.

The following topics describe how to write a channel exit in Java, how to assign it,

and how to pass data to it. They then describe how to use channel exits written in

C and how to use a sequence of channel exits.

Your application must have the correct security permission to load the channel exit

class.

Creating a channel exit in WebSphere MQ classes for Java

You can provide your own channel exits by defining a Java class that implements

an appropriate interface.

To implement an exit, you define a new Java class that implements the appropriate

interface. Three exit interfaces are defined in the com.ibm.mq.exits package:

v WMQSendExit

v WMQReceiveExit

v WMQSecurityExit

Note: Channel exits are supported for client connections only; they are not

supported for bindings connections.

Any SSL encryption defined for a connection is performed after send and security

exits have been invoked. Similarly, decryption is performed before receive and

security exits are invoked.

The following sample defines a class that implements all three interfaces:

public class MyMQExits implements WMQSendExit, WMQReceiveExit, WMQSecurityExit {

 // Default constructor

 public MyMQExits(){

 }

 // This method comes from the send exit interface

 public ByteBuffer channelSendExit(MQCXP channelExitParms,

 MQCD channelDefinition,

 ByteBuffer agentBuffer)

 {

 // Fill in the body of the send exit here

 }

 // This method comes from the receive exit interface

 public ByteBuffer channelReceiveExit(MQCXP channelExitParms,

 MQCD channelDefinition,

 ByteBuffer agentBuffer)

 {

 // Fill in the body of the receive exit here

 }

 // This method comes from the security exit interface

 public ByteBuffer channelSecurityExit(MQCXP channelExitParms,

 MQCD channelDefinition,

 ByteBuffer agentBuffer)

Chapter 3. WebSphere MQ classes for Java 241

{

 // Fill in the body of the security exit here

 }

}

Each exit is passed an MQCXP object and an MQCD object. These objects represent

the MQCXP and MQCD structures defined in the procedural interface.

Any exit class you write must have a constructor. This can be either the default

constructor or one that takes a string argument. If it takes a string then the user

data will be passed into the exit class when it is created. If the exit class contains

both a default constructor and a single argument constructor, the single argument

constructor has priority.

For the send and security exits, your exit code must return the data that you want

to send to the server. For a receive exit, your exit code must return the modified

data that you want WebSphere MQ to interpret.

The simplest possible exit body is:

{ return agentBuffer; }

Do not close the queue manager from within a channel exit.

Using existing channel exit classes

In versions of WebSphere MQ earlier than 7.0, you would implement these exits

using the interfaces MQSendExit, MQReceiveExit, and MQSecurityExit, as in the

following example. This method remains valid, but the new method is preferred

for improved functionality and performance.

public class MyMQExits implements MQSendExit, MQReceiveExit, MQSecurityExit {

 // Default constructor

 public MyMQExits(){

 }

 // This method comes from the send exit

 public byte[] sendExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,

 byte agentBuffer[])

 {

 // Fill in the body of the send exit here

 }

 // This method comes from the receive exit

 public byte[] receiveExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,

 byte agentBuffer[])

 {

 // Fill in the body of the receive exit here

 }

 // This method comes from the security exit

 public byte[] securityExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,

 byte agentBuffer[])

 {

 // Fill in the body of the security exit here

 }

}

Assigning a channel exit in WebSphere MQ classes for Java

You can assign a channel exit using WebSphere MQ classes for Java.

242 WebSphere MQ: Using Java

There is no direct equivalent to the WebSphere MQ channel in WebSphere MQ

classes for Java. Channel exits are assigned to an MQQueueManager. For example,

having defined a class that implements the WMQSecurityExit interface, an

application can use the security exit in one of four ways:

v By assigning an instance of the class to the MQEnvironment.channelSecurityExit

field before creating an MQQueueManager object

v By setting the MQEnvironment.channelSecurityExit field to a string representing

the security exit class before creating an MQQueueManager object

v By creating a key/value pair in the properties Hashtable passed to

MQQueueManager with a key of MQC.SECURITY_EXIT_PROPERTY

v Using a client channel definition table (CCDT)

Any exit assigned by setting the MQEnvironment.channelSecurityExit field to a

string, creating a key/value pair in the properties Hashtable, or using CCDT, must

be written with a default constructor. An exit assigned as an instance of a class

does not need a default constructor, depending on the application.

An application can use a send or a receive exit in a similar way. For example, the

following code fragment shows you how to use the security, send, and receive

exits that are implemented in the class MyMQExits, which was defined previously,

using MQEnvironment:

 MyMQExits myexits = new MyMQExits();

 MQEnvironment.channelSecurityExit = myexits;

 MQEnvironment.channelSendExit = myexits;

 MQEnvironment.channelReceiveExit = myexits;

 :

 MQQueueManager jupiter = new MQQueueManager("JUPITER");

If more than one method is used to assign a channel exit, the order of precedence

is as follows:

v If the URL of a CCDT is passed to the MQQueueManager, the contents of the

CCDT determine the channel exits to be used and any exit definitions in

MQEnvironment or the properties Hashtable are ignored.

v If no CCDT URL is passed, exit definitions from MQEnvironment and the

Hashtable are merged

– If the same exit type is defined in both MQEnvironment and the Hashtable,

the definition in the Hashtable is used.

– If equivalent old and new types of exit are specified (for example the

sendExit field, which can only be used for the type of exit used in versions of

Websphere MQ earlier than Version 7.0, and the channelSendExit field, which

can be used for any send exit), the new exit (channelSendExit) is used rather

than the old exit.

If you have declared a channel exit as a String, you must enable Websphere MQ to

locate the channel exit program. You can do this in various ways, depending on

the environment in which the application is running and on how the channel exit

programs are packaged.

v For an application that is running in an application server, you must store the

files in the directory shown in Table 50 on page 244 or packaged in JAR files

referenced by exitClasspath.

v For an application that is not running in an application server, the following

rules apply:

– If your channel exit classes are packaged in separate JAR files, these JAR files

must be included in the exitClasspath.

Chapter 3. WebSphere MQ classes for Java 243

– If your channel exit classes are not packaged in JAR files, the class files can be

stored in the directory shown in Table 50 or in any directory in the JVM

system Classpath or exitClasspath.

The exitClasspath property can be specified in four ways. In order of priority, these

are as follows:

1. The system property com.ibm.mq.exitClasspath (usually defined on the

command line using the -D option)

2. The exitPath stanza of the mqclient.ini file

3. A Hashtable entry with the key MQC.EXIT_CLASSPATH_PROPERTY

4. The MQEnvironment variable exitClasspath

Separate multiple paths using the java.io.File.pathSeparator character.

 Table 50. The directory for channel exit programs

Platform Directory

AIX, HP-UX, Linux, and Solaris /var/mqm/exits (32-bit channel exit programs)

/var/mqm/exits64 (64-bit channel exit programs)

Windows install_data_dir\exits

Note: install_data_dir is the directory that you chose for the WebSphere MQ data files

during installation. The default directory is C:\Program Files\IBM\WebSphere MQ.

Passing data to channel exits in WebSphere MQ classes for Java

You can pass data to channel exits and return data from channel exits to your

application.

The agentBuffer parameter

For a send exit, the agentBuffer parameter contains the data that is about to be sent.

For a receive exit or a security exit, the agentBuffer parameter contains the data that

has just been received. You do not need a length parameter, because the expression

agentBuffer.length indicates the length of the array.

For the send and security exits, your exit code must return the data that you want

to send to the server. For a receive exit, your exit code must return the modified

data that you want WebSphere MQ to interpret.

The simplest possible exit body is:

{ return agentBuffer; }

Channel exits are called with a buffer that has a backing array. For best

performance, the exit should return a buffer with a backing array.

User data

If an application connects to a queue manager by setting channelSecurityExit,

channelSendExit, or channelReceiveExit, 32 bytes of user data can be passed to the

appropriate channel exit class when it is called, using the

channelSecurityExitUserData, channelSendExitUserData, or

channelReceiveExitUserData fields. This user data is available to the channel exit

class but is refreshed each time the exit is called. Any changes made to the user

data in the channel exit will therefore be lost. If you want to make persistent

changes to data in a channel exit, use the MQCXP exitUserArea. Data in this field

is maintained between invocations of the exit.

244 WebSphere MQ: Using Java

If the application sets securityExit, sendExit, or receiveExit, no user data can be

passed to these channel exit classes.

If an application uses a client channel definition table to connect to a queue

manager, any user data specified in a client connection channel definition is passed

to channel exit classes when they are called. For more information about using a

client channel definition table, see “Using a client channel definition table with

WebSphere MQ classes for Java” on page 226.

Using channel exits not written in Java with WebSphere MQ

classes for Java

How to use channel exit programs written in C from a Java application.

In WebSphere MQ Version 7.0, you can specify the name of a channel exit program

written in C as a String passed to the channelSecurityExit, channelSendExit, or

channelReceiveExit fields in the MQEnvironment object or properties Hashtable.

Specify the exit program name in the format library(function) and ensure that

the location of the exit program is included in the path environment variable.

For information about how to write a channel exit in C, see WebSphere MQ

Intercommunication.

Using external exit classes

In versions of WebSphere MQ earlier than Version 7.0, three classes were provided

to enable you to use channel exits written in languages other than Java:

v MQExternalSecurityExit, which implements the MQSecurityExit interface

v MQExternalSendExit, which implements the MQSendExit interface

v MQExternalReceiveExit, which implements the MQReceiveExit interface

The use of these classes remains valid but the new method is preferred.

To use a security exit that is not written in Java, an application first had to create

an MQExternalSecurityExit object. The application specified, as parameters on the

MQExternalSecurityExit constructor, the name of the library containing the security

exit, the name of the entry point for the security exit, and the user data to be

passed to the security exit when it was called. Channel exit programs that are not

written in Java were stored in the directory shown in Table 50 on page 244.

Using a sequence of channel send or receive exits in WebSphere

MQ classes for Java

A WebSphere MQ classes for Java application can use a sequence of channel send

or receive exits that are run in succession.

To use a sequence of send exits, an application can create either a List or a String

containing the send exits. If a List is used, each element of the List can be any of

the following:

v An instance of a user defined class that implements the WMQSendExit interface

v An instance of a user defined class that implements the MQSendExit interface

(for a send exit written in Java)

v An instance of the MQExternalSendExit class (for a send exit not written in Java)

v An instance of the MQSendExitChain class

Chapter 3. WebSphere MQ classes for Java 245

v An instance of the String class

A List cannot contain another List.

The application can use a sequence of receive exits in a similar manner.

If a String is used, it must consist of one or more comma-separated exit definitions,

each of which can be the name of a Java class, or a C program in the format

library(function).

The application then assigns the List or String object to the

MQEnvironment.channelSendExit field before creating an MQQueueManager

object.

The context of information passed to exits is solely within the domain of the exits.

For example, if a Java exit and a C exit are chained, the presence of the Java exit

has no effect on the C exit.

Using exit chain classes

In versions of WebSphere MQ earlier than Version 7.0, two classes were provided

to allow sequences of exits:

v MQSendExitChain, which implements the MQSendExit interface

v MQReceiveExitChain, which implements the MQReceiveExit interface

The use of these classes remains valid but the new method is preferred. Using the

WebSphere MQ Classes for Java interfaces means that your application still has a

dependency on com.ibm.mq.jar If the new set of interfaces in the com.ibm.mq.exits

package are used there is no dependency on com.ibm.mq.jar.

To use a sequence of send exits, an application created a list of objects, where each

object was one of the following:

v An instance of a user defined class that implements the MQSendExit interface

(for a send exit written in Java)

v An instance of the MQExternalSendExit class (for a send exit not written in Java)

v An instance of the MQSendExitChain class

The application created an MQSendExitChain object by passing this list of objects

as a parameter on the constructor. The application would then have assigned the

MQSendExitChain object to the MQEnvironment.sendExit field before creating an

MQQueueManager object.

Channel compression in WebSphere MQ classes for Java

Compressing the data that flows on a channel can improve the performance of the

channel and reduce network traffic. WebSphere MQ classes for Java use the

compression function built into WebSphere MQ.

Using function supplied with WebSphere MQ, you can compress the data that

flows on message channels and MQI channels and, on either type of channel, you

can compress header data and message data independently of each other. By

default, no data is compressed on a channel. For a full description of channel

compression, including how it is implemented in WebSphere MQ, see WebSphere

MQ Intercommunication.

A WebSphere MQ classes for Java application specifies the techniques that can be

used for compressing header or message data on a client connection by creating a

246 WebSphere MQ: Using Java

java.util.Collection object. Each compression technique is an Integer object in the

collection, and the order in which the application adds the compression techniques

to the collection is the order in which the compression techniques are negotiated

with the queue manager when the client connection starts. The application can

then assign the collection to the hdrCompList field, for header data, or the

msgCompList field, for message data, in the MQEnvironment class. When the

application is ready, it can start the client connection by creating an

MQQueueManager object.

The following code fragments illustrate the approach just described. The first code

fragment shows you how to implement header data compression:

Collection headerComp = new Vector();

headerComp.add(new Integer(MQC.MQCOMPRESS_SYSTEM));

:

MQEnvironment.hdrCompList = headerComp;

:

MQQueueManager qMgr = new MQQueueManager(QM);

The second code fragment shows you how to implement message data

compression:

Collection msgComp = new Vector();

msgComp.add(new Integer(MQC.MQCOMPRESS_RLE));

msgComp.add(new Integer(MQC.MQCOMPRESS_ZLIBHIGH));

:

MQEnvironment.msgCompList = msgComp;

:

MQQueueManager qMgr = new MQQueueManager(QM);

In the second example, the compression techniques are negotiated in the order

RLE, then ZLIBHIGH, when the client connection starts. The compression

technique that is selected cannot be changed during the lifetime of the

MQQueueManager object.

The compression techniques for header and message data that are supported by

both the client and the queue manager on a client connection are passed to a

channel exit as collections in the hdrCompList and msgCompList fields

respectively of an MQChannelDefinition object. The actual techniques that are

currently being used for compressing header and message data on a client

connection are passed to a channel exit in the CurHdrCompression and

CurMsgCompression fields respectively of an MQChannelExit object.

Note that, if compression is used on a client connection, the data is compressed

before any channel send exits are processed and decompressed after any channel

receive exits are processed. The data passed to send and receive exits is therefore

in a compressed state.

For more information about specifying compression techniques, and about which

compression techniques are available, see Class com.ibm.mq.MQEnvironment and

Interface com.ibm.mq.MQC .

Sharing a TCP/IP connection in WebSphere MQ classes for

Java

Multiple instances of an MQI channel can be made to share a single TCP/IP

connection.

If a channel is defined with the SHARECNV parameter set to a value greater than

1, then that number of conversations can share a channel instance. If more than

Chapter 3. WebSphere MQ classes for Java 247

one suitable channel is defined in a client channel definition table (CCDT), the

AFFINITY and CLNTWGHT channel attributes influence which channel definition

is used. See the related topics below for more details of these properties.

In WebSphere MQ classes for Java, the channel SHARECNV property is

represented by the sharingConversations field of an MQChannelDefinition object.

Connection pooling in WebSphere MQ classes for Java

WebSphere MQ classes for Java allows spare connections to be pooled for reuse.

WebSphere MQ classes for Java provides additional support for applications that

deal with multiple connections to WebSphere MQ queue managers. When a

connection is no longer required, instead of destroying it, it can be pooled and

later reused. This can provide a substantial performance enhancement for

applications and middleware that connect serially to arbitrary queue managers.

WebSphere MQ provides a default connection pool. Applications can activate or

deactivate this connection pool by registering and deregistering tokens through the

MQEnvironment class. If the pool is active when WebSphere MQ classes for Java

constructs an MQQueueManager object, it searches this default pool and reuses

any suitable connection. When an MQQueueManager.disconnect() call occurs, the

underlying connection is returned to the pool.

Alternatively, applications can construct an MQSimpleConnectionManager

connection pool for a particular use. Then, the application can either specify that

pool during construction of an MQQueueManager object, or pass that pool to

MQEnvironment for use as the default connection pool.

To prevent connections from using too much resource, you can limit the total

number of connections that an MQSimpleConnectionManager object can handle,

and you can limit the size of the connection pool. Setting limits is useful if there

are conflicting demands for connections within a JVM.

By default, the getMaxConnections() method returns the value zero, which means

that there is no limit to the number of connections that the

MQSimpleConnectionManager object can handle. You can set a limit by using the

setMaxConnections() method. If you set a limit and the limit is reached, a request

for a further connection might cause an MQException to be thrown, with a reason

code of MQRC_MAX_CONNS_LIMIT_REACHED.

Controlling the default connection pool

This example shows how to use the default connection pool.

Consider the following example application, MQApp1:

import com.ibm.mq.*;

public class MQApp1

{

 public static void main(String[] args) throws MQException

 {

 for (int i=0; i<args.length; i++) {

 MQQueueManager qmgr=new MQQueueManager(args[i]);

 :

 : (do something with qmgr)

 :

 qmgr.disconnect();

 }

 }

}

248 WebSphere MQ: Using Java

MQApp1 takes a list of local queue managers from the command line, connects to

each in turn, and performs some operation. However, when the command line lists

the same queue manager many times, it is more efficient to connect only once, and

to reuse that connection many times.

WebSphere MQ classes for Java provides a default connection pool that you can

use to do this. To enable the pool, use one of the

MQEnvironment.addConnectionPoolToken() methods. To disable the pool, use

MQEnvironment.removeConnectionPoolToken().

The following example application, MQApp2, is functionally identical to MQApp1,

but connects only once to each queue manager.

import com.ibm.mq.*;

public class MQApp2

{

 public static void main(String[] args) throws MQException

 {

 MQPoolToken token=MQEnvironment.addConnectionPoolToken();

 for (int i=0; i<args.length; i++) {

 MQQueueManager qmgr=new MQQueueManager(args[i]);

 :

 : (do something with qmgr)

 :

 qmgr.disconnect();

 }

 MQEnvironment.removeConnectionPoolToken(token);

 }

}

The first bold line activates the default connection pool by registering an

MQPoolToken object with MQEnvironment.

The MQQueueManager constructor now searches this pool for an appropriate

connection and only creates a connection to the queue manager if it cannot find an

existing one. The qmgr.disconnect() call returns the connection to the pool for later

reuse. These API calls are the same as the sample application MQApp1.

The second highlighted line deactivates the default connection pool, which

destroys any queue manager connections stored in the pool. This is important

because otherwise the application would terminate with a number of live queue

manager connections in the pool. This situation could cause errors that would

appear in the queue manager logs.

If an application uses a client channel definition table to connect to a queue

manager, the MQQueueManager constructor first searches the table for a suitable

client connection channel definition. If one is found, the constructor searches the

default connection pool for a connection that can be used for the channel. If the

constructor cannot find a suitable connection in the pool, it then searches the client

channel definition table for the next suitable client connection channel definition,

and proceeds as described previously. If the constructor completes its search of the

client channel definition table and fails to find any suitable connection in the pool,

the constructor starts a second search of the table. During this search, the

constructor tries to create a new connection for each suitable client connection

channel definition in turn, and uses the first connection that it manages to create.

Chapter 3. WebSphere MQ classes for Java 249

The default connection pool stores a maximum of ten unused connections, and

keeps unused connections active for a maximum of five minutes. The application

can alter this (for details, see “Supplying a different connection pool” on page 251).

Instead of using MQEnvironment to supply an MQPoolToken, the application can

construct its own:

 MQPoolToken token=new MQPoolToken();

 MQEnvironment.addConnectionPoolToken(token);

Some applications or middleware vendors provide subclasses of MQPoolToken in

order to pass information to a custom connection pool. They can be constructed

and passed to addConnectionPoolToken() in this way so that extra information can

be passed to the connection pool.

The default connection pool and multiple components

This example shows how to add or remove MQPoolTokens from a static set of

registered MQPoolToken objects.

MQEnvironment holds a static set of registered MQPoolToken objects. To add or

remove MQPoolTokens from this set, use the following methods:

v MQEnvironment.addConnectionPoolToken()

v MQEnvironment.removeConnectionPoolToken()

An application might consist of many components that exist independently and

perform work using a queue manager. In such an application, each component

should add an MQPoolToken to the MQEnvironment set for its lifetime.

For example, the example application MQApp3 creates ten threads and starts each

one. Each thread registers its own MQPoolToken, waits for a length of time, then

connects to the queue manager. After the thread disconnects, it removes its own

MQPoolToken.

The default connection pool remains active while there is at least one token in the

set of MQPoolTokens, so it will remain active for the duration of this application.

The application does not need to keep a master object in overall control of the

threads.

import com.ibm.mq.*;

public class MQApp3

{

 public static void main(String[] args)

 {

 for (int i=0; i<10; i++) {

 MQApp3_Thread thread=new MQApp3_Thread(i*60000);

 thread.start();

 }

 }

}

class MQApp3_Thread extends Thread

{

 long time;

 public MQApp3_Thread(long time)

 {

 this.time=time;

 }

 public synchronized void run()

 {

250 WebSphere MQ: Using Java

MQPoolToken token=MQEnvironment.addConnectionPoolToken();

 try {

 wait(time);

 MQQueueManager qmgr=new MQQueueManager("my.qmgr.1");

 :

 : (do something with qmgr)

 :

 qmgr.disconnect();

 }

 catch (MQException mqe) {System.err.println("Error occurred!");}

 catch (InterruptedException ie) {}

 MQEnvironment.removeConnectionPoolToken(token);

 }

}

Supplying a different connection pool

This example shows how to use the class

com.ibm.mq.MQSimpleConnectionManager to supply a different connection pool.

This class provides basic facilities for connection pooling, and applications can use

this class to customize the behavior of the pool.

Once it is instantiated, an MQSimpleConnectionManager can be specified on the

MQQueueManager constructor. The MQSimpleConnectionManager then manages

the connection that underlies the constructed MQQueueManager. If the

MQSimpleConnectionManager contains a suitable pooled connection, that

connection is reused and returned to the MQSimpleConnectionManager after an

MQQueueManager.disconnect() call.

The following code fragment demonstrates this behavior:

 MQSimpleConnectionManager myConnMan=new MQSimpleConnectionManager();

 myConnMan.setActive(MQSimpleConnectionManager.MODE_ACTIVE);

 MQQueueManager qmgr=new MQQueueManager("my.qmgr.1", myConnMan);

 :

 : (do something with qmgr)

 :

 qmgr.disconnect();

 MQQueueManager qmgr2=new MQQueueManager("my.qmgr.1", myConnMan);

 :

 : (do something with qmgr2)

 :

 qmgr2.disconnect();

 myConnMan.setActive(MQSimpleConnectionManager.MODE_INACTIVE);

The connection that is forged during the first MQQueueManager constructor is

stored in myConnMan after the qmgr.disconnect() call. The connection is then

reused during the second call to the MQQueueManager constructor.

The second line enables the MQSimpleConnectionManager. The last line disables

MQSimpleConnectionManager, destroying any connections held in the pool. An

MQSimpleConnectionManager is, by default, in MODE_AUTO, which is described

later in this section.

An MQSimpleConnectionManager allocates connections on a most-recently-used

basis, and destroys connections on a least-recently-used basis. By default, a

connection is destroyed if it has not been used for five minutes, or if there are

more than ten unused connections in the pool. You can alter these values by calling

MQSimpleConnectionManager.setTimeout().

Chapter 3. WebSphere MQ classes for Java 251

You can also set up an MQSimpleConnectionManager for use as the default

connection pool, to be used when no Connection Manager is supplied on the

MQQueueManager constructor.

The following application demonstrates this:

import com.ibm.mq.*;

public class MQApp4

{

 public static void main(String []args)

 {

 MQSimpleConnectionManager myConnMan=new MQSimpleConnectionManager();

 myConnMan.setActive(MQSimpleConnectionManager.MODE_AUTO);

 myConnMan.setTimeout(3600000);

 myConnMan.setMaxConnections(75);

 myConnMan.setMaxUnusedConnections(50);

 MQEnvironment.setDefaultConnectionManager(myConnMan);

 MQApp3.main(args);

 }

}

The bold lines create and configure an MQSimpleConnectionManager object. The

configuration does the following:

v Ends connections that are not used for an hour

v Limits the number of connections managed by myConnMan to 75

v Limits the number of unused connections in the pool to 50

v Sets MODE_AUTO, which is the default. This means that the pool is active only

if it is the default connection manager, and there is at least one token in the set

of MQPoolTokens held by MQEnvironment.

The new MQSimpleConnectionManager is then set as the default connection

manager.

In the last line, the application calls MQApp3.main(). This runs a number of

threads, where each thread uses WebSphere MQ independently. These threads use

myConnMan when they forge connections.

Supplying your own ConnectionManager

WebSphere MQ classes for Java provides a partial implementation of the J2EE

Connector Architecture, allowing implementations of

javax.resource.spi.ConnectionManager to be used.

Applications and middleware providers can provide alternative implementations of

connection pools. WebSphere MQ classes for Java provides a partial

implementation of the J2EE Connector Architecture. Implementations of

javax.resource.spi.ConnectionManager can either be used as the default

Connection Manager or be specified on the MQQueueManager constructor.

WebSphere MQ classes for Java complies with the Connection Management

contract of the J2EE Connector Architecture. Read this section in conjunction with

the Connection Management contract of the J2EE Connector Architecture (refer to

Sun’s Web site at http://java.sun.com).

The ConnectionManager interface defines only one method:

package javax.resource.spi;

public interface ConnectionManager {

 Object allocateConnection(ManagedConnectionFactory mcf,

 ConnectionRequestInfo cxRequestInfo);

}

252 WebSphere MQ: Using Java

The MQQueueManager constructor calls allocateConnection on the appropriate

ConnectionManager. It passes appropriate implementations of

ManagedConnectionFactory and ConnectionRequestInfo as parameters to describe

the connection required.

The ConnectionManager searches its pool for a

javax.resource.spi.ManagedConnection object that has been created with identical

ManagedConnectionFactory and ConnectionRequestInfo objects. If the

ConnectionManager finds any suitable ManagedConnection objects, it creates a

java.util.Set that contains the candidate ManagedConnections. Then, the

ConnectionManager calls the following:

ManagedConnection mc=mcf.matchManagedConnections(connectionSet, subject,

cxRequestInfo);

The WebSphere MQ implementation of ManagedConnectionFactory ignores the

subject parameter. This method selects and returns a suitable ManagedConnection

from the set, or returns null if it does not find a suitable ManagedConnection. If

there is not a suitable ManagedConnection in the pool, the ConnectionManager can

create one by using:

ManagedConnection mc=mcf.createManagedConnection(subject, cxRequestInfo);

Again, the subject parameter is ignored. This method connects to a WebSphere MQ

queue manager and returns an implementation of

javax.resource.spi.ManagedConnection that represents the newly-forged connection.

Once the ConnectionManager has obtained a ManagedConnection (either from the

pool or freshly created), it creates a connection handle using:

Object handle=mc.getConnection(subject, cxRequestInfo);

This connection handle can be returned from allocateConnection().

A ConnectionManager must register an interest in the ManagedConnection

through:

mc.addConnectionEventListener()

The ConnectionEventListener is notified if a severe error occurs on the connection,

or when MQQueueManager.disconnect() is called. When

MQQueueManager.disconnect() is called, the ConnectionEventListener can do

either of the following:

v Reset the ManagedConnection using the mc.cleanup() call, then return the

ManagedConnection to the pool

v Destroy the ManagedConnection using the mc.destroy() call

If the ConnectionManager is the default ConnectionManager, it can also register an

interest in the state of the MQEnvironment-managed set of MQPoolTokens. To do

so, first construct an MQPoolServices object, then register an

MQPoolServicesEventListener object with the MQPoolServices object:

MQPoolServices mqps=new MQPoolServices();

mqps.addMQPoolServicesEventListener(listener);

The listener is notified when an MQPoolToken is added or removed from the set,

or when the default ConnectionManager changes. The MQPoolServices object also

provides a way to query the current size of the set of MQPoolTokens.

Chapter 3. WebSphere MQ classes for Java 253

JTA/JDBC coordination using WebSphere MQ classes for Java

WebSphere MQ classes for Java supports the MQQueueManager.begin() method,

which allows WebSphere MQ to act as a coordinator for a database which provides

a JDBC type 2 or JDBC type 4 compliant driver.

Currently this support is available on AIX, HP-UX, Solaris, and Windows with DB2

or Oracle databases.

Configuring JTA/JDBC coordination

In order to use the XA-JTA support, you must use the special JTA switch library.

The method for using this library varies depending on whether you are using

Windows or one of the other platforms.

Configuring on Windows:

The XA library is supplied as a DLL with a name of the format jdbcxxx.dll.

 On Windows systems, the XA library is supplied as a complete DLL. The name of

this DLL is jdbcxxx.dll where xxx indicates the database for which the switch

library has been compiled. This library is in the java\lib\jdbc or java\lib64\jdbc

directory of your WebSphere MQ classes for Java installation.

Configuring JTA/JDBC coordination on platforms other than Windows:

Object files are supplied. Link the appropriate one using the supplied makefile,

and declare it to the queue manager using the configuration file.

 For each database management system, WebSphere MQ provides two object files.

You must link one object file to create a 32-bit switch library, and link the other

object file to create a 64-bit switch library. For DB2, the name of each object file is

jdbcdb2.o and, for Oracle, the name of each object file is jdbcora.o.

You must link each object file using the appropriate makefile supplied with

WebSphere MQ. A switch library requires other libraries, which might be stored in

different locations on different systems. However, a switch library cannot use the

library path environment variable to locate these libraries because the switch

library is loaded by the queue manager, which runs in a setuid environment. The

supplied makefile therefore ensures that a switch library contains the fully

qualified path names of these libraries.

To create a switch library, enter a make command with the following format. To

create a 32-bit switch library, enter the command in the /java/lib/jdbc directory of

your WebSphere MQ installation. To create a 64-bit switch library, enter the

command in the /java/lib64/jdbc directory.

make DBMS

where DBMS is the database management system for which you are creating the

switch library. The valid values are db2 for DB2 and oracle for Oracle.

Here is an example of a make command:

make db2

Note the following points:

v To run 32-bit applications, you must create both a 32-bit and a 64-bit switch

library for each database management system that you are using. To run 64-bit

254 WebSphere MQ: Using Java

applications, you need create only a 64-bit switch library. For DB2, the name of

each switch library is jdbcdb2 and, for Oracle, the name of each switch library is

jdbcora. The makefiles ensure that 32-bit and 64-bit switch libraries are stored in

different WebSphere MQ directories. A 32-bit switch library is stored in the

/java/lib/jdbc directory, and a 64-bit switch library is stored in the

/java/lib64/jdbc directory.

v Because you can install Oracle anywhere on a system, the makefiles use the

ORACLE_HOME environment variable to locate where Oracle is installed.

After you have created the switch libraries for DB2, Oracle, or both, you must

declare them to your queue manager. If the queue manager configuration file

(qm.ini) already contains XAResourceManger stanzas for DB2 or Oracle databases,

you must replace the SwitchFile entry in each stanza by one of the following:

For a DB2 database

SwitchFile=jdbcdb2

For an Oracle database

SwitchFile=jdbcora

Do not specify the fully qualified path name of either the 32-bit or 64-bit switch

library. Specify only the name of the library.

If the queue manager configuration file does not already contain

XAResourceManager stanzas for DB2 or Oracle databases, or if you want to add

additional XAResourceManager stanzas, see the WebSphere MQ System

Administration Guide for information about how to construct an

XAResourceManager stanza. However, each SwitchFile entry in a new

XAResourceManger stanza must be exactly as described previously for a DB2 or

Oracle database. You must also include the entry ThreadOfControl=PROCESS.

After you have updated the queue manager configuration file, and made sure that

all appropriate database environment variables have been set, you can restart the

queue manager.

Using JTA/JDBC coordination

Code your API calls as in the supplied example.

The basic sequence of API calls for a user application is:

 qMgr = new MQQueueManager("QM1")

 Connection con = qMgr.getJDBCConnection(xads);

 qMgr.begin()

 < Perform MQ and DB operations to be grouped in a unit of work >

 qMgr.commit() or qMgr.backout();

 con.close()

 qMgr.disconnect()

xads in the getJDBCConnection call is a database-specific implementation of the

XADataSource interface, which defines the details of the database to connect to.

See the documentation for your database to determine how to create an

appropriate XADataSource object to pass into getJDBCConnection.

You must also update your CLASSPATH with the appropriate database-specific jar

files for performing JDBC work.

Chapter 3. WebSphere MQ classes for Java 255

If you need to connect to multiple databases, you might have to call

getJDBCConnection several times to perform the transaction across several

different connections.

There are two forms of the getJDBCConnection, reflecting the two forms of

XADataSource.getXAConnection:

 public java.sql.Connection getJDBCConnection(javax.sql.XADataSource xads)

 throws MQException, SQLException, Exception

 public java.sql.Connection getJDBCConnection(XADataSource dataSource,

 String userid, String password)

 throws MQException, SQLException, Exception

These methods declare Exception in their throws clauses to avoid problems with

the JVM verifier for customers who are not using the JTA functionality. The actual

exception thrown is javax.transaction.xa.XAException. which requires the jta.jar file

to be added to the classpath for programs that did not previously require it.

To use the JTA/JDBC support, you must include the following statement in your

application:

MQEnvironment.properties.put(MQC.THREAD_AFFINITY_PROPERTY, new Boolean(true));

Known problems and limitations with JTA/JDBC coordination

There are certain problems and limitations of JTA/JDBC support, some depending

on the database management system in use.

Because this support makes calls to JDBC drivers, the implementation of those

JDBC drivers can have significant impact on the system behavior. In particular,

tested JDBC drivers behave differently when the database is shut down while an

application is running. Always avoid abruptly shutting down a database while

there are applications holding open connections to it.

Multiple XAResourceManager stanzas

The use of more than one XAResourceManager stanza in a queue manager

configuration file, qm.ini, is not supported. Any XAResourceManager

stanza other than the first is ignored.

DB2

 Sometimes DB2 returns a SQL0805N error. This problem can be resolved

with the following CLP command:

DB2 bind @db2cli.lst blocking all grant public

Refer to the DB2 documentation for more information.

The XAResourceManager stanza must be configured to use

ThreadOfControl=PROCESS. For DB2 version 8.1 and higher this does not

match the default thread of control setting for DB2, so toc=p must be

specified in the XA Open String. An example XAResourceManager stanza

for DB2 with JTA/JDBC coordination is as follows:

XAResourceManager:

 Name=jdbcdb2

 SwitchFile=jdbcdb2

 XAOpenString=uid=userid,db=dbalias,pwd=password,toc=p

 ThreadOfControl=PROCESS

This does not prevent the Java applications that use JTA/JDBC

coordination from being multithreaded themselves.

256 WebSphere MQ: Using Java

Oracle Calling the JDBC Connection.close() method after

MQQueueManager.disconnect() generates an SQLException. Either call

Connection.close() before MQQueueManager.disconnect(), or omit the call

to Connection.close().

Secure Sockets Layer (SSL) support

WebSphere MQ classes for Java client applications support Secure Sockets Layer

(SSL) encryption. You require a JSSE provider to use SSL encryption.

WebSphere MQ classes for Java client applications using TRANSPORT(CLIENT)

support Secure Sockets Layer (SSL) encryption. SSL provides communication

encryption, authentication, and message integrity. It is typically used to secure

communications between any two peers on the Internet or within an intranet.

WebSphere MQ classes for Java uses Java Secure Socket Extension (JSSE) to handle

SSL encryption, and so requires a JSSE provider. J2SE v1.4 JVMs have a JSSE

provider built in. Details of how to manage and store certificates can vary from

provider to provider. For information about this, refer to your JSSE provider’s

documentation.

This section assumes that your JSSE provider is correctly installed and configured,

and that suitable certificates have been installed and made available to your JSSE

provider.

If your WebSphere MQ classes for Java client application uses a client channel

definition table to connect to a queue manager, see “Using a client channel

definition table with WebSphere MQ classes for Java” on page 226.

Enabling SSL in WebSphere MQ classes for Java

To enable SSL, you specify a CipherSuite. There are two ways of doing this.

SSL is supported only for client connections. To enable SSL, you must specify the

CipherSuite to use when communicating with the queue manager, and this must

match the CipherSpec set on the target channel. Additionally, the named

CipherSuite must be supported by your JSSE provider. However, CipherSuites are

distinct from CipherSpecs and so have different names. “SSL CipherSpecs and

CipherSuites” on page 262 contains a table mapping the CipherSpecs supported by

WebSphere MQ to their equivalent CipherSuites as known to JSSE.

To enable SSL, specify the CipherSuite using the sslCipherSuite static member

variable of MQEnvironment. The following example attaches to a SVRCONN

channel named SECURE.SVRCONN.CHANNEL, which has been set up to require

SSL with a CipherSpec of RC4_MD5_EXPORT:

MQEnvironment.hostname = "your_hostname";

MQEnvironment.channel = "SECURE.SVRCONN.CHANNEL";

MQEnvironment.sslCipherSuite = "SSL_RSA_EXPORT_WITH_RC4_40_MD5";

MQQueueManager qmgr = new MQQueueManager("your_Q_manager");

Note that, although the channel has a CipherSpec of RC4_MD5_EXPORT, the Java

application must specify a CipherSuite of SSL_RSA_EXPORT_WITH_RC4_40_MD5.

For more information about CipherSpecs and CipherSuites, see WebSphere MQ

Security. See “SSL CipherSpecs and CipherSuites” on page 262 for a list of

mappings between CipherSpecs and CipherSuites.

An application can also specify a CipherSuite by setting the environment property

MQC.SSL_CIPHER_SUITE_PROPERTY.

Chapter 3. WebSphere MQ classes for Java 257

If you require a client connection to use a CipherSuite that is supported by the

IBM Java JSSE FIPS provider (IBMJSSEFIPS), an application can set the

sslFipsRequired field in the MQEnvironment class to true. Alternatively, the

application can set the environment property

MQC.SSL_FIPS_REQUIRED_PROPERTY. The default value is false, which means

that a client connection can use any CipherSuite that is supported by WebSphere

MQ.

If an application uses more than one client connection, the value of the

sslFipsRequired field that is used when the application creates the first client

connection determines the value that is used when the application creates any

subsequent client connection. This means that, when the application creates a

subsequent client connection, the value of the sslFipsRequired field is ignored. You

must restart the application if you want to use a different value for the

sslFipsRequired field.

To connect successfully using SSL, the JSSE truststore must be set up with

Certificate Authority root certificates from which the certificate presented by the

queue manager can be authenticated. Similarly, if SSLClientAuth on the SVRCONN

channel has been set to MQSSL_CLIENT_AUTH_REQUIRED, the JSSE keystore

must contain an identifying certificate that is trusted by the queue manager.

Using the distinguished name of the queue manager

The queue manager identifies itself using an SSL certificate, which contains a

Distinguished Name (DN). A WebSphere MQ classes for Java client application can

use this DN to ensure that it is communicating with the correct queue manager.

A DN pattern is specified using the sslPeerName variable of MQEnvironment. For

example, setting:

 MQEnvironment.sslPeerName = "CN=QMGR.*, OU=IBM, OU=WEBSPHERE";

allows the connection to succeed only if the queue manager presents a certificate

with a Common Name beginning QMGR., and at least two Organizational Unit

names, the first of which must be IBM and the second WEBSPHERE.

If sslPeerName is set, connections succeed only if it is set to a valid pattern and the

queue manager presents a matching certificate.

An application can also specify the distinguished name of the queue manager by

setting the environment property MQC.SSL_PEER_NAME_PROPERTY. For more

information about distinguished names, see WebSphere MQ Security.

Using certificate revocation lists

Specify the certificate revocation lists to use through the java.security.cert.CertStore

class. WebSphere MQ classes for Java will then check certificates against the

specified CRL.

A certificate revocation list (CRL) is a set of certificates that have been revoked,

either by the issuing Certificate Authority or by the local organization. CRLs are

typically hosted on LDAP servers. With Java 2 v1.4, a CRL server can be specified

at connect-time and the certificate presented by the queue manager is checked

against the CRL before the connection is allowed. For more information about

certificate revocation lists and WebSphere MQ, see WebSphere MQ Security.

Note: To use a CertStore successfully with a CRL hosted on an LDAP server, make

sure that your Java Software Development Kit (SDK) is compatible with the CRL.

258 WebSphere MQ: Using Java

Some SDKs require that the CRL conforms to RFC 2587, which defines a schema

for LDAP v2. Most LDAP v3 servers use RFC 2256 instead.

The CRLs to use are specified through the java.security.cert.CertStore class. Refer to

documentation on this class for full details of how to obtain instances of CertStore.

To create a CertStore based on an LDAP server, first create an

LDAPCertStoreParameters instance, initialized with the server and port settings to

use. For example:

import java.security.cert.*;

CertStoreParameters csp = new LDAPCertStoreParameters("crl_server", 389);

Having created a CertStoreParameters instance, use the static constructor on

CertStore to create a CertStore of type LDAP:

CertStore cs = CertStore.getInstance("LDAP", csp);

Other CertStore types (for example, Collection) are also supported. Commonly

there are several CRL servers set up with identical CRL information to give

redundancy. Once you have a CertStore object for each of these CRL servers, place

them all in a suitable Collection. The following example shows the CertStore

objects placed in an ArrayList:

import java.util.ArrayList;

Collection crls = new ArrayList();

crls.add(cs);

This Collection can be set into the MQEnvironment static variable, sslCertStores,

before connecting to enable CRL checking:

MQEnvironment.sslCertStores = crls;

The certificate presented by the queue manager when a connection is being set up

is validated as follows:

1. The first CertStore object in the Collection identified by sslCertStores is used to

identify a CRL server.

2. An attempt is made to contact the CRL server.

3. If the attempt is successful, the server is searched for a match for the certificate.

a. If the certificate is found to be revoked, the search process is over and the

connection request fails with reason code

MQRC_SSL_CERTIFICATE_REVOKED.

b. If the certificate is not found, the search process is over and the connection

is allowed to proceed.
4. If the attempt to contact the server is unsuccessful, the next CertStore object is

used to identify a CRL server and the process repeats from step 2.

If this was the last CertStore in the Collection, or if the Collection contains no

CertStore objects, the search process has failed and the connection request fails

with reason code MQRC_SSL_CERT_STORE_ERROR.

The Collection object determines the order in which CertStores are used.

The Collection of CertStores can also be set using the

MQC.SSL_CERT_STORE_PROPERTY. As a convenience, this property also allows a

single CertStore to be specified without needing to be a member of a Collection.

If sslCertStores is set to null, no CRL checking is performed. This property is

ignored if sslCipherSuite is not set.

Chapter 3. WebSphere MQ classes for Java 259

Renegotiating the secret key used for encryption

A WebSphere MQ classes for Java client application can control when the secret

key that is used for encryption on a client connection is renegotiated, in terms of

the total number of bytes sent and received.

. The application can do this in either of the following ways:

v By setting the sslResetCount field in the MQEnvironment class.

v By setting the environment property MQC.SSL_RESET_COUNT_PROPERTY in a

Hashtable object. The application then assigns the hashtable to the properties

field in the MQEnvironment class, or passes the hashtable to an

MQQueueManager object on its constructor.

If the application uses more than one of these ways, the usual precedence rules

apply. See Class com.ibm.mq.MQEnvironment for the precedence rules.

The value of the sslResetCount field or environment property

MQC.SSL_RESET_COUNT_PROPERTY represents the total number of bytes sent

and received by the WebSphere MQ classes for Java client code before the secret

key is renegotiated. The number of bytes sent is the number before encryption, and

the number of bytes received is the number after decryption. The number of bytes

also includes control information sent and received by the WebSphere MQ classes

for Java client.

If the reset count is zero, which is the default value, the secret key is never

renegotiated. The reset count is ignored if no CipherSuite is specified.

In some environments, you must not set the reset count to a value other than zero.

If you do set the reset count to a value other than zero, a client connection fails

when it attempts to renegotiate the secret key. These environments are:

v an HP or Sun V1.4.2 JDK

v any V1.4.2 JDK when using FIPS mode

v any V5.0 or later JDK

For more information about the secret key that is used for encryption on an SSL

enabled channel, see WebSphere MQ Security.

Supplying a customized SSLSocketFactory

If you use a customized JSSE Socket Factory, set the

MQEnvironment.sslSocketFactory to the customized factory object. Details vary

between different JSSE implementations.

Different JSSE implementations can provide different features. For example, a

specialized JSSE implementation could allow configuration of a particular model of

encryption hardware. Additionally, some JSSE providers allow customization of

keystores and truststores by program, or allow the choice of identity certificate

from the keystore to be altered. In JSSE, all these customizations are abstracted into

a factory class, javax.net.ssl.SSLSocketFactory.

Refer to your JSSE documentation for details of how to create a customized

SSLSocketFactory implementation. The details vary from provider to provider, but

a typical sequence of steps might be:

1. Create an SSLContext object using a static method on SSLContext

2. Initialize this SSLContext with appropriate KeyManager and TrustManager

implementations (created from their own factory classes)

260 WebSphere MQ: Using Java

3. Create an SSLSocketFactory from the SSLContext

When you have an SSLSocketFactory object, set the

MQEnvironment.sslSocketFactory to the customized factory object. For example:

javax.net.ssl.SSLSocketFactory sf = sslContext.getSocketFactory();

MQEnvironment.sslSocketFactory = sf;

WebSphere MQ classes for Java then use this SSLSocketFactory to connect to the

WebSphere MQ queue manager. This property can also be set using the

MQC.SSL_SOCKET_FACTORY_PROPERTY. If sslSocketFactory is set to null, the

JVM’s default SSLSocketFactory is used. This property is ignored if sslCipherSuite

is not set.

Making changes to the JSSE keystore or truststore

If you change the JSSE keystore or truststore, you must perform certain actions for

the changes to take effect.

If you change the contents of the JSSE keystore or truststore, or change the location

of the keystore or truststore file, WebSphere MQ classes for Java applications that

are running at the time do not automatically pick up the changes. For the changes

to take effect, the following actions must be performed:

v The applications must close all their connections, and destroy any unused

connections in connection pools.

v If your JSSE provider caches information from the keystore and truststore, this

information must be refreshed.

After these actions have been performed, the applications can then recreate their

connections.

Depending on how you design your applications, and on the function provided by

your JSSE provider, it might be possible to perform these actions without stopping

and restarting your applications. However, stopping and restarting the applications

might be the simplest solution.

Error handling when using SSL

A number of reason codes can be issued by WebSphere MQ classes for Java when

connecting to a queue manager using SSL.

These are explained in the following list:

MQRC_SSL_NOT_ALLOWED

The sslCipherSuite property was set, but bindings connect was used. Only

client connect supports SSL.

MQRC_JSSE_ERROR

The JSSE provider reported an error that could not be handled by

WebSphere MQ. This could be caused by a configuration problem with

JSSE, or because the certificate presented by the queue manager could not

be validated. The exception produced by JSSE can be retrieved using the

getCause() method on MQException.

MQRC_SSL_INITIALIZATION_ERROR

An MQCONN or MQCONNX call was issued with SSL configuration

options specified, but an error occurred during the initialization of the SSL

environment.

Chapter 3. WebSphere MQ classes for Java 261

MQRC_SSL_PEER_NAME_MISMATCH

The DN pattern specified in the sslPeerName property did not match the

DN presented by the queue manager.

MQRC_SSL_PEER_NAME_ERROR

The DN pattern specified in the sslPeerName property was not valid.

MQRC_UNSUPPORTED_CIPHER_SUITE

The CipherSuite named in sslCipherSuite was not recognized by the JSSE

provider. A full list of CipherSuites supported by the JSSE provider can be

obtained by a program using the

SSLSocketFactory.getSupportedCipherSuites() method. A list of

CipherSuites that can be used to communicate with WebSphere MQ can be

found in “SSL CipherSpecs and CipherSuites.”

MQRC_SSL_CERTIFICATE_REVOKED

The certificate presented by the queue manager was found in a CRL

specified with the sslCertStores property. Update the queue manager to use

trusted certificates.

MQRC_SSL_CERT_STORE_ERROR

None of the supplied CertStores could be searched for the certificate

presented by the queue manager. The MQException.getCause() method

returns the error that occurred while searching the first CertStore

attempted. If the causal exception is NoSuchElementException,

ClassCastException, or NullPointerException, check that the Collection

specified on the sslCertStores property contains at least one valid CertStore

object.

SSL CipherSpecs and CipherSuites

Whether a WebSphere MQ classes for Java application can establish a connection to

a queue manager depends on the CipherSpec specified at the server end of the

MQI channel and the CipherSuite specified at the client end.

The following table lists the CipherSpecs supported by WebSphere MQ and their

equivalent CipherSuites. The table also indicates whether a WebSphere MQ classes

for Java application can establish a connection to a queue manager if a CipherSpec

is specified at the server end of the MQI channel and the equivalent CipherSuite is

specified at the client end.

For each combination of CipherSpec and CipherSuite, whether a WebSphere MQ

classes for Java application can connect to a queue manager depends on the value

of the sslFipsRequired field in the MQEnvironment class, or on the value of the

environment property MQC.SSL_FIPS_REQUIRED_PROPERTY.

At the server end of an MQI channel, the name of a CipherSpec can be specified as

the value of the SSLCIPH parameter on a DEFINE CHANNEL

CHLTYPE(SVRCONN) command. At the client end of an MQI channel, a

WebSphere MQ classes for Java application can set the sslCipherSuite field in the

MQEnvironment class, or set the environment property

MQC.SSL_CIPHER_SUITE_PROPERTY.

 Table 51. CipherSpecs supported by WebSphere MQ and their equivalent CipherSuites

CipherSpec Equivalent CipherSuite Connection

possible if

FIPS is not

required?1

Connection

possible if

FIPS is

required?1

NULL_MD5 SSL_RSA_WITH_NULL_MD5 Yes No

262 WebSphere MQ: Using Java

Table 51. CipherSpecs supported by WebSphere MQ and their equivalent CipherSuites (continued)

CipherSpec Equivalent CipherSuite Connection

possible if

FIPS is not

required?1

Connection

possible if

FIPS is

required?1

NULL_SHA SSL_RSA_WITH_NULL_SHA Yes No

RC4_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC4_40_MD5 Yes No

RC4_MD5_US SSL_RSA_WITH_RC4_128_MD5 Yes No

RC4_SHA_US SSL_RSA_WITH_RC4_128_SHA Yes No

RC2_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 Yes No

DES_SHA_EXPORT SSL_RSA_WITH_DES_CBC_SHA Yes No

RC4_56_SHA_EXPORT1024 SSL_RSA_EXPORT1024_WITH_RC4_56_SHA No No

DES_SHA_EXPORT1024 SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA No No

TRIPLE_DES_SHA_US SSL_RSA_WITH_3DES_EDE_CBC_SHA Yes No

TLS_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA No Yes

TLS_RSA_WITH_AES_256_CBC_SHA SSL_RSA_WITH_AES_256_CBC_SHA No Yes

AES_SHA_US2

TLS_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHA No No3

TLS_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHA No Yes

FIPS_WITH_DES_CBC_SHA SSL_RSA_FIPS_WITH_DES_CBC_SHA Yes No4

FIPS_WITH_3DES_EDE_CBC_SHA SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA Yes No

Notes:

1. In a WebSphere MQ classes for Java application, indicate that only

FIPS-certified algorithms are to be used by setting the sslFipsRequired field in

the MQEnvironment class to true and indicate that non-FIPS-certified

algorithms can also be used by setting the sslFipsRequired field to false.

Alternatively, set the environment property

MQC.SSL_FIPS_REQUIRED_PROPERTY.

2. This CipherSpec has no equivalent CipherSuite.

3. This CipherSpec was FIPS 140-2 certified prior to 19th May 2007.

4. This CipherSpec was FIPS 140-2 certified prior to 19th May 2007. The name

FIPS_WITH_DES_CBC_SHA is historical and reflects the fact that this

CipherSpec was previously FIPS-compliant.

Running WebSphere MQ classes for Java applications

If you write an application (a class that contains a main() method), using either the

client or the bindings mode, run your program using the Java interpreter.

Use the command:

java -Djava.library.path=library_path MyClass

where library_path is the path to the WebSphere MQ classes for Java libraries (see

“The WebSphere MQ classes for Java libraries” on page 215).

Chapter 3. WebSphere MQ classes for Java 263

Tracing WebSphere MQ classes for Java programs

WebSphere MQ classes for Java includes a trace facility, which you can use to

produce diagnostic messages if you suspect that there might be a problem with the

code.

(You normally need to use this facility only at the request of IBM service.)

Tracing is controlled by the enableTracing and disableTracing methods of the

MQEnvironment class. For example:

MQEnvironment.enableTracing(int); // start trace

 ... // these commands will be traced

MQEnvironment.disableTracing(); // turn tracing off again

where int is an integer. The value of the integer is ignored.

You can also invoke trace using MQEnvironment.enableTracing(int,

OutputStream); but the OutputStream argument is also ignored.

All tracing configuration is controlled using Websphere MQ common services as

described in WebSphere MQ System Administration Guide.

Environment-dependent behavior

WebSphere MQ classes for Java allow you to create applications that can run

against different versions of WebSphere MQ. This collection of topics describes the

behavior of the Java classes dependent on these different versions.

WebSphere MQ classes for Java provides a core of classes, which provide

consistent function and behavior in all the environments. Features outside this core

depend on the capability of the queue manager to which the application is

connected.

Except where noted here, the behavior exhibited is as described in the Application

Programming Reference appropriate to the queue manager.

Core classes in WebSphere MQ classes for Java

WebSphere MQ classes for Java contains a core set of classes, which can be used in

all environments.

The following set of classes are considered core classes, and can be used in all

environments with only the minor variations listed in “Restrictions and variations

for core classes” on page 265.

v MQEnvironment

v MQException

v MQGetMessageOptions

Excluding:

– MatchOptions

– GroupStatus

– SegmentStatus

– Segmentation
v MQManagedObject

Excluding:

264 WebSphere MQ: Using Java

– inquire()

– set()
v MQMessage

Excluding:

– groupId

– messageFlags

– messageSequenceNumber

– offset

– originalLength
v MQPoolServices

v MQPoolServicesEvent

v MQPoolServicesEventListener

v MQPoolToken

v MQPutMessageOptions

Excluding:

– knownDestCount

– unknownDestCount

– invalidDestCount

– recordFields
v MQProcess

v MQQueue

v MQQueueManager

Excluding:

– begin()

– accessDistributionList()
v MQSimpleConnectionManager

v MQTopic

v MQC

Note:

1. Some constants are not included in the core (see “Restrictions and variations for

core classes” for details); do not use them in completely portable programs.

2. Some platforms do not support all connection modes. On these platforms, you

can use only the core classes and options that relate to the supported modes.

(See “Connection options for WebSphere MQ classes for Java” on page 211.)

Restrictions and variations for core classes

The core classes generally behave consistently across all environments, even if the

equivalent MQI calls normally have environment differences. The behavior is as if

a Windows or UNIX WebSphere MQ queue manager is used, except for the

following minor restrictions and variations.

MQGMO_* values

Certain MQGMO_* values are not supported by all queue managers.

Use of the following MQGMO_* values might result in an MQException being

thrown from an MQQueue.get():

 MQGMO_SYNCPOINT_IF_PERSISTENT

Chapter 3. WebSphere MQ classes for Java 265

MQGMO_MARK_SKIP_BACKOUT

 MQGMO_BROWSE_MSG_UNDER_CURSOR

 MQGMO_LOCK

 MQGMO_UNLOCK

 MQGMO_LOGICAL_ORDER

 MQGMO_COMPLETE_MESSAGE

 MQGMO_ALL_MSGS_AVAILABLE

 MQGMO_ALL_SEGMENTS_AVAILABLE

 MQGMO_UNMARKED_BROWSE_MSG

 MQGMO_MARK_BROWSE_HANDLE

 MQGMO_MARK_BROWSE_CO_OP

 MQGMO_UNMARK_BROWSE_HANDLE

 MQGMO_UNMARK_BROWSE_CO_OP

Additionally, MQGMO_SET_SIGNAL is not supported when used from Java.

MQPMRF_* values

These are used only when putting messages to a distribution list, and are

supported only by queue managers supporting distribution lists. For example,

z/OS queue managers do not support distribution lists.

MQPMO_* values

Certain MQPMO_* values are not supported by all queue managers

Use of the following MQPMO_* values might result in an MQException being

thrown from an MQQueue.put() or an MQQueueManager.put():

 MQPMO_LOGICAL_ORDER

 MQPMO_NEW_CORREL_ID

 MQPMO_NEW_MESSAGE_ID

 MQPMO_RESOLVE_LOCAL_Q

MQCNO_FASTPATH_BINDING

This value is ignored on queue managers that do not support it, or when using a

TCP/IP client connection.

MQRO_* values

Certain report options are ignored by some queue managers.

The following report options can be set but are ignored by some queue managers.

This can affect applications connected to a queue manager that honors the report

options when the report message is generated by a remote queue manager that

does not. Avoid relying on these options if there is a possibility that a queue

manager involved does not support them.

 MQRO_EXCEPTION_WITH_FULL_DATA

 MQRO_EXPIRATION_WITH_FULL_DATA

 MQRO_COA_WITH_FULL_DATA

 MQRO_COD_WITH_FULL_DATA

 MQRO_DISCARD_MSG

 MQRO_PASS_DISCARD_AND_EXPIRY

Miscellaneous differences with z/OS

WebSphere MQ for z/OS behaves differently from WebSphere MQ on other

platforms in some areas.

Message priority

When a message is put with a priority greater than MaxPriority, a z/OS

queue manager rejects the put with MQCC_FAILED and

266 WebSphere MQ: Using Java

MQRC_PRIORITY_ERROR. Other platforms complete the put with

MQCC_WARNING and MQRC_PRIORITY_EXCEEDS_MAXIMUM, and

treat the message as if it were put with MaxPriority.

BackoutCount

A z/OS queue manager returns a maximum BackoutCount of 255, even if

the message has been backed out more than 255 times.

Default dynamic queue prefix

When connected to a z/OS queue manager using a bindings connection,

the default dynamic queue prefix is CSQ.*. Otherwise, the default dynamic

queue prefix is AMQ.*.

MQQueueManager constructor

Client connect is not supported on z/OS. Attempting to connect with client

options results in an MQException with MQCC_FAILED and

MQRC_ENVIRONMENT_ERROR. The MQQueueManager constructor

might also fail with MQRC_CHAR_CONVERSION_ERROR (if it fails to

initialize conversion between the IBM-1047 and ISO8859-1 code pages), or

MQRC_UCS2_CONVERSION_ERROR (if it fails to initialize conversion

between the queue manager’s code page and Unicode). If your application

fails with one of these reason codes, ensure that the National Language

Resources component of Language Environment® is installed, and ensure

that the correct conversion tables are available.

 Conversion tables for Unicode are installed as part of the z/OS C/C++

optional feature. See the z/OS C/C++ Programming Guide, SC09-4765, for

more information about enabling UCS-2 conversions.

Application termination

If a Java application ends before issuing an MQDISC call, WebSphere MQ

for z/OS performs its standard task cleanup, which includes committing

any outstanding unit of work if the thread terminated normally, or backing

it out if the thread terminated abnormally. When an Exception or Error is

thrown in a Java application, and is not caught by the application code, the

Java launcher stops the JVM and returns a nonzero return code to its caller.

Because this does not result in an abnormal termination of the thread, it

might later terminate normally, causing MQ to commit any outstanding

unit of work. To ensure that WebSphere MQ work is always resolved as

required, write your Java applications to handle any error situations, and

explicitly resolve outstanding WebSphere MQ work before terminating the

JVM.

Features outside the core

WebSphere MQ classes for Java contain certain functions that are specifically

designed to use API extensions that are not supported by all queue managers. This

collection of topics describes how they behave when using a queue manager that

does not support them.

MQQueueManager constructor option

Some of the MQQueueManager constructors include an optional integer argument.

Some values of this argument are not accepted on all platforms.

Where an MQQueueManager constructor include an optional integer argument, it

maps onto the MQI’s MQCNO options field, and is used to switch between normal

and fast path connection. This extended form of the constructor is accepted in all

environments, provided that the only options used are

MQCNO_STANDARD_BINDING or MQCNO_FASTPATH_BINDING. Any other

Chapter 3. WebSphere MQ classes for Java 267

options cause the constructor to fail with MQRC_OPTIONS_ERROR. The fast path

option MQC.MQCNO_FASTPATH_BINDING is honored only with a bindings

connection to a queue manager that supports it. In other environments, it is

ignored.

MQQueueManager.begin() method

This method can be used only against a WebSphere MQ queue manager on UNIX

or Windows systems in bindings mode. Otherwise, it fails with

MQRC_ENVIRONMENT_ERROR.

See “JTA/JDBC coordination using WebSphere MQ classes for Java” on page 254

for more details.

MQGetMessageOptions fields

Some queue managers do not support the Version 2 MQGMO structure, so you

must set some fields to their default values.

When using a queue manager that does not support the Version 2 MQGMO

structure, leave the following fields set to their default values:

 GroupStatus

 SegmentStatus

 Segmentation

Also, the MatchOptions field supports only MQMO_MATCH_MSG_ID and

MQMO_MATCH_CORREL_ID. If you put unsupported values into these fields,

the subsequent MQDestination.get() fails with MQRC_GMO_ERROR. If the queue

manager does not support the Version 2 MQGMO structure, these fields are not

updated after a successful MQDestination.get().

Distribution lists

Not all queue managers allow you to open an MQDistributionList.

The following classes are used to create distribution lists:

 MQDistributionList

 MQDistributionListItem

 MQMessageTracker

You can create and populate MQDistributionLists and MQDistributionListItems in

any environment, but not all queue managers allow you to open an

MQDistributionList. In particular, z/OS queue managers do not support

distribution lists. Attempting to open an MQDistributionList when using such a

queue manager results in MQRC_OD_ERROR.

MQPutMessageOptions fields

If a queue manager does not support distribution lists, certain MQPMO fields are

treated differently.

Four fields in the MQPMO are rendered as the following member variables in the

MQPutMessageOptions class:

 knownDestCount

 unknownDestCount

 invalidDestCount

 recordFields

These fields are primarily intended for use with distribution lists. However, a

queue manager that supports distribution lists also fills in the DestCount fields

268 WebSphere MQ: Using Java

after an MQPUT to a single queue. For example, if the queue resolves to a local

queue, knownDestCount is set to 1 and the other two count fields are set to 0.

If the queue manager does not support distribution lists, these values are

simulated as follows:

v If the put() succeeds, unknownDestCount is set to 1, and the others are set to 0.

v If the put() fails, invalidDestCount is set to 1, and the others are set to 0.

The recordFields variable is used with distribution lists. A value can be written

into recordFields at any time, regardless of the environment. It is ignored if the

MQPutMessageOptions object is used on a subsequent MQDestination.put() or

MQQueueManager.put(), rather than MQDistributionList.put().

MQMD fields

Certain MQMD fields concerned with message segmentation should be left at their

default value when using a queue manager that does not support segmentation.

The following MQMD fields are largely concerned with message segmentation:

 GroupId

 MsgSeqNumber

 Offset

 MsgFlags

 OriginalLength

If an application sets any of these MQMD fields to values other than their defaults,

and then does a put() or get() on a queue manager that does not support these, the

put() or get() raises an MQException with MQRC_MD_ERROR. A successful put()

or get() with such a queue manager always leaves the MQMD fields set to their

default values. Do not send a grouped or segmented message to a Java application

that runs against a queue manager that does not support message grouping and

segmentation.

If a Java application attempts to get() a message from a queue manager that does

not support these fields, and the physical message to be retrieved is part of a

group of segmented messages (that is, it has non-default values for the MQMD

fields), it is retrieved without error. However, the MQMD fields in the MQMessage

are not updated, the MQMessage format property is set to

MQFMT_MD_EXTENSION, and the true message data is prefixed with an

MQMDE structure that contains the values for the new fields.

Restrictions under CICS Transaction Server

In the CICS Transaction Server for OS/390 or CICS Transaction Server for z/OS

environment, only the main (first) thread is allowed to issue CICS or WebSphere

MQ calls.

It is therefore not possible to share MQQueueManager or MQQueue objects

between threads in this environment, or to create a new MQQueueManager on a

child thread.

“Miscellaneous differences with z/OS” on page 266 identifies some restrictions and

variations that apply to the WebSphere MQ classes for Java when running against

a z/OS queue manager. Additionally, when running under CICS, the transaction

control methods on MQQueueManager are not supported. Instead of issuing

MQQueueManager.commit() or MQQueueManager.backout(), applications use the

Chapter 3. WebSphere MQ classes for Java 269

JCICS task synchronization methods, Task.commit() and Task.rollback(). The Task

class is supplied by JCICS in the com.ibm.cics.server package.

Running WebSphere MQ classes for Java applications within

Java EE

There are certain restrictions and design considerations that must be taken into

account before using WebSphere MQ classes for Java in JEE

WebSphere MQ classes for Java has restrictions when used within a JEE

environment. There are also additional considerations that should be taken into

account when designing, implementing and managing a WebSphere MQ classes for

Java application that runs inside a JEE environment. These restrictions and

considerations are outlined in the following sections.

JTA transactions restrictions

The only supported transaction manager for applications using WebSphere MQ

classes for Java is WebSphere MQ itself. Although an application under JTA control

can make use WebSphere MQ classes for Java, any work performed through these

classes will not be controlled by the JTA units of work. They will instead form

local units of work separate from those managed by the application server through

the JTA interfaces. In particular, any rollback of the JTA transaction will not result

in a rollback of any sent or received messages. This restriction applies to

application or bean managed transactions and to container managed transactions,

and all JEE containers. To perform messaging work directly with WebSphere MQ

inside application server-coordinated transactions, WebSphere MQ classes for JMS

must be used instead.

Thread creation

WebSphere MQ classes for Java spawns threads internally for various operations.

For example, when running in BINDINGS mode to make calls directly on a local

queue manager, the calls are made on a ’worker’ thread created internally by

WebSphere MQ classes for Java. Other threads can be spawned internally, for

example to clear unused connections from a connection pool or to remove

subscriptions for terminated publish/subscribe applications.

Some JEE applications (for instance those running in EJB and Web containers) must

not spawn new threads; instead all work must be performed on the main

application threads managed by the application server. When applications use

WebSphere MQ classes for Java, the application server might not be able to

distinguish between application code and the WebSphere MQ classes for Java code,

so the threads described above will cause the application to be non-compliant with

the container specification. WebSphere MQ classes for JMS does not break these

JEE specifications and so should be used instead.

Security restrictions

Security policies implemented by an application server might prevent certain

operations that are undertaken by the WebSphere MQ classes for Java API, such as

creating and operating new threads of control (as described in the preceding

sections).

For example, application servers typically run with Java Security disabled by

default, and allow it to be enabled through some application server-specific

270 WebSphere MQ: Using Java

configuration (some application servers also allow more detailed configuration of

the policies used within Java Security). When Java Security is enabled, WebSphere

MQ classes for Java might break the Java Security policy threading rules defined

for the application server, and the API might not be able to create all the threads

that it needs in order to function. To prevent problems with thread management,

the use of WebSphere MQ classes for Java is not supported in environments where

Java Security is enabled.

Application isolation considerations

An intended benefit of running applications within a JEE environment is application

isolation. Changes to one application should not adversely affect other applications

running in the same application server. The design and implementation of

WebSphere MQ classes for Java predate the JEE environment, and WebSphere MQ

classes for Java can be used in a manner which does not support the concept of

application isolation. Specific examples of considerations in this area include:

v The use of static (JVM process-wide) settings within the MQEnvironment class,

such as:

– the userid and password to be used for connection identification and

authentication

– the hostname, port and channel used for client connections

– SSL configuration for secured client connections

Modifying any of the MQEnvironment properties for the benefit of one

application also affect other applications making use of the same properties.

When running in a multi-application environment such as JEE, each application

should use its own distinct configuration through the creation of

MQQueueManager objects with a specific set of properties, rather than

defaulting to the properties configured in the process-wide MQEnvironment

class.

v The MQEnvironment class introduces a number of static methods which act

globally on all applications using WebSphere MQ classes for Java within the

same JVM process, and there is no way to override this behavior for particular

applications. Examples include:

– configuring SSL properties, such as the location of the key store

– configuring client channel exits

– enabling or disabling diagnostic tracing

– managing the default connection pool used to optimize the use of connections

to queue managers

Invoking such methods affects all applications running in the same JEE

environment.

v Connection pooling is enabled to optimize the process of making multiple

connections to the same queue manager. The default connection pool manager is

process-wide, and shared by multiple applications. Changes to connection pool

configuration, such as replacing the default connection manager for one

application using the MQEnvironment.setDefaultConnectionManager() method

therefore affects other applications running in the same JEE application server.

v SSL is configured for applications using WebSphere MQ classes for Java using

the MQEnvironment class and MQQueueManager object properties, and is not

integrated with the managed security configuration of the application server

itself. You must ensure that you configure WebSphere MQ classes for Java

approriately to provide your required level of security, and not use the

application server configuration.

Chapter 3. WebSphere MQ classes for Java 271

WebSphere MQ classes for Java packages

For details of the Java classes and interfaces in the various packages the comprise

WebSphere MQ classes for Java see the information center or the Javadoc

documentation included on the product CDs.

Package com.ibm.mq

This is the main package of Java classes and interfaces for WebSphere MQ classes

for Java.

Package com.ibm.mq.constants

This package contains a single class which allows an application to look up

WebSphere MQ constants by name or by value.

Package com.ibm.mq.exits

This package contains a collection of classes and interfaces which allow the Java

programmer to work with WebSphere MQ channel exits.

Package com.ibm.mq.headers

This package contains a collection of classes for constructing WebSphere MQ

headers and writing them into WebSphere MQ messages, for reading and decoding

(parsing) headers in WebSphere MQ messages, and for manipulating the content of

headers. Java classes for all WebSphere MQ header types are provided, and the

framework also allows you to define classes representing other header types.

Package com.ibm.mq jmqi

This package contains a collection of classes and interfaces which implement the

Java Message Queueing Interface (JMQI), the interface which represents the native

MQI in the Java environment.

Package com.ibm.mq.pcf

This package contains a collection of classes that represent PCF parameters, PCF

parameter structures, and arrays of PCF parameter structures. The methods of

these classes allow you to read and write message content, manipulate parameter

values, parse PCF content in an MQMessage, and so on.

It also contains agent classes, which provide methods to connect to, send requests

to, and receive responses from the WebSphere MQ Command Server.

272 WebSphere MQ: Using Java

Notices

This information was developed for products and services offered in the United

States. IBM may not offer the products, services, or features discussed in this

information in other countries. Consult your local IBM representative for

information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or imply

that only that IBM product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any IBM intellectual

property right may be used instead. However, it is the user’s responsibility to

evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this information. The furnishing of this information does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing,

IBM Corporation,

North Castle Drive,

Armonk, NY 10504-1785,

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation,

Licensing,

2-31 Roppongi 3-chome, Minato-k,u

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2008 273

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Programming License Agreement, or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

The following are trademarks of International Business Machines Corporation in

the United States, or other countries, or both:

 AIX CICS DB2

FFST First Failure Support

Technology

i5/OS

IBM IBMLink IMS

Language Environment OS/390 OS/400

POWER S/390 WebSphere

z/OS zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

274 WebSphere MQ: Using Java

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft® Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 275

276 WebSphere MQ: Using Java

Index

A
accessing queues, topics, and processes in

Java 228

administered objects 75

retrieving from JNDI 98

administering JMS objects 167

administration
commands 166

verbs 166

administration tool
configuration file 164

configuring 164

overview 163

properties 164

starting 163

advantages
WebSphere MQ classes for JMS 6

Application Server Facilities 154

poison messages 157

applications
JMS, writing 74

running 263

ASF (Application Server Facilities) 154

ASYNCEXCEPTION object property 171

asynchronous message delivery 117

B
behavior in different environments 269

benefits
WebSphere MQ classes for JMS 6

bindings
connection 43, 211

connection, programming
Java 224

verifying 219

body of a message
types 115

body, message 77

broker
configuring for a real-time

connection 151

real-time connection 151

BROKERCCDSUBQ object property 156

BROKERCCDURSUBQ object

property 171

BROKERCCSUBQ object property 156,

171

BROKERCONQ object property 171

BROKERDURSUBQ object property 171

BROKERPUBQ object property 171

BROKERPUBQMGR object property 171

BROKERQMGR object property 171

BROKERSUBQ object property 171

BROKERVER object property 171

building a connection 109

bundles, OSGi 57

bytes message 77

C
CCDTURL object property 171

CCSID object property 171

certificate revocation list (CRL) 258

CHANGE (administration verb) 166

channel compression
using WebSphere MQ classes for

Java 246

using WebSphere MQ classes for

JMS 149

channel exits
assigning

with WebSphere MQ classes for

Java 243

with WebSphere MQ classes for

JMS 144

not written in Java
used with WebSphere MQ classes

for Java 245

used with WebSphere MQ classes

for JMS 144

passing user data
with WebSphere MQ classes for

Java 244

with WebSphere MQ classes for

JMS 146

using
with WebSphere MQ classes for

Java 241

with WebSphere MQ classes for

JMS 142

using a sequence
with WebSphere MQ classes for

Java 245

with WebSphere MQ classes for

JMS 144, 146

written in Java
used with WebSphere MQ classes

for Java 241

used with WebSphere MQ classes

for JMS 142

CHANNEL object property 171

CICS Transaction Server
running applications 217

CipherSpecs supported by WebSphere

MQ 141, 262

CipherSuites 141, 262

CL3Export.jar 8

CL3Nonexport.jar 8

class path
settings 10

classes, core
restrictions and variations 265, 269

WebSphere MQ classes for Java 264

classpath
settings 214

CLEANUP object property 171

CLEANUPINT object property 171

client
connection 43, 211

client channel definition table
using WebSphere MQ classes for

Java 226

using WebSphere MQ classes for

JMS 146

client properties 203

CLIENTID object property 171

clients
configuring queue manager 43, 218

programming
Java 224

verifying 219

CLONESUPP object property 171

closing
resources using JMS 121

com.ibm.mq.exits.jar 8

com.ibm.mq.headers.jar 8, 213

com.ibm.mq.jar 8, 213

com.ibm.mq.pcf.jar 213

com.ibm.mqjms.jar 8

combinations, valid, of objects and

properties 171

commands, administration 166

COMPHDR object property 171

COMPMSG object property 171

configuration file
for administration tool 164

WebSphere MQ classes for JMS 12

configuring
a broker for a real-time

connection 151

environment variables 10, 214

Java 2 Security Manager 217

Java security manager 14

JTA/JDBC coordination
other platforms 254

Windows 254

queue manager for clients 43, 218

the administration tool 164

unsupported

InitialContextFactory 165

WebSphere MQ classes for JMS for a

real-time connection to a

broker 152

WebSphere MQ resource adapter
inbound communication 21

introduction 17

outbound communication 30

ResourceAdapter object 18

your class path 10

your classpath 214

connecting to a queue manager in

Java 225

connection
building 109

creating 109

modes 43

options 211

starting 109

© Copyright IBM Corp. 1996, 2008 277

connection factories
creating

summary 97

using the IBM JMS extensions 99

using the WebSphere MQ JMS

extensions 106

setting properties
summary 97

using the WebSphere MQ JMS

extensions 99, 106

Connection interface 75

connection pooling 248

example 248

connection type, defining 224

ConnectionFactory interface 75

connections
sharing

in JMS 148

connector.jar 8, 213

CONNOPT object property 171

CONNTAG object property 171

converting the log file 62

COPY (administration verb) 166

core classes
restrictions and variations 265, 269

WebSphere MQ classes for Java 264

creating
connection 109

connection factories
summary 97

using the IBM JMS extensions 99

using the WebSphere MQ JMS

extensions 106

destinations
summary 97

using a session 110

using the IBM JMS extensions 99

using the WebSphere MQ JMS

extensions 106

JMS objects 169

session 110

D
dead-letter queue

processing in Java 233

default connection pool 248

multiple components 250

DEFINE (administration verb) 166

defining connection type 224

DELETE (administration verb) 166

dependencies, property 203

DESCRIPTION object property 171

Destination interface 75

destinations
creating

summary 97

using a session 110

using the IBM JMS extensions 99

using the WebSphere MQ JMS

extensions 106

setting properties
summary 97

using a URI 110

using the IBM JMS extensions 99

using the WebSphere MQ JMS

extensions 106

dhbcore.jar 8

differences due to environment 269

DIRECTAUTH object property 171

directories
installation 9

directories, installation 214

disconnecting from a queue manager in

Java 225

DISPLAY (administration verb) 166

disposition options, message 158

distribution lists
platform dependency 268

durable topic subscribers 117

E
ENCODING object property 205

END (administration verb) 166

environment dependencies
functions not with all platforms 267

distribution lists 268

MQGetMessageOptions fields 268

MQMD fields 269

MQPutMessageOptions fields 268

MQQueueManager begin()

method 268

MQQueueManager

constructor 267

restrictions and variations 265

MQGMO_* values 265

MQPMO_* values 266

MQPMRF_* values 266

MQRO_* values 266

z/OS 266

WebSphere MQ classes for Java 264

environment differences 269

environment variables 10, 214

error
conditions when creating an

object 170

conditions when using an object 170

handling 238

WebSphere MQ classes for

JMS 122

logging 62

WebSphere MQ classes for

JMS 126

exception listeners 122

exception report options, message 159

exceptions
WebSphere MQ classes for JMS 122

exit string properties 204

EXPIRY object property 171

F
FAILIFQUIESCE object property 171

first failure support technology (FFST)
WebSphere MQ classes for JMS 126

formatLog utility 62

fscontext.jar 8

G
getting started

WebSphere MQ classes for Java 211

getting started (continued)
WebSphere MQ classes for JMS 5

H
handling

errors 238

WebSphere MQ classes for

JMS 122

headers, in Java 231

messages 229

header
handling, Java 231

headers
creating classes 236

finding 234

printing in Java 232, 234

skipping over in Java 232

headers, message 77

HOSTNAME object property 171

HTTP tunnelling 152

I
IBM JMS extensions

introduction
for programmers 65

general 5

using 99

INITIAL_CONTEXT_FACTORY

property 164, 165

inquire and set 240

installation
directories 9, 214

installation verification test
WebSphere MQ classes for JMS

point-to-point 45

WebSphere MQ classes for JMS

publish/subscribe 49

installation verification test (IVT)

program
WebSphere MQ resource adapter 53

installing
WebSphere MQ classes for Java 213

WebSphere MQ classes for JMS 8

WebSphere MQ resource adapter 16

interfaces
JMS 75

introduction
for programmers

using Java 221

WebSphere MQ classes for Java 211

WebSphere MQ classes for JMS 5

IVT (installation verification test

program)
WebSphere MQ resource adapter 53

IVT (installation verification test)
WebSphere MQ classes for JMS

point-to-point 45

WebSphere MQ classes for JMS

publish/subscribe 49

IVTRun script 45, 56

IVTSetup script 45, 56

IVTTidy script 45, 56

278 WebSphere MQ: Using Java

J
J2EE Connector Architecture (JCA)

WebSphere MQ resource adapter 15

jar files 8, 213

Java
introduction for programmers 221

Java 2 Security Manager, running

applications under 217

Java security manager, running

applications under 14

JCA (J2EE Connector Architecture)
WebSphere MQ resource adapter 15

JDBC coordination 254

JMS
administered objects 75

applications, writing 74

benefits 6

interfaces 75

mapping of fields at send or

publish 88

mapping with MQMD 86

messages 77

persistent 136

model 75

objects, administering 167

objects, creating 169

objects, properties 171

persistent messages 136

jms.jar 8

JMSAdmin configuration file 164, 165

JMSAdmin utility 56, 163

JMSAdmin.config file 163

JMSCorrelationID header field 77

JNDI
retrieving administered objects 98

security considerations 165

jndi.jar 8

JSSE
for SSL support 137, 257

making changes to the keystore or

truststore
using WebSphere MQ classes for

Java 261

using WebSphere MQ classes for

JMS 141

JTA/JDBC coordination
configuring

other platforms 254

Windows 254

introduction 254

known problems 256

limitations 256

switch library 254

using 255

jta.jar 8

K
keystore, making changes

using WebSphere MQ classes for

Java 261

using WebSphere MQ classes for

JMS 141

L
LDAP naming considerations 169

ldap.jar 8

libraries
Java Native Interface (JNI) 11

WebSphere MQ classes for JMS 11

libraries, WebSphere MQ classes for

Java 215

linked exceptions 122

local publications
suppressing 117

LOCALADDRESS
specifying a range of ports 148

LOCALADDRESS object property 171

log file
converting 62

logging errors 62

WebSphere MQ classes for JMS 126

M
manipulating subcontexts 167

map message 77

MAXBUFFSIZE object property 171

message
body 77

body types 115

delivery, asynchronous 117

handling 229

headers 77

message body 95

properties 77

selectors 78, 117

types 77

message content
printing in Java 234

Message interface 75

message object properties 130

MessageConsumer interface 75

MessageConsumer object 117

MessageProducer interface 75

MessageProducer object 115

messages
JMS 77

mapping between JMS and

WebSphere MQ 81

persistent, JMS 136

poison
Application Server Facilities 157

WebSphere MQ resource

adapter 30

receiving 117

selecting 78, 117

sending 115

messaging domains 75

modes
connection 43

MOVE (administration verb) 166

MQCNO_FASTPATH_BINDING
variations by environment 266

MQDLH
example 233

MQEnvironment 224

MQGetMessageOptions fields
platform dependency 268

MQGMO_* values
variations by environment 265

MQHeader 231

example 235

implementing 236

MQHeaderIterator 231

example 232, 235

MQHeaderList 231

example 234

MQIVP
listing 220

sample application 219

tracing 221

MQJMS_TRACE_DIR 62

MQJMS_TRACE_LEVEL 62

mqjmsapi.jar 8

MQMD (MQSeries Message

Descriptor) 81

MQMD fields
platform dependency 269

MQMessage 229

MQPMO_* values
variations by environment 266

MQPMRF_* values
variations by environment 266

MQPutMessageOptions fields
platform dependency 268

MQQueue 229

MQQueueManager 228

MQQueueManager begin() method
platform dependency 268

MQQueueManager constructor
platform dependency 267

MQRFH2
analyzing, example 235

MQRFH2 header 82

MQRO_* values
variations by environment 266

MQTopic 229

MSGBATCHSZ object property 171

MSGRETENTION object property 171

MSGSELECTION object property 171

multicast 152

MULTICAST object property 171

multithreaded programs in Java 240

N
NAME_PREFIX property 165

NAME_READABILITY_MARKER

property 165

naming considerations, LDAP 169

nondurable topic subscribers 117

O
object creation, error conditions 170

object property
READAHEADCLOSEPOLICY object

property 171

object use, error conditions 170

objects
administered 75

retrieving from JNDI 98

JMS, administering 167

JMS, creating 169

Index 279

objects (continued)
JMS, properties 171

message 77

objects and properties
valid combinations 171

operations on queue managers
Java 225

OPTIMISTICPUBLICATION object

property 171

options
connection 211

OSGi support 57

OUTCOMENOTIFICATION object

property 171

P
PCF

handling in Java 237

PERSISTENCE object property 171

persistent messages, JMS 136

platform differences 269

point-to-point installation verification

test 45

point-to-point messaging 75

poison messages
Application Server Facilities 157

WebSphere MQ resource adapter 30

POLLINGINT object property 171

PORT object property 171

ports, specifying a range for client

connections
WebSphere MQ classes for Java 227

WebSphere MQ classes for JMS 148

prerequisite software 7

WebSphere MQ classes for Java 212

PRIORITY object property 171

problems, solving
WebSphere MQ classes for Java 221

WebSphere MQ classes for JMS
general 58

point-to-point installation

verification test 45

publish/subscribe installation

verification test 49

WebSphere MQ resource adapter 62

PROCESSDURATION object

property 171

processes
accessing

in Java 228

programming
bindings connection

Java 224

client connections
Java 224

connections 223

multithreaded
Java 240

tracing 264

writing Java programs 223

programs
JMS, writing 74

running 263

properties
client 203

properties (continued)
connection factories

setting by using the IBM JMS

extensions 99

setting by using the WebSphere

MQ JMS extensions 106

setting summary 97

dependencies 203

destinations
setting by using a URI 110

setting by using the IBM JMS

extensions 99

setting by using the WebSphere

MQ JMS extensions 106

setting summary 97

ENCODING 205

for a real-time connection to a

broker 204

for Secure Sockets Layer 205

message 77

JMS_IBM_MQMD_* 130

of exit strings 204

of JMS objects 171

WebSphere MQ resource adapter
ActivationSpec object 21

ConnectionFactory object 30

Queue or Topic object 30

ResourceAdapter object 18

properties and objects
valid combinations 171

PROVIDER_PASSWORD property 165

PROVIDER_URL property 164

PROVIDER_USERDN property 165

providerutil.jar 8

PROVIDERVERSION object

property 171

proxy server 152

PROXYHOSTNAME object property 171

PROXYPORT object property 171

PSIVTRun script 49, 56

PUBACKINT object property 171

publications
suppressing local ones 117

publish/subscribe installation verification

test 49

publish/subscribe messaging 75

PUTASYNCALLOWED object

property 115, 171

Q
QMANAGER object property 171

queue manager
configuring for clients 43, 218

connecting to
Java 225

disconnecting from
Java 225

operations on
Java 225

QUEUE object property 171

Queue objects
creating

using a session 110

using the IBM JMS extensions 99

using the WebSphere MQ JMS

extensions 106

Queue objects (continued)
setting properties

using a URI 110

using the IBM JMS extensions 99

using the WebSphere MQ JMS

extensions 106

queues
accessing

in Java 228

R
range of ports, specifying for client

connections
WebSphere MQ classes for Java 227

WebSphere MQ classes for JMS 148

read ahead
JMS 150

READAHEADALLOWED object

property 171

real-time connection to a broker 151

RECEIVEISOLATION object

property 171

receiving
messages 117

RECEXIT object property 171

RECEXITINIT object property 171

report options, message 159

RESCANINT object property 171

resource adapter, WebSphere MQ 15

resources
closing using JMS 121

restrictions and variations
to core classes 269

retrieving administered objects from

JNDI 98

rmm.jar 8

run time
creating connection factories

using the IBM JMS extensions 99

using the WebSphere MQ JMS

extensions 106

creating destinations
using a session 110

using the IBM JMS extensions 99

using the WebSphere MQ JMS

extensions 106

running
applications under CICS Transaction

Server 217

IVT program
WebSphere MQ classes for JMS

point-to-point 45

WebSphere MQ classes for JMS

publish/subscribe 49

WebSphere MQ resource

adapter 53

WebSphere MQ classes for Java

programs 263

S
sample application

using to verify 219

scripts provided with WebSphere MQ

classes for JMS 56

280 WebSphere MQ: Using Java

SECEXIT object property 171

SECEXITINIT object property 171

Secure Sockets Layer
authentication on a real-time

connection to a broker 152

certificate revocation list (CRL) 258

CipherSpecs 257

CipherSpecs supported by WebSphere

MQ 141, 262

CipherSuites 141, 257, 262

distinguished names 258

enabling
Java 257

handled by JSSE 137, 257

introduction 137

Java 257

properties 205

SSLCERTSTORES 139

SSLCIPHERSUITE 137

SSLFIPSREQUIRED 138

SSLPEERNAME 138

SSLRESETCOUNT 140

renegotiating the secret key 260

sslCertStores field 259

sslCipherSuite field 257

sslFipsRequired field 257

sslPeerName field 258

sslResetCount field 260

sslSocketFactory field 261

using JMS 137

security considerations, JNDI 165

security policy configuration file,

editing 14

Security policy definition file,

editing 217

SECURITY_AUTHENTICATION

property 164, 165

selecting messages 78, 117

selectors
message 78, 117

SENDCHECKCOUNT object

property 115, 171

SENDEXIT object property 171

SENDEXITINIT object property 171

sending
messages 115

server session pool 161

session
creating 110

Session interface 75

set and inquire 240

setjmsenv script 56

setjmsenv utility 10, 215

setjmsenv64 script 56

setting
connection factory properties

summary 97

using the IBM JMS extensions 99

using the WebSphere MQ JMS

extensions 106

destination properties
summary 97

using a URI 110

using the IBM JMS extensions 99

using the WebSphere MQ JMS

extensions 106

SHARECONVALLOWED object

property 171

software
prerequisites 7

software, prerequisites
WebSphere MQ classes for Java 212

solving problems
WebSphere MQ classes for Java 221

WebSphere MQ classes for JMS
general 58

WebSphere MQ resource adapter 62

SPARSESUBS object property 171

SQL for message selectors 78

sslCertStores field 259

SSLCERTSTORES object property 139

sslCipherSuite field 257

SSLCIPHERSUITE object property 137,

171, 205

SSLCRL object property 171, 205

sslFipsRequired field 257

SSLFIPSREQUIRED object property 138,

171, 205

sslPeerName field 258

SSLPEERNAME object property 138,

171, 205

sslResetCount field 260

SSLRESETCOUNT object property 140,

171, 205

sslSocketFactory field 261

starting
connection 109

starting the administration tool 163

STATREFRESHINT object property 171

stream message 77

styles of messaging 75

subcontexts, manipulating 167

SUBSTORE object property 171

suppressing local publications 117

switch library for JTA/JDBC

coordination 254

SYNCPOINTALLGETS object

property 171

T
TARGCLIENT object property 171

TARGCLIENTMATCHING object

property 171

TCP/IP
client verifying 219

connection, programming
Java 224

TEMPMODEL object property 171

TEMPQPREFIX object property 171

TEMPTOPICPREFIX object property 171

testing WebSphere MQ classes for Java

programs 264

text message 77

tokens, connection pooling 248

TOPIC object property 171

Topic objects
creating

using a session 110

using the IBM JMS extensions 99

using the WebSphere MQ JMS

extensions 106

Topic objects (continued)
setting properties

using a URI 110

using the IBM JMS extensions 99

using the WebSphere MQ JMS

extensions 106

topics
accessing

in Java 228

tracing
programs 264

turning on 221

WebSphere MQ classes for JMS 58

MQJMS_TRACE_LEVEL 62

WebSphere MQ resource adapter 18

TRANSPORT object property 171

truststore, making changes
using WebSphere MQ classes for

Java 261

using WebSphere MQ classes for

JMS 141

types of JMS message 77

types of message body 115

typical class path settings 10

typical classpath settings 214

U
uniform resource identifiers (URIs) 110

USE_INITIAL_DIR_CONTEXT

property 165

USECONPOOLING object property 171

using
WebSphere MQ classes for Java 218

utilities provided with WebSphere MQ

classes for JMS 56

V
valid combinations of objects and

properties 171

verifying
installation

verifying 42

TCP/IP clients 219

with the sample application 219

your installation 42

versions of software required 7

WebSphere MQ classes for Java 212

W
WebSphere Application Server, V6.0 17

WebSphere Event Broker
configuring for a real-time

connection 151

configuring WebSphere MQ classes for

JMS for a real-time connection 152

real-time connection 151

WebSphere Message Broker
configuring for a real-time

connection 151

configuring WebSphere MQ classes for

JMS for a real-time connection 152

real-time connection 151

Index 281

WebSphere MQ
messages 81

WebSphere MQ classes for JMS
benefits 6

configuration file 12

configuring for a real-time connection

to a broker 152

introduction
for programmers 65

general 5

WebSphere MQ JMS extensions
introduction

for programmers 65

general 5

using 106

WebSphere MQ Message Descriptor

(MQMD) 81

mapping with JMS 86

WebSphere MQ resource adapter
configuration

inbound communication 21

introduction 17

outbound communication 30

ResourceAdapter object 18

installation 16

installation verification test (IVT)

program 53

introduction 15

limitations 41

other required documentation 15

poison messages 30

problem determination
creating connections for outbound

communication 64

deploying message driven beans

(MDBs) 63

deploying the resource

adapter 63

introduction 62

properties
ActivationSpec object 21

ConnectionFactory object 30

Queue or Topic object 30

ResourceAdapter object 18

tracing, diagnostic 18

WebSphere Application Server, V6.0,

using with 17

WILDCARDFORMAT object

property 171

WMQ_MQMD_MESSAGE_CONTEXT 128

WMQ_MQMD_READ_ENABLED 128

WMQ_MQMD_WRITE_ENABLED 128

writing
channel exits in Java

for WebSphere MQ classes for

Java 241

for WebSphere MQ classes for

JMS 142

JMS applications 74

programs
Java 223

Z
z/OS

differences with 266

282 WebSphere MQ: Using Java

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the

methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on

the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which

the information is presented.

To make comments about the functions of IBM products or systems, talk to your

IBM representative or to your IBM authorized remarketer.

When you send comments to IBM , you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate, without incurring

any obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

User Technologies Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

SO21 2JN

United Kingdom

v By fax:

– From outside the U.K., after your international access code use 44-1962-816151

– From within the U.K., use 01962-816151
v Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

– IBMLink™: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1996, 2008 283

284 WebSphere MQ: Using Java

���

SC34-6935-00

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

W
eb

Sp
he

re

M

Q

U
si

ng

Ja

va

Ve
rs

io
n

7.0

	Contents
	Figures
	Tables
	Chapter 1. Using Java
	Terms used in this book
	What is new in Version 7.0?
	Should I use WebSphere MQ classes for Java or WebSphere MQ classes for JMS?

	Chapter 2. WebSphere MQ classes for JMS
	Getting started with WebSphere MQ classes for JMS
	What is WebSphere MQ classes for JMS?
	Why should I use WebSphere MQ classes for JMS?
	Prerequisites for WebSphere MQ classes for JMS

	Installation and configuration of WebSphere MQ classes for JMS
	What is installed for WebSphere MQ classes for JMS
	Installation directories for WebSphere classes for JMS
	Environment variables used by WebSphere MQ classes for JMS
	The Java Native Interface (JNI) libraries required by WebSphere MQ classes for JMS applications
	The WebSphere MQ classes for JMS configuration file
	STEPLIB configuration on z/OS

	Running WebSphere MQ classes for JMS applications under the Java security manager
	The WebSphere MQ resource adapter
	Other required documentation
	Installation of the WebSphere MQ resource adapter
	Configuration of the WebSphere MQ resource adapter
	Limitations of the WebSphere MQ resource adapter

	Using WebSphere MQ classes for JMS
	Post installation setup for WebSphere MQ classes for JMS applications
	Queues that require authorization for non-privileged users
	Connection modes for WebSphere MQ classes for JMS
	Configuring your queue manager so that WebSphere MQ classes for JMS applications can connect in client mode

	The point-to-point installation verification test for WebSphere MQ classes for JMS
	The publish/subscribe installation verification test for WebSphere MQ classes for JMS
	The installation verification test program for the WebSphere MQ resource adapter
	Scripts provided with WebSphere MQ classes for JMS
	Support for OSGi
	Solving problems
	Tracing programs
	Logging

	Problem determination for the WebSphere MQ resource adapter
	Problems in deploying the resource adapter
	Problems in deploying MDBs
	Problems in creating connections for outbound communication

	Introduction to WebSphere MQ classes for JMS for programmers
	Introduction to WebSphere MQ classes for JMS
	What is new in WebSphere MQ Version 7.0?

	Writing WebSphere MQ classes for JMS applications
	The JMS model
	JMS messages
	Message selectors
	Mapping JMS messages onto WebSphere MQ messages

	Creating and configuring connection factories and destinations in a WebSphere MQ classes for JMS application
	Using JNDI to retrieve administered objects in a JMS application
	Using the IBM JMS extensions
	Using the WebSphere MQ JMS extensions

	Building a connection in a JMS application
	Creating a session in a JMS application
	Creating destinations in a JMS application
	Sending messages in a JMS application
	Receiving messages in a JMS application
	Closing down a WebSphere MQ classes for JMS application
	Handling errors in WebSphere MQ classes for JMS
	Exceptions in WebSphere MQ classes for JMS
	Logging errors in WebSphere MQ classes for JMS
	First failure support technology (FFST) in WebSphere MQ classes for JMS

	Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application
	Reading and writing the message descriptor from a WebSphere MQ classes for JMS application
	Accessing WebSphere MQ Message data from a WebSphere MQ classes for JMS application
	JMS persistent messages
	Using Secure Sockets Layer (SSL) with WebSphere MQ classes for JMS
	Using channel exits with WebSphere MQ classes for JMS
	Using a client channel definition table
	Sharing a TCP/IP connection
	Specifying a range of ports for client connections
	Channel compression
	Using read ahead with WebSphere MQ classes for JMS

	XA support in WebSphere MQ classes for JMS
	Using a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker
	Configuring a broker of WebSphere Event Broker or WebSphere Message Broker for a real-time connection
	Configuring WebSphere MQ classes for JMS for a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker

	WebSphere MQ classes for JMS Application Server Facilities
	ConnectionConsumer
	Planning an application
	General principles for point-to-point messaging
	General principles for publish/subscribe messaging
	Handling poison messages
	Removing messages from the queue

	Error handling
	Recovering from error conditions
	Reason and feedback codes

	The function of a server session pool

	Using the WebSphere MQ JMS administration tool
	Invoking the administration tool
	Configuration
	Using an unlisted InitialContextFactory
	Security

	Administration commands
	Manipulating subcontexts
	Administering JMS objects
	Object types
	Verbs used with JMS objects
	Creating objects
	Sample error conditions

	Using WebSphere MQ Explorer for JMS configuration
	Properties of WebSphere MQ classes for JMS objects
	Property dependencies
	The ENCODING property
	SSL properties
	Rules for selecting the WebSphere MQ messaging provider mode
	When to use PROVIDERVERSION

	WebSphere MQ classes for JMS packages

	Chapter 3. WebSphere MQ classes for Java
	Getting started with WebSphere MQ classes for Java
	What are WebSphere MQ classes for Java?
	Why should I use WebSphere MQ classes for Java?
	Connection options for WebSphere MQ classes for Java
	Prerequisites for WebSphere MQ classes for Java

	Installation and configuration of WebSphere MQ classes for Java
	What is installed for WebSphere MQ classes for Java
	Installation directories for WebSphere MQ classes for Java
	Environment variables relevant to WebSphere MQ classes for Java
	The WebSphere MQ classes for Java libraries
	STEPLIB configuration on z/OS

	Running WebSphere MQ classes for Java applications under the Java Security Manager
	Running WebSphere MQ classes for Java applications under CICS Transaction Server

	Using WebSphere MQ classes for Java
	Configuring your queue manager to accept client connections
	Verifying your WebSphere MQ classes for Java installation with the sample application
	Solving WebSphere MQ classes for Java problems

	Introduction for programmers
	The WebSphere MQ classes for Java interface
	What is new in Websphere MQ Version 7.0?

	Writing WebSphere MQ classes for Java applications
	Connection differences
	Client connections
	Bindings mode
	Defining which connection to use

	Operations on queue managers
	Setting up the WebSphere MQ environment
	Connecting to a queue manager
	Using a client channel definition table with WebSphere MQ classes for Java
	Specifying a range of ports for client connections

	Accessing queues, topics, and processes
	Handling messages
	Improving the performance of nonpersistent messages
	Putting messages asynchronously using WebSphere MQ classes for Java

	Publish/subscribe in WebSphere MQ classes for Java
	Handling WebSphere MQ message headers
	Printing all the headers in a message
	Skipping over the headers in a message
	Finding the reason code in a dead-letter message
	Reading and removing the MQDLH from a dead-letter message
	Printing the content of a message
	Finding a specific type of header in a message
	Analyzing an MQRFH2 header
	Reading and writing byte streams other than MQMessage objects
	Creating classes for new header types

	Handling PCF messages
	Handling message properties
	Handling errors in WebSphere MQ classes for Java
	Getting and setting attribute values in WebSphere MQ classes for Java
	Multithreaded programs in Java
	Using channel exits in WebSphere MQ classes for Java
	Creating a channel exit in WebSphere MQ classes for Java
	Assigning a channel exit in WebSphere MQ classes for Java
	Passing data to channel exits in WebSphere MQ classes for Java
	Using channel exits not written in Java with WebSphere MQ classes for Java
	Using a sequence of channel send or receive exits in WebSphere MQ classes for Java

	Channel compression in WebSphere MQ classes for Java
	Sharing a TCP/IP connection in WebSphere MQ classes for Java
	Connection pooling in WebSphere MQ classes for Java
	Controlling the default connection pool
	The default connection pool and multiple components
	Supplying a different connection pool
	Supplying your own ConnectionManager

	JTA/JDBC coordination using WebSphere MQ classes for Java
	Configuring JTA/JDBC coordination
	Using JTA/JDBC coordination
	Known problems and limitations with JTA/JDBC coordination

	Secure Sockets Layer (SSL) support
	Enabling SSL in WebSphere MQ classes for Java
	Using the distinguished name of the queue manager
	Using certificate revocation lists
	Renegotiating the secret key used for encryption
	Supplying a customized SSLSocketFactory
	Making changes to the JSSE keystore or truststore
	Error handling when using SSL
	SSL CipherSpecs and CipherSuites

	Running WebSphere MQ classes for Java applications
	Tracing WebSphere MQ classes for Java programs

	Environment-dependent behavior
	Core classes in WebSphere MQ classes for Java
	Restrictions and variations for core classes
	MQGMO_* values
	MQPMRF_* values
	MQPMO_* values
	MQCNO_FASTPATH_BINDING
	MQRO_* values
	Miscellaneous differences with z/OS

	Features outside the core
	MQQueueManager constructor option
	MQQueueManager.begin() method
	MQGetMessageOptions fields
	Distribution lists
	MQPutMessageOptions fields
	MQMD fields

	Restrictions under CICS Transaction Server
	Running WebSphere MQ classes for Java applications within Java EE

	WebSphere MQ classes for Java packages

	Notices
	Index
	Sending your comments to IBM

